
THE INDEPENDENT MAGAZINE FOR THE UBUNTU LINUX COMMUNITY

 SPECIAL EDITION

 Volume Volume OneOne

Full Circle

Full Circle Magazine is neither ailiated, with nor endorsed by, Canonical Ltd.

 Through Issue 25 Through Issue 25

 Command Command

 & &

 ConquerConquer

6

take a long time to change to the
documents directory without
'~/'. However, now that you are
in your Documents directory,
how do you move back to your
Home directory? There are
several ways do to this.

$ cd
$ cd ..
$ cd ~/
$ cd /home/robert

These all do the same thing if
you are in your Documents
directory. 'cd' with no arguments
will always take you to your
home folder. 'cd ..' takes you to
your previous directory, so here
we moved from
'/home/robert/Documents' to the
previous directory,
'/home/robert'. The third uses
the ~ shortcut, and can be used
with or without the trailing '/'.
The final command uses the full
path, which will always take you
to the exact location, providing it
exists.

Now for some time saving!
Rather than typing out a long
directory like

directory'? Any commands you
execute will be run in the current
directory. This won't mean much for
now, but it will make all the
difference later on. One command
that uses your current directory is
'ls', which will give you a list of files
in the directory you specify, or in the
current directory if you don't specify
one.

It's not always useful to be in your
home directory though, so let's move
away. To do this, we use the change
directory command, cd.

$ cd ~/Documents

If you now type 'pwd', you will see
you are now in your documents
directory. The '~/' was not needed for
that command although it can be a
handy shortcut to save time. In this
example, you were already in your
home directory, so 'cd Documents'
would have worked. If you were in
another directory though, say
'/home/robert/Pictures/2007/Decembe
r/Christmas' for example, it would

CCOOMMMMAANNDD AANNDD CCOONNQQUUEERR
Written by Robert Clipsham

L
ast month we showed you
how to stay safe using a
command line. Now that you

know this, you can start using it to
your advantage! Over the next
few issues, we'll show you the
basics of file management, which
will be of use later on when doing
more advanced things.

The first command in this issue
will just prove a statement from
the start of last month's article,
"you are in your home directory".
Whenever you see ~ this means
your home directory, so to prove
this, type (in a terminal):

pwd

I get this output:

$ pwd

/home/robert

Of course this will display your
home directory, rather than mine.
But what use is this to you? What
does it mean to be 'in your home

7

'~/Pictures/2007/December/Christ
mas', you can just type the first
few letters!

$ cd ~/Pi<tab>

Replace <tab> with you
pressing your tab key, and notice
how it automatically changes to
Pictures? You can use this
technique with most directories to
save time.

You may have encountered
some problems performing these
simple commands. Don't worry
though, it is probably something
very simple. The first problem you
may have encountered probably
happened when you tried
changing to the Documents
directory.

-bash: cd: documents: No
such file or directory

Everything you enter at the
command line is case sensitive!

 and are
two completely different
directories in the eyes of the
terminal, so make sure you have
the correct capitalization! You

may also have had this error if you
don't have a Documents directory
because, for example, you have
deleted it. The other error you may
have encountered is when trying to
use tab complete. If your computer
gave a beep when you hit tab, it can
mean one of two things. The first is
that the directory doesn't exist. If the
directory doesn't exist, it won't be
able to tab complete it! The other
possiblity is that you have multiple
directories starting with Pi in your
home directory. If this is the case
then hit tab again, and you will get a
list of possible files and directories,
so you can type a few more letters
and hit tab again. If there are a lot of
possible matches, you will see
something like:

Display all 388 possibilities?
(y or n)

Unless you want to see them all,
type 'n', then hit enter and type a
few more letters to narrow down the
number of possible matches.

 is a self confessed
geek, whose hobbies include:
programming/scripting, chatting on
IRC and not writing his articles on time.

GetDeb extends the existing software
options for Ubuntu (and derived) Linux
distributions by providing major
updates and software not yet available
on the official Ubuntu repositories.

GetDeb packages are built using
Debian/Ubuntu building rules, this
reduces development effort and
assures the same level of quality.
However when new packages are
developed or major upgrades are
performed we do not follow a strict
quality assurance process, this is the
accepted cost required to achieve
shorter release times. Still with a
broader user base problems are
quickly identified as fixed. It should
also be noted that we do not provide
system core packages or major
libraries which could cause
dependency problems or other major
issues, in case you find a broken
package recovery should be easily
achieved by reinstalling the Ubuntu
official package.

www.getdeb.net

http://www.getdeb.net

6

the directory, but you can do so,
if you like to be sure what's
going on. You need to be careful
when using mv and cp, as they
will overwrite any existing files
you may have. This is not an
issue with our practice files, but
when you do it with real files, it
could cause problems. You
should back up before
interacting with any files using
the command line if you are
worried about losing things. If
you would like to be notified
when your command calls for an
overwrite, use the -i switch. For
example:

$ cp -i foo bar/

If you did 'mv foo2 bar/foo'
before, you will be prompted to
make sure you want to overwrite
the file. There are several other
options that you might find
useful which can be found in the
man pages. One you may want
is -v, which will show all files as
they are copied or moved. You
can use wildcards to copy or
move multiple files.

I'm not going to tell you what it is!).
Now that we have a file and directory
to practice with, it's time to do
something with them. The first thing
I'll show you is how to make a copy
of a file or directory.

$ cp foo foo2

This will copy the file 'foo' (which
we created earlier) to 'foo2'. Now
let's move our new file 'foo2' to the
'bar' directory, and at the same time
rename it to 'foo'. To do this, we use
the mv tool.

$ mv foo2 bar/foo

Notice how you can use the mv
tool to rename files, as well as move
them. If you just wanted to move
'foo2' to the 'bar' directory without
renaming it, you could do either of
the following:

$ mv foo2 bar/
$ mv foo2 bar/foo2

As you are not renaming it, you
don't need to append the filename to

CCOOMMMMAANNDD AANNDD CCOONNQQUUEERR
Written by Robert Clipsham

N
ow that you know how to
navigate a command line,
find out where you are, and

how to list the files in your current
directory, we'll show you how to
manage your files using a shell. To
begin with, open up a terminal
and do the following:

$ touch foo
$ mkdir bar

The first of these commands
will create an empty file called
'foo'. This is often useful if you run
a web server along with web
applications, and are asked to
create a file with the given name
to prove you have permission to
install the application. The second
command is used to make
directories, and here makes a
directory called 'bar'. If you want
to make sure these commands
worked, you can use the
command you learned last issue
to see a list of files/directories
within your working directory (No,

7

$ mkdir new-directory/
$ mv bar/* new-directory/

This will move everything from
bar/ to new-directory/. If you
would rather move the full
directory, and not just the files
and directories within it, use the
same command, but without the
'*'.

Finally, let's remove all the
example files using the rm
command.

$ rm -rf bar/
$ rm -rf new-directory/
$ rm foo

Using rm with -rf causes rm to
remove files and directories
recursively, and to force removal
without prompting. This is normally
used for removing folders and all
their contents. Be very careful that
you enter the right file or directory
when using rm; if you hit tab and
don't look at what it has completed
to, you could end up removing
something you didn't want to! Make

 is a self
confessed geek, whose hobbies
include: programming/scripting,
chatting on IRC and not writing
his articles on time.

sure that if anyone is giving you
support and tells you to use rm,
you know what you're removing,
especially if it has sudo in front
of it. Don't forget to backup any
important files, even if you think
you aren't going near them!

Threads: 873,580, Posts: 5,633,487, Members: 649,029, Active Members: 63,991

the place for Ubuntu, Kubuntu and Xubuntu beginners...

.org

http://ubuntuforums.org

6

tasks could be anything from
find/replace to just saving a file.
In graphical editors, the latter is
done by using menus or clicking
buttons. In Nano, you use certain
key combinations to perform
these tasks. Vim has two modes
for this functionality: an insert
mode and a command mode.
Vim (below) starts in command
mode by default, so you won't
be able to edit the document.

$ vim example.txt

To switch to insert mode, press
'i' or the insert key. You will now
be able to edit the file. Enter a
few lines of extra text, then
switch back to command mode
by pressing the escape (esc) key.

will 'WriteOut' or save the file, and
^W (Ctrl+w) will allow you to search
for a certain term in the file. Enter
some text into the file, then save it.
Nano is the easier of the two editors
to use, but its functionality is much
less than that of Vi or Vim.

By default, Ubuntu comes only
with the basic Vim package, without
all the bells and whistles. This is fine
for this tutorial, but for advanced
editing, you'll need the full package
(we'll show you how to get this using
a command line in the next tutorial).

Text editors do two main things:
edit files and automate tasks. The

CCOOMMMMAANNDD AANNDD CCOONNQQUUEERR
Written by Robert Clipsham

I
f you've been following the
tutorials so far, you should now
know the basics of staying

safe, and managing files at a
command line. This month we
show you how to edit files using
Nano and Vi/Vim.

To get started, I'll show you the
easier of the two editors to use,
Nano (right).

$ nano example.txt

At the top you will see three
things. On the left 'GNU Nano'
followed by a version number, in
the center the name of the file,
and on the right the status of the
file. At the bottom, there are two
rows of commands for the editor,
then a status row just above
them. To edit the file, just start
typing like you would with any
other text editor!

Other than editing the file, the
common functions (and their key
combinations) are listed at the
bottom. For example, ^O (Ctrl+O)

7

There are a hundreds, if not
thousands of commands in vim,
providing a lot of functions. Some of
the basic commands are shown in
Fig.1 (left).

So, for example, if you wanted to
save your changes, type ':w' (all of
vim's command start with ':'). You
can also mix commands, so for
example ':wq' saves and quits vim.

These are just a few of the basic
commands Vim has. There are also
commands for copy/paste, find and
replace, syntax highlighting, showing

line numbers, and more
advanced functions too. If you
want more information, use :help
or read the documentation at
http://www.vim.org/docs.php.

 is a
self-confessed geek,
whose hobbies include:

programming/scripting, chatting
on IRC and not writing his
articles on time.

:w

:q

:q!

h,j,k,l

:e [filename]

:help
[command]

:set [option]
[value]

Save the document.

Quit Vim.

Quit Vim without Saving

Move around
document, you can
also use the arrow keys

Open the given file.

Open the main help
page or get specific
help

Get a list of options
that have been set, or
set an option

http://www.vim.org/docs.php

6

of output will be from the second
command. It will look something
like:

Read the information it gives,
and if you're ok with it, type 'y'
(without the '') and press enter.
Otherwise, type 'n', and nothing
will happen. As you can see from
the screenshot, there are
numerous updates I need to do;
however, if you've been keeping
your system up to date, then it
may just take you straight back
to a command line, as there are
no updates.

The next thing to show you
with aptitude is how to add and
remove packages. However, this
is of no use if you don't know
what packages are available.

'root' user, giving it full control over
your system. This is necessary, as
otherwise you won't be able to install
the packages. The next bit tells
aptitude to 'update' its package
database, so it has a list of the most
recent packages. The '&&' is a
command line operator, which tells
the command line to run another
command. The next command tells
aptitude to run a 'safe-upgrade' of all
the packages on the system. This is
the command that actually updates
the packages. There is also a 'full-
upgrade' option available, which is
less conservative than safe-upgrade,
and could cause unwanted actions.
See the man page for more
information on it. You will be asked to
enter your 'sudo' password, which
will be the same as the password you
use to log in (you must have a
privileged account to do this; it won't
work on restricted accounts).

You will see lots of text fly past,
telling you where aptitude is getting
its package lists from, and some
status information on it. The next set

CCOOMMMMAANNDD AANNDD CCOONNQQUUEERR
Written by Robert Clipsham

T
his month, we'll show you
how to do package
management using a

command line. When it comes to
package management using a
command line, there are two main
tools available, apt-get and
aptitude. I won't go into a
comparison of them here, as a
quick Google Search will give
more than enough information on
it. I have chosen to use aptitude
for this tutorial, but you can make
your own decision based on the
information you find.

First off, let's update our
system. Open your favorite
terminal emulator, then do the
following:

$ sudo aptitude update &&
sudo aptitude safe-upgrade

This may look quite complicated
at first, so let's break it down. First
of all, you'll notice we're using
sudo. If you've been following the
tutorial from the start, you'll know
that this runs the command as the

7

Let's start by searching for a
package. In the last issue, I
mentioned that Ubuntu didn't
come with the full vim package,
so let's find that.

$ aptitude search vim

Notice that sudo isn't needed to
search for packages? You don't
need it, as you aren't changing
any system files. This should show
you a list that looks something
like this:

This is a list of packages
matching the pattern you gave,
along with their description and
status. Here's a table (above
right) showing the meaning of
some of the different status-codes
(you can also find these in the
man pages).

Now to install vim:

$ sudo aptitude install vim

This acts just like safe-upgrade in
the way it shows dependencies that
it will install. If you are sure you want
to install it, type y and press enter.
Vim will now be installed on your
system ready for use. To remove it at
a later point, you can use:

$ sudo aptitude remove vim

And it will be removed. Simple!

 is a
self-confessed geek,
whose hobbies include:

programming/scripting, chatting
on IRC and not writing his
articles on time.

 p

 c

 i

 v

No trace of the
package exists on the
system.

The package is deleted,
but its configuration
files are still on the
system.

The package is installed

The package is virtual

http://www.apress.com

6

$ find recipes/ -type f -
name '*.jpg'

This will find all the files (-type
f) with a name ending in .jpg.
Notice how I have enclosed *.jpg
in single quotes? This prevents
your shell from expanding the *.
Try the following, and notice the
difference.

$ echo *

$ echo '*'

The first should give a list of
all the files in your current
directory, while the second
should give *. While find on its
own may not seem that useful,
when coupled with xargs it
becomes a very powerful tool.

$ find recipes -type f -
name '*-cake.txt' | xargs -
I % cp % old-recipes/

This command takes the
output of “find recipes -type f -
name '*-cake.txt'”, then pipes (|)
it into xargs. Using -I % tells
xargs to replace % with each line
it receives.

$ find recipes -type f -
name '*-cake.txt'

grep errorlog
/etc/apache2/apache2.conf

Notice that I'm root when running
this command. You may be able to
run this command as your normal
user, depending on the permissions
for your configuration file. Try
running it as a normal user first! You
will notice that this command gives
no output. This is because grep is
case sensitive.

grep -n ErrorLog
/etc/apache2/apache2.conf

Using -n will make grep give line
numbers, so you can find what line
the directive is on. Notice that I have
changed the capitalization of
ErrorLog in this example. You could
also use the -i option to make grep
ignore case. You can also search all
the files in a directory using -r:

$ grep -ir eggs recipes/

would find all recipes containing eggs
in my recipes directory. What if you
want to search by file name? This is
where find comes in.

CCOOMMMMAANNDD AANNDD CCOONNQQUUEERR
Written by Robert Clipsham

I
f you've ever misplaced a file,
this month's Command and
Conquer is just what you need.

There's a bounty of graphical
search tools out there, but why
use a GUI when you can use the
command line!

The first command we'll look at
is grep. Grep is used for searching
for a specified string within a file.
For example, if I had a plain text
file called cookies.txt with a recipe
for making cookies in it, and
wanted to find how many eggs I
needed, I could do:

$ grep eggs cookies.txt

This will give a list of all lines
that contain the word 'eggs'. As a
more realistic example, say I had
a configuration file (I'll use apache
as an example here, though it
could be anything) and wanted to
change the name of the error log.
Just knowing that it is in the file is
no use, I need to know what line
number to look at so I can change
it.

7

recipes/chocolate-cake.txt

recipes/cheese-cake.txt

recipes/fairy-cake.txt

If that (above) is the output,
then these are the commands
xargs will run:

$ cp recipes/chocolate-
cake.txt old-recipes/

$ cp recipes/cheese-cake.txt
old-recipes/

$ cp recipes/fairy-cake.txt
old-recipes/

If you have a lot of files that match
a certain pattern, this can be a very
useful method to automate tasks
such as a selective backup. If the
output of find should be appended to
the end, then you can remove -I %
and it will be appended automatically
to the end of the command. The final
command that we'll cover in this
issue is locate. Locate might not be
installed, so you may need to install
it before it works. Locate is a very
fast way of finding files with a certain
file name. If you have apache
installed, try the following:

$ locate apache

 is a
self-confessed geek,
whose hobbies include:

programming/scripting, chatting
on IRC and not writing his
articles on time.

A huge list of files will fly past,
so it might be useful to combine
its output with grep to find
exactly what you're looking for.

$ locate apache | grep etc

This will narrow down the
results to show only those
containing 'etc'.

The official Full Circle forum, hosted at Ubuntu Forums
http://url.fullcirclemagazine.org/c7bd6f

http://url.fullcirclemagazine.org/c7bd6f

6

using text-based commands.
This means that you’re
eliminating the need to use a
graphical interface, or a bunch of
friendly buttons, to initiate
commands. It’s called command
line, meaning, instead of clicking
buttons and icons, you enter
commands with text. For
example, to update your system,
you would enter:

sudo apt-get update

There are many other such
commands that you can use to
launch applications. Back in the
earlier days of Linux, most things
were done using the command
line. This is one reason many
non-geeks didn’t, or still don’t,
want to move to Linux.

The truth is, Linux is so far
past that primitive stage of
being all command line that it
has reached the point of being a
usable desktop by anyone, geek
or non-geek. So if Linux, or more
specifically, Ubuntu, has reached
a point where the desktop is no
longer command-line driven,
why use the terminal at all?

worried that something might go
wrong. What if I mis-spelled
something and it destroys my
computer? Over time, though, that
worry was replaced by a confidence I
could have had from the start.

This is what I think every time I
hear the word “terminal.” It’s never a
happy word. So, it’s no wonder that
when I looked at some directions for
installing something in Linux, I
cringed in fear when they said to
open the Terminal. But is the fear of
entering a string of letters and
technically powerful words a reason
to be afraid? Is this a rational fear?
Why is it that so many are in fear of
switching to Linux because of
“having to use the command line?”
Let me try to smash some of these
fears and correct any misinformed
thinking by helping you, the user, to
understand the terminal a little
better.

The terminal is an application that
enables you to talk to the computer

CCOOMMMMAANNDD AANNDD CCOONNQQUUEERR
Written by Philip Royer

Y
ou’ve been sitting in a
doctor’s office for nearly an
hour. Each second seems

like an eternity. Worry is starting
to grip your gut. The test results
are being discussed by two nurses
in the hallway, and the grim looks
on their faces don’t look
promising. You wonder what
they’ve found and hope it isn’t life
threatening. You have too much to
lose: your family, your job, your
nice car. You jump as a doctor
steps into the room holding a
clipboard and looking intently at
the scattered data. He looks up
and into your eyes. “I’m sorry sir,
but it looks like this disease is
terminal.” Your heart sinks,
knowing that this sickness only
ends in death. Everything you’ve
worked for... gone.

I remember my first experience
with the computer terminal being
very similar. I was VERY timid
about entering codes manually
into the computer. With all the
code readout scrolling by, I was

7

As a more in-depth Linux
operator, the terminal can be your
greatest friend. It will talk to you
when you have a problem. It will
tell you what is wrong. Maybe not
in the same way humans interact,
but in a very similar way.

Let me elaborate a little. When
you click on an icon on the
desktop, or click a button, it sends
various commands to the
computer. All these commands
you don’t see, because they are
going on in the background. If, for
example, I was to click the update
button on my menu, to update the
system, the only thing I would see
would be a status bar indicating
how much time before my system
was updated. Now if I were to
type “sudo apt-get update” (the
command line equivalent) I would
get a very long and exhaustive list
of Web address that my computer
was searching for updates.

You’re probably thinking, “Why
would I want to see all that?” The
answer is simple: it tells me
what’s going on behind the
scenes. Well, why would I need to

know that? Because if there was a
problem with an installation, and a
problem was preventing it from
completing, then there will be error
messages in the terminal readout
that I would not see in the desktop
scenario. If I was just to have the
installation say “I’m sorry, your
installation of Gobbledygook Plus
couldn’t be completed”, then I
wouldn’t know what went wrong. But,
by installing it using the terminal,
error messages would appear,
informing me of the problem, and
enabling me to fix it, or get help. But,
the use of the terminal is not for
everyone.

Though the Terminal is very useful
in many computing situations, I do
not recommend it for everyone. For
basic users, it might be too difficult
to grasp, and, depending on the
commands involved, may
accidentally mess up your machine.
But, if you are having a problem with
your computer, such as a program
isn’t running, or an installation
crashes, you can post the output of
the terminal on the Web to get help
from others.

Use of the terminal is not a
requirement in Ubuntu, it’s an
aid to help you when you have
computer problems. Even as an
advanced user, I rarely use the
terminal. Just because you have
a spare tire under your car,
doesn’t mean you have to use it
all the time. You only use it when
you have a flat tire. It’s that
simple.

Hopefully, you will no longer
fear the terminal. Instead you
will see it as a tool that you can
get by quite easily without using.
The terminal is a useful tool, but
it doesn’t have to dominate your
computer usage. One should
never fear things that are
unknown, because if we did, we
would never learn anything new.

Unfortunately, Robert is being
intimidated by real-life lately, and is
unable to continue writing
Command & Conquer. So, we're
looking for a stand-in for a few
months. If you would like to take his
place for a few issues, please
contact Robert at:
mrmonday@fullcirclemagazine.org

mailto:mrmonday@fullcirclemagazine.org

6

line that begins with a blank and
ends with a blank and has
nothing between those -- a blank
line). So 's/\\n\b//' is merely
telling sed to substitute (“s/”)
“\n” (“\\n”) with “” (“//”). The
reason the command is in braces
is because we are actually
applying three expressions on
the output, and want it returned
only once, so we put the
expressions in braces (“{}”), and
separated by semi-colons.

Lastly, the same output can be
achieved using awk:

cat /etc/issue|awk '/\\n/
{print $1,$2}'

This command again uses
regular expressions, but is
slightly easier to understand
than sed. Basically, awk '/\n/
{print $1, $2}' finds any line
that has “\n” in it, then prints the
first two fields (the default
separator is a space, but you can
set your own using the -F flag).
This saves us having to format
out the extra line and the \l of
the output. You could also forgo
piping the output of cat
/etc/issue into the command (or

cat /etc/issue|head -n 1|cut –-
delimiter=' ' -f 1,2

This command then tells cut that
the delimiter to use is a blank space,
and to display the first two fields
(basically, cut slices output up into
segments according to the delimiter,
so fields 1 and 2 are the first fields
before and after the first delimiter in
the output, in our case, Ubuntu
8.10). Cut can also be used to
display only a certain number of
characters when using the -c flag.

With sed the same could be done
with:

cat /etc/issue|sed '{s/\\n// ;
s/\\l// ; /^$/d}'

This may look like gibberish, but
the first two expressions (each
expression is separated by a semi-
colon) tell sed to substitute “\n” with
“” (nothing), and the same for “\l”,
removing those characters from the
output. “/^$/d” is a command that
tells sed to delete any blank lines
(“^$” is the regular expression for a

CCOOMMMMAANNDD AANNDD CCOONNQQUUEERR
Written by Lucas Westermann

I
n this instalment of Command
& Conquer, we will cover the
basic uses of
, and for formatting output.

This can be useful when putting
together things such as Conky, or
scripts that display theme
information in the terminal.

The first command we should
look at is cut. If, for example, we
wanted to display the distribution
name in a theme script, we would
find it in /etc/issue. If, however,
we run cat /etc/issue we see that
there is one line too many, and
there are escape characters
included in the line. So if we run
/etc/issue|head -n 1, we remove
the extra line by piping the output
of cat through head, which then
displays only the first line of the
output. So far so good, but what
about the escape characters? This
is where cut comes in handy. To
use cut, we must supply a
delimiter, and then tell it what to
do with this. The command we
would use is:

7

either of the others), as they can
all be applied to a file specified at
the end of the command. I used
cat in order to leave the
commands less jumbled.

This is intended only as an
introductory look at the abilities of
awk, sed, and cut. Their flexible
implementations make it hard to
write a brief in-depth tutorial for
the three of them. The above
explanations are intended to
illustrate how the commands
work, and not fully explore their
potential uses. A real-world
implementation of these
commands would be in the first
half of a custom theme script (the
example below also displays
theme info, but that part isn't
necessarily pertinent to this
article; it was left there to keep
the script complete). The example
also contains a challenge for
anyone who wishes to attempt it:
Figure out how to use one of the
three commands to remove the
indentation in the memory part of
the script, and, if you want more
practice, try replacing every
occurrence of cut, sed, or awk
with a different command that

does the same (i.e. replace a cut
command with awk). There is no
prize, but it is good practice to figure
out the inner workings of the
commands.

http://fullcirclemagazine.org/issue-21-shell-
script/

Sed -
http://www.grymoire.com/Unix/Sed.html

awk -
http://www.linuxjournal.com/article/8913 or
http://www.linuxfocus.org/English/September
1999/article103.html

cut -
http://learnlinux.tsf.org.za/courses/build/shell
-scripting/ch03s04.html

The man (manual) page of each
command, can be accessed with:

man [command]

this is useful if you're unsure of how
to invoke a command.

 has learned all he knows
from repeatedly breaking his
system, then having no other

option but to discover how to fix it.
When he finds time, he also publishes a
blog at http://lswest-
ubuntu.blogspot.com.

http://www.grymoire.com/Unix/Sed.html
http://www.linuxjournal.com/article/8913
http://www.linuxfocus.org/English/September1999/article103.html
http://learnlinux.tsf.org.za/courses/build/shell-scripting/ch03s04.html
http://lswest-ubuntu.blogspot.com
http://fullcirclemagazine.org/issue-21-shell-script/

6

you specified in 'output.filetype'
– without changing the size
(since, if the size is not specified,
ffmpeg defaults to the size of the
source). However, to convert
"Freedom Downtime" (starting
size of 640x480) to a smaller clip
(say 320x240), the command
would look like this:

ffmpeg -i freedom\
downtime.mpg -s 320x240
freedom\ downtime\ resized.mpg

Of course, you could also
change the format of the file at
the same time by changing the
file extension. This shouldn't
take too long (obviously
depending on the size of the
clip). My clip was a few minutes
long, and took maybe 30
seconds to convert on my laptop.

Mogrify is a very handy tool,
especially if you find yourself
posting a lot of pictures on web
forums that don't allow uploads
of images exceeding a certain
size, or do not allow linking to
large images for previews in
posts. I use mogrify mainly for
making thumbnails of images,
but it can do many more things,

command – if you're unsure whether
or not you've already installed it –
since apt-get will not overwrite the
existing program, but merely inform
you that it's already installed. Also, it
will ask you for your password (since
you're using sudo), and, if you're new
to this, you may be surprised that it
does not show anything when you
enter your password. This is normal,
just type your password and hit the
enter key.

For this article I will be converting
a short clip from "Freedom
Downtime" which I used in a
presentation. ffmpeg offers a lot of
options (which you can read about in
detail in the roughly 13-page-long
manpage – by using the command
"man ffmpeg"), but the option I use
most frequently is the option to
convert files. The format for such a
command is:

ffmpeg -i inputfile.filetype
outputfile.filetype

That command would just convert
the input file to whatever output file

CCOOMMMMAANNDD AANNDD CCOONNQQUUEERR
Written by Lucas Westermann

E
ver had a video clip you
wanted to reduce in size
and add to a slideshow for a

presentation? Or, maybe convert
into another format so that you
could play it? Today, I will show
you how to do both of those
things using the command-line
tool 'ffmpeg'. I will also introduce
you to the 'mogrify' command,
which is an image-editing tool
contained in the imagemagick
package. It allows you to do many
things, but I will cover the basics –
mostly the resizing of images (e.g.
for thumbnails or other small
images).

To use these tools, you will need
to install ffmpeg and
imagemagick through either
Synaptic Package Manager or
Add/Remove Applications, or, in
the spirit of this article, through
the command-line with:

sudo apt-get install ffmpeg
imagemagick

It's safe to run the install

7

such as adding text, adding
effects (charcoal, colorized, etc.)
and much more (it's all outlined,
once again, in the manpage,
reached with "man mogrify").
Mogrify supports resize
arguments in either percentages
or pixel values. So, for example, if
you have a 1280x800 pixel image
which you want to resize to
640x400, you can do so with
either:

mogrify -resize 50 in.jpg
out.jpg

or:

mogrify -resize 640x400 in.jpg
out.jpg

or even just:

mogrify -resize 50% in.jpg
out.jpg

However, if the pixel
measurements and the aspect-
ratio you supply are different, it
could result in a smaller image
than expected, as it will scale to
the nearest values that are still in
proportion. Mogrify also has a
thumbnail argument, which does
roughly the same as the resize

option, yet it removes any
unnecessary comments, etc. from
the file header to reduce image size.
So using that tool the command
would be:

mogrify -thumbnail 50 in.jpg
out.jpg

You can also use it to convert
images using the “-format”
argument. So,

mogrify -format jpg *.png

will convert all the .png files in the
current directory into .jpg format
(names will be the same).

As you can see, contrary to
common belief, command-line tools
can help with graphical projects, and
often do it more quickly or more
effectively than a GUI program with
confusing menus and/or different
layouts in newer versions. The
command will (usually) stay the
same, and arguments are very rarely
changed. And so, command-line tools
are much more universal – which is
why users on ubuntuforums.org
usually supply commands instead of
GUI methods for solutions, since the
commands apply to Kubuntu,
Xubuntu and Ubuntu, as well as

 has learned all he
knows from repeatedly
breaking his system, then

having no other option but to
discover how to fix it. When he
finds time, he also publishes a
blog at http://lswest-
ubuntu.blogspot.com.

other systems too. Hopefully,
you've found this useful, and
next time you need to convert a
video or an image, you'll
remember mogrify and ffmpeg.
After all, practice makes perfect.

http://www.imagemagick.org/ww
w/mogrify.html – Very useful
guide on imagemagick in
general, from the imagemagick
site

http://www.ffmpeg.org/document
ation.html - The official ffmpeg
documentation with useful
information, FAQs, etc.

http://lswest-ubuntu.blogspot.com
http://www.imagemagick.org/www/mogrify.html
http://www.ffmpeg.org/documentation.html

6

to see if they show any
indication of having recognized
your USB stick. If the drive is
recognized by the system you
can, for a more specific error
message, try mounting the USB
stick manually, and see why it is
failing.

The above commands and
ideas can apply to almost any
issue that you might encounter,
as long as you have a basic
understanding of where to look.
The next suggestion, however, is
for slow boot times and to see
what exactly is going on when
you start the computer - in case
something is hanging and
causing a large delay.

This is done by a program
called boot chart which is in the
Ubuntu repositories. You can just
install it with:

sudo apt-get install bootchart

Once it's installed, you merely
have to restart your computer
and then you can view the
resulting chart in eye of gnome
(default image viewer) - by
navigating to the

to find out what you need to do to
resolve the issue.

A more difficult problem to
troubleshoot is if, for example, you
insert a USB stick and it isn't
recognized by Nautilus. The first
command that should be run is:

dmesg|tail

See if the output of that refers to
the insertion of a USB stick, or
anything that relates to your specific
problem. If it doesn't appear in the
output you can try either extending
the amount of output you see by
adding the -n argument to tail, and
the number of lines you want
displayed. So seeing 14 lines of
output would be:

dmesg|tail -n 14

Otherwise, you can remove and re-
insert the stick in a new USB slot, or
check the outputs of

sudo fdisk -l

lsusb

CCOOMMMMAANNDD AANNDD CCOONNQQUUEERR
Written by Lucas Westermann

I
've noticed that there were
quite a few posts on Ubuntu
Forums in the last couple of

weeks about how to troubleshoot
errors that occur. Therefore, I
decided I'd cover some basic
things I do when trying to find
where a problem is occurring, so
that I can google for a solution
(unless I can fix it without that).
For general knowledge, logs are
stored under /var/log/, and there
are system logs (for everything),
and then a collection of logs for
applications or processes.

The first thing that should be
done - if an application crashes on
startup (e.g. Firefox freezes and
crashes after you launch it) - is to
launch the application from the
terminal - then any errors that
arise are displayed in the
terminal. If that gives you an error
message, the best solution would
be to either copy and paste the
gist of the error into google for a
search, or else, if you understand
the error, to use that information

7

/var/log/bootchart/ folder and
opening the correct image (they
are named by date).

Also, hardware issues can be
checked by the program lshw,
which lists hardware information.
The most useful way to do it is to
run it using the -C flag, and then
the section (display, network,
etc.). So, for example, wireless
issues would be checked with:

sudo lshw -C Network

This command displays details
on your network devices (ethernet
and wireless), and lists as much
information as possible, from
capabilities to drivers, and so
forth. The most important is
probably to check that it isn't
disabled, and that the driver is
listed (it will be in the last line of
the device section and denoted
with “driver=[drivername]”).

On a last note, if you run into
any errors or problems you are
unable to troubleshoot or fix,
attach as much information as
possible that could be relevant to
any request you make. Too much
information is better than too

little. For example, if you're working
on a wireless connectivity issue, or a
wireless device not being recognized,
post the output of commands such
as ifconfig, iwconfig, lshw -C
Network; if it's a USB wireless
dongle, then also the output of lsusb,
if it's PCI then lspci, etc. This helps
because whoever decides to help
you won't have to ask for any more
information if you supply enough in
the first post, and any subsequent
replies may be able to answer your
question without a long back and
forth, which usually can last for a day
or two (depending on timezones and
time of day the post was created).
Just keep in mind that the more
information is supplied, the more
information someone has to work
with to solve a problem that they can
neither see nor physically
troubleshoot.

This article was created to be a
useful guide to give people
somewhere to start when trying to
solve problems on their own, or to
improve their chances of getting
support when they need to ask for it.
It is by no means exhaustive, nor are
the commands listed explained
thoroughly. Any commands can be

 has learned all he
knows from repeatedly
breaking his system, then

having no other option but to
discover how to fix it. When he
finds time, he also publishes a
blog at http://lswest-
ubuntu.blogspot.com.

investigated in the man pages
(using the “man” command
covered in an earlier article of
C&C), and using the commands
will also greatly help your
understanding of them.

http://www.troubleshooters.com/t
promag/200007/200007.htm

http://lswest-ubuntu.blogspot.com
http://www.troubleshooters.com/tpromag/200007/200007.htm

full circle magazine #24 6 contents ^

T
his article will be

dedicated to

automating things you

do every day, and to

helping you create a backup

solution that works for you. To

begin, a “bash script” is a

script that contains everyday

bash commands, and some

functionality that isn't used

often from the command-line

(such as if-then-else loops,

while loops, etc.). Cron is a

daemon that runs all

commands listed in a user's

crontab file (so if you want to

run something that requires

root powers, you need to edit

the crontab for the root user).

For the sake of this article, I will

use a simple one-line bash

script that condenses all the

.java files in a folder into one

text file. However, you could

change it to condense log files.

I will explain how the bash

script works, and I will then

cover how to set up cron to run

the script every 6 hours.

To create a bash script, the

method I prefer is to write it

using nano, so that's what I'll

use in the examples. If you

prefer a GUI editor, replace

“nano” with “gedit” (minus the

quotes). To start, do the

following:

nano FileCondenser

This will start a new interface

in the terminal with a

completely empty file. Then

enter the following lines (I will

explain them in a moment):

#!/bin/bash find
$HOME/workspace/Year\ 11 -
name '*.java' | while read
line; do cat "${line}"; done

Save the file with Ctrl+X, and

hit Enter. To make the script

executable, run the following

command:

chmod +x FileCondenser

Now you can execute the

script by running, in the

terminal:

./FileCondenser

or by creating a symbolic

link to /usr/bin (and executing

it like any other program you

use in the terminal) by issuing:

sudo ln -s /<path to
script>/FileCondenser
/usr/bin/FileCondenser

where you replace “<path

to script>” with the actual path

(the absolute path is required

for symbolic links).

The script essentially uses

find to locate all the files that

end with .java in the eclipse

folder, then pipes it (redirects

the output) to the while loop,

which states that while there is

a line within one of those files

to read, output the line, and

once there are none, stop.

As I mentioned above, you

can change the path to

/var/logs/, and have it read:

find /var/logs/ -name
“*.log”|while read line; do
cat “${line}”; done

which will condense all the

files that end with .log from the

/var/logs folder (and its

subdirectories) and outputs it

to the terminal. Or you can

redirect the output to a file.

To add the script to your

crontab file, I'd suggest

creating the symbolic link so

the command is shorter, but

that's not necessary. To edit the

crontab file run the following

command:

crontab -e

It will then open the user's

crontab file. If you want to add

it to the root user's crontab (for

backup scripts and the like) run

the following:

sudo crontab -e root

Once the crontab is open, it

COMMAND & CONQUER

The script

essentially uses find

to locate all files

that end with .java...

full circle magazine #24 7 contents ^

 has learned all he knows
from repeatedly breaking his
system, then having no other
option but to discover how to fix
it. When he finds time, he
publishes a blog at: http://lswest-
ubuntu.blogspot.com.

COMMAND & CONQUER
is important to know the

format of the entry. It goes

<minute> <hour> <day>

<month> <day of week>

<command>. All positions

must be filled by either

wildcards or values. A couple of

examples:

Every 5 minutes:
*/5 * * * * FileCondenser >
$HOME/condenseFile.txt

Every Sunday at 6:
00 18 * * sun FileCondenser
> $HOME/condenseFile.txt

The entry I'd suggest using

for a periodic backup of logs

would be:

* */2 * * * FileCondenser >
$HOME/condenseFile.txt

which will run the script every

two hours, and store the output

in a file in your Home directory

called condenseFile.txt. On a

final closing note, a simple

backup script that I can think

of would be one that archives a

certain folder, or collection of

folders (like your home folder

or your root directory), and

stores it on a backup partition,

or on an external hard drive,

etc. An example for this would

be:

tar cvvzf
/media/Backup/Music\
Backup/backup.tar.gz
$HOME/Music

This command assumes

your backup hard

drive/partition is mounted at

/media/Backup and that it

contains a folder called “Music

Backup”. The tar command

creates a gzipped tar archive

at /media/Backups/Music

Backup/ called backup.tar.gz,

which contains the contents of

your Music folder. You could

run this command from a

crontab without a script, but I

would assume if you want to

make system-wide backups (of

your root partition, for

example) you'd want to include

a long list of folders to ignore -

possibly reading the ignore list

from another file; something

like that, and so a script would

just keep it clean. Not only

that, but you could easily run it

manually in the terminal as

well. I recommend testing any

commands or scripts on a

small test folder before

committing them, otherwise

you may run into problems.

Python version of the script for

those interested:

http://lswest.pastebin.com/m5b

536464

A bash script tutorial:

http://www.linux.org/docs/ldp/h

owto/Bash-Prog-Intro-

HOWTO.html

by Ken O. Burtch (ISBN: 978-0-

672-32642-4)

Cron tutorial:

http://www.clickmojo.com/code/

cron-tutorial.html

http://lswest-ubuntu.blogspot.com
http://lswest.pastebin.com/m5b536464
http://www.linux.org/docs/ldp/howto/Bash-Prog-Intro-HOWTO.html
http://www.clickmojo.com/code/cron-tutorial.html
http://www.ubuntupocketguide.com

full circle magazine #24 5 contents ^

H
ave you ever thought

to yourself “There

has got to be an

easier way to do

this,” as you're sifting through

tons of old commands in the

history – looking for a specific

one? There is an easier way.

Not only that, but there are a

few useful things you can do

with your terminal and shell to

make life easier. Now, to start

with, you'll notice I used the

terms “terminal” and “shell,”

and I have known some people

to think they are one and the

same, so I will take a moment

to explain.

A terminal is the actual

program that displays the shell

prompt, but you can easily

change which shell it displays.

Also, any configuration of the

prompt has to be done on the

shell, not the terminal. Two

commonly used shells are Bash

(Bourne Again Shell), which is

the default one in most cases,

and Zsh (creatively named “Z

Shell”). If you want to try out a

new shell, all you have to do is

install it and then run, for

example:

zsh

from a running bash shell. If

you decide you like it so much

that you want to change (like I

did), you can change by

running:

sudo chsh <username>

where of course

“<username>” is your actual

username. It then asks you

something similar to this:

Changing the login shell for
<user>
Enter the new value, or
press ENTER for the default
Login Shell [/bin/zsh]:

where you just need to enter

the path to the shell file

(usually in /bin/). The entry in

the square brackets is your

currently chosen shell (as you

can see, I use the Z shell).

Back on topic: The history of

your shell can sometimes be

extremely long and confusing (I

think mine is at 1000-or-so

commands since I last cleared

it, and that was not too long

ago either). I very often find

myself running the same

commands over again,

sometimes with lots of

arguments, sometimes with

very few. For the long ones,

I've gotten in the habit of

pulling up the list of history

and searching it for the

command I want. For example:

history|grep cd

returns:

996 cd Dropbox/Scripts/C

which displays for me the last

cd command I ran, or all of the

cd commands I've run if there

were more than one. You'll

notice that it also displays a

number on the left (in my case,

it's 996). So if you want to re-

run the command, you have a

few options. You can copy and

paste the line (which is,

honestly, not very efficient

since you need to take your

hands off the keyboard), or you

can run:

!996

which will automatically run

the command in the history list

with the identifier 996. Woah,

I'm back in my C scripts folder,

talk about easy! Only four

characters for an entire

command. This most definitely

appeals to my (extremely) lazy

side. It's also much faster than

using the up or down keys to

go through the history line by

line to find the right command.

COMMAND & CONQUER

There has got to be

an easier way to do

this...

 /var/logs/ mentioned last month should
actually be: /var/log/ – apologies for any problems.

full circle magazine #24 6 contents ^

COMMAND & CONQUER
Hopefully, this has also

appealed to you. One last note,

you can also just run:

!cd

to run the last cd command

again.

Another extremely useful

thing I've learned is that you

can add custom functions to

your Bash shell (this works on

Z shell as well). To do this you

can open your .bashrc (in

gedit, vim, nano, or anything

that tickles your fancy). I'll be

using vim.

vim .bashrc

You'll then have a very long

(and most likely confusing) file

open. I generally add custom

entries toward the end of the

file, just to keep it separate

from what should be there, and

denote it with a comment, but

you can choose whatever

works best for you. If you want

to merely make running one

command easier, something

like using the command:

update

to run the following:

sudo apt-get upgrade

then I would recommend using

aliases, since it's just a tiny bit

less typing. (For me, the

number of keystrokes is

extremely important when

making shortcuts). So, if you

want to alias that, the following

line should be added to your

.bashrc . (I added a comment

to just make it clearer – you

can leave it out if you wish).

#Alias for updating the
system
alias update = “sudo apt-get
upgrade”

Another alias I use very

often is this one:

#An alias to make the ls
command more detailed
alias ls = “ls -la --
color=always --classify”

As you probably noticed, I

have effectively replaced the ls

command with a much more

detailed output. Now you may

be asking yourself “but what if

he wants to use the actual ls

program without arguments?”.

The answer is this:

\ls

The backslash overrides any

aliases bound to that name,

and runs the command as-is.

Now, focusing on functions

again. These are basically

scripts added directly to your

shell configuration file, which

can be quite useful. The

example I'm going to be using

is on page eight. Don't worry,

I'll explain it.

I've used this script

occasionally to convert the

audio from .m4a files to .mp3,

since I can't see myself typing

all those commands by hand

(no matter how occasional the

use). The function is defined in

the first line, and after the first

brace (curly bracket), it's then

the actual script. It checks to

see if the arguments are

empty, and if so, it prints the

error message at the very end

of the script (second to last

line). If it does have

arguments, check to make sure

the first file exists, and then

create the output file (the .mp3

in this case). If it doesn't exist,

print “file <filename> doesn't

exist!”. Once that's done, it

checks to see if the output file

exists (the .mp3), to ensure

that the first loop completed

successfully. If not, don't move

the file. It then moves the .m4a

file to your Music folder, while

taking the output name (so

that you can tell which m4a

goes with which mp3), and

exchanging the mp3 with m4a,

so that it still plays. It then also

says that it was moved, and

moves the mp3 to the Music

folder. It also checks to see if

the Music/m4a directory exists

(the if statement before the

m4a comment). If it doesn't, it

is created before proceeding.

Hopefully, people will find this

useful, since I have a few

leftover m4a files from my

iTunes collection, and I convert

them as I see them. The only

thing I have to note is that the

function seems to require the

filenames to be in quotes

(backslashes and spaces and

such don't work). So the

function would be run like this:

m4a “2-10 You're the
Inspiration.m4a” “You're the
Inspiration.mp3”

The resulting files will be in

full circle magazine #24 7 contents ^

 has learned all he knows
from repeatedly breaking his
system, then having no other
option but to discover how to fix
it. When he finds time, he
publishes a blog at: http://lswest-
ubuntu.blogspot.com.

the ~/Music folder, and the

~/Music/m4a folders. However,

the mp3 will be missing the

id3tags.

I'll leave that as a challenge

for any reader who wishes to

undertake it. There are

command-line tools that let

you access tag information,

and as a slight hint I will tell

you that the archlinux package

perl-mp4-info (in the Arch User

Repository on the website) is a

tool that will read the tags

from the m4a file (or at least, it

should), and it should be

available for Ubuntu. If you can

extend the script to

automatically copy the tags

from the m4a to the mp3 and

feel like sharing your solution

with me, please email the code

to me, and I will add it into the

next article (giving due credit,

of course). I haven't actually

written the code, but I have a

fair idea of how to do it. (I

haven't felt the need to test

my algorithms since I think I

have converted all my m4a

files now!) I will compare any

code I receive to my algorithm,

and will note in the next article

whether or not it was how I

had thought it could be done,

or if it's something I never

thought of. As far as I know,

ffmpeg won't carry over the

information.

I hope that these tips have

helped you out, and that

you've found it at least

partially useful. I know they've

saved me loads of typing and

made working in the command

line so much more efficient (I

even use Awesome [Ed: a

dynamic and tiling window

manager: it's in the repo's] on

my main system, so that I

really hardly touch my mouse

these days). I look forward to

seeing if anyone feels like

taking up the challenge of

completing the function above.

COMMAND & CONQUER m4a(){
if [["$1" != "" && "$#" == 2]]; then
 #check if files exist
 if [-e "$1"]; then
 #convert audio
 ffmpeg -i "$1" "$2"
 else
 echo "File "$1" doesn't exist!"
 fi
 if [! -d "$HOME/Music/m4a"]; then
 mkdir $HOME/Music/m4a
 fi
 #move the .m4a file to the m4a folder if the files exist in
the current directory
 if [-e "$2"]; then
 mv "$1" $HOME/Music/m4a/"`echo "$2"|sed 's/mp3/m4a/'`"
 echo "m4a file was moved to the ~/Music folder"
 mv "$2" $HOME/Music/
 echo "Moved the mp3 to the ~/Music folder"
 else
 echo "File "$2" doesn't exist!"
 fi
else
 echo "Invalid arguments (or too few/many), please run this
script with \"m4a <input> <output>\""
fi
}

http://lswest-ubuntu.blogspot.com
http://www.ubuntupocketguide.com

29 contents ^

HHOOWW TTOO CCOONNTTRRIIBBUUTTEE
Ful l Circle Team

Edit or - Ronnie Tucker

ronnie@fullcirclemagazine.org

Webmast er - Lucas Westermann

admin@fullcirclemagazine.org

Edit ing & Proof reading

Mike Kennedy, Gord Campbell, Robert

Orsino, Josh Hertel, Bert Jerred, Jim

Dyer and Emily Gonyer

Our thanks go to Canonical, the many

t ranslat ion teams around the world

and Thorst en Wilms for the FCM logo.

FULL CIRCLE NEEDS YOU!
A magazine isn't a magazine without art icles and Full Circle is no

except ion. We need your opinions, desktops, stories, how-to's,

reviews, and anything else you want to tell your fellow *buntu users.

Send your art icles to: art icles@fullcirclemagazine.org

We are always looking for new art icles to include in Full Circle. For help and advice

please see the Of f icial Ful l Circle St yle Guide: ht tp:/ /url.fullcirclemagazine.org/75d471

Send your comment s or Linux experiences to: let ters@fullcirclemagazine.org

Hardware/sof tware reviews should be sent to: reviews@fullcirclemagazine.org

Quest ions for Q&A should go to: quest ions@fullcirclemagazine.org

Deskt op screens should be emailed to: misc@fullcirclemagazine.org

... or you can visit our sit e via: fullcirclemagazine.org

Please note:
Special editions are

compiled from originals

and may not work with

current versions.

EPUB Format - Most edit ions have a link to the epub f ile

on that issues download page. If you have any problems

with the epub f ile, email: mobile@fullcirclemagazine.org

Issuu - You can read Full Circle online via Issuu:

ht tp:/ / issuu.com/fullcirclemagazine. Please share and rate

FCM as it helps to spread the word about FCM and Ubuntu.

Magzst er - You can also read Full Circle online via

Magzster: ht tp:/ /www.magzter.com/publishers/Full-Circle.

Please share and rate FCM as it helps to spread the word

about FCM and Ubuntu Linux.

Get t ing Ful l Circle Magazine:

For t he Ful l Circle Weekly News:

You can keep up to date with the Weekly News using the RSS

feed: ht tp:/ / fullcirclemagazine.org/ feed/podcast

Or, if your out and about , you can get the Weekly News via

St itcher Radio (Android/ iOS/web):

ht tp:/ /www.st itcher.com/s?f id=85347&ref id=stpr

and via TuneIn at : ht tp:/ / t unein.com/radio/Full-Circle-Weekly-

News-p855064/

Special Editions - Jonathan Hoskin

