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Foreword:
Welcome to the first edition

G'day pythonistas. Welcome to 
the  first  edition  of  the  The 
Python Papers. 

This  journal  came  about  from 
the  conspicuous  absence  of  a 
vehicle for quality-reviewed art-
icles  around  which  a  comm-

unity  may  be  structured.  In  order  to  enc-
ourage people who may be using Python in an 
amateur  context,  in  their  profession  or 
academically,  a  community  is  required such 
that  current  knowledge  may  be  propagated 
and contribution encouraged.

Therefore the first task at hand is I  think to 
describe  the  purpose  and  scope  of  this 
magazine.

The Python Papers  represents  the  efforts  of 
Australian  (indeed  Melbournian)  Python  en-
thusiasts who are excited by the technology 
and  want  to  help  it  flourish.  Despite  the 
common hometown of the editorial board, it is 
hoped that the journal will reach a worldwide 
audience.

In  finding  and  including  content,  we  are 
looking to mix in reader stories and feedback, 
articles  addressing  specific  areas  of  python 
(such as recipes) etc, code reviews of problem 
code,  and  also  peer-reviewed  academic 
articles.

As  we  are  only  a  small  team,  we  rely  on 
reader support to drive content and take part 
in  bringing each edition of  the magazine to 
fruition.

This  edition,  perhaps  understandably,  draws 
its content from those near to (and including!) 
the  editorial  team.  It  is  hoped  that  this 
offering  will  encourage  others  to  contribute 
articles so that we can expand our horizons.

This journal offers a forum for both informal 
and formal publication, so that whatever the 
level of interest, readers and authors can be 
engaged.

Oh, and don't forget to check out our blog for 
regular announcements:

http://pythonpapers.org/diary

We welcome feedback in the blog comments.

Introducing The Team

Tennessee Leeuwenburg – Editor-in-Chief

Tennessee Leeuwenburg is a software develo-
per working at the Australian Bureau of Met-
eorology  on  automatic  text  generation  of 
weather forecasts. Prior to this he spent time 
working  on  meteorological  data  transfer 
standards  in  the  form  of  the  OpenDAP 
database system.

Maurice Ling – Associate Editor

Maurice  Ling  is  a  PhD  candidate  in  the 
department  of  Zoology  of  the  University  of 
Melbourne  working  on  text  analysis  of  bio-
logical  literature  for  the  purpose  of  under-
standing hormone interactions in the mouse 
mammary cell.

Richard Jones – Associate Editor

Richard is  Common Ground's Senior Software 
Developer  with  10  years'  broad  experience 
working with multiple languages and tools in 
web-based  management  systems,  data  ar-
chive, meta-data systems, business systems, 
e-commerce  and  communications.  He  also 
runs  the  bi-annual  PyWeek Game  Program-
ming  Challenge and  is  involved  with  the 
organisation of the  Open Source Developer's 
Conference in Melbourne, Australia.

Mike DeWhirst – Technical Assistant

Mike  has  been  very  helpful  in  providing 
mailing  list  facilities  and  collaboration  tools 
while setting up this publication.

Stephanie Chong – Design Assistant

One of Stephanie's first comments on the The 
Python  Papers was  “how  can  we  make  it 
prettier?” We hired her on the spot.

Stephanie  is  currently  studying  Arts/Law  at 
the University of Melbourne.
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Python Coding Idioms pt 1 – class interfaces
Tennessee Leeuwenburg

The first things to come to grips with in any programming 
language are its basics – how to achieve tasks like calling 
a  method,  creating  a  class,  reacting  to  user  input  and 
creating data structures.

This can get you so far,  but without some more subtle 
tools in the box, it can leave you with a series of ad-hoc 
solutions which do not read naturally (by this I mean have 
obvious  meaning)  and,  quite  likely,  result  in  inefficient 
behavior.

This article will concentrate on coding idiom, in particular 
that of using consistent ways for declaring methods within 
python  code  for  indicating  additional  information  about 
their intended use. By adopting this idiom it is possible to tell at a glance which methods of a 

class  are  intended  for  public  consumption, 
and which relate more to internal use.

Let's jump straight into an example (see Text 
2).

Here we can see a class which represents a 
payment in a fictional ordering system. The 
payment  class  contains  a  trigger  for  its 
processing  and  rules  for  performing  that 
processing.

What is not obvious at first glance is which of 
those methods are intended for other aspects 
of  the system to interact with directly,  and 
which  of  those  methods  are  related  to  the 
internal  processing  logic.  This  article  will 
describe  a  habit  which,  if  adopted,  can 
provide  an  at-a-glance  way  to  make  that 
distinction.  Such  a  distinction  is  useful  in 
learning how to use a new piece of code (for 
example,  extending  and  inheriting  from an 
unfamiliar class) and also for documentation 
purposes. The effects of this on the final code 
will also be shown.

In 
short:

● 'Interface' methods are presented without a prefix
● 'Internal'  methods  which  may  be  over-ridden  are 

prefixed by a single underscore
● 'Private'  methods  are  prefixed  by  a  double 

underscore

This is consistent with PEP-81, and is basically a subset of it. PEP-8's goals are to cover coding 
style, which is a larger topic than this article can tackle. 

To make a brief diversion, however, coding style is something which is often only appreciated 
after some time spent programming. This is because its effects are seldom seen within small or 

1 “Style Guide for Python Code”, Guido van Rossum: http://www.python.org/dev/peps/pep-0008/

     ( .)id ·i ·om n
2.2. The specific grammatical,  syntactic, 
and  structural  character  of  a  given 
language.

...

5.  A  style  of  artistic  expression 
characteristic  of  a  particular  individual,  
school,  period or  medium:  the  idiom of 
the French impressionists; the punk rock 
idiom.

Text 1: Source: dictionary.com

class NewPayment:

    def __init__(self, payment_info, callbacks):
        self.payment_info = payment_info
        self.callbacks = callbacks

    def process(self):
        '''
            Processes the payment into the financial system
        '''

        self.recordPayment()
        self.despatchOrder()
        self.sendConfirmation()
        self.concludePayment()

    def recordPayment():
        '''
            Make a permanent record of the payment in the database
        '''
        pass

    def despatchOrder():
        '''
            Despatch order to the processing subsystem
        '''
        pass

    def concludePayment():
        '''
            Clean up object references, call any callbacks
        '''

        for callback in self.callbacks:
            callback.callback(self)

Text 2: Initial ordering system without suggested notation

'   ?What s a PEP

A  PEP  is  a  Python  Enhancement  Proposal. 
These documents make up what information 
is available to the community, covering new 
features, design decisions and other aspects 
of Python development. They are available 
at http://www.python.org/dev/peps/
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self-contained  projects,  but  rather  become  apparent  when  examining  code  years  later, 
adapting  someone else's  code,  or  in  small  efficiency  gains  which  come from having good 
programming habits generally.

The resulting code is shown (left,  Text 3) and 
methods  can  be  easily  categorised  into 
interface and internal methods.

process()  is  an external  method, intended for 
use  by  other  classes  and  is  part  of  the 
interface.

_recordPayment(),  _despatchOrder()  and 
_concludePayment()  are  all  intended  for 
internal  processing.  They  may  still  be 
overridden  or  accessed,  as  may  all  python 
methods,  however  they  are  clearly 
distinguished from the interface.

For a developer approaching this code for the 
first time, it is immediately apparent which of 
the methods he should call in order to trigger 
processing of a payment, and which methods 
can be left alone.

Similarly,  should  a  bug  be  present  in  one 
aspect of the order processing, it is easy to see 
that  it  will  lie  within  one  of  the  internal 

methods.

class NewPayment:

    def __init__(self, payment_info, callbacks):
        self.payment_info = payment_info
        self.callbacks = callbacks

    def process(self):
        '''
            Processes the payment into the financial system
        '''

        self._recordPayment()
        self._despatchOrder()
        self._sendConfirmation()
        self._concludePayment()

    def _recordPayment():
        '''
            Make a permanent record of the payment in the database
        '''
        pass

    def _despatchOrder():
        '''
            Despatch order to the processing subsystem
        '''
        pass

    def _concludePayment():
        '''
            Clean up object references, call any callbacks
        '''

        for callback in self.callbacks:
            callback.callback(self)

Text 3: New ordering system code with underscore notation
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An Anthological Review of Research Utilizing MontyLingua: 
a Python-Based End-to-End Text Processor
Maurice HT Ling

Department of Zoology, The University of Melbourne, Australia

Correspondence: mauriceling@acm.org

Abstract
MontyLingua,  an  integral  part  of  ConceptNet  which  is  currently  the  largest  commonsense 
knowledge base, is an English text processor developed using Python programming language in 
MIT Media Lab. The main feature of MontyLingua is the coverage for all aspects of English text 
processing  from raw input  text  to  semantic  meanings  and summary  generation,  yet  each 
component in MontyLingua is loosely-coupled to each other at the architectural and code level, 
which enabled individual components to be used independently or substituted. However, there 
has been no review exploring the role of MontyLingua in recent research work utilizing it. This 
paper  aims to  review the  use  of  and roles  played by MontyLingua and its  components  in 
research  work  published  in  19  articles  between  October  2004  and  August  2006.  We had 
observed a diversified use of MontyLingua in many different areas, both generic and domain-
specific.  Although the  use  of  text  summarizing  component  had not  been observe,  we are 
optimistic that it will have a crucial role in managing the current trend of information overload 
in future research.

   Categories and Subject Descriptors
H.5.2 [  User Interfaces]: Natural Language
I.2.7 [   Natural Language Processing]: Language Parsing

1. Introduction
MontyLingua (web.media.mit.edu/~hugo/montylingua/) is a natural language processing engine 
primarily developed by Hugo Liu in MIT Media Labs using the Python programming language, 
which is entitled as “an end-to-end natural  language processor with common sense  ” (Liu, 
2004). It  is an entire suite of individual tools catering to all aspects of English text processing, 
ranging from raw text to the extraction of semantic meanings and summary generation; thus, 
end-to-end.  Commonsense  is  incorporated  into  MontyLingua's  part-of-speech  (POS)  tagger, 
MontyTagger, as contextual rules.

MontyTagger was previously released by Hugo Liu as a standalone Brill-styled (Brill, 1995) POS 
tagger  in  2002 but  is  now packaged with  other  components  forming MontyLingua.  A  Java 
version of MontyLingua, built using Jython, had also been released.  MontyLingua is also an 
integral  part  of  ConceptNet  (Liu  and  Singh,  2004),  presently  the  largest  commonsense 
knowledge  base  (Hsu and Chen,  2006),  as  a  text  processor  and understander,  as  well  as 
forming an application programming interface (API) to ConceptNet. At the same time, it had 
also been incorporated into Minorthird, a collection of Java classes for storing text, annotating 
text,  and  learning  to  extract  entities  and  categorize  text,  written  by  William W.  Cohen  in 
Carnegie Mellon University (Cohen, 2004).

To date, there were only 2 modules specifically written to process English text using Python: 
MontyLingua and NLTK (Loper and Bird, 2002). NLTK (Natural Language Toolkit) was developed 
by Edward Loper (University of Pennsylvania) and Steven Bird (The University of Melbourne) 
with the  main purpose of  teaching computational  linguistics  to  computer  science students 
(Loper  and  Bird,  2002).  Thus,  NLTK  is  more  of  a  text  processing  library  from which  text 

http://web.media.mit.edu/~hugo/montylingua/
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processing engines, such as MontyLingua, could be developed from, rather than a suite of 
usable tools. This implied that MontyLingua could be re-implemented using NLTK but had not 
been done. Another popular text processor is GATE (Cunningham, 2000), which was developed 
in  Java.  The  main  difference  between  GATE  and  MontyLingua  is  that  GATE  is  a  template 
processing engine rather than natural language processing. 

ConceptNet and MontyLingua, as well as 15 applications of ConceptNet, had been previously 
been  described (Liu and Singh, 2004). However, there has not been any review since October 
2004 updating the state-of-the-art use of either ConceptNet or MontyLingua. At the same time, 
there has not been any review examining the roles played by MontyLingua and its components 
in recent research work, especially post-October 2004. This paper aims to review the use of 
and roles played by MontyLingua and its  components in  research work published between 
October 2004 and August 2006.

The rest of this paper is organized as follows: Section 2 describes the distinctive feature and 
main components of MontyLingua. In Section 3, we review 23 research publications, that were 
published between October 2004 and August 2006, for the role played by MontyLingua and its 
component in these research. Section 4 discusses some trends observed in these research. 
However, it is not the aim of this paper to describe MontyLingua itself or the works using it, at 
the source code level.

2.    Distinctive Feature of MontyLingua
The distinctive feature of MontyLingua is the coverage for all aspects of English text processing 
from raw input text to semantic meanings and summary generation, yet each component in 
MontyLingua is  loosely-coupled to each other at  the architectural  and code level.  This had 
enabled MontyLingua to be used in 3 different contexts: (1) as a suite of tools for processing 
text  to  semantic  meaning  and  summary  generation;  (2)  decouple  each  component  of 
MontyLingua for individual use; (3) using MontyLingua as a baseline system and substituting 
components to cater to specific applications. The end result of (2) and (3) may be the same but 
the approaches are philosophically different. The rest of this section will focus on the individual 
components making up MontyLingua and how (2) and (3) can be fulfilled.

MontyLingua  consists  of  six  components:  MontyTokenizer,  MontyTagger,  MontyLemmatiser, 
MontyREChunker, MontyExtractor, and MontyNLGenerator. MontyTokenizer, which is sensitive 
to  common  abbreviations,  separates  the  input  English  text  into  constituent  words  and 
punctuations. Common contractions are resolved into their un-contracted form. For example, 
“you're” is resolved to “you are”. MontyTagger is a Penn Treebank Tag Set (Marcus et al., 1993) 
part-of-speech (POS) tagger based on Brill tagger (Brill, 1995) and enriched with commonsense 
in the form of contextual rules. MontyLemmatiser strips any inflectional morphology from each 
word. That is, verbs are reduced to infinite form and nouns to singular form. MontyREChunker 
reads the POS sequence and identifies semantic phrases (adjective, noun, verb, prepositional) 
using a series of Regular Expressions. MontyExtractor extracts phrases and subject-verb-object 
triplets from the chunked text. Lastly, MontyNLGenerator uses the output of MontyExtractor to 
generate text summaries.

At code level, each component resides in a file and is standalone. This feature enables each of 
the six components to be used individually. In some of the research articles reviewed in Section 
4 below, MontyTagger was used on its own. On the other hand, it also means that each of the 
six components can be easily substituted to cater to specific applications. The simplest way to 
do this is to modify the jist method in the class MontyLingua (file: MontyLingua.py) as follows: 
The jist method illustrates the end-to-end process of MontyLingua.

   def jist(self,text):
        sentences = self.split_sentences(text)
        tokenized = map(self.tokenize,sentences)
        tagged = map(self.tag_tokenized,tokenized)
        chunked = map(self.chunk_tagged,tagged)
 #      print "CHUNKED: " + string.join(chunked,'\n  ')
        extracted = map(self.extract_info,chunked)
        return extracted



The Python Papers, Volume 1, Issue 1 7

The  input  text  is  tokenized,  tagged,  chunked  by  MontyTokenizer,  MontyTagger,  and 
MontyREChunker respectively before phrase and subject-verb-object triplets are extracted by 
MontyExtractor.  Substituting  each  of  these  component  is  little  more  than  re-directing  the 
execution to the substituted component and back.

3.     Anthology of Applications Utilizing MontyLingua
Six research articles were retrieved from ACM Digital Library using “montylingua” as the search 
term. A search using Google (search term: +montylingua +.pdf) added another 13 to the list; 
consisting of 1 doctoral dissertation, 1 masters dissertation, 2 technical reports, and 9 articles. 
This  section  will  briefly  describe the  role  of  MontyLingua in  each of  these 19 publications 
published between October 2004 and August 2006 in chronological order.

3.1. '     Chandrasekaran s Adaptive Multimodal Language Acquisition
(Chandrasekaran,  2004) attempted  to  develop  a  language  acquisition  system  through 
multimodal input. The system tries to initiate a dialog with the users to learn nouns, verbs, or 
adjectives. Text input were POS tagged by MontyTagger to identify nouns, verbs, or adjectives. 

3.2. ATHENS
ATHENS system (Skillicorn and Vats, 2004), developed in Queen's University, Canada, is a web-
mining tool for information discovery. A case study on extracting knowledge on terrorism was 
presented. The authors extracted 9 clusters of information which summarized the events as of 
September 12, 2001 using the search terms “al Qaeda” and “bin Laden”. After retrieving a list 
of web-pages through Google WebAPI, MontyTagger was used to generate a list of nouns, which 
was then filtered for a list of discriminatory nouns by comparison to the relative frequency in 
British National Corpus (www.natcorp.ox.ac.uk). A page-page Jaccard similarity matrix (Bradeen 
and Havey, 1995) was computed using the frequencies of discriminatory nouns on each page 
which  considered  multiple  search  terms  (2  search  terms  in  this  case).  Finally,  a  2-pass 
clustering was performed – first on the entire set of retrieved web-pages, followed by clustering 
within each of the top level clusters. A list of descriptive nouns were generated for each cluster. 
Iterative search can be done using the list of descriptors for each cluster.

3.3. HyperPipes
Eisenstein and Davis (2004) attempted to develop a human gesture classifier, HyperPipes, into 
4  categories  (deictic,  action,  other,  unknown)  using  only  linguistics  information.  A  set  of 
manually classified gestures with the corresponding transcribed speech were extracted from 9 
persons (not physics or mechanically trained) describing 3 objects: a latchbox, a piston, and a 
pinball  machine.  MontyLingua was used for  POS tagging and stemming of  the  transcribed 
speech.  A  number  of  features  were  extracted  from MontyLingua-processed  text,  including 
unigrams, bigrams and trigrams. Comparing a baseline classification where all  gestures are 
deictic  (48.7% accurate),  HyperPipes achieved an accuracy of  66%. This  was compared to 
Naïve  Bayes  (59%),  C4.5  (56%)  and  SVM  (56%).  This  was  also  compared  to  manual 
classification  with  only  audio  information,  that  is,  humans  listening  to  the  speech  without 
watching the video footage, which only achieved 45% accuracy.

3.4.  . .'    Udani et al s Noun Sense Induction
Word sense induction refers to inferring contextual senses of an ambiguous word (words with 
multiple  meanings)  which  is  a  crucial  aspect  of  text  understanding.  Udani  et.  al.  (2005) 
attempted  to  advance  this  field  by  bootstrapping  on  the  the  large  body  of  contextual 
information available online for sense induction of nouns. MontyLingua was used to tag and 
stem the first 500 research result titles and snippets from Google for clustering. The system 
was  evaluated  on  5  terms and demonstrated  85.7% accuracy  in  noun sense induction  as 
compared to the random chance of 31.6% accuracy.

http://www.natcorp.ox.ac.uk/
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3.5.      MontyTagger as a Teaching Tool
Light et. al. (2005) observed increasing numbers of non-computer science student interested in 
learning  about  natural  language  processing.  However,  these  students  had  difficulty  in 
understanding programming and Unix to use computational linguistics tools effectively. Light 
et.  al.  (2005) constructed  a  web-based  interface  to  nine  computational  linguistic  tools, 
including MontyTagger.

3.6.      TextProcessing of Economics Literature
Nee Jan van Eck's  masters  dissertation at  the Econometric  Institute of  Erasmus University 
Rotterdam focused on text processing of economics literature for the purpose of extracting 
economics-relevant terms and presenting it as a concept map linking these terms  (van Eck, 
2005, van Eck and van den Berg, 2005). MontyLingua was used to tokenize, POS tag, and stem 
economics literature prior to linguistics and statistical filtering for relevant terms.

3.7. Metafor
Metafor was developed as a structure generation tool to convert everyday English language 
into Python codes (Liu and Lieberman, 2005), which is a common task for programmers who 
need to implement requirements into systems. MontyLingua was used to process input text 
into subject-verb-object(s)  triplets which were anaphorically  dereferenced using ConceptNet 
(Liu and Singh, 2004). Programmatic entities forming the core generated codes were performed 
in three parts. Firstly, a set of semantic recognizers were used over the subject-verb-object(s) 
triplets  to  identify  code  structures,  such  as  lists,  quotes,  and  if-else  structures.  Secondly, 
actions or changes to the extracted code structures were identified which would be used to 
form the  class  functions.  Lastly,  the  context  of  the  actions  were  identified.  That  is,  which 
actions affect which objects. These programmatic entities were then used to generate Python 
codes. Although it is not likely that the generated Python code is executable, Metafor is likely to 
be adopted as a brainstorming tool according to a case study done by the authors  (Liu and 
Lieberman, 2005).

3.8.   '     -   Richardson and Fox s Concept Map Based Cross Language Resource Learning
Concept map was described by Joseph Novak as “graphical representations of knowledge that 
are comprised of concepts and the relationships between them”  (Novak and Gowin, 1984) 
which  had  been  shown to  facilitate  a  student's  learning  process  (McNaught  and  Kennedy, 
1997).  Richardson and Fox  (2005) examined the role of concept maps as a cross-language 
learning resource by giving a set of articles written in Spanish and their English translations to 
a control group of student, whereas the experimental group received the same materials as the 
control group supplemented with concept maps produced by domain experts. The experimental 
group performed significantly better than the control suggesting the advantage of having a 
concept map. MontyTagger was used to extract nouns which were subsequently used to form 
the nodes on the concept automatically in further experiments but the authors did not evaluate 
the differences in the nodes of the concept maps produced by domain experts and that of 
MontyTagger.

3.9. QABLe
 QABLe  (Question-Answering  Behavior  Learner)  used  prior  learning  and  problem  solving 
strategies (Tadepalli and Natarajan, 1996) in text understanding for question and answer (Grois 
and Wilkins, 2005b, Grois and Wilkins, 2005a). MontyTagger was used for both processing of 
text, which was to be understood, and the questions. A prior system, Deep Read (Hirschman et 
al., 1999), was evaluated using Remedia Corpus (a collection of 115 children's stories provided 
by Remedia Publications). Using the same corpus, QABLe achieved 48% accuracy, compared to 
36% by Deep Read (Grois and Wilkins, 2005b, Grois and Wilkins, 2005a).

3.10.        2005Arizona State University BioAI group in TREC
The Text Retrieval Conference (TREC) Genomic Track 2005 is an ad-hoc document retrieval task 
in 5 different areas of 10 instances each. The Arizona State University BioAI group (Yu et al., 
2005) chose to use Apache Lucene (lucene.apache.org) to retrieve abstracts from PubMed, 
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which  were  POS  tagged  using  MontyTagger  and  anaphorically  resolved.  Facts  from  the 
processed abstracts were extracted by template matching. Evaluations by TREC were based on 
the top 10 and 100 retrieved abstracts respectively. Yu et. al.  (Yu et al., 2005) achieved 27% 
precision and 11% precision on the top 10 and 100 abstracts respectively.

3.11. SkillSum
Reiter and Dale said that “the goal of many NLG [natural language generation] systems is to 
produce  documents  which  are  as  similar  as  possible  to  documents  produced  by  human 
experts”  (Reiter  and  Dale,  2000).  One  of  the  difficulties  is  to  decide  what  goes  into  the 
generated document, the context selection rules, and it is also known that corpora of expert-
written text may not form the gold standards as expert may disagree or vary in opinions (Reiter 
and  Sripada,  2002).  From  a  set  of  skills  test  results  and  authored  evaluations,  SkillSum 
attempted to derive context rules (Williams and Reiter, 2005). MontyLingua was used to parse 
authored evaluations to identify message types (Geldof, 2003), followed by Rhetorical Structure 
Theory analysis. A trial by the authors suggested that users preferred SkillSum's report over 
basic numerical test scores (Reiter and Dale, 2000).

3.12. ,   '        Kennedy Natsev and Chang s Query Class Induction for Multimodal Video Search
One of the more sophisticated forms of search techniques is multimodal search which assumes 
the set of items to be searched takes on different roles and specific search techniques, when 
applied, could improve overall retrieval performance. For example, a video clip in a collection 
could be searched by title and subject classification (metadata), qualities of image or contents 
of image (visual cues), dialogue or speech (audio cues),  and subtitles (text). In multimodal 
search,  an  important  aspect  is  to  be  able  to  classify  the  search  queries  and  studies  in 
multimodal video retrieval had used pre-defined classes (Chua et al., 2004, Yan et al., 2004). 
Kennedy, Natsev and Chang  proposed a framework for multimodal search without prior need 
to  define  query  classes  by  semantic  analysis  of  the  input  query  (Kennedy  et  al.,  2005). 
MontyLingua was used for POS tagging and stemming of the input query before constructing it 
into an OKAPI query (Robertson et al., 1992). An improvement of 18% was realized over using 
pre-defined query classes  (Chua et al., 2004, Yan et al., 2004) by evaluating using TRECVID 
2004 (Robertson et al., 1992).

3.13.  Memsworldonline
Memsworldonline  (Zhang et al.,  2006a) was developed for  information retrieval  in  domain-
specific digital libraries on microelectromechanical systems by using a combination of Formal 
Concept  Analysis  (Priss,  1996) and  information  anchors.  Information  anchors  are  common 
concepts in the field which allowed for  examination into community  dynamics  (Troy et al., 
2006) or emerging trends (Kontostathis et al., 2003). For example, this paper is an information 
anchor  for  MontyLingua (topic  area).  Other  possible  anchors  are  authors  (related areas  of 
expertise)  and institutions  (research  directions).  Information  anchors  essentially  consists  of 
keywords, key phrases, metadata, and inter-document relationships. MontyLingua was used in 
Memsworldonline to extract nouns, noun phrases, and sub-phrases in documents as one of the 
means to derive information anchors. These information anchors formed an ontology to classify 
documents.

3.14.  PEPURS
With increasing use of digital libraries comes the problem of author ambiguity  (Torvik et al., 
2005),  as  author  names  could  be  written  in  various  forms  of  initials  and  more  than  one 
published authors may share the same initial. PEPURS attempted to advance the field of author 
name clarification by analyzing author's websites for publication records and segmenting these 
records into appropriate data fields  (Zhang et al., 2006b). Each publication record is tagged 
twice, once by a purpose-built tagger, and by MontyTagger. These were then used as input for 
B-classifier  and  P-classifier  running  in  parallel  to  segment  the  publication  records  before 
merging  the  results  from  the  classifiers  using  a  decision  tree  (Mitchell,  1997).  The  three 
classifiers ran as a stacked generalization procedure (Wolpert, 1992). 
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3.15.     -   Automatic Construction of Domain Specific Concept Structures
Libo Chen's doctoral dissertation at  Technischen Universitat Darmstadt focused on automatic 
construction of domain-specific concept structures (Chen, 2006) in response to the problem of 
vocabulary mismatch in web search (Blair, 1986, Furnas et al., 1987) by constructing domain-
specific concepts and linking these terms. MontyTagger was used to POS tag web-pages prior to 
concept extraction.

3.16.  Red Opal
Feature selection of online product reviews is an important aspect of online shopping (Liu et al., 
2005). Red Opal  (Scaffidi, 2006) used a probability-based algorithm in feature selection, and 
comparing that to a support-based algorithm (Liu et al., 2005). MontyLingua was used for POS 
tagging  and  stemming  of  online  product  reviews  before  processing  by  each  of  the  two 
algorithms  for  feature  selection.  The  speed  of  MontyLingua's  POS  tagging  and  stemming 
averaged at 301 milliseconds per review, with the fastest being 250 milliseconds, on a single 
3GHz Pentium 4 processor with 1GB of RAM, running Windows XP Professional SP 2 and Sun's 
J2RE 1.4.2 with 250MB heap size.

3.17.   '       Hsu and Chen s Commonsense Query Expansion for Image Retrieval
Hsu  and  Chen  (2006) investigated  the  usefulness  of  commonsense  knowledge  in  image 
retrieval  which  had  been  used  previously  in  query  expansion  (Liu  and  Lieberman,  2002). 
MontyLingua was used for POS tagging and stemming of the initial query before commonsense 
query expansion by ConceptNet  (Liu and Singh, 2004). From the evaluation results using the 
ImageCLEF 2005 test collection (Clough et al., 2005), the authors concluded that introducing 
commonsense knowledge into the retrieval task is suitable for precision-oriented tasks  (Hsu 
and Chen, 2006).

4. Discussion
MontyLingua  was  released  in  2004  (Liu,  2004) and  was  described  in  October  2004  with 
ConceptNet  (Liu and Singh, 2004).  In the same paper,  15 applications of ConceptNet were 
featured. Since then, the state-of-the-art use of either ConceptNet or MontyLingua and roles 
played by MontyLingua and its components in recent research work had not been reviewed. 
This paper aims to review the use of and roles played by MontyLingua and its components in 
research work published between October 2004 to August 2006.

Of the 17 research reports reviewed, all had used MontyTagger for POS tagging, 8 of them had 
used MontyLemmatiser for stemming, and only 2 (Metafor and Memsworldonline) had used 
MontyREChunker  and  MontyExtractor.  None  of  the  reviewed  work  seems  to  have  used 
MontyNLGenerator for text summarization. 

An interesting observation is the use of MontyTagger in a wide context, such as web-pages 
(Skillicorn and Vats, 2004, Udani et al., 2005), transcribed human speech (Eisenstein and Davis, 
2004), economics papers  (van Eck, 2005, van Eck and van den Berg, 2005), and biomedical 
papers (Yu et al., 2005), despite the fact that MontyTagger was generically trained using Wall 
Street Journal corpus. This might suggest that MontyTagger could be used in various context, 
which is reflected in daily life where a non-legally trained person might still be able to read 
legal text intelligently despite some inability to grasp the total meaning as appear to a legally 
trained person. However, it had been shown that a generically trained POS tagger will perform 
inadequately on domain-specialized text, such as biomedical literature (Tateisi and Tsuji, 2004). 
In spite of this, MontyTagger had been used in specialized sitting (van Eck, 2005, van Eck and 
van den Berg, 2005, Yu et al., 2005) which might suggest that the numerical measurement of 
POS  tagging  accuracy  may  not  correlate  with  the  “functional”  POS  tagging  accuracy.  For 
example, the word “book” can be tagged as “noun, base form” (NN) or “noun, singular form” 
(NNS) but may be treated as an error when calculating POS tagging accuracy as the quotient 
between the number of correctly tagged tokens and the total number of tokens.

Only 2 of the systems had used MontyREChunker and MontyExtractor. Metafor had used them 
to gain semantic understanding of daily written language while Memsworldonline used them to 
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process domain-specific text. Despite a small sample size of 2, a supportive case could be 
made  for  the  use  of  MontyREChunker  and  MontyExtractor  in  both  generic  text  (Liu  and 
Lieberman, 2005) and domain-specific text (Zhang et al., 2006a).

In this review, we did not observe any applications of MontyNLGenerator. However, it is likely 
that text summary may have a role in future in managing the current trend of information 
overload.  It  is  plausible  that  future  research  will  place  greater  emphasis  on  summary 
generation of domain-specific libraries as a whole or in a time-striated fashion, as an extension 
of  Memsworldonline.  Web  search  could  use  natural  language  generation  techniques  to 
summarize the results on-the-fly. Natural language generation could extend Metafor  (Liu and 
Lieberman, 2005) to include  automated generation source code documentation. This could 
then be used to identify code architectures and algorithms which is one of the problems in 
program optimization by algorithm replacement (Metzger and Wen, 2000).

In summary, we had reviewed 19 articles published between October 2004 and August 2006 
for the roles played by MontyLingua or its components in these studies, thereby updating the 
state-of-the-art utility of MontyLingua. We had observed a diversified use of MontyLingua in 
many  different  areas,  both  generic  and  domain-specific.  Although  the  use  of  the  text 
summarizing component had not been observed, we are optimistic that it will have a crucial 
role in managing the current trend of information overload in future research.
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Python Events
Tennessee Leeuwenburg

OSDC 2006: Melbourne, December 5th-8th 2006

“The  Open  Source  Developers'  Conference  is  a  conference  designed  for  developers,  by 
developers. It covers numerous programming languages across a range of operating systems.  
Talks vary from introductory pieces through to the deeply technical. With three talks on at any  
time, spanning over three days; there is bound to be something of interest to any developer.”

This  is  the  major  event  in  the  year's  Python  calendar,  with  a  major  component  of  the 
presentations being from Python developers. Anthony Baxter (Python's release manager) is a 
keynote speaker and will be looking at Python 3.0, IronPython (mono) and PyPy.

From the list of papers, a few immediately grab attention. “An Introduction to Plone: An Open 
Source Content Management System” and “A Rails/Django Comparison” should provide web-
oriented Python developers with a good overview of available technologies. “Python 3.0” will 
be on everyone's menu, as we look forward to language changes which all will need to be 
aware of in times to come. 

For more information, visit http://www.osdc.com.au/

Presentation Authors
Automatic Text Generation and Weather Forecasting Leeuwenburg, Tennessee 
A Rails/Django Comparison Green, Alan and

Askins, Ben 
Development of Mono Applications with Agile Languages Rees, Mark 
Accessing Relational Databases with Python Todd, Andy 
RESTful Software Development and Maintenance Hyland-Wood, David 
Python in Mozilla Hammond, Mark 
What's New In Python: 2006 Edition Baxter, Anthony 
The Planet Feed Reader: Better Living Through Gravity Gardiner, Mary 
An Introduction to Plone: An Open Source Content Management System Aune, Nate 
What's Old Is New Again Jones, Richard 
Shiny, Pretty Things Jones, Richard 
Overview of Python ctypes Holkner, Alex 
Python 3.0 (keynote) Baxter, Anthony 
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