
Case

Year Two
Issue #18
Jun 2015

The
original
ODROID

ODROID
Magazine

• ODROID-U3 Car PC
• Using a CPLD as a programmable level shifter
• UltraStar Deluxe Karaoke
• Nintendo 64 Gaming: part 2

Desktop
The coolest way
to show off your
ODROID classic
gaming computer

Touchscreen Driver installation • Community images for ODROID-C1

What we stand for.
We strive to symbolize the edge of technology,
future, youth, humanity, and engineering.

Our philosophy is based on Developers.
And our efforts to keep close relationships with
developers around the world.

For that, you can always count on having the quality
and sophistication that is the hallmark of our products.

Simple, modern and distinctive.
So you can have the best to accomplish
everything you can dream of.

We are now shipping the ODROID-U3
device to EU countries! Come and visit
our online store to shop!

Address: Max-Pollin-Straße 1
85104 Pförring Germany

Telephone & Fax
phone: +49 (0) 8403 / 920-920
email: service@pollin.de

Our ODROID products can be found at
http://bit.ly/1tXPXwe

http://www.hardkernel.com
mailto:service@pollin.de
http://bit.ly/1tXPXwe
http://bit.ly/1tXPXwe

EDITORIAL

ODROID Magazine, published monthly at http://magazine.odroid.com, is your source for all things ODROIDian.
Hard Kernel, Ltd. • 704 Anyang K-Center, Gwanyang, Dongan, Anyang, Gyeonggi, South Korea, 431-815
Hardkernel manufactures the ODROID family of quad-core development boards and the world’s first ARM big.LITTLE single board computer.
For information on submitting articles, contact odroidmagazine@gmail.com, or visit http://bit.ly/1ypImXs.
You can join the growing ODROID community with members from over 135 countries at http://forum.odroid.com.
Explore the new technologies offered by Hardkernel at http://www.hardkernel.com.

Dongjin, one of the Hardkernel engineers, decided to build
a case for his ODROID that looks like the Macintosh
Plus model from his youth. We think he did a great job in

creating a modern, futuristic version of that classic computer.
Since we did a feature article on building a Truck PC last year,

we’ve had requests for a similar
article for sedan owners. In re-
sponse, Belov replaced the stan-
dard built-in electronics gear in

his Opel Astra using an ODROID-U3
to provide both music and map ser-

vices. Venkat also presents a cool project for
your car that allows you to obtain detailed

vehicle information via Bluetooth, down-
load it to an ODROID, and plot the results using Google Earth.

Tobias continues his Nintendo 64 series with reviews of several very
popular N64 games, Nanik details the process of creating a custom service for Android,
Bo teaches us how to install touchscreen drivers on an ODROID-C1, and Carsten pres-
ents his Guzunty Pi project of building an inexpensive UART console. We also find out
how to turn an ODROID into a karaoke machine, play Tekken 6 in HD resolution, install
some convenient community pre-built disk images, and much more!

http://magazine.odroid.com
big.LITTLE
mailto:odroidmagazine@gmail.com
http://bit.ly/1ypImXs
http://forum.odroid.com
http://www.hardkernel.com
http://www.ameridroid.com/

STAFF

ODROID
Magazine

Rob Roy,
Chief Editor

I’m a computer
programmer living

and working in San
Francisco, CA, design-

ing and building web applications
for local clients on my network
cluster of ODROIDs. My primary
languages are jQuery, Angular JS
and HTML5/CSS3. I also develop
pre-built operating systems, custom
kernels and optimized applications
for the ODROID platform based
on Hardkernel’s official releases, for
which I have won several Monthly
Forum Awards. I use my ODROIDs
for a variety of purposes, including
media center, web server, applica-
tion development, workstation, and
gaming console. You can check out
my 100GB collection of ODROID
software, prebuilt kernels and OS
images at http://bit.ly/1fsaXQs.

Bo
Lechnowsky,
Editor

I am President of Re-
spectech, Inc., a tech-

nology consultancy in Uki-
ah, CA, USA that I founded in 2001.
From my background in electronics
and computer programming, I manage
a team of technologists, plus develop
custom solutions for companies rang-
ing from small businesses to worldwide
corporations. ODROIDs are one of
the weapons in my arsenal for tack-
ling these projects. My favorite devel-
opment languages are Rebol and Red,
both of which run fabulously on ARM-
based systems like the ODROID-U3.
Regarding hobbies, if you need some,
I’d be happy to give you some of mine
as I have too many. That would help
me to have more time to spend with my
wonderful wife of 23 years and my four
beautiful children.

Bruno Doiche,
Senior
Art Editor

Nothing gets into
our Senior Art Editor’s

blood as the rush of long nights doing
and re-doing the cover of the magazine.
As a Gemini, he actually enjoys it, even
when his family strives to get his at-
tention and figure out what he wants
for his birthday. How old is Bruno?
100101 years old!

Manuel
Adamuz,
Spanish
Editor

I am 31 years old
and live in Seville,

Spain, and was born in Granada. I
am married to a wonderful woman
and have a child. A few years ago I
worked as a computer technician and
programmer, but my current job is
related to quality management and
information technology: ISO 9001,
ISO 27001, and ISO 20000. I am
passionate about computer science,
especially microcomputers such as the
ODROID and Raspberry Pi. I love
experimenting with these computers.
My wife says I’m crazy because I just
think of ODROIDs! My other great
hobby is mountain biking, and I oc-
casionally participate in semi-profes-
sional competitions.

Nicole Scott,
Art Editor

I’m a Digital Strat-
egist and Trans-

media Producer
specializing in online

optimization and inbound market-
ing strategies, social media directing,
and media production for print, web,
video, and film. Managing multiple
accounts with agencies and filmmak-
ers, from Analytics and Adwords to
video editing and DVD authoring. I
own an ODROID-U3 which I use
to run a sandbox web server, live in
the California Bay Area, and enjoy
hiking, camping and playing music.
Visit my web page at http://www.ni-
colecscott.com.

James
LeFevour,
Art Editor

I am a Digital Me-
dia Specialist who is

also enjoying freelance
work in social network marketing and
website administration. The more I
learn about ODROID capabilities, the
more excited I am to try new things I’m
learning about. Being a transplant to
San Diego from the Midwest, I am still
quite enamored with many aspects that
I think most West Coast people take for
granted. I live with my lovely wife and
our adorable pet rabbit; the latter keeps
my books and computer equipment in
constant peril, the former consoles me
when said peril manifests.

http://bit.ly/1fsaXQs
http://www.nicolecscott.com
http://www.nicolecscott.com

INDEX
U3 Car pC - 6

n64 Core - 28

odroId hIsTorY - 29

deskTop Case - 38

odroId ForUMs - 16

obdgps - 9

ToUChsCreen - 26

CoMMUnITY IMages - 28

sbC CoMparIson - 30

gUzUnTY pI - 41

androId developMenT - 46

karaoke - 48

MeeT an odroIdIan - 51

nInTendo 64 eMUlaTIon - 17

Tekken 6 - 50

My car, an Opel Astra H, came
factory-equipped with a radio
and CD MP3 player as well

as a black-and-white 4-inch graphic dis-
play. I was not satisfied with the lack
of USB input for connecting flash drives
with MP3 music, and I had to use a
smartphone for navigation, which con-
stantly requires a battery charge and can
only be placed on the windshield. At
first, I bought a commercial pre-built de-
vice to replace the head unit, which was
very uncomfortable, because the screen
of the device was too low, at the level
of my stomach. Another option was to
mount a 7 inch tablet, such as the Nexus
7, but it didn’t fit into the frame, since
the standard Astra H only has space for a
6.5-inch LCD, which was too small for
me. I then decided to build an Android
CarPC and install it in place of the black
and white display.

Components

•	 ODROID-U3 with 8Gb eMMC
•	 RTC (Real Time Clock) battery
•	 7” 1280x800 IPS LCD with 5

points capacitive multitouch
•	 Frame for 7” LCD (my own devel-

opment, 3D printing)
•	 Bluetooth USB dongle
•	 Wi-Fi USB dongle
•	 Atmel ATTiny
•	 HUAWEI E1550 3G USB modem
•	 GPS/GLONASS USB Holux

ODROID-U3
CAR PC
REPLACInG THE
STAnDARD FACTORY
EqUIPMEnT
by belov vitaly

CAR PC

Component diagram

I needed the following functionality
from my CarPC:

•	 Navigation
•	 Mp3 player
•	 Internet radio
•	 Video player
•	 Rear view camera

I chose an ODROID-U3 as the basis
since it is an inexpensive but powerful
computer with excellent performance
and plenty of memory.

Completed Car pC installation

ODROID MAGAZINE 6

5V converters with a variety of power
available commercially. However, I
wanted to automate turning the CarPC
on and off depending on the position of
the ignition key, which is indicated by
the ACC signal from the car, requiring a
custom power supply. I chose the chip
LT1374 for the 12V to 5V converter. It
is quite simple, and consumes very little
energy in standby mode, yet delivers
current up to 2A and has on/off control
input. The cheapest microcontroller
(MC) ATTINY13 was used in order
to automate the power supply with the
ACC control signal.

Algorithm
•	On first start, the microcontroller en-

gages and monitors the ACC signal.
•	when the ACC signal is on, the pe-

riphery is powered, and after a cou-
ple of seconds, the ODROID-U3 is

M-215+
•	 EasyCap USB with an STK1160

chip for the rear view camera
•	 OBD2 Bluetooth adapter
•	 Rear view camera
•	 Power supply DC to DC 12V to

5V with 4-port USB hub
•	 ELM327 OBD2 adapter

I was not able to find a ready-made
frame for the 7-inch LCD, so I had to
do it myself. The frame layout for 7”
LCD was created in SolidWorks and
then printed on a 3D printer. I then
plastered, sanded and painted the frame
in matte black, which fit perfectly, giv-
ing a visible area of 152.5x91.5mm. The
display was attached to the frame using
0.5mm double-sided tape.

I chose a ChalkElec 7-inch LCD
with a resolution of 1280x800 pixels
and 5 points multi-touch The LCD is
very bright with good contrast, and the
image is clearly visible in sunlight. The
ODROID-U3 has a micro HDMI out-
put, and the screen from ChalkElec has
a mini HDMI input. Since this cable
is not readily available, I had to make it
myself. The multi-touch cable is con-
nected to the ODROID-U3 via USB
port, with single-touch capacity work-
ing out of the box. To support 5-point
multi-touch, you need to compile the
kernel with support for ChalkBoard
Touch, which is detailed in the “Giant
Tablet” article in the February 2014 is-
sue of ODROID Magazine.

Smart Power Supply
The ODROID-U3 requires 5 volts,

and there are a large number of 12V to

CAR PC

powered.
•	when the ACC signal is off, the “Pow-

er” button pressing is emulated, the
ODROID-U3 goes to “Sleep mode”,
and “Airplane mode” is turned on.

•	when the ACC signal is off, after 1
second, the “Power” button press-
ing is emulated, the ODROID-U3
wakes up, and “Airplane mode” is
turned off.

•	when the ACC signal is off for more
than 30 seconds, the car battery is
monitored so that at less than 11.5V,
everything depowered except the mi-
crocontroller.

•	when the ACC signal is off for more
than 14 hours, the ODROID-U3 is
depowered.

USB Hub
An assembled USB hub is also

mounted on the power supply. In order
to work in the car at low temperatures
during the Russian winter, I selected
the industrial chip AT43301 (ATMEL),
which works at temperatures as low as
-40˚C. To filter out noise on all lines of
power, ferrite beads (FB) were installed
on the USB hub. Without ferrite beads,
the chip on the integrated USB hub on
the ODROID-U3 board will occasion-
ally freeze.

assembled lCd Frame

lCd frame components

smart power supply front and rear view

ODROID MAGAZINE 7

pastebin.ca/3002845 and copy it into
the new project. Compile the code in
order to produce a HEX firmware file,
then flash the HEX file to the Attiny13
using Arduino software.

Everything now works great in my
car. Using an ODROID-U3 board,
I created a powerful and fast CarPC,
which improved upon the original capa-
bilities of the factory-installed system.

installed the Automate It app. After dis-
abling the ACC signal, a power button
press is emulated by Automate It, along
with toggling Airplane mode.

Installation
To mount the screen, I glued the

LCD to the frame using a thin double-
sided tape. I then secured the power
supply and ODROID-U3 using a cus-
tom metal bracket, and connected all
USB devices. For power, I used indi-
vidual 12V wires from the car battery
to my CarPC. The audio output of the
ODROID-U3 was then connected to
the AUX input of the head unit of the
car, and I mounted the GPS receiver in
the side of the rack windshield.

The CarPC connects to the Internet
via a hotspot from my mobile phone.
Also, just in case the phone runs out of
battery, a 3G USB dongle was connected
to the CarPC.

Software
The code for Attiny13 was written in

CodeVisionAVR, which is available at
http://bit.ly/1RY4G4s. To flash the At-
tiny13 with the controller code, create a
new blank project in CodeVisionAVR,
then download the code from http://

Android and
software

The latest Android 4.4.4 KitKat 4.5
image from Hardkernel supports many
devices automatically, but does not sup-
port ChalkBoard Touch and EasyCap,
which makes it necessary to compile a
kernel for use with these devices. How-
ever, there is a simpler solution. Thanks
to ODROID forum member @voodik,
there is an Android 4.4.4 KitKat Cyano-
genmod 11.0 community image which
already supports ChalkBoard Touch and
EasyCap, which may be downloaded
from http://bit.ly/1Lc2nWW.

For correct operation of the GPS re-
ceiver, you must specify the correct baud
rate of the receiver and number of USB
port in the file /system/build.prop. For
my ODROID-U3, the port is ttyUSB3,
and the speed is 4800:

ro.kernel.android.gps=ttyUSBx

ro.kernel.android.gps.speed=xxxx

Once the system is installed, you
must install the GoogleApps Installer
application in order to use the Google
Play Store. For the home screen, I chose
the app called BigLauncher, which is de-
signed for elderly or visually impaired
people, since it has large icons and is
very well suited for use in the car. To
listen to MP3 music, I installed Power-
Amp, and PC Radio for Internet radio.
For viewing photos, I chose Quick Pic,
and for playing videos, I used MX Play-
er. For connecting the mobile phone to
the CarPC, I installed Tablet Talk, and
configured Torque Pro for communica-
tion between the on-board car computer
using an OBD2 adapter. To reduce en-
ergy consumption in sleep mode, I also

android home screen

view of assembled CarpC before instal-
lation in the vehicle

CAR PC

With an odroId-U3 Car pC, you will be
the envy of all of your friends

The combination of android and your car
makes a cost-effective alternative to the
stock factory equipment

ODROID MAGAZINE 8

http://pastebin.ca/3002845
http://bit.ly/1RY4G4s
http://pastebin.ca/3002845
http://bit.ly/1Lc2nWW
build.prop
ro.kernel.android.gps
ro.kernel.android.gps.speed

Requirements
1. An ODROID-C1, although these

steps can also apply to a more powerful
ODROID system.

2. Required C1 accessories such as an
HDMI cable, a CAT 5E+ ethernet cable
or WIFI 3 adapter, a Bluetooth adapter
module 2 (BT 4.0+), a power supply
unit, an RTC battery, and an HDMI-
compatible monitor, ODROID-VU or
3.2” touchscreen.

3. A 16GB+ eMMC 5.0 module or
microSD card with the latest Lubuntu
desktop image, and an SD card reader/
writer.

4. A USB GPS module from Hardker-
nel, available at http://bit.ly/1EPERhm.

5. A compatible OBDII (v1.5+) Blue-
tooth adapter with an ELM327 inter-
face, such as the one produced by Pan-
long.

6. A network where the device has ac-
cess to the internet and the ODROID
forums.

7. OBDGPSLogger software (Version:
0.16) gpsd and gpsd-client.

8. Networked access to the C1 via util-
ities like PuTTY, FileZilla, TightVNC
Viewer (MS Windows 7+), or Terminal
(Mac, Linux), from a testing desktop.

9. LiPo battery packs with at least
two (2) USB ports providing 2A+ each:
one for the VU (if 3.2” Touchscreen
not used) and another for the C1 itself,
along with C1-compatible USB-DC

In the May 2015 issue, I introduced
the powerful combination of an
ODROID-C1 and a USB GPS

module in order to track vehicles using
OpenGTS. What if we could further
enhance that combination by adding
vehicle diagnostics to the mix? Well,
On-Board Diagnostics (OBDII) does
exactly that! This article outlines how to
get both the USB GPS and a bluetooth
OBDII adapter working synchronously
with the C1 using the open-source pack-
age called OBDGPSLogger, which may
be used with vehicles made after 1999.

OBDGPSLogger is a C-based com-
mand-line solution designed to run on
Linux with the acquired data saved to a
local SQLite database. It does not come
with any native database management
front-end. However, to assist with the
management of the OBD and GPS data,
this example uses a browser-based man-
agement option utilizing Nginx as the
web server, PHP as the scripting engine,
and phpLiteAdmin as the SQLite data-
base administration frontend.

It is possible to migrate this to a
MySQL-based solution or use other
utilities like pyOBD, which is a Python-
based open-source utility for acquiring
OBD data, but only the basic setup will
be detailed here. Refer to the May 2015
OpenGTS article for instructions on set-
ting up, configuring, and validating the
USB GPS adapter.

plug cables, available from Hardkernel.

Install Lubuntu
Install the latest C1 image onto the

eMMC module or SD card and attach
it to the ODROID. With the display
attached, boot up the system. Run the
ODROID Utility and set the display
resolution, then reboot.

Expand the installation partition
to use all of the available drive space
by selecting the “Resize your root par-
tition” option. Reboot and re-run the
ODROID Utility to configure and up-
date all remaining relevant aspects of the
system, and reboot again.

Ensure you are logged in as the de-
fault odroid user, unless otherwise speci-
fied. Type the following commands in
a Terminal window in order to update
the operating system files, system kernel,
and related applications:

OBDGPS
LOGGER
COMBInE OBDII
AnD GPS DATA FOR
COMPLETE VEHICLE
TRACKInG
by venkat bommakanti

OBDGPS

Figure 1: assembled C1, gps, obdII,
Touchscreen and battery portable setup

ODROID MAGAZINE 9

http://bit.ly/1EPERhm

OBDGPS

$ sudo apt-get autoremove && sudo

apt-get update

$ sudo apt-get dist-upgrade &&

sudo apt-get upgrade

$ sudo apt-get install linux-

image-c1

Shutdown the ODROID, attach all
of the accessories and cables, including
the GPS and Bluetooth adapters, then
reboot. Check the system version from
a Terminal window using the following
command to ensure you have the latest
version:

$ uname -a

Linux odroid 3.10.75-84 #1 SMP

PREEMPT Sat Apr 25 18:33:08 BRT

2015 armv7l armv7l armv7l GNU/

Linux

Setup Bluetooth
Install additional utilities using the

following commands:

$ sudo apt-get install bluez-dbg

bluez-hcidump bluez-utils bluez-

tools

$ sudo apt-get install bluewho

blueman python-bluetooth

Then, check the USB information re-
lated to the adapters:

$ lsusb

…

Bus 001 Device 005: ID 0b05:17cb

ASUSTek Computer, Inc.

Bus 001 Device 004: ID 1546:01a6

U-Blox AG

…

Note that I used an ODROID-com-
patible ASUS Bluetooth 4.0 adapter in
place of the Hardkernel model. Check
the Bluetooth adapter’s support for addi-
tional features such as RFCOMM pro-
tocol by examining the dmesg logs:

$ dmesg | grep Blue

[0.851848@0] Bluetooth: Core

ver 2.16

[0.859721@0] Bluetooth: HCI

device and connection manager

initialized

[0.866240@0] Bluetooth: HCI

socket layer initialized

[0.871245@0] Bluetooth:

L2CAP socket layer initialized

[0.876447@0] Bluetooth: SCO

socket layer initialized

[1.429422@2] Bluetooth: HCI

UART driver ver 2.2

[1.433876@2] Bluetooth: HCI

H4 protocol initialized

[1.438828@2] Bluetooth: HCI

BCSP protocol initialized

[1.443919@2] Bluetooth:

HCILL protocol initialized

[1.448782@2] Bluetooth: HCI-

ATH3K protocol initialized

[1.453877@2] Bluetooth: HCI

Three-wire UART (H5) protocol

initialized

[3.236424@2] Bluetooth: bt-

wake_control_init Driver Ver 1.1

[3.366366@2] Bluetooth: RF-

COMM TTY layer initialized

[3.371156@2] Bluetooth: RF-

COMM socket layer initialized

[3.376392@2] Bluetooth: RF-

COMM ver 1.11

[3.380308@2] Bluetooth: BNEP

(Ethernet Emulation) ver 1.3

[3.385744@2] Bluetooth: BNEP

filters: protocol multicast

[3.397895@2] Bluetooth: BNEP

socket layer initialized

[3.402975@2] Bluetooth: HIDP

(Human Interface Emulation) ver

1.2

[3.409060@2] Bluetooth: HIDP

socket layer initialized

Check the installed Bluetooth mod-
ules:

$ dpkg -l | grep blue

ii blueman ...

armhf Graphical bluetooth man-

ager

ii bluez ...

armhf Bluetooth tools and dae-

mons

ii bluez-alsa:armhf ...

armhf Bluetooth ALSA support

ii bluez-cups ...

armhf Bluetooth printer driver

for CUPS

ii libbluetooth-dev ...

armhf Dev. files for BlueZ Linux

Bluetooth lib

ii libbluetooth3:armhf ...

armhf Library to use the BlueZ

Linux BT stack

ii libgnome-bluetooth11 ...

armhf GNOME Bluetooth tools -

support library

Check for the presence of the Blue-
tooth device, which will be useful for
connection configuration:

$ hcitool dev

Devices:

 hci0 00:02:72:CC:F4:CE

$ hciconfig

hci0: Type: BR/EDR Bus: USB

 BD Address: 00:02:72:CC:F4:CE

ACL MTU: 1021:8 SCO MTU: 64:1

 UP RUNNING PSCAN

 RX bytes:583 acl:0 sco:0

events:33 errors:0

 TX bytes:898 acl:0 sco:0 com-

mands:33 errors:0

$ sudo rfkill list all

0: hci0: Bluetooth

 Soft blocked: no

 Hard blocked: no

Configure Bluetooth
From the lubuntu desktop, launch

the Bluetooth Manager configuration
utility as shown in Figure 2. Then, select
the Preferences menu item to configure
the application, according to Figure 3.
Using Figure 4 as a reference, update the
friendly name of the Bluetooth adapter
to a meaningful one like “c1-1-0”. Make
the device always visible for other Blue-
tooth devices to scan and find it. Save

ODROID MAGAZINE 10

$ sudo apt-get install wireshark

After installation, you can launch
Wireshark version 1.10.6 following the
steps illustrated in Figure 5. The wel-
come screen should appear as seen in
Figure 6, indicating that the Bluetooth
adapter on the C1 has been detected.

Click on the green shark fin icon to
request start of a capture, then launch
the Bluetooth Manager application and
click on the Search button after the ap-
plication has loaded. You should imme-
diately see all of the snooped Bluetooth
traffic and related information appear in
the Wireshark application window, as il-
lustrated in Figure 7.

the configuration and reboot.

Testing Bluetooth
If necessary, you can use the com-

mand-line Bluetooth packet analyzer/
sniffer to analyze Bluetooth traffic for
debugging purposes:

Figure 2 - launch bluetooth Manager

Figure 3 - bluetooth Manager configuration

Figure 4 - bluetooth Manager configura-
tion update

Figure 5 - launch Wireshark

Figure 7 - Wireshark with snooped
bluetooth traffic

Figure 6 - Wireshark welcome screen
with bluetooth adapter detected

$ sudo hcidump

HCI sniffer - Bluetooth packet

analyzer ver 2.5

device: hci0 snap_len: 1500 fil-

ter: 0xffffffff

< HCI Command: Write Class of De-

vice (0x03|0x0024) plen 3

 class 0x700100

> HCI Event: Command Complete

(0x0e) plen 4

 Write Class of Device

(0x03|0x0024) ncmd 1

 status 0x00

< HCI Command: Write Extended

Inquiry Response (0x03|0x0052)

plen 241

 fec 0x00

 Complete local name: ‘c1-1-

0’

 TX power level: 0

 Complete service class-

es: 0x112d 0x1112 0x111f 0x111e

0x110c 0x110e 0x1105

> HCI Event: Command Complete

(0x0e) plen 4

 Write Extended Inquiry Re-

sponse (0x03|0x0052) ncmd 1

 status 0x00

< HCI Command: Write Extended

Inquiry Response (0x03|0x0052)

plen 241

 fec 0x00

 Complete local name: ‘c1-1-

0’

 TX power level: 0

 Complete service class-

es: 0x112d 0x1112 0x111f 0x111e

0x110c 0x110e ...

> HCI Event: Command Complete

(0x0e) plen 4

 Write Extended Inquiry Re-

sponse (0x03|0x0052) ncmd 1

 status 0x00

...

Another useful tool is Wireshark to
give a graphic view of the snooped data,
which may be installed by typing the
following command into any Terminal
window:

OBDGPS

ODROID MAGAZINE 11

 # The following 2 rules

are only needed with webfinger

 rewrite ^/.well-

known/host-meta /public.

php?service=host-meta last;

 rewrite ^/.well-

known/host-meta.json /public.

php?service=host-meta-json last;

 rewrite ^/.well-known/

carddav /remote.php/carddav/ re-

direct;

 rewrite ^/.well-known/

caldav /remote.php/caldav/ redi-

rect;

 rewrite ^(/core/doc/

[^\/]+/)$ $1/index.html;

 }

 # redirect server error pages

to the static pages

 error_page 404 /404.html;

 error_page 500 502 503 504

/50x.html;

 location = /50x.html {

 root /usr/share/nginx/

html;

 }

 # pass the PHP scripts to

FastCGI server listening on fpm-

socket

 location ~ \.php(?:$|/) {

 fastcgi_split_path_info

^(.+\.php)(/.+)$;

 include fastcgi_params;

 fastcgi_param SCRIPT_

FILENAME $document_root$fastcgi_

script_name;

 # $fastcgi_path_info

parse fails in latest php5-fpm.

disable it.

 # fastcgi_param PATH_INFO

$fastcgi_path_info;

 fastcgi_pass php-handler;

 fastcgi_read_timeout 600;

 }

}

...

Next, update the php5-fpm configu-
ration using the following commands:

Install gpsd
Install gpsd and relevant utilities us-

ing the following command. For de-
tailed information on configuration,
testing and usage, please refer to the May
2015 OpenGTS article.

$ sudo apt-get install gpsd gpsd-

clients && sudo reboot

Install web server
tools

OBDGPSLogger stores the col-
lected OBDII and GPS data in a local
SQLite3 database. It does not include
a native database management tool. To
help with possible database management
needs, I have also included the installa-
tion of nginx web server and PHP along
with phpLiteAdmin in order to display
the SQLite3 administrative GUI. First,
install the following:

$ sudo apt-get install nginx-full

sqlite3

$ sudo apt-get install autoconf

automake autotools-dev libtool

curl

$ sudo apt-get install libcurl4-

openssl-dev lbzip2

$ sudo apt-get install php5 php5-

dev php5-cgi php5-fpm php5-curl

php5-gd

$ sudo apt-get install php5-

sqlite php5-gmp php5-imagick

php5-imap php5-intl

$ sudo apt-get install php5-ldap

php5-mcrypt libmcrypt-dev php-

xml-parser

$ sudo apt-get install php5-xsl

php-apc

Then, update nginx configuration to
enable PHP5 support:

$ sudo cd /etc/nginx/sites-avail-

able

$ sudo cp default default-orig

$ sudo medit default

Update the default configuration:

...

our php-handler - add this

upstream php-handler {

 server unix:/var/run/php5-

fpm.sock;

}

server {

 listen 80 default_server;

 listen [::]:80 default_server

ipv6only=on;

 root /usr/share/nginx/html;

 # try php file execution first

 index index.php index.htm;

 # Make site accessible from

http://localhost/

 server_name <your-C1’s-ip-

address>;

 # set max upload size

 client_max_body_size 10G;

 fastcgi_buffers 64

4K;

 client_body_buffer_size 2M;

 # setup calendar, contact,

webdav options

 rewrite ^/caldav(.*)$ /re-

mote.php/caldav$1 redirect;

 rewrite ^/carddav(.*)$ /re-

mote.php/carddav$1 redirect;

 rewrite ^/webdav(.*)$ /re-

mote.php/webdav$1 redirect;

 location = /robots.txt {

 allow all;

 log_not_found off;

 access_log off;

 }

 location / {

 # First attempt to serve

request as file, then

 # as directory, then fall

back to displaying a 404.

 try_files $uri $uri/ in-

dex.php;

OBDGPS

ODROID MAGAZINE 12

public.php
public.php
host-meta.json
public.php
public.php
remote.php/carddav
remote.php/caldav
index.html
404.html
50x.html
50x.html
php5-fpm.sock
php5-fpm.sock
index.php
index.htm
remote.php/caldav
remote.php/caldav
remote.php/carddav
remote.php/carddav
remote.php/webdav
remote.php/webdav
robots.txt
index.php
index.php

Download the OBDGPSLogger
code using the commands:

$ cd ~ && mkdir obd && cd obd/

$ svn co svn://svn.icculus.org/

obdgpslogger/trunk obdgpslogger

$ cd obdgpslogger/obd/obdgpslog-

ger/src/logger

The OBDGPSLogger code needs to
be modified in order to work with the
latest gpsd services. Apply the following
patch to the source code:

~/obd/obdgpslogger/src/logger/

gpscomm.c

29c29,32

< struct gps_data_t *g = gps_

open(server,port);

> int rc;

> struct gps_data_t *g =

NULL;

>

> g = malloc(sizeof(struct

gps_data_t));

31a35,40

>

> rc = gps_open(server,port,

g);

> if(rc != 0) {

> free(g);

> return NULL;

> }

61c70

< gps_poll(g);

> gps_read(g);

It is now ready to be built. Resume
the process with the following com-
mands:

$ cd ~/obd/obdgpslogger

$ mkdir build

$ cd build

$ cmake ..

$ make

$ sudo make install

 $directory = ‘/home/odroid/

obd/obdgpslogger/data’;

 $databases = array(

 array(

 ‘path’=> ‘obdg-

pslogger.db’,

 ‘name’=> ‘OBDII-

GPS Logger’

),

)

...

Then, move the administrative appli-
cation and related configuration files to
the appropriate place, and set its execu-
tion privileges. Reboot after saving the
file.

$ sudo cp phpliteadmin.config.php

/usr/share/nginx/html

$ sudo cp phpliteadmin.php /usr/

share/nginx/html

$ chmod 755 phpliteadmin.php

$ cd /usr/share/nginx/html

$ ls -lsa

...

 4 -rw-r--r-- 1 root root 537

Mar 4 2014 50x.html

 4 -rw-r--r-- 1 root root 612

Mar 4 2014 index.html

 4 -rw-r--r-- 1 root root 2691

May 17 10:49 phpliteadmin.config.

php

220 -rwxrwxr-x 1 root root 222859

May 17 10:49 phpliteadmin.php

Build
OBDGPSLogger

Install additional prerequisites for
OBDGPSLogger:

$ sudo apt-get install libx11-

dev libxft2-dev libgps-dev zlibc

zlib1g zlib1g-dev

$ sudo apt-get install libfltk1.3-

dev fluid libftdi1 libftdi-dev

subversion

OBDGPS

$ cd /etc/php5/fpm/pool.d/

$ sudo cp www.conf www.conf-orig

$ sudo medit www.conf

Add the following socket configura-
tion to match the nginx socket configu-
ration:

...

listen = /var/run/php5-fpm.sock

Enhance file execution security by

setting the following flags in the

php5 config file:

$ sudo medit /etc/php5/fpm/php.

ini

Set these options:

 cgi.fix_pathinfo=0

 display_errors = On

 display_startup_errors = On

 output_buffering = 4096

 default_socket_timeout = 600

...

After modifying each file, save the
changes. Then, download phpLite-
Admin version 1.9.5 from http://bit.
ly/1HHIJAJ and prepare for the build:

$ cd ~/obd && mkdir pla && cd pla

$ mv ~/Downloads/phpliteAdmin_v1-

9-5.zip .

$ unzip phpliteAdmin_v1-9-5.zip

Refer to the README file for setup
tips:

$ cat README.txt

Update phpLiteAdmin config using
data relevant to your setup:

$ cp phpliteadmin.config.sample.

php phpliteadmin.config.php

$ medit phpliteadmin.config.php

Change the following data:

...

 $password = ‘odroid’;

ODROID MAGAZINE 13

svn.icculus.org/obdgpslogger/trunk
svn.icculus.org/obdgpslogger/trunk
obdgpslogger.db
obdgpslogger.db
phpliteadmin.config.php
phpliteadmin.php
phpliteadmin.php
50x.html
index.html
phpliteadmin.config.php
phpliteadmin.config.php
phpliteadmin.php
www.conf
www.conf
www.conf
php5-fpm.sock
php.ini
php.ini
cgi.fix
http://bit.ly/1HHIJAJ
http://bit.ly/1HHIJAJ
phpliteAdmin_v1-9-5.zip
phpliteAdmin_v1-9-5.zip
phpliteAdmin_v1-9-5.zip
README.txt
phpliteadmin.config.sample.php
phpliteadmin.config.sample.php
phpliteadmin.config.php
phpliteadmin.config.php

Verify the installation using the com-
mand:

$ obdgpslogger -v

Version: 0.16

Pair the C1 and
OBDII adapter

Shut down the ODROID, park your
car at a safe place, and turn off the igni-
tion. Attach the OBDII adapter to the
appropriate port in your car, which is
usually located a few feet from the steer-
ing wheel, close to the foot-brake or ac-
celerator. Let it go through its initializa-
tion process, then place the C1 on the
passenger seat next to you. It should be
kept within the recommended 10-foot
range from the OBDII adapter (the clos-
er, the better).

Not all OBDII adapters are compat-
ible with ODROIDs. Before purchasing
one, research the adapter well to ensure
that it is supported under Linux. I took
a chance with my $10 adapter, and was

fortunate that it worked.
Start the car, power up the C1, and

start the Bluetooth Manager application.
Click the Search button to scan for the
OBDII adapter. After a few moments,
you should see the result of the discovery
process as shown in Figure 8.

If it is not detected, remove and in-
sert the OBDII adapter a couple of times
and retry the Search. If it still fails, you
can test the Bluetooth connectivity with
a smartphone. Once it is discovered, se-
lect the Serial port connection as shown
in Figure 9. Attempt to pair the C1 and

the serial port noted above. Inspect the
output to ensure that OBDGPSLogger
is ready to capture both the GPS and
OBD data successfully:

$ cd ~/obdgpslogger

$ mkdir data && cd data

$ sudo$ obdgpslogger -s /dev/

rfcomm0

Opening serial port /dev/rfcomm0,

this can take a while

Successfully connected to serial

port. Will log obd data

Successfully connected to gpsd.

Will log gps data

Creating a new trip

GPS acquisition complete

Now, take your C1 setup for a ride
around the block! The OBDGPSLogger
should start capturing the vehicle data
and storing it in the SQLite database.
After the trip has completed, exit the
OBDGPSLogger application by press-
ing Control-C, then go home to start
the plotting process. Export the collect-
ed data in KML format to be used with
Google Maps and Google Earth:

$ cd ~/obdgpslogger/data

$ obd2kml -d obdgpslogger-vb.db

-o obdgpslogger-vb.kml

$ ls -lsa *.kml

276 -rw-rw-r-- 1 odroid odroid

278707 May 16 22:06 obdgpslogger-

vb.kml

the OBDII adapter by clicking on the
Key button as shown in Figure 10:

You will be prompted for a 4-digit
key to complete the pairing process,
which should be available from the OB-
DII adapter vendor. It could be one of
the commonly used keys, such as 0000
or 1234. Research the Internet for the
key code if it is not provided by the ven-
dor.

To ensure that the OBDGPSLogger
application would work correctly, check
to see if the USB device profile was cre-
ated on the C1. The presence of these
two entries indicates that the system is
working well.

$ ls -lsa /dev/rf*

0 crw-rw---- 1 root dialout 216,

0 Dec 31 16:22 /dev/rfcomm0

0 crw-r--r-- 1 root root 10,

63 Dec 31 16:00 /dev/rfkill

Acquire and plot data
Create a placeholder for the data to be

captured, then start the OBDGPSLog-
ger application, making sure to specify

Figure 10 - pairing the C1 and obdII
adapter using bluetooth

Figure 9 - serial port setup

Figure 8 - obdII adapter detected by the
odroId-C1

Figure 11 - kMl data in google Maps

OBDGPS

ODROID MAGAZINE 14

obdgpslogger-vb.db
obdgpslogger-vb.kml
obdgpslogger-vb.kml
obdgpslogger-vb.kml

Then, upload the KML file to Google
Maps, as shown in Figure 11.

•	 Log in to your Google Account,
and go to http://maps.google.com

•	 Click on My Maps
•	 Click Create a new map
•	 Add a Title and Description
•	 Click Import
•	 Click Choose file, select the above

.kml to upload, and then click
Upload from file

Next, install Google Earth on your
Windows 7+ or Macintosh system.
Transfer the .kml file from the C1 to
your system with Google Earth. Import
the .kml file and display it, as shown in
Figure 12.

Note that, while the GPS data is used
to plot the course of the ride, the OBD
data is used to plot the car’s fuel effi-
ciency in miles per gallon. The red parts
correspond to low fuel efficiency going
from 0 mph to posted maximum of 35
mph. The green parts correspond to the
efficient segments. The dips correspond

OBDGPS

to http://<C1-IP-Address> to start the
phpLiteAdmin application.

Use the password odroid, as config-
ured previously, to log into the applica-
tion. You will be then be presented with
a welcome screen as shown in Figure
15. Select the tables from the left menu
according to Figures 16 and 17. Now,
you have everything needed to enhance
the discussed open-source tools or build
your own.

Disclaimer
As always, be cautious when manipu-

lating your setup in a vehicle. Ensure

to the car stopping at all the stop signs
in between.

Do you recognize the world-famous
fruity campus that was encircled? There’s
a clue at bottom left of picture!

The data can also be exported in the
.csv format, and imported in MS Excel
or compatible application to view the
numerical data. Figure 13 shows the
format of the .csv data.

$ obd2csv -d obdgpslogger-vb.db

-o obdgpslogger-vb.csv

$ ls -lsa *.csv

112 -rw-rw-r-- 1 odroid odroid

111969 May 16 22:39 obdgpslogger-

vb.csv

Manage SQLite
database

It is always useful to access the raw
data collected by OBDGPSLogger, so
that one can examine it for debugging

purposes, or to learn about the sche-
ma in order to use the more powerful
MySQL database system. Once the pre-
viously outlined installation process has
completed, you can point your browser

Figure 12 - kMl data in google earth

Figure 16 - gps data

Figure 14 - phpliteadmin login

Figure 13 - Csv data

Figure 17 - obd data

Figure 15 - phpliteadmin welcome

ODROID MAGAZINE 15

http://maps.google.com
obdgpslogger-vb.db
obdgpslogger-vb.csv
obdgpslogger-vb.csv
obdgpslogger-vb.csv

safety first before attempting any activ-
ity on the setup. HardKernel and the
contributors of these articles may not be
held liable for possible mishaps during
your experiments.

Acknowledgements
Gary Briggs (chunky@icculus.org),

the author of OBDGPSLogger, has kind-
ly consented to the use of his software
for publication in this article. Thanks to
Gary on behalf of the ODROID com-
munity.

Additional
Resources

•	 ODROID forum post:
http://bit.ly/1Eu8HTB

•	 OBD GPS home page:
http://bit.ly/1AuOe66

•	 ROOT data analysis framework:
http://bit.ly/1Sztekz

•	 Introduction to Bluetooth
programming:
http://bit.ly/1AuOfqw

•	 PHPLiteAdmin:
http://bit.ly/1dtZUw0

•	 Installing Google Earth for Linux:
http://bit.ly/1FMzGz7

•	 PyOBD reference:
http://bit.ly/1JSnbnt

•	 Bluetooth adapter:
http://amzn.to/1FMzJeq

•	 OBDII adapter:
http://amzn.to/1AuOh1V

OBDGPS FORUMS

ODROID FORUMS
THE PERFECT PLACE TO COMMUnICATE
wITH HARDKERnEL DEVELOPERS
by rob roy

The ODROID forums have been the central meeting place for the growing
Hardkernel community for several years, with over 11,000 members as of
June 2015. You can discuss ODROIDs with Mauro, the lead Linux kernel

developer, and Justin, the CEO of Hardkernel, along with a growing team of devel-
opers who donate their time to helping you get the most out of your ODROID.
Check it out at http://forum.odroid.com!

ODROID MAGAZINE 16

mailto:chunky@icculus.org
http://bit.ly/1Eu8HTB
http://bit.ly/1AuOe66
http://bit.ly/1Sztekz%0D
http://bit.ly/1Sztekz%0D
http://bit.ly/1AuOfqw%0D
http://bit.ly/1AuOfqw%0D
http://bit.ly/1dtZUw0%0D
http://bit.ly/1dtZUw0%0D
http://bit.ly/1FMzGz7%0D
http://bit.ly/1FMzGz7%0D
http://bit.ly/1JSnbnt%0D
http://bit.ly/1JSnbnt%0D
http://amzn.to/1FMzJeq%0D
http://amzn.to/1FMzJeq%0D
http://amzn.to/1AuOh1V%0D
http://forum.odroid.com
http://forum.odroid.com

Part 1 of this article introduced the latest version of the Nintendo 64 emula-
tor for Linux and compared its performance on all of the current ODROID
boards. This second part presents an overview of some of the more popular

Nintendo 64 games, including Mario Kart, Mario Party, Paper Mario, Star Fox, Star
Wars, Starcraft, Super Mario, Super Smash Bros, and Legend of Zelda.

Mario Kart 64
Mario Kart is very well-known racing game franchise from

Nintendo, starring the most famous Nintendo characters like
Mario, Luigi, Peach, Yoshi, Donkey Kong, Bowser and others.
One of the big benefits of this game is that you can play it with
up to 4 players at the same time.

I’m not really a fan of the series, especially the Nintendo 64
version, which is graphically poor in my opinion. Although the
N64 is known for its 3D capabilities, Mario Kart 64 uses mostly
2D sprites, which don’t look good. The only 3D elements of the
game are the ground that you are driving on, and some obstacles
and bridges, which makes the game very unattractive to play.

U3
When I first ran the game without frameskip, it was rather laggy. Since the game

mostly uses old 2D sprites, it really made me wonder why this game needs so much
CPU power. However, once I activated frame skipping, it worked fine on the U3.
There is some small delay in the sound while using the menu, but nothing that’s really
troublesome. In-game racing works fine without lags or slowdowns, and
multiplayer with several controllers is working perfectly as well.

C1
While the menu is slow, the in-game experience is good and seems to

work at full speed using the Rice plugin. It’s definitely playable, although
you get a much better experience on the U3 or XU3 rather than the C1.
When I re-tested it using glide64mk2, the game ran fine, although it had
some glitches with the shadows and ground textures.

XU3
Mario Kart 64 had no issues on the XU3. It ran at full speed and

could easily be controlled with an the XBox 360 controller.

NINTENDO 64 EMULATION

LInUX GAMInG: nInTEnDO 64
EMULATIOn - PART 2
EMBARK On THE ULTIMATE 90S GAMInG jOURnEY
by Tobias schaaf

ODROID MAGAZINE 17ODROID MAGAZINE 17

Mario Party
Mario Party is a type of board game in which you play with

or against up to 4 players in different kinds of mini-games. The
game is quite fun, although sometimes I have a hard time figuring
out the controls for certain mini-games. It’s probably suited for
all ages, from small children to adults as a party game, or just to
have some fun.

U3
The U3 experience was flawless, and the game ran at full speed

without any issues. I saw a flickering screen on the split screen of
one mini-game once, but the moment the action started, it was
gone and therefore fully playable.

C1 - rice plugin
The menu was a little slow at first, and when I was actually on the map to select

a game, I was rewarded with a very fluent movement, like in Mario Kart. However,
when I tried to start a game I only saw a white screen. I heard everything running in

the background, and clicking buttons triggered
certain actions which I could hear, but I could
not see anything besides a blank screen. When
I tried again with a different game mode, I was
able to see a few parts of the game, but ma-
jor parts were missing, and the moment that I
started a mini-game, I only got a black screen.

C1 - glide64mk2
While the game didn’t run using the rice

plugin, it worked fine with glide64mk2, al-
though it was a little slow. Most scenes in
game are full speed, so I consider this game
playable under glide64mk2 in 16-bit.

XU3
The XU3 had no issues at all playing this game. It ran smoothly, which was not

surprising considering that it also ran well on the U3. Overall, the gaming experience
was quite nice.

Paper Mario
Paper Mario is a mix between a jump and run

game like Super Mario and an RPG game like Final
Fantasy. It has nice graphics, and although the world
is 3D, Mario himself is only 2D. He’s actually a paper
figure. The gameplay is very unique and is really fun
to play. It’s hard to describe, but you should definitely
give this one a try!

U3
The U3 experience for Paper Mario is really good.

The overall speed was very good, and I enjoyed the
game a lot on the U3.

NINTENDO 64 EMULATION

ODROID MAGAZINE 18 ODROID MAGAZINE 18

NINTENDO 64 EMULATION

ODROID MAGAZINE 19

C1 - rice plugin

The experience on the C1 is hard to describe. At first, the game
was not working at all. After a laggy introduction, the main menu did
not show up. After 10 or 15 minutes, another type of introduction
seemed to show up, which was basically just a scrolling background
picture. Another 10 to 20 minutes later, the picture changed again
and suddenly I saw the start menu. I created a new save state and
started a new game. Again, I was presented with a single background
picture. It seems the game is not working at all on the C1, or it might
take hours for it to start. The C1 should be able to play the game in
rather a decent speed, but unfortunately, the faulty drivers and graph-
ics support prevent the system from working properly.

C1 - glide64mk2
This game works with glide64mk2 at full speed. Similar to the

U3, it has glitches with the shadows and ground textures, but besides that, the game is
running very well.

XU3
The libretro core did a very good job with this game. None of the U3 glitches with

glide64mk2 could be seen. The shadows were perfect, speech bubbles were fine, and
I could read what the stars were saying. The overall speed was perfect as well. I really
like playing this game on the XU3.

Star Fox 64
Star Fox 64 is a remake of the Super Famicom/SNES

game Star Fox, which was one of the first 3D space shooters.
The N64 version was famous for its very good graphics and
especially for its voice acting. The often funny lines of your
comrades through the radio, the intense battles, and the good
graphics make this game really fun to play.

U3
The game runs very well on the U3. It had some slow

downs on the galaxy map where you select the mission, and
the shadows are too dark. The lighting does not work correctly
which means the game is very dark in some scenes. Besides
that, the game works perfectly well at full speed.

C1 - rice plugin
The C1 does well with this game. The rice video plugin looks a lot

better when rendering shadows than the glide64mk2 on the U3, so the
scenes are not as dark. Besides that, the performance of the C1 is slow-
er than on the U3, and the mission briefing is slightly laggy. While
the U3 has a slowdown on the Galaxy map where you can select your
mission, the C1 hangs very badly, but since it’s just for selecting your
mission it doesn’t affect game play that much. When you’re finally on
the hunt and shooting through the game, the game runs at full speed
without issues, and is actually nice to play on the C1.

ODROID MAGAZINE 19ODROID MAGAZINE 18 ODROID MAGAZINE 19

ODROID MAGAZINE 20

C1 - glide64mk2

Similar to the U3, the gaming experience is rather good. It’s about the same speed
as on the U3 and has the same issues with the shadow, but besides that, the gaming
experience is nice and only slows down on the galaxy map.

XU3
As usual, the XU3 experience is the best. The game runs

smoothly, but slows down on the galaxy map. The graphics look
great on the XU3, and the game runs very smoothly.

Star Wars Episode 1 – Racer
I played this game many years ago on the PC with my 3DFX

Voodoo graphics card, which used the “glide” that’s included
in some of the graphic plugins for mupen64plus. The game is
about the Pod Racer in Episode 1 of Star Wars. It’s a very fast
racing game with nice graphics and destroyable objects, and you
can upgrade your pod to make it faster or easier to handle.

This game actually uses the memory expansion pak on the
N64 which improved the graphics, and the rumble pak is also
supported. However, the N64 version doesn’t compare to the
PC version in terms of graphics, and is also missing the multi-
player mode, although it’s still a nice racing game.

U3
The experience on the U3 is very good. The game runs fluently and quickly, and

doesn’t seem to have glitches. Some of the shadows are too dark, but that’s something
you only experience in the menu.

C1 - rice plugin
Once again, the C1 has issues with this game related to the

rice video plugin, since the same issues happen on the U3 when
the video plugin is switched to rice. The picture was distorted
and cut off in some scenes. The game works perfectly fine using
glide64mk2 at full speed with no issues.

XU3
The game works very well on the XU3. I finally figured out

how to use the booster, and I also saw a two player option. It
seems that if the game finds more than one controller connected,
it offers a multiplayer option. The gaming experience was flaw-
less and at full speed.

Star Wars: Rogue Squadron
This is named as one of the best N64 games ever made, where

you fly an X-Wing to right against the evil Empire. I played the game on the PC when it
came out, and it was quite fun. I was looking forward to trying it on the ODROID. I’ve
read that this game requires the memory expansion pack in order to launch. However,
no matter what I tried, I wasn’t able to get this game to work on any platform or with
any graphics plugin. Both the mupen64plus and libretro core emulators either crashed
or stopped responding.

NINTENDO 64 EMULATION

ODROID MAGAZINE 20 ODROID MAGAZINE 20

ODROID MAGAZINE 20

StarCraft 64
StarCraft is a very famous RTS game. It’s one of the best

strategy games ever made, and is still played in professional gam-
ing tournaments. The Nintendo 64 game is a very good remake
with reduced graphics, stripped videos, and minimal music. It’s
a nice strategy game, and I found it interesting that I was able to
play it on a Nintendo 64 emulator.

U3
The game runs surprisingly well on the U3. There are some

speed issues on the menu, but as soon as you are in the game, it
works well, although the sound is a little bit delayed, especially
in bigger battles. You can hear units die after they have already
disappeared from the screen.

C1 - rice plugin
StarCraft 64 ran surprisingly well on

the C1. It seems to work best using the
rice video plugin. However, when us-
ing the glide64mk2 plugin, the menu is
so slow that you can’t select the mission
that you want to play. Therefore, the
game is not playable under glide64mk2.
The in-game speed would probably be
fine, but since I couldn’t get past the
menu, there is no way to tell.

XU3
I actually had a lot of issues getting

StarCraft 64 to run on the XU3. The
game was very laggy at first, and switch-
ing from glide64 to rice or gln64 exhib-
ited strange issues. Rice and gln64 were
really fast on the XU3 menu, and every-
thing was full speed. But both rice and gln64 had major graphical problems, which
made the game unplayable. After some investigation on the slowdown of glide64, I
found out that reducing the rendering resolution increased the speed. The game is
displayed in 1080p no matter which resolution you choose, but the resolution at which
the characters and objects are rendered can be changed on the
XU3. I found that using a resolution of 800x600 or below
gave the best performance.

Super Mario 64
Super Mario 64 was the launch title for the N64, and

what a launch title it was! This game boosted the N64 to
the top of its class by showing what the console was capable
of, and once again, made Mario the star of the Nintendo
franchise.

U3
On the U3, Mario 64 has some glitches with shadows,

NINTENDO 64 EMULATION

ODROID MAGAZINE 21ODROID MAGAZINE 20 ODROID MAGAZINE 21

textures and lighting, but besides that, the
game runs at full speed.

C1 - rice plugin
Mario 64 seems to be running a little

below full speed on the C1, but it is still
playable with the rice graphics plugin. The
speed is slightly better with glide64mk2
than with the rice plugin, but it occasion-
ally drops below full speed. It also has the
same issues as the U3 glide64mk2 plugin
with rendering ground textures and shad-
ows.

XU3
The game is running fine on the XU3,

with no issues or glitches.

Super Smash Bros
This game introduced a new genre of brawler games.

It was a major success on the N64, and led to a lot of se-
quels. You can choose between famous Nintendo char-
acters such as Mario, Yoshi, Princess Peach and many
more, and fight against other characters.

U3
The gaming experience for Super Smash Bros on

the U3 with mupen64plus and glide64mk2 plugin is
very nice. Even the menu is working at a decent speed.
There are some glitches with shadow and text, but
nothing serious, and only the text issue is noticeable.

C1 - rice plugin
The game was too slow under rice to

be playable. The menu, introduction,
and gameplay were laggy. However, Su-
per Smash Bros runs much better with the
glide64mk2 plugin, and you can actually
play it full speed, although it has the same
glitches as the U3 version.

XU3
While in the menu, there is some lag-

ging and slow downs, but the game runs
perfectly fine otherwise. It was really fun
to play.

NINTENDO 64 EMULATION

ODROID MAGAZINE 22 ODROID MAGAZINE 22

NINTENDO 64 EMULATION

The Legend of Zelda:
Majora’s Mask

I don’t know much about the Legend of
Zelda games on the N64, but I do know
that this game involves having 72 hours
to save the world, and you have different
masks to help you in your cause. You can
use the “Ocarina of Time” to travel back in
time and start the 72 hours over and over
again until you finished the game.

U3
Although the game speed is very good,

the glide64mk2 plugin once again has issues
with being too dark. Since it can’t do the blurry effect, the game stays at full speed the
entire time. However, because it’s too dark, it’s sometimes hard to find a way, but it’s
not as dark as it is when played on the XU3, where nothing is visible. I consider this
fully playable.

C1 - rice plugin
The game worked surprisingly well on the

ODROID-C1 with the rice plugin. There were
no graphical issues, but the introduction and some
scenes were slightly laggy. Overall, the game is
very playable on C1 with the rice plugin.

C1 - glide64mk2
The game runs at nearly full speed, but suffers

from the same darkness issue as the U3. Rice is
probably the best plugin for use with this game
when played on the ODROID-C1.

XU3
The overall experience of the game is quite good. When there are cutscenes with the

blurring effect, the game slows down and becomes laggy. However, since only occurs in
cutscenes, the gameplay is fine. However, there’s another issue which is related to glide
plugin, which is that the graphics are too dark, makes it hard to figure out which way
to go. It got so dark that I switched to the gln64 plugin, which had
some minor glitches with the ground, but otherwise worked per-
fectly at full speed. It was not so dark that you couldn’t see where to
go, so using gln64 as a plugin for this game worked great.

The Legend of Zelda: Ocarina of
Time

This is the predecessor of Majora’s Mask. I actually had a hard
time enjoying the game, but I know that it is supposed to get better
over time, and there must be a reason why so many have it on their
top 10 list, so I gave it a try.

U3
Generally the game works fine and is at full speed, with some

minor issues with shadows and ground textures. In some places, it

NINTENDO 64 EMULATION

ODROID MAGAZINE 23ODROID MAGAZINE 22 ODROID MAGAZINE 23

is too dark, but it is still fully playable.

C1 - rice plugin
Similar to the other Legend of Zelda game, this one works very nicely

on the ODROID-C1 using the rice plugin. With the glide64mk2 plugin,
the game was not entirely full speed, and exhibits the typical ground tex-
ture and shadow issues.

XU3
The experience on the XU3 is superb. I didn’t see any glitches or slow

downs so far, although I didn’t get very far in the game. It’s a really nice
experience.

High Resolution Textures
After trying out different games, I checked on what else could be done with the

emulators, and I found out that there are some high resolution texture packs that of-
fer much better graphics. I tried a few of them to see what they look like in order
determine if they would work on the ODROIDs. Mupen64plus standalone emulator
offers the possibility to use high resolution textures for N64 games which can improve
gaming experience by giving a new look to the games, but this option is not available

for other emulators.
To use the high resolution textures,

download them from http://bit.

ly/1Jvpahr and copy them to the di-
rectory ~/.local/share/mupen-

64plus/hires_texture/. Some of
the textures are complete rewrites of the
game graphics. Make sure to place the

super Mario 64 with standard textures and
high resolution textures side by side.

NINTENDO 64 EMULATION

ODROID MAGAZINE 24 ODROID MAGAZINE 24

http://bit.ly/1Jvpahr
http://bit.ly/1Jvpahr

textures in a folder with the “short name” of the game in capital letters. For example,
Mario 64 is “SUPER MARIO 64”, and Mario Kart 64 is “MARIOKART64”.

Conclusion
Nintendo 64 emulation is generally working very well on ODROID devices, espe-

cially on the U3 and XU3. The C1 has a lot of issues which prevent it from offering
the same gaming experience as on the other ODROID devices. The rice plugin, which
works without having to change color depth settings on your image, has major issues
with many games, but does a rather good job on other games.

The glide64mk2 plugin only works under 16-bit, and although most games are
running nicely, the ones that do run better with the rice plugin require a reboot in
order to be able to use it, since rice isn’t working with 16-bit. This leaves me rather un-
satisfied, since I always had to reboot the entire ODROID in order to switch between
different graphics plugins on the C1. The U3 and XU3 can do this without rebooting
the entire system, which makes it much easier to switch between the plugins.

Also, using 16-bit color depth prevents different applications such as XBMC
from running properly, which causes you to choose a emulator frontend that ac-
tually supports 16-bit mode, or else you are forced to start N64 games through a
Terminal window.

This all makes me believe that C1 is not really suitable for N64, at least under
Linux. I think that the best way to play N64 games on the C1 is probably through the
Android app or a highly modified version using fbdev drivers and some scripts that are
able to switch color depths and applications to run. That setup would be very incon-
venient and certainly not suitable for beginners.

The U3 and XU3 both measure up very well when it comes to N64 emulation. Be-
ing able to switch between graphic cores easily is a big benefit over the C1. N64 games
seem to need some occasional tweaking, and if you look at the configuration options
for either glide64mk2 or rice on the mupen64plus standalone emulator, there are a lot
of options to choose from.

The XU3 is the only board that can use libretro core of mupen64plus with Retro-
arch at the moment. It integrates the controllers very nicely, and you can easily adapt
your gamepad layout to your own needs and have various controllers supported. Also,
the XU3 has extra CPU power, which often make the difference between full speed or
“nearly” full speed. The U3 does a very good job in emulating N64 games, and being
able to use high resolution textures in mupen64plus is really a cool thing to have.

a complete
remake of
the Mario
64 textures
gives the
game a
modern
look

NINTENDO 64 EMULATION

ODROID MAGAZINE 25ODROID MAGAZINE 24 ODROID MAGAZINE 25

The 3.2” touchscreen for the ODROID-C1 is one of
the more unique peripherals available from the Hard-
kernel store at http://bit.ly/1KYqWWw. The touch-

screen comes with small stylus, and is able to display the
Linux desktop in a sharp 320x240 resolution, perfect for use
in embedded projects such as robotics, vehicle computers,
and home automation. The following steps outline how to
install the driver on any Ubuntu 14.04 distribution manu-
ally. To install the drivers automatically instead, please re-
fer to the “Automatic installation” section at the end of the
article.

Manual installation
First, install the dependencies and update the device op-

erating system:

$ sudo apt-get update && sudo apt-get install fix-w1-

blacklist

$ sudo apt-get dist-upgrade

$ sudo apt-get upgrade

Then, run modprobe, and change rotate=0 if you want to
run the display in portrait mode (vertical):

$ sudo modprobe spicc

$ sudo modprobe fbtft_device name=odroidc_tft32 ro-

tate=270 \

 gpios=reset:116,dc:115 speed=32000000 cs=0

To enable the X11 desktop, create a file called /usr/share/
X11/xorg.conf.d/99-odroidc-tftlcd.conf with the following
contents:

Section “Device”

 Identifier “C1 fbdev”

 Driver “fbdev”

 Option “fbdev” “/dev/fb2”

EndSection

X Windows may then be started:

3.2” TOUCHSCREEn
DRIVER
InSTALLATIOn
FOR THE ODROID-C1
by bo lechnowsky and owen browne

$ sudo startx

Disable Xorg by editing the file /etc/init/lightdm.over-
ride to contain the following, save the file, and reboot:

manual

After the device has rebooted, run con2fbmap:

$ con2fbmap 1 2

Next, add the following two lines to /etc/modules, mak-
ing sure to change rotate=0 if you want to run the display in
portrait mode (vertical):

spicc

fbtft_device name=odroidc_tft32 rotate=270

gpios=reset:116,dc:115 speed=32000000 cs=0

Add the following line to the end of the file /media/
boot/boot.ini:

fbcon=map:22

Add this line to /etc/rc.local before the exit command at
the end:

startx &

Reboot again and test your touchscreen by creating a file
under /etc/udev/rules.d/95-ads7846.rules with the follow-
ing contents on a single line:

SUBSYSTEM==”input”, ATTRS{name}==”ADS7846 Touch-

screen”, ENV{DEVNAME}==”*event*”,

SYMLINK+=”input/touchscreen”

Next, apply the new module by typing the following
commands into a Terminal window:

TOUCHSCREEN

ODROID MAGAZINE 26

http://bit.ly/1KYqWWw
lightdm.override
lightdm.override
boot.ini
rc.local

$ sudo modprobe spicc

$ sudo modprobe -r ads7846

$ sudo modprobe ads7846

Then, check to see if a touchscreen node exists by in-
specting the output of the following command:

$ ls /dev/input/touchscreen

Next, install the event and touchscreen libraries:

$ sudo apt-get install evtest tslib libts-bin

Run a test to see if the touchscreen responds to touch.
The text may be exited by pressing Control-C:

$ sudo evtest /dev/input/touchscreen

The device needs to be calibrated in order to map the
touch events to the screen properly. To do so, remove the
previous calibration:

$ sudo rm /etc/X11/xorg.conf.d/99-calibration.conf

Then, create a directory in the X11 directory if it’s not
already present:

$ sudo mkdir /etc/X11/xorg.conf.d/

Depending on whether the touchscreen will be used in
portrait or landscape mode, follow the steps in the relevant
section below.

Calibration (landscape)
Add these lines into /etc/X11/xorg.conf.d/99-calibra-

tion.conf:

Section “InputClass”

 Identifier “calibration”

 MatchProduct “ADS7846 Touchscreen”

 Option “Calibration” “15 3836 4020 336”

EndSection

Calibration (portrait)
For portrait mode, the rotate=0 option should be enabled

in the previous steps. Add these lines into /etc/X11/xorg.
conf.d/99-calibration.conf:

Section “InputClass”

Identifier “calibration”

MatchProduct “ADS7846 Touchscreen”

Option “Calibration” “37 5543 108 2290”

Option “SwapAxes” “”

EndSection

After rebooting, the touchscreen should be enabled and

calibrated properly for use with the stylus.

Custom calibration
To perform a custom calibration, the program xinput_

calibrator may be used:

$ sudo apt-get install xinput-calibrator && xinput_

calibrator

Automatic installation
The touchscreen driver installation may also be done au-

tomatically using a pre-built script from Ameridroid. First,
disconnect the C1 power and HDMI cables, then connect
the touchscreen to the GPIO header. Boot the device and
expand the root partition using the ODROID utility, then
connect the C1 to the Internet.

 Next, change to the root user by launching a Terminal
window and typing the following. You will need to supply
the root password, which is “odroid” on the official Hard-
kernel images:

$ sudo su

wget http://respectech.com/odroid/c1-touch.sh

chmod 755 c1-touch.sh

./c1-touch.sh

Press “a”, then the Enter key to run all of the installation
steps automatically. If you haven’t updated your distribu-
tion recently, go make yourself a cup of tea because it takes
a while to update the entire operating system. The C1 will
reboot after the installation process has completed, and the
touchscreen will automatically boot into the Linux desktop.

TOUCHSCREEN

Make sure to connect the screen correctly to avoid getting shocked

ODROID MAGAZINE 27

xorg.conf.d/99-calibration.conf
xorg.conf
xorg.conf.d/99-calibration.conf
xorg.conf.d/99-calibration.conf
xorg.conf.d/99-calibration.conf
xorg.conf.d/99-calibration.conf
http://respectech.com/odroid/c1-touch.sh
c1-touch.sh
c1-touch.sh

LInUX RETROARCH
nInTEnDO 64 CORE
FOR THE ODROID-U3
by daniel Mehrwald

N64 CORE COMMUNITY IMAGES

COMMUnITY
IMAGES
FOR THE ODROID-C1
by @robrodrigues

One of the best features of the
ODROID community is the wide
variety of images that have been

uploaded by forum members. In addition
to the official images that are published by
Hardkernel, community images offer spe-
cialized features that may be useful for spe-
cific purposes, such as a media center, file
server, or network attached storage. Here
is a list of some of the most popular images
that are available for the ODROID-C1 as
of May, 2015:

Triple boot
http://bit.

ly/1EBmLvt

Ubuntu & debian
Minimal
http://bit.

ly/1DLugEZ

kitkat pocket rocket
http://bit.

ly/1e8hLso

gamestation Turbo
http://bit.

ly/1JpaccI

openelec
http://bit.

ly/1FlifFG

openMediavault
http://bit.

ly/1FgU0Ho

Tiny Core
http://bit.

ly/1Jpah00

dietpi
http://bit.

ly/1d9bXP8

Fedora
http://bit.

ly/1IFc2XD

Minimal debian
Wheezy
http://bit.

ly/1QT8x1l

nas4Free
http://bit.

ly/1d9aPLt

arch kali
http://bit.

ly/1EcjsKf

arch official
http://bit.

ly/1IFc6H6

Max2play
http://bit.

ly/1Ecjzpg

netbsd
http://bit.

ly/1e8iuK8

debian 7.8
http://bit.

ly/1d9b6xS

http://bit.

ly/1B4PfwC

More debian images
http://bit.

ly/1B4Pgk4

To suggest more images to add to the
sticky post on the ODROID forums,
please refer to the original post at http://
bit.ly/1d9blZQ.

Retroarch, which is a multi-system game emulator available for both Android
and Linux, is always under development, and its open-source code can be
improved by anyone willing to submit a pull request to GitHub. Recently,

the Nintendo 64 emulator core called mupen64plus added several improvements
to provide smoother game play and better audio. To try it out on Ubuntu 14 or 15,
first install Retroarch by typing the following commands into a Terminal window:

$ sudo add-apt-repository ppa:libretro/stable
$ sudo apt-get update
$ sudo apt-get install retroarch retroarch-* libretro-*

Then, download compile the latest version of mupen64plus:

$ git clone https://github.com/libretro/mupen64plus-libretro.git
$ cd mupen64plus-libretro
$ wget -O patch.txt http://pastebin.com/raw.php?i=XWBBFH7d
$ patch -p0 < patch.txt

Verify that the “-marm” gcc switch is present in the Makefile file on lines
92 and 93 by editing it in your favorite text editor:

CFLAGS += -marm -mfloat-abi=hard -mfpu=neon
CXXFLAGS += -marm -mfloat-abi=hard -mfpu=neon

Next, compile the mupen64plus core:

$ make -j5 V=1 platform=’odroid odroid-u’

Copy the resulting .so file to the default core directory for Retroarch:

$ sudo cp libretro-mupen64plus.so /usr/lib/libretro/

Finally, launch your Nintendo 64 game using Retroarch with the new
core:

$ retroarch -L /usr/lib/libretro/mupen64plus_libretro.so \
 ~/path/to/your-game.n64

The optimal settings from within RetroArch are:

settings->driver settings->audio driver = alsathread
settings->driver settings->audio resample driver = sinc
options->Core options->gFX plugin = glide64

For questions or comments, please refer to the original post at http://
bit.ly/1d8VR87.

ODROID MAGAZINE 28

http://bit.ly/1EBmLvt
http://bit.ly/1EBmLvt
http://bit.ly/1DLugEZ
http://bit.ly/1DLugEZ
http://bit.ly/1e8hLso
http://bit.ly/1e8hLso
http://bit.ly/1JpaccI
http://bit.ly/1JpaccI
http://bit.ly/1FlifFG
http://bit.ly/1FlifFG
http://bit.ly/1FgU0Ho
http://bit.ly/1FgU0Ho
http://bit.ly/1Jpah00
http://bit.ly/1Jpah00
http://bit.ly/1d9bXP8
http://bit.ly/1d9bXP8
http://bit.ly/1IFc2XD
http://bit.ly/1IFc2XD
http://bit.ly/1QT8x1l
http://bit.ly/1QT8x1l
http://bit.ly/1d9aPLt
http://bit.ly/1d9aPLt
http://bit.ly/1EcjsKf
http://bit.ly/1EcjsKf
http://bit.ly/1IFc6H6
http://bit.ly/1IFc6H6
http://bit.ly/1Ecjzpg
http://bit.ly/1Ecjzpg
http://bit.ly/1e8iuK8
http://bit.ly/1e8iuK8
http://bit.ly/1d9b6xS
http://bit.ly/1d9b6xS
http://bit.ly/1B4PfwC
http://bit.ly/1B4PfwC
http://bit.ly/1B4Pgk4
http://bit.ly/1B4Pgk4
http://bit.ly/1d9blZQ
http://bit.ly/1d9blZQ
https://github.com/libretro/mupen64plus-libretro.git
patch.txt
http://pastebin.com/raw.php?i=XWBBFH7d
patch.txt
libretro-mupen64plus.so
mupen64plus_libretro.so
http://bit.ly/1d8VR87
http://bit.ly/1d8VR87

OS SPOTLIGHT

ODROID is a developer’s dream device. The fully assem-
bled device comes with debug board, source code and sche-
matics. You can also communicate with engineers worldwide
through the ODROID developer community. ODROID is
based on a Samsung S5PC100 833MHz ARM’s Cortex-A8
with NEON multimedia accelerator.

Demo Videos

rockon demo:
https://www.youtube.com/watch?v=yM7N3JDnX4k

slideMe and socialdroId:
https://www.youtube.com/watch?v=-8S-8gCa2bo

android 720p video hdMI demo:
https://www.youtube.com/watch?v=zEWrV8LuX04

space Megaforce:
 https://www.youtube.com/watch?v=oj5sKT_2-Dg

speed Forge 3d hdTv demo:
 https://www.youtube.com/watch?v=M5fKrScVtP8

THE ORIGInAL ODROID
wHERE IT ALL STARTED
edited by rob roy

ODROID HISTORY

Android Games
The chip’s 3D OpenGL ES capability enables high speed

3D games such as Speed Forge 3D. The ODROID is con-
nected to a 42” HDTV via the standard mini HDMI cable.
The ODROID platform is completely open. You can develop,
publish and play numerous games.

Video Playback through HDTV
ODROID supports up to 720P resolution video files. You

can connect the ODROID to a big screen HDTV through
the built-in mini HDMI connector. Fast web browsing, so-
cial networking and emailing is easy to use through the WiFi
network.

Music
Choose from various music applications available in the mar-

ket. Flicking cover flows allow a more enjoyable experience.

To see the original advertisement, please visit the Hardker-
nel archives at http://bit.ly/1Gx5Lr1.

When Hardkernel first created the ODROID family of single-board comput-
ers, it was intended for Android developers to be able to prototype apps on
an inexpensive, pre-rooted device to facilitate app development. It was also

well-suited for games, and was one of the more innovative devices of its time for Android
gaming.

The ODROID has since blossomed into a wide product line, from wearables to
media centers to desktop replacements, with many add-on components suitable for
hardware tinkering, robotics, home automation, Linux and Android programming, and
much more. What follows is the original unedited advertisement for the first ODROID
device from the late 2000s, which was a handheld device with a built-in screen, gyro-
scopic sensors and controller buttons that was eventually retired in November of 2009.
Enjoy this blast from the past!

ODROID MAGAZINE 29

https://www.youtube.com/watch?v=yM7N3JDnX4k
https://www.youtube.com/watch?v=-8S-8gCa2bo
https://www.youtube.com/watch?v=zEWrV8LuX04
https://www.youtube.com/watch?v=oj5sKT_2-Dg
https://www.youtube.com/watch?v=M5fKrScVtP8
http://bit.ly/1Gx5Lr1
http://www.hardkernel.com

The 2012 release of the original Raspberry Pi created a whole movement
of hobbyists, developers, and educationalists, who used the ARM based
platform to create, hack, and teach. Although the Raspberry Pi wasn’t the

first Single Board Computer (SBC) on the market, it succeeded for three impor-
tant reasons. First, it was a full computer on a little board, it had a desktop and
you could write computer programs on it; second, it had a set of user program-
mable GPIO pins, similar to those found on microcontroller platforms like the
Arduino; third, and probably most importantly, it only cost $35.

Since then, the SBC market has grown significantly and the Raspberry Pi is no
longer the only choice. Among the popular devices available are the ODROID-
C1, the HummingBoard, the MIP Creator CI20, and the Raspberry Pi 2. Of
course, the list of available boards is much longer, but these are the ones that I
have personally tested.

The SBC market is heavily dominated by ARM and three of the four boards
that we will be looking at use ARM based processors. The exception is the Cre-
ator CI20 which uses a MIPS processor. So before we compare the boards, let
me formally introduce you to each one.

Raspberry Pi 2
Although the Raspberry Pi 1 was enormously successful, there was one com-

plaint: the overall performance of the board was lacking, especially when run-
ning desktop applications. The performance was less than desirable because it
used a single core CPU clock at just 900 MHz. Considering the cost, the innova-
tive nature of the board, and its versatility, then the performance is perfectly un-
derstandable, but there was room for improvement. That improvement came in

COMPARISOn
OF THE TOP 4 SBCS
OnE BOARD TO RULE THEM ALL
by gary sims

reprinted with permission from android authority (www.androidauthority.com)

Comparison in size of all of the single board computers tested

SINGLE BOARD COMPUTER COMPARISON

ODROID MAGAZINE 30

http://www.androidauthority.com

the form of the Raspberry Pi 2, which uses a quad-core processor and doubles the
amount of RAM. Even though the Pi 2 is more powerful and has more memory,
the Raspberry Pi foundation managed to keep the price exactly the same, which
is a guaranteed recipe for success.

ODROID-C1
One of the key reasons for the success of the Raspberry Pi was its price. While

there are lots of other companies that make SBCs, there aren’t that many who
seem to be able to match the Pi’s price point. Of course, some of the boards are
only slightly more expensive than the Pi, and to be fair they often offer more
functionality, as we will see with the MIPS Creator CI20.

However one company that has managed to build a board for the same basic
price as the Raspberry Pi is HardKernel. Called the ODROID-C1, it also costs
$35. And like the Pi 2, it also uses a quad-core processor and comes with 1GB
of RAM. The ODROID-C1 isn’t the only SBC that HardKernel make, but it is
the least expensive one.

raspberry pi 2

odroId-C1

SINGLE BOARD COMPUTER COMPARISON

ODROID MAGAZINE 31

HummingBoard i2eX
Another company which offers several different SBCs is SolidRun. All of

their boards are built around Freescale’s i.MX 6 series of processors. The i.MX 6
range is based on ARM’s Cortex-A9 design, and scales from single- to quad-core.
The HummingBoard i2eX uses a dual-core i.MX 6 processor, comes with 1GB
of RAM, and has the same form factor as a Raspberry Pi 1 – it will even fit into
a case designed for the first generation Pi.

MIPS Creator CI20
The one board in our line-up which doesn’t use an ARM based processor is the

MIPS CI20 Creator. At its heart is a dual-core MIPS based processor coupled
with a PowerVR GPU and backed by 1GB of RAM. It is also unique in that it
includes its own built-in storage, plus Wi-Fi and Bluetooth. At just $65, it is
more expensive than the ODROID-C1 or the Raspberry Pi 2, but you are getting
more for your money.

hummingboard

Imagination CI20

SINGLE BOARD COMPUTER COMPARISON

ODROID MAGAZINE 32

i.MX
i.MX
i.MX

Feature comparison
Now that you have been introduced to our four boards, how do they compare

on paper? Here is a list of the specifications of each board:
Each of the boards in our test can run at least two operating systems, all of

them run Linux, and most of them run Android. The one board which doesn’t
run Android is the Raspberry Pi, 1 or 2. The Raspberry Pi Foundation doesn’t
see Android as a priority, and there appears to be some porting difficulties due to
some missing drivers from Broadcom. Of course, this could all change.

Android does, however, run on the ODROID-C1, the HummingBoard and
the MIP CI20 Creator. Currently all three only support Android 4.4 KitKat,
but each one has the potential to run Android 5.0 Lollipop, however none of the
board makers have officially released a ROM at this time. (Editor’s Note: The
ODROID-C1 now has a beta community image available for Android 5.0 Lol-
lipop at http://bit.ly/1B5Ysqh).

To judge how well Android is supported on each of the boards I will use the
following criteria: features, performance and support for Google’s services. The
two main Android features that distinguish one board from another are support
for sound over HDMI and support for USB flash drives. The best board in terms
of these features is the ODROID-C1. The HummingBoard and the CI20 don’t
support USB flash drives under Android, and the CI20 doesn’t support sound
over HDMI. Scoring each board out of 4 for features: the ODROID-C1 gets 4,
the HummingBoard gets 3, and the CI20 scores 2.

The next comparison is performance. Using AnTuTu as a guide to the relative
performance, the ODROID-C1 scored 15887, and the HummingBoard-i2eX
scored 12198. I wasn’t able to test the CI20, but according to comments I have
seen on the Internet, it scores less than the other two. So, scoring each board out
of 4 for performance, the ODROID-C1 gets 4, the HummingBoard gets 3, and
the CI20 scores 2.

Finally, in terms of support for Google Play and Google’s services: the Hum-
mingBoard comes with Google Play pre-installed, whereas the ODROID-C1

SINGLE BOARD COMPUTER COMPARISON

ODROID MAGAZINE 33

http://bit.ly/1B5Ysqh

doesn’t include Google’s services by default, but you can install them via an
Android app supplied by Hardkernel. The CI20 doesn’t include support for
Google’s service at all. Therefore, scoring each board out of 4 for Google Play
support: the HummingBoard gets 4, the ODROID-C1 gets 3, and the CI20
scores 2.

Since the Raspberry Pi doesn’t support Android, it will score 0 for this sec-

tion. The totals for this section are:

odroId-C1 11
hummingboard i2eX 10
CI20 Creator 6
raspberry pi 0

Linux
All four boards support Linux, and they all support it well. To try and judge

which board supports Linux the best, I used the following criteria: the number of
distributions supported, performance, and the amount of free memory available
after a fresh boot into the desktop.

The board which supports the most Linux distros is the Raspberry Pi 2.
Largely due to the sheer size of its user community, the Raspberry Pi is a popu-
lar platform and therefore receives the most attention in terms of porting. The
scores for distro support is therefore: Raspberry Pi – 4, ODROID-C1 and Hum-
mingBoard – tied on 3, and CI20 – 1.

As for performance, the OpenSSL command line tool has a speed option
which tests the performance of its various cryptographic algorithms. It also
provides a good way to judge the relative performance of one CPU compared to
another, as shown in Figure 7.

SINGLE BOARD COMPUTER COMPARISON

sbC openssl benchmark

hummingboard running android MIps CI20 running androidodroId-C1 running android

SINGLE BOARD COMPUTER COMPARISON

ODROID MAGAZINE 34

The SSL benchmark scores were quite revealing. The fastest board of the four,
in terms of CPU performance without help from the GPU, is the ODROID-C1.
Next comes the HummingBoard, followed by the Raspberry Pi 2. Last place,
but not by much, goes to the CI20. As a result, the scores for performance are:
ODROID-C1 – 4, HummingBoard – 3, Raspberry Pi 2 – 2, and the CI20 – 1.

Since these boards all have 1GB of RAM, it is important how much free
memory remains once the board has booted to the desktop. The graphical user
interfaces can be memory hogs and each of the boards uses a lightweight window
manager to try and conserve memory. The results are for the default or recom-
mended distro that can boot into the desktop without any additional installation
and configuration by the user.

The most frugal board is the Raspberry Pi 2, which had 816360K free af-
ter booting. Next comes the CI20, which had 737436K free. The ODROID-
C1 had 425836K free, and finally the HummingBoard had 313860K free. So,
the scores for the free memory test are: – Raspberry Pi 2 – 4, the CI20 – 3,
ODROID-C1 – 2, and HummingBoard – 1.

Collating all the score for this section, the results of the Linux tests are as
follows:

raspberry pi 10
odroId-C1 9
hummingboard i2eX 7
CI20 Creator 5

Kodi/XBMC
All four boards should support Kodi/XBMC. To test the performance of

Kodi I used its internal codec information display to show the frame rate and the
amount of CPU time being used to decode the video. I then produced a Full
HD, 50Mbps version of my ZTE Blade S6 Plus review video and played it on
each board.

The ODROID-C1 and the HummingBoard i2eX both did an excellent job
and managed consistently to show the video at its full frame rate, while neither
taxed the CPU too much in doing so. The same can’t be said for the Raspberry
Pi, which disappointingly could only manage 9 fps, instead of the needed 23.97
fps. Unfortunately I couldn’t find an easily accessible version of Kodi to run on
the CI20, and neither could I find a video player in the online repositories.

According to The Raspberry Pi Foundation the way Kodi works on the Pi is it

odroId-C1 running linux raspberry pi 2 running linux

SINGLE BOARD COMPUTER COMPARISON

ODROID MAGAZINE 35

bypasses the GUI rendering, which means the frame rate reported by the codec
overlay won’t be accurate. As for the mouse lag, this is a known phenomenon
and the best results will be achieved when using the keyboard or some form of
remote control. The scores for this section are: ODROID-C1 – 4, and Hum-
mingBoard – 4, Raspberry Pi 2 – 2, CI20 – 0.

Other operating systems
The big news that accompanied the launch of the Raspberry Pi 2 was that

Microsoft will release a free version of Windows 10 for the Pi 2, which is aimed
at creating Internet of Things (IoT) devices. Although the idea of Windows 10
running on a Raspberry Pi sounds intriguing, you might yet be disappointed, the
IoT version of Windows could be quite limited, and in fact it may not even offer
a desktop. Besides Windows 10, the Raspberry Pi 2 has support for RISC OS,
NetBSD, FreeBSD, and OpenWrt.

As for the other three boards, they each have a measure of support for differ-
ent OSes. For example, FreeBSD is known to run on the HummingBoard, while
NetBSD has been ported to the ODROID-C1 and the MIPS CI20 Creator.
There is also a work in progress to support OpenWrt on the CI20.

In a nutshell, the Raspberry Pi 2 has the widest OS support and the other
three are very similar in the level of support offered. Therefore to score this sec-
tion I will give the Raspberry Pi 2, 4 points. And the other three, 2 points each.

Community support
A big factor in picking an SBC is the size of the various online communities.

How many people are there blogging about this board? Making videos about
it? Writing books about it? Offering help in forums? There is little doubt that
the Raspberry Pi community is the largest. This is mainly because of the success
of the original Raspberry Pi, however it is already clear that the community has
embraced the new Pi 2 board with the same passion. It is hard to judge between
the online communities of the ODROID and the HummingBoard, but roughly
speaking, in broad terms, they are approximately the same! The CI20 has the
smallest of the communities partly due to its relative newness.

As a result, the Raspberry Pi 2 scores – 4, the ODROID-C1 and the Hum-
mingBoard – 3 each, and the CI20 – 1.

SINGLE BOARD COMPUTER COMPARISON

odroId-C1 running kodi raspberry pi running kodi

SINGLE BOARD COMPUTER COMPARISON

ODROID MAGAZINE 36

So which board is the winner?
The total scores are:

The final results show that the ODROID-C1 the winner of our board show-
down. This is perhaps a surprise, as you may have expected the Raspberry Pi
2 to win. The reason it scored so badly was its lack of Android support. But
other than its lack of support for Android, the Pi 2 does have other weaknesses.
It is easily beaten by the ODROID-C1 and the HummingBoard in terms of
performance, and even the dual-core MIPS processor comes close to the Pi’s
performance level. Also, the current version of Kodi for the Raspberry Pi doesn’t
handle video that well, which might be fixed in the future, but at the moment the
ODROID-C1 and the HummingBoard do a better job. However, if you need
Android support then the ODROID-C1 is the clear winner.

For more information, or to post questions or comments, please visit the
original article at http://bit.ly/1JoW8zT.

TEXT TO SPEECH
wITH THE ODROID-C1
USB AUDIO ADAPTER
by bo lechnowsky and brad Wilson

We’ve had a few opportunities to
learn new tricks while working
on our OWEN robot (Odroid

Walking Educational uNit). One of
these hurdles was getting the robot to
speak through the C1 running Ubuntu
using lightweight software. The first step
is connecting the C1 USB Audio Adapt-
er, available at http://bit.ly/1RW7TS4,
and configuring a Text To Speech (TTS)
engine to use it.

1. plug in the Usb audio adapter
2. Install Festival TTs:

$ sudo apt-get update

$ sudo apt-get install festival

3. set up alsa to use the second audio
output, which corresponds to the Usb au-
dio adapter:

$ sudo pico ~.asoundrc

pcm. !default {
 type hw
 card 1
}
ctl. !default {
 type hw
 card 1
}

4. Configure Festival TTs to use alsa and
16-bit audio. To do so for the current user,
type the following command:

$ sudo pico ~/.festivalrc

Alternatively, to have ALSA as the de-
fault for all users, type this:

$ sudo pico /etc/festival.scm

Add the following lines to the file:

(Parameter.set ‘Audio_Command
“aplay -D plug:dmix -q -c 1 -t
raw -f s16 -r $SR $FILE”)
(Parameter.set ‘Audio_Method ‘Au-
dio_Command)
(Parameter.set ‘Audio_Required_
Format ‘snd)
(Parameter.set ‘Audio_Method
‘linux16audio)

Save the file, then reboot:

$ sudo reboot

Now you can use Festival TTS with

the C1’s USB Audio Adapter! Here’s a
couple of example commands:
 example 1: a beautiful day message (echo
text)

$ echo “It’s such a beautiful
day! Why are you in front of the
computer?” | festival --tts

example 2: What’s today’s date? (program
output)

$ date ‘+%A, %B %e, %Y’ | festi-

val --tts

SINGLE BOARD COMPUTER COMPARISON

ODROID MAGAZINE 37

http://bit.ly/1JoW8zT
http://bit.ly/1RW7TS4
festival.scm
Parameter.set
Parameter.set
Parameter.set
Parameter.set

could hold the whole weight of peripherals like an LCD and
hard drive, so I switched to 5mm acrylic, which is more sturdy.

Since I chose acrylic for the case, I couldn’t cut all pieces of
the design by hand, and decided to order the acrylic laser cut-
ting based on a CAD drawing. Eventually, this project led me
to learn how to use the SketchUp CAD tool, which is amazing.
I finished the design more quickly than I expected, with the
only problem being that I couldn’t be sure if the acrylic pieces
could be processed and assembled correctly per my design.

After a week, the 20 pieces of acrylic for the case arrived,
and every piece seemed to be exactly manufactured as I de-

signed. Immediately, I started to assemble all of the pieces, and
fortunately there were no missing parts. However, I had added
too much space at the connecting edges, so the pieces could be
assembled but needed to be held tightly. This was expected,
and I had already prepared the connectors with aluminum re-
inforcement.

My son wanted to help me out with completing the case,
and asked if he could make an LCD part. He did well until
he lost interest after a few hours and went out to play with his

In the movie Jobs (2013), Steve Jobs delivered 50 units of
the Apple I computer board to a computer store called the
“Byte Shop”. The owner of the store, Paul Terrell, com-

plained about it not having peripherals such as a case, display
and keyboard. After some argument, Jobs said “all-in-one” to
his colleagues when he walked out of the shop. My favorite
part of this movie is the scene where Jobs says “insanely great!”
when he first plays with the original Macintosh, which was a
true all-in-one computer.

When I first saw a Macintosh Plus in a printing office near
my home, I was about 16 years old, and loved its shape. I only
realized it was a Macintosh after I began studying computer
programming. Recently, I tried to buy one, and looked around
the domestic secondhand market and eBay. There were only
dirty or cracked machines available, and I considered buying
one and cleaning it up myself. Eventually, I decided to make
an imitation case at a 1:1 scale of the original Macintosh Plus
using an ODROID-C1.

I couldn’t find an official CAD drawing of the Macintosh
Plus, and instead I found some projects which placed an iPad
tablet or Micro ATX board into an original Macintosh case.
I got the dimensions from one of those projects, and tried to
duplicate the size and shape. The most important thing for me
in designing the case was the display and floppy disk openings,
since these are the signature elements of the Macintosh. The
display had to be 9” since original Macintosh uses the same size
of CRT, but it was not easy to find that size display, so instead
I picked up a 9.7” IPS LCD panel.

I am a software engineer with basic hardware knowledge
and no experience in using CAD for mechanical design, so I
planned to create one with a traditional ruler and a pen, using
a thick 3mm paperboard. However, paperboard was too weak
for the actual size of a Macintosh Plus, and I doubted that it

ALL -In -OnE
DESKTOP CASE
FOR ODROID -C1
by dongjin kim

DESKTOP CASE

Figure 1 - acrylic pieces as designed in the Cad software

DESKTOP CASE

ODROID MAGAZINE 38

to add internal stereo speaker units in-
stead, which was not in my original
design. Therefore, I had to make a big
hole for the 3” speaker units on the left
and right side panels by hand. It took a
few hours, and made my work table very
dirty. Once I re-assembled the case with
the internal speakers and started to play
an Angry Birds game, I realized that this
was the right choice.

I then discovered a critical problem
after fully assembling the case. When
it was completely closed, the USB de-
vices couldn’t be inserted, since the

friend in the playground, so I finished
assembling the case myself.

Once I connected my keyboard,
mouse and speakers, the case looked
amazingly like a real desktop PC. I
planned to use a USB audio dongle
with external speakers, but I decided

DESKTOP CASE

ODROID-C1 itself is in the middle of
case. Therefore, I had to add an I/O
expansion panel on the rear side, which
I had missed while designing the case.
Two UART connections and a couple of
USB ports and RJ45 connectors seemed
to be enough, and I made a panel for
these connections, then had to do some
solder work in order to connect the wires
to the ODROID-C1’s I/O. I also had to
add an extension board on top of the C1
in order to accommodate the RS-232
signals for two UARTs for debugging
and GPIO purposes. Meanwhile, the
dual channel power supply arrived and
was able to be mounted inside the case,
which supplies 5V for the ODROID-C1
and 12V for the LCD and display board.

The LCD panel and display board
have their own keypad and IR receivers,
which was another problem since the

keypad needed to be accessed easily and
could not be mounted inside the case.
So, I added more GPIOs for this keypad

Figure 2 - assembled acrylic case

Figure 6 - Fully assembled case with
keyboard, mouse and speakers

Figure 5 - lCd panel mounted inside
front of case

Figure 4 - odroId-C1 mounted inside
acrylic case

Figure 3 - son assembling acrylic case

Figure 7 - Internal speaker mounted on
front of case

Figure 8 - First trial of assembled com-
puter running angry birds

Figure 9 - peripheral attachment area

Figure 10 - extension board

ODROID MAGAZINE 39

on an extension board in order to control
the on-screen display using the WiringPi
library running on the ODROID-C1,
instead of relying on the display board’s
IR receiver.

My computer actually looks like a
transparent, futuristic Macintosh Plus
when the Mini vMac software is run-
ning. I plan to further enhance the
functionality, like supporting an SD card
reader by disguising it as a 3.5” floppy
drive connected to the ODROID-C1’s
socket. The important function for the
3.5” drive is to auto-eject like original
Macintoshes do, so that the SD card can
be ejected when a software command is
sent. The case itself is almost 4kg when
fully assembled, so I’d like to update the
design to be lighter with more air holes,
as well as make it easier to assemble.

For more pictures, visit the original
desktop case post on the ODROID fo-
rums at http://bit.ly/1HFbmAE.

Figure 11 - side view of partially
assembled case

Figure 12 - Closeup of power supply

Figure 13 - rear view

Figure 14 - Front view

Figure 15 - running Mini vMac, a Mac
plus emulator program

DESKTOP CASE

ODROID Talk
Subreddit

 http://www.reddit.com/r/odroid

ODROID
Magazine is

now on
Reddit!

now you can play angry birds on your
own vintage Macintosh plus!

ODROID MAGAZINE 40

http://bit.ly/1HFbmAE
http://www.reddit.com/r/odroid

The heart of the Guzunty is a Xilinx
XC9600XL CPLD. The designer chose
the XC9500XL CPLD series due to its
5V tolerant pins on the CPLD. We can-
not use the XC9500XL CPLD series for
the U3, as it is not 1.8V compatible, so
we need a CPLD that can handle 1.8V
on the U3 input side. Besides that, I
had already set my mind on using the
USD$7 Altera MAXII EPM240 board
that I already had in the drawer. Please
note that the Guzunty Pi is not my cre-
ation, and I only ported the VHDL to
the EPM240 board.

For programming the Altera CPLD,
I used a cheap USD$6 Altera USB Blast-
er clone. Please note that there is also
a red-colored EPM240 board available,
which is not recommended for two rea-
sons:

1. The VCCio1/2 traces are under the
CPLD, making it impossible to
modify the PCB. You have to lift
the 3 x VCCio1 pins in order to

I have an ODROID-U3+ and wanted
be able to connect to the serial con-
sole. The processor on the U3 is a

Exynos 4412, which uses 1.8V for the
I/O lines. The 1.8V I/O lines presented
a challenge, as most of the inexpensive
USB to serial adapters on eBay were
either 5V or 3.3V, and not compatible
with a 1.8V connector.

I looked into a very nice level-con-
verter from Texas Instruments, the
TXB0104, but then I remembered that
I had a cheap Altera EPM240 CPLD
(Complex Programmable Logic Device)
board lying around. Having taken an
online beginners VHDL (VHSIC Hard-
ware Description Language) course this
summer from PyroElectro (http://bit.
ly/1PsRllZ), I thought about trying to
combine the level-shifting, while also
improving my VHDL skills.

As I had just seen the Hardkernel
post about the new SPI (Serial Peripheral
Interface) connector on the U3+ boards,
I might even be able to do some SPI port
expansion. Since there are 192 Macro-
cells in the EPM240 CPLD, it is a very
capable chip: http://bit.ly/1EdwxD4.

Research
I had a look on the Internet for some

interesting projects that I could use as a
base, and found the Guzunty Pi project
at http://bit.ly/1QVEdTN, which was
just what I was looking for. It’s an SPI IO
expansion CPLD for the Raspberry Pi
with a GPL licensed codebase. There is
also a nice set of cores written in VHDL,
available at http://bit.ly/1cJDZ30.

make Bank1 operate at 1.8V, with
a pin spacing of 0.5mm. The red
version has the 3.3V Oscillator on
Bank2, which is why it’s recom-
mended to use Bank1 at 1.8V.

2. It practically lacks every decoupling
capacitor, that the EPM240 design
notes specifies.

Blue CPLD board
I uploaded the schematic for the Blue

Altera EPM240 board to the ODROID-
U3 forums at http://bit.ly/1QVEXIw.
The board comes with the following
connectors:

U1: Altera MAXII EPM-240 CPLD
U2: 3.3V regulator
J1: DC power plug for connecting

5V
J6: Power switch which toggles the

5V to the regulator
P9: 50MHz oscillator, connected to

GCLK0 (pin 12)
J2: Jumper to connect the on-board

LED to CPLD pin 77
JTAG: 10-pin JTAG connector
CLK: 4-pin header for full access to

the 3 remaining global clock pins
P1-P4: Almost all other pins routed

to pin headers.

CPLD dedicated pins
The EPM240 has two I/O banks

making it suitable for a 1.8V side, and
a 3.3V side. Most pins on a CPLD are
user-definable, but there are a few pins
that are fixed, which are detailed in the
list below:

GUzUnTY PI FOR
THE ODROID-U3
USInG A CPLD AS A
PROGRAMMABLE LEVEL SHIFTER
by Carsten Foss

GEZUNTY PI

Figure 1 – epM240 board

GUZUNTY PI

ODROID MAGAZINE 41

http://bit.ly/1PsRllZ
http://bit.ly/1PsRllZ
http://bit.ly/1EdwxD4
http://bit.ly/1QVEdTN
http://bit.ly/1cJDZ30
http://bit.ly/1QVEXIw

EPMs have 4 IoBanks, but there are no
cheap boards available. You can read all
about the Altera MAX II series in the
MAX II Device handbook at http://bit.
ly/1GKJfLn.

Modifying the board
As shown in Figure 3, IoBank1 uses

pin 9, 31 and 45 to supply the IoBank
with the desired voltage, and IoBank2
uses pin 59, 80 and 94. I knew that
my CPLD board had 3.3V connected
to both IoBanks, so I needed to find a
way to separate IoBank2 from the 3.3V
that it was currently connected to. This
meant that I had to cut some PCB tracks
at the relevant positions, and hope that
the board was made as a two layer PCB.
If it was a four layer board the modifi-
cation would not be possible, unless
I wanted to lift the VCCio pins from
the PCB, and solder thin wires to the
0.5mm spaced pins.

I found some pictures of the unpopu-
lated printed circuit board (PCB), and
tried to follow the PCB tracks on the
pictures, to see where I might be able
to cut the tracks for breaking the VC-
Cio2 pins connection to the on-board
3.3V regulator. After spending some
time with the pictures and a multimeter,
I modified the board as shown in Figure

1: VCC (power to the CPLD core)
2: VCCio (power to the I/O banks)
3: GND (ground)
4: Global Clocks (GCLK) (the

EPM240 has 4 of these, two on each
I/O bank)

5: JTAG pins, used for programming
or debugging the CPLD contents

The pinout file for the EPM240 can
be found here at http://bit.ly/1F1ttRk.
The two I/O banks spans the follow-
ing pins: IoBank1 (pin 2..51) and Io-
Bank2 (pin 52..1). Figure 2 shows the
EPM240 pins, with IoBank1 colored
in light blue, and IoBank2 in light grey.
Unfortunately, the different IoBank col-
ors can be hard to distinguish, but that’s
how it is shown in Altera Quartus2.

I have chosen IoBank1 as the 3.3V

side (pin2..51) due to the fact that the
on-board 3.3V oscillator (OSC) is al-
ready connected to GCLK0 (pin12).
This way, I didn’t have to disable the on-
board OSC, and could utilize it later for
PWM modulation or a similar purpose.

Due to the need for a 1.8V side and
a 3.3V side, there are approximately 40
IO pins on each bank. With 40 pins on
the 1.8V side, that means that there are
a lot of unused pins. I just needed 4 for
SPI and 2 for UART, or 4 for UART
if I wanted to connect both UARTs to
the 3.3V side, but that is just the way
that the EPM240 is made. The larger

4 with my X-acto knife.
At first, it didn’t seem to succeed,

when I just measured the resistance be-
tween the C5 pin and the C7 pin. It still
appeared to be connected after I have
cut the PCB tracks at the two indicated
points. I then realized that the VCCio2
pins were connected inside the CPLD,
and were measuring very low ohms, even
when separated from the 3.3V track.
When I measured between C5/C7 and
the 3.3V track still connected to C6, I

could see that the 3.3V connection was
disconnected from the VCCio2 pins.

You don’t have to cut as deep as I did
in the C5 track. I did so because of the
above VCCio2 misunderstanding. Also,
when I cut the track at C5, I scratched
the blue solder mask, and exposed the
ground plane. This resulted in an short
from C5 plus to the ground plane, when
I soldered the wire to C5. Luckily, I
measured C5+ to GND before applying
power, and discovered my mistake be-
fore applying power to the board.

Figure 5 shows the modified PCB,
where I soldered a wire from C5 to C7 to
connect the VCCio2 pins, and soldered
half of a white Dupont wire to C8 . The
white Dupont wire (VCCio2 supply) is
connected to the 1.8V supply (pin 2) on
the U3 IO-Expansion connector.

Next, I soldered a 4-pin single row
header onto the unpopulated CPLD
CLK header. Note the square to the
right, that indicates the GND pin on
the CLK header. The GCLK pin head-
er is connected using the following left
to right pattern: GCLK1, GCLK2,

Figure 2 - dedicated (fixed) pins on
the epM240

Figure 3 - Io bank diagram

Figure 4 - pCb modifications

GUZUNTY PI

ODROID MAGAZINE 42

http://bit.ly/1GKJfLn
http://bit.ly/1GKJfLn
http://bit.ly/1F1ttRk
made.The

of places on the Internet where you can
find installation guides for it. One of
them is the Pyro course that I mentioned
in the beginning of the article.

I am using the 64-bit Linux edition
of the free Quartus2 Web Edition on
my Linux Mint 17 machine, but recom-
mend that most people use the Windows
version, since the Linux version usually
needs some additional libraries which
must be manually built, along with some
Quartus2 files that need to be modified.

The most recent version of Quartus2
that has MAX II support is Quartus2
v.13.0sp1. Do not install a newer ver-
sion, as it will not work properly. To
download it, visit http://bit.ly/1cdWtJg,
which requires registration. Select the
Combined files tab, and download the

Figure 5 - Modified pCb

Figure 6 – U3 Io-expansion connector

Figure 7 - U3 spI connector

GUZUNTY PI

GCLK3, GND.

Power
I used 3 wires for the IO-Expansion:

1: VDD_IO (pin 2) is connected to
the CPLD VCCio2 (white wire on C8)

2: P5V0 (pin 8), is connected to the
CPLD board 5V supply

3: GND (pin 7) is connected to
GND on the CPLD board

SPI
I used all 4 wires from the SPI:

SPI_1.CLK must be connected to
(VHDL – sclk) which is CLK2 on the
CLK header

2: SPI_1.CSN must be connected to
(VHDL – sel) which is pin 76 on the P1
header

3: SPI_1.MOSI must be connected
to (VHDL – mosi) which is pin 75 on
the P1 header

4: SPI_1.MISO must be connected
to (VHDL – miso) which is pin 74 on
the P1 header

I could just as easily have mapped
VHDL – miso to pin 73 on the CPLD
if I felt that it was a better fit. All of the
mapping is done in Quartus2, in either
the Pin Planner (easiest), or the Assign-
ment Editor.

UART
I only used two signals from the

UART header, since I already had GND
via the 5V power connection, leaving
the other signals open:

1: TTA_RXD must be connected to
(VHDL - to_u3_rx), which is pin 100
on the P4 header

2: TTA_TXD must be connected to
(VHDL - from_u3_tx), which is pin 99
on the P4 header

My 3.3V USB to serial adapter used
4 connections:

1: GND from the ODROID
2: 5V from the ODROID
3: USB TX must be connected to

(VHDL - from_usb_tx), which is pin 28
on the P3 header

4: USB RX must be connected to
(VHDL - to_usb_rx), which is pin 29
on the P3 header

It only required two extra VHDL
lines, and four Pin Planner entries to be
able to connect the other U3 UART on
the Expansion header to the CPLD and
another USB-Serial adapter, which is the
benefit of using a CPLD.

Installing Quartus2
I am not going to cover installation

and use of Quartus2, since there are a lot

Figure 8 - U3 UarT header

ODROID MAGAZINE 43

http://bit.ly/1cdWtJg
SPI_1.CLK
SPI_1.CSN
SPI_1.MOSI
SPI_1.MISO

4.4GB file. Install Quartus, register at Altera, and get a free
web license file.

Building the design
Download the quartus project file from http://bit.

ly/1H8iGQs, then extract the downloaded project, and start
Quartus2. Select File->Open Project, browse to the extracted
project, and select the gz_16o8i.qpf file. Build the design by
selecting the button marked with the red ring, as shown in
Figure 9, and ignore the warnings.

Next, shut down the ODROID, and disconnect the power.
Connect the Altera USB Blaster 10-pin cable to the CPLD
Board and connect 5V and 1.8V to the CPLD board. I used
+5V and GND from the ODROID board, and connected
them to the P1 header on the CPLD board. Then I connected
the 1.8V from the ODROID to the modification point on the
CPLD board.

Power on the ODROID, connect the programmer to the
PC’s USB port, and start the programming tool by pressing
the button indicated by the green ring in Figure 9. Press the
Hardware setup button, and select the jtag programmer. You
should see something similar to that shown in Figure 10. Press

Figure 9 - Quartus 2

Figure 10 - Quartus programmer

GUZUNTY PI

Start, and program your design file into the CPLD. If it shows
the Green 100% successful, as seen in Figure 10, the CPLD is
now ready for use.

Preparing the software
The Guzunty Pi uses SPI for the communications, and

in order to use fast SPI, we need to load the ODROID-U3
SPI kernel module. I recommend that you use the tool from
the two ODROID web pages at http://bit.ly/1JmO6HH and
http://bit.ly/1RS94lw, as they describe how to load the kernel
module, as well as how to update the U3 software if needed.

Load SPI module
One can load the SPI kernel module manually by typing

the following into a Terminal window:

$ sudo modprobe spi-s3c64xx

However, it would be better for it to be automatically avail-
able on every boot. While logged in as root, edit the file /etc/
modules and add the below lines to the end of the file:

SPI for the Guzunty Pi CPLD

spi-s3c64xx

It’s considered good programming practice not to require
root privileges when accessing SPI devices. To grant access to
other users, create a new spidev system group, then set up the
udev system to give the spidev group read and write (r/w) ac-
cess to the SPI devices:

$ sudo groupadd -f --system spidev

$ sudo usermod -a -G spidev username # replace user-

name with your ODROID username

Next, make a udev rule for spidev, allowing access to mem-
bers of the group spidev. As root, create a new file called /etc/
udev/rules.d/99-spidev.rules, which is shown below:

/etc/udev/rules.d/99-spidev.rules

Allow access for the group members of spidev, in

order to be able to access SPI as a normal user

SUBSYSTEM==”spidev”, MODE=”660”, GROUP=”spidev”

After saving the file and rebooting, members of the spidev
group will have proper access to the spidev subsystem. The SPI
modules may be checked with the following command:

$ lsmod | grep spi

spideV 5641 0

spi_s3c64xx 9849 0

ODROID MAGAZINE 44

http://bit.ly/1H8iGQs
http://bit.ly/1H8iGQs
gz_16o8i.qpf
http://bit.ly/1JmO6HH
http://bit.ly/1RS94lw
rules.d/99-spidev.rules
rules.d/99-spidev.rules

front of it

spi_open(“/dev/spidev1.0”);

// Add the correct odroid SPI

device above

initialized = 1;

}

I changed the SPI speed from 10MHz
to 1MHz, since 10MHz was too fast for
my Saleae Basic logic analyzer:

//#define SPI_MAX_SPEED 10000000

// 10 MHz

#define SPI_MAX_SPEED 1000000 //

1 MHz

You don’t need to change the speed
to 1MHz of you don’t want to check the
signals with a Saleae, or have a faster log-
ic analyzer. I think that the ODROID-
U3 is capable of running 40MHz on the
SPI system, but I have only tested it at
10MHz. If you choose 40Mhz, you will
have to keep all the SPI wires as short
as possible, or you will run into prob-
lems with signal integrity. If you have
problems, try lowering the SPI speed
to 1MHz, and see if that solves it. If it
does, you probably used wires that were
too long.

Next, build and install the Guzunty
SPI library, which will then be ready to
be linked along with our user/CPLD de-
sign program:

$ make

$ sudo make install

Figure 11 - guzunty pi console via UarT

GUZUNTY PI

Then, verify that the group spidev
has proper access to the SPI device:

$ ls /dev/spi* -l

crw-rw---T 1 root spideV 153, 0

Jan 1 2000 /dev/spidev1.0

Guzunty software
The Guzunty software consists of two

sections, each in its own directory:

1: gzlib, which is the Linux library
that interfaces with the SPI subsystem

2: The user program that matches the
CPLD design, which is gz_16o8i in this
case

In order to get the Guzunty soft-
ware running, it’s necessary to install the
Linux packages git and build-essential.
Git is used for cloning the Guzunty soft-
ware repository, and build-essential is
the Linux build system that provides the
C compiler and other build tools:

$ sudo apt-get install git \

 build-essential

Create a Guzunty directory, then
clone the Guzunty repository into the Pi
subdirectory:

$ mkdir Guzunty

$ cd Guzunty

$ git clone https://github.com/\

 Guzunty/Pi.git

It’s necessary to change the following
line in the Guzunty library source file
called gz_spi.c:

$ cd Pi/src/gzlib/src/

Edit the gz_spi.c file, and change the
device named “/dev/spidev0.0” to “/dev/
spidev1.0” and save the file:

void gz_spi_initialize() {

// spi_open(“/dev/spidev0.0”);

// Comment out the

Raspberry Pi line by adding // in

Since our design is based on the Gu-
zunty gz_16o8i design with 16 outputs
and 8 inputs, change directory to Pi/src/
gz_16o8i and build the user program:

$ cd Pi/src/gz_16o8i

$ make

If you get an errors that says “fatal er-
ror: gz_spi.h: No such file or directory”,
you forgot to perform the “sudo make
install” of the gzlib. Otherwise, your
program and CPLD are ready to use.
Start it with the following command.

$./gz_16o8i

Then, test out the UART connection
from the host computer using PuTTY,
which, if successful, should present a
console as shown in Figure 11.

Conclusion
Through the use of Guzunty Pi, I

achieved my goal of creating a cheap, ver-
satile level converter for use with by 3.3V
USB to serial converter. This method
ended up being more complicated than
just using the TI chip, but I also think
that Guzunty for the ODROID-U3 is a
nice addition to a powerful board.

For questions and comments,
please refer to the Guzunty thread on
the ODROID forums at http://bit.
ly/1d5qqM4. I would like to thank fo-
rum members @odroid and @robroy for
helping me out during development.

ODROID MAGAZINE 45

https://github.com/Guzunty/Pi.git
https://github.com/Guzunty/Pi.git
http://bit.ly/1d5qqM4
http://bit.ly/1d5qqM4

Previously, I examined how Android boots up, along
with the various services that are launched during the
boot process. I also explored the contents of the init.rc

which showed the different services that are required to make
Android work.

In this article, I take a look at how to add a custom service
using a web server as an example. This is accomplished in two
steps: adding a native app as part of the init process, then port-
ing a Linux native app to Android.

GoHttp
We will use an open source web server as part of this exer-

cise. The web server is a very basic file serving application and
is not a full fledged web server. The ported application can be
downloaded from from https://github.com/nanikjava/GoHttp
from the master-android-patch branch. The original project
is also available for reference at https://github.com/fekberg/
GoHttp.

AnDROID
DEVELOPMEnT
CREATInG A CUSTOM
wEB SERVER SERVICE
by nanik Tolaram

ANDROID DEVELOPMENT

Figure 1: gohttp inside external/ folder

Build file
Since we want to build the application as part of our An-

droid image, we will need to embed it into the Android source
code. As shown in Figure 1, you need to place it into the
external/ folder.

The first step of porting is to create the Android.mk build
file, which is similar to the Linux Makefile. The Android.mk
file for the GoHttp project used in this example should look
like this:

LOCAL_PATH:= $(call my-dir)

include $(CLEAR_VARS)

LOCAL_SRC_FILES := GoHttp.c

LOCAL_LDLIBS += -lrt -ldl -lpthread -llog

LOCAL_CFLAGS := -DDEBUG_ANDROID

LOCAL_SHARED_LIBRARIES := liblog

LOCAL_MODULE := gohttp

include $(BUILD_EXECUTABLE)

include $(CLEAR_VARS)

LOCAL_MODULE := httpd.conf

LOCAL_MODULE_CLASS := ETC

LOCAL_MODULE_PATH := $(TARGET_OUT)/etc

LOCAL_MODULE_TAGS := optional

LOCAL_SRC_FILES := $(LOCAL_MODULE)

include $(BUILD_PREBUILT)

include $(CLEAR_VARS)

LOCAL_MODULE := mime.types

LOCAL_MODULE_CLASS := ETC

LOCAL_MODULE_PATH := $(TARGET_OUT)/etc

LOCAL_MODULE_TAGS := optional

LOCAL_SRC_FILES := $(LOCAL_MODULE)

include $(BUILD_PREBUILT)

ANDROID DEVELOPMENT

ODROID MAGAZINE 46

init.rc
https://github.com/nanikjava/GoHttp%20
https://github.com/fekberg/GoHttp
https://github.com/fekberg/GoHttp
Android.mk
Android.mk
httpd.conf
mime.types

The Android.mk is similar to other projects inside the exter-
nal/ directory. Notice that there are 2 files being copied as part
of the build process:

•	httpd.conf → contains the configuration for the webserver
•	mime.types → contains the file types that are allowable by

the webserver app

The webserver is configured to listen at port 8888, which is
declared inside the httpd.conf file.

The other item that need to be modified inside the app is
the logging, since it make sense to make sure that the app sends
any logging information to the logcat service. Here is the new
code that is added inside GoHttp.c that will do the logging:

#ifdef DEBUG_ANDROID

#include <android/log.h>

#define LOG_TAG “gohttp”

#define PRINT(...) __android_log_print(ANDROID_LOG_

INFO, LOG_TAG, __VA_ARGS__)

#else

#define PRINT(...) fprintf(stdout, “%s\n”, __VA_

ARGS__)

#endif

Once you have successfully compiled the ODROID-U3
Android source code, you will see a gohttp executable file in-
side the out/target/product/odroidu/system/bin directory, as
shown in Figure 2.

Initialization
The last step of the porting is to run the gohttp application

as part of Android startup process. In order to do that, we
will need to modify the file called init.odroidu.rc inside device/
hardkernel/odroidu/conf directory, as shown in Figure 3.

We also need to add a service to start gohttp:

service gohttp /system/bin/gohttp

 class core

Under the “on post-fs-data” section, you need to add the
statement indicated in Figure 4. This statement is used to cre-
ate the directory where you will put the .html files that you
want to make available for the user to access.

Once you boot up your ODROID-U3, you can then copy
an index.html file to /data/www folder and access it via the
server by using any browser to navigate to the local site at
http://<YOUR_ODROID_U3_IP>:8888/index.html.

If you’d like to learn more about Android programming,
contact Nanik directly, or follow his latest posts, please visit his
website at http://naniktolaram.com.

ANDROID DEVELOPMENT

Figure 2: gohttp executable

Figure 3: init file for odroId-U3

Figure 4: mkdir for creating directory

With nanik’s help, you’re now fully equipped to create your
own custom android service

ODROID MAGAZINE 47

Android.mk
httpd.conf
mime.types
httpd.conf
init.odroidu.rc
index.html
index.html
http://naniktolaram.com

Are you an aspiring rock star?
UltraStar Deluxe is a free open-
source karaoke game, similar to

the Sony PlayStation game called Sing-
Star, that allows you to create a portable
karaoke machine. The source code is
published at http://bit.ly/1e9amZW,
which can be easily compiled for the
ODROID, turning it into the ultimate
party machine! I use two wireless Sing-
Star microphones which work great.

Compile ffmpeg
Ultrastardx has customizations for

different versions of ffmpeg in order to
play media. However, I found during

ULTRASTAR
DELUXE
KARAOKE
BECOME An ODROID
ROCK STAR
by @v0ltumna

KARAOKE

my testing that not all existing releases
of ffmpeg worked properly. I tried dif-
ferent versions and got different errors
when I compiled ultrastardx, but had
the most success with ffmpeg version
2.1.5. Before you install it, it is a good
idea to remove your old version and also
some dev packages, otherwise Ultrastar
might find false version information
during compilation.

$ sudo apt-get remove ffmpeg

libavutil-dev \

 libswscale-dev libavcodec-dev

libavdevice-dev

Then, install the custom version:

$ wget http://www.ffmpeg.org/re-

leases/ffmpeg-2.1.5.tar.bz2

$ tar xf ffmpeg-2.1.5.tar.bz2

$ cd ffmpeg-2.1.5

$ export CFLAGS=”-O3 -D__ARM_

NEON__ -fPIC \

 -march=armv7-a -mfloat-abi=hard

-mfpu=neon \

 -ftree-vectorize -mvectorize-

with-neon-quad \

 -mcpu=cortex-a9 -mtune=cortex-

a9”

$ export CXXFLAGS=”-O3 -D__ARM_

NEON__ -fPIC \

 -march=armv7-a -mfloat-abi=hard

\

 -mfpu=neon -ftree-vectorize

-mvectorize-with-neon-quad \

 -mcpu=cortex-a9 -mtune=cortex-

a9”

$./configure --enable-libvorbis

--enable-pthreads \

 --enable-libmp3lame --enable-

nonfree \

 --enable-gpl --enable-libxvid

--enable-libx264 \

 --enable-shared --prefix=/usr

$ make -j5

$ make install

On Debian or Ubuntu, you may
want to run checkinstall -D in order to
create an installable .deb file.

ODROID MAGAZINE 48

http://bit.ly/1e9amZW
http://www.ffmpeg.org/releases/ffmpeg-2.1.5.tar.bz2
http://www.ffmpeg.org/releases/ffmpeg-2.1.5.tar.bz2
ffmpeg-2.1.5.tar.bz

KARAOKEKARAOKE

Compile ultrastardx
Ultrastardx is written in Object Pas-

cal, so you will need the Free Pascal
Compiler and some dependency units:

$ apt-get install fp-compiler fp-

units-misc fp-units-base \

 fp-units-math fp-units-fv fp-

units-fcl

Then, download the latest source of
ultrastardx and configure it:

$ svn checkout \

 svn://svn.code.sf.net/p/ultra-

stardx/svn/trunk \

 ultrastardx-svn

$ cd ultrastar-svn

$./configure

Because of a compiler error, the com-
pilation won’t work until the optimiza-
tion “-O2” is removed on the PFLAGS_
RELEASE_DEFAULT option in src/
Makefile in line 102. To get it working
with the OpenGL wrapper, you also
need to remove or comment lines 4323
to 4330 in the file src/lib/JEDI-SDL/
OpenGL/Pas/glext.pas:

// @glCopyTexSubImage3D := SDL_

GL_GetProcAddress(‘glCopyTexSubI

mage3D’);

// if not

Assigned(glCopyTexSubImage3D)

then Exit;

// @glDrawRangeElements := SDL_

GL_GetProcAddress(‘glDrawRangeEl

ements’);

// if not

Assigned(glDrawRangeElements)

then Exit;

// @glTexImage3D := SDL_GL_

GetProcAddress(‘glTexImage3D’);

// if not

Assigned(glTexImage3D) then Exit;

// @glTexSubImage3D := SDL_

GL_GetProcAddress(‘glTexSubImage

3D’);

// if not

Assigned(glTexSubImage3D) then

Exit;

Then, compile the program:

$ make

$ make install

As before, you may want to run
checkinstall -D in order to create an
installable .deb file if using Debian or
Ubuntu.

If you receive errors about the ver-
sions of libavutil, export those versions
using environment variables and config-
ure again. Make sure to remove the op-
timization in PFLAGS as noted above.

$ export libavutil_VER-

SION=52.48.101

$ export libavcodec_VER-

SION=55.39.101

$ export libavformat_VER-

SION=55.19.104

$ export libavdevice_VER-

SION=55.5.100

$ export libavfilter_VER-

SION=3.90.100

$ export libswscale_VER-

SION=2.5.101

$ export libswresample_VER-

SION=0.17.104

$./configure

You may now start ultrastardx, but it
will be a bit slow, because OpenGL has
to be emulated by software. This may be
fixed by adding an EGL wrapper.

EGL configuration
Starting ultrastardx with the wrapper

often gives me an error about creating
the EGL display, but it sometimes works
without any change in configuration.
Type the following commands to down-
load and compile the wrapper:

$ git clone git://github.com/lu-

nixbochs/glshim

$ cd glshim

$ cmake .

$ make GL

$ git clone git://github.com/lu-

nixbochs/glues

$ cd glues

$ cmake .

$ make

Copy the dynamic libraries to /usr/
local/lib. Usually, you just have to ex-
port the LD_LIBRARY_PATH to this
folder and start the program. However,
this does not always work, so here is my
start script which sometimes requires
between 5 and 10 attempts. When it
works properly, it provides a very stable
and fast game experience:

#!/bin/bash

export LD_LIBRARY_PATH=/usr/lo-

cal/lib

while true

 do

 ultrastardx

 if [“$?” -ne 0]; then

 break

 fi

done

Game configuration
Here is the graphics part of my con-

figuration file config.ini that seems to
work the best:

[Graphics]

Screens=1

FullScreen=On

Visualization=Off

Resolution=640x480

Depth=16 bit

TextureSize=256

SingWindow=Big

Oscilloscope=Off

Spectrum=Off

Spectrograph=Off

MovieSize=Full [BG+Vid]

VideoPreview=On

VideoEnabled=On

Compilation notes
If the compilation does not complete

successfully, you may have to install
some development packages:

ODROID MAGAZINE 49

svn.code.sf.net/p/ultrastardx/svn/trunk
svn.code.sf.net/p/ultrastardx/svn/trunk
glext.pas
github.com/lunixbochs/glshim
github.com/lunixbochs/glshim
github.com/lunixbochs/glues
github.com/lunixbochs/glues
config.ini

$ apt-get install \

 libsqlite3-dev \

 portaudio19-dev \

 libsdl-image1.2-dev

After compiling and installing, start
Ultrastar with the following script:

#!/bin/bash

export LD_LIBRARY_PATH=/usr/lo-

cal/lib

ultrastardx

If you have questions, comments, or
suggestions, please refer to the original
post at http://bit.ly/1bYvbp7.

KARAOKE ANDROID GAMING

TEKKEn 6
THE ULTIMATE
FIGHTInG GAME
by Justin lee

Tekken 6 is a very popular martial arts fighting game that runs great on any
ODROID. You can check out Hardkernel’s Tekken 6 PPSSPP gameplay
video at http://bit.ly/1f1BqdX. To play Tekken 6 on your ODROID,

first download and install the latest Android image for your device, then follow
these steps:

1. Change HDMI resolution to 1280x720 HD using the ODROID-Utility
2. Change the CPU Governor to Performance using the ODROID-Utility
3. Install the PPSSPP application, one of the best PSP emulators available
4. Configure the PPSSPP Settings:

Graphics menu
Rendering Mode: Non-buffered rendering (Speedhack)
Simulate block transfer (unfinished): Check
Framerate control
Frameskipping: 2
Auto frameskip: Check
Prevent FPS from exceeding 60: Check
Alternative speed: 0

Features
Postprocessing shader: Off
Strech to display: uncheck
Small display: uncheck
Immersive mode: Check

Performance
Rendering resolution: 1xPSP
Display resolution (HW scaler): 2xPSP
Mipmapping: Check
Hardware transform: Check
Software skinning: Check
Vertex cache: Check
Lazy texture caching: Check
Retain changed textrue: Check
Disable slower effects: Check

Hack settings
Disable alpha test: Check
Texture coord speedhack: Check
Show FPC count: Both

Controls menu
On-screen touch controls: Uncheck

System menu
Multithreaded: Check

Tekken 6 combines fast action with
awesome martial arts moves

ODROID MAGAZINE 50

http://bit.ly/1bYvbp7
http://bit.ly/1f1BqdX

Please tell us a little about yourself.
I live in central Oklahoma, and work

in the technology field with people from
all over the world. We communicate
in chat rooms, virtual rooms, and voice
conferences. I have 3 cats who think
that keyboards are meant to be walked
on, and that warm ODROIDs are to
be slept on, as well as a significant oth-
er. We live in a custom-designed home
with unique features such as a commer-
cial metal roof, geothermal heating and
cooling, and a design from my architect
father resembling something that Frank
Lloyd Wright would have done. It has
lots of hidden spaces, ramps, and fir-
downs for cats to climb.

How did you get started with computers?
I bought my first computer at age

14 with money saved from hauling hay
in the fields. It was a TRS-80 Model
III. My mother told my grandmother
that her son had blown $1400 that he
should have saved for college on a calcu-
lator. Within a few years, I had tricked

MEET An ODROIDIAn
MARKHAM THOMAS (@MLInUXGUY)
A HIGHLY EXPERIEnCED AnD
wELL-TRAVELED LInUX EXPERT
edited by rob roy

MEET AN ODROIDIAN

out that TRS-80 with more
RAM (64k) and dual-disk
drives, and hacked it to over-
clock to 5Mhz with a switch
on the side. I still recall
the first prompt I got upon
powering it up: “Cass?” I
had no idea what that meant
(cassette tape loader), but by
the time I was in college, I
was writing Z80 assembler
code for it. Magazines at the
time provided example code
and circuits, which is where
you got the specs on how
to hack the systems, since
there was no Internet.

That Z80 assembler skill got me a
job during University where we built,
and I coded, giant hydraulic test stands
for aerospace and heavy industry. The
hex codes were entered by hand into EE-
PROMs that were 2KB in size. I can still
recall the hex codes for many Z80 in-
structions after typing so many of them
into the programmer. Later, we created
hardware to link the CP/M build system
to the EEPROM programmer and did
away with hand entry.

After college, I went to work for a
major technology company and contin-
ued working with the latest computer
systems, but it was rare to re-experience
the thrill of exploring those early sys-
tems, where you could trace circuits and
make them do things through hacking
that were never intended.

What drew you to the ODROID platform?
For years, I built a new home PC

every 18 months, but by the time Win-

dows 7 came about, I had lost interest
in upgrading and tricking out PCs, and
started looking for smaller systems that I
could run Linux on, especially ones that
didn’t over-heat my office. I had been
investigating ARM processors with the
idea of building a Linux-capable board
when the Raspberry PI came out. I im-
mediately got four of them and started
pushing them to their limits. I hit those
limits pretty quickly, so while doing
projects with the Raspberry Pi, I kept
looking for a better board. Once I dis-
covered the ODROID-X, I immediately
got one and started a deep dive into its
abilities.

What make the ODROID comput-
ers so much more interesting to me than
competing boards is the dynamic com-
munity and support. The Raspberry Pi
community is large, but they sometimes
lack the fast dynamic responses you get
with the smaller ODROID community.
It was fascinating to see the capabilities
of the Odroid-X increase after release,
and captured again some of that thrill

From coding to poking black box issues with sticks, you
can count on Markham to tackle all sorts of problems!

an odroId-C1 monitoring geothermal
temperatures in Markham’s basement

ODROID MAGAZINE 51

of participating in a revolution. This is
a revolution, just like the PC revolution
decades ago.

Which ODROID is your favorite?
I would have to say the ODROID-

C1 is my favorite, I have five of them,
and only one of each of the other
ODROIDs. I like it because of the
vast amount of code that can be easily
adopted from the Raspberry Pi world.
Its CPU is based on a smaller geometry
than many of its competitors, giving me
a fanless low-power fast Linux box that
is cheap enough that I can send it up on
a kite to a thousand feet, or stick it up
on the roof as a weather station, and not
care if it fails in a few years.

Describe your ODROID setup and how
you use it.

It will be hard to pick just one C1
project to discuss. My home office is
lit with blinking lights from all of the
ODROIDs and other boards. I have a
Linux development board where I hack
the kernel and its drivers, and another
one that is dedicated to testing various
expansion boards.

I also have one in the basement that
measures the Geothermal loop tempera-
tures, and one on the roof with an Ar-
duino piggy-backed on it, which reads
weather station data. Probably the most

interesting ODROID is the device that
is measuring the Geothermal data. I
monitor both the loop inlet and outlet
temperatures, outside temperature, solar
brightness and ultraviolet (UV) levels,
and build graphs from that data to help
me interpret the efficiency of my ground
loop as environmental conditions vary.

Most of my ODROIDs are headless
and run Ubuntu. I have the develop-
ment one on a monitor so that I can
reach it after I destroy the networking
or break the kernel. One Raspberry Pi
is dedicated to running a console UART
serial port link under the screen com-
mand so that I can SSH into the Pi and
see what I did that killed the ODROID-
C1 kernel.

I have another C1 that replaced a Pi
that was as a FM radio recorder. That
box controls a low-cost FM tuner board
via SPI, and feeds the audio into a USB
sound card in order to record various
public radio programs to MP3 files. I
then load them into a player to listen to
while I run. I could just download the
MP3 from them, but it’s saved automati-
cally to my network share. The C1 has
more than enough performance to re-
cord it at higher bit-rates.

You are very generous on the ODROID fo-
rums with sharing your knowledge of hard-
ware, electrical engineering and Linux

programming. How
did you become so
proficient?

I’ve been do-
ing this for a long
time, but that alone
doesn’t make me
proficient or neces-
sarily good at it. I
think what it takes
is a love of tearing
apart things to see
what makes them
tick. Although I
majored in Elec-
tronics in college,
I never really used

logipi Fpga board connected to an odroId-C1, used for
learning Fpga programming

it. Instead, I mostly spent my time on
the software side, debugging black box
problems.

For this computer revolution, I want
to dive deeper into the technology, so I
usually pick some feature that I’m inter-
ested in, such as network performance,
and start tearing apart how it works and
how I could improve it. I then start test-
ing changes.

A long time ago, I wrote SVGA driv-
ers for DOS in assembly language, where
I had to count each instruction cycle and
optimize it. That experience has been
invaluable for me when I’m improv-
ing code performance. There’s nothing
quite like the feedback of instantly see-
ing your optimizations improve a line-
draw routine on the screen.

My engineering background is
now playing a bigger part because, af-
ter spending years analyzing black box
problems on Linux and Unix (usually
high level code or performance issues),
I’ve started working with FPGAs, and
now finally have the complete picture of
how all the hardware components inter-
act to make a system.

What hobbies and interests do you have
apart from computers?

I spent years as a runner, but have cut
back in order to play tennis, a sport that
means playing in extreme conditions in
Oklahoma. You rarely see professionals
on TV chasing their own ball across the
court like we do here.

I have hiked and climbed most of
the bigger mountains in the southwest
United States. I like to snow ski, and
have a 18 foot catamaran that I need to
refurbish before taking out again. When
I hike, I always have camera gear with
me that weighs more than my backpack,
but now I’m mostly doing aerial photog-
raphy from either a kite or one of my
drones.

One project that I still have on my
to-do list is sending an ODROID up
with the kite, and coding some image
stabilization routines for a 9 axis mod-

MEET AN ODROIDIAN

ODROID MAGAZINE 52

Markham enjoying a long hike in beautiful Yellowstone park

ule. Currently, I just have it shoot pic-
tures every 30 seconds and pick out the
best ones.

I am a member of the Planetary So-
ciety, and have helped to fund many of
their projects, with their Light-Sail being
one of the latest. I tend to follow devel-
opments in areas like CubeSat and other
projects that bring space access into the
realm of the maker community.

Are you involved with any other computer
projects unrelated to the ODROID?

I have been working with multiple
FPGA boards including ones with Linux
on-board, such as my Parallella board.
However, I don’t have any particular
project planned with them yet beyond
just learning digital circuits.

I have all the parts in my basement
workshop to make nine Infinite Noise
TRNG boards. I’ll do some tests once
I get one built in order to compare it to
the LSFR random number generator on
the ODROID-C1.

I have a MakerBot 2 that I have
hacked with an aluminum heated
build plate and aluminum arms, side
covers and top. I use it to print cases
for my various ARM boards, as well as
support structures for various projects
such as a 3-axis stabilized camera plat-
form for the kite.

I also have been making home-made
PCB boards using my LaserJet and a
laminator. I have a concentrator board

for cleaning up the
wiring in my roof-
top weather station
that I’m laying out,
and will then etch
to upgrade that.

The next big
project will be tak-
ing my 25HP diesel
tractor and replac-
ing its gauges with
t r an s - reflec t i ve
LCD panels driv-
en by an Arduino.
My nephew wants

to turbo-charge it so it will need addi-
tional sensors.

What type of hardware innovations would
you like to see for future Hardkernel boards?

The next big jump in ARM develop-
ment boards that I’m anxiously await-
ing is the arrival of the 64-bit boards.
I would love for Hardkernel to release
one, but until that happens, there are
features missing now that would be use-
ful.

The inclusion of a 1GB network in-
terface in the C1 was a nice boost, how-
ever, the addition of a high-speed port
such as SATA or USB 3.1 would allow
more projects. One innovative feature
found on the Beaglebone is their Pro-
gramming Real-Time Unit (PRU), and
something similar for a Hardkernel
board might be an Arduino chip or the
traces to add one yourself.

The expansion market and open plat-
form architecture was one of the things
that drove the PC revolution, so having
the ODROID-C1 around with its Rasp-
berry Pi-compatible expansion header
immediately improves the value of the
Hardkernel board. I would like to see
future boards have a similar header, even
if it is only the pre-B+ header.

A high speed expansion interface
would also be nice, but from a cost per-
spective, perhaps the new USB 3.1 spec-
ification would give enough throughput
and support for fast peripherals. That

would be an ideal addition to new boards
in the Hardkernel lineup.

What advice do you have for someone
wanting to learn more about program-
ming?

There are many resources out on
the Internet freely available for anyone
who wants to learn more about pro-
gramming. Don’t let your unfamiliar-
ity with coding or a particular language
hold you back. Pick a project, choose
your language, and start searching the
Internet for a bit of skeleton code to
get you started. Once you have the
simple outline code, start fleshing it out
by constantly referring to examples. I
have a 4K monitor, and often have 10
or more browser windows open for ref-
erence when coding.

I recommend picking a favorite
open-source project and adding a feature
to it, which you may be able to get ac-
cepted upstream in the project. GitHub
is a great resource for finding such proj-
ects, and you can either fork it or just
contribute features.

The tricky thing about just knowing
how to program without understand-
ing how microprocessors work is that
you can end up writing inefficient code.
Take some time out to profile your ap-
plication, and include mixed source and
assembler when you profile it, so that
you can see how your code gets imple-
mented by the compiler.

If you really want a deep understand-
ing of how computer hardware works,
like bit tests, bit shifts, and addition, the
best approach would be to learn bool-
ean logic and take a few online FPGA
courses. Then, dig into some of the code
on http://opencores.org to see how com-
puter circuits really work.

MEET AN ODROIDIAN

ODROID MAGAZINE 53

http://opencores.org

