
• An ODROID-W in a Gameboy Advance SP Case

• Build a wood game cabinet for the ODROID-C1+
and have the perfect arcade experience at home

ODROID
Magazine

ODROID
Magazine

Augmented
The future steps out:

Reality
Augmented
The future steps out:

Reality

• Learn how to use your
oCAM on amazing projects

X86 CPU instuctions • Wireless network monitoring • Multiscope

Year Three
Issue #28
Apr 2016

What we stand for.
We strive to symbolize the edge of technology,
future, youth, humanity, and engineering.

Our philosophy is based on Developers.
And our efforts to keep close relationships with
developers around the world.

For that, you can always count on having the quality
and sophistication that is the hallmark of our products.

Simple, modern and distinctive.
So you can have the best to accomplish
everything you can dream of.

We are now shipping the ODROID-U3
device to EU countries! Come and visit
our online store to shop!

Address: Max-Pollin-Straße 1
85104 Pförring Germany

Telephone & Fax
phone: +49 (0) 8403 / 920-920
email: service@pollin.de

Our ODROID products can be found at
http://bit.ly/1tXPXwe

http://hardkernel.com
mailto:service@pollin.de
http://bit.ly/1tXPXwe
http://pollin.de

EDITORIAL

ODROID Magazine, published monthly at http://magazine.odroid.com, is your source for all things ODROIDian.
Hard Kernel, Ltd. • 704 Anyang K-Center, Gwanyang, Dongan, Anyang, Gyeonggi, South Korea, 431-815
Hardkernel manufactures the ODROID family of quad-core development boards and the world’s first ARM big.LITTLE single board computer.
For information on submitting articles, contact odroidmagazine@gmail.com, or visit http://bit.ly/1ypImXs.
You can join the growing ODROID community with members from over 135 countries at http://forum.odroid.com.
Explore the new technologies offered by Hardkernel at http://www.hardkernel.com.

OpenCV is a popular software application that can be used
in cooperation with a digital camera in order to analyze
visual input and make decisions based on what the com-

puter interprets from the video image. Hardkernel recently
released the oCAM module, which is an inexpensive way to

create a visual processing system
that responds to its environment.
This month, DongHyun Yoo demon-
strates a simple OpenCV applica-

tion that can be used for object tracking
with an ODROID-XU4.

Several forum users recently designed retro
gaming consoles built around ODROIDs in or-

der to recreate their first gaming experiences,
and have shared the designs with the community. We also pres-

ent some great games, including Awkaster, a terminal-based 3D first-
person shooter, Cut the Rope 2, where you solve puzzles in order to feed candy to a cute
monster, Re-Volt, a fun racing game, and XMage, a client/server package for Magic: The
Gathering. Venkat continues his technical series with a multiscope project, and Adrian
shows us how to perform network penetration testing using Kismet.

http://ameridroid.com
http://magazine.odroid.com
big.LITTLE
mailto:odroidmagazine@gmail.com
http://bit.ly/1ypImXs
http://forum.odroid.com
http://www.hardkernel.com

Manuel Adamuz, Spanish Editor
I am 31 years old and live in Seville, Spain, and was born in Granada. I am married to a wonderful woman and have
a child. A few years ago I worked as a computer technician and programmer, but my current job is related to quality
management and information technology: ISO 9001, ISO 27001, and ISO 20000. I am passionate about computer
science, especially microcomputers such as the ODROID and Raspberry Pi. I love experimenting with these com-

puters. My wife says I’m crazy because I just think of ODROIDs! My other great hobby is mountain biking, and I
occasionally participate in semi-professional competitions.

Andrew Ruggeri, Assistant Editor
I am a Biomedical Systems engineer located in New England currently working in the Aerospace industry. An 8-bit
68HC11 microcontroller and assembly code are what got me interested in embedded systems. Nowadays, most proj-
ects I do are in C and C++, or high-level languages such as C# and Java. For many projects, I use ODROID boards,
but I still try to use 8bit controllers whenever I can (I’m an ATMEL fan). Apart from electronics, I’m an analog
analogue photography and film development geek who enjoys trying to speak foreign languages.

Venkat Bommakanti, Assistant Editor
I’m a computer enthusiast from the San Francisco Bay Area in California. I try to incorporate many of my interests
into single board computer projects, such as hardware tinkering, metal and woodworking, reusing salvaged materials,
software development, and creating audiophile music recordings. I enjoy learning something new all the time, and
try to share my joy and enthusiasm with the community.

Josh Sherman, Assistant Editor
I’m from the New York area, and volunteer my time as a writer and editor for ODROID Magazine. I tinker with
computers of all shapes and sizes: tearing apart tablets, turning Raspberry Pis into PlayStations, and experimenting
with ODROIDs and other SoCs. I love getting into the nitty gritty in order to learn more, and enjoy teaching oth-
ers by writing stories and guides about Linux, ARM, and other fun experimental projects.

Nicole Scott, Art Editor
Nicole is a Digital Strategist and Transmedia Producer specializing in online optimization and inbound marketing
strategies, social media management, and media production for print, web, video, and film. Managing multiple ac-
counts with agencies and filmmakers, from web design and programming, Analytics and Adwords, to video editing
and DVD authoring, Nicole helps clients with the all aspects of online visibility. Nicole owns anODROID-U2,
and a number of ODROID-U3’s and looks forward to using the latest technologies for both personal and business

endeavors. Nicole’s web site can be found at http://www.nicolecscott.com.

James LeFevour, Art Editor
I’m a Digital Media Specialist who is also enjoying freelance work in social network marketing and website administra-
tion. The more I learn about ODROID capabilities, the more excited I am to try new things I’m learning about. Being
a transplant to San Diego from the Midwest, I am still quite enamored with many aspects that I think most West Coast
people take for granted. I live with my lovely wife and our adorable pet rabbit; the latter keeps my books and computer

equipment in constant peril, the former consoles me when said peril manifests.

Bruno Doiche, Senior Art Editor
What does our goofy dude is doing lately? Organizing all his collected music libraries that he got over the last 20 years.

We think it is mostly an exercise in dubious taste, specially when we see Bruno going from Death metal to Depeche Mode for
babies. But what we can do, right? At least he listen using headphones most of the time!

Besides this task, he still is a sucker against David, that now trounces him on card games using his own ODROID pow-
ered XMAGE server. Less users at the same server means that Bruno now loses his games faster than ever.

Tough life.

OUR AMAZING ODROIDIAN STAFF:

Rob Roy, Chief Editor
I’m a computer programmer in San Francisco, CA, designing and building web applications for local clients on my
network cluster of ODROIDs. My primary languages are jQuery, Angular JS and HTML5/CSS3. I also develop pre-
built operating systems, custom kernels and optimized applications for the ODROID platform based on Hardkernel’s
official releases, for which I have won several Monthly Forum Awards. I use my ODROIDs for a variety of purposes,

including media center, web server, application development, workstation, and gaming console. You can check out my
100GB collection of ODROID software, prebuilt kernels and OS images at http://bit.ly/1fsaXQs.

http://www.nicolecscott.com
years.We
years.We
http://bit.ly/1fsaXQs

INDEX

objecT TrAckIng - 22

UnIcorn - 15

AwkAsTer - 15

xmAge - 20

mUlTIscope - 18

cUT THe rope 2 - 26

meeT An odroIdIAn - 29

kIsmeT - 27

revolT - 24

AndroId developmenT - 11

gAmeboY AdvAnce - 16

gAme cAbIneT - 6

Display unit
Choose the 24 inch

16:10 ratio LCD panel
for better gaming expe-
rience. Since there are
many retro games that
run in 4:3 ratio, a 16:10
screen is better than
16:9 for a classic ar-
cade game display ratio.
The native resolution is
1920x1200 WUXGA.
The LCD part number
is LTM240CL01. which
is made by Samsung. A
display frame bezel was
made with wood pieces
to give a nice vintage
style. The console looks
like a 1980s-era picture
frame.

WOODEn
GAME CAbInET
FOR RETRO FAnS
edited by justin lee

GAME CABINET

being able to emulate games that are either landscape or portrait,
one thing that you won’t be able to do is have less than the most
fun out of it. guaranteed.

S cott Shin, a Korean Maker, built an
environmental friendly wooden game
console using an ODROID-C1+. The

most significant advantage is that the console
supports portrait mode as well as landscape
mode for a much better gaming experience.
Let’s see how he made this great console using
simple design elements.

Build the main frame
The main frame was designed with Google

SketchUp in order to make wooden blocks
for CNC machining. All the material is birch
plywood with a thickness of 18mm. The
design layout files are available in his Github at http://bit.
ly/1XDGtBp.

wood parts by cnc machining

Assemble the wood parts Assemble main frame with the base stand

ODROID MAGAZINE 6

http://bit.ly/1XDGtBp
http://bit.ly/1XDGtBp

GAME CABINET

The rear side frame of the display unit was made with
0.8mm thickness of steel plate in order to make the display
frame more sturdy. There are a few 90-degree bends and screw
holes for mounting the ODROID board, as well as an HDMI-
to-LVDS video signal conversion board. The power for the
ODROID shares 5V rail in the conversion board.

design layout files mount the odroId-c1+

mount and connect the boards with wires and switches

ODROID MAGAZINE 7

Assemble the lvds cable

mount the display unit on the main frame

The pivot function works great

Assemble the steel plate to the bezel frame with screws

Assemble a display mounting part which supports the pivot fea-
ture on the steel frame

Attach the display unit

GAME CABINET

ODROID MAGAZINE 8

The plate is prepared for 6 big buttons and one joystick. other
small buttons will be mapped to the Android key maps for back,
menu, select and more

The Arduino handles the key input events and sends the packet
to the odroId board via Usb HId interface joystick and button mapping

mount the joystick parts to the wodden frame

The console is almost done!

Joystick block

GAME CABINET

Due to the limited number of IO ports on the Arduino, a
matrix interfacing needs to be implemented. 10Kohm resistors
and 1N4181 switching diodes are used to create the matrix.

ODROID MAGAZINE 9

GAME CABINET

The Arduino sketch source code for this project is available
at http://bit.ly/1RtSRzp. You can also find further informa-
tion about the joystick and buttons schematics at http://bit.
ly/1Rs4qgs (Korean). There is a very nice guide to building a
two-player system as well.

Gameplay
Boot the Android OS on ODROID-C1+ and configure the

screen orientation option with the ODROID-Utility app.

As shown in the
images, MAME
emulates a great fly
and shoot game in
portrait mode, and
3:4 ratio is activated
by the conversion
board automatically.
The emulator used is
MAME4droid ver-
sion 0.1398u1, avail-
able for free from the
Google Play store.
We hope to see a
two-player platform

using the much more
powerful ODROID-C2 in place of the original ODROID-C1+.

customized launcher home screen

A classic dos emulator runs the famous Tetris game in land-
scape mode

Arcade game on portrait mode

most native Android games are also working smoothly

ODROID MAGAZINE 10

http://bit.ly/1RtSRzp
http://bit.ly/1Rs4qgs
http://bit.ly/1Rs4qgs

ANDROID DEVELOPMENT

AnDROID
DEvELOpMEnT
buILD YOuR OWn AnDROID SDK
by nanik Tolaram

The fun thing about Android is the ability for anyone to
add whatever they want and experiment with different
things. There are plenty of flavours of Android for dif-

ferent platforms, and each one is unique on its own and offers
something that the others don’t. For example, Google offers
Android pre-installed on your devices with Google Apps such
as YouTube and Google+. You can also provide your own fla-
vor of Android that are pre-bundled with your SDK for your
users to develop with.

In this article, we are going to take a look at how to add a
new service inside Android, and give users the ability to access
the service from their application. I will also teach you how to
add new functionality into an existing Android SDK. In this
example, we are going to use Android Lollipop, although dif-
ferent versions of Android use the same process.

System Service
At some point during Android development, you will come

across using services that are exposed via the SDK, such as Lo-
cationManager (GPS), SensorManager and many more. We
are going to create our own service called SampleService. The
service will only provide a single method returning the string
“ValueFromServer” to the client:

package com.android.server;

import android.content.Context;

import com.android.internal.os.ISampleService;

public final class SampleService extends ISampleSer-

vice.Stub {

 private static final String TAG = “SampleService”;

 private final Context mContext;

 public SampleService(final Context context) {

 mContext = context;

 }

 public String getHello(){

 return “ValueFromServer”;

 }

}

The class will be created inside the frameworks/base/ser-
vices/core/java/com/android/server directory. Notice that it
extends ISampleService.Stub, but the question is: where does
this class reside? It will be generated by the build process based
on the interface that we are going to define inside the file called
ISampleService.aidl, as shown below. The .aidl must reside
inside frameworks/base/core/java/com/android/internal/os
directory.

package com.android.internal.os;

interface ISampleService {

 String getHello();

}

The .aidl file will be used by the build process to generate
all the relevant files needed for the framework to expose it as a
remote service allowing external applications to access it, both

Tailoring your tools is the first and best step to make all Android
experiments of your choice sucessful.

ODROID MAGAZINE 11

com.android.server
android.content.Context
com.android.internal.os.ISampleService
ISampleService.Stub
ISampleService.Stub
ISampleService.Stub
ISampleService.aidl
com.android.internal.os

inside and outside the framework.

Android.mk
For the .aidl file to be processed by the build system, we

need to explicitly specify it in the Android.mk makefile inside
the framework/base directory. Look for the LOCAL_SRC_
FILES declaration inside the file, then add the line shown in
Figure 1. Make sure that there are no spaces after the ‘\’ char-
acter, as this will crash the build.

System Manager
The next step is to create a manager class. This class will

be the main consumer of our service, and also will be the class
that every user of our service will have access to. In order for
the manager to be made available, there are few steps that need
to be done:

package android.os;

import com.android.internal.os.ISampleService;

public class SampleManager {

 private static final String TAG = “SampleManager”;

 private final ISampleService mService;

 /** {@hide} */

 public SampleManager(ISampleService service) {

mService = service; }

 public String getHello() {

 String returnValue = “NOTHING”;

 try {

 returnValue = mService.getHello();

 }

 catch (RemoteException e) {

 e.printStackTrace();

 }

 return returnValue;

 }

}

This manager class will be the entrance point to our service,
and like any other manager in Android, the way to obtain a
reference is by using the getSystemService method. We will go
through this later in the example.

System Server
The framework initialize all services using a file called Sys-

temServer.java inside frameworks/base/services/java/com/an-
droid/server directory. We are going to add code snippets into
this class in order to initialize our SampleService:

….

try {

Slog.i(TAG, “Sample Service”);

ServiceManager.addService(“SampleService”,new

SampleService(context));

} catch (Throwable e) {

reportWtf(“starting SampleService”, e);

}

….

The code must be placed inside the method startOtherSer-
vices(), as shown in Figure 2, which will map the string Sam-
pleService with our class. This will thenl be consumed by the
manager class that is defined in the next section.

Context
Every application in Android must access the Context ob-

ject. You can think of this object as a global class, which con-
tains an API that will allow our application to interact with
the framework. In this step, we will expose our service via the
Context by changing the code inside the ContextImpl class,
containing the implementation of the Context object. Figure
3 shows the code that must be added for our service inside the

ANDROID DEVELOPMENT

aidl declaration inside Android.mk

systemserver.java snippet

ODROID MAGAZINE 12

Android.mk
Android.mk
android.os
com.android.internal.os.ISampleService
mService.getHello
e.printStackTrace
SystemServer.java
SystemServer.java
ServiceManager.addService
Android.mk
SystemServer.java

ContextImpl.java file.

SELinux Policy
In Android Lollipop, when we define a new service, we need

to add it to the SELinux context file, so that it will be initialized
properly to avoid errors. We need to declare our service inside
the service_contexts file that reside inside the external/sepolicy
directory. Figure 4 shows the extra line that need to be added.

Build
At this point, we have completed all the necessary setup for

our service. Now, it’s time to run the build sequence, which is
outlined below:

Run the following command in order to update the relevant
files and inform them of the changes to the framework and
SDK. This will update the file called current.txt to host our
new service, which will then be used to package the SDK in
the next step.

$ make update-api

Make sure there is no error generated when executing step
1, then generate the SDK needed for our IDE:

$ make sdk -j6

On successful compilation, you will see a file generated on
the local machine that contains the full Android SDK. In my
example, thie file is called android-sdk_eng.nanik_linux-x86.
zip, as shown in Figure 5. You will need to copy files from the
directory, which is named the same as the .zip file.

I have Android SDK installed in a directory called /home/
nanik/Work/android-sdk-linux, as shown in Figure 6. Since
we are building the SDK for Lollipop, we need to copy the new
SDK into <your_android_sdk_folder>/platforms/android-22.
Remove all the files inside the android-22 folder, but before
doing that, make a backup copy of the full folder.

The name of the folder containing the SDK is called an-
droid-sdk_eng.nanik_linux-x86 in my case, but the name of

ANDROID DEVELOPMENT

contextImpl.java snippet

service_contexts snippet
generated .zip file sdk

Full Android sdk

ODROID MAGAZINE 13

ContextImpl.java
current.txt
android-sdk_eng.nanik_linux-x86.zip
android-sdk_eng.nanik_linux-x86.zip
android-sdk_eng.nanik
android-sdk_eng.nanik
ContextImpl.java

your file will be slightly different. Next, copy everything from
the directory android-sdk_eng.nanik_linux-x86/platforms/
android-5.1.1 into the SDK folder under /home/nanik/Work/
android-sdk-linux/platforms/android-22, as shown in Figure 7.
Now we are ready to use our custom-built SDK.

Sample App
Launch Android Studio and create a simple Android app.

Make sure that you use the correct SDK version inside build.
gradle to ensure that the IDE picks up the correct SDK files.
Figure 8 shows what I have in my Studio. The autocomplete
feature in the IDE will be able to pick up the SampleManager
class, as shown in Figure 9.

The complete source code for the application is shown be-
low:

package sample.nanik.com.testsdk;

import android.app.Activity;

import android.os.Bundle;

import android.os.SampleManager;

import android.util.Log;

public class MainActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceS-

tate) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 SampleManager manager = (SampleManager)getSys

temService(“SampleServiceManager”);

 String s = manager.getHello();

 Log.i(“MainActivity”,s);

 }

}

custom sdk build

build.gradle snippet

samplemanager autocomplete

ANDROID DEVELOPMENT

ODROID MAGAZINE 14

android-sdk_eng.nanik_linux-x86/platforms/android
android-sdk_eng.nanik_linux-x86/platforms/android
build.gradle
build.gradle
sample.nanik.com.testsdk
android.app.Activity
android.os.Bundle
android.os.SampleManager
android.util.Log
super.onCreate
R.layout.activity
manager.getHello
build.gradle

navigating
the maze,
terminal
style!

EMULATION AWKASTER

unICORn
Cpu InSTRuCTIOn
EMuLATIOn FOR ARM
by @petevine

AWKASTER
RETROTASTIC TERMInAL
bASED FpS GAMInG
by justin lee

The Unicorn CPU emula-
tor engine and framework,
available at http://bit.

ly/1VoerJn, is an exciting new proj-
ect written in C that recently received
ARM host support. Unicorn emu-
lates just the CPU instructions, which enables many interesting
possibilities for future emulation projects. Unicorn is based on
QEMU, but uses jitting techniques, similar to PyPy, in order
to achieve a runtime performance boost. I recommend reading
the document at bit.ly/1Vofd9i for a better understanding of
the differences.

Instructions for installing Unicorn from the source code can
be found at bit.ly/1OgV0wb, which is fairly straightforward.
The only dependency is Capstone (bit.ly/1U8Pxz3), which
uses the same build system.

Currently, the most mature project for showing off Uni-
corn’s capabilities is called Usercorn (bit.ly/1mIlh06). It was
written in Go by @lunixbochs, the GLShim pioneer, as a us-
erspace emulator like qemu-user. However, unlike qemu-user,
which has separate binaries for ARM and x86, it’s able to han-
dle all architectures supported by Unicorn at the same time.

I’ve uploaded a “usercorn starter kit” to bit.ly/1U8PXoZ for
anyone wishing to try it out without having to install Go first.
The bundled busybox binaries should serve the purpose well.
For comments, questions, and suggestions, please visit the orig-
inal post at bit.ly/1Lu9qcJ.

Bring some old-school gaming fun to your terminal! In
this pseudo-3D game inspired by the classics Wolfen-
stein 3D and Doom, you can explore a dungeon and

fight monsters. Your objective is to navigate the maze and acti-
vate the exit elevator, killing hordes of monsters in the process.

Awkaster can be installed with the following commands:

$ sudo apt-get install gawk

$ git clone\

 https://github.com/TheMozg/awk-raycaster.git

$ cd awk-raycaster/

$ gawk -f awkaster.awk

Controls
wAsd - movement
j/l - turn left/right (hold shift to turn quickly)
spacebar - shoot
num 1 - 4 - change color mode
x - activate elevator (arrives after 1000 moves)

More instructions and the source code can be found at
http://bit.ly/1P1B4V7. The code is fun and interesting to
read. I couldn’t imagine how a 3D game could be written in
just 600 lines! For the dungeon wall rendering, the game uses
ray casting. Ray casting is a simple rendering algorithm that
doesn’t require any 3D modeling or complex computation,
which keeps the code simple. Monsters and projectiles are
added as sprites after the walls have been rendered.

For comments, questions and suggestions, please visit the
original post at bit.ly/1TrhUcg.

ODROID MAGAZINE 15

http://bit.ly/1VoerJn
http://bit.ly/1VoerJn
bit.ly
bit.ly
bit.ly
bit.ly
bit.ly
bit.ly
https://github.com/TheMozg/awk-raycaster.git
awkaster.awk
http://bit.ly/1P1B4V7
bit.ly

vance SP “shell.”
Here are the specs for the tiny por-

table computer:

•	 ODROID W (Raspberry pi
clone)

•	 1300mah battery (cell phone
battery [tiny])

•	 USB hub with 3 USB ports - 1
will be used for wifi internally
with 2 available externally

•	 HDMI port, which is great when
used as a movie player on the big
screen at home

•	 Mono speaker hooked to an amp
with digital volume with tactile
switches for changing volume

•	 3.5in screen
•	 Directional Pad with A, B, X, Y,

L, R, Start, and Select buttons

The Gameboy Advance SP (GBA
SP) originally used a 16.8 MHz CPU,
96 KB Video RAM, and 32 KB of sys-
tem RAM. While this seems like noth-
ing for today’s standards, it was actually
quite impressive when it was released in
2003. The ODROID-W pumps out
700 MHZ of CPU speed with 512 MB
of RAM, with a large library of open
source software available.

After obtaining a Gameboy Advance
SP “Shell” online, I was able to use a
small drill to make room for all of the

Creating portable video game sys-
tems has been a hobby of mine
for about four years now. I

started out turning console systems such
the Nintendo 64 and GameCube into
portable devices. Then, I heard about
the ODROID projects. I have always
wanted to create my own emulating de-
vice, but at the time, the Raspberry Pi
was the main device to do so. Once the
ODROID-W was announced, I knew
that this had to be the best way to create
a tiny emulating system. What I didn’t
expect was for it to fit in a Gameboy Ad-

parts. One of the trickiest tasks was cut-
ting the PCB board that was behind the
LCD screen. My system uses a 3.5 inch
backup camera screen that is usually
used in a car as a rearview device. Since
these screens have a composite input and
can run using 5V with some modifica-
tions, it was the perfect screen for this
project. The original GBA SP had a 2.9
inch screen with a lower resolution, so
this was a nice upgrade, but it required
extensive modification in order to fit. I
even had to scratch away at some traces
on the board to permit the capacitors
to be wired back on. I had to do some
very small manipulations, which took
patience and dexterity.

Because the ODROID-W already
has a step-up converter, I was able to use
a cell phone battery to power the whole
system. Surprisingly, the ODROID-W
draws very low power, so a battery with
a capacity of 1300mah was able to power

LInuX
GAMInG
An ODROID-W HOuSED In A
GAMEbOY ADvAnCE Sp CASE
by johnny parks

GAMEBOY ADVANCE

Figure 1 - gameboy Advance using an
odroId-w

Figure 2 - odroId-w closeup

ODROID MAGAZINE 16

device, I needed something very small.
Luckily, I was able to use a device called
the Teensy 3.1, which emulates keyboard
and mouse movements using tactile but-
tons. This device is like a mini Arduino
computer, and can be programmed to
do different things. Each button on the
device was easy to program, but the joy-
stick acting as a mouse was a different
story. That took about a day of research
and testing in order to get the Arduino
device to mimic a mouse. The joystick
that I used actually came from a Ninten-
do 3DS, which I bought online for less
than $10 USD.

Once the system was ultimately
finished, I loaded a few emulators and
played some classic games that brought
back nostalgia. I was even able to get
the Nintendo 64 emulator running and
played a few games of Super Mario 64
on what felt like a GBA SP. The best
part was running Quake III, which I
remembered playing years ago with a
friend. Unfortunately, the online feature
was not working, but it was still fun to
practice on NPC’s. The system can even
surf the web, so there is limitless fun that
this ODROID can provide.

Future projects will include an
ODROID-C0, which will blow this proj-

the system for over three hours. I even
ended up watching all of The Amazing
Spiderman on a car ride using the sys-
tem. One thing that I was worried about
was whether the Wi-Fi adapter would
work. When I hooked it up to a USB
four port hub, it would rarely connect. I
later realized that the Wi-Fi adapter that
I used had a large amperage draw on the
USB ports. Therefore, I ended up wir-
ing the battery’s power supply directly to
the Wi-Fi card to give it plenty of amps.

To get the controls working on the

GAMEBOY ADVANCE

ect out of the water. The ODROID-C0
is one of the latest devices that Hardker-
nel has released, which can run Android
apps. This board also has a step-up regu-
lator built in, so that I can use the same
cell phone battery to run it. Instead of
a GBA SP case, I plan on using a 3DS
XL, which has plenty of room for all the
components. The ODROID-C0 can
run games that the ODROID W can’t
run, and Nintendo 64 games and Play-
station games will run more smoothly on
this system as well. I hope to have this
project finished in a couple of months,
so keep an eye on the ODROID-C0 fo-
rums for updates. And remember; don’t
let your dreams be dreams.

Figure 5 - gameboy Advance booting
into linux

Figure 4 - bottom of case

Figure 3 - odroId-w installed inside gameboy Advance case

Figure 6 - gameboy with the odroId-w

ODROID MAGAZINE 17

modify it as needed. Details regarding
the hardware and software features can
be obtained from the links referenced at
the end of this article.

System preparation
Upgrade the ODROID system using

the well-documented steps listed in the
Hardkernel website and past ODROID-
Magazine issues, making sure to reboot
the system after the upgrade.

If you wish to use an ODROID-C0/
C1/C1+, you will have to increase avail-
able swap space, since the onboard 1GB
RAM memory is insufficient. The fol-
lowing commands will make the neces-
sary swap space available:

$ sudo fallocate -l 2G /swapfile

$ sudo mkswap /swapfile

$ sudo swapon /swapfile

After the software build process is
complete, you can free up the swap space
by running the following command:

$ sudo swapoff -a

Software installation
The open source software is QT-

based, and is compatible with QT5. The
following commands will install the pre-
requisite software infrastructure:

$ sudo apt-get install git \

Almost a year ago, we published
an article on the interfacing
of a USB-enabled oscilloscope

to an ODROID-C1. In this issue, we
will present the interfacing of a low-
cost, but highly capable USB-enabled
multiscope, called the Xprotolab Plain,
to an ODROID-C0/C1/C1+ or an
ODROID-XU4. An ODROID-C2
based solution should be available soon.

The board is originally designed and
developed by Gabotronics, but offered
by Hardkernel as an accessory to some
of the ODROID SBCs. The QT5-based
cross-platform visualization software
is open-source, so the community can

 qt5-default \

 Libqt5serialport5-dev \

 libusb-1.0-0-dev

Next, create a placeholder directory
for fetching and placing the source code
for the visualization software, which can
then be built to create the executable:

$ cd ~ && mkdir xp && cd xp

$ git clone https://github.com/

ganzziani/xscopes-qt

$ cd xscopes-qt

$ qmake

$ make -j8

Attaching multiscope
We will use the example of waveform

visualization to check the device usage.
Attach the provided cable as shown in
Figure 2 by connecting the Channel 1

vERSATILE MuLTISCOpE
An OSCILLOSCOpE
pROJECT FOR
YOuR HOME
by venkat bommakanti

MULTISCOPE

Figure 1 - xprotolab device and Io pins

Figure 2 - wiring diagram

ODROID MAGAZINE 18

https://github.com/ganzziani/xscopes
https://github.com/ganzziani/xscopes

You will be presented with a display as
shown in Figure 3 using an ODROID-
C1+ and an ODROID-VU7. Figure 4
shows the various features of the user in-
terface.

References
XProtolab wiki
http://bit.ly/22xfjzn

XProtolab specifications
http://bit.ly/25hyVdi

Qt documentation
http://doc.qt.io/qt-5

pin and the AWG pin. Then, attach the
provided USB cable to the multiscope
and the ODROID board.

Run application
The application will have been built

in the working directory noted earlier.
From there, you can run it using the fol-
lowing command:

$ sudo ./xscope

MULTISCOPE

Figure 3 - multiscope attached to
odroId-c1+

Figure 4 - User interface features ODROID Talk
Subreddit

 http://www.reddit.com/r/odroid

ODROID
Magazine

is on
Reddit!

ODROID MAGAZINE 19

http://bit.ly/22xfjzn
http://bit.ly/25hyVdi
http://doc.qt.io/qt-5

progress. Players have access to most of
the cards created on the server in order
to build their decks. So, players can have
a super rare, amazing card in their deck,
even if they couldn’t normally afford it.
Unfortunately, they can’t add the cards
available on the server to their perma-
nent collection.

Prerequisites
To install XMage, you first must have

the Java Runtime Environment (JRE)
version 1.7.x or later installed on your
ODROID system. If you use the Ubun-
tu image provided by Hardkernel, you
most probably already have it. Other-
wise, you can download it from http://
bit.ly/1SxvU43.

To check your current running ver-
sion of Java, type the following:

$ java -version

openjdk version “1.8.0_01-inter-

nal”

OpenJDK Runtime Environment

(build 1.8.0_01-internal-b15)

OpenJDK 64-Bit Server VM (build

25.01-b15, mixed mode)

Installation
Create a placeholder directory, then

download the XMage distribution pack-
age to it:

$ cd ~/ && mkdir xmage

Have you ever wondered if it pos-
sible to play networked/online
card games such as Magic: The

Gathering with friends spread across var-
ious locations? Yes, you sure can, with
an ODROID single board computer
and the cross-platform XMage (MAGE:
Magic, Another Game Engine) software.

Magic: The Gathering, commonly
referred to as Magic, was the first TCG
(Trading Card Game) created by Rich-
ard Garfield in 1993. Basically, two or
more players construct their own deck of
cards, based on a set of real cards, and try
to defeat an opponent by lowering their
life pots to zero, while adhering to the
various rules of the game. The cards and
all of the concepts of the game are based
on fantasy role-playing, much like in the
famous Dungeons & Dragons game.
Characters include dwarves, elves, orcs,
and other fantasy creatures. Some fans
of the game just like collecting the cards
and do not use them in actual games.
This popular game has about 20 million
players around the world, and still has
new card expansions added every year.

XMage, a Java application, imple-
ments an online virtual way to play
Magic. It also provides a client/server
system where you can create your own
private game-server or join an existing
public one. The host will enforce the
rules of the server, and the clients can
either create a new game or join one in

$ wget -c http://bit.ly/

xmage_1_4_9v0w

$ unzip xmage_1.4.9v0.zip -d

xmage/

Usage
XMage is divided in two parts: client

and server. If you wish to use your local
server, you can start it locally in a ter-
minal. You can use one system to run
both the client or the server. If you wish
to run the server on a separate system,
copy the contents of the ~/xmage/mage-
server directory to the same location on
the new system. Alternatively, you can
connect to a public server via the Inter-
net. To launch the server locally, type
the following after a launching a new
terminal window:

$ cd ~/xmage/mage-server

$ chmod +x startServer.sh

$./startServer.sh > /dev/null

2>&1 &

From now on, you and your friends
can connect to the server using your
ODROID’s IP address, even if they use
different platforms like Windows or
Mac OS. If you want people from out-
side your local network to connect to it,
you may want to setup a dynamic DNS
service like DynDNS or No-IP to make
it easier for them to access the server.
You might also need to forward port

XMAGE
An OnLInE
MAGIC: THE
GATHERInG
FREE-FOR-ALL
by david lima

XMAGE

ODROID MAGAZINE 20

http://bit.ly/1SxvU43
http://bit.ly/1SxvU43
http://bit.ly/xmage_1_4_9v0w
http://bit.ly/xmage_1_4_9v0w
xmage_1.4.9v0.zip
startServer.sh
startServer.sh

the upper left. If you choose to create a
new game, update the rule settings ac-
cording to your preferences, such as the
cards permitted, the game format (T2,
modern, or commander), a password to
control the access, and so on. You can
then get started with your game. Have
your friends connect to the same match/
tournament and enjoy!

The first time you start your client, it
comes with no card images, mana or ac-
tion symbols. To make your game more
enjoyable, these assets can be down-
loaded using the top right buttons titled
Symbols and Images. Click on Symbols
and confirm the download. You will see
a result dialog when download is com-
pleted. Click on Images and select the
source from where you want to down-
load the images. Usually images from
wizards or cardinfo are the best options.

Please keep in mind that XMage is
still in a testing phase, so you may dis-
cover issues and/or missing functional-
ity. If you want to report anything, or
have any suggestions, visit their forum
at http://bit.ly/1RdBd3F. If you would
like to get more information about
XMage, visit their website at http://
xmage.de. For more information about
this game, Magic: The Gathering, visit
http://magic.wizards.com. The source
code is also available at GitHub, and you
can contact the development team on
the forums if you wish to contribute to
its development. Note that these steps

17171 (if using the default configura-
tion) on your router to your ODROID’s
local IP address. This configuration var-
ies for each router model, so check your
router’s manual for further instructions
on how to do so.

Usually, the default server configura-
tion can be used as-is, but if you want
to change it for any reason, go to the
xmage/mage-server/config directory and
edit the config.xml appropriately. You
can modify your server’s name, its pri-
mary and secondary bind port, as well as
other adjustments. You will find more
details for each parameter inside the file.
Be careful when editing it, as you might
cause the server not to run properly, so
be sure to make a backup of your work-
ing configuration before making any
changes.

Next, start the client software in a
new terminal window. In order to prop-
erly start the client, you must either be
on the system’s graphical interface, if you
use a headless ODROID, or export the
X11 and forward it from the remote to
your local machine. You will then be
presented with a server connection win-
dow:

$ cd ~/xmage/mage-client

$ chmod +x startClient.sh

$./startClient.sh > /dev/null

2>&1 &

If you are using a local server, you
will have to enter your server’s informa-
tion, such as the IP address, port and a
username. If you are using a public serv-
er, you can click the Find button in or-
der to search for available public servers
over the Internet and join them. There
is also a password field, but it may not be
required, which is a possible incomplete
implementation of the authentication
code.

After you have successfully connect-
ed to the server, you will be taken to the
main lobby, where you can either join an
ongoing match or tournament, or start
a new one yourself using the buttons in

XMAGE

have been tested with the ODROID-
XU4, U3, and C1/C1+ models running
32-bit Ubuntu.

References
Java SE
http://bit.ly/1SxvU43

XMage home page
http://xmage.de/

XMage GitHub repository
http://bit.ly/1SbEhzE

XMage forums
http://bit.ly/1RdBd3F

Magic the Gathering
http://bit.ly/1yzBTZO

ODROID MAGAZINE 21

http://bit.ly/1RdBd3F
http://xmage.de
http://xmage.de
http://magic.wizards.com
config.xml
startClient.sh
startClient.sh
http://bit.ly/1SxvU43
http://xmage.de/
http://bit.ly/1SbEhzE
http://bit.ly/1RdBd3F
http://bit.ly/1yzBTZO

In addition, you will need to install
the following software packages, which
can be installed using the Synaptic Pack-
age Manager application:

•	 gcc
•	 wget
•	 OpenCV

To prepare your system, open a ter-
minal window and enter the following
commands.

$ sudo apt-get update && apt-get

dist-upgrade

$ sudo reboot

The first command will update the
package list and install a newer distribu-
tion update if it is available. The second
command will reboot the ODROID.
After updating the package list and dis-

I thought many people would be in-
terested in an easy to follow guide on
how to use the oCam and ODROID-

XU4 for object tracking using OpenCV.
This guide will walk you through the
steps on how to create and run an object
tracking application. The ability to track
a specific object over multiple frames is
a key technology in applications such as
automatic surveillance or robotics. The
following example code will track an ob-
ject using color properties from the im-
age frame.

Setup
To get started, you will need the fol-

lowing items, all of which are available
from the Hardkernel store:

•	 ODROID-XU4
•	 Memory module, either eMMC

or micro SD card, installed with
Ubuntu.

•	 oCam

tribution, install OpenCV by entering
the following command:

$ sudo apt-get install libopencv-

dev

As of March 2nd 2016, the latest ver-
sion of OpenCV is 2.4.9.

Build
Our example is based on the Cam-

shift (Continuously Adaptive Mean
Shift) algorithm, which is a type of
Meanshift algorithm, and is used to
track an object. More information
about these algorithms can be found at
http://bit.ly/1pPduzS. In our code, we
will use the cvCamShift() function from
the OpenCV library in order to provide
the camshift algorithm. The following
text gives more information about the
cvCamShift() function:

RotatedRect CamShift(InputArray

ObJECT TRACKInG uSInG
OCAM AnD ODROID-Xu4
An EASY STEp-bY-STEp GuIDE
by dongHyun Yoo

OBJECT TRACKING

Figure 1 - example screen of object tracking

Figure 2 - Typical configuration of
object tracking test set

Figure 3 - command input screen on
odroId

ODROID MAGAZINE 22

http://bit.ly/1pPduzS

ODROID-XU4, we are ready to start
the object tracking demo using the fol-
lowing command:

$./demo

The CamShift Demo window has
three sections: a control bar panel, a
camera image panel, and a histogram
panel. Using the top 2 sliders, Vmax
and Vmin, you can control the color val-
ue range. The bottom slider, Smin, con-
trols the saturation range. These sliders
help limit the image area within which
you track a specific object. Please refer
to the detailed explanation about the
hue, saturation, and value model of the
color space at http://bit.ly/1L6R7zM.

You can start the object tracking by
clicking and dragging on the part of the
camera image you wish to be tracked
with the mouse. Figure 4 shows the ap-
plication running while viewing a select-
ed area on a juice bottle.

The histogram window shows the

probImage, Rect& window, TermCri-

teria criteria)

Parameters:

probImage – Back projection of

the object histogram. See calc-

BackProject().

window – Initial search window.

criteria – Stop criteria for the

underlying meanShift().

Returns:

 Result rectangle

To download the camshiftdemo
source file, use the following com-
mand, or download the file from your
web browser by visiting http://bit.
ly/21ykrRF:

$ wget

 https://raw.githubusercontent.

com/\

 Itseez/opencv/2.4/samples/\

 cpp/camshiftdemo.cpp

Now we are ready to build camshift-
demo.cpp using the following com-
mand:

$ g++ camshiftdemo.cpp -o demo \

 -O2 -lopencv_core -lopencv_img-

proc \

 -lopencv_highgui -lopencv_video

Here are the meanings of the com-
piler options:

-o demo makes an executable binary
file called “demo”

-O2 specifies an optimization Level
of 2. For more infomation about g++’s
optimization settings, please refer to
http://bit.ly/1OOnopO.

-l links an external library, we used
this to link for four libraries: openvc_
core, open_cv_imgproc, opencv_high-
gui, and opencv_video.

Running the
application

Once the oCam is connected to the

OBJECT TRACKING

Figure 4 - drag a part in the image
window to start the tracking

Figure 6 - back projection view mode

Figure 5 - The target area being tracked
and the histogram of color components

ODROID MAGAZINE 23

http://bit.ly/1L6R7zM
http://bit.ly/21ykrRF
http://bit.ly/21ykrRF
https://raw.githubusercontent.com
https://raw.githubusercontent.com
2.4/samples
camshiftdemo.cpp
camshiftdemo.cpp
camshiftdemo.cpp
camshiftdemo.cpp
http://bit.ly/1OOnopO

color components within the selected
image area over the object being tracked.
You can turn on and off the histogram
window by pressing the “h” key. You
can also change the normal view mode
to back to the projection view by press-
ing the “b” key. Figures 6 and 7 show
the different view modes. Further de-
tails about back projection can be found
on the OpenCV page at http://bit.
ly/1Rqc1MH.

To clear the selection, press the “c”
key. You can start tracking a new object
by selecting another area the same way
as before. Take a look at the video at
http://bit.ly/21zZllS, which shows a live
view of the object tracking demo cov-
ered in this guide using an oCam and
ODROID-XU4.

Figure 7 - control of interested region
in which the target object to be tracked

OBJECT TRACKING

Today I want to talk about the classic racing game Re-Volt and a recent port
of it called RVGL. It’s one of my favorite games and can now be played on
the ODROID with beautiful 3D graphics and a mind blowing soundtrack.

What is Re-Volt?
Re-Volt is a racing game like no other. Rather than racing big fancy cars against

friends on tracks like the famous Nürnburgring, or racing karts on fantasy tracks,
you instead race with radio controlled (RC) cars. This gives the game a very unique
perspective, since you play from the point of view of tiny RC cars in all sorts of fun
courses such as supermarkets and backyards.

About Re-Volt
The original game was released by Acclaim Entertainment in 1999 on PC, Play-

Station, Nintendo 64 and Dreamcast. But honestly the Dreamcast and PC versions
had the best graphics and sound. The game was very unique for its time with stun-
ning 3D graphics, a great soundtrack, several multiplayer modes, and even a in-game
track editor for creating your own racing tracks without any special tools. As you
unlocked features the game offered up to 28 different cars, starting with small battery
powered cars and later leading up to gasoline-powered miniature cars. In total there
are 13 tracks you can race which all offer reverse, mirror and inverse modes too. The
game also has a stunt arena where you can do tricks and stunts with your car to catch
stars and unlock even more cars.

And as if all that alone isn’t awesome enough, in Re-Volt you can pick up little
thunderbolts on the ground that give you a random weapon or improvement, such
as oil slicks, fireworks, or a bowling ball. This is similar to the Mario Kart games
where you race each other while fighting at the same time. The uniqueness behind
this is that you race from the point of view of an RC car. This means that everything
around you is huge as you race around the neighborhood. A basketball becomes a
big obstacle, and a real car is 100 times bigger than yourself. If you race in the su-
permarket the shelves are huge, and there are hidden paths and shortcuts to explore,
which makes it fun to explore the levels you race in. I personally loved this game
and it was really fun to play back then. I loved to play it with friends at LAN Parties
and have really good memories of playing it. Even today the game remains a time-
less classic.

LInuX GAMInG
RvGL – RE-vOLT
On OpEnGL
by Tobias schaaf

RE-VOLT

ODROID MAGAZINE 24

http://bit.ly/1Rqc1MH
http://bit.ly/1Rqc1MH
http://bit.ly/21zZllS

About RVGL
RVGL is a reimplementation of Re-Volt in OpenGL for

modern PCs. The RV-Team, and especially Huki and jigebren,
have done a lot of work to get this 17-year old game to work on
modern platforms and were nice enough to allow us to make
a port for ODROIDs too. Thanks to the RV-Team and Huki
and jigebren for this amazing port and the chance to use it on
ODROIDs. Be sure to check out their project page at http://
bit.ly/1UEyENI. Since RVGL uses OpenGL, thanks to ptit-
Seb’s GLshim wrapper we can now play it on ODROIDs as
well and it’s looking really amazing!

Features
As I said earlier, the RVGL offers stunning 3D graphics,

even in the Menu screen you can already see the impressive
graphics with reflecting surfaces and shadows, different light-
ning, etc. Look at the reflections of the cars, and even items in
the background can be seen through reflections on the ground.

The tracks are very unique. There’s the neighborhood, su-
permarket, a museum, botanical garden, and even an old west-
ern town. All of these tracks are completely different and it
feels like you were thrown in another world; a world where
everything is big around you and just waiting for you to be
explored.

Racing inside a supermarket, can you imagine what hap-
pens if you drive through the cold storage?

As I mentioned earlier you have different weapons that you
can collect while racing. For example, there are the fireworks,
which either come alone or in a stack of three. There’s also a
bowling ball that can slow down the enemy, as well as an Oil
slick which makes it hard or impossible to steer. Water bombs
come always in three, but don’t auto aim targets like the fire-
works. There’s an energy blast that throws everyone out of your
way, or a extra battery which will boost your speed for a short
period of time. These all are just a few of the extras you can
pick up.

RVGL also offers the original multiplayer modes. This
means you can either play in splitscreen mode with up to four
players on your ODROID, or even play with other players over

Figure 1 - main menu of rvgl running natively on odroId

the LAN or Internet, Which is really awesome. I wonder what
it takes to get a ODROID LAN-party together. Playing awe-
some games like Re-Volt on LAN on some ODROIDs sounds
to me like a really fun thing to do.

The game offers both keyboard and joystick support.
Thanks to SDL2, most joystick will work out of the box or can
easily be configured, making it even easier to play these games
with friends on the same ODROID for added enjoyment.

Installing RVGL

For this game to work you will need the original game data
files from your CD or any other copy of the game. As usual,
you can install this game from my repository using my images
using the following command:

$ apt-get install rvgl-odroid

It also requires the GLshim wrapper from my repository,
which should be automatically installed as a dependency. Next
put the game data files from your CD in a folder called “.rvgl”
(note the leading “dot” in front of rvgl) in your home folder.
This is where the game will search for its data files. If the folder
does not exist, create it yourself, or try to start the game once.
After either of these steps the folder will exist.

Now you can copy the folders from your original game in

LInuX GAMInG
RvGL – RE-vOLT
On OpEnGL
by Tobias schaaf

RE-VOLT

Figure 2 - An in-game shot in the supermarket level

Figure 3 - Another in-game shot from the supermarket level

ODROID MAGAZINE 25

http://bit.ly/1UEyENI
http://bit.ly/1UEyENI

CuT THE ROpE 2
HELp nOM-nOM GET HIS CAnDY
by rob roy

Cut the Rope 2 is a se-
quel to the popular
game Cut the Rope,

which is a great physics-
based game where you try to
deliver candy to a little mon-
ster called Om Nom by solving gravity puzzles. It’s free to
play, and you can discover hidden prizes and unlock secret
levels as you go. The animation is excellent, and the main
character is sure to make you smile! Download it from
the Google Play Store from the following link:

http://bit.ly/QutCFB

some games like Re-Volt on LAN on some ODROIDs
sounds to me like a really fun thing to do.

The game offers both keyboard and joystick support.
Thanks to SDL2, most joystick will work out of the box or can

easily be configured, making it even easier to play these games
with friends on the same ODROID for added enjoyment.

Installing RVGL
For this game to work you will need the original game data

files from your CD or any other copy of the game. As usual,
you can install this game from my repository using my images
using the following command:

$ apt-get install rvgl-odroid

It also requires the GLshim wrapper from my repository,
which should be automatically installed as a dependency. Next
put the game data files from your CD in a folder called “.rvgl”
(note the leading “dot” in front of rvgl) in your home folder.
This is where the game will search for its data files. If the folder
does not exist, create it yourself, or try to start the game once.
After either of these steps the folder will exist.

Now you can copy the folders from your original game in

Figure 4 - A firework being used to strike an opposing car

Figure 5 - rvgl in splitscreen multiplayer

RE-VOLT ANDROID GAMING

om nom loves candy, and you can help him get lots of it!

ODROID MAGAZINE 26

https://play.google.com/store/apps/details?id=com.fourquarters.PleaseDontTouchAnything

about the laws in your area, please con-
sult a lawyer and review your local regu-
lations.

Meet Kismet
After acquiring permission, the first

thing every penetration tester does is
gather information about his or her tar-
get. In the context of WiFi networks,
this means having a receiver to listen to
the broadcasts of all the access-points
around you. There are various tools that
let you do this, but, the best is Kismet.

Kismet is a wireless network detector,
sniffer, and intrusion detection system
for Linux with a text-mode interface.
Some of its features include 802.11 sniff-
ing, PCAP logging, client-server archi-
tecture, and XML output for integration
with other tools.

We will be using Kismet to collect a
list of access-points located within range
of our receiver. From the access-point
list, we can check whether any informa-
tion can be extracted from any of them.
To install Kismet, simply run the follow-
ing command on an Ubuntu system:

$ sudo apt-get install kismet

Select “Yes” during the installation of
Kismet when asked, and type your user-
name to be added to the kismet group.
To use Kismet, you will need to have a
WiFi interface available to monitor with.

The website WiGLE (http://wigle.
net) has a large database of wire-
less access-points collected from

people wardriving. Wardriving is the act
of driving around an area in search of an
unprotected wireless network. The to-
tal number of access-points in WiGLE’s
database is around 120 million. Each
access-point in the database contains in-
formation about its SSID, geographical
location, MAC address, and encryption
type. As you may have noticed, we are
living in an interconnected world that
relies on WiFi to connect every device
together. That’s why you should be pay-
ing attention to your personal WiFi set-
up and making sure it is secure. This se-
ries of articles will be your guide through
the world of wireless security, and you’ll
learn the techniques that the bad guys
are using to penetrate your network in
order to better protect yourself. Best of
all, everything is done using your pre-
cious ODROID! Although Kali Linux
is the preferred distro for security analy-
sis, we’ll be working on HardKernel’s
Ubuntu 14.04 (or later).

Before we start, I need to make some-
thing clear. Breaking into somebody’s
network without permission is a crimi-
nal offense, and punishable by law in
most countries! All of these tests have
been done under laboratory conditions
and with the network owner’s consent.
If you have any doubts or are uncertain

I tested Kismet with several ODROID
wifi modules available from Hardkernel:

Wifi Module 3
http://bit.ly/22nyxra
This module is based on Realtek

RTL8188 chipset. It worked ok, but it
didn’t provide the best results compared
to the other modules I tested.

Wifi Module 4
http://bit.ly/1FprqF5
Module 4 uses the Ralink RT5572

chipset, which adds 5GHz capabilities,
but also works in 2.4GHz.

Wifi Module 0
http://bit.ly/1M4LdiC
Module 0 is based on the Ralink

RT5370N, and works surprisingly well
for its size.

Note that while the wireless interface
is in monitor mode. This is similar to
Ethernet’s promiscuous mode and you
will not be able to use the interface for
normal traffic. This means that if you
don’t have a wired network connection
to your ODROID, you’ll be cutting
yourself off from the network when the
wifi interface is in monitor mode.

Monitor mode with
aircrack-ng

Before you can start using Kismet,
you need to set up a monitoring inter

KISMET
WIRELESS nETWORK MOnITORInG
by Adrian popa

KISMET

ODROID MAGAZINE 27

http://wigle.net
http://wigle.net
http://bit.ly/22nyxra
http://bit.ly/1FprqF5
http://bit.ly/1M4LdiC

KISMET

steps needed to compile and install a kernel for the ODROID-
C1. These steps assume that you have your build environment
already set up.

$ git clone --depth 1 --single-branch -b odroidc-

3.10.y https://github.com/hardkernel/linux

$ cd linux

$ make odroidc_defconfig

$ make menuconfig

$ make -j 4 uImage dtbs modules

$ sudo cp arch/arm/boot/uImage \

 arch/arm/boot/dts/*.dtb /media/boot

$ sudo make modules_install

$ sudo make firmware_install

$ kver=`make kernelrelease`

$ sudo cp .config /boot/config-${kver}

$ cd /boot

$ sudo update-initramfs -c -k ${kver}

$ sudo mkimage -A arm -O linux \

 -T ramdisk -a 0x0 -e 0x0 -n initrd.img-${kver} -d

initrd.img-${kver} uInitrd-${kver}

$ sudo cp uInitrd-${kver} /media/boot/uInitrd

Note that if you use GCC 5.x, you will get a kernel crash
when booting an ODROID-C1. You will need to add the
patch from http://bit.ly/1QZlWWi, or compile with GCC
4.8. If you have any problems with compiling the kernel
module, you can ask for support on the thread at http://bit.
ly/1RlJqbn.

face that is attached to your WiFi card. To do this, you will
need the airmon-ng utility, which is part of aircrack-ng pack-
age. Aircrack-ng can be installed by typing the following into
terminal.

$ sudo apt-get install aircrack-ng

To check whether your wireless driver supports monitor
mode, you can run the following command, and Figure 1
shows the result on this command which is one capable wifi
interface being found, ‘wlan2’:

$ sudo airmon-ng

Enabling monitor mode support
for Wifi Module 3

If you don’t see your device listed, either the hardware or
the driver doesn’t support monitor mode. If you have the
ODROID WiFi Module 3 and it’s not being listed, it means
that you need to upgrade your wifi driver. By default, Hard-
kernel’s Ubuntu release loads the 8192cu driver, which is the
open source variant of the driver and has less functionality, it
can only connect as client. The rtl8192cu driver comes from
Realtek and adds support for monitor and hotspot mode.

Unfortunately, this is the step where you need to get techni-
cal. Alternatively, you can buy Wifi Module 0 or Wifi Module
4, which work with the default drivers. For Module 3, you’ll
need to recompile the kernel to add the rtl8192cu module
from backports. You can follow any kernel compilation guide,
such as the from ODROID magazine at http://bit.ly/1RlIm7j
or from http://bit.ly/1NVRprY. In the kernel configuration,
you need to edit the items shown in Table 1.

Note that some of the settings above may be already selected
for your kernel, since the default configure settings differ a bit
from device to device. Once the kernel has been correctly com-
piled, use the necessary commands to install it. I would also
recommend that you make a backup of your existing kernel
and modules. Once everything has been compiled and setup,
reboot your ODROID. For your convenience, here are the

Figure 1 - supported hardware

Table 1 - kernel configuration changes required to use the
wiFi module 3

ODROID MAGAZINE 28

https://github.com/hardkernel/linux
initrd.img
initrd.img
http://bit.ly/1QZlWWi
http://bit.ly/1RlJqbn
http://bit.ly/1RlJqbn
http://bit.ly/1RlIm7j%20
http://bit.ly/1NVRprY

KISMET

•	 Management, which handle authentication, associa-
tion, probes, deauthentication, disassociation, and bea-
cons.

•	 Control, which facilitates the exchange of data between
stations. It includes Acknowledgement, Clear to Send,
and Request to Send frames.

•	 Data, which encapsulates the actual data that the end
user transmits and receives

If you do packet captures on an idle wireless network, you
will likely see a lot of management traffic, such as beacons and
associations, and very little data or control traffic. Data traffic
is bursty in nature, especially during web browsing. You can
get an idea of what base stations and what clients are active
based on management traffic. A test packet capture that has
all three frame types to analyse in Wireshark is available from
http://bit.ly/22ouM8k.

Looking at the capture packets, you will notice that control
and management traffic is sent unencrypted while data traf-
fic is encrypted depending on your encryption type (WEP or
WPA).

Back to Kismet
Now that you have a monitor interface, you can finally start

up Kismet:

Monitor mode - hands on
In this section, we will use “wlan0” as an example of the

Wifi interface we are monitoring with, although the name of
your interface might be different. Now that your network card
supports monitor mode, you can create a monitor interface.
Remember that the Wifi module can’t operate in both monitor
mode and client mode at the same time. You can also specify
a channel number, or a frequency, that the antenna will tune
to. You can get a list of available channels and frequencies by
running the following command:

$ iw phy0 info

To start monitoring with airmon-ng, use the following
command, keeping in mind that “wlan0” will need to match
the interface on your system:

 $ sudo airmon-ng start wlan0

You should see a message that a monitor interface called
“mon0” was created. Later versions of airmon-ng use a slightly
different naming convention, in which case the interface would
be named wlan0mon instead. You can now use the monitor
interface for interesting things like packet capture, using pro-
grams such as wireshark, tcpdump, or Kismet. If you get errors
while enabling monitor mode, you should stop the processes
listed by airmon-ng and try to enable monitor mode again.

If you’re feeling adventurous, you might get the same results
under Android as well. You may need to compile the correct
driver for your Android branch kernel and set up aircrack-ng
directly in Android. It didn’t work, but if you’re interested,
more details are available at http://bit.ly/1S6XAtR.

The 802.11 protocols use layer 2 datagrams to encapsulate
the data that needs to be transmitted. There are 3 types of
frames based on their purpose:

Figure 2 - monitor mode enabled for wlan2

Figure 3 - wireshark showing a packet capture of 802.11
management traffic

ODROID MAGAZINE 29

http://bit.ly/22ouM8k
http://bit.ly/1S6XAtR

as seen in Figure 5. On top, you have the network list (1). If
you select a network from the list, Kismet will display below
the list of clients associated to that network (2). If you have a
GPS active in your system, Kismet can display speed, altitude
and location data as well (3). The next section is a textual graph
showing the ratio of packets versus data (4). And lastly, the
bottom section shows log information, such as errors, probes,
etc (5). Colors signify encryption type. Orange is WPA-PSK,
red is WEP and green is an Open network.

Collecting data is one thing, but making sense of it is a dif-
ferent concept. By default, Kismet will generate logs in the
current working directory. If you leave Kismet running for too
long, you might run out of disk space! One hour of sniffing
produces about 150MB of logs when sniffing in my area. It’s
best if you can allocate a separate device, such as a USB disk, or
network share in order to write logs, which will prevent crashes
due to low disk space. Also, frequent writes on SD cards are
not good for the health of the SD card. The logs collected
contain various information, as shown in Table 2.

There are various parser scripts available on the Internet that
can parse these logs and generate reports or different formats.
For example, Kismet Log Viewer (http://bit.ly/1pP2pyF) will
generate an HTML summary page from your data.

Although you might have collected many megabytes of
data, there is still lots of data you have missed. This is because
Kismet performs channel hopping and listens to a single chan-
nel at a time. If your plan is to capture specific traffic, you have
two options:

$ kismet

The first time you run Kismet, you will have to answer a few
questions, such as whether certain colors are visible on your
screen. If you wish to start the Kismet server automatically,
you should answer yes. Once the Kismet server starts, it will
complain that it doesn’t have a packet source defined and will
ask if you want to add an interface, to which you should reply
“Yes”. In the next window, type in “mon0” into the “Intf field”
area.

You can now close the log window, and you should be col-
lecting access-points. Kismet works by “hopping” between all
channels and listening for management frames. Kismet will
create a list of access-points and clients the wifi monitor can
hear. While kismet is forming this list, it will continue to cap-
ture traffic. If you leave Kismet running for a long time, you
will eventually pick up a lot of networks, even if you’re station-
ary!

If you keep seeing an error in the log window that says
“Packet source ‘mon0’ failed to set channel 1: mac80211_
setchannel() could not set channel 1/2412 on interface ‘mon0’
err -25”, you may need to delete the managed network inter-
face (the one you used to create the monitor interface). The
interface can be deleted with the following command:

$ sudo iw dev wlan0 del

To navigate around in the Kismet interface, use ALT+K to
bring up the menu. Use arrows, TAB, and the space bar to
navigate and select items. You might want to show more col-
umns, which you can activate in by selecting the Kismet ->
Preferences -> Client Columns and Kismet -> Preferences ->
Network Columns options. You can also use the Sort menu to
change the sorting based on your preference.

The main Kismet window is divided into multiple sections,

Figure 4 - Add the mon0 interface in kismet

Figure 5 - kismet scanning

KISMET

ODROID MAGAZINE 30

http://bit.ly/1pP2pyF

$ sudo airmon-ng start wlan0 1

$ sudo airmon-ng start wlan1 6

$ sudo airmon-ng start wlan2 11

You should now have 3 monitoring
interfaces: mon0, mon1, and mon2.
Inside of Kismet, press Alt+K -> Add
source… to add all the interfaces, and
also Alt+K -> Config Channel… to lock
each one to their respective channel.

Conclusion
Kismet is a powerful passive network

reconnaissance tool used to capture wifi
access-point data. By analyzing this
data, you can learn a lot about your
neighbors and their network usage pat-
terns. For instance, I discovered a few
open and WEP access-points around my
house. Also, I picked up mobile access-
points from various taxi companies that
had cars in the neighborhood. Strangely
enough, I’m picking up an open “Wire-
lessNet” SSID both at work and at home
that looks like a honeypot, which is
probably used to entice a local hacker.
Recorded network traffic can also be po-
tentially decrypted at a later time when
you’ve obtained the network key. Hav-
ing an ODROID powered by a power
bank gives you excellent flexibility, since
you could conceal it near your target,
such as in a mailbox, and retrieve it after
a day of data collection. However, Kis-
met’s best use of for your own defense,
by snooping on your personal devices
in order to see what kind of data they
“leak” about you. We will explore this
and more in follow-up articles. Please
direct any questions, comments or sug-
gestions to ODROID forum thread at
http://bit.ly/1o2Vr7I.

could set up to three wireless
adapters in monitor mode on
non-overlapping channels (e.g.
1, 6 and 11) and have Kismet
record data from all monitor in-
terfaces at once:

1. Tune your monitor interface
to the desired channel and stop
Kismet from channel hopping
(Alt+K -> Config Channel… ->
mon0 -> Lock -> Channel num-
ber)

2. If you have the resources, you

Table 2 - log information

Figure 6 - wifi module 3 is thicker than the Usb port and requires a cable to be attached

KISMET

ODROID MAGAZINE 31

http://bit.ly/1o2Vr7I

Please tell us a little about yourself.
I’m Adrian Popa, and I go by the nickname “mad_ady” on

various Internet forums and communities. I am almost 34 years
old, and live in Bucharest, Romania with my wonderful wife
Irina and our two boys: Teo (4 years old) and Matei (9 months
old). I work as an engineer specializing in telecommunications.
For the past 10 years, I’ve been employed at a large Romanian In-
ternet Service Provider developing custom applications and auto-
mation for the data network. I am also interested in security, and
like to poke at things to see if and how they break.

I am curious and enjoy discovering and learning new things.
For the past 5 years, I’ve been a member of the WDLXTV
(http://bit.ly/1Uh4TD4) community, contributing to a custom
firmware for a closed-source MIPS media player built by West-
ern Digital. I also have a passion for repurposing old gadgets in
order to have them do things they were not designed to do. I’m
proud to say that I have rooted all the devices I own, such as my
media player, smart TV, IP Cameras, and NAS.

How did you get started with computers?
My first “computer” was my sister’s Eastern-European ZX-

Spectrum clone (http://bit.ly/1RwAg5J). I used it only for gam-
ing from the single cassette tape that I had. Later, when I was
12, my parents bought us a 486-SX with 4MB Ram and 420MB
disk. I was fortunate to have only one game installed called Pre-
historik-2 (http://bit.ly/1T4KbF4), and my skills got me stuck at
level 2. This broke the gamer in me, and allowed me to explore
the computer and learn how to use MS-DOS and Windows 3.1.
I was hooked on the command line when I learned how to use arj:
arj -a -v1440 -r. After I learned everything I could from Windows

MEET An ODROIDIAn
ADRIAn pOpA (@MAD_ADY), pREMIERE SbC EnTHuSIAST
edited by rob roy

95/98, which was not cryptic enough for my tastes, I moved to
RedHat 6 Linux in 1999, and began a slow, but exciting, learning
adventure. I’ve played with most distributions, and was annoyed
by the early RPM dependency hell, which took me to Mandrake.
I then tried Debian, and had a short experimental Gentoo period,
which I abandoned after compiling X11, QT and StarOffice for 3
days straight while simply trying to update Pidgin. I’m currently
using Ubuntu for work and play. Although I was a late Android
adopter, I got interested in embedded Linux boards in 2010 when
I got a WDTV Live media player. Being part of a small but dedi-
cated community helped me learn and understand a lot of the
differences between embedded systems and normal PCs.

What attracted you to the ODROID platform?

I learned about ODROIDs from a fellow developer, who had
the U3 model. I had my employer buy a couple of ODROID
boards in order to build prototypes for some network quality ex-
periments that we were working on. I enjoyed the fact that the
boards are easy to use and can serve as a general purpose com-
puter/server with a small footprint. Coming from closed-source
embedded platforms, I was a bit worried that there would be no
challenges left, and everything would be boring because it works
out of the box. I’m happy to see that there are still quirks being
worked on, and that great things can be done if the vendor and
chipset manufacturer work together with the community.
How do you use your ODROIDs?

The ODROIDs that I use for work-related projects are
multi-purpose, but are generally used for software and network
projects such as iperf and latency measurements. I have a C1+
that I use as a prototyping test-bed, which is usually is in some

be either doing some tourism at lanois, France or helping his kids explore the universe, Adrian is a super engineer that helps our odroId
communities with his knowledge.

MEET AN ODROIDIAN

ODROID MAGAZINE 32

http://bit.ly/1Uh4TD4
http://bit.ly/1RwAg5J
http://bit.ly/1T4KbF4

unstable state or another. I have a brand new C2 that I’m turn-
ing into media player since H265 seems to be gaining traction,
but it will also be my main work computer, since I usually work
remotely over SSH. I plan on starting to learn a bit of hands-on
electronics, so the Tinkering Kit will come in handy. I just hope
I won’t release the magic black smoke! In the future, when the
boys are older, I plan to use the ODROIDs as learning platforms
in order to teach them about programming and tinkering.

Which ODROID is your favorite?
Since I’m still new to ODROIDs, I haven’t tried the older

models, but so far I like the C1+ the most because it is si-
lent, powerful, and has excellent software support. I’ve used
the XU3 as well, but I had to limit the maximum frequency to
600MHz in order to keep the fan from running. It makes a
decent 8-core server, though it hurts to see it hindered in this
way. I’ve only recently gotten my hands on the C2, but it looks
like a winner in the long term. It just needs a bit of time before
64-bit software becomes matures enough.

Your hardware and software expertise is very well received in your
ODROID Magazine articles and personal blog. How did you be-
come so proficient?

The most important thing that I learned during my engineer-
ing degree was how to break a big problem into smaller, more
manageable problems. Also, if you want to learn or solve some-
thing, you usually have to do your homework and try to simplify
the problem as much as you can. It also helps if you document
your progress. Because I’m a forgetful person, I usually write
down the steps to some of the solutions. I have found that years
later, when I’m faced with the same problem, I stumble over my
own posts and get to thank myself for writing them. Having
worked with Linux for over 16 years has taken me through a lot
of issues and problems. Persistence alone leads to experience.

What innovations would you like to see in future Hardkernel prod-
ucts?

Designing and building an embedded platform that is cost-
effective and caters to the needs of most users must be a very chal-
lenging task. It is normal for ARM devices to be less flexible and
more limited than conventional PCs because of the way they are
built (general purpose vs specialized embedded board). So, I’m
not going to ask for SATA and PCI, but I’d like to see a passively
cooled ODROID with USB3 and Gigabit Ethernet, which would
make a great NAS. I know that Hardkernel is looking into ways to
make the XU4 passively cooled, and I hope they succeed.

What hobbies and interests do you have apart from computers?
I enjoy exploring new places, going on bicycle rides,

reading, and watching movies with my wife. I like learning
new things about science, space and technology. The kids

MEET AN ODROIDIAN

like to keep me busy while I’m home, so you can say I’m also
an avid Lego builder.

What advice do you have for someone want to learn more about pro-
gramming?

Learning programming today is much easier than it was 20
years ago. A new programmer has high-level languages to choose
from, with tons of libraries and tutorials. However, this wide se-
lection can be daunting: what’s the best language to learn, and
what can you do with it? I’d recommend starting with Python,
which is versatile, easy to learn and has lots of helpful libraries. I’m
a Perl fan because it used to be cool back in my day.

Don’t be afraid to write bad code in the beginning, which is
normal and helps you learn from your mistakes. It’s crucial to
have a project or goal that you’re interested in which keep you
motivated. It also helps if you keep writing code after you’ve
learned, so that you won’t forget it. Instead of copying and
pasting examples, you should type them in to help you learn
the syntax. Choose meaningful variable and function names,
and make sure to write comments in your code. You shouldn’t
write what the code does, because a programmer can simply
read the code, but instead describe why the code is doing what
it is doing. This is valuable information after two months when
you’ve forgotten all about it. Also, spend some time looking
for libraries which already do what you want to do, because
most of the time, problems have been already solved, and it’s
counterproductive to reinvent the wheel.

Once you’ve learned the basics of programming, you can eas-
ily learn the syntax of a different language, which should take
1-2 weeks, which lets you explore some more. The concepts
of object-oriented programming, model-view-controller, and
other programming paradigms are usually the same between
languages. There is a difference between low-level and high-level
programming languages. The former requires you to have better
understanding of how microprocessors work and how memory is
aligned and allocated, and should be used when writing programs
that need to be efficient. The latter hides a lot of the complexi-
ties of a micro-computer and lets you get the job done quickly,
with less headaches. There are great resources online to help you
get started, such
as Coursera and
CodeAcademy,
so what are you
waiting for?

program and
compile while
having fun!

ODROID MAGAZINE 33

