Vv

Preface

No programming technique solves all problems.
No programming language produces only correct results.
No programmer should start each project from scratch.

Object-oriented programming is the current cure-all — although it has been
around for much more then ten years. At the core, there is little more to it then
finally applying the good programming principles which we have been taught for
more then twenty years. C++ (Eiffel, Oberon-2, Smalltalk ... take your pick) is the
New Language because it is object-oriented — although you need not use it that
way if you do not want to (or know how to), and it turns out that you can do just as
well with plain ANSI-C. Only object-orientation permits code reuse between pro-
jects — although the idea of subroutines is as old as computers and good program-
mers always carried their toolkits and libraries with them.

This book is not going to praise object-oriented programming or condemn the
Old Way. We are simply going to use ANSI-C to discover how object-oriented pro-
gramming is done, what its techniques are, why they help us solve bigger prob-
lems, and how we harness generality and program to catch mistakes earlier. Along
the way we encounter all the jargon — classes, inheritance, instances, linkage,
methods, objects, polymorphisms, and more — but we take it out of the realm of
magic and see how it translates into the things we have known and done all along.

| had fun discovering that ANSI-C is a full-scale object-oriented language. To
share this fun you need to be reasonably fluent in ANSI-C to begin with — feeling
comfortable with structures, pointers, prototypes, and function pointers is a must.
Working through the book you will encounter all the newspeak — according to
Orwell and Webster a language ‘‘designed to diminish the range of thought’* — and
| will try to demonstrate how it merely combines all the good programming princi-
ples that you always wanted to employ into a coherent approach. As a result, you
may well become a more proficient ANSI-C programmer.

The first six chapters develop the foundations of object-oriented programming
with ANSI-C. We start with a careful information hiding technique for abstract data
types, add generic functions based on dynamic linkage and inherit code by judicious
lengthening of structures. Finally, we put it all together in a class hierarchy that
makes code much easier to maintain.

Programming takes discipline. Good programming takes a lot of discipline, a
large number of principles, and standard, defensive ways of doing things right. Pro-
grammers use tools. Good programmers make tools to dispose of routine tasks
once and for all. Object-oriented programming with ANSI-C requires a fair amount
of immutable code — names may change but not the structures. Therefore, in
chapter seven we build a small preprocessor to create the boilerplate required. It
looks like yet another new object-oriented dialect language (yanood! perhaps?) but
it should not be viewed as such — it gets the dull parts out of the way and lets us
concentrate on the creative aspects of problem solving with better techniques. ooc

Vi Preface

(sorry) is pliable: we have made it, we understand it and can change it, and it
writes the ANSI-C code just like we would.

The following chapters refine our technology. In chapter eight we add dynamic
type checking to catch our mistakes earlier on. In chapter nine we arrange for
automatic initialization to prevent another class of bugs. Chapter ten introduces
delegates and shows how classes and callback functions cooperate to simplify, for
example, the constant chore of producing standard main programs. More chapters
are concerned with plugging memory leaks by using class methods, storing and
loading structured data with a coherent strategy, and disciplined error recovery
through a system of nested exception handlers.

Finally, in the last chapter we leave the confines of ANSI-C and implement the
obligatory mouse-operated calculator, first for curses and then for the X Window
System. This example neatly demonstrates how elegantly we can design and
implement using objects and classes, even if we have to cope with the idiosyn-
crasies of foreign libraries and class hierarchies.

Each chapter has a summary where | try to give the more cursory reader a run-
down on the happenings in the chapter and their importance for future work. Most
chapters suggest some exercises; however, they are not spelled out formally,
because | firmly believe that one should experiment on one’s own. Because we are
building the techniques from scratch, | have refrained from making and using a
massive class library, even though some examples could have benefited from it. If
you want to understand object-oriented programming, it is more important to first
master the techniques and consider your options in code design; dependence on
somebody else’s library for your developments should come a bit later.

An important part of this book is the enclosed source floppy — it has a DOS file
system containing a single shell script to create all the sources arranged by chapter.
There is a ReadMe file — consult it before you say make. It is also quite instructive
to use a program like diff and trace the evolution of the root classes and ooc reports
through the later chapters.

The technigues described here grew out of my disenchantment with C++ when
| needed object-oriented techniques to implement an interactive programming
language and realized that | could not forge a portable implementation in C++. |
turned to what | knew, ANSI-C, and | was perfectly able to do what | had to. | have
shown this to a number of people in courses and workshops and others have used
the methods to get their jobs done. It would have stopped there as my footnote to
a fad, if Brian Kernighan and my publishers, Hans-Joachim Niclas and John Wait,
had not encouraged me to publish the notes (and in due course to reinvent it all
once more). My thanks go to them and to all those who helped with and suffered
through the evolution of this book. Last not least | thank my family — and no,
object-orientation will not replace sliced bread.

Hollage, October 1993
Axel-Tobias Schreiner

Vii

Preface

1

Abstract Data Types — Information Hiding

_—ed A A L L L
S LN WN =

o

Data Types .

Abstract Data Types

An Example — Set .

Memory Management

Object

An Application .

An Implementation — Set .
Another Implementation — Bag .
Summary

Exercises

Dynamic Linkage — Generic Functions .

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

Constructors and Destructors

Methods, Messages, Classes and Objects
Selectors, Dynamic Linkage, and Polymorphisms
An Application

An Implementation — Str/ng

Another Implementation — Atom

Summary

Exercises

Programming Savvy — Arithmetic Expressions

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

The Main Loop
The Scanner

The Recognizer
The Processor
Information Hiding
Dynamic Linkage
A Postfix Writer
Arithmetic

Infix Output
Summary

Inheritance — Code Reuse and Refinement

4.1
4.2
4.3
4.4
4.5
4.6
4.7

A Superclass — Point .

Superclass Implementation — Pomt
Inheritance — Circle

Linkage and Inheritance

Static and Dynamic Linkage
Visibility and Access Functions
Subclass Implementation — Circle .

Contents

OQONPPPWOLON-— — O

—_
—_

NN/
QO ONOWN —

N
—

NNDNNNNNNNDDN
OO WWN —

w
—_

WWWwwWwwww
OO OoTWN —

viii

Contents

7

4.8 Summary

49 IsltorHaslt? — Inhentance VS. Aggregates
4.10 Multiple Inheritance

411 Exercises

Programming Savvy — Symbol Table

5.1 Scanning Identifiers

5.2 Using Variables

5.3 The Screener — Name .
5.4 Superclass Implementation — Name .
5.5 Subclass Implementation — Var .
5.6 Assignment

5.7 Another Subclass — Constants
5.8 Mathematical Functions — Math
59 Summary

5.10 Exercises Ce e
Class Hierarchy — Maintainability .
6.1 Requirements .

6.2 Metaclasses . .

6.3 Roots — Object and C/ass .

6.4 Subclassing — Any

6.5 Implementation — Object

6.6 Implementation — Class

6.7 Initialization

6.8 Selectors

6.9 Superclass Selectors .
6.10 A New Metaclass — Poth/ass .
6.11 Summary

The ooc Preprocessor — Enforcing a Coding Standard

7.1 Point Revisited

7.2 Design

7.3 Preprocessing .

7.4 Implementation Strategy

7.5 Object Revisited .

7.6 Discussion .

7.7 An Example — List, Oueue and Stack
7.8 Exercises

Dynamic Type Checking — Defensive Programming

8.1 Technique .o
8.2 An Example — list .
8.3 Implementation .
8.4 Coding Standard .
8.5 Avoiding Recursion
8.6 Summary

8.7 Exercises

40
42
42
43

45

45
45
47
48
50
51
52
52
55
55

57

57
58
59
60
62
63
65
65
66
68
70

73

73
78
79
80
82
84
85
89

91

91
92
94
94
98
100
101

Contents IX
9 Static Construction — Self-Organization 103
9.1 Initialization . 103
9.2 Initializer Lists — munch 104
9.3 Functions for Objects . 106
9.4 Implementation 107
9.5 Summary 109
9.6 Exercises Coe 110
10 Delegates — Callback Functions 111
10.1 Callbacks . 111
10.2 Abstract Base Classes 111
10.3 Delegates 113
10.4 An Application Framework — F//ter 114
10.5 The respondsTo Method 117
10.6 Implementation . 119
10.7 Another application — sort 122
10.8 Summary 123
10.9 Exercises . 124
11 Class Methods — Plugglng Memory Leaks 125
11.1 An Example 125
11.2 Class Methods . 127
11.3 Implementing Class I\/Iethods . 128
11.4 Programming Savvy — A Classy Calculator 131
11.5 Summary 140
11.6 Exercises 141
12 Persistent Objects — Storing and Loading Data Structures 143
12.1 An Example . 143
12.2 Storing Objects — puto() 148
12.3 Filling Objects — geto() 150
12.4 Loading Objects — retrieve() . 151
12.5 Attaching Objects — value Revisited . 153
12.6 Summary 156
12.7 Exercises 157
13 Exceptions — Disciplined Error Recovery . 159
13.1 Strategy . . 159
13.2 Implementation — Except/on . 161
13.3 Examples 163
13.4 Summary 165
13.5 Exercises 166
14 Forwarding Messages — A GUI Calculator 167
141 The ldea . 167
14.2 Implementation 168
14.3 Object-Oriented Design by Example 171
14.4 Implementation — Ic . . . 174

X Contents
14.5 A Character-Based Interface — curses 179
14.6 A Graphical Interface — Xt . 182
14.7 Summary 188
14.8 Exercises . 189

A ANSI-C Programming Hints 191
A.1 Names and Scope 191
A.2 Functions . 191
A.3 Generic Pointers — VO/d * 192
A4 const 193
A5 typedefand const 194
A.6 Structures 194
A.7 Pointers to Func‘uons 195
A.8 Preprocessor 196
A.9 \Verification — assert. h 196
A.10 Global Jumps — setimp.h . 196
A.11 Variable Argument Lists — stdarg.h 197
A.12 Data Types — stddef.h 198
A.13 Memory Management — stdlib.h 198
A.14 Memory Functions — string.h 198

B The ooc Preprocessor — Hints on awk Programming 199
B.1 Architecture . 199
B.2 File Management — io. avvk 200
B.3 Recognition — parse.awk 200
B.4 The Database . . 201
B.5 Report Generation — report awk 202
B.6 Line Numbering . 203
B.7 The Main Program — main. avv/< 204
B.8 Report Files 204
B.9 The ooc Command . 205

C Manual . 207
C.1 Commands . 207
C.2 Functions 214
C.3 Root Classes 214
C.4 GUI Calculator Classes 218

Bibliography 223

1
Abstract Data Types
Information Hiding

1.1 Data Types

Data types are an integral part of every programming language. ANSI-C has int,
double and char to name just a few. Programmers are rarely content with what's
available and a programming language normally provides facilities to build new data
types from those that are predefined. A simple approach is to form aggregates
such as arrays, structures, or unions. Pointers, according to C. A. R. Hoare "a step
from which we may never recover,” permit us to represent and manipulate data of
essentially unlimited complexity.

What exactly is a data type? We can take several points of view. A data type
is a set of values — char typically has 256 distinct values, int has many more; both
are evenly spaced and behave more or less like the natural numbers or integers of
mathematics. double once again has many more values, but they certainly do not
behave like mathematics’ real numbers.

Alternatively, we can define a data type as a set of values plus operations to
work with them. Typically, the values are what a computer can represent, and the
operations more or less reflect the available hardware instructions. int in ANSI-C
does not do too well in this respect: the set of values may vary between machines,
and operations like arithmetic right shift may behave differently.

More complicated examples do not fare much better. Typically we would
define an element of a linear list as a structure
typedef struct node {
struct node * next;
i nformati on
} node;

and for the operations we specify function headers like
node * head (node * elt, const node * tail);
This approach, however, is quite sloppy. Good programming principles dictate

that we conceal the representation of a data item and declare only the possible
manipulations.

1.2 Abstract Data Types

We call a data type abstract, if we do not reveal its representation to the user. At a
theoretical level this requires us to specify the properties of the data type by
mathematical axioms involving the possible operations. For example, we can
remove an element from a queue only as often as we have added one previously,
and we retrieve the elements in the same order in which they were added.

2 1 Abstract Data Types — Information Hiding

Abstract data types offer great flexibility to the programmer. Since the
representation is not part of the definition, we are free to choose whatever is easi-
est or most efficient to implement. If we manage to distribute the necessary infor-
mation correctly, use of the data type and our choice of implementation are totally
independent.

Abstract data types satisfy the good programming principles of information hid-
ing and divide and conquer. Information such as the representation of data items is
given only to the one with a need to know: to the implementer and not to the user.
With an abstract data type we cleanly separate the programming tasks of imple-
mentation and usage: we are well on our way to decompose a large system into
smaller modules.

1.3 An Example — Set

So how do we implement an abstract data type? As an example we consider a set
of elements with the operations add, find, and drop.* They all apply to a set and an
element and return the element added to, found in, or removed from a set. find
can be used to implement a condition contains which tells us whether an element
is already contained in a set.

Viewed this way, set is an abstract data type. To declare what we can do with
a set, we start a header file Set.h:

#i fndef SET_H
#define SET _H

extern const void * Set;

void * add (void * set, const void * elenent);

void * find (const void * set, const void * elenent);
void * drop (void * set, const void * elenent);

int contains (const void * set, const void * el enent);

#endi f

The preprocessor statements protect the declarations: no matter how many times
we include Set.h, the C compiler only sees the declarations once. This technique of
protecting header files is so standard, that the GNU C preprocessor recognizes it and
does not even access such a file when its protecting symbol is defined.

Set.h is complete, but is it useful? We can hardly reveal or assume less: Set
will have to somehow represent the fact, that we are working with sets; add()
takes an element, adds it to a set, and returns whatever was added or already
present in the set; find() looks for an element in a set and returns whatever is
present in the set or a null pointer; drop() locates an element, removes it from a
set, and returns whatever was removed; contains() converts the result of find()
into a truth value.

* Unfortunately, remove is an ANSI-C library function to remove a file. If we used this name for a set
function, we could no longer include stdio.h.

1.4 Memory Management 3

The generic pointer void * is used throughout. On the one hand it makes it
impossible to discover what a set looks like, but on the other hand it permits us to
pass virtually anything to add() and the other functions. Not everything will behave
like a set or an element — we are sacrificing type security in the interest of informa-
tion hiding. However, we will see in chapter 8 that this approach can be made
completely secure.

1.4 Memory Management

We may have overlooked something: how does one obtain a set? Set is a pointer,
not a type defined by typedef, therefore, we cannot define local or global variables
of type Set. Instead, we are only going to use pointers to refer to sets and ele-
ments, and we declare source and sink of all data items in new.h:

void * new (const void * type, ...);

void delete (void * item;
Just like Set.h this file is protected by a preprocessor symbol NEW_H. The text only
shows the interesting parts of each new file, the source diskette contains the com-
plete code of all examples.

new() accepts a descriptor like Set and possibly more arguments for initializa-
tion and returns a pointer to a new data item with a representation conforming to
the descriptor. delete() accepts a pointer originally produced by new() and recycles
the associated resources.

new() and delete() presumably are a frontend to the ANSI-C functions calloc()
and free(). If they are, the descriptor has to indicate at least how much memory is
required.

1.5 Object

If we want to collect anything interesting in a set, we need another abstract data
type Object described by the header file Object.h:

extern const void * Object; [* new(Object); */
int differ (const void * a, const void * b);

differ() can compare objects: it returns true if they are not equal and false if they
are. This description leaves room for the functionality of stremp(): for some pairs
of objects we might choose to return a negative or positive value to specify an or-
dering.

Real life objects need more functionality to do something useful. For the
moment, we restrict ourselves to the bare necessities for membership in a set. If
we built a bigger class library, we would see that a set — and in fact everything
else — is an object, too. At this point, a lot of functionality results more or less for
free.

4 1 Abstract Data Types — Information Hiding

1.6 An Application

With the header files, i.e., the definitions of the abstract data types, in place we can
write an application main.c:

#i ncl ude <stdio. h>

#i ncl ude "new. h"
#i ncl ude "Object.h"
#i ncl ude "Set.h"

int main ()

{ void * s = newSet);
void * a = add(s, new Object));
void * b = add(s, new Object));
void * ¢ = new Obj ect);

if (contains(s, a) & contains(s, b))
puts("ok");

if (contains(s, c))
put s("contai ns?");

if (differ(a, add(s, a)))
puts("differ?");

if (contains(s, drop(s, a)))
puts("drop?");

del ete(drop(s, b));

del ete(drop(s, c));

return O;

}

We create a set and add two new objects to it. If all is well, we find the objects in
the set and we should not find another new object. The program should simply
print ok.

The call to differ() illustrates a semantic point: a mathematical set can only
contain one copy of the object a; an attempt to add it again must return the original
object and differ() ought to be false. Similarly, once we remove the object, it
should no longer be in the set.

Removing an element not in a set will result in a null pointer being passed to
delete(). For now, we stick with the semantics of free() and require this to be
acceptable.

1.7 An Implementation — Set

main.c will compile successfully, but before we can link and execute the program,
we must implement the abstract data types and the memory manager. If an object
stores no information and if every object belongs to at most one set, we can
represent each object and each set as small, unique, positive integer values used as
indices into an array heapl]. If an object is a member of a set, its array element con-
tains the integer value representing the set. Objects, therefore, point to the set
containing them.

1.7 An Implementation — "'Set"’ 5

This first solution is so simple that we combine all modules into a single file
Set.c. Sets and objects have the same representation, so new() pays no attention
to the type description. It only returns an element in heapl] with value zero:

#if | defined MANY || MANY < 1

#defi ne MANY 10
#endi f

static int heap [MANY];

void * new (const void * type, ...)
{ int * p; /[* & heap[1l..] */
for (p = heap + 1; p < heap + MANY; ++ p)
it (! " p)
br eak;
assert(p < heap + MANY);
* p = MANY;
return p;
}

We use zero to mark available elements of heapl]; therefore, we cannot return a
reference to heapl[0] — if it were a set, its elements would contain the index value
zero.

Before an object is added to a set, we let it contain the impossible index value
MANY so that new() cannot find it again and we still cannot mistake it as a member
of any set.

new() can run out of memory. This is the first of many errors, that "‘cannot
happen”. We will simply use the ANSI-C macro assert() to mark these points. A
more realistic implementation should at least print a reasonable error message or
use a general function for error handling which the user may overwrite. For our pur-
pose of developing a coding technique, however, we prefer to keep the code
uncluttered. In chapter 13 we will look at a general technique for handling excep-
tions.

delete() has to be careful about null pointers. An element of heapl] is recycled
by setting it to zero:
void delete (void * _item
{ int * item= _item
if (item
{ assert(item > heap && item < heap + MANY);
* jtem = 0;
}

}

We need a uniform way to deal with generic pointers; therefore, we prefix their
names with an underscore and only use them to initialize local variables with the
desired types and with the appropriate names.

A set is represented in its objects: each element points to the set. If an ele-
ment contains MANY, it can be added to the set, otherwise, it should already be in
the set because we do not permit an object to belong to more than one set.

6 1 Abstract Data Types — Information Hiding

void * add (void * _set, const void * _el ement)

{ int * set = _set;
const int * element = _elenent;
assert(set > heap && set < heap + MANY);
assert(* set == MANY);
assert (el ement > heap && el enent < heap + MANY);
if (* element == MANY)
* (int *) elenent = set —heap;
el se
assert(* element == set —heap);

return (void *) element;

}

assert() takes out a bit of insurance: we would only like to deal with pointers into
heapl[] and the set should not belong to some other set, i.e., its array element value
ought to be MANY.

The other functions are just as simple. find() only looks if its element contains
the proper index for the set:
void * find (const void * _set, const void * _element)
{ const int * set = _set;
const int * element = _elenent;

assert(set > heap && set < heap + MANY);
assert(* set == MANY);

assert (el ement > heap && el enent < heap + MANY);
assert(* elenent);

return * elenent == set —heap ? (void *) elenent : O;
}
contains() converts the result of find() into a truth value:
int contains (const void * _set, const void * _el enent)

{
}

drop() can rely on find() to check if the element to be dropped actually belongs to
the set. If so, we return it to object status by marking it with MANY:

void * drop (void * _set, const void * _el enent)
{ int * element = find(_set, _elenent);

return find(_set, _elenent) != 0;

if (elenment)
* el enment = MANY;
return el enment;

}

If we were pickier, we could insist that the element to be dropped not belong to
another set. In this case, however, we would replicate most of the code of find()
in drop().

Our implementation is quite unconventional. [t turns out that we do not need
differ() to implement a set. We still need to provide it, because our application
uses this function.

1.8 Another Implementation — ""Bag’’ 7

int differ (const void * a, const void * b)

{
}

Objects differ exactly when the array indices representing them differ, i.e., a simple
pointer comparison is sufficient.

return a !'= b;

We are done — for this solution we have not used the descriptors Set and
Object but we have to define them to keep our C compiler happy:

const void * Set;
const void * Object;

We did use these pointers in main() to create new sets and objects.

1.8 Another Implementation — Bag

Without changing the visible interface in Set.h we can change the implementation.
This time we use dynamic memory and represent sets and objects as structures:

struct Set { unsigned count; };
struct Object { unsigned count; struct Set * in; };

count keeps track of the number of elements in a set. For an element, count
records how many times this element has been added to the set. If we decrement
count each time the element is passed to drop() and only remove the element
once count is zero, we have a Bag, i.e., a set where elements have a reference
count.

Since we will use dynamic memory to represent sets and objects, we need to
initialize the descriptors Set and Object so that new() can find out how much
memory to reserve:

static const size_t _Set = sizeof(struct Set);
static const size_t _Object = sizeof(struct Object);

const void * Set = & _Set;
const void * Object = & _Object;
new() is now much simpler:

void * new (const void * type, ...)

{ const size_t size = * (const size_t *) type;
void * p = calloc(l, size);
assert(p);
return p;

}
delete() can pass its argument directly to free() — in ANSI-C a null pointer may be
passed to freel).

add() has to more or less believe its pointer arguments. It increments the
element’s reference counter and the number of elements in the set:

8 1 Abstract Data Types — Information Hiding

void * add (void * _set, const void * _el ement)
{ struct Set * set = _set;
struct Object * elenent = (void *) _elenent;

assert(set);
assert (el enent);
if (! element — in)
element — in = set;
el se
assert(element — in == set);
++ el ement — count, ++ set — count;

return el enment;

}
find() still checks, if the element points to the appropriate set:

void * find (const void * _set, const void * _elenment)
{ const struct Object * elenment = _el ement;

assert(_set);
assert (el enent);

return elenent — in == _set ? (void *) elenent : O;
}

contains() is based on find() and remains unchanged.

If drop() finds its element in the set, it decrements the element’s reference
count and the number of elements in the set. If the reference count reaches zero,
the element is removed from the set:

void * drop (void * _set, const void * _el enent)

{ struct Set * set = _set;
struct Object * elenent = find(set, _elenent);

if (elenment)
{ if (—element — count == 0)
elemrent — in = 0;
——set — count;

}

return el ement;

}

We can now provide a new function count() which returns the number of ele-
ments in a set:

unsi gned count (const void * _set)
{ const struct Set * set = _set;

assert(set);
return set — count;

}

Of course, it would be simpler to let the application read the component .count
directly, but we insist on not revealing the representation of sets. The overhead of
a function call is insignificant compared to the danger of an application being able to
overwrite a critical value.

1.9 Summary 9

Bags behave differently from sets: an element can be added several times; it
will only disappear from the set, once it is dropped as many times as it was added.
Our application in section 1.6 added the object a twice to the set. After it is
dropped from the set once, contains() will still find it in the bag. The test program
now has the output

ok
drop?

1.9 Summary

For an abstract data type we completely hide all implementation details, such as the
representation of data items, from the application code.

The application code can only access a header file where a descriptor pointer
represents the data type and where operations on the data type are declared as
functions accepting and returning generic pointers.

The descriptor pointer is passed to a general function new() to obtain a pointer
to a data item, and this pointer is passed to a general function delete() to recycle
the associated resources.

Normally, each abstract data type is implemented in a single source file.
Ideally, it has no access to the representation of other data types. The descriptor
pointer normally points at least to a constant size_t value indicating the space
requirements of a data item.

1.10 Exercises

If an object can belong to several sets simultaneously, we need a different
representation for sets. If we continue to represent objects as small unique integer
values, and if we put a ceiling on the number of objects available, we can represent
a set as a bitmap stored in a long character string, where a bit selected by the
object value is set or cleared depending on the presence of the object in the set.

A more general and more conventional solution represents a set as a linear list
of nodes storing the addresses of objects in the set. This imposes no restriction on
objects and permits a set to be implemented without knowing the representation of
an object.

For debugging it is very helpful to be able to look at individual objects. A rea-
sonably general solution are two functions

int store (const void * object, FILE * fp);
int storev (const void * object, va_list ap);

store() writes a description of the object to the file pointer. storev() uses va_arg()
to retrieve the file pointer from the argument list pointed to by ap. Both functions
return the number of characters written. storev() is practical if we implement the
following function for sets:

int apply (const void * set,
int (* action) (void * object, va_list ap), ...):

10 1 Abstract Data Types — Information Hiding

apply() calls action() for each element in set and passes the rest of the argument
list. action() must not change set but it may return zero to terminate applyl() early.
apply() returns true if all elements were processed.

11

2
Dynamic Linkage
Generic Functions

2.1 Constructors and Destructors

Let us implement a simple string data type which we will later include into a set.
For a new string we allocate a dynamic buffer to hold the text. When the string is
deleted, we will have to reclaim the buffer.

new() is responsible for creating an object and delete() must reclaim the
resources it owns. new() knows what kind of object it is creating, because it has
the description of the object as a first parameter. Based on the parameter, we
could use a chain of if statements to handle each creation individually. The draw-
back is that new() would explicitly contain code for each data type which we sup-
port.

delete(), however, has a bigger problem. It, too, must behave differently based
on the type of the object being deleted: for a string the text buffer must be freed,;
for an object as used in chapter 1 only the object itself has to be reclaimed; and a
set may have acquired various chunks of memory to store references to its ele-
ments.

We could give delete() another parameter: either our type descriptor or the
function to do the cleaning up, but this approach is clumsy and error-prone. There
is a much more general and elegant way: each object must know how to destroy
its own resources. Part of each and every object will be a pointer with which we
can locate a clean-up function. We call such a function a destructor for the object.

Now new() has a problem. It is responsible for creating objects and returning
pointers that can be passed to delete(), i.e., new() must install the destructor infor-
mation in each object. The obvious approach is to make a pointer to the destructor
part of the type descriptor which is passed to new(). So far we need something like
the following declarations:

struct type {
size t size; /* size of an object */
void (* dtor) (void *); /* destructor */

b
struct String {
char * text; /* dynamic string */
const void * destroy; /* | ocate destructor */
I

struct Set ({
i nformati on
const void * destroy; /* | ocate destructor */

I

12 2 Dynamic Linkage — Generic Functions

It looks like we have another problem: somebody needs to copy the destructor
pointer dtor from the type description to destroy in the new object and the copy
may have to be placed into a different position in each class of objects.

Initialization is part of the job of newl() and different types require different work
— new() may even require different arguments for different types:
new(Set); /* make a set */
new(String, "text"); /* make a string */
For initialization we use another type-specific function which we will call a construc-
tor. Since constructor and destructor are type-specific and do not change, we pass
both to new() as part of the type description.

Note that constructor and destructor are not responsible for acquiring and
releasing the memory for an object itself — this is the job of newl() and delete().
The constructor is called by new() and is only responsible for initializing the memory
area allocated by new(). For a string, this does involve acquiring another piece of
memory to store the text, but the space for struct String itself is allocated by
new(). This space is later freed by delete(). First, however, delete() calls the des-
tructor which essentially reverses the initialization done by the constructor before
delete() recycles the memory area allocated by new().

2.2 Methods, Messages, Classes and Objects

delete() must be able to locate the destructor without knowing what type of object
it has been given. Therefore, revising the declarations shown in section 2.1, we
must insist that the pointer used to locate the destructor must be at the beginning
of all objects passed to delete(), no matter what type they have.

What should this pointer point to? If all we have is the address of an object,
this pointer gives us access to type-specific information for the object, such as its
destructor function. It seems likely that we will soon invent other type-specific
functions such as a function to display objects, or our comparison function differ(),
or a function clone() to create a complete copy of an object. Therefore we will use
a pointer to a table of function pointers.

Looking closely, we realize that this table must be part of the type description
passed to new(), and the obvious solution is to let an object point to the entire type
description:

struct Cass {

size t size;

void * (* ctor) (void * self, va_list * app);

void * (* dtor) (void * self);

void * (* clone) (const void * self);

int (* differ) (const void * self, const void * b);
b
struct String {

const void * class; /* nmust be first */

char * text;

I

2.3 Selectors, Dynamic Linkage, and Polymorphisms 13

struct Set ({
const void * class; /* nmust be first */

b

Each of our objects starts with a pointer to its own type description, and through
this type description we can locate type-specific information for the object: .size is
the length that new() allocates for the object; .ctor points to the constructor called
by new() which receives the allocated area and the rest of the argument list passed
to newl() originally; .dtor points to the destructor called by delete() which receives
the object to be destroyed; .clone points to a copy function which receives the
object to be copied; and .differ points to a function which compares its object to
something else.

Looking down this list, we notice that every function works for the object
through which it will be selected. Only the constructor may have to cope with a
partially initialized memory area. We call these functions methods for the objects.
Calling a method is termed a message and we have marked the receiving object of
the message with the parameter name self. Since we are using plain C functions,
self need not be the first parameter.

Many objects will share the same type descriptor, i.e., they need the same
amount of memory and the same methods can be applied to them. We call all
objects with the same type descriptor a class; a single object is called an instance
of the class. So far a class, an abstract data type, and a set of possible values
together with operations, i.e., a data type, are pretty much the same.

An object is an instance of a class, i.e., it has a state represented by the
memory allocated by new() and the state is manipulated with the methods of its
class. Conventionally speaking, an object is a value of a particular data type.

2.3 Selectors, Dynamic Linkage, and Polymorphisms

Who does the messaging? The constructor is called by new() for a new memory
area which is mostly uninitialized:
void * new (const void * _class, ...)

{ const struct Class * class = _cl ass;
void * p = calloc(1, class — size);

assert(p);
* (const struct Class **) p = class;

if (class — ctor)

{ va_list ap;
va_start(ap, _class);
p =class — ctor(p, & ap);
va_end(ap);

}

return p;

}

The existence of the struct Class pointer at the beginning of an object is extremely
important. This is why we initialize this pointer already in new():

14 2 Dynamic Linkage — Generic Functions

object cl ass

p «_|___ o e_Jd____+ sjze

ctor

dtor

clone

differ

struct d ass

The type description class at the right is initialized at compile time. The object is
created at run time and the dashed pointers are then inserted. In the assignment

* (const struct Class **) p = class;

p points to the beginning of the new memory area for the object. We force a
conversion of p which treats the beginning of the object as a pointer to a struct
Class and set the argument class as the value of this pointer.

Next, if a constructor is part of the type description, we call it and return its
result as the result of new(), i.e., as the new object. Section 2.6 illustrates that a
clever constructor can, therefore, decide on its own memory management.

Note that only explicitly visible functions like new() can have a variable parame-
ter list. The list is accessed with a va_list variable ap which is initialized using the
macro va_start() from stdarg.h. new() can only pass the entire list to the construc-
tor; therefore, .ctor is declared with a va_list parameter and not with its own vari-
able parameter list. Since we might later want to share the original parameters
among several functions, we pass the address of ap to the constructor — when it
returns, ap will point to the first argument not consumed by the constructor.

delete() assumes that each object, i.e., each non-null pointer, points to a type
description. This is used to call the destructor if any exists. Here, self plays the
role of p in the previous picture. We force the conversion using a local variable ¢p
and very carefully thread our way from self to its description:
void delete (void * self)
{ const struct Cass ** cp = self;
if (self & * cp && (* cp) — dtor)
self = (* cp) — dtor(self);
free(self);

}

The destructor, too, gets a chance to substitute its own pointer to be passed to
free() by delete(). If the constructor decides to cheat, the destructor thus has a
chance to correct things, see section 2.6. If an object does not want to be deleted,
its destructor would return a null pointer.

All other methods stored in the type description are called in a similar fashion.
In each case we have a single receiving object self and we need to route the
method call through its descriptor:

2.3 Selectors, Dynamic Linkage, and Polymorphisms 15

int differ (const void * self, const void * b)
{ const struct Class * const * cp = self;

assert(self && * cp && (* cp) — differ);
return (* cp) — differ(self, b);

}

The critical part is, of course, the assumption that we can find a type description
pointer * self directly underneath the arbitrary pointer self. For the moment at least,
we guard against null pointers. We could place a "'magic number’’ at the beginning
of each type description, or even compare * self to the addresses or an address
range of all known type descriptions, but we will see in chapter 8 that we can do
much more serious checking.

In any case, differ() illustrates why this technique of calling functions is called
dynamic linkage or late binding: while we can call differ() for arbitrary objects as
long as they start with an appropriate type description pointer, the function that
actually does the work is determined as late as possible — only during execution of
the actual call, not before.

We will call differ() a selector function. It is an example of a polymorphic func-
tion, i.e., a function that can accept arguments of different types and act differently
on them based on their types. Once we implement more classes which all contain
.differ in their type descriptors, differ() is a generic function which can be applied to
any object in these classes.

We can view selectors as methods which themselves are not dynamically
linked but still behave like polymorphic functions because they let dynamically
linked functions do their real work.

Polymorphic functions are actually built into many programming languages, e.g.,
the procedure write() in Pascal handles different argument types differently, and
the operator + in C has different effects if it is called for integers, pointers, or float-
ing point values. This phenomenon is called overloading: argument types and the
operator name together determine what the operator does; the same operator
name can be used with different argument types to produce different effects.

There is no clear distinction here: because of dynamic linkage, differ() behaves
like an overloaded function, and the C compiler can make + act like a polymorphic
function — at least for the built-in data types. However, the C compiler can create
different return types for different uses of the operator + but the function differ()
must always have the same return type independent of the types of its arguments.

Methods can be polymorphic without having dynamic linkage. As an example,
consider a function sizeOf() which returns the size of any object:
size_ t sizeOF (const void * self)
{ const struct Class * const * cp = self;

assert(self && * cp);
return (* cp) — size;

16 2 Dynamic Linkage — Generic Functions

All objects carry their descriptor and we can retrieve the size from there. Notice the
difference:

void * s = new(String, "text");

assert(sizeof s != sizeO(s));
sizeof is a C operator which is evaluated at compile time and returns the number of
bytes its argument requires. sizeOf() is our polymorphic function which at run time
returns the number of bytes of the object, to which the argument points.

2.4 An Application
While we have not yet implemented strings, we are still ready to write a simple test
program. String.h defines the abstract data type:

extern const void * String;
All our methods are common to all objects; therefore, we add their declarations to
the memory management header file new.h introduced in section 1.4:

void * clone (const void * self);

int differ (const void * self, const void * b);

size_t sizeOh (const void * self);

The first two prototypes declare selectors. They are derived from the correspond-
ing components of struct Class by simply removing one indirection from the
declarator. Here is the application:

#include "String.h"
#i ncl ude "new. h"

int main ()

{ void * a new(String, "a"), * aa = clone(a);
void * b new(String, "b");
printf("sizeOi(a) == %\n", sizeO(a));
if (differ(a, b))

put s("ok");
if (differ(a, aa))
puts("differ?");

if (a == aa)
puts("cl one?");

delete(a), delete(aa), delete(b);
return O;

}

We create two strings and make a copy of one. We show the size of a String
object — not the size of the text controlled by the object — and we check that two
different texts result in different strings. Finally, we check that a copy is equal but
not identical to its original and we delete the strings again. If all is well, the pro-
gram will print something like

sizeOf (a) ==

ok

2.5 An Implementation — **String'’ 17

2.5 An Implementation — String

We implement strings by writing the methods which need to be entered into the
type description String. Dynamic linkage helps to clearly identify which functions
need to be written to implement a new data type.

The constructor retrieves the text passed to new() and stores a dynamic copy
in the struct String which was allocated by new():

struct String {
const void * class; /* nmust be first */
char * text;

H
static void * String_ctor (void * _self, va_list * app)
{ struct String * self = _self;
const char * text = va_arg(* app, const char *);
self — text = malloc(strlen(text) + 1);
assert(self — text);
strcpy(self — text, text);
return self;
}

In the constructor we only need to initialize .text because newl() has already set up
.class.

The destructor frees the dynamic memory controlled by the string. Since
delete() can only call the destructor if self is not null, we do not need to check
things:

static void * String_dtor (void * _self)
{ struct String * self = _self;

free(self — text), self — text = 0;
return self;

}

String_clone() makes a copy of a string. Later both, the original and the copy,
will be passed to delete() so we must make a new dynamic copy of the string’s
text. This can easily be done by calling new():

static void * String_clone (const void * _self)
{ const struct String * self = _self;

return new(String, self — text);

}

String_differ() is certainly false if we look at identical string objects and it is
true if we compare a string with an entirely different object. If we really compare
two distinct strings, we try stremp():

static int String_differ (const void * _self, const void * _b)

{ const struct String * self = _self;
const struct String * b = _b;

if (self == D)
return O;

18 2 Dynamic Linkage — Generic Functions

if (! b|]|] b —= class !'= String)
return 1;
return strcnp(self — text, b — text);

}

Type descriptors are unique — here we use that fact to find out if our second argu-
ment really is a string.

All these methods are static because they should only be called through new(),
delete(), or the selectors. The methods are made available to the selectors by way
of the type descriptor:

#i ncl ude "new. r"

static const struct Cass _String = {
si zeof (struct String),
String_ctor, String_dtor,
String_clone, String_differ

H
const void * String = & _String;

String.c includes the public declarations in String.h and new.h. In order to properly
initialize the type descriptor, it also includes the private header new.r which con-
tains the definition of the representation for struct Class shown in section 2.2.

2.6 Another Implementation — Atom

To illustrate what we can do with the constructor and destructor interface we
implement atoms. An atom is a unigue string object; if two atoms contain the same
strings, they are identical. Atoms are very cheap to compare: differ() is true if the
two argument pointers differ. Atoms are more expensive to construct and destroy:
we maintain a circular list of all atoms and we count the number of times an atom is
cloned:
struct String {

const void * class; /* must be first */

char * text;

struct String * next;

unsi gned count;

H
static struct String * ring; [* of all strings */

static void * String_clone (const void * _self)
{ struct String * self = (void *) _self;

++ self — count;
return self;

}

Our circular list of all atoms is marked in ring, extends through the .next com-
ponent, and is maintained by the string constructor and destructor. Before the con-
structor saves a text it first looks through the list to see if the same text is already
stored. The following code is inserted at the beginning of String_ctor():

2.6 Another Implementation — ""Atom’’ 19

if (ring)
{ struct String * p = ring;
do
if (strcecnp(p — text, text) == 0)

{ ++ p — count;
free(self);

return p;
}

while ((p = p — next) !=ring);
}
el se

ring = self;
self — next = ring — next, ring — next = self;
self — count = 1;

If we find a suitable atom, we increment its reference count, free the new string
object self and return the atom p instead. Otherwise we insert the new string
object into the circular list and set its reference count to 1.

The destructor prevents deletion of an atom unless its reference count is decre-
mented to zero. The following code is inserted at the beginning of String_dtor():

if (—self — count > 0)
return O;

assert(ring);
if (ring == self)

ring = self — next;
if (ring == self)

ring = 0;

el se

{ struct String * p = ring;
while (p — next != self)
{ p = p — next;

assert(p !'=ring);

}
p — next = self — next;

}
If the decremented reference count is positive, we return a null pointer so that
delete() leaves our object alone. Otherwise we clear the circular list marker if our
string is the last one or we remove our string from the list.
With this implementation our application from section 2.4 notices that a cloned

string is identical to the original and it prints

sizeOf (a) == 16

ok

cl one?

20 2 Dynamic Linkage — Generic Functions

2.7 Summary

Given a pointer to an object, dynamic linkage lets us find type-specific functions:
every object starts with a descriptor which contains pointers to functions applicable
to the object. In particular, a descriptor contains a pointer to a constructor which
initializes the memory area allocated for the object, and a pointer to a destructor
which reclaims resources owned by an object before it is deleted.

We call all objects sharing the same descriptor a class. An object is an instance
of a class, type-specific functions for an object are called methods, and messages
are calls to such functions. We use selector functions to locate and call dynamically
linked methods for an object.

Through selectors and dynamic linkage the same function name will take dif-
ferent actions for different classes. Such a function is called polymorphic.

Polymorphic functions are quite useful. They provide a level of conceptual
abstraction: differ() will compare any two objects — we need not remember which
particular brand of differ() is applicable in a concrete situation. A cheap and very
convenient debugging tool is a polymorphic function store() to display any object on
a file descriptor.

2.8 Exercises

To see polymorphic functions in action we need to implement Object and Set with
dynamic linkage. This is difficult for Set because we can no longer record in the set
elements to which set they belong.

There should be more methods for strings: we need to know the string length,
we want to assign a new text value, we should be able to print a string. Things get
interesting if we also deal with substrings.

Atoms are much more efficient, if we track them with a hash table. Can the
value of an atom be changed?

String_clone() poses an subtle question: in this function String should be the
same value as self —> class. Does it make any difference what we pass to new()?

21

3
Programming Savvy
Arithmetic Expressions

Dynamic linkage is a powerful programming technigue in its own right. Rather
than writing a few functions, each with a big switch to handle many special cases,
we can write many small functions, one for each case, and arrange for the proper
function to be called by dynamic linkage. This often simplifies a routine job and it
usually results in code that can be extended easily.

As an example we will write a small program to read and evaluate arithmetic
expressions consisting of floating point numbers, parentheses and the usual opera-
tors for addition, subtraction, and so on. Normally we would use the compiler gen-
erator tools /ex and yacc to build that part of the program which recognizes an arith-
metic expression. This book is not about compiler building, however, so just this
once we will write this code ourselves.

3.1 The Main Loop

The main loop of the program reads a line from standard input, initializes things so
that numbers and operators can be extracted and white space is ignored, calls up a
function to recognize a correct arithmetic expression and somehow store it, and
finally processes whatever was stored. If things go wrong, we simply read the
next input line. Here is the main loop:

#incl ude <setjnp. h>
static enum tokens token; [* current input symbol */
static jnmp_buf onError;

int main (void)
{ volatile int errors = 0O;
char buf [BUFSI Z];

if (setjnmp(onError))
++ errors;

while (gets(buf))
if (scan(buf))
{ void * e = sum();
if (token)
error("trash after sumt);
process(e);
del ete(e);

}

return errors > 0;

22 3 Programming Savvy — Arithmetic Expressions

void error (const char * fnmt, ...)
{ va_list ap;
va_start(ap, fnt);
viprintf(stderr, fnt, ap), putc(’\n, stderr);
va_end(ap);
| ongj mp(onError, 1);
}

The error recovery point is defined with setjmpl(). If error() is called somewhere in
the program, longjmp() continues execution with another return from setjmp(). In
this case, the result is the value passed to longjmpl), the error is counted, and the
next input line is read. The exit code of the program reports if any errors were
encountered.

3.2 The Scanner

In the main loop, once an input line has been read into buf[], it is passed to scanl),
which for each call places the next input symbol into the variable token. At the end
of a line token is zero:

#i ncl ude <ctype. h>

#i ncl ude <errno. h>
#i ncl ude <stdlib. h>

#i ncl ude "parse.h" /* defines NUMBER */
static doubl e nunber; /* if NUMBER: nunerical value */

static enum tokens scan (const char * buf)
[* return token = next input synmbol */
{ static const char * bp;

if (buf)

bp = buf; /* new input line */
while (isspace(* bp))

++ bp;

if (isdigit(* bp) || * bp ==".")
{ errno = 0;
token = NUMBER, nunber = strtod(bp, (char **) & bp);
if (errno == ERANGE)
error("bad value: %", strerror(errno));

}

el se
token = * bp ? * bp ++ : O;
return token;

}

We call scan() with the address of an input line or with a null pointer to continue
work on the present line. White space is ignored and for a leading digit or decimal
point we extract a floating point number with the ANSI-C function strtod(). Any
other character is returned as is, and we do not advance past a null byte at the end
of the input buffer.

3.3 The Recognizer 23

The result of sean() is stored in the global variable token — this simplifies the
recognizer. If we have detected a number, we return the unique value NUMBER
and we make the actual value available in the global variable number.

3.3 The Recognizer

At the top level expressions are recognized by the function sum() which internally
calls on scan() and returns a representation that can be manipulated by process()
and reclaimed by delete().

If we do not use yacc we recognize expressions by the method of recursive
descent where grammatical rules are translated into equivalent C functions. For
example: a sum is a product, followed by zero or more groups, each consisting of
an addition operator and another product. A grammatical rule like

sum : product { +| —product }...
is translated into a C function like
void sum (void)

{
product () ;
for ()
{ switch (token) {
case '+':
case ' —:
scan(0), product(); continue;
}
return;
}
}

There is a C function for each grammatical rule so that rules can call each other.
Alternatives are translated into switch or if statements, iterations in the grammar
produce loops in C. The only problem is that we must avoid infinite recursion.

token always contains the next input symbol. If we recognize it, we must call
scan(0) to advance in the input and store a new symbol in token.

3.4 The Processor

How do we process an expression? If we only want to perform simple arithmetic
on numerical values, we can extend the recognition functions and compute the
result as soon as we recognize the operators and the operands: sum() would
expect a double result from each call to product(), perform addition or subtraction
as soon as possible, and return the result, again as a double function value.

If we want to build a system that can handle more complicated expressions we
need to store expressions for later processing. In this case, we can not only per-
form arithmetic, but we can permit decisions and conditionally evaluate only part of
an expression, and we can use stored expressions as user functions within other
expressions. All we need is a reasonably general way to represent an expression.
The conventional technique is to use a binary tree and store token in each node:

24 3 Programming Savvy — Arithmetic Expressions

struct Node {
enum t okens token;
struct Node * left, * right;
b
This is not very flexible, however. We need to introduce a union to create a node
in which we can store a numerical value and we waste space in nodes representing
unary operators. Additionally, process() and delete() will contain switch state-
ments which grow with every new token which we invent.

3.5 Information Hiding

Applying what we have learned thus far, we do not reveal the structure of a node at
all. Instead, we place some declarations in a header file value.h:

const void * Add;

void * new (const void * type, ...);
voi d process (const void * tree);
void delete (void * tree);

Now we can code sum() as follows:
#i ncl ude "val ue. h"

static void * sum (void)
{ void * result = product();
const void * type;

for (1)
{ switch (token) {
case '+':
type = Add;
br eak;
case ' —:
type = Sub;
br eak;
defaul t:
return result;
}
scan(0);
result = newm(type, result, product());

}

product() has the same architecture as sum() and calls on a function factor() to
recognize numbers, signs, and a sum enclosed in parentheses:

static void * sum (void);

static void * factor (void)
{ void * result;

switch (token) {
case '+':

scan(0);

return factor();

3.6 Dynamic Linkage 25

case ' —:
scan(0);
return new(M nus, factor());
defaul t:
error("bad factor: '% Ox%", token, token);
case NUMBER:
result = new(Val ue, nunber);
br eak;
case ' (':
scan(0);
result = sum);
if (token !'=")")
error("expecting)");
}
scan(0);

return result;

}

Especially in factor() we need to be very careful to maintain the scanner invariant:
token must always contain the next input symbol. As soon as token is consumed
we need to call scan(0).

3.6 Dynamic Linkage

The recognizer is complete. value.h completely hides the evaluator for arith-
metic expressions and at the same time specifies what we have to implement.
new() takes a description such as Add and suitable arguments such as pointers to
the operands of the addition and returns a pointer representing the sum:

struct Type {
void * (* new) (va_list ap);
double (* exec) (const void * tree);
void (* delete) (void * tree);
H
void * new (const void * type, ...)
{ va_list ap;
void * result;

assert(type && ((struct Type *) type) — new);

va_start(ap, type);

result = ((struct Type *) type) — newap);
* (const struct Type **) result = type;
va_end(ap);

return result;

}

We use dynamic linkage and pass the call to a node-specific routine which, in the
case of Add, has to create the node and enter the two pointers:
struct Bin {
const void * type;
void * left, * right;
b

26 3 Programming Savvy — Arithmetic Expressions

static void * nmkBin (va_list ap)
{ struct Bin * node = malloc(sizeof (struct Bin));
assert(node);
node — left = va_arg(ap, void *);
node — right = va_arg(ap, void *);
return node;

}

Note that only mkBin() knows what node it creates. All we require is that the vari-
ous nodes start with a pointer for the dynamic linkage. This pointer is entered by
new() so that delete() can reach its node-specific function:

void delete (void * tree)

{
assert(tree && * (struct Type **) tree
&& (* (struct Type **) tree) — delete);
(* (struct Type **) tree) — delete(tree);
}
static void freeBin (void * tree)
{
delete(((struct Bin *) tree) — left);
delete(((struct Bin *) tree) — right);
free(tree);
}

Dynamic linkage elegantly avoids complicated nodes. .newl() creates precisely
the right node for each type description: binary operators have two descendants,
unary operators have one, and a value node only contains the value. delete() is a
very simple function because each node handles its own destruction: binary opera-
tors delete two subtrees and free their own node, unary operators delete only one
subtree, and a value node will only free itself. Variables or constants can even
remain behind — they simply would do nothing in response to delete().

3.7 A Postfix Writer

So far we have not really decided what process() is going to do. If we want to emit
a postfix version of the expression, we would add a character string to the struct
Type to show the actual operator and process() would arrange for a single output
line indented by a tab:

voi d process (const void * tree)
{

putchar(’\t’);

exec(tree);

putchar(’\n’);

3.7 A Postfix Writer 27

exec() handles the dynamic linkage:
static void exec (const void * tree)

{
assert(tree && * (struct Type **) tree
&& (* (struct Type **) tree) — exec);
(* (struct Type **) tree) — exec(tree);
}

and every binary operator is emitted with the following function:
static void doBin (const void * tree)

{
exec(((struct Bin *) tree) — left);
exec(((struct Bin *) tree) — right);
printf(" %", (* (struct Type **) tree) — nane),;
}

The type descriptions tie everything together:

static struct Type _Add = { "+", nkBin, doBin, freeBin };
static struct Type _Sub = { "—=, nkBin, doBin, freeBin };
const void * Add = & _Add;
const void * Sub = & _Sub;

It should be easy to guess how a numerical value is implemented. It is represented
as a structure with a double information field:
struct Val ({
const void * type;
doubl e val ue;
b
static void * mkVal (va_list ap)
{ struct Val * node = malloc(sizeof (struct Val));

assert (node);
node — value = va_arg(ap, double);
return node;

}
Processing consists of printing the value:
static void doVal (const void * tree)

{
}

We are done — there is no subtree to delete, so we can use the library function
free() directly to delete the value node:

static struct Type _Value = { "", nkVal, doVval, free };

printf(" %", ((struct Val *) tree) — value);

const void * Value = & Val ue;

A unary operator such as Minus is left as an exercise.

28 3 Programming Savvy — Arithmetic Expressions

3.8 Arithmetic

If we want to do arithmetic, we let the execute functions return double values to
be printed in process|):

static double exec (const void * tree)

{
return (* (struct Type **) tree) — exec(tree);
}
voi d process (const void * tree)
{
printf("\t%g\n", exec(tree));
}

For each type of node we need one execution function which computes and returns
the value for the node. Here are two examples:

static double doval (const void * tree)

{
return ((struct Val *) tree) — value;
}
static double doAdd (const void * tree)
{
return exec(((struct Bin *) tree) — left) +
exec(((struct Bin *) tree) — right);
}

static struct Type _Add = { nkBin, doAdd, freeBin };
static struct Type _Value = { nkVal, doVal, free };

const void * Add = & _Add;
const void * Value = & Val ue;

3.9 Infix Output

Perhaps the highlight of processing arithmetic expressions is to print them with a
minimal number of parentheses. This is usually a bit tricky, depending on who is
responsible for emitting the parentheses. In addition to the operator name used for
postfix output we add two numbers to the struct Type:

struct Type {
const char * nane; /* node’'s nane */
char rank, rpar;
void * (* new) (va_list ap);
void (* exec) (const void * tree, int rank, int par);
void (* delete) (void * tree);
b
.rank is the precedence of the operator, starting with 1 for addition. .rpar is set for
operators such as subtraction, which require their right operand to be enclosed in
parentheses if it uses an operator of equal precedence. As an example consider

3.10 Summary 29

$ infix
1+ (2 —3)
1+ 2 —3
1 —(2 —3)
1 —(2 —3)

This demonstrates that we have the following initialization:

{"+", 1, 0, nkBin, doBin, freeBin};

{"—, 1, 1, nkBin, doBin, freeBin};
The tricky part is for a binary node to decide if it must surround itself with

parentheses. A binary node such as an addition is given the precedence of its

superior and a flag indicating whether parentheses are needed in the case of equal

precedence. doBin() decides if it will use parentheses:

static void doBin (const void * tree, int rank, int par)
{ const struct Type * type = * (struct Type **) tree;

static struct Type _Add
static struct Type _Sub

par = type — rank < rank
|| (par && type — rank == rank);

if (par) putchar(’(’);

If our node has less precedence than its superior, or if we are asked to put up
parentheses on equal precedence, we print parentheses. In any case, if our
description has .rpar set, we require only of our right operand that it put up extra
parentheses:

exec(((struct Bin *) tree) — left, type — rank, 0);

printf(" % ", type — nane);

exec(((struct Bin *) tree) — right,

type — rank, type — rpar);
if (par) putchar(’)’);
}

The remaining printing routines are significantly simpler to write.

3.10 Summary

Three different processors demonstrate the advantages of information hiding.
Dynamic linkage has helped to divide a problem into many very simple functions.
The resulting program is easily extended — try adding comparisons and an operator
like ? :in C.

31

4
Inheritance
Code Reuse and Refinement

4.1 A Superclass — Point

In this chapter we will start a rudimentary drawing program. Here is a quick test for
one of the classes we would like to have:

#i nclude "Point.h"
#i ncl ude "new. h"
int main (int argc, char ** argv)
{ void * p;
while (* ++ argv)
{ switch (** argv) {
case 'p':
p = newm Point, 1, 2);
br eak;
defaul t:
conti nue;

}

draw(p) ;
move(p, 10, 20);

draw(p) ;
del ete(p);

}

return O;

}

For each command argument starting with the letter p we get a new point which is
drawn, moved somewhere, drawn again, and deleted. ANSI-C does not include
standard functions for graphics output; however, if we insist on producing a picture
we can emit text which Kernighan's pic [Ker82] can understand:
$ points p
“."oat 1,2
at 11, 22

The coordinates do not matter for the test — paraphrasing a commercial and
00speak: “the point is the message.”

What can we do with a point? new() will produce a point and the constructor
expects initial coordinates as further arguments to newl(). As usual, delete() will
recycle our point and by convention we will allow for a destructor.

draw() arranges for the point to be displayed. Since we expect to work with
other graphical objects — hence the switch in the test program — we will provide
dynamic linkage for draw().

32 4 Inheritance — Code Reuse and Refinement

move() changes the coordinates of a point by the amounts given as arguments.
If we implement each graphical object relative to its own reference point, we will be
able to move it simply by applying move() to this point. Therefore, we should be
able to do without dynamic linkage for move().

4.2 Superclass Implementation — Point

The abstract data type interface in Point.h contains the following:
extern const void * Point; [* new(Point, x, y); */
void nove (void * point, int dx, int dy);

We can recycle the new.? files from chapter 2 except that we remove most
methods and add draw() to new.h:
void * new (const void * class, ...);
void delete (void * item;
void draw (const void * self);
The type description struct Class in new.r should correspond to the method
declarations in new.h:
struct Cass {
size t size;
void * (* ctor) (void * self, va_list * app);
void * (* dtor) (void * self);
void (* draw) (const void * self);
b
The selector draw() is implemented in new.c. It replaces selectors such as differ()
introduced in section 2.3 and is coded in the same style:

void draw (const void * self)
{ const struct Cass * const * cp = self;

assert(self & & * cp && (* cp) — draw);
(* cp) — draw(self);
}

After these preliminaries we can turn to the real work of writing Point.c, the
implementation of points. Once again, object-orientation has helped us to identify
precisely what we need to do. we have to decide on a representation and imple-
ment a constructor, a destructor, the dynamically linked method draw() and the
statically linked method move(), which is just a plain function. If we stick with
two-dimensional, Cartesian coordinates, we choose the obvious representation:

struct Point {
const void * class;
int x, vy; /* coordi nates */
b
The constructor has to initialize the coordinates .x and .y — by now absolutely rou-
tine:

4.3 Inheritance — “‘Circle”’ 33

static void * Point_ctor (void * _self, va_list * app)
{ struct Point * self = _self;

= va_arg(* app, int);

self —= y = va_arg(* app, int);
return self;

}

It turns out that we do not need a destructor because we have no resources to
reclaim before delete() does away with struct Point itself. In Point_draw() we
print the current coordinates in a way which pic can understand:

static void Point_draw (const void * _self)
{ const struct Point * self = self;
printf("\".\" at %l, %\n", self — x, self — vy);
}
This takes care of all the dynamically linked methods and we can define the type
descriptor, where a null pointer represents the non-existing destructor:

static const struct Cass _Point = {
si zeof (struct Point), Point_ctor, 0, Point_draw

b

const void * Point = & Point;
move() is not dynamically linked, so we omit static to export it from Point.c and we
do not prefix its name with the class name Point:

void nove (void * _self, int dx, int dy)
{ struct Point * self = _self;

self — x += dx, self — y += dy;
}

This concludes the implementation of points in Point.? together with the support for
dynamic linkage in new.?.

4.3 Inheritance — Circle

A circle is just a big point: in addition to the center coordinates it needs a radius.
Drawing happens a bit differently, but moving only requires that we change the
coordinates of the center.

This is where we would normally crank up our text editor and perform source
code reuse. We make a copy of the implementation of points and change those
parts where a circle is different from a point. struct Circle gets an additional com-
ponent:

int rad;
This component is initialized in the constructor
self — rad = va_arg(* app, int);

and used in Circle_draw():

34 4 |nheritance — Code Reuse and Refinement

printf("circle at %, % rad %\ n",
self — x, self — vy, self — rad);

We get a bit stuck in move(). The necessary actions are identical for a point and
a circle: we need to add the displacement arguments to the coordinate com-
ponents. However, in one case, move() works on a struct Point, and in the other
case, it works on a struct Circle. If move() were dynamically linked, we could pro-
vide two different functions to do the same thing, but there is a much better way.
Consider the layout of the representations of points and circles:

point circle
class class
X X
y y
rad
struct Point structCl .r.cl e

The picture shows that every circle begins with a point. If we derive struct Circle
by adding to the end of struct Point, we can pass a circle to move() because the
initial part of its representation looks just like the point which move() expects to
receive and which is the only thing that move() can change. Here is a sound way
to make sure the initial part of a circle always looks like a point:

struct Circle { const struct Point _; int rad; };

We let the derived structure start with a copy of the base structure that we are
extending. Information hiding demands that we should never reach into the base
structure directly; therefore, we use an almost invisible underscore as its name and
we declare it to be const to ward off careless assignments.

This is all there is to simple inheritance: a subclass is derived from a superclass
(or base class) merely by lengthening the structure that represents an object of the
superclass.

Since representation of the subclass object (a circle) starts out like the
representation of a superclass object (a point), the circle can always pretend to be a
point — at the initial address of the circle’s representation there really is a point’s
representation.

It is perfectly sound to pass a circle to move(): the subclass inherits the
methods of the superclass because these methods only operate on that part of the
subclass’ representation that is identical to the superclass’ representation for which
the methods were originally written. Passing a circle as a point means converting
from a struct Circle * to a struct Point *. \We will refer to this as an up-cast from a
subclass to a superclass — in ANSI-C it can only be accomplished with an explicit
conversion operator or through intermediate void * values.

4.4 Linkage and Inheritance 35

It is usually unsound, however, to pass a point to a function intended for circles
such as Circle_draw(): converting from a struct Point * to a struct Circle * is only
permissible if the point originally was a circle. We will refer to this as a down-cast
from a superclass to a subclass — this requires explicit conversions or void *
values, too, and it can only be done to pointers to objects that were in the subclass
to begin with.

4.4 Linkage and Inheritance

move() is not dynamically linked and does not use a dynamically linked method to
do its work. While we can pass points as well as circles to move(), it is not really a
polymorphic function: move() does not act differently for different kinds of objects,
it always adds arguments to coordinates, regardless of what else might be attached
to the coordinates.

The situation is different for a dynamically linked method like draw(). Let us
look at the previous picture again, this time with the type descriptions shown expli-
citly:

point Poi nt circle Circle
. size . size
X ctor X ctor
y dtor y dtor
draw . rad draw
struct Point struct C ass str uctCl .r.cl e struct dass

When we up-cast from a circle to a point, we do not change the state of the circle,
i.e., even though we look at the circle’s struct Circle representation as if it were a
struct Point, we do not change its contents. Consequently, the circle viewed as a
point still has Circle as a type description because the pointer in its .class com-
ponent has not changed. drawl() is a selector function, i.e., it will take whatever
argument is passed as self, proceed to the type description indicated by .class, and
call the draw method stored there.

A subclass inherits the statically linked methods of its superclass — those
methods operate on the part of the subclass object which is already present in the
superclass object. A subclass can choose to supply its own methods in place of
the dynamically linked methods of its superclass. If inherited, i.e., if not overwrit-
ten, the superclass’ dynamically linked methods will function just like statically
linked methods and modify the superclass part of a subclass object. If overwritten,
the subclass’ own version of a dynamically linked method has access to the full
representation of a subclass object, i.e., for a circle draw() will invoke
Circle_draw() which can consider the radius when drawing the circle.

36 4 Inheritance — Code Reuse and Refinement

4.5 Static and Dynamic Linkage

A subclass inherits the statically linked methods of its superclass and it can choose
to inherit or overwrite the dynamically linked methods. Consider the declarations
for move() and draw():

void nove (void * point, int dx, int dy);
void draw (const void * self);

We cannot discover the linkage from the two declarations, although the implemen-
tation of move() does its work directly, while draw() is only the selector function
which traces the dynamic linkage at runtime. The only difference is that we declare
a statically linked method like move() as part of the abstract data type interface in
Point.h, and we declare a dynamically linked method like draw() with the memory
management interface in new.h, because we have thus far decided to implement
the selector function in new.c.

Static linkage is more efficient because the C compiler can code a subroutine
call with a direct address, but a function like move() cannot be overwritten for a
subclass. Dynamic linkage is more flexible at the expense of an indirect call — we
have decided on the overhead of calling a selector function like drawf(), checking
the arguments, and locating and calling the appropriate method. We could forgo
the checking and reduce the overhead with a macro* like

#define draw(self) \
((* (struct Class **) self) — draw (self))

but macros cause problems if their arguments have side effects and there is no
clean technigue for manipulating variable argument lists with macros. Additionally,
the macro needs the declaration of struct Class which we have thus far made avail-
able only to class implementations and not to the entire application.

Unfortunately, we pretty much decide things when we design the superclass.
While the function calls to the methods do not change, it takes a lot of text editing,
possibly in a lot of classes, to switch a function definition from static to dynamic
linkage and vice versa. Beginning in chapter 7 we will use a simple preprocessor to
simplify coding, but even then linkage switching is error-prone.

In case of doubt it is probably better to decide on dynamic rather than static
linkage even if it is less efficient. Generic functions can provide a useful concep-
tional abstraction and they tend to reduce the number of function names which we
need to remember in the course of a project. If, after implementing all required
classes, we discover that a dynamically linked method was never overwritten, it is a
lot less trouble to replace its selector by its single implementation, and even waste
its slot in struct Class, than to extend the type description and correct all the initiali-
zations.

* In ANSI-C macros are not expanded recursively so that a macro may hide a function by the same
name.

4.6 Visibility and Access Functions 37

4.6 Visibility and Access Functions

We can now attempt to implement Circle_draw(). Information hiding dictates that
we use three files for each class based on a “‘need to know'" principle. Circle.h
contains the abstract data type interface; for a subclass it includes the interface file
of the superclass to make declarations for the inherited methods available:

#i ncl ude "Point.h"
extern const void * Crcle; [* nem(Circle, x, y, rad) */

The interface file Circle.h is included by the application code and for the implemen-
tation of the class; it is protected from multiple inclusion.

The representation of a circle is declared in a second header file, Circle.r. For a
subclass it includes the representation file of the superclass so that we can derive
the representation of the subclass by extending the superclass:

#include "Point.r"
struct Circle { const struct Point _; int rad; };

The subclass needs the superclass representation to implement inheritance: struct
Circle contains a const struct Point. The point is certainly not constant — move()
will change its coordinates — but the const qualifier guards against accidentally
overwriting the components. The representation file Circle.r is only included for the
implementation of the class; it is protected from multiple inclusion.

Finally, the implementation of a circle is defined in the source file Circle.c which
includes the interface and representation files for the class and for object manage-
ment:

#include "Circle.h"
#include "Circle.r"
#i ncl ude "new. h"
#i nclude "new. r"

static void Circle_draw (const void * _self)
{ const struct Circle * self = _self;

printf("circle at %, % rad %\ n",
self - _.x, self — _.y, self — rad);

}

In Circle_draw() we have read point components for the circle by invading the sub-
class part with the “invisible name” _. From an information hiding perspective this
is not such a good idea. While reading coordinate values should not create major
problems we can never be sure that in other situations a subclass implementation
is not going to cheat and modify its superclass part directly, thus potentially playing
havoc with its invariants.

Efficiency dictates that a subclass reach into its superclass components
directly. Information hiding and maintainability require that a superclass hide its
own representation as best as possible from its subclasses. If we opt for the latter,
we should provide access functions for all those components of a superclass which
a subclass is allowed to look at, and modification functions for those components, if
any, which the subclass may modify.

38 4 |Inheritance — Code Reuse and Refinement

Access and modification functions are statically linked methods. If we declare
them in the representation file for the superclass, which is only included in the
implementations of subclasses, we can use macros, because side effects are no
problem if a macro uses each argument only once. As an example, in Point.r we
define the following access macros:*

#define x(p) (((const struct Point *)(p)) — x)
#define y(p) (((const struct Point *)(p)) — vy)

These macros can be applied to a pointer to any object that starts with a struct
Point, i.e., to objects from any subclass of our points. The technique is to up-cast
the pointer into our superclass and reference the interesting component there.
const in the cast blocks assignments to the result. If const were omitted

#define x(p) (((struct Point *)(p)) — X)

a macro call x(p) produces an I-value which can be the target of an assignment. A
better modification function would be the macro definition

#define set_x(p,v) (((struct Point *)(p)) — x = (Vv))
which produces an assignment.

Outside the implementation of a subclass we can only use statically linked
methods for access and modification functions. We cannot resort to macros
because the internal representation of the superclass is not available for the macros
to reference. Information hiding is accomplished by not providing the representa-
tion file Point.r for inclusion into an application.

The macro definitions demonstrate, however, that as soon as the representa-
tion of a class is available, information hiding can be quite easily defeated. Here is a
way to conceal struct Point much better. Inside the superclass implementation we
use the normal definition:

struct Point {
const void * class;
int x, vy; /* coordi nates */
b
For subclass implementations we provide the following opaque version:

struct Point {
const char _ [sizeof(struct ({

const void * class;

int x, vy; /* coordi nates */
bl
b
This structure has the same size as before, but we can neither read nor write the
components because they are hidden in an anonymous interior structure. The
catch is that both declarations must contain identical component declarations and
this is difficult to maintain without a preprocessor.

* In ANSI-C, a parametrized macro is only expanded if the macro name appears before a left parenthesis.
Elsewhere, the macro name behaves like any other identifier.

4.7 Subclass Implementation — ““Circle’” 39

4.7 Subclass Implementation — Circle

We are ready to write the complete implementation of circles, where we can
choose whatever techniques of the previous sections we like best. Object-
orientation prescribes that we need a constructor, possibly a destructor,
Circle_draw(), and a type description Circle to tie it all together. In order to exer-
cise our methods, we include Circle.h and add the following lines to the switch in
the test program in section 4.1:

c':
p=nemCrcle, 1, 2, 3);
br eak;

case

Now we can observe the following behavior of the test program:

$ circles pc

"." at 1,2

"."oat 11, 22

circle at 1,2 rad 3
circle at 11,22 rad 3

The circle constructor receives three arguments: first the coordinates of the
circle’s point and then the radius. Initializing the point part is the job of the point
constructor. It consumes part of the argument list of new(). The circle constructor
is left with the remaining argument list from which it initializes the radius.

A subclass constructor should first let the superclass constructor do that part of
the initialization which turns plain memory into the superclass object. Once the
superclass constructor is done, the subclass constructor completes initialization and
turns the superclass object into a subclass object.

For circles this means that we need to call Point_ctor(). Like all dynamically
linked methods, this function is declared static and thus hidden inside Point.c.
However, we can still get to the function by means of the type descriptor Point
which is available in Circle.c:

static void * Crcle_ctor (void * _self, va_list * app)
{ struct Circle * self =
((const struct Class *) Point) — ctor(_self, app);

self — rad = va_arg(* app, int);
return self;

}

It should now be clear why we pass the address app of the argument list pointer to
each constructor and not the va_list value itself: new() calls the subclass construc-
tor, which calls its superclass constructor, and so on. The supermost constructor is
the first one to actually do something, and it gets first pick at the left end of the
argument list passed to new(). The remaining arguments are available to the next
subclass and so on until the last, rightmost arguments are consumed by the final
subclass, i.e., by the constructor directly called by new().

Destruction is best arranged in the exact opposite order: delete() calls the sub-
class destructor. It should destroy its own resources and then call its direct super-
class destructor which can destroy the next set of resources and so on. Construc-

40 4 |nheritance — Code Reuse and Refinement

tion happens superclass before subclass, destruction happens in reverse, subclass
before superclass, circle part before point part. Here, however, nothing needs to
be done.

We have worked on Circle_draw() before. We use visible components and
code the representation file Point.r as follows:

struct Point {
const void * class;

int x, vy; /* coordi nates */
I
#define x(p) (((const struct Point *)(p)) — x)
#define y(p) (((const struct Point *)(p)) — V)

Now we can use the access macros for Circle_draw():

static void Circle_draw (const void * _self)
{ const struct Circle * self = _self;

printf("circle at %, % rad %\ n",
x(self), y(self), self — rad);

}

move() has static linkage and is inherited from the implementation of points.
We conclude the implementation of circles by defining the type description which is
the only globally visible part of Circle.c:

static const struct Cass _Circle = {
sizeof (struct Circle), Crcle_ctor, 0, Crcle_draw

b
const void * Circle = & Circle;

While it looks like we have a viable strategy of distributing the program text
implementing a class among the interface, representation, and implementation file,
the example of points and circles has not exhibited one problem: if a dynamically
linked method such as Point_draw() is not overwritten in the subclass, the sub-
class type descriptor needs to point to the function implemented in the superclass.
The function name, however, is defined static there, so that the selector cannot be
circumvented. We shall see a clean solution to this problem in chapter 6. As a
stopgap measure, we would avoid the use of static in this case, declare the func-
tion header only in the subclass implementation file, and use the function name to
initialize the type description for the subclass.

4.8 Summary

The objects of a superclass and a subclass are similar but not identical in behavior.
Subclass objects normally have a more elaborate state and more methods — they
are specialized versions of the superclass objects.

We start the representation of a subclass object with a copy of the representa-
tion of a superclass object, i.e., a subclass object is represented by adding com-
ponents to the end of a superclass object.

4.8 Summary 41

A subclass inherits the methods of a superclass: because the beginning of a
subclass object looks just like a superclass object, we can up-cast and view a
pointer to a subclass object as a pointer to a superclass object which we can pass
to a superclass method. To avoid explicit conversions, we declare all method
parameters with void * as generic pointers.

Inheritance can be viewed as a rudimentary form of polymorphism: a super-
class method accepts objects of different types, namely objects of its own class
and of all subclasses. However, because the objects all pose as superclass objects,
the method only acts on the superclass part of each object, and it would, therefore,
not act differently on objects from different classes.

Dynamically linked methods can be inherited from a superclass or overwritten
in a subclass — this is determined for the subclass by whatever function pointers
are entered into the type description. Therefore, if a dynamically linked method is
called for an object, we always reach the method belonging to the object’s true
class even if the pointer was up-casted to some superclass. If a dynamically linked
method is inherited, it can only act on the superclass part of a subclass object,
because it does not know of the existence of the subclass. If a method is overwrit-
ten, the subclass version can access the entire object, and it can even call its
corresponding superclass method through explicit use of the superclass type
description.

In particular, constructors should call superclass constructors back to the ulti-
mate ancestor so that each subclass constructor only deals with its own class’
extensions to its superclass representation. Each subclass destructor should
remove the subclass’ resources and then call the superclass destructor and so on
to the ultimate ancestor. Construction happens from the ancestor to the final sub-
class, destruction takes place in the opposite order.

Our strategy has a glitch: in general we should not call dynamically linked
methods from a constructor because the object may not be initialized completely.
new() inserts the final type description into an object before the constructor is
called. Therefore, if a constructor calls a dynamically linked method for an object, it
will not necessarily reach the method in the same class as the constructor. The
safe technigue would be for the constructor to call the method by its internal name
in the same class, i.e., for points to call Points_draw() rather then draw().

To encourage information hiding, we implement a class with three files. The
interface file contains the abstract data type description, the representation file con-
tains the structure of an object, and the implementation file contains the code of
the methods and initializes the type description. An interface file includes the
superclass interface file and is included for the implementation as well as any appli-
cation. A representation file includes the superclass representation file and is only
included for the implementation.

Components of a superclass should not be referenced directly in a subclass.
Instead, we can either provide statically linked access and possibly modification
methods for each component, or we can add suitable macros to the representation
file of the superclass. Functional notation makes it much simpler to use a text edi-

42 4 |nheritance — Code Reuse and Refinement

tor or a debugger to scan for possible information leakage or corruption of invari-
ants.

4.9 Is It or Has It? — Inheritance vs. Aggregates

Our representation of a circle contains the representation of a point as the first
component of struct Circle:

struct Circle { const struct Point _; int rad; };

However, we have voluntarily decided not to access this component directly.
Instead, when we want to inherit we cast up from Circle back to Point and deal
with the initial struct Point there.

There is a another way to represent a circle: it can contain a point as an aggre-
gate. We can handle objects only through pointers; therefore, this representation of
a circle would look about as follows:

struct Circle2 { struct Point * point; int rad; };

This circle does not look like a point anymore, i.e., it cannot inherit from Point and
reuse its methods. It can, however, apply point methods to its point component; it
just cannot apply point methods to itself.

If a language has explicit syntax for inheritance, the distinction becomes more
apparent. Similar representations could look as follows in C++:

struct Circle : Point { int rad; }; // inheritance

struct Circle2 {
struct Point point; int rad; /1 aggregate

b
In C++ we do not necessarily have to access objects only as pointers.

Inheritance, i.e., making a subclass from a superclass, and aggregates, i.e.,
including an object as component of some other object, provide very similar func-
tionality. Which approach to use in a particular design can often be decided by the
is-it-or-has-it? test: if an object of a new class s just like an object of some other
class, we should use inheritance to implement the new class; if an object of a new
class has an object of some other class as part of its state, we should build an
aggregate.

As far as our points are concerned, a circle is just a big point, which is why we
used inheritance to make circles. A rectangle is an ambiguous example: we can
describe it through a reference point and the side lengths, or we can use the end-
points of a diagonal or even three corners. Only with a reference point is a rectan-
gle some sort of fancy point; the other representations lead to aggregates. In our
arithmetic expressions we could have used inheritance to get from a unary to a
binary operator node, but that would substantially violate the test.

4.10 Multiple Inheritance

Because we are using plain ANSI-C, we cannot hide the fact that inheritance means
including a structure at the beginning of another. Up-casting is the key to reusing a

411 Exercises 43

superclass method on objects of a subclass. Up-casting from a circle back to a
point is done by casting the address of the beginning of the structure; the value of
the address does not change.

If we include two or even more structures in some other structure, and if we
are willing to do some address manipulations during up-casting, we could call the
result multiple inheritance: an object can behave as if it belonged to several other
classes. The advantage appears to be that we do not have to design inheritance
relationships very carefully — we can quickly throw classes together and inherit
whatever seems desirable. The drawback is, obviously, that there have to be
address manipulations during up-casting before we can reuse methods of the
superclasses.

Things can actually get quite confusing very quickly. Consider a text and a rec-
tangle, each with an inherited reference point. We can throw them together into a
button — the only question is if the button should inherit one or two reference
points. C++ permits either approach with rather fancy footwork during construction
and up-casting.

Our approach of doing everything in ANSI-C has a significant advantage: it does
not obscure the fact that inheritance — multiple or otherwise — always happens by
inclusion. Inclusion, however, can also be accomplished as an aggregate. It is not
at all clear that multiple inheritance does more for the programmer than complicate
the language definition and increase the implementation overhead. We will keep
things simple and continue with simple inheritance only. Chapter 14 will show that
one of the principal uses of multiple inheritance, library merging, can often be real-
ized with aggregates and message forwarding.

4.11 Exercises

Graphics programming offers a lot of opportunities for inheritance: a point and a
side length defines a square; a point and a pair of offsets defines a rectangle, a line
segment, or an ellipse; a point and an array of offset pairs defines a polygon or even
a spline. Before we proceed to all of these classes, we can make smarter points by
adding a text, together with a relative position, or by introducing color or other view-
ing attributes.

Giving move() dynamic linkage is difficult but perhaps interesting: locked
objects could decide to keep their point of reference fixed and move only their text
portion.

Inheritance can be found in many more areas: sets, bags, and other collections
such as lists, stacks, queues, etc. are a family of related data types; strings, atoms,
and variables with a name and a value are another family.

Superclasses can be used to package algorithms. If we assume the existence
of dynamically linked methods to compare and swap elements of a collection of
objects based on some positive index, we can implement a superclass containing a
sorting algorithm. Subclasses need to implement comparison and swapping of their
objects in some array, but they inherit the ability to be sorted.

45

5
Programming Savvy
Symbol Table

Judicious lengthening of a structure, and thus, sharing the functionality of a
base structure, can help to avoid cumbersome uses of union. Especially in combi-
nation with dynamic linkage, we obtain a uniform and perfectly robust way of deal-
ing with diverging information. Once the basic mechanism is in place, a new
extended structure can be easily added and the basic code reused.

As an example, we will add keywords, constants, variables, and mathematical
functions to the little calculator started in chapter 3. All of these objects live in a
symbol table and share the same basic name searching mechanism.

5.1 Scanning ldentifiers

In section 3.2 we implemented the function sean() which accepts an input line from
the main program and hands out one input symbol per call. If we want to introduce
keywords, named constants etc., we need to extend scan(). Just like floating point
numbers, we extract alphanumeric strings for further analysis:

#defi ne ALNUM " ABCDEFGHI JKLMNOPQRSTUVWKYZ" '\

"abcdef ghi j kl mopqr st uvwxyz" \
"0123456789"

static enum tokens scan (const char * buf)
{ static const char * bp;

it (isdigit(* bp) [| * bp == '.")

else if (isalpha(* bp) || * bp =="_")
{ char buf [BUFSI Z];
int len = strspn(bp, ALNUM ;
if (len >= BUFSI 2)
error("nane too long: %—10s...", bp);

strncpy(buf, bp, len), buf[len] ='\0", bp += len;
token = screen(buf);

Once we have an identifier we let a new function screen() decide what its token
value should be. If necessary, screen() will deposit a description of the symbol in a
global variable symbol which the parser can inspect.

5.2 Using Variables

A variable participates in two operations: its value is used as an operand in an
expression, or the value of an expression is assigned to it. The first operation is a
simple extension to the factor() part of the recognizer shown in section 3.5.

46 5 Programming Savvy — Symbol Table

static void * factor (void)
{ void * result;

switch (token) {
case VAR
result = synbol;
br eak;

VAR is a unigue value which screen() places into token when a suitable identifier is
found. Additional information about the identifier is placed into the global variable
symbol. In this case symbol contains a node to represent the variable as a leaf in
the expression tree. screen() either finds the variable in the symbol table or uses
the description Var to create it.

Recognizing an assignment is a bit more complicated. Our calculator is com-

fortable to use if we permit two kinds of statements with the following syntax:
asgn : sum
| VAR = asgn

Unfortunately, VAR can also appear at the left end of a sum, i.e., it is not immedi-
ately clear how to recognize C-style embedded assignment with our technique of
recursive descent.* Because we want to learn how to deal with keywords anyway,
we settle for the following grammar:

stnmt : sum
| LET VAR = sum

This is translated into the following function:

static void * stmt (void)
{ void * result;

switch (token) {
case LET:
if (scan(0) != VAR
error("bad assignment");
result = synbol;
if (scan(0) !'="=")
error("expecting =");
scan(0);
return new(Assign, result, suml));
defaul t:
return sun();
}
}

In the main program we call stmt() in place of sum() and our recognizer is ready to
handle variables. Assign is a new type description for a node which computes the
value of a sum and assigns it to a variable.

* There is a trick: simply try for a sum. If on return the next input symbol is = the sum must be a leaf
node for a variable and we can build the assignment.

5.3 The Screener — ""Name"’ 47

5.3 The Screener — Name
An assignment has the following syntax:

stnt : sum
| LET VAR = sum

LET is an example of a keyword. In building the screener we can still decide what
identifier will represent LET: scan() extracts an identifier from the input line and
passes it to sereen() which looks in the symbol table and returns the appropriate
value for token and, at least for a variable, a node in symbol.

The recognizer discards LET but it installs the variable as a leaf node in the tree.
For other symbols, such as the name of a mathematical function, we may want to
apply new() to whatever symbol the screener returns in order to get a new node
for our tree. Therefore, our symbol table entries should, for the most part, have the
same functions with dynamic linkage as our tree nodes.

For a keyword, a Name needs to contain the input string and the token value.
Later we want to inherit from Name; therefore, we define the structure in a
representation file Name.r:

struct Nane { /* base structure */
const void * type; [/* for dynam c |inkage */
const char * name; /* may be malloc—ed */
int token;
}
Our symbols never die: it does not matter if their names are constant strings for
predefined keywords or dynamically stored strings for user defined variables — we
will not reclaim them.

Before we can find a symbol, we need to enter it into the symbol table. This
cannot be handled by calling new(Name, ...), because we want to support more
complicated symbols than Name, and we should hide the symbol table implemen-
tation from them. Instead, we provide a function install() which takes a Name
object and inserts it into the symbol table. Here is the symbol table interface file
Name.h:

extern void * synbol; /[* — last Nane found by screen() */

void install (const void * synbol);
int screen (const char * name);

The recognizer must insert keywords like LET into the symbol table before they
can be found by the screener. These keywords can be defined in a constant table
of structures — it makes no difference to install(). The following function is used to
initialize recognition:

#i ncl ude " Nane. h"
#include "Nane.r"

static void initNames (void)
{ static const struct Name names [] = {
{ 0, "let", LET},
0}
const struct Name * np;

48 5 Programming Savvy — Symbol Table

for (np = names; np — name; ++ np)
install (np);
}

Note that namesl], the table of keywords, need not be sorted. To define namesl]
we use the representation of Name, i.e., we include Name.r. Since the keyword
LET is discarded, we provide no dynamically linked methods.

5.4 Superclass Implementation — Name

Searching for symbols by name is a standard problem. Unfortunately, the ANSI stan-
dard does not define a suitable library function to solve it. bsearch() — binary
search in a sorted table — comes close, but if we insert a single new symbol we
would have to call gsort() to set the stage for further searching.

UNIX systems are likely to provide two or three function families to deal with
growing tables. Isearch() — linear search of an array and adding at the end(!) — is
not entirely efficient. hsearch() — a hash table for structures consisting of a text
and an information pointer — maintains only a single table of fixed size and imposes
an awkward structure on the entries. tsearch() — a binary tree with arbitrary com-
parison and deletion — is the most general family but quite inefficient if the initial
symbols are installed from a sorted sequence.

On a UNIX system, tsearch() is probably the best compromise. The source
code for a portable implementation with binary threaded trees can be found in
[Sch87]. However, if this family is not available, or if we cannot guarantee a ran-
dom initialization, we should look for a simpler facility to implement. It turns out
that a careful implementation of bsearch() can very easily be extended to support
insertion into a sorted array:

void * binary (const void * key,

void * _base, size_t * nelp, size_t wdth,

int (* cmp) (const void * key, const void * elt))
{ size_t nel = * nelp;
#defi ne base (* (char **) & _base)

char * lim= base + nel * width, * high;

if (nel > 0)
{ for (high = 1lim—wdth; base <= high; nel >>= 1)
{ char * mid = base + (nel >> 1) * width;
int ¢ = cnp(key, mid);

if (c <0)

high = mid —width;
else if (c > 0)

base = md + width, —nel;
el se

return (void *) md;

}

Up to here, this is the standard binary search in an arbitrary array. key points to the
object to be found; base initially is the start address of a table of *nelp elements,

5.4 Superclass Implementation — ""Name'’ 49

each with width bytes; and emp is a function to compare key to a table element.
At this point we have either found a table element and returned its address, or base
is now the address where key should be in the table. We continue as follows:

memove(base + width, base, |im —base);

}

++ *nel p;

return mencpy(base, key, width);
#undef Dbase

}

memmove() shifts the end of the array out of the way* and memcpy() inserts key.
We assume that there is room beyond the array and we record through nelp that
we have added an element — binary() differs from the standard function bsearch()
only in requiring the address rather than the value of the variable containing the
number of elements in the table.

Given a general means of search and entry, we can easily manage our symbol
table. First we need to compare a key to a table element:
static int cnmp (const void * _key, const void * _elt)

{ const char * const * key = _key;
const struct Nane * const * elt = _elt;

return strcmp(* key, (* elt) — name);

}

As a key, we pass only the address of a pointer to the text of an input symbol. The
table elements are, of course, Name structures, and we look only at their .name
component.

Searching or entering is accomplished by calling binary() with suitable parame-
ters. Since we do not know the number of symbols in advance, we make sure that
there is always room for the table to expand:

static struct Nane ** search (const char ** nane)
{ static const struct Name ** nanmes; /* dynamic table */
static size t used, nax;
if (used >= max)
{ nanes = names
? realloc(nanmes, (max *= 2) * sizeof * nanes)
mal | oc((max = NAMES) * sizeof * nanes);
assert (names);

}

return binary(name, nanmes, & used, sizeof * nanes, cnp);
}
NAMES is a defined constant with the initial allotment of table entries; each time we
run out, we double the size of the table.

search() takes the address of a pointer to the text to be found and returns the
address of the table entry. If the text could not be found in the table, binary() has

* memmove() copies bytes even if source and target area overlap; memcpy() does not, but it is more
efficient.

50 5 Programming Savvy — Symbol Table

inserted the key — i.e., only the pointer to the text, not a struct Name — into the
table. This strategy is for the benefit of screen(), which only builds a new table ele-
ment if an identifier from the input is really unknown:

int screen (const char * nanme)
{ struct Nane ** pp = search(& name);

if (* pp == (void *) nane) /* entered nane */
* pp = new Var, name);

synbol = * pp;

return (* pp) — token;

}

screen() lets search() look for the input symbol to be screened. If the pointer to
the text of the symbol is entered into the symbol table, we need to replace it by an
entry describing the new identifier.

For screen(), a new identifier must be a variable. We assume that there is a
type description Var which knows how to construct Name structures describing
variables and we let new() do the rest. In any case, we let symbol point to the
symbol table entry and we return its .token value.

void install (const void * np)

{ const char * name = ((struct Name *) np) — nane;
struct Nane ** pp search(& nane);

if (* pp!= (void *) nane)
error("cannot install name tw ce: %", nanme);
* pp = (struct Nanme *) np;
}

install() is a bit simpler. We accept a Name object and let search() find it in the
symbol table. install() is supposed to deal only with new symbols, so we should
always be able to enter the object in place of its name. Otherwise, if search() really
finds a symbol, we are in trouble.

5.5 Subclass Implementation — Var

screen() calls new() to create a new variable symbol and returns it to the recog-
nizer which inserts it into an expression tree. Therefore, Var must create symbol
table entries that can act like nodes, i.e., when defining struct Var we need to
extend a struct Name to inherit the ability to live in the symbol table and we must
support the dynamically linked functions applicable to expression nodes. We
describe the interface in Var.h:

const void * Var;
const void * Assign;

A variable has a name and a value. If we evaluate an arithmetic expression, we
need to return the .value component. If we delete an expression, we must not
delete the variable node, because it lives in the symbol table:

struct Var { struct Nane _; double value; };

#define value(tree) (((struct Var *) tree) — value)

5.6 Assignment 51

static double doVar (const void * tree)

{ return val ue(tree);

}

static void freeVar (void * tree)
{

}

As discussed in section 4.6 the code is simplified by providing an access function
for the value.

Creating a variable requires allocating a struct Var, inserting a dynamic copy of
the variable name, and the token value VAR prescribed by the recognizer:
static void * nmkVar (va_list ap)
{ struct Var * node = calloc(1, sizeof(struct Var));
const char * name = va_arg(ap, const char *);
size_t len = strlen(nane);

assert(node);

node — _.nanme = malloc(len+l);
assert(node — _.nane);

strcpy((void *) node — _.nane, nane);
node — _.token = VAR,

return node;

}
static struct Type _Var = { nkVar, doVar, freeVar };

const void * Var = & Var;

new() takes care of inserting the type description Var into the node before the sym-
bol is returned to screen() or to whoever wants to use it.

Technically, mkVar() is the constructor for Name. However, only variable
names need to be stored dynamically. Because we decided that in our calculator
the constructor is responsible for allocating an object, we cannot let the Var con-
structor call a Name constructor to maintain the .name and .token components —
a Name constructor would allocate a struct Name rather than a struct Var.

5.6 Assignment

Assignment is a binary operation. The recognizer guarantees that we have a vari-
able as a left operand and a sum as a right operand. Therefore, all we really need to
implement is the actual assignment operation, i.e., the function dynamically linked
into the .exec component of the type description:

#i ncl ude "val ue. h"
#include "value.r"

static double doAssign (const void * tree)

{
}

return value(left(tree)) = exec(right(tree));

b2 5 Programming Savvy — Symbol Table

static struct Type _Assign = { nkBin, doAssign, freeBin };
const void * Assign = & _Assign;

We share the constructor and destructor for Bin which, therefore, must be made
global in the implementation of the arithmetic operations. We also share struct Bin
and the access functions left() and right(). All of this is exported with the interface
file value.h and the representation file value.r. Our own access function value() for
struct Var deliberately permits modification so that assignment is quite elegant to
implement.

5.7 Another Subclass — Constants

Who likes to type the value of Tt or other mathematical constants? We take a clue
from Kernighan and Pike's hoc [K&P84] and predefine some constants for our calcu-
lator. The following function needs to be called during the initialization of the recog-
nizer:
void initConst (void)
{ static const struct Var constants [] = { [* like hoc */
{ &Var, "PI", CONST, 3.14159265358979323846 1},

0}
const struct Var * vp;
for (vp = constants; vp — _.nanme; ++ vp)
install (vp);
}

Variables and constants are almost the same: both have names and values and
live in the symbol table; both return their value for use in an arithmetic expression;
and both should not be deleted when we delete an arithmetic expression. How-
ever, we should not assign to constants, so we need to agree on a new token value
CONST which the recognizer accepts in factor() just like VAR, but which is not per-
mitted on the left hand side of an assignment in stmt().

5.8 Mathematical Functions — Math

ANSI-C defines a number of mathematical functions such as sin(), sqrt(), exp(), etc.
As another exercise in inheritance, we are going to add library functions with a sin-
gle double parameter and a double result to our calculator.

These functions work pretty much like unary operators. We could define a new
type of node for each function and collect most of the functionality from Minus and
the Name class, but there is an easier way. We extend struct Name into struct
Math as follows:

struct Math { struct Nane _;
double (* funct) (double);
b
#define funct(tree) (((struct Math *) left(tree)) — funct)

5.8 Mathematical Functions — "“Math"’ 53

In addition to the function name to be used in the input and the token for recogni-
tion we store the address of a library function like sin() in the symbol table entry.

During initialization we call the following function to enter all the function
descriptions into the symbol table:

#i ncl ude <mat h. h>

void initMath (void)
{ static const struct Math functions [] = {
{ & Math, "sqgrt", MATH, sqrt },

0 };
const struct Math * np;
for (mp = functions; np — _.nane; ++ np)
install (mp);
}
A function call is a factor just like using a minus sign. For recognition we need
to extend our grammar for factors:

factor : NUMBER
| —factor

| ...
| MATH (sum)

MATH is the common token for all functions entered by initMath(). This translates
into the following addition to factor() in the recognizer:

static void * factor (void)
{ void * result;

switch (token) {
case MATH
{ const struct Name * fp = synbol;
if (scan(0) !'="(")
error("expecting (");
scan(0);
result = new(Math, fp, sum());
if (token !'=")")
error("expecting)");
br eak;

}

symbol first contains the symbol table element for a function like sin(). We save
the pointer and build the expression tree for the function argument by calling sum().
Then we use Math, the type description for the function, and let new() build the
following node for the expression tree:

54 5 Programming Savvy — Symbol Table

struct Bin

Mat h |
mkBi n() // N
doMat h() Tl \
freeMat h() e sum
"sin"
MATH
sin()
struct Math

We let the left side of a binary node point to the symbol table element for the func-
tion and we attach the argument tree at the right. The binary node has Math as a
type description, i.e., the methods doMath() and freeMath() will be called to exe-
cute and delete the node, respectively.

The Math node is still constructed with mkBin() because this function does not
care what pointers it enters as descendants. freeMath(), however, may only
delete the right subtree:

static void freevath (void * tree)

{
delete(right(tree));

free(tree);

}

If we look carefully at the picture, we can see that execution of a Math node is
very easy. doMath() needs to call whatever function is stored in the symbol table
element accessible as the left descendant of the binary node from which it is called:

#i ncl ude <errno. h>

static double doMvath (const void * tree)

{ doubl e result = exec(right(tree));
errno = 0;
result = funct(tree)(result);
if (errno)

error("error in %: %",
((struct Math *) left(tree)) — _.nane,
strerror(errno));
return result;

}
The only problem is to catch numerical errors by monitoring the errno variable
declared in the ANSI-C header file errno.h. This completes the implementation of
mathematical functions for the calculator.

5.9 Summary 55

5.9 Summary

Based on a function binary() for searching and inserting into a sorted array, we
have implemented a symbol table containing structures with a name and a token
value. Inheritance permitted us to insert other structures into the table without
changing the functions for search and insertion. The elegance of this approach
becomes apparent once we consider a conventional definition of a symbol table ele-
ment for our purposes:
struct {
const char * nane;
int token;
uni on { /* based on token */
doubl e val ue;
double (* funct) (double);

o
b
For keywords, the union is unnecessary. User defined functions would require a
much more elaborate description, and referencing parts of the union is cumber-
some.

Inheritance permits us to apply the symbol table functionality to new entries
without changing existing code at all. Dynamic linkage helps in many ways to keep
the implementation simple: symbol table elements for constants, variables, and
functions can be linked into the expression tree without fear that we delete them
inadvertently; an execution function concerns itself only with its own arrangement
of nodes.

5.10 Exercises

New keywords are necessary to implement things like while or repeat loops, if
statements, etc. Recognition is handled in stmt(), but this is, for the most part,
only a problem of compiler construction, not of inheritance. Once we have decided
on the type of statement, we will build node types like While, Repeat, or IfElse,
and the keywords in the symbol table need not know of their existence.

A bit more interesting are functions with two arguments like atan2() in the
mathematical library of ANSI-C. From the point of view of the symbol table, the
functions are handled just like simple functions, but for the expression tree we
need to invent a new node type with three descendants.

User defined functions pose a really interesting problem. This is not too hard if
we represent a single parameter by $ and use a node type Parm to point back to
the function entry in the symbol table where we can temporarily store the argument
value as long as we do not permit recursion. Functions with parameter names and
several parameters are more difficult, of course. However, this is a good exercise
to investigate the benefits of inheritance and dynamic linkage. We shall return to
this problem in chapter 11.

57

6
Class Hierarchy
Maintainability

6.1 Requirements

Inheritance lets us evolve general data types into more specialized ones and spares
us recoding basic functionality. Dynamic Linkage helps us repair the shortcomings
that a more general data type might have. What we still need is a clean global
organization to simplify maintaining a larger system of classes:

(1) all dynamic links have to point to the correct methods — e.g., a constructor
should not be inserted in the wrong place in a class description;

(2) we need a coherent way to add, remove, or change the order of dynamically
linked methods for a superclass while guaranteeing correct inheritance to its
subclasses;

(3) there should be no loopholes such as missing dynamic links or undefined
methods;

(4) if we inherit a dynamically linked method, the implementation of the superclass
from which we inherit must remain absolutely unchanged, i.e., inheritance must
be possible using binary information only;

(5) different sets of classes should be able to have different sets of dynamically
linked methods — e.g., only Point and Circle from chapter 4, but not the sets
from chapter 1 or the expression nodes from chapter 3 and 5, have a use for a
draw() method.

Mostly, this list indicates that maintaining dynamic linkage is difficult and error-
prone — if we cannot substantially improve the situation we may well have created
a white elephant.

So far we have worked with a single list of dynamically linked methods, regard-
less of whether or not it made sense for a particular class. The list was defined as
struct Class and it was included wherever dynamic linkage needed to be initialized.
Thanks to function prototypes, ANSI-C will check that function names like
Point_ctor fit the slots in the class description, where they are used as static initial-
izers. (1) above is only a problem if several methods have type compatible inter-
faces or if we change struct Class and do a sloppy recompilation.

ltem (2), changing struct Class, sounds like a nightmare — we need to manu-
ally access every class implementation to update the static initialization of the class
description, and we can easily forget to add a new method in some class, thus
causing problem (3).

We had an elegant way to add assignment to the calculator in section 5.6: we
changed the source code and made the dynamically linked methods for binary
nodes from section 3.6 public so that we could reuse them as initializers for the
Assign description, but this clearly violates requirement (4).

58 6 Class Hierarchy — Maintainability

If maintaining a single struct Class sounds like a challenge already, (5) above
suggests that we should have different versions of struct Class for different sets of
classes! The requirement is perfectly reasonable, however: every class needs a
constructor and a destructor; for points, circles, and other graphical objects we add
drawing facilities; atoms and strings need comparisons; collections like sets, bags,
or lists have methods to add, find, and remove objects; and so on.

6.2 Metaclasses

It turns out that requirement (5) does not compound our problems — it actually
points the way to solving them. Just like a circle adds information to a point, so do
the class descriptions for points and circles together add information — a
polymorphic draw() — to the class description for both of these two classes.

Put differently: As long as two classes have the same dynamically linked
methods, albeit with different implementations, they can use the same struct
Class to store the links — this is the case for Point and Circle. Once we add
another dynamically linked method, we need to lengthen struct Class to provide
room for the new link — this is how we get from a class with only a constructor
and a destructor to a class like Point with a .draw component thrown in.

Lengthening structures is what we called inheritance, i.e., we discover that
class descriptions with the same set of methods form a class, and that there is
inheritance among the classes of class descriptions!

We call a class of class descriptions a metaclass. A metaclass behaves just like
a class: Point and Circle, the descriptions for all points and all circles, are two
objects in a metaclass PointClass, because they can both describe how to draw. A
metaclass has methods: we can ask an object like Point or Circle for the size of
the objects, points or circles, that it describes, or we could ask the object Circle if
Point, indeed, describes the superclass of the circles.

Dynamically linked methods can do different things for objects from different
classes. Does a metaclass need dynamically linked methods? The destructor in
PointClass would be called as a consequence of delete(Point) or delete(Circle),
i.e., when we try to eliminate the class description for points or circles. This des-
tructor ought to return a null pointer because it is clearly not a good idea to elim-
inate a class description. A metaclass constructor is much more useful:

Circle = new PointC ass, /* ask the netacl ass */
"Circle", /* to make a class description */
Poi nt , /* with this superclass, */
sizeof (struct Circle), [/* this size for the objects, */
ctor, Crcle_ctor, /* this constructor, */
draw, Circle_draw, /* and this drawi ng nmethod. */
0); /* end of list */

This call should produce a class description for a class whose objects can be con-
structed, destroyed, and drawn. Because drawing is the new idea common to all
class descriptions in PointClass, it seems only reasonable to expect that the
PointClass constructor would at least know how to deposit a link to a drawing
method in the new description.

6.3 Roots — ""Object’” and "'Class"”’ 59

Even more is possible: if we pass the superclass description Point to the
PointClass constructor, it should be able to first copy all the inherited links from
Point to Circle and then overwrite those which are redefined for Circle. This, how-
ever, completely solves the problem of binary inheritance: when we create Circle
we only specify the new methods specific to circles; methods for points are impli-
citly inherited because their addresses can be copied by the PointClass construc-
tor.

6.3 Roots — Object and Class

Class descriptions with the same set of methods are the objects of a metaclass. A
metaclass as such is a class and, therefore, has a class description. We must
assume that the class descriptions for metaclasses once again are objects of meta
(metameta?) classes, which in turn are classes and ...

It seems unwise to continue this train of thought. Instead, let us start with the
most trivial objects imaginable. We define a class Object with the ability to create,
destroy, compare, and display objects.

Interface Object.h:
extern const void * (bject; [* new(Object); */

void * new (const void * class, ...);
void delete (void * self);

int differ (const void * self, const void * b);
int puto (const void * self, FILE * fp);
Representation Object.r:

struct Object {
const struct Cass * class; /* object’s description */
b
Next we define the representation for the class description for objects, i.e., the
structure to which the component .class in struct Object for our trivial objects
points. Both structures are needed in the same places, so we add to Object.h:

extern const void * O ass; /* new(Cl ass, "nanme", super, size

sel, meth, ... 0); */
and to Object.r:
struct Cass {
const struct Object _; [* class’ description */
const char * nane; /* class’ nanme */
const struct C ass * super; [* class’ super class */
size t size; /* class’ object’s size */

void * (* ctor) (void * self, va_list * app);

void * (* dtor) (void * self);

int (* differ) (const void * self, const void * b);
int (* puto) (const void * self, FILE * fp);

60 6 Class Hierarchy — Maintainability

struct Class is the representation of each element of the first metaclass Class.
This metaclass is a class; therefore, its elements point to a class description. Point-
ing to a class description is exactly what an Object can do, i.e., struct Class
extends struct Object, i.c., Class is a subclass of Object!

This does not cause grief: objects, i.e., instances of the class Object, can be
created, destroyed, compared, and displayed. \We have decided that we want to
create class descriptions, and we can write a destructor that silently prevents that a
class description is destroyed. It may be quite useful to be able to compare and
display class descriptions. However, this means that the metaclass Class has the
same set of methods, and therefore the same type of description, as the class
Object, i.e., the chain from objects to their class description and from there to the
description of the class description ends right there. Properly initialized, we end up
with the following picture:

anbj ect hj ect C ass
struct Object "Obj ect” name "Cl ass"
? super Qbj ect
si zeof anQbj ect size si zeof bj ect
make object ctor make class
return self dtor return 0
compare differ compare
display puto display
struct C ass struct C ass

The question mark indicates one rather arbitrary decision: does Object have a
superclass or not? It makes no real difference, but for the sake of uniformity we
define Object to be its own superclass, i.e., the question mark in the picture is
replaced by a pointer to Object itself.

6.4 Subclassing — Any

Given the descriptions Class and Object, we can already make new objects and
even a new subclass. As an example, consider a subclass Any which claims that
all its objects are equal to any other object, i.e., Any overwrites differ() to always
return zero. Here is the implementation of Any, and a quick test, all in one file
any.c:

#i ncl ude "Object.h"

static int Any differ (const void * _self, const void * b)

{
}

return O; /* Any equal s anything... */

6.4 Subclassing — ""Any"’ 61

int main ()
{ void * o = new Obj ect);
const void * Any =
new(Cl ass, "Any", Object, sizeOf(o0),
differ, Any_ differ,
0);
void * a = new Any);
put o(Any, stdout);
puto(o, stdout);
puto(a, stdout);
if (differ(o, o) == differ(a, a))
put s("ok");
if (differ(o, a) !'=differ(a, 0))
puts("not commutative");

delete(o0), delete(a);
del et e(Any);

return O;

}

If we implement a new class we need to include the interface of its superclass.
Any has the same representation as Object and the class is so simple that we do
not even need to include the superclass representation file. The class description
Any is created by requesting a new instance from its metaclass Class and con-
structing it with the new class name, the superclass description, and the size of an
object of the new class:
const void * Any =
new(Cl ass, "Any", Object, sizeOf(o0),

differ, Any_ differ,

0);
Additionally, we specify exactly those dynamically linked methods, which we
overwrite for the new class. The method names can appear in any order, each is
preceded by its selector name. A zero terminates the list.

The program generates one instance o of Object and one instance a of Any,
and displays the new class description and the two instances. Either instance can-
not differ from itself, so the program prints ok. The method differ() has been
overwritten for Any; therefore, we get different results if we compare o to a, and
vice versa:

$ any

Cl ass at 0x101fc

Chj ect at 0x101f 4

Any at 0x10220

ok

not commutative

Any: cannot destroy class

62 6 Class Hierarchy — Maintainability

Clearly, we should not be able to delete a class description. This error is already
detected during compilation, because delete() does not accept a pointer to an area
protected with const.

6.5 Implementation — Object

Implementing the Object class is straightforward: the constructor and destructor
return self, and differ() checks if its two argument pointers are equal. Defining
these trivial implementations is very important, however: we use a single tree of
classes and make Object the ultimate superclass of every other class; if a class
does not overwrite a method such as differ() it inherits it from Object, i.e., every
class has at least a rudimentary definition for every dynamically linked method
already applicable to Object.

This is a general safety principle: whenever we introduce a new dynamically
linked method, we will immediately implement it for its first class. In this fashion
we can never be caught selecting a totally undefined method. A case in point is the
puto() method for Object:

static int Object_puto (const void * _self, FILE * fp)
{ const struct Cass * class = classOf(_self);

return fprintf(fp, "% at %\n", class — nanme, _self);
}

Every object points to a class description and we have stored the class name with
the description. Therefore, for any object we can at least display the class name
and the address of the object. The first three lines of output from the trivial test
program in section 6.4 indicate that we have not bothered to overwrite this method
for Class or Any.

puto() relies on an access function classOf() which does some safety checks
and returns the class descriptor for an object:
const void * classOF (const void * _self)
{ const struct Object * self = _self;

assert(self && self — class);
return self — cl ass;

}
Similarly, we can ask an object for its size* — remember that, technically, an object
is a plain void * in ANSI-C:

size_ t sizeOF (const void * _self)
{ const struct Cass * class = classOf(_self);

return class — size;

}

It is debatable if we should ask the object for the size, or if we should only ask it for
the class and then explicitly ask the class for the size. If we implement sizeOf() for

* The spelling is likely to be error-prone, but | just could not resist the pun. Inventing good method
names is an art.

6.6 Implementation — 'Class’’ 63

objects, we cannot apply it to a class description to get the corresponding object
size — we will get the size of the class description itself. However, practical use
indicates that defining sizeOf() for objects is preferable. In contrast, super() is a
statically linked method which returns the superclass of a class, not of an object.

6.6 Implementation — Class

Class is a subclass of Object, so we can simply inherit the methods for comparison
and display. The destructor returns a null pointer to keep delete() from actually
reclaiming the space occupied by a class description:

static void * Class_dtor (void * _self)
{ struct Class * self = _self;

fprintf(stderr, "%: cannot destroy class\n", self—snane);
return O;

}
Here is the access function to get the superclass from a class description:

const void * super (const void * _self)
{ const struct Class * self = _self;

assert(self && self — super);
return self — super;

}

The only difficult part is the implementation of the Class constructor because
this is where a new class description is initialized, where inheritance takes place,
and where our four basic methods can be overwritten. We recall from section 6.4
how a new class description is created:

const void * Any =
new(Cl ass, "Any", Object, sizeOf(o0),
differ, Any_ differ,
0);
This means that our Class constructor receives the name, superclass, and object
size for a new class description. We start by transferring these from the argument
list:
static void * Class_ctor (void * _self, va_list * app)
{ struct Class * self = _self;

self — name = va_arg(* app, char *);

self — super = va_arg(* app, struct Cass *);
self — size = va_arg(* app, size_t);
assert(self — super);

self cannot be a null pointer because we would not have otherwise found this
method. super, however, could be zero and that would be a very bad idea.

The next step is inheritance. We must copy the constructor and all other
methods from the superclass description at super to our new class description at
self:

64 6 Class Hierarchy — Maintainability

const size_t offset = offsetof(struct Cass, ctor);

mencpy((char *) self + offset, (char *) self — super
+ offset, sizeOf(self — super) —offset);

Assuming that the constructor is the first method in struct Class, we use the ANSI-
C macro offsetof() to determine where our copy is to start. Fortunately, the class
description at super is subclassed from Object and has inherited sizeOf() so we
can compute how many bytes to copy.

While this solution is not entirely foolproof, it seems to be the best compro-
mise. Of course, we could copy the entire area at super and store the new name
etc. afterwards; however, we would still have to rescue the struct Object at the
beginning of the new class description, because new() has already stored the class
description’s class description pointer there.

The last part of the Class constructor is responsible for overwriting whatever
methods have been specified in the argument list to new(). ANSI-C does not let us
assign function pointers to and from void *, so a certain amount of casting is
necessary:

{
typedef void (* voidf) (); /* generic function pointer */
voi df sel ector;
va_list ap = * app;
while ((selector = va_arg(ap, voidf)))
{ voi df method = va_arg(ap, voidf);
if (selector == (voidf) ctor)
* (voidf *) & self — ctor = nethod;
else if (selector == (voidf) dtor)
* (voidf *) & self — dtor = nethod;
else if (selector == (voidf) differ)
* (voidf *) & self — differ = nmethod;
else if (selector == (voidf) puto)
* (voidf *) & self — puto = nethod;
}
return self;
1}

As we shall see in section 6.10, this part of the argument list is best shared among
all class constructors so that the selector/method pairs may be specified in any
order. We accomplish this by no longer incrementing * app; instead we pass a
copy ap of this value to va_arg().

Storing the methods in this fashion has a few consequences: If no class con-
structor is interested in a selector, a selector/method pair is silently ignored, but at
least it is not added to a class description where it does not belong. If a method
does not have the proper type, the ANSI-C compiler will not detect the error
because the variable argument list and our casting prevent type checks. Here we
rely on the programmer to match the selector to the method supplied with it, but
they must be specified as a pair and that should result in a certain amount of plausi-
bility.

6.7 Initialization 65

6.7 Initialization

Normally we obtain a class description by sending new() to a metaclass description.
In the case of Class and Object we would issue the following calls:
const void * Object = new(d ass,
"Cbject", Object, sizeof(struct Object),
ctor, Object_ctor,
dtor, Object_dtor,
differ, Object_differ,
puto, Object_puto,
0);
const void * Cass = newd ass,
"Cl ass", bject, sizeof(struct C ass),
ctor, Class_ctor,
dtor, Class_dtor,
0);
Unfortunately, either call relies on the other already having been completed. There-
fore, the implementation of Class and Object in Object.c requires static initialization
of the class descriptions. This is the only point where we explicitly initialize a struct
Class:
static const struct Cass object [] = {
{ { object + 11},
"Cbject", object, sizeof(struct Object),
Chj ect _ctor, Object_dtor, Object_differ, Object_puto
H
{ { object + 11},
"Cl ass", object, sizeof(struct C ass),
Class_ctor, Class_dtor, Cbject_differ, Object_puto

}
b
const void * Object = object;
const void * Class = object + 1;
An array name is the address of the first array element and can already be used to
initialize components of the elements. We fully parenthesize this initialization in
case struct Object is changed later on.

6.8 Selectors

The job of a selector function is unchanged from chapter 2: One argument _self is
the object for dynamic linkage. We verify that it exists and that the required
method exists for the object. Then we call the method and pass all arguments to it;
therefore, the method can assume that _self is a proper object for it. Finally, we
return the result value of the method, if any, as the result of the selector.

Every dynamically linked method must have a selector. So far, we have hidden
calls to the constructor and the destructor behind new() and delete(), but we still
need the function names ctor and dtor for the selector/method pairs passed to the
Class constructor. We may later decide to bind new() and delete() dynamically;
therefore, it would not be a good idea to use their names in place of ctor and dtor.

66 6 Class Hierarchy — Maintainability

We have introduced a common superclass Object for all our classes and we
have given it some functionality that simplifies implementing selector functions.
classOf() inspects an object and returns a non-zero pointer to its class description.
This permits the following implementation for delete():

void delete (void * _self)

{
if (_self)
free(dtor(_self));
}

void * dtor (void * _self)
{ const struct Cass * class = classOf(_self);

assert(class — dtor);
return class — dtor(_self);

}

new() must be implemented very carefully but it works similarly:
void * new (const void * _class, ...)
{ const struct Class * class = _cl ass;

struct Object * object;

va_list ap;

assert(class && class — size);
object = calloc(l, class — size);
assert (object);

object — class = cl ass;
va_start(ap, _class);

object = ctor(object, & ap);
va_end(ap);

return object;

}

We verify the class description and we make sure that we can create a zero-filled
object. Then we initialize the class description of the object and we are ready to let
the normal selector ctor() find and execute the constructor:

void * ctor (void * _self, va_list * app)

{ const struct Cass * class = classOf(_self);

assert(class — ctor);
return class — ctor(_self, app);

}

There is perhaps a bit too much checking going on, but we have a uniform and
robust interface.

6.9 Superclass Selectors

Before a subclass constructor performs its own initialization, it is required to call the
superclass constructor. Similarly, a subclass destructor must call its superclass
destructor after it has completed its own resource reclamation. When we are
implementing selector functions, we should also supply selectors for the superclass
calls:

6.9 Superclass Selectors 67

void * super_ctor (const void * _class,
void * _self, va_list * app)
{ const struct C ass * superclass = super(_class);

assert(_self && superclass — ctor);
return superclass — ctor(_self, app);

}

void * super_dtor (const void * _class, void * _self)
{ const struct C ass * superclass = super(_class);

assert(_self && superclass — dtor);
return superclass — dtor(_self);

}
These selectors should only be called by a subclass implementation; therefore, we
include their declarations into the representation file and not into the interface file.
To be on the safe side, we supply superclass selectors for all dynamically linked
methods, i.e., every selector has a corresponding superclass selector. This way,
every dynamically linked method has a simple way to call its superclass method.

Actually, there is a subtle trap luring. Consider how a method of an arbitrary
class X would call its superclass method. This is the correct way:

static void * X nethod (void * _self, va_list * app)
{ void * p = super_nethod(X, _self, app);

Looking at the superclass selectors shown above we see that super_method() in
this case calls

super (X) — method(_sel f, app);

i.e., the method in the superclass of the class X for which we just defined
X_method(). The same method is still reached even if some subclass Y inherited
X_method() because the implementation is independent of any future inheritance.

The following code for X_method() may look more plausible, but it will break
once the method is inherited:

static void * X nethod (void * _self, va_list * app)
{ void * p = /[* WRONG */
super _net hod(cl assOf (_sel f), _self, app);

The superclass selector definition now produces
super (cl assOf (_self)) — method(_self, app);

If _self is in class X, we reach the same method as before. However, if _self is in a
subclass Y of X we get

super(Y) — nmethod(_self, app);

and that is still X_methodl), i.e., instead of calling a superclass method, we get
stuck in a sequence of recursive calls!

68 6 Class Hierarchy — Maintainability

6.10 A New Metaclass — PointClass

Object and Class are the root of our class hierarchy. Every class is a subclass of
Object and inherits its methods, every metaclass is a subclass of Class and
cooperates with its constructor. Any in section 6.4 has shown how a simple sub-
class can be made by replacing dynamically linked methods of its superclass and,
possibly, defining new statically linked methods.

We now turn to building classes with more functionality. As an example we
connect Point and Circle to our class hierarchy. These classes have a new dynami-
cally linked method draw(); therefore, we need a new metaclass to accommodate
the link. Here is the interface file Point.h:

#i ncl ude "Object.h"

extern const void * Point; [* new(Point, x, y); */
void draw (const void * self);

void nove (void * point, int dx, int dy);

extern const void * Pointd ass; /* adds draw */

The subclass always includes the superclass and defines a pointer to the class
description and to the metaclass description if there is a new one. Once we intro-
duce metaclasses, we can finally declare the selector for a dynamically linked
method where it belongs: in the same interface file as the metaclass pointer.

The representation file Point.r contains the object structure struct Point with its
access macros as before, and it contains the superclass selectors together with the
structure for the metaclass:

#include "Object.r"

struct Point { const struct Object _; [* Point : Object */
int x, vy; /* coordi nates */

b

#define x(p) (((const struct Point *)(p)) — x)

#define y(p) (((const struct Point *)(p)) — V)

voi d super_draw (const void * class, const void * self);

struct Pointd ass ({
const struct Cass _; /* PointClass : Class */
void (* draw) (const void * self);
b
The implementation file Point.c contains move(), Point_draw(), draw(), and
super_draw(). These methods are written as before; we saw the technique for the
superclass selector in the previous section. The constructor must call the super-
class constructor:

static void * Point_ctor (void * _self, va_list * app)
{ struct Point * self = super_ctor(Point, _self, app);

self — x
self — vy

= va_arg(* app, int);
return self;

va_arg(* app, int);

6.10 A New Metaclass — ‘'PointClass’’ 69

One new idea in this file is the constructor for the metaclass. It calls the super-
class constructor to perform inheritance and then uses the same loop as
Class_ctor() to overwrite the new dynamically linked method draw():

static void * PointClass_ctor (void * _self, va_list * app)
{ struct PointC ass * self
= super_ctor(PointCl ass, _self, app);
typedef void (* voidf) ();
voi df sel ector;
va_list ap = * app;

va_arg(ap, voidf)))
va_arg(ap, voidf);

while ((selector
{ voi df met hod

if (selector == (voidf) draw)
* (voidf *) & self — draw = net hod;
}
return self;
}
Note that we share the selector/method pairs in the argument list with the super-
class constructor: ap takes whatever Class_ctor() returns in * app and starts the
loop from there.
With this constructor in place we can dynamically initialize the new class

descriptions: PointClass is made by Class and then Point is made with the class
description PointClass:

void initPoint (void)

{
if (! PointC ass)
Poi nt Cl ass = new(C ass, "PointC ass",
Cl ass, sizeof (struct Pointd ass),
ctor, PointClass ctor,
0);
if (! Point)
Poi nt = new(Poi ntCl ass, "Point",
Chj ect, sizeof (struct Point),
ctor, Point_ctor,
draw, Point_draw,
0);
}

Writing the initialization is straightforward: we specify the class names, inheritance
relationships, and the size of the object structures, and then we add
selector/method pairs for all dynamically linked methods defined in the file. A zero
completes each argument list.

In chapter 9 we will perform this initialization automatically. For now, init-
Point() is added to the interface in Point.h and the function must definitely be called
before we can make points or subclasses. The function is interlocked so that it can
be called more than once — it will produce exactly one class description PointClass
and Point.

70 6 Class Hierarchy — Maintainability

As long as we call initPoint() from main() we can reuse the test program
points from section 4.1 and we get the same output:
$ points p
“."oat 1,2
at 11, 22
Circle is a subclass of Point introduced in chapter 4. In adding it to the class
hierarchy, we can remove the ugly code in the constructor shown in section 4.7:

static void * Crcle_ctor (void * _self, va_list * app)
{ struct Circle * self = super_ctor(Circle, _self, app);
self — rad = va_arg(* app, int);
return self;
}
Of course, we need to add an initialization function initCircle() to be called from
main() before circles can be made:

void initGrcle (void)

{
if (! Circle)
{ i nitPoint();
Circle = new(PointClass, "Circle",
Poi nt, sizeof (struct Circle),
ctor, Circle_ctor,
draw, Circle_draw,
0);
}
}

Because Circle depends on Point, we call on initPoint() before we initialize Circle.
All of these functions do their real work only once, and we can call them in any
order as long as we take care of the interdependence inside the function itself.

6.11 Summary

Objects point to their class descriptions which, for the most part, contain pointers
to dynamically linked methods. Class descriptions with the same set of method
pointers constitute a metaclass — class descriptions are objects, too. A metaclass,
again, has a class description.

Things remain finite because we start with a trivial class Object and with a first
metaclass Class which has Object as a superclass. If the same set of methods —
constructor, destructor, comparison, and display — can be applied to objects and
class descriptions, then the metaclass description Class which describes the class
description Object also describes itself.

A metaclass constructor fills a class description and thus implements binary
inheritance, the destructor returns zero to protect the class description from being
destroyed, the display function could show method pointers, etc. Two class
descriptions are the same if and only if their addresses are equal.

6.11 Summary 71

If we add dynamically linked methods such as draw(), we need to start a new
metaclass, because its constructor is the one to insert the method address into a
class description. The metaclass description always uses struct Class and is,
therefore, created by a call

Poi nt G ass = new(d ass,
ctor, PointClass_ctor,
0);
Once the metaclass description exists, we can create class descriptions in this
metaclass and insert the new method:

Poi nt = new(Poi nt Cl ass,
draw, Point_draw,

0);
These two calls must be executed exactly once, before any objects in the new
class can be created. There is a standard way to write all metaclass constructors

so that the selector/method pairs can be specified in any order. More classes in the
same metaclass can be created just by sending new() to the metaclass description.

Selectors are also written in a standard fashion. It is a good idea to decide on a
discipline for constructors and destructors to always place calls along the super-
class chain. To simplify coding, we provide superclass selectors with the same
arguments as selectors; an additional first parameter must be specified as the class
for which the method calling the superclass selector is defined. Superclass selec-
tors, too, are written according to a standard pattern.

A coherent style of verifications makes the implementations smaller and more
robust: selectors verify the object, its class, and the existence of a method; super-
class selectors should additionally verify the new class argument; a dynamically
linked method is only called through a selector, i.e., it need not verify its object. A
statically linked method is no different from a selector: it must verify its argument
object.

Let us review the meaning of two basic components of objects and class
descriptions and our naming conventions. Every class eventually has Object as a
superclass. Given a pointer p to an object in an arbitrary subclass of Object, the
component p—>class points to the class description for the object. Assume that
the pointer C points to the same class description and that C is the class name pub-
lished in the interface file C.h. Then the object at p will be represented with a struct
C. This explains why in section 6.3 Class—>class has to point to Class itself: the
object to which Class points is represented by a struct Class.

Every class description must begin with a struct Class to store things like the
class name or a pointer to the superclass description. Now let C point to a class
description and let C—>super point to the same class description as the pointer S
published in the interface file S.h, i.e., Sis the superclass of C. In this case, struct
C must start with struct S. This explains why in section 6.3 Class—>super has to
point to Object: we decided that a struct Class starts with a struct Object.

72 6 Class Hierarchy — Maintainability

The only exception to this rule is the fact that Object—>super has the value
Object although it was pointed out in section 6.3 that this was a rather arbitrary
decision.

73

7
The ooc Preprocessor
Enforcing a Coding Standard

Looking over the last chapter, it seems that we have solved the big problem of
cleaning up class maintenance by introducing another big problem: we now have
an awful number of conventions about how certain functions have to be written
(most notably a metaclass constructor) and which additional functions must be pro-
vided (selectors, superclass selectors, and initializations). We also have rules for
defensive coding, i.e., argument checking, but the rules are not uniform: we should
be paranoid in selectors and statically linked methods but we can be more trusting
in dynamically linked methods. If we should decide to change our rules at a later
date, we will likely have to revise a significant amount of rather standard code — a
repetitive and error-prone process.

In this chapter we will look at the design of a preprocessor ooc which helps us
to stick to the conventions developed in the last chapter. The preprocessor is sim-
ple enough to be implemented in a few days using awk [AWK88], and it enables us
to follow (and later redesign) our coding conventions. ooc is documented with a
manual page in appendix C, the implementation is detailed in appendix B, and the
complete source code is available as part of the sources to this book.

ooc is certainly not intended to introduce a new programming language — we
are still working with ANSI-C and the output from ooc is exactly what we would
write by hand as well.

7.1 Point Revisited

We want to engineer a preprocessor ooc which helps us maintain our classes and
coding standards. The best way to design such a preprocessor is to take a typical,
existing example class, and see how we can simplify our implementation effort
using reasonable assumptions about what a preprocessor can do. In short, let us
“play’’ preprocessor for a while.

Point from chapter 4 and section 6.10 is a good example: it is not the root
class of our system, it requires a new metaclass, and it has a few, typical methods.
From now on we will use italics and refer to it as Point to emphasize that it only
serves as a model for what our preprocessor has to handle.

We start with a more or less self-explanatory class description that we can
easily understand and that is not too hard for an awk based preprocessor to read:

% PointClass: Class Point: Object { // header

int x; /1 object conponents
int vy;

% /1 statically linked
void nove (_self, int dx, int dy);

% /1 dynamically Iinked

void draw (const _self);

%

74 7 The "ooc" Preprocessor — Enforcing a Coding Standard

Boldface in this class description indicates items that ooc recognizes; the regular
line printer font is used for items which the preprocessor reads here and repro-
duces elsewhere. Comments start with // and extend to the end of a line; lines
can be continued with a backslash.

Here we describe a new class Point as a subclass of Object. The objects have
new components x and y, both of type int. There is a statically linked method
move() that can change its object using the other parameters. We also introduce a
new dynamically linked method draw(); therefore, we must start a new metaclass
PointClass by extending the meta superclass Class. The object argument of draw()
is const, i.e., it cannot be changed.

If we do not have new dynamically linked methods, the description is even
simpler. Consider Circle as a typical example:

% PointClass Circle: Point { /'l header
int rad; /1 object conponent
% /1 no static methods

These simple, line-oriented descriptions contain enough information so that we
can completely generate interface files. Here is a pattern to suggest how ooc
would create Point.h:

#i f ndef Point _h
#define Point _h

#i ncl ude "Object.h"
extern const void * Point;

for all methods in %
void nove (void * self, int dx, int dy);

if there is a new metaclass
extern const void * Pointd ass;

for all methods in %
void draw (const void * self);

void initPoint (void);

#endi f

Boldface marks parts of the pattern common to all interface files. The regular
typeface marks information which ooc must read in the class description and insert
into the interface file. Parameter lists are manipulated a bit: _self or const _self
are converted to suitable pointers; other parameters can be copied directly.

Parts of the pattern are used repeatedly, e.g., for all methods with a certain link-
age or for all parameters of a method. Other parts of the pattern depend on condi-
tions such as a new metaclass being defined. This is indicated by italics and inden-
tation.

7.1 ""Point”’ Revisited 75

The class description also contains enough information to produce the
representation file. Here is a pattern to generate Point.r:

#i f ndef Point r
#define Point _r

#include "Object.r"

struct Point { const struct Object _;
for all components
int x;
int vy;
b

if there is a new metaclass
struct PointC ass { const struct Cass _;
for all methods in %
void (* draw) (const void * self);

I

for all methods in %
voi d super_draw (const void * class, const void * self);

#endi f

The original file can be found in section 6.10. It contains definitions for two
access macros x() and y(). So that ooc can insert them into the representation file,
we adopt the convention that a class description file may contain extra lines in addi-
tion to the class description itself. These lines are copied to an interface file or, if
they are preceded by a line with %prot, to a representation file. prot refers to pro-
tected information — such lines are available to the implementations of a class and
its subclasses but not to an application using the class.

The class description contains enough information so that ooc can generate a
significant amount of the implementation file as well. Let us look at the various
parts of Point.c as an example:

#i ncl ude "Point.h" /'l include
#include "Point.r"

First, the implementation file includes the interface and representation files.
/1 method header

void nove (void * _self, int dx, int dy) {
for all parameters /1 inmporting objects
if parameter is a Poi nt
struct Point * self = _self;
for all parameters /1 checking objects

if parameter is an object
assert(_self);

/1 nmethod body

76 7 The "ooc" Preprocessor — Enforcing a Coding Standard

For statically linked methods we can check that they are permitted for the class
before we generate the method header. With a loop over the parameters we can
initialize local variables from all those parameters which refer to objects in the class
to which the method belongs, and we can protect the method against null pointers.
/1 method header
static void Point_draw (const void * _self) {

for all parameters /1 inmporting objects
if parameter is a Poi nt
const struct Point * self = self;

/1 nmethod body

For dynamically linked methods we also check, generate headers, and import
objects. The pattern can be a bit different to account for the fact that the selector
should have already checked that the objects are what they pretend to be.

There are a few problems, however. As a subclass of Object, our class Point
may overwrite a dynamically linked method such as ctor() that first appeared in
Object. If ooc is to generate all method headers, we have to read all superclass
descriptions back to the root of the class tree. From the superclass name Object in
the class description for Point we have to be able to find the class description file
for the superclass. The obvious solution is to store a description for Object in a file
with a related name such as Object.d.

static void * Point_ctor (void * _self, va_list * app) {

Another problem concerns the fact that Point_ctor() calls the superclass selector,
and, therefore, does not need to import the parameter objects like Point_draw() did.
It is probably a good idea if we have a way to tell ooc each time whether or not we
want to import and check objects.

if there is a new metaclass

for all methods in %
void draw (const void * _self) { [/ selector
const struct PointClass * class = classOf(_self);

assert(class -> draw);
class -> draw(self);

}
/'l superclass sel ector
voi d super_draw (const void * class, const void * _self) {
const struct PointC ass * superclass = super(class);

assert(_self && superclass -> draw);
supercl ass -> draw(self);

}

If the class description defines a new metaclass, we can completely generate the
selectors and superclass selectors for all new dynamically linked methods. If we
want to, in each selector we can use loops over the parameters and check that
there are no null pointers posing as objects.

7.1 ""Point”’ Revisited 77

if there is a new metaclass
/'l metaclass constructor

static void * PointClass_ctor (void * _self, va_list * app) {
{ struct PointC ass * self =
super _ctor (Pointd ass, _self, app);
typedef void (* voidf) ();
voi df sel ector;
va_list ap = * app;

va_arg(ap, voidf)))
va_arg(ap, voidf);

while ((selector
{ voi df met hod

for all methods in %

if (selector == (voidf) draw)
{ * (voidf *) & self -> draw = nethod;
conti nue;

}
}
return self;

}
With a loop over the method definitions in the class description we can completely
generate the metaclass constructor. Somehow, however, we will have to tell ooc
the appropriate method header to use for ctor() — a different project might decide
on different conventions for constructors.

const void * Point; /1 class descriptions

if there is a new metaclass
const void * Pointd ass;

voi d initPoint (void) /1l initialization
{
if there is a new metaclass
if (! Pointd ass)
Poi nt C ass = new(C ass, "PointC ass",

Cl ass, sizeof(struct Pointd ass),
ctor, Pointd ass_ctor,
(void *) 0);

if (! Point)
Poi nt = new(PointCl ass, "Point",

Chj ect, sizeof (struct Point),

for all overwritten methods
ctor, Point_ctor,
draw, Point _draw,

(void *) 0);

}

The initialization function depends on a loop over all dynamically linked methods
overwritten in the implementation.

78 7 The "ooc" Preprocessor — Enforcing a Coding Standard

7.2 Design
Let us draw a few conclusions from the experiment of preprocessing Point. We
started with a fairly simple, line-oriented class description:

interface lines [l arbitrary
%pr ot
representation lines

% metaclass[: metasuper] class: super { /1 header
/1 object conponents

% /1 statically linked
type name ([const] _self, ...);

% /1 dynamically Iinked
type name ([const] _self, ...);

%

The only difficulty is that we need to untangle the parameter lists and split type and
name information in each declarator. A cheap solution is to demand that const, if
any, precede the type and that the type completely precede the name.* \We also
recognize the following special cases:

_sel f message target in the current class
_name other object in the current class
class @ name object in other class

All of these can be preceded by eonst. Objects in the current class are derefer-
enced when they are imported.

The file name for a class description is the class name followed by .d so that
ooc can locate superclass descriptions. We do not have to worry much about the
metaclass: either a class has the same metaclass as its superclass, or a class has a
new metaclass and the superclass of this metaclass is the metaclass of the class’
superclass. Either way, if we read the superclass description, we have sufficient
information to cope with the metaclass.

Once ooc has digested a class description, it has enough information to gen-
erate the interface and the representation file. It is wise to design a command as a
filter, i.e., to require explicit i/o redirection to create a file, so we arrive at the follow-
ing typical invocations for our preprocessor:

$ ooc Point —h > Point.h # interface file
$ ooc Point — > Point.r # representation file

The implementation file is more difficult. Somehow ooc must find out about
method bodies and whether or not parameters should be checked and imported. If
we add the method bodies to the class description file, we keep things together,
but we cause a lot more processing: during each run ooc has to load class descrip-
tion files back to the root class, however, method bodies are only interesting in the
outermost description file. Additionally, implementations are more likely to change

* |f necessary, this can always be arranged with a typedef.

7.3 Preprocessing 79

than interfaces; if method bodies are kept with the class description, make will
recreate the interface files every time we change a method body, and this probably
leads to lots of unnecessary recompilations.*

A cheap solution would be to let ooc read a class description and produce a
skeleton implementation file containing all possible method headers for a class
together with the new selectors, if any, and the initialization code. This requires a
loop from the class back through its superclasses to generate headers and fake
bodies for all the dynamically linked methods which we encounter along the way.
ooc would be invoked like this:

$ ooc Point —dc > skeleton # starting an inplenentation

This provides a useful starting point for a new implementation but it is difficult to
maintain: The skeleton will contain all possible methods. The basic idea is to erase
those which we do not need. However, every method will appear twice: once
with a header and a fake body and once in the argument list to create the class
description. It is hard, but absolutely essential, to keep this synchronized.

ooc is supposed to be a development and maintenance tool. If we change a
method header in a class description it is only reasonable to expect that ooc pro-
pagates the change to all implementation files. With the skeleton approach we can
only produce a new skeleton and manually edit things back together — not entirely
a pleasing prospect!

If we do not want to store method bodies within a class description and if we
require that ooc change an existing implementation file, we are led to design ooc as
a preprocessor. Here is a typical invocation:

$ ooc Point Point.dc > Point.c # preprocessing

ooc loads the class description for Point and then reads the implementation file
Point.dc and writes a preprocessed version of this file to standard output. We can
even combine this with the skeleton approach described above, as long as we
create the skeleton with preprocessing statements rather than as an immutable C
file.

7.3 Preprocessing

What preprocessing statements should ooc provide? Looking over our experiment
with Point in section 7.1 there are three areas where ooc can help: given a method
name, it knows the method header; given a method, it can check and import the
object parameters; somewhere it can produce selectors, the metaclass constructor,
and the initialization function as required. Experimenting once again with Point, the
following implementation file Point.dc seems reasonable:

% nmove {

%cast s

self — x += dx, self — y += dy;

}

* yacc has a similar problem with the header file y.tab.h. The standard approach is to duplicate this file,
rewrite the copy only if it is new, and use the copy in makefile rules. See [K&P84].

80 7 The "ooc" Preprocessor — Enforcing a Coding Standard

% Poi nt ctor {
struct Point * self = super_ctor(Point, _self, app);

self — x
self — vy

= va_arg(* app, int);
return self;

va_arg(* app, int);

}
% Poi nt draw {
%cast s
printf("\".\" at %l, %\n", x(self), y(self));
}
% ni t

Boldface indicates what ooc finds interesting:

% method { header for statically linked method

% class method { header to overwrite dynamically linked method
Ygast s import object parameters

% nit create selectors and initialization code

For a method with static linkage, we already know the class for which it is declared.
However, the class may be specified anyway, and if we should decide to change
the method’s linkage later, we do not need to edit the source again.

There is a question whether we should not require that the method header be
spelled out by the programmer, parameter list and all. While this would make the
implementation file easier to read, it is harder to maintain if a method definition is
changed. It is also (marginally) harder to parse.

7.4 Implementation Strategy

We know what ooc has to do. How do we write the preprocessor? For reasons of
efficiency, we may eventually have to resort to a platform like /ex and yacc, but a
first implementation is a lot cheaper if we use a string programming language like
awk or perl. If this works out, we know the necessary algorithms and data struc-
tures, and it should be easy to transcribe them into a more efficient implementa-
tion; we might even use something like an awk to C translator to do the job. Above
all, however, with a cheap first implementation we can verify that our idea is feasi-
ble and convenient in the first place.

ooc parses the class descriptions and builds a database. Given the database,
command line options decide what will be generated. As we have seen, generation
can be based on some sort of pattern with words to be printed directly and words
to be replaced with information from the database. Our patterns contained loops,
however, so it seems that a pattern really is an awk function with control structures
and variables.

A first implementation of ooc actually worked this way, but it proved to be diffi-
cult to change. There is a much better way: a simple report language with text
replacement, loops, and conditionals, which is used to express a pattern and which
is interpreted by ooc to generate output.

7.4 Implementation Strategy 81

The implementation is explained in more detail in appendix B. The report
language is defined as part of the ooc manual in appendix C. The report language
has about twenty five replacements, ten loops, two conditionals, and a way to call a
report as part of another report. As an example, here is how selectors could be
generated:

{if “newreta 1
{ %—
‘result “nethod (“{() “const “type °~_ “name '},) {
Tt const struct “nmeta * class = classO(self); "n
‘Ogasts

’
—

assert(class — “nethod); "n
Tt “{ifnot “result void return "} \
class — “method ("{() “nane "},); "n

Within reports, ooc finds all those words interesting that start with a back quote;
groups start with *{ and end with "} and are either loops or conditionals; a report call
starts with "%, all other words starting with a back quote are replaced with informa-
tion from the database.

“{if takes the next two words and executes the rest of the group if the words
are equal. ‘newmeta will be replaced by 1 if ooc works with a class description
that defines a new metaclass. Therefore, the selectors are only generated for a
new metaclass.

“{%— is a loop over the dynamically linked methods in the class description.
"method is replaced by the current method name; ‘result is the current result type.

“{() is a loop over the parameters of the current method. The meaning of
‘const, “type, and ‘name should be fairly obvious: they are the pieces of the
current parameter declarator. “_ is an underscore if the current parameter is an
object of the current class. 7}, is a little trick: it emits a comma, if there is another
parameter, and it terminates a loop like any other token starting with °}.

“%casts calls another report, casts, which is responsible for importing object
parameters. For now, this report looks about as follows:

% cast s /'l the %asts statenent

{0 /] inport
it

"t “const struct “cast * ‘name = _ ‘nanme ; 'n
1

“1n

{if “linkage % /] for static linkage, need to check
“9¢checks

1

A line starting with % precedes reports in a report file and introduces the report
name. The rest of the casts report should be clear: “cast refers to the name of the
class of a parameter object and “linkage is the linkage of the current method, i.e.,

82 7 The "ooc" Preprocessor — Enforcing a Coding Standard

one of the section symbols in the class description. We construct a local variable to
dereference a parameter if it is an object in the current class. “}n is another trick: it
emits a newline if anything was generated for a group.

%casts is also responsible for checking any objects supplied as parameters to a
method with static linkage. Since selectors have a similar problem, we use a
separate report checks that can be called from a report to generate selectors:

% checks /1 check all object paraneters
{0
“{ifnot "cast
't assert(“nane); "n
i
“In
Until the next chapter, we can at least guard against null pointers by calling
assert(). This test is required for objects: " is replaced by nothing, i.e., we generate
assert() if we are looking at a parameter object from an arbitrary class.

Two words have not been explained yet: "t generates a tab and "n generates a
newline character. We want to generate legible C programs; therefore, we have to
closely monitor how much white space is generated. So that we may indent
reports based on their own control structures in the groups, ooc will not generate
leading white space and it will only generate a single empty line in a row. "t must
be used to achieve indentation and 'n must be specified to break the output into
lines.*

7.5 Object Revisited

In section 7.1 we saw that in order to work on Point we need to collect information
for its superclasses all the way back to the root class. So how do we specify
Object? It would certainly not make sense to define Object as part of the awk pro-
gram. The obvious approach is to write a class description file:

#incl ude <stdarg. h>

#i ncl ude <stddef. h>

#i ncl ude <stdi o. h>

%pr ot

#i ncl ude <assert. h>

% Class bj ect {

const C ass @cl ass; /1 object’s description
%

void delete (_self); /1 reclaiminstance

const void * classOF (const _self); // object’s class

size_t sizeOh (const _self); /1 object’s size

* Experiments with the beautifiers cb and indent have not produced acceptable results. The words "t
and “n are only a minor nuisance and monitoring the generation of leading white space and successive
newlines does not overly complicate the report generator.

7.5 ""Object’ Revisited 83

%—
void * ctor (_self, va_list * app); /'l constructor
void * dtor (_self); /1 destructor
int differ (const _self, const Object @b); // true if !=
int puto (const _self, FILE * fp); /1 display

0,

%

Unfortunately, this is a special case: as the root class, Object has no superclass,
and as the first metaclass, Class has no meta superclass. Only one class descrip-
tion has this property; therefore, we let ooc recognize this special syntax for the
class header as the description of the ‘root and “‘metaroot classes.

Class poses another problem: we saw in section 7.1 that new metaclasses can
be declared right with a new class because they can only have method links as new
components. Class is the first metaclass and does have some extra components:

% Class Class: bject {

const char * nane; /'l class’ nane

const C ass @ super; /1 class’ superclass

size_t size; /1 object’s nenory size
%

Chject @new (const _self, ...); // create instance

const void * super (const _self); /1 class’ superclass

%
It turns out that our syntax for class descriptions is quite sufficient to describe

Class. It is another special case for ooc: it is the only class that is allowed to have
itself as a metaclass.

If we put both descriptions in the same class description file Object.d, and if
we let Object precede Class, the search for class descriptions in ooc will terminate
all by itself. Our database is complete.

We could write the implementation of Object and Class by hand — there is little
point in adding special code to ooc if it is only used to generate a single implemen-
tation. However, our report generation mechanism is good enough to be adapted
for Object and we can get a substantial amount of assistance.

The interface files for Point and Object are quite analogous, with the exception
that Object.h has no superclass interface to include and does not declare an initiali-
zation function. The corresponding report file h.rep is used many times, however,
so we should avoid cluttering it up with conditionals that are not usually needed.
Instead, we add a parameter to the command line of ooc:

$ ooc —R hject —h > bject.h

This parameter causes a special report file h—-R.rep to be loaded which is tailored to
the root class. Both report files mostly generate method headers and they can
share yet another report file header.rep which contains the header report used in
both cases.

Similarly, the representation files of Point and Object have much in common,
and we use —-R to load a report file r—R.rep in place of r.rep to account for the differ-
ences:

84 7 The "ooc" Preprocessor — Enforcing a Coding Standard

$ ooc R hject —+ > Object.r

Object.r has no superclass representation to include, and the metaclass structure
for Class starts out with the extra components. The common code to declare
superclass selectors and methods as metaclass components is located in another
report file va.rep.

Finally, we can use —R and one more report file c—R.rep in place of c.rep to help
in generating the implementation:

$ ooc —R hject hject.dc > Object.c

ooc will add include statements and preprocess method headers in Object.dc
as in any other implementation file. The only difference lies in the implementation
of %init: \We can still let ooc generate the selectors and superclass selectors, but
we have to code the static initialization of the class descriptions shown in section
6.7 by hand.

There is a question how the metaclass constructor Class_ctor() should be writ-
ten. If we do it by hand in Object.dc we essentially code the loop to process the
selector/method pairs twice: once in Object.dc for Class_ctor() and once in the
report file c.rep for all other classes. It turns out that we have enough information
to do it in c—-R.rep. If we assume that the first few arguments to the constructor
appear in the order of the components specified for Class we can generate the
entire constructor and thus share the loop code as a report meta-ctor-loop in a
common report file etc.rep.

7.6 Discussion

Object demonstrates something that is both a strength and a weakness of our tech-
nigue: we have a choice where to implement our decisions. Code can be placed in
a class description or implementation, it can be turned into a report, or it can be
buried somewhere in the awk program.

Obviously, we should be very careful about the last option: ooc is intended to
be used for more than one project; therefore, the awk program should be kept free
of any inherent knowledge about a project. It is allowed to collect information and
offer it for replacement, and it is required to connect preprocessor statements to
reports, but it should assume nothing about report contents or ordering.

The reports can be changed between projects and they are the place to enforce
coding standards. Reports and all other files like class descriptions and implemen-
tations are searched in directories specified as an environment variable OOCPATH.
This can be used to load different versions of the reports for different projects.

Our approach for Object demonstrates the flexibility of replacing reports: we
can share common report code by calling reports in common files and we can avoid
the overhead of checking for a special case in most processing. While one-of-a-kind
code can be written into an implementation file, it is almost as easy to write it as a
report so that it can benefit from report generation. There is hardly an excuse for
duplicating code.

7.7 An Example — "'List”, ""Queue’’, and "'Stack’’ 85

In general, report generation has advantages and drawbacks. On the positive
side, it simplifies the development of a class hierarchy and changes during mainte-
nance because the reports are a single, central place to enforce coding standards.
If we want to trace selector calls, for example, we simply insert a trace line into the
selector body in the reports file, and the trace will be generated all over.

Report generation takes more execution time than plain function calls, how-
ever. A preprocessor should generate #line stamps for the C compiler so that the
error messages refer to the original source lines. There is a provision for generating
#line stamps in ooc, but with report generation the #line stamps are not as good
as they perhaps could be. Maybe once our reports are stable, we could write
another preprocessor to generate an awk program from the reports?

7.7 An Example — List, Queue, and Stack

Let us look at a few new classes implemented from scratch using ooc so that we
can appreciate the effort we are now spared. We start with a List implemented as
a double-ended ring buffer that will dynamically expand as needed.

begin end
buf ——= used
count
dim

begin and end limit the used part of the list, dim is the maximal buffer size, and
count is the number of elements currently stored in the buffer. count makes it
easy to distinguish between a full and an empty buffer. Here is the class descrip-
tion List.d:

% ListClass: Class List: Ohject {
const void ** buf; // const void * buf [din

unsi gned di m // current buffer dinension

unsi gned count; I/ # elenents in buffer

unsi gned begi n; // index of takeFirst slot, 0..dim
unsi gned end; /1 index of addLast slot, O..dim

%

Chject @addFirst (_self, const Object @elenent);
Chj ect @addLast (_self, const Chject @el ement);
unsi gned count (const _self);

hject @I ookAt (const _self, unsigned n);

hject @takeFirst (_self);

hject @takeLast (_self);

%— /]l abstract, for Queue/ Stack
Chject @add (_self, const Object @elenent);
Chject @take (_self);

%

86 7 The "ooc" Preprocessor — Enforcing a Coding Standard

The implementation in List.dc is not very difficult. The constructor provides an ini-
tial buffer:

% List ctor {
struct List * self = super_ctor(List, _self, app);

if (! (self — dim= va_arg(* app, unsigned)))
self = dim= MN;
self — buf = malloc(self — dim?* sizeof * self — buf);
assert(self — buf);
return self;

}

Normally, the user will provide the minimal buffer size. As a default we define MIN
with a suitable value. The destructor eliminates the buffer but not the elements still
in it:
% Li st dtor {
Ycasts
free(self — buf), self — buf = 0;
return super_dtor(List, self);

}
addFirst() and addLast() add one element at begin or end:

% Li st addFirst {
%ast s
if (! self — count)
return addl(self, elenent);
extend(sel f);
if (self — begin == 0)
self — begin = self — dim
self — buf[self — begin] = elenent;
return (void *) element;

}
% Li st addLast {
%cast s
if (! self — count)
return addl(self, elenent);
extend(sel f);
if (self — end >= self — dim
self — end = 0O;
self — buf[self — end ++] = el enment;
return (void *) element;
}

Both functions share the code to add a single element:
static void * addl (struct List * self, const void * el enent)

{

self — end = self — count = 1;
return (void *) (self — buf[self — begin = 0] = elenent);

}

The invariants are different, however: if eount is not zero, i.e., if there are any ele-
ments in the buffer, begin points to an element while end points to a free slot to

7.7 An Example — "'List”, ""Queue’’, and "'Stack’’ 87

be filled. Either value may be just beyond the current range of the buffer. The
buffer is used as a ring; therefore, we first map the variables around the ring before
we access the buffer. extend() is the hard part: if there is no more room, we use
realloc() to double the size of the buffer:

static void extend (struct List * self) // one nore el ement

{
if (self — count >= self — din
{ self — buf =
realloc(self — buf, 2 * self — dim
* sizeof * self — buf);
assert(self — buf);
if (self — begin & self — begin I= self — dinm
{ mencpy(self — buf + self — dim + self — begin,
self — buf + self — begin,
(self — dim —self — begin)
* sizeof * self — buf);
self — begin += self — dim
}
el se
self — begin = 0;
}
++ self — count;
}

realloc() copies the pointers stored in buf[], but if our ring does not start at the
beginning of the buffer, we have to use memepy() to shift the beginning of the ring
to the end of the new buffer.

The remaining functions are much simpler. count() is simply an access func-
tion for the count component. lookAt() uses an arithmetic trick to return the
proper element from the ring:

% Li st | ookAt {
%cast s
return (void *) (n >= self — count ? O :
self — buf[(self — begin + n) %self — dinl);

}

takeFirst() and takeLast() simply reverse the invariants of the corresponding add
functions. Here is one example:

% Li st takeFirst {
%cast s
if (! self — count)
return O;
——self — count;
if (self — begin >= self — din
self — begin = 0;
return (void *) self — buf[self — begin ++];

}

takeLast() is left as an exercise — as are all selectors and initializations.

88 7 The "ooc" Preprocessor — Enforcing a Coding Standard

List demonstrates that ooc gets us back to dealing with the implementation
issues of a class as a data type rather than with the idiosyncrasies of an object-
oriented coding style. Given a reasonable base class, we can easily derive more
problem-specific classes. List introduced dynamically linked methods add() and
take() so that a subclass can impose an access discipline. Stack operates on one
end:

Stack.d
% ListCl ass Stack: List {
%

Stack.dc

% Stack add {
return addLast(_self, elenent);

}

% Stack take {
return takelLast(_self);

}
% ni t

Queue can be derived from Stack and overwrite take() or it can be a subclass of
List and define both methods. List itself does not define the dynamically linked
methods and would; therefore, be called an abstract base class. Our selectors are
robust enough so that we will certainly find out if somebody tries to use add() or
take() for a List rather than a subclass. Here is a test program demonstrating that
we can add plain C strings rather than objects to a Stack or a Queue:

#i ncl ude "Queue. h"

int main (int argc, char ** argv)
{ void * q;
unsi gned n;

i ni tQueue();
g = new Queue, 1);

while (* ++ argv)

switch (** argv) {

case '+':
add(qg, *argv + 1);
br eak;

case ' —:
puts((char *) take(q)):
br eak;

defaul t:
n = count(q);
while (n —> 0)
{ const void * p = take(q);

} puts(p), add(q, p);
}

return O;

7.8 Exercises 89

If a command line argument starts with + it is added to the queue; for a — one ele-
ment is removed. Any other argument displays the contents of the queue:

$ queue +axel —+is +here . —. —.

axel

is

here

is

here

here

Replacing the Queue by a Stack we can see the difference in the order of the
removals:
$ stack +axel —+is +here . —. —.
axel
is
here
here
is
is
Because a Stack is a subclass of List there are various ways to nondestructively
display the contents of the stack, for example:
n = count(q);
while (n —> 0)
{ const void * p = takeFirst(q);

puts(p), addLast(qg, p);

7.8 Exercises

It is an interesting exercise to combine Queue with Point and Circle for a skeleton
graphics program with redrawing capabilities.

The reports —r and include can be modified to implement the opaque structure
definitions suggested in section 4.6.

The init reports can be modified to generate a method to display a Class struc-
ture.

Selectors and superclass selectors are generated by reports in etc.rep. They
can be modified to provide an execution trace or to experiment with various levels
of parameter checking.

The ooc command script and the modules main.awk and report.awk can be
changed so that an argument —x results in a report x.rep to be loaded, interpreted,
and removed. Given that change, a new report flatten.rep can show all methods
available to a class.

91

8
Dynamic Type Checking
Defensive Programming

8.1 Technique

Every object is accessed as void *. \While this simplifies writing code, it does invite
disaster: manipulating a non-object or the wrong object in a method, or worse,
selecting a method from a class description that does not contain it, will cause sig-
nificant amounts of grief. Let us trace a call to a dynamically linked method. new()
produces a circle and the selector draw() is applied to it:

void * p = new(Circle, 1, 2, 3);
draw(p);

The selector believes and dereferences the result of classOf():

void draw (const void * _self) {
const struct PointClass * class = classOf(_self);

assert(class — draw);
class — draw_sel f);

}

The selected method believes and dereferences _self, which is the original pointer
value produced by new():

static void Crcle_draw (const void * _self) {
const struct Circle * self = _self;

printf("circle at %, % rad %\ n",
x(self), y(self), self — rad);

}
classOf() also believes and dereferences a pointer. As a small consolation, it
makes sure that its result is not a null pointer:

const void * classOF (const void * _self) {
const struct Object * self = _self;

assert(self);

assert(self — class);
return self — cl ass;

}

In general, every assignment of a generic void * value to a pointer to some
structure is suspect to begin with, and its legality ought to be verified. We have
designed our methods to be polymorphic, i.e., the ANSI-C compiler cannot perform
this check for us. We have to invent a dynamic type checking facility which closely
limits how much damage a stray object or non-object can do.

Fortunately, our void * values know what they are pointing to: they point to
objects, which all inherit from Object and, therefore, contain the component .class

92 8 Dynamic Type Checking — Defensive Programming

pointing to their class description. Each class description is unique; therefore, the
pointer value in .class can be used to determine if an object belongs to a particular
class:

int isA (const _self, const Cass @class);
int isOO (const _self, const Cass @class);

These are two new, statically linked methods for Object and thus for any object:
isA() is true if an object directly belongs to a specific class; isOf() is true if an object
is derived from a specific class. The following axioms hold:

i SA(0, anyd ass) always false
i sOf (0, anyd ass) always false
i sOf(x, Object) true for all objects

It turns out that yet another static method for Object is even more useful:
void * cast (const Class @class, const _self);

If isOf(_self, class) is true, cast() returns its argument _self, otherwise cast() ter-
minates the calling process.

cast() is now going to replace assert() for most of our damage control. Wher-
ever we are not so sure, we can wrap cast() around a dubious pointer to limit the
damage which an unexpected value could do:

cast (sonmeC ass, soneQbject);

The function is also used for safely dereferencing pointers upon import to a method
or selector:

struct Circle * self = cast(Circle, _self);

Notice that the parameters of cast() have the natural order for a casting operation:
the class is written to the left of the object to be casted. isOf(), however, takes the
same parameters in opposite order because in an if statement we would ask if an
object "'is of"" a particular class.

Although cast() accepts _self with a const qualifier, it returns the value without
const to avoid error messages on assignment. The same pun happens to be in the
ANSI-C standard: bsearch() delivers a void * result for a table passed as const
void *.

8.2 An Example — list

As an example of what we can do with isOf() and how safe cast() can be made,
consider the following modification of the test program in section 7.7:

#include "Circle. h"
#include "List.h"

int main (int argc, char ** argv)
{ void * q;

unsi gned n;

initList();

initCrcle();

8.2 An Example — "“list”’ 93

g = new(List, 1);

while (* ++ argv)
switch (** argv) {

case '+ :
switch ((* argv)[1]) {
case 'c’:
addFirst(q, new(Crcle, 1, 2, 3));
br eak;
case 'p':
addFirst(q, new(Point, 4, 5));
br eak;
defaul t:
addFirst(q, new(Object));
}
br eak;
case ' —:
put o(t akeLast(q), stdout);
br eak;
case '’

n = count(q);
while (n —> 0)
{ const void * p = takeFirst(q);

if (isO(p, Point))
draw(p) ;
el se
puto(p, stdout);
addLast (q, p);
}
br eak;
defaul t:
if (isdigit(** argv))
addFirst(q, (void *) atoi(* argv));
el se
addFirst(q, * argv + 1);
}

return O;

}

For arguments starting with + this program will add circles, points, or plain objects
to a list. The argument — will remove the last object and display it with puto(). The
argument . will display the current contents of the list; drawl() is used if an entry is
derived from Point. Finally, there is a deliberate attempt to place numbers or other
strings as arguments into the list although they would cause problems once they
were removed. Here is a sample output:

$list +c +p + —. 1234

Circle at 0x122f4

Chj ect at 0x12004

"“." at 4,5

oj ect.c:66: failed assertion “sig ==

94 8 Dynamic Type Checking — Defensive Programming

As we shall see in section 8.4, addFirst() uses cast() to make sure it only adds
objects to the list. cast() can even be made robust enough to discover that a
number or a string tries to pose as an object.

8.3 Implementation

With the axioms above, the methods isA() and isOf() are quite simple to imple-
ment:

% i sA {
return _self && classOf(_self) == class;
}
%isO {
if (_self)
{ const struct Cass * nmydass = classO (_self);
if (class !'= Object)
while (nyC ass != class)
if (nyCass != Object)
myCl ass = super (nyd ass);
el se
return O;
return 1;
}
return O;
}
A first, very naive implementation of cast() would be based on isOf():
% cast {

assert (i sOf (_self, class));
return (void *) _self;

}

isOf(), and therefore cast(), fails for null pointers. isOf() believes without further
inquiry that any pointer points at least to an instance of Object; therefore, we can
be sure that cast(Object, x) will only fail for null pointers. However, as we shall
see in section 8.5, this solution can easily backfire.

8.4 Coding Standard

The basic idea is to call cast() as often as necessary. When a statically linked
method dereferences objects in its own class, it should do so with cast():
void nove (void * _self, int dx, int dy) {
struct Point * self = cast(Point, _self);
self — x += dx, self — y += dy;
}
If such a method receives objects from another class, it can still call cast() to make
sure that the parameters are what they claim to be. We have introduced the
%casts request of ooc to handle the import of a parameter list:

8.4 Coding Standard 95

% move {
9cast s
self — x += dx, self — y += dy;

}

%casts is implemented with the report casts in etc.rep; therefore, we can control
all object imports by changing this report. The original version was shown in sec-
tion 7.4; here is how we introduce cast():

% cast s /1 inmplement %asts request
{0 /] inport
it T
't ‘const struct “cast * “name = ° \
cast("cast , _ “name); "n
T
“}n
{if “linkage % /] for static linkage only
" %thecks
T

The replacement *_ is defined as an underscore if the current parameter was speci-
fied with a leading underscore, i.e., if it is in the current class. Instead of a plain
assignment, we call cast() to check before we dereference the pointer.

The first loop at import takes care of all the object in a method’s own class.
The other objects are checked in the report checks:

% checks /1 check all other object parameters
{0
“{ifnot “cast ° “{ifnot _
't cast(“cast , ‘nane); "n
IR AN
“}n

Originally, this loop generated assert() for all objects. Now we can restrict our
attention to those objects which are not in the current class. For them we generate
a call to cast() to make sure they are in their proper class.

The report casts differentiates between methods with static and dynamic link-
age. Statically linked methods need to do their own checking. casts and checks
generate local variables for dereferencing and statements to check the other
objects, i.e., %casts must be used at the end of the list of local variables declared
at the top of a method body with static linkage.

Dynamically linked methods are only called through selectors; therefore, the job
of checking can mostly be delegated to them. %casts is still used to dereference
the parameter objects in the current class, but it will only initialize local variables:

Circle.dc

% Circle draw {
%cast s
printf("circle at %, % rad %\ n",
x(self), y(self), self — rad);

96 8 Dynamic Type Checking — Defensive Programming

Point.c

void draw (const void * _self) {
const struct Point * self = self;

Circle.c

static void Crcle_draw (const void * _self) {
const struct Crcle * self = cast(Circle, _self);

We have to be careful: while the selector could check if an object belongs to the
current class Point, once it calls a subclass method like Circle_draw() we have to
check there whether or not the object really is a Circle. Therefore, we let the selec-
tor check the objects which are not in the current class, and we let the dynamically
linked method check the objects in its own class. ecasts simply omits the call to
checks for methods which are called through a selector.

Now we have to modify the selectors. Fortunately, they are all generated by
the report init, but there are several cases: selectors with a void result do not
return the result of the actual method; selectors with a variable argument list must
pass a pointer to the actual method. init calls the report selectors in etc.rep which
in turn delegates the actual work to the report selector and various subreports.
Here is a typical selector:

int differ (const void * _self, const void * b) {
int result;
const struct Cass * class = classOf(_self);

assert(class — differ);

cast (Obj ect, b);

result = class — differ(_self, b);
return result;

}

This is generated by the report selector in etc.rep:*
“Omeader { "n

"o esul t
“ogl assOf

"% f met hod

" %thecks

“ogal |

O eturn

} 'nn
The reports result and return define and return the result variable, unless the
return type is void:

% resul t /1 if necessary, define result variable

“{ifnot “result void
"t “result result;

“In

* The actual report is slightly more complicated to account for methods with a variable parameter list.

8.4 Coding Standard 97

% return /1 if necessary, return result variable

“{ifnot “result void
“t return result;

“In
The report ifmethod checks if the desired method exists:
% i f met hod /1 check if nmethod exists

't assert(class — “nethod); "n

We have to be a bit careful with the report classOf: if a selector retrieves a method
from Class we can rely on classOf() to produce a suitable class description, but for
subclasses we have to check:

“{if “neta " netaroot

't const struct “nmeta * class = classO(_self); "n
"} “{else
"t const struct “meta * class = °\

cast("meta , classOf(_self)); "n
3} n

The superclass selector is similar. Here is a typical example:

int super_differ (const void * _class, const void * _self,
const void * b) {
const struct C ass * superclass = super(_class);

cast (Obj ect, b);

assert(superclass — differ);
return superclass — differ(_self, b);

}

Once again, if we don't work with Class we need to check the result of super().
Here is the report from etc.rep:

% super —sel ect or /'l superclass sel ector
" Osuper —header { " n
“{if “meta " metaroot /] can use super ()
't const struct “meta * superclass = super(_class); 'n
"} “{else /'l must cast
"t const struct “meta * superclass = °\
cast("meta , super(_class)); "n
3 '
" 9checks

't assert(superclass — ‘“nethod); "n
't “{ifnot “result void return "} \
superclass — “nethod \
({¢) "_ pname '}, “{ifnot “,... °~, app '}); "n
} 'nn
Other objects are checked with checks as if the superclass selector were a method
with static linkage.

98 8 Dynamic Type Checking — Defensive Programming

Thanks to ooc and the reports we have established a defensive coding standard
for all methods that we might implement. With the change to all selectors and with
the convention of using %ecasts in all methods, we account for all objects passed as
parameters: their pointers are checked upon import to the callee. As a conse-
quence, the result of a method can go unchecked because the user of the result is
expected to apply cast() to it.

This is reflected by the convention of using classes in the return types of our
methods. For example in List.d:

Chject @addFirst (_self, const Object @elenent);

addFirst() was shown in section 7.7 and it returns a void *. ooc, however, gen-
erates:

struct Object * addFirst (void * _self, const void * elenent) {
struct List * self = cast(List, _self);

cast (Cbj ect, elenent);

return (void *) element;
}
struct Object is an incomplete type in an application program. This way the ANSI-C
compiler checks that the result of a call to addFirst() is assigned to void * (to be
checked later, hopefully) or that it is passed to a method expecting a void * which
by our conventions will check it with east(). In general, by a careful use of classes
in the return types of methods, we can use the ANSI-C compiler to check for
unlikely assignments. A class is a lot more restrictive than a void *.

8.5 Avoiding Recursion
In section 8.3 we tried to implement cast() as follows:

% cast {
assert (i sOf (_self, class));
return (void *) _self;

}

Unfortunately, this causes an infinite loop. To understand this, let us trace the calls:

void * list = new(List, 1);
void * object = new Object);

addFirst(list, object) {
cast(List, list) {
isOF(list, List) {
classO (list) {
cast (Object, list) {
ifor(list, Ooject) {
classOF (list) {

cast() is based on isOf() which calls classOf() and possibly super(). Both of these
methods observe our coding standard and import their parameters with %casts,
which in turn calls cast() to check if the arguments are an Object or a Class,

8.5 Avoiding Recursion 99

respectively. Our implementation of isOf() in section 8.3 calls classOf() before
observing the third axiom that any object at least belongs to Object.

How strong do we want type checking to be? If we trust our code, cast() is a
no-op and could be replaced by a trivial macro. If we don’t trust our code, parame-
ters and all other dereferencing operations need to be checked by being wrapped in
cast() in all functions. Everybody has to use and then believe cast() and, clearly,
cast() cannot employ other functions to do its checking.

So what does cast(class, object) guarantee? At least the same as isOf(),
namely that its object is not a null pointer and that its class description can be
traced to the class argument. If we take the code of isOf(), and think defensively,
we obtain the following algorithm:

(_self = self) isanobject
(nyd ass = self — class) isan object
if (class != Object)

cl ass /s an object

while (nyC ass != class)
assert(myCl ass = bject);
nmyC ass s a class description
myC ass = nyCd ass — super;

return self;

The critical parts are in italics: which nonzero pointer represents an object, how do
we recognize a class description? One way to distinguish arbitrary pointers from
pointers to objects is to let each object start with a magic number, i.e., to add a
component .magic to the class description in Object.d:
% Class nject {
unsi gned | ong nuagi c; /1 magi ¢ numnber
const C ass @cl ass; /1 object’s description
%

Once the magic number is set by new() and in the initialization of Class and Object,
we check for it with the following macros:

#define MMG C OxOeffaced // magic nunber for objects
/] efface: to make (oneself) nodestly or shyly inconspicuous

#define isCbject(p) \
(assert(p), \
assert(((struct Cbject *) p) — magic == MAA O, p)

Strictly speaking, we need not check that myClass is an object, but the two extra
assertions are cheap. If we do not check that class is an object, it could be a null
pointer and then we could slip an object with a null pointer for a class description
past cast().

The expensive part is the question whether myClass is a class description. We
should not have very many class descriptions and we should know them all, so we
could consult a table of valid pointers. However, cast() is one of the innermost
functions in our code, so we should make it as efficient as possible. To begin with,

100 8 Dynamic Type Checking — Defensive Programming

myClass is the second element in a chain from an object to its class description
and both have already been verified to contain a magic number. If we disregard the
problem of stray pointers destroying class descriptions, it is reasonable to assume
that the .super chain among the class descriptions remains unharmed after
Class_ctor() sets it up. Therefore, we remove the test from the loop altogether
and arrive at the following implementation for cast():

static void catch (int sig) /1 signal handler: bad pointer
{

assert(sig == 0); /1 bad pointer, should not happen
}
% cast {

void (* sigsegv)(int) = signal (SIGSEGV, catch);
#i fdef SI GBUS
void (* sigbus)(int) = signal (SIGBUS, catch);

#endi f
const struct Object * self = isCbject(_self);
const struct Cass * myCass = isObject(self — class);
if (class != Object)
{ i sObj ect (cl ass);
while (nyC ass != class)
{ assert(myClass != Object); [/ illegal cast
myCd ass = nyCd ass — super;
}
}

#i fdef SI GBUS
si gnal (SI GBUS, sigbus);
#endi f
si gnal (SI GSEGV, sigsegv);
return (void *) self;

}

Signal processing protects us from mistaking a numerical value for a pointer. SIG-
SEGV is defined in ANSI-C and indicates an illegal memory access; SIGBUS (or
_SIGBUS) is a second such signal defined by many systems.

8.6 Summary

void * is a very permissive type which we had to resort to in order to construct
polymorphic methods and, in particular, our mechanism for the selection of dynami-
cally linked methods. Because of polymorphisms, object types need to be checked
at runtime, i.e., when an object appears as a parameter of a method.

Objects point to unique class descriptions; therefore, their types can be
checked by comparing their class description pointers to the class descriptions
known in a project. We have provided three new methods for this: isA() checks
that an object belongs to a specific class, isOf() is true if an object belongs to a
class or one of its subclasses, and cast() terminates the calling program if an object
cannot be treated as a member of a certain class.

8.7 Exercises 101

As a coding standard we require that cast() is used whenever an object pointer
needs to be dereferenced. In particular, methods with static linkage must use
cast() on all their object parameters, selectors use it on all object parameters not in
their own class, and methods with dynamic linkage use it on all object parameters
which claim to be in their own class. Result values need not be checked by their
producers, because the consumer can only dereference them by using cast() again.

ooc provides significant assistance in enforcing this coding standard because it
generates the selectors and provides the %ecasts statement for the import of
parameters. %casts generates the necessary calls to cast() and should be used
last in the local variable declarations of a method.

cast() cannot prove the correctness of data. However, we try to make it fairly
difficult or improbable for cast() to be defeated. The whole point of defensive pro-
gramming is to recognize that programmers are likely to make mistakes and to limit
how long a mistake can go unrecognized. cast() is designed to strike a balance
between efficiency for correct programs and (early) detection of flaws.

8.7 Exercises

Technically, superclass selectors can only be used from within methods. We could
decide not to check the parameters of superclass selectors. Is that really wise?

We believe that a pointer identifies an object if the object starts with a magic
number. This is expensive because it increases the size of every object. Could we
only require that a class description must start with a magic number?

The fixed part of a class description (name, superclass and size) can be pro-
tected with a checksum. It has to be chosen carefully to permit static initialization
for Class and Object.

cast() duplicates the algorithm of isOf(). Can isOf() be changed so that we can
use the naive implementation of east() and not get into an infinite recursion?

cast() is our most important function for producing error messages. Rather
than a simple assert() the messages could contain the point of call, the expected
class, and the class actually supplied.

103

9
Static Construction
Self-Organization

9.1 Initialization

Class descriptions are long-lived objects. They are constant and they exist practi-
cally as long as an application executes. If possible, such objects are initialized at
compile time. However, we have decided in chapter 6 that static initialization
makes class descriptions hard to maintain: the order of the structure components
must agree with all the initializations, and inheritance would force us to reveal
dynamically linked methods outside their implementation files.

For bootstrapping we initialize only the class descriptions Object and Class at
compile time as static structures in the file Object.dc. All other class descriptions
are generated dynamically and the metaclass constructors beginning with
Class_ctor() take care of inheritance and overwriting dynamically linked methods.

ooc generates initialization functions to hide the details of calling new() to gen-
erate class descriptions, but the fact that they must be explicitly called in the appli-
cation code is a source of hard to diagnose errors. As an example, consider init-
Point() and initCircle() from section 6.10:

void initPoint (void) ({
if (! PointC ass)
Poi nt Cl ass = new(C ass, "PointC ass",
Cl ass, sizeof (struct Pointd ass),
ctor, PointClass ctor,
0);
if (! Point)
Poi nt = new(Poi ntCl ass, "Point",
Chj ect, sizeof (struct Point),
ctor, Point_ctor,
draw, Point_draw,
0);
}

The function is designed to do its work only once, i.e., even if it is called repeatedly
it will generate a single instance of each class description.

void initCrcle (void) {
if (! Circle)
{ i nitPoint();
Circle = new(PointClass, "Circle",

Poi nt, sizeof (struct Circle),
ctor, Circle_ctor,
draw, Circle_draw,
0);

104 9 Static Construction — Self-Organization

Both functions implicitly observe the class hierarchy: initPoint() makes sure that
PointClass exists before it uses it to generate the description Point; the call to init-
Point() in initCircle() guarantees that the superclass description Point and its meta-
class description PointClass exist before we use them to generate the description
Circle. There is no danger of recursion: initCircle() calls initPoint() because Point
is the superclass of Circle but initPoint() will not refer to initCircle() because ooc
does not permit cycles in the superclass relationship.

Things go horribly wrong, however, if we ever forget to initialize a class descrip-
tion before we use it. Therefore, in this chapter we look at mechanisms which
automatically prevent this problem.

9.2 Initializer Lists — munch

Class descriptions essentially are static objects. They ought to exist as long as the
main program is active. This is normally accomplished by creating such objects as
global or static variables and initializing them at compile time.

Our problem is that we need to call Class_ctor() and the other metaclass con-
structors to hide the details of inheritance when initializing a class description.
Function calls, however, can only happen at execution time.

The problem is known as static constructor calls — objects with a lifetime equal
to the main program must be constructed as soon as main() is executed. There is
no difference between generating static and dynamic objects. initPoint() and simi-
lar functions simplify the calling conventions and permit calls in any order, but the
actual work is in either case done by new() and the constructors.

At first glance, the solution should be quite trivial. If we assume that every
class description linked into a program is really used we need to call every init-
function at the beginning of main(). Unfortunately, however, this is not just a
source text processing problem. ooc cannot help here because it does not know —
intentionally — how classes are put together for a program. Checking the source
code does not help because the linker might fetch classes from libraries.

Modern linkers such as GNU /d permit a compiler to compose an array of
addresses where each object module can contribute elements as it is linked into a
program. In our case we could collect the addresses of all init-funtions in such an
array and modify main() to call each function in turn. However, this feature is only
available to compiler makers, not to compiler users.

Nevertheless, we should take the hint. We define an array initializers[] and
arrange things in main() as follows:
void (* initializers [])(void) = {
0 };
int main ()
{ extern void (* initializers [])(void);
void (** init)(void) = initializers;
while (* init)
(** init ++)();

9.2 Initializer Lists — "“munch”’ 105

All that remains is to specify every initialization function of our program as an ele-
ment of initializers[]. If there is a utility like nm which can print the symbol table of
a linked program we can use the following approach to generate the array automati-
cally:

$ cc —e task object... libooc. a
$ nm —p task | munch > initializers.c
$ cc —e task object... initializers.c libooc.a

We assume that libooc.a is a library with a module initializers.o which defines the
array initializers[] as shown above containing only the trailing null pointer. The
library module is only used by the linker if the array has not been defined in a
module preceding libooc.a on the command line invoking the compiler.

nm prints the symbol table of the task resulting from the first compilation.
munch is a small program generating a new module initializers.c which references
all init-functions in task. In the second compilation the linker uses this module
rather than the default module from /ibooc.a to define the appropriate initializers[]
for task.

Rather than an array, munch could generate a function calling all initialization
functions. However, as we shall see in chapter 12, specifically a list of classes can
be put to other uses than just initialization.

The output from nm generally depends on the brand of UNIX used. Luckily, the
option —p instructs Berkeley-nm to print in symbol table order and System-V-nm to
produce a terse output format which happens to look almost like the output from
Berkeley-nm. Here is munch for both, implemented using awk:

NF !'=3 || $2 !I="T" || $1!" /"[09a—+FAF]+$/ {
next
}
$3 7 /7 _?init[AZ] [AZa-=z] +$/ {
sub(/"_/, "", $3)
names[$3] =1
}
END {
for (n in nanes)
printf "extern void % (void);\n", n
print "\nvoid (* initializers [])(void) = {"
for (n in nanes)
printf "\t%,\n", n
print "0 };"
}

The first condition quickly rejects all symbol table entries except for those such as
00003ea8 T _initPoint

Assuming that a name beginning with init and a capital letter followed only by
letters refers to an initialization function, an optional initial underscore is stripped
(some compilers produce it, others do not) and the rest is saved as index of an
array names[]l. Once all names have been found, munch generates function
declarations and defines initializers[].

106 9 Static Construction — Self-Organization

The array namesl] is used because each name must be emitted twice. Names
are stored as indices rather than element values to avoid duplication.* munch can
even be used to generate the default module for the library:

$ munch < /dev/null > initializers.c

munch is a kludge in many ways: it takes two runs of the linker to bind a task
correctly; it requires a symbol table dump like nm and it assumes a reasonable out-
put format; and, worst of all, it relies on a pattern to select the initialization func-
tions. However, munch is usually very easy to port and the selection pattern can be
adapted to a variety of static constructor problems. Not surprisingly, the AT&T C++
system has been implemented for some hosts with a (complicated) variant of
munch.

9.3 Functions for Objects

munch is a reasonably portable, if inefficient, solution for all conceivable static initial-
ization problems. Building class descriptions before they are used is a simple case
and it turns out that there is a much easier and completely portable way to accom-
plish that.

Our problem is that we use a pointer variable to refer to an object but we need
a function call to create the object if it does not yet exist. This leads to something
like the following macro definition:

#defi ne Poi nt (Point ? Point : (Point = initPoint()))

The macro Point checks if the class description Point is already initialized. If not, it
calls initPoint() to generate the class description. Unfortunately, if we define Point
as a macro without parameters, we can no longer use the same name for the struc-
ture tag for objects and for the corresponding class description. The following
macro is better:

#define C ass(x) (x 2 x : (x =init ## x ()))

Now we specify Class(Point) to reference the class description. initPoint() still
calls new() as before but it now has to return the generated class description, i.e.,
each class description needs its own initialization function:

const void * Point;

const void * initPoint (void) ({
return new(Cl ass(Poi ntC ass),
"Point", C ass(Object), sizeof(struct Point),
ctor, Point_ctor,
draw, Point_draw,
(void *) 0);
}

This design still observes the ordering imposed by the class hierarchy: before the
class description PointClass is passed to new(), the macro expansion

* Duplication should be impossible to begin with, because a global function cannot be defined twice in
one program, but it is always better to be safe rather than sorry.

9.4 Implementation 107

Class(PointClass) makes sure the description exists. The example shows that for
uniformity we will have to supply empty functions initObject() and initClassl().

If every initialization function returns the initialized object, we can do without
macros and simply call the initialization function whenever we want to access the
object — a static object is represented by its initialization function:

static const void * _Point;

const void * const Point (void) {
return Point ? _Point
(_Point = new PointdC ass(),
"Point", Object(), sizeof(struct Point),
ctor, Point_ctor,
draw, Point_draw,
(void *) 0));
}
We could move the definition of the actual pointer _Point into the function; how-
ever, the global definition is necessary if we still want to implement munch for Sys-
tem V.

Replacing static objects by functions need not be less efficient than using mac-
ros. ANSI-C does not permit the declaration of a const or volatile result for a func-
tion, i.e., the boldfaced const qualifier in the example.* GNU-C allows such a
declaration and uses it during optimization. If a function has a const result its value
must depend only on its arguments and the call must not produce side effects. The
compiler tries to minimize the number of calls to such a function and reuses the
results.

9.4 Implementation

If we choose to replace a class description name such as Point by a call to the ini-
tialization function Point() to generate the class descriptions automatically, we have
to modify each use of a class description and we need to tweak the ooc reports to
generate slightly different files.

Class description names are used in calls to new(), cast(), isA(), isOf(), and in
superclass selector calls. Using functions in place of pointer variables is a new con-
vention, i.e., we will have to modify the application programs and the implementa-
tion files. A good ANSI-C compiler (or the —pedantic option of GNU-C) can be quite
helpful: it should flag all attempts to pass a function name to a void * parameter,
i.e., it should flag all those points in our C code where we have missed adding an
empty argument list to a class name.

Changing the reports is a bit more difficult. It helps to look in the generated
files for references to class descriptions. The representation file Point.r remains
unchanged. The interface file Point.h declares the class and metaclass description
pointers. It is changed from

* The first const indicates that the result of the function points to a constant value. Only the second
const indicates that the pointer value itself is constant.

108 9 Static Construction — Self-Organization

extern const void * Point;
extern const void * PointC ass;

to

extern const void * const Point (void);
extern const void * const Pointdass (void);

where the boldfaced eonst can only be used with GNU-C. It helps to have a portable
report so we change the relevant lines in h.rep as follows

extern const void * “9%onst ‘class (void); "n 'n
extern const void * “9%onst ‘meta (void); "n "n

and we add a new report to the common file header.rep:
% const /1 GNUC supports const functions
“{if "GNUC 1 const '}
ooc normally defines the symbol GNUC with value zero but by specifying
$ ooc —BGNUC=1 ...
we can set this symbol to 1 on the command line and generate better code.

The implementation file Point.c contains many changes. All calls to cast() are
changed; for the most part they are produced by the %casts request to ooc and
thus by the casts and checks reports shown in section 8.4. Other calls to cast()
are used in some selectors and superclass selectors and in the metaclass construc-
tors, but these are generated by reports in etc.rep, c.rep, and c-R.rep. It now pays
off that we have used ooc to enforce our coding standard — the standard is easy to
change in a single place.

The significant change is, of course, the new style of initialization functions.
Fortunately, these are also generated in c.rep and we derive the new versions by
converting Point() as shown in the preceding section to report format in c.rep.
Finally, we produce default functions such as

const void * const Object (void) {
return & _Object;

}

by the init report in c-R.rep so that it can benefit from the GNUC conditional for
ooc. This is a bit touchy because, as stated in section 7.5, the static initialization of
_Object must be coded in Object.dc:

extern const struct Cass _Object;
extern const struct Class _Cl ass;

% ni t

static const struct Cass _Cbject = {
{ MM@C & _Cass },
"Cbject", & _Cbject, sizeof(struct Object),
Chj ect _ctor, Object_dtor, Object_differ, Cbject_puto
b
extern introduces forward references to the descriptions. %init generates the
functions which reference the descriptions as shown above. static, finally, gives

9.5 Summary 109

internal linkage to the initialized descriptions, i.e., they are still hidden inside the
implementation file Object.c.

As an exception, _Object must be the name of the structure itself and not a
pointer to it so that & _Object can be used to initialize the structure. If we do not
introduce a macro such as Class(), this makes little difference, but it does compli-
cate munch a bit:

NF !'=3 || $1 ! /°[09a—+F]+$/ { next }
$2 7 /" [bs]$/ { bsd[$3] = 1; next }
$2 == "d" { sysv[$3] = 1; next }
$2 == "T" { T[$3] = 1; next }
END {
for (name in T)
if ("_" name in bsd) # elimnate |eading _
names[n ++] = substr(nane, 2)
else if ("_" name in sysv)
nanmes[n ++] = nane
for (i =0; i <n; ++ i)
printf "extern const void * % (void);\n", nanmes[i]
print "\nconst void * (* classes [])(void) = {"
for (i =0; i <n; ++ i)
printf "\t%,\n", names[i]
print "0 };"

}

A class name should now occur as a global function and with a leading underscore
as a local data item. Berkeley-nm flags initialized local data with s and uninitialized
data with b, System-V-nm uses d in both cases. We simply collect all interesting
symbols in three arrays and match them in the END clause to produce the array
names[] which we actually need. There is even an advantage to this architecture:
we can insert a simple shellsort [K&R88] to produce the class names in alphabetical
order:

for (gap = int(n/2); gap > 0; gap = int(gap/2))

for (i =gap; i < n; ++ i)
for (j =i—gap; j >= 0 && \
nanes[j] > names[j+gap]; j — gap)
{ name = nanes[j]
nanes[j] = nanmes[j +gap]
nanes[j +gap] = nane
}

If we use function calls in place of class names we do not need munch; however, a
list of the classes in a program may come in handy for some other purpose.

9.5 Summary

Static objects such as class descriptions would normally be initialized at compile
time. If we need constructor calls, we wrap them into functions without parame-
ters and make sure that these functions are called early enough and in the proper

110 9 Static Construction — Self-Organization

order. In order to avoid trivial but hard to diagnose errors, we should provide a
mechanism which performs these function calls automatically — our programs
should be self-organizing.

One solution is to use a linking technique, for example with the aid of a pro-
gram such as munch, to produce an array with the addresses of all initialization
functions and call each array element at the beginning of a main program. A func-
tion main() with a loop executing the array can be part of our project library, and
each program starts with a function mainprog() which is called by main().

Another solution is to let an initialization function return the initialized object. If
the function is locked so that it does the actual work only once we can replace each
reference to a static object by a call to its initialization function. Alternatively, we
can use macros to produce the same effect more efficiently. Either way we can no
longer take the address of a reference to a static object, but because the reference
itself is a pointer value, this should hardly be necessary.

9.6 Exercises

The Class() macro is a more efficient, portable solution for automatic initialization of
class descriptions than using functions. It is implemented by changing reports,
class definitions, and application programs just as described above.

munch may have to be ported to a new system. If it is used together with the
Class() macro, for a production system we can remove the conditional from the
macro and initialize all class descriptions with munch. How do we initialize things in
the right order? Can ooc be used to help here (consult the manual in appendix C
about option =M for occ)? What about cast() in a production system?

All class descriptions should first show up in calls to cast(). We can define a
fake class

typedef const void * (* initializer) (void);
% Class Casslnit: Object {
initializer init;
%
and use statically initialized instances as “‘uninitialized’’ class descriptions:
static struct Casslnit _Point = {
{ MM\GC 0}, [* Object without class description */
i ni t Poi nt [* initialization function */
b
const void * Point = & Point;
cast() can now discover a class description with a null class description pointer,
assume that it is a struct Classlnit, and call the initialization function. While this
solution reduces the number of unnecessary function calls, how does it influence
the use of cast()?

111

10
Delegates
Callback Functions

10.1 Callbacks

An object points to its class description. The class description points to all dynami-
cally linked methods applicable to the object. It looks as though we should be able
to ask an object if it can respond to a particular method. In a way this is a safe-
guard measure: given a dubious object we can check at run time if we are really
allowed to apply a specific method to it. If we do not check, the method'’s selector
will certainly check and crash our program if the object cannot respond, i.e., if the
object’s class description does not contain the method.

Why would we really want to know? We are out of luck if a method must be
applied unconditionally to an object which does not know about it; therefore, there
is no need to check. However, if it makes no difference to our own algorithm
whether or not the method is applied, being able to ask makes for a more forgiving
interface.

The situation arises in the context of callback functions. For example, if we are
managing a window on a display, some inhabitants of the window might want to be
informed when they are about to be covered up, displayed again, changed in size,
or destroyed. We can inform our client by calling a function on which we both have
agreed: either the client has given us the name of a function to be called for a par-
ticular event, or we have agreed on a specific function name.

Registering a callback function, the first technigue, looks like the more flexible
approach. A client registers functions only for those events which are important
from its point of view. Different clients may use different sets of callback func-
tions, and there is no need to observe a common name space. ANSI-C actually
uses some callback functions: bsearch() and gsort() receive the comparison func-
tion relative to which they search and sort and atexit() registers functions to be
called just before a program terminates.

Agreeing on specific function names looks even easier: a recognizer generated
by lex will call a function yywrap() at the end of an input file and it will continue pro-
cessing if this function does not return zero. Of course, this is impractical if we
need more than one such function in a program. If bsearch() assumed its com-
parison function to be called emp, it would be much less flexible.

10.2 Abstract Base Classes

Once we look at dynamically linked methods, agreeing on specific method names
for callback purposes does not seem to be as limiting. A method is called for a par-
ticular object, i.e., which code is executed for a callback depends on an object in
addition to a specific method name.

112 10 Delegates — Callback Functions

Methods, however, can only be declared for a class. If we want to communi-
cate with a client in the style of a callback function, we have to postulate an
abstract base class with the necessary communication methods and the client
object must belong to a subclass to implement these methods. For example:

% OrderedC ass: Class OderedArray: Object {
%—
int cnp (const _self, int a, int b);
void swap (_self, int a, int b);
%
A sorting algorithm can use emp() to check on two array elements by index, and it
can use swap() to rearrange them if they are out of order. The sorting algorithm
can be applied to any subclass of OrderedArray which implements these methods.
OrderedArray itself is called an abstract base class because it serves only to
declare the methods; this class should have no objects if the methods are not
defined.

Abstract base classes are quite elegant to encapsulate calling conventions. For
example, in an operating system there could be an abstract base class for a certain
variety of device drivers. The operating system communicates with each driver
using the methods of the base class and each driver is expected to implement all of
these methods to communicate with the actual device.

The catch is that all methods of an abstract base class must be implemented
for the client because they will be called. For a device driver this is perhaps obvi-
ous, but a device driver is not exactly a representative scenario for callback func-
tions. A window is much more typical: some clients have to worry about expo-
sures and others could not care less — why should they all have to implement all
methods?

An abstract base class restricts the architecture of a class hierarchy. Without
multiple inheritance a client must belong to a particular part of the class tree headed
by the abstract base class, regardless of its actual role within an application. As an
example, consider a client of a window managing a list of graphical objects. The
elegant solution is to let the client belong to a subclass of List but the implementa-
tion of a window forces the client to be something like a WindowHandler. As we
discussed in section 4.9 we can make an aggregate and let the client contain a List
object, but then our class hierarchy evolves according to the dictate of the system
rather than according to the needs of our application problems.

Finally, an abstract base class defining callback functions tends to define no
private data components for its objects, i.e., the class declares but does not define
methods and the objects have no private state. \While this is not ruled out by the
concept of a class it is certainly not typical and it does suggest that the abstract
base class is really just a collection of functions rather than of objects and methods.

10.3 Delegates 113

10.3 Delegates

Having made a case against abstract base classes we need to look for a better idea.
It takes two to callback: the client object wants to be called and the host does the
calling. Clearly, the client object must identify itself to the host, if it wants the host
to send it a message, but this is all that is required if the host can ask the client
what callbacks it is willing to accept, i.e., what methods it can respond to.

It is significant that our viewpoint has shifted: an object is now part of the call-
back scenario. We call such an object a delegate. As soon as a delegate announces
itself to the host, the host checks what callbacks the delegate can handle and later
the host makes precisely those calls which the delegate expects.

As an example we implement a simple framework for a text filter, i.e., a pro-
gram which reads lines from standard input or from files specified as arguments,
manipulates them, and writes the results to standard output. As one application we
look at a program to count lines and characters in a text file. Here is the main pro-
gram which can be specified as part of the implementation file We.dc:

int main (int argc, char * argv [])
{ void * filter = newm(Filter(), new(\W())):

return mai nLoop(filter, argv);
}

We create a general object filter and give it as a delegate an application-specific We
object to count lines and characters. filter receives the arguments of our program
and runs the mainLoop() with callbacks to the We object.

% Wd ass: Class W: pject {

unsi gned |i nes; // lines in current file
unsi gned al | Li nes; /1 lines in previous files
unsi gned chars; /1 bytes in current file
unsi gned al |l Chars; /1 bytes in previous files
unsi gned files; /1 files conpleted
%—
int w (_self, const Object @filter, \
const char * fnm char * buf);
int printFile (_self, const Object @filter, \
const char * fnm;
int printTotal (_self, const Object @filter);
0,
%

The methods in We do nothing but line and character counting and reporting the
results. we() is called with a buffer containing one line:
%W we { [l (self, filter, fnm buf)
%cast s
++ self — lines;
self — chars += strlen(buf);
return O;

}
Once a single file has been processed, printFile() reports the statistics and adds
them to the running total:

114 10 Delegates — Callback Functions

%W printFile { [l (self, filter, fnm
%cast s
if (fnm && strenp(fnm "))

printf("%u %u %\n",
self — lines, self — chars, fnm;
el se
printf("%u %u\n", self — lines, self — chars);

self — allLines += self — lines, self — lines
self — allChars += self — chars, self — chars
++ self — files;

return O;

= 0;
= 0;

}

fnm is an argument with the current filename. It can be a null pointer or a minus
sign; in this case we do not show a filename in the output.

Finally, printTotal() reports the running total if printFile() has been called more
than once:
% W printTotal ({ [l (self, filter)
%cast s
if (self — files > 1)
printf("%u %u in % files\n",
self — allLines, self — allChars, self — files);
return O;

}

We only deals with counting. It does not worry about command line argu-
ments, opening or reading files, etc. Filenames are only used to label the output,
they have no further significance.

10.4 An Application Framework — Filter

Processing a command line is a general problem common to all filter programs. We
have to pick off bundled or separated flags and option values, we must recognize
two minus signs —— as the end of the option list and a single minus sign — addition-
ally as standard input, and we may need to read standard input or each file argu-
ment. Every filter program contains more or less the same code for this purpose,
and macros such as MAIN [Sch87, chapter 15] or functions such as getopt(3) help
to maintain standards, but why regurgitate the code in the first place?

The class Filter is designed as a uniform implementation of command line pro-
cessing for all filter programs. It can be called an application framework because it
establishes the ground rules and basic structure for a large family of applications.
The method mainLoop() contains command line processing once and for all and
uses callback functions to let a client deal with the extracted arguments:

% mai nLoop { [l (self, argv)
%cast s
self — prognhame = * argv ++;

10.4 An Application Framework — "'Filter"”’ 115

while (* argv && ** argv ==~ —)
{ switch (* ++ * argv) {
case 0: /1 single —
—* argv,; /[l ... is a filenane
br eak; /1 ... and ends options
case ' —:
if (! (* argv)[1]) [/ two —
{ ++ argv; [l ... are ignored
br eak; /1 ... and end options
}
defaul t: /1 rest are bundled flags
do

if (self — flag)
{ self — argv = argyv;
self — flag(self — delegate,
self, ** argv);
argv = self — argyv;
}
el se
{ fprintf(stderr,
"O: —9%€¢: no flags all owed\n",
self — prognhanme, ** argv);

return 1;
}
while (* ++ * argv);
++ argv;
conti nue;
}
br eak;

}

The outer loop processes arguments until we reach the null pointer terminating the
array argvl[] or until an argument does not start with a minus sign. One or two
minus signs terminate the outer loop with break statements.

The inner loop passes each character of one argument to the flag-function pro-
vided by the delegate. If the delegate decides that a flag introduces an option with
a value, the method argval() provides a callback from the delegate to the filter to
retrieve the option value:

% argval { [l (self)
const char * result;
%cast s
assert(self — argv && * self — argv);
if ((* self — argv)[1]) Il —fval ue
result = ++ * self — argyv;
else if (self — argv[1]) Il —+ value
result = * ++ self — argyv;
el se /1 no nore argunent

result = NULL;

116 10 Delegates — Callback Functions

while ((* self — argv)[1]) Il skip text
++ * self — argv;

return result;
}
The option value is either the rest of the flag argument or the next argument if any.
self —> argv is advanced so that the inner loop of mainLoop() terminates.

Once the options have been picked off the command line, the filename argu-
ments remain. If there are none, a filter program works with standard input. main-
Loop() continues as follows:

if (* argv)
do
result = doit(self, * argv);
while (! result &% * ++ argv);
el se

result = doit(self, NULL);

if (self — quit)
result = self — quit(self — delegate, self);
return result;

}

We let a method doit() take care of a single filename argument. A null pointer
represents the situation that there are no arguments. doit() produces an exit code:
only if it is zero do we process more arguments.

% doit { [l (self, arg)
FILE * fp;
int result = 0;
%ast s
if (self — nane)
return self — nanme(self — delegate, self, arg);

if (! arg || strcnp(arg, "—) == 0)
fp = stdin, clearerr(fp);

else if (! * arg)

{ fprintf(stderr, "%: null filenane\n",

self — prognane);

return 1;

}

else if (! (fp = fopen(arg, "r")))

{ perror(arg);
return 1;
}

The client may supply a function to process the filename argument. Otherwise,
doit() connects to stdin for a null pointer or a minus sign as an argument; other
filenames are opened for reading. Once the file is opened the client can take over
with yet another callback function or doit() allocates a dynamic buffer and starts
reading lines:

10.5 The "respondsTo’’ Method 117

if (self — file)
result = self — file(self — delegate, self, arg, fp);
el se
{ if (! self — buf)
{ self — blen = BUFSI Z;
self — buf = malloc(self — blen);
assert(self — buf);

}

while (fgets(self — buf, self — blen, fp))
if (self — line & (result =
self — line(self — delegate, self, arg,
self — buf)))
br eak;

if (self — wap)

result = self — wap(self — delegate, self, arg);
}
if (fp !'= stdin)
fclose(fp);

if (fflush(stdout), ferror(stdout))

{ fprintf(stderr, "%: output error\n", self — prognane);
result = 1;

}

return result;

}

With two more callback functions the client can receive each text line and perform
cleanup actions once the file is complete, respectively. These are the functions that
wce uses. doit() recycles the file pointer and checks that the output has been suc-
cessfully written.

If a client class implements line-oriented callbacks from the Filter class, it
should be aware of the fact that it deals with text lines. fgets() reads input until its
buffer overflows or until a newline character is found. Additional code in doit()
extends the dynamic buffer as required, but it only passes the buffer to the client,
not a buffer length. fgets() does not return the number of characters read, i.e., if
there is a null byte in the input, the client has no way to get past it because the null
byte might actually mark the end of the last buffer of a file with no terminating new-
line.

10.5 The respondsTo Method

How does an object reach its delegate? When a Filter object is constructed it
receives the delegate object as an argument. The class description Filter.d defines
function types for the possible callback functions and object components to hold
the pointers:

typedef void (* flagM (void *, void *, char);

typedef int (* nameM (void *, const void *, const char *);

typedef int (* fileM (void *, const void *, const char *,

FI LE *);

118 10 Delegates — Callback Functions

typedef int (* lineM (void *, const void *, const char *,

char *);
typedef int (* wapM (void *, const void *, const char *);
typedef int (* quitM (void *, const void *);

% Class Filter: Opject {
hj ect @del egate;

flagM fl ag; /1 process a flag

naneM nane; /1 process a filenane argument
fileMfile,; /1 process an opened file
lineM Iine; /1 process a line buffer

wr apM wr ap; /1 done with a file

quitM quit; /1 done with all files

const char * prognanme; // argv[O]

char ** argv; /1 current argunment and byte
char * buf; /1 dynamic |ine buffer

unsi gned bl en; /1 current maxi mum | ength

%
int mainLoop (_self, char ** argv);
const char * argval (_self);
const char * prognanme (const _self);
int doit (_self, const char * arg);
%
Unfortunately, ANSI-C does not permit a typedef to be used to define a function
header, but a client class like We can still use the function type to make sure its
callback function matches the expectations of Filter:

#include "Filter. h"

%W we { [l (self, filter, fnm buf)
dcast s

assert((lineM wc == wc);

The assertion is trivially true but a good ANSI-C compiler will complain about a type
mismatch if lineM does not match the type of wel():
In function "W _wc’:
war ni ng: conpari son of distinct pointer types |acks a cast
We still have not seen why our filter knows to call wel() to process an input
line. Filter_ctor() receives the delegate object as an argument and it can set the
interesting components for filter:

% Filter ctor {
struct Filter * self = super _ctor(Filter(), _self, app);

self — delegate = va_arg(* app, void *);

self — flag = (flagM respondsTo(self — delegate, "flag");

self — quit = (quitM respondsTo(self — delegate, "quit");

return self;

10.6 Implementation 119

The trick is a new statically linked method respondsTo() which may be applied to
any Object. It takes an object and a search argument and returns a suitable function
pointer if the object has a dynamically linked method corresponding to the search
argument.

The returned function pointer could be a selector or the method itself. If we
opt for the method, we avoid the selector call when the callback function is called;
however, we also avoid the parameter checking which the selector performs. It is
better to be safe than to be sorry; therefore, respondsTo() returns a selector.

Designing the search argument is more difficult. Because respondsTo() is a
general method for all types of methods we cannot perform type checking at com-
pile time, but we have already shown how the delegate can protect itself. Regard-
less of type checking we could still let respondsTo() look for the selector it is sup-
posed to return, i.e., the search argument could be the desired selector. Selector
names, however, are part of the global name space of a program, i.e., if we look for
a selector name we are implicitly restricted to subclasses of the class where the
selector was introduced. However, the idea was not to be restricted by inheritance
aspects. Therefore, respondsTo() uses a string as the search argument.

We are left with the problem of associating a string with a dynamically linked
method. Logically this can be done in one of two places: when the method is
declared in the class description file or when it is implemented in the implementa-
tion file. Either way it is a job for ooc because the association between the string
tag and the method name must be stored in the class description so that
respondsTo() can find it there. The class description, however, is constructed by
ooc. We use a simple syntax extension:

% Wd ass: Class W: pject {

%—

l'i ne: int w (_self, const Object @filter, \
const char * fnm char * buf);

wr ap: int printFile (_self, const Object @filter, \
const char * fnm;

quit: int printTotal (_self, const Object @filter);

0,

%

In a class description file like We.d a tag may be specified as a label preceding a
dynamically linked method. By default, the method name would be used as a tag.
An empty label suppresses a tag altogether — in this case respondsTo() cannot
find the method. Tags apply to dynamically linked methods, i.e., they are inherited.
To make things more flexible, a tag can also be specified as a label in a method
header in the implementation file. Such a tag is valid only for the current class.

10.6 Implementation

respondsTo() must search the class description for a tag and return the
corresponding selector. Thus far, the class description only contains pointers to the
methods. Clearly, the method entry in a class description must be extended:

120 10 Delegates — Callback Functions

typedef void (* Method) (); /1 for respondsTo()
%r ot
struct Method {
const char * tag; /1 for respondsTo()
Met hod sel ector; /1 returned by respondsTo()
Met hod net hod; /] accessed by the sel ector
b

% Class bject {

Met hod respondsTo (const _self, const char * tag);

Method is a simple function type defined in the interface file for Object. Each
method is recorded in a class description as a component of type struct Method
which contains pointers to the tag, the selector, and the actual method.
respondsTo() returns a Method. ANSI-C compilers will gripe about implicit casts
from and to this type.

Given this design, a few more changes are required. In Object.dc we need to
change the static initialization of the class descriptions Object and Class to use
struct Method:

static const struct Cass _Cbject = {
{ MM@C & _Cass },
"Cbject", & _Object, sizeof(struct Object),

{ , (Met hod) O, (Met hod) Object_ctor 1},
{0, (Met hod) O, (Met hod) Object_dtor 1},
{

"differ", (Method) differ,(Method) Object_differ },

b
The -r report in r.rep uses the link report in va.rep to generate an entry in the class
description for the class representation file. The new version of the link report is
very simple:

% | i nk /1 conponent of metaclass structure

struct Method " nethod ;

Finally, the init report in c.rep and c-R.rep uses the meta-ctor-loop in etc.rep to
generate the loop which dynamically fills the class description. Here we also have
to work with the new types:

% met a—et or -+ oop /] selector/tag/ nethod tuples for "class
"t while ((selector = wva_arg(ap, Method))) 'n
't { Tt const char * tag = wva_arg(ap, \
const char *); "n
't 't Method nmethod = va_arg(ap, Mthod); "n "n

{%—%ink—it }
) n

10.6 Implementation 121

% | i nk—t /1 check and insert one selector/method pair
t "t if (selector == (Method) ‘“nethod) "n
t Tt { Tt if (tag) "n
t "t "t "t self — ‘“method .tag = tag, 'n
t "t "t "t self — “nethod .selector = selector; "n
t "t "t self — “nmethod .nethod = nethod; "n
t "t "t continue; "n
t "t } °n

Rather than selector/method pairs we now specify selector/tag/method tuples as
arguments to the metaclass constructor. This must be built into the init report in
c.rep. Here is the initialization function for We generated by ooc:

static const void * _W;

const void * W (void)
return W ? W
(_W = new(W ass(),
"W", Object(), sizeof(struct W),
we, "line", W_wc,
printFile, "wap", W_printFile,
printTotal, "quit", W_printTotal,
(void *) 0));
}

Given the selector/tag/method tuples in a class description, respondsTo() is
easy to write. Thanks to the class hierarchy, we can compute how many methods
a class description contains and we can implement respondsTo() entirely in the
Object class, even though it handles arbitrary classes:

% respondsTo {
if (tag && * tag) {
const struct Cass * class = classOf(_self);
const struct Method * p = & class — ctor; // first

int nmeth =
(sizeOf(class) —offsetof(struct Cass, ctor))
[sizeof (struct Method); /1 # of Methods
do
if (p = tag && strcnp(p — tag, tag) == 0)
return p — method ? p — selector : O;
while (++ p, —nneth);
}
return O;

}

The only drawback is that respondsTo() explicitly contains the first method name
ever, ctor, in order to calculate the number of methods from the size of the class
description. While ooc could obtain this name from the class description of Object,
it would be quite messy to construct a report for ooc to generate respondsTo() in a
general fashion.

122 10 Delegates — Callback Functions

10.7 Another application — sort

Let us implement a small text sorting program to check if Filter really is reusable, to
see how command line options are handled, and to appreciate that a delegate can
belong to an arbitrary class.

A sort filter must collect all text lines, sort the complete set, and finally write
them out. Section 7.7 introduced a List based on a dynamic ring buffer which we
can use to collect the lines as long as we add a sorting method. In section 2.5 we
implemented a simple String class; if we integrate it with our class hierarchy we
can use it to store each line in the List.

Let us start with the main program which merely creates the filter with its
delegate:

int main (int argc, char * argv [])
{ void * filter = nem(Filter(), new(Sort(), 0));

return mai nLoop(filter, argv);
}

Because we can attach the callback methods to any class, we can create the
delegate directly in a subclass of List:
% SortCl ass: ListCass Sort: List {
char rflag;
%—
void flags (_self, Cbject @filter, char flag);
int line (_self, const Object @filter, const char * fnm \
char * buf);
int quit (_self, const Object @filter);
%
To demonstrate option handling we recognize —-r as a request to sort in reverse
order. All other flags are rejected by the flags() method which has flag as a tag for
respondsTo():

% flag: Sort flags {

%ast s
assert((flagM flags == flags);
if (flag == "r")
self — rflag = 1;
el se
fprintf(stderr, "usage: % [—] [file...]\n",
progname(filter)),
exit(1);
}

Given String and List, collecting lines is trivial:
% Sort line {

%ast s
assert((lineM line == Iline);
addLast (sel f, new(String(), buf));
return O;

10.8 Summary 123

Once all lines are in, the quit callback takes care of sorting and writing. If there are
any lines at all, we let a new method sort() worry about sorting the list, and then
we remove each line in turn and let the String object display itself. We can sort in
reverse order simply by removing the lines from the back of the list:
% Sort quit {
%cast s
assert((quitM quit == quit);
if (count(self))
{ sort(self);
do
puto(self — rflag ? takelLast(self)
takeFirst(self), stdout);
while (count(self));
}

return O;
}

What about sort()? ANSI-C defines the library function gsort() for sorting arbitrary
arrays based on a comparison function. Luckily, List is implemented as a ring
buffer in an array, i.e., if we implement sort() as a method of List we should have
very little trouble:

static int cnmp (const void * a, const void * b)

{

}

% List sort {
%cast s
if (self — count)
{ while (self — begin + self — count > self — dim
addFi rst (sel f, takelLast(self));
gsort(self — buf + self — begin, self — count,
sizeof self — buf[0], cmp);

return differ(* (void **) a, * (void **) b);

}

If there are any list elements, we rotate the list until it is a single region of the
buffer and then pass the list to gsort(). The comparison function sends differ() to
the list elements themselves — String_differ was based on stremp() and can,
therefore, be (ab-)used as a comparison function.

10.8 Summary

An object points to its class description and the class description points to all the
dynamically linked methods for the object. Therefore, an object can be asked if it
will respond to a particular method. respondsTo() is a statically linked method for
Object. It takes an object and a string tag as search argument and returns the
appropriate selector if the tag matches a method for the object.

Tags can be specified to ooc as labels on the prototypes of dynamically linked
methods in the class definition file, and as labels on a method header in the imple-

124 10 Delegates — Callback Functions

mentation file; the latter have precedence. By default, the method name is used as
a tag. Empty tags cannot be found. For the implementation of respondsTo() a
method is passed to a metaclass constructor as a triple selector/tag/method.

Given respondsTo(), we can implement delegates: a client object announces
itself as a delegate object to a host object. The host queries the client with
respondsTo() if it can answer certain method calls. If it does, the host will use
these methods to inform the client of some state changes.

Delegates are preferable to registering callback functions and to abstract base
classes for defining the communication between a host and a client. A callback
function cannot be a method because the host does not have an object to call the
method with. An abstract base class imposes unnecessary restrictions on
application-oriented development of the class hierarchy. Similar to callback func-
tions, we can implement for delegates just those methods which are interesting for
a particular situation. The set of possible methods can be much larger.

An application framework consists of one or more objects which provide the
typical structure of an application. If it is well designed, it can save a great deal of
routine coding. Delegates are a very convenient technique to let the application
framework interact with the problem-specific code.

10.9 Exercises

Filter implements a standard command line where options precede filename argu-
ments, where flags can be bundled, and where option values can be bundled or
specified as separate arguments. Unfortunately, pr(1) is a commonly available pro-
gram that does not fit this pattern. Is there a general solution? Can a flag introduce
two or more argument values which all appear as separate arguments?

The line callback should be modified so that binary files can be handled
correctly. Does it make sense to provide a byte callback? What is an alternative?

A much more efficient, although not portable, implementation would try to map
a file into memory if possible. The callback interface does not necessarily have to
be modified but a modification would make it more robust.

respondsTo() has to know the name of the first struct Method component of
every class description. The reports -r in r-R.rep or rather init in c-R.rep can be
modified to define a structure to circumvent this problem.

The init report can be modified to generate a puto() method for Class which
uses the same technigue as respondsTo() to display all method tags and
addresses.

Piping the output of our sort program into the official sort(1) for checking may
produce a surprise:

$ sort — Sort.d | /usr/bin/sort — —
sort: disorder: int quit (_self, const Object @filter);

There are more efficient ways for List_sort() to compact the list in the ring
buffer before passing it to gsort(). Are we really correct in rotating it?

125

1
Class Methods
Plugging Memory Leaks

Modern workstations have lots of memory. If a program looses track of a byte here
and there it will probably not make a whole lot of difference. However, memory
leaks are usually indicative of algorithmic errors — either the program reacts in
unexpected ways to strange input or, worse, the program was inadvertently
designed to break connections to dynamically allocated memory. In this chapter we
will look at a general technology available with object-oriented programming which
can be used, among other things, to combat memory leaks.

11.1 An Example

All resources acquired by a program should be properly recycled. Dynamic memory
is a resource and production programs should certainly be checked for memory
leaks. As an example, consider what happens when we make a syntax error while
using the calculator developed in the third and fifth chapter:

$ val ue

(3 * 4) ——

bad factor: '’ 0xO
The recursive descent algorithm tries to build an expression tree. If something
goes wrong, the error() function uses longjmp() to eliminate whatever is on the
stack and continue processing in the main program. The stack, however, contains
the pieces of the expression tree built thus far. If there is a syntax error, these
pieces are lost: we have a memory leak. This is, of course, a standard problem in
constructing interpreters.

NeXTSTEP provides a simple application MallocDebug which can be used to
locate at least some of the more serious problems. If we link value with —IMalloc-
Debug, the standard versions of malloc() and related functions are replaced by a
module that can communicate with the MallocDebug application. We start Malloc-
Debug after value, connect the two, and push a button Leaks once we have
received the first error message. Unfortunately, the output is simply:

No nodes.

MallocDebug uses a fairly naive method to check for leaks: it has a list of all allo-
cated areas and scans the words in the client task to see if they point to allocated
areas. Only areas to which no word in the client task points are considered to be
memory leaks. For the input

(3 *4) ——
sum() will have the first subtree built by product() before factor() runs into the end
of the input line. However, when error() clips the stack from factor() back to

main(), the address of the root of this subtree is still in the local variable result of
sum() and, by chance, does not get overwritten in the longjmp(). The remaining

126 11 Class Methods — Plugging Memory Leaks

nodes are connected to the root, i.e., from the point of view of MallocDebug, all
nodes can still be reached. However, if we enter another expression the old stack
is overwritten and MallocDebug will find the leak.

value:

$ val ue

(3 *4) ——

bad factor: '’ 0xO0

1+ 3

4

MallocDebug:

Zone: Addr ess: Si ze: Functi on:

default 0x050ec35c 12 nkBi n, new, product, sum

factor, product, sum stmt

If value is compiled with debugging information, we can start a debugger in a
second window and investigate the leak:

$ gdb val ue

GDB is free software ...

(gdb) attach 746

Attaching program “value', pid 746
0x5007be2 in read ()

(gdb) print * (struct Bin *) 0x050ec35c
Reading in synbols for mathlib.c...done.

$1 = {
type = 0x8024,
left = 0x50ec334,
right = 0x50ec348
}

(gdb) print process(0x050ec35c)

Reading in synmbols for value.c...done.

$3 = void

(gdb)
The GNU debugger can be attached to a running process. With print we can display
the contents of the leaky node if we copy the address from the MallocDebug win-
dow and supply the proper type: mkBin() was the original caller of mallocl(), i.e.,
we must have obtained a struct Bin. As the output shows, print can even call a
method like process() in value and display the result. The output from process()
appears in the window where value is running:

$ val ue
(3 * 4) ——
bad factor: '’ 0xO0
1+ 3
4
12

The memory leak is alive and well.

11.2 Class Methods 127

11.2 Class Methods

How do we plug this specific memory leak? The leak has occurred by the time
error() returns to the main loop. Either we collect and release all expression pieces
before longjmpl() is executed, or we need a different way to reclaim the allocated
nodes.

Collecting the pieces is a lost cause because they are held by various activa-
tions of the functions involved in the recursive descent algorithm. Only each activa-
tion knows what must be released, i.e., in place of a longjmp() we would have to
cope with error returns in every function. This is likely to be botched once the pro-
gram is later extended.

Designing a reclamation mechanism is a much more systematic approach for
solving this problem. If we know what nodes are currently allocated for the expres-
sion tree we can easily release them and reclaim the memory in case of an error.
What we need are versions of new() and delete() which maintain a linear list of
allocated nodes which a function like reclaim() can traverse to free memory. In
short, for expression tree nodes we should overwrite what new() and delete() do.

delete() is sent to objects, i.e., it is a method that can be given dynamic linkage
so that it may be overwritten for a subtree of the class hierarchy. new(), however,
is sent to a class description. If we want to give new() dynamic linkage, we must
add its pointer to the class description of the class description object, to which we
want to send new():

aNode Node NodeCl ass
. . ?
" Node" "NodeCl ass"
struct Node Qbj ect ?
si zeof aNode si zeof Node
ctor: fill aNode ctor: fill Node
dtor: empty aNode dtor: return 0
delete: free aNode new: make aNode
exec: | evaluate aNode struct NodeMet aCl ass

struct NodeCl ass

With this arrangement we can give new() dynamic linkage for the call
new(Node, ...)

However, we create a problem for the descriptions of class descriptions, i.e., at the
right edge of this picture. If we start to introduce new method components in
metaclass descriptions such as NodeClass, we can no longer use struct Class to
store them, i.e., our diagram must be extended at least one more level to the right
before we might be able to tie it to the original Class.

128 11 Class Methods — Plugging Memory Leaks

Why did we decide to store methods in class descriptions? We assume that
we have many objects and few classes. Storing methods in class descriptions
rather than in the objects themselves costs one level of indirection, i.e., the dere-
ferencing of the pointer from the object to its class description, but it avoids the
high memory requirement of letting each object contain all method pointers directly.

There are fewer class descriptions than other objects; therefore, the expense of
storing a method address directly in the class description to which the method is
applied is not as prohibitive as it would be for other objects. We call such methods
class methods — they are applied to the class description in which they are stored
rather than to the objects sharing this class description.

A typical class method is new() which would be overwritten to manipulate
memory allocation: provide statistics or a reclamation mechanism; allocate objects
in memory zones to improve the paging behavior of a program; share memory
between objects, etc. Other class methods can be introduced, for example, if we
want to circumvent the convention that new() always calls the constructor ctor().

11.3 Implementing Class Methods

The internal difference between a class method and another dynamically linked
method is encapsulated in the selector. Consider exec(), a dynamically linked
method to evaluate a node. The selector applies classOf() to get the class descrip-
tion and looks for .exec in there:

doubl e exec (const void * _self) {
const struct NodeCl ass * class =
cast (NodeCl ass(), classOf(_self));

assert(class — exec. nethod);
return ((double (*) ()) class — exec.nethod)(_self);

}

In contradistinction, consider new(), a class method which is applied to a class
description. In this case self refers to the class description itself and the selector
looks for .new as a component of *self:

struct Object * new (const void * _self, ...) {
struct Object * result;
va_list ap;
const struct Cass * self = cast(C ass(), _self);

assert(self — new. nethod);

va_start(ap, _self);

result = ((struct Cbject * (*) ()) self — new nethod)
(_self, & ap);

va_end(ap);

return result;

11.3 Implementing Class Methods 129

Here is a picture describing the linkage of exec() and new():

aNode Node NodeCl ass
. . C ass
" Node" "NodeCl ass”
struct Node hj ect C ass
si zeof aNode si zeof Node
ctor: fill aNode ctor: fill Node
dtor: empty aNode dtor: cannot happen
delete: free aNode delete: no operation
new: make aNode new: make Node
exec. | evaluate aNode struct d ass

struct NodeCl ass

Both, class methods and dynamically linked methods, employ the same super-
class selector because it receives the class description pointer as an explicit argu-
ment.

struct bject * super_new (const void * _class,
const void * _self, va_list * app) {
const struct Cass * superclass = super(_class);

assert (superclass — new. net hod) ;

return
((struct Object * (*) ()) superclass — new. et hod)

(_self, app);
}

Selectors are generated by ooc under control of the selectors report in etc.rep.
Because the selectors differ for class methods and dynamically linked methods, ooc
needs to know the method linkage. Therefore, class methods are specified in the
class description file following the dynamically linked methods and the separator
%+. Here is an excerpt from Object.d:

% Class bject {

%

const Class @classOF (const _self); /1 object’s class
%—

void * ctor (_self, va_list * app); /'l constructor

void delete (_self); /1 reclaiminstance
%+

Chject @new (const _self, ...); // create instance

%

130 11 Class Methods — Plugging Memory Leaks

delete() is moved to the dynamically linked methods and new() is introduced as a
class method.

% Class Class: bject {

%
hject @allocate (const _self); /1 merory for instance

%
Once we remove newl() as a statically linked method for Class, we package the
memory allocation part as a new statically linked method allocate().

Given %- and %+ as separators, ooc knows the linkage of every method and
the report selectors can be extended to generate the selectors shown above.
Other reports generate selector declarations for the interface file, superclass selec-
tor declarations and the layout of the metaclass description for the representation
file, the loop in the metaclass constructor which recognizes selector/tag/method tri-
ples and enters them into the class description, and, finally, the initialization func-
tions for class and metaclass descriptions. All of these reports need to be
extended. For example, in the report —h in h.rep the declarations of dynamically
linked methods are generated with

"{%— %header ; "n “}n
A new loop adds the class method declarations:
“{% " oYheader ; "n “}n

“{+ is a loop over the class methods of the current class.

Once we access new() and delete() through selectors, we have to implement
them for Object in Object.dc:
% Ohj ect new {

%cast s
return ctor(allocate(self), app);

}

new() creates the area for the new object and calls the appropriate constructor to
initialize it. allocate() contains most of the old code of newf(). It obtains dynamic
memory and installs the class description pointer so that the dynamic linkage of
ctor() in new() works correctly:

% al | ocate ({
struct Object * object;

%cast s
assert(self — size);
object = calloc(l, self — size);

assert (object);
obj ect — nagic
obj ect — cl ass
return object;

MAG C;
sel f;

11.4 Programming Savvy — A Classy Calculator 131

delete() calls the destructor dtor() as before and passes the result to free():

% bj ect delete {
%cast s
free(dtor(self));

}

Whenever we add new methods to Object which are accessed through selectors,
we must not forget to install them by hand in the class descriptions in Object.dc.
As an example here is _Object:
static const struct Cass _Cbject = {
{ MM@C, & _Cass },
"Cbject", & _Cbject, sizeof(struct Object),
{0, (Met hod) O, (Met hod) Object_ctor 1},

{ "delete", (Method) delete, (Mthod) Object_delete },

o (Met hod) 0, (Met hod) Qbj ect_new },
b

11.4 Programming Savvy — A Classy Calculator

With the technology for plugging memory leaks in place, we can now engineer our
calculator to take advantage of the class hierarchy. First we need to add the
descriptions from chapter 5 to the hierarchy.

Node

The basic building block for the expression tree is Node, an abstract base class. A
Number is a Node which contains a floating point constant:

/1 new(Nunber (), val ue)

% NodeCl ass Number: Node {
doubl e val ue;
%
Our tree can grow if we have nodes with subtrees. A Monad has just one subtree,
a Dyad has two:

% NodeCl ass Mdnad: Node {
void * down;
%
%r ot
#defi ne down(x) (((struct Mnad *)(x)) — down)

% NodeCl ass Dyad: Node {
void * left;
void * right;
%
%r ot
#define left(x) (((struct Dyad *)(x)) — left)
#define right(x) (((struct Dyad *)(x)) — right)

132 11 Class Methods — Plugging Memory Leaks

Technically, .down, .left and .right should only be filled by the constructors for
these nodes, but if we plan to copy a tree, a subclass may need to modify the
pointers.

We use single subtrees to build two entirely different things. Val is used to get
the value from a symbol in the symbol table and Unary represents an operator such
as a minus sign:

% NodeCl ass Val: Mnad {

%

/'l new(Mnus(), subtree)

% NodeCl ass Unary: Mnad {

%

% NodeCl ass M nus: Unary {

%
One kind of Val is a Global which points to a Var or Const symbol and obtains its
value from there. If we implement user defined functions we use a Parm to fetch
the value of a single parameter.

/1 new(d obal (), constant—er—variable)
/1 new(Parn(), function)

% NodeCl ass d obal: Val {

%

% NodeCl ass Parm Val ({

%
We will derive symbol table entries from a base class Symbol which is independent
of Node. Therefore, we need Val and its subclasses because we can no longer let
an expression tree point directly to a Symbol which would not understand the
exec() method.

There are many nodes with two subtrees. Add, Sub, Mult, and Div combine
the values of their subtrees; we can simplify things by inserting Binary as a com-
mon base class for these:

/1 new(Add(), |eft—subtree, right—subtree)

% NodeCl ass Binary: Dyad {
%
% NodeCl ass Add: Binary {
%

Just as Val is used to access symbol values, Ref is used to combine a symbol and
an expression tree: Assign points to a Var and stores the value of its other subtree
there; Builtin points to a Math symbol which computes the value of a library func-
tion for the value of Builtin's right subtree as an argument; User, finally, points to a
Fun symbol which computes the value of a user defined function for the value of
User's other subtree as an argument.

11.4 Programming Savvy — A Classy Calculator

133

/'l new(Assign(), var, right—subtree)
/1 new(Builtin(), math, arg—subtree)
/'l new(User (), fun, arg—subtree)

% NodeCl ass Ref: Dyad {
%

% NodeCl ass Assign: Ref {
%

% NodeCl ass Builtin: Ref {

%
% NodeCl ass User: Ref ({
%

For the most part, the methods for Node subclasses can be copied from the solu-
tion in chapter 5. Very little adapting is required. The following table shows how

the various methods are linked into Node and its subclasses:

CLASS DATA METHODS
Node see below
Nunmber val ue ctor, exec
Monad down ctor
Val exec
d obal
Par m
Unary dt or
M nus exec
Dyad left, right ctor
Ref dt or
Assi gn exec
Builtin exec
User exec
Bi nary dt or
Add exec
Sub exec
mul t exec
Div exec

While we are violating the principle that constructors and destructors should be bal-
anced, we do so for a reason: the destructors send delete() to their subtrees. This
is acceptable as long as we delete an expression subtree, but we clearly should not
send delete() into the symbol table. Val and Ref were introduced exactly to factor

the destruction process.

At this point it looks as if we need not distinguish Global and Parm. However,
depending on the representation of their symbols, we may have to implement dif-
ferent exec() methods for each. Introducing the subclasses keeps our options

open.

134 11 Class Methods — Plugging Memory Leaks

Symbol

Looking at possible expression trees we have discovered the necessary nodes. In
turn, once we design the nodes we find most of the symbols which we need.
Symbol is the abstract base class for all symbols that can be entered into a symbol
table and located by name. A Reserved is a reserved word:

/'l new(Reserved(), "name", |ex)
% Cl ass Reserved: Synbol {
%

A Var is a symbol with a floating point value. Global will point to a Var symbol and
use value() to obtain the current value; Assign similarly uses setvalue() to deposit
a new value:

Il new(Var(), "name", VAR

% Class Var: Synbol ({
doubl e val ue;
%
doubl e value (const _self);
doubl e setvalue (_self, double value);

%
A Const is a Var with a different constructor:
/'l new(Const(), "nane", CONST, val ue)

% Class Const: Var {

%
If we make Const a subclass of Var we avoid the glitches that setvalue() would
have to access .value in the base class and that we would have to initialize a Var
during construction. We will syntactically protect Const from being the target of an
Assign.

A Math represents a library function. Builtin uses mathvalue() to pass an
argument in and receive the function value as a result:

/1 new(Math(), "name", MATH, function—nane)
typedef double (* function) (double);

% Class Math: Synbol {
function fun;
%
doubl e mat hval ue (const _self, double val ue);
%
Finally, a Fun represents a user defined function with a single parameter. This sym-
bol points to an expression tree which can be originally set or later replaced with
setfun() and evaluated by a User node with funvalue():

11.4 Programming Savvy — A Classy Calculator 135

/1 new(Fun(), "name", FUN)

% Class Fun: Var {
void * fun;
%
void setfun (_self, Node @fun);
doubl e funvalue (_self, double value);
%
Ignoring recursion problems, we define Fun as a subclass of Var so that we can
store the argument value with setvalue() and build a Parm node into the expres-
sion wherever the value of the parameter is required. Here is the class hierarchy
for Symbol:

CLASS DATA METHODS
Synbol nane, |ex see below
Reserved del ete
Var val ue % val ue, setval ue
Const ctor, delete
Fun fun % setfun, funval ue
Mat h fun ctor, delete

% mat hval ue

Again, almost all the code can be copied from chapter 5 and requires little adapting
to the class hierarchy. Const and Math should never be deleted; therefore, we can
add dummy methods to protect them:

% : Const delete { /1 don’t respondTo delete
}

The only new idea are user defined functions which are implemented in the class
Fun:

% Fun setfun {
%cast s
if (self — fun)
delete(self — fun);
self — fun = fun;

}

If we replace a function definition we must first delete the old expression tree, if
any.
% Fun funval ue {
%ast s
if (! self — fun)
error ("undefined function");
setval ue(sel f, value); [/ argunent for paraneter
return exec(self — fun);

}

In order to compute the function value, we import the argument value so that Parm
can use value() to retrieve it as a parameter value. exec() can then compute the
function value from the expression tree.

136 11 Class Methods — Plugging Memory Leaks

Symtab

We could try to extend a List as a symbol table, but the binary search function used
in chapter 5 must be applied to arrays and we only need the methods screen() and
install():

/'l new(Syntab(), nininmal —dinension)
#i ncl ude <stddef. h>
% Cl ass Syntab: Object {

const void ** buf; /1 const void * buf [dinm
size t dim // current buffer dinension
size t count; I/ # elenents in buffer

%
void install (_self, const Synbol @entry);
Synbol @screen (_self, const char * name, int |ex);
%
The array is allocated just as for a List:
% Syntab ctor {
struct Symtab * self = super_ctor(Syntab(), _self, app);
if (! (self — dim= va_arg(* app, size_t)))
self — dim= 1;
self — buf = malloc(self — dim?* sizeof(void *));
assert(self — buf);
return self;

}

search() is an internal function which uses binary() to search for a symbol with a
particular name or to enter the name itself into the table:

static void ** search (struct Symtab * self, const char ** np)

{
if (self — count >= self — din
{ self — buf = realloc(self — buf,
(self — dim*= 2) * sizeof(void *));
assert(self — buf);
}
return binary(np, self — buf, & self — count,
si zeof (void *), cnp);
}

This is an internal function; therefore, we use a little trick: binary() will look for a
symbol, but if it is not found binary() will enter the string at *np rather than a sym-
bol. emp() compares the string to a symbol — if we used a string class like Atom
we could implement cmp() with differ():

static int cnmp (const void * _key, const void * _elt)
{ const char * const * key _key;
const void * const * elt _elt;

return strcnmp(* key, name(* elt));

11.4 Programming Savvy — A Classy Calculator 137

name() is a Symbol method returning the name of a symbol. We compare it to the
string argument of search() and do not create a symbol before we know that the
search really is unsuccessful.

With table search and entry in place, the actual Symtab methods are quite sim-
ple to implement. install() is called with a second argument produced by new().
This way we can enter arbitrary Symbol objects into the symbol table:

% Syntab install {
const char * nm

void ** pp;
%ast s
nm = nane(entry);
pp = search(self, & nm;

if (* pp!=nm /1 found entry
del ete(* pp);
* pp = (void *) entry;
}

install() is willing to replace a symbol in the table.
% Syntab screen {

void ** pp;
%cast s
pp = search(self, & name);
if (* pp == nane) /1 entered name

{ char * copy = malloc(strlen(nane) + 1);

assert (copy);
* pp = new(Synbol (), strcpy(copy, name), |ex);
}

return * pp;

}

screen() either finds an entry by name or makes a new Symbol with a dynamically
stored name. If we later decide that the table entry should rather belong to a sub-
class of Symbol we can call install() to replace an entry in the table. While this is a
bit inefficient, it requires no new functions for the symbol table interface.

The Abstract Base Classes

Symbol is the base class for symbol table entries. A Symbol consists of a name
and a token value for the parser which are both passed in during construction:

Symbol.d
Il new(Synbol (), "name", |ex) "nanme" mnust not change

% Cl ass Synbol: Object {
const char * nane;
int |ex;
%
const char * name (const _self);
int lex (const _self);

%

138 11 Class Methods — Plugging Memory Leaks

Symbol.dc

% Synbol ctor {
struct Synbol * self = super_ctor(Synbol (), _self, app);

self — name = va_arg(* app, const char *);
self — lex = va_arg(* app, int);
return self;

}

We let Symbol assume that external arrangements have been made for a symbol
name to be reasonably permanent: either the name is a static string or the name
must be saved dynamically before a symbol is constructed with it. Symbol neither
saves the name nor deletes it. If screen() saves a name dynamically, and if we
decide to replace a symbol using install(), we can simply copy the name from the
previous symbol which is deleted by install() and avoid more traffic in dynamic
memory. Using a class like Atom would be a much better strategy, however.

The really interesting class is Node, the abstract base class for all parts of an
expression tree. All new nodes are collected into a linear list so that we can reclaim
them in case of an error:

Node.d
% NodeCl ass: Cl ass Node: hject {
void * next;
%
voi d sunder (_self);

%—
doubl e exec (const _self);
Oor
void reclaim (const _self, Method how);
%
Node.dc
static void * nodes; // chains all nodes

% Node new {
struct Node * result =
cast (Node(), super_new(Node(), _self, app));

result — next = nodes, nodes = result;
return (void *) result;

}

According to Webster's, sunder means to “‘sever finally and completely or with
violence'’ and this is precisely what we are doing:

% Node sunder {

%cast s

if (nodes == self) /1 first node
nodes = self — next;

11.4 Programming Savvy — A Classy Calculator 139

el se if (nodes) /1 other node
{ struct Node * np = nodes;

while (np — next && np — next != self)
np = np — next;

if (np — next)
np — next = self — next;

}

self — next = 0;
}
Before we delete a node, we remove it from the chain:

% Node delete {
%ast s
sunder (sel f);
super _del et e(Node(), self);

}
Plugging the Memory Leaks

Normally, the parser in parse.c will call delete() after it is done with an expression:

if (setjnmp(onError))
{ ++ errors;
recl ai mM Node(), delete);
}
while (gets(buf))
if (scan(buf))
{ void * e = stnt();
if (e)
{ printf("\t%g\n", exec(e));
del ete(e);

}
}

If something goes wrong and error() is called, reclaim() is used to apply delete() to
all nodes on the chain:

% Node reclaim {

%cast s

whil e (nodes)
how(nodes) ;

}

This plugs the memory leak described at the beginning of this chapter — MallocDe-
bug does not find any leaks, neither immediately after an error nor later. For test
purposes we can

recl ai n(Node, sunder);
after an error and let MallocDebug demonstrate that we really have lost nodes.

The elegance of the scheme lies in the fact that the entire mechanism is encap-
sulated in the base class Node and inherited by the entire expression tree. Given

140 11 Class Methods — Plugging Memory Leaks

class functions, we can replace new() for a subtree of the class hierarchy. Replac-
ing new() exactly for all nodes, but not for symbols or the symbol table, provides
reclamation for broken expressions without damaging variables, functions, and the
like.

Technically, reclaim() is declared as a class method. We do not need the ability
to overwrite this function for a subclass of Node, but it does leave room for expan-
sion. reclaim() permits a choice as to what should be applied to the chain. In case
of an error this will be delete(); however, if we save an expression for a user
defined function in a Fun symbol, we need to apply sunder() to the chain to keep
the next error from wiping out the expression stored in the symbol table. When a
function is replaced, setfun() will delete the old expression and delete() still uses
sunder() — this is why sunder() does not demand to find its argument on the
chain.

11.5 Summary

Class Methods are applied to class descriptions, rather than to other objects. We
need at least one class method: newf() creates objects from a class description.

Just like other methods, class methods can have static or dynamic linkage, but
the syntax of ooc only permits static linkage for class methods that apply to the root
metaclass. Therefore, the term class method has been introduced here to only
describe a method with dynamic linkage that is applied to a class description.

Since there are relatively few class descriptions, we can provide the dynamic
linkage for a class method by storing it in the class description itself to which it
applies. This has two advantages: we can overwrite class methods for a subclass
without introducing a new metaclass to store it; and our basic scheme remains
intact where objects point to class descriptions, class descriptions point to their
own descriptions, and the latter can all be stored in struct Class, i.e., they will all
point to Class, thus completing the class hierarchy in a clean fashion.

Defining new() as a class method for Object rather than as a method with
static linkage for Class permits redefining new() for subtrees of the class hierarchy.
This can be used for memory allocation tracking, memory sharing, etc. ooc makes
no provisions for extending the data part of a class description. If it did, a class
method could have local data applicable to its class as a whole and we could count
objects per class, etc. static variables in an implementation file are not quite the
same because they exist once for the class and all its subclasses.

There is a tradeoff between new() and a constructor. It is tempting to do all
the work in new() and leave the constructor empty, but then invariants normally
established by the constructor can break once newl() is overwritten. Similarly, a
constructor is technically capable of substituting a different memory area in place of
the one passed in from new() — this was demonstrated in the implementation of
Atom in section 2.6 — but a proper life cycle for this memory is difficult to main-
tain.

11.6 Exercises 141

As a rule of thumb, class methods like new() should only connect an allocation
function with a constructor and refrain from doing any initializations themselves.
Allocation functions such as allocate() should initialize the class description pointer
— too much can go horribly wrong if they do not. Reclamation functions such as
delete() should let the destructor dispose of the resources which the constructor
and the object’s life cycle have accumulated, and only pass the empty memory area
to a recycler function like free():

al | ocat e() free()
anbj ect anbj ect
ctor() dtor()
aThi ng aThi ng
new() del ete()
aThi ng

There is a balance: allocate() and free() deal with the same region of memory; by
default, new() gives it to its constructor, delete() to its destructor; and the con-
structor and destructor only deal with resources represented inside the object.
new() and delete() should only be overwritten to interfere with the flow of memory
from allocate() to free().

11.6 Exercises

For the ooc parser it makes absolutely no difference, if class methods are described
before or after dynamically linked methods in the class description file, i.e., if %+
precedes or follows %-. There is, however, a convincing point in favor of the
arrangement described in this chapter. Why can the separators not be repeated to
achieve an arbitrary mix of both types of methods?

There is a rather significant difference once delete() is implemented with
dynamic linkage. What can no longer be passed to delete()?

It is not helpful to move value() back into the abstract base class Symbol and
give it dynamic linkage there. mathvalue() is applied to a Math symbol and
requires a function argument, value() is applied to a Var or Const symbol and has
no use for an argument. Should we use variable argument lists?

We can detect recursion among user defined functions. We can use words like
$1 to support functions with more than one parameter. We can even add parame-
ters with names that hide global variables.

If we add a generic pointer to the data area of Class in Object.d class methods
can attach a chain of private data areas there. This can be used, e.g., to count
objects or to provide object lists per class.

143

12
Persistent Objects
Storing and Loading Data Structures

Section 6.3 introduced the dynamically linked method puto() in class Object which
takes an object and describes it on a stream. For example,

void * anObject = new(Object());

put o(anObj ect, stdout);
produces about the following standard output:
Chj ect at 0x5410

If we implement puto() for every class in a hierarchy we can display every object.
If the output is designed well enough, we should be able to recreate the objects
from it, i.e., objects can be parked in files and continue to exist from one invocation
of an application to another. We call such objects persistent. Object oriented data-
bases consist of persistent objects and mechanisms to search for them by name or
content.

12.1 An Example

Our calculator contains a symbol table with variables, constants, and functions.
While constants and mathematical functions are predefined, we loose all variable
values and user defined function definitions whenever we terminate execution. As
a realistic example for using persistent objects we add two statements to the calcu-
lator: save stores some or all variables and function definitions in files; load
retrieves them again.

$ val ue
def sqr = $ * $
def one = sqr(sin($)) + sqr(cos($))
let n = one(10)
1
save

In this session with value we define the functions sqr() and one() to test that
sin?x +cos’x = 1. Additionally, we create the variable n with value 1. save
without arguments writes the three definitions into a file value.stb.
$ val ue
| oad
n + one(20)
2

Once we start value again we can use load to retrieve the definitions. The expres-
sion demonstrates that we recover the value of the variable and both function defin-
itions.

144 12 Persistent Objects — Storing and Loading Data Structures

save is implemented in the parser function stmt() just like let or def. With no
argument we have to store all variables and functions; therefore, we simply pass
the problem to Symtab:

#defi ne SYMIABFI LE "val ue. stb"
#define SYMBOLFILE "%s.synt

static void * stnmt (void)
{ void * sym * node;
switch (token) {
case SAVE:
if (! scan(0)) /[* entire synbol table */

{ if (save(table, 0, SYMIABFILE))
error("cannot save synbol table");

}
el se [* list of synbols */
do
{ char fnm [BUFSI Z] ;
sprintf(fnm SYMBOLFILE, nanme(synbol));
if (save(table, synbol, fnnm)
error("cannot save %", name(symnbol));
} while (scan(0));
return O;

A more complicated syntax could permit a file name specification as part of save.
As it is, we predefine SYMTABFILE and SYMBOLFILE: the entire symbol table is
saved in value.stb and a single symbol like one would be filed in one.sym. The
application controls the file name, i.e., it is constructed in parse.c and passed to
save().

Symtab.d

% Cl ass Syntab: Object {
%

int save (const _self, const Var @entry, const char * fnm;
int load (_self, Synbol @entry, const char * fnn);
%
Symtab.dc

% Syntab save {
const struct Synmtab * self = cast(Symtab(), _self);

FILE * fp;
if (entry) /1 one synbol
{ if (! respondsTo(entry, "nove"))
return EOF;
if (! (fp = fopen(fnm "w')))
return EOF;

puto(entry, fp);

12.1 An Example 145

A single symbol is passed as entry. There is no point in saving undefined symbols,
constants, or math functions. Therefore, we only save symbols which support the
method move(); as we shall see below, this method is used in loading a symbol
from a file. save() opens the output file and lets puto() do the actual work. Saving
all symbols is almost as easy:

el se /] entire table
{ int i;
if (! (fp = fopen(fnm "w')))
return EOF;
for (i =0; i < self — count; ++ i)
if (respondsTo(self — buf[i], "nove"))
puto(self — buf[i], fp);
}
return fclose(fp); /1 0 or EOF

}

save() is defined as a method of Symtab because we need to loop over the ele-
ments in .buf[]. The test whether or not a symbol should be stored in a file is not
repeated outside of save(). However, Symtab should not know what kinds of sym-
bols we have. This is why the decision to store is based on the acceptance of a
move() and not on membership in certain subclasses of Symbol.

It looks like loading should be totally symmetrical to storing. Again, parse.c
decides on the file name and lets load() do the actual work:

case LOAD:
if (! scan(0)) [* entire synbol table */
{ if (load(table, 0, SYMIABFILE))
error("cannot |oad synbol table");

}

el se [* list of synbols */
do
{ char fnm [BUFSI Z] ;

sprintf(fnm SYMBOLFILE, nanme(synbol));
if (load(table, synbol, fnnm)
error("cannot |oad %", name(symnbol));
} while (scan(0));
recl ai mM Node(), sunder);
return O;

Unfortunately, load() is entirely different from save(). There are two reasons: we
should at least try to protect our calculator from somebody who tinkers with file
names or contents; and while save() can just display something in the symbol table
by applying putol), it is quite likely that we have to enter or modify symbols in the
table during the course of a save(). Retrieving persistent objects is very much like
allocating and constructing them in the first place.

Let us walk through load(). If a single symbol is to be loaded, its name is
already in the symbol table. Therefore, we are either looking at an undefined Sym-
bol or the symbol knows how to answer a move():

146 12 Persistent Objects — Storing and Loading Data Structures

% Syntab | oad {
struct Syntab * self = cast(Syntab(), _self);
const char * target = NULL;
FILE * fp;
int result = ECF
void * in;
if (entry)
if (isO(entry, Synbol())
|| respondsTo(entry, "nove"))
target = name(entry);
el se
return EOF;

If there is an entry, checking it early keeps us from working entirely in vain. Next,
we access the file and try to read as many symbols from it as we can:

if (! (fp = fopen(fnm "r")))
return EOF;

while (in = retrieve(fp))

if (! target && feof(fp))
result = 0O;

fclose(fp);
return result;

}

If we are not looking for a particular entry, we are happy if we reach the end of file.
retrieve() returns an object from a stream; this will be discussed in section 12.4.

The body of the while loop deals with one symbol at a time. We are in real
trouble if the retrieved object does not know about move(), because the stream
cannot possibly have been written by save(). If that happens, it is time to quit the
loop and let load() return EOF. Otherwise, if we are looking for a particular entry,
we skip all symbols with different names.

{ const char * nm
void ** pp;
if (! respondsTo(in, "move"))
br eak;
if (target && strcnp(nane(in), target))
conti nue;
Technically, parse.c has set things up so that a file should either contain the desired
single entry or an entire symbol table, but the stremp() protects us from renamed
or modified files.

We are ready to bring the retrieved symbol into the symbol table. This is why
load() is a Symtab method. The process is quite similar to screen(): we assume
that retrieve() has taken care to dynamically save the name and we use search() to
locate the name in the table. If we rediscover the retrieved name, we have just
read a new symbol and we can simply insert it into the table.

12.1 An Example 147

nm = nanme(in);
pp = search(self, & nm;
if (* pp == nm /1 not yet in table

* pp = in;
Most likely, however, load has been given the name of a new symbol to load. In
this case, the name is already in the symbol table as an undefined Symbol with a
dynamically saved name. \We remove it completely and insert the retrieved symbol
in its place.
else if (isA(* pp, Synbol()))
/1 not yet defined
{ nm = nane(* pp), delete(* pp), free((void *) nm;
* pp = in;
} /[l mght free target, but then we exit bel ow
If we reach this point we are faced with an existing symbol, i.e., a variable gets a
new value or a function is redefined. However, we only overwrite a symbol that
knows about movel(), to protect against somebody changing the contents of our
input file.
else if (! respondsTo(* pp, "nove"))
{ nm = nane(in); delete(in); free((void *) nm;
conti nue; /1 should not happen

}
el se
{ nove(* pp, in);
delete(in), free((void *) nm;

}

if (target)

{ result = 0O;
br eak;

}

}
If we found the desired entry we can leave the loop.

We have to be very careful not to replace an existing symbol, because some
expression might already point to it. This is why movel() is introduced as a dynami-
cally linked method to transfer the value from one symbol to another.

Symbol.d
% Var Cl ass: Class Var: Synbol {

%—
void nove (_self, _from;
%
Symbol.dc
% Var nove ({

dcast s
setval ue(self, from — val ue);

}

148 12 Persistent Objects — Storing and Loading Data Structures

% : Const nmove { /1 don’t respondTo nove
}

% Fun nove ({

%cast s

setfun(self, from — fun), from — fun = 0;

}

Var and Fun are willing to move(), but Const is not. move() is similar to a shallow
copy operation: for a Fun which points to an expression, it transfers the pointer but
does not copy the entire expression. move() actually clears the source pointer so
that the source object may be deleted without destroying the transferred expres-
sion.

12.2 Storing Objects — puto()

puto() is an Object method which writes the representation of an object to a FILE
pointer and returns the number of bytes written.

Object.d
% Class bject {

%—
int puto (const _self, FILE * fp); /1 display
Object.dc
% Obj ect puto {
%cast s

class = classOf(sel f);
return fprintf(fp, "% at %\n", class — name, self);

}

As we shall see in section 12.3, it is essential that the output starts with the class
name of the object. Emitting the object’s address is not strictly necessary.

While each subclass is free to implement its own version of puto(), the easiest
solution is to let puto() operate just like a constructor, i.e., to cascade calls up the
superclass chain all the way back to Object_puto() and thus guarantee that the out-
put starts with the class name and picks up the instance information from each
class involved. This way each puto method only needs to worry about the informa-
tion that is added in its own class and not about the complete content of an object.
Consider a Var and a Symbol:

% Var puto {
int result;
%cast s
result = super_puto(Var(), _self, fp);
return result + fprintf(fp, "\tvalue %\n", self — value);

12.2 Storing Objects — ""puto()”’ 149

% Synbol puto {
int result;
%cast s
result = super_puto(Synbol (), _self, fp);
return result + fprintf(fp, "\tname %\n\tlex %\ n",
self — nanme, self — lex);

}
This produces something like the following output:
Var at 0x50echl8 Object
name X Symbol
lex 118
value 1 Var

It is tempting to streamline the code to avoid the int variable:
% Var puto { /1 W\RONG
%ast s

return super_puto(Var(), _self, fp)
+ fprintf(fp, "\tvalue %\n", self — value);

}

However, ANSI-C does not guarantee that the operands of an operator like + are
evaluated from left to right, i.e., we might find the order of the output lines scram-
bled.

Designing the output of puto() is easy for simple objects: we print each com-
ponent with a suitable format and we use puto() to take care of pointers to other
objects — at least as long as we are sure not to run into a loop.

A container class, i.e., a class that manages other objects, is more difficult to
handle. The output must be designed so that it can be restored properly, especially
if an unknown number of objects must be written and read back; unlike save()
shown in section 12.1 we cannot rely on end of file to indicate that there are no
more objects.

In general, we need a prefix notation: either we write the number of objects
prior to the sequence of actual objects, or we prefix each object by a character such
as a plus sign and use, e.g., a period in place of the plus to indicate that there are
no more objects. We could use ungetc(getc(fp), fp) to peek at the next character,
but if we use the absence of a particular lead character to terminate a sequence,
we are effectively relying on other objects not to accidentally break our scheme.

Fun in our calculator is a different kind of container class: it is a symbol contain-
ing an expression composed of Node symbols. puto() outputs the expression tree
in preorder, nodes before subtrees; if the degree of each node is known, it can be
easily restored from this information:

% Bi nhary puto {
int result;
%cast s
result = super_puto(Binary(), self, fp);
result += puto(left(self), fp);
return result + puto(right(self), fp);

150 12 Persistent Objects — Storing and Loading Data Structures

The only catch is a function which references other functions. If we blindly apply
puto() to the reference, and if we don't forbid recursive functions, we can easily
get stuck. The Ref and Val classes were introduced to mark symbol table refer-
ences in the expression tree. For a reference to a function we only write the func-
tion name:
% Ref puto {
int result;
%cast s
result = super_puto(Ref(), self, fp);
result += putsynbol (left(self), fp);
return result + puto(right(self), fp);
}

For reasons that will become clear in the next section, putsymbol() is defined in
parse.c:

int putsymbol (const void * sym FILE * fp)

{
return fprintf(fp, "\tname %\n\tlex %\ n",

name(sym, |ex(sym);
}

It is sufficient to write the reference name and token value.

12.3 Filling Objects — geto()

geto() is an Object method which reads information from a FILE pointer and fills an
object with it. getol() is applied to the uninitialized object; therefore, its job is quite
similar to that of a constructor like etor(). However, ctor() takes the information for
the new object from its argument list; geto() reads it from the input stream.

Object.d
% Class bject {

%—

void * geto (_self, FILE * fp); /1 construct fromfile

An empty tag is specified by the leading colon because it does not make sense for
an initialized object to respondTo the method geto.

Symbol.dc

% Var geto {
struct Var * self = super_geto(Var(), _self, fp);

if (fscanf(fp, "\tvalue %g\n", & self — value) != 1)
assert (0);
return self;

}

Var_getol() lets the superclass methods worry about the initial information and sim-
ply reads back what Var_puto() has written. Normally, the same formats can be
specified for fprintf() in the puto method and for fscanf() in the geto method.
However, floating point values reveal a slight glitch in ANSI-C: fprintf() uses %g to

12.4 Loading Objects — "‘retrieve()”’ 151

convert a double, but fscanf() requires %Ig to convert back. Strings usually have
to be placed into dynamic memory:
% Synbol geto {
struct Synbol * self = super_geto(Synbol (), _self, fp);
char buf [BUFSI Z];

if (fscanf(fp, "\tnane %\n\tlex %\ n",
buf, & self — lex) = 2)
assert (0);
self — name = malloc(strlen(buf) + 1);
assert(self — nane);
strcpy((char *) self — nanme, buf);
return self;

}

Normally, geto() reads exactly what the corresponding puto() has written, and just
like constructors, both methods call their superclass methods all the way back to
Object. There is one very important difference, however: we saw that
Object_puto() writes the class name followed by an address:

Var at 0x50echl8 Object
name X Symbol
lex 118
value 1 Var

Object_getol() is the first method to fill the Var object on input. The class name
Var written by puto() must be read and used to allocate a Var object before getol)
is called to fill the object, i.e., Object_geto() starts reading just after the class
name:
% Obj ect geto {
void * dumy;
%¢ast s
if (fscanf(fp, " at %\n", & dummy) != 1)
assert (0);
return self;

}

This is the only place where geto and puto methods do not match exactly. The
variable dummy is necessary: we could avoid it with the format element %*p, but
then we could not discover if the address really was part of the input.

12.4 Loading Objects — retrieve()

Who reads the class name, allocates the object, and calls geto() to fill it? Perhaps
strangely, this is accomplished by the function retrieve() which is declared in the
class description file Object.d, but which is not a method:

void * retrieve (FILE * fp); /1 object fromfile
retrieve() reads a class name as a string from a stream; somehow finds the
appropriate class description pointer; uses allocate() to create room for the object;

and asks geto() to fill it. Because allocate() inserts the final class description
pointer, geto() can actually be applied to the allocated area:

152 12 Persistent Objects — Storing and Loading Data Structures

struct classList { const char * name; const void * class; };

void * retrieve (FILE * fp)
{ char buf [BUFSI Z];

static struct classList * cL; /1 local copy
static int ¢cD = —4; /l # cl asses
if (cD < 0)
build classList in cL[0..cD-]
if (! cD
fputs("no classes known\n", stderr);
else if (fp & ! feof (fp) && fscanf(fp, "%", buf) == 1)

{ struct classList key, * p;

key. nane = buf;
if (p = bsearch(& key, cL, cD, sizeof key,
(int (*) (const void *, const void *)) cnp))
return geto(allocate(p — class), fp);
fprintf(stderr, "%: cannot retrieve\n", buf);

}

return O;

}

retrieve() needs a list of class names and class description pointers. The class
descriptions point to the methods and selectors, i.e., the list actually guarantees
that the code for the classes is bound with the program using retrievel(). If the data
for an object is read in, the methods for the object are available in the program —
geto() is just one of them.

Where does the class list come from? We could craft one by hand, but in
chapter 9 we looked at munch, a simple awk program to extract class names from
a listing of object modules produced by nm. Because nm can be applied to a library
of object modules, we can even extract the class list supported by an entire library.
The result is an array classes[] with a list of pointers to the class initialization func-
tions, alphabetically sorted by class names.

retrieve() could search this list by calling each function to receive the initialized
class description and applying nameOf() to the result to get the string representa-
tion of the class name. This is not very efficient if we have to retrieve many
objects. Therefore, retrieve() builds a private list as follows:

extern const void * (* classes[]) (void); /1 munch

if (cD < 0)
{ for (cD = 0; classes[cD]; ++ cD)
; // count cl asses
if (cD > 0) /1 collect name/desc
{ cL = malloc(cD * sizeof (struct classList));
assert(cl);
for (cD = 0; classes[cD]; ++ cD)
cL[cD].class = classes[cD] (),
cL[cD].nane = nameOf (cL[cD].class);

12.5 Attaching Objects — "'value'' Revisited 153

The private class list has the additional advantage that it avoids further calls to the
class initialization functions.

12.5 Attaching Objects — value Revisited

Writing and reading a strictly tree-structured, self-contained set of objects can be
accomplished with puto(), retrieve(), and matching geto methods. Our calculator
demonstrates that there is a problem once a collection of objects is written which
references other objects, written in a different context or not written at all. Con-
sider:

$ val ue

def sqr = $ * $

def one = sqr(sin($)) + sqr(cos($))
save one

The output file one.sym contains references to sqr but no definition:

$ cat one.sym
Fun at 0x50ec9f 8
nane one
|l ex 102
val ue 10
Add at 0x50ed168
User at 0x50ed074 Ref
name sqr putsymbol
|l ex 102
Builtin at 0x50ecfdO Ref
nanme sin putsymbol
| ex 109
Parm at 0x50ecea8 Val
nanme one putsymbol
|l ex 102
User at 0x50edl4c
nanme sqr
|l ex 102
Builtin at 0x50ed130
nane cos
|l ex 109
Parm at 0x50ed118
nane one
|l ex 102

User is a Ref, and Ref_puto() has used putsymbol() in parse.c to write just the
symbol name and token value. This way, the definition for sqr() is intentionally not
stored into one.sym.

Once a symbol table reference is read in, it must be attached to the symbol
table. Our calculator contains a single symbol table table which is created and
managed in parse.c, i.e., a reference from the expression tree to the symbol table
must employ getsymbol() from parse.c to attach the reference to the current sym-

154 12 Persistent Objects — Storing and Loading Data Structures

bol table. Each kind of reference employs a different subclass of Node so that the
proper subclass of Symbol can be found or created by getsymbol(). This is why
we must distinguish Global as a reference to a Var and Parm as a reference to a
Fun, from where the parameter value is fetched.

% G obal geto {
struct dobal * self = super_geto(dobal (), _self, fp);

down(sel f) = getsynbol (Var(), fp);
return self;

}

% Parm geto {
struct Parm * self = super_geto(Parm(), _self, fp);

down(sel f) = getsynbol (Fun(), fp);
return self;

}
Similarly, Assign looks for a Var; Builtin looks for a Math; and User looks for a
Fun. They all employ getsymbol() to find a suitable symbol in table, create one, or
complain if there is a symbol with the right name but the wrong class:

void * getsynmbol (const void * class, FILE * fp)
{ char buf [BUFSI Z];

int token;

void * result;

if (fscanf(fp, "\tnane %\n\tlex %\n", buf, & token) != 2)
assert (0);

result = screen(table, buf, UNDEF);

if (lex(result) == UNDEF)

install (table, result =
new(cl ass, name(result), token));
else if (lex(result) != token)
{ fclose(fp);
error("%: need a %, got a %",
buf, nameOf (cl ass), nameOf (classOf (result)));
}

return result;

}
It helps that when a Fun symbol is created we need not yet supply the defining
expression:

$ val ue

| oad one

one(10)

undefined function

one() tries to call sqr() but this is undefined.

let sgr =9
bad assi gnment

An undefined Symbol could be overwritten and assigned to, i.e., sqr() really is an
undefined function.

12.5 Attaching Objects — "'value'’ Revisited

165

def sqr
one(10)

I =
[EEY

def sqr
one(10)
2

$* 3

Here is the class hierarchy of the calculator with most method definitions. Meta-
classes have been omitted; boldface indicates where a method is first defined.

CLASS DATA METHODS
hj ect magi c, % classOF,
% delete, puto, geto,
%+ new
Node % sunder
% del ete, exec
% new, reclaim
Nunmber val ue % ctor, puto, geto, exec
Monad down % ctor
Val % puto, exec
d obal % geto
Par m % geto
Unary % dtor, puto, geto
M nus % exec
Dyad left, right % ctor
Ref % dtor, puto
Assi gn % geto, exec
Builtin % geto, exec
User % geto, exec
Bi nary % dtor, puto, geto
Add % exec
Sub % exec
mul t % exec
Div % exec
Synbol nane, |ex % nane, |ex
% ctor, puto, geto
Reserved % delete
Var val ue % val ue, setval ue
% puto, geto, nove
Const % ctor, delete, nobve
Fun fun % setfun, funval ue
% puto, geto, nove
Mat h fun % mat hval ue
% ctor, delete
Synt ab buf , % save, | oad,
% ctor, puto, delete

156 12 Persistent Objects — Storing and Loading Data Structures

A slight blemish remains, to be addressed in the next chapter: getsymbol()
apparently knows enough to close the stream fp before it uses error() to return to
the main loop.

12.6 Summary

Objects are called persistent, if they can be stored in files to be loaded later by the
same or another application. Persistent objects can be stored either by explicit
actions, or implicitly during destruction. Loading takes the place of allocation and
construction.

Implementing persistence requires two dynamically linked methods and a func-
tion to drive the loading process:
int puto (const _self, FILE * fp);
void * geto (_self, FILE * fp);
void * retrieve (FILE * fp);

puto() is implemented for every class of persistent objects. After calling up the
superclass chain it writes the class’ own instance variables to a stream. Thus, all
information about an object is written to the stream beginning with information
from the ultimate superclass.

geto() is also implemented for all persistent objects. The method is normally
symmetric to puto(), i.e., after calling up the superclass chain it fills the object with
values for the class’ own instance variables as recorded by puto() in the stream.
geto() operates like a constructor, i.e., it does not allocate its object, it merely fills
it.

Output produced by puto() starts with the class name of the object. retrieve()
reads the class name, locates the corresponding class description, allocates
memory for an object, and calls getol() to fill the object. As a consequence, while
puto() in the ultimate superclass writes the class name of each object, geto() starts
reading after the class name. It should be noted that retrieve() can only load
objects for which it knows class descriptions, i.e., with ANSI-C, methods for per-
sistent objects must be available a priori in a program that intends to retrieve()
them.

Apart from an initial class name, there is no particular restriction on the output
format produced by puto(). However, if the output is plain text, puto() can also aid
in debugging, because it can be applied to any object with a suitable debugger.

For simple objects it is best to display all instance variable values. For container
objects pointing to other objects, puto() can be applied to write the client objects.
However, if objects can be contained in more than one other object, puto() or
retrieve() must be designed carefully to avoid the effect of a deep copy, i.e., to
make sure that the client objects are unique. A reasonably foolproof solution for
loading objects produced by a single application is for retrieve() to keep a table of
the original addresses of all loaded objects and to create an object only, if it is not
already in the table.

12.7 Exercises 157

12.7 Exercises

If retrieve() keeps track of the original address of each object and constructs only
new ones, we need a way to skip along the stream to the end of an object.

System V provides the functions dlopen(), dlsym(), and diclose() for dynamic
loading of shared objects. retrieve() could employ this technology to load a class
module by name. The class module contains the class description together with all
methods. It is not clear, however, how we would efficiently access the newly
loaded selectors.

value can be extended with control structures so that functions are more
powerful. In this case stmt() needs to be split into true statements such as let and
commands like save, load, or def.

159

13
Exceptions
Disciplined Error Recovery

Thirteen seems quite appropriate as the chapter number for coping with misfor-
tune. If we get lost inside a single function, the much maligned goto is a boon for
bailing out. ANSI-C's setjmp() and longjmp() do away with a nest of function
activations if we discover a problem deep inside. However, if cleanup operations
must be inserted at various levels of a bailout we need to harness the crude
approach of setjmp().

13.1 Strategy

If our calculator has trouble loading a function definition we run into a typical error
recovery problem: an open stream has to be closed before we can call error() to
produce a message and return to the main loop. The following picture indicates
that a simple risky action should be wrapped into some error handling logic:

on error

risky action

error handler

First, an error handler is set up. Either the risky action completes correctly or the
error handler gets a chance to clean up before the compound action completes. In
ANSI-C, setjmp() and longjmp() are used to implement this error recovery scheme:

#incl ude <setjnp. h>
static jnmp_buf onError;

static void cause() {
| ongj mp(onError, 1);

action () {
if (! setjnmp(onError))
risky action
el se
error handler

}

setjmp() initializes onError and returns zero. If something goes wrong in risky
action, or in a function called from there, we signal the error by calling cause(). The
longjmp() in this function uses the information in onError to effect a second return
from the call to setjmp() which initialized onError. The second return delivers the
second argument of longjmp() as a function value; one is returned if this value is
zero. Things go horribly wrong if the function which called setjmp() is no longer
active.

160 13 Exceptions — Disciplined Error Recovery

In the terminology of the picture above, on error refers to calling setjimp() to
deposit the information for error handling. risky action is executed if setjmpl)
returns zero; or otherwise, error handler is executed. cause() is called to initiate
error recovery by transferring control to error handler.

We have used this simple model to recover from syntax errors deep inside
recursive descent in our calculator. Things get more complicated if error handlers
must be nested. Here is what happens during a load operation in the calculator:

main loop

on error

on load error

load file

close file

message

In this case we need two longjmp() targets for recovery: onError returns to the
main loop and onLoadError is used to clean up after a bad loading operation:

j mp_buf onError, onLoadError;
#defi ne cause(x) | ongj mp(x, 1)

mai nLoop () {
if (! setjnmp(onError))
| oadFil e();
el se
some problem

}

loadFile () {
if (! setjnp(onLoadError))
work with file
el se
close file
cause(onError);

}

The code sketch shows that cause() somehow needs to know how far recovery
should go. We can use an argument or a hidden global structure for this purpose.

If we give cause() an explicit argument, it is likely that it has to refer to a global
symbol so that it may be called from other files. Obviously, the global symbol must
not be used at the wrong time. It has the additional drawback that it is part of the
client code, i.e., while the symbol is only meaningful for a particular error handler, it
is written into the code protected by the handler. If this code is called from some
other place, we have to make sure that it does not inadvertently refer to an inactive
recovery point.

13.2 Implementation — ""Exception’ 161

A much better strategy is a stack of jmp_buf values. A function establishes an
error handler by pushing this stack, and cause() uses the top entry. Of course, the

error handler has to be popped from the stack before the corresponding function
terminates.

13.2 Implementation — Exception

Exception is a class that provides nestable exception handling. Exception objects
must be deleted in the reverse order of their creation. Normally, the newest object
represents the error handler which receives control from a call to cause().

/1 new(Exception())
#incl ude <setjnp. h>

voi d cause (int nunber); [l if set up, goto catch()
% Cl ass Exception: Object {

i nt armed,; /1 set by a catch()

j mp_buf | abel; /1 used by a catch()

%
void * catchException (_self);
%
new(Exception()) creates an exception object which is pushed onto a hidden stack
of all such objects:

#include "List.h"
static void * stack;

% Exception ctor {
void * self = super_ctor(Exception(), _self, app);

if (! stack)

stack = newmList(), 10);
addLast (st ack, self);
return self;

}
We use a List object from section 7.7 to implement the exception stack.

Exception objects must be deleted exactly in the opposite order of creation.
The destructor pops them from the stack:

% Exception dtor {
void * top;
%cast s
assert (stack);
top = takelLast(stack);
assert(top == self);
return super_dtor (Exception(), self);

}

An exception is caused by calling cause() with a nonzero argument, the exception
code. If possible, cause() will execute a longjmp() to the exception object on top

of the stack, i.e., the most recently created such object. Note that cause() may or
may not return to its caller.

162 13 Exceptions — Disciplined Error Recovery

voi d cause (int nunber) {
unsi gned cnt;

if (number && stack && (cnt = count(stack)))
{ void * top = | ookAt (stack, cnt—1);
struct Exception * e = cast(Exception(), top);
if (e = arned)
| ongj np(e — | abel, nunber);

}

cause() is a function, not a method. However, it is implemented as part of the
implementation of Exception and it definitely has access to the internal data of this
class. Such a function is often referred to as a friend of the class.

cause() employs a number of safeguards: the argument must not be zero; the
exception stack must exist, must contain objects, and the top object must be an
exception; and finally, the exception object must have been armed to receive the
exception. If any of the safeguards fails, cause() returns and its caller must cope
with the situation.

An exception object must be armed before it can be used, i.e., the jmp_buf
information must be deposited with setjmp() before the object will be used by
cause(). For several reasons, creating and arming the object are two separate
operations. An object is usually created with new(), and the object is the result of
this operation. An exception object must be armed with setjmp(), and this function
will return two integer values: first a zero, and the second time the value handed to
longjmp(). It is hard to see how we could combine the two operations.

More importantly, ANSI-C imposes severe restrictions as to where setjmpl()
may be called. It has to pretty much be specified alone as an expression and the
expression can only be used as a statement or to govern a loop or selection state-
ment. An elegant solution for arming an exception object is the following macro,
defined in Exception.d.

#define catch(e) setj np(cat chException(e))

catch() is used where setjmp() would normally be specified, i.e., the restrictions
imposed by ANSI-C on setjmp() can be observed for catch(). It will later return the
value handed to cause(). The trick lies in calling the method catchException() to
supply the argument for setjmp():
% cat chException {
%cast s
self — arnmed = 1;
return self — | abel;

}

catchException() simply sets .armed and returns the jmp_buf so that setjmp()
can initialize it. According to the ANSI-C standard, jmp_buf is an array type, i.e., the
name of a jmp_buf represents its address. If a C system erroneously defined
jmp_buf as a structure, we would simply have to return its address explicitly. We
do not require catch() to be applied to the top element on the exception stack.

13.3 Examples 163

13.3 Examples

In our calculator we can replace the explicit setjmp() in parse.c with an exception

object:
i nt

{

mai n (voi d)

volatile int errors = 0O;

char buf [BUFSI Z];

void * retry = new(Exception());

if (catch(retry))
{ ++ errors;
recl ai m(Node(), delete);

}
while (gets(buf))

Causing an exception will now restart the main loop. error() is modified so that it
ends by causing an exception:

void error (const char * fnmt, ...)

{

}

va_list ap;

va_start(ap, fnt);

viprintf(stderr, fnt, ap), putc(’'\n, stderr);
va_end(ap);

cause(1);

assert (0);

error() is called for any error discovered in the calculator. It prints an error message
and causes an exception which will normally directly restart the main loop. How-
ever, while Symtab executes its load method, it nests its own exception handler:

% Syntab | oad {

FILE * fp;
void * in;
void * cl eanup;

i']."(! (fp = fopen(fnm "r")))
return EOF;

cl eanup = new(Exception());
if (catch(cl eanup))
{ fclose(fp);
del et e(cl eanup) ;
cause(1);
assert (0);

}
while (in = retrieve(fp))

fclose(fp);
del et e(cl eanup) ;
return result;

164 13 Exceptions — Disciplined Error Recovery

We saw in section 12.5 that we have a problem if load() is working on an expres-
sion and if getsymbol() cannot attach a name to the appropriate symbol in table:
else if (lex(result) != token)
error("%: need a %, got a %",
buf, nameOf (cl ass), nameOf (classOf (result)));

All it takes now is to call error() to print a message. error() causes an exception
which is at this point caught through the exception object cleanup in load(). In this
handler it is known that the stream fp must be closed before load() can be ter-
minated. When cleanup is deleted and another exception is caused, control finally
reaches the normal exception handler established with retry in main() where super-
fluous nodes are reclaimed and the main loop is restarted.

This example demonstrates it is best to design cause() as a function which only
passes an exception code. error() can be called from different protected contexts
and it will automatically return to the appropriate exception handler. By deleting the
corresponding exception object and calling cause() again, we can trigger all handlers
up the chain.

Exception handling smells of goto with all its unharnessed glory. The following,
gruesome example uses a switch and two exception objects to produce the output

$ except
caused
caused
caused
caused
caused

-hwl\)l—‘J_\

Here is the code; extra points are awarded if you trace it with a pencil...

int main ()
{ void * a = new Exception()), * b = new Exception());

cause(—1); puts("caused —1");

switch (catch(a)) {
case 0:
switch (catch(b)) {
case 0:
cause(1l); assert(0);
case 1:
puts("caused 1");
cause(2); assert(0);
case 2:
puts("caused 2");
del et e(b);
cause(3); assert(0);
defaul t:
assert (0);

}

13.4 Summary 165

case 3:
puts("caused 3");
del ete(a);
cause(4);
br eak;
defaul t:
assert (0);
}
puts("caused 4");
return O;

}
This code is certainly horrible and incomprehensible. However, if exception
handling is used to construct the package shown at the beginning of this chapter

on error

risky action

error handler

we still maintain a resemblance of the one entry, one exit paradigm for control
structures which is at the heart of structured programming. The Exception class
provides a clean, encapsulated mechanism to nest exception handlers and thus to
nest one protected risky action inside another.

13.4 Summary

Modern programming languages like Eiffel or C++ support special syntax for excep-
tion handling. Before a risky action is attempted, an exception handler is esta-
blished. During the risky action, software or hardware (interrupts, signals) can
cause the exception and thus start execution of the exception handler. Theoreti-
cally, upon completion of the exception handler there are three choices: terminate
both, the exception handler and the risky action; resume the risky action immedi-
ately following the point where the exception was caused; or retry that part of the
risky action which caused the exception.

In practice, the most likely choice is termination and that may be the only
choice which a programming language supports. However, a language should
definitely support nesting the ranges where an exception handler is effective, and it
must be possible to chain exception handling, i.e., when one exception handler ter-
minates, it should be possible to invoke the next outer handler.

Exception handling with termination can easily be implemented in ANSI-C with
setjmp(). Exception handlers can be nested by stacking the jmp_buf information
set up by setjmp() and used by longjmp(). A stack of jmp_buf values can be
managed as objects of an Exception class. Objects are created to nest exception
handlers, and they must be deleted in the opposite order. An exception object is
armed with eateh(), which will return a second time with the nonzero exception
code. An exception is caused by calling cause() with the exception code that
should be delivered to catch() for the newest exception object.

166 13 Exceptions — Disciplined Error Recovery

13.5 Exercises

It seems likely that one could easily forget to delete some nested exceptions.
Therefore, Exception_dtor() could implicitly pop exceptions from the stack until it
finds self. Is it a good idea to delete() them to avoid memory leaks? What should
happen if self cannot be found?

Similarly, cateh() could search the stack for the nearest armed exception.
Should it pop the unarmed ones?

setjmp() is a dangerous feature, because it does not guard against attempting
to return into a function that has itself returned. Normally, ANSI-C uses an activa-
tion record stack to allocate local variables for each active function invocation. Obvi-
ously, cause() must be called at a higher level on that stack than the function it tries
to longjmp() into. If catchException() passes the address of a local variable of its
caller, we could store it with the jmp_buf and use it as a coarse verification of the
legality of the longjmp(). A fancier technigue would be to store a magic number in
the local variable and check if it is still there. As a nonportable solution, we might
be able to follow a chain along the activation record stack and check from cause() if
the stack frame of the caller of catchException() is still there.

167

14
Forwarding Messages
A GUI Calculator

In this chapter we look at a rather typical problem: one object hierarchy we build
ourselves to create an application, and another object hierarchy is more or less
imposed upon us, because it deals with system facilities such as a graphical user
interface (GUI, the pronunciation indicates the generally charming qualities). At this
point, real programmers turn to multiple inheritance, but, as our example of the obli-
gatory moused calculator demonstrates, an elegant solution can be had at a fraction
of the cost.

14.1 The ldea

Every dynamically linked method is called through its selector, and we saw in
chapter 8 that the selector checks if its method can be found for the object. As an
example, consider the selector add() for the method to add an object to a List:
struct Object * add (void * _self, const void * elenment) {
struct Object * result;
const struct ListClass * class =
cast(Listd ass(), classO(_self));

assert (class — add. net hod);
cast (Cbject(), elenent);

result = ((struct Cbject * (*) ())
cl ass — add. nethod) (_sel f, elenent);
return result;

}

classOf() tries to make sure that _self references an object; the surrounding call to
cast() ascertains that the class description of _self belongs to the metaclass
ListClass, i.e., that it really contains a pointer to an add method; finally, assert()
guards against a null value masquerading as this pointer, i.e., it makes sure that an
add method has been implemented somewhere up the inheritance chain.

What happens if add() is applied to an object that has never heard of this
method, i.e., what happens if _self flunks the various tests in the add() selector?
As it stands, an assert() gets triggered somewhere, the problem is contained, and
our program quits.

Suppose we are working on a class X of objects which themselves are not des-
cendants of List but which know some List object to which they could logically
pass a request to add(). As it stands, it would be the responsibility of the user of X
objects, to know (or to find out with respondsTo()) that add() cannot be applied to
them and to reroute the call accordingly. However, consider the following, slightly
revised selector:

168 14 Forwarding Messages — A GUI Calculator

struct Object * add (void * _self, const void * elenent) {
struct Object * result;
const struct ListClass * class =
(const void *) classOf (_self);

if (isO(class, Listdass()) && class — add.nmethod) ({

cast (Cbject(), elenent);

result = ((struct Cbject * (*) ())

cl ass — add. nethod) (_sel f, elenent);

} else

forward(_self, & result, (Method) add, "add",

_self, elenment);

return result;

}

Now, _self can reference any object. If its class happens to contain a valid add
pointer, the method is called as before. Otherwise, all the information is passed to
a new method forward(): the object itself; an area for the expected result; a pointer
to and the name of the selector which failed; and the values in the original argu-
ment list. forward() is itself a dynamically linked method declared in Object:

% Class bject {

%—
void forward (const _self, void * result, \
Met hod sel ector, const char * name, ...);

Obviously, the initial definition is a bit helpless:
% Obj ect forward {
%cast s
fprintf(stderr, "% at % does not answer %s\n",

nameCf (cl assOf (sel f)), self, nane);
assert (0);

}

If an Object itself does not understand a method, we are out of luck. However,
forward() is dynamically linked: if a class wants to forward messages, it can
accomplish this by redefining forward(). As we shall see in the example in section
14.6, this is almost as good as an object belonging to several classes at the same
time.

14.2 Implementation

Fortunately, we decided in chapter 7 to enforce our coding standard with a prepro-
cessor ooc, and selectors are a part of the coding standard. In section 8.4 we
looked at the selector report which generates all selectors. Message forwarding is
accomplished by declaring forward() as shown above, by defining a default imple-
mentation, and by modifying the selector report in etc.rep so that all generated
selectors reroute what they do not understand:*

* As before, the presentation is simplified so that it does not show the parts which deal with variable
argument lists.

14.2 Implementation 169

“Omeader { "n
"o esul t
“ogl assOf

"% f met hod

" %thecks

“ogal |

't '} else 'n

"% orward

O eturn

} 'nn
This is almost the same code as in section 8.4: as we saw above, the cast() in the
classOf report is turned into a call to isOf() as part of the ifmethod report and an
else clause is added with the forward report to generate the call to forward().

The call to forward() is routed through another selector for argument checking.
It is probably not helpful to get stuck in recursion here, so if the selector forward()
itself is generated, we stop things with an assert():

% f orward // forward the call, but don’t forward forward

“{if “method forward
't 't assert(0);

'} “{else

't 't forward(_self, \
“{if “result void 0, '} ‘{else & result, "} \
(Method) ‘“nmethod , " “method ", “%args);

3} n

The additional “{if concerns the fact that a selector eventually has to return the
result expected by its caller. This result will have to be produced by forward(). The
general approach is to pass the result area to forward() to get it filled somehow. If,
however, our selector returns void, we have no result variable. In this case we
pass a null pointer.

It looks as if we could write slightly better code by hand: in some cases we
could avoid the result variable, assignment, and a separate return statement.
However, tuning would complicate the ooc reports unnecessarily because any rea-
sonable compiler will generate the same machine code in either case.

classOf is the other report that gets modified significantly. A call to cast() is
removed, but the interesting question is what happens if a call to a class method
needs to be forwarded. Let us look at the selector which ooc generates for new():

struct Object * new (const void * _self, ...) {
struct Object * result;
va_list ap;
const struct Cass * class = cast(Class(), _self);

va_start(ap, _self);
if (class — new nethod) {
result = ((struct Cbject * (*) ()) class — new. net hod)
(_self, & ap);

170 14 Forwarding Messages — A GUI Calculator
} else
forward((void *) _self, & result, (Method) new, "new',
_self, & ap);

va_end(ap);
return result;

}

new() is called for a class description like List. Calling a class method for something
other than a class description is probably a very bad idea; therefore, cast() is used
to forbid this. new belongs into Class; therefore, no call to isOf() is needed.

Let's assume that we forgot to define the initial Object_new(), i.e., that List
has not even inherited a new method, and that, therefore, new.method is a null
pointer. In this case, forward() is applied to List. However, forward() is a dynami-
cally linked method, not a class method. Therefore, forward() looks in the class
description of List for a forward method, i.e., it tries to find ListClass_forward():

alLi st Li st Li st Cl ass

. . Cl ass
"List" "ListCl ass"

struct List hj ect Cl ass

si zeof ali st

si zeof Li st

ctor: fill aLi st ctor: fill Li st
dtor: empty alLi st dtor: cannot happen
delete: free aLi st delete: no operation
forward: | forward for aLi st forward: forward for Li st
new: make alLi st new: make Li st
add.: add to aLi st struct d ass
take: take from aLi st

struct ListC ass

This is perfectly reasonable: List_forward() is responsible for all messages which
aList does not understand; ListClass_forward() is responsible for all those which
List cannot handle. Here is the classOf report in etc.rep:

“{if “linkage %—
“{if “neta " netaroot
't const struct “nmeta * class = classO(_self); "n
"} “{else
"t const struct “meta * class = \
(const wvoid *) «classOf(_self); "n

'}

14.3 Object-Oriented Design by Example 171

"} “{else
‘"t const struct “nmeta * <class = "\

cast(“netaroot (), _self); "n
3} n

For dynamically linked methods ‘linkage is %-—. In this case we get the class
description as a struct Class from classOf(), but we cast it to the class description
structure which it will be once isOf() has verified the type, so that we can select
the appropriate method component.

For a class method, “linkage evaluates as %+, i.e., we advance to the second
half of the report and simply check with cast() that _self is at least a Class. This is
the only difference in a selector for a class method with forwarding.

14.3 Object-Oriented Design by Example

GUIs are everybody's favorite demonstration ground for the power of object-oriented
approaches. A typical benchmark is to create a small calculator that can be
operated with mouse clicks or from the keyboard:

display C
71181 9]+
41151 6] -
111213 *
Q0| =1/

We will now build such a calculator for the curses and X11 screen managers. We
use an object-oriented approach to design, implement, and test a general solution.
Once it works, we connect it to two completely incompatible graphical environ-
ments. In due course, we shall see how elegantly message forwarding can be
used.

It helps to get the application’s algorithm working, before we head for the Gul
library. It also helps to decompose the application’s job into interacting objects.
Therefore, let us just look at what objects we can identify in the calculator pictured
above.

Our calculator has buttons, a computing chip, and a display. The display is an
information sink: it receives something and displays it. The computing chip is an
information filter: it receives something, changes its own state, and passes modi-
fied information on. A button is an information source or even a filter: if it is prop-
erly stimulated, it will send information on.

Thus far, we have identified at least four classes of objects: the display, the
computing chip, buttons, and information passed between them. There may be a
fifth kind of object, namely the source of the stimulus for a button, which models
our keyboard, a mouse, etc.

172

14 Forwarding Messages — A GUI Calculator

There is a common aspect that fits some of these classes: a display, comput-

ing chip,

or button may be wired to one next object, and the information is transmit-

ted along this wire. An information sink like the display only receives information,

but that

does not hurt the general picture. So far, we get the following design:

CLASS

DATA METHODS

hj ect

Event

base class

information to pass
ki nd type of data
dat a text, position, etc.

base class for application
out object | am connected to
wre connect me to another object
gate send information to out

Li neCut model the display

wre not used
gate display incoming information

But t on model an input device

Cal

t ext label, defines interesting information
gate look at incoming information:
if it matches text, send it on

c computing chip
state current value, etc.
gate change state based on information,
pass new current value on, if any

This looks good enough for declaring the principal methods and trying to write a
main program to test the decomposition of our problem world into classes.

lc.d

enum react { reject, accept };

%lcCass: Cass Ilc: Opject {
void * out;
%—
void wire (Object @to, _self);
enum react gate (_self, const void * item;
%
% lcCass LineQut: lc {
%
% lcCass Button: lc {
const char * text;

%

14.3 Object-Oriented Design by Example 173

run.c

int main ()

{ void * calc = newm(Calc());
void * lineQut = new(LineQut());
void * mux = new(Mux());

static const char * const cmd [] = { "C', "Q,
"o, "1", "2", "3, "4", "5, "6, "T", "8", "9,
A,y onst 0

const char * const * cpp;

wire(lineQut, calc);

for (cpp = cmd; * cpp; ++ cpp)

{ void * button = new(Button(), * cpp);
wire(calc, button), wre(button, nux);

}

Close. We can set up a computing chip, a display, and any number of buttons, and
connect them. However, if we want to test this setup with character input from a
keyboard, we will have to wrap every character as an Event and offer it to each
Button until one is interested and returns accept when we call its gate() method.
One more class would help:

CLASS DATA METHODS
Obj ect base class
Ic base class for application
Mux multiplexer, one input to many outputs
list Li st of objects
wre connects me to another object
gate passes information until some object wants it

The main program shown above already uses a Mux object and connects it to each
Button. \We are ready for the main loop:
while ((ch = getchar()) != EOF)
if (! isspace(ch))
{ static char buf [2];
void * event;

buf [0] = ch;
gate(nux, event = new(Event(), 0, buf));
del ete(event);

}

return O;
}
White space is ignored. Every other character is wrapped as an Event with kind
zero and the character as a string. The event is handed to the multiplexer and the
computation takes its course.

174 14 Forwarding Messages — A GUI Calculator

Summary

This design was motivated by the Class-Responsibility-Collaborator technique
described in [Bud91]: We identify objects more or less by looking at the problem.
An object is given certain responsibilities to carry out. This leads to other objects
which collaborate in carrying out the work. Once the objects are known, they are
collected into classes and, hopefully, a hierarchical pattern can be found that is
deeper than just one level.

The key idea for this application is the le class with the capability of receiving,
changing, and routing information. This idea was inspired by the Interface Builder
of NeXTSTEP where much of the information flow, even to application-specific
classes, can be “wired”" by mouse-dragging when the graphical user interface is
designed with a graphics editor.

14.4 Implementation — Ic

Obviously, gate() is a dynamically bound method, because the subclasses of Ic use
it to receive and process information. lc itself owns out, the pointer to another
object to which information must be sent. lc itself is mostly an abstract base class,
but Ic_gate() can access out and actually pass information on:

%lc gate {

%ast s
return self — out ? gate(self — out, itenm) : reject;

}
This is motivated by information hiding: if a subclass’ gate method wants to send
information on, it can simply call super_gate().

wire() is trivial: it connects an lc to another object by storing the object
address in out:
%lc wire {

dcast s
self — out = to;

}

Once the multiplexer class Mux is invented, we realize that wire(), too, must be
dynamically linked. Mux overwrites wire() to add its target object to a List:
% Mux wire { /1 add anot her receiver

dcast s
addLast (self — list, to);

}

Mux_gate() can be defined in various ways. Generally, it has to offer the incoming
information to some target objects; however, we can still decide in which order we
do this and whether or not we want to quit once an object accepts the information
— there is room for subclasses!

14.4 Implementation — "'Ic”’ 175

% Mux gate { /1 sends to first responder
unsigned i, n;
enum react result = reject;
%cast s
n = count(self — list);
for (i =0; i <n; ++ i)
{ result = gate(l ookAt(self — list, i), item;
if (result == accept)
br eak;
}

return result;

}

This solution proceeds sequentially through the list in the order in which it was
created, and it quits as soon as one invocation of gate() returns accept.

LineOut is needed so that we can test a computing chip without connecting it
to a graphical user interface. gate() has been defined leniently enough so that
LineOut_gate() is little more than a call to puts():

% Li neQut gate {

%cast s
assert(item;
puts(item; /1 hopefully, it is a string
return accept)

}

Of course, LineOut would be more robust, if we used a String object as input.

The classes built thus far can actually be tested. The following example hello
connects an lec to a Mux and from there first to two more lc objects and then twice
to a LineOut. Finally, a string is sent to the first le:

int main ()
{ void * ic = newm(lc());
void * mux = new(Mux());

int i;
void * lineQut = new(LineQut());
for (i =0; i < 2; ++1i)

wire(new(lc()), mux);
wire(lineQut, nux);
wire(lineQut, nux);
Wi re(mux, ic);
puto(ic, stdout);
gate(ic, "hello, world");
return O;

}

The output shows the connections described by puto() and the string displayed by
the LineOut:

176

14 Forwarding Messages — A GUI Calculator

$ hello
lc at 0x182cc
wired to Miux at
wired to [nil]
list List at
di m 4,
lc at 0x184f0
wired to [nil]
lc at 0x18500
wired to [nil]
Li neCut at
wired to [nil]
Li neCut at
wired to [nil]
}

hello, world

0x18354

0x18440
count 4 {

0x184e0

0x184e0

Although the Mux object is connected to the LineOut object twice, hello, world is
output only once, because the Mux object passes its information only until some

gate() returns accept.

Before we can implement Button we have to make a few assumptions about
the Event class. An Event object contains the information that is normally sent
from one le to another. Information from the keyboard can be represented as a
string, but a mouse click or a cursor position looks different. Therefore, we let an
Event contain a number kind to characterize the information and a pointer data

which hides the actual values:

% Event ctor { //
struct Event *

self — kind
self — data
return self;

}

new(Event (), 0, "text") etc.

self = super_ctor(Event(), _self, app);
va_arg(* app, int);
va_arg(* app, void *);

Now we are ready to design a Button as an information filter: if the incoming
Event is a string, it must match the button’s text; any other information is accepted
sight unseen, as it should have been checked elsewhere already. If the Event is
accepted, Button will send its text on:

% Button ctor {
struct

self — text =
return self;

}

% Button gate {
%cast s

if (item & kind(item

&&

Button *

/1 new(Button(),
self =

"text")
super_ctor(Button(),

app, *)s

_self, app);

va_arg(* const char

strcnp(data(item, self — text))

return reject;

return super_gate(Button(),

self, self — text);

14.4 Implementation — "'Ic”’ 177

This, too, can be checked with a small test program button in which a Button is
wired to a LineOut:

int main ()
{ void * button, * lineCQut;
char buf [100];

IineQut = new(LineCQut());

button = new(Button(), "a");
wire(lineQut, button);

while (gets(buf))

{ void * event = new(Event(), 0, buf);

if (gate(button, event) == accept)
br eak;
del ete(event);
}
return O;

}

button ignores all input lines until a line contains the a which is the text of the but-
ton:

$ button

i gnore

a

a

Only one a is input, the other one is printed by the LineOut.

LineOut and Button were implemented mostly to check the computing chip
before it is connected to a graphical interface. The computing chip Cale can be as
complicated as we wish, but for starters we stick with a very primitive design:
digits are assembled into a value in the display; the arithmetic operators are exe-
cuted as soon as possible without precedence; = produces a total;, C clears the
current value; and Q terminates the program by calling exit(0);.

This algorithm can be executed by a finite state machine. A practical approach
uses a variable state as an index selecting one of two values, and a variable op to
remember the current operator which will be applied after the next value is com-
plete:

%pr ot
typedef int values[2]; /1 left and right operand stack
%lcCass Calc: lc {

val ues val ue; /1 left and right operand

int op; /1 operator

int state; /! FSM state

%

178 14 Forwarding Messages — A GUI Calculator

The following table summarizes the algorithm that has to be coded:

input state val ue[] op super _gate()
digit any v[any] *= 10
v[any] += digit val ue[any]
0 - 1 |v[1] =0 input
+ - 1 v[0] op= v[1] input val ue[0]
v[1l] =0
0 v[0] =0
= 1 - 0 | v[0] op= v[]1] val ue[0]
v[0] =0
C any viany] =0 val ue[any]

And it really works:

$ run

12 + 34 * 56 = Q
1

12

3

34

46

5

56

2576

Summary

The lc classes are very simple to implement. A trivial LineOut and an input loop,
which reads from the keyboard, enable us to check Cale before it is inserted into a
complicated interface.

Calc communicates with its input buttons and output display by calling gatel().
This is coupled loosely enough so that Calc can send fewer (or even more) mes-
sages to the display than it receives itself.

Calc operates very strictly bottom-up, i.e., it reacts to every input passed in
through Calc_gate(). Unfortunately, this rules out the recursive descent technique
introduced in the third chapter, or other syntax-driven mechanisms such as yacc
grammars, but this is a characteristic of the message-based design. Recursive des-
cent and similar mechanisms start from the main program down, and they decide
when they want to look at input. In contradistinction, message-driven applications
use the main program as a loop to gather events, and the objects must react to
these events as they are sent in.

If we insist on a top-down approach for Calec, we must give it its own thread of
control, i.e., it must be a coroutine, a thread under Mach and similar systems, or
even another process under UNIX, and the message paradigm must be subverted by
process communication.

14.5 A Character-Based Interface — "'curses’ 179

14.5 A Character-Based Interface — curses

curses is an ancient library, which manages character-based terminals and hides the
idiosyncracies of various terminals by using the termcap or terminfo databases
[Sch90]. Originally, Ken Arnold at Berkeley extracted the functions from Bill Joy's vi
editor. Meanwhile, there are several, optimized implementations, even for DOS;
some are in the public domain.

If we want to connect our calculator to curses, we have to implement replace-
ments for LineOut and Button and connect them with a Cale object. curses pro-
vides a WINDOW data type, and it turns out that our best bet is to use a WINDOW
for each graphical object. The original version of curses does not use a mouse or
even provide functions to move a cursor under control of something like arrow
keys. Therefore, we will have to implement another object that runs the cursor and
sends cursor positions as events to the buttons.

It looks like we have two choices. We can define a subclass of lc to manage
the cursor and the main loop of the application, and subclasses of Button and of
LineOut to provide the graphical objects. Every one of these three classes will own
its own WINDOW. Alternatively, as shown at right below, we can start a new hierar-
chy with a subclass of le which owns a WINDOW and can run the cursor. Addition-
ally we create two more subclasses which then may have to own a Button and a
LineOut, respectively.

hj ect hj ect
lc lc
Button Button
CButton
Li neCut Li neQut
CLi neQut
Crt Crt
CBut ton
CLi neQut

Neither solution looks quite right. The first one seems perhaps closer to our appli-
cation, but we don't encapsulate the existence of the WINDOW data type in a single
class, and it does not look like we package curses in a way that can be reused for
the next project. The second solution seems to encapsulate curses mostly in Crt;
however, the subclasses need to contain objects that are very close to the applica-
tion, i.e., once again we are likely to end up with a once-only solution.

Let us stick with the second approach. We will see in the next section how we
can produce a better design with message forwarding. Here are the new classes:

180 14 Forwarding Messages — A GUI Calculator

CLASS DATA METHODS
Obj ect base class
lc base class for application
Crt base class for screen management
wi ndow curses W NDOW
rows, cols size
makeW ndow create my window
addstr display a string in my window
crt Box run a frame around my window
gate run cursor, send text or positions
CLi neQut output window
gate display text in my window
CBut t on box with label to click
button a But t on to accept and forward events
X, Y my position
gate if text event, send to butt on

if position event matches,
send null pointer to but t on

Implementing these classes requires a certain familiarity with curses; therefore, we
will not look at the details of the code here. The curses package has to be initial-
ized; this is taken care of by a hook in Crt_ctor(): the necessary curses functions
are called when the first Crt object is created.

Crt_gate() contains the main loop of the program. It ignores its incoming event
and it reads from the keyboard until it sees a control-D as an end of input indication.
At this point it will return reject and the main program terminates.

A few input characters are used to control the cursor. If return is pressed,
Crt_gate() calls super_gate() to send out an event with kind one and with an
integer array with the current row and column position of the cursor. All other char-
acters are sent out as events with kind zero and the character as a string.

The interesting class is CButton. WWhen an object is constructed, a box appears
on the screen with the button name inside.

% CButton ctor { /1 new(CButton(), "text", row, col)
struct CButton * self = super_ctor(CButton(), _self, app);

self — button =

new(Button(), va_arg(* app, const char *));
va_arg(* app, int);

va_arg(* app, int);

self — vy
self — x

makeW ndow(sel f, 3, strlen(text(self — button)) + 4,
self — vy, self —= x);

addStr(self, 1, 2, text(self — button));

crtBox(self);

return self;

14.5 A Character-Based Interface — "'curses’ 181

The window is created large enough for the text surrounded by spaces and a frame.
wire() must be overwritten so that the internal button gets connected:
% CButton wire {

9cast s
wire(to, self — button);

}

Finally, CButton_gate() passes text events directly on to the internal button. For a
position event we check if the cursor is within our own box:

% CButton gate {

%cast s

if (kind(item) == 1) /1 kind == 1 is click event

{ int * v = data(item; /1 data is an array [Xx, Y]
if (v[0] >= self — x & & Vv[0] < self — x + cols(self)
&% v[1] >= self -y && v[1l] < self — y + rows(self))

return gate(self — button, 0);

return reject;

}

return gate(self — button, item;
}

If so, we send a null pointer to the internal button which responds by sending on its
own text.

Once again, we can check the new classes with a simple program cbutton
before we wire up the entire calculator application.

int main ()

{ void * crt = new(Crt());
void * lineQut = new(CLineQut(), 5, 10, 40);
void * button = new(CButton(), "a", 10, 40);
makeW ndow(crt, 0, 0, 0, 0); /* total screen */
gate(lineQut, "hello, world");

wire(lineQut, button), wre(button, crt);
gate(crt, 0); /[* main |oop */

return O;

}

This program displays hello, world on the fifth line and a small button with the label
a near the middle of our terminal screen. If we move the cursor into the button and
press return, or if we press a, the display will change and show the a. cbutton ends
if interrupted or if we input control-D.

Once this works, our calculator will, too. It just has more buttons and a com-
puting chip:
int main ()
{ void * calc = newm(Calc());
void * crt = new(Crt());
void * lineQut = new(CLineQut(), 1, 1, 12);
void * mux = new(Mux());

182 14 Forwarding Messages — A GUI Calculator

static const struct tbl { const char * nm int vy, x; }
thl [1 = { "C', 0, 15,
"1*, 3, o, "2', 3, 5, "3, 3, 10, "+", 3, 15,
"4 6, 0, "5", 6, 5, "e6", 6, 10, "—, 6, 15,
“7*, 9, o, "8', 9, 5 "9', 9, 10, "*", 9, 15,
"Q, 12, o, "o*, 12, 5, "=", 12, 10, "/", 12, 15,
0 };

const struct tbl * tp;

makeW ndow(crt, 0, 0, 0, 0);

wire(lineQut, calc);

Wi re(mux, crt);

for (tp = tbl; tp — nm ++ tp)

{ void * o = newm(CButton(), tp = nm tp =y, tp = X);
wire(calc, o), wire(o, mux);

}

gate(crt, 0);

return O;

}

The solution is quite similar to the last one. A CButton object needs coordinates;
therefore, we extend the table from which the buttons are created. We add a Crt
object, connect it to the multiplexer, and let it run the main loop.

Summary

It should not come as a great surprise that we reused the Cale class. That is the
least we can expect, no matter what design technique we use for the application.
However, we also reused Button, and the lc base class helped us to concentrate
totally on coping with curses rather than with adapting the computing chip to a dif-
ferent variety of inputs.

The glitch lies in the fact, that we have no clean separation between curses and
the le class. Our class hierarchy forces us to compromise and (more or less) use
two le objects in a CButton. If the next project does not use the le class, we can-
not reuse the code developed to hide the details of curses.

14.6 A Graphical Interface — Xt

The X Window System (X11) is the de facto standard for graphical user interfaces
on UNIX and other systems.* X11 controls a terminal with a bitmap screen, a
mouse, and a keyboard and provides input and output facilities. Xlib is a library of
functions implementing a communication protocol between an application program
and the X11 server controlling the terminal.

* The standard source for information about X11 programming is the X Window System series published
by O'Reilly and Associates. Background material for the current section can be found in volume 4,
manual pages are in volume 5, 1SBN 0-937175-58-7.

14.6 A Graphical Interface — "'Xt"’ 183

X11 programming is quite difficult because application programs are expected
to behave responsibly in sharing the facilities of the server. Therefore, there is the
X toolkit, a small class hierarchy which mostly serves as a foundation for libraries of
graphical objects. The toolkit is implemented in C. Toolkit objects are called wid-
gets.

The base class of the toolkit is Object, i.e., we will have to fix our code to avoid
that name. Another important class in the toolkit is ApplicationShell: a widget
from this class usually provides the framework for a program using the X11 server.

The toolkit itself does not contain classes with widgets that are visible on the
screen. However, Xaw, the Athena Widgets, are a generally available, primitive
extension of the toolkit class hierarchy which provides enough functionality to
demonstrate our calculator.

The widgets of an application program are arranged in a tree. The root of this
tree is an ApplicationShell object. If we work with Xaw, a Box or Form widget is
next, because it is able to control further widgets within its screen area. For our
calculator display we can use a Label widget from Xaw, and a button can be imple-
mented with a Command widget.

On the screen, the Command widget appears as a frame with a text in it. If
the mouse enters or leaves the frame, it changes its visual appearance. If a mouse
button is clicked inside the frame, the widget will invoke a callback function which
must have been registered previously.

So-called translation tables connect events such as mouse clicks and key
presses on the keyboard to so-called action functions connected with the widget at
which the mouse currently points. Command has action functions which change
its visual appearance and cause the callback function to be invoked. These actions
are used in the Command translation table to implement the reaction to a mouse
click. The translation tables of a particular widget can be changed or augmented,
i.e., we can decide that the key press 0 influences a particular Command widget as
if a mouse button had been clicked inside its frame.

So-called accelerators are essentially redirections of translation tables from one
widget to another. Effectively, if the mouse is inside a Box widget, and if we press
a key such as +, we can redirect this key press from the Box widget to some Com-
mand widget inside the box, and recognize it as if a mouse button had been clicked
inside the Command widget itself.

To summarize: we will need an ApplicationShell widget as a framework; a
Box or Form widget to contain other widgets; a Label widget as a display; several
Command widgets with suitable callback functions for our buttons; and certain
magical convolutions permit us to arrange for key presses to cause the same
effects as mouse clicks on specific Command widgets.

The standard approach is to create classes of our own to communicate with the
classes of the toolkit hierarchy. Such classes are usually referred to as wrappers
for a foreign hierarchy or system. Obviously, the wrappers should be as indepen-
dent of any other considerations as possible, so that we can use them in arbitrary

184 14 Forwarding Messages — A GUI Calculator

toolkit projects. In general, we should wrap everything in the toolkit; but, to keep
this book within reason, here is the minimal set for the calculator:

CLASS DATA METHODS
bj ct our base class (renamed)
Xt base class for X toolkit wrappers
wi dget my X toolkit widget
makeW dget create my widget
addAl | Accel erators
set Label change | abel resource

addCal | back add callback function
(widget may or may not change)

Xt Appl i cati onShel | framework

mai nLoop X11 event loop
XawBox wraps Athena’s Box
XawFor m wraps Athena’s Form
XawLabel wraps Athena’s Label
XawConmmand wraps Athena’s Command

These classes are very simple to implement. They exist mostly to hide the uglier
X11 and toolkit incantation from our own applications. There are some design
choices. For example, setLabel() could be defined for XawLabel rather than for
Xt, because a new label is only meaningful for XawLabel and XawCommand but
not for ApplicationShell, Box, or Form. However, by defining setLabel() for Xt we
model how the toolkit works: widgets are controlled by so-called resources which
can be supplied during creation or later by calling XtSetValues(). It is up to the wid-
get if it knows a particular resource and decides to act when it receives a new value
for it. Being able to send the value is a property of the toolkit as such, not of a par-
ticular widget.

Given this foundation, we need only two more kinds of objects: an XLineOut
receives a string and displays it and an XButton sends out text events for mouse
clicks or keyboard characters. XLineOut is a subclass of XawLabel which behaves
like a LineOut, i.e., which must do something about gate().

Xt.d
% Cl ass XLi neCut: XawlLabel ({
%

Xt.dc

% XLi neCut ctor ({ /1 new(XLi neQut (), parent, "nane", "text")
struct XLineQut * self =
super _ctor (XLi neQut (), _self, app);
const char * text = va_arg(* app, const char *);

gate(self, text);
return self;

14.6 A Graphical Interface — "'Xt"’ 185

Three arguments must be specified when an XLineOut is created: the superclass
constructor needs a parent Xt object which supplies the parent widget for the
application’s widget hierarchy; the new widget should be given a name for the qual-
ification of resource names in an application default file; and, finally, the new
XLineOut is initially set to some text which may imply its size on the screen. The
constructor is brave and simply uses gate() to send this initial text to itself.

Because XLineOut does not descend from le, it cannot respond directly to
gate(). However, the selector will forward the call; therefore, we overwrite for-
ward() to do the work that would be done by a gate method if XLineOut could
have one:

% XLi neCut forward {
%cast s
if (selector == (Method) gate)
{ va_arg(* app, void *);
set Label ((void *) self, va_arg(* app, const void *));
* (enumreact *) result = accept;

}

el se
super _forward(XLi neQut (), _self, result,
sel ector, name, app);

}

We cannot be sure that every call to XLineOut_forward() is a gate() in dis-
guise. Every forward method should check and only respond to expected calls.
The others can, of course, be forwarded up along the inheritance chain with
super_forward().

Just as for new(), forward() is declared with a variable argument list; however,
the selector can only pass an initialized va_list value to the actual method, and the
superclass selector must receive such a pointer. To simplify argument list sharing,
specifically in deference to the metaclass constructor, ooc generates code to pass a
pointer to an argument list pointer, i.e., the parameter va_list * app.

As a trivial example for forwarding the gate() message to an XLineOut, here is
the xhello test program:
void main (int argc, char * argv [])
{ void * shell = new(XtApplicationShell (), & argc, argv);
void * lineQut = new(XLineQut(), shell, 0, "hello, world");

mai nLoop(shell);
}

The program displays a window with the text hello, world and waits to be killed
with a signal. Here, we have not given the widget in the XLineOut object an expli-
cit name, because we are not specifying any resources.

XButton is a subclass of XawCommand so that we can install a callback func-
tion to receive mouse clicks and key presses:

186 14 Forwarding Messages — A GUI Calculator

Xt.d
% Class XButton: XawComrand {
void * button;
%
Xt.dc
% XButton ctor { /1 new(XButton(), parent, "name", "text")
struct XButton * self = super_ctor(XButton(), _self, app);
const char * text = va_arg(* app, const char *);
self — button = new(Button(), text);
set Label (sel f, text);
addcCal | back(sel f, tell, self — button);
return self;
}

XButton has the same construction arguments as XLineOut: a parent Xt object, a
widget name, and the text to appear on the button. The widget name may well be
different from the text, e.g., the operators for our calculator are unsuitable as com-
ponents in resource path names.

The interesting part is the callback function. We let an XButton own a Button
and arrange for the callback function tell() to send a null pointer with gate() to it:

static void tell (Wdget w, XtPointer client_data,
Xt Poi nter call _data)

{
}

client_data is registered with the callback function for the widget to pass it in later.
We use it to designate the target of gate().

gate(client_data, NULL);

We could actually avoid the internal button, because we could set up XButton
itself to be wired to some other object; client_data could point to a pointer to this
target and a pointer to the text, and then tell() could send the text directly to the
target. It is simpler, however, to reuse the functionality of Button, especially,
because it opens up the possibility for XButton to receive text via a forwarded
gate() and pass it to the internal Button for filtering.

Message forwarding is, of course, the key to XButton as well: the internal but-
ton is inaccessible, but it needs to respond to a wire() that is originally directed at
an XButton:

% XButton forward {
%ast s
if (selector == wire)
wire(va_arg(* app, void *), self — button);
el se
super _forward(XButton(), _self, result,
sel ector, name, app);

14.6 A Graphical Interface — "'Xt"’ 187

Comparing the two forward methods we notice that forward() receives self with
the const qualifier but circumvents it in the case of XLineOut_forward(). The basic
idea is that the implementor of gate() must know if this is safe.

Once again, we can test XButton with a simple program xbutton. This program
places an XLineOut and an XButton into an XawBox and another pair into an
XawForm. Both containers are packed into another XawBox:

void main (int argc, char * argv [])

{ void * shell = new(XtApplicationShell (), & argc, argv);
void * box = new XawBox(), shell, 0);
void * composite = new XawBox(), box, 0);
void * lineQut = new(XLi neCut(), conposite, 0, "—ong—);
void * button = new XButton(), composite, 0, "a");

wire(lineQut, button);
puto(button, stdout); /* Box will nove its children */

conposite = new XawForm(), box, "form');
lineQut = new(XLineQut(), conposite,"lineQut", "—tong—);

button = new(XButton(), conposite, "button", "b");
wire(lineQut, button);
puto(button, stdout); /* Formwon’t nmove its children */
mai nLoop(shell);
}
The result appears approximately as follows on the screen:
-1 ong-
a
-long-|| b

Once the button a is pressed in the top half, the XLineOut receives and displays
the text a. The Athena Box widget used as a container will resize the Label widget,
i.e., the top box changes to display two squares, each with the text a inside. The
button with text b is contained in an Athena Form widget, where the resource

*form button.fromHoriz: |ineCut
controls the placement. The Form widget maintains the appearance of the bottom

rectangle even when b is pressed and the short text b appears inside the
XLineOut.

The test program demonstrates that XButton can operate with mouse clicks
and wire(); therefore, it is time to wire the calculator xrun:

188

14 Forwarding Messages — A GUI Calculator

void main (int argc, char * argv [])

{

}

void * shell = new(XtApplicationShell (), & argc, argv);

void * form = new XawForn(), shell, "form');

void * lineQut = new(XLineQut(), form "lineQut",
. ")

void * calc = newm(Calc());
static const char * const cmd [] = { "C', "C',
v, otit, 2, t2", "3, "3", "a", "+",
"4", "4 "5", """ "6", "6", "s", "=,
v, o7, o t8', "8", "9, "9", "nf, "*",
"Q, "@, "o*, "o", "t", "=", "d", "/I", 0},;
const char * const * cpp;
wire(lineQut, calc);

for (cpp = cnd; * cpp; cpp += 2)
{ void * button = new(XButton(), form cpp[0], cpp[1]);

wire(calc, button);

}
addAl | Accel erators(form;
mai nLoop(shell);

This program is even simpler than the curses version, because the table only con-
tains the name and text for each button. The arrangement of the buttons is han-
dled by resources:

*for
*for
*for
*for
*for
*for
*for

*forma.fronHori z:

m C. fromHori z: | i neQut
m1l. fromvert: | i neQut
m 2. fromvert: | i neQut
m 3. fromvert: | i neQut
m a. fromvert:

m 2. fromHori z:
m 3. fronmHori z:

WN PO

The resource file also contains the accelerators which are loaded by addAllAc-

celerators():

*form C. accel erators: <KeyPress>c: set() notify() unset()
*form Q accel erators: <KeyPr ess>q: set () notify() unset()
*form 0. accel erators: : <KeyPr ess>0: set() notify() unset()

If the resources are in a file Xapp, the calculator can, for example, be started with
the following Bourne shell command:

$ XENVI RONMVENT=Xapp Xrun

14.7 Summary

In this chapter we have looked at an object-oriented design for a simple calculator
with a graphical user interface. The CRC design technique summarized at the end of

section 14.3

leads to some classes that can be reused unchanged for each of the

three solutions.

14.8 Exercises 189

The first solution tests the actual calculator without a graphical interface. Here,
the encapsulation as a class permits an easy test setup. Once the calculator class
is functional we can concentrate solely on the idiosyncrasies of the graphics
libraries imposed upon us.

Both, curses and X11 require that we design some wrapper classes to merge
the external library with our class hierarchy. The curses example demonstrates that
without message forwarding we have to compromise: wrappers that are more
likely reusable for the next project do not function too well in conjunction with an
existing, application-oriented class hierarchy; wrappers that mesh well with our
problem know too much about it to be generally reusable for dealing with curses.

The X11 solution shows the convenience of message forwarding. Wrappers
just about completely hide the internals of X11 and the toolkit widgets. Problem-
oriented classes like XButton combine the necessary functionality from the
wrappers with the le class developed for our calculator. Message forwarding lets
classes like XButton function as if they were descendants of lc. In this example,
message forwarding permits objects to act as if they belonged to two classes at
the same time, but we do not incur the overhead and complexity of multiple inheri-
tance as supported in C++.

Message forwarding is quite simple to implement. All that needs to be done is
to modify the selector generation in the appropriate ooc reports to redirect non-
understood selector calls to a new dynamically linked method forward() which
classes like XButton overwrite to receive and possibly redirect forwarded mes-
sages.

14.8 Exercises

Obviously, wrapping curses into a suitable class hierarchy is an interesting exercise
for character terminal aficionados. Similarly, our X11 calculator experiment can be
redone with OSF/Motif or another toolkit.

Using accelerators is perhaps not the most natural way to map key presses into
input to our calculators. One would probably think of action functions first. How-
ever, it turns out that while an action function knows the widget it applies to, it has
no reasonable way to get from the widget to our wrapper. Either somebody recom-
piles the X toolkit with an extra pointer for user data in the Object instance record,
or we have to subclass some toolkit widgets to provide just such a pointer. Given
the pointer, however, we can create a powerful technology based on action func-
tions and our gatel().

The idea to gate() and wire() was more or less lifted from NeXTSTEP. How-
ever, in NeXTSTEP a class can have more than one outlet, i.e., pointer to another
object, and during wiring both, the actual outlet and the method to be used at the
receiving end, can be specified.

Comparing sections 5.5 and 11.4, we can see that Var should really inherit from
Node and Symbol. Using forward(), we could avoid Val and its subclasses.

191

Appendix A
ANSI-C Programming Hints

C was originally defined by Dennis Ritchie in the appendix of [K&R78]. The ANSI-C
standard [ANSI] appeared about ten years later and introduced certain changes and
extensions. The differences are summarized very concisely in appendix C of
[K&R88]. Our style of object-oriented programming with ANSI-C relies on some of
the extensions. As an aid to classic C programmers, this appendix explains those
innovations in ANSI-C which are important for this book. The appendix is certainly
not a definition of the ANSI-C programming language.

A.1 Names and Scope

ANSI-C specifies that names can have almost arbitrary length. Names starting with
an underscore are reserved for libraries, i.e., they should not be used in application
programs.

Globally defined names can be hidden in a translation unit, i.e., in a source file,
by using static:
static int f (int x) { ... } only visible in source file
int g; visible throughout the program

Array names are constant addresses which can be used to initialize pointers even if
an array references itself:
struct table { struct table * tp; }
v [] ={ v, v+l, v+2 };

It is not entirely clear how one would code a forward reference to an object which
is still to be hidden in a source file. The following appears to be correct:

extern struct x object; forward reference
f() { object = value; } using the reference
static struct x object; hidden definition

A.2 Functions

ANSI-C permits — but does not require — that the declaration of a function contains
parameter declarations right inside the parameter list. If this is done, the function is
declared together with the types of its parameters. Parameter names may be
specified as part of the function declaration, but this has no bearing on the parame-
ter names used in the function definition.

double sqgrt (); classic version

doubl e sqgrt (double); ANSI-C

doubl e sqrt (double x); ... with parameter names
int getpid (void); no parameters, ANSI-C

If an ANSI-C function prototype has been introduced, an ANSI-C compiler will try to
convert argument values into the types declared for the parameters.

192 Appendix A ANSI-C Programming Hints

Function definitions may use both variants:

doubl e sqgrt (double arg) ANSI-C

{ ...}

doubl e sqrt (arg) classic
doubl e arg;

{ ...}

There are exact rules for the interplay between ANSI-C and classic prototypes and
definitions; however, the rules are complicated and error-prone. It is best to stick
with ANSI-C prototypes and definitions, only.

With the option —~Wall the GNU-C compiler warns about calls to functions that
have not been declared.

A.3 Generic Pointers — void *

Every pointer value can be assigned to a pointer variable with type void * and vice
versa, except for econst qualifiers. The assignments do not change the pointer
value. Effectively, this turns off type checking in the compiler:

int iv [] ={1 2, 3};

int *ip =iv; ok, same type
void * vp = ip; ok, arbitrary tovoi d *
double * dp = vp; ok, voi d * to arbitrary

%p is used as a format specification for printf() and (theoretically) for scanf() to
write and read pointer values. The corresponding argument type is void * and thus
any pointer type:

void * vp;
printf("%\n", vp); display value
scanf ("%", & vp); read value

Arithmetic operations involving void * are not permitted:
void * p, ** pp;
p+1 wrong
pp + 1 ok, pointer to pointer

The following picture illustrates this situation:

pp . . voi d

A.4 "const” 193

A.4 const

const is a qualifier indicating that the compiler should not permit an assignment.
This is quite different from truly constant values. Initialization is allowed; const
local variables may even be initialized with variable values:

int x = 10;

int f () { const int xsave = x; ... }
One can always use explicit typecast operations to circumvent the compiler checks:

const int cx = 10;
(int) cx = 20; wrong
* (int *) & cx = 20; not forbidden

These conversions are sometimes necessary when pointer values are assigned:

const void * vp; vp . const void
int * ip;
int * const p = ip; ok for local variable

vp = ip; ok, blocks assignment

ip = vp; wrong, allows assignment

ip = (void *) vp; ok, brute force

* (const int **) &ip = vp; ok, overkill

p =ip; wrong, pointer is blocked

* p = 10; ok, target is not blocked

const normally binds to the left; however, const may be specified before the type
name in a declaration:

int const v [10]; ten constant elements
const int * const cp = v; constant pointer to constant value

const is used to indicate that one does not want to change a value after initialization
or from within a function:

char * strcpy (char * target, const char * source);

The compiler may place global objects into a write-protected segment if they have
been completely protected with const. This means, for example, that the com-
ponents of a structure inherit const:

const struct { int i; } c;
c.i = 10; wrong
This precludes the dynamic initialization of the following pointer, too:
void * const String;
It is not clear if a function can produce a const result. ANSI-C does not permit this.
GNU-C assumes that in this case the function does not cause any side effects and
only looks at its arguments and neither at global variables nor at values behind

pointers. Calls to this kind of a function can be removed during common subex-
pression elimination in the compilation process.

194 Appendix A ANSI-C Programming Hints

Because pointer values to const objects cannot be assigned to unprotected
pointers, ANSI-C has a strange declaration for bsearch():
void * bsearch (const void * key,

const void * table, size t nel, size t wdth,
int (* cmp) (const void * key, const void * elt));

table[] is imported with const, i.e., its elements cannot be modified and a constant
table can be passed as an argument. However, the result of bsearch() points to a
table element and does not protect it from modification.

As a rule of thumb, the parameters of a function should be pointers to const
objects exactly if the objects will not be modified by way of the pointers. The same
applies to pointer variables. The result of a function should (almost) never involve
const.

A5 typedef and const

typedef does not define macros. const may be bound in unexpected ways in the
context of a typedef:

const struct Cass { ... } * p; protects contents of structure
typedef struct Cass { ... } * C assP;
const Cl assP cp; contents open, pointer protected

How one would protect and pass the elements of a matrix remains a puzzle:

main ()
{ typedef int matrix [10][20];
matri x a;

int b [10][20];
int f (const matrix);
int g (const int [10][20]);
f(a);
f(b);
g(a);
g(b);
}

There are compilers that do not permit any of the calls...

A.6 Structures

Structures collect components of different types. Structures, components, and
variables may all have the same name:

struct u { int u; double v; } u;
struct v { double u; int v; } * vp;

Structure components are selected with a period for structure variables and with an
arrow for pointers to structures:

u.u = vp = v,

A.7 Pointers to Functions 195

A pointer to a structure can be declared even if the structure itself has not yet been
introduced. A structure may be declared without objects being declared:

struct w* wp;
struct w{ ... };

A structure may contain a structure:

struct a { int x; };
struct b { ... struct avy; ... } b;

The complete sequence of component names is required for access:

b.y.x = 10;
The first component of a structure starts right at the beginning of the structure;
therefore, structures can be lengthened or shortened:

struct a { int x; };
struct ¢ { struct aa; ... } ¢, * cp = &c;
struct a * ap = & c. a;

assert((void *) ap == (void *) cp);

ANSI-C permits neither implicit conversions of pointers to different structures nor
direct access to the components of an inner structure:

ap = cp; wrong

C.X, Cp -> X wrong

cp -> a.x ok, fully specified
((struct a *) cp) -> x ok, explicit conversion

A.7 Pointers to Functions

The declaration of a pointer to a function is constructed from the declaration of a
function by adding one level of indirection, i.e., a * operator, to the function name.
Parentheses are used to control precedence:

void * f (void *); function

void * (* fp) (void *) = f; pointer to function
These pointers are usually initialized with function names that have been declared
earlier. In function calls, function names and pointers are used identically:

int x;
f (& x); using a function name
fp (& x); using a pointer, ANSI-C
(* fp)(& x); using a pointer, classic

A pointer to a function can be a structure component:
struct Cass {
void * (* ctor) (void * self, va_list * app);
} ¥ ocp, ** ocpp;
In a function call, => has precedence over the function call, but is has no pre-
cedence over dereferencing with *, i.e., the parentheses are necessary in the
second example:

196 Appendix A ANSI-C Programming Hints

cp — ctor (...);
(* cpp) — ctor (...);

A.8 Preprocessor

ANSI-C no longer expands #define recursively; therefore, function calls can be hid-
den or simplified by macros with the same name:

#define malloc(type) (type *) malloc(sizeof(type))

int * p=mlloc(int);
If a macro is defined with parameters, ANSI-C only recognizes its invocation if the
macro name appears before a left parenthesis; therefore, macro recognition can be

suppressed in a function header by surrounding the function name with an extra set
of parentheses:

#i ncl ude <stdio. h> defines put char (ch) as a macro

int (putchar) (int ch) { ... } name is not replaced

Similarly, the definition of a parametrized macro no longer collides with a variable of
the same name:

#define x(p) (((const struct Object *)(p)) -> X)

int x = 10; name is not replaced

A.9 Verification — assert.h
#i ncl ude <assert. h>
assert(condition);

If condition is false, this macro call terminates the program with an appropriate
error message.

The option -DNDEBUG can be specified to most C compilers to remove all calls
to assert() during compilation. Therefore, condition should not contain side
effects.

A.10 Global Jumps — setjimp.h
#incl ude <setjnp. h>

j mp_buf onError;
int val;

if (val = setjnp(onError))
error handling

el se
first call

| ongj mp(onError, val);

A.11 Variable Argument Lists — "'stdarg.h”’ 197

These functions are used to effect a global jump from one function back to another
function which was called earlier and is still active. Upon the first call, setimp()
notes the situation in jmp_buf and returns zero. longjmp() later returns to this
situation; then setjmp() returns whatever value was specified as second argument
of longjmp(); if this value is zero, setjmp() will return one.

There are additional conditions: the context from which setjmp() was called
must still be active; this context cannot be very complicated; variable values are not
set back; jumping back to the point from which longjmp() was called is not possi-
ble; etc. However, recursion levels are handled properly.

A.11 Variable Argument Lists — stdarg.h

#incl ude <stdarg. h>

void fatal (const char * fmt, ...)

{ va_list ap;
i nt code;
va_start(ap, fnt); last explicit parameter name
code = va_arg(ap, int); next argument value
vprintf(fmt, ap);
va_end(ap); reinitialize

exi t(code);
}

If the parameter list in a function prototype and in a function definition ends with
three periods, the function may be called with arbitrarily many arguments. The
number of arguments specified in a particular call is not available; therefore, a
parameter like the format of printf() or a specific trailing argument value must be
used to determine when there are no more arguments.

The macros from stdarg.h are used to process the argument list. va_list is a
type to define a variable for traversing the argument list. The variable is initialized
by calling va_start(); the last explicitly specified parameter name must be used as
an argument for initialization. va_arg() is a macro which produces the next argu-
ment value; it takes the type of this value as an argument. va_end() terminates
processing of the argument list; following this call, the argument list may be
traversed again.

Values of type va_list can be passed to other functions. In particular, there are
versions of the printf functions which accept va_list values in place of the usual list
of values to be converted.

The values in the variable part of the argument list are subject to the classic
conversion rules: integral values are passed as int or long; floating point values are
passed as double. The argument type specified as a second argument of va_arg()
cannot be very complicated — if necessary, typedef can be used.

198 Appendix A ANSI-C Programming Hints

A.12 Data Types — stddef.h

stddef.h contains some data type declarations which may differ between platforms
or compilers. The types specify the results of certain operations:

size t result of si zeof
ptrdiff_t difference of two pointers

Additionally, there is a macro to compute the distance of a component from the
start of a structure:

struct s { ... int a; ... };
of fsetof (struct s, a) returns si ze_t value

A.13 Memory Management — stdlib.h

void * calloc (size_t nel, size_t len);

void * malloc (size_t size);

void * realloc (void * p, size_t size);

void free (void * p);
These functions are declared in stdlib.h. callo¢() returns a zeroed memory region
with nel elements of len bytes each. malloc() returns an uninitialized memory
region with size bytes. realloc() accepts a memory region allocated by calloc() or
malloc() and makes sure that size bytes are available; the area may be lengthened
or shortened in place, or it may be copied to a new, larger region. free() releases a
memory region allocated by the other function; a null pointer may now be used with
impunity.

A.14 Memory Functions — string.h

In addition to the well-known string functions, string.h defines functions for manipu-
lating memory regions with explicit lengths, in particular:
void * mencpy (void * to, const void * from size_ t len);
void * memmove (void * to, const void * from size_t len);
void * menmset (void * area, int value, size_t len);

memcpy() and memmove() both copy a region; source and target may overlap for
memmove() but not for memepy(). Finally, memset() initializes a region with a
byte value.

199

Appendix B
The ooc Preprocessor
Hints on awk Programming

awk was originally delivered with the Seventh Edition of the UNIX system. Around
1985 the authors extended the language significantly and described the result in
[AWKS8S8]. Today, there is a POSIX standard emerging and the new language is avail-
able in various implementations, e.g., as nawk on System V; as awk, adapted from
the same sources, with the MkS-Tools for MSDOS; and as gawk from the Free
Software Foundation (GNU). This appendix assumes a basic knowledge of the (new)
awk programming language and provides an overview of the implementation of the
ooc preprocessor. The implementation uses several features of the POSIX standard,
and it has been developed with gawk.

B.1 Architecture

ooc is implemented as a shell script to load and execute an awk program. The shell
script facilitates passing ooc command arguments to the awk program and it per-
mits storing the various modules in a central place.

The awk program collects a database of information about classes and methods
from the class description files, and produces C code from the database for inter-
face and representation files and for method headers, selectors, parameter import,
and initialization in the implementation files. The awk program is based on two
design concepts: modularisation and report generation.

A module contains a number of functions and a BEGIN clause defining the glo-
bal data maintained by the functions. awk does not support information hiding, but
the modules are kept in separate files to simplify maintenance. The ooc command
script can use AWKPATH to locate the files in a central place.

All work is done under control of BEGIN clauses which awk will execute in order
of appearance. Consequently, main.awk must be loaded last, because it processes
the ooc command line.

Pattern clauses are not used. They cannot be used for all files anyway,
because ooc consults for each class description all class description files leading up
to it. The algorithm to read lines, remove comments, and glue continuation lines
together is implemented in a single function get() in jo.awk. If pattern clauses were
used, the same algorithm would have to be replicated in pattern clauses.

The database can be inspected if certain debugging modules are loaded as part
of the awk program. These debugging modules use pattern clauses for control, i.e.,
debugging starts once the command line processing of ooc has been completed.
Debugging statements are entered from standard input and they are executed by
the pattern clauses.

Regular output is produced only by interpreting reports. The design goal is that
the awk program contain as little information about the generated code as possible.

200 Appendix B The “ooc’’ Preprocessor — Hints on “‘awk’’ Programming

Code generation should be controlled totally by means of changing the report files.
Since the ooc command script permits substitution of report files, the application
programmer may modify all output, at least theoretically, without having to change
the awk program.

B.2 File Management — io.awk

This module is responsible for accessing all files. It maintains FileStack[] with
name and line number of all open files. openFile(fnm) pushes FILENAME and FNR
onto this stack and uses system() to find out if a file fnm can be read. The com-
plete name is then set into FILENAME and FNR is reset. The function get() reads
from FILENAME and returns a complete input line with no comments and continua-
tions or the special value EOF at end of file. This value starts with % to simplify cer-
tain loops. closeFile() closes FILENAME and pops the stack.

openFile() implements a search path OOCPATH for all files. This way, reports,
class descriptions, and implementations can be stored in a central place for an in-
stallation or a project.

jo.awk contains two more functions: error() to output an error message, and
fatal() to issue a message and terminate execution with the exit code 1. error()
also sets the exit code 1 as value of a global variable status. Debugging modules
will eventually return status with an END clause.

If main.awk contained an END clause, awk would wait for input after processing
all BEGIN clauses. Therefore, we set an awk variable debug from the ooc com-
mand script to indicate if we have loaded debug modules with pattern clauses. If
debug is not set, the BEGIN clause in main.awk is terminated by executing exit and
passing status.

B.3 Recognition — parse.awk

parse.awk extracts the database from the class description files. The top level
function load(desc) processes a class description file desc.d. Each such file is only
read once. The internal function classDeclaration() parses a class description;
structDeclarator() takes care of one line in the representation of a class; method-
Declaration() handles a single method declaration; and declarator() is called to pro-
cess each declarator.

All of these functions are quite straightforward. They use sub() and gsub() to
massage input lines for recognition and split() to tokenize them. This is insufficient
for analyzing a general C declarator; therefore, we limit ourselves to simple declara-
tors where the type precedes the name.

The debugging module parse.dbg understands the inputs classes and descrip-
tions to dump information about all classes and description files, or all to do both.
For an input like desc.d it will load a class description file. Other inputs should be
class, description, or method names to dump individual entries in the database.

B.4 The Database 201

B.4 The Database

For a class description file, we save the individual lines so that we can copy them to
the interface or representation file. Among these lines we need to remember
where which classes and metaclasses were defined. The latter information is also
required to generate appropriate initializations. Therefore, we produce three arrays:
Publdesc, nl contains lines for the interface file, Protldesc, n] contains lines for the
representation file, and Declldesc, n] only records the class and metaclass defini-
tions. For each description name desc the index 0 holds the number of lines and
the lines are stored with indices from 1 on up. Declldesc, 0] exists exactly, if we
have read the description for desc. The lines are stored unchanged, we only replace
a complete class definition by a line starting with % and containing the metaclass
name, if any, and then the class name.

For a class, our database contains its meta- and superclass name, the com-
ponents of its representation, and the names of its methods. We use a total of six
arrays: Metalclass] contains the metaclass name, Superlc/ass] contains the
superclass name, Structlclass, n] is a list of the component declarator indices, and
Static[cl/ass, n], Dynamiclclass, nl, and Class[class, n] contain lists of the various
method names. Again, index 0 holds the list length, and the list elements are
stored with indices from 1 on up. Classlclass, 0] exists exactly, if we know class
to be a class or metaclass name.

For a method, we need to remember its name, result, parameter list, linkage,
and tag for the respondsTo() method. This information is represented with the fol-
lowing six arrays: MethodIlmethod] is the first declarator index; it describes the
method name and result type. The parameter declarators follow with ascending
indices; Nparm[method] is the number of parameters. There has to be at least the
self parameter. Var[method] is true if method permits a variable number of param-
eters, Linkagelmethod] is one of %, %-—, or %+ and records in which linkage sec-
tion the method was declared. Owner[method] is important for statically linked
methods; it contains the class to which the method belongs, i.e., the class of the
method’s self parameter. Finally, Taglmethod] records the default tag of the
method for the purposes of respondsTo(), and Taglmethod, class] holds the actual
tag of a method for a class.

Class representation components and method names and parameters are
described as indices into a list of declarators. The list is represented by four arrays:
Namelindex] is the name of the declarator, Constl[index] contains the const prefix
of the declarator, if any. Aslindex] is true if @ was used in the declarator, i.e., if
the declarator specifies a reference to an object. In this case Typelindex] is either
a class name or it is empty if the object is in the owner class of the method. If
As[index] is false, Typelindex] is the type part of the declarator.

Finally, if the global variable lines is set, the database contains four more
arrays: Filename[name] and Fnr[namel indicate where a class or a method was
described, SFilename[name] and SFnr[name] indicate where a class component
was declared. This is used in report.awk to implement #line stamps.

202 Appendix B The “ooc’’ Preprocessor — Hints on “‘awk’’ Programming

B.5 Report Generation — report.awk

report.awk contains functions to load reports from files and to generate output from
reports. This is the only module which prints to standard output; therefore, the
tracking of line numbers happens in this module. A simple function puts() is avail-
able to print a string followed by a newline.

Reports are loaded by calling loadReports() with the name of the file to load
reports from. To simplify debugging, reports may not be overwritten.

Reports are generated by calling gen() with the name of a report. A certain
effort is made to avoid emitting leading spaces or more than one empty line in a
row: a global variable newLine is 0 at the left margin or 1 once we have printed
something; an internal function If() prints a newline and decrements newLine by 1.
Spaces are only emitted if newLine is 1, i.e., if we are inside a line. Newlines are
only emitted if newLine is not -1, i.e., if we have not just emitted an empty line.

Report generation is based on a few simple observations: It is cheap to read
report lines, use split() to take them apart into words separated by single blanks or
tabs, and store them in a big array Token[]. Another array Report[] holds for each
report name the index of its first word in Token[]. The internal function endReport()
checks that braces are balanced in each report and terminates each report by an
extra closing brace.

If a single blank or tab character is used as the split character, and if we emit a
single blank for an empty word, a report closely resembles the generated output:
two blanks represent one blank in the output. Generation is reasonably efficient if
we can quickly identify words to be left unchanged (they do not start with a back
quote) and if we have a fast way to search for replacements (they are stored in an
array Replace[] indexed by the words to be replaced). Elements of Replacel] are
mostly set by functions defined in parse.awk which look at the database:
setClass(), setMethod(), and setDeclarator() set the information described in the
table at the end of the manual page of ooc in section C.1.

Groups are simple to implement. When reading the report lines, after each
word starting with *{, i.e., at the beginning of each group, we store the index of the
word following the matching '}, i.e., the index past the end of the group. This
requires maintaining a stack of open braces, but the stack can be stored in the
same places where we later store the indices of the corresponding closing braces.

During execution, we run the report generator recursively. The contents of a
group are interpreted by a call to genGroup() that returns at the closing brace. For
a loop we can issue as many calls as necessary, and eventually we continue execu-
tion by following the index to the position past the group. At the global level, each
report is terminated by one extra closing brace token. *{if groups are just as easy:

i f L a| b | group |}

If the comparison works out, we recursively execute group. In any case we con-
tinue execution past the group. For an “{else we have the following arrangement:

B.6 Line Numbering 203

i f L al| b | group |} | {else | 19 group | "}

If the comparison works out, we recursively execute its group. Afterwards, we can
follow both index values or we can arrange for an “{else group to always be skipped
when it is encountered directly. If the comparison fails, and if the index after “{if
points to “{else, we position to the “{else and recursively execute its group. After-
wards we follow the index as usual.

The termination token °} can contain arbitrary text following the brace. How-
ever, there are two special cases. The loop over the parameters of a method calls
genGroup() with an extra parameter more set to 1 as long as there are some
method parameters yet to be processed. If more is set, genGroup() emits a
comma and a space for the termination token °},. This simplifies generating parame-
ter lists.

The other special termination token is “}n which results in an extra newline if
anything was output for the group. genGroup() returns a truth value indicating
whether it was terminated by the token “}n or not. Functions such as genLoop-
Methods(), which drive a loop over calls to genGroup(), return the value of gen-
Group() if the loop was entered and false otherwise. Finally, genGroup() will emit
the extra newline exactly if the loop function returns true, i.e., if the loop was
entered and terminated by “}n. This simplifies block arrangements in the generated
code.

The debugging module report.dbg accepts a filename like c.rep and loads the
reports from the file. Given a valid report name, it will symbolically display the
report. Given all or reports, it will show all reports.

B.6 Line Numbering

A preprocessor should output #line stamps so that the C compiler can relate its
error messages to the original source files. Unfortunately, ooc consults several
input files to produce certain output lines, i.e., there appears to be no implicit rela-
tionship between class description files, source files, and an output line. Moreover,
if report files are formatted to be legible they tend to generate many blank lines
which in turn could result in many #line stamps.

We compromise and only generate a #line stamp if a report requests it. The
stamp can be based on a class, method, or structure component name, or it can
record the current input file name and line number. The current input file position is
available as FILENAME and FNR from the jo.awk module. The other positions have
been recorded by parse.awk. A function genLineStampl() in report.awk collects the
required information and produces the #line stamp.

We could optimize by counting the output lines — all the information is available
in report.awk. However, experience indicates that this slows ooc down consider-
ably. A few extra #line stamps or newlines will not delay compilation very much.

204 Appendix B The ""ooc’’ Preprocessor — Hints on “‘awk’ Programming

The entire feature is only enabled by setting the global variable lines to a
nonzero value. This is under control of an option -l passed to the ooc command
script.

B.7 The Main Program — main.awk

The BEGIN clause in main.awk should be the last one executed. It processes each
argument in ARGVI] and deletes it from the array. A name like c.rep is interpreted
as a report file to be loaded with loadReports(). A name like Object.dc is an imple-
mentation to be preprocessed. —dc, —h, and —r result in reports by these names to
be interpreted. Any other argument should be a class name for which the descrip-
tion is loaded with load(); the name is set as replacement for “desc. Such an argu-
ment must precede most of the other arguments, because “desc is remembered
for report generation.

load() recursively loads all class descriptions back to the root class. If the awk
variable makefile is set by the ooc command script, the report =M is generated for
each class name specified as an argument. This normally produces lines for a
makefile to indicate how class description files depend on each other. However,
ooc cannot detect that as a result of preprocessing an implementation file class.c
depends on the class description file class.d in addition to the file class.dc. This
dependency must be added to a makefile separately.

main.awk contains two functions. preprocess() takes care of the preprocess-
ing of an implementation file. It generates the report include at the beginning of
the implementation file. It calls methodHeader() for the various ways in which a
method header can be requested, and it generates the reports casts and init for
the preprocessor statements %casts and %init.

methodHeader() generates the report methodHeader and it records the
method definition in the database: Linkslclass, nl is the list of method names
defined for a class and TagsImethod, class] is the actual tag defined for a method
in a class. These lists are used in the initialization report.

B.8 Report Files

Reports are stored in several files to simplify maintenance. h.rep and r.rep contain
the reports for the interface and representation files. c.rep contains the reports for
preprocessing an implementation file. There are two versions of each of these
files, one for the root class, and one for all other classes. m.rep contains the report
for the makefile option =M and dc.rep contains the report for —de. Three other files,
etc.rep, header.rep, and va.rep, contain reports that are called from more than one
other file.

Dividing the reports among several files according to command line options has
the advantage that we can check the command line in the ooc command script and
only load those files which are really needed. Checking is a lot cheaper than loading
and searching through many unused reports.

B.9 The "ooc’’ Command 205

With “{if groups and report calls through *% we can produce more or less con-
voluted solutions. The basic idea was to make things easier to read and more effi-
cient by duplicating some decisions in the reports called by the selector report and
by separating the reports for the root class and the other classes. As ooc evolves
through the chapters, we modify some reports anyway.

B.9 The ooc Command

ooc can load an arbitrary number of reports and descriptions, output several inter-
face and representation files, and suggest or preprocess various implementation
files, all in one run. This is a consequence of the modular implementation. How-
ever, ooc is a genuine filter, i.e., it will read files as directed by the command line,
but it will only write to standard output. If several outputs are produced in one run,
they would have to be split and written to different files by a postprocessor based
on awk or csplit. Here are some typical invocations of ooc:

$ ooc R Object —h > oject.h # root class
$ ooc R hject —+ > Object.r
$ ooc —R hject hject.dc > bject.c
$ ooc Point —h > Point.h # other class
$ ooc M Point Crcle >> nakefile # dependenci es
$ echo "Point.c: Point.d >> makefile
$ ooc Circle —dc > Circle.dc # start an inplenmentation
$ ooc Circle —dc | ooc Crcle —> Circle.c # fake...
If ooc is called without arguments, it produces the following usage description:
$ ooc
usage: ooc [option ...] [report ...] description target
opti ons: —d arrange for debugging
—+ make #line stanps
—bnnrval define val for “nm (one word)
—M make dependency for each description
—R process root description
—+ —8 ... versions for book chapters
report: report.rep load alternative report file
description: class |l oad class description file
targets: —dc make thunks for |ast ’'class’
—h make interface for |ast ’'class’
—+ make representation for |ast 'class’

— preprocess stdin for last ’'class’
source.dc preprocess source for last 'class’

It should be noted that if any report file is loaded, the standard reports are not
loaded. The way to replace only a single standard report file is to provide a file by
the same name earlier on OOCPATH.

The ooc command script needs to be reviewed during installation. It contains
AWKPATH, the path for the awk processor to locate the modules, and OOCPATH to
locate the reports. This last variable is set to look in a standard place as a last
resort; if ooc is called with OOCPATH already defined, this value is prefixed to the
standard place.

206 Appendix B The “ooc’" Preprocessor — Hints on ““awk’’ Programming

To speed things up, the command script checks the entire command line and
loads only the necessary report files. If ooc is not used correctly, the script emits
the usage description shown above. Otherwise awk is executed by the same pro-
cess.

207

Appendix C
Manual

This appendix contains UNIX manual pages describing the final version of ooc and
some classes developed in this book.

C.1 Commands

munch — produce class list
nm —p object... archive... | munch

munch reads a Berkeley-style nm(1) listing from standard input and produces as
standard output a C source file defining a null-terminated array classes[] with
pointers to the class functions found in each object and archive. The array is sorted
by class function names.

A class function is any name that appears with type T and, preceded with an under-
score, with type b, d, or s.

This is a hack to simplify retrieval programs. The compatible effect of option —p in
Berkeley and System V nmis quite a surprise.

Because HP/UX nm does not output static symbols, munch is not very useful on this
system.

ooc — preprocessor for object-oriented coding in ANSI C
ooc [option ...] [report ...] description target ...

ooc is an awk program which reads class descriptions and performs the routine
coding tasks necessary to do object-oriented coding in ANSI C. Code generated by
ooc is controlled by reports which may be changed. This manual page describes
the effects of the standard reports.

description is a class name. ooc loads a class description file with the name
description.d and recursively class description files for all superclasses back to the
root class. If —h or —r is specified as a target, a C header file for the public interface
or the private representation of description is written to standard output. If
source.de or — is specified as a target, #include statements for the description
header files are written to standard output and source.dc or standard input is read,
preprocessed, and copied to standard output. If —dc is specified as a target, a
source skeleton for description is written to standard output, which contains all pos-
sible methods.

The output is produced by report generation from standard report files. If file.rep is
specified as a report, the standard files are not loaded.

208 Appendix C Manual

There are some global options to control ooc:

—Dnamel=value]
defines value or an empty string as replacement for “name. The name
should be a single word. ooc predefines GNUC with value 0.

-d
arranges for debugging to follow normal processing. Debugging com-
mands are read from standard input: class.d loads a class description file;
report.rep loads a report file; a description, report, class, or method name
produces a dump of the appropriate information; and all, classes, descrip-
tions, or reports dump all information in the respective category.

produces #line stamps as directed by the reports.

-M
produces a makefile dependency line between each description and its
superclass description files.

-R
must be specified if the root class is processed. Other standard reports are
loaded in this case.

Lexical Conventions

All input lines are processed as follows: first, a comment is removed; next, lines
are glued together as long as they end with a backslash; finally, trailing white space
is removed.

A comment extends from // to the end of a line. It is removed together with
preceding white space before glueing takes place.

In glueing, the backslash marks the contact point and is removed. All white space
around the contact point is replaced with a single space.

Identifiers significant to ooc follow the conventions of C, except that they may not
use underscore characters. The underscore is used to avoid clashes between
ooc's and the user's code.

Declarators significant to ooc are simplified relative to C. They may start with const
and the type information must precede the name. The type information may use *
but no parentheses. In general, an arbitrary declarator can be adapted for ooc by
introducing a type name with typedef.

A line starting with %% acts as end of file.

Class Description File

The class description file has the following format:
header
% meta class {
components

C.1 Commands 209

%

methods with static linkage
%-—

methods with dynamic linkage
%+

class methods
%}

header is arbitrary information which is copied to standard output if the interface file
is produced. Information following %prot is copied to standard output if the
representation file is produced.

components are C structure component declarations with one declarator per line.
They are copied into the struct generated in the representation file for the class.
They also determine the order of the construction parameters for the root meta-
class.

The first set of methods has static linkage, i.e., they are functions with at least one
object as a parameter; the second set has dynamic linkage and has an object as a
parameter for which the method is selected; the third set are class methods, i.e.,
they have a class as a parameter for which the method is selected. The selection
object is always called self. The method declarations define C function headers,
selectors, and information for the metaclass constructor.

The class header line % meta class { has one of three forms. The first form is used
to introduce the root class only:

% meta class {
class is the root class, indicated by the fact that it has no superclass. The
superclass is then defined to be the root class itself. meta should be intro-
duced later as the root metaclass, indicated by the fact that it has itself as
metaclass.

% meta class: super {

class is a new class with meta as its metaclass and super as its superclass.
This would also be used to introduce the root metaclass, which has itself as
metaclass and the root class as superclass. If super is undefined, ooc will
recursively (but only once) load the class description file super.d and then
super and meta must have been defined so that class can be defined. If
this form of the class header is used, only methods with static linkage can
be introduced.

% meta: supermeta class: super{
This additionally defines meta as a new metaclass with supermeta as its
superclass. If super is undefined, ooc will recursively (but only once) load
the class description file super.d and then super and supermeta must have
been defined so that meta and class can be defined.

A method declaration line has the following form, where braces indicate zero or
more occurrences and brackets indicate an optional item:

210 Appendix C Manual

[tag : 1 declarator (declarator{, declarator} [, ...1);
The optional tag is an identifier involved in locating a method with
respondsTo(). The first declarator introduces the method name and result
type, the remaining declarators introduce parameter names and types.
Exactly one parameter name must be self to indicate the receiver of the
method call.

A declarator is a simplified C declarator as described above, but there are two spe-
cial cases:

name
introduces name as the declarator name. The type is a pointer to an
instance of the current class or to the class for which a dynamically linked
method is overwritten. Such a pointer will be dereferenced by %casts as
name within a method. Therefore, self must be introduced as _self, where
self is the dereferenced object or class for class methods and _self is the
raw pointer.

class @ name
introduces name as a pointer to an instance of class. Such a pointer will not
be dereferenced but it will be checked by %casts.

The result type of a method can employ class @. In this case, the result type is
generated as a pointer to a struct class which is useful when implementing
methods, and which cannot be used other than for assignments to void * in appli-
cation code. The result type should be void * for constructors and similar methods
to emphasize the generic aspects of construction.

Preprocessing

Subject to the lexical conventions described above, an implementation file
source.dc is copied to standard output. Lines starting with % are preprocessed as
follows:

% class method {
This is replaced by a C function header for method, the header is declared
static with the name class_method, unless method has static linkage. In
the latter case, class is optional. ooc checks in all cases that the method
can be specified for class. Function names are remembered as necessary
for initialization of the description of class and the corresponding metaclass
if any. There can be an optional tag preceding class unless method has
static linkage.

%casts
This is replaced by definitions of local variables to securely dereference
parameter pointers to objects in the current class. For statically linked
methods this is followed by checks to verify the parameters pointing to
objects of other classes. %casts should be used where local variables can
be defined; for statically linked methods it must be the last definition. Note
that null pointers flunk the checks and terminate the calling program.

C.1 Commands 211

%init
This should be near the end of the implementation file. If the description
introduced a new metaclass, a constructor for the metaclass, selectors for
the class, and initializations for the metaclass are generated. In either case,
an initialization for the class is generated.

If a method m does not have static linkage, there are two selectors: m with the
same parameters as the method selecting the method defined for self, and
super_m with an explicit class description as an additional first parameter. The
second selector is used to pass a method call to the superclass of the class where
the method is defined.

If a dynamically linked or class method has a variable argument list, the selector
passes va_list * app to the actual method.

If a selector recognizes that it cannot be applied to its object, it calls forward and
passes its object, a pointer to a result area, or a null pointer, its own address, its
name as a string, and its entire argument list. forward should be a dynamically
linked method in the root class; it can be used to forward a message from one
object to another.

Tags

respondsTo() is a method in the root class which takes an object and a tag, i.e., a C
string containing an identifier, and returns either a null pointer or a selector which
will accept the object and other parameters and call the method corresponding to
the tag.

The tag under which a class or dynamically linked method can be found is defined
as follows. The default is either the method name or tag in the method header in
the class description file:

[tag : 1 declarator (declarator{, declarator} [, ...1);

The method header in the implementation may overwrite the tag:
% mtag: class method {

The effective tag is mtag if specified, or tag if not. If mtag or tag is empty but the
colon is specified, respondsTo() cannot find the method.

Report File

ooc uses report files containing all code fragments which ooc will generate. Names
such as app for an argument list pointer can be changed in the report file. Only self
is built into ooc itself.

A report file contains one or more reports. The usual lexical conventions apply.
Each report is preceded by a line starting with % and containing the report name
which may be enclosed by white space. The report name is arbitrary text but it
must be unique.

A report consists of lines of words separated by single blanks or tabs, called
spaces. An empty word results between any two adjacent spaces or if a space
starts or ends a line.

212 Appendix C Manual

An empty word, not at the beginning of an output line, is printed as a blank. In par-
ticular, this means that two successive spaces in a report represent a single blank
to be printed. Any word not starting with a back quote " is printed as is.

A word starting with "% causes a report to be printed. The report name is the
remainder of the word.

“#line followed by a word causes a line stamp to be printed if option -l is specified,
the phrase is ignored otherwise. If the word is a class, method, or class com-
ponent name, the line stamp refers to its position in a class description file. Other-
wise, and in particular for empty words, the line stamp refers to the current input
file position.

A word starting with *{ starts a group. The group is terminated with a word starting
with “}. All other words starting with a back quote ™ are replaced during printing.
Some replacements are globally defined, others are set up by certain groups. A
table of replacements follows at the end of this section.

Groups are either loops over parts of the database collected by ooc or they are con-
ditionals based on a comparison. Words inside a group are printed under control of
the loop or the comparison. Afterwards, printing continues with the word following
the group. Groups can be nested, but that may not make sense for some parts of
the database. Here is a table of words starting a loop:

{% static methods for the current “class

{%— dynamic methods for the current “class
{%+ class methods for the current “class

() parameters for the current ‘'method

“{dcl class headers in the “desc description file
“{pub public lines in the “dese¢ description file
“{prot protected lines in the “desc description file

“{links class dynamic and class methods defined for class
“{struct class components for class
“{super “desc and all its superclasses back to ‘root

A loop is terminated with a word starting with }. If the terminating word is ’}, in the
loop over parameters, and if the loop will continue for more parameters, a comma
followed by a blank is printed for this word. [f the terminating word is “}n and if the
group has produced any output, a newline is printed for this word. Otherwise,
nothing is printed for termination.

A conditional group starts with “{if or “{ifnot followed by two words. The words are
replaced if necessary and compared. If they are equal, the group starting with “{if is
executed; if they are not equal, the group starting with *{ifnot is executed. If either
group is not executed and if it is followed by a group starting with “{else, this group
is executed. Otherwise the “{else group is skipped.

In general it is best if the "} terminating the *{if group immediately precedes “{else
on the same line of the report.

Here is a table of replaced words together with the events that set up the replace-
ments:

C.1 Commands 213

set up globally
) no text (empty string)
h * (back quote)
't tab
n newline (limited to one blank line)
set up once class descriptions are loaded
“desc last description from command line
‘root root class' name
“metaroot root's metaclass name
set up for a class % %— %+ "{dcl “{prot *{pub "{super
“class class’ name
‘super class' superclass name
‘meta class’ metaclass name
‘supermeta metaclass’ superclass name
set up for a method {% “{%— "{%+ “{links class
“method method’'s name
“result method'’s result type
“linkage method’s linkage: %, %—, or %+
“tag method'’s tag
T e , ... if variable arguments are declared,
empty if not
"_last last parameter’'s name if variable arguments,
undefined if not
set up for a declarator “{() “{struct class
‘name name in declarator
‘const const followed by a blank, if so declared
“type void * for objects, declared type otherwise
T _ if used in declaration, empty otherwise
“cast object’s class name, empty otherwise
set up for lines from the description file “{dcl “{prot ‘{pub
“class set up for a class description, empty otherwise
“line line's text if not class description, undefined otherwise
‘newmeta 1if new metaclass is defined, 0 if not

A description on the command line of ooc sets up for a class. Requesting a method
header in a source file sets up for a class and a method. The loops “{dcl, “{prot,
and “{pub set up for lines from a class description file. The loops "{%, {%—, {%+,
and *{links class set up for a method. The loop “{() sets up for a parameter declara-
tor. The loop “{struct class sets up for the declarator of a component of a class.
The loop “{super runs from description through all its superclasses.

Environment

OOCPATH is a colon-separated list of paths. If a file name does not contain path
delimiters, ooc looks for the file (class descriptions, sources, and report files) by

214

Appendix C Manual

prefixing each entry of OOCPATH to the required file name. By default, OOCPATH
consists of the working directory and a standard place.

class.d

class.de

report.rep

AWKPATH/ *.awk
AWKPATH/ *.dbg
OOCPATH/¢c.rep
OOCPATH/dc.rep
OOCPATH/etc.rep
OOCPATH/h.rep
OOCPATH/header.rep
OOCPATH/m.rep
OOCPATH/r.rep
OOCPATH/va.rep
OOCPATH/[chr]-R.rep

FILES

description for class
implementation for class
report file

modules

debugger modules
implementation file reports
implementation thunks report
common reports

interface file report
common reports

makefile dependency report
representation file reports
common reports

root class versions

The C preprocessor is applied to the output of ooc, not to the input, i.e., conditional
compilation should not be applied to ooc controls.

C.2 Functions

retrieve — get object from file

void * retrieve (FILE * fp)

retrieve() returns an object read in from the input stream represented by fp. At end
of file or in case of an error, retrieve() returns a null pointer.

retrieve() requires a sorted table of class function pointers that can be produced
with munch(1). Once the class description has been located, retrieve() applies the
method geto to an area obtained with allocate.

SEE ALSO munch(1), Object(3)

C.3 Root Classes

intro — introduction to the root classes

Object
Exception

Class

Object(3) is the root class; Class(3) is the root metaclass. Most of the methods
defined for Object are used in the standard reports for ooc(1), i.e., they cannot be
changed without changing the reports.

Exception(3) manages a stack of exception handlers. This class is not mandatory
for working with ooc.

C.3 Root Classes 215

Class Class: Object - root metaclass

Object
Class

new(Class(), name, superclass, size, selector, tag, methoq, ..., 0);

Object @ allocate (const self)
const Class @ super (const self)
const char * nameOf (const se/f)

A metaclass object describes a class, i.e., it contains the class name, a pointer to
the class’ super class description, the size of an object in the class, and information
about all dynamically linked methods which can be applied to objects of the class.
This information consists of a pointer to the selector function, a tag string for the
respondsTo method (which may be empty), and a pointer to the actual method
function for objects of the class.

A metaclass is a collection of metaclass objects which all contain the same variety
of method informations, where, of course, each metaclass object may point to dif-
ferent methods. A metaclass description describes a metaclass.

Class is the root metaclass. There is a metaclass object Class which describes the
metaclass Class. Every other metaclass X is described by some other metaclass
object X which is a member of Class.

The metaclass Class contains a metaclass object Object which describes the root
class Object. A new class Y, which has the same dynamically bound methods as
the class Object, is described by a metaclass object Y, which is a member of
Class.

A new class Z, which has more dynamically bound methods than Object, requires a
metaclass object Z, which is a member of a new metaclass M. This new metaclass
has a metaclass description M, which is a member of Class.

The Class constructor is used to build new class description objects like Y and
metaclass description objects like M. The M constructor is used to build new class
description objects like Z. The Y constructor builds objects which are members of
class Y, and the Z constructor builds objects in class Z.

allocate reserves memory for an object of its argument class and installs this class
as the class description pointer. Unless overwritten, new calls allocate and applies
ctor to the result. retrieve calls allocate and applies geto to the result.

super returns the superclass from a class description.
nameOf returns the name from a class description.

The Class constructor ctor handles method inheritance. Only information about
overwritten methods needs to be passed to new. The information consists of the
address of the selector to locate the method, a tag string which may be empty, and
the address of the new method. The method information tuples may appear in any
order of methods; zero in place of a selector terminates the list.

delete, dtor, and geto are inoperative for class descriptions.

216 Appendix C Manual

Class descriptions are only accessed by means of functions which initialize the
description during the first call.

SEE ALSO ooc(1), retrieve(2)

Class Exception: Object — manage a stack of exception handlers

Object
Exception

new(Exception());

int catch (self)
void cause (int nhumber)

Exception is a class for managing a stack of exception handlers. After it is armed
with catch, the newest Exception object can receive a nonzero exception number
sent with cause().

ctor pushes the new Exception object onto the global exception stack, dtor
removes it. These calls must be balanced.

catch arms its object for receiving an exception number. Once the number is sent,
catch will return it. This function is implemented as a macro with setjmp(3) and is
subject to the same restrictions; in particular, the function containing the call to
catch must still be active when the exception number is sent.

Other methods should generally not be applied to an Exception object.
SEE ALSO setjmp(3)

Class Object — root class

Object
Class

new(Object());
typedef void (* Method) ();

const void * classOf (const se/f)

size_t sizeOf (const self)

int isA (const self, const Class @ cl/ass)

int isOf (const se/f, const Class @ c/ass)

void * cast (const Class @ cl/ass, const self)
Method respondsTo (const se/f, const char * tag)
%-—

void * ctor (self, va_list * app)

void delete (self)

void * dtor (self)

int puto (const se/f, FILE * fp)

void * geto (self, FILE * fp)

void forward (self, void * result, Method selector, const char * name, ...)
%+

Object @ new (const self, ...)

C.3 Root Classes 217

Object is the root class; all classes and metaclasses have Object as their ultimate
superclass. Metaclasses have Class as their penultimate superclass.

classOf returns the class description of an object; sizeOf returns the size in bytes.

isA returns true if an object is described by a specific class description, i.e., if it
belongs to that class. isA is false for null pointers. isOf returns true, if an object
belongs to a specific class or has it as a superclass. isOf is false for null pointers
and true for any object and the class Object.

cast checks if its second argument is described, directly or ultimately, by the first.
If not, and in particular for null pointers, the calling program is terminated. cast nor-
mally returns its second argument unchanged; for efficiency, cast could be replaced
by a macro.

respondsTo returns zero or a method selector corresponding to a tag for some
object. If the result is not null, the object with other arguments as appropriate can
be passed to this selector.

ctor is the constructor. It receives the additional arguments from new. It should
first call super_ctor, which may use up part of the argument list, and then handle
its own initialization from the rest of the argument list.

Unless overwritten, delete destroys an object by calling dtor and sending the result
to free(3). Null pointers may not be passed to delete.

dtor is responsible for reclaiming resources acquired by the object. It will normally
call super_dtor and let it determine its result. If a null pointer is returned, delete
will effectively not reclaim the space for the object.

puto writes an ASCII representation of an object to a stream. It will normally call
puto for the superclass so that the output starts with the class name. The
representation must be designed so that geto can retrieve all but the class name
from the stream and place the information into the area passed as first argument.
geto works just like ctor and will normally let the superclass geto handle the part
written by the superclass puto.

forward is called by a selector if it cannot be applied to an object. The method can
be overwritten to forward messages.

Unless overwritten, new calls allocate and passes the result to ctor together with
its remaining arguments.

SEE ALSO ooc(1), retrieve(2), Class(3)

218 Appendix C Manual

C.4 GUI Calculator Classes

intro — introduction to the calculator application

Objct Class
Event
lc IcClass
Button
Calc
Crt
CButton
CLineOut
LineOut
Mux
List ListClass
Xt
XawBox
XawCommand
XButton
XawForm
XawlLabel
XLineOut
XtApplicationShell

Object(3) is the root class. Object needs to be renamed as Objet because the ori-
ginal name is used by X11.

Event(4) is a class to represent input data such as key presses or mouse clicks.

Ic(4) is the base class to represent objects that can receive, process, and send
events. Button converts incoming events to events with definite text values. Calc
processes texts and sends a result on. LineOut displays an incoming text. Mux
tries to send an incoming event to one of several objects.

Crt(4) is a class to work with the curses terminal screen function package. It sends
position events for a cursor and text events for other key presses. CButton imple-
ments Button on a curses screen. CLineOut implements LineOut.

List manages a list of objects and is taken from chapter 7.

Xt(4) is a class to work with the X Toolkit. The subclasses wrap toolkit and Athena
widgets. XButton implements a Button with a Command widget. XLineOut
implements a LineOut with a Label widget.

SEE ALSO curses(3), X(1)

C.4 GUI Calculator Classes 219

IcClass Crt: Ic — input/output objects for curses
Objct
lc
Crt
CButton
CLineout

new(Crt());
new(CButton(), "text", y, x);
new(CLineOut(), y, x, len);

void makeWindow (self, int rows, int cols, int x, int y)
void addStr (seff, int y, int x, const char * s)
void crtBox (se/f)

A Crt object wraps a curses(3) window. curses is initialized when the first Crt
object is created.

Crt_gatel() is the event loop: it monitors the keyboard; it implements a vi-style cur-
sor move for the keys hjkl, and possibly, for the arrow keys; if return is pressed, it
sends an Event object with kind 1 and an array with column and row position; if
control-D is pressed, gate returns reject; any other key is sent on as an Event
object with a string containing the key character.

A CLineOut object implements a LineOut object on a curses screen. Incoming
strings should not exceed /en bytes.

A CButton object implements a Button object on a curses screen. If it receives a
matching text, it sends it. Additionally, if it receives a position event, e.g., from a
Crt object, and if the coordinates are within its window, it sends its text on.

SEE ALSO Event(4)

Class Event: Objct — input item
Objct
Event
new(Event(), kind, data);
int kind (self)
void * data (self)

An Event object represents an input item such as a piece of text, a mouse click,
etc.

kind is zero if data is a static string. kind is not zero if data is a pointer. In particu-
lar, a mouse click can be represented with kind 1 and data pointing to an array with
two integer coordinates.

SEE ALSO lc(4)

220 Appendix C Manual

IcClass: Class Ic: Objct — basic input/output/transput objects
Objct
Ic
Button
Calc
LineOut
Mux

new(lc());
new(Button(), "text");
new(Calc());
new(LineOut());
new(Mux());

%-—
void wire (Objct @ to, self)
enum { reject, accept } gate (se/f, const void * /tem)

An le object has an output pin and an input action. wire() connects the output to
some other object. If an le object is sent a data item with gatel(), it will perform
some action and send some result to its output pin; some lc objects only create
output and others only consume input. gate() returns accept if the receiver
accepts the data.

Ic is a base class. Subclasses overwrite gate() to implement their own processing.
lc_gate() takes item and uses gate() to send it on to the output pin, i.e., a subclass
will use super_gate() to send something to its output pin.

A Button object contains a text which is sent out in response to certain inputs. It
expects an Event object as input. If the Event contains a matching text or a null
pointer or other data, the Button accepts the input and sends its own text on. A
non-matching text is rejected.

Button is designed as a base class. Subclasses should match mouse positions,
etc., and use super_gate() to send out the appropriate text.

A Calc object receives a string, computes a result, and sends the current result on
as a string. The first character of the input string is processed: digits are assem-
bled into a non-negative decimal number; +, —, *, and / perform arithmetic opera-
tions on two operands; = completes an arithmetic operation; C resets the calculator;
and Q quits the application. The calculator is a simple, precedence-free, finite state
machine: the first set of digits defines a first operand; the first operator is saved;
more digits define another operand; if another operator is received, the saved
operator is executed and the new operator is saved. Invalid inputs are accepted
and silently ignored.

A LineOut object accepts a string and displays it.

A Mux object can be wired to a list of outputs. It sends its input to each of these
outputs until one of them accepts the input. The list is built and searched in order
of the wire() calls.

SEE ALSO Crt(4), Event(4), Xt(4)

C.4 GUI Calculator Classes 221

Class Xt: Object — input/output objects for X11
Objct
Xt
XawBox
XawCommand
XButton
XawForm
XawLlabel
XLineOut
XtApplicationShell

new(Xt());

new(XtApplicationShell(), & argc, argv);
new(XawBoxl(), parent, "name");
new(XawCommand(), parent, "namée’);
new(XawForm(), parent, *namée");
new(XawLabel(), parent, "name");
new(XButton(), parent, "name", "label");
new(XLineOut(), parent, “"namé", "label");

void * makeWidget (sel/f, WidgetClass wc, va_list * app)
void addAllAccelerators (self)

void setLabel (se/f, const char * /abel)

void addCallback (se/f, XtCallbackProc fun, XtPointer data)

void mainLoop (self)

An Xt object wraps a widget from the X toolkit. makeWidget() is used to create
and install the widget in the hierarchy; it takes a parent Xt object and a widget
name from the argument list pointer to which app points. addAllAccelerators() is
used to install the accelerators below the Xt object. setLabel() sets the label
resource. addCallback() adds a callback function to the callback list.

An XtApplicationShell object wraps an application shell widget from the X toolkit.
When it is created, the shell widget is also created and X toolkit options are
removed from the main program argument list passed to new(). The application
main loop is mainLoop().

XawBox, XawCommand, XawForm, and XawLabel objects wrap the correspond-
ing Athena widgets. When they are created, the widgets are also created. setlLa-
bel() is accepted by XawCommand and XawLabel. A callback function can be
registered with an XawCommand object by addCallback().

An XButton object is a Button object implemented with an XawCommand object.
It forwards wire() to its internal Button object and it sets a callback to gate() to this
button so that it sends its text on if notify() is executed, i.e., if the button is clicked.
Accelerators can be used to arrange for other calls to notify().

222 Appendix C Manual

An XLineOut object is a LineOut object implemented with an XawLabel object. It
forwards gate() to itself to receive and display a string. If permitted by the parent
widget, its widget will change its size according to the string.

SEE ALSO Event(4)

223

[ANSI]

[AWKS88]

[Bud91]

[Ker82]

[K&P84]

[K&R78]

[K&R88]

[Sch87]
[Sch90]

Bibliography

American National Standard for Information Systems — Programming
Language C X3.159-1989.

A. V. Aho, B. W. Kernighan und P. J. Weinberger The awk Programming
Language Addison-Wesley 1988, ISBN 0-201-07981-X.

T. Budd An Introduction to Object-Oriented Programming Prentice
Hall 1991, 1SBN 0-201-54709-0.

B. W. Kernighan “pic — A Language for Typesetting Graphics'' Software
— Practice and Experience January 1982.

B. W. Kernighan and R. Pike The UNIX Programming Environment Pren-
tice Hall 1984, 1SBN 0-13-937681-X.

B. W. Kernighan and D. M. Ritchie The C Programming Language Pren-
tice Hall 1978, 1SBN 0-13-110163-3.

B. W. Kernighan and D. M. Ritchie The C Programming Language Second
Edition, Prentice Hall 1988, I1SBN 0-13-110362-8.

A. T. Schreiner UNIX Sprechstunde Hanser 1987, ISBN 3-446-14894-9.

A. T. Schreiner Using C with curses, lex, and yacc Prentice Hall 1990,
ISBN 0-13-932864-5.

	Object-oriented Programming with ANSI-C
	Preface
	Contents
	1 Abstract Data Types
	2 Dynamic Linkage
	3 Programming Savvy
	4 Inheritance
	5 Programming Savvy
	6 Class Hierarchy
	7 The ooc Preprocessor
	8 Dynamic Type Checking
	9 Static Construction
	10 Delegates
	11 Class Methods
	12 Persistent Objects
	13 Exceptions
	14 Forwarding Messages
	A ANSI-C Programming Hints
	B The ooc Preprocessor
	C Manual
	Bibliography

