cecma

dNOidlft ECMA-262
| | &™Edition /June 2015

ECMAScript® 2015
Language Specification

Rue du Rhoéne 114 CH-1204 Geneva T +41 22 849 6000 F: +41 22 849 6001

Ecma International

Rue du Rhone 114

CH-1204 Geneva

Tel: +41 22 849 6000

Fax: +41 22 849 6001

Web: http://www.ecma-international.org

ecma

INTERNATIONAL
is the registered trademark of Ecma International

A_ COPYRIGHT PROTECTED DOCUMENT

© Ecma International 2015

http://www.ecma-international.org/

oecinad

COPYRIGHT NOTICE
© 2015 Ecma International

This document may be copied, published and distributed to others, and certain derivative works of it
may be prepared, copied, published, and distributed, in whole or in part, provided that the above
copyright notice and this Copyright License and Disclaimer are included on all such copies and
derivative works. The only derivative works that are permissible under this Copyright License and
Disclaimer are:

(i) works which incorporate all or portion of this document for the purpose of providing commentary or
explanation (such as an annotated version of the document),

(i) works which incorporate all or portion of this document for the purpose of incorporating features
that provide accessibility,

(iii) translations of this document into languages other than English and into different formats and

(iv) works by making use of this specification in standard conformant products by implementing (e.g.
by copy and paste wholly or partly) the functionality therein.

However, the content of this document itself may not be modified in any way, including by removing the
copyright notice or references to Ecma International, except as required to translate it into languages
other than English or into a different format.

The official version of an Ecma International document is the English language version on the Ecma
International website. In the event of discrepancies between a translated version and the official
version, the official version shall govern.

The limited permissions granted above are perpetual and will not be revoked by Ecma International or
its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and ECMA
INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE."

Software License

All Software contained in this document ("Software)" is protected by copyright and is being made available under the "BSD
License", included below. This Software may be subject to third party rights (rights from parties other than Ecma
International), including patent rights, and no licenses under such third party rights are granted under this license even if
the third party concerned is a member of Ecma International. SEE THE ECMA CODE OF CONDUCT IN PATENT
MATTERS AVAILABLE AT http://www.ecma-international.org/memento/codeofconduct.htm FOR INFORMATION
REGARDING THE LICENSING OF PATENT CLAIMS THAT ARE REQUIRED TO IMPLEMENT ECMA INTERNATIONAL
STANDARDS*.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the authors nor Ecma International may be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE ECMA INTERNATIONAL "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ECMA INTERNATIONAL BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

© Ecma International 2015 i

http://www.ecma-international.org/memento/codeofconduct.htm

secha

© Ecma International 2015

~ecimd

Contents Page
1 8T o o1 N 1
2 L0 43 o0 P T4 T - 1
3 NOIrMative referenCes...... ... e e e s s s s e s e s e nmn s s s s e e e e nnnnnnnen 1
4 L 1Y 1
41 WED SCIIPLINGuuuu 2
4.2 L0 TN o T o1 0 A= TS 2
421 L0] o 1= o N 3
4.2.2 The Strict Variant of ECMASCIIPL ... 4
4.3 Terms and defiNitioNS i nnnn 5
44 Organization of This SpPecifiCation ... s 8
5 Notational CoONVENLIONSccceeeeeiiiiiiirrrccr s rr s s e s e s e e e s s s s e e s e e nnnn s s s e e e nnnnnnsnen 8
5.1 Syntactic and Lexical Grammars.............euueeeeiieiiieimiiemmmmeeeeeeeeeeeeeeeeeeeeseensessssssssssssasssasssssssassssnnns 8
5.1.1 Context-Free Grammars...........ccoiiiiiiiiieeiiiii s rrrre s s s s s s s s sa s s s e s rrns s s s s s s e s s nnnsssssssennnnnnnnssssssnns 8
5.1.2 The Lexical and RegEXP Grammarscccccciiiiininn s 9
51.3 The Numeric String Grammar..........ccccccc s 9
5.1.4 The Syntactic GrammMAarccooiiiiieciiiii s rr s s e e s e s e s s s e e e e s nnass s s seeessnnnsssssssennnnnnn 9
5.1.5 (€7 = T0.010.4 =1l o7 1T o T 10
5.2 Algorithm CONVENLIONS i rrr e s s e s e s s e e s s e e e e s e s nn s s s e e e e s nnnnnsssnnnnes 14
5.3 Static SeManticC RUIESoooiiiiiiiieeeeee s 16
6 ECMAScript Data Types and ValUESsciiiiiiiiieeeciiiiissrssssssss s s s s ssssnssssssssssssssssssssssssssnsnssnes 16
6.1 ECMASCript LANGUAGE TYPES .ceuuuuuiiiiiirrrennniissrrrrenssssssssssrssnnsssssssssssessnnsssssssssmssnnnnssssssssssssnnnnnnns 16
6.1.1 B I T30 L T 1= 1 U= o I I/ « - PP 16
6.1.2 THE NUIE Ty P .. 17
6.1.3 The BOOIEAN TYPE ...eiiiiiiiiiieciii s errrr e ss s s s s s e s s s s s s s e e e e s nas s s s e s e e s s nansssssseseennnnnnsssssserennnnnnssnnnnnen 17
6.1.4 B LIRS T T R I/ < = PSS 17
6.1.5 The SYMDOI TYPE.... . ciiiiiiiiiiccir i rr s s s e s e e e e s s s s s e s e e s s nnsssssssssrensnnnssssssserennnnnnssnnnsnnn 17
6.1.6 The NUMDEE TY P ... i irrrr s s s s e e s s s s e s e e e e s na s s e e s e e s s nnnsss s s s e ennnnnssssssserennnnnnssnnnnnen 18
6.1.7 I T30 o= 3 =P PS 19
6.2 ECMASCript Specification TyPes.......cciiiieeciiiiiiiiriirccs s s rsnss s s r e s rnna e s s e s e e e nnnnnnes 29
6.2.1 The List and Record Specification TYpecccccceriiiriiiiirrirrrrrrr s 29
6.2.2 The Completion Record Specification TYPecccccoiiiirriiiiirrirrrr s 30
6.2.3 The Reference Specification TypPe.......cccccciiririiiiirrr s 31
6.2.4 The Property Descriptor Specification Type........ccccoorrirrrriiirrirrr s 33
6.2.5 The Lexical Environment and Environment Record Specification Typesccccoeiiiiiiiiiiennnn. 35
6.2.6 [T 1= T = o o2 1R 35
7 P\ 0153 1 = Tod 0 = = o o 36
71 TYPE CONVEISION ... e 36
711 ToPrimitive (input [, PreferredType])ccccoocirirrririrrrrrr s 36
71.2 ToBoolean (@rgUmENt) ..o 37
713 TONUMDEr (@rgUMENL)......eee s 38
71.4 Tolnteger (arguUmMENt) s 40
71.5 TOINt32 (@ArGUMENL) ... s 40
7.1.6 ToUINt32 (@rgUmEeNt) ... s 41
71.7 TOINE16 (ArQUMENL) ... s 41
71.8 TOUINt16 (@rgUmENt)ee s 41
71.9 TOIN8 (ArgUMENT) ... s 41
7110 ToUint8 (@rguUmeNnt)oeeeeeemimmmmmmmmieiiieeeeeeeeeeeeeeeenenenneneennnere s e s nsssssnnnsssnnssssnsnnsnnnsnnnnsnnsssnnsnnnnnnnnnnn 42
7111 ToUint8CIamp (argumeNt)..........oeeeeeemmmmmmmmmmmmmeemeneeeeeeneeeennnsennnnnssnsnnnsssnnnnsssssssssssnsnnssnsssnnnsnnsnsnnnnn 42
7112 ToString (@rgUmEeNt)......oeeeeeeiiimeieeieiiiieieeeeeeeeeeeeee e neennrerrn e s s nsssssnnsssnsnssssnnnsnnnsnnnnsnnssnnnnnnnnnnnnnnn 42

© Ecma International 2015 iii

7113
7.1.14
7115
7.1.16
7.2
7.21
7.2.2
7.2.3
7.24
7.2.5
7.2.6
7.2.7
7.2.8
7.2.9
7.2.10
7.2.11
7.2.12
7.213
7.3
7.31
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6
7.3.7
7.3.8
7.3.9
7.3.10
7.3.11
7.3.12
7.3.13
7.3.14
7.3.15
7.3.16
7.3.17
7.3.18
7.3.19
7.3.20
7.3.21
7.3.22
7.4
7.41
7.4.2
7.4.3
744
7.4.5
7.4.6
7.4.7
7.4.8

8.1

8.1.1
8.1.2
8.2

8.21
8.2.2
8.2.3
8.24

ecind

QI e T Y=Y o (T LTy 0 T=T 4L 43
ToPropertyKey (@rgument)coiiiiiiisiirre s ssss s sss s s amnn s e e s 44
ToLength (argument) ... s 44
CanonicalNumericlndexString (argument) ... 44
Testing and Comparison Operations..........ccccciiiirrrrnn i ————— 45
RequireObjectCoercible (argument)cuuuiiiiiiimiiimmimiie . 45
S g YA (=T o 11 T4 =T 4 N 45
L1021 | T o1 L= (=T o 11T 13 =T L N 45
LET 020 T =3 9T T2 Lo gl = 1 1T 0 T=1 o | N 45
ST o =T E=T 1 o = (0 N 45
ST L (=T T g (0 T 11T 4T oL TN 46
IsPropertyKey (argumeNnt)ceeeiieiimiimmiimmmiireieiieeeeeeeeeeeeeeeeeeeersesssssssassssssssssssssssssssssssnssssssssnss 46
ES =Y o | oI T 11T 4 T 1L N 46
SAMEVAIUC(X, Y) weeeeeei 46
SAMEVAIUCZEIO(X,; Y).uuuuuuunnnnnnnnnnnnnn s 46
Abstract Relational Comparison ... ————— 47
Abstract Equality COmMPariSONccoiviiiiiiiiiiiiiiiiii s 48
Strict Equality COmMPAriSON ... 48
Operations 0N ODJECtS....... ..o 49
=Y (0 TR = 49
L= T R 49
L= O T VA I T ¢) 49
CreateDataProperty (O, P, V) .. 49
CreateMethodProperty (O, P, V) ... s 50
CreateDataPropertyOrThrow (O, P, V). irrrrremccss s s sssssssss s s s s s e s e s s s e e e s e nmnnnn e 50
DefinePropertyOrThrow (O, P, deSC)....cuuuuiiiiiiiiiiiieciiss s rsrrsescsss s s s s s s s s s s s s s s e e nnn s s s e e e e s e mmnnnes 50
DeletePropertyOrThrow (O, P)....... st rr s s s s s s s e s sn s s s s s e s e e s s s s e e e e e nnnnnnen 50
GetMethod (O, P)...ueeeiiiiiiiiieerir e 51
L F= T3 o oY o X=1 o V(O A = T 51
L B T @ AT 0] o o o =T o Y (O TR = T 51
Call(F, V, [argumentSLiSt])......cccoiimiirimmciiiiiirirrecsss s s rrssss s s s s s s sr s s e s s s s s e s s nnn s s s e s e snnnnnssssnnnns 51
Construct (F, [argumentsList], [newTarget])ccccccoumimimmmmccciiiiirrrrceccss s s rrss s e e e 51
SetintegrityLevel (O, I@VE) et r e s e e s e s s e e e e e e nnn s 52
TestintegrityLevel (O, 1@Vel)...... et e e e s n s e s s e s e e s nnn s s e e e ennnn 52
Create ArrayFromList (€l1ements)...........e i rr s s s s e e e e nnnn s 52
CreateListFromArrayLike (obj [, elementTypes])......ccvuremmciiiiiiiirrcecccs e rreescs s s e e e e s 53
Invoke(O,P, [argumentSList]).........cccoiiiimmeciiiiiiiiiriices s e s s s s s s e e e s s e e e r e s e s e e e e nn e 53
(0o TP TV o F= X1 LT3 =T Lo = (O) T 53
SpeciesConstructor (O, defaultConStructor)...........ooiiieccciiiiirrrccr e 54
EnumerableOWNNames (O)cceeeemmmeemmmmmmmmmmmmmmmmeeeeemeeennnneenneeeeneennnnsnssssnnsssssnsssnsssssnnssnsnnnnsnnnnnnnnn 54
GetFunctionRealM (0])......ue s 54
Operations on Iterator ObjJECtS..........cccocciiiiii s 54
Getlterator (0bj, MEthod) ... 55
IteratorNext (iterator, ValUe)..........eeeeeeemmmmimmmmmmmeeieeeeeeeeeeeeee e nnn s nnnnnnnnnnnnnn 55
IteratorComplete (IterREeSUIE)cooeeeememmmimiiieeieeeeee e mmmmnnnn 55
IteratorValue (iterReSUIL).........cceeeeiiieimmmmmieiiieieeeeeeeeeeeeeeeee e e e e s e s s nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 55
L= =1 0o] 17 (=Y oI (L L= 1 Lo o 55
IteratorClose(iterator, COMPIEtion)........ccoeeeeeimiimmmmmmmmmmmieeeeeeeeeeeee s nnnnnnnnnnnn 55
CreatelterResultObject (value, doNe)o s 56
CreateListiterator (ISt)......cccccccirr s 56
Executable Code and Execution Contexts.........ccccrriiiiiiiiinniinensssns s ssssnnenes 56
Lexical ENVIFONMENTESccvvviiiirimmrmmmrrrrrnrrrinerrrsrrrrrrrsssssssssssssssrsssssssssssssssssssssssssssssssssnssssssssssssnsnnen 56
ENVIronmMent RECOIAS........ooiiimiiiii it sss s s e e e s s e e e e e s nmn s 57
Lexical Environment OpPerations............ceeeveeeeeeemmemmmmmmmmmmmemmmmeeeeeeneeeeneeennnsssnsssssssssssssssssssnnsssnnnnnns 7
COdE REAIMS ... e s 72
CreatE@REAIM (). ... 73
CreatelntrinSics (FEAIMREC).....uuuu s 73
SetRealmGlobalObject (realmRec, globalObj).........ccccciiriiiiirirr s 73
SetDefaultGlobalBindings (realMREC)ccccoiiiiiiiirii s 73

© Ecma International 2015

ecina

8.3

8.3.1
8.3.2
8.3.3
8.34
8.3.5
8.4

8.41
8.4.2
8.5

8.5.1

9

9.1
9.1.1
9.1.2
9.1.3
9.1.4
9.1.5
9.1.6
9.1.7
9.1.8
9.1.9
9.1.10
9.1.11
9.1.12
9.1.13
9.1.14
9.1.15
9.2
9.21
9.2.2
9.2.3
9.24
9.2.5
9.2.6
9.2.7
9.2.8
9.2.9
9.2.10
9.2.11
9.2.12
9.3
9.3.1
9.3.2
9.3.3
9.4
9.4.1
9.4.2
9.4.3
9.4.4
9.4.5
9.4.6
9.5
9.5.1
9.5.2
9.5.3
9.5.4
9.5.5
9.5.6

EXECULION CONtEXES.....cciiiiiiiieieiieiee e e e e s s s e s e s s s e s e s s s e s e s s e s s e s s s e s e s e se e s e e e eeeeeeeeeeeeeeeeeeeeneeeeeeeeeneeenenennnnnnnnnnns 74
ResolveBinding (Name, [ENV])......cuiiiiiiiiieiiie s 75
GetThISENVIrONMENT () ...t s snn s e e e mnnnns 75
ResolveThisBinding (). 75
(=3 =T I T T 75
(=3 € Lo = 10 T o 1= 76
JODBS anNd JOD QUEUES ...t s s e s s s s e s e e nna s e e e e e nnnnnnnanes 76
EnqueueJdob (queueName, job, arguments)............ccoovviiiiiiiiiiiiiiiiiiiiieci 77
VL= QN Lo o == 1 | 77
ECMASCript Initialization()......cceueoiiiiiiiiiccii s r s 77
InitializeHostDefinedRealm (realm)cceeeeeiiiiiieee s e 78
Ordinary and Exotic Objects Behaviours...............uuuueiiimmmimiiiimmmmeesssssasaaaaas 78
Ordinary Object Internal Methods and Internal SIotsuuueeimmmimimes 78
L T=3d 2 e £ Y/ o 7L 0 1 | I (T 78
IS TE 8 o o Lo 47 o T=1 0 1) T T 78
LS = =T K= o = | () 79
LR A V=1L = €= 0 3 0 £ £ | N (P 79
LT 0T 1o oY oYY o 4T | I (2 79
[[DefineOwnProperty]] (P, DESC)ccoiiiiiiiiiiiiiiiiiiiiie i 79
L= K5 o o =T oY () 81
L= g 2GS 7= YT 81
ST 1 V3T 2= 1=) 81
LD 23 125 0= | PP PPPPPPPPPPIE 82
LS L =T = 1 L= J 82
[[OWNPIropertyKeYS]] () --ceeeerrrremnnsearsermmrmmnnsssssssrrrnssnsssssssssrsmmmnnsssssssemssnnnssssssssssssnnnnsssssssssesnnnnnnnns 83
ObjectCreate(proto, internalSIotSList)ccciiiieeeiciiiiiiiir e e 83
OrdinaryCreateFromConstructor (constructor, intrinsicDefaultProto, internalSlotsList).....83
GetPrototypeFromConstructor (constructor, intrinsicDefaultProto)cccceeeecciiiiiinieennee. 84
ECMASCript FUNCLiON ODjJECtS........ccooiiiiieecciir et s s s s e r s e e e e e nnmnnas 84
[[Call]] (thisArgument, argumentsList)...........ccoimiimmciiiiiiiircc e e 85
[[Construct]] (argumentsList, NnewTarget)........ccccccceeeciiiiiiiiiieecci e e e e nnanes 86
FunctionAllocate (functionPrototype, strict [,functionKind])........ccooeemmeceiiiiiiircccrereee, 87
Functionlinitialize (F, kind, ParameterList, Body, SCOPE€)ccuuuuiiiiiiiiiiccccirrrrreecc e 87
FunctionCreate (kind, ParameterList, Body, Scope, Strict, prototype).........cccceeumrceiiiirrrreennnee. 88
GeneratorFunctionCreate (kind, ParameterList, Body, Scope, Strict).........ccccvemncciiiirireeennee. 88
AddRestrictedFunctionProperties (F, realm) ... e 88
MakeConstructor (F, writablePrototype, prototype)ccccueeeeccciiiiiireeccc e 88
(V=1 (=108 P2 XX=T 00 oY 13 4 T o1l (N o T 89
" F=1SC1 114 e X I T 4 o 4 V=10 1 o 1= 2 TR 89
SetFunctionName (F, Name, Prefix) ... e nnnnnnnnn 89
FunctionDeclarationInstantiation(func, argumentsList).............coooorriiiriiriii e 89
Built-in FUNCtiON ODjJECLSccoeeeieeeeeeee eenennnes 92
[[Call]] (thisArgument, argumentsList)............ooovrreeiiiiiii i 92
[[Construct]] (argumentsList, NnewTarget)..........coooorriiiimiiiiiei e e e e 93
CreateBuiltinFunction(realm, steps, prototype, internalSlotsList)ccccoommmnnnns 93
Built-in Exotic Object Internal Methods and Slots.............coooerrriiiii e 93
Bound Function Exotic ObJects...........ccoeeiiiiiiiiiiii e e e e e e e e e e e e eeeeees 93
Array EXotic OBJECEScccccii s 95
L5101 aTe T =5 o € Lo 0 o 1= o2 £ 97
Arguments EXotic ODJECtS....... ..o s 98
Integer Indexed EXotic OBJECtS.........ccoeeeeieiiiiiieiie eeees 102
Module Namespace EXotic ObjJecCtS..........coovrriiiiiiiiiiiee e 105
Proxy Object Internal Methods and Internal Slots.............ccooeriiriire e 108
L= 2 e e Y/ < 110 1 | X (TR 109
S TELd o e Lo 37 « 110 1) PR 109
[[ISEXtENSIDIE]] () +eeeeeeeerrrrrrrrrereerrrresssesssssssssssssessssssssssssssssseseeeeesesesssesseesreeesessssssssennsennsnenennnnnnnnns 110
[[PreventEXtENSIONS]] () «reeererrerrrrrmrrrrrerrrrerrrrerersrsssssrsesesesssrseesssssssseereeeeeeseeseeeseesseeeseeeeeensnnnnnnnnns 110
[[GetOWNPIoPEertY]] (P) «eeeeeeeeeeeeeeereeeeeeeeeseeesesesssssssssessssssssssssessssssssseeesessessessessssesmeeeseneesenennnnenenes 111
[[DefineOWNProperty]] (P, DESC) ..ccceeeiieeeiiiieeeeeeeeee e e e e ee e e e e e e e ee e e e e e e e e e e s e e e e e e s e e s e e eeeeeeeeeeenesnenennnnennnes 111

© Ecma International 2015 \Y

9.5.7
9.5.8
9.5.9
9.5.10
9.5.11
9.5.12
9.5.13
9.5.14
9.5.15

10
101
10.1.1
10.1.2
10.2
10.2.1
10.2.2

1"
111
11.2
11.3
11.4
11.5
11.6
11.6.1
11.6.2
1.7
11.8
11.8.1
11.8.2
11.8.3
11.8.4
11.8.5
11.8.6
11.9
11.91
11.9.2

12
121
1211
12.1.2
12.1.3
1214
12.1.5
12.1.6
12.2
12.21
12.2.2
12.2.3
12.2.4
12.2.5
12.2.6
12.2.7
12.2.8
12.2.9
12.2.10
12.3
12.31
12.3.2

Vi

ecind

1L =53 2 T o =T 4 12 () N 112
[[Get]] (P, RECEIVEN)....ci et snn e e e mmnn e e e e e e a s 113
ST O V28 & G o= A=Y o N 113
[[DEIELE]J] (P) +eeeeeeeeerreeereereeeeereeeeuerenneeseennennessnnsssnnsssnssnnsnssnnsnnsnnnnnssnssnnnnnnnnnnnnnnnnnnsnnnsnnnnnnnnnnnnnnnnnnnn 114
LS T =T = 1= | N N 114
[[OWNPrOPertyKe@YS]I] () .eeeeeeeeeeeeeeeeemmmmmmmmmmmmmmmmmmmmmmmmmmnnnnnnnnssssnnsssssssssssssnssssnssssnssssnsnssssnssnsnssssnnnnn 114
[[Call]] (thisArgument, arguMENtSLISt)ccuuerimmimmmmmmmmmmmiinnieeieeeeeeaaa—————— 115
[[Construct]] (argumentsList, newTarget)..........cccceuuuemmmmmmmmmmimmmmmmi . 116
ProxyCreate(target, handler)uuueiiiiiiiiimiiiiiiie e 116
ECMASCcript Language: SOUrce COdecuuuurimmmmmmmmmmmmmmmmmmmnneesnssnsssssssssssssssssssssssssssssssssssssssnns 116
£ T 0T o= = 116
Static Semantics: UTF16ENCOAING ((CP) .oovvrrmmmmeiiiiiiiiriecceir e rrnrss s s es s e e rnmmn e 117
Static Semantics: UTF16Decode(lead, trail)..........coommmimmmiiiiiiiiiiccccrr e 117
TYpPes Of SOUICE COAEe ... rr e s e s s s s s s s s e e s s s aass s s s s s e nnnnnssssssnnnnnnnn 117
853 e 11 [T 1= 0o T [118
NON-ECMASCript FUNCLIONS.........ccoiiiiiiiecciin i s r s s e s r e e e e e e nmmnnnes 118
ECMAScript Language: Lexical Grammarcceeeeeeeemmmemmmemmeemmmmmennsesssssssssssssssssssssssssssssssnns 118
Unicode Format-Control Charactersccoiiieeeecciiiiiiniiceccess s rssssss s ss s s s s s s s s s s e s s snnnnsnes 119
WHRIte SPaceoooiiiiiiiiiii i 120
LI 4 L= =T ¢ 31T = 1 o 121
L0 o 1315 0 1= 1 1 121
B o1 2= o 1R 122
Names and KeYWOrdS..........cuuiiiiiiiiiiiiiiiiiiiiiieiiiiieiieeeseessensessessseesssssssssssssssssssssssssssssssssssssssnnssnnnn 122
o 1= 0 1 =0 V= T == 123
RESEIVEd WOKAS.......ccciiiiiiiiiiiiiiiiiiiiieie i s s s s s s s s s s s s s s s s s nnnnnnnnnnnnnnnnnnnsnnnnnnnnnnnnnnnnn 124
0T e 0= o T N 125
I =T - | =N 125
NUILLIteralscoooiiiiiiiiiiiiiiiiiiiis e s nnnnnnsssnnnnnnnnnnnnnnnnn 125
o T =T T I =T - | E= N 125
10 T3 1= o I = - N 125
SErING LIterals...... o s 128
Regular EXpression Literalsoeeeeeeeemmmmmmmmmimmmmmeeeeeeeeeeeeeeeceeeeeeeeeee s nn s nnn s nnnnnnnnnn 131
Template Literal Lexical Components..........ccccooiiiiiiiiiiiririrrrrrrrrr s 132
Automatic Semicolon INSertion............ooooo i 134
Rules of Automatic Semicolon INSertionoo e 135
Examples of Automatic Semicolon Insertion...............oooemmeeeee s 136
ECMAScript Language: EXPreSSIONS.........ccoiiiiiiieeiciiiiiirrcennssss s s sesssssssssss s s s sssnssssssssssssssnnssnes 137
o 1= 0 1= 137
Static Semantics: Early Errors s 137
Static Semantics: BoundNames..........cccccciiiiiiiiirir s 138
Static Semantics: IsValidSimpleAssignmentTarget.........cccccoooiiiiiiiiiirireecrerre s 138
Static Semantics: StringValue.......... .. 138
Runtime Semantics: BindingInitialization................coeeemmmmeee e 138
Runtime Semantics: EValuationooooeeemmiimiimmmimmiieeeeeeeee e 139
Primary EXPreSSiON ... s s s s s s a s e e nnaaa e e e e e nnnn s 139
S OMANTICS. .. s 140
The this KeYWOrd.....cccii s 141
o 1= 0 LT gl S =Y =] (= L 141
I = -1 141
Array INitialiZer.. ..o e 142
ODbjJect INItIAlIZEr ... 144
Function Defining EXPreSSiONScuuvvieiiiemiemmemmmmemmemeeeeneeeeeneeeeeenesnnennsssssssnsssssssssssssnsssnsnnnnnnnnn 148
Regular EXpression Literalsooo s 148
Template Literals ... rrre s rr s rr s s s s s s s s na s s e nnn s s s e nn s s s e nnssssrnnnssssrnnnnnns 148
QLI L= T (10T 0T 0. o =T - 1 o) 152
Left-Hand-Side EXPreSSioNS.........ccciiiiiieiciiiiiiiriecse s s s s s rrssssss s s s s s e sssn s s s s s s snnnnsssssssesssnnnnnsnes 153
Static SEMANTICSii it er e e e e e e e e nnn e aes 153
e 0 =T QT Y=Y o Y 156

© Ecma International 2015

ecina

12.3.3
12.3.4
12.3.5
12.3.6
12.3.7
12.3.8
12.4
12.41
12.4.2
12.4.3
12.4.4
12.4.5
12.5
12.5.1
12.5.2
12.5.3
12.5.4
12.5.5
12.5.6
12.5.7
12.5.8
12.5.9
12.5.10
12.5.11
12.5.12
12.6
12.6.1
12.6.2
12.6.3
12.7
12.71
12.7.2
12.7.3
12.7.4
12.7.5
12.8
12.8.1
12.8.2
12.8.3
12.8.4
12.8.5
12.9
12.91
12.9.2
12.9.3
12.9.4
12.10
12.101
12.10.2
12.10.3
12.11
12111
12.11.2
12.11.3
12.12
12.121
12.12.2
12.12.3

B T30 s Y= 0. o =T 1 L 157
FUNCEION CallScceiiieeieiieeieeei ettt ee s s e e e e e e s s e s e s s s s s e s e s e s s s e e s e e e e e e e e e e e e e e s s e e e eeeeeeeeeeeeeeneeeneneennenennnnnnnnnnns 157
The super KEYWOIdo s 159
Argument Lists.......cooo 160
Tagged TemMPIates. ... 160
Meta Propertiesccccoiiiiiiiiiiii i 161
POStfiX EXPreSSIiONSccciiiiiiiiiiiiiiiiiiiiii i 161
Static Semantics: Early Errors............uuueiiiiiiiiiiiiiiiieieeieeieeeeeeesesessssessssssssssssssssssssssssssssssaaaanae 161
Static Semantics: IsFunctionDefinition...........oooeeeiiiii s 161
Static Semantics: IsValidSimpleAssignmentTarget ..., 161
Postfix Increment Operator..........ccccvviiiiiiiiiiii i ———— 162
Postfix Decrement Operatorccccviiiiiiiiiiiiiiiic i 162
LT TV 0 o =T - T o 162
Static Semantics: Early Errors............uuuuieiiiiiiiiiiiiiieeieieiiseeeeeeseessssssssssssssssssssssssssssssssssssaaaaaaa 162
Static Semantics: IsFunctionDefinition...........oooeeeeiiiii s 162
Static Semantics: IsValidSimpleAssignmentTarget ..., 163
The delete OPerator.......cccc s 163
The vVOLid OPEIator s 164
The typPeof OPErator..... .o 164
Prefix Increment Operator ... 165
Prefix Decrement Operator ... 165
L TV @ T o =T - T o 165
L LT @ o =T - T o 165
Bitwise NOT Operator (~) ... 166
Logical NOT OPerator (!)..uicucieecceceiiiirrrreensssssssrssssnssssssssssssssssssssssssessssnnsssssssssssessnnnssssssssnennnnn 166
Multiplicative OpPerators.........ueeecciiiiiiiriieccirs e rrrssssss s s e s s e s s s e s e s s s sn s ssssesesnnnnssssssseennnnnn 166
Static Semantics: IsFunctionDefinition...............ooeeemiiii s 166
Static Semantics: IsValidSimpleAssignmentTargetcoecoiiiiiiiiiieccccnie e 166
Runtime Semantics: Evaluation ... 166
¥ [0 T3 LAY =3 0 = - 1 o 168
Static Semantics: IsFunctionDefinition...............ooeeemiiii s 168
Static Semantics: IsValidSimpleAssignmentTargetcooucciiiiiiiiiicccciie e 168
B LIV Lo TR ToT e o =1 =t Lo ol (R TS 169
The Subtraction OPerator (=)....cececcciiiiiirrrr e s e s e s s rns e s s e e e s s nnn s s s e s e ennnnnssssnsens 169
Applying the Additive Operators to NUMDErs...........ccooiecciiiiiiiircccr e s 169
Bitwise Shift Operators.........ciie i e r e s e e e e e n e e e e e ennnn 170
Static Semantics: IsFunctionDefinition................ooo s 170
Static Semantics: IsValidSimpleAssignmentTarget ... s 170
The Left Shift OPerator (<<) ... s 170
The Signed Right Shift Operator (>>)ccccoiriiirir s 171
The Unsigned Right Shift Operator (>>>)....ccccoiiiiiiii s 171
Relational OPeratorsooiiiiecciiii i srs s rr e s s s s s e s e sns s s s s e s e s s e nna s s s s s e e e snnnnssssssssnennnnn 172
Static Semantics: IsFunctionDefinition..............oooe s 172
Static Semantics: IsValidSimpleAssignmentTarget ... e 172
Runtime Semantics: Evaluation ..o 172
Runtime Semantics: InstanceofOperator(O, C)cooeviiiiiiiiiiii i e e e 174
o [0 11 Y0 o T=T - 1 Lo =R 174
Static Semantics: IsFunctionDefinition..............oooeemi e 174
Static Semantics: IsValidSimpleAssignmentTargetooommmmemmmeeeeennnes 174
Runtime Semantics: Evaluation ... 174
Binary Bitwise OPerators...........coooiiiiiiiiiiieiiiee e ee e e e e s e s e s e s e e e e e e e e e e s e s eeeennneenene 176
Static Semantics: IsFunctionDefinition..............oooeemi e 176
Static Semantics: IsValidSimpleAssignmentTargetcceeeememmmmemmmnmnnenneenennnnnnnnnnnes 176
Runtime Semantics: Evaluation ..o 176
Binary LOgical OPerators...........coeiviiiieiiieieeiieieeeeseseesssssssssssssesssssssssessseeeesesssssssesnsesseesssenennnnnnnnn 177
Static Semantics: IsFunctionDefinition..............ooeeeeimimimiimiiiee e 177
Static Semantics: IsValidSimpleAssignmentTargetcceeeemmmmmmmemmmmmemmnnnnmneeeeenennnnnnnnnnnnnas 177
Runtime Semantics: Evaluationooooooriiiee e 177

© Ecma International 2015 Vi

12.13

12.131
12.13.2
12.13.3
12.14

12.141
12.14.2
12.14.3
12.14.4
12.14.5
12.15

12.151
12.15.2
12.15.3

13
131
13.1.1
13.1.2
13.1.3
13.1.4
13.1.5
13.1.6
13.1.7
13.1.8
13.2
13.21
13.2.2
13.2.3
13.24
13.2.5
13.2.6
13.2.7
13.2.8
13.2.9
13.2.10
13.2.11
13.2.12
13.2.13
13.2.14
13.3
13.3.1
13.3.2
13.3.3
13.4
13.41
13.5
13.5.1
13.6
13.6.1
13.6.2
13.6.3
13.6.4
13.6.5
13.6.6
13.6.7
13.7
13.71
13.7.2

viii

ecind

Conditional OPErator (2 @) .iiiiiiiiiiicerrrrr s nnn e e aannnan 178
Static Semantics: IsFunctionDefinition..............eiiiicc e ——— 178
Static Semantics: IsValidSimpleAssignmentTarget..........cccccomiiiiiiiiiiiiimncerre s 178
Runtime Semantics: Evaluation ...t e 178
Assighment Operators.........cccoiiiiiiiiii 178
Static Semantics: Early Errors ... 179
Static Semantics: IsFunctionDefinition..........cceo i 179
Static Semantics: IsValidSimpleAssignmentTarget...........cccooiiiiiiiiiiiiniiinns 179
Runtime Semantics: Evaluation ...t e e 179
Destructuring ASSIGNMENTcuiiiiiiiiiiiiiiiiiir s ssassssasssasssssnsnnnnnnnnnnas 180
ComMMaA OPEIrAtOr (|,) ovcccrii 185
Static Semantics: IsFunctionDefinition..........cce oo 185
Static Semantics: IsValidSimpleAssignmentTarget..........ccccooiiiiiiiiiiiiiiiinnns 185
Runtime Semantics: Evaluation ... e e 186
ECMAScript Language: Statements and Declarations.............c.cccvmrmeecciiiiiinireccccn e 186
Statement SEeMaANLICS ... e r e e e e n e eennas 186
Static Semantics: ContainsDuplicateLabels.............coumieeeciiiiiiiiicccc e 186
Static Semantics: ContainsUndefinedBreakTarget........c..cccoouiimmmremeciiiiiminmeesscsssss e essessssennns 187
Static Semantics: ContainsUndefinedContinueTarget............ccceeemciiiiiiimieecccnnneee s 187
Static Semantics: DeclarationPart..............oooeeoiiiiiiiiccr e 187
Static Semantics: VarDeclaredNames..........cceuueiiiiiiiiiiieeciiiii s rs s s s snnnsssnssees 188
Static Semantics: VarScopedDeclarationscvveeeeciiiiiiminceecccsr e 188
Runtime Semantics: LabelledEvaluation ... 188
Runtime Semantics: Evaluation ... 188
] o N 189
Static Semantics: Early Errors ... oo errrr s s s s s s s e s snna s s s e e e s nmmnnn e e 189
Static Semantics: ContainsDuplicateLabels.............oouveeecciiiiiiiicccc e 189
Static Semantics: ContainsUndefinedBreakTarget.......cc..cccooviimimieeecciiiirissceesccss e eseeesnsnens 189
Static Semantics: ContainsUndefinedContinueTarget...........cccoeeeeciiiiiiisrecccccse s 190
Static Semantics: LexicallyDeclaredNamesccooveeeeeciiiiiiiiieeecccsr s rre s e s e 190
Static Semantics: LexicallyScopedDeclarations...............cciiiiiiiiieecciiiiieeececce e 190
Static Semantics: TopLevellLexicallyDeclaredNames.ccceeemeciiiiiiiiicceccccs e 191
Static Semantics: TopLevellLexicallyScopedDeclarations.........cccccceeeiiiiiiiieeccciieeeeeeceeees 191
Static Semantics: TopLevelVarDeclaredNamesccceuueciiiiiiiiiecccnsier e 192
Static Semantics: TopLevelVarScopedDeclarations..............coovieeecciiiiiiriceecccs s 192
Static Semantics: VarDeclaredNames........... ... 192
Static Semantics: VarScopedDeclarationsoooiieecciiiiiiicceccccre e 193
Runtime Semantics: EValuationooooooiiiiiiiiiimimmie e 193
Runtime Semantics: BlockDeclarationlnstantiation(code, env)ceeeeeeeeennennnnnes 194
Declarations and the Variable Statement................oooo e 194
Let and Const Declarationsceeeeeeeeemmmemmmmmmmmmmmmemeeeeeeeeeeeeeenee e s nnnnnsnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 194
R 1 F= o =R €= 1 =T 43 =T o 196
Destructuring Binding Patterns.............oooeeeemimmmmmmmmmmmmmememeeeeeeeeeeeeeeeeeeee e mmmnnnnn 198
3 0] 01 YRS €= 1= .4 =Y o | 205
Runtime Semantics: EValuationoooeeemmiimiiimmimmieeeeeee e 205
EXPression Statement..........ccceeeiiiiiiiicc e e e e e e e nnnnnnan 205
Runtime Semantics: EValuationooooeeeimiimiimmmmmimeeeeeeeeeee e 205
The 1f Statement...... ... s 205
Static Semantics: Early ErTOrso s 205
Static Semantics: ContainsDuplicateLabels..............oooieemiiiiiiiiiccccc e 205
Static Semantics: ContainsUndefinedBreakTarget...........cccocoiiririiiicrincnencnccc s 206
Static Semantics: ContainsUndefinedContinueTarget...........ccccooeiiirriiiriiriciccccereeee 206
Static Semantics: VarDeclaredNames.........ccccuuueiiiiiiiiiiiecciir e rr s e e sennnan s 206
Static Semantics: VarScopedDeclarations ... 206
Runtime Semantics: Evaluation ... e 207
Iteration Statements...........oooo i e s e ennnnnaaan 207
EST=Y 4T 101 o3 PRSPPIt 208
The do-while Statement ...t e e e e s s e s e s e e e e ennnss e seeennnn 208

© Ecma International 2015

ecina

13.7.3
13.7.4
13.7.5
13.8
13.8.1
13.8.2
13.8.3
13.9
13.9.1
13.9.2
13.9.3
13.10
13.101
13.11
13.11.1
13.11.2
13.11.3
13.11.4
13.11.5
13.11.6
13.11.7
13.12
13.121
13.12.2
13.12.3
13.12.4
13.12.5
13.12.6
13.12.7
13.12.8
13.12.9
13.12.10
13.12.11
13.13
13.131
13.13.2
13.13.3
13.13.4
13.13.5
13.13.6
13.13.7
13.13.8
13.13.9
13.13.10
13.13.11
13.13.12
13.13.13
13.13.14
13.13.15
13.14
13.141
13.15
13.151
13.15.2
13.15.3
13.15.4
13.15.5
13.15.6
13.15.7

The while Statement........ .. s 209
The £0r StatemeENt 210
The for-in and for-of Statements ... 213
The continue Statement........ ... s ern s 219
Static Semantics: Early Errors.............uuuiiiiiiiiiiiiiiiieeeieeieeeeeeeeeseesssesssesssssssssssssssssssssssssssssasaaaae 219
Static Semantics: ContainsUndefinedContinueTarget............cccuuuemmmmmmmmmmmmimnmnnnnnnaanes 219
Runtime Semantics: Evaluation ... 219
The break StatemMeNnt.......... . e enn s 219
Static Semantics: Early Errors............uuueiiiiiiiiiiiiiiiieieieeeeeeeeseeessesssssssssssssssssssss e 219
Static Semantics: ContainsUndefinedBreakTargetuuuummmmimmmemmmmnmmnnnnnnnnenennanes 219
Runtime Semantics: Evaluation ... 220
The return StatemeNnt........... e n s 220
Runtime Semantics: Evaluation ... e 220
The with StatemeNt ... e s e e s rnn s s s e e e e e nmnansnnanes 220
Static Semantics: Early Errors............uuueiiiiiiiiiiiiiiiieeeieeeeeeeeeeeesssessessssssssssssssssssssssssssssssasaaaae 220
Static Semantics: ContainsDuplicateLabels..............oeeummmmmmimimiiiiiis 221
Static Semantics: ContainsUndefinedBreakTargetceuuuemmmmmmmmmmminnmnnnneeenaeaaes 221
Static Semantics: ContainsUndefinedContinueTarget...............cuuummmmmmmmmmmminnneaaes 221
Static Semantics: VarDeclaredNames...........ccoueeeeiiiiiiiiiiceeccsinr s s rrssss s s e e snnnssses 221
Static Semantics: VarScopedDeclarations ... 221
Runtime Semantics: Evaluation ... e 221
The switch Statement......... ..o s s e s e n e s s s e e e e nnnnan s nnnees 222
Static Semantics: Early Errors............uuuiiiiiiiiiiiiiiiiieieieeeeeeeeeeseeessesssssssssssssss s ssnnnnnnes 222
Static Semantics: ContainsDuplicateLabels..............oouemmmiimiiiiiiiiiies 222
Static Semantics: ContainsUndefinedBreakTargetccccccceeeiiiiiiimieeenccnsseseseeese s s e e e eeeennnnes 223
Static Semantics: ContainsUndefinedContinueTarget...........cccovvimimireccciiiiisiececcces e 223
Static Semantics: LexicallyDeclaredNames...........cccoviiiimiieeecciiiiiisrceces s s s e e eennannes 224
Static Semantics: LexicallyScopedDeclarationscceeueciiiiiiiiiececcccis e 225
Static Semantics: VarDeclaredNames..............oooeemmimiiiiiiiimimemimeeeeeeeeeeeee s 225
Static Semantics: VarScopedDeclarationscccoviiiiiiieecciiiiisrieccs e 226
Runtime Semantics: CaseBlockEvaluation...............ooooriiiiiiiiiiiiieeee s 226
Runtime Semantics: CaseSelectorEvaluation ... 228
Runtime Semantics: Evaluation ... 228
= 1o Y= 1= B3 = 1 =T 43 =T o . 228
Static Semantics: Early Errors........eeeiiiiiiiecieccrs s rrrrsss s s s s s s s s s e s s nna s s e s e e e nnnnnnas 229
Static Semantics: ContainsDuplicateLabels............ccoooimmiiiemcccii s 229
Static Semantics: ContainsUndefinedBreakTargetccccccceeeiiiiiiiiecnenccssseseseeese s e e ee e 229
Static Semantics: ContainsUndefinedContinueTarget...........cccovvirmiimeccciiiiirreeeccees e 229
Static Semantics: IsLabelledFunction (stmt) ... 229
Static Semantics: LexicallyDeclaredNames............ccoeeeememmmmmmmmmmmmmmmmmmnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnas 230
Static Semantics: LexicallyScopedDeclarationsceeeeemmmmmmmmmemmmmmmmmmeeeeeeeeennnenennnnnnnnnnnas 230
Static Semantics: TopLevelLexicallyDeclaredNamesooeeemmemmmmmmmmmmmmmmmmmneennnnnnnnnnnnnnnnnas 230
Static Semantics: TopLevelLexicallyScopedDeclarations..............cceueeemmemmmmmmmmmmnnnnnnmnnnnnnnnnnns 230
Static Semantics: TopLevelVarDeclaredNames............cooeeemciiiiiiiiirceccccnse e 230
Static Semantics: TopLevelVarScopedDeclarations.........cccccccoviiiiiiieeccci e 231
Static Semantics: VarDeclaredNames..............oooeeemmmmmmmmmmmmmmemieeeeeeeeeeeeeeeeeeeee e 231
Static Semantics: VarScopedDeclarationsccooiiiiiiiieccciiiirree s 231
Runtime Semantics: LabelledEvaluation ... 231
Runtime Semantics: Evaluationooooririiiii e 232
The throw Statement......... .. s 232
Runtime Semantics: Evaluation ..o 232
The try Statement ... ———————— 232
Static Semantics: Early Errors...........oeeeeeemiimmimiemiimeeeeeeeeeeeeeeeeeennenseeenessnsn s nnssssnnnnssnnsnnsnnnnnnnnnnnns 232
Static Semantics: ContainsDuplicateLabels.............ccooriimiimmcciiiiiiiiecc s 233
Static Semantics: ContainsUndefinedBreakTargetcceeeemeemmmmemmmmmmmmmmmnnnnnnnnnnnnnnnnnnnnnnnnnnes 233
Static Semantics: ContainsUndefinedContinueTarget.............coeeeeememmmmmmmmmmmmnnenneennnennnnnnnnnnnnes 234
Static Semantics: VarDeclaredNames..............ooeeeemmmmmmmmmmmemmmmemmmeeeeeeeeeeeneeneeeennnnn s nnnnnnnnnns 234
Static Semantics: VarScopedDeclarationscooiiiiiiiiccciiiiiircccc s 235
Runtime Semantics: CatchClauseEvaluationoooorriiiiiii e 235

© Ecma International 2015 ix

13.15.8
13.16
13.16.1

14
141
1411
14.1.2
14.1.3
14.1.4
14.1.5
14.1.6
141.7
14.1.8
14.1.9
14.1.10
14.1.11
14.1.12
14.1.13
14.1.14
14.1.15
14.1.16
14.1.17
14.1.18
14.1.19
14.1.20
14.2
14.21
14.2.2
14.2.3
14.2.4
14.2.5
14.2.6
14.2.7
14.2.8
14.2.9
14.2.10
14.2.11
14.2.12
14.2.13
14.2.14
14.2.15
14.2.16
14.3
14.3.1
14.3.2
14.3.3
14.3.4
14.3.5
14.3.6
14.3.7
14.3.8
14.3.9
14.4
14.41
14.4.2
14.4.3
14.4.4
14.4.5
14.4.6

ecind

Runtime Semantics: EValuationcuueeeiiiiiiiiimiieiieeeeeeeeeeeeeeeeeeeeeeesesesessssssssssssssssssssssssssnsnnnnnn 235
The debugger statement...........cccciiiiiii——————————— 236
Runtime Semantics: EValuationceuuueiiiiiiiiiiiieiimeeeeeeeeeeeneeeeeeeeeneeeeeessssssssssssssssssssssssssnnnnnnns 236
ECMAScript Language: Functions and ClasSes............uuuueeemmemmmmmmmmmimmmmmnnnnnnssssssssssssssssssssssaanes 236
Function DefinitioNs ... e 236
Directive Prologues and the Use Strict DIreCtiveeeeeeemeemeimiiiiiiemmnnennnaaaes 237
Static Semantics: Early Errors ... 237
Static Semantics: BoUNANAMES............coi i e r s 238
Static Semantics: CONtAINSooveeeei e 238
Static Semantics: ContainSEXPression.........ccccciiiiiiiiininininnnnn s 239
Static Semantics: ExpectedArgumentCountcccoiiiiiiiiiiininiinnnnn s 239
Static Semantics: HasInitializer......... ..o 240
Static Semantics: HasNamMe ... 240
Static Semantics: IsAnonymousFunctionDefinition (production)cccooeiiiiiiiiiiiiiiiiinnnnn. 240
Static Semantics: IsConstantDeclaration ... 240
Static Semantics: IsFunctionDefinition..............eii i 240
Static Semantics: IsSimpleParameterList...........ccccooiiiiiiiiiiiiiiin s 241
Static Semantics: LexicallyDeclaredNamesccoceiiiiiiiiiiiininnnnnnn s 241
Static Semantics: LexicallyScopedDeclarations...........cccooiiiiiiiiiiiniiniiniins 241
Static Semantics: VarDeclaredNames..........cceeueiiiiiiiiiiieeciiiri e er s s sr s enes 241
Static Semantics: VarScopedDeclarations............cccociiiiiiiiiiinininnnnn s 242
Runtime Semantics: EvaluateBodyccuuiiiiiiiimiiiiiimmieeeeieeieeeeeeeeeessssssssssssss e 242
Runtime Semantics: IteratorBindinglnitialization.................oouiiiiis 242
Runtime Semantics: InstantiateFunctionObject................eeemmmimiimiiiiiis 243
Runtime Semantics: Evaluation ... 243
Arrow Function Definitionsoooooiriiiii i 244
Static Semantics: Early Errors ... oo errrr s s s s s s s e s snna s s s e e e s nmmnnn e e 244
Static Semantics: BoundNames...........cccooiiiiiiiiiii 245
Static Semantics: Contains ... 245
Static Semantics: ContaiNnSEXPresSion.........ccuuciiiiiiiiiiiccirr s e 245
Static Semantics: ExpectedArgumentCountcooeeeeeiiiiiiiiiirecccs e e e 245
Static Semantics: HasInitializer ... 245
Static Semantics: HasName s 246
Static Semantics: IsSimpleParameterList.............cooommiiimciiiiiiiicc 246
Static Semantics: CoveredFormalsList..........ccccooiiiiiiiiiiinii s 246
Static Semantics: LexicallyDeclaredNamesccoooiieeeciiiiiiiiicecccr e s e 246
Static Semantics: LexicallyScopedDeclarations...............coiiiiiiiiiecciiiiieseecce e 246
Static Semantics: VarDeclaredNames........... .. 247
Static Semantics: VarScopedDeclarationsoooiiiecciiiiiiiccccccr e 247
Runtime Semantics: IteratorBindinglnitialization...............ooooeeees 247
Runtime Semantics: EvaluateBodyccoeeeimmmimmmmmmmmmmmmeeeeeeeeeeeeeeeeeeennen s snnsnnnnnnnnnnnnnnnas 247
Runtime Semantics: Evaluationooooeermimmiimmimmimmeeeeeeeee e 248
=T Te T 1= {3 T o = 248
Static Semantics: Early Errorso s 248
Static Semantics: ComputedPropertyContains..........ccccccooieiriiiiririecrrrrrrcer s 248
Static Semantics: ExpectedArgumentCountcccooiiiiiiiiiiiirnreserrrr 248
Static Semantics: HasComputedPropertyKeyccccooerrriiiiiirnrnnsererrr s 249
Static Semantics: HasDireCtSUPET..........cooiiiiiecciii it r s s e e e e nnna e 249
Static Semantics: PropNamee.........cceeeecii it rr s s e e e e nnn s 249
Static Semantics: SpecialMethod...............oo i 249
Runtime Semantics: DefineMethod................ooeerrmmmmmmmmmimmmeeeeeeeeee e 249
Runtime Semantics: PropertyDefinitionEvaluation..............oooeeeeeeeeees 250
Generator Function Definitions..........cccccoiiiiiiiiiii s 250
Static Semantics: Early EITOrs ... s 251
Static Semantics: BoundNameS..........cccccciiiiriirnriinn s 251
Static Semantics: ComputedPropertyContains...........cccccoeiiiriiirnnnnnesnneserrrre s 252
Static Semantics: CoNtaiNScccccoiiiiiiiii s 252
Static Semantics: HasComputedPropertyKeyccccooeerrriiininnrnssnssrsesss s 252
Static Semantics: HasDIreCtSUPEr...........oo it rr e e e e e nnn s 252

© Ecma International 2015

ecina

14.4.7
14.4.8
14.4.9
14.4.10
14.4.11
14.4.12
14.4.13
14.4.14
14.5
14.51
14.5.2
14.5.3
14.5.4
14.5.5
14.5.6
14.5.7
14.5.8
14.5.9
14.5.10
14.5.11
14.5.12
14.5.13
14.5.14
14.5.15
14.5.16
14.6
14.6.1
14.6.2
14.6.3

15
15.1
15.1.1
15.1.2
15.1.3
15.1.4
15.1.5
15.1.6
15.1.7
15.1.8
15.1.9
15.2
15.21
15.2.2
15.2.3

16
16.1

17

18
18.1
18.1.1
18.1.2
18.1.3
18.2
18.2.1
18.2.2
18.2.3
18.2.4

Static Semantics: HasName...........ccueeeeeeeeiiimmimieieeeeeeeeeeeeeeeeeeeeeneeesenssnsnnsssssssssssssssssssssssnsssnnnsnnnn 252
Static Semantics: IsConstantDeclaration................eeeeeeeeeeemmmeemmmmmmmmnnennnnennnnen———————————————————— 253
Static Semantics: IsFunctionDefinition...............eueeemmiiiieieiiieeeeenn————————————————————— 253
Static Semantics: PropName.eeeeeiiiiiiiiiiiiiiiieeeeee e 253
Runtime Semantics: EvaluateBody............ccccciiiiiiiiiiiiiiiiiii 253
Runtime Semantics: InstantiateFunctionObjectcooooriiiiiiii 253
Runtime Semantics: PropertyDefinitionEvaluationcccoooviiiiiiiieees 254
Runtime Semantics: Evaluation ... 254
L0 B EoT o 1= 0 T o T 256
Static Semantics: Early Errors...........uuuuuiiiiiiiiiiiiiiiieeeieeieieeeeeeeeeeessessesssssssssssssssssssssssssssssssaaaane 256
Static Semantics: BOUNANAMESccceeeeeiiiiiiiirccr s e 257
Static Semantics: ConstructorMethodooeeeeiiiiiirr s 257
Static Semantics: CoNtains............ooomiieiiiii e 257
Static Semantics: ComputedPropertyContains............ueeeeeeememmimimmemmmmnn. 258
Static Semantics: HasNamee...........oo s 258
Static Semantics: IsConstantDeclaration...............coiiiiiiiiicciii s 258
Static Semantics: IsFunctionDefinition...........cooeeeeiiiiii s 258
Static Semantics: ISStatiC.........ccoiiiiiiiic 259
Static Semantics: NonConstructorMethodDefinitionscccoomimiieccciiiiiiniicccc e, 259
Static Semantics: PrototypePropertyNameListoeuummmmmiiiiimiiimeaans 259
Static Semantics: PropName.............oeuieiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeees e 259
Static Semantics: StaticPropertyNameList..............ccuuuimiiiiiiimiiimis 259
Runtime Semantics: ClassDefinitionEvaluation ... 260
Runtime Semantics: BindingClassDeclarationEvaluationcccccooiiiiiiiiiiiiiiiiiiiieieeeeens 261
Runtime Semantics: Evaluation ... 261
Tail POSItion Calls 262
Static Semantics: IsInTailPosition(nonterminal)...........ccoueeemciiiiiiirecccc s 262
Static Semantics: HasProductionInTailPoSition ... 262
Runtime Semantics: PrepareForTailCall ()........cccoeemmciiiiiiiiriccci s s s s e s e e e e e 266
ECMAScript Language: Scripts and Modules..........c.uuciiiiiiiiiieeecciiiee s es e s ssesssee s e eeeenes 266
85T o2] o 266
Static Semantics: Early Errors........eeeiii s rrrress s s s s s s s s e s s nnn s s e e e e nnnn s 266
Static Semantics: ISSErCt.........ooovemiiiiiiiiee s 266
Static Semantics: LexicallyDeclaredNames...........cccooviimiiieeeccciiiii e nnnnanes 266
Static Semantics: LexicallyScopedDeclarationsccceeuuceiiiiiiiiiceccccis e 267
Static Semantics: VarDeclaredNames...............ooooemmmmmimmeeeeeeeeeeee e 267
Static Semantics: VarScopedDeclarationsccooviiiiiiiecciiiiiirrccc s 267
Runtime Semantics: ScriptEvaluation ... 267
Runtime Semantics: GlobalDeclarationinstantiation (script, env)..........cccooovriiriiiiiiiiiiieeeees 267
Runtime Semantics: ScriptEvaluationJob (sourceText)........ccoerriiiiiiiiiiiiiiieeceeeeeeeee e 269
1o T 111 oS 269
o 111 L= TS o 0 F= T | oS 269
0 1] o T o PPN 282
o o PPN 284
Error Handling and Language EXteNSIONSccoooiiiiiiiiiiiiee e e s e e e 291
Forbidden EXtENSIONS........coooiiiieii i 291
ECMAScript Standard Built-in Objects............cooveeeiiiiiiii e 292
The GIobal ODBJECH...... ..o s 293
Value Properties of the Global ObjJect..........cccoooi s 294
0T 3112t 294
V= T RS 294
L1 T8 o 1= 15 1= o [PUTPPN 294
Function Properties of the Global Object...............coooriiiiii e 294
Lo - 1 294
L= T T L= (10 431 =1 RS 296
L] V= TN (10 441 = PR 296
[0 2= LE=T=Y o U T L 531 4T o | PR 297

© Ecma International 2015 Xi

18.2.5
18.2.6
18.3
18.3.1
18.3.2
18.3.3
18.3.4
18.3.5
18.3.6
18.3.7
18.3.8
18.3.9
18.3.10
18.3.11
18.3.12
18.3.13
18.3.14
18.3.15
18.3.16
18.3.17
18.3.18
18.3.19
18.3.20
18.3.21
18.3.22
18.3.23
18.3.24
18.3.25
18.3.26
18.3.27
18.3.28
18.3.29
18.3.30
18.3.31
18.3.32
18.3.33
18.4
18.4.1
18.4.2
18.4.3

19
19.1
19.11
19.1.2
19.1.3
19.1.4
19.2
19.21
19.2.2
19.2.3
19.2.4
19.3
19.3.1
19.3.2
19.3.3
19.3.4
19.4
19.4.1
19.4.2

Xii

ecind

parselnt (String , radiX)cceiiiiiiiiirr e 297
URI Handling FUNCHIONS........ccuiiiiiiiiiiiiiiiiiiiiiessensssssessesssnsnnssnssssnsnnns 298
Constructor Properties of the Global Objectccccciiiriiiiiini s 302
L - 3 (T 302
ArrayBuffer (...). ————— 302
oo = o T N 302
D = 1= Y= T N 302
0 == N 303
o) (O N 303
Y= 11 o N 303
L LT 1 7 - | () N 303
L LT 1T 7 - | (O N 303
13T 1 o T N 303
L 7y 3 (R TN 303
L0 - 1 N 303
L 7 - | N 303
T = T N 303
N 1T T3 0] T (O N 303
L0 T s = o1 N 303
g 034V (P TN 303
o 1 11T N 303
L= 1 1o 1= o) (O N 303
L= (=1 =Y Lo 8 o (R N 303
=T |« o T LN 304
S T TN 304
£ T T T T 304
SYMDBOI (.1) i ——— 304
0301 €= 5 =3 (oY (O T 304
B0 1= = e (PN 304
UINEBAITAY (. . .) ceeeemmiiiiiiirrriimnssss s s rrr s mnsssass s s s e e s s nassssas s s e rnsnnssssssseseesnnnnsssssssesennnnnsssssssesennnnnnnnnn 304
UINt8CIamMPEUAITAY (. . .)iereeeceiiiiiiiririimesessssrrrrnssssssssssrrrsnnssssasssssesnnnssssssssessnnnnnsssssssssssnnnnnnnnn 304
L L0 0N = 304
LU LY 7 - Y 304
L1 o (P 304
L 4L 14 =T o2 (O PPN 304
L4 L= 1S =T 304
Other Properties of the Global Object............coiiiiireccrrrrr e 304
01T | 304
Math ... 304
REFIECE ... ——————— 305
Fundamental ODbjJEcts.............ooeeiiiimmmmmmmimmieeeieeeeeeeeeeeeeeee e e s s s s s s s nnnnnnnnnnnnnnnnnnnnnnnnsnnnnnnnnnnnn 305
ODBJECE ODjJECLS..... .o s 305
The Object CONSIIUCTON s 305
Properties of the Object CONStrUCEOrooeermimimmmmmmiiiieeeeeeeeeeeeeeeeee e mmnmnnn 305
Properties of the Object Prototype Object............ooe e 309
Properties of Object INStaNCEeSccvveiemiimmimmmmmieieeeeeeeeeeeeeeeee s nnnnnnnn 310
LT Tea 0 3 0 Y = o = 31
The Function CONSLIUCTONceeiiiiiiiiieerirr s 311
Properties of the Function Constructor...........cccceciiiiiiiiiiccc e 312
Properties of the Function Prototype ODbject...........ooee e 313
FUNCtioN INStANCEScvviiiiiiimiiiririrrrirerrrrrrrrrrrrrrrrrrrrrr sn s s s nnnnnnnnnnn 315
o X == T T 0 T ¢ = o = 316
The Boolean CONSEIUCTONcccciiiiiirirircrrer s 316
Properties of the Boolean ConstrucCtor............cciiecciiiiiiiiicecccrs s e re s e s e e e e e nnnnnes 316
Properties of the Boolean Prototype Object............cceeeeemmmmmmmmmmmmmmmmmeenneennnennennnnnnnnnnnnnnnnnnnnnnnnnns 316
Properties of Boolean INStancCes.........cceuuu i rr e e s s e s s e e e e e nnnn e 317
SYMDBOI ODJECES ... s 317
The SYmbol CONSIIUCEON.........cc i 317
Properties of the Symbol ConStructor..............oeeeeemiemmmimmmmeeeeeeeeeeeeeeeeeeeeeeeeenenee e nnnnnnnas 317

© Ecma International 2015

ecina

19.4.3
19.4.4
19.5

19.5.1
19.5.2
19.5.3
19.5.4
19.5.5
19.5.6

20
20.1
20.1.1
20.1.2
20.1.3
20.1.4
20.2
20.21
20.2.2
20.3
20.3.1
20.3.2
20.3.3
20.3.4
20.3.5

Properties of the Symbol Prototype Object ... e 319
Properties of Symbol INStanCescooiiiiiiiiiierrr e 320
o1 0 o =Y o Y 320
The Error CONSTIUCTONccee e rr s e s s s s s e e e nnns s s s s s e s e nma s s s e e e nnnmnnssssnsnes 321
Properties of the Error Constructor ... 321
Properties of the Error Prototype Objectooovviiiiiiiiiiiiii s 321
Properties of Error INStanCes ..o e rr s s s s s s s s s s e s s nmas s s e e e eennn 322
Native Error Types Used in This Standard............coceuiiiiiiiiiiicccirrrreeess e 322
NativeError ObjJect STrUCUreoo e s e s s s s e e e e e nnnn s 322
NUMDErs and DAates..........ccoiiiiiiimmiiiiiirriri s rrr s s s s s e s s snass s s s s e s e s rnnassssssssenesnnnssssssssnsennnnn 324
Number OBJECtS ..o ———— 324
The NUMbBer CONSEIUCTONot s e e s s n s s s e e e e nnmmnnnnnees 324
Properties of the Number Constructor............cccooriiiiiiiiiiiiii e 324
Properties of the Number Prototype Object...........ccoovriiiriiiiiiiiiiii s 326
Properties of Number Instances..........cccccoviiiiiiiiiiiiiicicinc 330
The Math ODBJECt ... 330
Value Properties of the Math Object............ccoooiiiii s 331
Function Properties of the Math Objectooorrriiiiii 332
Date ObjJeCtScoiiiiiiiiiiiiii i 339
Overview of Date Objects and Definitions of Abstract Operations............ccccccmmmmnnininnnnnnnnnnes 339
QLI T30 2= 1 =300 4 K3 0 T2 oY P 344
Properties of the Date ConStructorooooiiiiiiiiiiiiiiici 346
Properties of the Date Prototype Object ... 347
Properties of Date INStaNCescoiiiiiiiiieecciii e e s s e e s rnna e s e e e e nnnn 357
B, A8 e T =T [T 357
85 T T O T o =Y o2 £ 357
The String CONSLIUCTON ... s s s s e s s s s s e s e s s nnn s s s e s e nnnmnnnssnnnnns 357
Properties of the String CoONStrUCtOr.............. i e e e e e ene 357
Properties of the String Prototype Object............coeeemcciiiiiiiirrcccr e 359
Properties of String INStaNCeSs.........cccoiiiiiieecciii e s e e e e e e ennn 372
String Iterator ODJEcCtS.......cccieee e r e e e e nnn s 372
RegExp (Regular EXpression) ObjJectsS.........cccoiiiiiiiiiecciiiiiirrrrsscces s ssessss s s e e s ssmnsss s s s e e e eenes 373
Patterns ...t 373
Pattern Semanticsccccciiiiiiiiiiiiierrr e ———— 376
The REgEXP CONSIIUCTONcoiiiiiiieeciir e rrriee s s s s e e s s s s s s s e e s nnns s s s e e e s e nnn s s s s e s e ennnnnsssnnsens 389
Properties of the RegEXP CONSLrUCTON...........ccoiiiiiiiieccire e e e e s s e e s nnnna s e e e e eene 391
Properties of the RegExp Prototype Object..........ccoumciiiiiiiiiccccererrre e e 391
Properties of RegEXP INStanCesccoeeeeiiiiiiiiii i e e e e e e e e e e e e e e e e e eneees 400
Indexed COlIECHIONScceiiiiiiiiieerrr e annn e 400
N = YA 0 1 1= = 400
The Array CONSTIUCKON ... s 400
Properties of the Array CONStrucCtor.............coooiiiiiii i e e e e e eeees 401
Properties of the Array Prototype Object...........coooorriiiiiiieiiie e 403
Properties of Array INStaNCes.........coovviiiiiiiiiii e e e enes 425
Array Iterator ODjJECtS...... ..o s 425
TYPEAAITAY ODjJECES ... s 426
The %TypedArray% Intrinsic ObjJect ... 427
Properties of the %TypedArray% Intrinsic Object...........ccccceiiiiiiiiiiimi e 430
Properties of the %TypedArrayPrototype% Objectccccciiiriiiiiimneen e 432
The TypedArray CONSLIUCIONScccciii s 443
Properties of the TypedArray CONStrUCLOrS..........ccooeiiiiiiiiiiiei e e e e e e e e e e eeees 443
Properties of TypedArray Prototype Objects............cooevimiiiiiiiiiii e 444
Properties of TypedArray INStanCeS..........ccoveeeiiiiiiiiieeeeeeeeee e e e e e e e e e e e e e e e e s e e e e s s e e e e e e e e e e e eeeeeeneenenes 444
G350 B0 o 1 =Y o2 oY o RS 444
= T o T 0. =Y o2 PR 444
The Map CONSEIUCEON ...t e e s e e nn s s e e e e s s e nn s s s e s e nnnnnnssssssnes 445
Properties of the Map CONStrUCEOr.......cccceeeeee it e e s e e e e ene 445

© Ecma International 2015 Xiii

2313
2314
23.1.5
23.2

23.21
23.2.2
23.2.3
23.24
23.2.5
233

23.31
23.3.2
23.3.3
2334
23.4

23.41
23.4.2
23.4.3
2344

24
241
2411
24.1.2
241.3
241.4
24.1.5
24.2
24.21
24.2.2
24.2.3
24.2.4
24.2.5
24.3
24.31
24.3.2
24.3.3

25
251
2511
25.1.2
25.2
25.2.1
25.2.2
25.2.3
25.2.4
25.3
25.31
25.3.2
25.3.3
25.4
25.41
25.4.2
25.4.3
2544
25.4.5
25.4.6

26
26.1

Xiv

ecind

Properties of the Map Prototype ODbject..............uuuueeemeemmmmmmemmmeeemnmeennennennnnnnnsnnsssnssssssssssssssnssnnns 446
Properties of Map INStanCeS...........cuueeeeeeeimmmmmeemmrereeeeereeeeeeeeeeeeeeeererrnnsnnsssssssssssssssssssssssssnsnnnnsnnnn 448
Map Iterator ODJECES ... 448
St ODjJECES ... 450
The Set CONSLIUCTON.......... s s e e s e s s s s s e e e s na s s s s e s e e nmnsssssssnnnnnnnn 450
Properties of the Set CONStrUCTONcuviiiiiiiiiiiiiii e 451
Properties of the Set Prototype ObjJectceuiiiiiimmiiiiiiimiiiieeeaaaaes 451
Properties of Set INStANCESccuviiiiiiiiiiiiiiiiii - 453
Set terator ODJECES ————— 453
WeakMap ODjJEcCtsccooviiiiiiiiiiiiiiiiiiiii i 455
The WeakMap CONSLrUCEOrccciiiiii s 455
Properties of the WeakMap CONSLrUCIOT.............uuueeeimmmmmmmmiiiiieeeeeeeneneeeeeeneeeeeeeeeseseesansaaaaaananas 456
Properties of the WeakMap Prototype Object.............ceuuummmmmmmmmmmmmmmmmmniennnneeneeeeeeeeeesseeseeaaanaaaa. 456
Properties of WeakMap INStanCes..........ccuuuiiimiiimiiiiiimiieineeieeieeeeeeseeseseesssssssssssssssssssssssssssananasanns 458
WeakSet ObjJeCtS.......coiiiiiiiiiiiiiiiiiii i 458
The WeakSet CONSEIUCEOL........oooiie e r s s s s s s s e e rnma s s e e ennnns 458
Properties of the WeakSet CONStrUCEONceviieiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeesee e 459
Properties of the WeakSet Prototype Object ... 459
Properties of WeakSet INStanCesccuviiiiiiiiiiiiiiiiieieieeeeeeeeeseeneeeeesess s 460
Structured Data...........cooiiiimeiiiiiiirir s e e e e e nr e e e e e e ennnn e e e e e e e nnnnnnnaaane 460
ArrayBuffer Objectscccoiiiiiiiiii i ————— 460
Abstract Operations For ArrayBuffer Objects ..o 460
The ArrayBuffer CoONStructor.........ccooii s 462
Properties of the ArrayBuffer CONStrUCtOrceueeiiiiiimiiiiiiiiieeeeeeee s 463
Properties of the ArrayBuffer Prototype Objectcoooreeeccciiiiiirrccr e 463
Properties of the ArrayBuffer INStancCes ..o e 464
DataView ODjJECES.........ccoiiiiiiiiiecciir st s s e s ss s e e e s e s s e s s e s e e na s e e s e s e e s e nnn s s eeeeennnnnnnnn 465
Abstract Operations For DataView Objects..........ccceuuciiiiiiiiiieecccir s e s 465
The DataView CONSLIUCKON....... ... 465
Properties of the DataView ConStructorooeeuiiiiiiiiiccccrre e e 466
Properties of the DataView Prototype Objectcccooiiiiiiieecciiiiiierreecccs e 466
Properties of DataView INStanCesc.ueeeiiiiiiiiieccc s e 469
The JSON ODBJECH..... .o s 469
JSON.parse (text [, FeVIVEI]) i rrr s s e s s e s s s s s s e e e nmn e s s e s e e e e nnnn s s s e e ennnn 470
JSON.stringify (value [, replacer [, SPace]]) ...cceeeemmcriiiirrmmrmnnncisserersnessssssseseessnnssssssssssennes 471
JSON [@@LOSEINGTAQG] --uueeierrrrrmmnniiisiirrrrmmnessssrrsesnsssssssssrrssnnsssssssssersnnnssssssssssessnnnsnsssssneennnn 475
Control Abstraction ODjJEcCtS........cccceeeeiiiiiiiirccccrr e r s e e e e e e e n s 476
L= =11 1o o 476
Common Iteration INterfaces..........cccooooiiiiiiiii s 476
The %IteratorPrototype% ODbject...........cccvvmiimmiiiiiiiii 477
GeneratorFuNction ODBJECESo 478
The GeneratorFunction CoNStrUCtOr..........ccoo i s 478
Properties of the GeneratorFunction Constructorccccceiiiiiiiriiccc e 479
Properties of the GeneratorFunction Prototype Objectoomeeeeeeeeeeees 479
GeneratorFuNction INSTANCES.........ccccciiiic s 480
GenNErator OBJECES. s 480
Properties of Generator Prototype..........cceeueeeemmmmmmmmmmmmmmmmmeeeeeeeeeeeeeeenennsnnnnnnnn s s nnnnnnnnnnnnnnnnnnnnn 480
Properties of Generator INStanCesciiiiiiiiiecccc e e e 481
Generator Abstract Operations............ oo e e 482
L oY 41T =0 T ¢ = o = 483
Promise Abstract Operations...........ccceeeeiiiiiiiiiiiicccrs e e rrrnn s s e e s s e s s s e e e e e e nnnnnen 484
Promise JODS ...t nn s 487
The Promise CONSTIUCTONccoiiiiiiiircccr s s 488
Properties of the Promise CONStructor ... s e 488
Properties of the Promise Prototype Object............cueeeemmmmmmmmmmmmmmmmmemenennnnnennennennnnnnnnnnnnnnnnnnnnnnns 492
Properties of Promise INStanCes........cccuuueiiiiiiiiiiec et r s e e s e s e e e e nn s 493
=3 1= o2 1o o 493
The Reflect ODJECH....... .o s 493

© Ecma International 2015

ecina

26.1.1 Reflect.apply (target, thisArgument, argumentsList).........ccccoooiiiiiiimi s 493
26.1.2 Reflect.construct (target, argumentsList [, newTarget]).......cccccmriiiriiiimmnnncccseereeeees 493
26.1.3 Reflect.defineProperty (target, propertyKey, attributes)cccccoiiiiiimniccccerees 494
26.1.4 Reflect.deleteProperty (target, propertyKey) ... 494
26.1.5 Reflect.enumerate (target) ... ————————— 494
26.1.6 Reflect.get (target, propertyKey [, receiver J) ... 494
26.1.7 Reflect.getOwnPropertyDescriptor (target, propertyKey)ccccoeiiiiiiiiiinnnininiiniinnnns 494
26.1.8 Reflect.getPrototypeOf (target)........ccccoiiiiiiiiiiiiii e ——————— 494
26.1.9 Reflect.has (target, propertyKey)......cccccoiiiiiiiiiiiiniin s 495
26.1.10 Reflect.isExtensible (target).........cccooiiiiiiiiiiiiiii e ————————— 495
26.1.11 Reflect.ownKeys (target).......ccccoiiiiiiiiiiiiini 495
26.1.12 Reflect.preventExtensions (target)........cccccciiiiiiiiiiiniiininnn s ———————— 495
26.1.13 Reflect.set (target, propertyKey, V [, receiver]) ... 495
26.1.14 Reflect.setPrototypeOf (target, proto).......cccooiiiiiiiiiiiiiiiiiii 495
26.2 Proxy ODbjecCtSccouiiiiiiiiiiiiiiiiiiiiii i 495
26.2.1 The Proxy CONSLIUCEON ... 495
26.2.2 Properties of the Proxy CONStrUuCtorcccoiiiiiiiiiiiiinii s 496
26.3 Module Namespace ObBjJECtScooviiiiiiiiiiiiiiii i 496
26.3.1 @ @EOSEIINGT A -..uuuuuunnnnnnnnn 496
b T I (012 L L= = 1o X 497
Annex A (informative) Grammar SUMMATY ... s 499
A1 LI o= T = 1410 0 - 1 N 499
A.2 EXPreSSIONS.....ooiiiiiiiiiii i 505
A3 85 1= .4 1= 0 510
A.4 FUunctions and ClasSescuiimiiiimisiire s anne e 513
A.5 ST o3] o1 C3: T Lo I 1, U Yo 1] [515
A.6 NUMDEr CONVEISIONSuueiiiiiiiiiiiierr s s e annn e 516
A7 Universal Resource Identifier Character Classes...........cccceeiiiiniciinenine e 517
A.8 Regular EXPreSSiONS........cccoiiiiiiieiiiiiiirssrsssssasss s s s sssssssssssssssessssssssssssesssnnnsssssssssesennnnsssssssssnennnnn 518
Annex B (normative) Additional ECMAScript Features for Web Browsers...........cccoccmreeiiinnciinnnnnnnennn 521
B.1 Additional SYNtaX.......ccoiiiiiiiiiiiiir i ———————— 521
B.1.1 NUMEKIC LIteralsccccieeiiiiiiiiienrrr s 521
B.1.2 StriNg Literals........couiiiiiiieiii s 522
B.1.3 HTML-like COMMENES......cuiiiiiiiiinntr s annn e 523
B.1.4 Regular EXpressions Patterns............oooiieciiiiiiiicicccsse s s s s s s s s e e s e nmn s s s s e e e ennn 524
B.2 Additional Built-in Properties ... e s s s s s e s s s s s e s e e e e s 527
B.2.1 Additional Properties of the Global Objectccooiiiiiccii s 527
B.2.2 Additional Properties of the Object.prototype Objectccccoerrririiiiiirrrrr s 528
B.2.3 Additional Properties of the String.prototype Object.........cccoorriirriirirrirr s 528
B.2.4 Additional Properties of the Date.prototype Object...........cccoorrirrrriirrirrirrrr e 531
B.2.5 Additional Properties of the RegExp.prototype Objectcccorriiriiiirrriirc s 531
B.3 Other Additional Features............oocciimmiiiniiieerr s 532
B.3.1 __proto___ Property Names in Object Initializerscccoooorirrririiiir e 532
B.3.2 Labelled Function Declarations..........ccccoouiiiiimmimniserr s e 532
B.3.3 Block-Level Function Declarations Web Legacy Compatibility Semantics..........cccccceeeeeeees 533
B.3.4 FunctionDeclarations in IfStatement Statement Clauses............cccovmmrriiiiiiiiiiinnnceees 534
B.3.5 VariableStatements in Catch BIOCKSccccciiiiiiiiiiiiir 534
Annex C (informative) The Strict Mode of ECMASCHIPLccccvvmmimmiiiinnenern e 537

Annex D (informative) Corrections and Clarifications in ECMAScript 2015 with Possible

Compatibility IMPACEcoeeeemmmieieieieeieeeeeeeeeeeeeeee s s s s n s s nnnnnnnnnnnn s s s nnnnnnnnnnnnn 539

Annex E (informative) Additions and Changes That Introduce Incompatibilities with Prior Editions ...541
=] o [T Yo =T 0 0 77N 545

© Ecma International 2015 XV

secha

XVi © Ecma International 2015

oecinad

Introduction

This Ecma Standard defines the ECMAScript 2015 Language. It is the sixth edition of the ECMAScript
Language Specification. Since publication of the first edition in 1997, ECMAScript has grown to be one of the
world’s most widely used general purpose programming languages. It is best known as the language
embedded in web browsers but has also been widely adopted for server and embedded applications. The
sixth edition is the most extensive update to ECMAScript since the publication of the first edition in 1997.

Goals for ECMAScript 2015 include providing better support for large applications, library creation, and for use
of ECMAScript as a compilation target for other languages. Some of its major enhancements include modules,
class declarations, lexical block scoping, iterators and generators, promises for asynchronous programming,
destructuring patterns, and proper tail calls. The ECMAScript library of built-ins has been expanded to support
additional data abstractions including maps, sets, and arrays of binary numeric values as well as additional
support for Unicode supplemental characters in strings and regular expressions. The built-ins are now
extensible via subclassing.

ECMAScript is based on several originating technologies, the most well-known being JavaScript (Netscape)
and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that
company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all
browsers from Microsoft starting with Internet Explorer 3.0.

The development of the ECMAScript Language Specification started in November 1996. The first edition of
this Ecma Standard was adopted by the Ecma General Assembly of June 1997.

That Ecma Standard was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and
approved as international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998
approved the second edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the
first and the second edition are editorial in nature.

The third edition of the Standard introduced powerful regular expressions, better string handling, new control
statements, try/catch exception handling, tighter definition of errors, formatting for numeric output and minor
changes in anticipation future language growth. The third edition of the ECMAScript standard was adopted by
the Ecma General Assembly of December 1999 and published as ISO/IEC 16262:2002 in June 2002.

After publication of the third edition, ECMAScript achieved massive adoption in conjunction with the World
Wide Web where it has become the programming language that is supported by essentially all web browsers.
Significant work was done to develop a fourth edition of ECMAScript. However, that work was not completed
and not published! as the fourth edition of ECMAScript but some of it was incorporated into the development
of the sixth edition.

The fifth edition of ECMAScript (published as ECMA-262 5 edition) codified de facto interpretations of the
language specification that have become common among browser implementations and added support for
new features that had emerged since the publication of the third edition. Such features include accessor
properties, reflective creation and inspection of objects, program control of property attributes, additional array
manipulation functions, support for the JSON object encoding format, and a strict mode that provides
enhanced error checking and program security. The Fifth Edition was adopted by the Ecma General Assembly
of December 2009.

1 Note: Please note that for ECMAScript Edition 4 the Ecma standard number “ECMA-262 Edition 4” was reserved but not
used in the Ecma publication process. Therefore “ECMA-262 Edition 4” as an Ecma International publication does not
exist.

© Ecma International 2015 XVii

oecind

The fifth Edition was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and approved
as international standard ISO/IEC 16262:2011. Edition 5.1 of the ECMAScript Standard incorporated minor
corrections and is the same text as ISO/IEC 16262:2011. The 5.1 Edition was adopted by the Ecma General
Assembly of June 2011.

Focused development of the sixth edition started in 2009, as the fifth edition was being prepared for
publication. However, this was preceded by significant experimentation and language enhancement design
efforts dating to the publication of the third edition in 1999. In a very real sense, the completion of the sixth
edition is the culmination of a fifteen year effort.

Dozens of individuals representing many organizations have made very significant contributions within Ecma
TC39 to the development of this edition and to the prior editions. In addition, a vibrant informal community has
emerged supporting TC39’s ECMAScript efforts. This community has reviewed numerous drafts, filed
thousands of bug reports, performed implementation experiments, contributed test suites, and educated the
world-wide developer community about ECMAScript. Unfortunately, it is impossible to identify and
acknowledge every person and organization who has contributed to this effort.

New uses and requirements for ECMAScript continue to emerge. The sixth edition provides the foundation for
regular, incremental language and library enhancements.

Allen Wirfs-Brock
ECMA-262, 6™ Edition Project Editor

This Ecma Standard has been adopted by the General Assembly of June 2015.

xviii © Ecma International 2015

oecCha
ECMAScript 2015 Language Specification

1 Scope

This Standard defines the ECMAScript 2015 general purpose programming language.

2 Conformance

A conforming implementation of ECMAScript must provide and support all the types, values, objects, properties,
functions, and program syntax and semantics described in this specification.

A conforming implementation of ECMAScript must interpret source text input in conformance with the Unicode
Standard, Version 5.1.0 or later and ISO/IEC 10646. If the adopted ISO/IEC 10646-1 subset is not otherwise
specified, it is presumed to be the Unicode set, collection 10646.

A conforming implementation of ECMAScript that provides an application programming interface that supports
programs that need to adapt to the linguistic and cultural conventions used by different human languages and
countries must implement the interface defined by the most recent edition of ECMA-402 that is compatible with
this specification.

A conforming implementation of ECMAScript may provide additional types, values, objects, properties, and
functions beyond those described in this specification. In particular, a conforming implementation of ECMAScript
may provide properties not described in this specification, and values for those properties, for objects that are
described in this specification.

A conforming implementation of ECMAScript may support program and regular expression syntax not described
in this specification. In particular, a conforming implementation of ECMAScript may support program syntax that
makes use of the “future reserved words” listed in subclause 11.6.2.2 of this specification.

A conforming implementation of ECMAScript must not implement any extension that is listed as a Forbidden
Extension in subclause 16.1.

3 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced document
(including any amendments) applies.

ISO/IEC 10646:2003: Information Technology — Universal Multiple-Octet Coded Character Set (UCS) plus
Amendment 1:2005, Amendment 2:2006, Amendment 3:2008, and Amendment 4:2008, plus additional
amendments and corrigenda, or successor

ECMA-402, ECMAScript 2015 Internationalization API Specification.
http://www.ecma-international.org/publications/standards/Ecma-402.htm

ECMA-404, The JSON Data Interchange Format.
http://www.ecma-international.org/publications/standards/Ecma-404.htm

4 Overview
This section contains a non-normative overview of the ECMAScript language.
ECMAScript is an object-oriented programming language for performing computations and manipulating

computational objects within a host environment. ECMAScript as defined here is not intended to be
computationally self-sufficient; indeed, there are no provisions in this specification for input of external data or

© Ecma International 2015 1

http://www.ecma-international.org/publications/standards/Ecma-402.htm
http://www.ecma-international.org/publications/standards/Ecma-404.htm

»eCma

output of computed results. Instead, it is expected that the computational environment of an ECMAScript
program will provide not only the objects and other facilities described in this specification but also certain
environment-specific objects, whose description and behaviour are beyond the scope of this specification
except to indicate that they may provide certain properties that can be accessed and certain functions that can
be called from an ECMAScript program.

ECMAScript was originally designed to be used as a scripting language, but has become widely used as a
general purpose programming language. A scripting language is a programming language that is used to
manipulate, customize, and automate the facilities of an existing system. In such systems, useful functionality is
already available through a user interface, and the scripting language is a mechanism for exposing that
functionality to program control. In this way, the existing system is said to provide a host environment of objects
and facilities, which completes the capabilities of the scripting language. A scripting language is intended for use
by both professional and non-professional programmers.

ECMAScript was originally designed to be a Web scripting language, providing a mechanism to enliven Web
pages in browsers and to perform server computation as part of a Web-based client-server architecture.
ECMAScript is now used to provide core scripting capabilities for a variety of host environments. Therefore the
core language is specified in this document apart from any particular host environment.

ECMAScript usage has moved beyond simple scripting and it is now used for the full spectrum of programming
tasks in many different environments and scales. As the usage of ECMAScript has expanded, so has the
features and facilities it provides. ECMAScript is now a fully featured general propose programming language.

Some of the facilities of ECMAScript are similar to those used in other programming languages; in particular C,
Java™, Self, and Scheme as described in:

ISO/IEC 9899:1996, Programming Languages — C.

Gosling, James, Bill Joy and Guy Steele. The Java Language Specification. Addison Wesley Publishing Co.,
1996.

Ungar, David, and Smith, Randall B. Self: The Power of Simplicity. OOPSLA '87 Conference Proceedings, pp.
227-241, Orlando, FL, October 1987.

IEEE Standard for the Scheme Programming Language. |IEEE Std 1178-1990.

4.1 Web Scripting

A web browser provides an ECMAScript host environment for client-side computation including, for instance,
objects that represent windows, menus, pop-ups, dialog boxes, text areas, anchors, frames, history, cookies,
and input/output. Further, the host environment provides a means to attach scripting code to events such as
change of focus, page and image loading, unloading, error and abort, selection, form submission, and mouse
actions. Scripting code appears within the HTML and the displayed page is a combination of user interface
elements and fixed and computed text and images. The scripting code is reactive to user interaction and there is
no need for a main program.

A web server provides a different host environment for server-side computation including objects representing
requests, clients, and files; and mechanisms to lock and share data. By using browser-side and server-side
scripting together, it is possible to distribute computation between the client and server while providing a
customized user interface for a Web-based application.

Each Web browser and server that supports ECMAScript supplies its own host environment, completing the
ECMAScript execution environment.

4.2 ECMAScript Overview

The following is an informal overview of ECMAScript—not all parts of the language are described. This overview
is not part of the standard proper.

2 © Ecma International 2015

»ecmna

ECMAScript is object-based: basic language and host facilities are provided by objects, and an ECMAScript
program is a cluster of communicating objects. In ECMAScript, an object is a collection of zero or more
properties each with attributes that determine how each property can be used—for example, when the
Writable attribute for a property is set to false, any attempt by executed ECMAScript code to assign a different
value to the property fails. Properties are containers that hold other objects, primitive values, or functions. A
primitive value is a member of one of the following built-in types: Undefined, Null, Boolean, Number, String,
and Symbol; an object is a member of the built-in type Object; and a function is a callable object. A function
that is associated with an object via a property is called a method.

ECMAScript defines a collection of built-in objects that round out the definition of ECMAScript entities. These
built-in objects include the global object; objects that are fundamental to the runtime semantics of the language
including Object, Function, Boolean, Symbol, and various Error objects; objects that represent and
manipulate numeric values including Math, Number, and Date; the text processing objects String and RegExp;
objects that are indexed collections of values including Array and nine different kinds of Typed Arrays whose
elements all have a specific numeric data representation; keyed collections including Map and Set objects;
objects supporting structured data including the JSON object, ArrayBuffer, and DataView; objects supporting
control abstractions including generator functions and Promise objects; and, reflection objects including Proxy
and Reflect.

ECMAScript also defines a set of built-in operators. ECMAScript operators include various unary operations,
multiplicative operators, additive operators, bitwise shift operators, relational operators, equality operators,
binary bitwise operators, binary logical operators, assignment operators, and the comma operator.

Large ECMAScript programs are supported by modules which allow a program to be divided into multiple
sequences of statements and declarations. Each module explicitly identifies declarations it uses that need to be
provided by other modules and which of its declarations are available for use by other modules.

ECMAScript syntax intentionally resembles Java syntax. ECMAScript syntax is relaxed to enable it to serve as
an easy-to-use scripting language. For example, a variable is not required to have its type declared nor are
types associated with properties, and defined functions are not required to have their declarations appear
textually before calls to them.

4.21 Objects

Even though ECMAScript includes syntax for class definitions, ECMAScript objects are not fundamentally class-
based such as those in C++, Smalltalk, or Java. Instead objects may be created in various ways including via a
literal notation or via constructors which create objects and then execute code that initializes all or part of them
by assigning initial values to their properties. Each constructor is a function that has a property named
"prototype" that is used to implement prototype-based inheritance and shared properties. Objects are
created by using constructors in new expressions; for example, new Date (2009,11) creates a new Date
object. Invoking a constructor without using new has consequences that depend on the constructor. For
example, Date () produces a string representation of the current date and time rather than an object.

Every object created by a constructor has an implicit reference (called the object’s prototype) to the value of its
constructor’s "prototype" property. Furthermore, a prototype may have a non-null implicit reference to its
prototype, and so on; this is called the prototype chain. When a reference is made to a property in an object,
that reference is to the property of that name in the first object in the prototype chain that contains a property of
that name. In other words, first the object mentioned directly is examined for such a property; if that object
contains the named property, that is the property to which the reference refers; if that object does not contain
the named property, the prototype for that object is examined next; and so on.

© Ecma International 2015 3

eCima

4 4 .
ill.ll.ll.' !
CF : implicit prototypelink
prototype " CF, .. J' N
F1 L
- CFP1 explicit prototype property
I W) f) = 3
Cfi l:-fz r.rf3 E’r.;, == l:-’r5
gl ol gl ol ol
oz o2 o o2 o2

Figure 1 — Object/Prototype Relationships

In a class-based object-oriented language, in general, state is carried by instances, methods are carried by
classes, and inheritance is only of structure and behaviour. In ECMAScript, the state and methods are carried
by objects, while structure, behaviour, and state are all inherited.

All objects that do not directly contain a particular property that their prototype contains share that property and
its value. Figure 1 illustrates this:

CF is a constructor (and also an object). Five objects have been created by using new expressions: cf;, cf,, cfs,
cf;, and cfs. Each of these objects contains properties named g1 and g2. The dashed lines represent the
implicit prototype relationship; so, for example, cfs’s prototype is CF,. The constructor, CF, has two properties
itself, named P1 and P2, which are not visible to CF, cf, cf,, cfs, cfs, or cfs. The property named CFP1 in CF,
is shared by cfy, cf,, cf;, cfy, and cfs (but not by CF), as are any properties found in CF,’s implicit prototype
chain that are not named g1, g2, or CFP1. Notice that there is no implicit prototype link between CF and CF,.

Unlike most class-based object languages, properties can be added to objects dynamically by assigning values
to them. That is, constructors are not required to name or assign values to all or any of the constructed object’s
properties. In the above diagram, one could add a new shared property for cf,, cf,, cfs, cfy, and cfs by assigning
a new value to the property in CF,.

Although ECMAScript objects are not inherently class-based, it is often convenient to define class-like
abstractions based upon a common pattern of constructor functions, prototype objects, and methods. The
ECMAScript built-in objects themselves follow such a class-like pattern. Beginning with ECMAScript 2015, the
ECMAScript language includes syntactic class definitions that permit programmers to concisely define objects
that conform to the same class-like abstraction pattern used by the built-in objects.

4.2.2 The Strict Variant of ECMAScript

The ECMAScript Language recognizes the possibility that some users of the language may wish to restrict their
usage of some features available in the language. They might do so in the interests of security, to avoid what
they consider to be error-prone features, to get enhanced error checking, or for other reasons of their choosing.
In support of this possibility, ECMAScript defines a strict variant of the language. The strict variant of the
language excludes some specific syntactic and semantic features of the regular ECMAScript language and
modifies the detailed semantics of some features. The strict variant also specifies additional error conditions that
must be reported by throwing error exceptions in situations that are not specified as errors by the non-strict form
of the language.

4 © Ecma International 2015

secmna

The strict variant of ECMAScript is commonly referred to as the strict mode of the language. Strict mode
selection and use of the strict mode syntax and semantics of ECMAScript is explicitly made at the level of
individual ECMAScript source text units. Because strict mode is selected at the level of a syntactic source text
unit, strict mode only imposes restrictions that have local effect within such a source text unit. Strict mode does
not restrict or modify any aspect of the ECMAScript semantics that must operate consistently across multiple
source text units. A complete ECMAScript program may be composed of both strict mode and non-strict mode
ECMAScript source text units. In this case, strict mode only applies when actually executing code that is defined
within a strict mode source text unit.

In order to conform to this specification, an ECMAScript implementation must implement both the full
unrestricted ECMAScript language and the strict variant of the ECMAScript language as defined by this
specification. In addition, an implementation must support the combination of unrestricted and strict mode
source text units into a single composite program.

4.3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

4.3.1

type
set of data values as defined in clause 6 of this specification

4.3.2
primitive value
member of one of the types Undefined, Null, Boolean, Number, Symbol, or String as defined in clause 6

NOTE A primitive value is a datum that is represented directly at the lowest level of the language implementation.
4.3.3

object
member of the type Object

NOTE An object is a collection of properties and has a single prototype object. The prototype may be the null value.
4.3.4
constructor

function object that creates and initializes objects

NOTE The value of a constructor's prototype property is a prototype object that is used to implement inheritance and
shared properties.

4.3.5
prototype
object that provides shared properties for other objects

NOTE When a constructor creates an object, that object implicitly references the constructor’'s prototype property for
the purpose of resolving property references. The constructor's prototype property can be referenced by the
program expression constructor.prototype, and properties added to an object’s prototype are shared,
through inheritance, by all objects sharing the prototype. Alternatively, a new object may be created with an
explicitly specified prototype by using the Object. create built-in function.

4.3.6
ordinary object
object that has the default behaviour for the essential internal methods that must be supported by all objects

4.3.7

exotic object

object that does not have the default behaviour for one or more of the essential internal methods that must be
supported by all objects

© Ecma International 2015 5

>eCma

NOTE Any object that is not an ordinary object is an exotic object.

4.3.8
standard object
object whose semantics are defined by this specification

4.3.9
built-in object
object specified and supplied by an ECMAScript implementation

NOTE Standard built-in objects are defined in this specification. An ECMAScript implementation may specify and
supply additional kinds of built-in objects. A built-in constructor is a built-in object that is also a constructor.

4.3.10
undefined value
primitive value used when a variable has not been assigned a value

4.3.11
Undefined type
type whose sole value is the undefined value

4.3.12
null value
primitive value that represents the intentional absence of any object value

4.3.13
Null type
type whose sole value is the null value

4.3.14
Boolean value
member of the Boolean type

NOTE There are only two Boolean values, true and false

4.3.15
Boolean type
type consisting of the primitive values true and false

4.3.16
Boolean object
member of the Object type that is an instance of the standard built-in Boolean constructor

NOTE A Boolean object is created by using the Boolean constructor in a new expression, supplying a Boolean value
as an argument. The resulting object has an internal slot whose value is the Boolean value. A Boolean object
can be coerced to a Boolean value.

4.3.17
String value
primitive value that is a finite ordered sequence of zero or more 16-bit unsigned integer

NOTE A String value is a member of the String type. Each integer value in the sequence usually represents a single
16-bit unit of UTF-16 text. However, ECMAScript does not place any restrictions or requirements on the values
except that they must be 16-bit unsigned integers.

4.3.18

String type
set of all possible String values

6 © Ecma International 2015

secmna

4.3.19
String object
member of the Object type that is an instance of the standard built-in String constructor

NOTE A String object is created by using the String constructor in a new expression, supplying a String value as an
argument. The resulting object has an internal slot whose value is the String value. A String object can be
coerced to a String value by calling the String constructor as a function (21.1.1.1).

4.3.20
Number value
primitive value corresponding to a double-precision 64-bit binary format IEEE 754-2008 value

NOTE A Number value is a member of the Number type and is a direct representation of a number.
4.3.21
Number type

set of all possible Number values including the special “Not-a-Number” (NaN) value, positive infinity, and
negative infinity

4.3.22
Number object
member of the Object type that is an instance of the standard built-in Number constructor

NOTE A Number object is created by using the Number constructor in a new expression, supplying a number value as
an argument. The resulting object has an internal slot whose value is the number value. A Number object can be
coerced to a number value by calling the Number constructor as a function (20.1.1.1).

4.3.23
Infinity
number value that is the positive infinite number value

4.3.24
NaN
number value that is an IEEE 754-2008 “Not-a-Number” value

4.3.25
Symbol value
primitive value that represents a unique, non-String Object property key

4.3.26
Symbol type
set of all possible Symbol values

4.3.27
Symbol object
member of the Object type that is an instance of the standard built-in Symbol constructor

4.3.28
function
member of the Object type that may be invoked as a subroutine

NOTE In addition to its properties, a function contains executable code and state that determine how it behaves when
invoked. A function’s code may or may not be written in ECMAScript.

4.3.29
built-in function
built-in object that is a function

NOTE Examples of built-in functions include parseInt and Math.exp. An implementation may provide
implementation-dependent built-in functions that are not described in this specification.

© Ecma International 2015 7

>eCma

4.3.30
property
part of an object that associates a key (either a String value or a Symbol value) and a value

NOTE Depending upon the form of the property the value may be represented either directly as a data value (a
primitive value, an object, or a function object) or indirectly by a pair of accessor functions.

4.3.31
method
function that is the value of a property

NOTE When a function is called as a method of an object, the object is passed to the function as its this value.

4.3.32
built-in method
method that is a built-in function

NOTE Standard built-in methods are defined in this specification, and an ECMAScript implementation may specify and
provide other additional built-in methods.

4.3.33
attribute
internal value that defines some characteristic of a property

4.3.34
own property
property that is directly contained by its object

4.3.35

inherited property

property of an object that is not an own property but is a property (either own or inherited) of the object’s
prototype

4.4 Organization of This Specification

The remainder of this specification is organized as follows:
Clause 5 defines the notational conventions used throughout the specification.
Clauses 6-9 define the execution environment within which ECMAScript programs operate.

Clauses 10-16 define the actual ECMAScript programming language including its syntactic encoding and the
execution semantics of all language features.

Clauses 17-26 define the ECMAScript standard library. It includes the definitions of all of the standard objects
that are available for use by ECMAScript programs as they execute.

5 Notational Conventions

5.1 Syntactic and Lexical Grammars
5.1.1 Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has an abstract symbol called a
nonterminal as its left-hand side, and a sequence of zero or more nonterminal and terminal symbols as its right-
hand side. For each grammar, the terminal symbols are drawn from a specified alphabet.

A chain production is a production that has exactly one nonterminal symbol on its right-hand side along with
zero or more terminal symbols.

8 © Ecma International 2015

secmna

Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol, a given
context-free grammar specifies a language, namely, the (perhaps infinite) set of possible sequences of terminal
symbols that can result from repeatedly replacing any nonterminal in the sequence with a right-hand side of a
production for which the nonterminal is the left-hand side.

5.1.2 The Lexical and RegExp Grammars

A lexical grammar for ECMAScript is given in clause 11. This grammar has as its terminal symbols Unicode
code points that conform to the rules for SourceCharacter defined in 10.1. It defines a set of productions, starting
from the goal symbol InputElementDiv, InputElementTemplateTail, or InputElementRegExp, oOr
InputElementRegExpOrTemplateTail, that describe how sequences of such code points are translated into a
sequence of input elements.

Input elements other than white space and comments form the terminal symbols for the syntactic grammar for
ECMAScript and are called ECMAScript fokens. These tokens are the reserved words, identifiers, literals, and
punctuators of the ECMAScript language. Moreover, line terminators, although not considered to be tokens,
also become part of the stream of input elements and guide the process of automatic semicolon insertion (11.9).
Simple white space and single-line comments are discarded and do not appear in the stream of input elements
for the syntactic grammar. A MultiLineComment (that is, a comment of the form /*...*/ regardless of whether it
spans more than one line) is likewise simply discarded if it contains no line terminator; but if a MultiLineComment
contains one or more line terminators, then it is replaced by a single line terminator, which becomes part of the
stream of input elements for the syntactic grammar.

A RegExp grammar for ECMAScript is given in 21.2.1. This grammar also has as its terminal symbols the code
points as defined by SourceCharacter. It defines a set of productions, starting from the goal symbol Pattern, that
describe how sequences of code points are translated into regular expression patterns.

Productions of the lexical and RegExp grammars are distinguished by having two colons “::” as separating
punctuation. The lexical and RegExp grammars share some productions.

5.1.3 The Numeric String Grammar

Another grammar is used for translating Strings into numeric values. This grammar is similar to the part of the
lexical grammar having to do with numeric literals and has as its terminal symbols SourceCharacter. This
grammar appears in 7.1.3.1.

Productions of the numeric string grammar are distinguished by having three colons “:::” as punctuation.

5.1.4 The Syntactic Grammar

The syntactic grammar for ECMAScript is given in clauses 11, 12, 13, 14, and 15. This grammar has
ECMAScript tokens defined by the lexical grammar as its terminal symbols (5.1.2). It defines a set of
productions, starting from two alternative goal symbols Script and Module, that describe how sequences of
tokens form syntactically correct independent components of ECMAScript programs.

When a stream of code points is to be parsed as an ECMAScript Script or Module, it is first converted to a
stream of input elements by repeated application of the lexical grammar; this stream of input elements is then
parsed by a single application of the syntactic grammar. The input stream is syntactically in error if the tokens in
the stream of input elements cannot be parsed as a single instance of the goal nonterminal (Script or Module),
with no tokens left over.

“w,n

Productions of the syntactic grammar are distinguished by having just one colon “:” as punctuation.

The syntactic grammar as presented in clauses 12, 13, 14 and 15 is not a complete account of which token
sequences are accepted as a correct ECMAScript Script or Module. Certain additional token sequences are also
accepted, namely, those that would be described by the grammar if only semicolons were added to the
sequence in certain places (such as before line terminator characters). Furthermore, certain token sequences
that are described by the grammar are not considered acceptable if a line terminator character appears in
certain “awkward” places.

© Ecma International 2015 9

oecna

In certain cases in order to avoid ambiguities the syntactic grammar uses generalized productions that permit
token sequences that do not form a valid ECMAScript Script or Module. For example, this technique is used for
object literals and object destructuring patterns. In such cases a more restrictive supplemental grammar is
provided that further restricts the acceptable token sequences. In certain contexts, when explicitly specified, the
input elements corresponding to such a production are parsed again using a goal symbol of a supplemental
grammar. The input stream is syntactically in error if the tokens in the stream of input elements parsed by a
cover grammar cannot be parsed as a single instance of the corresponding supplemental goal symbol, with no
tokens left over.

5.1.5 Grammar Notation

Terminal symbols of the lexical, RegExp, and numeric string grammars are shown in £ixed width font, both
in the productions of the grammars and throughout this specification whenever the text directly refers to such a
terminal symbol. These are to appear in a script exactly as written. All terminal symbol code points specified in
this way are to be understood as the appropriate Unicode code points from the Basic Latin range, as opposed to
any similar-looking code points from other Unicode ranges.

Nonterminal symbols are shown in italic type. The definition of a nonterminal (also called a “production”) is
introduced by the name of the nonterminal being defined followed by one or more colons. (The number of
colons indicates to which grammar the production belongs.) One or more alternative right-hand sides for the
nonterminal then follow on succeeding lines. For example, the syntactic definition:

WhileStatement :
while (Expression) Statement

states that the nonterminal WhileStatement represents the token while, followed by a left parenthesis token,
followed by an Expression, followed by a right parenthesis token, followed by a Statement. The occurrences of
Expression and Statement are themselves nonterminals. As another example, the syntactic definition:

ArgumentList :
AssignmentExpression
ArgumentList , AssignmentExpression

states that an ArgumentList may represent either a single AssignmentExpression or an ArgumentList, followed by a
comma, followed by an AssignmentExpression. This definition of ArgumentList is recursive, that is, it is defined in
terms of itself. The result is that an ArgumentList may contain any positive number of arguments, separated by
commas, where each argument expression is an AssignmentExpression. Such recursive definitions of
nonterminals are common.

The subscripted suffix “,pt”, which may appear after a terminal or nonterminal, indicates an optional symbol. The
alternative containing the optional symbol actually specifies two right-hand sides, one that omits the optional
element and one that includes it. This means that:

VariableDeclaration :
Bindingldentifier Initializerqp

is a convenient abbreviation for:
VariableDeclaration :
Bindingldentifier
Bindingldentifier Initializer

and that:

IterationStatement :
for (LexicalDeclaration Expressioney ; Expressiongs) Statement

is a convenient abbreviation for:

10 © Ecma International 2015

»ecind

IterationStatement :

for (LexicalDeclaration
for (LexicalDeclaration

which in turn is an abbreviation for:

IterationStatement :

for (LexicalDeclaration
for (LexicalDeclaration
for (LexicalDeclaration
for (LexicalDeclaration

; Expressionep) Statement
Expression ; Expressioney) Statement

;) Statement

; Expression) Statement
Expression ; ') Statement
Expression ; Expression) Statement

so, in this example, the nonterminal IterationStatement actually has four alternative right-hand sides.

A production may be parameterized by a subscripted annotation of the form “parameters)’, Which may appear as a
suffix to the nonterminal symbol defined by the production. “sarameters” May be either a single name or a comma
separated list of names. A parameterized production is shorthand for a set of productions defining all
combinations of the parameter names, preceded by an underscore, appended to the parameterized nonterminal

symbol. This means that:

StatementListiretum) -
ReturnStatement
ExpressionStatement

is a convenient abbreviation for:

StatementList :
ReturnStatement
ExpressionStatement

StatementList Return :
ReturnStatement
ExpressionStatement

and that:

StatementListireturn, In] *
ReturnStatement
ExpressionStatement

is an abbreviation for:

StatementList :
ReturnStatement
ExpressionStatement

StatementList Return :
ReturnStatement
ExpressionStatement

StatementList In :
ReturnStatement
ExpressionStatement

StatementList Return_In :
ReturnStatement
ExpressionStatement

Multiple parameters produce a combinatory number of productions, not all of which are necessarily referenced

in a complete grammar.

© Ecma International 2015

11

ceca

References to nonterminals on the right-hand side of a production can also be parameterized. For example:

StatementList :
ReturnStatement
ExpressionStatementyn,

is equivalent to saying:

StatementList :
ReturnStatement
ExpressionStatement In

A nonterminal reference may have both a parameter list and an “,” suffix. For example:

VariableDeclaration :
Bindingldentifier Initializerjnjopt

is an abbreviation for:

VariableDeclaration :
Bindingldentifier
Bindingldentifier Initializer In

Prefixing a parameter name with “” on a right-hand side nonterminal reference makes that parameter value
dependent upon the occurrence of the parameter name on the reference to the current production’s left-hand
side symbol. For example:

VariableDeclarationyn;
Bindingldentifier Initializerjyn,

is an abbreviation for:

VariableDeclaration :
Bindingldentifier Initializer

VariableDeclaration_In :
Bindingldentifier Initializer In

If a right-hand side alternative is prefixed with “[+parameter]” that alternative is only available if the named
parameter was used in referencing the production’s nonterminal symbol. If a right-hand side alternative is
prefixed with “[~parameter]” that alternative is only available if the named parameter was not used in referencing
the production’s nonterminal symbol. This means that:

StatementListiretyr) :
[+Return] ReturnStatement
ExpressionStatement

is an abbreviation for:

StatementList :
ExpressionStatement

StatementList Return :

ReturnStatement
ExpressionStatement

12 © Ecma International 2015

cecna

and that

StatementList[Retum] :
[~Return] ReturnStatement
ExpressionStatement

is an abbreviation for:
StatementList :
ReturnStatement

ExpressionStatement

StatementList Return :
ExpressionStatement

When the words “one of” follow the colon(s) in a grammar definition, they signify that each of the terminal
symbols on the following line or lines is an alternative definition. For example, the lexical grammar for
ECMAScript contains the production:

NonZeroDigit :: one of
1 2 3 4 5 6 7 8 9

which is merely a convenient abbreviation for:

NonZeroDigit :.

woJoUulbd WNR

If the phrase “[empty]” appears as the right-hand side of a production, it indicates that the production's right-hand
side contains no terminals or nonterminals.

If the phrase “[lookahead ¢ ser]” appears in the right-hand side of a production, it indicates that the production may
not be used if the immediately following input token sequence is a member of the given set. The set can be
written as a comma separated list of one or two element terminal sequences enclosed in curly brackets. For
convenience, the set can also be written as a nonterminal, in which case it represents the set of all terminals to
which that nonterminal could expand. If the set consists of a single terminal the phrase “llookahead # terminal]” may
be used.

For example, given the definitions

DecimalDigit :: one of
0 1 2 3 4 5 6 7 8 9

DecimalDigits ::
DecimalDigit
DecimalDigits DecimalDigit
the definition
LookaheadExample ::

n [lookahead ¢ {1, 3, 5, 7, 9}] DecimalDigits
DecimalDigit [lookahead ¢ DecimalDigit]

© Ecma International 2015 13

>eCma

matches either the letter n followed by one or more decimal digits the first of which is even, or a decimal digit
not followed by another decimal digit.

If the phrase “Ino LineTerminator here]” appears in the right-hand side of a production of the syntactic grammar, it
indicates that the production is a restricted production: it may not be used if a LineTerminator occurs in the input
stream at the indicated position. For example, the production:

ThrowStatement :
throw [no LineTerminator here] Expression ;

indicates that the production may not be used if a LineTerminator occurs in the script between the throw token
and the Expression.

Unless the presence of a LineTerminator is forbidden by a restricted production, any number of occurrences of
LineTerminator may appear between any two consecutive tokens in the stream of input elements without
affecting the syntactic acceptability of the script.

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be a multi-
code point token, it represents the sequence of code points that would make up such a token.

The right-hand side of a production may specify that certain expansions are not permitted by using the phrase
“but not” and then indicating the expansions to be excluded. For example, the production:

Identifier ::
IdentifierName but not ReservedWord

means that the nonterminal Identifier may be replaced by any sequence of code points that could replace
IdentifierName provided that the same sequence of code points could not replace ReservedWord.

Finally, a few nonterminal symbols are described by a descriptive phrase in sans-serif type in cases where it
would be impractical to list all the alternatives:

SourceCharacter ::
any Unicode code point

5.2 Algorithm Conventions

The specification often uses a numbered list to specify steps in an algorithm. These algorithms are used to
precisely specify the required semantics of ECMAScript language constructs. The algorithms are not intended to
imply the use of any specific implementation technique. In practice, there may be more efficient algorithms
available to implement a given feature.

Algorithms may be explicitly parameterized, in which case the names and usage of the parameters must be
provided as part of the algorithm’s definition. In order to facilitate their use in multiple parts of this specification,
some algorithms, called abstract operations, are named and written in parameterized functional form so that
they may be referenced by name from within other algorithms. Abstract operations are typically referenced
using a functional application style such as operationName(arg!, arg?). Some abstract operations are treated as
polymorphically dispatched methods of class-like specification abstractions. Such method-like abstract
operations are typically referenced using a method application style such as someValue.operationName(argl, arg?).

Algorithms may be associated with productions of one of the ECMAScript grammars. A production that has
multiple alternative definitions will typically have a distinct algorithm for each alternative. When an algorithm is
associated with a grammar production, it may reference the terminal and nonterminal symbols of the production
alternative as if they were parameters of the algorithm. When used in this manner, nonterminal symbols refer to
the actual alternative definition that is matched when parsing the source text.

When an algorithm is associated with a production alternative, the alternative is typically shown without any “[]’

grammar annotations. Such annotations should only affect the syntactic recognition of the alternative and have
no effect on the associated semantics for the alternative.

14 © Ecma International 2015

secmna

Unless explicitly specified otherwise, all chain productions have an implicit definition for every algorithm that
might be applied to that production’s left-hand side nonterminal. The implicit definition simply reapplies the same
algorithm name with the same parameters, if any, to the chain production’s sole right-hand side nonterminal and
then returns the result. For example, assume there is a production:

Block :
{ StatementList }

but there is no corresponding Evaluation algorithm that is explicitly specified for that production. If in some
algorithm there is a statement of the form: “Return the result of evaluating Block” it is implicit that an Evaluation
algorithm exists of the form:

Runtime Semantics: Evaluation

Block : { StatementList }

1. Return the result of evaluating StatementList.

For clarity of expression, algorithm steps may be subdivided into sequential substeps. Substeps are indented
and may themselves be further divided into indented substeps. Outline numbering conventions are used to
identify substeps with the first level of substeps labelled with lower case alphabetic characters and the second
level of substeps labelled with lower case roman numerals. If more than three levels are required these rules
repeat with the fourth level using numeric labels. For example:

1. Top-level step
a. Substep.
b. Substep.
i. Subsubstep.
1. Subsubsubstep
a. Subsubsubsubstep
i. Subsubsubsubsubstep

A step or substep may be written as an “if’ predicate that conditions its substeps. In this case, the substeps are
only applied if the predicate is true. If a step or substep begins with the word “else”, it is a predicate that is the
negation of the preceding “if” predicate step at the same level.

A step may specify the iterative application of its substeps.

A step that begins with “Assert:” asserts an invariant condition of its algorithm. Such assertions are used to
make explicit algorithmic invariants that would otherwise be implicit. Such assertions add no additional semantic
requirements and hence need not be checked by an implementation. They are used simply to clarify algorithms.

Mathematical operations such as addition, subtraction, negation, multiplication, division, and the mathematical
functions defined later in this clause should always be understood as computing exact mathematical results on
mathematical real numbers, which unless otherwise noted do not include infinities and do not include a negative
zero that is distinguished from positive zero. Algorithms in this standard that model floating-point arithmetic
include explicit steps, where necessary, to handle infinities and signed zero and to perform rounding. If a
mathematical operation or function is applied to a floating-point number, it should be understood as being
applied to the exact mathematical value represented by that floating-point number; such a floating-point number
must be finite, and if it is +0 or —0 then the corresponding mathematical value is simply 0.

The mathematical function abs(x) produces the absolute value of x, which is —x if x is negative (less than zero)
and otherwise is x itself.

The mathematical function sign(x) produces 1 if x is positive and —1 if x is negative. The sign function is not used
in this standard for cases when x is zero.

The mathematical function min(x;, x,, ..., x,) produces the mathematically smallest of x; through x,. The

mathematical function max(x, x, ..., x,) produces the mathematically largest of x; through x,. The domain and
range of these mathematical functions include +o and —oo.

© Ecma International 2015 15

>eCma

The notation “x modulo y” (y must be finite and nonzero) computes a value & of the same sign as y (or zero) such
that abs(k) < abs(y) and x—k = ¢ x y for some integer gq.

The mathematical function floor(x) produces the largest integer (closest to positive infinity) that is not larger than
X.

NOTE floor(x) = x—(x modulo 1).

5.3 Static Semantic Rules

Context-free grammars are not sufficiently powerful to express all the rules that define whether a stream of input
elements form a valid ECMAScript Script or Module that may be evaluated. In some situations additional rules
are needed that may be expressed using either ECMAScript algorithm conventions or prose requirements. Such
rules are always associated with a production of a grammar and are called the static semantics of the
production.

Static Semantic Rules have names and typically are defined using an algorithm. Named Static Semantic Rules
are associated with grammar productions and a production that has multiple alternative definitions will typically
have for each alternative a distinct algorithm for each applicable named static semantic rule.

Unless otherwise specified every grammar production alternative in this specification implicitly has a definition
for a static semantic rule named Contains which takes an argument named symbo! whose value is a terminal or
nonterminal of the grammar that includes the associated production. The default definition of Contains is:

1. For each terminal and nonterminal grammar symbol, sym, in the definition of this production do
a. If sym is the same grammar symbol as symbol, return true.
b. Ifsym is a nonterminal, then
i. Let contained be the result of sym Contains symbol.
ii. If contained is true, return true.
2. Return false.

The above definition is explicitly over-ridden for specific productions.

A special kind of static semantic rule is an Early Error Rule. Early error rules define early error conditions (see
clause 16) that are associated with specific grammar productions. Evaluation of most early error rules are not
explicitly invoked within the algorithms of this specification. A conforming implementation must, prior to the first
evaluation of a Script or Module, validate all of the early error rules of the productions used to parse that Script or
Module. If any of the early error rules are violated the Script or Module is invalid and cannot be evaluated.

6 ECMAScript Data Types and Values

Algorithms within this specification manipulate values each of which has an associated type. The possible value
types are exactly those defined in this clause. Types are further subclassified into ECMAScript language types
and specification types.

Within this specification, the notation “Type(x)” is used as shorthand for “the type of x” where “type” refers to the
ECMAScript language and specification types defined in this clause. When the term “empty” is used as if it was
naming a value, it is equivalent to saying “no value of any type”.

6.1 ECMAScript Language Types

An ECMAScript language type corresponds to values that are directly manipulated by an ECMAScript
programmer using the ECMAScript language. The ECMAScript language types are Undefined, Null, Boolean,
String, Symbol, Number, and Object. An ECMAScript language value is a value that is characterized by an
ECMAScript language type.

6.1.1 The Undefined Type

The Undefined type has exactly one value, called undefined. Any variable that has not been assigned a value
has the value undefined.

16 © Ecma International 2015

secmna

6.1.2 The Null Type

The Null type has exactly one value, called null.

6.1.3 The Boolean Type

The Boolean type represents a logical entity having two values, called true and false.

6.1.4 The String Type

The String type is the set of all ordered sequences of zero or more 16-bit unsigned integer values (“elements”)
up to a maximum length of 2°%.1 elements. The String type is generally used to represent textual data in a
running ECMAScript program, in which case each element in the String is treated as a UTF-16 code unit value.
Each element is regarded as occupying a position within the sequence. These positions are indexed with
nonnegative integers. The first element (if any) is at index 0, the next element (if any) at index 1, and so on. The
length of a String is the number of elements (i.e., 16-bit values) within it. The empty String has length zero and
therefore contains no elements.

Where ECMAScript operations interpret String values, each element is interpreted as a single UTF-16 code unit.
However, ECMAScript does not place any restrictions or requirements on the sequence of code units in a String
value, so they may be ill-formed when interpreted as UTF-16 code unit sequences. Operations that do not
interpret String contents treat them as sequences of undifferentiated 16-bit unsigned integers. The function
String.prototype.normalize (see 21.1.3.12) can be used to explicitly normalize a String value.
String.prototype.localeCompare (see 21.1.3.10) internally normalizes String values, but no other
operations implicitly normalize the strings upon which they operate. Only operations that are explicitly specified
to be language or locale sensitive produce language-sensitive results.

NOTE The rationale behind this design was to keep the implementation of Strings as simple and high-performing as
possible. If ECMAScript source text is in Normalized Form C, string literals are guaranteed to also be normalized,
as long as they do not contain any Unicode escape sequences.

Some operations interpret String contents as UTF-16 encoded Unicode code points. In that case the
interpretation is:
e A code unit in the range 0 to 0xD7FF or in the range 0xE000 to OXxFFFF is interpreted as a code point with
the same value.
e A sequence of two code units, where the first code unit ¢!/ is in the range 0xD800 to 0xDBFF and the
second code unit ¢2 is in the range 0xDC00 to 0xDFFF, is a surrogate pair and is interpreted as a code
point with the value (c1 - 0xD800) x 0x400 + (c2 — 0xDCO00) + 0x10000. (See 10.1.2)
e A code unit that is in the range 0xD800 to 0xDFFF, but is not part of a surrogate pair, is interpreted as a
code point with the same value.

6.1.5 The Symbol Type
The Symbol type is the set of all non-String values that may be used as the key of an Object property (6.1.7).

Each possible Symbol value is unique and immutable.

Each Symbol value immutably holds an associated value called [[Description]] that is either undefined or a
String value.

6.1.5.1 Well-Known Symbols

Well-known symbols are built-in Symbol values that are explicitly referenced by algorithms of this specification.
They are typically used as the keys of properties whose values serve as extension points of a specification
algorithm. Unless otherwise specified, well-known symbols values are shared by all Code Realms (8.2).

Within this specification a well-known symbol is referred to by using a notation of the form @@name, where
‘name” is one of the values listed in Table 1.

© Ecma International 2015 17

»eCma

Table 1 — Well-known Symbols

Specification Name [[Description]] Value and Purpose

@@hasInstance "Symbol.hasInstance" A method that determines if a constructor
object recognizes an object as one of the
constructor's instances. Called by the
semantics of the instanceof operator.

@@jisConcatSpreadable | "Symbol.isConcatSpreadable" | A Boolean valued property that if true indicates
that an object should be flattened to its array
elements by Array.prototype.concat.

@@iterator "Symbol.iterator" A method that returns the default lterator for
an object. Called by the semantics of the for-of
statement.

@@match "Symbol .match" A regular expression method that matches the
regular expression against a string. Called by
the String.prototype.match method.

@(@replace "Symbol .replace" A regular expression method that replaces
matched substrings of a string. Called by the
String.prototype.replace method.

@(@search "Symbol .search" A regular expression method that returns the
index within a string that matches the regular
expression. Called by the
String.prototype.search method.

@(@species "Symbol .species" A function valued property that is the
constructor function that is used to create
derived objects.

@@split "Symbol.split" A regular expression method that splits a
string at the indices that match the regular
expression. Called by the
String.prototype.split method.

@@toPrimitive "Symbol . toPrimitive" A method that converts an object to a
corresponding primitive value. Called by the
ToPrimitive abstract operation.

@(@toStringTag "Symbol . toStringTag" A String valued property that is used in the
creation of the default string description of an
object. Accessed by the built-in method
Object.prototype. toString.

@@unscopables "Symbol .unscopables" An object valued property whose own property

names are property names that are excluded
from the with environment bindings of the
associated object.

6.1.6 The Number Type

The Number type has exactly 18437736874454810627 (that is, 2°*-2°+3) values, representing the double-
precision 64-bit format IEEE 754-2008 values as specified in the IEEE Standard for Binary Floating-Point
Arithmetic, except that the 9007199254740990 (that is, 2>*-2) distinct “Not-a-Number” values of the IEEE
Standard are represented in ECMAScript as a single special NaN value. (Note that the NaN value is produced
by the program expression NaN.) In some implementations, external code might be able to detect a difference
between various Not-a-Number values, but such behaviour is implementation-dependent; to ECMAScript code,
all NaN values are indistinguishable from each other.

18

© Ecma International 2015

secmna

NOTE The bit pattern that might be observed in an ArrayBuffer (see 24.1) after a Number value has been stored into it
is not necessarily the same as the internal representation of that Number value used by the ECMAScript
implementation.

There are two other special values, called positive Infinity and negative Infinity. For brevity, these values are
also referred to for expository purposes by the symbols +w0o and —wo, respectively. (Note that these two infinite
Number values are produced by the program expressions +Infinity (or simply Infinity) and -Infinity.)

The other 18437736874454810624 (that is, 2~2%) values are called the finite numbers. Half of these are positive
numbers and half are negative numbers; for every finite positive Number value there is a corresponding
negative value having the same magnitude.

Note that there is both a positive zero and a negative zero. For brevity, these values are also referred to for
expository purposes by the symbols +0 and -0, respectively. (Note that these two different zero Number values
are produced by the program expressions +0 (or simply 0) and -0.)

The 18437736874454810622 (that is, 2°*-2*-2) finite nonzero values are of two kinds:
18428729675200069632 (that is, 2%~27*) of them are normalized, having the form

sxmx2°

where s is +1 or —1, m is a positive integer less than 2*° but not less than 2°?, and e is an integer ranging from
—1074 to 971, inclusive.

The remaining 9007199254740990 (that is, 2°*-2) values are denormalized, having the form

sxmx2°

where s is +1 or —1, m is a positive integer less than 2°?, and e is —1074.

Note that all the positive and negative integers whose magnitude is no greater than 2% are representable in the
Number type (indeed, the integer 0 has two representations, +0 and -0).

A finite number has an odd significand if it is nonzero and the integer m used to express it (in one of the two
forms shown above) is odd. Otherwise, it has an even significand.

In this specification, the phrase “the Number value for x” where x represents an exact nonzero real mathematical
quantity (which might even be an irrational number such as ©) means a Number value chosen in the following
manner. Consider the set of all finite values of the Number type, with —0 removed and with two additional values
added to it that are not representable in the Number type, namely 2'®* (which is +1 x 2% x 2°"') and —2'** (which
is —1 x 2°* x 2°™"). Choose the member of this set that is closest in value to x. If two values of the set are equally
close, then the one with an even significand is chosen; for this purpose, the two extra values 2'°** and —2'*** are
considered to have even significands. Finally, if 2'°* was chosen, replace it with +wo; if —2'** was chosen,
replace it with —oo; if +0 was chosen, replace it with —0 if and only if x is less than zero; any other chosen value is
used unchanged. The result is the Number value for x. (This procedure corresponds exactly to the behaviour of
the IEEE 754-2008 “round to nearest, ties to even” mode.)

Some ECMAScript operators deal only with integers in specific ranges such as —2°' through 2°'1, inclusive, or
in the range 0 through 2'°~1, inclusive. These operators accept any value of the Number type but first convert
each such value to an integer value in the expected range. See the descriptions of the numeric conversion
operations in 7.1.

6.1.7 The Object Type

An Object is logically a collection of properties. Each property is either a data property, or an accessor property:

e A data property associates a key value with an ECMAScript language value and a set of Boolean
attributes.

© Ecma International 2015 19

>eCma

e An accessor property associates a key value with one or two accessor functions, and a set of Boolean
attributes. The accessor functions are used to store or retrieve an ECMAScript language value that is
associated with the property.

Properties are identified using key values. A property key value is either an ECMAScript String value or a
Symbol value. All String and Symbol values, including the empty string, are valid as property keys. A property
name is a property key that is a String value.

An integer index is a String-valued property key that is a canonical numeric String (see 7.1.16) and whose
numeric value is either +0 or a positive integer < 2°>-1. An array index is an integer index whose numeric value i
is in the range +0 <i<2%-1.

Property keys are used to access properties and their values. There are two kinds of access for properties: get
and set, corresponding to value retrieval and assignment, respectively. The properties accessible via get and
set access includes both own properties that are a direct part of an object and inherited properties which are
provided by another associated object via a property inheritance relationship. Inherited properties may be either
own or inherited properties of the associated object. Each own property of an object must each have a key
value that is distinct from the key values of the other own properties of that object.

All objects are logically collections of properties, but there are multiple forms of objects that differ in their
semantics for accessing and manipulating their properties. Ordinary objects are the most common form of
objects and have the default object semantics. An exotic object is any form of object whose property semantics
differ in any way from the default semantics.

6.1.7.1 Property Attributes

Attributes are used in this specification to define and explain the state of Object properties. A data property
associates a key value with the attributes listed in Table 2.

Table 2 — Attributes of a Data Property

Attribute Name Value Domain Description
[[Value]] Any ECMAScript The value retrieved by a get access of the property.
language type
[[Writable]] Boolean If false, attempts by ECMAScript code to change the
property’s [[Value]] attribute using [[Set]] will not succeed.
[[Enumerable]] Boolean If true, the property will be enumerated by a for-in

enumeration (see 13.7.5). Otherwise, the property is said
to be non-enumerable.

[[Configurable]] | Boolean If false, attempts to delete the property, change the
property to be an accessor property, or change its
attributes (other than [[Value]], or changing [[Writable]] to
false) will fail.

An accessor property associates a key value with the attributes listed in Table 3.

20 © Ecma International 2015

»ecmna

Table 3 — Attributes of an Accessor Property

Attribute Name

Value Domain

Description

[[Get]]

Object | Undefined

If the value is an Object it must be a function object. The
function’s [[Call]] internal method (Table 6) is called with an
empty arguments list to retrieve the property value each
time a get access of the property is performed.

[[Set]]

Object | Undefined

If the value is an Object it must be a function object. The
function’s [[Call]] internal method (Table 6) is called with an
arguments list containing the assigned value as its sole
argument each time a set access of the property is
performed. The effect of a property's [[Set]] internal method
may, but is not required to, have an effect on the value
returned by subsequent calls to the property's [[Get]]
internal method.

[[Enumerable]] Boolean If true, the property is to be enumerated by a for-in
enumeration (see 13.7.5). Otherwise, the property is said to
be non-enumerable.

[[Configurable]] Boolean If false, attempts to delete the property, change the

property to be a data property, or change its attributes will
fail.

If the initial values of a property’s attributes are not explicitly specified by this specification, the default value
defined in Table 4 is used.

Table 4 — Default Attribute Values

Attribute Name Default Value
[[Value]] undefined
[[Get]] undefined
[[Set]] undefined
[[Writable]] false
[[Enumerable]] false
[[Configurable]] false

6.1.7.2 Object Internal Methods and Internal Slots

The actual semantics of objects, in ECMAScript, are specified via algorithms called internal methods. Each
object in an ECMAScript engine is associated with a set of internal methods that defines its runtime behaviour.
These internal methods are not part of the ECMAScript language. They are defined by this specification purely
for expository purposes. However, each object within an implementation of ECMAScript must behave as
specified by the internal methods associated with it. The exact manner in which this is accomplished is
determined by the implementation.

Internal method names are polymorphic. This means that different object values may perform different
algorithms when a common internal method name is invoked upon them. That actual object upon which an
internal method is invoked is the “target” of the invocation. If, at runtime, the implementation of an algorithm
attempts to use an internal method of an object that the object does not support, a TypeError exception is
thrown.

Internal slots correspond to internal state that is associated with objects and used by various ECMAScript
specification algorithms. Internal slots are not object properties and they are not inherited. Depending upon the
specific internal slot specification, such state may consist of values of any ECMAScript language type or of
specific ECMAScript specification type values. Unless explicitly specified otherwise, internal slots are allocated
as part of the process of creating an object and may not be dynamically added to an object. Unless specified
otherwise, the initial value of an internal slot is the value undefined. Various algorithms within this specification
create objects that have internal slots. However, the ECMAScript language provides no direct way to associate
internal slots with an object.

© Ecma International 2015 21

>eCma

Internal methods and internal slots are identified within this specification using names enclosed in double
square brackets [[]].

Table 5 summarizes the essential internal methods used by this specification that are applicable to all objects
created or manipulated by ECMAScript code. Every object must have algorithms for all of the essential internal
methods. However, all objects do not necessarily use the same algorithms for those methods.

The “Signature” column of Table 5 and other similar tables describes the invocation pattern for each internal
method. The invocation pattern always includes a parenthesized list of descriptive parameter names. If a
parameter name is the same as an ECMAScript type name then the name describes the required type of the
parameter value. If an internal method explicitly returns a value, its parameter list is followed by the symbol “—”
and the type name of the returned value. The type names used in signatures refer to the types defined in clause
6 augmented by the following additional names. “any” means the value may be any ECMAScript language type.
An internal method implicitly returns a Completion Record as described in 6.2.2. In addition to its parameters, an
internal method always has access to the object that is the target of the method invocation.

22 © Ecma International 2015

»ecmna

Table 5 — Essential Internal Methods

Internal Method

Signature

Description

[[GetPrototypeOf]]

() — Object | Null

Determine the object that provides inherited
properties for this object. A null value indicates
that there are no inherited properties.

[[SetPrototypeOf]]

(Object | Null) — Boolean

Associate this object with another object that
provides inherited properties. Passing null
indicates that there are no inherited properties.
Returns true indicating that the operation was
completed successfully or false indicating that
the operation was not successful.

[[IsExtensible]]

() — Boolean

Determine whether it is permitted to add
additional properties to this object.

[[PreventExtensions]]

() — Boolean

Control whether new properties may be added
to this object. Returns true if the operation was
successful or false if the operation was
unsuccessful.

[[GetOwnProperty]]

(propertyKey) — Undefined |
Property Descriptor

Return a Property Descriptor for the own
property of this object whose key is
propertyKey, or undefined if no such property
exists.

[[HasProperty]]

(propertyKey) — Boolean

Return a Boolean value indicating whether this
object already has either an own or inherited
property whose key is propertyKey.

[[Get]]

(propertyKey, Receiver)
— any

Return the value of the property whose key is
propertyKey from this object. If any ECMAScript
code must be executed to retrieve the property
value, Receiver is used as the this value when
evaluating the code.

[[Set]

(propertyKey,value, Receiver)
— Boolean

Set the value of the property whose key is
propertyKey to value. If any ECMAScript code
must be executed to set the property value,
Receiver is used as the this value when
evaluating the code. Returns true if the
property value was set or false if it could not be
set.

[[Delete]]

(propertyKey) — Boolean

Remove the own property whose key is
propertyKey from this object . Return false if
the property was not deleted and is still present.
Return true if the property was deleted or is not
present.

[[DefineOwnProperty]]

(propertyKey,
PropertyDescriptor)
— Boolean

Create or alter the own property, whose key is
propertyKey, to have the state described by
PropertyDescriptor. Return true if that property
was successfully created/updated or false if the
property could not be created or updated.

[[Enumerate]]

()—Object

Return an iterator object that produces the keys
of the string-keyed enumerable properties of
the object.

[[OwnPropertyKeysl]

()—List of propertyKey

Return a List whose elements are all of the own
property keys for the object.

Table 6 summarizes additional essential internal methods that are supported by objects that may be called as
functions. A function object is an object that supports the [[Call]] internal methods. A constructor (also referred to
as a constructor function) is a function object that supports the [[Construct]] internal method.

© Ecma International 2015

23

»eCma

Table 6 — Additional Essential Internal Methods of Function Objects

Internal Method | Signature Description
[[Call]] (any, a List of any) Executes code associated with this object. Invoked via a
— any function call expression. The arguments to the internal

method are a this value and a list containing the
arguments passed to the function by a call expression.
Objects that implement this internal method are callable.
[[Construct]] (a List of any, Object) | Creates an object. Invoked via the new or super
— Object operators. The first argument to the internal method is a
list containing the arguments of the operator. The
second argument is the object to which the new operator
was initially applied. Objects that implement this internal
method are called constructors. A function object is not
necessarily a constructor and such non-constructor
function objects do not have a [[Construct]] internal
method.

The semantics of the essential internal methods for ordinary objects and standard exotic objects are specified in
clause 9. If any specified use of an internal method of an exotic object is not supported by an implementation,
that usage must throw a TypeError exception when attempted.

6.1.7.3 Invariants of the Essential Internal Methods

The Internal Methods of Objects of an ECMAScript engine must conform to the list of invariants specified below.
Ordinary ECMAScript Objects as well as all standard exotic objects in this specification maintain these
invariants. ECMAScript Proxy objects maintain these invariants by means of runtime checks on the result of
traps invoked on the [[ProxyHandler]] object.

Any implementation provided exotic objects must also maintain these invariants for those objects. Violation of
these invariants may cause ECMAScript code to have unpredictable behaviour and create security issues.
However, violation of these invariants must never compromise the memory safety of an implementation.

An implementation must not allow these invariants to be circumvented in any manner such as by providing
alternative interfaces that implement the functionality of the essential internal methods without enforcing their
invariants.

Definitions:

° The target of an internal method is the object upon which the internal method is called.

° A target is non-extensible if it has been observed to return false from its [[IsExtensible]] internal
method, or true from its [[PreventExtensions]] internal method.

° A non-existent property is a property that does not exist as an own property on a non-extensible
target.

e All references to SameValue are according to the definition of SameValue algorithm specified in 7.2.9.

[[GetPrototypeOf]] ()

e The Type of the return value must be either Object or Null.
° If target is non-extensible, and [[GetPrototypeOf]] returns a value v, then any future calls to
[[GetPrototypeOf]] should return the SameValue as v.

NOTE 1 An object’s prototype chain should have finite length (that is, starting from any object, recursively applying the
[[GetPrototypeOf]] internal method to its result should eventually lead to the value null). However, this
requirement is not enforceable as an object level invariant if the prototype chain includes any exotic objects that
do not use the ordinary object definition of [[GetPrototypeOf]]. Such a circular prototype chain may result in
infinite loops when accessing object properties.

[[SetPrototypeOf]] (V)

° The Type of the return value must be Boolean.

24 © Ecma International 2015

ecina

° If target is non-extensible, [[SetPrototypeOf]] must return false, unless V is the SameValue as the
target’s observed [[GetPrototypeOf]] value.

[[PreventExtensions]] ()

° The Type of the return value must be Boolean.
) If [[PreventExtensions]] returns true, all future calls to [[IsExtensible]] on the target must return false
and the target is now considered non-extensible.

[[GetOwnProperty]] (P)

The Type of the return value must be either Property Descriptor or Undefined.
If the Type of the return value is Property Descriptor, the return value must be a complete property
descriptor (see 6.2.4.6).

° If a property P is described as a data property with Desc.[[Value]] equal to v and Desc.[[Writable]] and
Desc.[[Configurable]] are both false, then the SameValue must be returned for the Desc.[[Valuel]]
attribute of the property on all future calls to [[GetOwnProperty]] (P).

° If P’s attributes other than [[Writable]] may change over time or if the property might disappear, then
P’s [[Configurable]] attribute must be true.

° If the [[Writable]] attribute may change from false to true, then the [[Configurable]] attribute must be
true.

° If the target is non-extensible and P is non-existent, then all future calls to [[GetOwnProperty]] (P) on
the target must describe P as non-existent (i.e. [[GetOwnProperty]] (P) must return undefined).

NOTE 2 As a consequence of the third invariant, if a property is described as a data property and it may return different
values over time, then either or both of the Desc.[[Writable]] and Desc.[[Configurable]] attributes must be true
even if no mechanism to change the value is exposed via the other internal methods.

[[DefineOwnProperty]] (P, Desc)

° The Type of the return value must be Boolean.
° [[DefineOwnProperty]] must return false if P has previously been observed as a non-configurable own
property of the target, unless either:
1. P is a non-configurable writable own data property. A non-configurable writable data property can
be changed into a non-configurable non-writable data property.
2. All attributes in Desc are the SameValue as P’s attributes.
° [[DefineOwnProperty]] (P, Desc) must return false if target is non-extensible and P is a non-existent
own property. That is, a non-extensible target object cannot be extended with new properties.

[[HasProperty]] (P)

° The Type of the return value must be Boolean.
° If P was previously observed as a non-configurable data or accessor own property of the target,
[[HasProperty]] must return true.

[[Get]] (P, Receiver)

° If P was previously observed as a non-configurable, non-writable own data property of the target with
value v, then [[Get]] must return the SameValue.

° If P was previously observed as a non-configurable own accessor property of the target whose [[Get]]
attribute is undefined, the [[Get]] operation must return undefined.

[[Set]] (P, V, Receiver)

° The Type of the return value must be Boolean.

° If P was previously observed as a non-configurable, non-writable own data property of the target, then
[[Set]] must return false unless V is the SameValue as P’s [[Value]] attribute.

° If P was previously observed as a non-configurable own accessor property of the target whose [[Set]]
attribute is undefined, the [[Set]] operation must return false.

[[Delete]] (P)

© Ecma International 2015 25

eCima

° The Type of the return value must be Boolean.
° If P was previously observed to be a non-configurable own data or accessor property of the target,
[[Delete]] must return false.

[[Enumerate]] ()

° The Type of the return value must be Object.

[[OwnPropertyKeys]] ()

The return value must be a List.
The Type of each element of the returned List is either String or Symbol.

° The returned List must contain at least the keys of all non-configurable own properties that have
previously been observed.

° If the object is non-extensible, the returned List must contain only the keys of all own properties of the
object that are observable using [[GetOwnProperty]].

[[Construct]] ()

° The Type of the return value must be Object.

6.1.7.4 Well-Known Intrinsic Objects

Well-known intrinsics are built-in objects that are explicitly referenced by the algorithms of this specification and
which usually have Realm specific identities. Unless otherwise specified each intrinsic object actually
corresponds to a set of similar objects, one per Realm.

Within this specification a reference such as %name% means the intrinsic object, associated with the current
Realm, corresponding to the name. Determination of the current Realm and its intrinsics is described in 8.3. The
well-known intrinsics are listed in Table 7.

Table 7 — Well-known Intrinsic Objects

Intrinsic Name Global Name ECMAScript Language Association
Y% Array% Array The Array constructor (22.1.1)
Y%ArrayBuffer% ArrayBuffer The ArrayBuffer constructor (24.1.2)

Y%ArrayBufferPrototype%

ArrayBuffer.prototype

The initial value of the prototype data
property of %ArrayBuffer%.

Y%ArraylteratorPrototype%

The prototype of Array iterator objects
(22.1.5)

Y%ArrayPrototype%

Array.prototype

The initial value of the prototype data
property of %Array% (22.1.3)

Y%ArrayProto_values%

Array.prototype.values

The initial value of the values data
property of %ArrayPrototype%
(22.1.3.29)

%Boolean%

Boolean

The Boolean constructor (19.3.1)

%BooleanPrototype%

Boolean.prototype

The initial value of the prototype data
property of %Boolean% (19.3.3)

%DataView%

DataView

The DataView constructor (24.2.2)

%DataViewPrototype%

DataView.prototype

The initial value of the prototype data
property of %DataView%

Y%Date% Date The Date constructor (20.3.2)

%DatePrototype% Date.prototype The initial value of the prototype data
property of %Date%.

%decodeURI% decodeURI The decodeURI function (18.2.6.2)

26

© Ecma International 2015

eCima

Intrinsic Name Global Name ECMAScript Language Association

%decodeURIComponent% decodeURIComponent The decodeURIComponent function
(18.2.6.3)

%encodeURI% encodeURI The encodeURTI function (18.2.6.4)

%encodeURIComponent%

encodeURIComponent

The encodeURIComponent function
(18.2.6.5)

Y%Error% Error The Error constructor (19.5.1)

%ErrorPrototype% Error.prototype The initial value of the prototype data
property of %Error%

%eval% eval The eval function (18.2.1)

Y%EvalError% EvalError The EvalError constructor (19.5.5.1)

%EvalErrorPrototype%

EvalError.prototype

The initial value of the prototype
property of %EvalError%

%Float32Array%

Float32Array

The Float32Array constructor (22.2)

%Float32ArrayPrototype%

Float32Array.prototype

The initial value of the prototype data
property of %Float32Array%.

%Float64Array%

Float64Array

The Float64Array constructor (22.2)

%Float64ArrayPrototype%

Float64Array.prototype

The initial value of the prototype data
property of %Float64Array%

%Function%

Function

The Function constructor (19.2.1)

%FunctionPrototype%

Function.prototype

The initial value of the prototype data
property of %Function%

%Generator%

The initial value of the prototype
property of %GeneratorFunction%

%GeneratorFunction%

The constructor of generator objects
(25.2.1)

%GeneratorPrototype%

The initial value of the prototype
property of %Generator%

%Int8Array%

Int8Array

The Int8Array constructor (22.2)

%Int8ArrayPrototype%

Int8Array.prototype

The initial value of the prototype data
property of %Int8Array%

%Int16Array%

Intl6Array

The Intl6Array constructor (22.2)

%Int16ArrayPrototype%

Intl6Array.prototype

The initial value of the prototype data
property of %Int16Array%

%Int32Array%

Int32Array

The Int32Array constructor (22.2)

%Int32ArrayPrototype%

Int32Array.prototype

The initial value of the prototype data
property of %Int32Array%

%isFinite% isFinite The isFinite function (18.2.2)

%isNaN% isNaN The isNaN function (18.2.3)

% lteratorPrototype% An object that all standard built-in
iterator objects indirectly inherit from

%JSON% JSON The JSON object (24.3)

%Map% Map The Map constructor (23.1.1)

%MaplteratorPrototype%

The prototype of Map iterator objects
(23.1.5)

%MapPrototype%

Map.prototype

The initial value of the prototype data
property of %Map%

© Ecma International 2015

27

»eCma

Intrinsic Name Global Name ECMAScript Language Association
Y%Math% Math The Math object (20.2)
%Number% Number The Number constructor (20.1.1)

%NumberPrototype%

Number .prototype

The initial value of the prototype
property of %Number%

%Object%

Object

The Object constructor (19.1.1)

%ObjectPrototype%

Object.prototype

The initial value of the prototype data
property of %Object%. (19.1.3)

%ObjProto_toString%

Object.prototype.
toString

The initial value of the toString data
property of %ObjectPrototype%
(19.1.3.6)

Y%parseFloat% parseFloat The parseFloat function (18.2.4)
Y%parselnt% parselnt The parseInt function (18.2.5)
%Promise% Promise The Promise constructor (25.4.3)

%PromisePrototype%

Promise.prototype

The initial value of the prototype data
property of %Promise%

%Proxy%

Proxy

The Proxy constructor (26.2.1)

%RangeError%

RangeError

The RangeError constructor (19.5.5.2)

%RangeErrorPrototype%

RangeError.prototype

The initial value of the prototype
property of %RangeError%

%ReferenceError% ReferenceError The ReferenceError constructor
(19.5.5.3)
%ReferenceErrorPrototype% ReferenceError. The initial value of the prototype
prototype property of %ReferenceError%
Y%Reflect% Reflect The Reflect object (26.1)
%RegExp% RegExp The RegExp constructor (21.2.3)

%RegExpPrototype%

RegExp.prototype

The initial value of the prototype data
property of %RegExp%

%Set%

Set

The set constructor (23.2.1)

%SetlteratorPrototype%

The prototype of Set iterator objects
(23.2.5)

%SetPrototype% Set.prototype The initial value of the prototype data
property of %Set%
%String% String The String constructor (21.1.1)

%StringlteratorPrototype%

The prototype of String iterator objects
(21.1.5)

%StringPrototype% String.prototype The initial value of the prototype data
property of %String%

%Symbol% Symbol The Symbol constructor (19.4.1)

%SymbolPrototype% Symbol.prototype The initial value of the prototype data
property of %Symbol%. (19.4.3)

%SyntaxError% SyntaxError The SyntaxError constructor (19.5.5.4)

%SyntaxErrorPrototype%

SyntaxError.prototype

The initial value of the prototype
property of %SyntaxError%

28

© Ecma International 2015

»ecmna

Intrinsic Name Global Name ECMAScript Language Association

%ThrowTypeError% A function object that unconditionally
throws a new instance of % TypeError%

%TypedArray% The super class of all typed Array
constructors (22.2.1)

%TypedArrayPrototype% The initial value of the prototype
property of %TypedArray%

% TypeError% TypeError The TypeError constructor (19.5.5.5)

%TypeErrorPrototype%

TypeError.prototype

The initial value of the prototype
property of %TypeError%

%Uint8Array%

Uint8Array

The Uint8Array constructor (22.2)

%Uint8ArrayPrototype%

Uint8Array.prototype

The initial value of the prototype data
property of %Uint8Array%

%Uint8ClampedArray% Uint8ClampedArray The Uint8ClampedArray constructor
(22.2)
%Uint8ClampedArrayPrototype% Uint8ClampedArray. The initial value of the prototype data
prototype property of %Uint8ClampedArray%
%Uint16Array% Uintl6Array The Uintl6Array constructor (22.2)

%Uint16ArrayPrototype%

Uintl6Array.prototype

The initial value of the prototype data
property of %Uint16Array%

%Uint32Array%

Uint32Array

The Uint32Array constructor (22.2)

%Uint32ArrayPrototype%

Uint32Array.prototype

The initial value of the prototype data
property of %Uint32Array%

%URIError%

URIError

The URIError constructor (19.5.5.6)

%URIErrorPrototype%

URIError.prototype

The initial value of the prototype
property of %URIError%

%WeakMap%

WeakMap

The WeakMap constructor (23.3.1)

%W eakMapPrototype%

WeakMap .prototype

The initial value of the prototype data
property of %WeakMap%

%W eakSet%

WeakSet

The WeakSet constructor (23.4.1)

%W eakSetPrototype%

WeakSet.prototype

The initial value of the prototype data
property of %WeakSet%

6.2 ECMAScript Specification Types

A specification type corresponds to meta-values that are used within algorithms to describe the semantics of
ECMAScript language constructs and ECMAScript language types. The specification types are Reference, List,
Completion, Property Descriptor, Lexical Environment, Environment Record, and Data Block. Specification type
values are specification artefacts that do not necessarily correspond to any specific entity within an ECMAScript
implementation. Specification type values may be used to describe intermediate results of ECMAScript
expression evaluation but such values cannot be stored as properties of objects or values of ECMAScript
language variables.

6.2.1 The List and Record Specification Type

The List type is used to explain the evaluation of argument lists (see 12.3.6) in new expressions, in function calls,
and in other algorithms where a simple ordered list of values is needed. Values of the List type are simply
ordered sequences of list elements containing the individual values. These sequences may be of any length.
The elements of a list may be randomly accessed using 0-origin indices. For notational convenience an array-
like syntax can be used to access List elements. For example, arguments[2] is shorthand for saying the 3"
element of the List arguments.

© Ecma International 2015 29

»eCma

For notational convenience within this specification, a literal syntax can be used to express a new List value. For
example, «1, 2» defines a List value that has two elements each of which is initialized to a specific value. A new
empty List can be expressed as «».

The Record type is used to describe data aggregations within the algorithms of this specification. A Record type
value consists of one or more named fields. The value of each field is either an ECMAScript value or an abstract
value represented by a name associated with the Record type. Field names are always enclosed in double
brackets, for example [[value]].

For notational convenience within this specification, an object literal-like syntax can be used to express a
Record value. For example, {[[field1]]: 42, [[field2]]: false, [[field3]]: empty} defines a Record value that has
three fields, each of which is initialized to a specific value. Field name order is not significant. Any fields that are
not explicitly listed are considered to be absent.

In specification text and algorithms, dot notation may be used to refer to a specific field of a Record value. For
example, if R is the record shown in the previous paragraph then R.[[field2]] is shorthand for “the field of R
named [[field2]]".

Schema for commonly used Record field combinations may be named, and that name may be used as a prefix
to a literal Record value to identify the specific kind of aggregations that is being described. For example:
PropertyDescriptor{[[Value]]: 42, [[Writable]]: false, [[Configurable]]: true}.

6.2.2 The Completion Record Specification Type

The Completion type is a Record used to explain the runtime propagation of values and control flow such as the
behaviour of statements (break, continue, return and throw) that perform nonlocal transfers of control.

Values of the Completion type are Record values whose fields are defined as by Table 8.

Table 8 — Completion Record Fields

Field Value Meaning
[[typel] One of normal, break, continue, return, | The type of completion that occurred.
or throw
[[value]] | any ECMAScript language value or empty | The value that was produced.
[[target]] | any ECMAScript string or empty The target label for directed control transfers.

The term “abrupt completion” refers to any completion with a [[type]] value other than normal.

6.2.2.1 NormalCompletion

The abstract operation NormalCompletion with a single argument, such as:
1. Return NormalCompletion(argument).
Is a shorthand that is defined as follows:

1. Return Completion {[[type]]: normal, [[value]]: argument, [[target]]:empty}.

6.2.2.2 Implicit Completion Values

The algorithms of this specification often implicitly return Completion Records whose [[type]] is normal. Unless it
is otherwise obvious from the context, an algorithm statement that returns a value that is not a Completion
Record, such as:

1. Return "Infinity".
means the same thing as:

1. Return NormalCompletion("Infinity").

30 © Ecma International 2015

oechna

However, if the value expression of a “return” statement is a Completion Record construction literal, the resulting
Completion Record is returned. If the value expression is a call to an abstract operation, the “return” statement
simply returns the Completion Record produced by the abstract operation.

The abstract operation Completion(completionRecord) is used to emphasize that a previously computed
Completion Record is being returned. The Completion abstract operation takes a single argument,
completionRecord, and performs the following steps:

1. Assert: completionRecord is a Completion Record.
2. Return completionRecord as the Completion Record of this abstract operation.
A “return” statement without a value in an algorithm step means the same thing as:
1. Return NormalCompletion(undefined).
Any reference to a Completion Record value that is in a context that does not explicitly require a complete

Completion Record value is equivalent to an explicit reference to the [[value]] field of the Completion Record
value unless the Completion Record is an abrupt completion.

6.2.2.3 Throw an Exception

Algorithms steps that say to throw an exception, such as
1. Throw a TypeError exception.
mean the same things as:

1. Return Completion {[[type]]: throw, [[value]]: a newly created TypeError object, [[target]]:empty}.

6.2.2.4 ReturnifAbrupt

Algorithms steps that say
1. ReturnIfAbrupt(argument).
mean the same thing as:

1. 1If argument is an abrupt completion, return argument.
2. Else if argument is a Completion Record, let argument be argument.[[value]].

6.2.2.5 UpdateEmpty (completionRecord, value)

The abstract operation UpdateEmpty with arguments completionRecord and value performs the following steps:

1. Assert: if completionRecord.[[type]] is throw then completionRecord.[[value]] is not empty.

2. If completionRecord.[[type]] is throw, return Completion(completionRecord).

3. If completionRecord.[[value]] is not empty, return Completion(completionRecord).

4. Return Completion {[[type]]: completionRecord.[[type]], [[value]]: value, [[target]]:
completionRecord.[[target]] }.

6.2.3 The Reference Specification Type

NOTE The Reference type is used to explain the behaviour of such operators as delete, typeof, the assignment
operators, the super keyword and other language features. For example, the left-hand operand of an
assignment is expected to produce a reference.

A Reference is a resolved name or property binding. A Reference consists of three components, the base value,
the referenced name and the Boolean valued strict reference flag. The base value is either undefined, an Object, a
Boolean, a String, a Symbol, a Number, or an Environment Record (8.1.1). A base value of undefined indicates
that the Reference could not be resolved to a binding. The referenced name is a String or Symbol value.

A Super Reference is a Reference that is used to represents a name binding that was expressed using the

super keyword. A Super Reference has an additional thisValue component and its base value will never be an
Environment Record.

© Ecma International 2015 31

oecna

The following abstract operations are used in this specification to access the components of references:

GetBase(V). Returns the base value component of the reference V.

GetReferencedName(V). Returns the referenced name component of the reference V.
IsStrictReference(V). Returns the strict reference flag component of the reference V.
HasPrimitiveBase(V). Returns true if Type(base) is Boolean, String, Symbol, or Number.
IsPropertyReference(V). Returns true if either the base value is an object or HasPrimitiveBase(V) is
true; otherwise returns false.

IsUnresolvableReference(V). Returns true if the base value is undefined and false otherwise.
IsSuperReference(V). Returns true if this reference has a thisValue component.

The following abstract operations are used in this specification to operate on references:

NOTE

e

N W=

NOTE

6.2.3.3

32

—_—

GetValue (V)
ReturnIfAbrupt(V).
If Type(V) is not Reference, return V.
Let base be GetBase(V).
If IsUnresolvableReference(V), throw a ReferenceError exception.
If IsPropertyReference(V), then

a. If HasPrimitiveBase(/V) is true, then
i. Assert: In this case, base will never be null or undefined.
ii. Let base be ToObject(base).
b. Return base.[[Get]](GetReferencedName()), GetThisValue())).
Else base must be an Environment Record,
a. Return base.GetBindingValue(GetReferencedName(V), IsStrictReference(V)) (see 8.1.1).

The object that may be created in step 5.a.ii is not accessible outside of the above abstract operation and the
ordinary object [[Get]] internal method. An implementation might choose to avoid the actual creation of the object.

PutValue (V, W)

ReturnIfAbrupt(V).
ReturnIfAbrupt(#).
If Type(V) is not Reference, throw a ReferenceError exception.
Let base be GetBase(V).
If IsUnresolvableReference(V), then
a. If IsStrictReference(V) is true, then
i. Throw ReferenceError exception.
b. Let globalObj be GetGlobalObject().
c. Return Set(globalObj,GetReferencedName(V), W, false).
Else if IsPropertyReference(V), then
a. If HasPrimitiveBase(V) is true, then
i. Assert: In this case, base will never be null or undefined.
ii. Set base to ToObject(base).
b. Let succeeded be base.[[Set]](GetReferencedName(V), W, GetThisValue(V)).
c. ReturnIfAbrupt(succeeded).
d. Ifsucceeded is false and IsStrictReference(V) is true, throw a TypeError exception.
e. Return.
Else base must be an Environment Record.
a. Return base.SetMutableBinding(GetReferencedName(V), W, IsStrictReference()) (see 8.1.1).

The object that may be created in step 6.a.ii is not accessible outside of the above algorithm and the ordinary
object [[Set]] internal method. An implementation might choose to avoid the actual creation of that object.

GetThisValue (V)

Assert: IsPropertyReference(V) is true.

If IsSuperReference(V), then

a. Return the value of the thisValue component of the reference V.
Return GetBase(V).

© Ecma International 2015

secmna

6.2.3.4 InitializeReferencedBinding (V, W)

ReturnIfAbrupt(V).

ReturnIfAbrupt(#).

Assert: Type(V) is Reference.

Assert: IsUnresolvableReference(V) is false.

Let base be GetBase(V).

Assert: base is an Environment Record.

Return base.InitializeBinding(GetReferencedName(V), W).

Nk LN =

6.2.4 The Property Descriptor Specification Type

The Property Descriptor type is used to explain the manipulation and reification of Object property attributes.
Values of the Property Descriptor type are Records. Each field’s name is an attribute name and its value is a
corresponding attribute value as specified in 6.1.7.1. In addition, any field may be present or absent. The
schema name used within this specification to tag literal descriptions of Property Descriptor records is
“PropertyDescriptor”.

Property Descriptor values may be further classified as data Property Descriptors and accessor Property
Descriptors based upon the existence or use of certain fields. A data Property Descriptor is one that includes
any fields named either [[Value]] or [[Writable]]. An accessor Property Descriptor is one that includes any fields
named either [[Get]] or [[Set]]. Any Property Descriptor may have fields named [[Enumerable]] and
[[Configurable]]. A Property Descriptor value may not be both a data Property Descriptor and an accessor
Property Descriptor; however, it may be neither. A generic Property Descriptor is a Property Descriptor value
that is neither a data Property Descriptor nor an accessor Property Descriptor. A fully populated Property
Descriptor is one that is either an accessor Property Descriptor or a data Property Descriptor and that has all of
the fields that correspond to the property attributes defined in either Table 2 or Table 3.

The following abstract operations are used in this specification to operate upon Property Descriptor values:

6.2.4.1 IsAccessorDescriptor (Desc)

When the abstract operation IsAccessorDescriptor is called with Property Descriptor Desc, the following steps
are taken:

1. If Desc is undefined, return false.
2. If both Desc.[[Get]] and Desc.[[Set]] are absent, return false.
3. Return true.

6.2.4.2 IsDataDescriptor (Desc)

When the abstract operation IsDataDescriptor is called with Property Descriptor Desc, the following steps are
taken:

1. If Desc is undefined, return false.
2. If both Desc.[[Value]] and Desc.[[Writable]] are absent, return false.
3. Return true.

6.2.4.3 IsGenericDescriptor (Desc)

When the abstract operation IsGenericDescriptor is called with Property Descriptor Desc, the following steps are
taken:

1. If Desc is undefined, return false.
2. IfIsAccessorDescriptor(Desc) and IsDataDescriptor(Desc) are both false, return true.
3. Return false.

6.2.4.4 FromPropertyDescriptor (Desc)

When the abstract operation FromPropertyDescriptor is called with Property Descriptor Desc, the following steps
are taken:

1. If Desc is undefined, return undefined.

© Ecma International 2015 33

oecind

2. Let obj be ObjectCreate(%ObjectPrototype%).
Assert: obj is an extensible ordinary object with no own properties.
4. 1If Desc has a [[Value]] field, then
a. Perform CreateDataProperty(obj, "value", Desc.[[Value]]).
5. If Desc has a [[Writable]] field, then
a. Perform CreateDataProperty(obj, "writable", Desc.[[Writable]]).
6. If Desc has a [[Get]] field, then
a. Perform CreateDataProperty(obj, "get", Desc.[[Get]]).
7. 1If Desc has a [[Set]] field, then
a. Perform CreateDataProperty(obj, "set", Desc.[[Set]])
8. If Desc has an [[Enumerable]] field, then
a. Perform CreateDataProperty(obj, "enumerable", Desc.[[Enumerable]]).
9. [If Desc has a [[Configurable]] field, then
a. Perform CreateDataProperty(obj , "configurable", Desc.[[Configurable]]).
10. Assert: all of the above CreateDataProperty operations return true.
11. Return obyj.

w

6.2.4.5 ToPropertyDescriptor (Obj)

When the abstract operation ToPropertyDescriptor is called with object Obj, the following steps are taken:

ReturnlfAbrupt(Obyj).
If Type(Obj) is not Object, throw a TypeError exception.
Let desc be a new Property Descriptor that initially has no fields.
Let hasEnumerable be HasProperty(Obj, "enumerable").
ReturnIfAbrupt(hasEnumerable).
If hasEnumerable is true, then
a. Let enum be ToBoolean(Get(Obj, "enumerable")).
b. ReturnlfAbrupt(enum).
c. Set the [[Enumerable]] field of desc to enum.
7. Let hasConfigurable be HasProperty(Obj, "configurable").
ReturnIfAbrupt(hasConfigurable).
9. [If hasConfigurable is true, then
a. Let conf be ToBoolean(Get(Obj, "configurable")).
b. ReturnlfAbrupt(conf).
c. Set the [[Configurable]] field of desc to conf.
10. Let hasValue be HasProperty(Obj, "value").
11. ReturnIfAbrupt(hasValue).
12. If hasValue is true, then
a. Let value be Get(Obj, "value").
b. ReturnIfAbrupt(value).
c. Set the [[Value]] field of desc to value.
13. Let hasWritable be HasProperty(Obj, "writable").
14. ReturnIfAbrupt(hasWritable).
15. If hasWritable is true, then
a. Let writable be ToBoolean(Get(Obj, "writable")).
b. ReturnIfAbrupt(writable).
c. Set the [[Writable]] field of desc to writable.
16. Let hasGet be HasProperty(Obj, "get").
17. ReturnIfAbrupt(hasGet).
18. If hasGet is true, then
a. Let getter be Get(Obj, "get").
b. ReturnlfAbrupt(getter).
c. IfIsCallable(getter) is false and getter is not undefined, throw a TypeError exception.
d. Set the [[Get]] field of desc to getter.
19. Let hasSet be HasProperty(Obj, "set™").
20. ReturnIfAbrupt(hasSet).
21. If hasSet is true, then
a. Let setter be Get(Obj, "set").

NN bW~

o]

34 © Ecma International 2015

oechna

b. ReturnlfAbrupt(setter).
c. IfIsCallable(setter) is false and setter is not undefined, throw a TypeError exception.
d. Set the [[Set]] field of desc to setter.
22. If either desc.[[Get]] or desc.[[Set]] is present, then
a. If either desc.[[Value]] or desc.[[Writable]] is present, throw a TypeError exception.
23. Return desc.

6.2.4.6 CompletePropertyDescriptor (Desc)

When the abstract operation CompletePropertyDescriptor is called with Property Descriptor Desc the following
steps are taken:

1. ReturnIfAbrupt(Desc).
2. Assert: Desc is a Property Descriptor
3. Let like be Record{[[Value]]: undefined, [[Writable]]: false, [[Get]]: undefined, [[Set]]: undefined,
[[Enumerable]]: false, [[Configurable]]: false}.
4. If either IsGenericDescriptor(Desc) or IsDataDescriptor(Desc) is true, then
a. If Desc does not have a [[Value]] field, set Desc.[[Value]] to like.[[Value]].
b. If Desc does not have a [[Writable]] field, set Desc.[[Writable]] to like.[[Writable]].
5. Else,
a. If Desc does not have a [[Get]] field, set Desc.[[Get
b. If Desc does not have a [[Set]] field, set Desc.[[Set]
If Desc does not have an [[Enumerable]] field, set Desc.
If Desc does not have a [[Configurable]] field, set Desc.
Return Desc.

] to like.[[Get]].

to like.[[Set]].

[Enumerable]] to like.[[Enumerable]].
[Configurable]] to /ike.[[Configurable]].

[c BEN le)Y
— i —

6.2.5 The Lexical Environment and Environment Record Specification Types

The Lexical Environment and Environment Record types are used to explain the behaviour of name resolution
in nested functions and blocks. These types and the operations upon them are defined in 8.1.

6.2.6 Data Blocks

The Data Block specification type is used to describe a distinct and mutable sequence of byte-sized (8 bit)
numeric values. A Data Block value is created with a fixed number of bytes that each have the initial value 0.

For notational convenience within this specification, an array-like syntax can be used to access the individual
bytes of a Data Block value. This notation presents a Data Block value as a 0-origined integer indexed
sequence of bytes. For example, if db is a 5 byte Data Block value then db[2] can be used to access its 3 byte.

The following abstract operations are used in this specification to operate upon Data Block values:

6.2.6.1 CreateByteDataBlock(size)

When the abstract operation CreateByteDataBlock is called with integer argument size, the following steps are
taken:

1. Assert: size>0.

2. Let db be a new Data Block value consisting of size bytes. If it is impossible to create such a Data Block,
throw a RangeError exception.

3. Set all of the bytes of db to 0.

4. Return db.

6.2.6.2 CopyDataBlockBytes(toBlock, tolndex, fromBlock, fromindex, count)

When the abstract operation CopyDataBlockBytes is called the following steps are taken:

Assert: fromBlock and toBlock are distinct Data Block values.
Assert: fromIndex, tolndex, and count are positive integer values.
Let fromSize be the number of bytes in fromBlock.

Assert: fromIndex+count < fromSize.

Let toSize be the number of bytes in toBlock.

Assert: tolndex+count < toSize.

AN AW =

© Ecma International 2015 35

oecna

7. Repeat, while count>0
a. Set toBlock[toIndex] to the value of fromBlock[fromIndex].
b. Increment tolndex and fromIndex each by 1.
c. Decrement count by 1.

8. Return NormalCompletion(empty)

7 Abstract Operations

These operations are not a part of the ECMAScript language; they are defined here to solely to aid the
specification of the semantics of the ECMAScript language. Other, more specialized abstract operations are
defined throughout this specification.

71 Type Conversion

The ECMAScript language implicitly performs automatic type conversion as needed. To clarify the semantics of
certain constructs it is useful to define a set of conversion abstract operations. The conversion abstract
operations are polymorphic; they can accept a value of any ECMAScript language type or of a Completion
Record value. But no other specification types are used with these operations.

7.1.1 ToPrimitive (input [, PreferredType])

The abstract operation ToPrimitive takes an input argument and an optional argument PreferredType. The
abstract operation ToPrimitive converts its input argument to a non-Object type. If an object is capable of
converting to more than one primitive type, it may use the optional hint PreferredType to favour that type.
Conversion occurs according to Table 9:

Table 9 — ToPrimitive Conversions

Input Type Result

Completion Record | If input is an abrupt completion, return input. Otherwise return
ToPrimitive(input.[[value]]) also passing the optional hint PreferredType.

Undefined Return input.

Null Return input.

Boolean Return input.

Number Return input.

String Return input.

Symbol Return input.

Object Perform the steps following this table.

When Type(input) is Object, the following steps are taken:

If PreferredType was not passed, let hint be "default".
Else if PreferredType is hint String, let hint be "string".
Else PreferredType is hint Number, let hint be "number".
Let exoticToPrim be GetMethod(input, @@toPrimitive).
ReturnIfAbrupt(exoticToPrim).

If exoticToPrim is not undefined, then

a. Let result be Call(exoticToPrim, input, «hint»).

b. ReturnIfAbrupt(result).

c. If Type(result) is not Object, return result.

d. Throw a TypeError exception.

7. If hint is "default", let hint be "number".

8. Return OrdinaryToPrimitive(input, hint).

AN AW~

When the abstract operation OrdinaryToPrimitive is called with arguments O and #int, the following steps are
taken:

36 © Ecma International 2015

cecna

Assert: Type(O) is Object
2. Assert: Type(hint) is String and its value is either "string" or "number".
3. If hint is "string", then
a. Let methodNames be «"toString", "valueOf"y.
4. Else,
a. Let methodNames be «"valueOf", "toString"».
5. For each name in methodNames in List order, do
a. Let method be Get(O, name).
b. ReturnlfAbrupt(method).
c. IfIsCallable(method) is true, then
i. Let result be Call(method, O).
ii. ReturnIfAbrupt(result).
iii. If Type(result) is not Object, return result.
6. Throw a TypeError exception.

—_

NOTE When ToPrimitive is called with no hint, then it generally behaves as if the hint were Number. However, objects
may over-ride this behaviour by defining a @@toPrimitive method. Of the objects defined in this specification
only Date objects (see 20.3.4.45) and Symbol objects (see 19.4.3.4) over-ride the default ToPrimitive behaviour.
Date objects treat no hint as if the hint were String.

7.1.2 ToBoolean (argument)

The abstract operation ToBoolean converts argument to a value of type Boolean according to Table 10:

Table 10 — ToBoolean Conversions

Argument Type Result

Completion Record | If argument is an abrupt completion, return argument. Otherwise return
ToBoolean(argument.[[value]]).

Undefined Return false.

Null Return false.

Boolean Return argument.

Number Return false if argument is +0, -0, or NaN; otherwise return true.

String Return false if argument is the empty String (its length is zero); otherwise
return true.

Symbol Return true.

Object Return true.

© Ecma International 2015 37

>eCma

7.1.3 ToNumber (argument)

The abstract operation ToNumber converts argument to a value of type Number according to Table 11:

Table 11 — ToNumber Conversions

Argument Type

Result

Completion Record

If argument is an abrupt completion, return argument. Otherwise return
ToNumber(argument.[[value]]).

Undefined Return NaN.

Null Return +0.

Boolean Return 1 if argument is true. Return +0 if argument is false.
Number Return argument (no conversion).

String See grammar and conversion algorithm below.

Symbol Throw a TypeError exception.

Object Apply the following steps:

1. Let primValue be ToPrimitive(argument, hint Number).
2. Return ToNumber(primValue).

7.1.31 ToNumber Applied to the String Type

ToNumber applied to Strings applies the following grammar to the input String interpreted as a sequence of
UTF-16 encoded code points (6.1.4). If the grammar cannot interpret the String as an expansion of

StringNumericLiteral, then the result of ToNumber is NaN.

NOTE1 The terminal symbols of this grammar are all composed of Unicode BMP code points so the result will be NaN if
the string contains the UTF-16 encoding of any supplementary code points or any unpaired surrogate code

points.

Syntax

StringNumericLiteral :::
StrWhiteSpaceop

StrWhiteSpaceop StrNumericLiteral StrWhiteSpaceopt

StrWhiteSpace :::

StrWhiteSpaceChar StrWhiteSpacep

StrWhiteSpaceChar :::
WhiteSpace
LineTerminator

StrNumericLiteral :::
StrDecimalLiteral
BinarylntegerLiteral
OctallntegerLiteral
HexlIntegerLiteral

StrDecimallLiteral :::

StrUnsignedDecimalLiteral
+ StrUnsignedDecimalLiteral
- StrUnsignedDecimalLiteral

38

© Ecma International 2015

eCind

StrUnsignedDecimalLiteral :::
Infinity
DecimalDigits . DecimalDigitsop ExponentPartqp
. DecimalDigits ExponentPartqp
DecimalDigits ExponentPart oy

DecimalDigits :::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit ::: one of
0 1 2 3 4 5 6 7 8 9

ExponentPart :::
ExponentIndicator Signedinteger

ExponentIndicator ::: one of
e E

Signedinteger :::
DecimalDigits
+ DecimalDigits
- DecimalDigits

All grammar symbols not explicitly defined above have the definitions used in the Lexical Grammar for numeric
literals (11.8.3)

NOTE2 Some differences should be noted between the syntax of a StringNumericLiteral and a NumericLiteral (see
11.8.3):
o A StringNumericLiteral may include leading and/or trailing white space and/or line terminators.

A StringNumericLiteral that is decimal may have any number of leading 0 digits.

A StringNumericLiteral that is decimal may include a + or - to indicate its sign.

A StringNumericLiteral that is empty or contains only white space is converted to +0.

Infinity and -Infinity are recognized as a StringNumericLiteral but not as a NumericLiteral.

7.1.3.1.1 Runtime Semantics: MV’s

The conversion of a String to a Number value is similar overall to the determination of the Number value for a
numeric literal (see 11.8.3), but some of the details are different, so the process for converting a String numeric
literal to a value of Number type is given here. This value is determined in two steps: first, a mathematical value
(MV) is derived from the String numeric literal; second, this mathematical value is rounded as described below.
The MV on any grammar symbol, not provided below, is the MV for that symbol defined in 11.8.3.1.

o The MV of StringNumericLiteral ::: [empty] is O.

o The MV of StringNumericLiteral ::: StrWhiteSpace is O.

The MV of StringNumericLiteral ::: StrWhiteSpace,, StrNumericLiteral StrWhiteSpace,, is the MV of
StrNumericLiteral, no matter whether white space is present or not.

The MV of StrNumericLiteral ::: StrDecimalLiteral is the MV of StrDecimalLiteral.

The MV of StrNumericLiteral ::: BinarylntegerLiteral is the MV of BinarylntegerLiteral.

The MV of StrNumericLiteral ::: OctallntegerLiteral is the MV of OctallntegerLiteral.

The MV of StrNumericLiteral ::: HexIntegerLiteral is the MV of HexIntegerLiteral.

The MV of StrDecimalLiteral ::: StrUnsignedDecimalLiteral is the MV of StrUnsignedDecimalLiteral.

The MV of StrDecimalLiteral ::: + StrUnsignedDecimalLiteral is the MV of StrUnsignedDecimalLiteral.

The MV of StrDecimalLiteral ::: - StrUnsignedDecimalLiteral is the negative of the MV of
StrUnsignedDecimalLiteral. (Note that if the MV of StrUnsignedDecimalLiteral is 0, the negative of this MV is
also 0. The rounding rule described below handles the conversion of this signless mathematical zero to a
floating-point +0 or —0 as appropriate.)

e The MV of StrUnsignedDecimalLiteral ::: Infinity is 10'™" (a value so large that it will round to +o).

o The MV of StrUnsignedDecimalLiteral ::: DecimalDigits . is the MV of DecimalDigits.

© Ecma International 2015 39

ceca

e The MV of StrUnsignedDecimalLiteral ::: DecimalDigits . DecimalDigits is the MV of the first DecimalDigits plus
(the MV of the second DecimalDigits times 10™), where n is the number of code points in the second
DecimalDigits.

o The MV of StrUnsignedDecimalLiteral ::: DecimalDigits. ExponentPart is the MV of DecimalDigits times 10°,
where e is the MV of ExponentPart.

o The MV of StrUnsignedDecimalLiteral ::: DecimalDigits. DecimalDigits ExponentPart is (the MV of the first
DecimalDigits plus (the MV of the second DecimalDigits times 10™)) times 10°, where n is the number of code
points in the second DecimalDigits and e is the MV of ExponentPart.

e The MV of StrUnsignedDecimalLiteral ::: . DecimalDigits is the MV of DecimalDigits times 107", where n is the
number of code points in DecimalDigits.

e The MV of StrUnsignedDecimalLiteral ::: . DecimalDigits ExponentPart is the MV of DecimalDigits times 10°",
where n is the number of code points in DecimalDigits and e is the MV of ExponentPart.

o The MV of StrUnsignedDecimalLiteral ::: DecimalDigits is the MV of DecimalDigits.

e The MV of StrUnsignedDecimalLiteral ::: DecimalDigits ExponentPart is the MV of DecimalDigits times 10°,
where ¢ is the MV of ExponentPart.

Once the exact MV for a String numeric literal has been determined, it is then rounded to a value of the Number
type. If the MV is 0, then the rounded value is +0 unless the first non white space code point in the String
numeric literal is ‘-’, in which case the rounded value is —0. Otherwise, the rounded value must be the Number
value for the MV (in the sense defined in 6.1.6), unless the literal includes a StrUnsignedDecimalLiteral and the
literal has more than 20 significant digits, in which case the Number value may be either the Number value for
the MV of a literal produced by replacing each significant digit after the 20th with a 0 digit or the Number value
for the MV of a literal produced by replacing each significant digit after the 20th with a 0 digit and then
incrementing the literal at the 20th digit position. A digit is significant if it is not part of an ExponentPart and

e itisnot0;or

o there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPart, to its right.

7.1.4 Tolnteger (argument)

The abstract operation Tolnteger converts argument to an integral numeric value. This abstract operation
functions as follows:

Let number be ToNumber(argument).

ReturnIfAbrupt(number).

If number is NaN, return +0.

If number is +0, —0, +oo, or —oo, return number.

Return the number value that is the same sign as number and whose magnitude is floor(abs(number)).

DA W -

7.1.5 Tolnt32 (argument)

The abstract operation Tolnt32 converts argument to one of 2*? integer values in the range —2°' through 2*'-1,
inclusive. This abstract operation functions as follows:

1. Let number be ToNumber(argument).

2. ReturnIfAbrupt(number).

3. If number is NaN, +0, —0, +o0, or —oo, return +0.

4. Let int be the mathematical value that is the same sign as number and whose magnitude is
floor(abs(number)).

Let int32bit be int modulo 2°.

6. Ifint32bit > 27", return int32bit — 2**, otherwise return int32bit.

9]

NOTE Given the above definition of Tolnt32:
e The Tolnt32 abstract operation is idempotent: if applied to a result that it produced, the second application
leaves that value unchanged.
e Tolnt32(ToUint32(x)) is equal to ToInt32(x) for all values of x. (It is to preserve this latter property that +oo and
—o0 are mapped to +0.)
o Tolnt32 maps —0 to +0.

40 © Ecma International 2015

cecna

7.1.6

ToUint32 (argument)

The abstract operation ToUint32 converts argument to one of 2% integer values in the range 0 through 2°°-1,
inclusive. This abstract operation functions as follows:

1.

2.
3.
4

AN D

NOTE

71.7

Let number be ToNumber(argument).

ReturnlfAbrupt(number).

If number is NaN, +0, —0, +oo, or —co, return +0.

Let int be the mathematical value that is the same sign as number and whose magnitude is
floor(abs(number)).

Let int32bit be int modulo 2°7.

Return int32bit.

Given the above definition of ToUint32:

o Step 6 is the only difference between ToUint32 and Tolnt32.

o The ToUint32 abstract operation is idempotent: if applied to a result that it produced, the second application
leaves that value unchanged.

e ToUint32(ToInt32(x)) is equal to ToUint32(x) for all values of x. (It is to preserve this latter property that +w
and —oo are mapped to +0.)

e ToUint32 maps —0 to +0.

Tolnt16 (argument)

The abstract operation Tolnt16 converts argument to one of 2'® integer values in the range —32768 through 32767,
inclusive. This abstract operation functions as follows:

AW N =

(9]

6.

7.1.8

Let number be ToNumber(argument).

ReturnIfAbrupt(number).

If number is NaN, +0, —0, +o0, or —oo, return +0.

Let int be the mathematical value that is the same sign as number and whose magnitude is
floor(abs(number)).

Let int16bit be int modulo 2'°.

If int16bit > 2", return int16bit — 2'°, otherwise return intI6bit.

ToUint16 (argument)

The abstract operation ToUint16 converts argument to one of 2'¢ integer values in the range 0 through 2'°-1,
inclusive. This abstract operation functions as follows:

1
2.
3.
4

AN D

NOTE

71.9

Let number be ToNumber(argument).

ReturnIfAbrupt(number).

If number is NaN, +0, —0, +oo, or —oo, return +0.

Let int be the mathematical value that is the same sign as number and whose magnitude is
floor(abs(number)).

Let int16bit be int modulo 2'°.

Return intl6bit.

Given the above definition of ToUint16:
e The substitution of 2'¢ for 2* in step 5 is the only difference between ToUint32 and ToUint16.
e ToUint16 maps —0 to +0.

Tolnt8 (argument)

The abstract operation ToInt8 converts argument to one of 2* integer values in the range —128 through 127,
inclusive. This abstract operation functions as follows:

AW N —

Let number be ToNumber(argument).

ReturnIfAbrupt(number).

If number is NaN, +0, —0, +oo, or —co, return +0.

Let int be the mathematical value that is the same sign as number and whose magnitude is
floor(abs(number)).

Let int8hit be int modulo 2°.

© Ecma International 2015 41

>eCma

6.

If int8bit > 27, return int8bit — 2%, otherwise return int8bit.

7.1.10 ToUint8 (argument)

The abstract operation ToUint8 converts argument to one of 2° integer values in the range 0 through 255,
inclusive. This abstract operation functions as follows:

1.

2.
3.
4

9]

6.

7111

Let number be ToNumber(argument).

ReturnIfAbrupt(number).

If number is NaN, +0, —0, +oo, or —co, return +0.

Let int be the mathematical value that is the same sign as number and whose magnitude is
floor(abs(number)).

Let int8bit be int modulo 2°.

Return int8bit.

ToUint8Clamp (argument)

The abstract operation ToUint8Clamp converts argument to one of 2* integer values in the range 0 through 255,
inclusive. This abstract operation functions as follows:

1
2
3
4
5.
6.
7
8
9
1

0.

NOTE

Let number be ToNumber(argument).
ReturnIfAbrupt(number).

If number is NaN, return +0.

If number < 0, return +0.

If number > 255, return 255.

Let /' be floor(number).

Iff+ 0.5 < number, return f+ 1.

If number < f + 0.5, return f.

If fis odd, return f+ 1.

Return f.

Unlike the other ECMAScript integer conversion abstract operation, ToUint8Clamp rounds rather than truncates
non-integer values and does not convert +wo to 0. ToUint8Clamp does “round half to even” tie-breaking. This
differs from Math. round which does “round half up” tie-breaking.

7.1.12 ToString (argument)

The abstract operation ToString converts argument to a value of type String according to Table 12:

42

Table 12 — ToString Conversions

Argument Type Result

Completion Record | If argument is an abrupt completion, return argument. Otherwise return
ToString(argument.[[value]]).

Undefined Return "undefined".
Null Return "null".
Boolean If argument is true, return "true".
If argument is false, return "false".
Number See 7.1.12.1.
String Return argument.
Symbol Throw a TypeError exception.
Object Apply the following steps:

1. Let primValue be ToPrimitive(argument, hint String).
2. Return ToString(primValue).

© Ecma International 2015

»ecind

71121

ToString Applied to the Number Type

The abstract operation ToString converts a Number m to String format as follows:

[I O R S

10.

NOTE 1

NOTE 2

NOTE 3

7113
The abs

If m is NaN, return the String "NaN".

If m is +0 or —0, return the String "0".

If m is less than zero, return the String concatenation of the String "-" and ToString(—m).

If m is +oo, return the String "Infinity".

Otherwise, let n, k, and s be integers such that £ > 1, 10" < s < 10, the Number value for s x 10" ™* is m,
and k is as small as possible. Note that & is the number of digits in the decimal representation of s, that s is
not divisible by 10, and that the least significant digit of s is not necessarily uniquely determined by these
criteria.

If k£ < n <21, return the String consisting of the code units of the & digits of the decimal representation of s
(in order, with no leading zeroes), followed by n—k occurrences of the code unit 0x0030 (DIGIT ZERO).
If 0 <n <21, return the String consisting of the code units of the most significant n digits of the decimal
representation of s, followed by the code unit 0x002E (FULL STOP), followed by the code units of the
remaining k-n digits of the decimal representation of s.

If -6 < n <0, return the String consisting of the code unit 0x0030 (DIGIT ZERO), followed by the code
unit 0x002E (FULL STOP), followed by —n occurrences of the code unit 0x0030 (DIGIT ZERO), followed
by the code units of the k& digits of the decimal representation of s.

Otherwise, if £ = 1, return the String consisting of the code unit of the single digit of s, followed by code
unit 0x0065 (LATIN SMALL LETTER E), followed by the code unit 0x002B (PLUS SIGN) or the code
unit 0x002D (HYPHEN-MINUS) according to whether n—1 is positive or negative, followed by the code
units of the decimal representation of the integer abs(n—1) (with no leading zeroes).

Return the String consisting of the code units of the most significant digit of the decimal representation of
s, followed by code unit 0x002E (FULL STOP), followed by the code units of the remaining k—1 digits of
the decimal representation of s, followed by code unit 0x0065 (LATIN SMALL LETTER E), followed by
code unit 0x002B (PLUS SIGN) or the code unit 0x002D (HYPHEN-MINUS) according to whether n—1 is
positive or negative, followed by the code units of the decimal representation of the integer abs(n—1) (with
no leading zeroes).

The following observations may be useful as guidelines for implementations, but are not part of the normative
requirements of this Standard:

e If x is any Number value other than -0, then ToNumber(ToString(x)) is exactly the same Number value as x.
e The least significant digit of s is not always uniquely determined by the requirements listed in step 5.

For implementations that provide more accurate conversions than required by the rules above, it is
recommended that the following alternative version of step 5 be used as a guideline:

5. Otherwise, let n, k, and s be integers such that k> 1, 10" <5 < 10%, the Number value for s x 10" is m, and k is as
small as possible. If there are multiple possibilities for s, choose the value of s for which s x 10" is closest in value
to m. If there are two such possible values of s, choose the one that is even. Note that £ is the number of digits in the
decimal representation of s and that s is not divisible by 10.

Implementers of ECMAScript may find useful the paper and code written by David M. Gay for binary-to-decimal
conversion of floating-point numbers:

Gay, David M. Correctly Rounded Binary-Decimal and Decimal-Binary Conversions. Numerical Analysis,
Manuscript 90-10. AT&T Bell Laboratories (Murray Hill, New Jersey). November 30, 1990. Available as
http://cm.bell-labs.com/cm/cs/doc/90/4-10.ps.gz. Associated code available as
http://netlib.sandia.gov/fp/dtoa.c and as

http://netlib.sandia.gov/fp/g_fmt.c and may also be found at the various netlib mirror sites.

ToObject (argument)

tract operation ToObject converts argument to a value of type Object according to Table 13:

© Ecma International 2015 43

»eCma

Table 13 — ToObject Conversions

Argument Type Result

Completion Record | If argument is an abrupt completion, return argument. Otherwise return
ToObject(argument.[[value]]).

Undefined Throw a TypeError exception.

Null Throw a TypeError exception.

Boolean Return a new Boolean object whose [[BooleanData]] internal slot is set to
the value of argument. See 19.3 for a description of Boolean objects.

Number Return a new Number object whose [[NumberData]] internal slot is set to
the value of argument. See 20.1 for a description of Number objects.

String Return a new String object whose [[StringData]] internal slot is set to the
value of argument. See 21.1 for a description of String objects.

Symbol Return a new Symbol object whose [[SymbolData]] internal slot is set to
the value of argument. See 19.4 for a description of Symbol objects.

Object Return argument.

7.1.14 ToPropertyKey (argument)

The abstract operation ToPropertyKey converts argument to a value that can be used as a property key by
performing the following steps:

1.
2.
3.
4.

7.1.15

Let key be ToPrimitive(argument, hint String).
ReturnIfAbrupt(key).

If Type(key) is Symbol, then

a. Return key.

Return ToString(key).

ToLength (argument)

The abstract operation ToLength converts argument to an integer suitable for use as the length of an array-like

object.

AN AW

7.1.16

It performs the following steps:

ReturnIfAbrupt(argument).

Let /en be Tolnteger(argument).
ReturnIfAbrupt(/en).

If len < +0, return +0.

If len is +oo, return 2%.1.
Return min(/en, 2%-1).

CanonicalNumericlndexString (argument)

The abstract operation CanonicalNumericlndexString returns argument converted to a numeric value if it is a
String representation of a Number that would be produced by ToString, or the string "-0". Otherwise, it returns
undefined. This abstract operation functions as follows:

1.

W W N

Assert: Type(argument) is String.

If argument is "-0", return —0.

Let n be ToNumber(argument).

If SameValue(ToString(n), argument) is false, return undefined.
Return n.

A canonical numeric string is any String value for which the CanonicalNumericlndexString abstract operation
does not return undefined.

44

© Ecma International 2015

secmna

7.2 Testing and Comparison Operations
7.21 RequireObjectCoercible (argument)

The abstract operation RequireObjectCoercible throws an error if argument is a value that cannot be converted
to an Object using ToObject. It is defined by Table 14:

Table 14 — RequireObjectCoercible Results

Argument Type Result

Completion Record | If argument is an abrupt completion, return argument. Otherwise return
RequireObjectCoercible(argument.[[valuel]]).

Undefined Throw a TypeError exception.

Null Throw a TypeError exception.

Boolean Return argument.

Number Return argument.

String Return argument.

Symbol Return argument.

Object Return argument.

7.2.2 IsArray (argument)

The abstract operation IsArray takes one argument argument, and performs the following steps:

1. If Type(argument) is not Object, return false.

2. If argument is an Array exotic object, return true.

3. [If argument is a Proxy exotic object, then
a. Ifthe value of the [[ProxyHandler]] internal slot of argument is null, throw a TypeError exception.
b. Let target be the value of the [[ProxyTarget]] internal slot of argument.
c. Return IsArray(target).

4. Return false.

7.2.3 IsCallable (argument)

The abstract operation IsCallable determines if argument, which must be an ECMAScript language value or a
Completion Record, is a callable function with a [[Call]] internal method.

ReturnIfAbrupt(argument).

If Type(argument) is not Object, return false.

If argument has a [[Call]] internal method, return true.
Return false.

AW N —

7.2.4 IsConstructor (argument)

The abstract operation IsConstructor determines if argument, which must be an ECMAScript language value or a
Completion Record, is a function object with a [[Construct]] internal method.

ReturnlfAbrupt(argument).

If Type(argument) is not Object, return false.

If argument has a [[Construct]] internal method, return true.
Return false.

AW N~

7.2.5 IsExtensible (O)

The abstract operation IsExtensible is used to determine whether additional properties can be added to the
object that is O. A Boolean value is returned. This abstract operation performs the following steps:

1. Assert: Type(O) is Object.
2. Return O.[[IsExtensible]]().

© Ecma International 2015 45

ceca

7.2.6 Isinteger (argument)

The abstract operation IsInteger determines if argument is a finite integer numeric value.

1. ReturnIfAbrupt(argument).

If Type(argument) is not Number, return false.

If argument is NaN, +oo, or —oo, return false.

If floor(abs(argument)) # abs(argument), return false.
Return true.

[V NS)

7.2.7 IsPropertyKey (argument)

The abstract operation IsPropertyKey determines if argument, which must be an ECMAScript language value or
a Completion Record, is a value that may be used as a property key.

1. ReturnIfAbrupt(argument).

2. If Type(argument) is String, return true.
3. If Type(argument) is Symbol, return true.
4. Return false.

7.2.8 IsRegExp (argument)

The abstract operation IsRegExp with argument argument performs the following steps:

If Type(argument) is not Object, return false.

Let isRegExp be Get(argument, @@match).
ReturnlfAbrupt(isRegExp).

If isRegExp is not undefined, return ToBoolean(isRegExp).

If argument has a [[RegExpMatcher]] internal slot, return true.
Return false.

AN DN B W=

7.2.9 SameValue(x,y)

The internal comparison abstract operation SameValue(x, y), where x and y are ECMAScript language values,
produces true or false. Such a comparison is performed as follows:

ReturnIfAbrupt(x).
ReturnIfAbrupt(y).
If Type(x) is different from Type(y), return false.
If Type(x) is Undefined, return true.
If Type(x) is Null, return true.
If Type(x) is Number, then
a. Ifxis NaN and y is NaN, return true.
b. Ifxis+0 and y is —0, return false.
c. Ifxis—0and y is +0, return false.
d. Ifx is the same Number value as y, return true.
e. Return false.
7. If Type(x) is String, then
a. Ifx and y are exactly the same sequence of code units (same length and same code units at
corresponding indices) return true; otherwise, return false.
8. If Type(x) is Boolean, then
a. Ifx and y are both true or both false, return true; otherwise, return false.
9. If Type(x) is Symbol, then
a. Ifx and y are both the same Symbol value, return true; otherwise, return false.
10. Return true if x and y are the same Object value. Otherwise, return false.

AN N AW =

NOTE This algorithm differs from the Strict Equality Comparison Algorithm (7.2.13) in its treatment of signed zeroes
and NaNs.

7.2.10 SameValueZero(x, y)

The internal comparison abstract operation SameValueZero(x, y), where x and y are ECMAScript language
values, produces true or false. Such a comparison is performed as follows:

46 © Ecma International 2015

cecna

ReturnIfAbrupt(x).

ReturnIfAbrupt(y).

If Type(x) is different from Type(y), return false.
If Type(x) is Undefined, return true.

If Type(x) is Null, return true.

If Type(x) is Number, then

AN R W —

9.

10.

NOTE

a.

b
c.
d.
e

If x is NaN and y is NaN, return true.

If x is +0 and y is —0, return true.

If x is —0 and y is +0, return true.

If x is the same Number value as y, return true.
Return false.

If Type(x) is String, then

a.

If x and y are exactly the same sequence of code units (same length and same code units at
corresponding indices) return true; otherwise, return false.

If Type(x) is Boolean, then

a.

If x and y are both true or both false, return true; otherwise, return false.

If Type(x) is Symbol, then

a.

If x and y are both the same Symbol value, return true; otherwise, return false.

Return true if x and y are the same Object value. Otherwise, return false.

SameValueZero differs from SameValue only in its treatment of +0 and -0.

7.2.11 Abstract Relational Comparison

The comparison x < y, where x and y are values, produces true, false, or undefined (which indicates that at
least one operand is NaN). In addition to x and y the algorithm takes a Boolean flag named LefiFirst as a
parameter. The flag is used to control the order in which operations with potentially visible side-effects are
performed upon x and y. It is necessary because ECMAScript specifies left to right evaluation of expressions.
The default value of LefiFirst is true and indicates that the x parameter corresponds to an expression that
occurs to the left of the y parameter’s corresponding expression. If LefiFirst is false, the reverse is the case and
operations must be performed upon y before x. Such a comparison is performed as follows:

1.
2.
3.

ReturnIfAbrupt(x).

ReturnIfAbrupt(y).

If the LeftFirst flag is true, then

a. Let px be ToPrimitive(x, hint Number).

b. ReturnIfAbrupt(px).

c. Let py be ToPrimitive(y, hint Number).

d. ReturnIfAbrupt(py).

Else the order of evaluation needs to be reversed to preserve left to right evaluation

a. Let py be ToPrimitive(y, hint Number).

b. ReturnIfAbrupt(py).

c. Let px be ToPrimitive(x, hint Number).

d. ReturnIfAbrupt(px).

If both px and py are Strings, then

a. Ifpyis a prefix of px, return false. (A String value p is a prefix of String value ¢ if g can be the result
of concatenating p and some other String r. Note that any String is a prefix of itself, because » may be
the empty String.)

b. If px is a prefix of py, return true.

c. Let k be the smallest nonnegative integer such that the code unit at index & within px is different from
the code unit at index k within py. (There must be such a k, for neither String is a prefix of the other.)

d. Let m be the integer that is the code unit value at index £ within px.

e. Let n be the integer that is the code unit value at index k£ within py.

f. If m <n, return true. Otherwise, return false.

Else,

a. Let nx be ToNumber(px). Because px and py are primitive values evaluation order is not important.

b. ReturnIfAbrupt(nx).

c. Let ny be ToNumber(py).

d. ReturnIfAbrupt(ny).

e. If nx is NaN, return undefined.

f. If ny is NaN, return undefined.

© Ecma International 2015 47

ceca

If nx and ny are the same Number value, return false.
If nx is +0 and ny is —0, return false.
If nx is —0 and ny is +0, return false.
If nx is +oo, return false.
If ny is +o0, return true.
If ny is —oo, return false.
. If nx is —o0, return true.
If the mathematical value of nx is less than the mathematical value of ny —note that these
mathematical values are both finite and not both zero—return true. Otherwise, return false.

R

NOTE 1 Step 5 differs from step 11 in the algorithm for the addition operator + (12.7.3) in using “and” instead of “or”.

NOTE 2 The comparison of Strings uses a simple lexicographic ordering on sequences of code unit values. There is no
attempt to use the more complex, semantically oriented definitions of character or string equality and collating
order defined in the Unicode specification. Therefore String values that are canonically equal according to the
Unicode standard could test as unequal. In effect this algorithm assumes that both Strings are already in
normalized form. Also, note that for strings containing supplementary characters, lexicographic ordering on
sequences of UTF-16 code unit values differs from that on sequences of code point values.

7.2.12 Abstract Equality Comparison

The comparison x == y, where x and y are values, produces true or false. Such a comparison is performed as
follows:

1. ReturnIfAbrupt(x).
2. ReturnIfAbrupt(y).
3. If Type(x) is the same as Type(y), then
a. Return the result of performing Strict Equality Comparison x === y.
4. Ifx is null and y is undefined, return true.
If x is undefined and y is null, return true.
6. If Type(x) is Number and Type(y) is String,
return the result of the comparison x == ToNumber(y).
7. If Type(x) is String and Type(y) is Number,
return the result of the comparison ToNumber(x) == y.
8. If Type(x) is Boolean, return the result of the comparison ToNumber(x) == y.
If Type(y) is Boolean, return the result of the comparison x == ToNumber(y).
10. If Type(x) is either String, Number, or Symbol and Type(y) is Object, then
return the result of the comparison x == ToPrimitive(y).
11. If Type(x) is Object and Type(y) is either String, Number, or Symbol, then
return the result of the comparison ToPrimitive(x) == y.
12. Return false.

(9]

o

7.2.13 Strict Equality Comparison

The comparison x === y, where x and y are values, produces true or false. Such a comparison is performed as
follows:

1. If Type(x) is different from Type(y), return false.
2. If Type(x) is Undefined, return true.
3. If Type(x) is Null, return true.
4. 1If Type(x) is Number, then
a. Ifxis NaN, return false.
b. Ify is NaN, return false.
c. Ifxisthe same Number value as y, return true.
d. Ifxis+0 andy is =0, return true.
e. Ifxis—0andy is+0, return true.
f. Return false.
5. If Type(x) is String, then
a. Ifx and y are exactly the same sequence of code units (same length and same code units at
corresponding indices), return true.
b. Else, return false.

48 © Ecma International 2015

e@Cinha

6. If Type(x) is Boolean, then
a. Ifx and y are both true or both false, return true.
b. Else, return false.
7. Ifx and y are the same Symbol value, return true.
If x and y are the same Object value, return true.
9. Return false.

o]

NOTE This algorithm differs from the SameValue Algorithm (7.2.9) in its treatment of signed zeroes and NaNs.

7.3 Operations on Objects
7.31 Get (O, P)

The abstract operation Get is used to retrieve the value of a specific property of an object. The operation is
called with arguments O and P where O is the object and P is the property key. This abstract operation performs
the following steps:

1. Assert: Type(O) is Object.
2. Assert: IsPropertyKey(P) is true.
3. Return O.[[Get]](P, O).

7.32 GetV (V,P)

The abstract operation GetV is used to retrieve the value of a specific property of an ECMAScript language
value. If the value is not an object, the property lookup is performed using a wrapper object appropriate for the
type of the value. The operation is called with arguments " and P where V' is the value and P is the property key.
This abstract operation performs the following steps:

Assert: IsPropertyKey(P) is true.
Let O be ToObject(V).
ReturnIfAbrupt(O).

Return O.[[Get]](P, V).

AW N —

7.3.3 Set (O, P, V, Throw)

The abstract operation Set is used to set the value of a specific property of an object. The operation is called
with arguments O, P, V, and Throw where O is the object, P is the property key, V is the new value for the
property and Throw is a Boolean flag. This abstract operation performs the following steps:

Assert: Type(O) is Object.

Assert: IsPropertyKey(P) is true.

Assert: Type(Throw) is Boolean.

Let success be O.[[Set]](P, V, O).

ReturnIfAbrupt(success).

If success is false and Throw is true, throw a TypeError exception.
Return success.

7.3.4 CreateDataProperty (O, P, V)

Nk L=

The abstract operation CreateDataProperty is used to create a new own property of an object. The operation is
called with arguments O, P, and V where O is the object, P is the property key, and V is the value for the
property. This abstract operation performs the following steps:

1. Assert: Type(O) is Object.

2. Assert: IsPropertyKey(P) is true.

3. Let newDesc be the PropertyDescriptor {[[Value]]: V, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}.

4. Return O.[[DefineOwnProperty]](P, newDesc).

NOTE This abstract operation creates a property whose attributes are set to the same defaults used for properties
created by the ECMAScript language assignment operator. Normally, the property will not already exist. If it
does exist and is not configurable or if O is not extensible, [[DefineOwnProperty]] will return false.

© Ecma International 2015 49

oecna

7.3.5 CreateMethodProperty (O, P, V)

The abstract operation CreateMethodProperty is used to create a new own property of an object. The operation is
called with arguments O, P, and 7 where O is the object, P is the property key, and ¥V is the value for the
property. This abstract operation performs the following steps:

1. Assert: Type(O) is Object.

2. Assert: IsPropertyKey(P) is true.

3. Let newDesc be the PropertyDescriptor {[[Value]]: V, [[Writable]]: true, [[Enumerable]]: false,
[[Configurable]]: true}.

4. Return O.[[DefineOwnProperty]](P, newDesc).

NOTE This abstract operation creates a property whose attributes are set to the same defaults used for built-in
methods and methods defined using class declaration syntax. Normally, the property will not already exist. If it
does exist and is not configurable or if O is not extensible, [[DefineOwnProperty]] will return false.

7.3.6 CreateDataPropertyOrThrow (O, P, V)

The abstract operation CreateDataPropertyOrThrow is used to create a new own property of an object. It throws a
TypeError exception if the requested property update cannot be performed. The operation is called with
arguments O, P, and V where O is the object, P is the property key, and V is the value for the property. This
abstract operation performs the following steps:

1. Assert: Type(O) is Object.
2. Assert: IsPropertyKey(P) is true.
3. Let success be CreateDataProperty(O, P, V).
4. ReturnIfAbrupt(success).
5. [If success is false, throw a TypeError exception.
6. Return success.
NOTE This abstract operation creates a property whose attributes are set to the same defaults used for properties

created by the ECMAScript language assignment operator. Normally, the property will not already exist. If it
does exist and is not configurable or if O is not extensible, [[DefineOwnProperty]] will return false causing this
operation to throw a TypeError exception.

7.3.7 DefinePropertyOrThrow (O, P, desc)

The abstract operation DefinePropertyOrThrow is used to call the [[DefineOwnProperty]] internal method of an
object in a manner that will throw a TypeError exception if the requested property update cannot be performed.
The operation is called with arguments O, P, and desc where O is the object, P is the property key, and desc is
the Property Descriptor for the property. This abstract operation performs the following steps:

Assert: Type(O) is Object.

Assert: IsPropertyKey(P) is true.

Let success be O.[[DefineOwnProperty]](P, desc).
ReturnIfAbrupt(success).

If success is false, throw a TypeError exception.
Return success.

AN AW =

7.3.8 DeletePropertyOrThrow (O, P)

The abstract operation DeletePropertyOrThrow is used to remove a specific own property of an object. It throws
an exception if the property is not configurable. The operation is called with arguments O and P where O is the
object and P is the property key. This abstract operation performs the following steps:

Assert: Type(O) is Object.

Assert: IsPropertyKey(P) is true.

Let success be O.[[Delete]](P).
ReturnIfAbrupt(success).

If success is false, throw a TypeError exception.
Return success.

AN W=

50 © Ecma International 2015

oechna

7.3.9 GetMethod (O, P)

The abstract operation GetMethod is used to get the value of a specific property of an object when the value of
the property is expected to be a function. The operation is called with arguments O and P where O is the object,
P is the property key. This abstract operation performs the following steps:

Assert: IsPropertyKey(P) is true.

Let func be GetV(O, P).

ReturnIfAbrupt(func).

If func is either undefined or null, return undefined.

If IsCallable(func) is false, throw a TypeError exception.
Return func.

NN AW~

7.3.10 HasProperty (O, P)

The abstract operation HasProperty is used to determine whether an object has a property with the specified
property key. The property may be either an own or inherited. A Boolean value is returned. The operation is
called with arguments O and P where O is the object and P is the property key. This abstract operation performs
the following steps:

1. Assert: Type(O) is Object.
2. Assert: IsPropertyKey(P) is true.
3. Return O.[[HasProperty]](P).

7.3.11 HasOwnProperty (O, P)

The abstract operation HasOwnProperty is used to determine whether an object has an own property with the
specified property key. A Boolean value is returned. The operation is called with arguments O and P where O is
the object and P is the property key. This abstract operation performs the following steps:

Assert: Type(O) is Object.

Assert: IsPropertyKey(P) is true.

Let desc be O.[[GetOwnProperty]](P).
ReturnIfAbrupt(desc).

If desc is undefined, return false.
Return true.

AN N AW =

7.3.12 Call(F, V, [argumentsList])

The abstract operation Call is used to call the [[Call]] internal method of a function object. The operation is called
with arguments F, V', and optionally argumentsList where F is the function object, V'is an ECMAScript language
value that is the this value of the [[Call]], and argumentsList is the value passed to the corresponding argument
of the internal method. If argumentsList is not present, an empty List is used as its value. This abstract operation
performs the following steps:

1. ReturnIfAbrupt(F).

2. 1If argumentsList was not passed, let argumentsList be a new empty List.
3. [IfIsCallable(F) is false, throw a TypeError exception.

4. Return F.[[Call]](V, argumentsList).

7.3.13 Construct (F, [argumentsList], [newTarget])

The abstract operation Construct is used to call the [[Construct]] internal method of a function object. The
operation is called with arguments F, and optionally argumentsList, and newTarget where F is the function object.
argumentsList and newTarget are the values to be passed as the corresponding arguments of the internal
method. If argumentsList is not present, an empty List is used as its value. If newTarget is not present, F is used
as its value. This abstract operation performs the following steps:

If newTarget was not passed, let newTarget be F.

If argumentsList was not passed, let argumentsList be a new empty List.
Assert: IsConstructor (F) is true.

Assert: IsConstructor (newTarget) is true.

Return F.[[Construct]](argumentsList, newTarget).

I S I S

© Ecma International 2015 51

ceca

NOTE If newTarget is not passed, this operation is equivalent to: new F(...argumentsList)

7.3.14 SetintegrityLevel (O, level)

The abstract operation SetIntegrityLevel is used to fix the set of own properties of an object. This abstract
operation performs the following steps:

1. Assert: Type(O) is Object.
Assert: level is cither "sealed" or "frozen".
Let status be O.[[PreventExtensions]]().
ReturnIfAbrupt(status).
If status is false, return false.
Let keys be O.[[OwnPropertyKeys]]().
ReturnlfAbrupt(keys).
If level is "sealed", then
a. Repeat for each element & of keys,
i. Let status be DefinePropertyOrThrow(O, k, PropertyDescriptor{ [[Configurable]]: false}).
ii. ReturnIfAbrupt(status).
9. Elselevel is "frozen",
a. Repeat for each element & of keys,
i. Let currentDesc be O.[[GetOwnProperty]](k).
ii. ReturnIfAbrupt(currentDesc).
iii. If currentDesc is not undefined, then
1. IfIsAccessorDescriptor(currentDesc) is true, then
a. Let desc be the PropertyDescriptor {[[Configurable]]: false}.
2. Else,
a. Let desc be the PropertyDescriptor { [[Configurable]]: false, [[Writable]]: false }.
3. Let status be DefinePropertyOrThrow(O, k, desc).
4. ReturnlIfAbrupt(status).
10. Return true.

A S alal

7.3.15 TestIntegrityLevel (O, level)

The abstract operation TestIntegrityLevel is used to determine if the set of own properties of an object are fixed.
This abstract operation performs the following steps:

Assert: Type(O) is Object.
Assert: level is either "sealed" or "frozen".
Let status be IsExtensible(O).
ReturnIfAbrupt(status).
If status is true, return false
NOTE If the object is extensible, none of its properties are examined.
Let keys be O.[[OwnPropertyKeys]]().
ReturnIfAbrupt(keys).
Repeat for each element k of keys,
a. Let currentDesc be O.[[GetOwnProperty]](k).
b. ReturnIfAbrupt(currentDesc).
c. IfcurrentDesc is not undefined, then
i. If currentDesc.[[Configurable]] is true, return false.
ii. Iflevel is "frozen" and IsDataDescriptor(currentDesc) is true, then
1. If currentDesc.[[Writable]] is true, return false.
10. Return true.

—

RN WD

7.3.16 CreateArrayFromList (elements)

The abstract operation CreateArrayFromList is used to create an Array object whose elements are provided by a
List. This abstract operation performs the following steps:

1. Assert: elements is a List whose elements are all ECMAScript language values.
2. Let array be ArrayCreate(0) (see 9.4.2.2).
3. LetnbeO.

52 © Ecma International 2015

cecna

4. For each element e of elements
a. Let status be CreateDataProperty(array, ToString(n), e).
b. Assert: status is true.
c. Increment n by 1.

5. Return array.

7.3.17 CreateListFromArrayLike (obj [, elementTypes])

The abstract operation CreateListFromArrayLike is used to create a List value whose elements are provided by
the indexed properties of an array-like object, obj. The optional argument elementTypes is a List containing the
names of ECMAScript Language Types that are allowed for element values of the List that is created. This
abstract operation performs the following steps:

1. ReturnIfAbrupt(oby).
2. If elementTypes was not passed, let elementTypes be (Undefined, Null, Boolean, String, Symbol, Number,
Object).
If Type(obj) is not Object, throw a TypeError exception.
Let /en be ToLength(Get(obj, "1length")).
ReturnIfAbrupt(/en).
Let list be an empty List.
Let index be 0.
Repeat while index < len
Let indexName be ToString(index).
Let next be Get(obj, indexName).
ReturnIfAbrupt(next).
If Type(next) is not an element of elementTypes, throw a TypeError exception.
Append next as the last element of /isz.
f. Set index to index + 1.
9. Return /ist.

e

o0 o

7.3.18 Invoke(O,P, [argumentsList])

The abstract operation Invoke is used to call a method property of an object. The operation is called with
arguments O, P, and optionally argumentsList where O serves as both the lookup point for the property and the
this value of the call, P is the property key, and argumentsList is the list of arguments values passed to the
method. If argumentsList is not present, an empty List is used as its value. This abstract operation performs the
following steps:

1. Assert: IsPropertyKey(P) is true.

2. If argumentsList was not passed, let argumentsList be a new empty List.
3. Let func be GetV(O, P).

4. Return Call(func, O, argumentsList).

7.3.19 OrdinaryHaslnstance (C, O)

The abstract operation OrdinaryHasInstance implements the default algorithm for determining if an object O
inherits from the instance object inheritance path provided by constructor C. This abstract operation performs
the following steps:

1. IfIsCallable(C) is false, return false.

2. If C has a [[BoundTargetFunction]] internal slot, then
a. Let BC be the value of C’s [[BoundTargetFunction]] internal slot.
b. Return InstanceofOperator(O,BC) (see 12.9.4).

If Type(O) is not Object, return false.

Let P be Get(C, "prototype").

ReturnIfAbrupt(P).

If Type(P) is not Object, throw a TypeError exception.
Repeat

Let O be O.[[GetPrototypeOf]]().

b. ReturnIfAbrupt(O).

c. IfOisnull, return false.

d. If SameValue(P, O) is true, return true.

N kW

®

© Ecma International 2015 53

ceca

7.3.20

SpeciesConstructor (O, defaultConstructor)

The abstract operation SpeciesConstructor is used to retrieve the constructor that should be used to create new
objects that are derived from the argument object O. The defaultConstructor argument is the constructor to use if

a constructor @@species property cannot be found starting from O. This abstract operation performs the
following steps:

SRR LN =

7.3.21

0.

Assert: Type(O) is Object.

Let C be Get(O, "constructor™").

ReturnlfAbrupt(C).

If C is undefined, return defaultConstructor.

If Type(C) is not Object, throw a TypeError exception.
Let S be Get(C, @@species).

ReturnIfAbrupt(S).

If S is either undefined or null, return defaultConstructor.
If IsConstructor(S) is true, return S.

Throw a TypeError exception.

EnumerableOwnNames (O)

When the abstract operation EnumerableOwnNames is called with Object O the following steps are taken:

[I O R S

6.

7.

NOTE

7.3.22

Assert: Type(O) is Object.
Let ownKeys be O.[[OwnPropertyKeys]]().
ReturnlfAbrupt(ownKeys).
Let names be a new empty List.
Repeat, for each element key of ownKeys in List order
a. If Type(key) is String, then

i. Let desc be O.[[GetOwnProperty]](key).

ii. ReturnIfAbrupt(desc).

iii. If desc is not undefined, then

1. Ifdesc.[[Enumerable]] is true, append key to names.

Order the elements of names so they are in the same relative order as would be produced by the Iterator
that would be returned if the [[Enumerate]] internal method was invoked on O.
Return names.

The order of elements in the returned list is the same as the enumeration order that is used by a for-in
statement.

GetFunctionRealm (obj)

The abstract operation GetFunctionRealm with argument ob; performs the following steps:

1.

2.

3.

4.

5.

NOTE

7.4

Assert: obj is a callable object.

If obj has a [[Realm]] internal slot, then

a. Return 0bj’s [[Realm]] internal slot.

If obj is a Bound Function exotic object, then

a. Let target be obj’s [[BoundTargetFunction]] internal slot.

b. Return GetFunctionRealm(target).

If 0bj is a Proxy exotic object, then

a. If the value of the [[ProxyHandler]] internal slot of 0b; is null, throw a TypeError exception.
b. Let proxyTarget be the value of 0bj’s [[ProxyTarget]] internal slot.
c. Return GetFunctionRealm(proxyTarget).

Return the running execution context’s Realm.

Step 5 will only be reached if target is a non-standard exotic function object that does not have a [[Realm]]
internal slot.

Operations on Iterator Objects

See Common lteration Interfaces (25.1).

54

© Ecma International 2015

oechna

7.41

Getlterator (obj, method)

The abstract operation Getlterator with argument ob; and optional argument method performs the following steps:

1.
2.

() WO, I SRS

7.4.2

ReturnlfAbrupt(oby).

If method was not passed, then

a. Let method be GetMethod(obj, @@iterator).

b. ReturnlfAbrupt(method).

Let iterator be Call(method,oby).

ReturnlfAbrupt(iterator).

If Type(iterator) is not Object, throw a TypeError exception.
Return iterator.

IteratorNext (iterator, value)

The abstract operation IteratorNext with argument iterator and optional argument value performs the following

steps:
1.

2.

3.
4.
5.

743

If value was not passed, then

a. Let result be Invoke(iterator, "next", « »).

Else,

a. Let result be Invoke(iterator, "next", «valuey).
ReturnIfAbrupt(result).

If Type(result) is not Object, throw a TypeError exception.
Return result.

IteratorComplete (iterResult)

The abstract operation IteratorComplete with argument iterResuit performs the following steps:

1.
2.

7.4.4

Assert: Type(iterResult) is Object.
Return ToBoolean(Get(iterResult, "done™")).

IteratorValue (iterResult)

The abstract operation IteratorValue with argument iterResult performs the following steps:

1.
2.

7.4.5

Assert: Type(iterResult) is Object.
Return Get(iterResult, "value").

IteratorStep (iterator)

The abstract operation IteratorStep with argument iterator requests the next value from iterator and returns
either false indicating that the iterator has reached its end or the lteratorResult object if a next value is available.
IteratorStep performs the following steps:

AN AW =

7.4.6

Let result be IteratorNext(iterator).
ReturnlfAbrupt(result).

Let done be IteratorComplete(result).
ReturnIfAbrupt(done).

If done is true, return false.

Return result.

IteratorClose(iterator, completion)

The abstract operation IteratorClose with arguments iterator and completion is used to notify an iterator that it
should perform any actions it would normally perform when it has reached its completed state:

DN A W=

Assert: Type(iterator) is Object.

Assert: completion is a Completion Record.

Let return be GetMethod(iterator, "return").
ReturnIfAbrupt(return).

If return is undefined, return Completion(completion).

© Ecma International 2015 55

oecna

Let innerResult be Call(return, iterator, « »).

If completion.[[type]] is throw, return Completion(completion).

If innerResult.[[type]] is throw, return Completion(innerResult).

If Type(innerResult.[[value]]) is not Object, throw a TypeError exception.
0. Return Completion(completion).

— O 00 3 O

7.4.7 CreatelterResultObject (value, done)

The abstract operation CreatelterResultObject with arguments value and done creates an object that supports
the IteratorResult interface by performing the following steps:

1. Assert: Type(done) is Boolean.

Let obj be ObjectCreate(%ObjectPrototype%).
Perform CreateDataProperty(obj, "value", value).
Perform CreateDataProperty(obj, "done™", done).
Return obj.

N AW

7.4.8 CreateListlterator (list)

The abstract operation Createlistlterator with argument /ist creates an lterator (25.1.1.2) object whose next
method returns the successive elements of /isz. It performs the following steps:

1. Let iterator be ObjectCreate(%lteratorPrototype%, «[[IteratorNext]], [[IteratedList]],
[[ListIteratorNextIndex]]»).

Set iterator’s [[IteratedList]] internal slot to /ist.

Set iterator’s [[ListlteratorNextIndex]] internal slot to 0.

Let next be a new built-in function object as defined in Listlterator next (7.4.8.1).
Set iterator’s [[IteratorNext]] internal slot to next.

Perform CreateMethodProperty(iterator, "next", next).

Return iterator.

NowAwD

7.4.81 Listlterator next()

The Listlterator next method is a standard built-in function object (clause 17) that performs the following steps:

Let O be the this value.
Let f'be the active function object.
If O does not have a [[IteratorNext]] internal slot, throw a TypeError exception.
Let next be the value of the [[IteratorNext]] internal slot of O.
If SameValue(f, next) is false, throw a TypeError exception.
If O does not have a [[IteratedList]] internal slot, throw a TypeError exception.
Let list be the value of the [[IteratedList]] internal slot of O.
Let index be the value of the [[ListIteratorNextIndex]] internal slot of O.
Let len be the number of elements of /ist.
0. If index > len, then
a. Return CreatelterResultObject(undefined, true).
11. Set the value of the [[ListIteratorNextIndex]] internal slot of O to index+1.
12. Return CreatelterResultObject(/ist[index], false).

SRR =

NOTE A Listlterator next method will throw an exception if applied to any object other than the one with which it was
originally associated.

8 Executable Code and Execution Contexts

8.1 Lexical Environments

A Lexical Environment is a specification type used to define the association of Identifiers to specific variables
and functions based upon the lexical nesting structure of ECMAScript code. A Lexical Environment consists of
an Environment Record and a possibly null reference to an outer Lexical Environment. Usually a Lexical
Environment is associated with some specific syntactic structure of ECMAScript code such as a

56 © Ecma International 2015

secmna

FunctionDeclaration, a BlockStatement, or a Catch clause of a TryStatement and a new Lexical Environment is
created each time such code is evaluated.

An Environment Record records the identifier bindings that are created within the scope of its associated Lexical
Environment. It is referred to as the Lexical Environment’s EnvironmentRecord

The outer environment reference is used to model the logical nesting of Lexical Environment values. The outer
reference of a (inner) Lexical Environment is a reference to the Lexical Environment that logically surrounds the
inner Lexical Environment. An outer Lexical Environment may, of course, have its own outer Lexical
Environment. A Lexical Environment may serve as the outer environment for multiple inner Lexical
Environments. For example, if a FunctionDeclaration contains two nested FunctionDeclarations then the Lexical
Environments of each of the nested functions will have as their outer Lexical Environment the Lexical
Environment of the current evaluation of the surrounding function.

A global environment is a Lexical Environment which does not have an outer environment. The global
environment’s outer environment reference is null. A global environment's EnvironmentRecord may be
prepopulated with identifier bindings and includes an associated global object whose properties provide some of
the global environment’s identifier bindings. This global object is the value of a global environment’s this
binding. As ECMAScript code is executed, additional properties may be added to the global object and the initial
properties may be modified.

A module environment is a Lexical Environment that contains the bindings for the top level declarations of a
Module. It also contains the bindings that are explicitly imported by the Module. The outer environment of a
module environment is a global environment.

A function environment is a Lexical Environment that corresponds to the invocation of an ECMAScript function
object. A function environment may establish a new this binding. A function environment also captures the
state necessary to support super method invocations.

Lexical Environments and Environment Record values are purely specification mechanisms and need not
correspond to any specific artefact of an ECMAScript implementation. It is impossible for an ECMAScript
program to directly access or manipulate such values.

8.1.1 Environment Records

There are two primary kinds of Environment Record values used in this specification: declarative Environment
Records and object Environment Records. Declarative Environment Records are used to define the effect of
ECMAScript language syntactic elements such as FunctionDeclarations, VariableDeclarations, and Catch clauses
that directly associate identifier bindings with ECMAScript language values. Object Environment Records are
used to define the effect of ECMAScript elements such as WithStatement that associate identifier bindings with
the properties of some object. Global Environment Records and function Environment Records are
specializations that are used for specifically for Script global declarations and for top-level declarations within
functions.

For specification purposes Environment Record values are values of the Record specification type and can be
thought of as existing in a simple object-oriented hierarchy where Environment Record is an abstract class with
three concrete subclasses, declarative Environment Record, object Environment Record, and global
Environment Record. Function Environment Records and module Environment Records are subclasses of
declarative Environment Record. The abstract class includes the abstract specification methods defined in
Table 15. These abstract methods have distinct concrete algorithms for each of the concrete subclasses.

© Ecma International 2015 57

»eCma

8.1.1.1

Table 15 — Abstract Methods of Environment Records

Method

Purpose

HasBinding(N)

Determine if an Environment Record has a binding for the String value
N. Return true if it does and false if it does not

CreateMutableBinding(N, D)

Create a new but uninitialized mutable binding in an Environment
Record. The String value N is the text of the bound name. If the
optional Boolean argument D is true the binding is may be
subsequently deleted.

CreatelmmutableBinding(N, S)

Create a new but uninitialized immutable binding in an Environment
Record. The String value N is the text of the bound name. If S'is true
then attempts to access the value of the binding before it is initialized
or set it after it has been initialized will always throw an exception,
regardless of the strict mode setting of operations that reference that
binding. S is an optional parameter that defaults to false.

InitializeBinding(N,V)

Set the value of an already existing but uninitialized binding in an
Environment Record. The String value N is the text of the bound
name. V' is the value for the binding and is a value of any ECMAScript
language type.

SetMutableBinding(N,V, S)

Set the value of an already existing mutable binding in an
Environment Record. The String value N is the text of the bound
name. V is the value for the binding and may be a value of any
ECMAScript language type. S is a Boolean flag. If S is true and the
binding cannot be set throw a TypeError exception.

GetBindingValue(N,S)

Returns the value of an already existing binding from an Environment
Record. The String value N is the text of the bound name. Sis used to
identify references originating in strict mode code or that otherwise
require strict mode reference semantics. If S is true and the binding
does not exist throw a ReferenceError exception. If the binding exists
but is uninitialized a ReferenceError is thrown, regardless of the
value of S.

DeleteBinding(N)

Delete a binding from an Environment Record. The String value N is
the text of the bound name. If a binding for N exists, remove the
binding and return true. If the binding exists but cannot be removed
return false. If the binding does not exist return true.

HasThisBinding()

Determine if an Environment Record establishes a this binding.
Return true if it does and false if it does not.

HasSuperBinding()

Determine if an Environment Record establishes a super method
binding. Return true if it does and false if it does not.

WithBaseObject ()

If this Environment Record is associated with a with statement,
return the with object. Otherwise, return undefined.

Declarative Environment Records

Each declarative Environment Record is associated with an ECMAScript program scope containing variable,
constant, let, class, module, import, and/or function declarations. A declarative Environment Record binds the
set of identifiers defined by the declarations contained within its scope.

The behaviour of the concrete specification methods for declarative Environment Records is defined by the
following algorithms.

8.1.1.11 HasBinding(N)

The concrete Environment Record method HasBinding for declarative Environment Records simply determines
if the argument identifier is one of the identifiers bound by the record:

1. Let envRec be the declarative Environment Record for which the method was invoked.
2. If envRec has a binding for the name that is the value of N, return true.
3. Return false.

58 © Ecma International 2015

oechna

8.1.1.1.2 CreateMutableBinding (N, D)

The concrete Environment Record method CreateMutableBinding for declarative Environment Records creates
a new mutable binding for the name N that is uninitialized. A binding must not already exist in this Environment
Record for N. If Boolean argument D is provided and has the value true the new binding is marked as being
subject to deletion.

1. Let envRec be the declarative Environment Record for which the method was invoked.

2. Assert: envRec does not already have a binding for N.

3. Create a mutable binding in envRec for N and record that it is uninitialized. If D is true record that the
newly created binding may be deleted by a subsequent DeleteBinding call.

4. Return NormalCompletion(empty).

8.1.1.1.3 CreatelmmutableBinding (N, S)

The concrete Environment Record method CreatelmmutableBinding for declarative Environment Records
creates a new immutable binding for the name N that is uninitialized. A binding must not already exist in this
Environment Record for N. If Boolean argument S is provided and has the value true the new binding is marked
as a strict binding.

1. Let envRec be the declarative Environment Record for which the method was invoked.

2. Assert: envRec does not already have a binding for M.

3. Create an immutable binding in envRec for N and record that it is uninitialized. If S is true record that the
newly created binding is a strict binding.

4. Return NormalCompletion(empty).

8.1.1.1.4 InitializeBinding (N,V)

The concrete Environment Record method InitializeBinding for declarative Environment Records is used to set
the bound value of the current binding of the identifier whose name is the value of the argument N to the value
of argument V. An uninitialized binding for N must already exist.

1. Let envRec be the declarative Environment Record for which the method was invoked.
2. Assert: envRec must have an uninitialized binding for N.

3. Set the bound value for N in envRec to V.

4. Record that the binding for N in envRec has been initialized.

5. Return NormalCompletion(empty).

8.1.1.1.5 SetMutableBinding (N,V,S)

The concrete Environment Record method SetMutableBinding for declarative Environment Records attempts to
change the bound value of the current binding of the identifier whose name is the value of the argument N to the
value of argument V. A binding for N normally already exist, but in rare cases it may not. If the binding is an
immutable binding, a TypeError is thrown if S is true.

1. Let envRec be the declarative Environment Record for which the method was invoked.

2. If envRec does not have a binding for N, then

a. IfSis true throw a ReferenceError exception.

b. Perform envRec.CreateMutableBinding(N, true).

c. Perform envRec.InitializeBinding(N, V).

d. Return NormalCompletion(empty).

If the binding for N in envRec is a strict binding, let S be true.

If the binding for N in envRec has not yet been initialized throw a ReferenceError exception.
Else if the binding for N in envRec is a mutable binding, change its bound value to V.

Else this must be an attempt to change the value of an immutable binding so if S is true throw a
TypeError exception.

7. Return NormalCompletion(empty).

AN AW

NOTE An example of ECMAScript code that results in a missing binding at step 2 is:
function f£() {eval("var x; x = (delete x, 0);")}

© Ecma International 2015 59

>eCma

8.1.1.1.6 GetBindingValue(N,S)

The concrete Environment Record method GetBindingValue for declarative Environment Records simply returns
the value of its bound identifier whose name is the value of the argument N. If the binding exists but is
uninitialized a ReferenceError is thrown, regardless of the value of S.

Let envRec be the declarative Environment Record for which the method was invoked.
Assert: envRec has a binding for N.

If the binding for N in envRec is an uninitialized binding, throw a ReferenceError exception.
Return the value currently bound to N in envRec.

AW N —

8.1.1.1.7 DeleteBinding (N)

The concrete Environment Record method DeleteBinding for declarative Environment Records can only delete
bindings that have been explicitly designated as being subject to deletion.

Let envRec be the declarative Environment Record for which the method was invoked.
Assert: envRec has a binding for the name that is the value of N.

If the binding for N in envRec cannot be deleted, return false.

Remove the binding for N from envRec.

5. Return true.

8.1.1.1.8 HasThisBinding ()

AW N —

Regular declarative Environment Records do not provide a this binding.

1. Return false.

8.1.1.1.9 HasSuperBinding ()

Regular declarative Environment Records do not provide a super binding.

1. Return false.

8.1.1.1.10 WithBaseObject()

Declarative Environment Records always return undefined as their WithBaseObject.

1. Return undefined.

8.1.1.2 Object Environment Records

Each object Environment Record is associated with an object called its binding object. An object Environment
Record binds the set of string identifier names that directly correspond to the property names of its binding
object. Property keys that are not strings in the form of an IdentifierName are not included in the set of bound
identifiers. Both own and inherited properties are included in the set regardless of the setting of their
[[Enumerable]] attribute. Because properties can be dynamically added and deleted from objects, the set of
identifiers bound by an object Environment Record may potentially change as a side-effect of any operation that
adds or deletes properties. Any bindings that are created as a result of such a side-effect are considered to be a
mutable binding even if the Writable attribute of the corresponding property has the value false. Immutable
bindings do not exist for object Environment Records.

Object Environment Records created for with statements (13.11) can provide their binding object as an implicit
this value for use in function calls. The capability is controlled by a withEnvironment Boolean value that is
associated with each object Environment Record. By default, the value of withEnvironment is false for any object
Environment Record.

The behaviour of the concrete specification methods for object Environment Records is defined by the following
algorithms.

8.1.1.21 HasBinding(N)

The concrete Environment Record method HasBinding for object Environment Records determines if its
associated binding object has a property whose name is the value of the argument N:

60 © Ecma International 2015

e@Cinha

Let envRec be the object Environment Record for which the method was invoked.
Let bindings be the binding object for envRec.

Let foundBinding be HasProperty(bindings, N)
ReturnlfAbrupt(foundBinding).

If foundBinding is false, return false.

If the withEnvironment flag of envRec is false, return true.
Let unscopables be Get(bindings, @@unscopables).
ReturnIfAbrupt(unscopables).

If Type(unscopables) is Object, then

a. Let blocked be ToBoolean(Get(unscopables, N)).

b. ReturnlfAbrupt(blocked).

c. If blocked is true, return false.

10. Return true.

PRI BB =

8.1.1.2.2 CreateMutableBinding (N, D)

The concrete Environment Record method CreateMutableBinding for object Environment Records creates in an
Environment Record’s associated binding object a property whose name is the String value and initializes it to
the value undefined. If Boolean argument D is provided and has the value true the new property’s
[[Configurable]] attribute is set to true, otherwise it is set to false.

1. Let envRec be the object Environment Record for which the method was invoked.
2. Let bindings be the binding object for envRec.
3. If D is true then let configValue be true otherwise let configValue be false.
4. Return DefinePropertyOrThrow(bindings, N, PropertyDescriptor {[[Value]]:undefined, [[Writable]]: true,
[[Enumerable]]: true , [[Configurable]]: configValue}).
NOTE Normally envRec will not have a binding for N but if it does, the semantics of DefinePropertyOrThrow may result

in an existing binding being replaced or shadowed or cause an abrupt completion to be returned.

8.1.1.2.3 CreatelmmutableBinding (N, S)

The concrete Environment Record method CreatelmmutableBinding is never used within this specification in
association with Object Environment Records.

8.1.1.2.4 InitializeBinding (N,V)

The concrete Environment Record method InitializeBinding for object Environment Records is used to set the
bound value of the current binding of the identifier whose name is the value of the argument N to the value of
argument V. An uninitialized binding for N must already exist.

1. Let envRec be the object Environment Record for which the method was invoked.
2. Assert: envRec must have an uninitialized binding for N.

3. Record that the binding for N in envRec has been initialized.

4. Return envRec.SetMutableBinding(N, V, false).

NOTE In this specification, all uses of CreateMutableBinding for object Environment Records are immediately followed
by a call to InitializeBinding for the same name. Hence, implementations do not need to explicitly track the
initialization state of individual object Environment Record bindings.

8.1.1.25 SetMutableBinding (N,V,S)

The concrete Environment Record method SetMutableBinding for object Environment Records attempts to set
the value of the Environment Record’s associated binding object’'s property whose name is the value of the
argument N to the value of argument V. A property named N normally already exists but if it does not or is not
currently writable, error handling is determined by the value of the Boolean argument S.

1. Let envRec be the object Environment Record for which the method was invoked.
2. Let bindings be the binding object for envRec.
3. Return Set(bindings, N, V, S).

© Ecma International 2015 61

oecna

8.1.1.2.6 GetBindingValue(N,S)

The concrete Environment Record method GetBindingValue for object Environment Records returns the value
of its associated binding object’s property whose name is the String value of the argument identifier N. The
property should already exist but if it does not the result depends upon the value of the S argument:

1. Let envRec be the object Environment Record for which the method was invoked.

Let bindings be the binding object for envRec.

Let value be HasProperty(bindings, N).

ReturnIfAbrupt(value).

If value is false, then

a. IfSis false, return the value undefined, otherwise throw a ReferenceError exception.
6. Return Get(bindings, N).

W AW

8.1.1.2.7 DeleteBinding (N)

The concrete Environment Record method DeleteBinding for object Environment Records can only delete
bindings that correspond to properties of the environment object whose [[Configurable]] attribute have the value
true.

1. Let envRec be the object Environment Record for which the method was invoked.
2. Let bindings be the binding object for envRec.
3. Return bindings.[[Delete]](N).

8.1.1.2.8 HasThisBinding ()

Regular object Environment Records do not provide a this binding.

1. Return false.

8.1.1.2.9 HasSuperBinding ()

Regular object Environment Records do not provide a super binding.

1. Return false.

8.1.1.2.10 WithBaseObject()

Object Environment Records return undefined as their WithBaseObject unless their withEnvironment flag is
true.

1. Let envRec be the object Environment Record for which the method was invoked.
2. If the withEnvironment flag of envRec is true, return the binding object for envRec.
3. Otherwise, return undefined.

8.1.1.3 Function Environment Records

A function Environment Record is a declarative Environment Record that is used to represent the top-level
scope of a function and, if the function is not an ArrowFunction, provides a this binding. If a function is not an
ArrowFunction function and references super, its function Environment Record also contains the state that is
used to perform super method invocations from within the function.

Function Environment Records have the additional state fields listed in Table 16.

62 © Ecma International 2015

»ecmna

Table 16 — Additional Fields of Function Environment Records

Field Name Value Meaning
[[thisValue]] Any This is the this value used for this invocation of
the function.
[[thisBindingStatus]] "lexical" | If the value is "lexical", this is an
"initialized" | ArrowFunction and does not have a local this
"uninitialized" value.
[[FunctionObject]] Object The function Object whose invocation caused
this Environment Record to be created.
[[HomeObject]] Object | undefined If the associated function has super property

accesses and is not an ArrowFunction,
[[HomeObject]] is the object that the function is
bound to as a method. The default value for
[[HomeObject]] is undefined.

[[NewTarget]] Object | undefined If this Environment Record was created by the
[[Construct]] internal method, [[NewTarget]] is
the value of the [[Construct]] newTarget
parameter. Otherwise, its value is undefined.

Function Environment Records support all of the declarative Environment Record methods listed in Table 15
and share the same specifications for all of those methods except for HasThisBinding and HasSuperBinding. In
addition, function Environment Records support the methods listed in Table 17:

Table 17 — Additional Methods of Function Environment Records

Method Purpose
BindThisValue(V) Set the [[thisValue]] and record that it has been initialized.
GetThisBinding() Return the value of this Environment Record’s this binding. Throws a

ReferenceError if the this binding has not been initialized.

GetSuperBase() Return the object that is the base for super property accesses bound
in this Environment Record. The object is derived from this
Environment Record’s [[HomeObject]] field. The value undefined
indicates that super property accesses will produce runtime errors.

The behaviour of the additional concrete specification methods for function Environment Records is defined by
the following algorithms:

8.1.1.31 BindThisValue(V)

Let envRec be the function Environment Record for which the method was invoked.
Assert: envRec.[[thisBindingStatus]] is not "lexical".

If envRec.[[thisBindingStatus]] is "initialized", throw a ReferenceError exception.
Set envRec.[[thisValue]] to V.

Set envRec.[[thisBindingStatus]] to "initialized".

Return V.

AN N AW —

8.1.1.3.2 HasThisBinding ()

1. Let envRec be the function Environment Record for which the method was invoked.
2. If envRec.[[thisBindingStatus]] is "1lexical", return false; otherwise, return true.

8.1.1.3.3 HasSuperBinding ()

1. Let envRec be the function Environment Record for which the method was invoked.
2. If envRec.[[thisBindingStatus]] is "lexical", return false.

© Ecma International 2015 63

>eCma

3. If envRec.[[HomeObject]]| has the value undefined, return false, otherwise, return true.

8.1.1.34 GetThisBinding ()

Let envRec be the function Environment Record for which the method was invoked.

Assert: envRec.[[thisBindingStatus]] is not "lexical™".

If envRec.[[thisBindingStatus]] is "uninitialized", throw a ReferenceError exception.
Return envRec.[[thisValue]].

AW N —

8.1.1.3.5 GetSuperBase ()

1. Let envRec be the function Environment Record for which the method was invoked.
2. Let home be the value of envRec.[[HomeObject]].

3. If home has the value undefined, return undefined.

4. Assert: Type(home) is Object.

5. Return home.[[GetPrototypeOf]]().

8.1.14 Global Environment Records

A global Environment Record is used to represent the outer most scope that is shared by all of the ECMAScript
Script elements that are processed in a common Realm (8.2). A global Environment Record provides the
bindings for built-in globals (clause 18), properties of the global object, and for all top-level declarations (13.2.8,
13.2.10) that occur within a Script.

A global Environment Record is logically a single record but it is specified as a composite encapsulating an
object Environment Record and a declarative Environment Record. The object Environment Record has as its
base object the global object of the associated Realm. This global object is the value returned by the global
Environment Record’s GetThisBinding concrete method. The object Environment Record component of a global
Environment Record contains the bindings for all built-in globals (clause 18) and all bindings introduced by a
FunctionDeclaration, GeneratorDeclaration, or VariableStatement contained in global code. The bindings for all
other ECMAScript declarations in global code are contained in the declarative Environment Record component
of the global Environment Record.

Properties may be created directly on a global object. Hence, the object Environment Record component of a
global Environment Record may contain both bindings created explicitly by FunctionDeclaration,
GeneratorDeclaration, or VariableDeclaration declarations and binding created implicitly as properties of the global
object. In order to identify which bindings were explicitly created using declarations, a global Environment
Record maintains a list of the names bound using its CreateGlobalVarBindings and
CreateGlobalFunctionBindings concrete methods.

Global Environment Records have the additional fields listed in Table 18 and the additional methods listed in
Table 19.

Table 18 — Additional Fields of Global Environment Records

Field Name Value Meaning
[[ObjectRecord]] Object Environment | Binding object is the global object. It contains global
Record built-in bindings as well as FunctionDeclaration,

GeneratorDeclaration, and VariableDeclaration
bindings in global code for the associated Realm.

[[DeclarativeRecord]] | Declarative Contains bindings for all declarations in global code
Environment Record | for the associated Realm code except for
FunctionDeclaration, GeneratorDeclaration, and
VariableDeclaration bindings.

[[VarNames]] List of String The string names bound by FunctionDeclaration,
GeneratorDeclaration, and VariableDeclaration
declarations in global code for the associated Realm.

64 © Ecma International 2015

»ecmna

Table 19 — Additional Methods of Global Environment Records

Method Purpose
GetThisBinding() Return the value of this Environment Record’s this binding.
HasVarDeclaration (N) Determines if the argument identifier has a binding in this

Environment Record that was created using a
VariableDeclaration, FunctionDeclaration, or GeneratorDeclaration.

HasLexicalDeclaration (N) Determines if the argument identifier has a binding in this
Environment Record that was created using a lexical
declaration such as a LexicalDeclaration or a ClassDeclaration.

HasRestrictedGlobalProperty (N) Determines if the argument is the name of a global object
property that may not be shadowed by a global lexically binding.
CanDeclareGlobalVar (N) Determines if a corresponding CreateGlobalVarBinding call
would succeed if called for the same argument N.
CanDeclareGlobalFunction (N) Determines if a corresponding CreateGlobalFunctionBinding
call would succeed if called for the same argument N.
CreateGlobalVarBinding(N, D) Used to create and initialize to undefined a global var binding

in the [[ObjectRecord]] component of a global Environment
Record. The binding will be a mutable binding. The
corresponding global object property will have attribute values
appropriate for a var. The String value N is the bound name. If
D is true the binding may be deleted. Logically equivalent to
CreateMutableBinding followed by a SetMutableBinding but it
allows var declarations to receive special treatment.

CreateGlobalFunctionBinding(N, V, D) | Create and initialize a global function binding in the
[[ObjectRecord]] component of a global Environment Record.
The binding will be a mutable binding. The corresponding global
object property will have attribute values appropriate for a
function. The String value N is the bound name. V is the
initialization value. If the optional Boolean argument D is true
the binding is may be deleted. Logically equivalent to
CreateMutableBinding followed by a SetMutableBinding but it
allows function declarations to receive special treatment.

The behaviour of the concrete specification methods for global Environment Records is defined by the following
algorithms.

8.1.1.41 HasBinding(N)

The concrete Environment Record method HasBinding for global Environment Records simply determines if the
argument identifier is one of the identifiers bound by the record:

Let envRec be the global Environment Record for which the method was invoked.
Let DclRec be envRec.[[DeclarativeRecord]].

If DclRec.HasBinding(N) is true, return true.

Let ObjRec be envRec.[[ObjectRecord]].

Return ObjRec.HasBinding(N).

DN AW~

8.1.1.4.2 CreateMutableBinding (N, D)

The concrete Environment Record method CreateMutableBinding for global Environment Records creates a
new mutable binding for the name N that is uninitialized. The binding is created in the associated
DeclarativeRecord. A binding for N must not already exist in the DeclarativeRecord. If Boolean argument D is
provided and has the value true the new binding is marked as being subject to deletion.

1. Let envRec be the global Environment Record for which the method was invoked.
2. Let DclRec be envRec.[[DeclarativeRecord]].
3. If DclRec.HasBinding(N) is true, throw a TypeError exception.

© Ecma International 2015 65

oecna

4. Return DclRec.CreateMutableBinding(N, D).

8.1.1.4.3 CreatelmmutableBinding (N, S)

The concrete Environment Record method CreatelmmutableBinding for global Environment Records creates a
new immutable binding for the name N that is uninitialized. A binding must not already exist in this Environment
Record for N. If Boolean argument S is provided and has the value true the new binding is marked as a strict
binding.

Let envRec be the global Environment Record for which the method was invoked.
Let DclRec be envRec.[[DeclarativeRecord]].

If DclRec.HasBinding(N) is true, throw a TypeError exception.

Return DclRec.CreatelmmutableBinding(N, S).

AW N —

8.1.1.4.4 InitializeBinding (N,V)

The concrete Environment Record method InitializeBinding for global Environment Records is used to set the
bound value of the current binding of the identifier whose name is the value of the argument N to the value of
argument V. An uninitialized binding for N must already exist.

1. Let envRec be the global Environment Record for which the method was invoked.
2. Let DclRec be envRec.[[DeclarativeRecord]].
3. If DclRec.HasBinding(N) is true, then
a. Return DclRec.InitializeBinding(N, V).
4. Assert: If the binding exists it must be in the object Environment Record.
5. Let ObjRec be envRec.[[ObjectRecord]].
6. Return ObjRec.InitializeBinding(N, V).

8.1.1.45 SetMutableBinding (N,V,S)

The concrete Environment Record method SetMutableBinding for global Environment Records attempts to
change the bound value of the current binding of the identifier whose name is the value of the argument N to the
value of argument V. If the binding is an immutable binding, a TypeError is thrown if S is true. A property named
N normally already exists but if it does not or is not currently writable, error handling is determined by the value
of the Boolean argument S.

1. Let envRec be the global Environment Record for which the method was invoked.
2. Let DclRec be envRec.[[DeclarativeRecord]].
3. If DclRec.HasBinding(N) is true, then
a. Return Dc/Rec.SetMutableBinding(N, V, S).
4. Let ObjRec be envRec.[[ObjectRecord]].
5. Return ObjRec.SetMutableBinding(N, V, S).

8.1.1.4.6 GetBindingValue(N,S)

The concrete Environment Record method GetBindingValue for global Environment Records returns the value
of its bound identifier whose name is the value of the argument N. If the binding is an uninitialized binding throw
a ReferenceError exception. A property named N normally already exists but if it does not or is not currently
writable, error handling is determined by the value of the Boolean argument S.

1. Let envRec be the global Environment Record for which the method was invoked.
2. Let DclRec be envRec.[[DeclarativeRecord]].
3. 1If DclRec.HasBinding(N) is true, then
a. Return DclRec.GetBindingValue(N, S).
4. Let ObjRec be envRec.[[ObjectRecord]].
5. Return ObjRec.GetBindingValue(X, S).

8.1.1.4.7 DeleteBinding (N)

The concrete Environment Record method DeleteBinding for global Environment Records can only delete
bindings that have been explicitly designated as being subject to deletion.

1. Let envRec be the global Environment Record for which the method was invoked.

66 © Ecma International 2015

cecna

W N

NNk

9.

Let DclRec be envRec.[[DeclarativeRecord]].
If DclRec.HasBinding(N) is true, then
a. Return DclRec.DeleteBinding(N).
Let ObjRec be envRec.[[ObjectRecord]].
Let globalObject be the binding object for ObjRec.
Let existingProp be HasOwnProperty(globalObject, N).
ReturnlfAbrupt(existingProp).
If existingProp is true, then
a. Let status be ObjRec.DeleteBinding(N).
b. ReturnlfAbrupt(status).
c. [Ifstatus is true, then
i. Let varNames be envRec.[[VarNames]].
ii. If Nis an element of varNames, remove that element from the varNames.
d. Return status.
Return true.

8.1.1.4.8 HasThisBinding ()

Global Environment Records always provide a this binding whose value is the associated global object.

1.

Return true.

8.1.1.4.9 HasSuperBinding ()

1.

Return false.

8.1.1.4.10 WithBaseObject()

Global Environment Records always return undefined as their WithBaseObject.

1.

Return undefined.

8.1.1.411 GetThisBinding ()

AW N —

Let envRec be the global Environment Record for which the method was invoked.
Let ObjRec be envRec.[[ObjectRecord]].

Let bindings be the binding object for ObjRec.

Return bindings.

8.1.1.4.12 HasVarDeclaration (N)

The concrete Environment Record method HasVarDeclaration for global Environment Records determines if the
argument identifier has a binding in this record that was created using a VariableStatement or a
FunctionDeclaration:.

1.

2.
3.
4

Let envRec be the global Environment Record for which the method was invoked.
Let varDeclaredNames be envRec.[[VarNames]].

If varDeclaredNames contains the value of N, return true.

Return false.

8.1.1.4.13 HasLexicalDeclaration (N)

The concrete Environment Record method HasLexicalDeclaration for global Environment Records determines if
the argument identifier has a binding in this record that was created using a lexical declaration such as a
LexicalDeclaration or a ClassDeclaration:

1.
2.
3.

Let envRec be the global Environment Record for which the method was invoked.
Let DclRec be envRec.[[DeclarativeRecord]].
Return DclRec.HasBinding(N).

© Ecma International 2015 67

oecna

8.1.1.4.14 HasRestrictedGlobalProperty (N)

The concrete Environment Record method HasRestrictedGlobalProperty for global Environment Records
determines if the argument identifier is the name of a property of the global object that must not be shadowed by
a global lexically binding:

1. Let envRec be the global Environment Record for which the method was invoked.
Let ObjRec be envRec.[[ObjectRecord]].

Let globalObject be the binding object for ObjRec.

Let existingProp be globalObject.[[GetOwnProperty]|(N).
ReturnlfAbrupt(existingProp).

If existingProp is undefined, return false.

If existingProp.[[Configurable]] is true, return false.

Return true.

PRIk

NOTE Properties may exist upon a global object that were directly created rather than being declared using a var or
function declaration. A global lexical binding may not be created that has the same name as a non-configurable
property of the global object. The global property undefined is an example of such a property.

8.1.1.415 CanDeclareGlobalVar (N)

The concrete Environment Record method CanDeclareGlobalVar for global Environment Records determines if
a corresponding CreateGlobalVarBinding call would succeed if called for the same argument N. Redundant var
declarations and var declarations for pre-existing global object properties are allowed.

Let envRec be the global Environment Record for which the method was invoked.
Let ObjRec be envRec.[[ObjectRecord]].

Let globalObject be the binding object for ObjRec.

Let hasProperty be HasOwnProperty(globalObject, N).
ReturnIfAbrupt(hasProperty).

If hasProperty is true, return true.

Return IsExtensible(globalObject).

Nk wN =

8.1.1.4.16 CanDeclareGlobalFunction (N)

The concrete Environment Record method CanDeclareGlobalFunction for global Environment Records
determines if a corresponding CreateGlobalFunctionBinding call would succeed if called for the same argument
N.

Let envRec be the global Environment Record for which the method was invoked.

Let ObjRec be envRec.[[ObjectRecord]].

Let globalObject be the binding object for ObjRec.

Let existingProp be globalObject.[[GetOwnProperty]](N).

ReturnIfAbrupt(existingProp).

If existingProp is undefined, return IsExtensible(globalObject).

If existingProp.[[Configurable]] is true, return true.

If IsDataDescriptor(existingProp) is true and existingProp has attribute values {[[Writable]]: true,
[[Enumerable]]: true}, return true.

Return false.

RN N B LD =

o

8.1.1.4.17 CreateGlobalVarBinding (N, D)

The concrete Environment Record method CreateGlobalVarBinding for global Environment Records creates
and initializes a mutable binding in the associated object Environment Record and records the bound name in
the associated [[VarNames]] List. If a binding already exists, it is reused and assumed to be initialized.

Let envRec be the global Environment Record for which the method was invoked.
Let ObjRec be envRec.[[ObjectRecord]].

Let globalObject be the binding object for ObjRec.

Let hasProperty be HasOwnProperty(globalObject, N).
ReturnIfAbrupt(hasProperty).

Let extensible be IsExtensible(globalObject).

ReturnIfAbrupt(extensible).

Nk W=

68 © Ecma International 2015

cecna

8. If hasProperty is false and extensible is true, then
a. Let status be ObjRec.CreateMutableBinding(N, D).
b. ReturnlfAbrupt(status).
c. Let status be ObjRec.InitializeBinding(¥V, undefined).
d. ReturnIfAbrupt(status).

9. Let varDeclaredNames be envRec.[[VarNames]].

10. If varDeclaredNames does not contain the value of N, then
a. Append N to varDeclaredNames.

11. Return NormalCompletion(empty).

8.1.1.418 CreateGlobalFunctionBinding (N, V, D)

The concrete Environment Record method CreateGlobalFunctionBinding for global Environment Records
creates and initializes a mutable binding in the associated object Environment Record and records the bound
name in the associated [[VarNames]] List. If a binding already exists, it is replaced.

1. Let envRec be the global Environment Record for which the method was invoked.
Let ObjRec be envRec.[[ObjectRecord]].
Let globalObject be the binding object for ObjRec.
Let existingProp be globalObject.[[GetOwnProperty][(N).
ReturnlfAbrupt(existingProp).
If existingProp is undefined or existingProp.[[Configurable]] is true, then
a. Let desc be the PropertyDescriptor {[[Value]]:V, [[Writable]]: true, [[Enumerable]]: true ,
[[Configurable]]: D}.
7. Else,
a. Let desc be the PropertyDescriptor{[[Value]]:V }.
8. Let status be DefinePropertyOrThrow(globalObject, N, desc).
9. ReturnlfAbrupt(status).
10. Let status be Set(globalObject, N, V, false).
11. Record that the binding for N in ObjRec has been initialized.
12. ReturnIfAbrupt(status).
13. Let varDeclaredNames be envRec.[[VarNames]].
14. If varDeclaredNames does not contain the value of N, then
a. Append N to varDeclaredNames.
15. Return NormalCompletion(empty).

Sk wD

NOTE Global function declarations are always represented as own properties of the global object. If possible, an
existing own property is reconfigured to have a standard set of attribute values. Steps 10-12 are equivalent to
what calling the InitializeBinding concrete method would do and if globalObject is a Proxy will produce the same
sequence of Proxy trap calls.

8.1.1.5 Module Environment Records

A module Environment Record is a declarative Environment Record that is used to represent the outer scope of
an ECMAScript Module. In additional to normal mutable and immutable bindings, module Environment Records
also provide immutable import bindings which are bindings that provide indirect access to a target binding that
exists in another Environment Record.

Module Environment Records support all of the declarative Environment Record methods listed in Table 15 and
share the same specifications for all of those methods except for GetBindingValue, DeleteBinding,
HasThisBinding and GetThisBinding. In addition, module Environment Records support the methods listed in
Table 20:

© Ecma International 2015 69

eCng

Table 20 — Additional Methods of Module Environment Records

Method Purpose

CreatelmportBinding(N, M, N2) | Create an immutable indirect binding in a module Environment
Record. The String value N is the text of the bound name. Mis a
Module Record (see 15.2.1.15), and N2 is a binding that exists
in M’s module Environment Record.

GetThisBinding() Return the value of this Environment Record’s this binding.

The behaviour of the additional concrete specification methods for module Environment Records are defined by
the following algorithms:

8.1.1.5.1 GetBindingValue(N,S)

The concrete Environment Record method GetBindingValue for module Environment Records returns the value
of its bound identifier whose name is the value of the argument N. However, if the binding is an indirect binding
the value of the target binding is returned. If the binding exists but is uninitialized a ReferenceError is thrown,
regardless of the value of S.

1. Let envRec be the module Environment Record for which the method was invoked.
2. Assert: envRec has a binding for N.
3. Ifthe binding for N is an indirect binding, then
a. Let M and N2 be the indirection values provided when this binding for N was created.
b. Let targetEnv be M.[[Environment]].
c. IftargetEnv is undefined, throw a ReferenceError exception.
d. Let targetER be targetEnv’s EnvironmentRecord.
e. Return targetER. GetB1nd1ngValue(N2 S).
4. 1If the binding for N in envRec is an uninitialized binding, throw a ReferenceError exception.
5. Return the value currently bound to N in envRec.

NOTE Because a Module is always strict mode code, calls to GetBindingValue should always pass true as the value
of S.

8.1.1.5.2 DeleteBinding (N)

The concrete Environment Record method DeleteBinding for module Environment Records refuses to delete
bindings.

1. Let envRec be the module Environment Record for which the method was invoked.
2. If envRec does not have a binding for the name that is the value of N, return true.
3. Return false.

NOTE The bindings of a module Environment Record are not deletable.

8.1.1.5.3 HasThisBinding ()

Module Environment Records provide a this binding.

1. Return true.

8.1.1.54 GetThisBinding ()

1. Return undefined.

8.1.1.5.5 CreatelmportBinding (N, M, N2)

The concrete Environment Record method CreatelmportBinding for module Environment Records creates a
new initialized immutable indirect binding for the name N. A binding must not already exist in this Environment
Record for N. M is a Module Record (see 15.2.1.15), and N2 is the name of a binding that exists in M’s module
Environment Record. Accesses to the value of the new binding will indirectly access the bound value of value of
the target binding.

1. Let envRec be the module Environment Record for which the method was invoked.

70 © Ecma International 2015

cecna

Assert: envRec does not already have a binding for N.

Assert: M is a Module Record.

Assert: When M.[[Environment]] is instantiated it will have a direct binding for N2.

Create an immutable indirect binding in envRec for N that references M and N2 as its target binding_and
record that the binding is initialized.

6. Return NormalCompletion(empty).

DN AW

8.1.2 Lexical Environment Operations

The following abstract operations are used in this specification to operate upon lexical environments:

8.1.21 GetldentifierReference (lex, name, strict)

The abstract operation GetldentifierReference is called with a Lexical Environment lex, a String name, and a
Boolean flag strict. The value of lex may be null. When called, the following steps are performed:

1. Iflex is the value null, then

a. Return a value of type Reference whose base value is undefined, whose referenced name is name, and
whose strict reference flag is strict.

Let envRec be lex’s EnvironmentRecord.

Let exists be envRec.HasBinding(name).

ReturnIfAbrupt(exists).

If exists is true, then

a. Return a value of type Reference whose base value is envRec, whose referenced name is name, and
whose strict reference flag is strict.

6. Else
a. Let outer be the value of /ex’s outer environment reference.
b. Return GetldentifierReference(outer, name, strict).

W AW

8.1.2.2 NewDeclarativeEnvironment (E)

When the abstract operation NewDeclarativeEnvironment is called with a Lexical Environment as argument E
the following steps are performed:

Let env be a new Lexical Environment.

Let envRec be a new declarative Environment Record containing no bindings.
Set env’s EnvironmentRecord to be envRec.

Set the outer lexical environment reference of env to E.

Return env.

N W=

8.1.2.3 NewObjectEnvironment (O, E)

When the abstract operation NewObjectEnvironment is called with an Object O and a Lexical Environment E as
arguments, the following steps are performed:

Let env be a new Lexical Environment.

Let envRec be a new object Environment Record containing O as the binding object.
Set env’s EnvironmentRecord to envRec.

Set the outer lexical environment reference of env to E.

Return env.

N W -

8.1.24 NewFunctionEnvironment (F, newTarget)

When the abstract operation NewFunctionEnvironment is called with arguments F and newTarget the following
steps are performed:

Assert: F'is an ECMAScript function.

Assert: Type(newTarget) is Undefined or Object.

Let env be a new Lexical Environment.

Let envRec be a new function Environment Record containing no bindings.

Set envRec.[[FunctionObject]] to F.

If F’s [[ThisMode]] internal slot is lexical, set envRec.[[thisBindingStatus]] to "lexical".
Else, Set envRec.[[thisBindingStatus]] to "uninitialized".

Nk wb =

© Ecma International 2015 71

>eCma

8.
9

10.
11.
12.
13.

8.1.2.5

Let hiome be the value of F’s [[HomeObject]] internal slot.

Set envRec.[[HomeObject]] to home.

Set envRec.[[NewTarget]] to newTarget.

Set env’s EnvironmentRecord to be envRec.

Set the outer lexical environment reference of env to the value of F’s [[Environment]] internal slot.
Return env.

NewGlobalEnvironment (G)

When the abstract operation NewGlobalEnvironment is called with an ECMAScript Object G as its argument,
the following steps are performed:

1.

2
3
4
5.
6.
7
8
9
1

8.1.2.6

0.

Let env be a new Lexical Environment.

Let objRec be a new object Environment Record containing G as the binding object.
Let dclRec be a new declarative Environment Record containing no bindings.

Let globalRec be a new global Environment Record.

Set globalRec.[[ObjectRecord]] to objRec.

Set globalRec.[[DeclarativeRecord]] to dclRec.

Set globalRec.[[VarNames]] to a new empty List.

Set env’s EnvironmentRecord to globalRec.

Set the outer lexical environment reference of env to null

Return env.

NewModuleEnvironment (E)

When the abstract operation NewModuleEnvironment is called with a Lexical Environment argument E the
following steps are performed:

[I S R S

8.2

Let env be a new Lexical Environment.

Let envRec be a new module Environment Record containing no bindings.
Set env’s EnvironmentRecord to be envRec.

Set the outer lexical environment reference of env to E.

Return env.

Code Realms

Before it is evaluated, all ECMAScript code must be associated with a Realm. Conceptually, a realm consists of
a set of intrinsic objects, an ECMAScript global environment, all of the ECMAScript code that is loaded within
the scope of that global environment, and other associated state and resources.

A Realm is specified as a Record with the fields specified in Table 21:

Table 21 — Realm Record Fields

Field Name Value Meaning
[[intrinsics]] Record whose field These are the intrinsic values used by code associated with this
names are intrinsic Realm

keys and whose values
are objects

[[global This]] Object The global object for this Realm

[[globalEnv]] Lexical Environment The global environment for this Realm

[[templateMap]] | A List of Record Template objects are canonicalized separately for each Realm using
{ [[strings]]: List, its [[templateMap]]. Each [[strings]] value is a List containing, in
[[array]]: Object}. source text order, the raw String values of a TemplateLiteral that has

been evaluated. The associated [[array]] value is the corresponding
template object that is passed to a tag function.

An implementation may define other, implementation specific fields.

72

© Ecma International 2015

»ecind

8.2.1 CreateRealm ()

The abstract operation CreateRealm with no arguments performs the following steps:

1. Let realmRec be a new Record.

Perform Createlntrinsics(realmRec).

Set realmRec.[[globalThis]] to undefined.

Set realmRec.[[globalEnv]] to undefined.

Set realmRec.[[templateMap]] to a new empty List.
Return realmRec.

AN

8.2.2 Createlntrinsics (realmRec)

When the abstract operation Createlntrinsics with argument realmRec performs the following steps:

1. Let intrinsics be a new Record.

Set realmRec.[[intrinsics]] to intrinsics.

Let objProto be ObjectCreate(null).

Set intrinsics.[[%0bjectPrototype%]] to objProto.

Let throwerSteps be the algorithm steps specified in 9.2.7.1 for the %ThrowTypeError% function.

Let thrower be CreateBuiltinFunction(realmRec, throwerSteps, null).

Set intrinsics.[[%ThrowTypeError%]] to thrower.

Let noSteps be an empty sequence of algorithm steps.

Let funcProto be CreateBuiltinFunction(realmRec, noSteps, objProto).

10. Set intrinsics.[[%FunctionPrototype%]] to funcProto.

11. Call thrower.[[SetPrototypeOf]]|(funcProto).

12. Perform AddRestrictedFunctionProperties(funcProto, realmRec).

13. Set fields of intrinsics with the values listed in Table 7 that have not already been handled above. The
field names are the names listed in column one of the table. The value of each field is a new object value
fully and recursively populated with property values as defined by the specification of each object in
clauses 18-26. All object property values are newly created object values. All values that are built-in
function objects are created by performing CreateBuiltinFunction(rea/mRec, <steps>, <prototype>,
<slots>) where <steps> is the definition of that function provided by this specification, <prototype> is the
specified value of the function’s [[Prototype]] internal slot and <slots> is a list of the names, if any, of the
functions specified internal slots. The creation of the intrinsics and their properties must be ordered to
avoid any dependencies upon objects that have not yet been created.

14. Return intrinsics.

A e Al

8.2.3 SetRealmGlobalObject (realmRec, globalObj)

The abstract operation SetRealmGlobalObject with arguments realmRec and globalObj performs the following
steps:

1. 1If globalObj is undefined, then

a. Let intrinsics be realmRec.[[intrinsics]].

b. Let globalObj be ObjectCreate(intrinsics.[[%ObjectPrototype%]]).
Assert: Type(globalObj) is Object.

Set realmRec.[[globalThis]] to globalObj.

Let newGlobalEnv be NewGlobalEnvironment(globalOby).

Set realmRec.[[globalEnv]] to newGlobalEnv.

Return realmRec.

AN

8.2.4 SetDefaultGlobalBindings (realmRec)

The abstract operation SetDefaultGlobalBindings with argument realmRec performs the following steps:

1. Let global be realmRec.[[globalThis]].
2. For each property of the Global Object specified in clause 18, do
a. Let name be the String value of the property name.
b. Let desc be the fully populated data property descriptor for the property containing the specified
attributes for the property. For properties listed in 18.2, 18.3, or 18.4 the value of the [[Value]]
attribute is the corresponding intrinsic object from realmRec.

© Ecma International 2015 73

»eCma

c. Let status be DefinePropertyOrThrow(global, name, desc).
d. ReturnIfAbrupt(status).
3. Return global.

8.3 Execution Contexts

An execution context is a specification device that is used to track the runtime evaluation of code by an
ECMAScript implementation. At any point in time, there is at most one execution context that is actually
executing code. This is known as the running execution context. A stack is used to track execution contexts.
The running execution context is always the top element of this stack. A new execution context is created
whenever control is transferred from the executable code associated with the currently running execution
context to executable code that is not associated with that execution context. The newly created execution
context is pushed onto the stack and becomes the running execution context.

An execution context contains whatever implementation specific state is necessary to track the execution
progress of its associated code. Each execution context has at least the state components listed in Table 22.

Table 22 —State Components for All Execution Contexts

Component Purpose

code evaluation state Any state needed to perform, suspend, and resume evaluation of the
code associated with this execution context.

Function If this execution context is evaluating the code of a function object, then
the value of this component is that function object. If the context is
evaluating the code of a Script or Module, the value is null.

Realm The Realm from which associated code accesses ECMAScript
resources.

Evaluation of code by the running execution context may be suspended at various points defined within this
specification. Once the running execution context has been suspended a different execution context may
become the running execution context and commence evaluating its code. At some later time a suspended
execution context may again become the running execution context and continue evaluating its code at the
point where it had previously been suspended. Transition of the running execution context status among
execution contexts usually occurs in stack-like last-in/first-out manner. However, some ECMAScript features
require non-LIFO transitions of the running execution context.

The value of the Realm component of the running execution context is also called the current Realm. The value
of the Function component of the running execution context is also called the active function object.

Execution contexts for ECMAScript code have the additional state components listed in Table 23.

Table 23 — Additional State Components for ECMAScript Code Execution Contexts

Component Purpose

LexicalEnvironment Identifies the Lexical Environment used to resolve identifier references
made by code within this execution context.

VariableEnvironment Identifies the Lexical Environment whose EnvironmentRecord holds
bindings created by VariableStatements within this execution context.

The LexicalEnvironment and VariableEnvironment components of an execution context are always Lexical
Environments. When an execution context is created its LexicalEnvironment and VariableEnvironment
components initially have the same value.

Execution contexts representing the evaluation of generator objects have the additional state components listed
in Table 24.

74 © Ecma International 2015

secmna

Table 24 — Additional State Components for Generator Execution Contexts

Component Purpose

Generator The GeneratorObject that this execution context is evaluating.

In most situations only the running execution context (the top of the execution context stack) is directly
manipulated by algorithms within this specification. Hence when the terms “LexicalEnvironment”, and
“VariableEnvironment” are used without qualification they are in reference to those components of the running
execution context.

An execution context is purely a specification mechanism and need not correspond to any particular artefact of
an ECMAScript implementation. It is impossible for ECMAScript code to directly access or observe an execution
context.

8.3.1 ResolveBinding (name, [env])

The ResolveBinding abstract operation is used to determine the binding of name passed as a String value. The
optional argument env can be used to explicitly provide the Lexical Environment that is to be searched for the
binding. During execution of ECMAScript code, ResolveBinding is performed using the following algorithm:

1. If env was not passed or if env is undefined, then
a. Let env be the running execution context’s LexicalEnvironment.

2. Assert: envis a Lexical Environment.

3. [Ifthe code matching the syntactic production that is being evaluated is contained in strict mode code, let
strict be true, else let strict be false.

4. Return GetldentifierReference(env, name, strict).

NOTE The result of ResolveBinding is always a Reference value with its referenced name component equal to the
name argument.

8.3.2 GetThisEnvironment ()

The abstract operation GetThisEnvironment finds the Environment Record that currently supplies the binding of
the keyword this. GetThisEnvironment performs the following steps:

1. Let lex be the running execution context’s LexicalEnvironment.
2. Repeat

Let envRec be lex’s EnvironmentRecord.

Let exists be envRec.HasThisBinding().

If exists is true, return envRec.

Let outer be the value of /ex’s outer environment reference.
Let lex be outer.

opo Te

NOTE The loop in step 2 will always terminate because the list of environments always ends with the global
environment which has a this binding.

8.3.3 ResolveThisBinding ()

The abstract operation ResolveThisBinding determines the binding of the keyword this using the
LexicalEnvironment of the running execution context. ResolveThisBinding performs the following steps:

1. Let envRec be GetThisEnvironment().
2. Return envRec.GetThisBinding().

8.3.4 GetNewTarget ()

The abstract operation GetNewTarget determines the NewTarget value using the LexicalEnvironment of the
running execution context. GetNewTarget performs the following steps:

1. Let envRec be GetThisEnvironment().
2. Assert: envRec has a [[NewTarget]] field.
3. Return envRec.[[NewTarget]].

© Ecma International 2015 75

»eCma

8.3.5 GetGlobalObject ()

The abstract operation GetGlobalObject returns the global object used by the currently running execution context.
GetGlobalObject performs the following steps:

1. Let ctx be the running execution context.
2. Let currentRealm be ctx’s Realm.
3. Return currentRealm.[[globalThis]].

8.4 Jobs and Job Queues

A Job is an abstract operation that initiates an ECMAScript computation when no other ECMAScript
computation is currently in progress. A Job abstract operation may be defined to accept an arbitrary set of job
parameters.

Execution of a Job can be initiated only when there is no running execution context and the execution context
stack is empty. A PendingJob is a request for the future execution of a Job. A PendingJob is an internal Record
whose fields are specified in Table 25. Once execution of a Job is initiated, the Job always executes to
completion. No other Job may be initiated until the currently running Job completes. However, the currently
running Job or external events may cause the enqueuing of additional PendingJobs that may be initiated
sometime after completion of the currently running Job.

Table 25 — PendingJob Record Fields

Field Name Value Meaning
[[Job]] The name of a Job abstract | This is the abstract operation that is performed when
operation execution of this PendingJob is initiated. Jobs are

abstract operations that use NextJob rather than
Return to indicate that they have completed.

[[Arguments]] A List The List of argument values that are to be passed to
[[Job]] when it is activated.
[[Realm]] A Realm Record The Realm for the initial execution context when this
Pending Job is initiated.
[[HostDefined]] | Any, default value is Field reserved for use by host environments that need
undefined. to associate additional information with a pending Job.

A Job Queue is a FIFO queue of PendingJob records. Each Job Queue has a name and the full set of available
Job Queues are defined by an ECMAScript implementation. Every ECMAScript implementation has at least the
Job Queues defined in Table 26.

Table 26 — Required Job Queues

Name Purpose

ScriptJobs Jobs that validate and evaluate ECMAScript Script and Module source
text. See clauses 10 and 15.

PromiseJobs Jobs that are responses to the settlement of a Promise (see 25.4).

A request for the future execution of a Job is made by enqueueing, on a Job Queue, a PendingJob record that
includes a Job abstract operation name and any necessary argument values. When there is no running
execution context and the execution context stack is empty, the ECMAScript implementation removes the first
PendingJob from a Job Queue and uses the information contained in it to create an execution context and starts
execution of the associated Job abstract operation.

The PendingJob records from a single Job Queue are always initiated in FIFO order. This specification does not
define the order in which multiple Job Queues are serviced. An ECMAScript implementation may interweave the
FIFO evaluation of the PendingJob records of a Job Queue with the evaluation of the PendingJob records of
one or more other Job Queues. An implementation must define what occurs when there are no running
execution context and all Job Queues are empty.

76 © Ecma International 2015

cecna

NOTE Typically an ECMAScript implementation will have its Job Queues pre-initialized with at least one PendingJob
and one of those Jobs will be the first to be executed. An implementation might choose to free all resources and
terminate if the current Job completes and all Job Queues are empty. Alternatively, it might choose to wait for a
some implementation specific agent or mechanism to enqueue new PendingJob requests.

The following abstract operations are used to create and manage Jobs and Job Queues:

8.4.1 Enqueuedob (queueName, job, arguments)

The Enqueuedob abstract operation requires three arguments: queueName, job, and arguments. It performs the
following steps:

1. Assert: Type(queueName) is String and its value is the name of a Job Queue recognized by this
implementation.

2. Assert: job is the name of a Job.

3. Assert: arguments is a List that has the same number of elements as the number of parameters required by
job.

4. Let callerContext be the running execution context.

Let callerRealm be callerContext’s Realm.

6. Let pending be PendingJob{ [[Job]]: job, [[Arguments]]: arguments, [[Realm]]: callerRealm,
[[HostDefined]]: undefined }.

7. Perform any implementation or host environment defined processing of pending. This may include
modifying the [[HostDefined]] field or any other field of pending.

8. Add pending at the back of the Job Queue named by queueName.

9. Return NormalCompletion(empty).

(9]

8.4.2 NextJob result

An algorithm step such as:
1. Nextlob result.

is used in Job abstract operations in place of:
1. Return result.

Job abstract operations must not contain a Return step or a ReturnlfAbrupt step. The NextJob result operation is
equivalent to the following steps:

1. If result is an abrupt completion, perform implementation defined unhandled exception processing.

2. Suspend the running execution context and remove it from the execution context stack.

3. Assert: The execution context stack is now empty.

4. Let nextQueue be a non-empty Job Queue chosen in an implementation defined manner. If all Job Queues
are empty, the result is implementation defined.

5. Let nextPending be the PendingJob record at the front of nextQueue. Remove that record from nextQueue.

6. Let newContext be a new execution context.

7. Set newContext’s Realm to nextPending.[[Realm]].

8. Push newContext onto the execution context stack; newContext is now the running execution context.

9. Perform any implementation or host environment defined job initialization using nextPending.

10. Perform the abstract operation named by nextPending.[[Job]] using the elements of

nextPending.[[Arguments]] as its arguments.

8.5 ECMAScript Initialization()

An ECMAScript implementation performs the following steps prior to the execution of any Jobs or the evaluation
of any ECMAScript code:

Let realm be CreateRealm().

Let newContext be a new execution context.

Set the Function of newContext to null.

Set the Realm of newContext to realm.

Push newContext onto the execution context stack; newContext is now the running execution context.
Let status be InitializeHostDefinedRealm(realm).

AN AW =

© Ecma International 2015 77

oecna

7. [If status is an abrupt completion, then
a. Assert: The first realm could not be created.
b. Terminate ECMAScript execution.
8. In an implementation dependent manner, obtain the ECMAScript source texts (see clause 10) for zero or
more ECMAScript scripts and/or ECMAScript modules. For each such sourceText do,
a. IfsourceText is the source code of a script, then
i. Perform EnqueueJob("ScriptJobs", ScriptEvaluationJob, « sourceText »).
b. Else sourceText is the source code of a module,
i. Perform Enqueuelob("ScriptJobs", TopLevelModuleEvaluationJob, « sourceText »).
9. NextJob NormalCompletion(undefined).

8.5.1 InitializeHostDefinedRealm (realm)

The abstract operation InitializeHostDefinedRealm with parameter realm performs the following steps:

1. If this implementation requires use of an exotic object to serve as realm’s global object, let global be such
an object created in an implementation defined manner. Otherwise, let global be undefined indicating that
an ordinary object should be created as the global object.

Perform SetRealmGlobalObject(realm, global).

Let globalObj be SetDefaultGlobalBindings(realm).

ReturnlfAbrupt(global Obyj).

Create any implementation defined global object properties on globalOb;.

Return NormalCompletion(undefined).

AN

9 Ordinary and Exotic Objects Behaviours

9.1 Ordinary Object Internal Methods and Internal Slots

All ordinary objects have an internal slot called [[Prototype]]. The value of this internal slot is either null or an
object and is used for implementing inheritance. Data properties of the [[Prototype]] object are inherited (are
visible as properties of the child object) for the purposes of get access, but not for set access. Accessor
properties are inherited for both get access and set access.

Every ordinary object has a Boolean-valued [[Extensible]] internal slot that controls whether or not properties
may be added to the object. If the value of the [[Extensible]] internal slot is false then additional properties may
not be added to the object. In addition, if [[Extensible]] is false the value of the [[Prototype]] internal slot of the
object may not be modified. Once the value of an object’s [[Extensible]] internal slot has been set to false it may
not be subsequently changed to true.

In the following algorithm descriptions, assume O is an ordinary object, P is a property key value, V is any
ECMAScript language value, and Desc is a Property Descriptor record.

9.1.1 [[GetPrototypeOf]] ()

When the [[GetPrototypeOf]] internal method of O is called the following steps are taken:
1. Return the value of the [[Prototype]] internal slot of O.

9.1.2 [[SetPrototypeOf]] (V)

When the [[SetPrototypeOf]] internal method of O is called with argument ¥ the following steps are taken:

Assert: Either Type(V) is Object or Type(V) is Null.

Let extensible be the value of the [[Extensible]] internal slot of O.
Let current be the value of the [[Prototype]] internal slot of O.

If SameValue(V, current), return true.

If extensible is false, return false.

Let p be V.

Let done be false.

Repeat while done is false,

a. Ifpis null, let done be true.

AN el e

78 © Ecma International 2015

oechna

. Else, if SameValue(p, O) is true, return false.
c. Else,
i. Ifthe [[GetPrototypeOf]] internal method of p is not the ordinary object internal method defined
in 9.1.1, let done be true.
ii. Else, let p be the value of p’s [[Prototype]] internal slot.
9. Set the value of the [[Prototype]] internal slot of O to V.
10. Return true.

NOTE The loop in step 8 guarantees that there will be no circularities in any prototype chain that only includes objects
that use the ordinary object definitions for [[GetPrototypeOf]] and [[SetPrototypeOf]].

9.1.3 [[IsExtensible]] ()

When the [[IsExtensible]] internal method of O is called the following steps are taken:
1. Return the value of the [[Extensible]] internal slot of O.
9.1.4 [[PreventExtensions]] ()

When the [[PreventExtensions]] internal method of O is called the following steps are taken:

1. Set the value of the [[Extensible]] internal slot of O to false.
2. Return true.

9.1.5 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of O is called with property key P, the following steps are taken:
1. Return OrdinaryGetOwnProperty(O, P).

9.1.5.1 OrdinaryGetOwnProperty (O, P)

When the abstract operation OrdinaryGetOwnProperty is called with Object O and with property key P, the
following steps are taken:

Assert: IsPropertyKey(P) is true.
If O does not have an own property with key P, return undefined.
Let D be a newly created Property Descriptor with no fields.
Let X be O’s own property whose key is P.
If X is a data property, then
a. Set D.[[Value]] to the value of X’s [[Value]] attribute.
b. Set D.[[Writable]] to the value of X’s [[Writable]] attribute
6. Else X is an accessor property, so
a. Set D.[[Get]] to the value of X’s [[Get]] attribute.
b. Set D.[[Set]] to the value of X’s [[Set]] attribute.
7. Set D.[[Enumerable]] to the value of X’s [[Enumerable]] attribute.
8. Set D.[[Configurable]] to the value of X’s [[Configurable]] attribute.
9. Return D.

[O S

9.1.6 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of O is called with property key P and Property Descriptor
Desc, the following steps are taken:

1. Return OrdinaryDefineOwnProperty(O, P, Desc).

9.1.6.1 OrdinaryDefineOwnProperty (O, P, Desc)

When the abstract operation OrdinaryDefineOwnProperty is called with Object O, property key P, and Property
Descriptor Desc the following steps are taken:

1. Let current be O.[[GetOwnProperty]](P).

2. ReturnIfAbrupt(current).

3. Let extensible be the value of the [[Extensible]] internal slot of O.

4. Return ValidateAndApplyPropertyDescriptor(O, P, extensible, Desc, current).

© Ecma International 2015 79

ceca

9.1.6.2 IsCompatiblePropertyDescriptor (Extensible, Desc, Current)

When the abstract operation IsCompatiblePropertyDescriptor is called with Boolean value Extensible, and
Property Descriptors Desc, and Current the following steps are taken:

1. Return ValidateAndApplyPropertyDescriptor(undefined, undefined, Extensible, Desc, Current).

9.1.6.3 ValidateAndApplyPropertyDescriptor (O, P, extensible, Desc, current)

When the abstract operation ValidateAndApplyPropertyDescriptor is called with Object O, property key P,
Boolean value extensible, and Property Descriptors Desc, and current the following steps are taken:

This algorithm contains steps that test various fields of the Property Descriptor Desc for specific values. The
fields that are tested in this manner need not actually exist in Desc. If a field is absent then its value is
considered to be false.

NOTE 1 If undefined is passed as the O argument only validation is performed and no object updates are performed.

1. Assert: If O is not undefined then IsPropertyKey(P) is true.
2. If current is undefined, then
a. If extensible is false, return false.
b. Assert: extensible is true.
c. If IsGenericDescriptor(Desc) or IsDataDescriptor(Desc) is true, then

i. If O is not undefined, create an own data property named P of object O whose [[Value]],
[[Writable]], [[Enumerable]] and [[Configurable]] attribute values are described by Desc. If the
value of an attribute field of Desc is absent, the attribute of the newly created property is set to its
default value.

d. Else Desc must be an accessor Property Descriptor,

i. If O is not undefined, create an own accessor property named P of object O whose [[Get]],
[[Set]], [[Enumerable]] and [[Configurable]] attribute values are described by Desc. If the value of
an attribute field of Desc is absent, the attribute of the newly created property is set to its default
value.

e. Return true.
3. Return true, if every field in Desc is absent.
4. Return true, if every field in Desc also occurs in current and the value of every field in Desc is the same
value as the corresponding field in current when compared using the SameValue algorithm.
5. [Ifthe [[Configurable]] field of current is false, then
a. Return false, if the [[Configurable]] field of Desc is true.
b. Return false, if the [[Enumerable]] field of Desc is present and the [[Enumerable]] fields of current
and Desc are the Boolean negation of each other.
6. If IsGenericDescriptor(Desc) is true, no further validation is required.
7. Else if IsDataDescriptor(current) and IsDataDescriptor(Desc) have different results, then
a. Return false, if the [[Configurable]] field of current is false.
b. If IsDataDescriptor(current) is true, then

i. If O is not undefined, convert the property named P of object O from a data property to an
accessor property. Preserve the existing values of the converted property’s [[Configurable]] and
[[Enumerable]] attributes and set the rest of the property’s attributes to their default values.

c. Else,

i. If O is not undefined, convert the property named P of object O from an accessor property to a
data property. Preserve the existing values of the converted property’s [[Configurable]] and
[[Enumerable]] attributes and set the rest of the property’s attributes to their default values.

8. Else if IsDataDescriptor(current) and IsDataDescriptor(Desc) are both true, then
a. Ifthe [[Configurable]] field of current is false, then

i. Return false, if the [[Writable]] field of current is false and the [[Writable]] field of Desc is true.

ii. If the [[Writable]] field of current is false, then
1. Return false, if the [[Value]] field of Desc is present and SameValue(Desc.[[Value]],

current.[[Value]]) is false.
b. Else the [[Configurable]] field of current is true, so any change is acceptable.
9. Else IsAccessorDescriptor(current) and IsAccessorDescriptor(Desc) are both true,
a. Ifthe [[Configurable]] field of current is false, then

80 © Ecma International 2015

cecna

10.

11.

NOTE 2

9.1.7

i. Return false, if the [[Set]] field of Desc is present and SameValue(Desc.[[Set]], current.[[Set]]) is
false.
ii. Return false, if the [[Get]] field of Desc is present and SameValue(Desc.[[Get]], current.[[Get]])
is false.
If O is not undefined, then
a. For each field of Desc that is present, set the corresponding attribute of the property named P of
object O to the value of the field.
Return true.

Step 8.b allows any field of Desc to be different from the corresponding field of current if current’s [[Configurable]]
field is true. This even permits changing the [[Value]] of a property whose [[Writable]] attribute is false. This is
allowed because a true [[Configurable]] attribute would permit an equivalent sequence of calls where [[Writable]]
is first set to true, a new [[Value]] is set, and then [[Writable]] is set to false.

[[HasProperty]](P)

When the [[HasProperty]] internal method of O is called with property key P, the following steps are taken:

1.

9.1.71

Return OrdinaryHasProperty(O, P).

OrdinaryHasProperty (O, P)

When the abstract operation OrdinaryHasProperty is called with Object O and with property key P, the following
steps are taken:

AN N AW —

7.

9.1.8

Assert: IsPropertyKey(P) is true.

Let hasOwn be OrdinaryGetOwnProperty(O, P).
If hasOwn is not undefined, return true.

Let parent be O.[[GetPrototypeOf]]().
ReturnIfAbrupt(parent).

If parent is not null, then

a. Return parent.[[HasProperty]](P).

Return false.

[[Get]] (P, Receiver)

When the [[Get]] internal method of O is called with property key P and ECMAScript language value Receiver the
following steps are taken:

1
2.
3.
4

SR ANY

9.1.9

Assert: IsPropertyKey(P) is true.

Let desc be O.[[GetOwnProperty]](P).
ReturnIfAbrupt(desc).

If desc is undefined, then

a. Let parent be O.[[GetPrototypeOf]]().

b. ReturnIfAbrupt(parent).

c. If parent is null, return undefined.

d. Return parent.[[Get]](P, Receiver).

If IsDataDescriptor(desc) is true, return desc.[[Value]].
Otherwise, IsAccessorDescriptor(desc) must be true so, let getter be desc.[[Get]].
If getter is undefined, return undefined.

Return Call(getter, Receiver).

[[Set]] (P, V, Receiver)

When the [[Set]] internal method of O is called with property key P, value ¥, and ECMAScript language value
Receiver, the following steps are taken:

AW N~

Assert: IsPropertyKey(P) is true.

Let ownDesc be O.[[GetOwnProperty]](P).
ReturnIfAbrupt(ownDesc).

If ownDesc is undefined, then

a. Let parent be O.[[GetPrototypeOf]]().
b. ReturnlfAbrupt(parent).

© Ecma International 2015 81

oecna

c. If parent is not null, then
i. Return parent.[[Set]](P, V, Receiver).
d. Else,
i. Let ownDesc be the PropertyDescriptor {[[Value]]: undefined, [[Writable]]: true, [[Enumerable]]:
true, [[Configurable]]: true}.

5. [IfIsDataDescriptor(ownDesc) is true, then
If ownDesc.[[Writable]] is false, return false.
If Type(Receiver) is not Object, return false.
Let existingDescriptor be Receiver.[[GetOwnProperty]](P).
ReturnlfAbrupt(existingDescriptor).
If existingDescriptor is not undefined, then
i. If IsAccessorDescriptor(existingDescriptor) is true, return false.
ii. If existingDescriptor.[[Writable]] is false, return false.
iii. Let valueDesc be the PropertyDescriptor {[[Value]]: V}.
iv. Return Receiver.[[DefineOwnProperty]](P, valueDesc).
f. Else Receiver does not currently have a property P,

i. Return CreateDataProperty(Receiver, P, V).
Assert: IsAccessorDescriptor(ownDesc) is true.
Let setter be ownDesc.[[Set]].
If setter is undefined, return false.
. Let setterResult be Call(setter, Receiver, «V»).
0. ReturnIfAbrupt(setterResult).
1. Return true.

o0 o

— = O 00 3 O

9.1.10 [[Delete]] (P)

When the [[Delete]] internal method of O is called with property key P the following steps are taken:

Assert: IsPropertyKey(P) is true.

Let desc be O.[[GetOwnProperty]](P).
ReturnIfAbrupt(desc).

If desc is undefined, return true.

If desc.[[Configurable]] is true, then

a. Remove the own property with name P from O.
b. Return true.

6. Return false.

[I O R S

9.1.11 [[Enumerate]] ()

When the [[Enumerate]] internal method of O is called the following steps are taken:

1. Return an Iterator object (25.1.1.2) whose next method iterates over all the String-valued keys of
enumerable properties of O. The Iterator object must inherit from %lteratorPrototype% (25.1.2). The

mechanics and order of enumerating the properties is not specified but must conform to the rules specified
below.

The iterator's next method processes object properties to determine whether the property key should be
returned as an iterator value. Returned property keys do not include keys that are Symbols. Properties of the
target object may be deleted during enumeration. A property that is deleted before it is processed by the
iterator's next method is ignored. If new properties are added to the target object during enumeration, the
newly added properties are not guaranteed to be processed in the active enumeration. A property name will be
returned by the iterator's next method at most once in any enumeration.

Enumerating the properties of the target object includes enumerating properties of its prototype, and the
prototype of the prototype, and so on, recursively; but a property of a prototype is not processed if it has the
same name as a property that has already been processed by the iterator's next method. The values of
[[Enumerable]] attributes are not considered when determining if a property of a prototype object has already
been processed. The enumerable property names of prototype objects must be obtained as if by invoking the
prototype object’s [[Enumerate]] internal method. [[Enumerate]] must obtain the own property keys of the target
object as if by calling its [[OwnPropertyKeys]] internal method. Property attributes of the target object must be
obtained as if by calling its [[GetOwnProperty]] internal method.

82 © Ecma International 2015

oechna

NOTE

9.1.12

The following is an informative definition of an ECMAScript generator function that conforms to these rules:

function* enumerate (obj) {
let visited=new Set;
for (let key of Reflect.ownKeys (obj)) {
if (typeof key === "string") {
let desc = Reflect.getOwnPropertyDescriptor (obj, key) ;
if (desc) {
visited.add (key) ;
if (desc.enumerable) yield key;

}

}

let proto = Reflect.getPrototypeOf (obj)

if (proto === null) return;

for (let protoName of Reflect.enumerate (proto)) {
if (!'visited.has(protoName)) yield protoName;

}

}

[[OwnPropertyKeys]] ()

When the [[OwnPropertyKeys]] internal method of O is called the following steps are taken:

1.
2.

3.
4.
5.

9.1.13

Let keys be a new empty List.

For each own property key P of O that is an integer index, in ascending numeric index order

a. Add P as the last element of keys.

For each own property key P of O that is a String but is not an integer index, in property creation order
a. Add P as the last element of keys.

For each own property key P of O that is a Symbol, in property creation order

a. Add P as the last element of keys.

Return keys.

ObjectCreate(proto, internalSlotsList)

The abstract operation ObjectCreate with argument proto (an object or null) is used to specify the runtime
creation of new ordinary objects. The optional argument internalSlotsList is a List of the names of additional
internal slots that must be defined as part of the object. If the list is not provided, an empty List is used. This
abstract operation performs the following steps:

AN AW =

9.1.14

If internalSlotsList was not provided, let internalSlotsList be an empty List.

Let obj be a newly created object with an internal slot for each name in internalSlotsList.

Set obj’s essential internal methods to the default ordinary object definitions specified in 9.1.
Set the [[Prototype]] internal slot of 0bj to proto.

Set the [[Extensible]] internal slot of 0bj to true.

Return obj.

OrdinaryCreateFromConstructor (constructor, intrinsicDefaultProto, internalSlotsList)

The abstract operation OrdinaryCreateFromConstructor creates an ordinary object whose [[Prototype]] value
is retrieved from a constructor's prototype property, if it exists. Otherwise the intrinsic named by
intrinsicDefaultProto is used for [[Prototype]]. The optional internalSilotsList is a List of the names of additional
internal slots that must be defined as part of the object. If the list is not provided, an empty List is used. This
abstract operation performs the following steps:

1.

W

Assert: intrinsicDefaultProto is a String value that is this specification’s name of an intrinsic object. The
corresponding object must be an intrinsic that is intended to be used as the [[Prototype]] value of an
object.

Let proto be GetPrototypeFromConstructor(constructor, intrinsicDefaultProto).

ReturnIfAbrupt(proto).

Return ObjectCreate(proto, internalSlotsList).

© Ecma International 2015 83

oecna

9.1.15 GetPrototypeFromConstructor (constructor, intrinsicDefaultProto)

The abstract operation GetPrototypeFromConstructor determines the [[Prototype]] value that should be used
to create an object corresponding to a specific constructor. The value is retrieved from the constructor's
prototype property, if it exists. Otherwise the intrinsic named by intrinsicDefaultProto is used for [[Prototype]].
This abstract operation performs the following steps:

1. Assert: intrinsicDefaultProto is a String value that is this specification’s name of an intrinsic object. The
corresponding object must be an intrinsic that is intended to be used as the [[Prototype]] value of an
object.

Assert: IsConstructor (constructor) is true.

Let proto be Get(constructor, "prototype").

ReturnlfAbrupt(proto).

If Type(proto) is not Object, then

a. Let realm be GetFunctionRealm(constructor).

b. ReturnlfAbrupt(realm).

c. Let proto be realm’s intrinsic object named intrinsicDefaultProto.

6. Return proto.

[V NGV I ()

NOTE If constructor does not supply a [[Prototype]] value, the default value that is used is obtained from the Code
Realm of the constructor function rather than from the running execution context.

9.2 ECMAScript Function Objects

ECMAScript function objects encapsulate parameterized ECMAScript code closed over a lexical environment
and support the dynamic evaluation of that code. An ECMAScript function object is an ordinary object and has
the same internal slots and the same internal methods as other ordinary objects. The code of an ECMAScript
function object may be either strict mode code (10.2.1) or non-strict mode code. An ECMAScript function object
whose code is strict mode code is called a strict function. One whose code is not strict mode code is called a
non-strict function.

ECMAScript function objects have the additional internal slots listed in Table 27.

84 © Ecma International 2015

secmna

Table 27 — Internal Slots of ECMAScript Function Objects

Internal Slot

Type

Description

[[Environment]]

Lexical
Environment

The Lexical Environment that the function was closed over.
Used as the outer environment when evaluating the code

of the function.

[[FormalParameters]] | Parse Node The root parse node of the source text that defines the
function’s formal parameter list.

[[FunctionKind]] String Either "normal", "classConstructor" or
"generator".

[[ECMAScriptCode]] Parse Node The root parse node of the source text that defines the

function’s body.

Either "base" or "derived".

The Code Realm in which the function was created and
which provides any intrinsic objects that are accessed
when evaluating the function.

Defines how this references are interpreted within the
formal parameters and code body of the function. lexical
means that this refers to the this value of a lexically
enclosing function. strict means that the this value is used
exactly as provided by an invocation of the function. global
means that a this value of undefined is interpreted as a
reference to the global object.

true if this is a strict mode function, false if this is not a strict
mode function.

If the function uses super, this is the object whose
[[GetPrototypeOf]] provides the object where super
property lookups begin.

[[ConstructorKind]] String
[[Realm]] Realm Record

[[ThisMode]] (lexical, strict,

global)

[[Strict]] Boolean

[[HomeObject]] Object

All ECMAScript function objects have the [[Call]] internal method defined here. ECMAScript functions that are
also constructors in addition have the [[Construct]] internal method. ECMAScript function objects whose code is
not strict mode code have the [[GetOwnProperty]] internal method defined here.

9.2.1 [[Call]] (thisArgument, argumentsList)

The [[Call]] internal method for an ECMAScript function object F is called with parameters thisArgument and
argumentsList, a List of ECMAScript language values. The following steps are taken:

1. Assert: Fis an ECMAScript function object.

If F’s [[FunctionKind]] internal slot is "classConstructor", throw a TypeError exception.
Let callerContext be the running execution context.

Let calleeContext be PrepareForOrdinaryCall(F, undefined).

Assert: calleeContext is now the running execution context.

Perform OrdinaryCallBindThis(F, calleeContext, thisArgument).

Let result be OrdinaryCallEvaluateBody(F, argumentsList).

Remove calleeContext from the execution context stack and restore callerContext as the running execution
context.

9. Ifresult.[[type]] is return, return NormalCompletion(result.[[value]]).

10. ReturnIfAbrupt(result).

11. Return NormalCompletion(undefined).

A S i

NOTE When calleeContext is removed from the execution context stack in step 8 it must not be destroyed if it is
suspended and retained for later resumption by an accessible generator object.

9.21.1 PrepareForOrdinaryCall(F, newTarget)

When the abstract operation PrepareForOrdinaryCall is called with function object F and ECMAScript language
value newTarget, the following steps are taken:

1. Assert: Type(newTarget) is Undefined or Object.

© Ecma International 2015 85

oecind

PR B LD

10.
11.
12.
13.

9.2.1.2

Let callerContext be the running execution context.

Let calleeContext be a new ECMAScript code execution context.

Set the Function of calleeContext to F.

Let calleeRealm be the value of F’s [[Realm]] internal slot.

Set the Realm of calleeContext to calleeRealm.

Let localEnv be NewFunctionEnvironment(F, newTarget).

Set the LexicalEnvironment of calleeContext to localEnv.

Set the VariableEnvironment of calleeContext to localEnv.

If callerContext is not already suspended, Suspend callerContext.

Push calleeContext onto the execution context stack; calleeContext is now the running execution context.
NOTE Any exception objects produced after this point are associated with calleeRealm.
Return calleeContext.

OrdinaryCaliBindThis (F, calleeContext, thisArgument)

When the abstract operation OrdinaryCallBindThis is called with function object F, execution context
calleeContext, and ECMAScript value thisArgument the following steps are taken:

NN AW~

9.

9.21.3

Let thisMode be the value of F’s [[ThisMode]] internal slot.
If thisMode is lexical, return NormalCompletion(undefined).
Let calleeRealm be the value of F’s [[Realm]] internal slot.
Let localEnv be the LexicalEnvironment of calleeContext.
If thisMode is strict, let thisValue be thisArgument.
Else
a. if thisArgument is null or undefined, then
i. Let thisValue be calleeRealm.[[global This]].
b. Else
i. Let thisValue be ToObject(thisArgument).
ii. Assert: thisValue is not an abrupt completion.
iii. NOTE ToObject produces wrapper objects using calleeRealm.
Let envRec be localEnv’s EnvironmentRecord.
Assert: The next step never returns an abrupt completion because envRec.[[thisBindingStatus]] is not
"uninitialized".
Return envRec.BindThisValue(thisValue).

OrdinaryCallEvaluateBody (F, argumentsList)

When the abstract operation OrdinaryCallEvaluateBody is called with function object F and List argumentsList the
following steps are taken:

1.
2.
3.

9.2.2

Let status be FunctionDeclarationInstantiation(F, argumentsList).

ReturnIfAbrupt(status)

Return the result of EvaluateBody of the parsed code that is the value of F's [[ECMAScriptCode]] internal
slot passing F' as the argument.

[[Construct]] (argumentsList, newTarget)

The [[Construct]] internal method for an ECMAScript Function object F is called with parameters argumentsList
and newTarget. argumentsList is a possibly empty List of ECMAScript language values. The following steps are

taken:

DN AW =

N

86

Assert: F'is an ECMAScript function object.

Assert: Type(newTarget) is Object.

Let callerContext be the running execution context.

Let kind be F’s [[ConstructorKind]] internal slot.

If kind is "base™, then

a. Let thisArgument be OrdinaryCreateFromConstructor(newTarget, "$ObjectPrototype%").
b. ReturnIfAbrupt(thisArgument).

Let calleeContext be PrepareForOrdinaryCall(F, newTarget).

Assert: calleeContext is now the running execution context.

If kind is "base™", perform OrdinaryCallBindThis(F, calleeContext, thisArgument).

© Ecma International 2015

cecna

10.
11.
12.

13.

14.
15.

9.2.3

Let constructorEnv be the LexicalEnvironment of calleeContext.

Let envRec be constructorEnv’s EnvironmentRecord.

Let result be OrdinaryCallEvaluateBody(F, argumentsList).

Remove calleeContext from the execution context stack and restore callerContext as the running execution
context.

If result.[[type]] is return, then

a. If Type(result.[[value]]) is Object, return NormalCompletion(result.[[value]]).
b. Ifkind is "base", return NormalCompletion(thisArgument).

c. Ifresult.[[value]] is not undefined, throw a TypeError exception.

Else, ReturnlfAbrupt(result).

Return envRec.GetThisBinding().

FunctionAllocate (functionPrototype, strict [,functionKind])

The abstract operation FunctionAllocate requires the two arguments functionPrototype and strict. It also accepts
one optional argument, functionKind. FunctionAllocate performs the following steps:

1.
2.

W

10.
11.
12.
13.
14.
15.

9.24

Assert: Type(functionPrototype) is Object.

Assert: If functionKind is present, its value is either "normal", "non-constructor" or

"generator".

If functionKind is not present, let functionKind be "normal".

If functionKind is "non-constructor", then

a. Let functionKind be "normal".

b. Let needsConstruct be false.

Else let needsConstruct be true.

Let F be a newly created ECMAScript function object with the internal slots listed in Table 27. All of

those internal slots are initialized to undefined.

Set F’s essential internal methods to the default ordinary object definitions specified in 9.1.

Set F’s [[Call]] internal method to the definition specified in 9.2.1.

If needsConstruct is true, then

a. Set F’s [[Construct]] internal method to the definition specified in 9.2.2.

b. If functionKind is "generator", set the [[ConstructorKind]] internal slot of F to "derived".

c. Else, set the [[ConstructorKind]] internal slot of F to "base".

d. NOTE Generator functions are tagged as "derived" constructors to prevent [[Construct]] from
preallocating a generator instance. Generator instance objects are allocated when EvaluateBody is
applied to the GeneratorBody of a generator function.

Set the [[Strict]] internal slot of F to strict.

Set the [[FunctionKind]] internal slot of F to functionKind.

Set the [[Prototype]] internal slot of F to functionPrototype.

Set the [[Extensible]] internal slot of F to true.

Set the [[Realm]] internal slot of F to the running execution context’s Realm.

Return F.

Functionlinitialize (F, kind, ParameterList, Body, Scope)

The abstract operation Functioninitialize requires the arguments: a function object F, kind which is one of
(Normal, Method, Arrow), a parameter list production specified by ParameterList, a body production specified by
Body, a Lexical Environment specified by Scope. Functioninitialize performs the following steps:

1.
2.

W

—SoXNav e

_—0

Assert: F is an extensible object that does not have a 1length own property.
Let len be the ExpectedArgumentCount of ParameterList.

Let status be DefinePropertyOrThrow(F, "length", PropertyDescriptor {[[Value]]: /en, [[Writable]]:
false, [[Enumerable]]: false, [[Configurable]]: true}).

Assert: status is not an abrupt completion.

Let Strict be the value of the [[Strict]] internal slot of F.

Set the [[Environment]] internal slot of F to the value of Scope.

Set the [[FormalParameters]] internal slot of F to ParameterList .

Set the [[ECMAScriptCode]] internal slot of F to Body.

If kind is Arrow, set the [[ThisMode]] internal slot of F to lexical.

Else if Strict is true, set the [[ThisMode]] internal slot of F to strict.

Else set the [[ThisMode]] internal slot of F to global.

© Ecma International 2015 87

oecna

12. Return F.

9.2.5 FunctionCreate (kind, ParameterList, Body, Scope, Strict, prototype)

The abstract operation FunctionCreate requires the arguments: kind which is one of (Normal, Method, Arrow), a
parameter list production specified by ParameterList, a body production specified by Body, a Lexical Environment
specified by Scope, a Boolean flag Strict, and optionally, an object prototype. FunctionCreate performs the
following steps:

1. Ifthe prototype argument was not passed, then

a. Let prototype be the intrinsic object %FunctionPrototype%.
If kind is not Normal, let allocKind be "non-constructor".
Else let allocKind be "normal".

Let F be FunctionAllocate(prototype, Strict, allocKind).

Return Functionlnitialize(F, kind, ParameterList, Body, Scope).

[V N OV I NS}

9.2.6 GeneratorFunctionCreate (kind, ParameterList, Body, Scope, Strict)

The abstract operation GeneratorFunctionCreate requires the arguments: kind which is one of (Normal,
Method), a parameter list production specified by ParameterList, a body production specified by Body, a Lexical
Environment specified by Scope, and a Boolean flag Strict. GeneratorFunctionCreate performs the following
steps:

1. Let functionPrototype be the intrinsic object %Generator%.
2. Let F be FunctionAllocate(functionPrototype, Strict, "generator").
3. Return Functionlnitialize(F, kind, ParameterList, Body, Scope).

9.2.7 AddRestrictedFunctionProperties (F, realm)

The abstract operation AddRestrictedFunctionProperties is called with a function object F and Realm Record
realm as its argument. It performs the following steps:

1. Assert: real/m.[[intrinsics]].[[%ThrowTypeError%]] exists and has been initialized.

2. Let thrower be realm.[[intrinsics]].[[% ThrowTypeError%]].

3. Let status be DefinePropertyOrThrow(F, "caller", PropertyDescriptor {[[Get]]: thrower, [[Set]]:
thrower, [[Enumerable]]: false, [[Configurable]]: true}).

4. Assert: status is not an abrupt completion.

5. Return DefinePropertyOrThrow(F , "arguments", PropertyDescriptor {[[Get]]: thrower, [[Set]]:
thrower, [[Enumerable]]: false, [[Configurable]]: true}).

6. Assert: The above returned value is not an abrupt completion.

9.2.71 %ThrowTypeError% ()

The %ThrowTypeError% intrinsic is an anonymous built-in function object that is defined once for each Realm.
When %ThrowTypeError% is called it performs the following steps:

1. Throw a TypeError exception.
The value of the [[Extensible]] internal slot of a % ThrowTypeError% function is false.

The length property of a % ThrowTypeError% function has the attributes { [[Writable]]: false, [[Enumerable]]:
false, [[Configurable]]: false }.

9.2.8 MakeConstructor (F, writablePrototype, prototype)

The abstract operation MakeConstructor requires a Function argument F and optionally, a Boolean
writablePrototype and an object prototype. If prototype is provided it is assumed to already contain, if needed, a
"constructor" property whose value is F. This operation converts F into a constructor by performing the
following steps:

1. Assert: F'is an ECMAScript function object.
2. Assert: F has a [[Construct]] internal method.

88 © Ecma International 2015

cecna

Assert: Fis an extensible object that does not have a prototype own property.
If the writablePrototype argument was not provided, let writable Prototype be true.
If the prototype argument was not provided, then

B

7.
8.

9.2.9

a.

Let prototype be ObjectCreate(%ObjectPrototype%o).

b. Let status be DefinePropertyOrThrow(prototype, "constructor", PropertyDescriptor {[[Value]]:

C.

F, [[Writable]]: writablePrototype, [[Enumerable]]: false, [[Configurable]]: true }).
Assert: status is not an abrupt completion.

Let status be DefinePropertyOrThrow(F, "prototype", PropertyDescriptor {[[Value]]: prototype,
[[Writable]]: writablePrototype, [[Enumerable]]: false, [[Configurable]]: false}).

Assert: status is not an abrupt completion.

Return NormalCompletion(undefined).

MakeClassConstructor (F)

The abstract operation MakeClassConstructor with argument F performs the following steps:

AW N —

Assert: F'is an ECMAScript function object.

Assert: F’s [[FunctionKind]] internal slot is "normal™".

Set F’s [[FunctionKind]] internal slot to "classConstructor".
Return NormalCompletion(undefined).

9.2.10 MakeMethod (F, homeObject)

The abstract operation MakeMethod with arguments F and homeObject configures F as a method by performing
the following steps:

1.
2.
3.
4.

9.2.11

Assert: Fis an ECMAScript function object.

Assert: Type(homeObject) is Object.

Set the [[HomeObject]] internal slot of F to homeObject.
Return NormalCompletion(undefined).

SetFunctionName (F, name, prefix)

The abstract operation SetFunctionName requires a Function argument F, a String or Symbol argument name
and optionally a String argument prefix. This operation adds a name property to F by performing the following

steps:
1.

2.
3.
4

5.
6.

7.

Assert: F is an extensible object that does not have a name own property.
Assert: Type(name) is either Symbol or String.

Assert: If prefix was passed then Type(prefix) is String.

If Type(name) is Symbol, then

a.
b.
c.

Let description be name’s [[Description]] value.
If description is undefined, let name be the empty String.
Else, let name be the concatenation of " [", description, and "] ".

If prefix was passed, then

a.

Let name be the concatenation of prefix, code unit 0x0020 (SPACE), and name.

Return DefinePropertyOrThrow(F, "name", PropertyDescriptor {[[Value]]: name, [[Writable]]: false,
[[Enumerable]]: false, [[Configurable]]: true}).
Assert: the result is never an abrupt completion.

9.2.12 FunctionDeclarationinstantiation(func, argumentsList)

NOTE 1

When an execution context is established for evaluating an ECMAScript function a new function Environment
Record is created and bindings for each formal parameter are instantiated in that Environment Record. Each
declaration in the function body is also instantiated. If the function’s formal parameters do not include any default
value initializers then the body declarations are instantiated in the same Environment Record as the parameters.
If default value parameter initializers exist, a second Environment Record is created for the body declarations.
Formal parameters and functions are initialized as part of FunctionDeclarationInstantiation. All other bindings are
initialized during evaluation of the function body.

© Ecma International 2015 89

oecind

FunctionDeclarationInstantiation is performed as follows using arguments func and argumentsList. func is the
function object for which the execution context is being established.

90

PN R L=

10.
11.
12.
13.
14.
15.
16.

17.
18.

19.

20.

21.

22.

Let calleeContext be the running execution context.
Let env be the LexicalEnvironment of calleeContext.
Let envRec be env’s EnvironmentRecord.
Let code be the value of the [[ECMAScriptCode]] internal slot of func.
Let strict be the value of the [[Strict]] internal slot of func.
Let formals be the value of the [[FormalParameters]] internal slot of func.
Let parameterNames be the BoundNames of formals.
If parameterNames has any duplicate entries, let hasDuplicates be true. Otherwise, let hasDuplicates be
false.
Let simpleParameterList be IsSimpleParameterList of formals.
Let hasParameterExpressions be ContainsExpression of formals.
Let varNames be the VarDeclaredNames of code.
Let varDeclarations be the VarScopedDeclarations of code.
Let lexicalNames be the LexicallyDeclaredNames of code.
Let functionNames be an empty List.
Let functionsTolnitialize be an empty List.
For each d in varDeclarations, in reverse list order do
a. If d is neither a VariableDeclaration or a ForBinding, then
i. Assert: d is either a FunctionDeclaration or a GeneratorDeclaration.
ii. Let fnn be the sole element of the BoundNames of d.
iii. If fn is not an element of functionNames, then
1. Insert fn as the first element of functionNames.
2. NOTE If there are multiple FunctionDeclarations or GeneratorDeclarations for the same name, the
last declaration is used.
3. Insert d as the first element of functionsTolnitialize.
Let argumentsObjectNeeded be true.
If the value of the [[ThisMode]] internal slot of func is lexical, then
a. NOTE Arrow functions never have an arguments objects.
b. Let argumentsObjectNeeded be false.
Else if "arguments" is an element of parameterNames, then
a. Let argumentsObjectNeeded be false.
Else if hasParameterExpressions is false, then
a. If "arguments" is an element of functionNames or if "arguments" is an element of
lexicalNames, then
i. Let argumentsObjectNeeded be false.
For each String paramName in parameterNames, do
a. Let alreadyDeclared be envRec.HasBinding(paramName).
b. NOTE Early errors ensure that duplicate parameter names can only occur in non-strict functions that
do not have parameter default values or rest parameters.
c. IfalreadyDeclared is false, then
i. Let status be envRec.CreateMutableBinding(paramName).
ii. If hasDuplicates is true, then
1. Let status be envRec.InitializeBinding(paramName, undefined).
iii. Assert: status is never an abrupt completion for either of the above operations.
If argumentsObjectNeeded is true, then
a. Ifstrict is true or if simpleParameterList is false, then
i. Let ao be CreateUnmappedArgumentsObject(argumentsList).
b. Else,
i. NOTE mapped argument object is only provided for non-strict functions that don’t have a rest
parameter, any parameter default value initializers, or any destructured parameters .
ii. Let ao be CreateMapped ArgumentsObject(func, formals, argumentsList, env).
c. ReturnIfAbrupt(ao).
d. [Ifstrict is true, then
i. Let status be envRec.CreatelmmutableBinding("arguments").
e. Else,
i. Let status be envRec.CreateMutableBinding("arguments").
f. Assert: status is never an abrupt completion.

© Ecma International 2015

»ecind

23

24.

25.

26.
27.

28.

29.
30.

31.
32.
33.
34.
35.

g. Call envRec.InitializeBinding("arguments", ao).
h. Append "arguments" to parameterNames.
. Let iteratorRecord be Record {[[iterator]]: CreateListlterator(argumentsList), [[done]]: false}.
If hasDuplicates is true, then
a. Let formalStatus be IteratorBindinglnitialization for formals with iteratorRecord and undefined as

arguments.

Else,

a. Let formalStatus be IteratorBindinglnitialization for formals with iteratorRecord and env as
arguments.

ReturnlfAbrupt(formalStatus).
If hasParameterExpressions is false, then
a. NOTE Only a single lexical environment is needed for the parameters and top-level vars.
b. Let instantiatedVarNames be a copy of the List parameterNames.
c. For each n in varNames, do
i. If nis not an element of instantiatedVarNames, then
1. Append n to instantiatedVarNames.
2. Let status be envRec.CreateMutableBinding(n).
3. Assert: status is never an abrupt completion.
4. Call envRec.InitializeBinding(n, undefined).
d. Let varEnv be env.
e. Let varEnvRec be envRec.
Else,
a. NOTE A separate Environment Record is needed to ensure that closures created by expressions in
the formal parameter list do not have visibility of declarations in the function body.
Let varEnv be NewDeclarativeEnvironment(env).
Let varEnvRec be varEnv’s EnvironmentRecord.
Set the VariableEnvironment of calleeContext to varEnv.
Let instantiatedVarNames be a new empty List.
For each n in varNames, do
i. If nis not an element of instantiatedVarNames, then
1. Append n to instantiatedVarNames.
2. Let status be varEnvRec.CreateMutableBinding(n).
3. Assert: status is never an abrupt completion.
4. 1Ifnis not an element of parameterNames or if n is an element of functionNames, let
initialValue be undefined.
5. else,
a. Let initialValue be envRec.GetBindingValue(n, false).
b. ReturnIfAbrupt(initialValue).
6. Call varEnvRec.InitializeBinding(n, initialValue).

mo a0 o

7. NOTE vars whose names are the same as a formal parameter, initially have the same value

as the corresponding initialized parameter.
NOTE: Annex B.3.3 adds additional steps at this point.
If strict is false, then
a. Let lexEnv be NewDeclarativeEnvironment(varEnv).
b. NOTE: Non-strict functions use a separate lexical Environment Record for top-level lexical

declarations so that a direct eval (see 12.3.4.1) can determine whether any var scoped declarations

introduced by the eval code conflict with pre-existing top-level lexically scoped declarations. This is
needed for strict functions because a strict direct eval always places all declarations into a new
Environment Record.
Else, let lexEnv be varEnv.
Let lexEnvRec be lexEnv’s EnvironmentRecord.
Set the LexicalEnvironment of calleeContext to lexEnv.
Let lexDeclarations be the LexicallyScopedDeclarations of code.
For each element d in lexDeclarations do
a. NOTE A lexically declared name cannot be the same as a function/generator declaration, formal
parameter, or a var name. Lexically declared names are only instantiated here but not initialized.
b. For each element dn of the BoundNames of d do
i. If IsConstantDeclaration of d is true, then
1. Let status be lexEnvRec.CreatelmmutableBinding(dn, true).
ii. Else,

© Ecma International 2015

not

91

>eCma

1. Let status be lexEnvRec.CreateMutableBinding(dn, false).
c. Assert: status is never an abrupt completion.
36. For each parsed grammar phrase f'in functionsTolnitialize, do
a. Let fn be the sole element of the BoundNames of f.
b. Let fo be the result of performing InstantiateFunctionObject for f with argument /exEnv.
c. Let status be varEnvRec.SetMutableBinding(fn, fo, false).
d. Assert: status is never an abrupt completion.
37. Return NormalCompletion(empty).

NOTE 2 B.3.3 provides an extension to the above algorithm that is necessary for backwards compatibility with web
browser implementations of ECMAScript that predate ECMAScript 2015.

NOTE 3 Parameter Initializers may contain direct eval expressions (12.3.4.1). Any top level declarations of such evals are
only visible to the eval code (10.2). The creation of the environment for such declarations is described in 14.1.18.

9.3 Built-in Function Objects

The built-in function objects defined in this specification may be implemented as either ECMAScript function
objects (9.2) whose behaviour is provided using ECMAScript code or as implementation provided exotic
function objects whose behaviour is provided in some other manner. In either case, the effect of calling such
functions must conform to their specifications. An implementation may also provide additional built-in function
objects that are not defined in this specification.

If a built-in function object is implemented as an exotic object it must have the ordinary object behaviour
specified in 9.1. All such exotic function objects also have [[Prototype]], [[Extensible]], and [[Realm]] internal
slots.

Unless otherwise specified every built-in function object has the %FunctionPrototype% object (19.2.3) as the
initial value of its [[Prototype]] internal slot.

The behaviour specified for each built-in function via algorithm steps or other means is the specification of the
function body behaviour for both [[Call]] and [[Construct]] invocations of the function. However, [[Construct]]
invocation is not supported by all built-in functions. For each built-in function, when invoked with [[Call]], the
[[Calll] thisArgument provides the this value, the [[Call]] argumentsList provides the named parameters, and the
NewTarget value is undefined. When invoked with [[Construct]], the this value is uninitialized, the [[Construct]]
argumentsList provides the named parameters, and the [[Construct]] newTarget parameter provides the
NewTarget value. If the built-in function is implemented as an ECMAScript function object then this specified
behaviour must be implemented by the ECMAScript code that is the body of the function. Built-in functions that
are ECMAScript function objects must be strict mode functions. If a built-in constructor has any [[Call]]
behaviour other than throwing a TypeError exception, an ECMAScript implementation of the function must be
done in a manner that does not cause the function’s [[FunctionKind]] internal slot to have the value
"classConstructor".

Built-in function objects that are not identified as constructors do not implement the [[Construct]] internal method
unless otherwise specified in the description of a particular function. When a built-in constructor is called as part
of a new expression the argumentsList parameter of the invoked [[Construct]] internal method provides the values
for the built-in constructor's named parameters.

Built-in functions that are not constructors do not have a prototype property unless otherwise specified in the
description of a particular function.

If a builtsin function object is not implemented as an ECMAScript function it must provide [[Call]] and
[[Construct]] internal methods that conform to the following definitions:

9.3.1 [[Call]] (thisArgument, argumentsList)

The [[Call]] internal method for a builtsin function object F is called with parameters thisArgument and
argumentsList, a List of ECMAScript language values. The following steps are taken:

1. Let callerContext be the running execution context.

92 © Ecma International 2015

e@Cinha

If callerContext is not already suspended, Suspend callerContext.
Let calleeContext be a new ECMAScript code execution context.
Set the Function of calleeContext to F.
Let calleeRealm be the value of F’s [[Realm]] internal slot.
Set the Realm of calleeContext to calleeRealm.
Perform any necessary implementation defined initialization of calleeContext.
Push calleeContext onto the execution context stack; calleeContext is now the running execution context.
Let result be the Completion Record that is the result of evaluating F in an implementation defined
manner that conforms to the specification of F. thisArgument is the this value, argumentsList provides the
named parameters, and the NewTarget value is undefined.

. Remove calleeContext from the execution context stack and restore callerContext as the running execution
context.

11. Return result.

PR B LD

—
=]

NOTE When calleeContext is removed from the execution context stack it must not be destroyed if it has been
suspended and retained by an accessible generator object for later resumption.

9.3.2 [[Construct]] (argumentsList, newTarget)

The [[Construct]] internal method for built-in function object F is called with parameters argumentsList and
newTarget. The steps performed are the same as [[Call]] (see 9.3.1) except that step 9 is replaced by:

9. Let result be the Completion Record that is the result of evaluating F in an implementation defined manner that
conforms to the specification of F. The this value is uninitialized, argumentsList provides the named parameters,
and newTarget provides the NewTarget value.

9.3.3 CreateBuiltinFunction(realm, steps, prototype, internalSlotsList)

The abstract operation CreateBuiltinFunction takes arguments realm, prototype, and steps. The optional argument
internalSlotsList is a List of the names of additional internal slots that must be defined as part of the object. If the
list is not provided, an empty List is used. CreateBuiltinFunction returns a built-in function object created by the
following steps:

1. Assert: realm is a Realm Record.

2. Assert: steps is either a set of algorithm steps or other definition of a functions behaviour provided in this
specification.

3. Let func be a new built-in function object that when called performs the action described by steps. The
new function object has internal slots whose names are the elements of internalSlotsList. The initial value
of each of those internal slots is undefined.

4. Set the [[Realm]] internal slot of func to realm.

5. Set the [[Prototype]] internal slot of func to prototype.

6. Return func.

Each built-in function defined in this specification is created as if by calling the CreateBuiltinFunction abstract
operation, unless otherwise specified.

9.4 Built-in Exotic Object Internal Methods and Slots

This specification defines several kinds of built-in exotic objects. These objects generally behave similar to
ordinary objects except for a few specific situations. The following exotic objects use the ordinary object internal
methods except where it is explicitly specified otherwise below:

9.4.1 Bound Function Exotic Objects

A bound function is an exotic object that wraps another function object. A bound function is callable (it has a
[[Call]] internal method and may have a [[Construct]] internal method). Calling a bound function generally results
in a call of its wrapped function.

Bound function objects do not have the internal slots of ECMAScript function objects defined in Table 27.
Instead they have the internal slots defined in Table 28.

© Ecma International 2015 93

>eCma

Table 28 — Internal Slots of Exotic Bound Function Objects

Internal Slot Type Description

[[BoundTargetFunction]] Callable Object | The wrapped function object.

[[BoundThis]] Any The value that is always passed as the this value
when calling the wrapped function.

[[BoundArguments]] List of Any A list of values whose elements are used as the first
arguments to any call to the wrapped function.

Unlike ECMAScript function objects, bound function objects do not use an alternative definition of the
[[GetOwnProperty]] internal methods. Bound function objects provide all of the essential internal methods as
specified in 9.1. However, they use the following definitions for the essential internal methods of function objects.

9.4.1.1 [[Call]] (thisArgument, argumentsList)

When the [[Call]] internal method of an exotic bound function object, F, which was created using the bind
function is called with parameters thisdrgument and argumentsList, a List of ECMAScript language values, the
following steps are taken:

Let target be the value of F’s [[BoundTargetFunction]] internal slot.

Let boundThis be the value of F’s [[BoundThis]] internal slot.

Let boundArgs be the value of F’s [[BoundArguments]] internal slot.

Let args be a new list containing the same values as the list boundArgs in the same order followed by the
same values as the list argumentsList in the same order.

5. Return Call(target, boundThis, args).

B W =

9.4.1.2 [[Construct]] (argumentsList, newTarget)

When the [[Construct]] internal method of an exotic bound function object, F that was created using the bind
function is called with a list of arguments argumentsList and newTarget, the following steps are taken:

1. Let target be the value of F’s [[BoundTargetFunction]] internal slot.

2. Assert: target has a [[Construct]] internal method.

3. Let boundArgs be the value of F’s [[BoundArguments]] internal slot.

4. Let args be a new list containing the same values as the list houndArgs in the same order followed by the
same values as the list argumentsList in the same order.

If SameValue(F, newTarget) is true, let newTarget be target.

6. Return Construct(target, args, newTarget).

(9]

9.41.3 BoundFunctionCreate (targetFunction, boundThis, boundArgs)

The abstract operation BoundFunctionCreate with arguments targetFunction, boundThis and boundArgs is used
to specify the creation of new Bound Function exotic objects. It performs the following steps:

Assert: Type(targetFunction) is Object.

Let proto be targetFunction.[[GetPrototypeOf]]().
ReturnIfAbrupt(proto).

Let obj be a newly created object.

Set 0bj’s essential internal methods to the default ordinary object definitions specified in 9.1.
Set the [[Call]] internal method of 0bj as described in 9.4.1.1.

If targetFunction has a [[Construct]] internal method, then

a. Set the [[Construct]] internal method of 0bj as described in 9.4.1.2.
8. Set the [[Prototype]] internal slot of obj to proto.

9. Set the [[Extensible]] internal slot of 0bj to true.

10. Set the [[BoundTargetFunction]] internal slot of 0bj to targetFunction.
11. Set the [[BoundThis]] internal slot of 0bj to the value of boundThis.

12. Set the [[BoundArguments]] internal slot of obj to boundArgs.

13. Return obj.

Nk L=

94 © Ecma International 2015

oechna

9.4.2 Array Exotic Objects

An Array object is an exotic object that gives special treatment to array index property keys (see 6.1.7). A
property whose property name is an array index is also called an element. Every Array object has a 1length
property whose value is always a nonnegative integer less than 2*2. The value of the length property is
numerically greater than the name of every own property whose name is an array index; whenever an own
property of an Array object is created or changed, other properties are adjusted as necessary to maintain this
invariant. Specifically, whenever an own property is added whose name is an array index, the value of the
length property is changed, if necessary, to be one more than the numeric value of that array index; and
whenever the value of the length property is changed, every own property whose name is an array index
whose value is not smaller than the new length is deleted. This constraint applies only to own properties of an
Array object and is unaffected by 1length or array index properties that may be inherited from its prototypes.

NOTE A String property name P is an array index if and only if ToString(ToUint32(P)) is equal to P and ToUint32(P) is
not equal to 2°*-1.

Array exotic objects always have a non-configurable property named "length".

Array exotic objects provide an alternative definition for the [[DefineOwnProperty]] internal method. Except for
that internal method, Array exotic objects provide all of the other essential internal methods as specified in 9.1.

9.4.21 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of an Array exotic object 4 is called with property key P, and
Property Descriptor Desc the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. IfPis "length", then
a. Return ArraySetLength(4, Desc).
3. Else if P is an array index, then
a. Let oldLenDesc be OrdinaryGetOwnProperty(4, "length").
b. Assert: oldLenDesc will never be undefined or an accessor descriptor because Array objects are
created with a length data property that cannot be deleted or reconfigured.
Let oldLen be oldLenDesc.[[Value]].
Let index be ToUint32(P).
Assert: index will never be an abrupt completion.
If index > oldLen and oldLenDesc.[[Writable]] is false, return false.
Let succeeded be OrdinaryDefineOwnProperty(4, P, Desc).
Assert: succeeded is not an abrupt completion.
If succeeded is false, return false.
If index > oldLen
i. Set oldLenDesc.[[Value]] to index + 1.
ii. Let succeeded be OrdinaryDefineOwnProperty(4, "length", oldLenDesc).
iii. Assert: succeeded is true.
k. Return true.
4. Return OrdinaryDefineOwnProperty(4, P, Desc).

TrEE o a0

9.4.2.2 ArrayCreate(length, proto)

The abstract operation ArrayCreate with argument length (a positive integer) and optional argument proto is
used to specify the creation of new Array exotic objects. It performs the following steps:

1. Assert: length is an integer Number > 0.

2. Iflength is —0, let length be +0.

3. If length>2*-1, throw a RangeError exception.

4. If the proto argument was not passed, let proto be the intrinsic object %ArrayPrototype%.

5. Let A be a newly created Array exotic object.

6. Set A’s essential internal methods except for [[DefineOwnProperty]] to the default ordinary object
definitions specified in 9.1.

7. Set the [[DefineOwnProperty]] internal method of 4 as specified in 9.4.2.1.

8. Set the [[Prototype]] internal slot of 4 to proto.

© Ecma International 2015 95

oecind

9.
10.

11.
12.

9.4.2.3

Set the [[Extensible]] internal slot of 4 to true.

Perform OrdinaryDefineOwnProperty(4, "length", PropertyDescriptor{[[Value]]: length, [[Writable]]:
true, [[Enumerable]]: false, [[Configurable]]: false}).

Assert: the preceding step never produces an abrupt completion.

Return 4.

ArraySpeciesCreate(originalArray, length)

The abstract operation ArraySpeciesCreate with arguments originaldrray and length is used to specify the
creation of a new Array object using a constructor function that is derived from originaldrray. It performs the
following steps:

NN AW~

o]

NOTE

9.4.24

Assert: length is an integer Number > 0.
If length is —0, let length be +0.
Let C be undefined.
Let isArray be IsArray(originalArray).
ReturnlfAbrupt(isdArray).
If isArray is true, then
a. Let C be Get(originalArray, "constructor").
b. ReturnlfAbrupt(C).
c. IfIsConstructor(C) is true, then
i. Let thisRealm be the running execution context’s Realm.
ii. Let realmC be GetFunctionRealm(C).
iii. ReturnIfAbrupt(realmC).
iv. If thisRealm and realmC are not the same Realm Record, then
1. If SameValue(C, realmC.[[intrinsics]].[[%Array%]]) is true, let C be undefined.
d. If Type(C) is Object, then
i. Let C be Get(C, @@species).
ii. ReturnIfAbrupt(C).
iii. If C is null, let C be undefined.
If C is undefined, return ArrayCreate(length).
If IsConstructor(C) is false, throw a TypeError exception.
Return Construct(C, «lengthy).

If originalArray was created using the standard built-in Array constructor for a Realm that is not the Realm of
the running execution context, then a new Array is created using the Realm of the running execution context.
This maintains compatibility with Web browsers that have historically had that behaviour for the Array.prototype
methods that now are defined using ArraySpeciesCreate.

ArraySetLength(A, Desc)

When the abstract operation ArraySetLength is called with an Array exotic object 4, and Property Descriptor
Desc the following steps are taken:

1.

SO0 ENAUL R LD

13.
14.

96

If the [[Value]] field of Desc is absent, then

a. Return OrdinaryDefineOwnProperty(4, "length", Desc).
Let newLenDesc be a copy of Desc.

Let newLen be ToUint32(Desc.[[Value]]).
ReturnIfAbrupt(newLen).

Let numberLen be ToNumber(Desc.[[Value]]).
ReturnIfAbrupt(newLen).

If newLen # numberLen, throw a RangeError exception.

Set newLenDesc.[[Value]] to newLen.

Let oldLenDesc be OrdinaryGetOwnProperty(4, "length").
Assert: oldLenDesc will never be undefined or an accessor descriptor because Array objects are created
with a length data property that cannot be deleted or reconfigured.

. Let oldLen be oldLenDesc.[[Value]].

If newLen >oldLen, then

a. Return OrdinaryDefineOwnProperty(4, "length", newLenDesc).

If oldLenDesc.[[Writable]] is false, return false.

If newLenDesc.[[Writable]] is absent or has the value true, let newWritable be true.

© Ecma International 2015

e@Cinha

15. Else,
a. Need to defer setting the [[Writable]] attribute to false in case any elements cannot be deleted.
b. Let newWritable be false.
c. Set newLenDesc.[[Writable]] to true.
16. Let succeeded be OrdinaryDefineOwnProperty(4, "length", newLenDesc).
17. Assert: succeeded is not an abrupt completion.
18. If succeeded is false, return false.
19. While newLen < oldLen repeat,
Set oldLen to oldLen — 1.
Let deleteSucceeded be A.[[Delete]](ToString(oldLen)).
Assert: deleteSucceeded is not an abrupt completion.
If deleteSucceeded is false, then
i. Set newLenDesc.[[Value]] to oldLen + 1.
ii. If newWritable is false, set newLenDesc.[[Writable]] to false.
iii. Let succeeded be OrdinaryDefineOwnProperty(4, "length", newLenDesc).
iv. Assert: succeeded is not an abrupt completion.
v. Return false.
20. If newWritable is false, then
a. Return OrdinaryDefineOwnProperty(4, "length", PropertyDescriptor {[[Writable]]: false}). This
call will always return true.
21. Return true.

o o

NOTE In steps 3 and 4, if Desc.[[Value]] is an object then its valueOf method is called twice. This is legacy behaviour
that was specified with this effect starting with the 2" Edition of this specification.

9.4.3 String Exotic Objects

A String object is an exotic object that encapsulates a String value and exposes virtual integer indexed data
properties corresponding to the individual code unit elements of the String value. Exotic String objects always
have a data property named "length" whose value is the number of code unit elements in the encapsulated
String value. Both the code unit data properties and the "length" property are non-writable and non-
configurable.

Exotic String objects have the same internal slots as ordinary objects. They also have a [[StringData]] internal
slot.

Exotic String objects provide alternative definitions for the following internal methods. All of the other exotic
String object essential internal methods that are not defined below are as specified in 9.1.

9.4.31 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of an exotic String object S is called with property key P the
following steps are taken:

1. Assert: IsPropertyKey(P) is true.

2. Let desc be OrdinaryGetOwnProperty(S, P).
3. [Ifdesc is not undefined return desc.

4. Return StringGetIndexProperty(S, P).

9.4.31.1 StringGetindexProperty (S, P)

When the abstract operation StringGetindexProperty is called with an exotic String object S and with property
key P, the following steps are taken:

If Type(P) is not String, return undefined.

Let index be CanonicalNumericIndexString (P).

Assert: index is not an abrupt completion.

If index is undefined, return undefined.

If IsInteger(index) is false, return undefined.

If index = —0, return undefined.

Let str be the String value of the [[StringData]] internal slot of S.

Nk W=

© Ecma International 2015 97

ceca

Let /en be the number of elements in s¢r.

. Ifindex <0 or len < index, return undefined.

10. Let resultStr be a String value of length 1, containing one code unit from str, specifically the code unit at
index index.

11. Return a PropertyDescriptor{ [[Value]]: resultStr, [[Enumerable]]: true, [[Writable]]: false,

[[Configurable]]: false }.

\O oo

9.4.3.2 [[HasProperty]](P)

When the [[HasProperty]] internal method of an exotic String object S is called with property key P, the following
steps are taken:

1. Let elementDesc be StringGetIndexProperty(S, P).
2. If elementDesc is not undefined, return true.
3. Return OrdinaryHasProperty(S, P)..

9.4.3.3 [[OwnPropertyKeys]] ()

When the [[OwnPropertyKeys]] internal method of a String exotic object O is called the following steps are
taken:

Let keys be a new empty List.

Let str be the String value of the [[StringData]] internal slot of O.

Let len be the number of elements in str.

For each integer i starting with 0 such that i < /en, in ascending order,

a. Add ToString(i) as the last element of keys

5. For each own property key P of O such that P is an integer index and Tolnteger(P) > /en, in ascending
numeric index order,
a. Add P as the last element of keys.

6. For each own property key P of O such that Type(P) is String and P is not an integer index, in property
creation order,
a. Add P as the last element of keys.

7. For each own property key P of O such that Type(P) is Symbol, in property creation order,
a. Add P as the last element of keys.

8. Return keys.

B W =

9.4.3.4 StringCreate(value, prototype)

The abstract operation StringCreate with arguments value and prototype is used to specify the creation of new
exotic String objects. It performs the following steps:

ReturnIfAbrupt(prototype).

Assert: Type(value) is String.

Let S be a newly created String exotic object.

Set the [[StringData]] internal slot of S to value.

Set S’s essential internal methods to the default ordinary object definitions specified in 9.1.

Set the [[GetOwnProperty]] internal method of S as specified in 9.4.3.1.

Set the [[HasProperty]] internal method of S as specified in 9.4.3.2.

Set the [[OwnPropertyKeys]] internal method of S as specified in 9.4.3.3.

. Set the [[Prototype]] internal slot of S to prototype.

10. Set the [[Extensible]] internal slot of S to true.

11. Let length be the number of code unit elements in value.

12. Let status be DefinePropertyOrThrow(S, "length", PropertyDescriptor {[[Value]]: length, [[Writable]]:
false, [[Enumerable]]: false, [[Configurable]]: false }).

13. Assert: status is not an abrupt completion.

14. Return S.

VP NAU R W~

9.4.4 Arguments Exotic Objects

Most ECMAScript functions make an arguments objects available to their code. Depending upon the
characteristics of the function definition, its argument object is either an ordinary object or an arguments exotic

98 © Ecma International 2015

oechna

object. An arguments exotic object is an exotic object whose array index properties map to the formal
parameters bindings of an invocation of its associated ECMAScript function.

Arguments exotic objects have the same internal slots as ordinary objects. They also have a [[ParameterMap]]
internal slot. Ordinary arguments objects also have a [[ParameterMap]] internal slot whose value is always
undefined. For ordinary argument objects the [[ParameterMap]] internal slot is only used by
Object.prototype.toString (19.1.3.6) to identify them as such.

Arguments exotic objects provide alternative definitions for the following internal methods. All of the other exotic
arguments object essential internal methods that are not defined below are as specified in 9.1

NOTE 1 For non-strict functions the integer indexed data properties of an arguments object whose numeric name values
are less than the number of formal parameters of the corresponding function object initially share their values
with the corresponding argument bindings in the function’s execution context. This means that changing the
property changes the corresponding value of the argument binding and vice-versa. This correspondence is
broken if such a property is deleted and then redefined or if the property is changed into an accessor property.
For strict mode functions, the values of the arguments object’s properties are simply a copy of the arguments
passed to the function and there is no dynamic linkage between the property values and the formal parameter
values.

NOTE 2 The ParameterMap object and its property values are used as a device for specifying the arguments object
correspondence to argument bindings. The ParameterMap object and the objects that are the values of its
properties are not directly observable from ECMAScript code. An ECMAScript implementation does not need to
actually create or use such objects to implement the specified semantics.

NOTE 3 Arguments objects for strict mode functions define non-configurable accessor properties named "caller" and
"callee" which throw a TypeError exception on access. The "callee" property has a more specific
meaning for non-strict functions and a "caller" property has historically been provided as an implementation-
defined extension by some ECMAScript implementations. The strict mode definition of these properties exists to
ensure that neither of them is defined in any other manner by conforming ECMAScript implementations.

9.4.4.1 [[GetOwnProperty]] (P)

The [[GetOwnProperty]] internal method of an arguments exotic object when called with a property key P
performs the following steps:

Let args be the arguments object.

Let desc be OrdinaryGetOwnProperty(args, P).

If desc is undefined, return desc.

Let map be the value of the [[ParameterMap]] internal slot of the arguments object.

Let isMapped be HasOwnProperty(map, P).

Assert: isMapped is never an abrupt completion.

If the value of isMapped is true, then

a. Set desc.[[Value]] to Get(map, P).

8. [IfIsDataDescriptor(desc) is true and P is "caller" and desc.[[Value]] is a strict mode Function object,
throw a TypeError exception.

9. Return desc.

Nk L=

If an implementation does not provide a built-in caller property for argument exotic objects then step 8 of this
algorithm is must be skipped.

9.4.4.2 [[DefineOwnProperty]] (P, Desc)

The [[DefineOwnProperty]] internal method of an arguments exotic object when called with a property key P and
Property Descriptor Desc performs the following steps:

Let args be the arguments object.

Let map be the value of the [[ParameterMap]] internal slot of the arguments object.
Let isMapped be HasOwnProperty(map, P).

Let allowed be OrdinaryDefineOwnProperty(args, P, Desc).
ReturnIfAbrupt(allowed).

I S I S

© Ecma International 2015 99

oecind

N

8.
9.443

If allowed is false, return false.
If the value of isMapped is true, then
a. IfIsAccessorDescriptor(Desc) is true, then
i. Call map.[[Delete]](P).
b. Else
i. If Desc.[[Value]] is present, then
1. Let setStatus be Set(map, P, Desc.[[Value]], false).
2. Assert: setStatus is true because formal parameters mapped by argument objects are always
writable.
ii. If Desc.[[Writable]] is present and its value is false, then
1. Call map.[[Delete]](P).
Return true.

[[Get]] (P, Receiver)

The [[Get]] internal method of an arguments exotic object when called with a property key P and ECMAScript
language value Receiver performs the following steps:

[I O R S

9.44.4

Let args be the arguments object.

Let map be the value of the [[ParameterMap]] internal slot of the arguments object.

Let isMapped be HasOwnProperty(map, P).

Assert: isMapped is not an abrupt completion.

If the value of isMapped is false, then

a. Return the result of calling the default ordinary object [[Get]] internal method (9.1.8) on args passing
P and Receiver as the arguments.

Else map contains a formal parameter mapping for P,

a. Return Get(map, P).

[[Set]] (P, V, Receiver)

The [[Set]] internal method of an arguments exotic object when called with property key P, value V, and
ECMAScript language value Receiver performs the following steps:

1.
2.

3.

9.4.4.5

Let args be the arguments object.

If SameValue(args, Receiver) is false, then

a. Let isMapped be false.

Else,

a. Let map be the value of the [[ParameterMap]] internal slot of the arguments object.

b. Let isMapped be HasOwnProperty(map, P).

c. Assert: isMapped is not an abrupt completion.

If isMapped is true, then

a. Let setStatus be Set(map, P, V, false).

b. Assert: setStatus is true because formal parameters mapped by argument objects are always writable.
Return the result of calling the default ordinary object [[Set]] internal method (9.1.9) on args passing P, V'
and Receiver as the arguments.

[[Delete]] (P)

The [[Delete]] internal method of an arguments exotic object when called with a property key P performs the
following steps:

AW N —

9]

100

Let map be the value of the [[ParameterMap]] internal slot of the arguments object.

Let isMapped be HasOwnProperty(map, P).

Assert: isMapped is not an abrupt completion.

Let result be the result of calling the default [[Delete]] internal method for ordinary objects (9.1.10) on the
arguments object passing P as the argument.

ReturnIfAbrupt(result).

If result is true and the value of isMapped is true, then

a. Call map.[[Delete]](P).

Return result.

© Ecma International 2015

»ecind

9.4.4.6 CreateUnmappedArgumentsObject(argumentsList)

The abstract operation CreateUnmappedArgumentsObject called with an argument argumentsList performs the
following steps:

Let len be the number of elements in argumentsList.

Let obj be ObjectCreate(%ObjectPrototype%, «[[ParameterMap]]»).

Set 0bj’s [[ParameterMap]] internal slot to undefined.

Perform DefinePropertyOrThrow(obj, "length", PropertyDescriptor{[[Value]]: len, [[Writable]]: true,

[[Enumerable]]: false, [[Configurable]]: true}).

Let index be 0.

6. Repeat while index < len,
a. Let val be argumentsList[index].
b. Perform CreateDataProperty(obj, ToString(index), val).
c. Let index be index + 1

7. Perform DefinePropertyOrThrow(obj, @@iterator, PropertyDescriptor {[[Value]]:%ArrayProto_values%,
[[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true}).

8. Perform DefinePropertyOrThrow(obj, "caller", PropertyDescriptor {[[Get]]: %ThrowTypeError%,
[[Set]]: %ThrowTypeError%, [[Enumerable]]: false, [[Configurable]]: false}).

9. Perform DefinePropertyOrThrow(obj, "callee", PropertyDescriptor {[[Get]]: %ThrowTypeError%,
[[Set]]: %ThrowTypeError%, [[Enumerable]]: false, [[Configurable]]: false}).

10. Assert: the above property definitions will not produce an abrupt completion.

11. Return obj

AW N —

9]

9.4.4.7 CreateMappedArgumentsObject (func, formals, argumentsList, env)

The abstract operation CreateMappedArgumentsObject is called with object func, parsed grammar phrase formals,
List argumentsList, and Environment Record env. The following steps are performed:

1. Assert: formals does not contain a rest parameter, any binding patterns, or any initializers. It may contain
duplicate identifiers.
Let /en be the number of elements in argumentsList.
Let obj be a newly created arguments exotic object with a [[ParameterMap]] internal slot.
Set the [[GetOwnProperty]] internal method of 0bj as specified in 9.4.4.1.
Set the [[DefineOwnProperty]] internal method of 0bj as specified in 9.4.4.2.
Set the [[Get]] internal method of 0bj as specified in 9.4.4.3.
Set the [[Set]] internal method of 0bj as specified in 9.4.4.4.
Set the [[Delete]] internal method of 0bj as specified in 9.4.4.5.
Set the remainder of 0bj’s essential internal methods to the default ordinary object definitions specified in
9.1.
10. Set the [[Prototype]] internal slot of 0bj to %ObjectPrototype%o.
11. Set the [[Extensible]] internal slot of 0bj to true.
12. Let parameterNames be the BoundNames of formals.
13. Let numberOfParameters be the number of elements in parameterNames
14. Let index be 0.
15. Repeat while index < len ,

a. Let val be argumentsList[index].

b. Perform CreateDataProperty(obj, ToString(index), val).

c. Let index be index + 1
16. Perform DefinePropertyOrThrow(obj, "length", PropertyDescriptor {[[Value]]: len, [[Writable]]: true,

[[Enumerable]]: false, [[Configurable]]: true}).
17. Let map be ObjectCreate(null).
18. Let mappedNames be an empty List.
19. Let index be numberOfParameters — 1.
20. Repeat while index >0 ,

a. Let name be parameterNames[index].

b. If name is not an element of mappedNames, then

i. Add name as an element of the list mappedNames.
1. Ifindex < len, then
1. Let g be MakeArgGetter(name, env).
2. Let p be MakeArgSetter(name, env).

A SRl ol

© Ecma International 2015 101

ceca

3. Call map.[[DefineOwnProperty]](ToString(index), PropertyDescriptor {[[Set]]: p, [[Get]]: g,
[[Enumerable]]: false, [[Configurable]]: true}).

c. Let index be index — 1

21. Set the [[ParameterMap]] internal slot of 0bj to map.

22. Perform DefinePropertyOrThrow(obj, @@iterator, PropertyDescriptor {[[Value]]:%ArrayProto_values%,
[[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true}).

23. Perform DefinePropertyOrThrow(obj, "callee", PropertyDescriptor {[[Value]]: func, [[Writable]]:
true, [[Enumerable]]: false, [[Configurable]]: true}).

24. Assert: the above property definitions will not produce an abrupt completion.

25. Return obj

9.4.4.71 MakeArgGetter (name, env)

The abstract operation MakeArgGetter called with String name and Environment Record env creates a built-in
function object that when executed returns the value bound for name in env. It performs the following steps:

1. Let realm be the current Realm.

Let steps be the steps of an ArgGetter function as specified below.

Let getter be CreateBuiltinFunction(realm, steps, %FunctionPrototype%, «[[name]], [[env]]»).
Set getter’s [[name]] internal slot to name.

Set getter’s [[env]] internal slot to env.

Return getter.

QA wN

An ArgGetter function is an anonymous built-in function with [[name]] and [[env]] internal slots. When an
ArgGetter function fthat expects no arguments is called it performs the following steps:

1. Let name be the value of f’s [[name]] internal slot.
2. Let env be the value of f’s [[env]] internal slot
3. Return env.GetBindingValue(name, false).

NOTE ArgGetter functions are never directly accessible to ECMAScript code.

9.44.7.2 MakeArgSetter (name, env)

The abstract operation MakeArgSetter called with String name and Environment Record env creates a built-in
function object that when executed sets the value bound for rname in env. It performs the following steps:

Let realm be the current Realm.

Let steps be the steps of an ArgSetter function as specified below.

Let setter be CreateBuiltinFunction(realm, steps, %FunctionPrototype%, «[[name]], [[env]]»).
Set setter’s [[name]] internal slot to name.

Set setter’s [[env]] internal slot to env.

Return setter.

AN AW =

An ArgSetter function is an anonymous built-in function with [[name]] and [[env]] internal slots. When an
ArgSetter function fis called with argument value it performs the following steps:

1. Let name be the value of f’s [[name]] internal slot.
2. Let env be the value of f’s [[env]] internal slot
3. Return env.SetMutableBinding(name, value, false).

NOTE ArgSetter functions are never directly accessible to ECMAScript code.

9.4.5 Integer Indexed Exotic Objects

An Integer Indexed object is an exotic object that performs special handling of integer index property keys.

Integer Indexed exotic objects have the same internal slots as ordinary objects additionally
[[ViewedArrayBuffer]], [[ArrayLength]], [[ByteOffset]], and [[TypedArrayName]] internal slots.

Integer Indexed Exotic objects provide alternative definitions for the following internal methods. All of the other
Integer Indexed exotic object essential internal methods that are not defined below are as specified in 9.1.

102 © Ecma International 2015

cecna

9.4.5.1 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of an Integer Indexed exotic object O is called with property key P
the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. Assert: O is an Object that has a [[ViewedArrayBuffer]] internal slot.
3. If Type(P) is String, then
a. Let numericIlndex be CanonicalNumericlndexString(P).
b. Assert: numericlndex is not an abrupt completion.
c. If numericlndex is not undefined, then
i. Let value be IntegerIndexedElementGet (O, numericlndex).
ii. ReturnIfAbrupt(value).
iii. If value is undefined, return undefined.
iv. Return a PropertyDescriptor{ [[Value]]: value, [[Enumerable]]: true, [[Writable]]: true,
[[Configurable]]: false }.
4. Return OrdinaryGetOwnProperty(O, P).

9.4.5.2 [[HasProperty]](P)

When the [[HasProperty]] internal method of an Integer Indexed exotic object O is called with property key P, the
following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. Assert: O is an Object that has a [[ViewedArrayBuffer]] internal slot.
3. If Type(P) is String, then
a. Let numericlndex be CanonicalNumericlndexString(P).
b. Assert: numericlndex is not an abrupt completion.
c. If numericlndex is not undefined, then
i. Let buffer be the value of O’s [[ViewedArrayBuffer]] internal slot.
ii. If IsDetachedBuffer(buffer) is true, throw a TypeError exception.
iii. If IsInteger(numericindex) is false, return false
iv. If numericIndex = —0, return false.
v. If numericlndex < 0, return false.
vi. If numericlndex > the value of O’s [[ArrayLength]] internal slot, return false.
vii. Return true.
4. Return OrdinaryHasProperty(O, P).

9.4.5.3 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of an Integer Indexed exotic object O is called with property
key P, and Property Descriptor Desc the following steps are taken:

1. Assert: IsPropertyKey(P) is true.
2. Assert: O is an Object that has a [[ViewedArrayBuffer]] internal slot.
3. If Type(P) is String, then
a. Let numericIndex be CanonicalNumericIndexString (P).
b. Assert: numericlndex is not an abrupt completion.
c. If numericlndex is not undefined, then
i. If IsInteger(numericlndex) is false, return false
ii. Let intIndex be numericlndex.
1i. If intIndex = —0, return false.
1v. IfintIndex < 0, return false.
v. Let length be the value of O’s [[ArrayLength]] internal slot.
vi. IfintIndex > length, return false.
vii. If IsAccessorDescriptor(Desc) is true, return false.
viii.If Desc has a [[Configurable]] field and if Desc.[[Configurable]] is true, return false.
ix. If Desc has an [[Enumerable]] field and if Desc.[[Enumerable]] is false, return false.
x. If Desc has a [[Writable]] field and if Desc.[[Writable]] is false, return false.
xi. If Desc has a [[Value]] field, then
1. Let value be Desc.[[Value]].
2. Return IntegerIndexedElementSet (O, intIndex, value).

© Ecma International 2015 103

ceca

4.

9.4.5.4

xii. Return true.
Return OrdinaryDefineOwnProperty(O, P, Desc).

[[Get]] (P, Receiver)

When the [[Get]] internal method of an Integer Indexed exotic object O is called with property key P and
ECMAScript language value Receiver the following steps are taken:

1.
2.

9.4.5.5

Assert: I[sPropertyKey(P) is true.
If Type(P) is String and if SameValue(O, Receiver) is true, then
a. Let numericIndex be CanonicalNumericIndexString (P).
b. Assert: numericlndex is not an abrupt completion.
c. If numericlndex is not undefined, then
i. Return IntegerIndexedElementGet (O, numericlndex).
Return the result of calling the default ordinary object [[Get]] internal method (9.1.8) on O passing P and
Receiver as arguments.

[[Set]] (P, V, Receiver)

When the [[Set]] internal method of an Integer Indexed exotic object O is called with property key P, value ¥, and
ECMAScript language value Receiver, the following steps are taken:

1.
2.

9.4.5.6

Assert: IsPropertyKey(P) is true.
If Type(P) is String and if SameValue(O, Receiver) is true, then
a. Let numericIndex be CanonicalNumericlndexString (P).
b. Assert: numericlndex is not an abrupt completion.
c. If numericlndex is not undefined, then
i. Return IntegerIndexedElementSet (O, numericlndex, V).
Return the result of calling the default ordinary object [[Set]] internal method (9.1.8) on O passing P, V,
and Receiver as arguments.

[[OwnPropertyKeys]] ()

When the [[OwnPropertyKeys]] internal method of an Integer Indexed exotic object O is called the following
steps are taken:

1.
2.

3.

6.

7.

9.4.5.7

Let keys be a new empty List.

Assert: O is an Object that has [[ViewedArrayBuffer]], [[ArrayLength]], [[ByteOffset]], and
[[TypedArrayName]] internal slots.

Let /en be the value of O’s [[ArrayLength]] internal slot.

For each integer i starting with 0 such that i < /en, in ascending order,

a. Add ToString(i) as the last element of keys.

For each own property key P of O such that Type(P) is String and P is not an integer index, in property
creation order

a. Add P as the last element of keys.

For each own property key P of O such that Type(P) is Symbol, in property creation order
a. Add P as the last element of keys.

Return keys.

IntegerindexedObjectCreate (prototype, internalSlotsList)

The abstract operation IntegerindexedObjectCreate with arguments prototype and internalSlotsList is used to
specify the creation of new Integer Indexed exotic objects. The argument internalSlotsList is a List of the names
of additional internal slots that must be defined as part of the object. IntegerindexedObjectCreate performs the
following steps:

I S I S

104

Let A be a newly created object with an internal slot for each name in internalSlotsList.

Set A’s essential internal methods to the default ordinary object definitions specified in 9.1.
Set the [[GetOwnProperty]] internal method of 4 as specified in 9.4.5.1.

Set the [[HasProperty]] internal method of 4 as specified in 9.4.5.2.

Set the [[DefineOwnProperty]] internal method of 4 as specified in 9.4.5.3.

© Ecma International 2015

cecna

— = o ® o

0.
1.

9.4.5.8

Set the [[Get]] internal method of 4 as specified in 9.4.5.4.

Set the [[Set]] internal method of 4 as specified in 9.4.5.5.

Set the [[OwnPropertyKeys]] internal method of 4 as specified in 9.4.5.6.
Set the [[Prototype]] internal slot of 4 to prototype.

Set the [[Extensible]] internal slot of 4 to true.

Return 4.

IntegerindexedElementGet (O, index)

The abstract operation IntegerindexedElementGet with arguments O and index performs the following steps:

1.

»

e R G ale

9.

10.
11.
12.
13.
14.

9.4.5.9

Assert: Type(index) is Number.

Assert: O is an Object that has [[ViewedArrayBuffer]], [[ArrayLength]], [[ByteOffset]], and
[[TypedArrayName]] internal slots.

Let buffer be the value of O’s [[ViewedArrayBuffer]] internal slot.

If IsDetachedBuffer(buffer) is true, throw a TypeError exception.

If IsInteger(index) is false, return undefined

If index = —0, return undefined.

Let length be the value of O’s [[ArrayLength]] internal slot.

If index < 0 or index > length, return undefined.

Let offset be the value of O’s [[ByteOffset]] internal slot.

Let arrayTypeName be the String value of O’s [[TypedArrayName]] internal slot.

Let elementSize be the Number value of the Element Size value specified in Table 49 for arrayTypeName.
Let indexedPosition = (index *x elementSize) + offset.

Let elementType be the String value of the Element Type value in Table 49 for arrayTypeName.
Return GetValueFromBuffer(buffer, indexedPosition, elementType).

IntegerindexedElementSet (O, index, value)

The abstract operation IntegerindexedElementSet with arguments O, index, and value performs the following

steps:

1.
2.

VPN L AW

10.
11.
12.
13.
14.
15.
16.
17.

9.4.6

Assert: Type(index) is Number.

Assert: O is an Object that has [[ViewedArrayBuffer]], [[ArrayLength]], [[ByteOffset]], and
[[TypedArrayName]] internal slots.

Let numValue be ToNumber(value).

ReturnIfAbrupt(numValue).

Let buffer be the value of O’s [[ViewedArrayBuffer]] internal slot.

If IsDetachedBuffer(buffer) is true, throw a TypeError exception.

If IsInteger(index) is false, return false

If index = —0, return false.

Let length be the value of O’s [[ArrayLength]] internal slot.

If index < 0 or index > length, return false.

Let offset be the value of O’s [[ByteOffset]] internal slot.

Let arrayTypeName be the String value of O’s [[TypedArrayName]] internal slot.

Let elementSize be the Number value of the Element Size value specified in Table 49 for arrayTypeName.
Let indexedPosition = (index x elementSize) + offset.

Let elementType be the String value of the Element Type value in Table 49 for arrayTypeName.
Perform SetValuelnBuffer(buffer, indexedPosition, elementType, numValue).

Return true.

Module Namespace Exotic Objects

A module namespace object is an exotic object that exposes the bindings exported from an ECMAScript Module
(See 15.2.3). There is a one-to-one correspondence between the String-keyed own properties of a module
namespace exotic object and the binding names exported by the Module. The exported bindings include any
bindings that are indirectly exported using export * export items. Each String-valued own property key is the
StringValue of the corresponding exported binding name. These are the only String-keyed properties of a

module

namespace exotic object. Each such property has the attributes {[[Configurable]]: false, [[Enumerable]]:

true}. Module namespace objects are not extensible.

© Ecma International 2015 105

»eCma

Module namespace objects have the internal slots defined in Table 29.

Table 29 — Internal Slots of Module Namespace Exotic Objects

Internal Slot Type Description
[[Module]] Module Record The Module Record whose exports this namespace exposes.
[[Exports]] List of String A List containing the String values of the exported names

exposed as own properties of this object. The list is ordered as
if an Array of those String values had been sorted using
Array.prototype.sort using SortCompare as comparefn.

Module namespace exotic objects provide alternative definitions for all of the internal methods.

9.4.6.1 [[GetPrototypeOf]] ()

When the [[GetPrototypeOf]] internal method of a module namespace exotic object O is called the following
steps are taken:

1. Return null.

9.4.6.2 [[SetPrototypeOf]] (V)

When the [[SetPrototypeOf]] internal method of a module namespace exotic object O is called with argument V
the following steps are taken:

1. Assert: Either Type(V) is Object or Type(V) is Null.
2. Return false.

9.4.6.3 [[IsExtensible]] ()

When the [[IsExtensible]] internal method of a module namespace exotic object O is called the following steps
are taken:

1. Return false.

9.4.6.4 [[PreventExtensions]] ()

When the [[PreventExtensions]] internal method of a module namespace exotic object O is called the following
steps are taken:

1. Return true.

9.4.6.5 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of a module namespace exotic object O is called with property
key P, the following steps are taken:

If Type(P) is Symbol, return OrdinaryGetOwnProperty(O, P).

Let exports be the value of O’s [[Exports]] internal slot.

If P is not an element of exports, return undefined.

Let value be O.[[Get]](P, O).

ReturnIfAbrupt(value).

Return PropertyDescriptor {[[Value]]: value, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]:
false }.

AN AW =

9.4.6.6 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of a module namespace exotic object O is called with property
key P and Property Descriptor Desc, the following steps are taken:

1. Return false.

106 © Ecma International 2015

cecna

9.4.6.7 [[HasProperty]] (P)

When the [[HasProperty]] internal method of a module namespace exotic object O is called with property key P,
the following steps are taken:

1. If Type(P) is Symbol, return OrdinaryHasProperty(O, P).
2. Let exports be the value of O’s [[Exports]] internal slot.
3. If Pis an element of exports, return true.

4. Return false.

9.4.6.8 [[Get]] (P, Receiver)

When the [[Get]] internal method of a module namespace exotic object O is called with property key P and
ECMAScript language value Receiver the following steps are taken:

1. Assert: IsPropertyKey(P) is true.

If Type(P) is Symbol, then

a. Return the result of calling the default ordinary object [[Get]] internal method (9.1.8) on O passing P
and Receiver as arguments.

3. Let exports be the value of O’s [[Exports]] internal slot.

4. If Pis not an element of exports, return undefined.

5. Let m be the value of O’s [[Module]] internal slot.

6. Let binding be m.ResolveExport(P, «», «»).

7

8

N

ReturnlfAbrupt(binding).

. Assert: binding is neither null nor "ambiguous".
9. Let targetModule be binding.[[module]],
10. Assert: targetModule is not undefined.
11. Let targetEnv be targetModule.[[Environment]].
12. If targetEnv is undefined, throw a ReferenceError exception.
13. Let targetEnvRec be targetEnv’s EnvironmentRecord.
14. Return targetEnvRec.GetBindingValue(binding.[[bindingName]], true).

NOTE ResolveExport is idempotent and side-effect free. An implementation might choose to pre-compute or cache the
ResolveExport results for the [[Exports]] of each module namespace exotic object.

9.4.6.9 [[Set]] (P, V, Receiver)

When the [[Set]] internal method of a module namespace exotic object O is called with property key P, value 7,
and ECMAScript language value Receiver, the following steps are taken:

1. Return false.

9.4.6.10 [[Delete]] (P)

When the [[Delete]] internal method of a module namespace exotic object O is called with property key P the
following steps are taken:

1. Assert: IsPropertyKey(P) is true.

2. Let exports be the value of O’s [[Exports]] internal slot.
3. If Pis an element of exports, return false.

4. Return true.

9.4.6.11 [[Enumerate]] ()

When the [[Enumerate]] internal method of a module namespace exotic object O is called the following steps
are taken:

1. Let exports be the value of O’s [[Exports]] internal slot.
2. Return CreateListlterator(exports).

© Ecma International 2015 107

>eCma

9.4.6.12 [[OwnPropertyKeys]] ()

When the [[OwnPropertyKeys]] internal method of a module namespace exotic object O is called the following
steps are taken:

1. Let exports be a copy of the value of O’s [[Exports]] internal slot.

2. Let symbolKeys be the result of calling the default ordinary object [[OwnPropertyKeys]] internal method
(9.1.12) on O passing no arguments.

3. Append all the entries of symbolKeys to the end of exports.

4. Return exports.

9.4.6.13 ModuleNamespaceCreate (module, exports)

The abstract operation ModuleNamespaceCreate with arguments module, and exports is used to specify the
creation of new module namespace exotic objects. It performs the following steps:

Assert: module is a Module Record (see 15.2.1.15).

Assert: module.[[Namespace]] is undefined.

Assert: exports is a List of String values.

Let M be a newly created object.

Set M’s essential internal methods to the definitions specified in 9.4.6.
Set M’s [[Module]] internal slot to module.

Set M’s [[Exports]] internal slot to exports.

Create own properties of M corresponding to the definitions in 26.3.
Set module.[[Namespace]] to M.

0. Return M.

—_

S0 PN U R LD

9.5 Proxy Object Internal Methods and Internal Slots

A proxy object is an exotic object whose essential internal methods are partially implemented using ECMAScript
code. Every proxy objects has an internal slot called [[ProxyHandler]]. The value of [[ProxyHandler]] is an object,
called the proxy’s handler object, or null. Methods (see Table 30) of a handler object may be used to augment
the implementation for one or more of the proxy object’s internal methods. Every proxy object also has an
internal slot called [[ProxyTarget]] whose value is either an object or the null value. This object is called the
proxy’s target object.

Table 30 — Proxy Handler Methods

Internal Method Handler Method
[[GetPrototypeOf]] getPrototypeOf
[[SetPrototypeOf]] setPrototypeOf
[[IsExtensible]] isExtensible
[[PreventExtensions]] preventExtensions
[[GetOwnPropertyl] getOwnPropertyDescriptor
[[HasProperty]] has

[[Get]] get

[[Set]] set

[[Delete]] deleteProperty
[[DefineOwnProperty]] defineProperty
[[Enumeratel]] enumerate
[[OwnPropertyKeys]] ownKeys

[[Call]] apply

[[Construct]] construct

When a handler method is called to provide the implementation of a proxy object internal method, the handler
method is passed the proxy’s target object as a parameter. A proxy’s handler object does not necessarily have
a method corresponding to every essential internal method. Invoking an internal method on the proxy results in
the invocation of the corresponding internal method on the proxy’s target object if the handler object does not
have a method corresponding to the internal trap.

108 © Ecma International 2015

oechna

The [[ProxyHandler]] and [[ProxyTarget]] internal slots of a proxy object are always initialized when the object is
created and typically may not be modified. Some proxy objects are created in a manner that permits them to be
subsequently revoked. When a proxy is revoked, its [[ProxyHander]] and [[ProxyTarget]] internal slots are set to
null causing subsequent invocations of internal methods on that proxy object to throw a TypeError exception.

Because proxy objects permit the implementation of internal methods to be provided by arbitrary ECMAScript
code, it is possible to define a proxy object whose handler methods violates the invariants defined in 6.1.7.3.
Some of the internal method invariants defined in 6.1.7.3 are essential integrity invariants. These invariants are
explicitly enforced by the proxy object internal methods specified in this section. An ECMAScript implementation
must be robust in the presence of all possible invariant violations.

In the following algorithm descriptions, assume O is an ECMAScript proxy object, P is a property key value, Vis
any ECMAScript language value and Desc is a Property Descriptor record.

9.5.1 [[GetPrototypeOf]] ()

When the [[GetPrototypeOf]] internal method of a Proxy exotic object O is called the following steps are taken:

Let handler be the value of the [[ProxyHandler]] internal slot of O.

If handler is null, throw a TypeError exception.

Assert: Type(handler) is Object.

Let target be the value of the [[ProxyTarget]] internal slot of O.

Let trap be GetMethod(handler, "getPrototypeOf").

ReturnIfAbrupt(trap).

If trap is undefined, then

a. Return target.[[GetPrototypeOf]]().

8. Let handlerProto be Call(trap, handler, «target»).

9. ReturnlfAbrupt(handlerProto).

10. If Type(handlerProto) is neither Object nor Null, throw a TypeError exception.
11. Let extensibleTarget be IsExtensible(target).

12. ReturnIfAbrupt(extensibleTarget).

13. If extensibleTarget is true, return handlerProto.

14. Let targetProto be target.[[GetPrototypeOf]]().

15. ReturnIfAbrupt(targetProto).

16. If SameValue(handlerProto, targetProto) is false, throw a TypeError exception.
17. Return handlerProto.

N AELN =

NOTE [[GetPrototypeOf]] for proxy objects enforces the following invariant:
e The result of [[GetPrototypeOf]] must be either an Object or null.
e If the target object is not extensible, [[GetPrototypeOf]] applied to the proxy object must return the same
value as [[GetPrototypeOf]] applied to the proxy object’s target object.

9.5.2 [[SetPrototypeOf]] (V)

When the [[SetPrototypeOf]] internal method of a Proxy exotic object O is called with argument V the following
steps are taken:

Assert: Either Type(V) is Object or Type(V) is Null.

Let handler be the value of the [[ProxyHandler]] internal slot of O.
If handler is null, throw a TypeError exception.

Assert: Type(handler) is Object.

Let target be the value of the [[ProxyTarget]] internal slot of O.
Let trap be GetMethod(handler, "setPrototypeOf").
ReturnIfAbrupt(zrap).

If trap is undefined, then

a. Return target.[[SetPrototypeOf]](V).

9. Let booleanTrapResult be ToBoolean(Call(¢trap, handler, «target, V»)).
10. ReturnIfAbrupt(booleanTrapResult).

11. Let extensibleTarget be IsExtensible(target).

12. ReturnIfAbrupt(extensibleTarget).

13. If extensibleTarget is true, return booleanTrapResult.

RN BB =

© Ecma International 2015 109

ceca

14. Let targetProto be target.[[GetPrototypeOf]]().

15. ReturnIfAbrupt(targetProto).

16. If booleanTrapResult is true and SameValue(V, targetProto) is false, throw a TypeError exception.
17. Return booleanTrapResult.

NOTE [[SetPrototypeOf]] for proxy objects enforces the following invariant:
e The result of [[SetPrototypeOf]] is a Boolean value.
e If the target object is not extensible, the argument value must be the same as the result of [[GetPrototypeOf]]
applied to target object.

9.5.3 [[IsExtensible]] ()

When the [[IsExtensible]] internal method of a Proxy exotic object O is called the following steps are taken:

Let handler be the value of the [[ProxyHandler]] internal slot of O.
If handler is null, throw a TypeError exception.

Assert: Type(handler) is Object.

Let target be the value of the [[ProxyTarget]] internal slot of O.

Let trap be GetMethod(handler, "isExtensible").
ReturnIfAbrupt(trap).

If trap is undefined, then

a. Return target.[[IsExtensible]]().

8. Let booleanTrapResult be ToBoolean(Call(trap, handler, «target»)).
9. ReturnIfAbrupt(booleanTrapResult).

10. Let targetResult be target.[[IsExtensible]]().

11. ReturnIfAbrupt(targetResult).

12. If SameValue(booleanTrapResult, targetResult) is false, throw a TypeError exception.
13. Return booleanTrapResult.

N sAwh =

NOTE [[IsExtensible]] for proxy objects enforces the following invariant:
e The result of [[IsExtensible]] is a Boolean value.
o [[IsExtensible]] applied to the proxy object must return the same value as [[IsExtensible]] applied to the
proxy object’s target object with the same argument.

9.5.4 [[PreventExtensions]] ()

When the [[PreventExtensions]] internal method of a Proxy exotic object O is called the following steps are
taken:

Let handler be the value of the [[ProxyHandler]] internal slot of O.
If handler is null, throw a TypeError exception.
Assert: Type(handler) is Object.
Let target be the value of the [[ProxyTarget]] internal slot of O.
Let trap be GetMethod(handler, "preventExtensions").
ReturnIfAbrupt(zrap).
If trap is undefined, then
a. Return target.[[PreventExtensions]]().
8. Let booleanTrapResult be ToBoolean(Call(trap, handler, «target»)).
9. ReturnIfAbrupt(booleanTrapResult).
10. If booleanTrapResult is true, then

a. Let targetlsExtensible be target.[[IsExtensible]]().

b. ReturnlfAbrupt(targetlsExtensible).

c. IftargetlisExtensible is true, throw a TypeError exception.
11. Return booleanTrapResult.

Nk L=

NOTE [[PreventExtensions]] for proxy objects enforces the following invariant:
e The result of [[PreventExtensions]] is a Boolean value.
e [[PreventExtensions]] applied to the proxy object only returns true if [[ISExtensible]] applied to the proxy
object’s target object is false.

110 © Ecma International 2015

cecna

9.5.5 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of a Proxy exotic object O is called with property key P, the
following steps are taken:

Assert: I[sPropertyKey(P) is true.
Let handler be the value of the [[ProxyHandler]] internal slot of O.
If handler is null, throw a TypeError exception.
Assert: Type(handler) is Object.
Let target be the value of the [[ProxyTarget]] internal slot of O.
Let trap be GetMethod(handler, "getOwnPropertyDescriptor").
ReturnlfAbrupt(trap).
If trap is undefined, then
a. Return target.[[GetOwnProperty]](P).
9. Let trapResultObj be Call(trap, handler, «target, P»).
10. ReturnIfAbrupt(trapResultOby).
11. If Type(¢trapResultObj) is neither Object nor Undefined, throw a TypeError exception.
12. Let targetDesc be target.[[GetOwnProperty]](P).
13. ReturnIfAbrupt(targetDesc).
14. If trapResultObj is undefined, then
If targetDesc is undefined, return undefined.
If targetDesc.[[Configurable]] is false, throw a TypeError exception.
Let extensibleTarget be IsExtensible(target).
ReturnlfAbrupt(extensibleTarget).
Assert: Type(extensibleTarget) is Boolean.
If extensibleTarget is false, throw a TypeError exception.
. Return undefined.
15. Let extensibleTarget be IsExtensible(target).
16. ReturnIfAbrupt(extensibleTarget).
17. Let resultDesc be ToPropertyDescriptor(trapResultOby).
18. ReturnlIfAbrupt(resultDesc).
19. Call CompletePropertyDescriptor(resultDesc).
20. Let valid be IsCompatiblePropertyDescriptor (extensibleTarget, resultDesc, targetDesc).
21. If valid is false, throw a TypeError exception.
22. If resultDesc.[[Configurable]] is false, then
a. IftargetDesc is undefined or targetDesc.[[Configurable]] is true, then
i. Throw a TypeError exception.
23. Return resultDesc.

PRI E LD =

mo e o

aQ

NOTE [[GetOwnProperty]] for proxy objects enforces the following invariants:

e The result of [[GetOwnProperty]] must be either an Object or undefined.

e A property cannot be reported as non-existent, if it exists as a non-configurable own property of the target
object.

e A property cannot be reported as non-existent, if it exists as an own property of the target object and the
target object is not extensible.

e A property cannot be reported as existent, if it does not exists as an own property of the target object and the
target object is not extensible.

e A property cannot be reported as non-configurable, if it does not exists as an own property of the target
object or if it exists as a configurable own property of the target object.

9.5.6 [[DefineOwnProperty]] (P, Desc)

When the [[DefineOwnProperty]] internal method of a Proxy exotic object O is called with property key P and
Property Descriptor Desc, the following steps are taken:

1. Assert: IsPropertyKey(P) is true.

Let handler be the value of the [[ProxyHandler]] internal slot of O.
If handler is null, throw a TypeError exception.

Assert: Type(handler) is Object.

Let target be the value of the [[ProxyTarget]] internal slot of O.
Let trap be GetMethod(handler, "defineProperty").
ReturnIfAbrupt(trap).

Nk wN

© Ecma International 2015 111

oecind

10.
11.
12.
13.
14.
15.
16.
17.

18.
19.

20.

21.

NOTE

9.5.7

If trap is undefined, then

a. Return target.[[DefineOwnProperty]](P, Desc).

Let descObj be FromPropertyDescriptor(Desc).

Let booleanTrapResult be ToBoolean(Call(trap, handler, «target, P, descObj»)).

ReturnlfAbrupt(booleanTrapResult).

If booleanTrapResult is false, return false.

Let targetDesc be target.[[GetOwnProperty]](P).

ReturnlfAbrupt(targetDesc).

Let extensibleTarget be IsExtensible(target).

ReturnlfAbrupt(extensibleTarget).

If Desc has a [[Configurable]] field and if Desc.[[Configurable]] is false, then

a. Let settingConfigFalse be true.

Else let settingConfigFalse be false.

If targetDesc is undefined, then

a. If extensibleTarget is false, throw a TypeError exception.

b. [IfsettingConfigFalse is true, throw a TypeError exception.

Else targetDesc is not undefined,

a. If IsCompatiblePropertyDescriptor(extensibleTarget, Desc , targetDesc) is false, throw a TypeError
exception.

b. IfsettingConfigFalse is true and targetDesc.[[Configurable]] is true, throw a TypeError exception.

Return true.

[[DefineOwnProperty]] for proxy objects enforces the following invariants:

e The result of [[DefineOwnProperty]] is a Boolean value.

e A property cannot be added, if the target object is not extensible.

e A property cannot be non-configurable, unless there exists a corresponding non-configurable own property
of the target object.

o If a property has a corresponding target object property then applying the Property Descriptor of the property
to the target object using [[DefineOwnProperty]] will not throw an exception.

[[HasProperty]] (P)

When the [[HasProperty]] internal method of a Proxy exotic object O is called with property key P, the following
steps are taken:

RN B LD =

10.
11.

12.

NOTE

112

Assert: IsPropertyKey(P) is true.
Let handler be the value of the [[ProxyHandler]] internal slot of O.
If handler is null, throw a TypeError exception.
Assert: Type(handler) is Object.
Let target be the value of the [[ProxyTarget]] internal slot of O.
Let trap be GetMethod(handler, "has™).
ReturnIfAbrupt(zrap).
If trap is undefined, then
a. Return target.[[HasProperty]](P).
Let booleanTrapResult be ToBoolean(Call(trap, handler, «target, P»)).
ReturnIfAbrupt(booleanTrapResult).
If booleanTrapResult is false, then
a. Let targetDesc be target.[[GetOwnProperty]](P).
b. ReturnIfAbrupt(targetDesc).
c. [IftargetDesc is not undefined, then
i. IftargetDesc.[[Configurable]] is false, throw a TypeError exception.
ii. Let extensibleTarget be IsExtensible(target).
iii. ReturnIfAbrupt(extensibleTarget).
iv. If extensibleTarget is false, throw a TypeError exception.
Return booleanTrapResult.

[[HasProperty]] for proxy objects enforces the following invariants:

e The result of [[HasProperty]] is a Boolean value.

e A property cannot be reported as non-existent, if it exists as a non-configurable own property of the target
object.

© Ecma International 2015

cecna

9.5.8

e A property cannot be reported as non-existent, if it exists as an own property of the target object and the
target object is not extensible.

[[Get]] (P, Receiver)

When the [[Get]] internal method of a Proxy exotic object O is called with property key P and ECMAScript
language value Receiver the following steps are taken:

NN AE LN =

10.
11.
12.
13.

14.

NOTE

9.5.9

Assert: [sPropertyKey(P) is true.

Let handler be the value of the [[ProxyHandler]] internal slot of O.

If handler is null, throw a TypeError exception.

Assert: Type(handler) is Object.

Let target be the value of the [[ProxyTarget]] internal slot of O.

Let trap be GetMethod(handler, "get™).

ReturnlfAbrupt(trap).

If trap is undefined, then

a. Return target.[[Get]](P, Receiver).

Let trapResult be Call(trap, handler, «target, P, Receivery).

ReturnIfAbrupt(trapResult).

Let targetDesc be target.[[GetOwnProperty]](P).

ReturnlfAbrupt(targetDesc).

If targetDesc is not undefined, then

a. If IsDataDescriptor(targetDesc) and targetDesc.[[Configurable]] is false and targetDesc.[[Writable]]
is false, then
i. If SameValue(trapResult, targetDesc.[[Value]]) is false, throw a TypeError exception.

b. IfIsAccessorDescriptor(targetDesc) and targetDesc.[[Configurable]] is false and targetDesc.[[Get]] is
undefined, then
i. If trapResult is not undefined, throw a TypeError exception.

Return trapResult.

[[Get]] for proxy objects enforces the following invariants:

e The value reported for a property must be the same as the value of the corresponding target object property
if the target object property is a non-writable, non-configurable own data property.

e The value reported for a property must be undefined if the corresponding target object property is a non-
configurable own accessor property that has undefined as its [[Get]] attribute.

[[Set]] (P, V, Receiver)

When the [[Set]] internal method of a Proxy exotic object O is called with property key P, value ¥, and
ECMAScript language value Receiver, the following steps are taken:

RN BN

10.
11.
12.
13.
14.

Assert: IsPropertyKey(P) is true.

Let handler be the value of the [[ProxyHandler]] internal slot of O.

If handler is null, throw a TypeError exception.

Assert: Type(handler) is Object.

Let target be the value of the [[ProxyTarget]] internal slot of O.

Let trap be GetMethod(handler, "set™).

ReturnlfAbrupt(zrap).

If trap is undefined, then

a. Return target.[[Set]](P, V, Receiver).

Let booleanTrapResult be ToBoolean(Call(trap, handler, «target, P, V, Receivery)).

ReturnlfAbrupt(booleanTrapResult).

If booleanTrapResult is false, return false.

Let targetDesc be target.[[GetOwnProperty]](P).

ReturnlfAbrupt(targetDesc).

If targetDesc is not undefined, then

a. If IsDataDescriptor(targetDesc) and targetDesc.[[Configurable]] is false and targetDesc.[[Writable]]
is false, then
i. If SameValue(V, targetDesc.[[Value]]) is false, throw a TypeError exception.

b. IfIsAccessorDescriptor(targetDesc) and targetDesc.[[Configurable]] is false, then

i. IftargetDesc.[[Set]] is undefined, throw a TypeError exception.

© Ecma International 2015 113

ceca

15. Return true.
NOTE [[Set]] for proxy objects enforces the following invariants:
e The result of [[Set]] is a Boolean value.
e Cannot change the value of a property to be different from the value of the corresponding target object
property if the corresponding target object property is a non-writable, non-configurable own data property.
e Cannot set the value of a property if the corresponding target object property is a non-configurable own
accessor property that has undefined as its [[Set]] attribute.
9.5.10 [[Delete]] (P)
When the [[Delete]] internal method of a Proxy exotic object O is called with property key P the following steps
are taken:
1. Assert: IsPropertyKey(P) is true.
2. Let handler be the value of the [[ProxyHandler]] internal slot of O.
3. [If handler is null, throw a TypeError exception.
4. Assert: Type(handler) is Object.
5. Let target be the value of the [[ProxyTarget]] internal slot of O.
6. Let trap be GetMethod(handler, "deleteProperty").
7. ReturnIfAbrupt(trap).
8. [If trap is undefined, then
a. Return target.[[Delete]](P).
9. Let booleanTrapResult be ToBoolean(Call(trap, handler, «target, P»)).
10. ReturnIfAbrupt(booleanTrapResult).
11. If booleanTrapResult is false, return false.
12. Let targetDesc be target.[[GetOwnProperty]](P).
13. ReturnIfAbrupt(targetDesc).
14. If targetDesc is undefined, return true.
15. If targetDesc.[[Configurable]] is false, throw a TypeError exception.
16. Return true.
NOTE [[Delete]] for proxy objects enforces the following invariant:
e The result of [[Delete]] is a Boolean value.
e A property cannot be reported as deleted, if it exists as a non-configurable own property of the target object.
9.5.11 [[Enumerate]] ()

When the [[Enumerate]] internal method of a Proxy exotic object O is called the following steps are taken:

N sE L=

8.
9.
10.
11.

NOTE

9.5.12

Let handler be the value of the [[ProxyHandler]] internal slot of O.
If handler is null, throw a TypeError exception.

Assert: Type(handler) is Object.

Let target be the value of the [[ProxyTarget]] internal slot of O.
Let trap be GetMethod(handler, "enumerate™).
ReturnIfAbrupt(zrap).

If trap is undefined, then

a. Return target.[[Enumerate]]().

Let trapResult be Call(trap, handler, «targety).
ReturnlfAbrupt(trapResult).

If Type(trapResult) is not Object, throw a TypeError exception.
Return trapResult.

[[Enumerate]] for proxy objects enforces the following invariants:
e The result of [[Enumerate]] must be an Object.

[[OwnPropertyKeys]] ()

When the [[OwnPropertyKeys]] internal method of a Proxy exotic object O is called the following steps are

taken:
1.

114

Let handler be the value of the [[ProxyHandler]] internal slot of O.

© Ecma International 2015

»ecind

N AW

10.
11.
12.
13.
14.
15.
16.
17.
18.

19.
20.
21.

22.
23.

24.
25.

NOTE

9.5.13

If handler is null, throw a TypeError exception.
Assert: Type(handler) is Object.
Let target be the value of the [[ProxyTarget]] internal slot of O.
Let trap be GetMethod(handler, "ownKeys").
ReturnlfAbrupt(trap).
If trap is undefined, then
a. Return target.[[OwnPropertyKeys]]().
Let trapResultArray be Call(trap, handler, «targety).
Let trapResult be CreateListFromArrayLike(¢trapResultArray, «String, Symbol»).
ReturnlfAbrupt(trapResult).
Let extensibleTarget be IsExtensible(target).
ReturnlfAbrupt(extensibleTarget).
Let targetKeys be target.[[OwnPropertyKeys]]().
ReturnlfAbrupt(zargetKeys).
Assert: targetKeys is a List containing only String and Symbol values.
Let targetConfigurableKeys be an empty List.
Let targetNonconfigurableKeys be an empty List.
Repeat, for each element key of targetKeys,
a. Let desc be target.[[GetOwnProperty]](key).
b. ReturnlfAbrupt(desc).
c. Ifdesc is not undefined and desc.[[Configurable]] is false, then
i. Append key as an element of targetNonconfigurableKeys.
d. Else,
i. Append key as an element of targetConfigurableKeys.
If extensibleTarget is true and targetNonconfigurableKeys is empty, then
a. Return trapResult.
Let uncheckedResultKeys be a new List which is a copy of trapResult.
Repeat, for each key that is an element of targetNonconfigurableKeys,
a. If key is not an element of uncheckedResultKeys, throw a TypeError exception.
b. Remove key from uncheckedResultKeys
If extensibleTarget is true, return trapResult.
Repeat, for each key that is an element of targetConfigurableKeys,
a. If key is not an element of uncheckedResultKeys, throw a TypeError exception.
b. Remove key from uncheckedResultKeys
If uncheckedResultKeys is not empty, throw a TypeError exception.
Return trapResult.

[[OwnPropertyKeys]] for proxy objects enforces the following invariants:

e The result of [[OwnPropertyKeys]] is a List.

e The Type of each result List element is either String or Symbol.

e The result List must contain the keys of all non-configurable own properties of the target object.

o If the target object is not extensible, then the result List must contain all the keys of the own properties of the
target object and no other values.

[[Call]] (thisArgument, argumentsList)

The [[Call]] internal method of a Proxy exotic object O is called with parameters thisdrgument and argumentsList,
a List of ECMAScript language values. The following steps are taken:

Nk W=

oo

Let handler be the value of the [[ProxyHandler]] internal slot of O.
If handler is null, throw a TypeError exception.

Assert: Type(handler) is Object.

Let target be the value of the [[ProxyTarget]] internal slot of O.
Let trap be GetMethod(handler, "apply").
ReturnIfAbrupt(trap).

If trap is undefined, then

a. Return Call(target, thisArgument, argumentsList).

Let argArray be CreateArrayFromList(argumentsList).

Return Call(trap, handler, «target, thisArgument, argArray»).

© Ecma International 2015 115

oecna

NOTE A Proxy exotic object only has a [[Call]] internal method if the initial value of its [[ProxyTarget]] internal slot is an
object that has a [[Call]] internal method.

9.5.14 [[Construct]] (argumentsList, newTarget)

The [[Construct]] internal method of a Proxy exotic object O is called with parameters argumentsList which is a
possibly empty List of ECMAScript language values and newTarget. The following steps are taken:

1. Let handler be the value of the [[ProxyHandler]] internal slot of O.
If handler is null, throw a TypeError exception.

Assert: Type(handler) is Object.

Let target be the value of the [[ProxyTarget]] internal slot of O.
Let trap be GetMethod(handler, "construct").
ReturnlfAbrupt(zrap).

If trap is undefined, then

a. Assert: target has a [[Construct]] internal method.

b. Return Construct(target, argumentsList, newTarget).

8. Let argArray be CreateArrayFromList(argumentsList).

9. Let newObj be Call(trap, handler, «target, argArray, newTarget »).
10. ReturnIfAbrupt(rewOby).

11. If Type(newObj) is not Object, throw a TypeError exception.

12. Return newObj.

Nk LD

NOTE 1 A Proxy exotic object only has a [[Construct]] internal method if the initial value of its [[ProxyTarget]] internal slot
is an object that has a [[Construct]] internal method.

NOTE 2 [[Construct]] for proxy objects enforces the following invariants:
e The result of [[Construct]] must be an Object.

9.5.15 ProxyCreate(target, handler)

The abstract operation ProxyCreate with arguments target and handler is used to specify the creation of new
Proxy exotic objects. It performs the following steps:

1. If Type(target) is not Object, throw a TypeError exception.
2. [If target is a Proxy exotic object and the value of the [[ProxyHandler]] internal slot of target is null, throw
a TypeError exception.
3. If Type(handler) is not Object, throw a TypeError exception.
4. 1If handler is a Proxy exotic object and the value of the [[ProxyHandler]] internal slot of handler is null,
throw a TypeError exception.
Let P be a newly created object.
Set P’s essential internal methods (except for [[Call]] and [[Construct]]) to the definitions specified in 9.5.
7. [If IsCallable(target) is true, then
a. Set the [[Call]] internal method of P as specified in 9.5.13.
b. If target has a [[Construct]] internal method, then
i. Set the [[Construct]] internal method of P as specified in 9.5.14.
8. Set the [[ProxyTarget]] internal slot of P to target.
9. Set the [[ProxyHandler]] internal slot of P to handler.
10. Return P.

AN D

10 ECMAScript Language: Source Code

10.1 Source Text

Syntax

SourceCharacter ::
any Unicode code point

ECMAScript code is expressed using Unicode, version 5.1 or later. ECMAScript source text is a sequence of
code points. All Unicode code point values from U+0000 to U+10FFFF, including surrogate code points, may
occur in source text where permitted by the ECMAScript grammars. The actual encodings used to store and

116 © Ecma International 2015

secmna

interchange ECMAScript source text is not relevant to this specification. Regardless of the external source text
encoding, a conforming ECMAScript implementation processes the source text as if it was an equivalent
sequence of SourceCharacter values. Each SourceCharacter being a Unicode code point. Conforming
ECMAScript implementations are not required to perform any normalization of source text, or behave as though
they were performing normalization of source text.

The components of a combining character sequence are treated as individual Unicode code points even though
a user might think of the whole sequence as a single character.

NOTE In string literals, regular expression literals, template literals and identifiers, any Unicode code point may also be
expressed using Unicode escape sequences that explicitly express a code point’s numeric value. Within a
comment, such an escape sequence is effectively ignored as part of the comment.

ECMAScript differs from the Java programming language in the behaviour of Unicode escape sequences. In a
Java program, if the Unicode escape sequence \u000A, for example, occurs within a single-line comment, it is
interpreted as a line terminator (Unicode code point U+000A is LINE FEED (LF) and therefore the next code
point is not part of the comment. Similarly, if the Unicode escape sequence \u000A occurs within a string literal
in a Java program, it is likewise interpreted as a line terminator, which is not allowed within a string literal—one
must write \n instead of \u000A to cause a LINE FEED (LF) to be part of the String value of a string literal. In
an ECMAScript program, a Unicode escape sequence occurring within a comment is never interpreted and
therefore cannot contribute to termination of the comment. Similarly, a Unicode escape sequence occurring
within a string literal in an ECMAScript program always contributes to the literal and is never interpreted as a line
terminator or as a code point that might terminate the string literal.

10.1.1 Static Semantics: UTF16Encoding (cp)

The UTF16Encoding of a numeric code point value, cp, is determined as follows:

Assert: 0 < cp < 0x10FFFF.

If cp < 65535, return cp.

Let cul be floor((cp — 65536) / 1024) + 0xD800.

Let cu2 be ((cp — 65536) modulo 1024) + 0xDC00.

Return the code unit sequence consisting of cu/ followed by cu?2.

[I S R S

10.1.2 Static Semantics: UTF16Decode(lead, trail)

Two code units, lead and trail, that form a UTF-16 surrogate pair are converted to a code point by performing
the following steps:

1. Assert: 0xD800 < /ead < 0xDBFF and 0xDCO00 < trail < 0xDFFF.
2. Let ¢p be (lead — 0xD800) x 1024 + (trail — 0xDCO00) + 0x10000.
3. Return the code point cp.

10.2 Types of Source Code
There are four types of ECMAScript code:

e Global code is source text that is treated as an ECMAScript Script. The global code of a particular
Script does not include any source text that is parsed as part of a FunctionDeclaration,
FunctionExpression, GeneratorDeclaration, GeneratorExpression, MethodDefinition, ArrowFunction,
ClassDeclaration, or ClassExpression.

e FEval code is the source text supplied to the built-in eval function. More precisely, if the parameter to
the built-in eval function is a String, it is treated as an ECMAScript Script. The eval code for a
particular invocation of eval is the global code portion of that Scripz.

e Function code is source text that is parsed to supply the value of the [[ECMAScriptCode]] and
[[FormalParameters]] internal slots (see 9.2) of an ECMAScript function object. The function code of
a particular ECMAScript function does not include any source text that is parsed as the function code
of a nested FunctionDeclaration, FunctionExpression, GeneratorDeclaration, GeneratorExpression,
MethodDefinition, ArrowFunction, ClassDeclaration, or ClassExpression.

© Ecma International 2015 117

>eCma

e Module code is source text that is code that is provided as a ModuleBody. It is the code that is directly
evaluated when a module is initialized. The module code of a particular module does not include any
source text that is parsed as part of a nested FunctionDeclaration, FunctionExpression,
GeneratorDeclaration, GeneratorExpression, MethodDefinition, ArrowFunction, ClassDeclaration, or
ClassExpression.

NOTE Function code is generally provided as the bodies of Function Definitions (14.1), Arrow Function Definitions
(14.2), Method Definitions (14.3) and Generator Definitions (14.4). Function code is also derived from the
arguments to the Function constructor (19.2.1.1) and the GeneratorFunction constructor (25.2.1.1).

10.2.1 Strict Mode Code

An ECMAScript Script syntactic unit may be processed using either unrestricted or strict mode syntax and
semantics. Code is interpreted as strict mode code in the following situations:

e Global code is strict mode code if it begins with a Directive Prologue that contains a Use Strict Directive
(see 14.1.1).

e Module code is always strict mode code.
o All parts of a ClassDeclaration or a ClassExpression are strict mode code.

e Eval code is strict mode code if it begins with a Directive Prologue that contains a Use Strict Directive or if
the call to eval is a direct eval (see 12.3.4.1) that is contained in strict mode code.

e Function code is strict mode code if the associated FunctionDeclaration, FunctionExpression,
GeneratorDeclaration, GeneratorExpression, MethodDefinition, or ArrowFunction is contained in strict mode
code or if the code that produces the value of the function’s [[ECMAScriptCode]] internal slot begins with a
Directive Prologue that contains a Use Strict Directive.

e Function code that is supplied as the arguments to the built-in Function and Generator constructors is
strict mode code if the last argument is a String that when processed is a FunctionBody that begins with a
Directive Prologue that contains a Use Strict Directive.

ECMAScript code that is not strict mode code is called non-strict code.

10.2.2 Non-ECMAScript Functions

An ECMAScript implementation may support the evaluation of exotic function objects whose evaluative
behaviour is expressed in some implementation defined form of executable code other than via ECMAScript
code. Whether a function object is an ECMAScript code function or a non-ECMAScript function is not
semantically observable from the perspective of an ECMAScript code function that calls or is called by such a
non-ECMAScript function.

11 ECMAScript Language: Lexical Grammar

The source text of an ECMAScript Script or Module is first converted into a sequence of input elements, which
are tokens, line terminators, comments, or white space. The source text is scanned from left to right, repeatedly
taking the longest possible sequence of code points as the next input element.

There are several situations where the identification of lexical input elements is sensitive to the syntactic
grammar context that is consuming the input elements. This requires multiple goal symbols for the lexical
grammar. The InputElementRegExpOrTemplateTail goal is used in syntactic grammar contexts where a
RegularExpressionLiteral, a TemplateMiddle, or a TemplateTail is permitted. The InputElementRegExp goal symbol is
used in all syntactic grammar contexts where a RegularExpressionLiteral is permitted but neither a TemplateMiddle,
nor a TemplateTail is permitted. The InputElementTemplateTail goal is used in all syntactic grammar contexts
where a TemplateMiddle or a TemplateTail is permitted but a RegularExpressionLiteral is not permitted. In all other
contexts, InputElementDiv is used as the lexical goal symbol.

NOTE The use of multiple lexical goals ensures that there are no lexical ambiguities that would affect automatic
semicolon insertion. For example, there are no syntactic grammar contexts where both a leading division or

118 © Ecma International 2015

oechna

division-assignment, and a leading RegularExpressionLiteral are permitted. This is not affected by semicolon
insertion (see 11.9); in examples such as the following:

a=>b

/hi/g.exec (c) .map(d) ;

where the first non-whitespace, non-comment code point after a LineTerminator is U+002F (SOLIDUS) and the
syntactic context allows division or division-assignment, no semicolon is inserted at the LineTerminator. That is,
the above example is interpreted in the same way as:

a=b / hi / g.exec(c).map(d);

Syntax

InputElementDiv ::
WhiteSpace
LineTerminator
Comment
CommonToken
DivPunctuator
RightBracePunctuator

InputElementRegExp ::
WhiteSpace
LineTerminator
Comment
CommonToken
RightBracePunctuator
RegularExpressionLiteral

InputElementRegExpOrTemplateTail ::
WhiteSpace
LineTerminator
Comment
CommonToken
RegularExpressionLiteral
TemplateSubstitutionTail

InputElementTemplateTail ::
WhiteSpace
LineTerminator
Comment
CommonToken
DivPunctuator
TemplateSubstitutionTail

11.1 Unicode Format-Control Characters

The Unicode format-control characters (i.e., the characters in category “Cf’ in the Unicode Character Database
such as LEFT-TO-RIGHT MARK or RIGHT-TO-LEFT MARK) are control codes used to control the formatting of
a range of text in the absence of higher-level protocols for this (such as mark-up languages).

It is useful to allow format-control characters in source text to facilitate editing and display. All format control
characters may be used within comments, and within string literals, template literals, and regular expression
literals.

U+200C (ZERO WIDTH NON-JOINER) and U+200D (ZERO WIDTH JOINER) are format-control characters
that are used to make necessary distinctions when forming words or phrases in certain languages. In
ECMAScript source text these code points may also be used in an IdentifierName (see 11.6.1) after the first
character.

© Ecma International 2015 119

>eCma

U+FEFF (ZERO WIDTH NO-BREAK SPACE) is a format-control character used primarily at the start of a text to
mark it as Unicode and to allow detection of the text's encoding and byte order. <ZWNBSP> characters
intended for this purpose can sometimes also appear after the start of a text, for example as a result of
concatenating files. In ECMAScript source text <ZWNBSP> code points are treated as white space characters
(see 11.2).

The special treatment of certain format-control characters outside of comments, string literals, and regular
expression literals is summarized in Table 31.

Table 31 — Format-Control Code Point Usage

Code Point Name Abbreviation Usage
U+200C ZERO WIDTH NON-JOINER <ZWNJ> IdentifierPart
U+200D ZERO WIDTH JOINER <ZWJ> IdentifierPart
U+FEFF ZERO WIDTH NO-BREAK SPACE <ZWNBSP> WhiteSpace

11.2 White Space

White space code points are used to improve source text readability and to separate tokens (indivisible lexical
units) from each other, but are otherwise insignificant. White space code points may occur between any two
tokens and at the start or end of input. White space code points may occur within a StringlLiteral, a
RegularExpressionLiteral, a Template, or a TemplateSubstitutionTail where they are considered significant code
points forming part of a literal value. They may also occur within a Comment, but cannot appear within any other
kind of token.

The ECMAScript white space code points are listed in Table 32.
Table 32 — White Space Code Points

Code Point Name Abbreviation
U+0009 CHARACTER TABULATION <TAB>
U+000B LINE TABULATION <VT>
U+000C FORM FEED (FF) <FF>
U+0020 SPACE <SP>
U+00A0 NO-BREAK SPACE <NBSP>
U+FEFF ZERO WIDTH NO-BREAK SPACE <ZWNBSP>
Other category “Zs” Any other Unicode “Separator, space” <USP>

code point

ECMAScript implementations must recognize as WhiteSpace code points listed in the “Separator, space” (Zs)
category by Unicode 5.1. ECMAScript implementations may also recognize as WhiteSpace additional category
Zs code points from subsequent editions of the Unicode Standard.

NOTE Other than for the code points listed in Table 32, ECMAScript WhiteSpace intentionally excludes all code points
that have the Unicode “White_Space” property but which are not classified in category “Zs”.

Syntax

WhiteSpace ::
<TAB>
<VT>
<FF>
<Sp>
<NBSP>
<ZWNBSP>
<USP>

120 © Ecma International 2015

secmna

11.3 Line Terminators

Like white space code points, line terminator code points are used to improve source text readability and to
separate tokens (indivisible lexical units) from each other. However, unlike white space code points, line
terminators have some influence over the behaviour of the syntactic grammar. In general, line terminators may
occur between any two tokens, but there are a few places where they are forbidden by the syntactic grammar.
Line terminators also affect the process of automatic semicolon insertion (11.9). A line terminator cannot occur
within any token except a Stringliteral, Template, or TemplateSubstitutionTail. Line terminators may only occur
within a StringLiteral token as part of a LineContinuation.

A line terminator can occur within a MultiLineComment (11.4) but cannot occur within a SingleLineComment.

Line terminators are included in the set of white space code points that are matched by the \s class in regular
expressions.

The ECMASCcript line terminator code points are listed in Table 33.
Table 33 — Line Terminator Code Points

Code Point Unicode Name Abbreviation
U+000A LINE FEED (LF) <LF>
U+000D CARRIAGE RETURN (CR) <CR>
U+2028 LINE SEPARATOR <LS>
U+2029 PARAGRAPH SEPARATOR <PS>

Only the Unicode code points in Table 33 are treated as line terminators. Other new line or line breaking
Unicode code points are not treated as line terminators but are treated as white space if they meet the
requirements listed in Table 32. The sequence <CR><LF> is commonly used as a line terminator. It should be
considered a single SourceCharacter for the purpose of reporting line numbers.

Syntax

LineTerminator ::
<LF>
<CR>
<LS>
<PS>

LineTerminatorSequence ::
<LF>
<CR> [lookahead # <LF>]
<LS>
<PS>
<CR> <LF>

11.4 Comments

Comments can be either single or multi-line. Multi-line comments cannot nest.

Because a single-line comment can contain any Unicode code point except a LineTerminator code point, and
because of the general rule that a token is always as long as possible, a single-line comment always consists of
all code points from the // marker to the end of the line. However, the LineTerminator at the end of the line is not
considered to be part of the single-line comment; it is recognized separately by the lexical grammar and
becomes part of the stream of input elements for the syntactic grammar. This point is very important, because it
implies that the presence or absence of single-line comments does not affect the process of automatic
semicolon insertion (see 11.9).

© Ecma International 2015 121

oecna

Comments behave like white space and are discarded except that, if a MultiLineComment contains a line
terminator code point, then the entire comment is considered to be a LineTerminator for purposes of parsing by
the syntactic grammar.

Syntax

Comment ::
MultiLineComment
SingleLineComment

MultiLineComment ::
/* MultiLineCommentCharsop * /

MultiLineCommentChars ::
MultiLineNotAsteriskChar MultiLineCommentCharsqpt
* PostAsteriskCommentCharsqp

PostAsteriskCommentChars ::
MultiLineNotForwardSlashOrAsteriskChar MultiLineCommentChars op
* PostAsteriskCommentCharsqpt

MultiLineNotAsteriskChar ::
SourceCharacter but not *

MultiLineNotForwardSlashOrAsteriskChar ::
SourceCharacter but not one of / or *

SingleLineComment :
/ / SingleLineCommentCharsop

SingleLineCommentChars :
SingleLineCommentChar SingleLineCommentCharsqpt

SingleLineCommentChar :
SourceCharacter but not LineTerminator

11.5 Tokens
Syntax

CommonToken ::
IdentifierName
Punctuator
NumericLiteral
StringLiteral
Template

NOTE The DivPunctuator, RegularExpressionLiteral, RightBracePunctuator, and TemplateSubstitutionTail productions derive
additional tokens that are not included in the CommonToken production.

11.6 Names and Keywords

IdentifierName and ReservedWord are tokens that are interpreted according to the Default Identifier Syntax given
in Unicode Standard Annex #31, Identifier and Pattern Syntax, with some small modifications. ReservedWord is
an enumerated subset of IdentifierName. The syntactic grammar defines Identifier as an IdentifierName that is not
a ReservedWord (see 11.6.2). The Unicode identifier grammar is based on character properties specified by the
Unicode Standard. The Unicode code points in the specified categories in version 5.1.0 of the Unicode standard
must be treated as in those categories by all conforming ECMAScript implementations. ECMAScript
implementations may recognize identifier code points defined in later editions of the Unicode Standard.

122 © Ecma International 2015

oechna

NOTE 1 This standard specifies specific code point additions: U+0024 (DOLLAR SIGN) and U+005F (LOW LINE) are
permitted anywhere in an IdentifierName, and the code points U+200C (ZERO WIDTH NON-JOINER) and
U+200D (ZERO WIDTH JOINER) are permitted anywhere after the first code point of an IdentifierName.

Unicode escape sequences are permitted in an IdentifierName, where they contribute a single Unicode code
point to the IdentifierName. The code point is expressed by the HexDigits of the UnicodeEscapeSequence (see
11.8.4). The \ preceding the UnicodeEscapeSequence and the u and { } code units, if they appear, do not
contribute code points to the IdentifierName. A UnicodeEscapeSequence cannot be used to put a code point into an
IdentifierName that would otherwise be illegal. In other words, if a \ UnicodeEscapeSequence sequence were
replaced by the SourceCharacter it contributes, the result must still be a valid IdentifierName that has the exact
same sequence of SourceCharacter elements as the original IdentifierName. All interpretations of IdentifierName
within this specification are based upon their actual code points regardless of whether or not an escape
sequence was used to contribute any particular code point.

Two IdentifierName that are canonically equivalent according to the Unicode standard are not equal unless, after
replacement of each UnicodeEscapeSequence, they are represented by the exact same sequence of code points.

Syntax

IdentifierName ::
IdentifierStart
IdentifierName IdentifierPart

IdentifierStart ::
UnicodelDStart
$

\ UnicodeEscapeSequence

IdentifierPart ::
UnicodelDContinue
$

\ UnicodeEscapeSequence
<ZWNJ>
<ZWJ>

UnicodelDStart ::
any Unicode code point with the Unicode property “ID_Start”

UnicodelDContinue ::
any Unicode code point with the Unicode property “ID_Continue”

The definitions of the nonterminal UnicodeEscapeSequence is given in 11.8.4.

NOTE 2 The sets of code points with Unicode properties “ID_Start” and “ID_Continue” include, respectively, the code
points with Unicode properties “Other_ID_Start” and “Other_ID_Continue”.

11.6.1 Identifier Names
11.6.1.1 Static Semantics: Early Errors
IdentifierStart :: \ UnicodeEscapeSequence

e ltis a Syntax Error if SV(UnicodeEscapeSequence) is none of "$", or "_", or the UTF16Encoding (10.1.1) of
a code point matched by the UnicodelDStart lexical grammar production.
IdentifierPart :: \ UnicodeEscapeSequence

e ltis a Syntax Error if SV(UnicodeEscapeSequence) is none of "$", or "_", or the UTF16Encoding (10.1.1)
of either <ZWNJ> or <ZWJ>, or the UTF16Encoding of a Unicode code point that would be matched by
the UnicodelDContinue lexical grammar production.

© Ecma International 2015 123

oecna

11.6.1.2 Static Semantics: StringValue
See also: 11.8.4.2, 12.1.4.

IdentifierName ::
IdentifierStart
IdentifierName IdentifierPart

1. Return the String value consisting of the sequence of code units corresponding to IdentifierName. In
determining the sequence any occurrences of \ UnicodeEscapeSequence are first replaced with the code
point represented by the UnicodeEscapeSequence and then the code points of the entire IdentifierName are
converted to code units by UTF16Encoding (10.1.1) each code point.

11.6.2 Reserved Words

A reserved word is an IdentifierName that cannot be used as an Identifier.

Syntax

ReservedWord ::
Keyword
FutureReservedWord
NullLiteral
BooleanLiteral

NOTE The ReservedWord definitions are specified as literal sequences of specific SourceCharacter elements. A code
point in a ReservedWord cannot be expressed by a \ UnicodeEscapeSequence.

11.6.2.1 Keywords
The following tokens are ECMAScript keywords and may not be used as Identifiers in ECMAScript programs.

Syntax

Keyword :: one of
break do in typeof
case else instanceof var
catch export new void
class extends return while
const finally super with
continue for switch yield
debugger function this
default if throw
delete import try

NOTE In some contexts yield is given the semantics of an Identifier. See 12.1.1. In strict mode code, let and

static are treated as reserved keywords through static semantic restrictions (see 12.1.1, 13.3.1.1, 13.7.5.1,
and 14.5.1) rather than the lexical grammar.

11.6.2.2 Future Reserved Words

The following tokens are reserved for used as keywords in future language extensions.

Syntax

FutureReservedWord ::
enum
await

await is only treated as a FutureReservedWord when Module is the goal symbol of the syntactic grammar.

124 © Ecma International 2015

cecna

NOTE Use of the following tokens within strict mode code (see 10.2.1) is also reserved. That usage is restricted using
static semantic restrictions (see 12.1.1) rather than the lexical grammar:

implements package protected
interface private public

11.7 Punctuators

Syntax
Punctuator :: one of
{ () [1
Iz 7 < > <=
>= == 1= === ==
+ - * % ++ --
<< >> >>> & | A
] ~ && | 2
= += —_— *= %= <<=
>>= >>>= &= = A= =>
DivPunctuator .
/
/=
RightBracePunctuator :
}
11.8 Literals

11.8.1 Null Literals

Syntax

NullLiteral ::
null

11.8.2 Boolean Literals

Syntax

BooleanLiteral ::
true
false

11.8.3 Numeric Literals

Syntax

NumericLiteral :.
DecimalLiteral
BinarylntegerLiteral
OctallntegerLiteral
HexlIntegerLiteral

DecimallLiteral ::
DecimallntegerLiteral . DecimalDigitsqp ExponentPartop
. DecimalDigits ExponentPartqp
DecimallntegerLiteral ExponentPartqp

© Ecma International 2015 125

oecind

DecimallntegerLiteral ::
0
NonZeroDigit DecimalDigitsopt

DecimalDigits ::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit :: one of
0 1 2 3 4 5 6 7 8 9

NonZeroDigit :: one of
1 2 3 4 5 6 7 8 9

ExponentPart ::
Exponentindicator Signedinteger

Expone