
Version 4.0

Advanced Linux

The Linux Shell and Toolkit

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

tuxcademy – Linux and Open Source learning materials for everyone
www.tuxcademy.org ⋅ info@tuxcademy.org

This training manual is designed to correspond to the objectives of the LPI-102 (LPIC-1, version
4.0) certification exam promulgated by the Linux Professional Institute. Further details are
available in Appendix C.

The Linux Professional Institute does not endorse specific exam preparation materials or tech-
niques. For details, refer to info@lpi.org.

The tuxcademyproject aims to supply freely available high-quality trainingmaterials on
Linux and Open Source topics – for self-study, school, higher and continuing education
and professional training.
Please visit http://www.tuxcademy.org/! Do contact us with questions or suggestions.

Advanced Linux The Linux Shell and Toolkit
Revision: grd2:3c9f6dc34a335deb:2015-08-05

grd2:6eb247d0aa1863fd:2015-08-05 1–12, B–C
grd2:FcCTs1UMUhEQK5JN9VsKMJ

© 2015 Linup Front GmbH Darmstadt, Germany
© 2015 tuxcademy (Anselm Lingnau) Darmstadt, Germany
http://www.tuxcademy.org ⋅ info@tuxcademy.org
Linux penguin “Tux” © Larry Ewing (CC-BY licence)

All representations and information contained in this document have been com-
piled to the best of our knowledge and carefully tested. However, mistakes cannot
be ruled out completely. To the extent of applicable law, the authors and the tux-
cademy project assume no responsibility or liability resulting in anyway from the
use of this material or parts of it or from any violation of the rights of third parties.
Reproduction of trade marks, service marks and similar monikers in this docu-
ment, even if not specially marked, does not imply the stipulation that these may
be freely usable according to trademark protection laws. All trademarks are used
without a warranty of free usability and may be registered trade marks of third
parties.

This document is published under the “Creative Commons-BY-SA 4.0 Interna-
tional” licence. You may copy and distribute it and make it publically available as
long as the following conditions are met:

Attribution You must make clear that this document is a product of the tux-
cademy project.

Share-Alike You may alter, remix, extend, or translate this document or modify
or build on it in otherways, as long as youmake your contributions available
under the same licence as the original.

Further information and the full legal license grant may be found at
http://creativecommons.org/licenses/by-sa/4.0/

Authors: Tobias Elsner, Anselm Lingnau
Technical Editor: Anselm Lingnau ⟨anselm@tuxcademy.org⟩
English Translation: Anselm Lingnau
Typeset in Palatino, Optima and DejaVu Sans Mono

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

Contents

1 Shell Generalities 13
1.1 Shells and Shell Scripts 14
1.2 Shell Types . 14
1.3 The Bourne-Again Shell 16

1.3.1 The Essentials 16
1.3.2 Login Shells and Interactive Shells. 17
1.3.3 Non-Interactive Shell 18
1.3.4 Permanent Configuration Changes 19
1.3.5 Keyboard Maps and Abbreviations 20

2 Shell Scripts 23
2.1 Introduction. 24
2.2 Invoking Shell Scripts 24
2.3 Shell Script Structure 26
2.4 Planning Shell Scripts 27
2.5 Error Types . 28
2.6 Error Diagnosis . 29

3 The Shell as a Programming Language 31
3.1 Variables . 32
3.2 Arithmetic Expressions. 38
3.3 Command Execution 38
3.4 Control Structures 39

3.4.1 Overview . 39
3.4.2 A Program’s Return Value as a Control Parameter 40
3.4.3 Conditionals and Multi-Way Branches 42
3.4.4 Loops . 46
3.4.5 Loop Interruption 49

3.5 Shell Functions. 51
3.5.1 The exec Command 52

4 Practical Shell Scripts 55
4.1 Shell Programming in Practice 56
4.2 Around the User Database 56
4.3 File Operations. 60
4.4 Log Files . 62
4.5 System Administration 68

5 Interactive Shell Scripts 73
5.1 Introduction. 74
5.2 The read Command 74
5.3 Menus with select 76
5.4 “Graphical” Interfaces Using dialog 80

4 Contents

6 The sed Stream Editor 87
6.1 Introduction. 88
6.2 Addressing . 88
6.3 sed Commands . 90

6.3.1 Printing and Deleting Lines 90
6.3.2 Inserting and Changing 91
6.3.3 Character Transformations 91
6.3.4 Searching and Replacing 92

6.4 sed in Practice . 93

7 The awk Programming Language 97
7.1 What is awk? . 98
7.2 awk Programs . 98
7.3 Expressions and Variables 100
7.4 awk in Practice . 104

8 SQL 113
8.1 Foundations of SQL 114

8.1.1 Summary . 114
8.1.2 Applications of SQL 115

8.2 Defining Tables . 117
8.3 Data Manipulation and Queries 118
8.4 Relations . 123
8.5 Practical Examples 125

9 Time-controlled Actions—cron and at 131
9.1 Introduction. 132
9.2 One-Time Execution of Commands 132

9.2.1 at and batch . 132
9.2.2 at Utilities . 134
9.2.3 Access Control 134

9.3 Repeated Execution of Commands 135
9.3.1 User Task Lists 135
9.3.2 System-Wide Task Lists 136
9.3.3 Access Control 137
9.3.4 The crontab Command 137
9.3.5 Anacron . 138

10 Localisation and Internationalisation 141
10.1 Summary. 142
10.2 Character Encodings. 142
10.3 Linux Language Settings 146
10.4 Localisation Settings 147
10.5 Time Zones . 151

11 The X Window System 157
11.1 Fundamentals . 158
11.2 X Window System configuration 163
11.3 Display Managers. 169

11.3.1 X Server Starting Fundamentals 169
11.3.2 The LightDM Display Manager. 170
11.3.3 Other Display Managers 172

11.4 Displaying Information. 173
11.5 The Font Server . 175
11.6 Remote Access and Access Control 177

5

12 Linux Accessibility 181
12.1 Introduction. 182
12.2 Keyboard, Mouse, and Joystick 182
12.3 Screen Display . 183

A Sample Solutions 185

B Regular Expressions 199
B.1 Overview. 199
B.2 Extras . 200

C LPIC-1 Certification 203
C.1 Overview. 203
C.2 Exam LPI-102 . 203
C.3 LPI Objectives In This Manual 204

D Command Index 209

Index 211

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

List of Tables

3.1 Reserved return values for bash . 40

5.1 dialog’s interaction elements . 80

6.1 Regular expressions supported by sed and their meaning 89

10.1 The most common parts of ISO/IEC 8859 143
10.2 LC_* environment variables . 149
10.3 Daylight Saving Time (DST) in Germany 152

B.1 Regular expression support . 201

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

List of Figures

3.1 A simple init script . 45

4.1 Which users have a particular primary group? (Improved version) 58
4.2 In which groups is user 𝑥? . 60
4.3 Mass file name extension changing 62
4.4 Watching multiple log files . 66
4.5 df with bar graphs for disk use . 70

5.1 A dialog-style menu . 81
5.2 A dialog-capable version of wwtb . 85

8.1 A database table: Famous spaceship commanders from films 114
8.2 Famous spaceship commanders from films (normalised) 115
8.3 The complete schema of our sample database 117
8.4 The calendar-upcoming Script . 128

11.1 The X Window System as a client-server system 158

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

Preface

This manual is intended for advanced Linux users. It enables them to use the sys-
tem in a more productive way. Building on the tuxcademy manual Introduction to
Linux or equivalent knowledge, it provides a thorough introduction to advanced
uses of the Bource shell and shell programming. Numerous practical examples
illustrate these principles. Further topics include the stream editor sed, the awk

programming language, and relational database access with SQL.
Finally the document discusses scheduled command execution with the at and

cron facilities, provides an introdunction to internationalisation and localisation
of Linux systems, explains the use and administration of the graphical X11 Win-
dowing interface, and, last but not least, gives a summary of Linux’s accessibility
features.

Thismanual assumes that its readers knowhow to enter commands at the com-
mand line and are familiar with the most common Linux commands (roughly the
material of the LPI-101 exam). Being able to use a text editor is another impor-
tant prerequisite. System administration skills are a definite plus, but they are not
absolutely necessary. Some parts of this document are only interesting to system
administrators, though.

Finishing this manual successfully (or gathering equivalent knowledge) is a
prerequisite for the tuxcademymanual Linux System Administration II, other man-
uals that build on it, and a certification with the Linux Professional Institute.

This courseware package is designed to support the training course as effi-
ciently as possible, by presenting the material in a dense, extensive format for
reading along, revision or preparation. The material is divided in self-contained
chapters detailing a part of the curriculum; a chapter’s goals and prerequisites chapters

goals

prerequisites

are summarized clearly at its beginning, while at the end there is a summary and
(where appropriate) pointers to additional literature or web pages with further
information.

B Additional material or background information is marked by the “light-
bulb” icon at the beginning of a paragraph. Occasionally these paragraphs
make use of concepts that are really explained only later in the courseware,
in order to establish a broader context of the material just introduced; these
“lightbulb” paragraphs may be fully understandable only when the course-
ware package is perused for a second time after the actual course.

A Paragraphs with the “caution sign” direct your attention to possible prob-
lems or issues requiring particular care. Watch out for the dangerous bends!

C Most chapters also contain exercises, which aremarkedwith a “pencil” icon exercises

at the beginning of each paragraph. The exercises are numbered, and sam-
ple solutions for the most important ones are given at the end of the course-
ware package. Each exercise features a level of difficulty in brackets. Exer-
cises marked with an exclamation point (“!”) are especially recommended.

Excerpts from configuration files, command examples and examples of com-
puter output appear in typewriter type. In multiline dialogs between the user and
the computer, user input is given in bold typewriter type in order to avoid misun-
derstandings. The “�����” symbol appears where part of a command’s output

12 Preface

had to be omitted. Occasionally, additional line breaks had to be added to make
things fit; these appear as “�
�”. When command syntax is discussed, words enclosed in angle brack-
ets (“⟨Word⟩”) denote “variables” that can assume different values; material in
brackets (“[-f ⟨file⟩]”) is optional. Alternatives are separated using a vertical bar
(“-a |-b”).

Important concepts are emphasized using “marginal notes” so they can be eas-Important concepts

ily located; definitions of important terms appear in bold type in the text as welldefinitions
as in the margin.

References to the literature and to interesting web pages appear as “[GPL91]”
in the text and are cross-referenced in detail at the end of each chapter.

We endeavour to provide courseware that is as up-to-date, complete and error-
free as possible. In spite of this, problems or inaccuracies may creep in. If you
notice something that you think could be improved, please do let us know, e.g.,
by sending e-mail to

info@tuxcademy.org

(For simplicity, please quote the title of the courseware package, the revision ID
on the back of the title page and the page number(s) in question.) Thank you very
much!

LPIC-1 Certification

These trainingmaterials are part of a recommended curriculum for LPIC-1 prepa-
ration. Refer to Appendix C for further information.

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

1
Shell Generalities

Contents

1.1 Shells and Shell Scripts 14
1.2 Shell Types . 14
1.3 The Bourne-Again Shell 16

1.3.1 The Essentials 16
1.3.2 Login Shells and Interactive Shells. 17
1.3.3 Non-Interactive Shell 18
1.3.4 Permanent Configuration Changes 19
1.3.5 Keyboard Maps and Abbreviations 20

Goals

• Learning the basics of shells and shell scripts
• Being able to distinguish login, interactive and non-interactive shells
• Knowing the methods of bash configuration

Prerequisites

• Familiarity with the Linux command line interface
• File handling and use of a text editor

grd2-shellallgemein.tex (6eb247d0aa1863fd)

14 1 Shell Generalities

1.1 Shells and Shell Scripts

The shell allows you to interact with a Linux system directly: You can state com-shell

mands that are evaluated and executed by the shell—usually bymeans of starting
external programs. The shell is also called a “command interpreter”.command interpreter

In addition, most shells include programming language features—variables,
control structures such as conditionals, loops, functions, and more. Thus you can
place complex sequences of shell commands and external program calls in text
files and have them interpreted as shell scripts. This makes difficult operationsshell scripts

repeatable and reoccuring processes effortless.
The Linux system uses shell scripts for many internal tasks. For example, the

“init scripts” in /etc/init.d are generally implemented as shell scripts. This also
applies to many system commands. Linux makes it possible to hide the fact that a
“system program” is not directly-executable machine code but a shell script from
its users, at least as far the invocation syntax is concerned—if you dowant to know
for sure, you can of course find out the truth, for example using the file command:

$ file /bin/ls

/bin/ls: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),�

� for GNU/Linux 2.2.0, dynamically linked (uses shared libs),�

� stripped

$ file /bin/egrep

/bin/egrep: Bourne shell script text executable

Exercises

C 1.1 [!2] What could be the advantages of implementing a command as shell
script rather than a binary program? The disadvantages? Under which cir-
cumstances would you opt for a shell script rather than a binary program?

C 1.2 [3] How many commands in your Linux system’s /bin and /usr/bin di-
rectories are implemented as shell scripts? Give a command pipeline that
will answer this question. (Hint: Use the find, file, grep, and wc commands.)

1.2 Shell Types

The canonical shell on Linux is the GNU project’s “Bourne-Again Shell” (bash).bash

It is largely compatible to the first usable shell of Unix history (the Bourne shell)
and to the POSIX standard. Traditionally, other shells are also used, such as the C
shell (csh) from BSD and its improved successor, the Tenex C shell (tcsh), the Korncsh

tcsh shell (ksh) and some others. These shells differ to a greater or lesser extent in their
ksh features and possibilities as well as their syntax.

B With shells, one can identify two big incompatible schools of thought,
namely the Bourne-like shells (sh, ksh, bash, …) and the C-Shell-like shells
(csh, tcsh, …). The Bourne-Again Shell tries to integrate the most important
C shell features.

As a user, you can decide for yourself which shell to use. Either you start theWhich shell for what?

shell of your dreams by means of an appropriate program invocation, or you set
up that shell as your login shell, which the system will start for you when you log
in. Remember that your login shell is specifiedwithin the user database (generally
in /etc/passwd). You can change your login shell entry using the chsh command:

$ getent passwd tux

tux:x:1000:1000:Tux the Penguin:/bin/bash:/home/tux

1.2 Shell Types 15

$ chsh

Password: secret

Changing the login shell for tux

Enter the new value, or press return for the default

Login Shell [/bin/bash]: /bin/csh

$ getent passwd tux

tux:x:1000:1000:Tux the Penguin:/bin/csh:/home/tux

$ chsh -s /bin/bash

Password: secret

$ getent passwd tux

tux:x:1000:1000:Tux the Penguin:/bin/bash:/home/tux

You can specify the desired shell directly using the -s option; otherwise you will
be asked which shell you want.

B With chsh, you may pick from all the shells mentioned in the /etc/shells file /etc/shells

(provided that they are actually installed on your systems—many distribu-
tors put all shells availablewith the distribution into /etc/shells, irrespective
of whether the package in question has been installed or not.)

You can find out which shell you are currently running by looking at the value current shell

of the $0 shell variable:

$ echo $0

/bin/bash

Regardless of which shell you use interactively, you can also pick the shell(s)
for your shell scripts. Several considerations influence this:

• It is of course tempting to use the interactive shell for shell scripts, too. Af-
ter all, you just need to put into a file whatever you otherwise would type
interactively. However, this may imply two disadvantages: Firstly, it pre-
sumes that your shell is installed wherever you want to run the shell script
later on—depending on the shell in question, this is a problem or not. Sec-
ondly, some shells are useful interactively but not particularly suitable for
shell scripts, and vice-versa.

B The C shell has a loyal following as far as interactive use is concerned,
but for shell scripts it has been deprecated due to its numerous imple-
mentation errors and syntactic inconsistencies (see [Chr96]). Although
the TenexC shell is not quite as bad, some reserve seems to be indicated
even there.

• In many cases, you will do well to exercise moderation as far as the shell to
be used is concerned, for example by restricting yourself in your scripts to
the functionality mandated by POSIX rather than use all the (convenient)
bash extensions that are available. This is, for example, important for init
scripts—on many Linux systems, the Bourne-Again Shell is the standard
shell, but there are many conceivable environments where it is left out
in favour of less obese shells. A script that claims to be a “Bourne shell
script” and is started as such by the system should therefore not contain
“bashisms”; if you do use special bash features, you should explicitly label
your script as a “bash script”. You will see how to do this in Chapter 2.

Incidentally: Often it is not the shell which restricts the portability of a shell script, portability: shell vs. programs

but the external programs invoked by the shell. Thesemust of course also be avail-
able on the “target system”, and behave in the same way as on your system. As
long as you are only using Linux, this is not a big problem—but if you use a Linux
system to develop scripts for proprietary Unix systems, you may be in for some
nasty surprises: The GNU versions of the standard utilities such as grep, cat, ls,

16 1 Shell Generalities

sed, … not only offer more and more powerful options than the implementations
you are likely to find onmost proprietaryUnices, but also contain fewer errors and
arbitrary limits (e. g., as far as the maximum length of input lines is concerned).
Moderation is the word here, too, if you are not sure that you will always be using
the GNU tools.

B For illustration, consider an arbitrary configure script from any free software
package (configure scripts are shell scriptswritten formaximumportability).
For your own sake, please do not do this immediately before or after a meal.

The following chapters concentrate on the Bourne-Again Shell, which does not
imply that their contents would not be applicable, to a large extent, to other shells.
Special bash features are, where possible, designated as such.

Exercises

C 1.3 [!1] Try to find out which shells are installed on your system.

C 1.4 [!2] Invoke—if you have it—the Tenex C shell (tcsh), enter a command
with a small typo and press ↩ .—How do you return to your old shell?

C 1.5 [!1] Change your login shell to a different one (e. g., tcsh). Checkwhether
it worked, for example, by logging in on a different virtual console. Reset
your login shell to its original value.

1.3 The Bourne-Again Shell

1.3.1 The Essentials

The Bourne-Again Shell (or bash) was developed under the auspices of the Free
Software Foundation’s GNU project by Brian Fox and Chet Ramey and includes
Korn shell and C shell features.

B Since the Korn shell is an enhanced Bourne shell, and in a way bash repre-
sents the return of the (traditionally C-shell-using) BSDworld to the Bourne
concepts, the name “Bourne-Again shell”—phonetically indistinguishable
from “born-again Shell”—is appropriate.

A more extensive introduction to the Bourne-Again Shell’s interactive use is
provided by the Linup Front training manual Introduction to Linux for Users and
Administrators. We will reiterate only the most important points:

Variables Like most shells, the Bourne-Again Shell supports variables that canvariables

be set andwhose values can be recalled. Variables are also used to configure
many aspects of the shell’s operation, e. g., the shell searches for executable
programs in the directories listed in PATH, or uses the PS1 variable to output
a command prompt. You will find out more about variables in Section 3.1.

Aliases The alias command allows you to abbreviate a longer sequence of com-
mands. For example, by means of

$ alias c='cal -m; date'

$ type c

c is aliased to `cal -m; date'

you can define the new “command” c. Whenever you invoke “c”, the shell
will execute the cal command with the -m, followed by the date command.
This alias may also be used within other alias definitions. You may evenalias

“redefine” an existing command using an alias: The

1.3 The Bourne-Again Shell 17

$ alias rm='rm -i'

alias would “defang” the rm command. However, this is of questionable use:
Once you have got used to the “safe” variant, you may count on it even in
places where this alias has not been set up. Thus it is better to come upwith
a new name in the case of potentially dangerous commands.
By means of alias (without arguments) you can display all currently active
aliases. The unalias command will delete a single alias (or all of them). unalias

Functions If you needmore than simple textual replacement aswith aliases, func-
tions may be helpful. You will learn more about functions in Section 3.5.

The set Command The internal set command not only displays all shell variables set

(if invokedwithout a parameter), but can also set bash options. For example,
with “set -C” (or, equivalently, “set -o noclobber”) you can prevent output
redirection from overwriting an existing file.
With “set -x” (or “set -o xtrace”) you can watch the steps that the shell is
taking to reach a result:

$ set -x

$ echo "My $HOME is my castle"

+ echo 'My /home/tux is my castle'

My /home/tux is my castle

If, instead of a “-”, an option is introducedwith a “+”, the option in question
will be switched off.

1.3.2 Login Shells and Interactive Shells

Not all shells are created equal. Of course the Bourne-Again Shell differs from
a C or Korn shell, but even one bash process’s behaviour may differ from that of
another one, depending on how the shell had been started.

There are three basic forms: login shell, interactive shell, and non-interactive
shell. These differ in the configuration files that they read.

Login shell You obtain this type of shell immediately after logging in to the sys-
tem. The program starting the shell, i. e., login, “su -”, ssh, etc., passes the shell a
“-” as the first character of its programname. This tells the shell that it is supposed
to be a login shell. Immediately after looking in, things should look like

$ echo $0

-bash

$ bash Manual bash invocation, no login
$ echo $0

bash

Alternatively, you can invoke bash using the -l option for it to behave like a login
shell.

Every Bourne-like shell (not just the Bourne-Again Shell) executes the com-
mands in the /etc/profile file first. This enables system-wide login settings for, /etc/profile

e. g., environment variables or the umask.

B If your installation uses the Bourne-Again Shell as well as the Bourne shell,
you must make sure in /etc/profile to use only those instructions that are
supported by the Bourne shell. Alternatively, you can check on a case-by-
case basis whether the file is being processed by a Bourne shell or a bash. If
it is a bash, the BASH environment variable will be defined.

18 1 Shell Generalities

After this, the Bourne-Again Shell looks for the .bash_profile, .bash_login, and
.profile files in the user’s home directory. Only the first file found to exist will be.profile

processed.

B This behaviour, too, stems from the Bourne-Again Shell’s Bourne shell com-
patibility. If you can access your home directory from various machines,
some of which support bash and others just the Bourne shell, you can put
bash-specific configuration settings into the .bash_profile file in order not to
confuse a Bourne shell, which only reads .profile. (You can read .profile

from the .bash_profile file.)—Alternatively, you canuse the BASH environment
variable approach in the .profile file, as outlined above.

B The .bash_login name derives from the C shell tradition. However, a C shell
.login file, if it exists, will be ignored by bash.

If you quit a login shell, it will process the .bash_logout file in the home directory
(if it exists).

Interactive Shell If you invoke the Bourne-Again Shell without file name argu-
ments (but possibly with options) and its standard input and output channels are
connected to a “terminal” (xterm and friends suffice), it sees itself as an interactiveinteractive shell

shell. As such, on startup it reads the /etc/bash.bashrc file as well as the .bashrc file/etc/bash.bashrc

.bashrc in your home directory and executes the commands contained therein.

B Whether an interactive shell reads /etc/bash.bashrc is, in fact, a compile-time
option. The most common distributions, including the SUSE distributions
and Debian GNU/Linux, enable this option.

When quitting an interactive shell that is not a login shell, no files are being pro-
cessed.

1.3.3 Non-Interactive Shell

Non-interactive shells do not process any files when started or terminated. You
can pass such a Bourne-Again Shell a file name to evaluate using the BASH_ENV en-
vironment variable, but this is normally not used.

A shell is non-interactive if it is used to execute a shell script, or if a program
avails itself of a shell to run another program. This is the reason why commands
like

$ find -exec ll {} \;

find: ll: No such file or directory

fail: find starts a non-interactive shell to execute ll. Even though ll is available on
many systems, it is just an alias for “ls -l”. As such, it must be defined in every
shell since aliases are not passed on to child processes. Non-interactive shells do
not normally read configuration files containing alias definitions.

Distribution Idiosyncrasies The strict separation between login shells and “nor-
mal” interactive shells implies that youwill have to set some configuration options
both in .profile as well as .bashrc for them to be effective in every shell. To remove
this error-prone duplication of work, many distributions have a line in the default
.profile file reading something like

~/.profile

test -r ~/.bashrc && . ~/.bashrc

1.3 The Bourne-Again Shell 19

which results in the following: If .bashrc exists and is readable (test …), then (&&)
the .bashrc file will be processed (“.” is a shell command that reads the file as if
its contents had been typed in at that point—see

Possibly your distribution’s bash was compiled to read some more files as well.
You can check this using strace; it lists all system calls posted by another com-
mand, including the open call to open a file. Only this lets you be sure which files
the shell looks at.

Exercises

C 1.6 [!2] Convince yourself that your bash uses the /etc/profile, /etc/bash.

bashrc, ~/.profile, and ~/.bashrc files as described above. Investigate all de-
viations.

C 1.7 [1]Howdoes a shell process notice that it is supposed to be a login shell?

C 1.8 [3] How would you set up a shell as your login shell if it is not listed in
/etc/shells?

1.3.4 Permanent Configuration Changes

Individual Customisations Individual customisations of your working environ-
ment only “keep” until the end of your shell process. If you want your changes
to be re-instated when you log in again, you must take care that the shell executes
them on startup. Environment variables, aliases, shell functions, the umask, etc.
must be set in one of the files listed inAbschnitt 1.3.2—the question is just inwhich
one?

In the case of aliases, the answer is easy. Since they are not inherited, theymust
be set by every shell individually. Hence you must set aliases in the ~/.bashrc file.
(For the alias to work in the login shell as well, you must enter it in ~/.profile,
too—unless the ~/.bashrc file is not read from there as mentioned above.)

Other good candidates for .bashrc are those variables that control the shell’s
behaviour (PS1, HISTSIZE, etc.) but are of no further interest, i. e., not environment
variables. If you want each shell to start “fresh”, you must reset these variables
every time, which may be done from .bashrc.

Things are different with environment variables. These are generally set once,
just like changes of keyboard configuration and similar settings. Therefore it
suffices to define them in .profile. Constructions such as

PATH=$PATH:$HOME/bin

(which appends a directory to the PATH variable) should not go into ~/.bashrc, since
the variable’s value would become bigger time and again.

B If your system boots into runlevel 5, so that logins are handled by the X
display manager, you do not have a proper login shell. For your settings to
be taken into account nonetheless, you should put them into ~/.xsession, or
read the .profile file from there.

System-Wide Changes As the system administrator, you can put settings that ap-
ply to all users into the /etc/profile and /etc/bash.bashrc files. Most Linux distribu-
tors have taken precautions for these settings to survive a software update: SUSE,
for example, recommends u sing the /etc/profile.local and /etc/bash.bashrc.local,
which are read from within their respective sister files.

Another vehicle for global changes is the /etc/skel directory, the “skeleton” of /etc/skel

a home directory that is copied for new users when you invoke useradd with the
-m option. All files and directories contained in there become part of the default
content of the new home directory.

If you put a .bashrc file such as

20 1 Shell Generalities

System-wide settings; please do not modify:

test -r /etc/bash.local && . /etc/bash.local

Insert individual customisations here:

in /etc/skel, you can make changes in /etc/bash.local that apply to all users.
Of course you can put additional pre-made configuration files for arbitrary

other programs, directory hierarchies, etc. in /etc/skel.

Exercises

C 1.9 [!1] Install the helloworld alias for the “echo Hello world” command such
that it is availablewithin your login shell aswell as all your interactive shells.

C 1.10 [!1] Install the helloworld alias for the “echo Hello world” command such
that it is available within all login shells and interactive shells of all users.

C 1.11 [2] Ensure that you can invoke helloworld even fromyour non-interactive
shells.

1.3.5 Keyboard Maps and Abbreviations

The Bourne-Again Shell uses various keyboard abbreviations to enable command
line editing and access special features.

Even more extensive customisations are possible through the .inputrc file in.inputrc

your home directory aswell as the /etc/inputrc file (for system-wide settings). This
file is the configuration file for the readline library, which is used by the Bourne-
Again Shell (among other programs). For example, the readline library enables
searching the command line history using Ctrl + r .

The readline settings apply both to virtual terminals and theGUI. All the details
are contained in readline(3); we confine ourselves to some examples. If you put the
lines

Control-t: tab-insert

Control-e: "cal\C-m"

into .inputrc, then pressing Ctrl + t will insert a tab character, which the shell
normally does not let you use since the tab key is already spoken for. Pressing
Ctrl + e starts a macro, in this case the characters “cal” followed by Ctrl + m

(represented by “\C-m”), which corresponds to pressing ↩ .
Changes in this file only apply if you have set the INPUTRC environment variable

to $HOME/.inputrc and start a new bash, or if you execute the “bind -f ~/.inputrc”
command.

Commands in this Chapter

bash The “Bourne-Again-Shell”, an interactive command interpreter
bash(1) 14

chsh Changes a user’s login shell chsh(1) 14
file Guesses the type of a file’s content, according to rules file(1) 14
find Searches files matching certain given criteria find(1), Info: find 14
strace Logs a process’s system calls strace(1) 18

1.3 Bibliography 21

Summary

• The shell allows users to interact with the Linux system by means of text-
based commands. Most shells have programming language features and
allow the creation of “shell scripts”.

• A Linux system uses shell scripts in many places.
• There is a multitude of shells. The default shell on most Linux distributions
is the GNU project’s “Bourne-Again Shell”, or bash.

• The Bourne-Again Shell combines features of the Bourne and Korn shells
with some of the C shell.

• The Bourne-Again Shell (like most shells) behaves differently depending on
whether it was started as the login shell, an interactive or a non-interactive
shell.

• User-specific settings for the Bourne-Again Shell can be put in one of the
~/.bash_profile, ~/.bash_login, or ~/.profile files as well as the ~/.bashrc file.

• System-wide settings for all users can be made in the /etc/profile and /etc/

bash.bashrc files.
• Customised keyboard mappings can be configured in ~/.inputrc and /etc/

inputrc.

Bibliography

Chr96 Tom Christiansen. “Csh Programming Considered Harmful”, October
1996. http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

2
Shell Scripts

Contents

2.1 Introduction. 24
2.2 Invoking Shell Scripts 24
2.3 Shell Script Structure 26
2.4 Planning Shell Scripts 27
2.5 Error Types . 28
2.6 Error Diagnosis . 29

Goals

• Knowing the purpose and basic syntax of shell scripts
• Being able to invoke shell scripts
• Understanding and specifying #! lines

Prerequisites

• Familiarity with the Linux command line interface
• File handling and use of a text editor
• Basic shell knowledge (e. g., from Chapter 1)

grd2-skripte.tex (6eb247d0aa1863fd)

24 2 Shell Scripts

2.1 Introduction

The unbeatable advantage of shell scripts is: If you can handle the shell, you canadvantage

program! Shell scripts always come in useful for automating a task that youmight
as well have performed interactively “by hand”. Conversely, you can always use
the shell’s “scripting” features on the command line. This not only makes testing
various constructions a lot easier, but can also frequently render an actual script
quite unnecessary.

Shell scripts are helpful in lots of places. Wherever the same commands wouldareas of use

have to be entered over and over again, it is worth writing a shell script (for exam-
ple, when repeatedly searching for and processing files that have certain proper-
ties). Shell scripts are most often used, however, to simplify complex tasks such
as the automatic starting of network services. As a rule, shell scripting is less
about writing sophisticated or beautiful programs, but to make one’s own work
easier. Which does not mean that you should develop poor programming style—
comments and documentation do not suddenly start to make sense when other
people want to use and understand your scripts, but are helpful even to you if
you return to your scripts after a while.

However, you should not overstrain shell scripts: Wherevermore complex datadisadvantages

structures are necessary or efficiency or security are essential, “real” program-
ming languages are usually a wiser choice. Besides the “classical” languages such
as C, C++, or Java, the modern “scripting languages” like Tcl, Perl, or Python are
worth considering.

2.2 Invoking Shell Scripts

A shell script can be started in different ways. Most straightforwardly, you can
simply pass its name to a shell as a parameter:

$ cat script.sh

echo Hello World

$ bash script.sh

Hello World

This is quite dissatisfying, of course, since users of your script need to be aware on
the one hand that it is a shell script (rather than an executable machine language
program or a script for the Perl programming language), and on the other hand
that it must be executed using bash. It would be nicer if the command to start your
script looked like the command to start any other program. For this, you must
make your script “executable” using chmod:

$ chmod u+x script.sh

Afterwards, you can start it directly using

$./script.sh

B Shell script files do not just need to be executable, but also readable (as per
the r privilege). Mere executability is sufficient for machine programs that
exist as binary code.

If you want to get rid of the unaesthetic “./”, you must make sure that the
shell can locate your script. For example, you might add “.”—the current work-
ing directory, whichever it is—to the command search path (the PATH environment
variable). However, this is not a good idea for security reasons (especially not for
root) as well as inconvenient, since you may well want to invoke your script from

2.2 Invoking Shell Scripts 25

another directory than the one containing the script file. It is best to create a di-
rectory like $HOME/bin to hold frequently used shell scripts, and add that directory
to your PATH explicitly.

The third way of invoking a shell script consists of executing the script in the
current shell rather than a child process. You can do this using the “source” com-
mand or its abbreviated form, “.”:

$ source script.sh

Hello World

$. script.sh

Hello World

(Please note that, in the abbreviated form, there must be a space character after
the dot). A script that was started in this way can access all of the current shell’s
context. While a script started as a child process cannot, for instance, change the
current directory or umask of your interactive shell, this is quite possible for a
script started directly using source. (In other words: A script invoked using source

behaves as if you were typing the script commands directly into your interactive
shell.)

B Thismethod is particularly important if youwant to be able to access, within
a shell script, shell functions, variables or aliases defined in another shell
script—such as a “library”. If that script was executed in a child process, as
usual, you would not be able to profit from the definitions therein!

When naming your shell scripts, you should aim formeaningfulmonikers. You naming shell scripts

may also want to append a file name extension such as “.sh” or “.bash” to make
it obvious that your files contain shell scripts. Or you may decide to dispense
with the extensions. However, they do make sense especially when experiment-
ing, since obvious names such as test or script are already spoken for by system
commands.

B As mentioned before, you should restrict the “.sh” extension to scripts that
actually run with a Bourne shell (or compatible shell), i. e., that do not make
use of special bash features.

Exercises

C 2.1 [!2] Create a text file called myscript.sh that might, for example, output
a message using “echo”, and make this file executable. Make sure that the
three invocation possibilities

$ bash myscript.sh

$./myscript.sh

$ source myscript.sh

work according to the description above.

C 2.2 [!1] What method does the login shell use to read the /etc/profile and
$HOME/.bash_profile child process or “source”?

C 2.3 [2] A user comes to you with the following complaint: “I have written
a shell script and when I start it nothing at all happens. But I’m writing
a message to standard error output at the very beginning! Linux sucks!”
After very close interrogation the user admits to having called his script
test. What has happened?

C 2.4 [3] (Tricky.) How would you arrange for a shell script to be executed in
a child process, while still being able to change the current directory of the
invoking shell?

26 2 Shell Scripts

2.3 Shell Script Structure

Shell scripts are really just sequences of shell commands that have been stored in a
text file. The shell can take its input either from the keyboard (standard input) or
another source, such as a shell script file—there is no difference as far as executing
commands is concerned. For example, line breaks serve as command separators,line breaks

much like on the “real” command line.
Some readability hints: While youmight, for convenience, enter something like

⟨command1⟩ ; ⟨command2⟩

on the command line, you should normallywrite one commandper line in a script,
for clarity’s sake:

⟨command1⟩
⟨command2⟩

There is no difference when it comes to executing the commands.
You can further increase the readability of a script by judicious use of blank

lines, which are ignored by the shells—just like on the command line. The shell
also ignores anything following a hash sign (“#”). This lets you comment yourcomments

scripts:

Command1 comes first

⟨command1⟩
⟨command2⟩ # This is command2

Longer scripts should start with a comment block containing the name of thecomment block

script, its purpose and how it works, how to invoke it, etc. The author’s name
and a version history might also appear there.

Text files marked as executable using chmod are considered scripts for the /bin/sh

shell—on Linux systems, this is frequently (but not always) a synonym for bash.
To be sure, shell scripts should begin with a line starting with the “#!” charac-
ter sequence followed by the name of the desired shell as an absolute path. For
example:

$ cat script

#!/bin/bash

�����

This will use the specified shell to execute the script, by appending the script’s file
name to the given shell name as a parameter. The bottom line in our example is
that the Linux kernel executes the command

/bin/bash script

B The program executing the script does not need to be a shell in the strict
sense—every binary executable is eligible. Thatway, you could, for instance,
write “awk scripts” (Refcha:grd2-awk).

B On Linux, the “#!” line may be at most 127 bytes long and may also con-
tain parameters in addition to the program name; the script name will in
any case be appended to the end. Note that proprietary Unix systems often
enforce much narrower limits, for example, a total length of 32 bytes and
at most one option parameter. This can lead to difficulties if you want to
execute a Linux shell script on a proprietary Unix system.

2.4 Planning Shell Scripts 27

Exercises

C 2.5 [!1] What output do you expect if the executable script baz containing
the commands

#!/bin/echo foo bar

echo Hello World

is executed via the “./baz” command?

C 2.6 [2] What is a better choice for the first line of a shell script— “#!/bin/sh”
or “#!/bin/bash”?

2.4 Planning Shell Scripts

Anyone with the least programming experience has made the saddening expe-
rience: Programs are seldom correct at the first try. The “debugging” of sizable
programs takes lots of time and effort. The well-known programmer and author
Brian W. Kernighan states the following:

Everyone knows that debugging is twice as hard aswriting a program
in the first place. So if you’re as clever as you can be when you write
it, how will you ever debug it?

Thus, careful planning, proceeding step-by-step, and knowledge of themost com-
mon sources of errors are recommended.

Most often, you end up writing a shell script because you want to automate simple scripts

some particular task. In this case, the purpose of the script is fairly clear-cut, and
you also know roughly which commands to execute in what order. To write the
script, an evolutionary approach is often helpful. Which means: You write all evolution

the commands to a file that you would have entered con the command line, and
then connect them in some sensible way. For example, you could introduce con-
ditionals or loops, if these make the script more readable, more fault-tolerant, or
more universal. Also, you should put the names of frequently-used files (such as
log files) in variables and then only use the variables. Command line parameters
can be inspected and used to insert elements that change between invocations; of
course you should then check the completeness and plausibility of these parame-
ters and output warnings or error messages if necessary.

You can also use the “evolutionary” approach for larger programs, by starting larger programs

intuitively with the most obvious method and develop the script based on that.
The big disadvantage is that it is easy to commit a conceptual error, and the ensu-
ing changes make for a lot of unnecessary work.

Therefore, you should in every case begin with a rough outline containing all outline

the probable steps—this makes it easier to check whether the concept contains
logical errors. It is perfectly adequate to list these steps in “natural language”
rather than shell code; you canworry about the actual commands and their syntax
later on.

Another advantage of this planned approach is that you can decide for each
single stepwhich commands aremost appropriate, for examplewhether youwant
to use simple filter commands, awk or even a Perl script …

Agood plan, though, does not help youmuch if, after a fewmonths, you notice
that something about the script needs improved, but that you no longer under-
stand the script. If you do take the trouble of making a plan, it is best to put it in
the actual script—not (just) in the shape of commands, but bymeans of comments.
You should stop yourself from commenting every single command, preferring in-
stead to provide a higher-level view and, in particular, concentrating on the data
flow and the format of the script’s input and output: Often the required process-
ing steps follow fairly automatically from the definition of a program’s input and

28 2 Shell Scripts

output, while the converse is by no means as obvious. It is also never wrong to
create external documentation (such as manual pages) for larger programs.documentation

A good plan has structure. There is nothing wrong with expressing this struc-
ture inside the program text, for example by using indentation. This means thatindentation

commands on the same “logical” level have the same distance from the left edge
of the screen (or window). You can use tabs or space characters to indent but you
should try to be consistent.

Exercises

C 2.7 [!2] Youwant to create a shell script that will display the date and time of
the last login of each “real” user of your system (no administrative accounts
such as root or bin), as well as the disk space used by their home directories.
How would you order the following steps to obtain a reasonable “plan” for
a shell script?

1. Output 𝑢, 𝑡 and 𝑝
2. Determine the time 𝑡 of 𝑢’s last login.
3. End of the repetition.
4. Determine the amount 𝑝 of disk space used by 𝑣.
5. Construct a list of all “real” users.
6. Determine the home directory 𝑣 of 𝑢.
7. Repeat the following steps for each user 𝑢 in the list.

C 2.8 [2] Design a plan for the following task: In a big installation, the home
directories are distributed across various disks (imagine that the home di-
rectories are called /home/develop/hugo or /home/market/susie, for hugo from de-
velopment and susie from marketing). Periodically, you want to check to
what extent the disks containing the various home directories are utilised;
the test script should send you e-mail if 95% or more of at least one disk’s
capacity is used. (We ignore the existence of LVM.)

2.5 Error Types

Fundamentally, you can distinguish two different kinds of errors:

Conceptual errors These aremistakes concerning the logical structure of the pro-
gram. It can be very costly to recognise and repair these errors, and they are
best avoided in the first place—by careful planning.

Syntax errors These errors occur all the time. All it takes is a simple typograph-
ical error in the program text: One character forgotten, and nothing works
any longer. Many syntax errors can be avoided if you proceed from the
simple to the specialised when writing the script. For example, in a paren-
thesised mathematical expression, you should enter both parentheses first,
before typing their content. Then, forgotten parentheses are old hat. The
same applies to control structures: Never place an if without also putting
the fi on the line below. A good editor featuring “syntax highlighting” is
an important tool for the early avoidance of such “structural” syntax errors.
Of course, you can still make mistakes when typing command names or
options or when defining or using shell variables. (Your editor will not
help you here.) This is a clear disadvantage of the shell versus “traditional”
programming languages with a fixed syntax which will be painstakingly
checked and, if necessary, complained about by a language compiler. Since
there is no compilation and, hence, no checking of your program, you must
pay particular attention to testing your script systematically, to ensure that,

2.6 Error Diagnosis 29

if possible, all script lines, branches of conditionals, etc., are actually taken.
This consideration implies that shell scripts beyond a certain “critical mass”
of some hundreds or thousands of lines are no longer really manageable—
you should really consider using at least a script languagewith better syntax
checking, such as Perl or Python.

The remainder of the chapter deals mostly with a discussion of the most com-
mon syntax errors and their correction.

2.6 Error Diagnosis

Aswe have said, most errors only become apparent when the program is running.
Therefore you should try to test your scripts as frequently as possible during de- testing

velopment. You should avail yourself of a “testing environment”, especially if the
script changes existing files.

B For example, if you want to edit configuration files below /etc, write your
script such that all references to files like /etc/…arewritten like $ROOT/etc/….
For testing, you can set the ROOT environment variable to an innocuous value
and may even (hopefully!) be able to get by without administrator privi-
leges. If your script is called “myscript”’, you could invoke it for testing from
a “scaffold” looking roughly like:

#!/bin/sh

test-myscript -- Test scaffold for myscript

#

Create the testing environment

cd $HOME/myscript-dev

rm -rf test

cp -a files test # Fresh copy of the testing files

Call the script

ROOT=$HOME/myscript-dev/test $HOME/bin/myscript-dev $*

Here, the original files in ~/myscript-dev/files are copied to ~/myscript-dev/

test before every run. After the test run has completed, you might compare
the content of test automatically (e. g., using “diff -r”) to yet another direc-
tory containing examples of the desired output.—myscript gets passed the
arguments of test-myscript; you could thus use test-myscript as a building
block in an even more involved infrastructure which invokes myscript with
different pre-cooked command line arguments and checks, in turn, that the
program produces the desired results.

Many shell scripts invoke external commands. In these cases, you canmake use
of these commands’ built-in error messages to figure out any errors—especially
as far as syntax is concerned.

Should these errormessages not prove adequate, you canmake bashmuchmore
talkative. Frequently syntax errors involve the shell’s syntax, especially if substi-
tutions are performed in an unanticipated order, or when parenthesis mismatches
occur.

With “set -x” you can see the steps that the shell takes to do its job:

$ set -x

$ echo "My $HOME is my castle"

+ echo 'My /home/tux is my castle'

My /home/tux is my castle

This is also called “tracing”. tracing

The disadvantage of “set -x” is that the command is still executed. In the case
of substitutions, it may be better if the commands would just be displayed instead

30 2 Shell Scripts

of executed. The “-n” option does exactly this, but works for shell scripts only, not
for interactive shells (why not?).

Another useful option is “-v”. This executes the commands, and the shell also
displays all commands as they are executed. That is, for a shell script you will
obtain not just its output but also everything contained in it.

All three options can be switched off by putting a “+” instead of a “-” in the set

command.
In practical shell programming, a different approach is often helpful. When

developing a script, put the desired option on the first line of the script:

#!/bin/bash -x

�����

Another rule for error diagnosis is: Before executing a command involving
“doubtful” substitutions, put an echo in front of it. This causes the whole com-
mand (including all substitutions and expansions) to be output without it being
executed. This is quite adequate for a quick test.

Commands in this Chapter

chmod Sets access modes for files and directories chmod(1) 24

Summary

• Shell scripts offer a simple means to automate command sequences.
• To execute a shell script, you can pass its name to a shell as a parameter,
make the script file executable and start it directly, or read its text into the
current shell using source.

• Shell scripts are text files containing sequences of shell commands.
• The first line of an executable script can name a program (shell or otherwise)
that is to be used to execute the script.

• Careful planning when programming leads to less brain-racking later.
• The Bourne-Again Shell contains various features for error diagnosis.

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

3
The Shell as a Programming
Language

Contents

3.1 Variables . 32
3.2 Arithmetic Expressions. 38
3.3 Command Execution 38
3.4 Control Structures 39

3.4.1 Overview . 39
3.4.2 A Program’s Return Value as a Control Parameter 40
3.4.3 Conditionals and Multi-Way Branches 42
3.4.4 Loops . 46
3.4.5 Loop Interruption 49

3.5 Shell Functions. 51
3.5.1 The exec Command 52

Goals

• Knowing the shell’s programming language features (variables, control
structures, functions)

• Being able to create simple shell scripts using these features

Prerequisites

• Familiarity with the Linux command line interface
• File handling and use of a text editor
• Basic shell knowledge (e. g., from Chapter 1iflabelcha:grd2-skripteand
Chapter 2.)

grd2-progs.tex (6eb247d0aa1863fd)

32 3 The Shell as a Programming Language

3.1 Variables

Basics The shell uses variables in various capacities: On the one hand, they are
used at shell level for programming, on the other hand, certain variables govern
various aspects of the shell’s behaviour and (as environment variables) that of itsenvironment variables

child processes.
Variables in the shell are pairs consisting of a name and a (textual) value. A

variable’s name consists of a sequence of letters, digits, and underscores (“_”),
and must start with a letter or underscore. For all practical purposes, bash vari-
able names may be of arbitrary length. A variable’s value is an arbitrary string of
characters of, again, practically arbitrary length.

B Modern shells such as bash also support numeric variables and “arrays”. We
shall return to this later.

Unlike other programming languages, the shell does not require variables to
be declared before use; you may simply assign a value to a variable and it springs
into existence at that point if it had not been used before:

$ colour=blue

$ a123=?_/@xz

Ensure that there are no spaces around the equals sign “=”! The name, “=”, and
value must follow each other with no intervening spaces.

Variable Substitution When processing commands, the shell replaces variable
references with the value of the variable in question. You can refer to a variable
by putting a “$” in front of its name. (The shell considers the longest possible
sequence of letters, digits, and underscores following the “$” the variable name.)
This is also called variable substitution.variables>substitution

For instance, you can display variable values using echo:echo

$ echo $PAGER

less

shows you the value of PAGER, a variable governing which program the man com-
mand (among others) should use to display textual output.

B Note that the shell takes care of expanding the variable reference $PAGER—the
actual command executed is just “echo less”.

B The internal bash command set, invoked without options or arguments, dis-set

plays all currently defined variables (and shell functions—see below).

Variables and Quotes Variable substitution is helpful, but not always desirable.
You can inhibit variable substitution in two ways:

1. You put a backslash in front of the dollar sign:

$ echo \$colour has the value $colour

$colour has the value blue

2. You put single quotes around the entire variable reference:

$ echo '$colour' has the value $colour

$colour has the value blue

3.1 Variables 33

Variable substitution takes place inside double quotes ("…") and backticks (`…`)!
Double quotes are important when handling variables whose value may con-

tainwhite space such as space characters (i. e., frequently to always). Consider the
following example:

$ mkdir "My photographs"

$ d="My photographs"

$ cd $d

bash: cd: My: Not a directory

In the third line, the value of the d variable is substituted before the command line
is split into “words”. Accordingly, cd tries to change to the “My” directory (instead
of “My photographs”. Moral: Put double quotes wherever you can—“cd "$d"” would
have been correct.

Environment Variables “Normal” variables are only visible within the shell in
which they have been defined. For variables to be visible in child processes (“sub-
shells” or other programs started from the shell), they need to be “exported” to
the process environment: process environment

$ colour=blue

$ sh Start a subshell
$ echo $colour Inside the subshell

The variable is not defined inside the subshell
$ exit Return to the original shell
$ export colour Export the variable to the environment
$ sh Another subshell
$ echo $colour Inside the subshell
blue

You can list several variables in a single export command:

$ export blue white red

You can also lump the export and initial assignment together (in bash):

$ export form=oval smell=musty

“export -n” revokes an export:

$ export -n blue white

Whenever the shell starts a child process it is passed a copy of the shell’s current
environment. After that, the two environments are totally independent of each
other—changes to one have no effect on the other. In particular, it is impossible to
change the parent process’s environment (like the current directory) directly from
the child.

B If at all, this works only using tricks similar to Exercise 2.4—one program
employing this method is ssh-agent.

You can also set environment variables for a single program invocationwithout
influencing eponymous shell variables:

$ TZ=foo

$ TZ=Europe/Istanbul date Turkish time
Mon May 10 19:23:38 EEST 2004

$ echo $TZ

foo

34 3 The Shell as a Programming Language

You can obtain a current list of all environment variables bymeans of the export

(without arguments) or env commands. Some important environment variables
include

PATH List of directories searched by the shell for executable programs

HOME Home directory; for the shell, the directory by which ~ is substituted

TERM Current terminal type (important for full-screen text-oriented programs)

USER Current user name

UID Current user ID; cannot be changed!

Assignment: Tricks Of The Trade When assigning values to variables, more com-
plicated expressions are possible, such as

$ echo $PATH

/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:.

$ PATH=$PATH:$HOME/bin

$ echo $PATH

/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:.:/home/tux/bin

Here the program search list in PATH is reconstructed from the PATH variable’s old
value, a “:”, and the value of HOME followed by “/bin”.

Using backticks, you can assign a program’s standard output to a variable, like

$ dir=`pwd`

$ echo $dir

/home/tux

Of course this is just a consequence of the fact that the shell replaces `…` expres-
sions anywhere on the command line by the corresponding command’s standard
output. Incidentally, the “command” in question may be a complete pipeline, not
merely a simple command.

B The same result can be reached using “$(…)” (“dir=$(pwd)”). This construc-
tion works with modern shells such as bash and makes it easier to nest such
calls—but makes your script bash-dependent, too.

If you want to store spaces or other special characters in a variable, you mustescaping special characters

protect them from the shell using single quotes ('…'), as in

$ PS1='% '

% _

This changes the PS1 variable, which governs the appearance of your shell prompt.
If you are fed up with a variable, you can delete its content by assigning it the

empty string. More drastically, the unset command removes a variable completelyunset

and obliterates all traces of your action:

$ A='Murder in the Cathedral'

$ set | grep A=

A='Murder in the Cathedral'

$ A=''

$ set | grep A=

A=

$ unset A

$ set | grep A=

$ _

3.1 Variables 35

Special Shell Variables The Bourne-Again Shell supports some special shell vari-
ables, which are mostly of interest within shell scripts. These special variables
cannot be modified, only read. For example:1

$? Return value (exit code) of the last command

$$ Process ID (PID) of the current shell

$! PID of the last background process to be started

$0 Name of the currently executing shell script (or the shell itself if running inter-
actively)

$# Number of parameters passed on the shell script’s command line

$* All of the shell script’s parameters; “"$*"” is equivalent to “"$1 $2 $3 …«’

$@ All of the shell script’s parameters; “"$@"” is equivalent to “"$1" "$2" "$3" …«’

$𝑛 The shell script’s 𝑛-th parameter. For 𝑛 > 9, you must write “${𝑛}”. Alterna-
tively, you can use the shift command (see help shift).

The positional parameter access variables, in particular, are used frequently
within shell scripts. Here is a small example to make this clearer:

$ cat script

#!/bin/sh

echo "The shell script was invoked as $0̈"̈

echo "$# parameters were passed altogether"

echo "All parameters together: $*̈"̈

echo "The first parameter is $1̈"̈

echo "The second parameter is $2̈"̈

echo "The third parameter is $3̈"̈

$./script Eat my shorts

The shell script was invoked as "./script"

3 parameters were passed altogether

All parameters together: "Eat my shorts"

The first parameter is "Eat"

The second parameter is "my"

The third parameter is "shorts"

Especially when referring to positional parameter variables, it is important to
put variable references in quotes, since as a programmer you have no way of
knowing what parameter the invoking user will pass. Stray space characters can
really mess up script execution.

Special Forms of Variable Substitution When using “$name” or “${name}”, a vari-
able reference is simply substituted by the variable’s value. The shell can do a lot
more, though:

Assign a default value With ${name:=⟨default value⟩}, the name variable is assigned
the ⟨default value⟩ if it has no value yet or its value is the empty string. Af-
terwards, the variable’s (then-current) value is substituted into the current
command line.

$ unset colour variable has no value
$ echo Favourite colour: ${colour:=yellow}

Favourite colour: yellow default value applies
$ echo $colour

1Here and elsewhere, we will talk about “the $? variable”, even though this is not entirely accurate,
since “$?” is really the “?” variable’s value. Since the special variables can only be read and not written
(without special [sic] tricks, anyway), this inaccuracy is unproblematic.

36 3 The Shell as a Programming Language

yellow was assigned on previous command
$ colour=red variable gets a value
$ echo Favourite colour: ${colour:=yellow}

Favourite colour: red existing value has priority

You can also omit the colon (“${colour=yellow}”). In this case, the assignment
takes place only if the name variable has no value; an existing but empty value
is left unchanged.

Use default value The expression ${name:-⟨default value⟩} is replaced by the value
of name if name’s value is different from the empty string. Otherwise it is re-
placed by the ⟨default value⟩. This differs from := in that the actual value of
name remains unchanged:

$ unset colour

$ echo Favourite colour: ${colour:-yellow}

Favourite colour: yellow

$ echo $colour

Output: empty string

The colon may be omitted here, too.

Error message if no value Using ${name:?⟨message⟩}, you can check whether the
name variable has a non-empty value. If this is not the case—in particular if
the variable has no value at all—, the ⟨message⟩ is output, and if this occurs
in a shell script, its execution terminates at that point.

$ cat script

#!/bin/sh

echo "${1:?Oops, something missing}"

echo "And on we go"

$./script foo

foo

And on we go

$./script

./script: line 2: 1: Oops, something missing

The colon may be omitted here as well—the message will then only appear
if the variable really has no value at all.

Substrings An expression of the form ${name:𝑝:𝑙} is replaced by up to 𝑙 characters
of the name variable’s value, starting from position 𝑝. If 𝑙 is omitted, every-
thing starting from 𝑝 is returned. The first character of the value is deemed
to be at position 0:

$ abc=ABCDEFG

$ echo ${abc:3:2}

DE

$ echo ${abc:3}

DEFG

In fact, 𝑝 and 𝑙 are evaluated as arithmetic expressions (Section 3.2). 𝑝may be
negative to refer to positions starting from the end:

$ echo ${abc:2*2-1:5-2}

DEF

$ echo ${abc:0-2:2}

FG

3.1 Variables 37

The $* and $@ variables are treated as special cases: You will obtain 𝑙 posi-
tional parameters of the script, starting with parameter 𝑝, where (confus-
ingly, but somehow logically) the first parameter is considered to be at po-
sition 1:

$ set foo bar baz quux

$ echo ${*:2:2}

bar baz

Removing variable text from the beginning In ${name#⟨pattern⟩}, ⟨pattern⟩ is con-
sidered a search pattern (containing “*”, “?”, and so on as in file name search
patterns). The expression is substituted by the value of the name variable,
but with everything matching ⟨pattern⟩ having been removed from its be-
ginning:

$ starter="EEL SOUP"

$ echo ${starter}

EEL SOUP

$ echo ${starter#E}

EL SOUP

$ echo ${starter#E*L}

SOUP

If there are several possibilities, “#” tries to remove as little text as possible.
If you use “##” instead, as much text as possible will be removed:

$ oldmacd=EIEIO

$ echo ${oldmacd#E*I}

EIO

$ echo ${oldmacd##E*I}

O

A typical application is the removal of the directory part from a file name:

$ file=/var/log/apache/access.log

$ echo ${file##*/}

access.log

B You might of course use the basename command to accomplish this, but
that forces an external program invocation – the “##” expression is po-
tentially much more efficient.

Removing variable text from the end Expressions of the form ${name%⟨pattern⟩}
and ${name%%⟨pattern⟩} work similarly, except that they apply to the end of
name’s value rather than the beginning:

$ msg=OOLALA

$ echo ${msg%L*A}

OOLA

$ echo ${msg%%L*A}

OO

The Bourne-Again Shell offers several additional substitution expressions which
you should look up in the bash manual.

Text processing tricks such as these are very useful, but for more sophisticated
operations you will usually have to resort to tools like cut, sed (Chapter 6), and
awk (Chapter 7). Naturally this involves the inefficiency of another child process,
which is no big deal in the individual case; for heavy-duty text processing you are
generally better off using a programming language like Perl, Python, or Tcl that
offers more elaborate operations in a more efficient package.

38 3 The Shell as a Programming Language

Exercises

C 3.1 [!2] What exactly is the difference between $* and $@? (Hint: Read up on
this in the bash manual, and compare the output of the

$ set a "b c" d

$ for i in $*; do echo $i; done

$ for i in $@; do echo $i; done

$ for i in "$*"; do echo $i; done

$ for i in "$@"; do echo $i; done

commands. See Abschnitt 3.4.4 for information about for.)

3.2 Arithmetic Expressions

The Bourne-Again Shell supports certain mathematical features, even though
these should not be overstrained: For example, it can only handle integers and
does not check for overflow. The mathematical operations correspond to those
of the C programming language. You can thus avail yourself of the four basic
arithmetic operations as well as the usual comparison and logical operators (see
the bash documentation for details). Multiplication and division have precedence
over addition and subtraction, and explicit parentheses are always evaluated first.

“Arithmetic expansion” is applied to expressions delimited by $((…)). Allow-Arithmetic expansion

able operands include numbers aswell as shell variables. The expression is treated
as if it was contained in double quotes, thus you can also use command expansion
and the “special forms of variable substitution” discussed in the previous section.

$ echo $((1+2*3))

7

$ echo $(((1+2)*3))

9

$ a=123

$ echo $((3+4*a))

495

You can refer to shell variables within arithmetic expressions without having to
put a “$” in front of their names.

B You may occasionally run into the obsolete notation “$[…]”. This has been
deprecated and will be removed from future bash versions.

Exercises

C 3.2 [!1] How does bash handle division? Check the result of various division
expressions using positive and negative dividends and divisors. Can you
come up with some rules?

C 3.3 [2] (When reviewing.) What is the largest number usable in bash arith-
metic? How can you find out?

3.3 Command Execution

When executing commands, the shell follows a fixed order of steps:

1. The command line is split intowords (see also below). Every character con-words

tained in the IFS variable which occurs outside of quotes is considered a
separator. The default value of IFS includes the space and tab characters
and the newline character.

3.4 Control Structures 39

2. Braces are expanded; “a{b,c}d” becomes “abd acd”. All other characters re-
main unchanged.

3. Next, a tilde (~) at the beginning of a word is replaced by the value of the
HOME environment variable; if there is a user name immediately after the tilde,
this (including the tilde) will be replaced by the name of that user’s home
directory. (There are a few other rules which are described in the bash doc-
umentation.)

B Tilde expansion also takes place within variable assignments if a tilde
occurs immediately after a “=” or “:”. This means that the Right Thing
happens even for PATH and friends.

4. Afterwards, the following substitutions are performed in parallel proceed-
ing from left to right:

• Variable substitution
• Command substitution
• Arithmetic expansion

(in other words, everything that starts with a $—if we consider the modern
form of command substitution using “$(…)”).

5. If a substitution took place during the previous steps, the command line is
again split into words according to the IFS variable. “Explicit” empty words
("" and '') remain unchanged, “implicit” empty words, which may, for in-
stance, have resulted from the expansion of variables with no value, are
removed.

6. At the end of this process, words containing wild card characters such as
“*” or “?” are considered as search patterns; the shell tries to replace them search patterns

by lists of matching file names. If this is not possible, the search pattern is
(usually) passed on verbatim.

7. At the very end, all non-escaped quotes and backslashes are removed (they
are no longer required because all substitutions have been performed, and
the division into words can no longer change).

The only processing steps that can change the number of words on the command
line are brace expansion, word division, and search pattern expansion (or “path-
name expansion”). All other processing steps replace a single word by a single
word, with the exception of “$@”.

3.4 Control Structures

3.4.1 Overview

Every programming language that is to be taken seriously (i. e., every Turing-
complete programming language) needs control structures such as conditionals,
loops, and multi-way branches2, and thus they may not be absent from the shell,
either. As usual in shell programming, everything seems a bit “roundabout” and
possibly confusing to connoisseurs of “real” programming languages, but some-
how it manages to follow its own perverse logic.

B Stephen L. Bourne, the author of the original Bourne shell, was a big afi-
cionado of the Algol programming language [WMPK69], and that is quite
discernible in the Bourne shell’s (and its successors’) syntax. The concept
of closing control structures by means of the beginning keyword spelled
backwards—not quite followed through to the end in the Bourne shell—,
for example, was quite en vogue in Algol circles.

2One can make do with just the while loop, at least if one’s name is Edsger Dijkstra, but a bit of
variety does not hurt here.

40 3 The Shell as a Programming Language

Value Description
0 Success
1 General error
2 Misuse of builtin shell functions (rarely used)

126 Command wasn’t executable (no permission, or not a binary)
127 Command to be executed wasn’t found
128 Invalid argument on exit – as in “exit 1.5”

129–165 Program terminated by signal ⟨Value⟩ − 128

Table 3.1: Reserved return values for bash

3.4.2 A Program’s Return Value as a Control Parameter

Here is the first peculiarity of shell control structures: Many programming lan-
guages use Boolean values (“true” or “false”) to govern conditionals or loops. Not
so in bash—here the return value of a program is used for control.return value

On Linux, every process tells its parent process upon termination whether it
was executed “successfully” or not. The return value in bash is an integer between 0
and 255; the value 0 always implies success, every other value (up to and includ-
ing 255) implies failure. This makes it possible for a process to give more detail as
to what went wrong.

B How it actually does this is not specified. With grep, for example, a return
value of 0 means “matching lines were found”, 1 stands for “no matching
lines were found, but everything else was fine”, and 2 for “some error oc-
curred”.

B One could now get into an extended ontological discussion about whether
“no matching lines were found” is, in fact, an error situation or really some
type of success. As a matter of fact, it is useful to be able to distinguish
the cases “lines were found” and “no lines were found” by means of grep’s
return value. It is also undisputed that Unix knows just one kind of success,
namely a return value of 0. Whoever disagrees with this ought to look for a
different operating system (such as VMS,which considers every even return
value (including 0) a success and every odd one a failure).

B C programmers, who are used to 0 implying “wrong” or “no”, and “every-
thing else” implying “true”, “yes”, or “success”, must rethink things here.

B bash, at least, uses certain conventions for exit codes (see Table 3.1). The
exit() system call does accept values up to and including 255 (larger values
will be passed on “modulo 255”), but bash uses exit codes from 128 to de-
note that the child process was terminated by a signal. (You can find out
which signal by subtracting 128 from the exit code; to find out about signal
numbers, use, e. g., »kill -l«.)

B You can, of course, generate exit codes greater than or equal to 128 in your
scripts, but that is generally not a great idea, since it could lead to confusion
when your script is called fromanother script that interprets these exit codes
as “process death by signal”.

The shell makes the last command’s return value available in the $? special
variable:

$ ls /root

ls: /root: Permission denied

$ echo $?

1 Failure of ls

3.4 Control Structures 41

$ echo $?

0 Success of the first echo

The return value has nothing whatever to do with error messages that appear on
the standard error output channel.

B A little-known trick is that you may put an exclamation point (!) in
front of a command. That command’s return value is then “logically
negated”—success becomes failure, failure success:

$ true; echo $?

0

$! true; echo $?

1

$! false; echo $?

0

However, this will lose information: As we mentioned before, bash knows
255 kinds of failure but just one kind of success.

B C programmers and those using C-like languages such as Perl, Tcl, or PHP
will remember the logical NOT operator “!”.

With the Bourne-Again Shell, you can of course use logical expressions to con-
trol conditionals or loops just like youwouldwith other programming languages.
You just need to invoke a command that will evaluate a logical expression and re-
turn a suitable return value to the shell. One such command is test.

test is used to compare numbers or strings and to check file properties. Here test

are some examples:
test "$x" With just one argument, test checkswhether this argument is non-empty,

i. e., consists of one or more characters—here, whether the x variable con-
tains “something”. Even if you see it again and again: Stop yourself from
using the (ostensibly shorter) “test $x” (without quotes)—it does not work,
as you can easily see for yourself using something like “x='3 -gt 7'; test

$x”.

test $x -gt 7 Here x must contain a number. test checks whether the numerical
value of x is greater than 7. -gt stands for “greater than”; there are also the
corresponding operators -lt (less than), -ge (greater than or equal to), -le,
-eq (equal) und -ne (unequal).

test "$x" \> 10 Checkswhether the first character stringwould occur after the sec-
ond in a dictionary (the so-called “lexicographic ordering”). Thus “test 7 \>

10” returns success, “test 7 -gt 10” failure. Mind the notation: “>” is a shell
special character; to keep it from being interpreted by the shell you must
hide it. Instead of “\>” you might also write “'>'”.

test -r "$x" Checks whether the file whose name is contained in x exists and is
readable. There are various other file test operators.

You can review the complete list of operators supported by test by looking at the
test documentation.

B Like echo, test is not just available as a program, but is also, for efficiency,
implemented as an internal command by the Bourne-Again Shell (the tradi-
tional Bourne shell does not do that). Using “help test” you can look at the
internal command’s documentation, using “man test” that of the external
command.

B Beside the “long form” discussed above, test also supports an abbreviated
notation where the expression to be evaluated is enclosed in brackets (with
spaces before and after the brackets). Thus the long example “test "$x"”
becomes “["$x"]” in the abbreviated form.

42 3 The Shell as a Programming Language

3.4.3 Conditionals and Multi-Way Branches

You can use if and case to implement conditionals. if is mostly used for simple
conditionals and chains of conditionals, while case enables a multi-way branch
according to a single value.

Conditional Execution The shell offers convenient abbreviations for the common
cases “Do 𝐴 only if 𝐵 worked” or “Do 𝐴 only if 𝐵 did not work”. A very typical
idiom in shell scripts is something like

test -d "$HOME/.mydir" || mkdir "$HOME/.mydir"

You will find this, for example, in scripts that want to use a user-specific direc-
tory to store intermediate results or configuration files. The command sequence
ensures that the $HOME/.mydir directory exists by first checking whether the direc-
tory is already there. If the test command reports success, the mkdir is skipped. If
test fails, however—the directory does not exist—, the directory is created using
mkdir. Thus the || operator executes the following command only if the preceding
command has reported failure.

B Cprogrammers know || as the “logical OR” operator, whose result is “true”
if its left operand or that to its right (or both of them) are “true”. One of the
more ingenious properties of the C language is that the language definition
guarantees that the left-hand operand is looked at first. If this turns out
“true”, the final result is already determined, and the right-hand operand
is ignored. The right-hand operand is only considered if the left-hand
operand returned “false”.—The shell’s || operator works basically similar:
In “𝑎 || 𝑏”, we want to execute the 𝑎 command or the 𝑏 command success-
fully. If 𝑎 already returns success, we are where we want to be and can
ignore 𝑏; 𝑏 only gets its turn when 𝑎 could not be executed successfully.

By analogy, the && operator executes the following command only if the pre-
ceding command has reported success. Another real-world example for this: You
will find something like

test -e /etc/default/myprog && source /etc/default/myprog

within the init scripts of many Linux distributions. This construction checks
whether the /etc/default/myprog file exists, which (presumably) contains configu-
ration settings to be used later in the script (in the form of shell variable assign-
ments). If this file exists, it is read using source, otherwise nothing happens.

B A similar analogy to the C language’s && operator (logical AND) may be
drawn here.

The || and && abbreviations are very useful indeed and also behave as expected
in combination (try something like

true && echo Wahr || echo Falsch

false && echo Wahr || echo Falsch

if youwant). You should not overwork them, however—often explicit if construc-
tions, as explained forthwith, are more readable.

Simple Conditionals The if command executes a command (often test) and de-if

cides what to do next according to its return value. Its syntax is

3.4 Control Structures 43

if ⟨testing command⟩
then

⟨commands for ‘‘success’’⟩
[else commands for ``failure'']
fi

If the testing commandwas successful, the commands following then are executed.
If it was not, the commands following else are executed (if they are there). In both
cases, execution continues after the fi.

This is best made clear using an example. By way of demonstration, we write
the ifdemo program, which you can invoke using your user name as the first po-
sitional parameter. (Your “real” user name was helpfully deposited in the LOGNAME

environment variable by the login program.) If the user name was entered cor-
rectly, a message like “That is correct” is displayed. If another value was entered,
another message is returned:

#!/bin/bash

if test "$1" = "$LOGNAME"

then

echo "That is in fact your user name!"

else

echo "That is not your user name!"

fi

echo "End of program"

Of course you are not forced to use test as the testing command—any program
obeying the return value convention is eligible. egrep, for example:

#!/bin/bash

if df | egrep '(9[0-9]%|100%)' > /dev/null 2>&1

then

echo "A file system is overflowing" | mail -s "warning" root

fi

This “quick and dirty” script checks whether a mounted file system is 90% full (or
more). If so, root is sent mail to make him aware of the fact.

In order to avoid deeply nested constructions like

if foo

then

…

else

if bar

then

…

else

if baz

then

…

else

…

fi

fi

fi

it is possible to “cascade” dependent conditionals using elif. An equivalent to the
preceding example might be

44 3 The Shell as a Programming Language

if foo

then

…

elif bar

then

…

elif baz

then

…

else

…

fi

The else branch remains optional in any case. The conditions checked using if

and the elifs do not have to have anything to do with one another, but conditions
in “later” elifs are, of course, only looked at if the preceding conditions have re-
turned values different from 0.

Multi-Way Branches Unlike if, the case command allows simple multi-waycase

branches. Its syntax is

case ⟨value⟩ in

⟨pattern1⟩)
…

;;

⟨pattern2⟩)
…

;;

…

*)

…

;;

esac

case compares the ⟨value⟩ (which can derive from a variable, a program invoca-
tion, …) to the specified patterns in turn. For the first matching pattern, the cor-
responding command sequence (up to the ;;) is executed. After this, the case is
closed, and any further matches are not considered. The case command’s return
value is that of the last command of the sequence that was executed; if no pattern
matches, a null return value is assumed.

In case patterns, you may use search patterns as for file name expansion (“*”,
“?”,…). Thus you can insert “*” last as a “catch-all” pattern, for example, to output
an error message. You may also specify alternatives like

[Yy]es|[Jj]a|[Oo]ui)

(in order to recognise the words “Yes”, “yes”, “Ja”, “ja”, “Oui”, or “oui”).
case is best demonstrated using a common example—an init script. As a re-

minder, init scripts are responsible for the starting and stopping of background
services. As a rule, they work like

⟨init script⟩ start

or

⟨init script⟩ stop

3.4 Control Structures 45

#!/bin/sh

SERVICE=/usr/sbin/tcpdump

SERVICEOPTS="-w"

DUMPFILE="/tmp/tcpdump.`date +%Y-%m-%d_%H:%M`"

INTERFACE=eth0

PIDFILE=/var/run/tcpdump.pid

case $1 in

start)

echo "Starting $SERVICE"

nohup "$SERVICE" "$SERVICEOPTS" "$DUMPFILE" > /dev/null 2>&1 &

echo "$!" > "$PIDFILE"

;;

stop)

echo "Stopping $SERVICE"

kill -15 `cat "$PIDFILE»

rm -f "$PIDFILE"

;;

status)

if [-f $PIDFILE]

then

if ps `cat $PIDFILE` > /dev/null 2>&1

then echo "Service $SERVICE running"

fi

else

echo "Service $SERVICE NOT running"

fi

;;

clean)

echo "Which dump files would you like to remove?"

rm -i $DUMPFILE%.`date +%Y`**

;;

*)

echo "Error: Please use one of (start|stop|status|clean)!"

;;

esac

Figure 3.1: A simple init script

46 3 The Shell as a Programming Language

where “start”, “stop”, “status”, … are passed as the first positional parameter—a
natural application for case. Figure 3.1 shows a simple init script which starts the
tcpdump program (a packet sniffer) in order to capture all received packets in a file
(for later analysis). The init scripts included with Linux distributions are usually
a good deal more complicated!

Exercises

C 3.4 [!1] Give a shell script which checks whether its (only) positional pa-
rameter consists exclusively of vowels, and returns a suitable return value
(0 should stand for “yes”).

C 3.5 [!1] Give a shell script which checks whether its (only) positional pa-
rameter is an absolute or relative path name, and outputs “absolute” or
“relative”, respectively.

C 3.6 [2] How would you, with the least possible effort, add a “restart” ac-
tion to the init script shown in Figure 3.1 which would stop the service and
immediately start it again?

3.4.4 Loops

It is often convenient to be able to execute a sequence of commands several times
over, especially if the number of repetitions is not known when you write your
script, but depends on the conditions when the script is run. The shell supports
two different approaches to looping:

• Iteration over a predefined list of values, such as all positional parametersIteration

or all file names in a directory. The number of repetitions is determined
when the loop first begins.

• A testing loop which executes a command at the beginning of each repe-testing loop

tition. The return value of that command determines whether the loop is
repeated or not.

B A precooked “counting loop” of the form “Start at 1 and increment the loop
counter by 1 after each turn, until it reaches the value 10”, as found in many
programming languages, is not part of the shell; an equivalent effect is easily
obtained, however, using one of the available loop types.

Iteration using for The for command is used to iterate over a predetermined listfor

of values. A variable assumes the value of each list item in turn:

for ⟨variable⟩ [in ⟨list⟩]
do

⟨commands⟩
done

Here is a small example:

#!/bin/bash

Name: fordemo

for i in one Two THREE

do

echo $i

done

Its output looks like

3.4 Control Structures 47

$ fordemo

one

Two

THREE

The list that for iterates over does not need to be given literally within the script,
but can be determined when the script executes, e. g., using file name expansion:

#!/bin/bash

for f in *

do

mv "$f" "$f.txt"

done

The f variable iterates over all file names within the current directory. This re-
names all files. Note that the list is constructed exactly once, namely when the
shell encounters the for command. The fact that the file names within the current
directory change during the execution of the loop is of no concern to the list being
iterated over.

If you omit the ⟨list⟩ completely, the loop goes over the script’s positional pa-
rameters, i. e., the loop variable assumes the values of $1, $2, … in turn. Thismakes
a mere “for i” equivalent to “for i in "$@"”.

B A variant of the for loop is based on the C programming language: In

for ((i=0 ; $i<10; i=i+1))

do

echo $i

done

the variable i assumes the values 0, 1, …, 9 in turn. Strictly speaking, the first
arithmetic expression serves to initialise the variable, the second is checked
at the start of every iteration, and the third is executed at the end of every
iteration before control jumps back to the beginning of the loop (and the sec-
ond expression is executed again as the test). Hence, this does not constitute
a truly iterative loop like the list-based for presented earlier, but a “testing
loop” like those in the next section – this for is a close relative of while.

Testing loops using while and until The while and until commands are used for
loops whose number of iterations depends on the actual loop execution (and can-
not be determined at the start of the loop as in for). A command is specifiedwhose
return value determineswhether the loop body (and, again, the testing command)
is executed once more, or whether the loop is to be terminated:

while ⟨testing command⟩
do

⟨commands⟩
done

The following example outputs the integers from 1 to 5:

#!/bin/bash

Name: whiledemo

i=1

while test $i -le 5

do

echo $i

48 3 The Shell as a Programming Language

i=$((i+1))

done

The $((…)) construction calculates the numerical value of the expression between
the parentheses, so that this increments the value of the i variable by 1.

With while, too, you are not obliged to use test as the testing command, which
is convenient for the following example:

#!/bin/bash

Name: readline

while read LINE

do

echo "--$LINE--"

done < /etc/passwd

Here read serves as the testing command. On each invocation, it reads a single
line from its standard input and assigns it to the LINE variable. If cmd cannot read
anything, for examplewhen the input file is exhausted, its return value is different
from 0. Thus the while loop runs until all of the input file has been consumed. Since
the loop’s standard input has been redirected here, the /etc/passwd file is read and
processed line by line.

B At the risk of producing a candidate for the “useless use of cat award”, we
consider the

cat /etc/passwd | while read LINE

do

…

done

more readable. Note in any case that loops and conditionals do have stan-
dard input and standard output channels, and thus can occur in the middle
of a pipeline.

until behaves like while, except that with until the loop is repeated while the
testing command reports “failure”, i. e., returns a return value that is different
from 0. Alternatively, the counting example might be written as

#!/bin/bash

Name: untildemo

i=1

until test $i -gt 5

do

echo $i

i=$((i+1))

done

Exercises

C 3.7 [!1] Write a shell script that outputs all multiples of 3 up to a maximum
value given as a positional parameter.

C 3.8 [3] Write a shell script that outputs all prime numbers up to a given up-
per limit. (Hint: Use the “modulo operator”, %, to check whether a number
is divisible by another without a remainder.)

3.4 Control Structures 49

3.4.5 Loop Interruption

Every so often it turns out to be necessary to terminate a loop before its time,
e. g., if an error occurs. Or it becomes evident that an iteration does not need to
be finished, but that the next one can start immediately. The Bourne-Again Shell
supports this by means of the break and continue commands.

Aborting loops using break The break command aborts the current loop iteration
and arranges for execution to continue after the corresponding done. Consider the
following script:

#!/bin/bash

Name: breakdemo

for f

do

[-f $f] || break

echo $f

done

If you invoke this script with a number of arguments, it checks for each argument
whether a file of the same name exists. If that is not the case for an argument, the
loop is terminated immediately:

$ touch a c

$./breakdemo a b c

a

$ _

B With break, you can “break out of” nested loops as well: State the number of
“inner loops” that you want to terminate as an argument.—Try the follow-
ing script:

#!/bin/bash

Name: breakdemo2

for i in a b c

do

for j in p q r

do

for k in x y z

do

break $1

done

echo After the inner loop

done

echo After the middle loop

done

echo After the outer loop

This lets you specify on the command line how many loops (seen from the
inside out) are to be aborted.

Terminating loop iterations using continue The continue command does not abort
the complete loop, but just the current iteration. Afterwards the next iteration is
either started immediately (for for), or the testing command is evaluated to check
whether another iteration is required (for while and until).

The following script shows a somewhat convoluted method of copying files
only if they contain particular character sequences:

50 3 The Shell as a Programming Language

pattern=$1

shift

for f

do

fgrep -q $pattern $f

if [$? = 1]

then

continue

fi

cp $f $HOME/backups

done

(See also Exercise 3.9.)
As with break, you can use a numerical argument to continue to determine the

loop (counting from the inside out) whose next iteration is to be started.

Exercises

C 3.9 [!2] How would you reasonably simplify the continue example script?

C 3.10 [!1] Consider the breakdemo2 script on page 49 and modify it such that
you can use the new program to try how the continue command behaves
when different numeric arguments are given.

Exception Handling In bash scripts, you can react to incoming signals or other
unusual events. This is done using the trap command, which you might invoke
like

trap "rm /tmp/script.$$" TERM

If you execute this commandwithin a script, the “rm /tmp/script.$$” commandwill
be stored. If the shell process is sent a SIGTERM, the stored command is executed. In
this example, a temporary file created by the script would be removed—a typical
way of “cleaning up”.

Consider the traptest script:

#!/bin/sh

trap "echo Received signal" TERM HUP

sleep 60

We can execute this script in the background and then send the process, e. g., a
SIGTERM:

$ sh traptest &

[2] 11086

$ kill -TERM %2

Received signal

[2]+ Exit 143 sh traptest

The SIGSTOP and SIGKILL signals, of course, cannot be trapped. The exact behaviour
of the Bourne-Again Shell with respect to signals is explained in the “Signals”
section of the shell’s documentation.

B The return value of a process tells youwhether it was terminated by a signal.
If so, the return value is 128 plus the signal number, e. g., 15 for SIGTERM.

3.5 Shell Functions 51

With trap, you can react not only to (external) signals, but also to different
events. Commands registered for the EXIT event, for example, will be executed
when the process terminates no matter why (because of a signal, because of an
exit, or just because the end of the script was reached). With the ERR event you can
execute a command if a simple shell command returns a value different from 0
(this does not work if the command is part of a while or until loop, an if command,
or a command sequence using && or ||, or if it is invoked with !).

Exercises

C 3.11 [!1] Check that the trap command works as advertised for events such
as SIGTERM or EXIT.

C 3.12 [2]Write a shell script that displays a digital clock inside a text terminal.
When the user aborts the script using Ctrl + c , the screen should be cleared
and the program terminated. (This is most fun if your system includes the
SysV banner program.)

3.5 Shell Functions

Frequently used command sequences can, in principle, be implemented as “sub
shell scripts” that you can invoke from a shell script. Modern shells like the
Bourne-Again Shell also allow the definition of “shell functions” within the same
script:

#!/bin/bash

function sort-num-rev () {

sort -n -r

}

ls -l | sort-num-rev

From the point of view of the invoking code, shell functions behave like “normal”
commands—they have standard input and output channels, can take command-
line arguments and so on.

B The function command may be omitted; however we do recommend to in-
clude it since it makes clear what is going on. The parentheses and braces
are required.

Within a shell function, the positional parameters $1, $2, … correspond to the positional parameters

shell function’s arguments, not those of the actual shell process. Accordingly, $#
reflects the number of positional parameters of the shell function, $* returns all
positional parameters at once and so on (after the shell function is finished every-
thing is back towhat it was before.) Other than that, you can access the shell’s and
environment variables of the complete process even from a shell function. Here
is an example:

#!/bin/bash

function panic () {

exitcode=$1

shift

echo >&2 "$0: PANIC: $*"

exit $exitcode

}

52 3 The Shell as a Programming Language

�����

[-f file.txt] || panic 3 file.txt is not available

�����

Here the first positional parameter serves as the process’s return value, the re-
maining parameters as the error message.

B Even in shell functions, $0 is the name of the shell script, not that of the
function. If you want to know the name of the function: This is available in
the FUNCNAME variable.

The return value of a shell function is the return value of the last commandreturn value

executed by it.
You can inspect the names and definitions of the functions currently definedfinding shell functions

within your shell using the “typeset -f” command. “typeset -F” gives you just the
function names.

It is easy to construct “function libraries” by putting the desired shell func-function libraries

tions into a file which is then read into other shell scripts by means of the “source”
command.

Exercises

C 3.13 [!1] Define a shell function toupper which translates its positional pa-
rameters to upper case and writes them to standard output.

3.5.1 The exec Command

Usually, the shell waits for an external command to finish and then reads the next
command. Using the exec command you can launch an external command such
that it replaces the shell. For example, if you’d rather use the C shell instead of bash,
you can use

$ exec /bin/csh

% _ Here is the C shell!

to launch a C shell in your session without having an unused bash lying around
that you must remember to exit from when you are logging out.

B exec is mostly used in shell scripts and even there not too frequently. There
are more convenient messages for the C-shell-instead-of-bash deal.

Exercises

C 3.14 [!2] Assume the test1 file consists of the lines

echo Hello

exec bash test2

echo Goodbye

and the test2 file of the line

echo Howdy

What does the command “bash test1” output?

3.5 Bibliography 53

Commands in this Chapter

case Shell command for pattern-based multi-way branching bash(1) 44
env Outputs the process environment, or starts programs with an adjusted

environment env(1) 33
exec Starts a new program in the current shell process bash(1) 52
export Defines and manages environment variables bash(1) 33
for Shell command to loop over the elements of a list bash(1) 46
set Manages shell variables and options bash(1) 32
test Evaluates logical expressions on the command line test(1), bash(1) 41
unset Deletes shell or environment variables bash(1) 34
until Shell”=Kommando for a loop that executes “until” a condition evaluates

as true bash(1) 48
while Shell command for a loop that executes “while” a condition evaluates to

true bash(1) 47

Summary

• Variables serve to store intermediate results, to control the shell and (as en-
vironment variables) to communicate with child processes.

• The shell defines various special variables, for example to access the shell’s
positional parameters.

• There are several special types of variable substitution that insert default
values or process the variable’s value in some way.

• When processing command lines, the shell follows a sequence of predefined
substitution steps.

• The Bourne-Again Shell supports the usual control structures expected in
programming languages.

• The shell uses the return value of subprocesses to govern control struc-
tures; a return value of 0 is considered “true”, everything else is considered
“false”.

• Conditionals can be implemented using the && and || operators as well as
the if and case commands.

• Loops can be defined using while, until, and for, and controlled using break

and continue.
• Using trap, scripts can react to signals and other events.
• Shell functions make it possible to collect frequently-used command se-
quences within the same script.

Bibliography

WMPK69 A. vanWijngarden, B. J. Mailloux, J. E. L. Peck, et al. “Report on the Al-
gorithmic Language ALGOL 68”. Numerische Mathematik, 1969. 14:79–218.
This article is a classic—the first attempt to define the semantics of a pro-
gramming language in a formalized way. The language itself, sadly, never
gained practical importance.

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

4
Practical Shell Scripts

Contents

4.1 Shell Programming in Practice 56
4.2 Around the User Database 56
4.3 File Operations. 60
4.4 Log Files . 62
4.5 System Administration 68

Goals

• Analyzing and understanding some shell script examples
• Knowing and using basic techniques of practical shell programming

Prerequisites

• Familiarity with the Linux command line interface
• File handling and use of a text editor
• Basic shell knowledge (e. g., from Chapter 3 and the preceding chapters)

grd2-prakbeisp.tex (6eb247d0aa1863fd)

56 4 Practical Shell Scripts

4.1 Shell Programming in Practice

The preceding chapters have introduced large parts of the shell’s syntax. If you
are anything like us, you will have started wondering what this is all about: Do
we explain to you the complete content of the kitchen and larder and then expect
you to cook aCordon Bleu five-coursemenu? No sweat. Programming is not learnt
from a syntax description, but by studying exemplary programs and, most of all,
by experimenting. Therefore, in this chapter, we have collected some shell scripts
which will teach you many common techniques and deepen your understanding
of some things you have seen already. Above all, these scripts should inspire you
to “get your hands dirty” and get to know the shell’s features in practice.

4.2 Around the User Database

“Normal” Linux systems store user information—user names and UIDs, primary
groups, real names, home directories, and so on—in the /etc/passwd file.1 Here ispassword file

an example to remind you:

tux:x:1000:100:Tux the Penguin:/home/tux:/bin/bash

User tux has the UID 1000 and his primary group is the one with GID 100. In real
life, his name is “Tux the Penguin”, his home directory is /home/tux, and his login
shell is the Bourne-Again Shell.

The group file, /etc/group, contains the name, an optional password, the GID,group file

and a list of members for each group. The membership list usually contains just
those users that use the group as a supplementary group:

users:x:100:

penguins:x:101:tux

Who is in this group? Our first script will take a group name and enumerate all
users who use that group as their primary group. The challenge is that /etc/passwd
contains just the GID of the primary group, so that we need to fetch the GID for
a named group from /etc/group first. Our script takes the group in question as a
command-line parameter.

#!/bin/bash

pgroup -- first version

Fetch the GID from /etc/group

gid=$(grep "$1̂:" /etc/group | cut -d: -f3)

Search users with that GID in /etc/passwd

grep "^[^:]*:[^:]*:[^:]*:$gid:" /etc/passwd | cut -d: -f1

Note the use of grep to find the correct line, and of cut to extract the appropriate
field from that line. In the second grep, the search expression is more complicated,
but we must watch out not to select a UID that looks like the desired GID—hence
we take care to count off three colons from the left before starting to look for the
GID.

The same principle applies to shell scripts as to programs in general: Most of
the effort goes into catching user errors (and others). For example, our script wor-catching errors

ries neither about invocation problems—omitting the group name or specifying
1Among not quite normal Linux systems, methods like LDAP for user data storage are spreading.

If you have such a system in front of you, you can generally obtain the files necessary for the following
experiments by means of commands like “getent passwd >$HOME/passwd” and “getent group >$HOME/group”.

4.2 Around the User Database 57

further, extraneous parameters—nor about execution problems. It is fairly un-
likely for /etc/passwd not to be available (you would have noticed before that), but
it is quite possible for a user of the script to give the name of a group that does not
in fact exist. But let us start at the beginning.

First we ought to convince ourselves that the script was invoked using the cor- syntax checking

rect number of parameters (namely one). You can check this, for example, by
inspecting the value of $#:

if [$# -ne 1]

then

echo >&2 "usage: $0 GROUP"

exit 1

fi

This snippet of shell code illustrates several important techniques at once. If the
number of parameters (in $#) is not 1, we want to terminate the script with an
error message. The message is output using echo, taking care that, nicely enough, error message

it does not appear on standard output but on standard error output (the >&2—2
is the standard error output channel). $0 is the name that the script was invoked
with; it is customary to state this in the error message, and this way it is always
correct, even if the script has been renamed. The script is terminated prematurely
using exit, and we use 1 as the return value, meaning “generic failure”.

B If you invoke exit without an argument or simply reach the end of a shell
script, the shell terminates as well. In this case the shell’s return value is
that of the last command that was executed (exit does not count). Compare

$ sh -c "true; exit"; echo $?

0

$ sh -c "false; exit"; echo $?

1

Now we need to deal with the case of the non-existing group. In Section 3.4.2
you have learned how grep defines its return values: 0 means “some match was
found”, 1 stands for “everything basically OK, but no matching lines found”, and
2 for “something bad has happened” (possibly the regular expressionwasn’t quite
kosher, or somethingwentwrongwhile reading the input file). This is quite useful
already; we might check whether grep’s return value is 1 or 2 and then terminate
the script with an error message if necessary. Unfortunately there is a little prob-
lem with the critical command

gid=$(grep "$1̂:" /etc/group | cut -d: -f3)

—a pipeline’s return value is the return value of the last command, and cut basi- pipeline’s return value

cally works all the time, even if grep sends it empty input (the cut arguments are
fundamentally all right). Thus we must think of something else.

So what happens when grep does not find a matching line? Right, cut’s output
is empty, as opposed to the case where grep could in fact find the group (if we
assume a syntactically correct /etc/group file, then the matching line has a third
field containing a GID). Therefore we just need to check whether our gid variable
contains an “actual” value:

if [-z "$gid"]

then

echo >&2 "$0: group $1 does not exist"

exit 1

fi

(Note again $0 as part of the error message.)
Figure 4.1 shows the “preliminary final” version of our script.

58 4 Practical Shell Scripts

#!/bin/bash

pgroup -- improved version

Check the parameters

if [$# -ne 1]

then

echo >&2 "usage: $0 GROUP"

exit 1

fi

Fetch the GID from /etc/group

gid=$(grep "$1̂:" /etc/group | cut -d: -f3)

if [-z "$gid"]

then

echo >&2 "$0: group $1 does not exist"

exit 1

fi

Search users with that GID in /etc/passwd

grep "[:̂]̂*:[:]̂*:[:]̂*:$gid:" /etc/passwd | cut -d: -f1

Figure 4.1: Which users have a particular primary group? (Improved version)

Which are a user’s groups? Our next example is a script that outputs the groups
that a user is a member of—similar to the groups command. Note that it is not
sufficient to consider /etc/group, since users are not normally listed in the entry of
their primary group in that file. We will be using the following approach:

1. Output the name of the user’s primary group

2. Output the names of the user’s supplementary groups

The first part should be easy—it is basically the previous script “the other way
round”:

Primary group

gid=$(grep "$1̂:" /etc/passwd | cut -d: -f4)

grep "[:̂]̂*:[:]̂*:$gid:" /etc/group | cut -d: -f1

The second part seems even easier: A simple

grep $1 /etc/group

gets us near Nirwana already. Or does it not? Consider what this grep might turn
up:

• Firstly, the user name within a group’s list of members. This is what we
want.

• Additionally, user names within the member list that contain the user name
in question as a substring. When searching for john, we also get all lines
belonging to groups that user johnboy is a member of, but john not. Wrong
already.

• The same problem applies to user names which are substrings of group
names. A group called staff does not have anything to do with a user called
taf, but matches nonetheless.

4.2 Around the User Database 59

• Quite absurd, but possible: The user name in question might even be a sub-
string of an encrypted group password that is not stored in /etc/gshadow but
in /etc/group (which is absolutely permissible).

Thus care is called for here, too, as always when grep is involved—when design-
ing regular expressions, you should get used to thinking as evil-mindedly and
negatively as you possibly can. Then you come up with something like

grep "[:̂]̂*:[:]̂*:[:]̂*:.*\<$1\>" /etc/group | cut -d: -f1

That is, we match the user name only within the fourth field of /etc/group. The
“word brackets”, \<…\> (a GNU grep speciality) help prevent the johnboy error. All
in all, this gets us to

#!/bin/bash

lsgroups -- first version

Primary group

gid=$(grep "$1̂:" /etc/passwd | cut -d: -f4)

grep "[:̂]̂*:[:]̂*:$gid:" /etc/group | cut -d: -f1

Supplementary groups

grep "[:̂]̂*:[:]̂*:[:]̂*:.*\<$1\>" /etc/group | cut -d: -f1

Let’s try this script on a Debian GNU/Linux system:

$./lsgroups tux

tux

dialout

fax

voice

cdrom

floppy

�����

src

tux

scanner

Two things ought to occur to us. For one, the list is unsorted, which is not nice;
for the other, the tux group occurs twice in the list. (Debian GNU/Linux is one
of those distributions that, by default, put each user into their own eponymous
group.) The latter derives from the fact that /etc/group contains a line of the form

tux:x:123:tux

—unusual, but quite legal.
Thus we should sort the output and remove duplicates in the process (“sort

-u”). The question remains: How? An explicit “lsgroups | sort -u” gives us the
correct solution, but is inconvenient; sorting should be part of the script. There
again, the two logically separate pipelines are a nuisance. One way of dealing
with this would be by using an intermediate file:

grep … >/tmp/lsgroups.$$

grep … >>/tmp/lsgroups.$$

sort -u /tmp/lsgroups.$$

(the $$ will be replaced by the shell’s PID and makes the intermediate file’s name
unique). This approach is unsavoury because it tends to leave junk files around if,
due to an error, the intermediate file is not removed at the end of the script (there

60 4 Practical Shell Scripts

#!/bin/bash

lsgroups -- final version

Primary group

(gid=$(grep "$1̂:" /etc/passwd | cut -d: -f4)

grep "[:̂]̂*:[:]̂*:$gid:" /etc/group | cut -d: -f1

Supplementary groups

grep "[:̂]̂*:[:]̂*:[:]̂*:.*\<$1\>" /etc/group \

| cut -d: -f1) | sort -u

Figure 4.2: In which groups is user 𝑥?

are ways to prevent this). Besides, creating intermediate files with simple names
such as these represents a possible security hole. It is much more convenient to
execute both pipelines in an implicit common sub-shell and pipe that sub-shell’s
output to sort:

(grep …

grep …) | sort -u

Thus we arrive at our final version (Figure 4.2).

Exercises

C 4.1 [1] Change the pgroup script such that it distinguishes the error situations
“input syntax error” and “group does not exist” by returning different re-
turn values.

4.3 File Operations

Automating file operations is a profitable application of shell scripts—moving,
renaming, and saving files depending on various criteria is often more complex
than can be expressed using simple commands. Therefore, shell scripts are a con-
venient way for you to define your own commands that do exactly what you need.

Renaming multiple files The mv command is useful to rename a file or to move
several files to another directory. What it cannot do is rename several files at the
same time, the way you may remember from MS-DOS:

C:\> REN *.TXT *.BAK

This works because, on DOS, the REN command itself is dealing with the file name
search patterns—on Linux, on the other hand, it is the shell’s job to deal with
the search patterns, and it does not know what mv is about to do with the names
afterwards.

It is possible to solve the general case of multiple renaming by means of a shell
script, butwewill consider a restricted problem, namely changing the “extension”
of a file name. More precisely, we want to design a shell script called chext, which
by

$ chext .bak *.txt

4.3 File Operations 61

renames all specified files such that they get the extension given as the first pa-
rameter. In our example, all files whose names end in “.txt” would be renamed
to end in “.bak” instead.

Obviously, the main task of the chext script is to construct the appropriate ar-
guments for mv. We must be able to remove a file name extension and add another
one—and you have already learned how to do this using bash: Remember the
${…%…} construction for variable substitution and consider something like

$ f=../a/b/c.txt; echo ${f%.*}

../a/b/c

Everything starting from the last dot is removed.
And this leads to the first attempt at our chext script:

#!/bin/bash

chext -- Change a file extension, first version

suffix="$1"

shift

for f

do

mv "$f" "${f%.*}.$suffix"

done

Note first the use of double quotes to avoid problems with whitespace inside file
names. It is also interesting how the command line is used: The first argument—
immediately following the script name—is the desired new extension. We put
this into the suffix variable and then invoke the shift command. shift causes all shift

positional parameters to “take a step to the left”: $2 becomes $1, $3 becomes $2, and
so on. The old $1 is discarded. Thus, after our shift the command line consists only
of the file names to be changed (which the shell will kindly have compiled for us
from file name search patterns if necessary), so that it is convenient to use “for f”
to iterate over them.

The mv command might look a bit daunting, but it is really not too hard to
understand. f contains one of our file names to be changed, and using

${f%.*}.$suffix

the old extension is removed and the new one (which is stored in the suffix shell
variable) textually appended.

B The whole thing is not quite safe, as you will note when you consider file
names like ../a.b/c, where the last dot is not part of the last file name compo-
nent. There are various ways of solving this problem. One of them involves
the “stream editor”, sed, which you will learn about in Chapter 6, and an-
other uses the basename and dirname commands, which are useful in many
different contexts as well. They are used to split a file name into a directory
and a file component:

$ dirname ../a/b.c/d.txt

../a/b.c

$ basename ../a/b.c/d.txt

d.txt

Thus you can “defang” the shell’s % operator by presenting to it just the file
part of the name to be changed. The mv command then becomes something
like

62 4 Practical Shell Scripts

#!/bin/bash

chext -- Change file extension, improved version

if [$# -lt 2]

then

echo >&2 "usage: $0 SUFFIX NAME ..."

exit 1

fi

suffix="$1"

shift

for f

do

mv "$f" "${f%.*}.$suffix"

done

Figure 4.3: Mass file name extension changing

d=$(dirname "$f")

b=$(basename "$f")

mv "$f" "$d/${b%.*}.$suffix"

(the ${…%…} construction, sadly, allows just variable names and no command
substitutions).

In addition, a decent shell script requires a command line syntax check. Our
script needs at least two parameters—the new extension and a file name—, and
there is no limit to the number of file names to be passed (well almost). Figure 4.3
shows the final version.

Exercises

C 4.2 [!2] Write a shell script that takes a file name and produces as output the
names of its superior directories, as in

$ hierarchy /a/b/c/d.e

/a/b/c/d.e

/a/b/c

/a/b

/a

/

C 4.3 [2] Use the script from the previous exercise to write a shell script that
behaves like “mkdir -p”—the script is passed the name of a directory to be cre-
ated, and should create this directory along with any possibly non-existing
directories farther up the directory tree.

4.4 Log Files

Controlling log file sizes A running Linux system produces various log data that
can, for example, be written to files by means of the Syslog deamon. Typical log
files can grow quickly and, with time, attain considerable size. One typical system

4.4 Log Files 63

administration task, therefore, is controlling the size of, and possibly the truncat-
ing and restarting of log files.—These days, most Linux distributions use a stan-
dardised tool called logrotate.

Next we shall develop a shell script called checklog, which checks whether a log
file has reached or exceeded a certain size, and possibly renames it and creates a
new log file under the old name. A basic skeleton might be something like

#!/bin/bash

checklog -- Check a log file and renew it if necessary

if [$# -ne 2]

then

echo >&2 "usage: $0 FILE SIZE"

exit 1

fi

if [$(ls -l "$1" | cut -d' ' -f5) -ge $((1024*$2))]

then

mv "$1" "$1.old"

> "$1"

fi

The interesting line in this script is the one containing the expression

$(ls -l "$1" | cut -d' ' -f5) -ge $((1024*$2))

This determines the length of the file passed as a parameter (fifth field of the out-
put of “ls -l”) and compares that to the maximum length that was also passed as
a parameter. The length parameter is interpreted as a number of kibibytes.

If the file is as long as, or longer than, the maximum file length, it is renamed
and a new file created under the old name. In real life, this is only half the job:
A program like syslogd opens the log file once and then continues writing into it,
no matter what the file is called—our script may rename it but that by no means
implies that syslogd will begin writing to the new file. It must be sent a SIGHUP first.
One way of implementing this is via an (optional) third parameter:

�����

> "$1"

[-n "$3"] && killall -HUP "$3"

�����

Our script might then be invoked like

checklog /var/log/messages 1000 syslogd

Handling several log files at once Our script from the preceding section may be
quite nice, but in real life you will have to deal with more than one log file. Of
course you could invoke checklog 𝑛 times with different arguments, but would it
not be possible for the program to handle several files at once? Ideally, we would
use a configuration file describing the work to be done, which might look like configuration file

SERVICES="apache syslogd"

FILES_apache="/var/log/apache/access.log /var/log/apache/error.log"

FILES_syslogd="/var/log/messages /var/log/mail.log"

MAXSIZE=100

MAXSIZE_syslogd=500

NOTIFY_apache="apachectl graceful"

64 4 Practical Shell Scripts

In plain language: The program is supposed to take care of the “services” apache

and syslogd. For each of these services there is a configuration variable beginning
with “FILES_” which contains a list of the log files of interest, and optionally an-
other one beginning with “MAXSIZE_” that contains the desired maximum size (the
MAXSIZE variable specifies a default value for services without their own MAXSIZE_

variable). Another optional variable is the “NOTIFY_” variable giving a command
with which the service can be told about a new log file (otherwise, “killall -HUP

⟨service⟩” will be executed by default).
This nearly fixes the operation of our new script—let us call it multichecklog:

1. Read the configuration file

2. For each service in the configuration file (SERVICES):

3. Determine the desired maximum size (MAXSIZE, MAXSIZE_*)

4. Check each log file against the maximum size

5. Notify the service if appropriate

The beginning of multichecklog might look like:

#!/bin/bash

multichecklog -- Check several log files

conffile=/etc/multichecklog.conf

[-e $conffile] || exit 1

. $conffile

We check whether our configuration file—here, /etc/multichecklog.conf—exists; ifread configuration file

not, there is nothing for us to do. If it does exist, we read it as a shell script and
thus define the SERVICES variable etc. within the current shell (the configuration file
syntax was deviously specified just so that was possible).

Then we consider the individual services:

for s in $SERVICES

do

maxsizevar=MAXSIZE_$s

maxsize=${!maxsizevar:-${MAXSIZE:-100}}

filesvar=FILES_$s

for f in ${!filesvar}

do

checklonger "$f" "$maxsize" && rotate "$f"

done

done

If you have followed closely, you have surely noticed the somewhat convoluted

maxsizevar=MAXSIZE_$s

maxsize=${!maxsizevar:-${MAXSIZE:-100}}

construction. Wewant to determine the value of maxsize as follows: First wewould
like to check whether “MAXSIZE_⟨service⟩” exists and is non-empty; if so, that vari-
able’s value will be assumed. If not, we check whether MAXSIZE exists; if so, the
value of that variable is assumed, otherwise (arbitrarily) 100. The problem with
this is the actual name of “MAXSIZE_⟨service⟩”, which can only be determinedwithin
the loop body. For this we use another property of variable substitution that weindirect substitution

have not yet explained: In a variable reference of the form “${!⟨name⟩}”, the value
of ⟨name⟩ is interpreted as the name of the variable whose value will eventually
be substituted, like

4.4 Log Files 65

$ north=Hello

$ south=Howdy

$ brit="How do you do"

$ area=south

$ echo ${!area} world

Howdy world

The ⟨name⟩ still needs to be a valid variable name—in our script, we would like to
say something like

maxsize=${!MAXSIZE_$s:-${MAXSIZE:-100}}

but that is not permitted, hence the extra indirection using maxsizevar. (The same
trick is necessary for “FILES_⟨service⟩”.)

Note further that we did not spell out the size check and renaming within the readability

loop body. To make our script more readable, we shall implement these two ac-
tions as shell functions:

checklonger FILE SIZE

function checklonger () {

test $(ls -l "$1" | cut -d' ' -f5) -ge $((1024*$2))

}

rotate FILE

function rotate () {

mv "$1" "$1.old"

> "$1"

}

Finally, we need the service notification (we have omitted it from the first ver-
sion of our loop). We must notify the service just once, no matter howmany of its
log files we have “rotated”. A neat method is the following:

notify=0

for f in ${!filesvar}

do

checklonger "$f" "$maxsize" && rotate "$f" \

&& notify=1

done

notifyvar=NOTIFY_$s

[$notify -eq 1] && ${!notifyvar:-killall -HUP $s}

This, again, makes use of the indirect substitution trick. The notify variable has
the value 1 exactly if a log file needed to be rotated.

All in all, our script now looks like the one in Figure 4.4.—The “configuration
file” technique shown in this shell script is very common. Linux distributions like
to use them, the SUSE distributions, for example, for the /etc/sysconfig files, and
Debian GNU/Linux for the files in /etc/default. Essentially, these files may con-
tain whatever is supported by the shell; you would, however, do best to restrict
yourself to variable assignments which you might want to explain using appro-
priate comment lines (one of the main advantages of the approach).

Exercises

C 4.4 [1] Change the multichecklog script such that the name of the configura-
tion file can optionally also be given by means of the MULTICHECKLOG_CONF en-
vironment variable. Convince yourself that your change performs as speci-
fied.

66 4 Practical Shell Scripts

#!/bin/bash

multichecklog -- Checking several log files

conffile=/etc/multichecklog.conf

[-e $conffile] || exit 1

. $conffile

checklonger FILE SIZE

function checklonger () {

test $(ls -l "$1" | cut -d' ' -f5) -ge $((1024*$2))

}

rotate FILE

function rotate () {

mv "$1" "$1.old"

> "$1"

}

for s in $SERVICES

do

maxsizevar=MAXSIZE_$s

maxsize=${!maxsizevar:-${MAXSIZE:-100}}

filesvar=FILES_$s

notify=0

for f in ${!filesvar}

do

checklonger "$f" "$maxsize" && rotate "$f" && notify=1

done

notifyvar=NOTIFY_$s

[$notify -eq 1] && ${!notifyvar:-killall -HUP $s}

done

Figure 4.4: Watching multiple log files

4.4 Log Files 67

C 4.5 [2] How would you make it possible to specify the maximum length
of log files conveniently like “12345” (bytes), “12345k” (kilobytes), “12345M”
(megabytes)? (Hint: case)

C 4.6 [3] So far, the rotate function renames the current log file $f to $f.old.
Define an alternate rotate function which will support, e. g., 10 old versions
of the file as follows: When rotating, $f is renamed to $f.0, a possibly existing
file $f.0 is renamed to $f.1, and so on; a possibly existing file $f.9 is deleted.
(Hint: The seq command creates sequences of numbers.) If you want to be
especially thorough, make the number of old file versions configurable.

C 4.7 [2] For many log files, the owner, group, and access mode are important.
Extend the rotate function such that the newly created empty log file has the
same owner, group, and access mode as the old one.

Important events Every so often, messages are written to the log which you as
the system administrator would like to hear about immediately. Of course you
have more important things to do than constantly observing the system logs—so
what would be more obvious than getting a shell script to do it? Of course it is
unwise to simply search /var/log/messages periodically using grep, since you may
well be alerted about the same event several times over. It would be better tomake
use of a special property of the Linux syslogd implementation, namely that it will
write to a “named pipe” if you put a vertical bar (pipe symbol) in front of its name:

syslog.conf

�����

.;mail.none;news.none |/tmp/logwatch

The named pipe must naturally have been created beforehand using the mkfifo

command.
A simple log file reader script might look like

#!/bin/bash

fifo=/tmp/logwatch

[-p $fifo] || (rm -f $fifo; mkfifo -m 600 $fifo)

grep --line-buffered ALERT $fifo | while read LINE

do

echo "$LINE" | mail -s ALERT root

done

We create the named pipe first, if it does not exist. Then the script waits for a line
containing “ALERT” to appear in the stream of log messages. Such a line will be
sent to the system administrator.

B Instead of e-mail, you might want to send the message using SMS, beeper,
…, depending on how urgent it is.

Essential for the functioning of the script is the --line-buffered extension of GNU
grep. It causes grep to write its output line by line instead of buffering larger
amounts of output, as it usually does to make writing more efficient. A line might
otherwise take ages until the read eventually gets to see it.

B If the expect package by Don Libes is installed on your system, you have
a program called unbuffer, which “unbuffers” the output of arbitrary pro-
grams. You might then write something like

unbuffer grep ALERT $fifo | while read LINE

68 4 Practical Shell Scripts

even if grep did not support the --line-buffered option.

Why do we not simply use something like

grep --line-buffered ALERT $fifo | mail -s ALERT root

? Obviously: We dowant the notification to take place as quickly as possible. With
a simple pipeline, mail would wait for grep to finish its output, to be sure that it has
received everythingworth sending along before actually dispatching themessage.
The clumsier “while-read-echo” construction serves to isolate the messages.

Incidentally, instead of tediously thinking of a regular expression that will
cover all of your interesting log entries, you might want to use the -f option to
grep. With this, grep will read a number of regular expressions from a file (one per
line) and search for all of them simultaneously:

grep --line-buffered -f /etc/logwatch.conf $fifo | …

takes the search expressions from the /etc/logwatch.conf file. With a trick, you can
include the search patterns in the logwatch file itself:

grep <<ENDE --line-buffered -f - $fifo | while read LINE

ALERT

WARNING

DISASTER

ENDE

do

echo …

done

Here the regular expressions are part of a here document which is made available
to grep on its standard input; the special file name “-” causes the -f option to read
the expression list from standard input.

Exercises

C 4.8 [2]What other possibility is there to have grep search formultiple regular
expressions at the same time?

4.5 System Administration

Shell scripts are an important systemadministration tool—theymake it possible to
automate tediously repeating procedures, or to make seldom-used tasks available
conveniently so you do not need to think them up again and again. It is also
possible to add features that did not come with the system.

df on afterburner The df command determines how much space is available on
the file system(s). Unfortunately, at first sight its output is fairly cryptic; it would
often be nice to be able to visualise the percentage of used space as a “bar graph”.
Nothing easier than that: Here is the output of df on a typical system:

$ df

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/hda3 3842408 3293172 354048 91% /

tmpfs 193308 0 193308 0% /dev/shm

/dev/hda6 10886900 7968868 2364996 78% /home

/dev/hdc 714808 714808 0 100% /cdrom

4.5 System Administration 69

“Graphically” post-processed this might look like

$ gdf

Mounted Use%

/ 91% ##------

/dev/shm 0% --

/home 78% ##--------------

/cdrom 100% ##

We must grab the 5th and 6th fields of the df output and insert them as the 1st
and 2nd fields of our own gdf script’s output. The catch is that cut, when cutting
out fields, cannot use the space character as a field separator: Two adjacent spaces
lead to an empty field according to cut’s count (try “df | cut -d' ' -f5,6”). Instead
of labouriously counting the characters per line in order to be able to use cut’s
columnar cutting mode, we take the easy way out and replace every sequence of
space characters with a tab character using tr. Without its graphical display, our
gdf script looks like

#!/bin/bash

gdf -- "Graphical" df output (preliminary version)

df | tr -s ' ' '\t' | cut -f5,6 | while read pct fs

do

printf "%-12s %4s " $fs $pct

done

There are just two new features: The read command reads the first field cut out
by cut into the pct variable, and the second into the fs variable(you will hear more
about read in Section 5.2). And the printf command supports the output of charac-
ter strings and numbers according to a “format specification”—here “%-12s %4s ”,
or “a flush-left character string in a field that is exactly 12 characterswide (possibly
truncated or padded with spaces) followed by a space and a flush-right character
string in a field that is exactly 4 characters wide (ditto)”.

B printf is available as an external program, but is also included in bash it-
self (in a slightly extended version). Documentation is available either as
a manual page (printf(1)), an info document, or as part of the bash manual;
you will, however, have to look up the details about the available formats
in the documentation of the C library function, printf() (in printf(3)). The
GNUprogrammers seem to assume that printf is ingrained so deeplywithin
the collective subconscious of Unix users that it does no longer need to be
explained at length …

To solve the exercise, we are just missing the graphical bars, which of course
derive from the percentage of used space according to field 5 (a. k. a. pct). For sim-
plicity, we cut the bars themselves from predefined strings of the desired length;
we just need to take care that we do not choke on the title line (“Use%”). After the
printf, there must be something like

if ["$pct" != "Use%"]

then

usedc=$((${#hash}*${pct%\%}/100))

echo "${hash:0:$usedc}${dash:$usedc}"

else

echo ""

fi

Here hash is a long string of “#” characters, and dash is an equally long string of
dashes. usedc derives from the length of hash—available via the special expansion

70 4 Practical Shell Scripts

#!/bin/bash

gdf -- "Graphical" output of df (final version)

hash="##"

dash="--"

df "$@" | tr -s ' ' '\t' | cut -f5,6 | while read pct fs

do

printf "%-12s %4s " $fs $pct

if ["$pct" != "Use%"]

then

usedc=$((${#hash}*${pct%\%}/100))

echo "${hash:0:$usedc}${dash:$usedc}"

else

echo ""

fi

done

Figure 4.5: df with bar graphs for disk use

$#hash—multiplied by the use percentage divided by 100, thus gives the number
of “#” characters to be displayed as part of the bar. We obtain the bar itself by
outputting $usedc characters from hash and appending just enough characters from
dash to make the bar as long as hash. The whole script is shown in Figure 4.5; hash
and dash are 60 characters each, which at a default terminal width of 80 characters,
makes good use of the space available if output togetherwith the left-hand format.

Exercises

C 4.9 [1] Why does Figure 4.5 contain “df "$@"”?

C 4.10 [3] Write a version of gdf which lets the length of each bar depend on
the size of the file system. The largest file system should take up all of the
original width, while other file systems should use proportionally shorter
bars.

Commands in this Chapter

logrotate Manages, truncates and “rotates” log files logrotate(8) 62
mkfifo Creates FIFOs (named pipes) mkfifo(1) 67
printf Formatted output of numbers and strings printf(1), bash(1) 69
seq Writes number sequences to standard output seq(1) 67
tr Substitutes or deletes characters on its standard input tr(1) 69
unbuffer Suppresses a process’s output buffering (part of the expect package)

unbuffer(1) 67

4.5 System Administration 71

Summary

• grep and cut are useful to extract particular lines and columns from files.
• You should handle error cases carefully—when your script is invoked as
well as when it is running.

• I/O redirection for command sequence is possible bymeans of explicit sub-
shells.

• The dirname and basename commands allow file name manipulations.
• Files with shell variable assignments can serve as convenient “configuration
files” for shell scripts.

• Logmessages can be processed individually by reading them from a named
pipe using read.

• The printf command implements formatted output of textual or numeric
data.

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

5
Interactive Shell Scripts

Contents

5.1 Introduction. 74
5.2 The read Command 74
5.3 Menus with select 76
5.4 “Graphical” Interfaces Using dialog 80

Goals

• Learning techniques for shell script control
• Knowing the Bourne-Again Shell’s methods for user interaction
• Being able to use the dialog package

Prerequisites

• Knowledge of shell programming (from the previous chapters)

grd2-interaktiv.tex (6eb247d0aa1863fd)

74 5 Interactive Shell Scripts

5.1 Introduction

In the previous chapters you have learned how to write shell scripts that take file
names and other bits of information from the command line. This is all right for
people used to the command line—but “normal” users often appreciate a more
“interactive” style, where a script asks questions or offers a menu interface. This
chapter will show you how to implement these things using bash.

5.2 The read Command

We have made a passing acquaintance of the shell’s read command already: It
reads lines from its standard input and assigns them to shell variables, in con-
structions like

grep … | while read line

do

…

done

As we have seen, you can specify several variables. The input is then split into
“words”, and the first variable is assigned the first word, the second variable the
second, and so on:

$ echo Hello world | read h w

$ echo $w $h

world Hello

Superfluous variables remain empty:

$ echo 1 2 | read a b c

$ echo $c

Nothing
$ _

If there are more words than variables, the last variable gets all the rest:

$ echo 1 2 3 | read a b

$ echo $b

2 3

$ _

(This, of course, is the secret behind the success of “while read line”.)
What is a “word”? Here, too, the shell uses the content of the IFS variable (short

for “internal field separator”), viewed per character, as the separators. The default
value of IFS consists of the space character, the tab character, and the newline sepa-
rator, but you can frequently make life easier for yourself by specifying a different
value:

IFS=":"

cat /etc/passwd | while read login pwd uid gid gecos dir shell

do

echo $login: $gecos

done

saves you from having to mess around with cut.
Of course you can use read to read from the keyboard:

5.2 The read Command 75

$ read x

Hello

$ echo $x | tr a-z A-Z

HELLO

With bash, you can even combine this with a prompt, as in the following script to
create a new user account:

#!/bin/bash

newuser -- create a new user account

read -p "Login name: " login

read -p "Real name: " gecos

useradd -c "$gecos" $login

Especiallywhenusing read, it is important to enclose the “read” variables in quotes
to avoid problems with spaces.

What happens if the invoker of the newuser script enters invalid data? Wemight input validation

require, for instance, that the new user’s login name consist of lowercase letters
and digits only (a common convention). This could be enforced as follows:

read -p "Benutzername: " login

test=$(echo "$login" | tr -cd 'a-z0-9')

if [-z "$login" -o "$login" != "$test"]

then

echo >&2 "Invalid login name $l̈ogin"̈

exit 1

fi

We consider what remains after all invalid characters have been removed from
the proposed login name. If the result does not equal the original login name, the
latter contained “forbidden” characters. It may not be empty, either, which we
check using test’s -z option.

With drastic operations such as the creation of new user accounts, verification verification

is in order so that the user can abort the script if they get second thoughts (maybe
because of some erroneous previous input). A convenient method to do this is via
a shell function like

function confirm () {

done=0

until [$done = 1]

do

read -p "Please confirm (y/n): " answer

case $answer in

[Yy]*) result=0; done=1 ;;

[Nn]*) result=1; done=1 ;;

*) echo "Please answer 'yes' oder 'no'" ;;

esac

done

return $result

}

The safety check within the script might then be something like

confirm && useradd …

76 5 Interactive Shell Scripts

Exercises

C 5.1 [!1] Change the newuser script such that it checks whether the new user’s
real name contains a colon, and possibly outputs an error message and ter-
minates.

C 5.2 [2] Extend the newuser script such that the invoker can select the new
user’s login shell. Take care that only shells from /etc/shells will be ac-
cepted.

C 5.3 [2] Extend the confirm shell function such that it takes the prompt as a
parameter. If no parameter has been passed, the default prompt “Please
confirm” should be output.

C 5.4 [3] Write a simple guessing game: The computer selects a random num-
ber between (for example) 1 and 100 (the RANDOM shell variable produces ran-
dom numbers). The user enters a number and the computer answers “Too
big” or “Too small”. This is repeated until the user has found the correct
number.

5.3 Menus with select

The bash features a very powerful command for selecting options from a list, select,
with a syntax similar to that of for:

select ⟨variable⟩ [in ⟨list⟩]
do

⟨commands⟩
done

This construct describes a loop where the value of ⟨variable⟩ is determined by a
user choice from ⟨list⟩. The loop is executed over and over again until end-of-file
is reached on the standard input. Consider the following example:

$ select type in Hamburger Cheeseburger Fishburger

> do

> echo $type coming up ...

> done

1) Hamburger

2) Cheeseburger

3) Fishburger

#? 2

Cheeseburger coming up ...

#? 3

Fischburger coming up ...

#? Ctrl + D

$ _

That is, the shell presents the entries of ⟨list⟩ with preceding numbers, and the
user can make a choice by means of one of the numbers.

B select behaves much like for: If the ⟨list⟩ is omitted, it presents the script’s
positional parameters for selection. The select loop, like all other shell loops,
can be aborted using break or continue.

5.3 Menus with select 77

newuser revisited We can use select to further refine our newuser script. For exam-
ple, youmightwant to support various types of users—professors, other staff, and
students at a university, for example. In this case it would be useful if the newuser

script offered a choice of various user types. Different default values might then
derive from that choice, such as the primary grouop, home directory, or the set
of default files copied to the home directory. On this occasion you will be able to
learn about yet another way of storing configuration data for shell scripts.

We assume that, within the /etc/newuser directory, there is a file named 𝑡 for
every type of user 𝑡. For example, a file called /etc/newuser/professor for professors
and another called /etc/newuser/student for students. The content of /etc/newuser/
professor, for example, might look like this:

/etc/newuser/professor

GROUP=profs

EXTRAGROUP=office

HOMEDIR=/home/$GROUP

SKELDIR=/etc/skel-$GROUP

(Professors get the Linux group profs as their primary group, as well as the group
office as a supplementary group). This, of course, is our old trick “configuration
file containing shell variable assignments”, with the difference that now there is
one configuration file for every type of user. Creating a user once we know the
user type goes approximately like

confirm || exit 0

. /etc/newuser/$type

useradd -c "$gecos" -g $GROUP -G $EXTRAGROUP \

-m -d $HOMEDIR/$login -k $SKELDIR $login

We still need to determine the proper user type. Of course we do not want to
hard-code the selection list within the newuser script, but make it depend on the
content of /etc/newuser:

echo "The following user types are available:"

PS3="User type: "

select type in $(cd /etc/newuser; ls) '[Cancel]'

do

["$type" = "[Cancel]"] && exit 0

[-n "$type"] && break

done

The PS3 shell variable specifies the prompt displayed by select.

Exercises

C 5.5 [!1]What happens if, at the select prompt, you enter something that does
not correspond to the number of a menu entry?

Who wants to be a … Our next script is loosely based on a popular television
game show: Consider a file wwtb.txt containing questions and answers of the form

0:?:According to the proverb, what do too many cooks do?

0:-:Eat the roast

0:-:Break the stove

0:+:Spoil the broth

0:-:Drop the cutlery

0:>:50

78 5 Interactive Shell Scripts

50:?:Which of the following is edible?

50:-:Cool cat

50:+:Hot dog

50:-:Lukewarm guinea pig

50:-:Tepid turtle

50:>:100

�����

The script—let us call it wwtb—should, beginning at score 0, present the questions
and answers. If the user selects a wrong answer, the program terminates; on a
correct answer, it proceeds with the next question (whose score derives from the
“:>:” line).

An important basic strategy in more sophisticated programming projects is
“abstraction”. In our case, we try to “hide” the actual format of the question file
in a function that looks up the appropriate elements. Theoretically, wemight later
take the questions from adatabase instead of a flat text file, or change the data stor-
age in some other way (for example, by randomly selecting a question from a pool
of questions appropriate for the current score). One possible, if not exceedingly
efficient, way of accessing the question data might be

qfile=wwtb.txt

function question () {

if ["$1" = "get"]

then

echo "$2"

return

fi

case "$2" in

display) re='?' ;;

answers) re='[-+]' ;;

correct) re='+' ;;

next) re='>' ;;

*) echo >&2 "$0: get: invalid field type $2"; exit 1 ;;

esac

grep "$1̂:$re:" $qfile | cut -d: -f3

}

The question function must first be called like

q=$(question get ⟨score⟩)

This returns the unique identifier of a question with the specified score (with us,
simply the score itself, since there is just one question per score in the file). We
remember this identifier in a shell variable (here, q). Afterwards, we can use the
following invocations:

question $q display returns the question
question $q answers returns all answers, one per line
question $q correct returns the correct answer
question $q next returns the score for a correct answer

The data is made available on the shell function’s standard output.

B For connoisseurs: These are, of course, the beginnings of an “object-based”
approach—“question get” returns a “question object” which then supports
the various methods display etc.

Next, we require a function that displays a question and solicits the answer.
Naturally, this function builds on the question function that we just discussed:

5.3 Menus with select 79

function present () {

Find and show the question

question $1 display

Find the correct answer

rightanswer=$(question $1 correct)

Show the answers

PS3="Your answer: "

IFS=$'\n'

select answer in $(question $1 answers)

do

if [-z "$answer"]

then

echo "Please answer something reasonable."

else

test "$answer" = "$rightanswer"

return

fi

done

}

The answers are, of course, presented using select. We need to take into account
that select uses the IFS variable to separate the various menu entries when con-
structing the menu—with the IFS variable’s default value, select would show ev-
ery singleword in all the answers as a separate possible selection (!). Try it! For the
function’s return value we exploit the fact that the return value of the last “real”
command (return does not count) is considered the return value of the function as
a whole. Instead of a tedious
if ["$answer" = "$rightanswer"]

then

return 0

else

return 1

fi

we just use the construct shown above, with a return right after a test.
Finally, we need the “framework” that brings the two separate parts “question

management” and “user interface” together. This might look roughly like

score=0

while [$score -ge 0 -a $score -lt 1000000]

do

q=$(question get $score)

if present $q

then

score=$(question $q next)

else

score=-1

fi

done

The framework takes care of selecting a question (using “question get”) matching
the player’s current score. This question is presented (using present), and depend-
ing on the “success” of the presenting function (thus the correctness of the asnwer)
the score will either be increased to the next level, or the game is over. At the end
just a few warm parting words from the (computerised) host:

if [$score -lt 0]

then

80 5 Interactive Shell Scripts

Table 5.1: dialog’s interaction elements

Description
calendar Displays day, month, and year in separate windows; the user may edit. Returns the value in the

form “day/month/year”
checklist Displays a list of entries that can be selected or deselected individually. Returns a list of the

“selected” entries
form Displays a form. Returns the values that have been entered, one per line

fselect Displays a file selection dialog. Returns the selected file name
gauge Displays a progress bar

infobox Outputs a message (without clearing the screen)
inputbox Allows entry of a character string, returns that
inputmenu Displays a menu where the user may change the entries

menu Displays a menu of selections
msgbox Displays a message, waits for confirmation

passwordbox inputbox that does not display its input
radiolist Displays a list of entries, of which exactly one may be selected; returns the selected entry
tailbox Displays the content of a file, like “tail -f”
tailboxbg Like tailbox, file is read in the background
textbox Displays the content of a text file
timebox Displays hour, minute, and second, with editing facilities; returns time in the format

“hour:minute:second”
yesno Displays a message and allows “yes” or “no” as an answer

echo "That wasn't so hot, you lost"

else

echo "Congratulations, you have won"

fi

Exercises

C 5.6 [!1] Extend the wwtb script such that it displays a question’s “value” (i. e.,
the score that the participant will have once he has answered the question
correctly).

C 5.7 [!3] Think of an interesting extension to wwtb and implement it (or two or
three).

C 5.8 [3] Revise the question function of wwtb such that it requires fewer grep

calls.

5.4 “Graphical” Interfaces Using dialog

Instead of boring textualmenus and teletype-like dialogues, you can avail yourself
of a nearly “graphical” user interface for your scripts. This can be done by means
of the dialog program, which you may have to install separately if your Linux dis-
tribution does not do it for you. dialog uses the facilities offered by modern ter-
minals (or terminal emulation programs) to present full-screen menus, selection
lists, text entry fields, and so on, possibly in colour.

dialog knows a large range of interaction elements (Table 5.1). The details of
its configuration are quite complex and you should read up on them in dialog’s
documentation; we will restrict ourselves to the bare necessities here.

For example, we might change our wwtb program such that the questions and
the final evaluation are displayed using dialog: The menu element is best suited to

5.4 “Graphical” Interfaces Using dialog 81

Figure 5.1: A dialog-style menu

display our questions and answers. A dialog invocation for a menu looks roughly
like this:

$ dialog --clear --title "Menu Choice" \

--menu "What would you like?" 12 40 4 \

"H" "Hamburger" \

"C" "Cheeseburger" \

"F" "Fishburger" \

"V" "Veggieburger"

You can see the result in Figure 5.1. The more important options include --clear

(clears the screen before the menu is displayed) and --title (specifies a title for
the menu). The --menu option determines this dialog to be a selection menu; this is
followed by an explanatory text and the threemagic numbers “height of themenu
in lines”, “width of the menu in characters”, and “number of entries displayed at
the same time”. At the end there are the entries themselves, all with a “short
name” and their actual content. In the resulting menu, you can navigate using
the arrow keys, the number keys 0 to 9 , or the initial letters of the short names;
in our example, the inputs 3 or f would lead to the “Fishburger”.

Another consideration is important when dealing with dialog: The program
usually produces its output on the standard error channel. Thismeans that if, as is
likely, youwant to intercept and process dialog’s results, youmust redirect dialog’s
standard error output, not its standard output. This results from the fact that
dialog writes to its standard output to address the terminal; thus if you redirected
its standard output youwould no longer see anything on the screen, while dialog’s
actual output would drown among various terminal control characters. There are
various ways of handling this: You can have dialog write to a temporary file via 2>,
but it is tedious to ensure that these temporary files are disposed of at the end of
the script (clue: trap). Alternatively, you can get tricky with I/O redirection, like

result=$(dialog … 2>&1 1>/dev/tty)

This connects standard error output (file descriptor 2) to where standard output
currently goes (the result variable) and then connects standard output to the ter-
minal (/dev/tty).

B Of course this works only because the standard output is not usable on de-
vices other than terminals—to swap a script’s standard output and standard
error output, descriptors need to be juggled about like so:

82 5 Interactive Shell Scripts

(program 3>&1 1>output 2>&3) | …

This command line redirects program’s standard output to the output file and
its standard error output to the pipeline. It is, in a certain sense, the opposite
of the more common

program 2>output | …

Who wants to be a … with dialog Let us now look at a dialog-based version of
the wwtb script. The trouble we went to concerning “abstraction” now pays off: the
changes restrict themselves mostly to the present function.

The main hurdle to overcome in order to make wwtb dialog-capable results from
the fact that, in dialog’s menu syntax

dialog … --menu 𝑡 ℎ 𝑤 𝑛 𝑘0 𝑒0 𝑘1 𝑒1 …

the program insists on being passed the short names and menu entries 𝑘𝑖 and 𝑒𝑖
as single words. We could use a loop like

items=''

i=1

question $q answers | while read line

do

items="$items $i '$line'"

i=$((i+1))

done

to construct a list of short names and answers of the form

1 'Eat the roast' 2 'Break the stove' …

in the items variable, but an invocation of the form

dialog … --menu 10 60 4 $items

does not agree with dialog at all. One solution is the use of arrays, which basharrays

supports at least in a rudimentary manner.

Arrays An array is a variable that can contain a sequence of values. These values
can be addressed by means of numeric indices. You do not need to declare an
array; it suffices to access a variable “indexedly”:

$ course[0]=appetiser

$ course[1]=soup

$ course[2]=fish

$ course[4]=dessert

You can access these variables individually, as in

$ echo ${course[1]}

soup

(the braces are necessary to avoid confusion with file search patterns) or as a
group, as in

$ echo ${gang[*]}

appetiser soup fish dessert

5.4 “Graphical” Interfaces Using dialog 83

(Incidentally, it does not matter if not all indices are used in sequence.) The
“${⟨name⟩[*]}” and “${⟨name⟩[@]}” expansions are similar to $* and $@, as the
following example illustrates:

$ course[3]="filet mignon"

$ for i in ${course[*]}; do echo $i; done

appetiser

soup

fish

filet

mignon

dessert

$ for i in "${course[*]}"; do echo $i; done

appetiser soup fish filet mignon dessert

$ for i in "${course[@]}"; do echo $i; done

appetiser

soup

fish

filet mignon

dessert

The latter is what we need.

B You can also assign a value to an array as a whole, like

$ course=(appetiser gazpacho salmon \

> "boeuf Stroganoff" "crepes Suzette")

$ for i in "${course[@]}"; do echo $i; done

appetiser

gazpacho

salmon

boeuf Stroganoff

crepes Suzette

$ course=([4]=pudding [2]=trout [1]=broth \

> [3]=fricassee [0]=appetiser)

$ for i in "${course[@]}"; do echo $i; done

appetiser

broth

trout

fricassee

pudding

B If you want to be thorough, you can officially declare a variable an array
using

declare -a ⟨Name⟩

However, this is normally not necessary.

Arrays applied Our new present routine must assemble a list of short names and
answers that will later be passed to dialog. This might look like

declare -a answers

i=0

rightanswer=$(question $1 correct)

IFS=$'\n'

for a in $(question $1 answers)

do

84 5 Interactive Shell Scripts

answers[$((2*i))]=$((i+1))

answers[$((2*i+1))]="$a"

["$a" = "$rightanswer"] && rightshort=$((i+1))

i=$((i+1))

done

We use i as an index into the answers array. For each answer, i is incremented, and
the actual indices for the short name and the answer itself result from an index
transformation: For example, for i = 1, the short name ends up in answers[2] and
the answer text in answers[3]; for i = 3 the short name goes to answers[6] and the
answer text to answers[7]. As short names, we shall be using the numbers 1,… , 4
instead of 0,… , 3. Additionally, we remember the correct answer’s short name
in rightshort; this is important because dialog returns just the short name of the
selected menu entry rather than the full name (as select did).

With our answers array, we can now invoke dialog:

Display the question

sel=$(dialog --clear --title "For $(question $1 next) points" \

--no-cancel --menu "$(question $1 display)" 10 60 4 \

${answers[@]} 2>&1 1>/dev/tty)

test "$sel" = "$rightshort"

Again, we fetch the question text via question’s display method; the --no-cancel op-
tion suppresses the menu’s “Cancel” button.

Finally, we can use dialog to pronounce the final result:

if [$score -lt 0]

then

msg="That wasn't so hot, you lost"

else

msg="Congratulations, you won"

fi

dialog --title "Final Result" --msgbox "$msg" 10 60

This uses the much more straightforward --msgbox option. The main changes for
the dialog-based script (it is accordingly called dwwtb are displayed more clearly in
Figure 5.2.

Additional remarks dialog is convenient but you should not go overboard with
it. It is probably most useful in the “twilight zone” where something nicer than
raw text-terminal based interaction is desired, but a “real” GUI is not or not neces-
sarily available. For instance, the installation routines of the Debian GNU/Linux
distribution use dialog, since on the boot disks there is not really room for a full
GUI environment. More complex graphical interfaces are beyond even the capa-
bilities of dialog, and stay the domain of environments like Tcl/Tk or programs
based on C or C++ (possibly using Qt or Gtk+, KDE or GNOME).

B For displaying simple dialog boxes with buttons there is the X11 client xmes-
sage. It can be used, for instance, to send messages to a user’s graphical
terminal. xmessage is part of the basic X11 package and hence should be avail-
able on virtually all Linux systems. Its looks may seem a bit old-fashioned,
though.

B Incidentally, KDE offers a vaguely dialog-ish program called kdialog which
allows KDE-like GUIs for shell scripts. However, for anything beyond the
most essential basicswewould strongly urge you to use a “reasonable” basis
for your GUI programs, such as Tcl/Tk or PyKDE.

5.4 “Graphical” Interfaces Using dialog 85

#!/bin/bash

dwwtb -- dialog-capable wwtb

The question function is just as in wwtb

�����

function present () {

declare -a answers

i=0

rightanswer=$(question $1 correct)

IFS=$'\n'

for a in $(question $1 answers)

do

answers[$((2*i))]=$((i+1))

answers[$((2*i+1))]="$a"

["$a" = "$rightanswer"] && rightshort=$((i+1))

i=$((i+1))

done

Display the question

sel=$(dialog --clear --title "For $(question $1 next) points" \

--no-cancel --menu "$(question $1 display)" 10 60 4 \

${answers[@]} 2>&1 1>/dev/tty)

test "$sel" = "$rightshort"

}

The main program is just as in wwtb

�����

if [$score -lt 0]

then

msg="That wasn't so hot, you lost"

else

msg="Congratulations, you won"

fi

dialog --title "Final Result" --msgbox "$msg" 10 60

Figure 5.2: A dialog-capable version of wwtb

86 5 Interactive Shell Scripts

Exercises

C 5.9 [!3] Write a shell script called seluser which offers you a selection menu
with all users from /etc/passwd (use the user name as the short name and
the content of the GECOS field—the “real” name—as the actual menu en-
try). This script should produce the selected user name on the standard
output. (Imagine the script to be part of a more sophisticated user manage-
ment tool.)

C 5.10 [3] Write a shell script named show-motd which displays the content of
the /etc/motd using xmessage. Make the system run the script when a user logs
in. (Hint: Xsession.)

Commands in this Chapter

dialog Allows GUI-like interaction controls on a character screen
dialog(1) 80

kdialog Allows use of KDE widgets from shell scripts kdialog(1) 84
xmessage Displays a message or query in an X11 window xmessage(1) 84

Summary

• With read, you can read data from files, pipelines, or the keyboard to shell
variables.

• The select command allows a convenient, repeated choice from a numbered
list of alternatives.

• The dialog programmakes it possible to endow text-based shell scripts with
GUI-like interaction elements.

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

6
The sed Stream Editor

Contents

6.1 Introduction. 88
6.2 Addressing . 88
6.3 sed Commands . 90

6.3.1 Printing and Deleting Lines 90
6.3.2 Inserting and Changing 91
6.3.3 Character Transformations 91
6.3.4 Searching and Replacing 92

6.4 sed in Practice . 93

Goals

• Knowing the function and use of sed
• Being able to design simple sed scripts
• Using sed in shell scripts

Prerequisites

• Knowledge of shell programming (e. g., from the preceding chapters)
• Regular expressions

grd2-sed.tex (6eb247d0aa1863fd)

88 6 The sed Stream Editor

6.1 Introduction

Linux features a large selection of simple text processing tools—from cut and grep

to tr and sort to join and paste. As the text manipulation tasks get more sophis-
ticated, the classic tools like cut or tr may no longer be sufficient. For example,
tr can turn an “X” into an “U”, but fails to fulfil the ancient alchimists’ dream of
turning “lead” into “gold”—just as they did themselves.

Usually youwould now start a suitably powerful editor to replace every occur-
rence of “lead” in your file by “gold”. There are two reasons, though, that might
urge you to take a different route.

Firstly, it might be the case that you want to modify the file automatically, for
example within a shell script. Secondly, there are cases where you do not want to
change a file to begin with, but a (potentially infinite) stream of text, e. g., in the
middle of a pipeline.

This is the domain of sed (for “stream editor”), which lets you process a textsed

stream according to predefined instructions. If not even sed can do the trick, you
can call in even more reinforcements and use awk (Chapter 7), or change to a more
sophisticated scripting language such as Perl.

sed’s programming model is fairly simple: The program takes a number of in-
structions, reads its input line by line, and applies the instructions to the input
lines where appropriate. Finally, the lines are output in possibly modified form
(or not). The important point is that sed just reads its input file (if there is one) and
never modifies it; if anything, modified data are written to standard output.

sed accepts commands either one after the other using the -e option, whichcommands

may occur multiple times on the same command, or within a file whose name is
passed to sed using the -f option. If you are passing just one command on the shell
command line, you can even leave out the -e.

B You can specify several sed commands within a single -e option if you sep-
arate them using semicolons.

B There is nothing wrong with executable “sed scripts” of the form

#!/bin/sed -f

⟨sed commands⟩

Every sed command consists of a line address determiningwhich lines the com-line address

mand applies to, and the actual command, for example

$ sed -e '1,15y/uU/xX/'

sed commands are exactly one character long, but can be followed by additional
parameters (depending on the command).

6.2 Addressing

There are various methods of “addressing” lines in sed. Some commands apply
to one line, others to ranges of lines. Single lines can be selected as follows:

Line numbers A number as a line address is considered a line number. The first
input line is number 1, and the count continues from there (even if the input
consists of several files).

B You can get sed to consider each input file separately by means of the
-s option. In this case, every input file starts with a line no. 1.

A line specification like 𝑖~𝑗 stands for “every 𝑗-th line, starting at line 𝑖”. Thus,
“2~2 would select every even-numbered line.

6.2 Addressing 89

Table 6.1: Regular expressions supported by sed and their meaning

Regular expression Meaning
[a-d] One character from the set {a, b, c, d}
[^abc] One character except a, b, or c

. Any character (including space characters or newlines)
* Any number of repetitions of the preceding regular ex-

pression (including none)
? The preceding regular expression occurs once or not at

all
^ Beginning of the line
$ End of the line
\< Beginning of a word
\> End of a word

Regular expressions A regular expression of the form “/⟨expression⟩/” selects all
linesmatching the expression. “/a.*a.*a/”, for example, selects all lines con-
taining at least three “a” characters.

Last line The dollar sign (“$”) stands for the last line of the last input file (here
again, -s considers every input file separately).

You can specify ranges of lines by arbitrarily combining single addresses, with a
comma in-between. The range starts with a line matching the first address and
extends from there to the first line matching the second address. Ranges can start
in one file and finish in another, unless the -s option was given. Here are some
examples for range addressing:

1,10 This selects the first ten input lines

1,/^$/ This selects all lines up to the first empty line. This idiom is useful, for
example, to extract the “header” of an e-mail message (which by definition
always finishes with an empty line, but may not contain empty lines)

1,$ This describes “all input lines” but may generally be omitted

/^BEGIN/,/^END/ This describes all ranges of lines starting at one beginning with
“BEGIN” up to one beginning with “END” (inclusively).

B If the second address is a regular expression, it is searched for beginning
with the line immediately following the line that starts the range. If the first
address is a regular expression, too, then, once a line matching the second
expression was found, sed continues looking for another line matching the
first expression—there might be another matching range of lines.

B If the second address is a number describing an earlier line than the one
matching the first address, only the first matching line is output.

You can select all lines not matched by an address by appending a “!” to the
address:

5! addresses all input lines except for the fifth

/^BEGIN/,/^END/! addresses all input lines that are not part of a BEGIN-END block

Exercises

C 6.1 [!1] Consider the following file:

90 6 The sed Stream Editor

ABCDEFG

123 ABC

EFG

456 ABC

123 EFG

789

Which lines do the following addresses describe? (a) 4; (b) 2,/ABC/; (c)
/ABC/,/EFG/; (d) $; (e) /^EFG/,2; (f) /ABC/!

C 6.2 [2] Study the GNU sed documentation and explain the meaning of the
(GNU-specific) address “0,/⟨expression⟩/”.

6.3 sed Commands

6.3.1 Printing and Deleting Lines

Usually, sed writes every input line to its standard output. The d (“delete”) com-
mand suppresses lines so that they are not output. For example,

sed -e '11,$d'

is equivalent to the head command: Just the first 10 input lines are let through.
The -n option inhibits the automatic output. sed outputs only those lines that

are subject to an explicit p (“print”) command. Thus you can simulate head another
way by means of

sed -ne '1,10p'

With a regular expression instead of a numbered-line range, we can imitate grep:

sed -ne '/[#̂]̂/p' /etc/ssh/sshd_config

corresponds to the grep invocation

grep '[#̂]̂' /etc/ssh/sshd_config

Back to head: Our alternatives so far have the disadvantage that they insist on
reading all of the input. Considering that we are done after the tenth line, it is
somewhat pointless to go on reading a hundred thousand further lines, just to
delete them or not output them. The most efficient head simulation is, in fact,

sed -e 10q

—the q command (“quit”) terminates sed immediately.

Exercises

C 6.3 [!1] How would you delete all empty lines from sed’s input?

C 6.4 [!1] The popular Apache web server, in its httpd.conf file, uses blocks of
the form

<Directory /var/www/htdocs>

…

</Directory>

to configure options for certain directories. Give a sed command to extract
all such blocks from httpd.conf.

C 6.5 [2] You have seen head. How can you simulate tail using sed?

6.3 sed Commands 91

6.3.2 Inserting and Changing

sed really gets to flex its muscles once you allow it to not just filter the text stream
but modify it. To do this by lines, there are the three commands “a” (“append”), i
(“insert”), and c (“change”) for appending material after a line, inserting material
in front of a line, or replacing one line by another:

$ fortune | sed -e '1 i >>>' -e '$ a <<<'

>>>

"So here's a picture of reality: (picture of circle with �

� lots of squiggles in it) As we all know, reality is a mess."

-- Larry Wall (Open Sources, 1999 O'Reilly and Associates)

<<<

Here, the GNU implementation of sed, which is customary on Linux, allows you
to specify all of this on one line. The traditional form is somewhat more tedious
and better suited to sed scripts. In the following example, the “$” are not part of
the file, but are appended to the line ends using cat in order to make them more
obvious.
$ cat -E sed-script

1i\$

First inserted line\$

Second inserted line$

With the traditional syntax, sed expects a backslash after the a, i, or c command,
immediately preceding the end of line. If more than one line is to be inserted, each of
these lines except for the lastmust also be terminated with a backslash immediately
preceding the end of line. This script is invoked by

$ sed -f sed-skript datei

The a and i commands are “one-address commands”: They allow only ad-
dresses matching a single line—no ranges (but there may well be several input
lines which match the one address given with a and i, and which will all be duly
processed). This one address may include all the bells and whistles mentioned
above including regular expressions etc. With c, an address range implies that all
of the range is to be replaced.

Exercises

C 6.6 [!2] Give a sed command that inserts a blank line after every input line
that consists of capital letters and spaces only. (Imagine you want to em-
phasise titles).

6.3.3 Character Transformations

The y command makes sed replace single characters by others. In the contrived
example

$ echo 'wéîrd fíle näme' | sed -e 'y/ äéîí/_?/'

w??rd_f?le_n?me

some unusual characters and spaces are “repaired”. Unfortunately, y does not
allow ranges like a-z, thus it is only a weak replacement of tr.

Exercises

C 6.7 [1] Give a sed command that converts all lowercase letters to capitals on
each odd-numbered line.

92 6 The sed Stream Editor

6.3.4 Searching and Replacing

The s (“substitute”) command is possibly the most powerful sed command. It al-
lows substitution of a regular expression by a character string whose composition
may change dynamically.

The regular expression to be replaced is given like a line address, in “/…/”,
followed by the replacement test and “/”, thus for example

$ sed -e 's/\<lead\>/gold/'

Here the word brackets prevent the accidental invention of “golding lady”, “gold-
ership”, or other misgolding words.

Note that “\<”, “\>”, “^”, and “$” correspond to empty strings. In particular,
“$” is not the actual newline character at the end of a line but the empty string
“” immediately preceding the newline character; therefore “s/$/|/” inserts a “|”
immediately before the end of line instead of replacing the end of line with it.

The substitution text can depend on the text that is being replaced: In addi-
tion to numbered back-references to parenthesised substrings using “\1” etc., “&”
stands for all of the text matched by the search expression. For example:

$ echo Every word quoted. | sed -e 's/\([A-Za-z]\+\)/"\1"/g'

"Every" "word" "quoted".

$ echo Every word quoted. | sed -e 's/[A-Za-z]\+/"&"/g'

"Every" "word" "quoted".

Normally, s replaces just the first “hit” on every line. If a “g” (as in “global”) is ap-
pended to the s command—like here—, it replaces every occurrence of the search
pattern on each line. Another useful modifier is “p” (“print”), which outputs the
line after replacement (like the “p” command).

If you append a number 𝑛, only the 𝑛-th “hit” will be replaced: An input file
like

Column 1 Column 2 Column 3 Column 4

with tab characters between the columns can be converted by the sed command

s/ Tab /\

/2

(where Tab is, in fact, a “real” tab character1; the backslash at the end of the line
hides a newline character) to

Column 1 Column 2

Column 3 Column 4

B Sometimes the slash as a separator for search expressions and replacement
strings is a nuisance, especially when dealing with file names. In fact, you
can pick the separator character almost arbitrarily; you just need to be con-
sistent and use the same one three times. Only spaces and newline charac-
ters are not allowed as separators.

sed 's,/var/spool/mail,/var/mail,'

(For regular expressions used as addresses, the slashes are, unfortunately,
mandatory.)

1Difficult to type in bash; you can type all control characters by entering Ctrl + q first.

6.4 sed in Practice 93

Exercises

C 6.8 [!1] Give a sed command that replaces the word yellow by the word blue

in all of its input.

C 6.9 [!2] State a sed command that deletes the first word from all lines begin-
ning with “A”. (For the purposes of this exercise, a word is a sequence of
letters.)

6.4 sed in Practice

Here are some more examples of how to use sed in more complex shell scripts:

Renaming files In Section 4.3 we worked on changing file extensions for “many”
files. With sed, we have a tool that allows us to rename many files arbitrarily. A
suitable command might look like this:

$ multi-mv 's/pqr/xyz/' abc-*.txt

Our (hypothetical, so far) multi-mv command takes as its first argument a sed com-
mand which is then applied to all of the following file names.

As a shell script, multi-mv might look somewhat like this:

#!/bin/bash

multi-mv -- renames multiple files

sedcmd="$1"

shift

for f

do

mv "$f" "$(echo \"$f\" | sed \"$sedcmd\")"

done

Overwriting files If you have paid attention during “Shell I/O Redirection 101”,
you know perfectly well that commands like

$ sed … file.txt >file.txt

do not do what one might naively expect: The file.txt file is ruined quite thor-
oughly. Thus if you edit a file using sed and want to store the result under the
original file name, you have to put in extra work: Write the result to a temporary
file first and then rename it, like this:

$ sed … file.txt >file.tmp

$ mv file.tmp file.txt

This rather long-winded procedure lends itself to being automated by means of a
shell script:

$ oversed … file.txt

At first we will restrict ourselves to the simple case where the first argument of
oversed contains all the instructions for sed. In addition, we assume that in a com-
mand like

$ oversed … file1.txt file2.txt file3.txt

94 6 The sed Stream Editor

the named files should be considered and overwritten with their new content in-
dividually (everything else does not really make sense).

The script might look roughly like this:

#!/bin/bash

oversed -- Edit files "in place" using sed

out=/tmp/oversed.$$

sedcmd="$1"

shift

for f

do

sed "$sedcmd" "$f" >$out

mv $out $f

done

The only thing remarkable about this script is possibly the way the name for the
temporary file is constructed (in out). We take care to avoid a collision with some
other, simultaneous oversed invocation, by appending the current process ID (in
$$) to the file name.

B If security is important to you, you should stay away from the “/tmp/oversed.$$”
method, since PID-based file names can be guessed. An attacker could use
this to point your program to a file that will then be overwritten. To be safe,
you could use the mktemp program, which instead of using the PID generates
a random file name that is guaranteed not to exist. It even creates the file
with restrictive permissions.

$ TMP=$(mktemp -t oversed.XXXXXX)

Creates, e. g., /tmp/oversed.z19516
$ ls -l $TMP

-rw------- 1 anselm anselm 0 2006-12-21 17:42 /tmp/oversed.z19516

B mktemp’s handy “-t” option places the file in a “temporary directory”, namely
the directory given by the TMPDIR environment variable, or else a directory
specified using the “-p” option, or else /tmp.

We can improve the script further. For example, we could check whether sed,
in fact, changed anything about the file, i. e., whether the input and output files
are equal. In this case we can save ourselves the trouble of renaming the output
file. Also, if the output file is empty, something is likely to have gone wrong and
we ought not to overwrite the input file. In this case, the loop might look like

for f

do

sed "$sedcmd" "$f" >$out

if [test -s $out]

then

if cmp -s "$f" $out

then

echo >&2 "$0: file $f not changed, not overwriting"

else

mv "$f" $out

fi

else

echo >&2 "$0: file $f's output empty, not overwriting"

fi

done

rm -f $out

6.4 sed in Practice 95

Here we use the file test operator -s, which reports success if the given file exists
and is longer than 0 bytes. The cmp command compares two files byte by byte and
returns success if both files are identical; the -s option suppresses the notice giving
the position of the first differing byte (which does not help us here at all).

B Do be careful with oversed—you should make sure that your sed commands
do the right thing before you let them loose on important files. Also consider
Exercise 6.10.

In the previous example, we have assumed that the script’s first argument con-
tains everything you want to tell sed. But how can you pass several -e options
to sed, or even different options such as -n or -r? For this you must inspect the
command line more closely:

sedargs=""

while ["${1:0:1}" = "-"]

do

case "$1" in

-*[ef]) sedargs="$sedargs $1 $2"

shift 2 ;;

-*) sedargs="$sedargs $1"

shift ;;

*) break ;;

esac

done

This loop checks the command-line arguments: Everything starting with “-” and
ending with “e” or “f” is presumably an option of the form “-f file” or “-ne '…'”.
The option, together with the subsequent file name or sed command specification
is stored in sedargs and removed from the command line (“shift 2”). Analogously,
everything else that starts with a “-” is considered a “normal” option without a
subsequent argument and also stored in sedargs. Thus the sed invocation inside
the main loop body becomes

sed $sedargs "$f"

Even this is unfortunately not yet perfect (see Exercise 6.11)).

B GNU sed, the canonical sed implementation for Linux, supports a non-
standard option called -i, which works rather like oversed.

Exercises

C 6.10 [!2] Ensure that in oversed the original input file is saved under another
name before the sed output file is renamed (youmight, for example, append
“.bak” to the file name as an additional suffix).

C 6.11 [3] sed supports some other command-line arguments as well. For ex-
ample, “--” (as elsewhere) says “end of options – whatever comes now is a
file name, even if it looks like an option”, and there are “long” options of
the form “--expression=…” (as a synonym for -e). Adapt oversed such that it
does the Right Thing even for these arguments.

C 6.12 [3] With your new-found wisdom about sed, you can make the wwtb

script from Chapter 5 somewhat less tedious as far as the question file for-
mat is concerned. Give an implementation of the question function that reads
a question file formatted like

96 6 The sed Stream Editor

question 0

?According to the proverb, what do too many cooks do?

-Eat the roast

-Break the stove

+Spoil the broth

-Drop the cutlery

>50

end

question 50

?Which of the following is edible?

-Cool cat

�����

Commands in this Chapter

cmp Byte-by-byte comparison of two files cmp(1) 94
mktemp Generates a unique temporary filename (securely) mktemp(1) 94

Summary

• sed is a “stream editor”which reads its standard input andwrites it (possibly
modified) to its standard output.

• sed supports flexible addressing of input lines via their position or their con-
tent, as well as the description of line ranges in the input.

• Various text-modifying commands are available.

Bibliography

DR97 Dale Dougherty, Arnold Robbins. sed & awk. Sebastopol, CA: O’Reilly &
Associates, 1997, second edition. ISBN 1-56592-225-5.

http://www.oreilly.de/catalog/sed2/

Rob02 Arnold Robbins. sed & awk Pocket Reference. Sebastopol, CA: O’Reilly &
Associates, 2002, second edition. ISBN 0-596-00352-8.

http://www.oreilly.com/catalog/sedawkrepr2/

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

7
The awk Programming Language

Contents

7.1 What is awk? . 98
7.2 awk Programs . 98
7.3 Expressions and Variables 100
7.4 awk in Practice . 104

Goals

• Getting to know the awk programming language
• Being able to design simple awk programs
• Knowing how to use awk in shell scripts

Prerequisites

• Knowledge about shell programming (from the previous chapters)
• Programming experience in other languages is helpful

grd2-awk.tex (6eb247d0aa1863fd)

98 7 The awk Programming Language

7.1 What is awk?

awk is a programming language for text file processing. The name derives from
the last names of its inventors, Alfred V. Aho, Peter J. Weinberger, and Brian W.
Kernighan, rather than the English word “awkward”.

B On the cover of the awk book by Aho, Weinberger and Kernighan [AKW88]
there is a picture of an auk (Alca torda). This Nordic sea bird, whose name
is pronounced just like awk, has nothing whatsoever to do with penguins.

Linux distributions usually do not contain the original AT&T awk, but compat-awk in Linux

ible and more or less extended implementations such as mawk or gawk (GNU awk).
For our purposes it is sufficient to talk about awk, since the extensions are not really
relevant (we will point them out where appropriate).

Calling awk a programming language can sound intimidating to many peopleawk as a programming languge

who do not really see themselves as “programmers”. If you have a problem with
this, then do consider awk a particularly useful tool to analyse and modify files—a
kind of supercharged sed-cut-sort-paste-grep. With awk, you can, for example, cre-
ate formatted reports from log files or perform various other operations on “struc-
tured data” such as “tables”with tab characters between columns. awk can, among
other things, …

• interpret text files consisting “records”, which in turn consist of “fields”;

• store data in variables and arrays;

• perform arithmetic, logical and string operations;

• evaluate loops and conditionals;

• define functions;

• post-process the output of commands.

awk reads text from its standard input or files named on the command line,programming model

usually line by line. Every line is divided into fields and processed. The results
are then written to standard output or a named file.

awk “programs” live in the gap between shell scripts and programs in languages
such as Perl or Tcl/Tk. The main difference between awk and other programming
languages like the shells, C, or Tcl/Tk consists of its “data-driven” operation,
while the typical programming languages are more geared toward “functions”.
In principle, an awk program works like a loop over the input records (usually
lines) that is repeated until no input is left or the program is terminated. The con-
trol flow is largely given by the data. In most other languages, on the other hand,
the main program is started once, and functions (that may read input) influence
the progress of the calculation.

7.2 awk Programs

In the simplest case, awk works not unlike sed: You can select lines and then apply
commands to them. A grep workalike in awk, for example, might look like this:

awk '/a.*a.*a/ { print }'

outputs all input lines containing at least three “a” characters. The braces may
contain one or more commands which are applied to the lines matching the reg-commands

ular expression between the slashes.
It is often more convenient to put awk “scripts” into their own files. You canawk “scripts”

execute such files using “awk -f ⟨script file⟩”. Lines starting with “#” are considered
comments, as in the shell.comments

7.2 awk Programs 99

B Here, too, there is nothing wrong with directly executable awk scripts of the
form

#!/usr/bin/awk -f

/a.*a.*a/ { print }

Here is an awk script which will output a message for each line containing a
number:

#!/usr/bin/awk -f

/[0-9]+/ { print "This line contains a number." }

Lines that do not contain a number are ignored.
For every input line, awk checkswhich script linesmatch it, and all awk command awk and its input

sequences that match are executed. The following script, classify, tries to classify
lines according to their content:

#!/usr/bin/awk -f

classify -- classifies input lines

/[0-9]+/ { print "This line contains a number." }

/[A-Za-z]+/ { print "This line contains a word." }

/$/̂ { print "This line is empty." }

Here is an example for the classify script:

$ awk -f classify

123

This line contains a number.

foo

This line contains a word.

↩
123 foo

This line contains a number.

This line contains a word.

You can see that the “123 foo” linematched two of the rules. It is possible to design
rules such that only one matches in every case.

awk assumes that its input is structured and not just a stream of bytes. In the input: structured

usual case, every input line is considered a “record” and split into “fields” on
whitespace.

B Unlike programs like sort and cut, awk considers sequences of spaces one
field separator, instead of seeing an empty field between two adjacent space
characters.

You can refer to the individual fields of a record using the awk expressions $1, $2,
etc.:

$ ls -l *.sh | awk '{ print $9, $5 }'

dumppwd.sh 113

dwwtb.sh 1220

numbergame.sh 323

wwtb-sed.sh 1513

wwtb.sh 1132

Of course you need to take care that the shell does not try to expand the “$”!

B The “$0” expression returns the full input record (all fields).

100 7 The awk Programming Language

On this occasion you might as well learn that a sequence of awk commands
does not need to include a regular expression in front: A “{…}” without a regular
expression will be applied to every input record.

B Here, awk already comes in useful as an improved cut. Remember that cut is
not able to change the order of columns in its output with respect to their
order in the input.

You can change the input record delimiter using the -F option to awk:

$ awk -F: '{ print $1, $5 }'

root root

daemon daemon

bin bin

�����

Output fields are separated by blanks (you will later see how to change this).
Additionally, awk lets you specify command sequences to be executed at theBEGIN and END

beginning of a run—before data has been read—and at the end—after the last
record has been read. This can be used for initialisation or final results. The

ls -l *.txt | awk '

BEGIN { sum = 0 }

{ sum = sum + $5 }

END { print sum }'

command, for example, adds the lengths of all files with the “.txt” extension
within the current directory and outputs the result at the end. sum is a variablevariable

that contains the current total; variables in awk behave quite like shell variables,
except that you can refer to their values without having to put a “$” in front of the
variable name.

B For connoisseurs: awk variablesmay contain either strings or (floating-point)
numbers. These data types are converted as required.

7.3 Expressions and Variables

We can improve the last section’s file size summation program even further. For
example, we might count the files and output their number:

#!/usr/bin/awk -f

filesum -- Add file sizes

{ sum += $5

count++

}

END { print sum, " bytes in " count " files" }

The “BEGIN” rule is not strictly required since new variables are set to 0when they
are first used. “sum += $5” is equivalent to “sum = sum + $5”, and “count++” in turn
is equivalent to “count = count + 1”. (C programmers should feel right at home
here.) The whole thing now works like this:

$ ls -l *.sh | filesum

4301 bytes in 5 files

This simple program is not without its problems. If you do not select a set of
files from a directory (like all files with names ending in “.sh”, just now) but a
complete directory—consider “ls -l .”—, the first line of the output will give the
total number of “data blocks” (on Linux, usually kibibytes) occupied by files in
the directory:

7.3 Expressions and Variables 101

total 1234

This line does not have a fifth field and hence does not spoil the sum of sizes,
but is counted as an input line, i. e., a file. Another problem concerns lines for
subdirectories such as

drwxr-xr-x 3 anselm anselm 4096 May 28 12:59 subdir

The “file size” in this entry has no meaning. Other file types (e. g., device files)
add to the confusion.

To circumvent these problems, two observations are important: The number number of fields

of fields of “interesting” lines is 9, and we want to consider only lines beginning
with “-”. The latter is easily put into practice:

/-/̂ { … }

To take the former into account, you must know that awk uses the NF to make avail-
able the number of fields found in a record. We just need to check whether this
variable has the value 9. If this condition and the “starts with -” condition are
fulfilled, the line will be considered. Thus:

#!/usr/bin/awk -f

filesum2 -- Add file sizes

NF == 9 && /-/̂ {

sum += $5

count++

}

END {

print sum, " bytes in " count " files"

}

The equality operator in awk (as in the C language) is spelled “==”, to avoid confu-
sion with the assignment operator, “=”. As in C, “&&” is the logical AND operator;
like in C, its right-hand side is only evaluated if the left-hand side evaluates to
“true”, i. e., a non-zero value.

B Compared to the shell this is exactly the other way round—the shell’s “if”,
“while”, … commands and its “&&” operator consider a return value of 0 a
“success”.

awk expressions may contain, among others, the common basic arithmetic (“+”, awk expressions

“-”, “*”, and “/”) and comparison operators (“<”, “<=” (≤), “>”, “>=” (≥), “==”, and
“!=” (≠)). There are also test operators for regular expressions, “~” and “!~”, which
you can use to check whether a string matches (or does not match) a regular ex-
pression:

$1 ~ /a.*a.*a/ { … }

executes the commands if and only if the first field contains at least three “a” char-
acters.

Some other awk operators are not borrowed from the C language. You could awk operators

view “$” as a “field access operator”: “$3” gives you the value of the current
record’s third field (if available), but “$NF” always returns the last field’s value,
regardless of the number of fields in the current record. Two strings (or variable
values) can be concatenated simply by writing them next to each other (separated
by a space):

102 7 The awk Programming Language

$ awk '{ print $1 "blimey" }'

Gor

Gorblimey

B Compared to the C language, awk is missing the bitwise logical operators
“|”, “&”, and “^” as well as the shift operators “<<” and “>>”. (If you want
to push bits around, you will, for better or worse, have to use C.) (Or Perl.)
There is a “^” operator in awk, but it stands for exponentiation.

(A complete list of awk operators can be found in the awk documentation.)
As we said, awk variables are “typeless”, i. e., they can hold character strings orawk variables

numbers and are interpreted as required. At least as far as possible:

$ awk 'BEGIN { a = "123abc"; print 2*a; exit }'

246

$ awk 'BEGIN { a = "abc"; print 2*a; exit }'

0

Variable names always start with a letter andmay otherwise contain letters, digits,
and the underscore (“_”).

Besides NF, awk defines some other “system variables”: FS is the “input fieldsystem variables

separator”, which you can set using the -F option (an assignment to “FS” within
a BEGIN command will do as well). RS is the “input record separator”, i. e., the
character that marks the end of a record. This is usually the newline character, but
nothing prevents you from selecting something else. The special value “""” stands
for an empty line.—This makes it easy to process files that are “block structured”
rather than “line structured”, such as the following:

Vernon

Dursley

4 Privet Drive

Little Whinging

XY12 9PQ

(01234) 56789

Figg

Arabella

12 Wisteria Walk

Little Whinging

XY12 9PR

(01234) 98765

�����

You just need to set FS and RS to appropriate values:

#!/usr/bin/awk -f

Output a telephone list

BEGIN { FS = "\n"; RS = "" }

{ print "$1 $2", $NF }

In addition to “simple” variables, awk also supports arrays, i. e., indexed groupsarrays

of variables sharing a name. You have already encountered arrays in the Bourne-
Again shell—consider the dwwtb script—, but unlike the shell, awk allows arrays to
be indexed using arbitrary character strings rather than just numbers. This type
of array is often called an “associative array”. This is an extremely powerful tool,
as the following script shows:

7.3 Expressions and Variables 103

#!/usr/bin/awk -f

shellusers -- shows who is using which shell

BEGIN { FS = ":" }

{ use[$NF] = use[$NF] ", " $1 }

END {

for (i in use) {

print i ": " use[i]

}

}

If you invoke shellusers with /etc/passwd as a parameter, it outputs a list of login
shells together with their respective users:

shellusers /etc/passwd

/bin/sync: sync

/bin/bash: root anselm tux

/bin/sh: daemon bin sys games man lp mail news uucp proxy�

� postgres www-data backup operator list irc gnats nobody

/bin/false: hermes identd mysql partimag sshd postfix�

� netsaint telnetd ftp bind

In the script, the command sequencewithout a regular expression serves to collect
the data, while the END command outputs it; the for command introduces a loop
in which the i variable is set to every index of the use array in turn (the order is
nondeterministic).

awk expressions may also refer to functions. Some functions are predefined in functions

awk, including the arithmetic functions “int” (determine the integer part of a num-
ber), “sqrt” (square root), or “log” (logarithm). awk’s capabilities are roughly equiv-
alent to those of a scientific calculator. There are also string functions: “length”
determines the length of a string, “substr” returns arbitrary substrings, and “sub”
correspond to sed’s “s” operator.

You can also define your own functions. Consider the following example: user-defined functions

#!/usr/bin/awk -f

triple -- multiply numbers by 3

function triple(n) {

return 3*n

}

{ print $1, triple($1) }

This program reads a file of numbers (one per line) and outputs the original num-
ber and that number tripled:

$ triple

3

3 9

11

11 33

A function’s “body” may consist of one or more awk commands; the return com-
mand is used to return a value as the function’s result.

The variables mentioned in a function’s parameter list (here, n) are passed to local variables

the function and are “local” to it, i. e., they may be changed but the changes are
invisible outside the function. All other variables are “global”—they are visible
everywhere within the awk program. In particular, there is no provision in awk for

104 7 The awk Programming Language

defining extra local variables within a function. However, you can work around
this by defining some extra function “parameters” which you do not use when
actually calling it. By way of illustration, here is a function that sorts the elements
of an array F, which uses numerical indices between 1 and N:

function sort(F, N, i, j, temp) {

Insertion sort

for (i = 2; i <= N; i++) {

for (j = i; F[j-1] > F[j]; j--) {

temp = F[j]; F[j] = F[j-1]; F[j-1] = temp

}

}

return

}

The for loop first executes its first argument (i = 2). Then it repeats the following:for loop

It evaluates its second argument (i <= N). If the result of this is “true” (non-zero),
the loop body (here a second for loop) is executed, followed by the third argument
(i++). This is repeated until the second argument evaluates to 0.—This function
would be called like

{

a[1] = "Gryffindor"; a[2] = "Slytherin"

a[3] = "Ravenclaw"; a[4] = "Hufflepuff"

sort(a, 4)

for (i = 1; i <= 4; i++) {

print i ": " a[i]

}

}

Note the output of the array’s elements by means of a “counting” for loop; a “for
(i in a)” loop would have produced the elements in a nondeterministic order (so
there would have been no point in sorting them first).

7.4 awk in Practice

Here are some more awk examples from “real life”:

Compressing shell history (From the GNU awk manual.) The Bourne-Again shell
stores your commands in the ~/.bash_history file—if you execute the same com-
mand repeatedly, it will be storedmultiple times. Assume that youwant to shrink
this file by storing every command just once. There is the uniq command, of course,
but it only removes duplicates that occur in immediate succession and works best
with pre-sorted input; however, within the shell history, the order of commands
should remain essentially constant. In other words, with an input file like

abc

def

abc

abc

ghi

def

def

ghi

abc

we do not aim for uniq’s output

7.4 awk in Practice 105

abc

def

abc

ghi

def

ghi

abc

but for something like

abc

def

ghi

awk’s associative arrays make this easy: We count the number of occurrences
of each line in an associative array called data, which is indexed by the complete
text of the command. The order is preserved using a second, numerically indexed
array lines, whose indices we later use to output the lines in their correct order:

#!/usr/bin/awk -f

histsort -- Compactify a shell history file

{

if (data[$0]++ == 0) {

lines[++count] = $0

}

END {

for (i = 1; i < count; i++) {

print lines[i]

}

}

Note in particular that awk also supports if conditionals; their syntax is (as usual)
modelled on the C language:

if (⟨condition⟩) {

⟨commands⟩
} [else { ⟨commands⟩
}]

The “data[$0]++ == 0” expression is a common idiom; it is “true” exactly if “$0”’s
value is seen for the first time. The “++count” expression is equivalent to “count++”,
except that it returns the value of count after it has been incremented (“count++”
returns the value before incrementing it); this ensures that the first line seen has
index 1, even though we do not set count to 1 explicitly.

B The basic structure of this program can be profitably used for other pur-
poses; for example, the command

print data[lines[i]], lines[i]

produces a list of lines together with the number of their occurrences. Ap-
plied to the shell history, this tells you how often you have used each com-
mand.

106 7 The awk Programming Language

Duplicate words A common error in documents are accidental duplications of
words, such as “The result of the the program is …”. Somethimes the first of the
two words occurs at the end of a line and the second at the beginning of the next,
which makes them hard to find. Here is an awk script which helps with this—it
considers the words of each line, and also stores the last word of every line for
comparison to the first of the next.

For simplicity, we assume that the input consists of lowercase letters only and
that all non-letters have been converted to spaces—not a big restriction, since this
is easily done using something like the

tr '[:upper:]' '[:lower:]' | tr -cs '[:alpha:]' ' '

pipeline1 (it could as well be done in awk, or GNU awk at any rate, but we will spare
you the details). The awk script itself looks like

#!/usr/bin/awk -f

dupwords -- find duplicate words

{

if (NF == 0) {

next

}

if ($1 == prev) {

printf("%s:%d: %s duplicate\n", FILENAME, FNR, $1)

}

for (i = 2; i <= NF; i++) {

if ($i == $(i-1)) {

printf("%s:%d: %s duplicate\n", FILENAME, FNR, $i)

}

}

prev = $NF

}

Here, printf is equivalent to the eponymous shell or C library command for for-
matted output: The %s and %d formatting keys will be replaced by the correspond-
ing arguments as strings (for %s) or numbers (%d), thus the first %s by the value of
FILENAME (the name of the current input file), the %d by the line number within the
current input file (FNR), and the second %s by the word in question. Also note the
reference to the “previous” word using “$(i-1)”: When coming from the shell, it
is easy to subscribe to the fallacy that $ is merely a prefix for variable names. In
fact, $ in awk is a genuine operator for input field access—whatever follows it is
evaluated, and the result is the actual number of the field to be fetched.

King Soccer Here is a topic that may appeal to many of you: the (German) na-
tional soccer league (Bundesliga). Consider the file bl03.txt containing the results
of all the first division’s games from the 2003/4 season:

1:Bayern München:Eintracht Frankfurt:3:1:6300

1:Schalke 04 Gelsenkirchen:Borussia Dortmund:2:2:61010

1:Hamburger SV:Hannover 96:0:3:53224

1:Bayer Leverkusen:SC Freiburg:4:1:22500

1:Hertha BSC Berlin:Werder Bremen:0:3:40000

1:1.FC Kaiserslautern:1860 München:0:1:35629

1:VfL Wolfsburg:VfL Bochum:3:2:20000

1:Hansa Rostock:VfB Stuttgart:0:2:23500

1:Borussia Mönchengladbach:1.FC Köln:1:0:34500

1Traditionally, this would be “tr A-Z a-z | tr -cs a-z ' '; however, the version using POSIX char-
acter classes also works for non-English text.

7.4 awk in Practice 107

2:VfL Bochum:Hamburger SV:1:1:20400

2:Borussia Dortmund:VfL Wolfsburg:4:0:72500

2:1860 München:Schalke 04 Gelsenkirchen:1:1:33000

2:1.FC Köln:1.FC Kaiserslautern:1:2:33000

�����

The first field gives the round, the second and third the opposing teams, the fourth
and the fifth the number of goals scored on each side, and the sixth the number
of spectators in the stadium.

Let us start with something straightforwards: How many spectators have
trekked to the stadiums for the first round of games? You just need to add the last
columns of all the lines referring to that round:

#!/usr/bin/awk -f

spectators -- Adds spectators for the first round

$1 == 1 { z += $6 }

END { print z }

Hence:

$ awk -F: -f spectators bl03.txt

296663

If you are interested in the number of spectators for an arbitrary round, you awk variables on the command
linecan pass that round’s number as a parameter. The adding expression then looks

a bit different:

$1 == round { z += $6 }

And the invocation is:

$ awk -F: -f spectators round=2 bl03.txt

257200

You can include assignments to awk variables on the command line, among the awk

options and file name arguments. The only condition is that awk gets to see each
assignment as a single argument—hence there may be no spaces around the “=”.

Sowhat does the federal league’s standings table look like after the 𝑛-th round?
This requires some more work: For every match we must decide which side has
won, and calculate the points and goals difference.

B The rules say that the winning side gets 3 points and the losing side none; if
a match results in a draw, each side gets 1 point. If two teams have the same
number of points, their position in the standings is determined by the goals
difference.

This might look like this:

BEGIN { FS = ":"; OFS = ":" }

$1 <= round {

if ($4 > $5) {

points[$2] += 3

} else if ($4 < $5) {

points[$3] += 3

} else {

points[$2]++; points[$3]++

}

goals[$2] += $4 - $5; goals[$3] += $5 - $4

}

108 7 The awk Programming Language

(The OFS variable is the “output field separator”, i. e., the string that awk puts be-output field separator

tween expressions in commands such as “print a, b” (with a comma).) We tabulate
the points in the points array and the goal differences in the goals array, both in-
dexed by the team names. We can output the standings using something like

END {

for (team in points) {

print team, points[team], goals[team]

}

}

For example:

$ awk -f bltab round=1 bl03.txt

1.FC Kaiserslautern:0:-1

Borussia Mönchengladbach:3:1

Bayer Leverkusen:3:3

Bayern München:3:2

Hansa Rostock:0:-2

Borussia Dortmund:1:0

Hertha BSC Berlin:0:-3

Hamburger SV:0:-3

Schalke 04 Gelsenkirchen:1:0

VfL Wolfsburg:3:1

You do not need to be a soccer buff to figure out that there is evidently something
wrong with this. For one, the table is obviously not sorted correctly (which is no
surprise, due to “team in points”)—but are there not in fact more than 10 teams
in the federal league? Apparently our program omits some teams, and after a
moment’s thought it should become obvious to you what is going on: The points

array contains only those teams that actually did win points in the league, and
after the first round of games this does not usually include all teams (if we had
gone for the final standings immediately, this error might not have even occurred
to us). Thus we need to ensure that the losing sides get an entry in points as well,
and this is most easily done by means of a “useless” addition farther up:

�����

if ($4 > $5) {

points[$2] += 3; points[$3] += 0;

} else if ($4 < $5) {

points[$2] += 0; points[$3] += 3;

} else {

�����

This results in the (at least numerically correct) standings

1.FC Kaiserslautern:0:-1

VfB Stuttgart:3:2

1.FC Köln:0:-1

Borussia Mönchengladbach:3:1

Bayer Leverkusen:3:3

Eintracht Frankfurt:0:-2

Bayern München:3:2

Hansa Rostock:0:-2

1860 München:3:1

Werder Bremen:3:3

SC Freiburg:0:-3

Borussia Dortmund:1:0

VfL Bochum:0:-1

7.4 awk in Practice 109

Hertha BSC Berlin:0:-3

Hamburger SV:0:-3

Schalke 04 Gelsenkirchen:1:0

VfL Wolfsburg:3:1

Hannover 96:3:3

which only needs to be sorted.

Occupied disk space per Linux group Would you like to find out which primary
group on your system contains the biggest disk space hogs? A command like “du
-s /home/*” will tell you the disk space used by individual users, but says nothing
about groups. For this you need to correlate the user-based list with the password
file. Given the du output format

1234 /home/anselm

56 /home/tux

567 /home/hugo

342 /home/emil

a corresponding awk script looks roughly like this:

BEGIN {

readgroups()

}

{

sub(/\char"0302.*\//, "", $2)

used[usergroup[$2]] += $1

}

END {

for (g in used) {

print used[g] " " g

}

}

The “readgroups()” function (which we are going to show presently) constructs an
array called usergroup giving the name of the primary group for each user name.
This array is used to tabulate the disk space used by the group members’ home
directories in the used array (all users sharing a value in usergroup are members of
the same primary group). We obtain the user name from du output by using sub

to remove everything from the first to the last slash, which does look a bit messy.
At the end, the groups and their amounts of occupied disk space are output.

Now for the “readgroups()” function:

Read the users' group names to USERGROUP (indexed by user names).

GROUPNAME and OLDFS are local variables.

function readgroups(groupname, oldfs) {

oldfs = FS

FS = ":"

while (getline <"/etc/group") {

groupname[$3] = $1

}

close ("/etc/group")

while (getline <"/etc/passwd") {

usergroup[$1] = groupname[$4]

}

close ("/etc/passwd")

110 7 The awk Programming Language

FS = oldfs

}

Here you will learn about awk’s file access functions: getline tries to read a line
from the specified file and returns 1 if there was another line to read, or 0 at the
end of the file—the file will be opened on the first getline and then just read later
on. With close, you can close a file after use; this is seldom really required but a
good habit to get into, sincemany awk implementations can only use a very limited
number of files at the same time (10 or so). Also note that we need to redefine awk’s
field separator to read /etc/group and /etc/passwd; we remember the original value
in oldfs and restore it at the end of the function so that the calling program will
not be confused.

Exercises

C 7.1 [!2] Write an awk program which counts the words in a document and
outputs them together with the number of their occurrence.

C 7.2 [!1] How can you sort the unsorted federal league standings produced
by the bltab program in a suitable manner?

C 7.3 [!2] Write an awk program that adds up and outputs the stadium specta-
tors for each federal league soccer team.

C 7.4 [3] Write a script (preferably using awk and sort) that outputs a “beauti-
ful” table of standings like

RD TEAM GM W D L POINTS GD

--

1 Werder Bremen 34 22 8 4 74 41

2 Bayern München 34 20 8 6 68 31

3 Bayer Leverkusen 34 19 8 7 65 34

4 VfB Stuttgart 34 18 10 6 64 28

5 VfL Bochum 34 15 11 8 56 18

6 Borussia Dortmund 34 16 7 11 55 11

7 Schalke 04 Gelsenkirchen 34 13 11 10 50 7

8 Hamburger SV 34 14 7 13 49 -13

9 Hansa Rostock 34 12 8 14 44 1

10 VfL Wolfsburg 34 13 3 18 42 -5

11 Borussia Mönchengladbach 34 10 9 15 39 -9

12 Hertha BSC Berlin 34 9 12 13 39 -17

13 1.FC Kaiserslautern 34 11 6 17 39 -23

14 SC Freiburg 34 10 8 16 38 -25

15 Hannover 96 34 9 10 15 37 -14

16 Eintracht Frankfurt 34 9 5 20 32 -17

17 1860 München 34 8 8 18 32 -23

18 1.FC Köln 34 6 5 23 23 -25

(where RD stands for “round”, GM for “games played”, W, D, L for “won”,
“drawn”, and “lost”, respectively, and GD for “goals difference”)2 (Hint:
Read up on printf in the awk manual).

C 7.5 [2] If you compare the output of Exercise 7.4 to the actual final stand-
ings of the 2003/4 federal league season, you will find a discrepancy: The
“genuine” ranks 13 to 15 look like

13 SC Freiburg 34 10 8 16 38 -25

14 Hannover 96 34 9 10 15 37 -14

15 1.FC Kaiserslautern 34 11 6 17 37 -23

2Supporters of SC Freiburg and Hannover 96: please refer to Exercise 7.5.

7.4 Bibliography 111

since the Betzenberg braves incurred a 2-point penalty because of licensing
violations. How can you take this into account in your standings software?

C 7.6 [2] Write an awk program which reads the output of “du -s /home/*” and
displays the amount of disk space used by each home directory “graphi-
cally”, like

hugo ****************************

emil *****************

tux ***

anselm **

Commands in this Chapter

awk Programming language for text processing and system administration
awk(1) 98

uniq Replaces sequences of identical lines in its input by single specimens
uniq(1) 104

Bibliography

AKW88 Alfred V. Aho, Brian W. Kernighan, Peter J. Weinberger. The AWK
Programming Language. Reading, MA: Addison-Wesley, 1988. ISBN 0-
201-07981-X. http://cm.bell-labs.com/cm/cs/awkbook/

DR97 Dale Dougherty, Arnold Robbins. sed & awk. Sebastopol, CA: O’Reilly &
Associates, 1997, second edition. ISBN 1-56592-225-5.

http://www.oreilly.de/catalog/sed2/

Rob02 Arnold Robbins. sed & awk Pocket Reference. Sebastopol, CA: O’Reilly &
Associates, 2002, second edition. ISBN 0-596-00352-8.

http://www.oreilly.com/catalog/sedawkrepr2/

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

8
SQL

Contents

8.1 Foundations of SQL 114
8.1.1 Summary . 114
8.1.2 Applications of SQL 115

8.2 Defining Tables . 117
8.3 Data Manipulation and Queries 118
8.4 Relations . 123
8.5 Practical Examples 125

Goals

• Understanding the applications of SQL
• Defining simple tables with SQL
• Manipulating data and forming queries

Prerequisites

• Knowledge of the basic Linux commands
• Basic text editing skills

grd2-sql.tex (6eb247d0aa1863fd)

114 8 SQL

8.1 Foundations of SQL

8.1.1 Summary

The “Structured Query Language” (SQL) is a standard language for defining,
querying, and manipulating relational databases. Relational databases store data
records (also called “tuples” in tech-speak) in “tables”. You can visualise a tabletuples

tables by imagining a large sheet of paper which is divided into rows and columns. The
rows are the records stored in the table, and the columns describe the properties of
the records (Table 8.1). The database makes it convenient to retrieve those tuples
that match specific criteria (like the family names of all persons who command a
starship named “USS Enterprise”).

What makes the whole thing interesting is a concept called “normalisation”.normalisation

If you take a closer look at the initial example, you will notice that the names of
some persons, ships, and films occurmultiple times. This is not desirable, because
modifications to these data would have to be applied in multiple places inside the
database. There is a danger of missing one place and introducing inconsistent
data. Instead, the database is “normalised”: We know that the “James T. Kirk” in
the first two tuples is actually one and the same person, but the “USS Enterprise”
in the first three tuples and the one in the fourth tuple are different vessels1. So
we can split our table into three, one each for the people, ships, and films. This
can be seen in Table 8.2. Please note the following remarked:

• The original table has morphed into a new table named “Person”, which no
longer contains the columns holding the ship names and the films. Instead,
the name of a ship is given using a “foreign key” that refers to a tuple offoreign key

the “Ship” table. This foreign key us to express the fact that both Willard
Decker and James T. Kirk commanded the “old”USS Enterprise, while Jean-
Luc Picard commanded the “new” one. This is called a “1 ∶ 𝑛 relationship”,
because the same ship may have multiple commanding officers during the
course of its existence.

• The same person may appear in different films and the same film may fea-
ture multiple people from the “Person” table. This is why the relationship
between people and films cannot be expressed through a simple foreign key
in the “Person” table. (What we have here is called an “𝑚 ∶ 𝑛 relationship”).
Instead, we introduce yet another tablewhose tuples represent propositions
of the form “person 𝑥 appears in film 𝑦”.

• We added a few columns to the “Film” table just to make things a bit more
interesting.

B For simplicity’s sake, we ignore the fact that one of our people might com-
mand several different spaceships during the course of their career.

1Well, “trekkies” like us know it, but not knowing it may not actually make you a bad person.

First Name Surname Starship Film
James T. Kirk USS Enterprise Star Trek
James T. Kirk USS Enterprise Star Trek: Generations
Willard Decker USS Enterprise Star Trek
Jean-Luc Picard USS Enterprise Star Trek: Generations
Han Solo Millennium Falcon Star Wars 4
Han Solo Millennium Falcon Star Wars 5
Wilhuff Tarkin Death Star Star Wars 4
Malcolm Reynolds Serenity Serenity

Figure 8.1: A database table: Famous spaceship commanders from films

8.1 Foundations of SQL 115

Person First Name Surname Ship
1 James T. Kirk 1
2 Willard Decker 1
3 Jean-Luc Picard 2
4 Han Solo 3
5 Wilhuff Tarkin 4
6 Malcolm Reynolds 5

PersonFilm Person Film
1 1 1
2 1 2
3 2 1
4 3 2
5 4 3
6 4 4
7 5 3
8 6 5

Ship Name
1 USS Enterprise
2 USS Enterprise
3 Millennium Falcon
4 Death Star
5 Serenity

Film Title Year Budget (Million $)
1 Star Trek 1979 46
2 Star Trek: Generations 1994 35
3 Star Wars 4 1977 11
4 Star Wars 5 1980 33
5 Serenity 2005 39

Figure 8.2: Famous spaceship commanders from films (normalised)

At first glance, this “data model” may appear somewhat more complicated, but it
does store every piece of information in only one place, whichmakes it a lot easier
to keep things under control in “real life”.

B Relational databases were originally proposed by Edgar F. Codd in 1970.
Even today they form the backbone of computer-based data processing.
Relational databases can reflect the object-oriented data structures of mod-
ern software only to a limited degree, but unlike fancy new approaches
like “object-oriented databases” they have the clear advantage of being
based on sound mathematical theory (“relational algebra”), as well as be-
ing amenable to reasonably efficient implementation.

B The first version of SQL (then still called SEQUEL) was developed in the
early 1970s by Donald D. Chamberlin and Raymond F. Boyce. It formed
the basis of IBM’s first relational database system, System R. SQL was stan-
dardised for the first time in 1986, but development continued afterwards.
The current version of the standard is ISO 9075:2008 (popularly know as
ISO SQL:2008). Unsurprisingly, it was ratified in July 2008.

B The official pronunciation of SQL is “S-Q-L”. Occasionally people will also
pronounce it like the word “sequel”.

Exercises

C 8.1 [!2] Howwould you add some additional ship crewmembers to the data
model defined in this section?

C 8.2 [2] Where in the data model would you place the director of a film?

8.1.2 Applications of SQL

Aswe said before, SQL is an essential part of today’s commercial data processing—
a whole industry thrives on implementing and supporting products implement- products

ing relational database systems. Here are some SQL-based relational database
products available for Linux:

MySQL and PostgreSQL These two packages are probably the first ones that
come to mind when thinking of the terms “Linux” and “SQL”. Both are

116 8 SQL

freely available and quite popular and form a solid basis for common, not
overly complex applications, for example in the area of the World Wide
Web.

B As usual in the open-source community, there are vigorous “holy
wars” between the advocates of both packages. PostgreSQL disciples
decry the fact thatMySQL does not implement all of the SQL standard,
while MySQL proponents argue that the parts that MySQL does imple-
ment are entirely adequate while the speed of MySQLmakes it easy to
forgo the remainder. We shall not give a recommendation either way
here; both products are freely available and can be evaluated on their
merits as required.

Oracle, Sybase, DB2, and friends There is a whole bunch of commercially im-
plemented and supported database systems for “mission-critical” applica-
tions that (also) run on Linux. These systems offer all the features of imple-
mentations based onWindows or traditional Unix systems and can be used
without hesitation for all kinds of large-scale database applications.

B While you can run MySQL and PostgreSQL on essentially any Linux
system, the commercial database manufacturers usually limit their
official support to a number of specific platforms, typically the “enter-
prise” distributions from companies like Red Hat and Novell/SUSE,
on which they “certify” their products—this means that the manu-
facturer tests the product thoroughly on the platform in question,
proclaims that it works, and is subsequently prepared to help paying
customers that run exactly that platform if they experience problems.
Naturally you are free to get Oracle and friends to run on other Linux
distributions than the officially certified ones, and chances are good
that that will work (it’s not as if Linuxes were that different from one
another). However, you’d be on your own in case of trouble, which
does cast some doubt on why you would want to use an expensive
commercial database system in the first place—since for most applica-
tions you could resort to MySQL and PostgreSQL, too.

B Incidentally, it is not a big problem to obtain “commercial” support for
PostgreSQL and MySQL, too (at commercial rates).

SQLite While the other packages typically provide a “database server” in a sep-
arate process to which application programs connect over the network,
SQLite is linked directly to application programs as a library, is usable
without configuration, and reads and writes local files. SQLite supports
most of the SQL92 standard, including features like transactions and trig-
gers which may be problematic even with MySQL. SQLite is suitable for
use on low-memory devices such as MP3 players or as a data format for
application programs.

Throughout the rest of this chapter we will use SQLite to illustrate SQL.

On Debian GNU/Linux or Ubuntu, you can easily install SQLite by using
one of the following commands:

aptitude install sqlite3 for root

$ sudo aptitude install sqlite3 for other users
$ sudo apt-get install sqlite3 on Ubuntu

Make sure to get sqlite3—there is also sqlite, which is an obsolete version
which is only still offered for compatibility.

On SUSE, SQLite (3) is part of the default installation, just like on the Red
Hat distributions. So you do not need to do anything special to try the ex-
amples in this chapter—everything you need is already installed.

8.2 Defining Tables 117

CREATE TABLE person (CREATE TABLE film (

id INTEGER PRIMARY KEY, id INTEGER PRIMARY KEY,

firstname VARCHAR(20), title VARCHAR(40),

surname VARCHAR(20), year INTEGER,

ship_id INTEGER budget INTEGER

););

CREATE TABLE ship (CREATE TABLE personfilm (

id INTEGER PRIMARY KEY, id INTEGER PRIMARY KEY,

name VARCHAR(20) person_id INTEGER,

); film_id INTEGER

);

Figure 8.3: The complete schema of our sample database

Exercises

C 8.3 [2] Under which circumstances would you use a freely available SQL
database product likeMySQL or PostgreSQL for aweb site? Does your eval-
uation depend on the nature of theweb site, i.e. whether it is a hobby project
or part of a mission-critical task?

C 8.4 [2] The authors or SQLite recommend SQLite to store application pro-
gram data (think of the tables of a spread sheet or the configuration data of
a web browser). Which advantages and disadvantages of the approach can
you think of?

8.2 Defining Tables

Before you can fill an SQL database with data, you have to specify the names of
the individual tables, the names of the columns, and the nature of the values to
be stored in a column. SQL supports a large variety of data types like “string” or data types

“integer” that you can resort to when defining the columns of a table. All the table
definitions of a database together are incidentally called a “database schema”. database schema

B A discussion of the full SQL language standard is beyond the scope of this
document. With table definition in particular there are also large differences
between the various SQL databases. We limit our discussion to the absolute
minimum, also because creating tables is not part of the LPI-102 exam.

In SQL syntax, a definition of the “Person” table from our example might look
like

CREATE TABLE person (

id INTEGER PRIMARY KEY,

firstname VARCHAR(20),

surname VARCHAR(20),

ship_id INTEGER

);

INTEGER and VARCHAR(20) denote the SQL data types “integer” and “string of up to 20
characters”. The “PRIMARY KEY” clause declares the id column, which corresponds
to the “running count” of persons in the example table of Table 8.2, the “Rand[Pri-
mary Key]primary key”. This means that the database ensures that any value in
this column occurs only once, and the values here can serve as “foreign keys” in
tuples from other tables (in the case of “person”, for example, the table joining
people and films).

118 8 SQL

B It is a common convention to give foreign keys the name of the table they
“point to”, with a suffix of _id, so ship_id is a foreign key that refers to the
ship table.

B If you are somewhat familiar with SQL, you may object to our defining the
foreign key, ship_id, as a mere INTEGER. Please allow us this simple view of
things for today.

B Incidentally, SQL does not distinguish between uppercase and lowercase
characters. We follow the common convention of putting the names of ta-
bles and columns in lowercase and everything that is proper SQL in upper-
case, but you can basically suit yourself. However you will do yourself and
us a favour by being consistent with yourself.

Figure 8.3 shows the complete SQL schema of our sample database. If the
schema is stored in the commanders-schema.sql file, you could initialise the actual
database using SQLite as follows:

$ sqlite3 comm.db <commanders-schema.sql

This command stores the database in the comm.db file. SQLite always takes the
name of a database file as a parameter; if the database file exists already, it will be
opened, otherwise it will be created.

When you run sqlite3 without redirecting standard input, you get an interac-
tive session:

$ sqlite3 comm.db

SQLite version 3.5.9

Enter ".help" for instructions

sqlite> .tables

film person personfilm ship

sqlite> .schema ship

CREATE TABLE ship (

id INTEGER PRIMARY KEY,

name VARCHAR(20),

);

sqlite> _

B SQLite features various “metacommands” whose names all begin with a
dot—in the example you can see .tables, which lists the tables in a database,
and .schema, which lets you inspect the database schema. There are many
more, though; .help gets you the complete list.

Exercises

C 8.5 [!2] Create an SQLite database based on the spaceship commander
database schema given in this section.

C 8.6 [3] Implement the extensions from Exercise 8.1 and Exercise 8.2 as an
SQL schema.

8.3 Data Manipulation and Queries

SQL not only supports defining database schemas, but also inserting, modifying,
querying, and deleting data (tuples). All of this is subject to the current database
schema. For example, you might add a few ships and films to our database:

8.3 Data Manipulation and Queries 119

sqlite> INSERT INTO ship VALUES (1, 'USS Enterprise');

sqlite> INSERT INTO ship VALUES (2, 'USS Enterprise');

sqlite> INSERT INTO film VALUES (1, 'Star Trek', 1979, 46);

sqlite> INSERT INTO film VALUES (2, 'Star Trek: Generations',

...> 1994, 35);

B Note that we specify explicit values for the primary keys here. In a larger
database this is somewhat tedious, since you would have to figure out the
right value for every new tuple—it is much more convenient to have the
database itself insert the correct value, andmost SQL database can in fact do
this. With SQLite, the primary key must be declared as an “INTEGER PRIMARY

KEY”, and youmust pass the “magical” value NULL instead of an explicit value:

sqlite> INSERT INTO film VALUES (NULL, 'Star Wars 4', 1977, 11);

People and tuples specifying the person-film relation can be entered likewise:

sqlite> INSERT INTO person VALUES (1, 'James T.', 'Kirk', 1);

sqlite> INSERT INTO person VALUES (2, 'Willard', 'Decker', 1);

sqlite> INSERT INTO personfilm VALUES (NULL, 1, 1);

sqlite> INSERT INTO personfilm VALUES (NULL, 1, 2);

sqlite> INSERT INTO personfilm VALUES (NULL, 2, 1);

Note howwe specify the primary keys of the tuples in the corresponding tables for
the foreign keys ship_id in the person table and person_id and film_id in the personfilm
table.

B If you know a bit about programming, this may make you feel somewhat
queasy. After all, nobody guarantees that there actually is a tuple with the
corresponding primary key in the “other table”2. This is not a fundamental
problem with SQL but rather one with our simplistic examples—“good”
SQL databases (not SQL, and MySQL not always) support a concept called
“referential integrity” which helps solve exactly this problem. It makes it referential integrity

possible to specify in the schema that ship_id is a foreign key to the ship

table, and the database will then ensure that the values for ship_id remain
reasonable. Referential integrity incorporates other nice properties, too; in
our simple example you yourself would have to take care, when you remove
the James T. Kirk tuple from the person table, to also remove the tuples from
personfilm that connect James T. Kirk to films. With a database supporting
referential integrity, this could happen automatically.

With the data from Table 8.2 in our database we can now look at a few queries. queries

We can obtain all tuples from a table like this: all tuples

sqlite> SELECT * FROM ship;

1|USS Enterprise

2|USS Enterprise

3|Millennium Falcon

4|Death Star

5|Serenity

The asterisk (“*”) implies “all columns”. If you want to limit your selection to
specific columns, you have to enumerate them: specific columns

sqlite> SELECT firstname, surname FROM person;

James T.|Kirk

2Unless you are a C programmer, that is; in that case there is nothing wicked about this at all.

120 8 SQL

Willard|Decker

Jean-Luc|Picard

Han|Solo

Wilhuff|Tarkin

Malcolm|Reynolds

You are not restricted to retrieving column values exactly the way they are stored
in the database, but can form “expressions” based on them. The following exam-Expressions

ple lists the full names of the ship commanders without the ugly vertical bar. The
“||” operator concatenates two strings.

sqlite> SELECT surname || ', ' || firstname FROM person;

Kirk, James T.

Decker, Willard

Picard, Jean-Luc

Solo, Han

Tarkin, Wilhuff

Reynolds, Malcolm

Of course you can do calculations, too:

sqlite> SELECT title, budget * 0.755 FROM film;

Star Trek|34.73

Star Trek: Generations|26.425

Star Wars 4|8.305

Star Wars 5|24.915

Serenity|29.445

(Whether itmakes a lot of sense to convert 1977U. S. dollars to euros at the January
2009 exchange rate is a different question, though.)

“Aggregate functions” make it possible to apply operations like sums and av-Aggregate functions

erages to particular columns of all tuples. For instance, you calculate the number
and the average budget of all films in our database (disregarding inflation) as fol-
lows:

sqlite> SELECT COUNT(budget), AVG(budget) FROM film;

5|32.8

Of course you only get a single tuple as the result.

B The “COUNT(budget)” may surprise you a little, but it stands for “the number
of all tuples in a table whose budget column actually contains a value”. It
might be possible for the budget of a film to be unknown—“Star Trek”, for
example, is a borderline specimen—, and in this case you could enter the
NULL value there (not to be confused with “0” for a film which didn’t cost
anything to produce). Such films will then simply be skipped when the ag-
gregate function is calculated. If you want to know the number of all films,
no matter whether their budget is known or not, you can say “COUNT(*)”.

An interesting feature, especially when dealing with aggregate functions, is
“grouping”. Assumewe’re interested in the average budget of the films producedgrouping

in a decade, for all decades in the database. We could use something like

sqlite> SELECT year/10, AVG(budget) FROM film GROUP BY year/10;

197|28.5

198|33.0

199|35.0

200|39.0

8.3 Data Manipulation and Queries 121

(This may not be the greatest possible output format, but it does what it is sup-
posed to.) The “GROUP BY” clause specifies that all tuples for which year/10 gives
the same result are to be considered together, and the column specifications then
refer to all the tuples in one such group. This means that AVG(budget) no longer
calculates the average of all tuples, but only that of the tuples in the same group.

B So far the names of the output columns derived from the column names of column names

the input tuples. SQL does allow you to request your own names for output
tuples. Especially with more complex queries this can make things clearer:

sqlite> SELECT year/10 AS decade, AVG(budget)

...> FROM film GROUP BY decade;

is rather less tedious to read than the original.

B How your output actually looks depends mostly on your database system.
By default, SQLite is fairly simple-minded, which may be mostly due to the
fact that, in the spirit of the “Unix toolchest”, it tries to produce output that
is easily processed by other programs and free of superfluous chatter. For
interactive use, though, you can select more convenient output formats:

sqlite> .headers on

sqlite> .mode tabs

sqlite> SELECT year/10 AS decade, AVG(budget)

...> FROM film GROUP BY decade

decade avg(budget)

197 28.5

198 33.0

199 35.0

200 39.0

Here the individual columns are separated by tabs. With “.mode column” you
can obtain a format where you can assign explicit column widths using
.width:

sqlite> .mode column

sqlite> .width 10 12

sqlite> SELECT year/10 AS decade, AVG(budget)

...> FROM film GROUP BY decade

decade avg(budget)

---------- ------------

197 28.5

198 33.0

199 35.0

200 39.0

Frequently you do not want towork on all tuples from a table, but only a subset
matching specific criteria. You can do this with SELECT, too. Here, for example, is selecting tuples

the list of all films in our database that were produced since 1980:

sqlite> SELECT title, year FROM film WHERE year >= 1980;

Star Trek: Generations|1994

Star Wars 5|1980

Serenity|2005

You can also sort the output:

sqlite> SELECT title, year FROM film WHERE year >= 1980

...> ORDER BY year ASC;

122 8 SQL

Star Wars 5|1980

Star Trek: Generations|1994

Serenity|2005

“ASC” here means “ascending”, the opposite would be “DESC”:

sqlite> SELECT title FROM film ORDER BY budget DESC;

Star Trek

Serenity

Star Trek: Generations

Star Wars 5

Star Wars 4

The WHERE clauses of queries may contain SELECT]other SELECT commands asSub-SELECTs

long as these deliver something that fits the selection expression in question. Here
is the list of all films with an above-average budget:

sqlite> SELECT title, year FROM film

...> WHERE budget > (SELECT AVG(budget) FROM film);

Star Trek|1979

Star Trek: Generations|1994

Star Wars 5|1980

Serenity|2005

You can modify tuples by means of the UPDATE command:modifying tuples

sqlite> UPDATE person SET firstname='James Tiberius' WHERE id=1;

sqlite> SELECT firstname, surname FROM person WHERE id=1;

James Tiberius|Kirk

The WHERE clause is extremely important in this case so changes apply to specific
tuples. One slip and the disaster is perfect:

sqlite> UPDATE person SET firstname='James Tiberius';

sqlite> SELECT firstname || ' ' || surname FROM person;

James Tiberius Kirk

James Tiberius Decker

James Tiberius Picard

James Tiberius Solo

James Tiberius Tarkin

James Tiberius Reynolds

But of course you can put this to profitable use:

sqlite> UPDATE film SET budget=budget * 0.755; Convert to euros

Finally, you can use the DELETE FROM command to delete tuples from a table. Thedeleting tuples

WHERE warning applies here, too:

sqlite> DELETE FROM person WHERE surname='Tarkin';

You can delete all tuples from a table using

sqlite> DELETE FROM person; Kids, don’t try this at home

B Remember our remark above concerning “referential integrity”. Depending
on the mojo of your database system, you may have to ensure by yourself
that tuples containing foreign keys to a tuple will disappear along with that
tuple.

8.4 Relations 123

Exercises

C 8.7 [1] Insert all tuples of Table 8.2 into the SQLite database described in Ex-
ercise 8.5. If you are into science fiction films, feel free to extend the database
a bit. (For example, we are big fans of “Galaxy Quest”.)

C 8.8 [2] Give an SQL command that lists all films in our sample database that
were produced before 1985 and had a budget of less than 40million dollars.

8.4 Relations

SQL queries get really interestingwhen you combinemultiple tables. Really inter-
esting SQL queries combinemultiple tables. For example, youmight be interested
in a list of all spaceship commanders together with the names of their ships (the
tuples in person only contain the primary keys of the ships):

sqlite> SELECT * FROM person, ship

...> WHERE person.ship=ship.id;

1|James T.|Kirk|1|1|USS Enterprise

2|Willard|Decker|1|1|USS Enterprise

3|Jean-Luc|Picard|2|2|USS Enterprise

4|Han|Solo|3|3|Millennium Falcon

5|Wilhuff|Tarkin|4|4|Death Star

6|Malcolm|Reynolds|5|5|Serenity

That’s a bit thick, isn’t it? But let’s take it step by step:

• The secret to our success is, once again, the WHERE clause. It puts the foreign
key of the person table in relation (Eek, the R-word!) to the primary key of
the ship table and thus causes the corresponding tuples to be matched.

• The output looks a bit messy because each tuple of ship is simply appended
to the matching tuple of person. In fact we do not need both ship_id from
person and id from ship, if the next thingwe output is the ship name, anyway.
Something like

sqlite> SELECT firstname, surname, name FROM �����

James T.|Kirk|USS Enterprise

�����

would be completely adequate. However, this only works because all the
columns have distinct names, and SQLite can infer which table each name
refers to. If the surname column in person was simply called name, there would
be a conflict with the name column of ship.

The most common method for resolving name conflicts and abbreviating long
SQL commands at the same time is using aliases: aliases

sqlite> SELECT * FROM person p, ship s WHERE p.ship_id=s.id;

This is equivalent to the original example except that, for this command, we gave
the person table the alias p and the ship table the alias s. This did make the WHERE

clause that much easier to read.

B Aliases can be used in the column lists as well, as in

sqlite> SELECT p.firstname, p.surname, s.name �����

124 8 SQL

This also lets you handle name collisions between the columns of different
tables:

sqlite> SELECT firstname, p.name, s.name �����

The example we showed for joining two tables works but is to be enjoyed with
some caution (see also Exercise 8.9). When two tables are joined in this manner,
the database system first constructs the Cartesian product of the tables in question
and then throws out all resulting tuples that do notmatch the WHERE condition. This
means that what happens is roughly this:

Condition: The fourth and fifth columns must match
1|James T.|Kirk|1|1|USS Enterprise OK; bingo; keep it
1|James T.|Kirk|1|2|USS Enterprise Doesn’t match; throw away
1|James T.|Kirk|1|3|Millennium Falcon Oops …
�����

4|Han|Solo|3|2|USS Enterprise Not really …
4|Han|Solo|3|3|Millennium Falcon OK; bingo; keep it
4|Han|Solo|3|4|Death Star Sigh
����� Hours later
6|Malcolm|Reynolds|5|5|Serenity Fine, keep this (Whew.)

In our toy example this isn’t really a problem, but if you consider that the IRS
might want to match tax payers to their employers, the dimensions are somewhat
different.

This is why SQL lets you specify in advance which combinations of tuples you
find interesting, instead of creating all possible combinations and then throwing
out the uninteresting ones. This looks like

sqlite> SELECT *

...> FROM person JOIN ship ON person.ship_id=ship.id;

Result: see above

B Whether this is a real problem in practice also depends on your database
system. A large part of the development effort for a database system goes
into “query optimisation”, which is the part that decides exactly how toquery optimisation

evaluate SELECT commands. Clever database systems can figure out that the
first example and the JOIN example do essentially the same thing, and handle
both in the same (efficient)manner. SQLite, for example, generates the same
byte code for both queries. On the other hand, both these queries are still
very simple, and in real life youwill have to deal withmore complex queries
that may tax a query optimiser to a point where it no longer notices obvious
simplifications. We recommend you use the JOIN form just to be safe.

If you want to know which commander appeared in which film, you will have
to consult the personfilm table:

sqlite> SELECT firstname, name, title

...> FROM person p JOIN personfilm pf ON p.id=pf.person_id

...> JOIN film f ON pf.film_id=f.id;

James T.|Kirk|Star Trek

James T.|Kirk|Star Trek: Generations

Willard|Decker|Star Trek

Jean-Luc|Picard|Star Trek: Generations

Han|Solo|Star Wars 4

Han|Solo|Star Wars 5

Wilhuff|Tarkin|Star Wars 4

Malcolm|Reynolds|Serenity

8.5 Practical Examples 125

So even relations between three (and more) tables are not a problem—you simply
need to keep your eyes peeled!

Here are some more examples for relational queries. First the list of all com-
manders who appeared in films since 1980:

sqlite> SELECT year, title, firstname || ' ' || name

...> FROM person p JOIN personfilm pf ON p.id=pf.person_id

...> JOIN film f ON pf.film_id=m.id

...> WHERE year >= 1980 ORDER BY year ASC;

1980|Star Wars 5|Han Solo

1994|Star Trek: Generations|James T. Kirk

1994|Star Trek: Generations|Jean-Luc Picard

2005|Serenity|Malcolm Reynolds

Here is a list of films featuring two or more commanders:

sqlite> SELECT title

...> FROM film f JOIN personfilm pf ON f.id=pf.film_id

...> GROUP BY film_id HAVING COUNT(*) > 1;

Star Trek

Star Trek: Generations

Star Wars 4

The “GROUP BY” clause causes tuples from personfilm that refer to the same film to
be processed together. HAVING, (which we didn’t cover before) is similar to WHERE,
but it is applied after grouping and allows the use of aggregate functions (which
WHERE doesn’t); hence the COUNT(*) in HAVING clause counts the tuples in each group.

Exercises

C 8.9 [!1] What is the output of the SQL command

SELECT * FROM person, ship

when it is applied to our sample database?

8.5 Practical Examples

Now that you have looked into the basics of SQL, youmaywell wonderwhat all of
this buys you in practice (unless you areworkingwith databases already, inwhich
case all of this chapter is probably old hat to you). In this section we present a few
ideas of what to do with an SQL database system like SQL in “real life”.

Firefox As of version 3, Firefox (or, for Debian GNU/Linux users, “Iceweasel”)
uses SQLite to manage an increasing number of its internal files. You can snoop
around some of them and learn interesting things; anything in the ~/.mozilla/

firefox/*.Default-User directory (where the asterisk represents a code to make the
name unique) with an extension of .sqlite is potentially fair game.

The formhistory.sqlite file, for example, contains the default values Firefox in-
serts into web forms. The database schema is rather obvious:

CREATE TABLE moz_formhistory (

id INTEGER PRIMARY KEY,

fieldname LONGVARCHAR,

value LONGVARCHAR

);

126 8 SQL

So you can use

sqlite> SELECT value FROM moz_formhistory WHERE fieldname='address';

to find out what Firefox will propose to you if an input field in a web form has
the (internal HTML) name address. Likewise, you have the possibility to system-
atically get rid of any default values that bug you (which Firefox itself doesn’t
offer)—a suitable DELETE FROM creates faits accomplis.

B If you want to be on the safe side, do this when Firefox isn’t running—but
in principle it should work even if it is.

Also as of version 3, Firefox maintains a file named places.sqlite, which con-
tains interesting things like your bookmarks (in moz_bookmarks), the sites you visited
(in moz_historyvisits and moz_places), and much else.

Amarok Are you using the KDE music player, Amarok? If so, you can easily
figure out your personal “tops of the pops” using SQL:

$ sqlite3 ~/.kde/share/apps/amarok/collection.db \

> 'SELECT url, playcounter FROM statistics ORDER BY

> playcounter DESC LIMIT 10;'

The “LIMIT 10” clause at the end of the query limits the number of resulting tuples
to at most 10. If you want to list the artist and title instead of the URL of the song
file, the query is only a bit more complex;

$ sqlite3 ~/.kde/share/apps/amarok/collection.db \

> 'SELECT title, playcounter FROM statistics s

> JOIN tags t ON s.url=t.url

> ORDER BY playcounter DESC LIMIT 10;'

B Incidentally, a more convenient way to express the JOIN in the above query
would be to use JOIN tags USING(url), since in both tables the url column is
used to make the connection.

Do look at the Amarok schema using .schema. You will surely be able to think of
other interesting applications.

Poor Person’s Diary If you are one of those people who tend to forget Auntie
Mildred’s birthday, you should attempt, for the sake of family peace, not to let
this happen too often. It would be nice to be made aware of the upcoming family
events and anniversaries—ideally with a little advance warning so you can still
take care of gifts, cards, and so on.

Since you are familiar with the Unix shell, writing a small diary application to
help you keep track should be a piece of cake. Of course we will not be able to
compete with Evolution nor KOrganizer nor Google Calendar, but shall set our
sights rather lower than that (but not too low).

The first thing we have to do is design the database schema. We would like to
store different kinds of events (birthdays, anniversaries, etc) as well as, for each
event, not just the category but also the date and an explanation (sowe knowwhat
all of this is about). Here is a proposal for the category:

CREATE TABLE type (

id INTEGER PRIMARY KEY,

abbr VARCHAR(1), abbreviation
name VARCHAR(100) full text

);

8.5 Practical Examples 127

And here are the events themselves:

CREATE TABLE event (

id INTEGER PRIMARY KEY,

type_id INTEGER, foreign key
year INTEGER,

date VARCHAR(5),

description VARCHAR(100)

);

We store the date of each event separately; the year (year column) and the month
and day in MM-DD format (date column), for reasons which will hopefully become
clear soon. Entries are added to the diary as follows:

INSERT INTO type VALUES (1, 'B', 'Birthday');

INSERT INTO type VALUES (2, 'W', 'Wedding Anniversary');

INSERT INTO type VALUES (3, 'A', 'Anniversary');

INSERT INTO event VALUES (1, 1, 1926, '01-17', 'Auntie Mildred');

INSERT INTO event VALUES (2, 1, 1934, '01-21', 'Uncle Jack');

INSERT INTO event VALUES (3, 2, 2002, '02-05', 'Susie and Martin');

Now we can answer the pressing question: What will happen next week? In
other words: If we “teleport” the dates from event into the current year, which of
them fall into the range from “today” to “today plus seven days”? (We assume
that one week is adequate to buy a card or a present. The stationery shop around
the corner will surely have something in stock, and the likes of Amazon will, in a
pinch, deliver stuff fairly quickly.)

Our task is simplified considerably by the date functions of SQLite, which we
haven’t looked at before. The DATE() function, for example, expects as its first ar-
gument a date in the common “international” format (meaning first the year, then
the month, and then the day, separated by hyphens—for instance, 2009-01-14) or
the string now (with the obvious meaning). Any subsequent arguments “modify”
the date given as the first argument. So you can obtain the point of time corre-
sponding to “today plus seven days” simply using

sqlite> SELECT DATE('now', '+7 days');

2009-01-20 Today, incidentally, is 13 January 2009

This pretty much settles it: We can find all “current” dates using a query like

sqlite> SELECT DATE('2009-' || date) AS d, description, year

...> FROM event

...> WHERE d >= DATE('now') AND d <= DATE('now','+7 days')

2009-01-17|Auntie Mildred|1926

B Instead of

d >= DATE('now') AND d <= DATE('now', '+7 days')

you could also write

d BETWEEN DATE('now') AND DATE('now', '+7 days')

You can now wrap the query up nicely in a shell script, which will figure out
the current year (somewhat cumbersome in SQL) and formats the output nicely
(quite cumbersome in SQL). The result might look like figure 8.4, and together
with a database file in ~/.cal.db might produce output like following form:

128 8 SQL

#!/bin/bash

calendar-upcoming [limit]

caldb=$HOME/.cal.db

year=$(date +%Y)

limit=${1:-14}

sqlite3 $caldb \

"SELECT DATE('$year-' || date) AS d, name, description, year

FROM event JOIN type ON event.type_id=type.id

WHERE d >= DATE('now') AND d <= DATE('now', '+$limit days')

ORDER BY d ASC;" \

| awk -F'|' '{ print $1 ": " $3 " (" year-$4 "th " $2 ")" }' year=$year

Figure 8.4: The calendar-upcoming Script

$ calendar-upcoming 60 upcoming two months
2009-01-17: Auntie Mildred (83th birthday)

2009-01-21: Uncle Jack (75th birthday)

2009-02-05: Susie and Martin (7th wedding anniversary)

2009-02-06: ROM-TOS anniversary (23th anniversary)

2009-02-17: Rabbit Keeping Club (124th anniversary)

There are many possible extensions. Just have a look at the exercises.

Exercises

C 8.10 [3] Add a “holiday” type to the “poor man’s diary”. When a holdiday
is listed, no “age” should be added to the output:

2009-02-17: Rabbit Keeping Club (124th anniversary)

2009-02-23: Carnival Monday (holiday) in parts of Germany
2009-03-01: Cousin Fred (29th birthday)

C 8.11 [3]Write a shell script named calendar-holidays which is passed the date
of Easter in the usual ISO format (e.g.: 2009-04-12) and adds the holidays of
the given year to the calendar database.

C 8.12 [4] (Previous exercise continued—this is a more elaborate project.)
Write a program that computes Easter of the given year. Information about
computing the date of Easter can be found here: http://en.wikipedia.org/

wiki/Computus. (Hint: use awk.) Rewrite calendar-holidays such that it uses
your new program—it will only require the year number rather than the
date of Easter afterwards.

C 8.13 [2] Make the programmail you a list of the forthcoming events in each
morning. (You will probably need some information from Chapter 9 to do
this exercise, so feel free to come back to it at a later time.)

8.5 Practical Examples 129

Summary

• SQL (“Structured Query Language”) is a standard language for defining,
querying, and manipulating relational databases.

• Normalisation is an important process for maintaining the consistency of
relational databases.

• There are various SQL database products for Linux systems.
• A collection of table definitions is called a “database schema”.
• SQL not only supports defining database schemas, but also inserting, mod-
ifying, querying, and deleting data (tuples).

• Aggregate functions allow you to compute values like the sum or average
of all tuples of a column.

• Relations allow you to process data from multiple tables.
• Many Linux-based applications programs use SQLite for storing data.

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

9
Time-controlled Actions—cron and
at

Contents

9.1 Introduction. 132
9.2 One-Time Execution of Commands 132

9.2.1 at and batch . 132
9.2.2 at Utilities . 134
9.2.3 Access Control 134

9.3 Repeated Execution of Commands 135
9.3.1 User Task Lists 135
9.3.2 System-Wide Task Lists 136
9.3.3 Access Control 137
9.3.4 The crontab Command 137
9.3.5 Anacron . 138

Goals

• Executing commands at some future time using at

• Executing commands periodically using cron

• Knowing and using anacron

Prerequisites

• Using Linux commands
• Editing files

grd2-automatisierung.tex (6eb247d0aa1863fd)

132 9 Time-controlled Actions—cron and at

9.1 Introduction

An important component of system administration consists of automating re-
peated procedures. One conceivable task would be for the mail server of the
company network to dial in to the ISP periodically to fetch incoming messages.
In addition, all members of a project group might receive a written reminder half
an hour before the weekly project meeting. Administrative tasks like file system
checks or system backups can profitably be executed automatically at night when
system load is noticably lower.

To facilitate this, Linux offers two services which will be discussed in the fol-
lowing sections.

9.2 One-Time Execution of Commands

9.2.1 at and batch

Using the at service, arbitrary shell commandsmay be executed once at some time
in the future (time-shifted). If commands are to be executed repeatedly, the use
of cron (Section 9.3) is preferable.

The idea behind at is to specify a time at which a command or command se-
quence will be executed. Roughly like this:

$ at 01:00

warning: commands will be executed using /bin/sh

at> tar cvzf /dev/st0 $HOME

at> echo "Backup done" | mail -s Backup $USER

at> Ctrl + D

Job 123 at 2003-11-08 01:00

This would write a backup copy of your home directory to the first tape drive at
1 A.M. (don’t forget to insert a tape) and then mail a completion notice to you.

at’s argument specifies when the command(s) are to be run. Times liketime specification

“⟨HH⟩:⟨MM⟩” denote the next possible such time: If the command “at 14:00”
is given at 8 A.M., it refers to the same day; if at 4 P.M., to the next.

B You can make these times unique by appending today or tomorrow: “at 14:00

today”, given before 2 P.M., refers to today, “at 14:00 tomorrow”, to tomorrow.

Other possibilities include Anglo-Saxon times such as 01:00am or 02:20pm as well as
the symbolic names midnight (12 A.M.), noon (12 P.M.), and teatime (4 P.M.) (!); the
symbolic name now is mostly useful together with relative times (see below).

In addition to times, at also understands date specifications in the formatdate specifications

“⟨MM⟩⟨DD⟩⟨YY⟩” and “⟨MM⟩/⟨DD⟩/⟨YY⟩” (according to American usage, with
the month before the day) as well as “⟨DD⟩.⟨MM⟩.⟨YY⟩” (for Europeans). Be-
sides, American-style dates like “⟨month name⟩ ⟨day⟩” and “⟨month name⟩ ⟨day⟩
⟨year⟩” may also be spelled out. If you specify just a date, commands will be
executed on the day in question at the current time; you can also combine a date
and time specification but must give the date after the time:

$ at 00:00 January 1 2005

warning: commands will be executed using /bin/sh

at> echo 'Happy New Year!'

at> Ctrl + D

Job 124 at 2005-01-01 00:00

Besides “explicit” time and date specification, you can give “relative” times
and dates by passing an offset from some given point in time:

9.2 One-Time Execution of Commands 133

$ at now + 5 minutes

executes the command(s) five minutes from now, while

$ at noon + 2 days

refers to 12 P.M. on the day after tomorrow (as long as the at command is given
before 12 P.M. today). at supports the units minutes, hours, days and weeks.

B A single offset by one single measurement unit must suffice: Combinations
such as

$ at noon + 2 hours 30 minutes

or

$ at noon + 2 hours + 30 minutes

are, unfortunately, disallowed. Of course you can express any reasonable
offset in minutes …

at reads the commands from standard input, i. e., usually the keyboard; with commands

the “-f ⟨file⟩” option you can specify a file instead.

B at tries to run the commands in an environment that is as like the one current
when at was called as possible. The current working directory, the umask,
and the current environment variables (excepting TERM, DISPLAY, and _) are
saved and reactivated before the commands are executed.

Any output of the commands executed by at—standard output and standard error output

output—is sent to you by e-mail.

B If you have assumed another user’s identity using su before calling at, the
commands will be executed using that identity. The output mails will still
be sent to you, however.

While you can use at to execute commands at some particular point in time,
the (otherwise analogous) batch commandmakes it possible to execute a command
sequence “as soon as possible”. When thatwill actually be depends on the current ASAP execution

system load; if the system is very busy just then, batch jobs must wait.

B An at-style time specification on batch is allowed but not mandatory. If it is
given, the commands will be executed “some time after” the specified time,
just as if they had been submitted using batch at that time.

B batch is not suitable for environments in which users compete for resources
such as CPU time. Other systems must be employed in these cases.

Exercises

C 9.1 [!1] Assume now is 1 March, 3 P.M. When will the jobs submitted using
the following commands be executed?

1. at 17:00

2. at 02:00pm

3. at teatime tomorrow

4. at now + 10 hours

C 9.2 [1] Use the logger command to write a message to the system log 3 min-
utes from now.

134 9 Time-controlled Actions—cron and at

9.2.2 at Utilities

The system appends at-submitted jobs to a queue. You can inspect the contents
of that queue using atq (you will see only your own jobs unless you are root):Inspect at queue

$ atq

123 2003-11-08 01:00 a hugo

124 2003-11-11 11:11 a hugo

125 2003-11-08 21:05 a hugo

B The “a” in the list denotes the “job class”, a letter between “a” and “z”. You
can specify a job class using the -q option to at; jobs in classes with “later”
letters are executed with a higher nice value. The default is “a” for at jobs
and “b” for batch jobs.

B A job that is currently being executed belongs to the special job class “=”.

You can use atrm to cancel a job. To do so you must specify its job number,Cancelling jobs

which you are told on submission or can look up using atq. If you want to check
on the commands making up the job, you can do that with “at -c ⟨job number⟩”.

The entity in charge of actually executing at jobs is a daemon called atd. It isdaemon

generally started on system boot and waits in the background for work. When
starting atd, several options can be specified:

-b (“batch”) Determines the minimum interval between two batch job executions.
The default is 60 seconds.

-l (“load”) Determines a limit for the system load, above which batch jobs will not
be executed. The default is 0.8.

-d (“debug”) Activates “debug” mode, i. e., error messages will not be passed to
syslogd but written to standard error output.

The atd daemon requires the following directories:

• at jobs are stored in /var/spool/atjobs. Its access mode should be 700, the
owner is at.

• The /var/spool/atspool directory serves to buffer job output. Its owner should
be at and access mode 700, too.

Exercises

C 9.3 [1] Submit a few jobs using at and display the job queue. Cancel the jobs
again.

C 9.4 [2] How would you create a list of at jobs which is not sorted according
to job number but according to execution time (and date)?

9.2.3 Access Control

The /etc/at.allow and /etc/at.deny files determine who may submit jobs using at/etc/at.allow

/etc/at.deny and batch. If the /etc/at.allow file exists, only the users listed in there are entitled
to submit jobs. If the /etc/at.allow file does not exist, the users not listed in /etc/

at.deny may submit jobs. If neither one nor the other exist, at and batch are only
available to root.

Debian GNU/Linux comes with a /etc/at.deny file containing the names of
various system users (including alias, backup, guest, and www-data). This pre-
vents these users from using at.

Here, too, the Ubuntu defaults correspond to the Debian GNU/Linux de-
faults.

9.3 Repeated Execution of Commands 135

Red Hat includes an empty /etc/at.deny file; this implies that any user may
submit jobs.

The openSUSEdefault corresponds (interestingly) to that ofDebianGNU/Linux
and Ubuntu—various system users are not allowed to use at. (The explic-
itly excluded user www-data, for example, doesn’t exist on openSUSE; Apache
uses the identity of the wwwrun user.)

Exercises

C 9.5 [1] Who may use at and batch on your system?

9.3 Repeated Execution of Commands

9.3.1 User Task Lists

Unlike the at commands, the cron daemon’s purpose is to execute jobs at periodic
intervals. cron, like atd, should be started during system boot using an init script.
No action is required on your side, though, because cron and atd are essential parts
of a Linux system. All major distributions install them by default.

Every user has their own task list (commonly called crontab), which is stored in task list

the /var/spool/cron/crontabs (on Debian GNU/Linux and Ubuntu; on SUSE: /var/
spool/cron/tabs, on RedHat: /var/spool/cron) directory under that user’s name. The
commands described there are executed with that user’s permissions.

B You do not have direct access to your task lists in the cron directory, so you
will have to use the crontab utility instead (see below). See also: Exercise 9.6.

crontab files are organised by lines; every line describes a (recurring) point in syntax

time and a command that should be executed at that time. Empty lines and com-
ments (startingwith a “#”)will be ignored. The remaining lines consist of five time time fields

fields and the command to be executed; the time fields describe theminute (0–59), command

hour (0–23), day ofmonth (1–31), month (1–12 or the English name), andweekday
(0–7, where 0 and 7 stand for Sunday, or the English name), respectively, at which
the command is to be executed. Alternatively, an asterisk (“*”) is allowed, which
means “whatever”. For example,

58 17 * * * echo "News is coming on soon"

that the command will be executed daily at 5.58 P.M. (day, month and weekday
are arbitrary).

B The command will be executed whenever hour, minute, and month match
exactly and at least one of the two day specifications—day of month or
weekday—applies. The specification

1 0 13 * 5 echo "Shortly after midnight"

says that the message will be output on any 13th of the month as well as
every Friday, not just every Friday the 13th.

B The final line of a crontab file must end in a newline character, lest it be ig-
nored.

In the time fields, cron accepts not just single numbers, but also comma-
separated lists. The “0,30” specification in the minute field would thus lead to the lists

command being executed every “full half” hour. Besides, ranges can be specified:
“8-11” is equivalent to “8,9,10,11”, “8-10,14-16” corresponds to “8,9,10,14,15,16”.

136 9 Time-controlled Actions—cron and at

Also allowed is a “step size” in ranges. “0-59/10” in the minute field is equivalent
to “0,10,20,30,40,50”. If—like here—the full range of values is being covered, you
could also write “*/10”.

The names allowed in month and weekday specifications each consist of themonth and week-
day specifications first three letters of the English month or weekday name (e. g., may, oct, sun, or wed).

Ranges and lists of names are not permissible.
The rest of the line denotes the command to be executed, which will be passedcommand

by cron to /bin/sh (or the shell specified in the SHELL variable, see below).

B Percent signs (%) within the command must be escaped using a backslash
(as in “\%”), lest they be converted to newline characters. In that case, the
command is considered to extend up to the first (unescaped) percent sign;
the following “lines” will be fed to the command as its standard input.

B By the way: If you as the system administrator would rather not (as cron is
wont to do) a command execution be logged using syslogd, you can suppress
this by putting a “-” as the first character of the line.

Besides commandswith repetition specifications, crontab linesmay also include
assignments to environment variables. These take the form “⟨variable⟩=⟨value⟩”assignments to en-

vironment variables (where, unlike in the shell, there may be spaces before and after the “=”). If the
⟨value⟩ contains spaces, it should be surrounded by quotes. The following vari-
ables are pre-set automatically:

SHELL This shell is used to execute the commands. The default is /bin/sh, but other
shells are allowed as well.

LOGNAME The user name is taken from /etc/passwd and cannot be changed.

HOME The home directory is also taken from /etc/passwd. However, changing its
value is allowed.

MAILTO cron sends e-mail containing command output to this address (by default,
they go to the owner of the crontab file). If cron should send no messages at
all, the variable must be set to a null value, i. e., MAILTO="".

9.3.2 System-Wide Task Lists

In addition to the user-specific task lists, there is also a system-wide task list. This
resides in /etc/crontab and belongs to root, who is the only user allowed to change/etc/crontab

it. /etc/crontab’s syntax is slightly different from that of the user-specific crontab

files; between the time fields and the command to be executed there is the name
of the user with whose privileges the command is supposed to be run.

B Various Linux distributions support a /etc/cron.d directory; this directory
may contain files which are considered “extensions” of /etc/crontab. Soft-
ware packages installed via the package management mechanism find it
easier to make use of cron if they do not have to add or remove lines to
/etc/crontab.

B Another popular extension are files called /etc/cron.hourly, /etc/cron.daily
and so on. In these directories, software packages (or the system admin-
istrator) can deposit files whose content will be executed hourly, daily, …
These files are “normal” shell scripts rather than crontab-style files.

cron reads its task lists—from user-specific files, the system-wide /etc/crontab,
and the files within /etc/cron.d, if applicable—once on starting and then keeps
them inmemory. However, the program checks everyminutewhether any crontabcrontab changes and cron

files have changed. The “mtime”, the last-modification time, is used for this. If
cron does notice somemodification, the task list is automatically reconstructed. In
this case, no explicit restart of the daemon is necessary.

9.3 Repeated Execution of Commands 137

Exercises

C 9.6 [2] Why are users not allowed to directly access their task lists in /var/

spool/cron/crontabs (or wherever your distribution keeps them)? How does
crontab access these files?

C 9.7 [1] How can you arrange for a command to be executed on Friday, the
13th, only?

C 9.8 [3] How does the system ensure that the tasks in /etc/cron.hourly, /etc/
cron.daily, … are really executed once per hour, once per day, etc.?

9.3.3 Access Control

Which users may work with cron to begin with is specified, in a manner similar
to that of at, in two files. The /etc/cron.allow file (sometimes /var/spool/cron/allow)
lists those users who are entitled to use cron. If that file does not exist but the /etc/

cron.deny (sometimes /var/spool/cron/deny) file does, that file lists those users who
may not enjoy automatic job execution. If neither of the files exists, it depends on
the configurationwhether only rootmay avail himself of cron’s services orwhether
cron is “free for all”, and any user may use it.

9.3.4 The crontab Command

Individual users cannot change their crontab files manually, because the system
hides these files from them. Only the system-wide task list in /etc/crontab is subject
to root’s favourite text editor.

Instead of invoking an editor directly, all users should use the crontab com- managing task lists

mand. This lets them create, inspect, modify, and remove task lists. With

$ crontab -e

you can edit your crontab file using the editor which is mentioned in the VISUAL or
EDITOR environment variables—alternatively, the vi editor. After the editor termi-
nates, the modified crontab file is automatically installed. Instead of the -e option,
you may also specify the name of a file whose content will be installed as the task
list. The “-” file name stands for standard input.

With the -l option, crontab outputs your crontab file to standard output; with
the -r option, an existing task list is deleted with prejudice.

B With the “-u ⟨user name⟩” option, you can refer to another user (expect to
be root to do so). This is particularly important if you are using su; in this
case you should always use -u to ensure that you are working on the correct
crontab file.

Exercises

C 9.9 [!1] Use the crontab program to register a cron job that appends the cur-
rent date to the file /tmp/date.log once per minute. How can you make it
append the date every other minute?

C 9.10 [1] Use crontab to print the content of your task list to the standard
output. Then delete your task list.

C 9.11 [2] (For administrators:) Arrange that user hugo may not use the cron

service. Check that your modification is effective.

138 9 Time-controlled Actions—cron and at

9.3.5 Anacron

Using cron you can execute commands repeatedly at certain points in time. This
obviously works only if the computer is switched on at the times in question –
there is little point in configuring a 2am cron job on a workstation PC when that
PC is switched off outside business hours to save electricity. Mobile computers,
too, are often powered on or off at odd times, which makes it difficult to schedule
the periodic automated clean-up tasks a Linux system needs.

The anacron program (originally by Itai Tzur, nowmaintained byPascalHakim),
like cron, can execute jobs on a daily, weekly, or monthly basis. (In fact, arbitrary
periods of 𝑛 days are fine.) The only prerequisite is that, on the day in question,
the computer be switched on long enough for the jobs to be executed—the exact
time of day is immaterial. However, anacron is activated at most once a day; if you
need a higher frequency (hours or minutes) there is no way around cron.

B Unlike cron, anacron is fairly primitive as far as jobmanagement is concerned.
With cron, potentially every user can create jobs; with anacron, this is the
system administrator’s privilege.

The jobs for anacron are specified in the /etc/anacrontab file. In addition to the
customary comments and blank lines (which will be ignored) it may contain as-
signments to environment variables of the form

SHELL=/bin/sh

and job descriptions of the form

7 10 weekly run-parts /etc/cron.weekly

where the first number (here 7) stands for the period (in days) between invocations
of the job. The second number (10) denotes how many minutes after the start of
anacron the job should be launched. Next is a name for the job (here, weekly) and
finally the command to be executed. Overlong lines can be wrapped with a “\” at
the end of the line.

B The job name may contain any characters except white space and the slash.
It is used to identify the job in log messages, and anacron also uses it as the
name of the file in which it logs the time the job was last executed. (These
files are usually placed in /var/spool/anacron.)

When anacron is started, it reads /etc/anacrontab and, for each job, checks
whether it was run within the last 𝑡 days, where 𝑡 is the period from the job
definition. If not, then anacron waits the number of minutes given in the job
definition and then launches the shell command.

B You can specify a job name on anacron’s command line to execute only that
job (if any). Alternatively, you can specify shell search patterns on the com-
mand line in order to launch groups of (skilfully named) jobs with one
anacron invocation. Not specifying any job names at all is equivalent to the
job name, “*”.

B Youmay also specify the time period between job invocations symbolically:
Valid values include @daily, @weekly, @monthly, @yearly and @annually (the last
two are equivalent).

B In the definition of an environment variable, white space to the left of the “=”
is ignored. To the right of the “=”, it becomes part of the variable’s value.
Definitions are valid until the end of the file or until the same variable is
redefined.

9.3 Repeated Execution of Commands 139

B Some “environment variables” have special meaning to anacron. With RAN-

DOM_DELAY, you can specify an additional random delay1 for the job launches:
When you set the variable to a number 𝑡, then a random number of min-
utes between 0 and 𝑡will be added to the delay given in the job description.
START_HOURS_RANGE lets you denote a range of hours (on a clock) during which
jobs will be started. Something like

START_HOURS_RANGE=10-12

allows new jobs to be started only between 10am and 12pm. Like cron,
anacron sends job output to the address given by the MAILTO variable, oth-
erwise to the user executing anacron (usually root).

Usually anacron executes the jobs independently and without attention to over-
laps. Using the -s option, jobs are executed “serially”, such that anacron starts a
new job only when the previous one is finished.

Unlike cron, anacron is not a background service, but is launched when the sys-
tem is booted in order to execute any leftover jobs (the delay in minutes is used to
postpone the jobs until the system is running properly, in order to avoid slowing
down the start procedure). Later on you can execute anacron once a day from cron

in order to ensure that it does its thing even if the system is running for a longer
period of time than normally expected.

B It is perfectly feasible to install cron and anacron on the same system. While
anacron usually executes the jobs in /etc/cron.daily, /etc/cron.weekly, and /etc/

cron.monthly that are really meant for cron, the system ensures that anacron
does nothing while cron is active. (See also Exercise 9.13.)

Exercises

C 9.12 [!2] Convince yourself that anacron is working as claimed. (Hint: If you
don’t want to wait for days, try cleverly manipulating the time stamps in
/var/spool/anacron.)

C 9.13 [2] On a long-running system that has both cron and anacron installed,
how do you avoid anacron interfering with cron? (Hint: Examine the content
of /etc/cron.daily and friends.)

Commands in this Chapter

anacron Executes periodic job even if the computer does not run all the time
anacron(8) 138

at Registers commands for execution at a future point in time at(1) 132
atd Daemon to execute commands in the future using at atd(8) 134
atq Queries the queue of commands to be executed in the future

atq(1) 133
atrm Cancels commands to be executed in the future atrm(1) 134
batch Executes commands as soon as the system load permits batch(1) 133
crontab Manages commands to be executed at regular intervals crontab(1) 137

1Duh!

140 9 Time-controlled Actions—cron and at

Summary

• With at, you can register commands to be executed at some future (fixed)
point in time.

• The batch command allows the execution of commands as soon as system
load allows.

• atq and atrm help manage job queues. The atd daemon causes the actual
execution of jobs.

• Access to at and batch is controlled using the /etc/at.allow and /etc/at.deny

files.
• The cron daemon allows the periodic repetition of commands.
• Users can maintain their own task lists (crontabs).
• A system-wide task list exists in /etc/crontab and—on many distribu-
tions—in the /etc/cron.d directory.

• Access to cron is managed similarly to at, using the /etc/cron.allow and /etc/

cron.deny files.
• The crontab command is used to manage crontab files.

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

10
Localisation and
Internationalisation

Contents

10.1 Summary. 142
10.2 Character Encodings. 142
10.3 Linux Language Settings 146
10.4 Localisation Settings 147
10.5 Time Zones . 151

Goals

• Knowing about the most common character encodings
• Converting text files between encodings
• Knowing the language-related environment variables
• Knowing the Linux infrastructure for localisation
• Knowing how Linux handles time zones

Prerequisites

• Linux commands
• Text editing

grd2-i18n.tex (6eb247d0aa1863fd)

142 10 Localisation and Internationalisation

10.1 Summary

“Internationalisation”, or I18N for short (because there are 18 letters between the
first and the last character of the word), is the preparation of a software sys-
tem such that “localisation” becomes possible. Localisation, or L10N (you get
the idea), is the adaptation of a software system to the local customs of different
countries or culture groups. The primary aspect of localisation is, of course, the
language of the user interface including the messages printed by the system. An-
other important aspect is the data that is being processed by the system. Such
data may require special character encodings and input facilities. Finally, aspects
like notations for dates, times, and currencies, the collating order of alphabetic
characters, and other minor details are also covered by localisation. In graphical
programs, even colors may need to be localised: In the Western world, the color
“red” indicates danger, but this is not the case everywhere else.

For the Linux operating system kernel, internationalisation is not a very press-
ing issue since most of the areas requiring internationalisation are not really its
concern. (There is widespread consensus that the kernel should not be loaded
with error messages in all sorts of languages; the expectation is that anybody
who actually gets to see these messages has enough English to understand them.)
Linux distributions, on the other hand, contain vast amounts of application soft-
ware that stands to benefit from localisation. Accordingly, the major distributions
are available in a wide variety of localised versions. There are also diverse spe-
cial Linux distributions that concentrate on specific culture groups and attempt to
support these particularly well.

B While commercial softwaremanufacturers let local subsidiaries or paid con-
tractors do the localisation work, the localisation of open-source software
like most Linux applications is mostly done by volunteers. The advantage
of this approach is that usually volunteers who will translate and adapt a
program can be found for even the most exotic languages—languages that,
for business reasons, no commercial vendorwould consider supporting. On
the other hand, using volunteers presents special requirements to quality
control. A legendary anecdote tells the story that a KDE developer from the
Arabworld once replaced all occurrences of theword “Israel” by “Occupied
Palestine”; a step that not all of the KDE community approved of.

10.2 Character Encodings

The most important prerequisite for the internationalisation and localisation of
programs in foreign languages (in effect, “anything but English”) is that the sys-
tem needs to be able to display the script of the language in question. The tradi-
tional character encoding for computers is ASCII or the “American Standard Code
for Information Interchange”, which, as its name suggests, was meant for Ameri-
can English—in the early days of electronic data processing thiswas adequate, but
fairly soon it proved necessary to take into account the requirements of “foreign
languages”.

ASCII ASCII represents 128 different characters, of which 33 (positions 0–31 andcharacter set

position 127) are reserved for control characters like “line feed”, “horizontal tabu-control characters

lation”, and “bell”. The remaining 95 characters include uppercase and lowercase
letters, digits and a selection of special characters, mostly punctuation marks.

B Germany used to use the DIN 66003 character encoding, which for the mostDIN 66003

part corresponded to ASCII, except that the square brackets, curly braces,
the vertical bar and backslash were replaced by the German “umlauts” (let-
ters with diacritical double dots above them). The tilde was replaced by the
“sharp s” (a ligature of the “s” and the “z”), and the “commercial” at sign

10.2 Character Encodings 143

Table 10.1: The most common parts of ISO/IEC 8859

Part Common name Scope
ISO 8859-1 Latin-1 (Western European) Most Western European languages: Danish, Dutch*, English,

Faroese, Finnish*, French*, German, Icelandic, Irish, Ital-
ian, Norwegian, Portuguese, Rhaeto-Romanic, Scottish Gaelic,
Spanish, and Swedish. It also contains characters of some
other languages, including Afrikaans, Albanian, Indonesian,
and Swahili. (* = partial support)

ISO 8859-2 Latin-2 (Central European) Central and Eastern European languages using the Latin al-
phabet, like Bosnian, Croatian, Czech, Hungarian, Polish, Ser-
bian, Slovak, and Slovenian.

ISO 8859-3 Latin-3 (Southern European) Esperanto, Maltese, and Turkish.
ISO 8859-4 Latin-4 (Northern European) Estonian, Greenlandic, Latvian, Lithuanian, and Sami.
ISO 8859-5 Latin/Cyrillic Most Slovenian languages that use the Cyrillic alphabet, like

Belorussian, Bulgarian, Macedonian, Russian, Serbian, and
Ukrainian (partly).

ISO 8859-6 Latin/Arabic Contains the most common Arabic characters, but is not suit-
able for languages other than Arabic itself. Note that Arabic is
written from right to left!

ISO 8859-7 Latin/Greek Modern and ancient Greek without diacritics.
ISO 8859-8 Latin/Hebrew Modern Hebrew.
ISO 8859-9 Latin-5 (Turkish) Mostly equal to ISO 8859-1, but with additional Turkish char-

acters in place of the Icelandic ones. Also used for Kurdish.
ISO 8859-10 Latin-6 (Northern) A variation of Latin-4.
ISO 8859-11 Latin/Thai Thai language.
ISO 8859-12 Latin/Devanagari Never finished.
ISO 8859-13 Latin-7 (Baltic) Contains even more characters of the Baltic languages that do

not occur in Latin-4 and Latin-6.
ISO 8859-14 Latin-8 (Celtic) Celtic languages like Breton and (Irish) Gaelic.
ISO 8859-15 Latin-9 Mostly Latin-1, but includes the Euro sign and the missing

characters for Estonian, Finnish, and French in place of some
very rarely used characters.

ISO 8859-16 Latin-10 Albanian, Croatian, Hungarian, Italian, Romanian, Slovenian.
Also: Finnish, French, (Irish) Gaelic, German. Includes a Euro
sign. Practically unused.

by the “paragraph” sign. This was acceptable for German-language text but
not necessarily for C programs. (Your author remembers the first printer he
had to dealwith, a Centronics 737-2, which camewith a row of tiny switches
that were used to switch the printer from ASCII to DIN 66003 and back—a
tedious method.)

ISO/IEC 8859 Later, as pressure from international computer users mounted, a
transition fromASCIIwith its 128 characters to extended character sets took place,
which were able to use all 256 possible values of a byte to encode characters. The 256 characters

mostwidely used extended character sets are those described in the ISO/IEC 8859
standard, which includes character sets for many different languages. In fact,
ISO/IEC 8859 consists of a set of numbered, separately published parts which
are often considered separate standards. Table 10.1 provides a summary.

The focus of the ISO/IEC-8859 standard is on information interchange rather information interchange

than elegant typography, so various characters necessary for beautiful output—
such as ligatures or “typographic” quotes—are missing from the encodings.
When creating the code tables the emphasis was on characters that were already
present on computer keyboards, and also made some compromises. For example,

144 10 Localisation and Internationalisation

the French “Œ” and “œ” ligatures were not included in Latin-1, as they can be
written as “OE” and “oe”, respectively, and the space in the table was required
for other characters.

ISO/IEC 8859 does not address Oriental languages like Chinese or Japaneselimitations

because the character set of these languages by far exceeds the 256 characters that
fit into a single ISO/IEC 8859 code table. There are other scripts which are not the
subject of an ISO/IEC 8859 standard, either.

Unicode and ISO 10646 Unicode and ISO 10646 (the “Universal Character Set”s)
are parallel efforts to create one single character set to cover all alphabets of thetwo for all

world. Initially both standards were developed separately, but were merged
after the world’s software vendors rebelled fiercely against the complexity of
ISO 10646. Today Unicode and ISO 10646 standardise the same characters with
identical codes; the difference between the two is that ISO 10646 is a pure char-
acter table (basically an extended ISO 8859), while Unicode contains additional
rules for details like lexical sorting order, normalisation, and bidirectional output.
In this sense ISO 10646 is a “subset” of Unicode; with Unicode, characters also
have various extra properties which indicate, for example, the ways in which
a character can be combined with others (which is, for instance, important for
Arabic, where the rendition of a character depends on whether it occurs at the
beginning, in the middle, or at the end of a word).

B The Unix/Linux program, xterm, is an example of a program that does sup-
port ISO 10646 but not Unicode. It can display all ISO-10646 characters thatISO 10646 without Unicode

derive directly from the character encoding table and are written in a sin-
gle direction, as well as some “combined” characters that consist of several
others (such as a “base character” and diacritics), but not Hebrew, Arabic,
or Devanagari. Implementing Unicode correctly is by no means a piece of
cake.

The ISO 10646 character set contains not just letters, digits, and punctuationISO 10646 character set

marks, but also ideographs (like Chinese and Japanese characters), mathemati-
cal characters, and much more. Each of these characters is identified by a unique
name and an integer number that is called a “code point”. There are over 1.1 mil-code points

lion code points in the character set, of which only the first 65,536 of them are in
common use. These are also called the “basic multilingual plane”, or BMP. Uni-
code and ISO-10646 code points are written in the form U+0040, where the four
digits represent a hexadecimal number.

UCS-2 and UTF-8 Unicode and ISO 10646 specify code points, i. e., integer num-
bers for the characters in the character set, but do not specify how to handle these
code points. Encodings are defined to explain how to represent the code pointsEncodings

inside a computer.
The simplest encoding is is UCS-2, in which a single “code value” between 0UCS-2

and 65,535 is used for each character, which is represented by two bytes. This
implies that UCS-2 is limited to characters in the BMP. Furthermore, UCS-2 im-
plies that Western-world data, which would otherwise be represented by an 8-bit
encoding such as ASCII or ISO Latin-1, require twice the storage space, since sud-
denly two bytes are used per character instead of one.

B Instead ofUCS-2, systems likeWindows have changed to an encoding called
UTF-16, which does represent code points beyond the BMP. The storageUTF-16

space problem remains, though.

UTF-8 is capable of representing any character in ISO 10646 while maintainingUTF-8

backward compatibility with ASCII and ISO-8859-1. It encodes the code points
U+0000 to U+10FFFF (i e., 32 times as many as UCS-2) using one to four bytes, where
theASCII characters occupy a single byte only. Here are the design goals ofUTF-8:

10.2 Character Encodings 145

ASCII characters represent themselves This makes UTF-8 compatible with all
programs that deal with byte strings, i. e., arbitrary sequences of 8-bit bytes,
but assign special meaning to some ASCII characters. Migrating a system
from ASCII to UTF-8 is easy.

No first byte appears in the middle of a character If one or more complete bytes
are lost or mutilated, it is still possible to locate the beginning of the next
character.

The first byte of each character determines its number of bytes This ensures
that a byte sequence representing a specific character cannot be part of
a longer sequence representing a different character. This makes it efficient
to search strings for substrings at the byte level.

The byte values FE and FF are not used These bytes are used at the beginning of
UCS-2 texts in order to identify the byte ordering inside of the text. Because
these characters are not validUTF-8 data, UTF-8 documents andUCS-2 doc-
uments cannot be confused.

By now, UTF-8 is the encoding of choice for representing Unicode data on a Linux
system.

B If you want to know how exactly UTF-8 works, you should have a look at
the utf-8(7) man page, which explains the encoding in detail and provides
lots of examples.

The iconv command converts between character encodings. In the simplest case iconv

it converts the contents of the files specified on the command line from a given
encoding to the encoding that is currently being used. The result is written to the
standard output:

$ iconv -f LATIN9 test.txt >test-utf8.txt

You can also specify a different target encoding:

$ iconv -f UTF-8 -t LATIN9 test-utf8.txt >test-l9.txt

The -o (or --output) option can be used to write the output directly to a file:

$ iconv -f LATIN9 -o test-utf8.txt test.txt

When no input file is given, iconv reads its standard input:

$ grep bla test.txt | iconv -f LATIN9 -o grep.out

B The -l option lists all character encoding that iconv supports (which does not
necessarily mean that it can convert successfully between arbitrary pairs of
these encodings).

B When iconv encounters an invalid character in its input, it reports an error invalid characters

and bails out. To counter this, you can append one of the suffixes //TRANSLIT
or //IGNORE to the target encoding. //IGNORE simply drops any characters that
do not exist in the target encoding, while //TRANSLIT attempts to approximate
them using one or more similar characters:

$ echo xäöüy | iconv -f UTF-8 -t ASCII//IGNORE

xy

iconv: (stdin):1:1: cannot convert

$ echo xäöüy | iconv -f UTF-8 -t ASCII//TRANSLIT

xaeoeuey

146 10 Localisation and Internationalisation

The -c option drops invalid characters silently:

$ echo xäöüy | iconv -c -f UTF-8 -t ASCII

xy

10.3 Linux Language Settings

The language that a Linux system uses to communicate with its users is normally
selected from a menu when the system is being installed. It is rarely changed at a
later time. Desktop environments like KDE and GNOME allow individual users
to change the interface language in a convenient way. Linux users typically do not
change the language settings on the command line, but this can be done, too.

First we have to recognise that the “system language” is not really a property
of the entire system, but a parameter of each individual session. In the normalLanguage is per session

flow of operation, the login shell or graphical desktop environment is initialised
with a specific language setting, and the subprocesses of this shell “inherit” this
setting just like the current working directory, resource limits of processes, etc.
So there is nothing to keep you from using the system with an English-language
settingwhile at the same time someone is logged on over the network or at another
terminal who is using a German or French session.

B To be precise, there is nothing to keep you from setting a different language
in one or more windows inside your own session.

The controlling factor for the language of a session is the value of the LANG envi-LANG

ronment variable. In the simplest case, it consists of three parts: a language codelanguage code

according to ISO 639, followed by an underscore character, followed by a countrycountry code
code as per ISO 3166, for example something like

en_GB English in Great Britain
en_US English in the United States

The country code is important because the languages in two countries may well
differ even though they use the same language in principle. For example, Ameri-
canEnglish useswords like “elevator” instead of “lift” or “gas” instead of “petrol”.
Spelling differs, too, so American English uses “color” instead of “colour” and
“catalog” instead of “catalog”. This means that a word processor may flag the
word “color” as wrong in a en_GB text, just as it might complain about “colour” in
a en_US text1.

B If the difference between en_GB and en_US isn’t obvious enough for you, then
consider de_DE versus de_AT, or even pt_PT versus pt_BR.

Some extensions may follow this plain specification, such as a character encod-extensions

ing (separated by a period) or a “variant” (separated by @). This means you can
use values such as

de_DE.ISO-8859-15 German German, according to ISO Latin-9
de_AT.UTF-8 Austrian German, Unicode/UTF-8-based
de_DE@euro German German, including the Euro sign (ISO Latin-9)

This is how different LANG settings affect the output:
1According to George Bernard Shaw, “England and America are two countries divided by a com-

mon language”.

10.4 Localisation Settings 147

$ for i in en_US de_DE de_AT fi_FI fr_FR; do

> LANG=$i.UTF-8 date +"%B %Y"

> done

January 2009

Januar 2009

Jänner 2009

tammikuu 2009

janvier 2009

(With date, the format designator %B denotes the name of the month according to
the current language setting.)

B Of course this presupposes that the system in question actually does provide
support for the given language. Debian GNU/Linux, for example, lets you
pick which settings should be supported and which shouldn’t. If you select
a setting that your system does not support, the system falls back to a built-
in default, which is usually English.

The LANGUAGE environment variable (which is not to be confused with LANG) is LANGUAGE

only evaluated by prgrams that use the GNU gettext infrastructure to translate
their messages into different languages (which, on a Linux system, means most
of them). The most obvious difference between LANGUAGE and LANG is that LANGUAGE
allows you to enumerate multiple languages (separated by colons). This lets you
specify a preference list:

LANGUAGE=de_DE.UTF-8:en_US.UTF-8:fr_FR.UTF-8

means “German, or else English, or else French”. The first language that a pro-
gram actually features messages for wins. LANGUAGE is preferred over LANG (for pro-
grams that use GNU gettext, anyway).

Exercises

C 10.1 [1] What does the command

$ LANG=ja_JP.UTF-8 date +"%B %Y"

output (assuming support for the language in question is installed)?

10.4 Localisation Settings

In fact, the value of the LANG variable not only influences the interface language but
all of the “cultural setup” of a Linux system. This includes things like

Time and date formatting In theUnited States, for instance, it is common to spec-
ify a date in the form “month/day/year”:

$ date +"%x" Locale-specific time format
01/14/2009

$ LANG=de_DE.UTF-8 date +"%x" German-style
14.01.2009

The Americans (and British) also give the time of the day using a 12-hour
clock while elsewhere a 24-hour clock is the norm: What is called “3 p.m.”
in Great Britain and the USA equals “15 Uhr” in Germany.

148 10 Localisation and Internationalisation

Number and currency formatting In the United Kingdom and the USA a period
is used as a decimal separator, while commas serve to make large numbers
more readable:

299,792,458.0

Other countries (and an insignificant multinational body called ISO) use
these characters the other way round:

299.792.458,0

B This feature is mostly used by programs that make use of the printf()

and scanf() C functions. Other programs have to query the variable
themselves and format their output accordingly.

With monetary amounts, there are additional complications. For exam-
ple, negative balances are sometimes denoted by a leading minus sign and
sometimes put in parentheses (among others).

Character classification The classification of a character as a letter, a special char-
acter, or whatever depends on the language. In the age of Unicode, this
problem has mostly gone away, as the code points as a whole are classified,
but things are not that simple in ISO 8859 or even ASCII environments. The
ASCII character “[”, for instance, is obviously a special character, but the
character “Ä”, which occupies the same location in the DIN 66003 table, is
as obviously a letter. This also influences the conversion between uppercase
and lowercase letters and similar operations.

B The German “sharp s” (“ß”) does not have a graphic equivalent in
uppercase—a word like “Fuß”, in uppercase, is spelled “FUSS”. (In
ambiguous cases “SZ” used to be recommended as a replacement, as
in “MASSE” (mass) versus “MASZE” (measurements), but this was
abolished during the recent German orthography reform.) Amend-
ment 4:2008 to ISO 10646, which was promulgated on 23 June 2008,
defines a code point for a “capital ß” (U+1E9E) so there is nothing ma-
jor to keep this problem from being fixed for good. We Germans just
need to agree aboutwhat that character should actually look like. (“SS”
would be a strong contender.)

Character collating order This, too, is not quite as unambiguous as one may be-
lieve. In Germany there are two different methods for sorting words, ac-
cording to DIN 5007: In dictionaries and similar publications like encyclo-
pedias, umlauts (letters with diacritical marks) are considered equivalent to
their “base characters” (thus “ä”, for the purposes of sorting, is interpreted
as “a”), while in name lists such as phone books, umlauts are sorted accord-
ing to their transliteration (“ä” is treated like “ae”, etc.). In both cases “ß” is
equivalent to “ss”.

B For name lists, one apparently wishes that the difference between
the homophones, “Müller” and “Mueller”, not complicate the actual
search. Otherwise you would have to look for Herr Müller in between
Frau Muktadir and Herr Muminovic, while Frau Mueller would fit
in between Herr Mueders and Frau Muffert—a first-degree inconve-
nience. In the encyclopedia, though, the spelling of a search term and
hence its collation should be clear.

In Sweden, on the other hand, the characters “å”, “ä”, and “ö” are located at
the end of the alphabet (after “z”). In the United Kingdom, “ä” comes right

10.4 Localisation Settings 149

Table 10.2: LC_* environment variables

Variable Description
LC_ADDRESS Formatting of addresses and locations
LC_COLLATE Collating (sorting) order
LC_CTYPE Character classification and uppercase/lower-

case conversion
LC_MONETARY Formatting of monetary amounts

LC_MEASUREMENT Units of measurement (metric and others)
LC_MESSAGES Language for system messages and the form

of positive and negative responses
LC_NAME Formatting of proper names

LC_NUMERIC Formatting of numbers
LC_PAPER Paper formats (controversial)

LC_TELEPHONE Formatting of phone numbers
LC_TIME Formatting of time and date specifications
LC_ALL All settings

after “a” and is inserted between “az” and “b”, and, nastily, the name com-
ponent “Mc” is considered to be equal to “Mac” (so the correct sorting or-
der is “Macbeth, McDonald, MacKenzie”). Ideograph-based languages like
Japanese and Chinese are even more difficult to collate; dictionaries usually
go by the structure of the ideographs and their number of strokes, while
computers conveniently sort according to Latin transliterations. (We shall
stop here before your head explodes.)

Besides the language, the LANG variable changes all of this in one fell swoop to
the values suitable for a specific culture group (a “locale”). However, it is also
possible to set various aspects of the localisation separately. The system supports
a number of environment variables, all of which start with the LC_ prefix (see ta-
ble 10.2).

B In case you want to know what the values of these parameters actually
mean, try the locale command:

$ locale -k LC_PAPER

height=297

width=210

paper-codeset="UTF-8"

So you can find out that sheets of paper in the United Kingdom are typically
297mm high and 210mm wide. We know this as “A4”.

B You will find the actual definitions that these settings are based on in the
/usr/share/i18n/locales directory. In principle nothing will stop you from
designing your own locale definition (other than the scant documentation,
perhaps). The localedef program does the actual work.

With LC_ALL, as with LANG, you can set all locale parameters at once. The system LC_ALL

uses the following approach to figure out which setting is authoritative:

1. If LANG is set, its value counts.

2. If LANG is not set but the LC_* variable for the topic in question (such as LC_COL-
LATE) is, its value counts.

3. If neither LANG nor the appropriate LC_* variable are set, but LC_ALL is set, then
its value counts.

150 10 Localisation and Internationalisation

4. When none of these variables are defined at all, a compiled-in default value
is used.

Note that if (as usual) the LANG variable is set, you can dowhatever you please with
the LC_* variables—without any consequences.

B If you scratch you head now in amazement, you are completely right—why
bother about LC_* variables at all if LANG, the environment variable that the
system sets on your behalf when you log in, overrides everything anyway?
This is as much of an enigma to us than it is to you, but in a pinch there is
always .bash_profile and “unset LANG”.

The “locale -a” command provides a list of values that your system supports
for LANG and the LC_* variables:

$ locale -a

C

de_AT.utf8

de_DE

de_DE@euro

de_DE.utf8

deutsch

�����

POSIX

A Things like LANG=deutsch may look tempting at first glance, but they are too
unspecific to be useful. Besides, they are officially deprecated but are kept
on for compatibility (for the time being). Give them a wide berth.

The magic values C and POSIX (which are equivalent) describe the built-in de-C

POSIX fault that programs use if they cannot find another valid setting. This is useful if
you want programs like ls to deliver a predictable output format. Compare, for
example,

$ LANG=de_DE.UTF-8 ls -l /bin/ls

-rwxr-xr-x 1 root root 92312 4. Apr 2008 /bin/ls

$ LANG=ja_JP.UTF-8 ls -l /bin/ls

-rwxr-xr-x 1 root root 92312 2008-04-04 16:22 /bin/ls

$ LANG=fi_FI.UTF-8 ls -l /bin/ls

-rwxr-xr-x 1 root root 92312 4.4.2008 /bin/ls

$ LANG=C ls -l /bin/ls

-rwxr-xr-x 1 root root 92312 Apr 4 2008 /bin/ls

We run the same commandwith four different LANG settings and obtain four differ-
ent results, all of which differ in the date stamp. Unfortunately this date stamp
can, depending on the language setting, appear to programs like awk or “cut -d' '”
to consist of one, two, or three fields—which is fatal if a script is to parse this out-
put! So it is best, in such ambiguous cases, to fix the output of programs such as ls,
whose output depends on the language setting, to a standard that will definitely
exist. Use an explicit LANG=C (you cannot be sure about any other settings).

Exercises

C 10.2 [2] The printf(1) program (not to be mixed up with bash’s built-in printf

command) formats its input data according to the LC_NUMERIC variable. In
particular, a command like

$ /usr/bin/printf "%'g\n" 31415.92

10.5 Time Zones 151

formats a decimal number using the decimal separator and “readability
character” appropriate to the current locale. Experiment with the program
using different LANG settings.

C 10.3 [2] Find programs other than date, ls, and printf that change their out-
put according to the language and cultural parameters. (Translated error
messages are too trivial and do not count, it must be something interest-
ing.)

10.5 Time Zones

Finally we shall have to say a few things about time zones and how Linux handles
them. If you have ever taken a long flight to the east or to the west, you will have
noticed that local times vary among the areas of the Earth—when it is high noon
here in Europe, it may still be dark in America while in eastern Asia the day is
drawing to a close. This wouldn’t be a big deal (you do set your clock according
to the time signal on the radio) if therewasn’t the Internet, whichmakes it possible
to exchange data at high speed among arbitrary computers anywhere in theworld.
And whether an e-mail message was written at 12 o’clock Eurpoean, American,
or Australian time does make a difference of several hours that one would like to
take into account.

Hence current computer systems allow you to specify in which time zone the time zone

computer resides—typically you will be asked about this during installation, and
unless you emigrate and take your computer along, you are unlikely to have to
change the value again once it has been set.

B The time zones of the Earth are loosely based on the fact that a difference of
15 degrees of longitude equals to one hour on the clock (whichmakes sense,
since the complete circumference of the Earth, 24 hours’ worth, corresponds
to 360 degrees, and 360/24 just happens to be 15.) In former times therewere
no time zones, but each town simply defined its own time, where the main
criterion was that at noon the sun was supposed to be as exactly South as
possible (presumably so that sun dialswould be accurate). The introduction
of railroad travel and the mounting difficulties of taking “local time” into
account when preparing timetables made this more and more impractical,
which led to the introduction of time zones, at the price that the time on the
clock no longer corresponds to “astronomical” time. In any case, time zone
boundaries do not (exclusively) derive from lines of longitude but really
from political boundaries.

B That this can be quite noticeable in practice is evident in Europe. Spain,
for instance, follows “Central European Time” (CET), which is appropri-
ate for 15 degrees of Eastern longitude. This corresponds to, e. g., the town
of Görlitz on the German-Polish border. When the clock strikes 12 noon in
A Coruña on the Spanish Atlantic coast (nearly 8.5 degrees ofWestern longi-
tude), according to the sun it is only approximately half past ten. (Portugal,
incidentally, uses the same time zone as the United Kingdom, so it will be
about half past eleven there already.)

B Things get even more complicated through “daylight saving time” (DST),
where the clocks in a time zone are artificially advanced by one hour in
spring and put back again in autumn. DST is a purely political phenomenon
which still needs to be taken into account—its history in Germanywas quite
eventful (Table 10.3), which illustrates why you cannot simply set “CET” as
the timezone for Germany but must select “Europe/Berlin”.

152 10 Localisation and Internationalisation

Table 10.3: Daylight Saving Time (DST) in Germany

Period of Time Situation
prior to 1916 No DST

1916 DST from May 1st to October 1st
1917–1918 DST from mid-April to mid-September
1919–1939 No DST
1940–1942 The clock was advanced by one hour on April 1st 1940 and remained so until

November 2nd 1942 (!)
1943–1944 DST from end of March/beginning of Arpil to beginning of October

1945 DST from April 2nd to Novermber 18th plus “double” DST from May 24th to
Setember 24th; in “double” DST, the clock was advanced by another hour

1946–1949 DST from mid-April to beginning of October
1947 “Double” DST from May 11th to June 29th

1950–1979 No DST
1980–1995 DST from the last weekend inMarch to the last Sunday in October (this had been

decided in the FRG already in 1978, but the GDR did not go along until 1980)
since 1996 From the last Sunday in March to the last Sunday in October (EU standard)

Like the settings related to languages and culture groups, the time zone on a
Linux system is not a unique, system-wide setting but belongs to the inheritable
properties of a process. The Linux kernel itself measures time in seconds since
1 January 1970, midnight UTC, so the “time zone” issue is merely a question of
formatting this (by now fairly large) number of seconds2. This elegantly sidesteps
all the difficulties that other operating systems had and still have, and there is no
problemwith yourmate from Sydney loggin in on your computer via the Internet
and seeing Australian time while you yourself, of course, use CET. This is how it
ought to be.

The default time zone that is selected when the system is installed is saved to
the /etc/timezone file:

$ cat /etc/timezone

Europe/Berlin

You can find all valid time zones by inspecting the names of the files below /usr/

share/zoneinfo directory:

$ ls /usr/share/zoneinfo

Africa/ Chile/ Factory Iceland MET Portugal Turkey

America/ CST6CDT GB Indian/ Mexico/ posix/ UCT

Antarctica/ Cuba GB-Eire Iran Mideast/ posixrules Universal

Arctic/ EET GMT iso3166.tab MST PRC US/

Asia/ Egypt GMT0 Israel MST7MDT PST8PDT UTC

Atlantic/ Eire GMT-0 Jamaica Navajo right/ WET

Australia/ EST GMT+0 Japan NZ ROC W-SU

Brazil/ EST5EDT Greenwich Kwajalein NZ-CHAT ROK zone.tab

Canada/ Etc/ Hongkong Libya Pacific/ Singapore Zulu

CET Europe/ HST localtime@ Poland SystemV/

Most of these files are subdirectories:

$ ls /usr/share/zoneinfo/Europe

Amsterdam Chisinau Kiev Moscow Sarajevo Vatican

Andorra Copenhagen Lisbon Nicosia Simferopol Vienna

2On 14 February 2009 at 0:31:30 CET, exactly 1234567890 seconds will have passed since the begin-
ning of Linux time. Happy Valentine’s Day!

10.5 Time Zones 153

Athens Dublin Ljubljana Oslo Skopje Vilnius

Belfast Gibraltar London Paris Sofia Volgograd

Belgrade Guernsey Luxembourg Podgorica Stockholm Warsaw

Berlin Helsinki Madrid Prague Tallinn Zagreb

Bratislava Isle_of_Man Malta Riga Tirane Zaporozhye

Brussels Istanbul Mariehamn Rome Tiraspol Zurich

Bucharest Jersey Minsk Samara Uzhgorod

Budapest Kaliningrad Monaco San_Marino Vaduz

B The rule is that the time zone isn’t named after the capital of the country
in question (which would have been too obvious) but after the most popu-
lous city in the part of the country in question that the time zone in ques-
tion applies to. Switzerland is thus covered by Europe/Zurich (rather than
Europe/Berne), and Russia uses 11 time zones in total, not all of which are
counted under Europe. Europe/Kaliningrad, for example, is one hour ahead of
Europe/Moscow, which in turn is two hours ahead of Asia/Yekaterinburg.

B /usr/share/zoneinfo also contains some “convenience time zones” like Poland

or Hongkong. Zulu is nothing to do with South Africa, but, as readers of Tom
Clancy novels probably know, refers to universal time (UTC), which is often
given as 12:00Z, where NATO spells “Z” as “Zulu”.

/etc/localtime is a copy of the file of /usr/share/zoneinfo which contains the
information for the time zone specified in /etc/timezone–for instance, /usr/share/
zoneinfo/Europe/Berlin.

B In principle, /usr/share/zoneinfo should cater to all tastes in time zones.
Should you ever feel the urge to define a new time zone yourself, you can
do this using the “time zone compiler”, zic. zdump lets you find the time
in any arbitrary time zone, or the “prehistory” of Daylight Saving Time in
every time zone. (Guess where we got the information for Table 10.3 from.)

You can change the default time zone of the system manually by adjusting the
content of the /etc/timezone and /etc/localtime files:

echo Asia/Tokyo >/etc/timezone

cp /usr/share/zoneinfo/$(cat /etc/timezone) /etc/localtime

On top of this, distributions often provide more comfortable tools for setting a
new time zone.

The tzselect utility lets you select a time zone interactively. The program
first presents a selection of continents and then a selection of existing time
zones on that continent. It finally writes the name of the time zone to the
standard output while the user interaction is done via the standard error
stream, so you can use a command like

$ TZ=$(tzselect)

to put the result into an environment variable.—To change the default sys-
tem time zone youwould use the debconfmechanism instead of tzselect. Just
run

dpkg-reconfigure tzdata

The tzconfig program, which various documents keep talking about, is dep-
recated.

Users of SUSE Linux can change the default system time zone using YaST.
There is no obvious convenient tool to change your “personal” time zone.

154 10 Localisation and Internationalisation

The default system time zone is located in the file /etc/sysconfig/clock. Be-
sides, there is a program called timeconfig, and the tzselect tool discussed in
the Debian GNU/Linux paragraph is available, too.

Irrespective of the system-wide default time zone you can put the name of a
time zone into the TZ environment variable, which will subsequently be used for
the process in question (and, like other environment variables, is passed to child
processes). With something like

$ export TZ=America/New_York

you might set the time zone America/New_York for your shell and all programs
launched by it.

You may also change the time zone for just a single command:

$ TZ=America/New_York date

will show you the current time in New York.

B The TZ variable can even be used to describe time zones without having to
use the data stored in /usr/share/zoneinfo. In the simplest case you specify
the (abbreviated) name of the desired time zone and the offset from UTC.
The offset must have an explicit sign (“+” for time zones west of the zero
meridian, “-” for east), followed by a time span in the format HH:MM:SS (the
minutes and seconds parts are optional, and currently there are no time
zones with a seconds offset). Something like

$ export TZ=CET-1

would select “central European time”, but without considering daylight
saving time, let alone the German DST history. To specify DST, too, you
have to give the name of the DST time zone, its offset from “normal” time
(in case it is not “plus one hour”), and a rule for switching to and from DST.
The DST rule consists of a day specification and an optional time specifi-
cation (separated by a slash), where the day specification may take one of
three forms: three forms:

Y𝑛 The day number within the year, counted from 1 to 365. 29 February is
ignored.

𝑛 The day number within the year, counted from 0 to 365. In leap years,
29 February is counted.

M𝑚.𝑤.𝑑 Day 𝑑 of week𝑤 in month𝑚. 𝑑 is between 0 (Sunday) and 6 (Satur-
day), 𝑤 is between 1 and 5, where 1 is the first week in the month and
5 the last one, and 𝑚 is a value between 1 and 12.

The rule for German DST that is currently in force would look like

$ export TZ=CET-1CEST,M3.5.0/2,M10.5.0/2

but once more the “history” from Table 10.3 is not takein into account.

Exercises

C 10.4 [1] Why is /etc/localtime a copy of the corresponding file in /usr/share/

zoneinfo? Why does the system not use a symbolic link instead? Or it could
just look up the original file in /usr/share/zoneinfo. What do you think?

C 10.5 [!2] Imagine you are a stockbroker and need a quick overview of the
current times in Tokyo, Frankfurt, and New York. How can you implement
this in Linux?

10.5 Time Zones 155

C 10.6 [2] Specify the TZ daylight saving time rules for the hypothetical country
of Nowheristan. The following ground rules apply:

• In Nowheristan, Nowheristanian Normal Time (NNT) applies. 12:00
UTC corresponds to 13:15 NNT.

• From the second Wednesday in April at 3 a.m. until 10 October (in
leap years, 11 October) at 9 p.m., Nowheristan Daylight Saving Time
(NDT) is in force, duringwhich all clocks inNowheristan are advanced
by 25 minutes.

How can you test your rule?

Commands in this Chapter

iconv Converts between character encodings iconv(1) 145
locale Displays information pertaining to locales locale(1) 149, 150
localedef Compiles locale definition files localedef(1) 149
timeconfig [Red Hat] Allows the convenient configuration of the system-wide

time zone timeconfig(8) 153
tzselect Allows convenient interactive selection of a time zone

tzselect(1) 153
zdump Outputs the current time or time zone definitions for various time zones

zdump(1) 153
zic Compiler for time zone data files zic(8) 153

Summary

• Internationalisation is the preparation of a software system for localisation.
Localisation is the adaptation of a software system to the local customs of
different countries or culture groups.

• Common character encodings on Linux systems are ASCII, ISO 8859, and
ISO 10646 (Unicode).

• UCS-2, UTF-16, and UTF-8 are character encodings of ISO 10646 and Uni-
code.

• The iconv command converts between different character encodings.
• The language of a Linux process is specified by the LANG environment vari-
able.

• The environment variables LC_* and LANG control the localisation of Linux
processes.

• The locale command provides access to more detailed localisation informa-
tion.

• Use LANG=C in shell scripts to make sure that locale-sensitive commands de-
liver predictable output.

• Linux fetches the system-wide time zone from the file /etc/timezone.
• The time zone of an individual process can be changed by setting its TZ en-
vironment variable.

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

11
The X Window System

Contents

11.1 Fundamentals . 158
11.2 X Window System configuration 163
11.3 Display Managers. 169

11.3.1 X Server Starting Fundamentals 169
11.3.2 The LightDM Display Manager. 170
11.3.3 Other Display Managers 172

11.4 Displaying Information. 173
11.5 The Font Server . 175
11.6 Remote Access and Access Control 177

Goals

• Understanding the structure and operation of X11
• Handling display names and the DISPLAY variable
• Being aware of various methods of starting X11
• Handling a display manager
• Knowing about font management and the font server
• Being able to configure remote access to an X server

Prerequisites

• Knowledge of other graphical user interfaces is helpful

grd2-x11.tex (6eb247d0aa1863fd)

158 11 The X Window System

X Protocol

X Server

Keyboard
& Mouse Screen

Application

Application

Application

Figure 11.1: The X Window System as a client-server system

11.1 Fundamentals

The X Window System, “X11” or “X” for short (but never “X Windows”), is a
graphics environment developed at MIT (the Massachusetts Institute of Technol-
ogy) from 1985 to 1987.

B X11 originally derives from the MIT project, “Athena”, and was later con-
tinued under the auspices of the “X Consortium”, which eventually became
part of the Open Group. The software was freely available from the start
and contained, apart from various (portable) user programs, a server with
support for most graphical workstations of the time.

B The canonical implementation of X11 for Linux is called X.org (there areX.org

others, but they are not of practical concern).

The basis of X11 is the X protocol, a method of transmitting basic graphics op-X protocol

erations across a network connection. X11 is a client-server system, albeit with a
difference: TheX server runs on a desktop computer with a graphics card, mouse,X server

graphics tablet, or similar peripherals, and X clients—application programs—X clients

send graphics commands to it via the X protocol. Conversely, the X server sends
events such as key presses and mouse movements to the X clients.

B Usually on Linux, X clients and the X server exchange X protocol messages
using Unix-domain sockets, i. e., fast connections between programs on the
same computer. There is, however, nothing to prevent you from transport-
ing X protocol messages via TCP/IP. Therefore, X clients can absolutely run
on computers that (in the extreme case) do not contain any graphics hard-
ware of their own, as long as they can talk to the X server on another com-
puter via the network. Of which more anon.

B The X protocol operations are fairly trivial—it supports mostly simple
graphics operations such as drawing dots, lines, circles, rectangles or char-
acter strings. In addition, there are functions to manage windows (rectan-
gular screen areas that can be the target of events like mouse clicks or key
presses) and for internal organization. This implies that, if an application
presents a pop-up menu, the X server must report a click on the menu’s

11.1 Fundamentals 159

“button” to the application; the application then sends the graphics com-
mands necessary to render the menu and takes over the user interaction—
being fed with a constant stream of mouse movement messages by the X
server—until the user decides on a menu item. Of course this produces
considerable network traffic. This low-level interaction between server and
application has often been criticised. It would be quite possible to move
more of this interaction into the X server—one might, for example, invent a
method with which the application tells the server about the menu entries,
so that the server can handle all of the user interaction and return the index
of the selected menu entry to the application at the end. However, this
would mean that the server needs to know exactly how the menu should be
rendered on screen and how the interaction is supposed to work. So far, the
X11 philosophy is that the server offers graphics operations but does not
regulate their use (“mechanism, not policy”)—and, especially with today’s
fast networking, this is not unendurable enough to force such a “paradigm
shift”. Various other graphics systems—Sun Microsystems’s “NeWS” in
the 1980s or, more currently, the “Berlin” project—did try to implement this
idea more consistently but were unsuccessful for various reasons; NeWS
failed because of the inadequate (at that time) performance of computer
workstations, and Berlin because X11 is quite “good enough”.

There are certain minimal system requirements for computers which are to system requirements

support an X11 server. We shall not mention these here for fear of ridicule, since
in the 21st century they are regularly surpassed by mobile phones and small
netbook-style computers (not that many mobile phones actually use X11, but it
wouldn’t be a problem in theory). The only interesting question these days is
whether there are appropriate drivers for the computer’s graphics chip (either on
the same die as the CPU or on an additional plug-in card). This is usually not a
problem, although there may be (temporary) issues with exotic—i. e., not manu-
factured by one of the three “800-pound gorillas” of the business, Intel, AMD, or
nVidia—or extremely new hardware.

B Serious computer graphics today is 3D graphics, even if what is displayed
doesn’t really look three-dimensional at all. Ideally, applications can—with
a little help from X.org—talk directly to the specialised 3D hardware on the
graphics chip, and put strange and wonderful things on the screen at amaz-
ing speed. Less than ideally, parts of the 3D graphics are computed by the
CPU, and that is still plenty fast enough for “office application”. Formerly,
graphics chips had hardware acceleration for 2D graphics, but since no op-
erating system today still uses 2D graphics, themanufacturers have stopped
bothering.

B For the ideal case, you need a kernel driver for your graphics chip and an-
other driver for X.org. The former takes care of basic graphics configuration
and low-level operations, the latter of the operations in the X protocol.

B Generally speaking, Intel graphics hardware is best supported by Linux and
X.org (which may have to do with the fact that various important X devel-
opers are working for Intel). However, as 3D performance is concerned, it
does not quite play in the same league as the best graphics chips by the large
manufactures, AMD and nVidia. For these there are both freely available
drivers as well as “proprietary” drivers distributed by the manufacturers
themselves, which have better hardware support but are not available as
source code.

B X11 does not include 3D graphics operations, and so the “little help” X.org
can provide to 3D clients generally amounts tomaking some graphicsmem-
ory available to the client in which it can draw its output using direct 3D
operations—typically using a graphics language such as OpenGL. A spe-
cial X11 client, the “compositor”, then takes care of stacking the graphics

160 11 The X Window System

output of various clients in the correct order and adorning it with effects
such as transparency, drop shadows, etc.

B The newest trend in Linux graphics is based on the observation that the
X11 server tends to do little of a useful nature beyond providing “help”:
The compositor and the clients are doing all of the real work. So what
would be more obvious than getting rid of the X server altogether? The fu-
ture infrastructure—Wayland—basically does exactly that. Wayland imple-
ments a compositor that can talk directly to the graphics chip. This makes
the X server essentially superfluous. The prerequisite is that clients generate
graphics output as 3D operations (in OpenGL) rather than X11 operations,
but that is reasonable to enforce by adapting the “toolkits”, i. e., the pro-
gramming environments for X11 clients. Today the popular toolkits already
contain Wayland support of a more or less experimental nature.

The logical separation between X server and clients by way of the X protocol
allows the server and clients to run on separate machines. On the same computer,
you can theoretically start various clients that in turn communicate with different
X servers1. The interesting question that arises here is how a client figures out
which server to talk to, and the answer is “By means of the DISPLAY environment
variable”. To address the X server on red.example.com, you must set

DISPLAY=red.example.com:0

The “:0” at the end denotes the first X server on that computer. Something like
red.example.com:0 is also called a display name.display name

B In principle, nothing prevents you from running more than one X server on
the same computer. Today there are relatively cheap “port extenders” with
connections for a keyboard, a mouse, and a monitor, which are connected
to a PC via USB. This allows you to havemore than one user working on the
same PC, which for the typical office application is not a problem at all. In
such cases there will be one X server per “head”.

B The additional X servers on red.example.com will be called, respectively, red.
example.com:1, red.example.com:2 and so on.

B If you address an X server this way, that means you want to communicate
with it using TCP/IP. (If the number after the colon is 𝑛, the client tries con-
necting to the TCP port 6000 + 𝑛 on the computer in question. The X server
listens to connections on that port.) If you would rather connect using a
Unix-domain socket—which is vastly preferable when the server and client
are running on the same machine—, then use the names unix:0, unix:1, etc.

B You can simply use :0, :1, … This is equivalent to “pick the fastest local
connection method”. On Linux, this typically amounts to a Unix-domain
socket, but other Unix operating systems may support additional transport
mechanisms such as shared memory.

B In principle, on top of addressing an X server on a computer you can even
address a “screen” that is controlled by that X server, by adding a dot and
the screen number—for example, red.example:0.0 for the first screen of the
first X server on red. Wemention this mostly for completeness, because even
if you connect several monitors to a Linux computer, these usually work as

1In the 1990s, there was the idea of “X terminals”—basically specialised computers that ran little
besides an X server, and whose sole purpose was to take care of the input and output of clients on
one (or several) centralised computer(s), just like one used to have text-based terminals that took care
of the input and output of programs on a centralised computer. At some point it became obvious,
however, that PCswith Linux and X11were typicallymuchmore powerful and flexible (to say nothing
of “cheaper”), and X terminals (usually in the shape of Linux-based PCs) are now relegated to niche
applications.

11.1 Fundamentals 161

one large “logical” monitor, which is way more convenient if you’re actu-
ally sitting in front of them, but does not allow addressing the individual
screens.

B The advantage of the huge logical monitor is that you can move windows
from one actual monitor to another. Windows can also be placed partly on
one monitor and partly on the one next to it. This is usually what we want
today. With separate screens, it is possible to drive the screens differently
(e. g., one as a colour monitor and the other as a black-and-white monitor,
way back when black-and-white monitors were still a thing), but then you
would have to decide when launching a program on which screen it should
appear, because moving it from one to the other after the fact is not allowed.

Being able to address the X server on arbitrary remote computers by means of
their display names does not mean at all that these X servers actually want to talk
to your clients—in fact, it would be a serious security hole to make your X server security hole

accessible to arbitrary clients (not just your own)2. This means on the one hand
that there is rudimentary access control (see Section 11.6), and on the other hand
that many X servers do not actually bother listening for direct TCP connections
at all anymore. Since otherwise anyone who can listen in to the data traffic be-
tween the client and server would be able to visualise what the client draws on
the screen (they would simply need to interpret the X11 protocol messages), the
preferred method today is to allow local connections only and enable remote ac-
cess by means of “X11 forwarding” via the “Secure Shell”. This means that the X X11 forwarding

protocol traffic is encrypted by the Secure Shell, and eavesdroppers can no longer
access the graphics output (and the user’s mouse and keyboard input).

B You can find out more about the Secure Shell and X11 forwarding in the
Linup Front training manual, Linux Administration II.

Besides the DISPLAY environment variable, most clients let you select the server
on their command line using an option such as “-display red.example.com:0”. The
environment variable does make it more convenient, though:

$ xclock -display red.example.com:0 Display on red

$ DISPLAY=red.example.com:0 xclock The same
$ export DISPLAY=red.example.com:0

All X clients started from now on will display on red

If you log in using a graphical environment, this variable should be set correctly
on your behalf. Therefore you will not have to worry about it except in special
cases.

Here are a few quick definitions of X11 terms:

Window manager A special X11 client whose job it is to control the placement
(position and foreground/background) of windows on the screen. Clients
maymake suggestions, but thewindowmanager (and thus the user) has the
last word. There are variouswindowmanagerswith differing philosophies,
for example concerning overlapping windows—some users prefer window
managers that “tile” the screen and avoid overlap or outlaw it entirely. Many
window managers today double as compositors for 3D graphics.

Display manager A program that manages the X server (or X servers) on a com-
puter. The display manager allows users to log in using a graphical envi-
ronment and subsequently constructs a graphical session for them. Many
displaymanagers also support sessionmanagement, that is, they try to save session management

the current state of the session when the user logs out and then to recon-
struct it when the user logs in again.

2A malicious X client could, for example, cover your complete screen with a transparent window,
read all your key presses and look for passwords, credit card numbers, and the like. Or it could open
thousands of windows and keep beeping obnoxiously.

162 11 The X Window System

B Howwell sessionmanagementworks in practice depends onhow thor-
oughly the X11 clients go along with it. Not all clients manage really
well, and in fairness we should mention that many clients need to deal
with very complex internal state that is not easy to save and restore.

Toolkit A programming environment for X clients. Toolkits provide program-
mers with the means to describe the graphical output of a program and
how it deals with events like mouse clicks, key presses, and so on. This
functionality is then mapped to X11 protocol messages by the toolkit. The
main advantage of toolkits is that, as a programmer, you do not need to deal
with the very primitive X11 operations, but can write code which is conve-
nient in a high-level programming language. There are various toolkits,
some of which are optimised for particular programming languages (such
as C or C++), and some of which allow programming in other languages
(like Python).

Desktop environment When X11 was new, the developers were mostly about
providing the technical means to implement graphical applications. They
didn’t really care about defining rules that governed how such applications
should look and behave. Over the years this began to become a liability
because almost every large program had its own conventions3. Desktop en-
vironments like KDE or GNOME sit on top of X11 and try to enforce (sep-KDE

GNOME arate) uniform standards for the appearance and behaviour of a multitude
of useful programs, as well as offer programs that actually implement these
standards in order to provide a comfortable and consistent “user experi-
ence”.

B The desktop environments do not preclude each other. If you arework-
ing in desktop environment𝑋 butwould like to use a nice program that
was written for environment 𝑌, nothing keeps you from doing so—
you may have to live with the fact that 𝑌’s runtime libraries must be
loaded and that these will occupy additional memory. There are com-
mon standards for various basic functions such as cutting and pasting
pieces of text which are supported by all desktop environments and
facilitate “mixing and matching”.

B Most desktop environments rely on specific toolkits—KDE, for exam-
ple, on Qt, and GNOME on Gtk+. This means that if you plan to de-
velop software that is meant for a particular desktop environment, you
should use the toolkit in question to enable the best possible integra-
tion.

Exercises

C 11.1 [!1] If you areworking in a graphical environment: What is your current
display name?

C 11.2 [1] Try connecting a client to your X server via TCP/IP, by using a dis-
play name such as red.example.com:0. Does that work?

C 11.3 [1] What does the display name, bla.example.com:1.1, stand for? Give a
command line that starts the xterm program such that its output appears on
that display.

3The competition also didn’t stay still—Apple andMicrosoftweremuchmore adamant in requiring
a consistent “look and feel” for applications on their platforms.

11.2 X Window System configuration 163

11.2 X Window System configuration

If you want to find out whether your graphics system is supported by Linux and
X.org, the simplest method is to boot the computer with a suitable (as up-to-date
as possible) “live” Linux such as Knoppix and to see what happens. If you end
up with a graphical environment then everything is fine.

B In former times, getting X11 to run on a Linux machine could border on
black magic. It was not unusual to have to enter details of the graphics
card in use, or detailed control parameters for the monitor, into a text file by
hand (and at least for the once-ubiquitous fixed-frequency monitors it was
quite possible to damage the screen beyond repair by getting this wrong).
Fortunately, current versions of X.org can figure out for themselves what
hardware they need to deal with both inside the computer and as the mon-
itor, and what the optimal parameters are like. You can still override these
manually if you like, but this is only necessary in exceptional cases.

If the X server does not start correctly, your first step should be to look at its
log file, which is usually found in /var/log/Xorg.0.log. The X server uses this for
a detailed report on the hardware it recognised, and the drivers and settings it
allocated.

In principle, as the system administrator you can start the X server using the

Xorg -configure

command. The X server will then try to detect the available hardware and write
its findings to the /etc/X11/xorg.conf file as a rudimentary configuration. You can
then use that file as the starting point for your own configuration.

B Instead of Xorg, you can also use the X command. According to convention,
this is an abbreviation for “the appropriate X11 server for this system”.

xorg.conf is the central configuration file for the X server. It consists of separate Syntax

sections, each of which starts with the Section keyword and ends with the End- sections
Section keyword. Some sections, in particular those describing input and output
devices, can occur several times. This allows you to, for example, use a mouse
and touchpad simultaneously. Inside the configuration file, case is irrelevant ex-
cept when specifying file names.

B As usual, blank lines are ignored, as are comment lines that start with the
traditional hash sign (“#”). Lines with actual settings may be indented in
order to make the file structure clearer.

Here is an overview of the most important sections in xorg.conf:
The Files section defines paths, namely: Files

FontPath denotes directories that the X server searches for fonts, or a font server
(Section 11.5). Usually there aremany font directories and hencemany Font-

Path directives. The order is important!

ModulePath describes directories containing extension modules for X.org. This is
typically /usr/lib/xorg/modules.

RGBPath used to be used to name a file containing all the colour names known to
the X server togetherwith the corresponding RGB (red/green/blue) values.
The conventional name is /etc/X11/rgb.txt, and this file is, confusingly, still
part ofmany Linux distributions, presumably to let you look up valid colour
names. You may use the colour names wherever X11 clients let you specify
colors:

$ xterm -fg GoldenRod -bg NavyBlue

164 11 The X Window System

B If your desired colour is notmentioned in the file by name, you can also
specify it as hexadecimal numbers. GoldenRod, for example, is #daa520

(the values for red, green, and blue are, respectively, 218, 165, and 32).
The leading “#” denotes an RGB colour.

B The fanciful names like GoldenRod, PeachPuff, or MistyRose derive from the
72-colour Crayola set that the early X11 developer JohnC. Thomas hap-
pened to have to hand.

B In principle, nothing keeps you from adding your own favourite
colours to the file. You should not remove any of the existing colours,
nor change them too radically, since some programs may rely on their
existence and appearance. In addition, it is fairly likely that your
X server will not look at the file in the first place, since support for
RGBPath is no longer included in X.org by default.

Here is a heavily abridged example:

Section "Files"

ModulePath "/usr/lib/xorg/modules"

RGBPath "/usr/share/X11/rgb.txt" # no longer supported

FontPath "/usr/share/fonts/X11/misc:unscaled"

�����

EndSection

Both FontPath and ModulePath may occur several times in the file; their values will
then be concatenated in the order of appearance.

The Module section lists the hardware-independent X server modules thatModule

should be loaded, e. g., to support specific font types (Type 1, TTF, …) or to
enable particular features such as direct video rendering.

Section "Module"

Load "dri"

Load "v4l"

EndSection

The specific selection of modules depends on the X server; usually the list does
not need to be changed. It can also be omitted entirely, in which case the X server
will fetch whichever modules it needs.

B Modules will be looked for in the directories mentioned in ModulePath, as
well as their subdirectories drivers, extensions, input, internal, and multimedia

(if available).

B The extmod, dbe, dri, dri2, glx, and recordmoduleswill be loaded automatically
if they exist. If that is not desired, you need to disable them using directives
such as

Disable "dbe"

At least extmod, however, should be loaded in every case.

The Extensions section lets you specify which X11 protocol extensions shouldExtensions

be enabled or disabled:

Section "Extensions"

Option "MIT-SHM" "Enable"

Option "Xinerama" "Disable"

EndSection

11.2 X Window System configuration 165

The names of extensions must be given using the correct capitalisation. You can
generate a list of extensions using a command like

$ sudo Xorg -extension ?

There is no particular reason to disable specific extensions (except perhaps if you
are doing compatibility tests). The server uses the ones that clients ask for and
disregards the others.

The ServerFlags section influences the X server’s behaviour. Individual options ServerFlags

are set using the Option directive, and may be overridden within the ServerLayout

section or on the command line when the server is started. This looks roughly like

Section "ServerFlags"

Option "BlankTime" "10" Screen saver after 10 minutes
EndSection

Some important server flags include:

AutoAddDevices Specifies whether keyboards, mice, and similar input devices
should be recognised automatically by means of udev. Enabled by default.

DefaultServerLayout Specifies which arrangement of graphics cards, monitors, key-
boards, mice, … should be used by default. Points to a ServerLayout section.
Other server layouts may be selected from the command line.

DontZap If this option is enabled (the default case), the server cannot be terminated
using the Ctrl + Alt + ⇐ key combination.

Most options are switches that can assume values like 1, true, yes, or on or else 0, switches

false, no, or off. If you specify no value at all, then true is assumed. You can also
prepend a “No” to the option name, which means “no”:

Option "AutoAddDevices" "1" Enable option
Option "AutoAddDevices" "off" Disable option
Option "AutoAddDevices" Enable option
Option "NoAutoAddDevices" Disable option

Other options have values that could be integers or strings. All values must be
placed inside quotes.

Every InputDevice section configures one input device such as a mouse or key- InputDevice

board. The section may occur several times. Here is an annotated example:

Section "InputDevice"

Identifier "Keyboard1"

Driver "Keyboard"

Option "XkbLayout" "de"

Option "XkbModel" "pc105"

Option "XkbVariant" "nodeadkeys"

EndSection

This is a typical entry for a modern PC keyboard. The individual options have the
following meanings:

Driver loads a module (“driver”) from the ModulePath.

Identifier gives the section a name, so that it can be mentioned in a ServerLayout

section.

XkbLayout enables a German-language layout.

XkbModel defines a standard (105-key) “international” PC keyboard.

166 11 The X Window System

XKbVariant The value deadkeys makes it possible to compose accented characters
from several inputs, i. e., to input “ñ” as ~ n . With nodeadkeys, ~ n

will produce “~n”.

B If the AutoAddDevices server flag is set (the normal case), you really need no
InputDevice sections at all since the X server will recognise the input devices
automatically. A more detailed configuration is only required if, for exam-
ple, the X server is not supposed to actually use all the available input de-
vices.

B In older configuration files you may sometimes still find the Keyboard or
Pointer sections. These names are deprecated; use InputDevice instead.

The Monitor section describes the properties of the display device in use. ThisMonitor

section may occur several times, too.

Section "Monitor"

Identifier "Monitor0"

HorizSync 30-90

VertRefresh 50-85

EndSection

Like InputDevice, this section needs an Identifier to be able to be referenced in
ServerLayout sections. The horizontal and vertical frequencies may be found in the
monitor’s documentation.

B The optional Modes section (which may also occur several times) lets youModes

specify your monitor’s display parameters in great detail. Our recommen-
dation is to use the requisite time and energy for more profitable aims if
you can manage this at all, since contemporary hardware can figure out the
required settings all on its own. Having said that, here’s an example:

Section "Monitor"

�����

UseModes "Mode1"

�����

EndSection

Section "Modes"

Identifier "Mode1"

Modeline "800x600" 48.67 800 816 928 1072 600 600 610 626

Modeline "640x480" �����

�����

EndSection

(The UseModes directive in Monitor points to the Modes section that is to be used.
Youmay also place Modeline entries directly within the Monitor section, or use
the somewhat less compact Mode subsections either there or within a Modes

section.

B If you’re desperate to find out what the magic numbers in the mode defini-
tions mean, then by all means consult xorg.conf(5).

The Device section determines which graphics card the server should use. ThisDevice

section, too, may occur several times. Here’s an example for a minimal configura-
tion using the VGA driver:

Section "Device"

Identifier "Standard VGA"

Driver "vga"

EndSection

11.2 X Window System configuration 167

Here’s an example for an nVidia graphics card using the proprietary driver:

Section "Device"

Identifier "Device0"

Driver "nvidia"

VendorName "NVIDIA Corporation"

BoardName "NVS 3100M"

EndSection

B If the system contains several graphics cards, you should use the BusID di-
rective to specify the desired card’s PCI address in order to avoid confusion.
You can find the correct PCI address using the lspci command (for exam-
ple):

lspci | grep "VGA compatible"

01:00.0 VGA compatible controller: NVIDIA Corporation GT218M

The Screen section connects a graphics card and a monitor: Screen

Section "Screen"

Identifier "Screen0"

Device "Device0"

Monitor "Monitor0"

DefaultDepth 24

SubSection "Display"

Depth 24

Modes "1280x720"

EndSubSection

SubSection "Display"

Depth 24

Modes "1600x900"

EndSubSection

EndSection

The subsections called Display determine various combinations of colour depths
and resolutions, between which you can switch at runtime using Ctrl + Alt + +

or Ctrl + Alt + - .
Youmay possibly have a DRI sectionwhich can contain settings for direct access

to the graphics hardware by the X server.
The ServerLayout section describes the total configuration of the server including ServerLayout

input and output devices. This is what you would use to specify the arrangement
of multiple monitors:

Section "ServerLayout"

Identifier "Layout0"

Screen 0 "Screen0" 0 0

InputDevice "Keyboard0" "CoreKeyboard"

InputDevice "Maus0" "CorePointer"

Option "Xinerama" "0"

EndSection

B Youneed one Screen directive for everymonitor you’re using. Thefirst zero is
the screen number, whichmust be assigned contiguously starting from zero
(it can be omitted, in which case the screens will be numbered in the order
of their appearance). After the name of a Screen section which must occur
elsewhere in the file there is a position specification, where “0 0” merely
means that the upper left corner of this screen should correspond to the
(0, 0) coordinate. X11 coordinates increase to the right and downwards.

168 11 The X Window System

B If the Xinerama option is enabled, all Screens will be considered as fragments
of one large logical screen whose size is adequate to fit all Screens. The in-
dividual Screens must be configured to have the same colour depth (today,
usually 24 bits); the resolutionmust not be identical. For example, you could
have a primary monitor with 1920 by 1080 pixels and also connect an LCD
projector with 1024 by 768 pixels. With something like

Screen 0 "LaptopDisplay" 0 0

Screen 1 "Projector" RightOf "LaptopDisplay"

Option "Xinerama" "Enable"

youwill then have a “logical” screenwith awidth of 2944pixels and a height
of 1080 pixels, where the top edges of both screens are aligned with each
other.

B In the example from the preceding paragraph there is a “dead” strip of 1024
by 312pixelswhich is theoretically present (X11 can only handle rectangular
screens, whether physical or logical) but cannot really be used. In particular,
new windows may not be automatically placed entirely within the dead
strip, because you can’t drag them from there to a visible part of the screen.
In such a situation you should make sure to use a window manager that
supports Xinerama and ensures that such things won’t happen.

B Of course the monitors within the Screen lines may overlap (for example, it
is often useful if a projector for a presentation shows the upper left corner
of the laptop display). To do so, it is best to specify the position of the extra
screen using absolute numbers:

Screen 0 "LaptopDisplay" 0 0

Screen 1 "Projector" 64 0 Leave room for left-edge control panel
Option "Xinerama" "Enable"

B You may include several ServerLayout sections in your configuration file and
pick one of those by means of the -layout option when starting the X server
(directly). This may be useful in order to have several configurations for the
external video connector on a laptop computer.

Within a ServerLayout section you may also include options from the ServerFlags

section, which will then only apply to that particular configuration.
Here is a brief Randsummary of the configuration file: At the highest level

are the ServerLayout sections. These name input and output devices belonging to a
configuration; these refer to InputDevice and Screen sections elsewhere in the config-
uration file. A Screen consists of a graphics card (Device) and an associatedmonitor
(Monitor). The Files, ServerFlags, Module, and DRI sections apply to the X server as a
whole.

Exercises

C 11.4 [!1] Look at the X.org configuration file on your system (if you have one
at all4). Was it created manually or by X.org? Which devices are defined in
it? Which server flags have been set?

C 11.5 [2] The X protocol transports graphics commands and events that allow
screen display on an arbitrary X server connected to the X client via the net-
work. Compare this approach to the similarly popular method of directly
copying screen contents, as used by VNC and comparable products. What
are the advantages and disadvantages of both approaches?

4X.org configuration file, that is.

11.3 Display Managers 169

11.3 Display Managers

11.3.1 X Server Starting Fundamentals

In principle, you can start the X server on your computer by simply using a text
console to enter the

$ X

command. (In many cases the X server needs to run as, shock horror, root, but X
will take care of that.) Next you can use the text console again to start a graphical
terminal emulator by means of a command like

$ xterm -display :1

You can then use this xterm to launch further X clients as the shell running within
the xterm will have its DISPLAY variable set appropriately.

B You shouldn’t use this method in real life—on the one hand it is terribly
inconvenient, and on the other hand the approaches shown next will avoid
a lot of hassle as far as ease of use and security go.

A more convenient way to start X from a text-based session is to use the startx startx

command. startx makes a few initialisations and then invokes another program
called xinit, which does the actual work—it arranges for the launch of the X server
and initial X clients.

You can use the ~/.xinitrc and /etc/X11/xinit/xinitrc files to start X clients, such
as a clock, a terminal emulator, or a window manager. All X clients must be
launched to the background by putting an “&” at the end of the line. Only the
final X client—usually the window manager—must be started in the foreground.
If this final process is terminated, xinit stops the X server. Here is a simple exam-
ple for a ~/.xinitrc file:

A terminal

xterm -geometry 80x40+10+10 &

A clock

xclock -update 1 -geometry -5-5 &

The window manager

fvwm2

You can use the -geometry option to specify beforehandwhere the windows should
appear.

B The value of -geometry consists of an optional size specification (usually in
pixels, but for some programs, such as xterm, in characters) followed by an
optional position specification (they’re both optional but you should really
have at least one of the two). The position specification consists of an 𝑥 and
a 𝑦 coordinate, where positive numbers count from the left or top edge of
the screen while negative numbers count from the right or bottom edge.

You can also specify a server number when invoking startx:

$ startx -- :1

This would let you start a second X server.

170 11 The X Window System

Exercises

C 11.6 [2] How would you start an xclock such that it is 150 by 150 pixels in
size and appears in the lower left corner of the screen, 50 pixels away from
the screen’s edges?

C 11.7 [2] Try to start an additional X server using the “startx -- :1” command.
(This should manifest itself on the tty8 console, thus should be reachable
using Ctrl + Alt + F8 .)

11.3.2 The LightDM Display Manager

On modern workstation computers it is usual to start the graphical environment
when the system is booted, by means of a display manager. The common distri-
butions offer several display managers; the system picks one to start according to
a distribution-specific selection mechanism.

Since version 4.0 of the LPIC-1 certification, particular attention has been
given to the LightDM display manager, which we shall explain in more de-
tail. You should be aware that other display managers such as xdm, kdm, or
gdm exist.

LightDM is a popular displaymanager which is largely independent from spe-
cific desktop environments. As its name suggests, it is relatively parsimonious
with the system’s resources, but can do all that is required from a display man-
ager, and can be installed (at least optionally) on all important Linux distributions.

One important function of a displaymanager is letting users log into the system
in a graphical environment. LightDM does not do this itself, but delegates this to
so-called “greeters”. There are various greeters that are usually written to blend
with different desktop environments. The greeters control the appearance of the
login screen.

Configuration The configuration of LightDM is contained in files whose names
end in .conf within the /usr/share/lightdm/lightdm.conf.d and /etc/lightdm/lightdm.

conf.d directories, as well as the /etc/lightdm/lightdm.conf file. The configuration
files are read in that order. As the system administrator, you should ideally make
changes by placing files in /etc/lightdm/lightdm.conf.d. The configuration files are
composed of sections that have titleswithin square brackets and contain key-value
pairs. You could, for example, change the X server layout by creating a file called
/etc/lightdm/lightdm.conf.d/99local.conf containing the lines

[Seat:*]

xserver-layout=presentation

The most important sections of the LightDM configuration include:

[LightDM] Configuration for LightDM as a whole. This includes parameters like
the user identity used for executing greeters, the directories for log files,
runtime data, and session information, and similar settings.

[Seat:*] (or, for older versions, [SeatDefaults]) Configuration for a single “seat”
(combination of graphics card, monitor(s), keyboard, mouse, …, that is be-
ing controlled by a single X server). This lets you specify whether the seat
is locally connected or remote (“X terminal”), how the X server is invoked,
how the greeter should work and be launched, how the session should be
constructed, and whether a user is logged in automatically. All of these set-
tings apply to all seats connected to this computer unless they are specifi-
cally overwritten.
Some common settings include the following:

11.3 Display Managers 171

[Seat:*]

greeter-hide-users=true

greeter-show-manual-login=true

Hides the clickable list of users in the greeter and allows the textual entry
of user names. This can be useful for security purposes or because you have
too many users and the list would therefore be unwieldy.

[Seat:*]

autologin-user=hugo

autologin-user-timeout=10

When the greeter is executed, it waits 10 seconds for user interaction before
automatically logging in the user hugo. Of course you should only use some-
thing like this when there is no chance of random people switching on your
computer.

[Seat:*]

user-session=mysession

Establishes mysession as the session name. This presupposes the existence
of a file called /usr/share/xsessions/mysession.desktop describing the desired
session. This could look roughly like

[Desktop Entry]

Name=My Session

Comment=My very own graphical session

Exec=/usr/local/bin/startmysession

Type=Application

where /usr/local/bin/startmysession would typically be a shell script that es-
tablished the session.

B The actual details here would be somewhat involved; do take your in-
spiration from a file called /etc/X11/xsession or /usr/bin/startlxde (de-
pending on what desktop environment you have installed).

[Seat:0] (and [Seat:1] and so on) Configurations for individual seats that differ
from the basic settings in [Seat:*].

B If you want to control more than one seat, you must list the desired
seats within the [LightDM] section:

[LightDM]

seats = Seat:0, Seat:1, Seat:2

[XDMCPServer] Remote seats (“X terminals”) use XDMCP (the “X Display Manager
Control Protocol”) to contact the display manager. This section includes
settings for XDMCP, including by default

[XDMCPServer]

enabled = false

[VNCServer] This section lets you configure an X serverwhich is accessible via VNC
(the program is called Xvnc). This enables remote access from computers
which do not support X at all—there are VNC clients for many different
operating systems.

172 11 The X Window System

The LPI’s exam objectives mention that you should be able to “change the
display manager greeting”. It turns out that LightDM’s standard greeter
does not even support a greeting message in the first place, so we must take
a pass here. This may well be different for other, less common, greeters—
check whether there is a configuration file for the greeter in question within
/etc/lightdm, and if so, what you can put in there.

B What you can set up even with the standard greeter is a background image
(preferably in the SVG format). You can go wild here using an SVG edi-
tor such as Inkscape, and you will only need to ensure that the /etc/lightdm/

lightdm-gtk-greeter contains something like

[greeter]

background=/usr/local/share/images/lightdm/my-greeter-bg.svg

Starting and Stopping The display manager is launched by the init system. This
means that something like

service lightdm start

should let you start LightDM, regardless of whether your system is based on
System-V init or systemd. Accordingly, something like

service lightdm stop

should also work.

B Alternatively, you can invoke the init script directly (with System-V init) or
say

systemctl start lightdm or stop

To activate the display manager on boot for System-V init, you should ensure
that the LightDM init script is active within the desired run level (typically 5).
(Of course you will also want to deactivate any other display manager(s). Display
managers operate on the Highlander principle, at least per individual X server.)
On systemd-based systems, something like

systemctl enable lightdm

should suffice to activate, and something like

systemctl disable lightdm

to deactivate LightDM on boot. By rights, your Linux distribution should take
care of details like that.

11.3.3 Other Display Managers

Here are a few remarks about the more traditional display managers mentioned
in the LPI exam objectives (there are more).

xdm xdm is the default display manager of the X11 system. Like many X11 sample
programs, it is very plain—it offers just a simple graphical login window. It is
configured using files within the /etc/X11/xdm directory:/etc/X11/xdm

Xresources This lets you set up—amongothers—the greetingmessage (xlogin*greeting),
the font used for that (xlogin*login.greetFont), or the logo displayed by xdm

(xlogin*logoFileName).

11.4 Displaying Information 173

Xsetup This is a shell script that will be executed when xdm is started. Among other
things, this lets you start a program that puts a background image on the
login screen.

Xservers This determines which X servers will be started for which displays.

Xsession Plays a similar role for xdm as ~/.xinitrc for startx or xinit, as far as the
initialisation of a user session is concerned; here, too, there is a user-specific
analogue, namely ~/.xsession.

kdm kdm derives from the KDE project and is basically an extension of xdm. Its con-
figuration corresponds to that of xdm (the configuration files may be placed else-
where). You can also configure kdm by means of the KDE control center, kcontrol, kcontrol

whose settings are placed in a file like /etc/X11/kdm/kdmrc.

gdm The GNOME display manager, gdm, is part of the GNOME desktop environ-
ment. It was developed from scratch, but offers approximately the same features
as kdm. It is configured using the gdm.conf file, which can often be found in the gdm.conf

/etc/X11/gdm directory. For gdm, too, there is a convenient configuration program by
the name of gdmconfig. gdmconfig

Exercises

C 11.8 [3] Does the display manager on your system (if there is one at all)
allow a choice between various desktop environments or “session types”?
If so, which ones? Try a few of them (including, if available, the “failsafe”
session).

11.4 Displaying Information

Once your X session is running, you may use various programs to display inter-
esting information.

xdpyinfo shows information about your current X display. We shall highlight xdpyinfo

only a few interesting elements:

$ xdpyinfo

name of display: :0 On the local computer
version number: 11.0 Not a big surprise
vendor string: The X.Org Foundation

vendor release number: 11702000

X.Org version: 1.17.2 The server’s version number
�����

number of extensions: 30 Loaded extensions
BIG-REQUESTS

Composite

DAMAGE

�����

XVideo

default screen number: 0 Standard screen …
number of screens: 1 … just one there!

screen #0:

dimensions: 1680x1050 pixels (442x276 millimeters)

resolution: 97x97 dots per inch

depths (7): 24, 1, 4, 8, 15, 16, 32

root window id: 0x8f

depth of root window: 24 planes

174 11 The X Window System

number of colormaps: minimum 1, maximum 1

�����

options: backing-store WHEN MAPPED, save-unders NO

largest cursor: 64x64

current input event mask: 0xfac033

KeyPressMask EnterWindowMask LeaveWindowMask

�����

number of visuals: 204

default visual id: 0x21

visual:

visual id: 0x21

class: TrueColor

depth: 24 planes

available colormap entries: 256 per subfield

red, green, blue masks: 0xff0000, 0xff00, 0xff

significant bits in color specification: 8 bits

����� We will skip 203 other visuals

This describes fairly accurately the graphical possibilities offered by this X server.
24 bits of colour depth are what one would like to see today—this allows a possi-
ble 16 million different colours, while the visual system of normal humans only
lets us distinguish around 100,000. A “visual” describes how to put pixels of spe-visual

cific colours onto the screen, where once more TrueColor is the holy grail5. There
are other types of visuals that, these days, are of any concern to hard-core X de-
velopers only.

B You can find out more about xdpyinfo by consulting xdpyinfo(1), which de-
scribes the program in detail.

You can obtain information about individual windows bymeans of the xwininfoxwininfo

command. After starting it in a terminal emulator, it prompts you to click on the
desired window using the mouse:

$ xwininfo

xwininfo: Please select the window about which you

would like information by clicking the

mouse in that window.

xwininfo: Window id: 0x500007d "emacs@red.example.com"

Absolute upper-left X: 1071

Absolute upper-left Y: 27

Relative upper-left X: 0

Relative upper-left Y: 0

Width: 604

Height: 980

Depth: 24

Visual Class: TrueColor

Border width: 0

Class: InputOutput

Colormap: 0x20 (installed)

Bit Gravity State: NorthWestGravity

Window Gravity State: NorthWestGravity

Backing Store State: NotUseful

Save Under State: no

Map State: IsViewable

5Users of older graphics cards may remember, in principle, visuals of type PseudoColor—typically
one got to pick 256 colours out of the proverbial 16 million. Not nice.

11.5 The Font Server 175

Override Redirect State: no

Corners: +1071+27 -5+27 -5-43 +1071-43

-geometry 80x73-1+0

Here you can see, for example, the coordinates of the window on the screen, the
visual in use, and similar data. The “backing store state” and the “save under
state” determine what happens to window content that is obscured by other win-
dows (typically pop-up menus)—in our case, they will not be stored but redrawn
as required, which on today’s computers is often faster—, and the “map state”
specifies whether the window is actually visible on screen.

You can find the window information without a mouse click if you know the
window ID or the window’s name. The sample output shown above mentions window ID

both of them—the window name is on the same line as the window ID.
xwininfo supports various options that control the type and extent of the data

being output. Most of that is only interesting if you know about X’s inner work-
ings. Play around with this for a bit. The details are in xwininfo(1).

Exercises

C 11.9 [!1] What is the resolution of your screen in pixels? Are the metrical
sizes output by X11 correct (and hence the resolution in dots per inch)?

C 11.10 [2] Use xwininfo to display information about a window on your
screen. Move and/or resize the window and make sure that xwininfo out-
puts different coordinates.

11.5 The Font Server

The X11 protocol contains not just operations for drawing points, lines, and other
geometrical shapes, but also for displaying text. Traditionally, the X server offers
a selection of fonts; the client can query which fonts exist, and then specify which
font should be used to display text at what position on the screen. Actually ob-
taining the font data and displaying the text are the server’s job.

B It turns out that today practically no modern X client still uses this mecha-
nism. X.org and the common toolkits support the XRENDER extension, which
among other things can handle transparency to allow “antialiasing”. This
in turn enables the display of scalable fonts with smooth edges and is nec-
essary for high-quality text output. With XRENDER, the X11 operations for
text display are avoided entirely; instead, the client can upload “glyphs”
(letters, digits, and other characters) and use these for rendering text. The
fonts offered by the X server are unimportant for XRENDER, since the fonts are
installed on the client and will be made available to the X server on a glyph-
by-glyph basis [Pac01].

The remainder of this section is only interesting if you want to pass the
LPI-102 exam. It is no longer of any conceivable relevance to real life. Save
your time and do something useful instead—clean your bathroom or walk
the dog.

Local Fonts on the Server If you do indeed want to (or need to) use the X11 text
operations and therefore the fonts provided by the X server, you must first make
sure that the X server can find the fonts in question. The first port of call for con-
figuring fonts in X.org is the Files section of the configuration file, with the direc-
tories to be set up there (FontPath entries) that the X server will search for fonts. FontPath

Typically, one FontPath entry per directory will be added.

176 11 The X Window System

B In practice this means that, as far as font installation is concerned, youmust
place the fonts in an appropriate directory and make that directory known
to the X server by means of a FontPath entry. The order of the entries in
the configuration file is very important because it determines the X server’s
search order. The first matching font will always be used.

B Instead of adding a font directory permanently to the configuration file, you
can add it to the X server temporarily using the xset command. Thexset

$ xset +fp /usr/share/fonts/X11/truetype

command adds a font directory temporarily (until the next restart of the
X server).

$ xset -fp /usr/share/fonts/X11/truetype

lets the X server forget about it again.

B The “xset q” command lets you query the X server’s current configuration,
and therefore check that it knows about the correct font directories.

Copying the fonts and announcing the font directory are often not enough.
Apart from the fonts themselves, the directory may contain the following files:

The fonts.dir file contains a list of all the fonts contained in the directory, in-fonts.dir

cluding the file name, manufacturer, font name, font weight, slant, width, style,
pixel and point sizes, 𝑥 resolution, 𝑦 resolution, font encoding, and various other
data. A (one-line) entry for a font could, for example, look like

luBIS12-ISO8859-4.pcf.gz-b&h-lucida-bold-i-normal-sans-�

� 12-120-75-75-p-79-iso8859-4

The first line of the file gives the total number of fonts in the directory.
The fonts.dir filemust exist. Of course, though, youwill not have tomaintain it

by hand, but can use the mkfontdir command to do so. Assuming you have addedmkfontdir

a font file to the /usr/local/share/X11/fonts/truetype directory, a call to

mkfontdir /usr/local/share/X11/fonts/truetype

will suffice to update the corresponding fonts.dir file. If you add fonts to an ex-
isting font directory, you must issue the

$ xset fp rehash

command within your running session for the X server to be able to find these
fonts.

The fonts.scale file is useful for directories containing scalable (vector-basedfonts.scale

rather than bitmap-based) fonts and gives a list of the fonts in question, while the
fonts.alias file lets you set up alias names for individual fonts.fonts.alias

The Font Server The font server, xfs (not to be confusedwith the XFS file system),
makes it possible to centrally manage fonts on a network. With today’s prices for
hard-disk storage, a complete centralisation of X11 fonts is no longer necessary
(nor desirable), but, for specialised fonts which are not part of the X11 or Linux
distribution and should be available within the local network, this can make font
management considerably easier.

B The font server has yet another advantage: Without a font server, problems
may arise if a client queries the X server for a list of available fonts. The
X server will then drop everything it does and search the system for fonts,
which can lead to considerable delays because during that time no X11 op-
erations for graphics display will be executed.

11.6 Remote Access and Access Control 177

xfs is a free-standing daemon. It offers its services on the TCP port 7100 and is Server configuration

configured using the /etc/X11/fs/config or /etc/X11/xfs.conf files. After any changes Reloading the configuration

to these files, the servermust be informed of the new situation bymeans of a SIGHUP

signal:

pkill -1 xfs

xfs accesses files that are installed as described for the X11 server, and can thus
also be used by the local X server. The font directories are entered into the config-
uration file by means of the catalogue parameter, for example as follows:

catalogue = /usr/share/fonts/X11/misc:unscaled,

/usr/share/fonts/X11/75dpi:unscaled,

/usr/share/fonts/X11/100dpi:unscaled

�����

The individual pathsmust be separated by commas. Further options can be found
in the documentation.

To connect an X server to the font server, you just need to add an entry to the Client configuration

Files section of the xorg.conf file:

FontPath "tcp/⟨host name⟩:⟨port number⟩"

If you want to prefer fonts from the font server, you should add this entry in front
of all the other FontPath sections. (For experimentation, do it using xset.)

Exercises

C 11.11 [!1] Use the xlsfonts command to list the fonts your X server knows
about.

C 11.12 [1] Use the xfontsel command to conveniently explore the selection of
fonts. Find a font you like and remember it for the next exercise.

C 11.13 [2] Start a sufficiently antique X client (xman, xterm, or xedit would come
tomind) using the font from the previous exercise. The canonical command
line option to do so is “-fn” (as in “font”). What happens?

11.6 Remote Access and Access Control

In principle, as mentioned above, the X server can be reached by remote clients
via a TCP port (6000 + “server number”). These just need to be started with the
correct display setting—via a command-line option à la -display or the DISPLAY en-
vironment variable—and can display their output on the server and accept input,
but theoretically also disrupt or spy on the session as desired.

There are two “native” methods to control access to the X server, namely xhost

and xauth.
xhost offers host-based access control. Using xhost

$ xhost red.example.com

or

$ xhost +red.example.com

you allow access to your server to clients running on red.example.com. The com-
mand

178 11 The X Window System

$ xhost -red.example.com

withdraws that permission again. “xhost” on its own outputs a list of computers
authorised for remote clients. Since any user on the remote host can have access
to your X session, you should not use xhost in real life!!

A Sometimes—usually within installation instructions for third-party propri-
etary software packages—you will be asked to execute the “xhost +” com-
mand. This opens your X server to clients from arbitrary other computers
(theoretically the complete Internet). Don’t fall for that kind of thing.

With xauth, a random key or “magic cookie” is created and passed to thexauth

X server when the server is started (usually by the display manager or startx).
The key is also stored in the ~/.Xauthority file of the current user, which other~/.Xauthority

users cannot read. The X server only accepts connections from clients which can
present the correct magic cookie. Using the xauth program, magic cookies can also
be transferred to other hosts or removed from them. More details are in xauth(1).

B A much more secure method to start X clients on remote hosts consists of
using the X-forwarding feature of the Secure Shell. We describe this in Linux
Administration II.

The “-nolisten tcp” option lets youmake your X server completely inaccessible
from the outside. This is a sensible setting and many Linux distributions today
default to it.

Exercises

C 11.14 [2] Make sure that your X server is not started using “-nolisten tcp”
(or start another X server using something like “startx -- :1”), and try to
connect a client to your server by means of a suitable DISPLAY setting (extra
credit, if your client runs on a different host). (Hint: If you have trouble con-
necting from a different host, check whether your computer uses a hyperac-
tive packet filter which shields your X server from outside connections. The
SUSE distributions, in particular, like to do this.)

Commands in this Chapter

X Starts the appropriate X server for the system X(1) 169
lspci Displays information about devices on the PCI bus lspci(8) 167
xauth X server access control via “magic cookies” xauth(1) 178
xdpyinfo Shows information about the current X display xdpyinfo(1) 173
xhost Allows clients on other hosts to access the X server via TCP

xhost(1) 177
xwininfo Displays information about an X window xwininfo(1) 174

11.6 Bibliography 179

Summary

• X11 is a client-server network-transparent graphics system.
• The X server manages a computer’s graphics screen, keyboard and mouse;
X clients access the X server via the X protocol.

• On workstations, X11 is often installed such that a graphical login is possi-
ble. On other computers, the graphical environment can be started by hand
if needed.

• Apart from the simple xdm displaymanager, most desktop environments fur-
nish their own display manager.

Bibliography

Pac01 Keith Packard. “Design and Implementation of the X Rendering Exten-
sion”. Proc. FREENIX Track, 2001 Usenix Annual Technical Conference. The
USENIX Association, 2001 pp. 213–224.

http://keithp.com/~keithp/talks/usenix2001/

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

12
Linux Accessibility

Contents

12.1 Introduction. 182
12.2 Keyboard, Mouse, and Joystick 182
12.3 Screen Display . 183

Goals

• Learning about Linux accessibility facilities

Prerequisites

• Basic knowledge of Linux, X11, and graphical environments like KDE or
GNOME

grd2-access.tex (6eb247d0aa1863fd)

182 12 Linux Accessibility

12.1 Introduction

Computers and the Internet extended the range of activities that disabled peo-
ple can attend and so increases their quality of life a lot. Visually impaired and
blind people have access to much more information than ever before, and people
with other special needs also benefit greatly from the ways in which the computer
allows them to express themselves, make friends, work, and dig up information.

This chapter provides a brief summary of the facilities offered by Linux andfacilities

the software packages distributedwith it tomake life a little easier for people with
special needs. We will not dive into detailed technical discussions at this point,
but we will focus on the big picture and tell you where to get more information
when needed.

12.2 Keyboard, Mouse, and Joystick

People who are not in a position to use an ordinary keyboard or mouse—be it
because they aremissing the requisite limbs or because these cannot be controlled
accurately enough—can resort to various aids available on Linux. Typical assistive
tools include:

Sticky keys arrange formodifier keys like the shift and control keys not to have to
be held down while you are pressing another key. A press (and subsequent
release) of the modifier key is enough for the next key to be evaluated as if
the modifier key was still held down. This helps, for example, paraplegics
who can only move their head type with the aid of a stick.

Slow keys let the system ignore unwanted key presses that arise when you press
other keys on the way to the key that you really want.

Bounce keys arrange for the system to ignore extraneous presses of the same key.

Repeat keys allow you to specify whether held-down keys should be repeated or
just reported once.

Mouse keys allow the mouse to be controlled using the numeric key pad on the
keyboard.

With X11 on Linux, these tools are provided by the XKEYBOARD extension,XKEYBOARD

which by default is part of the X server. Therefore the challenge is only how to
activate it. This is done using the xkbset utility. The graphical desktop environ-
ments also offer user interfaces like the KDE control center (see the “Accessibility”
dialog below “Regional & Accessibility”).

For GNOME, at least, there is a “screen keyboard” called GOK, which allowsscreen keyboard

users to “type” bymeans of a mouse, a joy stick, or even a single key. This is a tool
for people who cannot handle a keyboard but can use the mouse. For the time
being KDE does not offer a corresponding facility.

Inmany cases themouse can be replaced by the keyboard. At least in theory, all
features of the graphical environments should also be available via the keyboard.
Peoplewho cannot use themouse, for example due to repetitive strain injury (RSI),RSI

may prefer to use a stationary “track ball”. For people with motor difficulties it
may also help to increase the delay for double clicks.

B In the KDE control center you will find the settings for using the nu-
meric key pad as a “mouse substitute” under “Peripherals/Mouse”. With
GNOME, the equivalent is part of the keyboard configuration.

12.3 Screen Display 183

12.3 Screen Display

For the visually impared and blind, Linux has the considerable advantage that
screen display can be very finely controlled. Since the system does not depend on
a graphical interface, it is much easier to operate for blind people using a Braille
display or screen reader than purely graphical systems.

People with some remaining vision can configure Linux in such a way that it
magnifies parts of the display or the mouse cursor, so they can be spotted more
easily. On KDE, for instance, the looks of the mouse cursor can be altered in the
“pointer design” tab under “Peripherals/Mouse”. (You may have to install a spe- pointer design

cial “accessible” mouse cursor theme, though.) On a GNOME desktop, the ap-
pearance of the mouse cursor is also set up in the mouse configuration section.

Both KDE and GNOME allow you to change the size of the display fonts. On font size

high-resolution displays, fonts can be tiny and hard to read even for people with
excellent vision, so visually impaired people benefit greatly from a generously
“oversized” text representation. A high-contrast color scheme also helps to make
the desktop easier to view.

Another common tool are “screen magnifiers”, which display a greatly magni- screen magnifiers

fied copy of the area around the mouse cursor. The KMagnifier program of KDE
and the GNOME equivalent that can be found under “Accessibility” in the system
setup dialog both offer this useful feature.

For blind people, Linux supports various Braille displays as well as voice out- Braille displays

voice outputput. A Braille display can show a line of text using Braille dot representation,
which the blind can feel using their fingertips; Braille devices, however, are fairly
expensive andmechanically intricate. BrlTTY is a program that runs on the Linux BrlTTY

console and controls a Braille display. Orca is the same for GNOME. Then there is Orca

Emacspeak, which is essentially a screen reader for GNU Emacs that reads screen Emacspeak

contents aloud; because many other programs can be launched inside Emacs this
is nearly as good as a graphical desktop.

B KDE has some difficulties with some of the facilities described here. There
is a reasonably well-established protocol called AT-SPI (Assistive Technolo-
gies Service Provider Interface) which is used on Unix and Linux to facili-
tate the communication between accessible software and technical aids like
Braille displays. Unfortunately (from the point of view of KDE), AT-SPI was
invented by GNOME developers and is based on the GTK2+ (a graphics li-
brary that GNOME is based on, but which is no use to KDE). It also uses
CORBA for communication, which does not fit KDE either. How to solve
these problems is still unclear.

Commands in this Chapter

xkbset Controls keyboard setup options for X11 xkbset(1) 182

Summary

• Computers and the Internet can help disabled people increase their quality
of life.

• Linux provides a variety of aids for people who cannot operate an ordinary
mouse or keyboard.

• Blind and otherwise visually impaired people benefit from facilities like
screen magnification, high-contrast color schemes, screen readers with
voice output and Braille displays that Linux can control.

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

A
Sample Solutions

This appendix contains sample solutions for selected exercises.

1.1 Some conceivable advantages include: Shell scripts are generally much
quicker to develop, they are independent of the computer architecture (Intel, Pow-
erPC, SPARC,…) and shorter than equivalent programs in a language like C. Shell
programming, at least at an elementary level, is much easier to learn than pro-
gramming in a language like C. Disadvantages include the fact that shell scripts
oftenmake less efficient use of the system than compiled programs, that the num-
ber of available data structures is very limited, and that shell scripts do not lend
themselves to the implementation of software that needs to fulfil strong security
requirements.—Shell scripts are most useful for “ad hoc” or “throw-away” pro-
grammingwhere notmuch time is available, for the creation of prototypes (where
there is a considerable chance that the prototype will prove “good enough”), and
for automating tasks that would otherwise be done from the command line. Pro-
gramming languages like C always imply a larger development effort, which
must be worthwhile; therefore, a common approach consists of implementing a
program as a shell script first and later replacing, e. g., performance-critical parts
by C programs. The optimum is often a mixture of shell and binary code.

1.2 One possible approach might be:

find /bin /usr/bin -type f -exec file \; \

| grep "shell script" | wc -l

The find command enumerates all files in /bin and /usr/bin and applies file to
each file name in turn. grep picks up those lines that contain “shell script”, and
wc determines their number.—How could you make this pipeline execute more
quickly?

1.3 A “quick and dirty” method would be the command

ls $(cat /etc/shells) 2>/dev/null

which lists those shells that are approved as login shells (error messages about
shells listed in the file but not installed on the system as programs are suppressed
by redirecting standard error output to /dev/null). Also note that /etc/shells allows
comment lines starting with a hash mark, which cause additional error messages
that are also suppressed.

186 A Sample Solutions

1.4 The tcsh helpfully tries to correct your erroneous command and suggest a
“correct” version that you can accept, reject, or edit, or cancel the command alto-
gether.—You can leave the tcsh by means of the exit command; virtually all shells
also support Ctrl + d as “end of file on standard input”.

1.7 A “-” is passed as the first character of the program name.

1.8 Arrange for the shell to believe it was called as a login shell: Use bash as the
actual login shell, with a .profile file like

PATH=$HOME/bin:$PATH

exec -myshell

where \$HOME/bin/~myshell is a (symbolic) link to /usr/local/bin/myshell (orwherever
your desired shell ended up). This shell sees “-myshell” as its program name and
initialises itself as a login shell—at least if it plays by the rules. The “exec” is not
strictly necessary; it causes the login bash process to replace itself by myshell instead
of invoking myshell as a child process. A simple “-myshell; exit” would suffice
(why the exit?).

2.2 As these files can be used, e. g., to set environment variables themethodused
must apparently be source …

2.3 Instead of the user’s script, the /bin/test program (or the internal shell com-
mand test, e. g., with bash) was started. This happens when the directory con-
taining the script is not part of the user’s PATH, or /bin occurs before that directory.
Perfidiously, the test command, when invoked without parameters, does not pro-
duce an error message—in our view, a grave omission on the part of both the
external as well as the shell’s implementation.

2.4 The shell script must write the name of the desired new directory to its stan-
dard output, and be invoked by the shell using something like

$ cd `myscript.sh`

This somewhat tedious call is best hidden away in an alias name:

$ alias myscript='cd `myscript.sh`'

(For extra credit: Why are the single quotes important?)

2.5 The invocation command “./baz” is appended to the first line and this is ex-
ecuted. Therefore, the output

foo bar ./baz

appears. Since the echo program does not process its parameters as file names, the
actual content of the file is irrelevant; thus the “echo Hello World” is pure obfusca-
tion.

2.6 It depends on the script. As mentioned earlier in this document, “#!/bin/sh”
is basically a promise by the shell script saying something like “I can be exe-
cuted using any Bourne-like shell”. Such a script should therefore not contain
any bash-specific constructions. Accordingly, the “#!/bin/bash” line says “I do, in
fact, need bash”. Whoever wants to integrate such a script in their own software
system iswarned that theymight have to take along the rather hefty Bourne-again
shell, when they might otherwise have been able to use one of the slimmer shells
(dash, busybox, …). Thus, always writing “#!/bin/bash” does not really make sense;
always writing “#!/bin/sh”, on the other hand, is more dangerous.

A Sample Solutions 187

2.7 One workable solution might be:

1. Construct a list of all “real” users.

2. Repeat the following steps for each user 𝑢 in the list.

3. Determine the time 𝑡 of 𝑢’s last login.

4. Determine the home directory 𝑣 of 𝑢.

5. Determine the amount 𝑝 of disk space used by 𝑣.

6. Output 𝑢, 𝑡 and 𝑝

7. End of the repetition.

(Of course there are others.)

2.8 One possible approach would be:

1. Obtain a sorted list of all users’ home directories

2. Create from that a list of all directories containing home directories (/home/
develop and /home/market, in our case)—any duplicates should be removed.

3. For each of these directories 𝑑, check the used space 𝑏𝑑:

4. If 𝑏𝑑 > 95%, include 𝑑 in the warning list

5. Send the warning list to the system administrator

Here, too, countless other possibilities are conceivable.

3.1 $* and $@ behave equivalently, except for one special case—the expansion of
“"$@"”. Here every positional parameter becomes a single “word”, while “"$*"”
results in a single word containing all parameters.

3.2 The shell always rounds towards the nearest integer whose absolute value is
less than that of the result. Since it does not support floating-point numbers, this
is an obvious (though not necessarily optimal) approach.

3.3 On “standard” Linux systems, bash uses 64-bit arithmetic, thus the largest
number that can be represented is 263 − 1 or 9.223.372.036.854.775.807. If you do
not want to check the source code, you can execute a command such as

$ a=1; while true; do a=$((2*a)); echo $a; done

and interpret the result.

3.4 Use something along the lines of

#!/bin/sh

echo $1 | grep -i '[âeiou]$'

(parameter checking ad libitum). The return value of a script is the return value of
the last command, and apipeline’s return value is the return value of the pipeline’s
last command. What grep does is exactly right—bingo!

188 A Sample Solutions

3.5 Try something like

#!/bin/sh

absrelpath -- check path names for absoluteness

if ["$1:0:1" = "/"]

then

echo absolute

else

echo relative

fi

Other versions—like

["$1:0:1" = "/"] && echo absolute || echo relative

—are conceivable but possibly too cryptic for serious use.

3.6 According to general usage, the easiest method to do this is another case

alternative containing something like

�����

restart)

$0 stop

$0 start

;;

�����

3.8 We allow ourselves to use a Bash-specific notational convenience fo read-
ability: The ((…)) “command” (with no dollar sign!) evaluates the expression
between the parentheses and returns a return value of 0 if its value is different
from 0, 1 otherwise.

#!/bin/bash

prim -- Determines prime numbers up to a limit

Horribly inefficient method.

echo 2

i=3

while ((i < $1))

do

prime=1

j=2

while ((prime && j < i/2))

do

if ((i % j == 0))

then

prime=0

fi

j=$((j+1))

done

((prime)) && echo $i

i=$((i+2))

done

(The mathematicians in our audience will wince; this method is much more in-
efficient than approaches like the “sieve of Eratosthenes”, and anyway we would
only have to consider numbers up to√𝑖 rather than 𝑖/2. Unfortunately, bash cannot
calculate square roots, so that the looser upper bound must do …)

A Sample Solutions 189

3.9 At first, the if could depend directly on the fgrep program rather than the $?

variable:

if fgrep -q $pattern $f

then

cp $f $HOME/backups

fi

Instead of inverting the command’s return value using ! and then possibly calling
continue, we pull the cp invocation into the then branch and thus manage to get
rid of the continue altogether. Another observation is that, in our new version,
copying is skipped if something else unexpected happens during the fgrep (i. e., if
the specified file does not exist). The original script would have tried to copy the
file even so.

In this simple case, you might also use conditional evaluation and write some-
thing like

fgrep -q $pattern $f && cp $f $HOME/backups

This is the shortest possible form.

3.12 One possibility:

#!/bin/bash

tclock -- Display a clock in a text terminal

trap "clear; exit" INT

while true

do

clear

banner $(date +%X)

sleep 1

done

3.13 For example:

function toupper () {

echo $* | tr '[:lower:]' '[:upper:]'

}

3.14 The exec command irrevocably ends the execution of test1. Hence, the out-
put is

Hello

Howdy

4.1 By analogy to grep, the exit after the first error message probably ought to
have a 2 as its argument. The return value 1 then signals a non-existing group.

4.2 A possible approach:

#!/bin/bash

hierarchy -- Follow a file name hierarchy to the root

name="$1"

until ["$name" = "/"]

do

190 A Sample Solutions

echo $name

name="$(dirname $name)"

done

4.3 The hierarchy script gets us the correct names but in reverse order. We must
also check whether the directory in question already exists:

#!/bin/bash

mkdirp -- Poor person's "mkdir -p"

for dir in $(hierarchy "$1" | tac)

do

[-d "$dir"] || mkdir "$dir"

done

4.4 Replace the line

conffile=/etc/multichecklog.conf

by something like

conffile=${MULTICHECKLOG_CONF:-/etc/multichecklog.conf}

4.5 One possibility (within the checklonger function):

function checklonger () {

case "$1" in

*k) max=$(($1%k*1000)) ;;

*M) max=$(($1%M*1000000)) ;;

*) max=$1 ;;

esac

test …

}

4.6 The trick consists of having seq count backwards:

function rotate () {

rm -f "$1.9"

for i in $(seq 9 -1 1)

do

mv -f "$1.$((i-1))" "$1.$i"

done

mv "$1" "$1.0"

> "$1"

}

Instead of the hard-coded 9, you might want to insert a variable.

4.7 Themost convenientmethoduses the --reference option of the chmod and chown

commands. For example:

�����

mv "$1" "$1.0"

> "$1"

chmod --reference="$1.0" "$1"

chown --reference="$1.0" "$1"

�����

A Sample Solutions 191

4.8 grep supports the -e option, which introduces a regular expression to be
searched. This option may occur several times on the same command, and grep

will search for all expressions thus specified, simultaneously.

4.9 “"$@"” arranges for the arguments of gdf to be passed to df. This makes in-
vocations such as “gdf / /home” work. You had better stay away from options that
radically change df’s output format.

5.1 The technique for this is quite like that for validating the login name.

5.2 You could use something like

read -p "Login shell: " shell

if ! [grep "$ŝhell$" /etc/shells]

then

echo >&2 "$shell is not a valid login shell"

exit 1

fi

5.3 You might replace the read command by something like

prompt=${1:-"Please confirm"}

read -p "$prompt (y/n): " answer

5.4 One possible example:

#!/bin/sh

numbergame -- simple guessing game

max=100

number=$((RANDOM % max))

echo Guess a number between 0 and $max.

while true; do

read -p "Number? " guess

d=$((guess - number))

if [$d = 0]; then

echo "Congratulations, that was correct"

break

elif [$d -gt 0]; then

echo "Too big"

else

echo "Too small"

fi

done

5.5 The select loop variable is assigned an empty string. For this reason, the
newuser script says “[-n "$type"] && break” so the loop is finished only if the user
entered something valid.

5.6 The obvious solution (output “score”) is not correct, since that variable con-
tains the current score. The future score can be found using the next option to
question. Thus, in present:

Display and show the question

echo "For $(question $1 next) points:"

question $1 display

192 A Sample Solutions

5.7 Some obvious extensions might be (roughly ordered by effort required):

• More than one question per score level (with random choice?)

• “Folding”: Whoever can’t answer the question may leave the game with
their current score

• “Safety” levels (whoever has between 500 and 16000 points when giving a
wrong answer goes back to 500, whoever has 16000 points or more gets to
keep 16000)

• “50/50 lifeline”: The participant gets anothermenu selection that will allow
him to remove two wrong answers (once)

What else can you think of?

5.8 Actually, one call to grep per question should be enough if you store the differ-
ent lines in shell variables and output them if required. Since there is at most one
question in memory at any one time, there are no problems with difficult data
structures.

6.1 The corresponding line numbers are: (a) 4 (who would have thought?); (b)
2–4 (the ABC on line 2 does not count); (c) 2–3 and 4–5 (address rangeswith a regular
expression as the first address may match multiple times); (d) 6; (e) 3 (line 2 is
already “through”); (f) 3 and 5–6 (the lines not containing ABC).

6.2 Regular expressions as the second address of a range match the first line
after the range start, at the earliest. With the “1,/⟨expression⟩/” range, ⟨expression⟩
could never match the first input line. “0,/⟨expression⟩/” allows exactly that.

6.3 Possibly the most straightforward method is

sed '/$/̂d'

6.4 For example:

sed -ne '/<Directory>/,/<\/Directory>/p' httpd.conf

6.5 You may be surprised to hear that it actually works, but it is by no means as
trivial as head. Read GNU sed’s info documentation for the details.

6.6 Try something like

sed '/[̂A-Z]\+$/a\

\'

6.7 The 𝑖~𝑗 addresses are useful here:

sed '1~2y/abcdefghijklmnopqrstuvwxyz/ABCDEFGHIJKLMNOPQRSTUVWXYZ/'

6.8 For example: “sed 's/\<yellow\>/blue/g'”. Remember the g modifier, in order
to replace all yellows on each line, and the word brackets, to prevent accidental
hyperactivity.

6.9 Try “sed -ne '/^[^A]/p; /^A/s/[Â-Za-z]\+//p'”.

A Sample Solutions 193

6.11 Fortunately, there is nothing to be done for the “long” options, since these
are adequately covered by the existing code (how?). As far as “--” is concerned,
you will need to add a branch for this in the case, which needs to terminate the
loop (similar to the “*” case). Why does the “*” branch not suffice?

6.12 One possibility that does not change much else might be

function question () {

if ["$1" = "get"]

then

echo $2

return

fi

case "$2" in

display) re='?' ;;

correct) re='+' ;;

answers) re='[-+]';;

next) re='>' ;;

*) echo >&2 "$0: get: invalid field type $2"; exit 1 ;;

esac

sed -ne "/question $1/,/end/p" $qfile | sed -ne "/$r̂e/s///̇p"

}

7.1 This basically combines techniques from the “shell history” and “duplicate
words” examples. In the easiest case, something like

#!/usr/bin/awk -f

countwords -- count words in a document

{

for (i = 1; i <= NF; i++) {

count[$i]++

}

}

END {

for (w in count) {

print count[w], w

}

}

may suffice. This simple approach, however, ignores capitalisation and separates
words by whitespace, so that punctuation is considered part of a word. To avoid
this, you can preprocess the input using a tr pipeline similar to that in the “dupli-
cate words” example, or use the GNU awk functions “tolower” and “gsub” (see the
GNU awk manual for details).

7.2 The second field of each line is the team’s point score, the third is the goal
difference. Since the point score is more important than the goal difference, a sort

invocation like

sort -t: -k2,2nr -k3,3nr

recommends itself (the entries should be sorted as numbers, and the largest value
should come first). See sort(1) for details.—You could also handle this within awk

(you have already seen a sorting function, and GNU awk, at least, contains an effi-
cient built-in sorting function called asort), but sort is often more convenient, es-
pecially if complex criteria are involved.

194 A Sample Solutions

7.3 Here is a suggested solution (which you should have been able to come up
with yourself):

#!/usr/bin/awk -f

BEGIN { FS = ":"; OFS = ":" }

{

spectators[$2] += $6

spectators[$3] += $6

}

END {

for (team in spectators) {

print team, spectators[team]

}

}

7.4 A three-stage approach is useful here. We use an awk program similar to the
one already discussed to construct the unsorted table, sort it using sort, and then
use another awk program to format it nicely. The first awk program, bltab2, differs
from the former mostly because it determine the number of games that were won
or lost:

$1 <= tag {

games[$2]++; games[$3]++

goals[$2] += $4 - $5; goals[$3] += $5 - $4

if ($4 > $5) {

won[$2]++; lost[$3]++

} else if ($4 < $5) {

lost[$2]++; won[$3]++

}

}

The point scores are easily calculated on output:

END {

for (team in games) {

d = games[team] - won[team] - lost[team]

points = 3*won[team] + d

print team, games[team], won[team], d,

lost[team], points, goals[team]

}

}

The output awk script—let’s call it blfmt—might look like this:

#!/usr/bin/awk -f

blfmt -- Bundesliga-Tabelle formatiert ausgeben

BEGIN {

FS = ":"

print "RD TEAM GM W D L POINTS GD"

print "--"

}

{

printf "%2d %-25.25s %2d %2d %2d %2d %3d %3d\n",

A Sample Solutions 195

++i, $1, $2, $3, $4, $5, $6, $7

}

The lot is invoked using a pipeline like

bltab2 round=34 bl03.txt | sort -t: -k6,6rn -k7,7rn | blfmt

which you can of course put into a shell script to solve the exercise perfectly.

7.5 Ensure that the 1. FC Kaiserslautern’s score is reduced appropriately, for
example between the calculation and sorting:

bltab2 round=34 bl03.txt | awk -f '{

if ($1 == "1.FC Kaiserslautern") {

$6 -= 2

}

print

}' | sort -t: -k6,6rn -k7,7rn | blfmt

7.6 Like many of the other programs shown here, gdu consists of a “data collec-
tion phase” and an “output phase”. Here is the data collection phase: We read
the input and remember the space used per user as well as the greatest amount of
space used so far—the latter is used to scale the output.

{

sub(/.̂*/, "", $2)

space[$2] = $1

if ($1 > max) {

max = $1

}

}

For testing, an output phase producing numerical results is useful:

END {

for (u in space) {

printf "%-10.10s %f\n", u, 60*space[u]/max

}

}

Once you have convinced yourself that the numerical results are sensible, you can
try your hand at the graphical display:

END {

stars = "******************************"

stars = stars stars

for (u in space) {

n = int(60*space[u]/max + 0.5)

printf "%-10.10s %-60s\n", u, substr(stars, 0, n)

}

}

8.1 You could add crew members to the “Person” table and add a “Position”
column or something like that. That column would contain entries like “Com-
mandingOfficer” or “ExecutiveOfficer”. Of course, if youwanted towork cleanly,
this column in the “Person” table would be a foreign key referring to a “Position”
table, which should make it straightforward later to retrieve all executive officers.

196 A Sample Solutions

8.2 Directors can be added in the same way as crew members in the previous
exercise, but you should add another table to avoid mixing up film parts and ex-
isting people. Here, too, you would probably do well not to confine yourself to
directors, but to add outright a table “Function” (or something) to cater not just
for directors but also script writers, gaffers, and all the other people one encoun-
ters in a film crew. If you’re really devious, think of the film crew function “actor”,
and add a foreign key that refers to the “Person” table and whose value is NULL for
non-actors.

8.8 Try something like

sqlite> SELECT title FROM film

...> WHERE year < 1985 AND budget < 40

(You can connect several expressions in a WHERE clause using AND, OR, and NOT.)

8.9 If there is no WHERE and no explicit JOIN, a SELECT spanning multiple tables
yields the Cartesian product of all tuples of all the tables in question, e. g.:

1|James T.|Kirk|1|1|USS Enterprise

1|James T.|Kirk|1|2|USS Enterprise

1|James T.|Kirk|1|3|Millennium Falcon

�����

2|Willard|Decker|1|1|USS Enterprise

2|Willard|Decker|1|2|USS Enterprise

2|Willard|Decker|1|3|Millennium Falcon

�����

9.1 (a) On 1 March, 5 P.M.; (b) On 2 March, 2 P.M.; (c) On 2 March, 4 P.M.; (d)
On 2 March, 1 A.M.

9.2 Use, e. g., “at now + 3 minutes”.

9.4 One possibility might be “atq | sort -bk 2”.

9.6 Your task list itself is owned by you, but you do not have permission to write
to the crontabs directory. Debian GNU/Linux, for example, uses the following
permission bits:

$ ls -ld /var/spool/cron/crontabs

drwx-wx--T 2 root crontab 4096 Aug 31 01:03 /var/spool/cron/crontabs

As usual, root has full access to the file (in fact regardless of the permission bits)
und members of the crontab group can write to files in the directory. Note that
members of that group have to know the file names in advance, because the di-
rectory is not searchable by them (ls will not work). The crontab utility is a set-GID
program owned by the crontab group:

$ ls -l $(which crontab)

-rwxr-sr-x 1 root crontab 27724 Sep 28 11:33 /usr/bin/crontab

So it is executedwith the access permissions of the crontab group, nomatter which
users invokes the program. (The set-GID mechanism is explained in detail in the
document Linux System Administration I.)

9.7 Register the job for the 13th of everymonth and checkwithin the script (e. g.,
by inspecting the result of “date +%u”) if the current day is a Friday.

A Sample Solutions 197

9.8 The details depend on the distribution.

9.9 Use something like

* * * * logger -p local0.info "cron test"

To write the date to the file every other minute, you could use the following line:

0,2,4,�����,56,58 * * * * /bin/date >>/tmp/date.log

But this one is more convenient:

*/2 * * * * /bin/date >>/tmp/date.log

9.10 The commands to accomplish this are »crontab -l« and »crontab -r«.

9.11 You should add hugo to the /etc/cron.deny file (on SUSE distributions, /var/
spool/cron/deny) or delete him from /etc/cron.allow.

9.13 /etc/cron.daily contains a script called 0anacron which is executed as the first
job. This script invokes “anacron -u”; this option causes anacron to update the time
stamps without actually executing jobs (which is the next thing that cron will do).
When the system is restarted, this will prevent anacron from running jobs unnec-
essarily, at least if the re-boot occurs after cron has done its thing.

10.4 There are systems where /usr is on a separate partition or (with “thin
clients”) on a different machine. However, system time is so important that it
should be available correctly very early when the system is booted, even if there
are horrible problems. A copy of the file in question (and as a rule time zone
definitions aren’t very big) is therefore the safest choice.

10.5 A simple solution involves zdump in combination with watch. Just try some-
thig like this:

$ ZONES=Asia/Tokyo Europe/Berlin America/New_York

$ watch -t zdump $ZONES

Interrupt the program with Ctrl + c when you do not need any further output.
In a graphical environment, of course, you could do something like this:

$ for z in $ZONES; do

> TZ=$z xclock -title $z#*/ -update 1 &

> done

11.3 The display name addresses the X server no. 1 (presumably the second one)
on the computer called bla.example.com, and in particular the second screen con-
trolled by that server. One possible command line would be

xterm -display bla.example.com:1.1

198 A Sample Solutions

11.5 The VNC method is a lot easier to implement, since the X protocol is quite
featureful and extensive. A “remote framebuffer protocol” as used by VNC has,
by comparison, very few operations and is a lot more straightforward, which is
proven by the existence of VNC clients written in a few hundreds of lines of a
programming language like Tcl. This results in a de facto much larger number of
platforms supporting VNC, including PDAs and other devices with very scarce
resources.—On the other hand, the X protocol enables various optimisations that
can only be exploited if one knows what is currently being rendered. The effi-
ciency question is difficult to answer in the general case, since it depends a lot on
what is currently being done: Image processing, for example, is fairly costly in X,
since it mostly takes place within the client, and large amounts of data must be
transferred to the server (special communication mechanisms make this bearable
in the case where server and client run on the same host). For VNC, there is no
a priori difference to normal system usage, since pixel data is transferred in any
case. X11 has the advantage where large changes of the display can be described
by a few X protocol commands.

11.6 Try something like

$ xclock -geometry 150x150+50-50

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

B
Regular Expressions

B.1 Overview

Regular expressions are an essential prerequisite for shell programming and the
use of programs like sed and awk. By way of illustration, here is an adapted intro-
duction to the topic from Introduction to Linux for Users and Administrators:

Regular expressions are often constructed “recursively” from primitives that
are themselves considered regular expressions. The simplest regular expressions
are letters, digits and many other characters from the usual character set, which characters

stand for themselves. “a”, for example, is a regular expression matching the
“a” character; the regular expression “abc” matches the string “abc”. Character Character classes

classes can be defined in a manner similar to shell wildcard patterns; there-
fore, the regular expression “[a-e]” matches exactly one character out of “a” to
“e”, and “a[xy]b” matches either “axb” or “ayb”. As in the shell, ranges can be
concatenated—”[A-Za-z]” matches all uppercase and lowercase letters—but the
complement of a range is constructed slightly differently: “[^abc]” matches all
characters except “a”, “b”, and “c”. (In the shell, that was “[!abc]”.) The dot, “.”,
corresponds to the question mark in shell wildcard patterns, in that it will match
a single arbitrary character—the only exception is the newline character, “\n”.
Thus, “a.c” matches “abc”, “a/c” and so on, but not the multi-line construction

a

c

This is due to the fact that most programs operate on a per-line basis, and multi-
line constructions woujld be more difficult to process. (Which is not to say that it
wouldn’t sometimes be nice to be able to do it.)

While shell wildcard patternsmust alwaysmatch beginning at the start of a file
name, in programs selecting lines based on regular expressions it usually suffices
if the regular expression matches anywhere in a line. You can restrict this, how-
ever: A regular expression starting with a caret (“^”) matches only at the begin- Line start

ning of a line, and a regular expression finishing with a dollar sign (“$”) matches
only at the end. The newline character at the end of each line is ignored, so you Line end

can use “xyz$” to select all lines ending in “xyz”, instead of having towrite “xyz\n$”.

B Strictly speaking, “^” and “$”match conceptual “invisible” characters at the
beginning of a line and immediately to the left of the newline character at
the end of a line, respectively.

Finally, you can use the asterisk (“*”) to denote that the preceding regular ex-
pression may be repeated arbitrarily many times (including not at all). The as- Repetition

grd2-regexp.tex (6eb247d0aa1863fd)

200 B Regular Expressions

terisk itself does not stand for any characters in the input, but only modifies the
preceding expression—consequently, the shell wildcard pattern “a*.txt” corre-
sponds to the regular expression “^a.*\\.txt” (remember the “anchoring” of the
expression to the beginning of the input line and that an unescaped dot matches
any character). Repetition has precedence over concatenation; “ab*” is a single “a”precedence

followed by arbitrarily many “b” (including none at all), not an arbitrary number
of repetitions of “ab”.

B.2 Extras

The explanation from the previous section applies to nearly all Linux programs
that dealwith regular expressions. Various programs support different extensionsextensions

providing either notational convenience or additional functionality. The most ad-
vanced implementations today are found in modern scripting languages like Tcl,
Perl or Python, whose implementations by now far exceed the power of regular
expressions in their original computer science sense.

Some common extensions are:

Word brackets The “\<” matches the beginning of a word (a place where a non-
letter precedes a letter). Analogously, “\>”matches the end of aword (where
a letter is followed by a non-letter).

Grouping Parentheses (“(…)”) allow for the repetition of concatenations of reg-
ular expressions: “a(bc)*” matches a “a” followed by arbitrarily many repe-
titions of “bc”.

Alternative With the vertical bar (“|”) you can select between several regular ex-
pressions. The expression “motor (bike|cycle|boat)” matches “motor bike”,
“motor cycle”, and “motor boat” but nothing else.

Optional Expression The question mark (“?”) makes the preceding regular ex-
pression optional, i. e., it must occur either once or not at all. “ferry(man)?”
matches either “ferry” or “ferryman”.

At-Least-Once Repetition The plus sign (“+”) corresponds to the repetition op-
erator “*”, except that the preceding regular expression must occur at least
once.

Given Number of Repetitions You can specify a minimum andmaximum num-
ber of repetitions in braces: “ab{2,4}” matches “abb”, “abbb”, and “abbbb”, but
not “ab” or “abbbbb”. You may omit the minimum as well as the maximum
number; if there is no minimum number, 0 is assumed, if there is no maxi-
mum number, “infinity” is assumed.

Back-Reference With an expression like “\\𝑛” you may call for a repetition of
that part of the input that matched the parenthetical expression no. 𝑛 in the
regular expression. “(ab)\\1”, for example, matches “abab”. More detail is
available in the documentation of GNU grep.

Non-Greedy Matching The “*”, “+”, and “?” operators are usually “greedy”, i. e.,
they try to match as much of the input as possible: “^a.*a” applied to the in-
put string “abacada” matches “abacada”, not “aba” or “abaca”. However, there
are corresponding “non-greedy” versions “*?”, “+?”, and “??” which try
to match as little of the input as possible. In our example, “^a.*?a” would
match “aba”. The braces operator may also offer a non-greedy version.

Not every program supports every extension. Table B.1 shows an overview of
themost important programs. Perl and Tcl in particular support lots of extensions
that have not been discussed here.

B Regular Expressions 201

Table B.1: Regular expression support

Extension GNU grep GNU egrep trad egrep sed awk Perl Tcl
Word brackets • • • •1 •1 •2 •2
Grouping •1 • • •1 • • •
Alternative •1 • • • • • •
Option •1 • • •1 • • •
At-least-once •1 • • •1 • • •
Limits •1 • ∘ •1 •1 • •
Back-Reference ∘ • • • ∘ • •
Non-Greedy ∘ ∘ ∘ ∘ ∘ • •

•: supported; ∘: not supported
Notes: 1. Requires a preceding backslash (“\”), e. g. “ab\+” instead of “ab+”. 2. Completely different
syntax (see documentation).

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

C
LPIC-1 Certification

C.1 Overview

The Linux Professional Institute (LPI) is a vendor-independent non-profit organi-
zation dedicated to furthering the professional use of Linux. One aspect of the
LPI’s work concerns the creation and delivery of distribution-independent certi-
fication exams, for example for Linux professionals. These exams are available
world-wide and enjoy considerable respect among Linux professionals and em-
ployers.

Through LPIC-1 certification you can demonstrate basic Linux skills, as re-
quired, e. g., for system administrators, developers, consultants, or user support
professionals. The certification is targeted towards Linux users with 1 to 3 years
of experience and consists of two exams, LPI-101 and LPI-102. These are offered
as computer-based multiple-choice and fill-in-the-blanks tests in all Pearson VUE
and Thomson Prometric test centres. On its web pages at http://www.lpi.org/, the
LPI publishes objectives outlining the content of the exams. objectives

This trainingmanual is part of LinupFrontGmbH’s curriculum for preparation
of the LPI-101 exam and covers part of the official examination objectives. Refer
to the tables below for details. An important observation in this context is that
the LPIC-1 objectives are not suitable or intended to serve as a didactic outline for
an introductory course for Linux. For this reason, our curriculum is not strictly
geared towards the exams or objectives as in “Take classes 𝑥 and 𝑦, sit exam 𝑝,
then take classes 𝑎 and 𝑏 and sit exam 𝑞.” This approach leads many prospective
students to the assumption that, being complete Linux novices, they could book
𝑛 days of training and then be prepared for the LPIC-1 exams. Experience shows
that this does not work in practice, since the LPI exams are deviously constructed
such that intensive courses and exam-centred “swotting” do not really help.

Accordingly, our curriculum is meant to give you a solid basic knowledge of
Linux bymeans of a didactically reasonable course structure, and to enable you as
a participant to work independently with the system. LPIC-1 certification is not a
primary goal or a goal in itself, but a natural consequence of your newly-obtained
knowledge and experience.

C.2 Exam LPI-102

The following table displays the objectives for the LPI-102 exam and the materials
covering these objectives. The numbers in the columns for the individualmanuals
refer to the chapters containing the material in question.

grd2-objs-102.tex (6eb247d0aa1863fd)

204 C LPIC-1 Certification

No Wt Title ADM1 GRD2 ADM2
105.1 4 Customize and use the shell environment – 1–2 –
105.2 4 Customize or write simple scripts – 2–5 –
105.3 2 SQL data management – 8 –
106.1 2 Install and configure X11 – 11 –
106.2 1 Setup a display manager – 11 –
106.3 1 Accessibility – 12 –
107.1 5 Manage user and group accounts and related system files 2 – –
107.2 4 Automate system administration tasks by scheduling jobs – 9 –
107.3 3 Localisation and internationalisation – 10 –
108.1 3 Maintain system time – – 8
108.2 3 System logging – – 1–2
108.3 3 Mail Transfer Agent (MTA) basics – – 11
108.4 2 Manage printers and printing – – 9
109.1 4 Fundamentals of internet protocols – – 3–4
109.2 4 Basic network configuration – – 4–5, 7
109.3 4 Basic network troubleshooting – – 4–5, 7
109.4 2 Configure client side DNS – – 4
110.1 3 Perform security administration tasks 2 – 4–5, 13
110.2 3 Setup host security 2 – 4, 6–7, 13
110.3 3 Securing data with encryption – – 10, 12

C.3 LPI Objectives In This Manual

105.1 Customize and use the shell environment

Weight 4
Description Candidates should be able to customize shell environments tomeet
users’ needs. Candidates should be able to modify global and user profiles.
Key Knowledge Areas

• Set environment variables (e.g. PATH) at login or when spawning a new
shell

• Write Bash functions for frequently used sequences of commands
• Maintain skeleton directories for new user accounts
• Set command search path with the proper directory

The following is a partial list of the used files, terms and utilities:

• .

• source

• /etc/bash.bashrc

• /etc/profile

• env

• export

• set

• unset

• ~/.bash_profile

• ~/.bash_login

• ~/.profile

• ~/.bashrc

• ~/.bash_logout

• function

• alias

• lists

C LPIC-1 Certification 205

105.2 Customize or write simple scripts

Weight 4
Description Candidates should be able to customize existing scripts, or write
simple new Bash scripts.
Key Knowledge Areas

• Use standard sh syntax (loops, tests)
• Use command substitution
• Test return values for success or failure or other information provided by a
command

• Perform conditional mailing to the superuser
• Correctly select the script interpreter through the shebang (#!) line
• Manage the location, ownership, execution and suid-rights of scripts

The following is a partial list of the used files, terms and utilities:

• for

• while

• test

• if

• read

• seq

• exec

105.3 SQL data management

Weight 2
Description Candidates should be able to query databases andmanipulate data
using basic SQL commands. This objective includes performing queries involving
joining of 2 tables and/or subselects.
Key Knowledge Areas

• Use of basic SQL commands
• Perform basic data manipulation

The following is a partial list of the used files, terms and utilities:

• insert

• update

• select

• delete

• from

• where

• group by

• order by

• join

106.1 Install and configure X11

Weight 2
Description Candidates should be able to install and configure X11.
Key Knowledge Areas

• Verify that the video card and monitor are supported by an X server
• Awareness of the X font server
• Basic understanding and knowledge of the X Window configuration file

The following is a partial list of the used files, terms and utilities:

206 C LPIC-1 Certification

• /etc/X11/xorg.conf

• xhost

• DISPLAY

• xwininfo

• xdpyinfo

• X

106.2 Setup a display manager

Weight 1
Description Candidates should be able to describe the basic features and config-
uration of the LightDM display manager. This objective covers awareness of the
displaymanagers XDM (XDisplayManger), GDM (GnomeDisplayManager) and
KDM (KDE Display Manager).
Key Knowledge Areas

• Basic configuration of LightDM
• Turn the display manager on or off
• Change the display manager greeting
• Awareness of XDM, KDM and GDM

The following is a partial list of the used files, terms and utilities:

• lightdm

• /etc/lightdm/

106.3 Accessibility

Weight 1
Description Demonstrate knowledge and awareness of accessibility technolo-
gies.
Key Knowledge Areas

• Basic knowledge of keyboard accessibility settings (AccessX)
• Basic knowledge of visual settings and themes
• Basic knowledge of assistive technology (ATs)

The following is a partial list of the used files, terms and utilities:

• Sticky/Repeat Keys
• Slow/Bounce/Toggle Keys
• Mouse Keys
• High Contrast/Large Print Desktop Themes
• Screen Reader
• Braille Display
• Screen Magnifier
• On-Screen Keyboard
• Gestures (used at login, for example GDM)
• Orca
• GOK
• emacspeak

107.2 Automate system administration tasks by scheduling jobs

Weight 4
Description Candidates should be able to use cron or anacron to run jobs at reg-
ular intervals and to use at to run jobs at a specific time.
Key Knowledge Areas

C LPIC-1 Certification 207

• Manage cron and at jobs
• Configure user access to cron and at services
• Configure anacron

The following is a partial list of the used files, terms and utilities:

• /etc/cron.{d,daily,hourly,monthly,weekly}/
• /etc/at.deny

• /etc/at.allow

• /etc/crontab

• /etc/cron.allow

• /etc/cron.deny

• /var/spool/cron/

• crontab

• at

• atq

• atrm

• anacron

• /etc/anacrontab

107.3 Localisation and internationalisation

Weight 3
Description Candidates should be able to localize a system in a different lan-
guage than English. As well, an understanding of why LANG=C is useful when
scripting.
Key Knowledge Areas

• Configure locale settings and environment variables
• Configure timezone settings and environment variables

The following is a partial list of the used files, terms and utilities:

• /etc/timezone

• /etc/localtime

• /usr/share/zoneinfo/

• LC_*

• LC_ALL

• LANG

• TZ

• /usr/bin/locale

• tzselect

• timedatectl

• date

• iconv

• UTF-8
• ISO-8859
• ASCII
• Unicode

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

D
Command Index

This appendix summarises all commands explained in the manual and points to
their documentation as well as the places in the text where the commands have
been introduced.

X Starts the appropriate X server for the system X(1) 169
anacron Executes periodic job even if the computer does not run all the time

anacron(8) 138
at Registers commands for execution at a future point in time at(1) 132
atd Daemon to execute commands in the future using at atd(8) 134
atq Queries the queue of commands to be executed in the future

atq(1) 133
atrm Cancels commands to be executed in the future atrm(1) 134
awk Programming language for text processing and system administration

awk(1) 98
bash The “Bourne-Again-Shell”, an interactive command interpreter

bash(1) 14
batch Executes commands as soon as the system load permits batch(1) 133
case Shell command for pattern-based multi-way branching bash(1) 44
chmod Sets access modes for files and directories chmod(1) 24
chsh Changes a user’s login shell chsh(1) 14
cmp Byte-by-byte comparison of two files cmp(1) 94
crontab Manages commands to be executed at regular intervals crontab(1) 137
dialog Allows GUI-like interaction controls on a character screen

dialog(1) 80
env Outputs the process environment, or starts programs with an adjusted

environment env(1) 33
exec Starts a new program in the current shell process bash(1) 52
export Defines and manages environment variables bash(1) 33
file Guesses the type of a file’s content, according to rules file(1) 14
find Searches files matching certain given criteria find(1), Info: find 14
for Shell command to loop over the elements of a list bash(1) 46
iconv Converts between character encodings iconv(1) 145
kdialog Allows use of KDE widgets from shell scripts kdialog(1) 84
locale Displays information pertaining to locales locale(1) 149, 150
localedef Compiles locale definition files localedef(1) 149
logrotate Manages, truncates and “rotates” log files logrotate(8) 62
lspci Displays information about devices on the PCI bus lspci(8) 167
mkfifo Creates FIFOs (named pipes) mkfifo(1) 67
mktemp Generates a unique temporary filename (securely) mktemp(1) 94
printf Formatted output of numbers and strings printf(1), bash(1) 69

210 D Command Index

seq Writes number sequences to standard output seq(1) 67
set Manages shell variables and options bash(1) 32
strace Logs a process’s system calls strace(1) 18
test Evaluates logical expressions on the command line test(1), bash(1) 41
timeconfig [Red Hat] Allows the convenient configuration of the system-wide

time zone timeconfig(8) 153
tr Substitutes or deletes characters on its standard input tr(1) 69
tzselect Allows convenient interactive selection of a time zone

tzselect(1) 153
unbuffer Suppresses a process’s output buffering (part of the expect package)

unbuffer(1) 67
uniq Replaces sequences of identical lines in its input by single specimens

uniq(1) 104
unset Deletes shell or environment variables bash(1) 34
until Shell”=Kommando for a loop that executes “until” a condition evaluates

as true bash(1) 48
while Shell command for a loop that executes “while” a condition evaluates to

true bash(1) 47
xauth X server access control via “magic cookies” xauth(1) 178
xdpyinfo Shows information about the current X display xdpyinfo(1) 173
xhost Allows clients on other hosts to access the X server via TCP

xhost(1) 177
xkbset Controls keyboard setup options for X11 xkbset(1) 182
xmessage Displays a message or query in an X11 window xmessage(1) 84
xwininfo Displays information about an X window xwininfo(1) 174
zdump Outputs the current time or time zone definitions for various time zones

zdump(1) 153
zic Compiler for time zone data files zic(8) 153

$ echo tux
tux
$ ls
hallo.c
hallo.o
$ /bin/su -
Password:

Index

This index points to the most important key words in this document. Particu-
larly important places for the individual key words are emphasised by bold type.
Sorting takes place according to letters only; “~/.bashrc” is therefore placed under
“B”.

!= (awk operator), 101
!~ (awk operator), 101
(shell variable), 57
$ (awk operator), 99, 101, 106
$ (shell variable), 59, 94
&& (awk operator), 101
* (awk operator), 101
* (shell variable), 36–37, 82, 187
+ (awk operator), 101
- (awk operator), 101
. (shell command), 24
/ (awk operator), 101
< (awk operator), 101
<= (awk operator), 101
= (awk operator), 101
== (awk operator), 101
> (awk operator), 101
>= (awk operator), 101
? (shell variable), 34, 40, 188
@ (shell variable), 36–37, 39, 82, 187
^ (awk operator), 101
_ (environment variable), 133
~ (awk operator), 101
0 (shell variable), 57
1 (shell variable), 47
2 (shell variable), 47
$3 (awk operator), 101

Aho, Alfred V., 98
alias, 16
alias (shell command), 16–17
anacron, 138–139, 197

-s (option), 139
-u (option), 197

arrays, 82
associative, 102

asort (awk Function), 193
at, 11, 132–135, 137

-c (option), 134
-f (option), 133
-q (option), 134

atd, 134–135
-b (option), 134
-d (option), 134
-l (option), 134

atq, 133–134
-q (option), 134

atrm, 134
auk, 98
awk

!=, 101
!~, 101
$, 99, 101, 106
&&, 101
*, 101
+, 101
-, 101
/, 101
<, 101
<=, 101
=, 101
==, 101
>, 101
>=, 101
^, 101
~, 101
$3, 101
asort, 193
close, 110
FILENAME, 106
FNR, 106
for, 103–104
FS, 102
getline, 110
gsub, 193
if, 105
int, 103
length, 103
log, 103
NF, 101–102
OFS, 107
print, 107

212 Index

printf, 106, 110
return, 103
RS, 102
sqrt, 103
sub, 103, 109
substr, 103
tolower, 193

awk, 11, 26–27, 37, 88, 97–107, 109–111,
128, 150, 193–194, 199–200

-F (option), 100, 102
-f (option), 98

banner, 51
basename, 37, 61
BASH (environment variable), 17–18
bash, 14–20, 24–26, 32–34, 37–41, 50, 52,

60, 69, 74–76, 82, 92, 150,
186–188

-l (option), 17
BASH_ENV (environment variable), 18
~/.bash_history, 104
.bash_login, 17–18, 21
.bash_logout, 18
.bash_profile, 17–18, 21, 150
.bashrc, 18–19, 21
batch, 133–135
/bin/sh, 136
bind, 20

-f (option), 20
Bourne, Stephen L., 39
Boyce, Raymond F., 115
break (shell command), 48–50, 76

C, 47
cal, 16

-m (option), 16
case (shell command), 41, 44, 65, 188
cat, 15, 48, 91
cd (shell command), 33
Chamberlin, Donald D., 115
chmod, 24, 26, 190

--reference (option), 190
chown, 190

--reference (option), 190
chsh, 14–15

-s (option), 15
Clancy, Tom, 153
close (awk Function), 110
cmd (shell command), 48
cmp, 94

-s (option), 94
Codd, Edgar F., 115
continue (shell command), 48–50, 76,

189
cp, 189
cron, 11, 132, 135–139, 197
crontab, 135–137, 196–197

-e (option), 137
-l (option), 137, 197

-r (option), 137, 197
-u (option), 137

csh, 14
cut, 37, 56–57, 69, 74, 88, 98–99, 150

-d (option), 150

dash, 186
date, 16, 147, 150, 196
debconf, 153
definitions, 12
/dev/tty, 81
df, 68–70
dialog, 80–84

--clear (option), 81
--menu (option), 81
--msgbox (option), 84
--no-cancel (option), 84
--title (option), 81

diff, 29
-r (option), 29

Dijkstra, Edsger, 39
dirname, 61
DISPLAY (environment variable), 133,

160–161, 169, 177–178
display name, 160
done (shell command), 49
du, 109, 111

-s (option), 111

echo (shell command), 25, 30, 32, 40–41,
57, 68, 186

EDITOR (environment variable), 137
egrep, 43, 200
elif (shell command), 43–44
else (shell command), 42, 44
env, 33
environment variable

_, 133
BASH, 17–18
BASH_ENV, 18
DISPLAY, 133, 160–161, 169, 177–178
EDITOR, 137
HOME, 34, 39, 136
INPUTRC, 20
LANG, 146–147, 149–150
LANGUAGE, 147
LC_*, 149–150
LC_ADDRESS, 149
LC_ALL, 149
LC_COLLATE, 149
LC_CTYPE, 149
LC_MEASUREMENT, 149
LC_MESSAGES, 149
LC_MONETARY, 149
LC_NAME, 149
LC_NUMERIC, 149–150
LC_PAPER, 149
LC_TELEPHONE, 149
LC_TIME, 149

Index 213

LOGNAME, 43, 136
MAILTO, 136
PAGER, 32
PATH, 16, 19, 24, 34, 39, 186
ROOT, 29
SHELL, 136
TERM, 133
TMPDIR, 94
TZ, 153–154
VISUAL, 137

environment variables, 32
/etc/anacrontab, 138
/etc/at.allow, 134
/etc/at.deny, 134
/etc/at.deny, 134
/etc/bash.bashrc, 18–19
/etc/bash.bashrc.local, 19
/etc/bash.local, 20
/etc/cron.allow, 137, 197
/etc/cron.d, 136
/etc/cron.daily, 136–137
/etc/cron.deny, 137, 197
/etc/cron.hourly, 136–137
/etc/crontab, 136–137
/etc/default, 65
/etc/group, 56–59, 110
/etc/gshadow, 58
/etc/init.d, 14
/etc/inputrc, 20
/etc/lightdm/lightdm.conf, 170
/etc/lightdm/lightdm.conf.d, 170
/etc/localtime, 153–154
/etc/motd, 86
/etc/passwd, 48, 56, 84, 103, 110, 136
/etc/profile, 17, 19, 25
/etc/profile.local, 19
/etc/shells, 15, 19, 76, 185
/etc/skel, 19–20
/etc/sysconfig, 65
/etc/sysconfig/clock, 153
/etc/timezone, 152–153
/etc/X11/gdm, 173
/etc/X11/rgb.txt, 163
/etc/X11/xdm, 172
/etc/X11/xinit/xinitrc, 169
/etc/X11/xorg.conf, 163
exec, 52, 189
exit, 39
exit (shell command), 50, 57, 186, 189
expect, 67
export

-n (option), 33
export (shell command), 33

fgrep, 188–189
fi (shell command), 42
file, 14, 185
FILENAME (awk variable), 106
find, 14, 18, 185

FNR (awk variable), 106
fonts.alias, 176
fonts.dir, 176
fonts.scale, 176
for (awk command), 103–104
for (shell command), 38, 46–47, 49, 76
Fox, Brian, 16
FS (awk variable), 102
FUNCNAME (shell variable), 52

gawk, 98
gdm, 170, 173
gdm.conf, 173
gdmconfig, 173
getline (awk Function), 110
grep, 14–15, 40, 56–59, 67–68, 80, 88, 90,

98, 185, 187, 189–192, 200
-e (option), 191
-f (option), 68
--line-buffered (option), 67

groups, 57
gsub (awk Function), 193

Hakim, Pascal, 138
#hash (shell variable), 69
head, 90, 192
HISTSIZE (shell variable), 19
HOME (environment variable), 34, 39, 136
$HOME/.bash_profile, 25
httpd.conf, 90

iconv, 145
-c (option), 145
-l (option), 145
-o (option), 145
--output (option), 145

if (awk command), 105
if (shell command), 41–42, 44, 50, 101,

188
IFS (shell variable), 38–39, 74, 79
Inkscape, 172
INPUTRC (environment variable), 20
.inputrc, 20
int (awk Function), 103
Iteration, 46

join, 88

kcontrol, 173
kdialog, 84
kdm, 170, 173
Kernighan, Brian W., 27, 98
kill, 40

-l (option), 40
killall, 63
ksh, 14

LANG (environment variable), 146–147,
149–150

LANGUAGE (environment variable), 147
LC_* (environment variable), 149–150

214 Index

LC_ADDRESS (environment variable), 149
LC_ALL (environment variable), 149
LC_COLLATE (environment variable), 149
LC_CTYPE (environment variable), 149
LC_MEASUREMENT (environment variable),

149
LC_MESSAGES (environment variable), 149
LC_MONETARY (environment variable), 149
LC_NAME (environment variable), 149
LC_NUMERIC (environment variable),

149–150
LC_PAPER (environment variable), 149
LC_TELEPHONE (environment variable),

149
LC_TIME (environment variable), 149
length (awk Function), 103
Libes, Don, 67
ll, 18
locale, 149–150, 155

-a (option), 150
localedef, 149
log (awk Function), 103
logger, 133
.login, 18
login, 17, 43
LOGNAME (environment variable), 43, 136
logrotate, 62
ls, 15, 40, 63, 150
lspci, 167

mail, 68
MAILTO (environment variable), 136
man, 32
mawk, 98
mkdir, 42, 62

-p (option), 62
mkfifo, 67
mkfontdir, 176
mktemp, 94

-p (option), 94
-t (option), 94

mv, 60–61

𝑛 (shell variable), 35
name (shell variable), 35
newuser (shell command), 75, 191
NF (awk variable), 101–102
nice, 134

objectives, 203
OFS (awk variable), 107
Open Group, 158
oversed, 95

PAGER (environment variable), 32
PAGER (shell variable), 32
paste, 88, 98
PATH (environment variable), 16, 19, 24,

34, 39, 186

Perl, 200
positional parameters, 61
present (shell command), 82
print (awk command), 107
printf (awk command), 106, 110
printf, 150
printf (shell command), 69
.profile, 17–19, 21, 186
PS1 (shell variable), 16, 19, 34
PS3 (shell variable), 77
Python, 200

Ramey, Chet, 16
RANDOM (shell variable), 76
read (shell command), 48, 67–69, 71,

74–75, 191
return (awk command), 103
return (shell command), 79
return value, 40
rm, 16
ROOT (environment variable), 29
$ROOT/etc/, 29
RS (awk variable), 102

sed, 11, 15, 37, 61, 87–96, 98, 103, 192,
199–200

-e (option), 88, 95
--expression= (option), 95
-f (option), 88
-i (option), 95
-n (option), 90
-s (option), 88–89

select (shell command), 76–77, 79, 84,
191

seq, 67, 190
set

-C (option), 17
-n (option), 29
-o noclobber (option), 17
-o xtrace (option), 17
-v (option), 30
-x (option), 17, 29

set (shell command), 17, 29–30, 32
sh, 14
Shaw, George Bernard, 146
shell, 14

#, 57
$, 59, 94
*, 36–37, 82, 187
., 24
?, 34, 40, 188
@, 36–37, 39, 82, 187
0, 57
1, 47
2, 47
alias, 16–17
break, 48–50, 76
case, 41, 44, 65, 188
cd, 33

Index 215

cmd, 48
continue, 48–50, 76, 189
done, 49
echo, 25, 30, 32, 40–41, 57, 68, 186
elif, 43–44
else, 42, 44
exit, 50, 57, 186, 189
export, 33
fi, 42
for, 38, 46–47, 49, 76
FUNCNAME, 52
#hash, 69
HISTSIZE, 19
if, 41–42, 44, 50, 101, 188
IFS, 38–39, 74, 79
𝑛, 35
name, 35
newuser, 75, 191
PAGER, 32
present, 82
printf, 69
PS1, 16, 19, 34
PS3, 77
RANDOM, 76
read, 48, 67–69, 71, 74–75, 191
return, 79
select, 76–77, 79, 84, 191
set, 17, 29–30, 32
shift, 35, 61, 95
source, 24–25, 42, 52, 186
suffix, 61
test, 41–43, 48, 75, 79, 186
then, 42, 189
trap, 50–51, 81
typeset, 52
unalias, 17
unset, 34
until, 47–50
while, 39, 47–50, 68, 101

SHELL (environment variable), 136
shell scripts, 14
shift (shell command), 35, 61, 95
signals, 50
sort, 59, 88, 98–99, 110, 193–194
source (shell command), 24–25, 42, 52,

186
sqlite3, 118
sqrt (awk Function), 103
ssh, 17
ssh-agent, 33
startx, 169, 173, 178
strace, 18
su, 133, 137
sub (awk Function), 103, 109
substr (awk Function), 103
suffix (shell variable), 61
syslogd, 63, 67, 134, 136
system load, 133

tail, 90
Tcl, 197, 200
tcpdump, 44
tcsh, 14, 16, 185
TERM (environment variable), 133
test

-eq (option), 41
-ge (option), 41
-gt (option), 41
-le (option), 41
-lt (option), 41
-ne (option), 41
-s (option), 94
-z (option), 75

test (shell command), 41–43, 48, 75, 79,
186

testing loop, 46
then (shell command), 42, 189
Thomas, John C., 164
timeconfig, 153
/tmp, 94
/tmp/oversed.z19516, 94
TMPDIR (environment variable), 94
tolower (awk Function), 193
tr, 69, 88, 91, 193
trap (shell command), 50–51, 81
typeset

-F (option), 52
-f (option), 52

typeset (shell command), 52
TZ (environment variable), 153–154
tzconfig, 153
tzselect, 153
Tzur, Itai, 138

unalias (shell command), 17
unbuffer, 67
uniq, 104
unset, 150
unset (shell command), 34
until (shell command), 47–50
useradd, 19

-m (option), 19
/usr/lib/xorg/modules, 163
/usr/share/i18n/locales, 149
/usr/share/lightdm/lightdm.conf.d, 170
/usr/share/zoneinfo, 152–154
/usr/share/zoneinfo/Europe/Berlin, 153

/var/log/messages, 67
/var/spool/atjobs, 134
/var/spool/atspool, 134
/var/spool/cron/allow, 137
/var/spool/cron/crontabs, 135–136
/var/spool/cron/deny, 137, 197
variable, 100
variables

references to, 32
substitution, 32

216 Index

vi, 137
VISUAL (environment variable), 137
VNC, 171

watch, 197
wc, 14, 185
Weinberger, Peter J., 98
while (shell command), 39, 47–50, 68,

101
words, 38

X, 163, 169
-layout (option), 168

X clients, 158
X protocol, 158
X server, 158
X.org, 158
xauth, 178
~/.Xauthority, 178
xclock, 169
xdm, 170, 172–173, 178
xdpyinfo, 173–174
xedit, 177
xfontsel, 177
xfs, 176–177
xhost, 177–178
xinit, 169, 173
~/.xinitrc, 169, 173
xkbset, 182
xlsfonts, 177
xman, 177
xmessage, 84, 86
Xorg, 163

-nolisten tcp (option), 178
xorg.conf, 163, 177
Xresources, 172
Xservers, 172
Xsession, 173
~/.xsession, 19, 173
xset, 176–177

q (option), 176
Xsetup, 172
xterm, 18, 144, 162, 169, 177
Xvnc, 171
xwininfo, 174–175

zdump, 153, 197
zic, 153

	Contents
	List of Tables
	List of Figures
	Preface
	Shell Generalities
	Shells and Shell Scripts
	Shell Types
	The Bourne-Again Shell
	The Essentials
	Login Shells and Interactive Shells
	Non-Interactive Shell
	Permanent Configuration Changes
	Keyboard Maps and Abbreviations

	Shell Scripts
	Introduction
	Invoking Shell Scripts
	Shell Script Structure
	Planning Shell Scripts
	Error Types
	Error Diagnosis

	The Shell as a Programming Language
	Variables
	Arithmetic Expressions
	Command Execution
	Control Structures
	Overview
	A Program's Return Value as a Control Parameter
	Conditionals and Multi-Way Branches
	Loops
	Loop Interruption

	Shell Functions
	The *exec Command

	Practical Shell Scripts
	Shell Programming in Practice
	Around the User Database
	File Operations
	Log Files
	System Administration

	Interactive Shell Scripts
	Introduction
	The read Command
	Menus with select
	``Graphical'' Interfaces Using dialog

	The *sed Stream Editor
	Introduction
	Addressing
	sed Commands
	Printing and Deleting Lines
	Inserting and Changing
	Character Transformations
	Searching and Replacing

	sed in Practice

	The awk Programming Language
	What is awk?
	awk Programs
	Expressions and Variables
	awk in Practice

	SQL
	Foundations of SQL
	Summary
	Applications of SQL

	Defining Tables
	Data Manipulation and Queries
	Relations
	Practical Examples

	Time-controlled Actions—*cron and *at
	Introduction
	One-Time Execution of Commands
	*at and *batch
	at Utilities
	Access Control

	Repeated Execution of Commands
	User Task Lists
	System-Wide Task Lists
	Access Control
	The *crontab Command
	Anacron

	Localisation and Internationalisation
	Summary
	Character Encodings
	Linux Language Settings
	Localisation Settings
	Time Zones

	The X Window System
	Fundamentals
	X Window System configuration
	Display Managers
	X Server Starting Fundamentals
	The LightDM Display Manager
	Other Display Managers

	Displaying Information
	The Font Server
	Remote Access and Access Control

	Linux Accessibility
	Introduction
	Keyboard, Mouse, and Joystick
	Screen Display

	Sample Solutions
	Regular Expressions
	Overview
	Extras

	LPIC-1 Certification
	Overview
	Exam LPI-102
	LPI Objectives In This Manual

	Command Index
	Index

