
OpenOffice.org 2.3

Developer's Guide

June 2007

This documentation is distributed under licenses restricting its use. You may
make copies of and redistribute it, but you may not modify or make derivative
works of this documentation without prior written authorization of Sun and its
licensors, if any.

Copyright 2007 Sun Microsystems, Inc.

Contents

 1 Reader's Guide 29

1.1 What This Manual Covers .. 29
1.2 How This Book is Organized .. 29
1.3 OpenOffice.org Version History .. 30
1.4 Related documentation .. 30
1.5 Conventions .. 31
1.6 Acknowledgments ... 31

 2 First Steps 33

2.1 Programming with UNO .. 33
2.2 Fields of Application for UNO ... 33
2.3 Getting Started .. 34

2.3.1 Required Files .. 34
2.3.2 Installation Sets ... 34
2.3.3 Configuration .. 35

Enable Java in OpenOffice.org ... 35
Use Java UNO class files ... 35
Add the API Reference to your IDE .. 35

2.3.4 First Contact .. 36
Getting Started ... 36
Service Managers ... 38
Failed Connections .. 39

2.4 How to get Objects in OpenOffice.org .. 39
2.5 Working with Objects .. 40

2.5.1 Objects, Interfaces, and Services ... 41
Objects ... 41
Interfaces ... 41
Services .. 41

2.5.2 Using Services ... 43
Using Interfaces .. 45
Using Properties ... 47

2.5.3 Example: Working with a Spreadsheet Document .. 47
2.5.4 Common Types ... 48

Basic Types .. 49
Strings .. 49
Enum Types and Groups of Constants ... 50

2.5.5 Struct ... 50
2.5.6 Any ... 51
2.5.7 Sequence ... 52
2.5.8 Element Access .. 53

Name Access ... 55

Index Access ... 56
Enumeration Access .. 56

2.6 How do I know Which Type I Have? .. 57
2.7 Example: Hello Text, Hello Table, Hello Shape ... 58

2.7.1 Common Mechanisms for Text, Tables and Drawings ... 58
2.7.2 Creating Text, Tables and Drawing Shapes .. 63

Text, Tables and Drawings in Writer .. 63
Text, Tables and Drawings in Calc .. 64
Drawings and Text in Draw ... 65

 3 Professional UNO 67

3.1 Introduction .. 67
3.2 API Concepts .. 68

3.2.1 Data Types ... 68
Simple Types .. 68
The Any Type ... 69
Interfaces ... 69
Services .. 71
Structs .. 76
Predefined Values .. 77
Sequences .. 78
Modules ... 78
Exceptions ... 78
Singletons .. 79

3.2.2 Understanding the API Reference .. 79
Specification, Implementation and Instances .. 79
Object Composition ... 80

3.3 UNO Concepts .. 81
3.3.1 UNO Interprocess Connections .. 81

Starting OpenOffice.org in Listening Mode ... 81
Importing a UNO Object ... 82
Characteristics of the Interprocess Bridge .. 83
Opening a Connection ... 84
Creating the Bridge .. 86
Closing a Connection ... 87
Example: A Connection Aware Client .. 88

3.3.2 Service Manager and Component Context ... 90
Service Manager ... 90
Component Context ... 91

3.3.3 Using UNO Interfaces .. 94
3.3.4 Properties ... 97
3.3.5 Collections and Containers ... 101
3.3.6 Event Model .. 104
3.3.7 Exception Handling .. 104

User-Defined Exceptions .. 105
Runtime Exceptions ... 106
Good Exception Handling ... 106

3.3.8 Lifetime of UNO Objects ... 107
acquire() and release() ... 107
The XComponent Interface ... 108
Children of the XEventListener Interface ... 110
Weak Objects and References .. 111
Differences Between the Lifetime of C++ and Java Objects 111

3.3.9 Object Identity ... 113
3.4 UNO Language Bindings .. 113

3.4.1 Java Language Binding .. 114
Getting a Service Manager ... 114
Transparent Use of Office UNO Components ... 115
Handling Interfaces ... 117
Type Mappings .. 119

3.4.2 C++ Language Binding .. 131
Library Overview ... 131
System Abstraction Layer ... 133
File Access ... 133
Threadsafe Reference Counting ... 133
Threads and Thread Synchronization ... 134
Socket and Pipe .. 134
Strings .. 134
Establishing Interprocess Connections ... 135
Transparent Use of Office UNO Components ... 136
Type Mappings .. 137
Using Weak References ... 145
Exception Handling in C++ .. 146

3.4.3 OpenOffice.org Basic .. 147
Handling UNO Objects ... 147
Mapping of UNO and Basic Types ... 153
Case Sensitivity .. 161
Exception Handling ... 161
Listeners .. 162

3.4.4 Automation Bridge ... 164
Introduction .. 164
Requirements .. 165
A Quick Tour .. 165
The Service Manager Component ... 167
Using UNO from Automation ... 169
Using Automation Objects From UNO .. 175
Type Mappings .. 177
Automation Objects with UNO Interfaces ... 191

DCOM ... 194
The Bridge Services ... 196
Unsupported COM Features .. 198

3.4.5 CLI Language Binding ... 199
About the Language Binding ... 199
Terms ... 199
Requirements .. 199
The Language Binding DLLs .. 200
Type Mapping .. 200
Lifetime Management and Obtaining Interfaces ... 212
Writing Client Programs ... 213

 4 Writing UNO Components 217

4.1 Required Files ... 218
4.2 Using UNOIDL to Specify New Components ... 219

4.2.1 Writing the Specification ... 219
Preprocessing ... 220
Grouping Definitions in Modules ... 220
Simple Types .. 221
Defining an Interface ... 222
Defining a Service .. 225
Defining a Sequence .. 227
Defining a Struct .. 228
Defining an Exception ... 229
Predefining Values .. 229
Using Comments .. 231
Singleton .. 232
Reserved Types .. 232
Published Entities .. 232

4.2.2 Generating Source Code from UNOIDL Definitions .. 233
4.3 Component Architecture ... 234
4.4 Core Interfaces to Implement ... 235

4.4.1 XInterface ... 237
Requirements for queryInterface() .. 238
Reference Counting ... 238

4.4.2 XTypeProvider .. 238
Provided Types .. 239
ImplementationID .. 239

4.4.3 XServiceInfo ... 239
Implementation Name .. 239
Supported Service Names .. 240

4.4.4 XWeak .. 240
4.4.5 XComponent ... 241

Disposing of an XComponent .. 241

4.4.6 XInitialization ... 241
4.4.7 XMain .. 242
4.4.8 XAggregation ... 242
4.4.9 XUnoTunnel ... 242

4.5 Simple Component in Java ... 243
4.5.1 Class Definition with Helper Classes ... 244

XInterface, XTypeProvider and XWeak .. 244
XServiceInfo ... 244

4.5.2 Implementing your own Interfaces .. 245
4.5.3 Providing a Single Factory Using Helper Method ... 246
4.5.4 Write Registration Info Using Helper Method ... 247
4.5.5 Implementing without Helpers .. 248

XInterface ... 248
XTypeProvider .. 248
XComponent .. 249

4.5.6 Storing the Service Manager for Further Use ... 250
4.5.7 Create Instance with Arguments .. 250
4.5.8 Possible Structures for Java Components ... 251

One Implementation per Component File ... 251
Multiple Implementations per Component File .. 253

4.5.9 Running and Debugging Java Components ... 255
Debugging ... 257
The Java Environment in OpenOffice.org .. 258
Troubleshooting ... 259

4.6 C++ Component ... 261
4.6.1 Class Definition with Helper Template Classes ... 262

XInterface, XTypeProvider and XWeak .. 262
XServiceInfo ... 262

4.6.2 Implementing your own Interfaces .. 263
4.6.3 Providing a Single Factory Using a Helper Method .. 263
4.6.4 Write Registration Info Using a Helper Method .. 265
4.6.5 Provide Implementation Environment .. 265
4.6.6 Implementing without Helpers .. 265

XInterface Implementation ... 266
XTypeProvider Implementation .. 267
Providing a Single Factory ... 267
Write Registration Info .. 268

4.6.7 Storing the Service Manager for Further Use ... 269
4.6.8 Create Instance with Arguments .. 269
4.6.9 Multiple Components in One Dynamic Link Library ... 269
4.6.10 Building and Testing C++ Components .. 270

Build Process .. 270
Test Registration and Use ... 270

4.7 Integrating Components into OpenOffice.org ... 272

4.7.1 Protocol Handler ... 273
Overview ... 274
Implementation .. 274
Configuration ... 283
Installation .. 284

4.7.2 Jobs .. 285
Overview ... 285
Execution Environment ... 286
Implementation .. 287
Initialization .. 289
Returning Results ... 291
Configuration ... 292
Installation .. 294
Using the vnd.sun.star.jobs: URL Schema .. 294
List of supported Events ... 296

4.7.3 Add-Ons .. 297
Overview ... 298
Guidelines ... 299
Configuration ... 299
Installation .. 310

4.7.4 Disable Commands .. 311
Configuration ... 313
Disabling Commands at Runtime ... 314

4.7.5 Intercepting Context Menus .. 317
Register and Remove an Interceptor ... 317
Writing an Interceptor ... 317

4.8 File Naming Conventions ... 321
4.9 Deployment Options for Components .. 323

4.9.1 Background: UNO Registries .. 323
UNO Type Library ... 324
Component Registration .. 324

4.9.2 Command Line Registry Tools ... 325
Component Registration Tool .. 325
UNO Type Library Tools .. 326

4.9.3 Manual Component Installation ... 327
Manually Merging a Registry and Adding it to uno.ini or soffice.ini 327

4.9.4 Bootstrapping a Service Manager .. 328
4.9.5 Special Service Manager Configurations .. 329

Dynamically Modifying the Service Manager ... 330
Creating a ServiceManager from a Given Registry File 331

4.10 The UNO Executable .. 332
Standalone Use Case ... 332
Server Use Case .. 334
Using the uno Executable ... 336

4.11 Accessing Dialogs ... 336
4.11.1 Assigning Component Methods to Control Events ... 336
4.11.2 Using Dialogs in Components .. 338

Instantiate and display a dialog ... 338
Accept events created by dialog controls ... 340

 5 Extensions 343

5.1 Extension Manager .. 343
5.1.1 Deployment Items .. 343
5.1.2 Installing Extensions for All or a Single User ... 343
5.1.3 Extension Manager in OpenOffice.org .. 344
5.1.4 unopkg ... 344
5.1.5 Location of installed Extensions ... 345

5.2 File Format .. 345
5.3 Extension Identifiers .. 348
5.4 Extension Versions ... 348
5.5 description.xml ... 349

5.5.1 Description of XML Elements ... 349
5.5.2 Example .. 353

5.6 Simple License .. 354
5.6.1 Determining the Locale of the License .. 355

5.7 Dependencies .. 356
5.8 System Integration ... 357
5.9 Online Update of Extensions .. 358

5.9.1 Running Online - Update .. 358
5.9.2 Concept .. 358
5.9.3 Example Scenario for Providing Updates ... 360

Using an Atom Feed .. 360
5.9.4 Migration of Update Information ... 360
5.9.5 Description of the Update Information .. 361
5.9.6 Description of Atom Feed ... 363
5.9.7 Examples .. 363

description.xml Containing Direct Reference to the Update Information 363
Using the Atom Feed ... 364

5.10 Options Dialog .. 365
5.11 Creating the GUI of the Options Page ... 365
5.12 Saving and Reading Data for the Options Page .. 366
5.13 Defining the Usage of Options Pages .. 372

5.13.1 The Options Dialog of the Extension Manager .. 375
5.13.2 Adding a Leaf to an Existing Node .. 375
5.13.3 Adding Several Leaves .. 377
5.13.4 Grouping of Leaves .. 378
5.13.5 Adding Nodes .. 379
5.13.6 Adding Several Nodes ... 380

5.13.7 Absolute Position of Leaves .. 380
5.13.8 Grouping of Nodes ... 380
5.13.9 Assigning Nodes to Modules .. 381
5.13.10 Defining a Module .. 382
5.13.11 Absolute Position of Nodes ... 383

 6 Advanced UNO 385

6.1 Choosing an Implementation Language ... 385
6.1.1 Supported Programming Environments ... 385

Java ... 386
C++ ... 386
OpenOffice.org Basic ... 386
OLE Automation Bridge ... 387
Python .. 387

6.1.2 Use Cases ... 387
Java ... 387
C++ ... 387
OpenOffice.org Basic ... 388
OLE Automation .. 388
Python .. 388

6.1.3 Recommendation .. 388
6.2 Language Bindings .. 388

6.2.1 Implementing UNO Language Bindings .. 389
Overview of Language Bindings and Bridges ... 389
Implementation Options ... 390

6.2.2 UNO C++ bridges ... 391
Binary UNO Interfaces .. 392
C++ Proxy ... 393
Binary UNO Proxy ... 394
Additional Hints .. 395

6.2.3 UNO Reflection API ... 396
XTypeProvider Interface ... 396
Converter Service ... 396
CoreReflection Service .. 396

6.2.4 XInvocation Bridge ... 400
Scripting Existing UNO Objects .. 400
Implementing UNO objects .. 403
Example: Python Bridge PyUNO .. 404

6.2.5 Implementation Loader ... 406
Shared Library Loader .. 408
Bridges ... 408

6.2.6 Help with New Language Bindings .. 409
6.3 Differences Between UNO and Corba .. 409
6.4 UNO Design Patterns and Coding Styles ... 411

6.4.1 Double-Checked Locking .. 411

 7 Office Development 415

7.1 OpenOffice.org Application Environment ... 415
7.1.1 Overview .. 415

Desktop Environment ... 416
Framework API .. 417

7.1.2 Using the Desktop .. 423
7.1.3 Using the Component Framework ... 427

Getting Frames, Controllers and Models from Each Other 428
Frames ... 429
Controllers .. 434
Models ... 436
Window Interfaces ... 439

7.1.4 Creating Frames Manually .. 440
7.1.5 Handling Documents ... 442

Loading Documents .. 442
Closing Documents .. 450
Storing Documents .. 455
Printing Documents ... 456

7.1.6 Using the Dispatch Framework .. 457
Command URL .. 457
Processing Chain .. 457
Dispatch Process .. 459
Dispatch Results ... 462
Dispatch Interception .. 463

7.1.7 Java Window Integration .. 464
The Window Handle ... 464
Using the Window Handle ... 465
More Remote Problems ... 467

7.2 Common Application Features .. 467
7.2.1 Clipboard ... 467

Using the Clipboard .. 468
OpenOffice.org Clipboard Data Formats ... 472

7.2.2 Internationalization .. 472
Introduction .. 472
Overview and Using the API ... 473
Implementing a New Locale .. 475

7.2.3 Linguistics .. 485
Services Overview ... 485
Using Spellchecker ... 488
Using Hyphenator ... 489
Using Thesaurus .. 490
Events .. 491

Implementing a Spell Checker ... 492
Implementing a Hyphenator .. 494
Implementing a Thesaurus ... 495

7.2.4 Integrating Import and Export Filters ... 495
Approaches ... 496
Document API Filter Development ... 496
XML Based Filter Development ... 510

7.2.5 Number Formats ... 517
Managing Number Formats ... 518
Applying Number Formats .. 519

7.2.6 Document Events .. 521
7.2.7 Path Organization ... 526

Path Settings ... 526
Path Variables ... 533

7.2.8 OpenOffice.org Single Sign-On API ... 542
Overview ... 542
Implementing the OpenOffice.org SSO API .. 543

 8 Text Documents 547

8.1 Overview ... 547
8.1.1 Example: Fields in a Template .. 550
8.1.2 Example: Visible Cursor Position ... 551

8.2 Handling Text Document Files .. 553
8.2.1 Creating and Loading Text Documents .. 553
8.2.2 Saving Text Documents ... 554

Storing ... 554
Exporting ... 554

8.2.3 Printing Text Documents ... 555
Printer and Print Job Settings ... 555
Printing Multiple Pages on one Page .. 556

8.3 Working with Text Documents .. 557
8.3.1 Word Processing ... 557

Editing Text ... 557
Iterating over Text ... 561
Inserting a Paragraph where no Cursor can go ... 563
Sorting Text ... 563
Inserting Text Files ... 563
Auto Text ... 563

8.3.2 Formatting ... 564
8.3.3 Navigating ... 571

Cursors .. 571
Locating Text Contents ... 572
Search and Replace .. 572

8.3.4 Tables .. 576

Table Architecture ... 576
Named Table Cells in Rows, Columns and the Table Cursor 579
Indexed Cells and Cell Ranges .. 581
Table Naming, Sorting, Charting and Autoformatting 582
Text Table Properties ... 582
Inserting Tables .. 583
Accessing Existing Tables ... 587

8.3.5 Text Fields .. 588
8.3.6 Bookmarks ... 594
8.3.7 Indexes and Index Marks .. 595

Indexes ... 595
Index marks .. 598

8.3.8 Reference Marks ... 599
8.3.9 Footnotes and Endnotes ... 600
8.3.10 Shape Objects in Text ... 602

Base Frames vs. Drawing Shapes .. 602
Text Frames ... 605
Embedded Objects ... 607
Graphic Objects .. 609
Drawing Shapes ... 610

8.3.11 Redline .. 613
8.3.12 Ruby .. 613

8.4 Overall Document Features .. 614
8.4.1 Styles ... 614

Character Styles .. 616
Paragraph Styles .. 616
Frame Styles .. 616
Page Styles .. 617
Numbering Styles .. 617

8.4.2 Settings ... 618
General Document Information ... 618
Document Properties ... 618
Creating Default Settings .. 619
Creating Document Settings ... 619

8.4.3 Line Numbering and Outline Numbering .. 619
Paragraph and Outline Numbering .. 619
Line Numbering ... 622
Number Formats .. 622

8.4.4 Text Sections .. 622
8.4.5 Page Layout ... 624
8.4.6 Columns ... 624
8.4.7 Link targets .. 626

8.5 Text Document Controller .. 627
8.5.1 TextView .. 627

8.5.2 TextViewCursor .. 628

 9 Spreadsheet Documents 631

9.1 Overview ... 631
9.1.1 Example: Adding a New Spreadsheet ... 633
9.1.2 Example: Editing Spreadsheet Cells .. 634

9.2 Handling Spreadsheet Document Files ... 634
9.2.1 Creating and Loading Spreadsheet Documents ... 634
9.2.2 Saving Spreadsheet Documents ... 635

Storing ... 635
Exporting ... 636
Filter Options .. 636

9.2.3 Printing Spreadsheet Documents ... 639
Printer and Print Job Settings ... 639
Page Breaks and Scaling for Printout .. 640
Print Areas .. 640

9.3 Working with Spreadsheet Documents .. 641
9.3.1 Document Structure ... 641

Spreadsheet Document ... 641
Spreadsheet Services - Overview .. 645
Spreadsheet ... 656
Cell Ranges ... 658
Cells .. 665
Cell Ranges and Cells Container ... 669
Columns and Rows .. 672

9.3.2 Formatting ... 674
Cell Formatting .. 674
Character and Paragraph Format .. 674
Indentation .. 675
Equally Formatted Cell Ranges ... 675
Table Auto Formats ... 679
Conditional Formats .. 683

9.3.3 Navigating ... 684
Cell Cursor .. 685
Referencing Ranges by Name .. 687
Named Ranges ... 687
Label Ranges ... 689
Querying for Cells with Specific Properties ... 691
Search and Replace .. 693

9.3.4 Sorting .. 693
Table Sort Descriptor ... 693

9.3.5 Database Operations .. 695
Filtering ... 696
Subtotals .. 698

Database Import ... 699
Database Ranges .. 700

9.3.6 Linking External Data .. 701
Sheet Links .. 701
Cell Area Links ... 703
DDE Links ... 704

9.3.7 DataPilot ... 705
DataPilot Tables ... 705
DataPilot Sources ... 709

9.3.8 Protecting Spreadsheets ... 718
9.3.9 Sheet Outline ... 718
9.3.10 Detective .. 718
9.3.11 Other Table Operations ... 719

Data Validation .. 719
Data Consolidation .. 720
Charts ... 721
Scenarios .. 722

9.4 Overall Document Features .. 725
9.4.1 Styles ... 725

Cell Styles .. 726
Page Styles .. 727

9.4.2 Function Handling .. 728
Calculating Function Results .. 728
Information about Functions .. 729
Recently Used Functions ... 730

9.4.3 Settings ... 730
9.5 Spreadsheet Document Controller .. 731

9.5.1 Spreadsheet View ... 731
9.5.2 View Panes .. 733
9.5.3 View Settings ... 734
9.5.4 Range Selection ... 734

9.6 Spreadsheet Add-Ins ... 736
9.6.1 Function Descriptions .. 737
9.6.2 Service Names ... 737
9.6.3 Compatibility Names ... 737
9.6.4 Custom Functions ... 738
9.6.5 Variable Results .. 738

 10 Drawing Documents and Presentation Documents 741

10.1 Overview ... 741
10.1.1 Example: Creating a Simple Organizational Chart ... 743

10.2 Handling Drawing Document Files ... 745
10.2.1 Creating and Loading Drawing Documents .. 745
10.2.2 Saving Drawing Documents ... 746

Storing ... 746
Exporting ... 747
Filter Options .. 748

10.2.3 Printing Drawing Documents ... 749
Printer and Print Job Settings ... 749
Special Print Settings ... 751

10.3 Working with Drawing Documents .. 751
10.3.1 Drawing Document .. 751

Document Structure .. 751
Page Handling .. 752
Page Partitioning .. 753

10.3.2 Shapes ... 753
Bezier Shapes .. 759
Shape Operations ... 762

10.3.3 Inserting Files .. 774
10.3.4 Navigating ... 774

10.4 Handling Presentation Document Files .. 775
10.4.1 Creating and Loading Presentation Documents .. 775
10.4.2 Printing Presentation Documents ... 775

10.5 Working with Presentation Documents .. 775
10.5.1 Presentation Document .. 775
10.5.2 Presentation Settings .. 777

Custom Slide Show .. 778
Presentation Effects ... 780
Slide Transition .. 780
Animations and Interactions .. 781

10.6 Overall Document Features .. 785
10.6.1 Styles ... 785

Graphics Styles ... 785
Presentation Styles ... 787

10.6.2 Settings ... 788
10.6.3 Page Formatting .. 789

10.7 Drawing and Presentation Document Controller .. 790
10.7.1 Setting the Current Page, Using the Selection .. 790
10.7.2 Zooming ... 790
10.7.3 Other Drawing-Specific View Settings .. 791

 11 Charts 793

11.1 Overview ... 793
11.2 Handling Chart Documents .. 793

11.2.1 Creating Charts ... 793
Creating and Adding a Chart to a Spreadsheet .. 793
Creating a Chart OLE Object in Draw and Impress ... 794
Setting the Chart Type .. 795

11.2.2 Accessing Existing Chart Documents .. 796
11.3 Working with Charts ... 796

11.3.1 Document Structure ... 796
11.3.2 Data Access .. 798
11.3.3 Chart Document Parts .. 800

Common Parts of all Chart Types ... 801
Features of Special Chart Types .. 805

11.4 Chart Document Controller .. 808
11.5 Chart Add-Ins ... 808

11.5.1 Prerequisites .. 808
11.5.2 How Add-Ins work .. 808
11.5.3 How to Apply an Add-In to a Chart Document .. 810

 12 OpenOffice.org Basic and Dialogs 813

12.1 First Steps with OpenOffice.org Basic ... 814
Step By Step Tutorial ... 814
A Simple Dialog ... 818

12.2 OpenOffice.org Basic IDE ... 825
12.2.1 Managing Basic and Dialog Libraries .. 825

OpenOffice.org Basic Macros Dialog .. 825
OpenOffice.org Basic Macro Organizer Dialog ... 828

12.2.2 Basic IDE Window .. 835
Basic Source Editor and Debugger .. 836
Dialog Editor .. 838

12.2.3 Assigning Macros to GUI Events ... 843
12.2.4 Dialog Localization ... 845

Technical Background ... 850
12.3 Features of OpenOffice.org Basic ... 852

12.3.1 Functional Range Overview .. 852
Screen I/O Functions .. 852
File I/O .. 852
Date and Time Functions .. 853
Numeric Functions .. 854
String Functions ... 854
Specific UNO Functions .. 855

12.3.2 Accessing the UNO API .. 855
StarDesktop ... 855
ThisComponent .. 855

12.3.3 Special Behavior of OpenOffice.org Basic ... 857
Threads .. 857
Rescheduling .. 857

12.4 Advanced Library Organization .. 858
12.4.1 General Structure .. 859
12.4.2 Accessing Libraries from Basic ... 861

Library Container Properties in Basic ... 861
Loading Libraries ... 861
Library Container API ... 862

12.4.3 Variable Scopes ... 864
12.5 Programming Dialogs and Dialog Controls ... 865

12.5.1 Dialog Handling ... 866
Showing a Dialog ... 866
Getting the Dialog Model ... 866
Dialog as Control Container ... 866
Dialog Properties ... 867
Common Properties ... 867
Multi-Page Dialogs .. 868

12.5.2 Dialog Controls ... 868
Command Button ... 868
Image Control ... 869
Check Box .. 869
Option Button ... 869
Label Field ... 870
Text Field ... 870
List Box .. 871
Combo Box .. 871
Horizontal/Vertical Scroll Bar ... 872
Group Box ... 873
Progress Bar .. 873
Horizontal/Vertical Line .. 874
Date Field .. 874
Time Field ... 874
Numeric Field ... 875
Currency Field .. 875
Formatted Field .. 875
Pattern Field .. 875
File Control ... 876

12.6 Creating Dialogs at Runtime .. 877
12.7 Library File Structure ... 880

12.7.1 Application Library Container ... 880
12.7.2 Document Library Container .. 882

12.8 Library Deployment ... 884
Package Structure .. 885
Path Settings ... 885
Additional Options .. 886

 13 Database Access 887

13.1 Overview ... 887
13.1.1 Capabilities .. 887

Platform Independence ... 887
Functioning of the OpenOffice.org API Database Integration 887
Integration with OpenOffice.org API ... 888

13.1.2 Architecture ... 888
13.1.3 Example: Querying the Bibliography Database ... 888

13.2 Data Sources in OpenOffice.org API ... 890
13.2.1 DatabaseContext ... 890
13.2.2 DataSources ... 892

The DataSource Service ... 892
Queries .. 894
Forms and Reports ... 902
Document Links ... 906
Tables and Columns .. 907

13.2.3 Connections ... 912
Understanding Connections ... 912
Connecting Using the DriverManager and a Database URL 915
Connecting Through a Specific Driver ... 916
Driver Specifics .. 916
Connection Pooling .. 921
Piggyback Connections ... 922

13.3 Manipulating Data ... 922
13.3.1 The RowSet Service .. 922

Usage ... 922
Events and Other Notifications .. 926
Clones of the RowSet Service ... 928

13.3.2 Statements .. 929
Creating Statements ... 929
Inserting and Updating Data ... 930
Getting Data from a Table .. 932

13.3.3 Result Sets .. 933
Retrieving Values from Result Sets ... 936
Moving the Result Set Cursor .. 936
Using the getXXX Methods .. 937
Scrollable Result Sets ... 939
Modifiable Result Sets ... 941
Update ... 941
Insert .. 943
Delete ... 944
Seeing Changes in Result Sets .. 945

13.3.4 ResultSetMetaData ... 946
13.3.5 Using Prepared Statements ... 946

When to Use a PreparedStatement Object ... 946
Creating a PreparedStatement Object ... 947
Supplying Values for PreparedStatement Parameters 947

13.3.6 PreparedStatement From DataSource Queries ... 948
13.4 Database Design ... 949

13.4.1 Retrieving Information about a Database ... 949
Retrieving General Information ... 949
Determining Feature Support .. 950
Database Limits .. 950
SQL Objects and their Attributes ... 950

13.4.2 Using DDL to Change the Database Design ... 951
13.4.3 Using SDBCX to Access the Database Design .. 954

The Extension Layer SDBCX .. 954
Catalog Service ... 955
Table Service ... 956
Column Service .. 959
Index Service .. 960
Key Service .. 962
View Service ... 964
Group Service ... 964
User Service .. 966
The Descriptor Pattern .. 966
Adding an Index .. 969
Creating a User ... 969
Adding a Group ... 969

13.5 Using DBMS Features .. 970
13.5.1 Transaction Handling .. 970
13.5.2 Stored Procedures ... 971

13.6 Writing Database Drivers .. 971
13.6.1 SDBC Driver .. 972
13.6.2 Driver Service .. 973
13.6.3 Connection Service ... 974
13.6.4 XDatabaseMetaData Interface .. 975
13.6.5 Statements .. 976

PreparedStatement .. 977
Result Set ... 977

13.6.6 Support Scalar Functions ... 977
Open Group CLI Numeric Functions ... 977
Open Group CLI String Functions .. 978
Open Group CLI Time and Date Functions ... 979
Open Group CLI System Functions ... 979
Open Group CLI Conversion Functions ... 980
Handling Unsupported Functionality .. 980

 14 Forms 981

14.1 Introduction .. 981
14.2 Models and Views .. 982

14.2.1 The Model-View Paradigm ... 982
14.2.2 Models and Views for Form Controls ... 982
14.2.3 Model-View Interaction ... 983
14.2.4 Form Layer Views .. 984

View Modes .. 984
Locating Controls ... 984
Focussing Controls ... 984

14.3 Form Elements in the Document Model ... 985
14.3.1 A Hierarchy of Models .. 985

FormComponent Service .. 985
FormComponents Service ... 985
Logical Forms ... 986
Forms Container ... 986
Form Control Models .. 987

14.3.2 Control Models and Shapes .. 988
Programmatic Creation of Controls .. 989

14.4 Form Components .. 990
14.4.1 Basics .. 990

Control Models ... 990
Forms ... 992

14.4.2 HTML Forms ... 993
14.5 Data Awareness .. 993

14.5.1 Forms .. 993
Forms as Row Sets ... 993
Loadable Forms .. 993
Sub Forms ... 994
Filtering and Sorting .. 995
Parameters .. 996

14.5.2 Data Aware Controls .. 997
Control Models as Bound Components .. 998
Committing Controls ... 999

14.6 External value suppliers .. 1000
14.6.1 Value Bindings .. 1001

Form Controls accepting Value Bindings ... 1002
14.6.2 External List Sources .. 1005

14.7 Validation .. 1007
14.7.1 Validation in OpenOffice.org .. 1010
14.7.2 Validations and Bindings .. 1010

14.8 Scripting and Events .. 1010
14.9 Common Tasks ... 1012

14.9.1 Initializing Bound Controls ... 1012
14.9.2 Automatic Key Generation .. 1012
14.9.3 Data Validation ... 1013
14.9.4 Programmatic Assignment of Scripts to Events ... 1014

 15 Universal Content Broker 1017

15.1 Overview ... 1017
15.1.1 Capabilities .. 1017
15.1.2 Architecture ... 1017

15.2 Services and Interfaces .. 1018
15.3 Content Providers .. 1020
15.4 Using the UCB API .. 1020

15.4.1 Instantiating the UCB ... 1021
15.4.2 Accessing a UCB Content .. 1021
15.4.3 Executing Content Commands ... 1022
15.4.4 Obtaining Content Properties ... 1023
15.4.5 Setting Content Properties ... 1024
15.4.6 Folders .. 1025

Accessing the Children of a Folder ... 1025
15.4.7 Documents ... 1027

Reading a Document Content .. 1027
Storing a Document Content .. 1029

15.4.8 Managing Contents .. 1029
Creating ... 1029
Deleting ... 1031
Copying, Moving and Linking ... 1032

15.5 UCB Configuration .. 1033
15.5.1 UCP Registration Information .. 1033
15.5.2 Unconfigured UCBs ... 1033
15.5.3 Preconfigured UCBs ... 1035
15.5.4 Content Provider Proxies .. 1036

 16 Configuration Management 1039

16.1 Overview ... 1039
16.1.1 Capabilities .. 1039
16.1.2 Architecture ... 1039

16.2 Object Model ... 1042
16.3 Configuration Data Sources .. 1044

16.3.1 Connecting to a Data Source ... 1044
16.3.2 Using a Data Source ... 1047

16.4 Accessing Configuration Data .. 1049
16.4.1 Reading Configuration Data ... 1049
16.4.2 Updating Configuration Data ... 1053

16.5 Customizing Configuration Data ... 1060
16.5.1 Creating a Custom Configuration Schema ... 1061
16.5.2 Preparing Custom Configuration Data ... 1062
16.5.3 Installing Custom Configuration Data .. 1063

16.6 Adding a Backend Data Store .. 1064

 17 JavaBean for office components 1065

17.1 Introduction .. 1065
17.2 Using the OOoBean .. 1065
17.3 The OOoBean by Example .. 1066
17.4 API Overview ... 1067
17.5 Configuring the Office Bean ... 1068

17.5.1 Default Configuration .. 1069
17.5.2 Customized Configuration .. 1070

17.6 Internal Architecture .. 1071
17.6.1 The Internal Office Bean API .. 1071
17.6.2 OfficeConnection Interface .. 1072
17.6.3 OfficeWindow Interface ... 1073
17.6.4 ContainerFactory Interface .. 1073
17.6.5 LocalOfficeConnection and LocalOfficeWindow .. 1073

 18 Accessibility 1075

18.1 Overview ... 1075
18.2 Bridges ... 1076
18.3 Accessibility Tree ... 1076
18.4 Content Information .. 1077
18.5 Listeners and Broadcasters ... 1077
18.6 Implementing Accessible Objects .. 1078

18.6.1 Implementation Rules .. 1078
18.6.2 Services ... 1078

18.7 Using the Accessibility API ... 1079
18.7.1 A Simple Screen Reader .. 1079

Features ... 1080
Class Overview .. 1081
Putting the Accessibility Interfaces to Work .. 1082

 19 Scripting Framework 1095

19.1 Introduction .. 1095
19.1.1 Structure of this Chapter ... 1095
19.1.2 Who Should Read this Chapter .. 1096

19.2 Using the Scripting Framework ... 1096
19.2.1 Running macros .. 1096
19.2.2 Editing, Creating and Managing Macros .. 1097

The Organizer dialogs for BeanShell and JavaScript 1098
BeanShell Editor ... 1099
JavaScript Editor .. 1099
Basic and Dialogs ... 1101
Macro Recording .. 1101

19.3 Writing Macros ... 1101

19.3.1 The HelloWorld macro .. 1101
19.3.2 Using the OpenOffice.org API from macros ... 1102
19.3.3 Handling arguments passed to macros ... 1103
19.3.4 Creating dialogs from macros ... 1103
19.3.5 Compiling and Deploying Java macros .. 1104

19.4 How the Scripting Framework works ... 1105
19.5 Writing a LanguageScriptProvider UNO Component Using the Java Helper Classes . 1107

19.5.1 The ScriptProvider abstract base class ... 1107
19.5.2 Implementing the XScript interface ... 1109
19.5.3 Implementing the ScriptEditor interface ... 1110
19.5.4 Building and registering your ScriptProvider .. 1111

19.6 Writing a LanguageScriptProvider UNO Component from scratch 1111
19.6.1 Scripting Framework URI Specification .. 1112
19.6.2 Storage of Scripts .. 1113
19.6.3 Implementation ... 1113
19.6.4 Integration with Extension Manager ... 1117

Overview of how ScriptingFramework integrates with the Extension Manager
API 1118

 20 Graphical User Interfaces 1121

20.1 Overview ... 1122
20.1.1 Implementation Details ... 1122
20.1.2 Basic Concepts ... 1122

20.2 Exception Handling ... 1122
20.3 Dialogs and Controls ... 1123
20.4 Dialog Creation ... 1123

20.4.1 Instantiation of a Dialog .. 1123
20.4.2 Setting Dialog Properties ... 1124

Multi-Page Dialogs .. 1125
20.4.3 Adding Controls to a Dialog ... 1126
20.4.4 Displaying Dialogs ... 1126

20.5 Dialog Handling .. 1126
20.5.1 Events ... 1127

Mouse Listeners ... 1127
Keyboard Listener .. 1128
Focus Listener ... 1128
Paint Listener .. 1128
Control element-specific events ... 1128

20.5.2 Dialog Controls ... 1129
Common Properties ... 1129
Font-specific Properties ... 1130
Other common Properties .. 1131
Property propagation between model and control ... 1132
Common Workflow to add Controls .. 1133

The Example Listings .. 1133
Label Field ... 1134
Command Button ... 1135
Image Control ... 1137
Check Box .. 1139
Radio Button ... 1140
Scroll Bar ... 1141
List Box .. 1143
Combo Box .. 1144
Progress Bar .. 1145
Horizontal /Vertical Line Control ... 1145
Group Box ... 1146
Text Field ... 1146
Text Field Extensions ... 1148
Formatted Field .. 1149
Numeric Field ... 1151
Currency Field .. 1152
Date Field .. 1152
Timefield ... 1154
Pattern Field .. 1155
Roadmap Control ... 1156
File Control ... 1159
File Picker .. 1160
Message Box ... 1161

20.5.3 The Toolkit Service ... 1162
Dockable Windows .. 1164

20.5.4 Creating Menus ... 1165
Accessibility .. 1166
Rendering .. 1168

20.6 Summarizing Example to create a UNO Dialog .. 1168

Appendix A: OpenOffice.org API-Design-Guidelines 1173

A.1 General Design Rules ... 1173
A.1.1 Universality ... 1173
A.1.2 Orthogonality .. 1174
A.1.3 Inheritance ... 1174
A.1.4 Uniformity ... 1174
A.1.5 Correct English .. 1174
A.1.6 Identifier Naming Convention ... 1174

A.2 Definition of API Elements ... 1175
A.2.1 Attributes ... 1175
A.2.2 Methods ... 1176
A.2.3 Interfaces .. 1177
A.2.4 Properties ... 1178

A.2.5 Events ... 1178
A.2.6 Services ... 1179
A.2.7 Exceptions .. 1179
A.2.8 Enums ... 1180
A.2.9 Typedefs ... 1180
A.2.10 Structs ... 1181
A.2.11 Parameter ... 1181

A.3 Special Cases ... 1182
A.4 Abbreviations .. 1182
A.5 Source Files and Types .. 1183

Appendix B: IDL Documentation Guidelines 1185

B.1 Introduction .. 1185
B.1.1 Process .. 1185
B.1.2 File Assembly .. 1185
B.1.3 Readable & Editable Structure .. 1186
B.1.4 Contents ... 1186

B.2 File structure ... 1186
B.2.1 General ... 1186
B.2.2 File-Header .. 1187
B.2.3 File-Footer .. 1188

B.3 Element Documentation .. 1188
B.3.1 General Element Documentation ... 1188
B.3.2 Example for a Major Element Documentation ... 1189
B.3.3 Example for a Minor Element Documentation ... 1190

B.4 Markups and Tags ... 1190
B.4.1 Special Markups ... 1190
B.4.2 Special Documentation Tags ... 1191
B.4.3 Useful XHTML Tags .. 1193

Appendix C: Universal Content Providers 1197

C.1 The Hierarchy Content Provider ... 1197
C.1.1 Preface .. 1197
C.1.2 HCP Contents .. 1197
C.1.3 Creation of New HCP Content ... 1198
C.1.4 URL Scheme for HCP Contents .. 1198
C.1.5 Commands and Properties .. 1199

C.2 The File Content Provider ... 1199
C.2.1 Preface .. 1199
C.2.2 File Contents .. 1199
C.2.3 Creation of New File Contents ... 1200
C.2.4 URL Schemes for File Contents .. 1200
C.2.5 Commands and Properties .. 1201

C.3 The FTP Content Provider .. 1201

C.3.1 Preface .. 1201
C.3.2 FTP Contents ... 1201
C.3.3 Creation of New FTP Content ... 1202
C.3.4 URL Scheme for FTP Contents ... 1203
C.3.5 Commands and Properties .. 1203

C.4 The WebDAV Content Provider .. 1204
C.4.1 Preface .. 1204
C.4.2 DCP Contents .. 1204
C.4.3 Creation of New DCP Contents .. 1205
C.4.4 Authentication ... 1205
C.4.5 Property Handling .. 1205
C.4.6 URL Scheme for DCP Contents .. 1206
C.4.7 Commands and Properties .. 1207

C.5 The Package Content Provider ... 1207
C.5.1 Preface .. 1207
C.5.2 PCP Contents ... 1207
C.5.3 Creation of New PCP Contents .. 1208
C.5.4 URL Scheme for PCP Contents ... 1208
C.5.5 Commands and Properties .. 1209

C.6 The Help Content Provider ... 1209
C.6.1 Preface .. 1209
C.6.2 Help Content Provider Contents .. 1210
C.6.3 URL Scheme for Help Contents .. 1210
C.6.4 Properties and Commands .. 1211

Appendix D: UNOIDL Syntax Specification 1215

Glossary 1217

Index 1235

1 Reader's Guide

1.1 What This Manual Covers
This manual describes how to write programs using the component technology UNO (Universal
Network Objects) with OpenOffice.org.

Most examples provided are written in Java. As well as Java, the language binding for C++, the
UNO access for OpenOffice.org Basic and the OLE Automation bridge that uses OpenOffice.org
through Microsoft's component technology COM/DCOM is described.

1.2 How This Book is Organized
First Steps

The First Steps chapter describes the setting up of a Java UNO development environment to
achieve the solutions you need. At the end of this chapter, you will be equipped with the essen-
tials required for the following chapters about the OpenOffice.org applications.

Professional UNO Projects
This chapter introduces API and UNO concepts and explains the specifics of the programming
languages and technologies that can be used with UNO. It will help you to write industrial-
strength UNO programs, use one of the languages besides Java or improve your understanding
of the API reference.

Writing UNO Components
This chapter describes how to write UNO components. It also provides an insight into the
UNOIDL (UNO Interface Definition Language) language and the inner workings of service
manager. Before beginning this chapter, you should be familiar with the First Steps and Profes-
sional UNO chapters.

Advanced UNO
This chapter describes the technical basis of UNO, how the language bindings and bridges
work, how the service manager goes about its tasks and what the core reflection actually does.

Office Development
This chapter describes the application framework of the OpenOffice.org application that
includes how the OpenOffice.org API deals with the OpenOffice.org application and the
features available across all parts of OpenOffice.org.

29

Text Documents - Spreadsheet Documents - Drawings and Presentations � Chart
These chapters describes how OpenOffice.org revolves around documents. These chapters
teach you what to do with these documents programmatically.

Basic and Dialogs
This chapter provides the functionality to create and manage Basic macros and dialogs.

Database Access
This chapter describes how you can take advantage of this capability in your own projects.
OpenOffice.org can connect to databases in a universal manner.

Forms
This chapter describes how OpenOffice.org documents contain form controls that are
programmed using an event-driven programming model. The Forms chapter shows you how to
enhance your documents with controls for data input.

UCB
This chapter describes how the Universal Content Broker is the generic resource access service
used by the entire office application. It handles not only files and directories, but hierarchic and
non-hierarchic contents, in general.

OpenOffice.org Configuration
This chapter decribes how the OpenOffice.org API offers access to the office configuration
options that is found in the Tools � Options dialog.

OfficeBean
This chapter describes how the OfficeBean Java Bean component allows the developer to inte-
grate office functionality in Java applications.

1.3 OpenOffice.org Version History
OpenOffice.org exists in two versions www.openoffice.org

OpenOffice.org - an open source edition

StarOffice and StarSuite - "branded" editions derived from OpenOffice.org

In 2000, Sun Microsystems released the source code of their current developer version of StarOffice
on www.openoffice.org, and made the ongoing development process public. Sun's development
team, which developed StarOffice, continued its work on www.openoffice.org, and developers from
all over the world joined them to port, translate, repair bugs and discuss future plans. StarOffice
6.0 and OpenOffice.org 1.0, which were released in spring 2002, share the same code base.

1.4 Related documentation
The api and udk projects on www.openoffice.org have related documentation, examples and FAQs
(frequently asked questions) on the OpenOffice.org API. Most important are probably the refer-
ences, you can find them at api.openoffice.org or udk.openoffice.org.

• The API Reference covers the programmable features of OpenOffice.org.

• The Java Reference describes the features of the Java UNO runtime environment.

• The C++ Reference is about the C++ language binding.

30 OpenOffice.org 2.3 Developer's Guide • June 2007

1.5 Conventions
This book uses the following formatting conventions:

• Bold refers to the keys on the keyboard or elements of a user interface, such as the OK button
or File menu.

• Italics are used for emphasis and to signify the first use of a term. Italics are also used for web
sites, file and directory names and email addresses.

• Courier New is used in all Code Listings and for everything that is typed when programming.

1.6 Acknowledgments
A publication like this can never be the work of a single person � it is the result of tremendous
team effort. Of course, the OpenOffice.org/StarOffice development team played the most impor-
tant role by creating the API in the first place. The knowledge and experience of this team will be
documented here. Furthermore, there were several devoted individuals who contributed to
making this documentation reality.

First of all, we would like to thank Ralf Kuhnert and Dietrich Schulten. Using their technical exper-
tise and articulate mode of expression, they accomplished the challenging task of gathering the
wealth of API knowledge from the minds of the developers and transforming it into an under-
standable document.

Many reviewers were involved in the creation of this documentation. Special thanks go to Michael
Hönnig who was one of the few who reviewed almost every single word. His input also played a
decisive role in how the documentation was structured. A big thank you also goes to Diane O'Brien
for taking on the daunting task of reviewing the final draft and providing us with extensive feed-
back at such short notice.

When looking at the diagrams and graphics, it is clear that a creative person with the right touch
for design and aesthetics was involved. Many thanks, therefore, are due Stella Schulze who re-
drew all of the diagrams and graphics from the originals supplied by various developers. We also
thank Svante Schubert who converted the original XML file format into HTML pages and was
most patient with us in spite of our demands and changes. Special thanks also to Jörg Heilig, who
made this whole project possible.

Jürgen would like to thank Götz Wohlberg for all his help in getting the right people involved and
making sure things ran smoothly.

Götz would like to thank Jürgen Schmidt for his never-ending energy to hold everything together
and for pushing the contributors in the right direction. He can be considered as the heart of the
opus because of his guidance and endurance throughout the entire project.

We would like to take this opportunity to thank all these people � and anyone else we forgot! � for
their support.

Jürgen Schmidt, Götz Wohlberg

31

2 First Steps

This chapter shows you the first steps when using the OpenOffice.org API. Following these steps is
essential to understand and use the chapters about OpenOffice.org documents such as 8 Text Docu-
ments, 9 Spreadsheet Documents and 10 Drawing. After you have successfully done the first steps,
you can go directly to the other chapters of this manual.

The focus of the first steps will be Java, but other languages are covered as well. If you want to use
OpenOffice.org Basic afterwards, please refer to the chapters 12.1 OpenOffice.org Basic and Dialogs -
First Steps with OpenOffice.org Basic and 3.4.3 Professional UNO - UNO Language Bindings -
OpenOffice.org Basic. The usage of C++ is described in 3.4.2 Professional UNO - UNO Language Bind-
ings - C++ Language Binding.

2.1 Programming with UNO
UNO (pronounced ['ju:nou]) stands for Universal Network Objects and is the base component
technology for OpenOffice.org. You can utilize and write components that interact across
languages, component technologies, computer platforms, and networks. Currently, UNO is avail-
able on Linux, Solaris, Windows, Power PC, FreeBSD and Mac OS X. Other ports are still being
developed at OpenOffice.org. The supported programming languages are Java, C++ and
OpenOffice.org Basic. As well, UNO is available through the component technology Microsoft
COM for many other languages. On OpenOffice.org there is also a language binding for Python
available.

With OpenOffice.org 2.0, UNO is also programmable with .NET languages using the new
Common Language Infrastructure binding. In addition, the new scripting framework offers the use
of the API through several scripting languages, such as Javascript or Beanshell. See 19 Scripting
Framework for more details.

UNO is used to access OpenOffice.org, using its Application Programming Interface (API). The
OpenOffice.org API is the comprehensive specification that describes the programmable features
of OpenOffice.org.

2.2 Fields of Application for UNO
You can connect to a local or remote instance of OpenOffice.org from C++, Java and COM/DCOM.
C++ and Java Desktop applications, Java servlets, Java Server Pages, JScript and VBScript, and
languages, such as Delphi, Visual Basic and many others can use OpenOffice.org to work with
Office documents.

It is possible to develop UNO Components in C++ or Java that can be instantiated by the office
process and add new capabilities to OpenOffice.org. For example, you can write Chart Add-ins or

33

Calc Add-ins, Add-ons, linguistic extensions, new file filters, database drivers. You can even write
complete applications, such as a groupware client.

UNO components, as Java Beans, integrate with Java IDEs (Integrated Development Environment)
to give easy access to OpenOffice.org. Currently, a set of such components is under development
that will allow editing OpenOffice.org documents in Java Frames.

OpenOffice.org Basic cooperates with UNO, so that UNO programs can be directly written in
OpenOffice.org. With this method, you supply your own office solutions and wizards based on an
event-driven dialog environment.

The OpenOffice.org database engine and the data aware forms open another wide area of opportu-
nities for database driven solutions.

2.3 Getting Started
A number of files and installation sets are required before beginning with the OpenOffice.org API.

2.3.1 Required Files
These files are required for any of the languages you use.

OpenOffice.org Installation
Install the latest version of OpenOffice.org or StarOffice/StarSuite.

You can download OpenOffice.org from www.openoffice.org. StarOffice can be obtained from
Sun Microsystems or through your distributors.

API Reference
The OpenOffice.org API reference is part of the Software Development Kit and provides
detailed information about OpenOffice.org objects. The latest version can be found on, or
downloaded from, the documents section at api.openoffice.org.

2.3.2 Installation Sets
The following installation sets are necessary to develop OpenOffice.org API applications with Java.
This chapter describes how to set up a Java IDE for the OpenOffice.org API.

JDK 1.3.1 or later
Java applications for OpenOffice.org require the Java Development Kit 1.3.1 or later. Download
and install a JDK from java.sun.com. To get all features, Java 1.4.1_01 is required. The recom-
mendation is to use always the latest Java version, because of important bug fixes.

Java IDE
Download an Integrated Development Environment (IDE), such as NetBeans from
www.netbeans.org or the SunTM One Java Studio from Sun Microsystems. Other IDEs can be
used, but NetBeans/Sun One Java Studio offers the best integration. The integration of
OpenOffice.org with IDEs such as NetBeans is an ongoing effort. Check the files section of
api.openoffice.org for the latest information about NetBeans and other IDEs.

34 OpenOffice.org 2.3 Developer's Guide • June 2007

OpenOffice.org Software Development Kit (SDK)
Obtain the OpenOffice.org Software Development Kit (SDK) from www.openoffice.org. It
contains the build environment for the examples mentioned in this manual and reference docu-
mentation for the OpenOffice.org API, for the Java UNO runtime, and the C++ API. It also
offers more example sources. By means of the SDK you can use GNU make to build and run the
examples we mention here.

Unpack the SDK somewhere in your file system. The file index.html gives an overview of the
SDK. For detailed instructions which compilers to use and how to set up your development
environment, please refer to the SDK installation guide.

2.3.3 Configuration

Enable Java in OpenOffice.org
OpenOffice.org uses a Java Virtual Machine to instantiate components written in Java. From
OpenOffice.org 2.0 on, Java is found automatically during startup, or latest when Java function-
ality is required. If you prefer to preselect a JRE or JDK, or if no Java is found, you can configure
Java using the Tools � Options dialog in OpenOffice.org and select the section OpenOffice.org �
Java section. In older versions of OpenOffice.org you can also easily tell the office which JVM to
use: launch the jvmsetup executable from the programs folder under the OpenOffice.org, select an
installed JRE or JDK and click OK. Close the OpenOffice.org including the Quickstarter in the
taskbar and restart OpenOffice.org. Furthermore, open the Tools - Options dialog in
OpenOffice.org, select the section OpenOffice.org - Security and make sure that the Java enable
option is checked.

Use Java UNO class files
Next, the OpenOffice.org class files must be made known to the Java IDE. For NetBeans these Java
UNO jar files must be mounted to a project. The following steps show how to create a new project
and mount class files in NetBeans from version 3.5.1.

1. From the Project menu, select Project Manager. Click the New... button in the Project Manager
window to create a new project. NetBeans uses your new project as the current project.

2. Activate the NetBeans Explorer window� it should contain a Filesystems item (to display the
NetBeans Explorer window, click View - Explorer). Open its context menu and select Mount �
Archive Files, navigate to the folder <OfficePath>/program/classes, choose at least jurt.jar,
unoil.jar, ridl.jar and juh.jar in that directory and click Finish to mount the OpenOffice.org jars in
your project. As an alternative, you can also mount files using File - Mount Filesystem.

3. Finally you need a folder for the source files of your project. Choose Mount � Local Directory
from the context menu of the Filesystems icon and use the file manager dialog to create a new
folder somewhere in your file system. Select it without opening it and click Finish to add it to
your project.

Add the API Reference to your IDE
We recommend to add the API and the Java UNO reference to your Java IDE to get online help for
the OpenOffice.org API and the Java UNO runtime. In NetBeans 3.4.1, follow these steps:

35

• Open your project and choose the Tools � Javadoc Manager menu. With the button Add
Folder... add the folders docs/common/ref and docs/java/ref of your SDK installation to use the API
and the Java UNO reference in your project.

• You can now use Alt + F1 to view online help while the cursor is on a OpenOffice.org API or
Java UNO identifier in the source editor window.

2.3.4 First Contact

Getting Started
Since OpenOffice.org 2.0 it is very simple to get a working environment that offers a transparent
use of UNO functionality and of office functionality. The following demonstrates how to write a
small program that initializes UNO, which means that it internally connects to an office or starts a
new office process if necessary and tells you if it was able to get the office component context that
provides the office service manager object. Start the Java IDE or source editor, and enter the
following source code for the FirstUnoContact class.

To create and run the class in the NetBeans 3.5.1 IDE, use the following steps:

1. Add a main class to the project. In the NetBeans Explorer window, click the Project
<project_name> tab, right click the Project item, select Add New... to display the New Wizard,
open the Java Classes folder, highlight the template Main, and click Next.

2. In the Name field, enter 'FirstUnoContact' as classname for the Main class and select the folder
that contains your project files. The FirstUnoContact is added to the default package of your
project. Click Finish to create the class.

3. Enter the source code shown below (FirstSteps/FirstUnoContact.java).

4. Add a blank ant script to the project. In the NetBeans Explorer window, click the Project
<project_name> tab, right click the Project item, select Add New to display the New Wizard,
open the Ant Build Scripts folder, highlight the template Blank Ant Project, and click Next.

5. In the Name field, enter 'build_FirstUnoContact' as script name for the ant build script and
select the folder that contains your project files. The build_FirstUnoContact is added to
your project. Click Finish to create the script.

6. Enter the script code shown below (FirstSteps/build_FirstUnoContact.xml).

7. Select and right click the build_FirstUnoContact script, select Execute to build the
example project. Right click the build_FirstUnoContact script again, select Run Target to
display more availble targets, select the run target to execute the example.

The FirstUnoContact example (FirstSteps/FirstUnoContact.java):
public class FirstUnoContact {

 public static void main(String[] args) {
 try {
 // get the remote office component context
 com.sun.star.uno.XComponentContext xContext =
 com.sun.star.comp.helper.Bootstrap.bootstrap();

 System.out.println("Connected to a running office ...");

 com.sun.star.lang.XMultiComponentFactory xMCF =
 xContext.getServiceManager();

 String available = (xMCF != null ? "available" : "not available");
 System.out.println("remote ServiceManager is " + available);
 }
 catch (java.lang.Exception e){

36 OpenOffice.org 2.3 Developer's Guide • June 2007

 e.printStackTrace();
 }
 finally {
 System.exit(0);
 }
 }
}

The example ant build script (FirstSteps/build_FirstUnoContact.xml):
<?xml version="1.0" encoding="UTF-8"?>
<project basedir="." default="all" name="FirstUnoContact">

 <property environment="env"/>
 <property name="OFFICE_HOME" value="${env.OFFICE_HOME}"/>
 <property name="OO_SDK_HOME" value="${env.OO_SDK_HOME}"/>

 <target name="init">
 <property name="OUTDIR" value="${OO_SDK_HOME}/WINExample.out/class/FirstUnoContact"/>
 </target>

 <path id="office.class.path">
 <filelist dir="${OFFICE_HOME}/program/classes"
 files="jurt.jar,unoil.jar,ridl.jar,juh.jar"/>
 </path>

 <fileset id="bootstrap.glue.code" dir="${OO_SDK_HOME}/classes">
 <patternset>
 <include name="com/sun/star/lib/loader/*.class"/>
 <include name="win/unowinreg.dll"/>
 </patternset>
 </fileset>

 <target name="compile" depends="init">
 <mkdir dir="${OUTDIR}"/>
 <javac debug="true" deprecation="true" destdir="${OUTDIR}" srcdir=".">
 <classpath refid="office.class.path"/>
 </javac>
 </target>

 <target name="jar" depends="init,compile">
 <jar basedir="${OUTDIR}" compress="true"
 jarfile="${OUTDIR}/FirstUnoContact.jar">
 <exclude name="**/*.java"/>
 <exclude name="*.jar"/>
 <fileset refid="bootstrap.glue.code"/>
 <manifest>
 <attribute name="Main-Class" value="com.sun.star.lib.loader.Loader"/>
 <section name="com/sun/star/lib/loader/Loader.class">
 <attribute name="Application-Class" value="FirstUnoContact"/>
 </section>
 </manifest>
 </jar>
 </target>

 <target name="all" description="Build everything." depends="init,compile,jar">
 <echo message="Application built. FirstUnoContact!"/>
 </target>

 <target name="run" description="Try running it." depends="init,all">
 <java jar="${OUTDIR}/FirstUnoContact.jar" failonerror="true" fork="true">
 </java>
 </target>

 <target name="clean" description="Clean all build products." depends="init">
 <delete>
 <fileset dir="${OUTDIR}">
 <include name="**/*.class"/>
 </fileset>
 </delete>
 <delete file="${OUTDIR}/FirstUnoContact.jar"/>
 </target>

</project>

For an example that connects to the office with C++, see chapter 3.4.2 Professional UNO - UNO
Language Bindings - C++ Language Binding. Accessing the office with OpenOffice.org Basic is
described in 12.1 OpenOffice.org Basic and Dialogs - First Steps with OpenOffice.org Basic.

The next section describes what happens during the connection between a Java program and
OpenOffice.org.

37

Service Managers
UNO introduces the concept of service managers, which can be considered as �factories� that create
services. For now, it is sufficient to see services as UNO objects that can be used to perform specific
tasks. Later on we will give a more precise definition for the term service.

For example, the following services are available:

com.sun.star.frame.Desktop
maintains loaded documents: is used to load documents, to get the current document, and
access all loaded documents

com.sun.star.configuration.ConfigurationProvider
yields access to the OpenOffice.org configuration, for instance the settings in the Tools -
Options dialog

com.sun.star.sdb.DatabaseContext
holds databases registered with OpenOffice.org

com.sun.star.system.SystemShellExecute
executes system commands or documents registered for an application on the current platform

com.sun.star.text.GlobalSettings
manages global view and print settings for text documents

A service always exists in a component context, which consists of the service manager that created
the service and other data to be used by the service.

The FirstUnoContact class above is considered a client of the OpenOffice.org process,
OpenOffice.org is the server in this respect. The server has its own component context and its own
service manager, which can be accessed from client programs to use the office functionality. The
client program initializes UNO and gets the component context from the OpenOffice.org process.

38 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 2.1: Service manager

Internally, this initialization process creates a local service manager, establishes a pipe connection
to a running OpenOffice.org process (if necessary a new process is started) and returns the remote
component context. In the first step this is the only thing you have to know. The
com.sun.star.comp.helper.Bootstrap.bootstrap() method initializes UNO and returns the remote
component context of a running OpenOffice.org process. You can find more details about boot-
strapping UNO, the opportunities of different connection types and how to establish a connection
to a UNO server process in the 3.3 Professional UNO - UNO Concepts.

After this first initialization step, you can use the method getServiceManager() from the compo-
nent context to get the remote service manager from the OpenOffice.org process, which offers you
access to the complete office functionality available through the API.

Failed Connections
A remote connection can fail under certain conditions:

• Client programs should be able to detect errors. For instance, sometimes the bridge might
become unavailable. Simple clients that connect to the office, perform a certain task and exit
afterwards should stop their work and inform the user if an error occurred.

• Clients that are supposed to run over a long period of time should not assume that a reference
to an initial object will be valid over the whole runtime of the client. The client should resume
even if the connection goes down for some reason and comes back later on. When the connec-
tion fails, a robust, long running client should stop the current work, inform the user that the
connection is not available and release the references to the remote process. When the user tries
to repeat the last action, the client should try to rebuild the connection. Do not force the user to
restart your program just because the connection was temporarily unavailable.

When the bridge has become unavailable and access is tried, it throws a
com.sun.star.lang.DisposedException. Whenever you access remote references in your
program, catch this Exception in such a way that you set your remote references to null and inform
the user accordingly. If your client is designed to run for a longer period of time, be prepared to
get new remote references when you find that they are currently null.

A more sophisticated way to handle lost connections is be to register a listener at the underlying
bridge object. The chapter 3.3.1 Professional UNO - UNO Concepts - UNO Interprocess Connections
shows how to write a connection-aware client.

2.4 How to get Objects in OpenOffice.org
An object in our context is a software artifact that has methods you can call. Objects are required to
do something with OpenOffice.org. But where do you obtain them?

New objects
In general, new objects or objects which are necessary for a first access are created by service
managers in OpenOffice.org. In the FirstLoadComponent example, the remote service manager
creates the remote Desktop object, which handles application windows and loaded documents
in OpenOffice.org:

Object desktop = xRemoteServiceManager.createInstanceWithContext(
 "com.sun.star.frame.Desktop", xRemoteContext);

39

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html#getServiceManager
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html#getServiceManager
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html#getServiceManager

Document objects
Document objects represent the files that are opened with OpenOffice.org. They are created by
the Desktop object, which has a loadComponentFromURL() method for this purpose.

Objects that are provided by other objects
Objects can hand out other objects. There are two cases:

• Features which are designed to be an integral part of the object that provides the feature can
be obtained by get methods in the OpenOffice.org API. It is common to get an object from a
get method. For instance, getSheets() is required for every Calc document, getText() is
essential for every Writer Document and getDrawpages() is an essential part of every Draw
document. After loading a document, these methods are used to get the Sheets, Text and
Drawpages object of the corresponding document. Object-specific get methods are an impor-
tant technique to get objects.

• Features which are not considered integral for the architecture of an object are accessible
through a set of universal methods. In the OpenOffice.org API, these features are called
properties, and generic methods are used, such as getPropertyValue(String proper-
tyName) to access them. In some cases such a non-integral feature is provided as an object,
therefore the method getPropertyValue() can be another source for objects. For instance,
page styles for spreadsheets have the properties "RightPageHeaderContent" and "Left-
PageHeaderContent", that contain objects for the page header sections of a spreadsheet
document. The generic getPropertyValue() method can sometimes provide an object you
need.

Sets of objects
Objects can be elements in a set of similar objects. In sets, to access an object you need to know
how to get a particular element from the set. The OpenOffice.org API allows four ways to
provide an element in a set. The first three ways are objects with element access methods that
allow access by name, index, or enumeration. The fourth way is a sequence of elements which
has no access methods but can be used as an array directly. How these sets of elements are used
will be discussed later.

The designer of an object decides which of those opportunities to offer, based on special condi-
tions of the object, such as how it performs remotely or which access methods best work with
implementation.

2.5 Working with Objects
Working with OpenOffice.org API objects involves the following:

• First we will learn the UNO concepts of objects, interfaces, services, attributes, and properties,
and we will get acquainted with UNO's method of using them.

• After that, we will work with a OpenOffice.org document for the first time, and give some hints
for the usage of the most common types in OpenOffice.org API.

• Finally we will introduce the common interfaces that allow you to work with text, tables and
drawings across all OpenOffice.org document types.

40 OpenOffice.org 2.3 Developer's Guide • June 2007

2.5.1 Objects, Interfaces, and Services

Objects
In UNO, an object is a software artifact that has methods that you can call and attributes that you
can get and set. Exactly what methods and attributes an object offers is specified by the set of inter-
faces it supports.

Interfaces
An interface specifies a set of attributes and methods that together define one single aspect of an
object. For instance, the interface com.sun.star.resource.XResourceBundle
module com { module sun { module star { module resource {
interface XResourceBundle: com::sun::star::conainer::XNameAccess {
 [attribute] XResourceBundle Parent;
 com::sun::star::lang::Locale getLocale();
 any getDirectElement([in] string key);
};
}; }; }; };

specifies the attribute Parent and the methods getLocale() and getDirectElement(). To allow
for reuse of such interface specifications, an interface can inherit one or more other interfaces (as,
for example, XResourceBundle inherits all the attributes and methods of
com.sun.star.container.XNameAccess). Multiple inheritance, the ability to inherit more than
one interface, is new in OpenOffice.org 2.0.

Strictly speaking, interface attributes are not needed in UNO. Each attribute could also be
expressed as a combination of one method to get the attribute�s value, and another method to set it
(or just one method to get the value for a read-only attribute). However, there are at least two good
reasons for the inclusion of interface attributes in UNO: First, the need for such combinations of
getting and setting a value seems to be widespread enough to warrant extra support. Second, with
attributes, a designer of an interface can better express nuances among the different features of an
object. Attributes can be used for those features that are not considered integral or structural parts
of an object, while explicit methods are reserved to access the core features.

Historically, a UNO object typically supported a set of many independent interfaces, corre-
sponding to its many different aspects. With multiple-inheritance interfaces, there is less need for
this, as an object may now support just one interface that inherits from all the other interfaces that
make up the object�s various aspects.

Services
Historically, the term �service� has been used with an unclear meaning in UNO. Starting with
OpenOffice.org 2.0, the underlying concepts have been made cleaner. Unfortunately, this leaves
two different meanings for the term �service� within UNO. In the following, we will use the term
�new-style service� to denote an entity that conforms to the clarified, OpenOffice.org-2.0 service
concept, while we use �old-style service� to denote an entity that only conforms to the historical,
more vague concept. To make matters even more complicated, the term �service� is often used
with still different meanings in contexts outside UNO.

Although technically there should no longer be any need for old-style services, the OpenOffice.org
API still uses them extensively, to remain backwards compatible. Therefore, be prepared to
encounter uses of both service concepts in parallel when working with the OpenOffice.org API.

A new-style service is of the form

41

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/resource/XResourceBundle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/resource/XResourceBundle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/resource/XResourceBundle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/resource/XResourceBundle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/resource/XResourceBundle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/resource/XResourceBundle.html

module com { module sun { module star { module bridge {
 service UnoUrlResolver: XUnoUrlResolver;
}; }; }; };

and specifies that objects that support a certain interface (for example,
com.sun.star.bridge.XUnoUrlResolver) will be available under a certain service name (e.g.,
"com.sun.star.bridge.UnoUrlResolver") at a component context�s service manager. (Formally,
new-style services are called �single-interface�based services.�)

The various UNO language bindings offer special constructs to easily obtain instances of such
new-style services, given a suitable component context; see 3.4.1 Professional UNO - UNO Language
Bindings - Java Language Binding - Type Mappings - Mapping of Services and 3.4.2 Professional UNO -
UNO Language Bindings - C++ Language Binding - Type Mappings - Mapping of Services.

An old-style service (formally called an �accumulation-based service�) is of the form
module com { module sun { module star { module frame {
service Desktop {
 service Frame;
 interface XDesktop;
 interface XComponentLoader;
 interface com::sun::star::document::XEventBroadcaster;
};
}; }; }; };

and is used to specify any of the following:

• The general contract is, that if an object is documented to support a certain old-style service,
then you can expect that object to support all interfaces exported by the service itself and any
inherited services. For example, the method com.sun.star.frame.XFrames:queryFrames
returns a sequence of objects that should all support the old-style service
com.sun.star.frame.Frame, and thus all the interfaces exported by Frame.

• Additionally, an old-style service may specify one or more properties, as in
module com { module sun { module star { module frame {
service Frame {
 interface com::sun::star::frame::XFrame;
 interface com::sun::star::frame::XDispatchProvider;
 // ...
 [property] string Title;
 [property, optional] XDispatchRecorderSupplier RecorderSupplier;
 // ...
};
}; }; }; };
Properties, which are explained in detail in the following section, are similar to interface attri-
butes, in that they describe additional features of an object. The main difference is that interface
attributes can be accessed directly, while the properties of an old-style service are typically
accessed via generic interfaces like com.sun.star.beans.XPropertySet. Often, interface attri-
butes are used to represent integral features of an object, while properties represent additional,
more volatile features.

• Some old-style services are intended to be available at a component context�s service manager.
For example, the service com.sun.star.frame.Desktop can be instantiated at a component
context�s service manager under its service name "com.sun.star.frame.Desktop". (The
problem is that you cannot tell whether a given old-style service is intended to be available at a
component context; using a new-style service instead makes that intent explicit.)

• Other old-style services are designed as generic super-services that are inherited by other
services. For example, the service com.sun.star.document.OfficeDocument serves as a
generic base for all different sorts of concrete document services, like
com.sun.star.text.TextDocument and com.sun.star.drawing.DrawingDocument.
(Multiple-inheritance interfaces are now the preferred mechanism to express such generic base
services.)

• Yet other old-style services only list properties, and do not export any interfaces at all. Instead
of specifying the interfaces supported by certain objects, as the other kinds of old-style services

42 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrames.html#queryFrames
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrames.html#queryFrames
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrames.html#queryFrames
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html

do, such services are used to document a set of related properties. For example, the service
com.sun.star.document.MediaDescriptor lists all the properties that can be passed to
com.sun.star.frame.XComponentLoader:loadComponentFromURL.

A property is a feature of an object which is typically not considered an integral or structural part of
the object and therefore is handled through generic getPropertyValue()/setPropertyValue()
methods instead of specialized get methods, such as getPrinter(). Old-style services offer a
special syntax to list all the properties of an object. An object containing properties only has to
support the com.sun.star.beans.XPropertySet interface to be prepared to handle all kinds of
properties. Typical examples are properties for character or paragraph formatting. With properties,
you can set multiple features of an object through a single call to setPropertyValues(), which
greatly improves the remote performance. For instance, paragraphs support the setProperty-
Values() method through their com.sun.star.beans.XMultiPropertySet interface.

2.5.2 Using Services
The concepts of interfaces and services were introduced for the following reasons:

Interfaces and services separate specification from implementation
The specification of an interface or service is abstract, that is, it does not define how objects
supporting a certain functionality do this internally. Through the abstract specification of the
OpenOffice.org API, it is possible to pull the implementation out from under the API and install
a different implementation if required.

Service names allow to create instances by specification name, not by class names
In Java or C++ you use the new operator to create a class instance. This approach is restricted:
the class you get is hard-coded. You cannot later on exchange it by another class without
editing the code. The concept of services solves this. The central object factory in
OpenOffice.org, the global service manager, is asked to create an object that can be used for a
certain purpose without defining its internal implementation. This is possible, because a service
can be ordered from the factory by its service name and the factory decides which service imple-
mentation it returns. Which implementation you get makes no difference, you only use the
well-defined interface of the service.

Multiple-inheritance interfaces make fine-grained interfaces manageable
Abstract interfaces are more reusable if they are fine-grained, i.e., if they are small and describe
only one aspect of an object, not several aspects. But then you need many of them to describe a
useful object. Multiple-inheritance interfaces allow to have fine-grained interfaces on the one
hand and to manage them easily by forging them into a collection. Since it is quite probable that
objects in an office environment will share many aspects, this fine granularity allows the inter-
faces to be reused and thus to get objects that behave consistently. For instance, it was possible
to realize a unified way to handle text, no matter if you are dealing with body text, text frames,
header or footer text, footnotes, table cells or text in drawing shapes. It was not necessary to
define separate interfaces for all of these purposes.

Let us consider the old-style service com.sun.star.text.TextDocument in UML notation. The
UML chart shown in Illustration 2.2 depicts the mandatory interfaces of a TextDocument service.
These interfaces express the basic aspects of a text document in OpenOffice.org. It contains text, it
is searchable and refreshable. It is a model with URL and controller, and it is modifiable, printable
and storable. The UML chart shows how this is specified in the API.

43

http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html#loadComponentFromURL
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html#loadComponentFromURL
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html#loadComponentFromURL
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html

On the left of Illustration 2.2, the services com.sun.star.text.TextDocument and
com.sun.star.document.OfficeDocument are shown. Every TextDocument must include these
services by definition.

On the right of Illustration 2.2, you find the interfaces, that the services must export. Their method
compartments list the methods contained in the various interfaces. In the OpenOffice.org API, all
interface names have to start with an X to be distinguishable from the names of other entities.

Every TextDocument object must support three interfaces: XTextDocument, XSearchable, and
XRefreshable. In addition, because a TextDocument is always an OfficeDocument, it must also
support the interfaces XPrintable, XStorable, XModifiable and XModel. The methods contained
in these interfaces cover these aspects: printing, storing, modification and model handling.

44 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 2.2: Text Document

http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html

Note that the interfaces shown in Illustration 2.2 are only the mandatory interfaces of a TextDocu-
ment. A TextDocument has optional properties and interfaces, among them the properties Charac-
terCount, ParagraphCount and WordCount and the XPropertySet interface which must be
supported if properties are present at all. The current implementation of the TextDocument service
in OpenOffice.org does not only support these interfaces, but all optional interfaces as well. The
usage of a TextDocument is described thoroughly in 8 Text Documents.

Using Interfaces
The fact that every UNO object must be accessed through its interfaces has an effect in languages
like Java and C++, where the compiler needs the correct type of an object reference before you can
call a method from it. In Java or C++, you normally just cast an object before you access an inter-
face it implements. When working with UNO objects this is different: You must ask the UNO envi-
ronment to get the appropriate reference for you whenever you want to access methods of an inter-
face which your object supports, but your compiler does not yet know about. Only then you can
cast it safely.

The Java UNO environment has a method queryInterface() for this purpose. It looks compli-
cated at first sight, but once you understand that queryInterface() is about safe casting of UNO
types across process boundaries, you will soon get used to it. Take a look to the second example
FirstLoadComponent (FirstSteps/FirstLoadComponent.java) where a new Desktop object is
created and afterwards the queryInterface() method is used to get the XComponentLoader inter-
face.
Object desktop = xRemoteServiceManager.createInstanceWithContext(
 "com.sun.star.frame.Desktop", xRemoteContext);

XComponentLoader xComponentLoader = (XComponentLoader)
 UnoRuntime.queryInterface(XComponentLoader.class, desktop);
O

We asked the service manager to create a com.sun.star.frame.Desktop using its factory method
createInstanceWithContext(). This method is defined to return a Java Object type, which
should not surprise you� after all the factory must be able to return any type:
java.lang.Object createInstanceWithContext(String serviceName, XComponentContext context)

The object we receive is a com.sun.star.frame.Desktop service.

The following figure is a simplified specification in UML notation showing the relation to the
com.sun.star.frame.Frame service and the supported interfaces.The point is, while we know that
the object we ordered at the factory is a DesktopUnoUrlResolver and exports among other inter-
faces the interface XComponentLoader, the compiler does not. Therefore, we have to use the UNO
runtime environment to ask or query for the interface XComponentLoader, since we want to use the
loadComponentFromURL() method on this interface. The method queryInterface() makes sure
we get a reference that can be cast to the needed interface type, no matter if the target object is a
local or a remote object. There are two queryInterface definitions in the Java UNO language
binding:
java.lang.Object UnoRuntime.queryInterface(java.lang.Class targetInterface, Object sourceObject)
java.lang.Object UnoRuntime.queryInterface(com.sun.star.uno.Type targetInterface, Object sourceObject)

Since UnoRuntime.queryInterface() is specified to return a java.lang.Object just like the factory
method createInstanceWithContext(), we still must explicitly cast our interface reference to the
needed type. The difference is that after queryInterface() we can safely cast the object to our
interface type and, most important, that the reference will now work even with an object in another
process. Here is the queryInterface() call, explained step by step:
XComponentLoader xComponentLoader = (XComponentLoader)
 UnoRuntime.queryInterface(XComponentLoader.class, desktop);

45

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#queryInterface
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#queryInterface
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#queryInterface

XComponentLoader is the interface we want to use, so we define a XComponentLoader variable
named xComponentLaoder (lower x) to store the interface we expect from queryInterface.

Then we query our desktop object for the XComponentLoader interface, passing in XComponent-
Loader.class as target interface and desktop as source object. Finally we cast the outcome to
XComponentLoader and assign the resulting reference to our variable xComponentLoader.

If the source object does not support the interface we are querying for, queryInterface() will
return null.

In Java, this call to queryInterface() is necessary whenever you have a reference to an object
which is known to support an interface that you need, but you do not have the proper reference
type yet. Fortunately, you are not only allowed to queryInterface() from java.lang.Object
source types, but you may also query an interface from another interface reference, like this:
// loading a blank spreadsheet document gives us its XComponent interface:
XComponent xComponent = xComponentLoader.loadComponentFromURL(

"private:factory/scalc", "_blank", 0, loadProps);

// now we query the interface XSpreadsheetDocument from xComponent
XSpreadsheetDocument xSpreadsheetDocument = (XSpreadsheetDocument)UnoRuntime.queryInterface(
 XSpreadsheetDocument.class, xComponent);

Furthermore, if a method is defined in such a way that it already returns an interface type, you do
not need to query the interface, but you can use its methods right away. In the snippet above, the
method loadComponentFromURL is specified to return an com.sun.star.lang.XComponent inter-
face, so you may call the XComponent methods addEventListener() and
removeEventListener() directly at the xComponent variable, if you want to be notified that the
document is being closed.

The corresponding step in C++ is done by a Reference<> template that takes the source instance
as parameter:
// instantiate a sample service with the servicemanager.
Reference< XInterface > rInstance =

rServiceManager->createInstanceWithContext(
OUString::createFromAscii("com.sun.star.frame.Desktop"),
rComponentContext);

// Query for the XComponentLoader interface
Reference< XComponentLoader > rComponentLoader(rInstance, UNO_QUERY);

In OpenOffice.org Basic, querying for interfaces is not necessary, the Basic runtime engine takes
care about that internally.

With the proliferation of multiple-inheritance interfaces in the OpenOffice.org API, there will be
less of a demand to explicitly query for specific interfaces in Java or C++. For example, with the
hypothetical interfaces
interface XBase1 {
 void fun1();
};
interface XBase2 {
 void fun2();
};
interface XBoth { // inherits from both XBase1 and XBase2
 interface XBase1;
 interface XBase2;
};
interface XFactory {
 XBoth getBoth();
};

you can directly call both fun1() and fun2() on a reference obtained through
XFactory.getBoth(), without querying for either XBase1 or XBase2.

46 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html

Using Properties
An object must offer its properties through interfaces that allow you to work with properties. The
most basic form of these interfaces is the interface com.sun.star.beans.XPropertySet. There are
other interfaces for properties, such as com.sun.star.beans.XMultiPropertySet, that gets and
sets a multitude of properties with a single method call. The XPropertySet is always supported
when properties are present in a service.

In XPropertySet, two methods carry out the property access, which are defined in Java as follows:
void setPropertyValue(String propertyName, Object propertyValue)
Object getPropertyValue(String propertyName)

In the FirstLoadComponent example, the XPropertySet interface was used to set the CellStyle
property at a cell object. The cell object was a com.sun.star.sheet.SheetCell and therefore
supports also the com.sun.star.table.CellProperties service which had a property Cell-
Style. The following code explains how this property was set:
// query the XPropertySet interface from cell object
XPropertySet xCellProps = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, xCell);
// set the CellStyle property
xCellProps.setPropertyValue("CellStyle", "Result");

You are now ready to start working with a OpenOffice.org document.

2.5.3 Example: Working with a Spreadsheet Document
In this example, we will ask the remote service manager to give us the remote Desktop object and
use its loadComponentFromURL() method to create a new spreadsheet document. From the docu-
ment we get its sheets container where we insert and access a new sheet by name. In the new sheet,
we enter values into A1 and A2 and summarize them in A3. The cell style of the summarizing cell
gets the cell style Result, so that it appears in italics, bold and underlined. Finally, we make our
new sheet the active sheet, so that the user can see it.

Add these import lines to the FirstConnection example above:
(FirstSteps/FirstLoadComponent.java)
import com.sun.star.beans.PropertyValue;
import com.sun.star.lang.XComponent;
import com.sun.star.sheet.XSpreadsheetDocument;
import com.sun.star.sheet.XSpreadsheets;
import com.sun.star.sheet.XSpreadsheet;
import com.sun.star.sheet.XSpreadsheetView;
import com.sun.star.table.XCell;
import com.sun.star.frame.XModel;
import com.sun.star.frame.XController;
import com.sun.star.frame.XComponentLoader;

Edit the useConnection method as follows:
protected void useConnection() throws java.lang.Exception {
 try {
 // get the remote office component context
 xRemoteContext = com.sun.star.comp.helper.Bootstrap.bootstrap();
 System.out.println("Connected to a running office ...");

 xRemoteServiceManager = xRemoteContext.getServiceManager();
 }
 catch(Exception e) {
 e.printStackTrace();
 System.exit(1);
 }

try {

 // get the Desktop, we need its XComponentLoader interface to load a new document
 Object desktop = xRemoteServiceManager.createInstanceWithContext(
 "com.sun.star.frame.Desktop", xRemoteContext);

47

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html

 // query the XComponentLoader interface from the desktop
 XComponentLoader xComponentLoader = (XComponentLoader)UnoRuntime.queryInterface(
 XComponentLoader.class, desktop);

 // create empty array of PropertyValue structs, needed for loadComponentFromURL
 PropertyValue[] loadProps = new PropertyValue[0];

 // load new calc file
 XComponent xSpreadsheetComponent = xComponentLoader.loadComponentFromURL(
 "private:factory/scalc", "_blank", 0, loadProps);

 // query its XSpreadsheetDocument interface, we want to use getSheets()
 XSpreadsheetDocument xSpreadsheetDocument = (XSpreadsheetDocument)UnoRuntime.queryInterface(
 XSpreadsheetDocument.class, xSpreadsheetComponent);

 // use getSheets to get spreadsheets container
 XSpreadsheets xSpreadsheets = xSpreadsheetDocument.getSheets();
 //insert new sheet at position 0 and get it by name, then query its XSpreadsheet interface
 xSpreadsheets.insertNewByName("MySheet", (short)0);
 Object sheet = xSpreadsheets.getByName("MySheet");
 XSpreadsheet xSpreadsheet = (XSpreadsheet)UnoRuntime.queryInterface(
 XSpreadsheet.class, sheet);

 // use XSpreadsheet interface to get the cell A1 at position 0,0 and enter 21 as value
 XCell xCell = xSpreadsheet.getCellByPosition(0, 0);
 xCell.setValue(21);

// enter another value into the cell A2 at position 0,1
 xCell = xSpreadsheet.getCellByPosition(0, 1);
 xCell.setValue(21);

// sum up the two cells
 xCell = xSpreadsheet.getCellByPosition(0, 2);
 xCell.setFormula("=sum(A1:A2)");

 // we want to access the cell property CellStyle, so query the cell's XPropertySet interface
 XPropertySet xCellProps = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xCell);

 // assign the cell style "Result" to our formula, which is available out of the box
 xCellProps.setPropertyValue("CellStyle", "Result");
 // we want to make our new sheet the current sheet, so we need to ask the model
 // for the controller: first query the XModel interface from our spreadsheet component
 XModel xSpreadsheetModel = (XModel)UnoRuntime.queryInterface(
 XModel.class, xSpreadsheetComponent);

 // then get the current controller from the model
 XController xSpreadsheetController = xSpreadsheetModel.getCurrentController();
 // get the XSpreadsheetView interface from the controller, we want to call its method
 // setActiveSheet
 XSpreadsheetView xSpreadsheetView = (XSpreadsheetView)UnoRuntime.queryInterface(
 XSpreadsheetView.class, xSpreadsheetController);

 // make our newly inserted sheet the active sheet using setActiveSheet
 xSpreadsheetView.setActiveSheet(xSpreadsheet);
 }
 catch(com.sun.star.lang.DisposedException e) { //works from Patch 1
 xRemoteContext = null;
 throw e;
 }
}

Alternatively, you can add FirstLoadComponent.java from the samples directory to your current
project, it contains the changes shown above.

2.5.4 Common Types
Until now, literals and common Java types for method parameters and return values have been
used as if the OpenOffice.org API was made for Java. However, it is important to understand that
UNO is designed to be language independent and therefore has its own set of types which have to
be mapped to the proper types for your language binding. The type mappings are briefly
described in this section. Refer to 3 Professional UNO for detailed information about type
mappings.

48 OpenOffice.org 2.3 Developer's Guide • June 2007

Basic Types
The basic UNO types (where the term �basic� has nothing to do with OpenOffice.org Basic) occur
as members of structs, as method return types or method parameters. The following table shows
the basic UNO types and, if available, their exact mappings to Java, C++, and OpenOffice.org Basic
types.

UNO Type description Java C++ Basic

void
empty type, used only as
method return type and
in any

void void -

boolean Boolean type; true and
false

boolean sal_Bool Boolean

byte signed 8-bit integer type byte sal_Int8 Integer
short signed 16-bit integer type short sal_Int16 Integer
unsigned
short

unsigned 16-bit integer
type (deprecated)

- sal_uInt16 -

long signed 32-bit integer type int sal_Int32 Long
unsigned
long

unsigned 32-bit integer
type (deprecated)

- sal_uInt32 -

hyper signed 64-bit integer type long sal_Int64 -
unsigned
hyper

unsigned 64-bit integer
type (deprecated)

- sal_uInt64 -

float IEC 60559 single preci-
sion floating point type

float float (if appropriate) Single

double IEC 60559 double preci-
sion floating point type

double double (if appropriate) Double

char
16-bit Unicode character
type (more precisely:
UTF-16 code units)-

char sal_Unicode -

There are special conditions for types that do not have an exact mapping in this table. Check for
details about these types in the corresponding sections about type mappings in 3.4 Professional
UNO - UNO Language Bindings.

Strings
UNO considers strings to be simple types, but since they need special treatment in some environ-
ments, we discuss them separately here.

UNO Description Java C++ Basic

string
Unicode string type
(more precisely: strings
of Unicode scalar values)

java.lang.-
String rtl::OUString String

In Java, use UNO strings as if they were native java.lang.String objects.

In C++, native char strings must be converted to UNO Unicode strings by means of SAL conver-
sion functions, usually the function createFromAscii() in the rtl::OUString class:
//C++

49

static OUString createFromAscii(const sal_Char * value) throw();

In Basic, Basic strings are mapped to UNO strings transparently.

Enum Types and Groups of Constants
The OpenOffice.org API uses many enumeration types (called enums) and groups of constants
(called constant groups). Enums are used to list every plausible value in a certain context. The
constant groups define possible values for properties, parameters, return values and struct
members.

For example, there is an enum com.sun.star.table.CellVertJustify that describes the possible
values for the vertical adjustment of table cell content. The vertical adjustment of table cells is
determined by their property com.sun.star.table.CellProperties:VertJustify. The possible
values for this property are, according to CellVertJustify, the values STANDARD, TOP, CENTER and
BOTTOM.
// adjust a cell content to the upper cell border
// The service com.sun.star.table.Cell includes the service com.sun.star.table.CellProperties
// and therefore has a property VertJustify that controls the vertical cell adjustment
// we have to use the XPropertySet interface of our Cell to set it

xCellProps.setPropertyValue("VertJustify", com.sun.star.table.CellVertJustify.TOP);

OpenOffice.org Basic understands enumeration types and constant groups. Their usage is straight-
forward:
'OpenOffice.org Basic
oCellProps.VertJustify = com.sun.star.table.CellVertJustify.TOP

In C++ enums and constant groups are used with the scope operator ::
//C++
rCellProps->setPropertyValue(OUString::createFromAscii("VertJustify"),

::com::sun::star::table::CellVertJustify.TOP);

2.5.5 Struct
Structs in the OpenOffice.org API are used to create compounds of other UNO types. They corre-
spond to C structs or Java classes consisting of public member variables only.

While structs do not encapsulate data, they are easier to transport as a whole, instead of marshal-
ling get() and set() calls back and forth. In particular, this has advantages for remote communi-
cation.

You gain access to struct members through the . (dot) operator as in
aProperty.Name = "ReadOnly";

In Java, C++ und OpenOffice.org Basic, the keyword new instantiates structs. In OLE automation,
use com.sun.star.reflection.CoreReflection to get a UNO struct. Do not use the service
manager to create structs.
//In Java:
com.sun.star.beans.PropertyValue aProperty = new com.sun.star.beans.PropertyValue();

'In StarBasic
Dim aProperty as new com.sun.star.beans.PropertyValue

50 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/CoreReflection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/CoreReflection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/CoreReflection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellProperties.html#VertJustify
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellProperties.html#VertJustify
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellProperties.html#VertJustify
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellVertJustify.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellVertJustify.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellVertJustify.html

2.5.6 Any
The OpenOffice.org API frequently uses an any type, which is the counterpart of the Variant type
known from other environments. The any type holds one arbitrary UNO type. The any type is
especially used in generic UNO interfaces.

Examples for the occurrence of any are the method parameters and return values of the following,
frequently used methods:

Interface returning an any type taking an any type
XPropertySet any getPropertyValue(string

propertyName)
void setPropertyValue(any value)

XNameContainer any getByName(string name) void
replaceByName(string
name, any element)

void
insertByName(string
name, any element)

XIndexContainer any getByIndex(long index) void
replaceByIndex(long
index, any element)

void
insertByIndex(long
index, any element)

XEnumeration any nextElement() -

Furthermore, the any type occurs in the com.sun.star.beans.PropertyValue struct.

This struct has two member variables, Name and Value, and is ubiquitous in sets of Property-
Value structs, where every PropertyValue is a name-value pair that describes a property by name
and value. If you need to set the value of such a PropertyValue struct, you must assign an any
type, and you must be able to interpret the contained any, if you are reading from a Property-
Value. It depends on your language how this is done.

In Java, the any type is mapped to java.lang.Object, but there is also a special Java class
com.sun.star.uno.Any, mainly used in those cases where a plain Object would be ambiguous.
There are two simple rules of thumb to follow:

When you are supposed to pass in an any value, always pass in a java.lang.Object or a Java
UNO object.

For instance, if you use setPropertyValue() to set a property that has a non-interface type in the
target object, you must pass in a java.lang.Object for the new value. If the new value is of a
primitive type in Java, use the corresponding Object type for the primitive type:
xCellProps.setPropertyValue("CharWeight", new Double(200.0));

Another example would be a PropertyValue struct you want to use for loadComponentFromURL:
com.sun.star.beans.PropertyValue aProperty = new com.sun.star.beans.PropertyValue();
aProperty.Name = "ReadOnly";
aProperty.Value = Boolean.TRUE;

When you receive an any instance, always use the com.sun.star.uno.AnyConverter to retrieve its
value.

51

Illustration 2.3:
PropertyValue

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html

The AnyConverter requires a closer look. For instance, if you want to get a property which
contains a primitive Java type, you must be aware that getPropertyValue() returns a
java.lang.Object containing your primitive type wrapped in an any value. The
com.sun.star.uno.AnyConverter is a converter for such objects. Actually it can do more than
just conversion, you can find its specification in the Java UNO reference. The following list sums
up the conversion functions in the AnyConverter:

static java.lang.Object toArray(java.lang.Object object)
static boolean toBoolean(java.lang.Object object)
static byte toByte(java.lang.Object object)
static char toChar(java.lang.Object object)
static double toDouble(java.lang.Object object)
static float toFloat(java.lang.Object object)
static int toInt(java.lang.Object object)
static long toLong(java.lang.Object object)
static java.lang.Object toObject(Class clazz, java.lang.Object object)
static java.lang.Object toObject(Type type, java.lang.Object object)
static short toShort(java.lang.Object object)
static java.lang.String toString(java.lang.Object object)
static Type toType(java.lang.Object object)
static int toUnsignedInt(java.lang.Object object)
static long toUnsignedLong(java.lang.Object object)
static short toUnsignedShort(java.lang.Object object)

Its usage is straightforward:
import com.sun.star.uno.AnyConverter;
long cellColor = AnyConverter.toLong(xCellProps.getPropertyValue("CharColor"));

For convenience, for interface types you can directly use UnoRuntime.queryInterface() without
first calling AnyConverter.getObject():
import com.sun.star.uno.AnyConverter;
import com.sun.star.uno.UnoRuntime;
Object ranges = xSpreadsheet.getPropertyValue("NamedRanges");
XNamedRanges ranges1 = (XNamedRanges) UnoRuntime.queryInterface(
 XNamedRanges.class, AnyConverter.toObject(XNamedRanges.class, r));
XNamedRanges ranges2 = (XNamedRanges) UnoRuntime.queryInterface(
 XNamedRanges.class, r);

In OpenOffice.org Basic, the any type becomes a Variant:
'OpenOffice.org Basic
Dim cellColor as Variant
cellColor = oCellProps.CharColor

In C++, there are special operators for the any type:
//C++ has >>= and <<= for Any (the pointed brackets are always left)
sal_Int32 cellColor;
Any any;
any = rCellProps->getPropertyValue(OUString::createFromAscii("CharColor"));
// extract the value from any
any >>= cellColor;

2.5.7 Sequence
A sequence is a homogeneous collection of values of one UNO type with a variable number of
elements. Sequences map to arrays in most current language bindings. Although such collections
are sometimes implemented as objects with element access methods in UNO (e.g., via the
com.sun.star.container.XEnumeration interface), there is also the sequence type, to be used
where remote performance matters. Sequences are always written with pointed brackets in the API
reference:
// a sequence of strings is notated as follows in the API reference
sequence< string > aStringSequence;

In Java, you treat sequences as arrays. (But do not use null for empty sequences, use arrays
created via new and with a length of zero instead.) Furthermore, keep in mind that you only create
an array of references when creating an array of Java objects, the actual objects are not allocated.

52 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumeration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumeration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumeration.html

Therefore, you must use new to create the array itself, then you must again use new for every single
object and assign the new objects to the array.

An empty sequence of PropertyValue structs is frequently needed for loadComponentFromURL:
// create an empty array of PropertyValue structs for loadComponentFromURL
PropertyValue[] emptyProps = new PropertyValue[0];

A sequence of PropertyValue structs is needed to use loading parameters with loadComponent-
FromURL(). The possible parameter values for loadComponentFromURL() and the
com.sun.star.frame.XStorable interface can be found in the service
com.sun.star.document.MediaDescriptor.
// create an array with one PropertyValue struct for loadComponentFromURL, it contains references only
PropertyValue[] loadProps = new PropertyValue[1];

// instantiate PropertyValue struct and set its member fields
PropertyValue asTemplate = new PropertyValue();
asTemplate.Name = "AsTemplate";
asTemplate.Value = Boolean.TRUE;

// assign PropertyValue struct to first element in our array of references to PropertyValue structs
loadProps[0] = asTemplate;

// load calc file as template
XComponent xSpreadsheetComponent = xComponentLoader.loadComponentFromURL(
 "file:///X:/share/samples/english/spreadsheets/OfficeSharingAssoc.sxc",
 "_blank", 0, loadProps);

In OpenOffice.org Basic, a simple Dim creates an empty array.
'OpenOffice.org Basic
Dim loadProps() 'empty array

A sequence of structs is created using new together with Dim.
'OpenOffice.org Basic
Dim loadProps(0) as new com.sun.star.beans.PropertyValue 'one PropertyValue

In C++, there is a class template for sequences. An empty sequence can be created by omitting the
number of elements required.
//C++
Sequence< ::com::sun::star::beans::PropertyValue > loadProperties; // empty sequence

If you pass a number of elements, you get an array of the requested length.
//C++
Sequence< ::com::sun::star::beans::PropertyValue > loadProps(1);
// the structs are default constructed
loadProps[0].Name = OUString::createFromAscii("AsTemplate");
loadProps[0].Handle <<= true;

Reference< XComponent > rComponent = rComponentLoader->loadComponentFromURL(
OUString::createFromAscii("private:factory/swriter"),
OUString::createFromAscii("_blank"),
0,
loadProps);

2.5.8 Element Access
We have already seen in section 2.4 First Steps - How to get Objects in OpenOffice.org that sets of
objects can also be provided through element access methods. The three most important kinds of
element access interfaces are com.sun.star.container.XNameContainer,
com.sun.star.container.XIndexContainer and com.sun.star.container.XEnumeration.

The three element access interfaces are examples of how the fine-grained interfaces of the
OpenOffice.org API allow consistent object design.

All three interfaces inherit from XElementAccess, i.e., they include the methods:
type getElementType()
boolean hasElements()

53

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumeration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumeration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumeration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html

to find out basic information about the set of elements. The method hasElements() answers the
question if a set contains elements at all, and which type a set contains. In Java and C++, you can
get information about a UNO type through com.sun.star.uno.Type, cf. the Java UNO and the C+
+ UNO reference.

The com.sun.star.container.XIndexContainer and com.sun.star.container.XNameCon-
tainer interface have a parallel design. Consider both interfaces in UML notation.

The XIndexAccess/XNameAccess interfaces are about getting an element. The
XIndexReplace/XNameReplace interfaces allow you to replace existing elements without changing
the number of elements in the set, whereas the XIndexContainer/XNameContainer interfaces
allow you to increase and decrease the number of elements by inserting and removing elements.

Many sets of named or indexed objects do not support the whole inheritance hierarchy of XIndex-
Container or XNameContainer, because the capabilities added by every subclass are not always
logical for any set of elements.

The XEumerationAccess interface works differently from named and indexed containers below
the XElementAccess interface. XEnumerationAccess does not provide single elements like XName-

54 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 2.4: Indexed and Named Container

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html

Access and XIndexAccess, but it creates an enumeration of objects which has methods to go to the
next element as long as there are more elements.

Sets of objects sometimes support all element access methods, some also support only name, index,
or enumeration access. Always look up the various types in the API reference to see which access
methods are available.

For instance, the method getSheets() at the interface com.sun.star.sheet.XSpreadsheetDocu-
ment is specified to return a com.sun.star.sheet.XSpreadsheets interface inherited from
XNameContainer. In addition, the API reference tells you that the provided object supports the
com.sun.star.sheet.Spreadsheets service, which defines additional element access interfaces
besides XSpreadsheets.

Examples that show how to work with XNameAccess, XIndexAccess, and XEnumerationAccess
are provided below.

Name Access
The basic interface which hands out elements by name is the com.sun.star.container.XNameAc-
cess interface. It has three methods:

any getByName([in] string name)
sequence< string > getElementNames()
boolean hasByName([in] string name)

55

Illustration 2.5: Enumerated
Container

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheets.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheets.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheets.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheets.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheets.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheets.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheetDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheetDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheetDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheetDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheetDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheetDocument.html

In the FirstLoadComponent example above, the method getSheets() returned a
com.sun.star.sheet.XSpreadsheets interface, which inherits from XNameAccess. Therefore,
you could use getByName() to obtain the sheet "MySheet" by name from the XSpreadsheets
container:
XSpreadsheets xSpreadsheets = xSpreadsheetDocument.getSheets();
Object sheet = xSpreadsheets.getByName("MySheet");
XSpreadsheet xSpreadsheet = (XSpreadsheet)UnoRuntime.queryInterface(
 XSpreadsheet.class, sheet);

// use XSpreadsheet interface to get the cell A1 at position 0,0 and enter 42 as value
XCell xCell = xSpreadsheet.getCellByPosition(0, 0);

Since getByName() returns an any, you have to use AnyConverter.toObject() and/or UnoRun-
time.queryInterface() before you can call methods at the spreadsheet object.

Index Access
The interface which hands out elements by index is the com.sun.star.container.XIndexAccess
interface. It has two methods:

any getByIndex([in] long index)
long getCount()

The FirstLoadComponent example allows to demonstrate XIndexAccess. The API reference tells
us that the service returned by getSheets() is a com.sun.star.sheet.Spreadsheet service and
supports not only the interface com.sun.star.sheet.XSpreadsheets, but XIndexAccess as well.
Therefore, the sheets could have been accessed by index and not just by name by performing a
query for the XIndexAccess interface from our xSpreadsheets variable:
XIndexAccess xSheetIndexAccess = (XIndexAccess)UnoRuntime.queryInterface(
 XIndexAccess.class, xSpreadsheets);

Object sheet = XSheetIndexAccess.getByIndex(0);

Enumeration Access
The interface com.sun.star.container.XEnumerationAccess creates enumerations that allow
traveling across a set of objects. It has one method:

com.sun.star.container.XEnumeration createEnumeration()

The enumeration object gained from createEnumeration() supports the interface
com.sun.star.container.XEnumeration. With this interface we can keep pulling elements out of
the enumeration as long as it has more elements. XEnumeration supplies the methods:

boolean hasMoreElements()
any nextElement()

which are meant to build loops such as:
while (xCells.hasMoreElements()) {
 Object cell = xCells.nextElement();
 // do something with cell
}

For example, in spreadsheets you have the opportunity to find out which cells contain formulas.
The resulting set of cells is provided as XEnumerationAccess.

The interface that queries for cells with formulas is com.sun.star.sheet.XCellRangesQuery, it
defines (among others) a method

XSheetCellRanges queryContentCells(short cellFlags)

56 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumeration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumeration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumeration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheets.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheets.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheets.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheets.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheets.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheets.html

which queries for cells having content as defined in the constants group com.sun.star.sheet.Cell-
Flags. One of these cell flags is FORMULA. From queryContentCells() we receive an object with
an com.sun.star.sheet.XSheetCellRanges interface, which has these methods:

XEnumerationAccess getCells()
String getRangeAddressesAsString()
sequence< com.sun.star.table.CellRangeAddress > getRangeAddresses()

The method getCells() can be used to list all formula cells and the containing formulas in the
spreadsheet document from our FirstLoadComponent example, utilizing XEnumerationAccess.
(FirstSteps/FirstLoadComponent.java)
XCellRangesQuery xCellQuery = (XCellRangesQuery)UnoRuntime.queryInterface(
 XCellRangesQuery.class, sheet);
XSheetCellRanges xFormulaCells = xCellQuery.queryContentCells(
 (short)com.sun.star.sheet.CellFlags.FORMULA);

XEnumerationAccess xFormulas = xFormulaCells.getCells();
XEnumeration xFormulaEnum = xFormulas.createEnumeration();
while (xFormulaEnum.hasMoreElements()) {
 Object formulaCell = xFormulaEnum.nextElement();
 // do something with formulaCell
 xCell = (XCell)UnoRuntime.queryInterface(XCell.class, formulaCell);
 XCellAddressable xCellAddress = (XCellAddressable)UnoRuntime.queryInterface(
 XCellAddressable.class, xCell);
 System.out.print("Formula cell in column " + xCellAddress.getCellAddress().Column
 + ", row " + xCellAddress.getCellAddress().Row
 + " contains " + xCell.getFormula());
}

2.6 How do I know Which Type I Have?
A common problem is deciding what capabilities an object really has, after you receive it from a
method.

By observing the code completion in Java IDE, you can discover the base interface of an object
returned from a method. You will notice that loadComponentFromURL() returns a
com.sun.star.lang.XComponent.

By pressing Alt + F1 in the NetBeans IDE you can read specifications about the interfaces and
services you are using.

However, methods can only be specified to return one interface type. The interface you get from a
method very often supports more interfaces than the one that is returned by the method (especially
when the design of those interfaces predates the availability of multiple-inheritance interface types
in UNO). Furthermore, the interface does not tell anything about the properties the object contains.

Therefore you should uses this manual to get an idea how things work. Then start writing code,
using the code completion and the API reference.

In addition, you can try the InstanceInspector, a Java tool which is part of the OpenOffice.org SDK
examples. It is a Java component that can be registered with the office and shows interfaces and
properties of the object you are currently working with.

In OpenOffice.org Basic, you can inspect objects using the following Basic properties.
sub main
 oDocument = thiscomponent
 msgBox(oDocument.dbg_methods)
 msgBox(oDocument.dbg_properties)
 msgBox(oDocument.dbg_supportedInterfaces)
end sub

57

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellFlags.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellFlags.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellFlags.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellFlags.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellFlags.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellFlags.html

2.7 Example: Hello Text, Hello Table, Hello Shape
The goal of this section is to give a brief overview of those mechanisms in the OpenOffice.org API,
which are common to all document types. The three main application areas of OpenOffice.org are
text, tables and drawing shapes. The point is: texts, tables and drawing shapes can occur in all
three document types, no matter if you are dealing with a Writer, Calc or Draw/Impress file, but
they are treated in the same manner everywhere. When you master the common mechanisms, you
will be able to insert and use texts, tables and drawings in all document types.

2.7.1 Common Mechanisms for Text, Tables and Drawings
We want to stress the common ground, therefore we start with the common interfaces and proper-
ties that allow to manipulate existing texts, tables and drawings. Afterwards we will demonstrate
the different techniques to create text, table and drawings in each document type.

The key interfaces and properties to work with existing texts, tables and drawings are the
following:

For text the interface com.sun.star.text.XText contains the methods that change the actual text
and other text contents (examples for text contents besides conventional text paragraphs are text
tables, text fields, graphic objects and similar things, but such contents are not available in all
contexts). When we talk about text here, we mean any text - text in text documents, text frames,
page headers and footers, table cells or in drawing shapes. XText is the key for text everywhere in
OpenOffice.org.

58 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html

The interface com.sun.star.text.XText has the ability to set or get the text as a single string, and
to locate the beginning and the end of a text. Furthermore, XText can insert strings at an arbitrary
position in the text and create text cursors to select and format text. Finally, XText handles text
contents through the methods insertTextContent and removeTextContent, although not all
texts accept text contents other than conventional text. In fact, XText covers all this by inheriting
from com.sun.star.text.XSimpleText that is inherited from com.sun.star.text.XTextRange.

Text formatting happens through the properties which are described in the services
com.sun.star.style.ParagraphProperties and com.sun.star.style.CharacterProperties.

The following example method manipulateText() adds text, then it uses a text cursor to select
and format a few words using CharacterProperties, afterwards it inserts more text. The method
manipulateText() only contains the most basic methods of XText so that it works with every text
object. In particular, it avoids insertTextContent(), since there are no text contents except for
conventional text that can be inserted in all text objects.(FirstSteps/HelloTextTableShape.java)
protected void manipulateText(XText xText) throws com.sun.star.uno.Exception {
 // simply set whole text as one string
 xText.setString("He lay flat on the brown, pine-needled floor of the forest, "
 + "his chin on his folded arms, and high overhead the wind blew in the tops "
 + "of the pine trees.");

 // create text cursor for selecting and formatting
 XTextCursor xTextCursor = xText.createTextCursor();
 XPropertySet xCursorProps = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xTextCursor);

 // use cursor to select "He lay" and apply bold italic
 xTextCursor.gotoStart(false);

59

Illustration 2.6: XTextRange

http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XSimpleText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XSimpleText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XSimpleText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html

 xTextCursor.goRight((short)6, true);
 // from CharacterProperties
 xCursorProps.setPropertyValue("CharPosture",
 com.sun.star.awt.FontSlant.ITALIC);
 xCursorProps.setPropertyValue("CharWeight",
 new Float(com.sun.star.awt.FontWeight.BOLD));

 // add more text at the end of the text using insertString
 xTextCursor.gotoEnd(false);
 xText.insertString(xTextCursor, " The mountainside sloped gently where he lay; "
 + "but below it was steep and he could see the dark of the oiled road "
 + "winding through the pass. There was a stream alongside the road "
 + "and far down the pass he saw a mill beside the stream and the falling water "
 + "of the dam, white in the summer sunlight.", false);
 // after insertString the cursor is behind the inserted text, insert more text
 xText.insertString(xTextCursor, "\n \"Is that the mill?\" he asked.", false);
}

In tables and table cells, the interface com.sun.star.table.XCellRange allows you to retrieve
single cells and subranges of cells. Once you have a cell, you can work with its formula or numeric
value through the interface com.sun.star.table.XCell.

Table formatting is partially different in text tables and spreadsheet tables. Text tables use the
properties specified in com.sun.star.text.TextTable, whereas spreadsheet tables use
com.sun.star.table.CellProperties. Furthermore there are table cursors that allow to select
and format cell ranges and the contained text. But since a com.sun.star.text.TextTableCursor
works quite differently from a com.sun.star.sheet.SheetCellCursor, we will discuss them in
the chapters about text and spreadsheet documents.(FirstSteps/HelloTextTableShape.java)
protected void manipulateTable(XCellRange xCellRange) throws com.sun.star.uno.Exception {

 String backColorPropertyName = "";
 XPropertySet xTableProps = null;

 // enter column titles and a cell value

// Enter "Quotation" in A1, "Year" in B1. We use setString because we want to change the whole
// cell text at once

 XCell xCell = xCellRange.getCellByPosition(0,0);
 XText xCellText = (XText)UnoRuntime.queryInterface(XText.class, xCell);
 xCellText.setString("Quotation");
 xCell = xCellRange.getCellByPosition(1,0);
 xCellText = (XText)UnoRuntime.queryInterface(XText.class, xCell);
 xCellText.setString("Year");

// cell value
xCell = xCellRange.getCellByPosition(1,1);

 xCell.setValue(1940);

60 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 2.7: Cell and Cell Range

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTableCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTableCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTableCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellRange.html

// select the table headers and get the cell properties
XCellRange xSelectedCells = xCellRange.getCellRangeByName("A1:B1");

 XPropertySet xCellProps = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xSelectedCells);

 // format the color of the table headers and table borders
 // we need to distinguish text and spreadsheet tables:
 // - the property name for cell colors is different in text and sheet cells
 // - the common property for table borders is com.sun.star.table.TableBorder, but

// we must apply the property TableBorder to the whole text table,
// whereas we only want borders for spreadsheet cells with content.

 // XServiceInfo allows to distinguish text tables from spreadsheets
XServiceInfo xServiceInfo = (XServiceInfo)UnoRuntime.queryInterface(

 XServiceInfo.class, xCellRange);

// determine the correct property name for background color and the XPropertySet interface
// for the cells that should get colored border lines
if (xServiceInfo.supportsService("com.sun.star.sheet.Spreadsheet")) {

 backColorPropertyName = "CellBackColor";
 // select cells

 xSelectedCells = xCellRange.getCellRangeByName("A1:B2");
 // table properties only for selected cells

 xTableProps = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xSelectedCells);
 }
 else if (xServiceInfo.supportsService("com.sun.star.text.TextTable")) {
 backColorPropertyName = "BackColor";

 // table properties for whole table
 xTableProps = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xCellRange);
 }
 // set cell background color
 xCellProps.setPropertyValue(backColorPropertyName, new Integer(0x99CCFF));

 // set table borders
 // create description for blue line, width 10
 // colors are given in ARGB, comprised of four bytes for alpha-red-green-blue as in 0xAARRGGBB

BorderLine theLine = new BorderLine();
 theLine.Color = 0x000099;
 theLine.OuterLineWidth = 10;
 // apply line description to all border lines and make them valid
 TableBorder bord = new TableBorder();
 bord.VerticalLine = bord.HorizontalLine =
 bord.LeftLine = bord.RightLine =
 bord.TopLine = bord.BottomLine =
 theLine;
 bord.IsVerticalLineValid = bord.IsHorizontalLineValid =
 bord.IsLeftLineValid = bord.IsRightLineValid =
 bord.IsTopLineValid = bord.IsBottomLineValid =
 true;

 xTableProps.setPropertyValue("TableBorder", bord);

}

On drawing shapes, the interface com.sun.star.drawing.XShape is used to determine the position
and size of a shape.

Everything else is a matter of property-based formatting and there is a multitude of properties to
use. OpenOffice.org comes with eleven different shapes that are the basis for the drawing tools in
the GUI (graphical user interface). Six of the shapes have individual properties that reflect their
characteristics. The six shapes are:

• com.sun.star.drawing.EllipseShape for circles and ellipses.

• com.sun.star.drawing.RectangleShape for boxes.

61

Illustration 2.8: XShape

http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/RectangleShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/RectangleShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/RectangleShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/EllipseShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/EllipseShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/EllipseShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShape.html

• com.sun.star.drawing.TextShape for text boxes.

• com.sun.star.drawing.CaptionShape for labeling.

• com.sun.star.drawing.MeasureShape for metering.

• com.sun.star.drawing.ConnectorShape for lines that can be "glued" to other shapes to draw
connecting lines between them.

Five shapes have no individual properties, rather they share the properties defined in the service
com.sun.star.drawing.PolyPolygonBezierDescriptor:

• com.sun.star.drawing.LineShape is for lines and arrows.

• com.sun.star.drawing.PolyLineShape is for open shapes formed by straight lines.

• com.sun.star.drawing.PolyPolygonShape is for shapes formed by one or more polygons.

• com.sun.star.drawing.ClosedBezierShape is for closed bezier shapes.

• com.sun.star.drawing.PolyPolygonBezierShape is for combinations of multiple polygon
and Bezier shapes.

All of these eleven shapes use the properties from the following services:

• com.sun.star.drawing.Shape describes basic properties of all shapes such as the layer a
shape belongs to, protection from moving and sizing, style name, 3D transformation and name.

• com.sun.star.drawing.LineProperties determines how the lines of a shape look

• com.sun.star.drawing.Text has no properties of its own, but includes:

• com.sun.star.drawing.TextProperties that affects numbering, shape growth and text
alignment in the cell, text animation and writing direction.

• com.sun.star.style.ParagraphProperties is concerned with paragraph formatting.

• com.sun.star.style.CharacterProperties formats characters

• com.sun.star.drawing.ShadowProperties deals with the shadow of a shape.

• com.sun.star.drawing.RotationDescriptor sets rotation and shearing of a shape.

• com.sun.star.drawing.FillProperties is only for closed shapes and describes how the
shape is filled.

• com.sun.star.presentation.Shape adds presentation effects to shapes in presentation docu-
ments.

Consider the following example showing how these properties work: (FirstSteps/HelloTextTable-
Shape.java)
protected void manipulateShape(XShape xShape) throws com.sun.star.uno.Exception {
 // for usage of setSize and setPosition in interface XShape see method useDraw() below

XPropertySet xShapeProps = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, xShape);
// colors are given in ARGB, comprised of four bytes for alpha-red-green-blue as in 0xAARRGGBB

 xShapeProps.setPropertyValue("FillColor", new Integer(0x99CCFF));
 xShapeProps.setPropertyValue("LineColor", new Integer(0x000099));
 // angles are given in hundredth degrees, rotate by 30 degrees

xShapeProps.setPropertyValue("RotateAngle", new Integer(3000));
}

62 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/RotationDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/RotationDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/RotationDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ShadowProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ShadowProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ShadowProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ClosedBezierShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ClosedBezierShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ClosedBezierShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyLineShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyLineShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyLineShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ConnectorShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ConnectorShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ConnectorShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/MeasureShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/MeasureShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/MeasureShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/CaptionShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/CaptionShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/CaptionShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextShape.html

2.7.2 Creating Text, Tables and Drawing Shapes
The three manipulateXXX methods above took text, table and shape objects as parameters and
altered them. The following methods show how to create such objects in the various document
types. Note that all documents have their own service factory to create objects to be inserted into
the document. Aside from that it depends very much on the document type how you proceed. This
section only demonstrates the different procedures, the explanation can be found in the chapters
about Text, Spreadsheet and Drawing Documents.

First, a small convenience method is used to create new documents.(FirstSteps/HelloTextTable-
Shape.java)
protected XComponent newDocComponent(String docType) throws java.lang.Exception {
 String loadUrl = "private:factory/" + docType;
 xRemoteServiceManager = this.getRemoteServiceManager(unoUrl);
 Object desktop = xRemoteServiceManager.createInstanceWithContext(
 "com.sun.star.frame.Desktop", xRemoteContext);
 XComponentLoader xComponentLoader = (XComponentLoader)UnoRuntime.queryInterface(
 XComponentLoader.class, desktop);
 PropertyValue[] loadProps = new PropertyValue[0];
 return xComponentLoader.loadComponentFromURL(loadUrl, "_blank", 0, loadProps);
}

Text, Tables and Drawings in Writer
The method useWriter creates a writer document and manipulates its text, then uses the docu-
ment's internal service manager to instantiate a text table and a shape, inserts them and manipu-
lates the table and shape (FirstSteps/HelloTextTableShape.java). Refer to 8 Text Documents for
more detailed information.
protected void useWriter() throws java.lang.Exception {
 try {
 // create new writer document and get text, then manipulate text
 XComponent xWriterComponent = newDocComponent("swriter");
 XTextDocument xTextDocument = (XTextDocument)UnoRuntime.queryInterface(
 XTextDocument.class, xWriterComponent);
 XText xText = xTextDocument.getText();

 manipulateText(xText);

 // get internal service factory of the document
 XMultiServiceFactory xWriterFactory = (XMultiServiceFactory)UnoRuntime.queryInterface(
 XMultiServiceFactory.class, xWriterComponent);

 // insert TextTable and get cell text, then manipulate text in cell
 Object table = xWriterFactory.createInstance("com.sun.star.text.TextTable");
 XTextContent xTextContentTable = (XTextContent)UnoRuntime.queryInterface(
 XTextContent.class, table);

 xText.insertTextContent(xText.getEnd(), xTextContentTable, false);

 XCellRange xCellRange = (XCellRange)UnoRuntime.queryInterface(
 XCellRange.class, table);
 XCell xCell = xCellRange.getCellByPosition(0, 1);
 XText xCellText = (XText)UnoRuntime.queryInterface(XText.class, xCell);

 manipulateText(xCellText);
 manipulateTable(xCellRange);

 // insert RectangleShape and get shape text, then manipulate text
 Object writerShape = xWriterFactory.createInstance(
 "com.sun.star.drawing.RectangleShape");
 XShape xWriterShape = (XShape)UnoRuntime.queryInterface(
 XShape.class, writerShape);
 xWriterShape.setSize(new Size(10000, 10000));
 XTextContent xTextContentShape = (XTextContent)UnoRuntime.queryInterface(
 XTextContent.class, writerShape);

 xText.insertTextContent(xText.getEnd(), xTextContentShape, false);

 XPropertySet xShapeProps = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, writerShape);
 // wrap text inside shape
 xShapeProps.setPropertyValue("TextContourFrame", new Boolean(true));

63

 XText xShapeText = (XText)UnoRuntime.queryInterface(XText.class, writerShape);

 manipulateText(xShapeText);
 manipulateShape(xWriterShape);
 }
 catch(com.sun.star.lang.DisposedException e) { //works from Patch 1
 xRemoteContext = null;
 throw e;
 }

}

Text, Tables and Drawings in Calc
The method useCalc creates a calc document, uses its document factory to create a shape and
manipulates the cell text, table and shape. The chapter 9 Spreadsheet Documents treats all aspects of
spreadsheets. (FirstSteps/HelloTextTableShape.java)
protected void useCalc() throws java.lang.Exception {
 try {
 // create new calc document and manipulate cell text
 XComponent xCalcComponent = newDocComponent("scalc");
 XSpreadsheetDocument xSpreadsheetDocument =
 (XSpreadsheetDocument)UnoRuntime.queryInterface(
 XSpreadsheetDocument .class, xCalcComponent);
 Object sheets = xSpreadsheetDocument.getSheets();
 XIndexAccess xIndexedSheets = (XIndexAccess)UnoRuntime.queryInterface(
 XIndexAccess.class, sheets);
 Object sheet = xIndexedSheets.getByIndex(0);

 //get cell A2 in first sheet
 XCellRange xSpreadsheetCells = (XCellRange)UnoRuntime.queryInterface(
 XCellRange.class, sheet);
 XCell xCell = xSpreadsheetCells.getCellByPosition(0,1);
 XPropertySet xCellProps = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xCell);
 xCellProps.setPropertyValue("IsTextWrapped", new Boolean(true));

 XText xCellText = (XText)UnoRuntime.queryInterface(XText.class, xCell);

 manipulateText(xCellText);
 manipulateTable(xSpreadsheetCells);

 // get internal service factory of the document
 XMultiServiceFactory xCalcFactory = (XMultiServiceFactory)UnoRuntime.queryInterface(
 XMultiServiceFactory.class, xCalcComponent);
 // get Drawpage
 XDrawPageSupplier xDrawPageSupplier =

 (XDrawPageSupplier)UnoRuntime.queryInterface(XDrawPageSupplier.class, sheet);
 XDrawPage xDrawPage = xDrawPageSupplier.getDrawPage();

 // create and insert RectangleShape and get shape text, then manipulate text
 Object calcShape = xCalcFactory.createInstance(
 "com.sun.star.drawing.RectangleShape");
 XShape xCalcShape = (XShape)UnoRuntime.queryInterface(
 XShape.class, calcShape);
 xCalcShape.setSize(new Size(10000, 10000));
 xCalcShape.setPosition(new Point(7000, 3000));

 xDrawPage.add(xCalcShape);

 XPropertySet xShapeProps = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, calcShape);
 // wrap text inside shape
 xShapeProps.setPropertyValue("TextContourFrame", new Boolean(true));

 XText xShapeText = (XText)UnoRuntime.queryInterface(XText.class, calcShape);

 manipulateText(xShapeText);
 manipulateShape(xCalcShape);

 }
 catch(com.sun.star.lang.DisposedException e) { //works from Patch 1
 xRemoteContext = null;
 throw e;
 }

}

64 OpenOffice.org 2.3 Developer's Guide • June 2007

Drawings and Text in Draw
The method useDraw creates a draw document and uses its document factory to instantiate and
add a shape, then it manipulates the shape. The chapter 10 Drawing casts more light on drawings
and presentations. (FirstSteps/HelloTextTableShape.java)
protected void useDraw() throws java.lang.Exception {
 try {
 //create new draw document and insert ractangle shape
 XComponent xDrawComponent = newDocComponent("sdraw");
 XDrawPagesSupplier xDrawPagesSupplier =
 (XDrawPagesSupplier)UnoRuntime.queryInterface(
 XDrawPagesSupplier.class, xDrawComponent);

 Object drawPages = xDrawPagesSupplier.getDrawPages();
 XIndexAccess xIndexedDrawPages = (XIndexAccess)UnoRuntime.queryInterface(
 XIndexAccess.class, drawPages);
 Object drawPage = xIndexedDrawPages.getByIndex(0);
 XDrawPage xDrawPage = (XDrawPage)UnoRuntime.queryInterface(XDrawPage.class, drawPage);

 // get internal service factory of the document
 XMultiServiceFactory xDrawFactory =
 (XMultiServiceFactory)UnoRuntime.queryInterface(
 XMultiServiceFactory.class, xDrawComponent);

 Object drawShape = xDrawFactory.createInstance(
 "com.sun.star.drawing.RectangleShape");
 XShape xDrawShape = (XShape)UnoRuntime.queryInterface(XShape.class, drawShape);
 xDrawShape.setSize(new Size(10000, 20000));
 xDrawShape.setPosition(new Point(5000, 5000));
 xDrawPage.add(xDrawShape);

 XText xShapeText = (XText)UnoRuntime.queryInterface(XText.class, drawShape);
 XPropertySet xShapeProps = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, drawShape);

 // wrap text inside shape
 xShapeProps.setPropertyValue("TextContourFrame", new Boolean(true));

 manipulateText(xShapeText);
 manipulateShape(xDrawShape);
 }
 catch(com.sun.star.lang.DisposedException e) { //works from Patch 1
 xRemoteContext = null;
 throw e;
 }

}

65

3 Professional UNO

This chapter provides in-depth information about UNO and the use of UNO in various program-
ming languages. There are four sections:

• The 3.1 Professional UNO - Introduction gives an outline of the UNO architecture.

• The section 3.2 Professional UNO - API Concepts supplies background information on the API
reference.

• The section 3.3 Professional UNO - UNO Concepts describes the mechanics of UNO, i.e. it shows
how UNO objects connect and communicate with each other.

• The section 3.4 Professional UNO - UNO Language Bindings elaborates on the use of UNO from
Java, C++, OpenOffice.org Basic, COM automation, and CLI.

3.1 Introduction
The goal of UNO (Universal Network Objects) is to provide an environment for network objects
across programming language and platform boundaries. UNO objects run and communicate
everywhere. UNO reaches this goal by providing the following fundamental framework:

• UNO objects are specified in an abstract meta language, called UNOIDL (UNO Interface Defini-
tion Language), which is similar to CORBA IDL or MIDL. From UNOIDL specifications,
language dependent header files and libraries can be generated to implement UNO objects in
the target language. UNO objects in the form of compiled and bound libraries are called compo-
nents. Components must support certain base interfaces to be able to run in the UNO environ-
ment.

• To instantiate components in a target environment UNO uses a factory concept. This factory is
called the service manager. It maintains a database of registered components which are known
by their name and can be created by name. The service manager might ask Linux to load and
instantiate a shared object written in C++ or it might call upon the local Java VM to instantiate a
Java class. This is transparent for the developer, there is no need to care about a component's
implementation language. Communication takes place exclusively over interface calls as speci-
fied in UNOIDL.

• UNO provides bridges to send method calls and receive return values between processes and
between objects written in different implementation languages. The remote bridges use a
special UNO remote protocol (URP) for this purpose which is supported for sockets and pipes.
Both ends of the bridge must be UNO environments, therefore a language-specific UNO
runtime environment to connect to another UNO process in any of the supported languages is
required. These runtime environments are provided as language bindings.

67

• Most objects of OpenOffice.org are able to communicate in a UNO environment. The specifica-
tion for the programmable features of OpenOffice.org is called the OpenOffice.org API.

3.2 API Concepts
The OpenOffice.org API is a language independent approach to specify the functionality of
OpenOffice.org. Its main goals are to provide an API to access the functionality of OpenOffice.org,
to enable users to extend the functionality by their own solutions and new features, and to make
the internal implementation of OpenOffice.org exchangeable.

A long term target on the OpenOffice.org roadmap is to split the existing OpenOffice.org into
small components which are combined to provide the complete OpenOffice.org functionality. Such
components are manageable, they interact with each other to provide high level features and they
are exchangeable with other implementations providing the same functionality, even if these new
implementations are implemented in a different programming language. When this target will be
reached, the API, the components and the fundamental concepts will provide a construction kit,
which makes OpenOffice.org adaptable to a wide range of specialized solutions and not only an
office suite with a predefined and static functionality.

This section provides you with a thorough understanding of the concepts behind the
OpenOffice.org API. In the API reference there are UNOIDL data types which are unknown
outside of the API. The reference provides abstract specifications which sometimes can make you
wonder how they map to implementations you can actually use.

The data types of the API reference are explained in 3.2.1 Professional UNO - API Concepts - Data
Types. The relationship between API specifications and OpenOffice.org implementations is treated
in 3.2.2 Professional UNO - API Concepts - Understanding the API Reference.

3.2.1 Data Types
The data types in the API reference are UNO types which have to be mapped to the types of any
programming language that can be used with the OpenOffice.org API. In the chapter 2 First Steps
the most important UNO types were introduced. However, there is much more to be said about
simple types, interfaces, properties and services in UNO. There are special flags, conditions and
relationships between these entities which you will want to know if you are working with UNO on
a professional level.

This section explains the types of the API reference from the perspective of a developer who wants
to use the OpenOffice.org API. If you are interested in writing your own components, and you
must define new interfaces and types, please refer to the chapter 4 Writing UNO Components,
which describes how to write your own UNOIDL specifications and how to create UNO compo-
nents.

Simple Types
UNO provides a set of predefined, simple types which are listed in the following table:

UNO Type Description

void Empty type, used only as method return type and in any.

boolean Can be true or false.

68 OpenOffice.org 2.3 Developer's Guide • June 2007

UNO Type Description

byte Signed 8-bit integer type (ranging from -128 to 127, inclusive).

short Signed 16-bit integer type (ranging from ? 32768 to 32767, inclusive).

unsigned short Unsigned 16-bit integer type (deprecated).

long Signed 32-bit integer type (ranging from ? 2147483648 to 2147483647, inclusive).

unsigned long Unsigned 32-bit integer type (deprecated).

hyper Signed 64-bit integer type (ranging from ? 9223372036854775808 to
9223372036854775807, inclusive).

unsigned hyper Unsigned 64-bit integer type (deprecated).

float IEC 60559 single precision floating point type.

double IEC 60559 double precision floating point type.

char Represents individual Unicode characters (more precisely: individual UTF-16 code
units).

string Represents Unicode strings (more precisely: strings of Unicode scalar values).

type Meta type that describes all UNO types.

any Special type that can represent values of all other types.

The chapters about language bindings 3.4.1 Professional UNO - UNO Language Bindings - Java
Language Binding, 3.4.2 Professional UNO - UNO Language Bindings - C++ Language Binding, 3.4.3
Professional UNO - UNO Language Bindings - OpenOffice.org Basic and 3.4.4 Professional UNO - UNO
Language Bindings - Automation Bridge describe how these types are mapped to the types of your
target language.

The Any Type
The special type any can represent values of all other UNO types. In the target languages, the any
type requires special treatment. There is an AnyConverter in Java and special operators in C++.
For details, see the section 3.4 Professional UNO - UNO Language Bindings about language bindings.

Interfaces
Communication between UNO objects is based on object interfaces. Interfaces can be seen from the
outside or the inside of an object.

From the outside of an object, an interface provides a functionality or special aspect of the object.
Interfaces provide access to objects by publishing a set of operations that cover a certain aspect of
an object without telling anything about its internals.

The concept of interfaces is quite natural and frequently used in everyday life. Interfaces allow the
creation of things that fit in with each other without knowing internal details about them. A power
plug that fits into a standard socket or a one-size-fits-all working glove are simple examples. They
all work by standardizing the minimal conditions that must be met to make things work together.

A more advanced example would be the �remote control aspect� of a simple TV system. One
possible feature of a TV system is a remote control. The remote control functions can be described
by an XPower and an XChannel interface. The illustration below shows a RemoteControl object
with these interfaces:

69

The XPower interface has the functions turnOn() and turnOff() to control the power and the
XChannel interface has the functions select(), next(), previous() to control the current
channel. The user of these interfaces does not care if he uses an original remote control that came
with a TV set or a universal remote control as long as it carries out these functions. The user is only
dissatisfied if some of the functions promised by the interface do not work with a remote control.

From the inside of an object, or from the perspective of someone who implements a UNO object,
interfaces are abstract specifications. The abstract specification of all the interfaces in the
OpenOffice.org API has the advantage that user and implementer can enter into a contract,
agreeing to adhere to the interface specification. A program that strictly uses the OpenOffice.org
API according to the specification will always work, while an implementer can do whatever he
wants with his objects, as long as he serves the contract.

UNO uses the interface type to describe such aspects of UNO objects. By convention, all inter-
face names start with the letter X to distinguish them from other types. All interface types must
inherit the com.sun.star.uno.XInterface root interface, either directly or in the inheritance hier-
archy. XInterface is explained in 3.3.3 Professional UNO - UNO Concepts - Using UNO Interfaces.
The interface types define methods (sometimes also called operations) to provide access to the
specified UNO objects.

Interfaces allow access to the data inside an object through dedicated methods (member functions)
which encapsulate the data of the object. The methods always have a parameter list and a return
value, and they may define exceptions for smart error handling.

The exception concept in the OpenOffice.org API is comparable with the exception concepts
known from Java or C++. All operations can raise com.sun.star.uno.RuntimeExceptions
without explicit specification, but all other exceptions must be specified. UNO exceptions are
explained in the section 3.3.7 Professional UNO - UNO Concepts - Exception Handling below.

Consider the following two examples for interface definitions in UNOIDL notation. UNOIDL inter-
faces resemble Java interfaces, and methods look similar to Java method signatures. However, note
the flags in square brackets in the following example:
// base interface for all UNO interfaces

interface XInterface
{

any queryInterface([in] type aType);
[oneway] void acquire();
[oneway] void release();

};

// fragment of the Interface com.sun.star.io.XInputStream

interface XInputStream: com::sun::star::uno::XInterface
{
 long readBytes([out] sequence<byte> aData,
 [in] long nBytesToRead)
 raises(com::sun::star::io::NotConnectedException,
 com::sun::star::io::BufferSizeExceededException,
 com::sun::star::io::IOException);
 ...
};

70 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 3.1: RemoteControl service

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html

The [oneway] flag indicates that an operation can be executed asynchronously if the underlying
method invocation system does support this feature. For example, a UNO Remote Protocol (URP)
bridge is a system that supports oneway calls.

Although there are no general problems with the specification and the implementation of the UNO oneway
feature, there are several API remote usage scenarios where oneway calls cause deadlocks in
OpenOffice.org. Therefore, do not introduce new oneway methods with new OpenOffice.org UNO APIs.

There are also parameter flags. Each parameter definition begins with one of the direction flags in,
out, or inout to specify the use of the parameter:

• in specifies that the parameter will be used as an input parameter only

• out specifies that the parameter will be used as an output parameter only

• inout specifies that the parameter will be used as an input and output parameter

These parameter flags do not appear in the API reference. The fact that a parameter is an [out] or
[inout] parameter is explained in the method details.

Interfaces consisting of methods form the basis for service specifications.

Services
We have seen that a single-inheritance interface describes only one aspect of an object. However, it
is quite common that objects have more than one aspect. UNO uses multiple-inheritance interfaces
and services to specify complete objects which can have many aspects.

In a first step, all the various aspects of an object (which are typically represented by single-inheri-
tance interfaces) are grouped together in one multiple-inheritance interface type. If such an object
is obtainable by calling specific factory methods, this step is all that is needed. The factory methods
are specified to return values of the given, multiple-inheritance interface type. If, however, such
an object is available as a general service at the global component context, a service description
must be provided in a second step. This service description will be of the new style, mapping the
service name (under which the service is available at the component context) to the given,
multiple-inheritance interface type.

For backward compatibility, there are also old-style services, which comprise a set of single-inheri-
tance interfaces and properties that are needed to support a certain functionality. Such a service
can include other old-style services as well. The main drawback of an old-style service is that it is
unclear whether it describes objects that can be obtained through specific factory methods (and for
which there would therefore be no new-style service description), or whether it describes a general
service that is available at the global component context, and for which there would thus be a
new-style service description.

From the perspective of a user of a UNO object, the object offers one or sometimes even several
independent, multiple-inheritance interfaces or old-style services described in the API reference.
The services are utilized through method calls grouped in interfaces, and through properties,
which are handled through special interfaces as well. Because the access to the functionality is
provided by interfaces only, the implementation is irrelevant to a user who wants to use an object.

From the perspective of an implementer of a UNO object, multiple-inheritance interfaces and old-
style services are used to define a functionality independently of a programming language and
without giving instructions about the internal implementation of the object. Implementing an
object means that it must support all specified interfaces and properties. It is possible that a UNO
object implements more than one independent, multiple-inheritance interface or old-style service.
Sometimes it is useful to implement two or more independent, multiple-inheritance interfaces or

71

services because they have related functionality, or because they support different views to the
object.

Illustration 3.1 shows the relationship between interfaces and services. The language independent
specification of an old-style service with several interfaces is used to implement a UNO object that
fulfills the specification. Such a UNO object is sometimes called a �component,� although that term
is more correctly used to describe deployment entities within a UNO environment. The illustration
uses an old-style service description that directly supports multiple interfaces; for a new-style
service description, the only difference would be that it would only support one multiple-inheri-
tance interface, which in turn would inherit the other interfaces.

The functionality of a TV system with a TV set and a remote control can be described in terms of
service specifications. The interfaces XPower and XChannel described above would be part of a
service specification RemoteControl. The new service TVSet consists of the three interfaces
XPower, XChannel and XStandby to control the power, the channel selection, the additional power
function standby() and a timer() function.

Referencing Interfaces

References to interfaces in a service definition mean that an implementation of this service must
offer the specified interfaces. However, optional interfaces are possible. If a multiple-inheritance
interface inherits an optional interface, or an old-style service contains an optional interface, any
given UNO object may or may not support this interface. If you utilize an optional interface of a
UNO object, always check if the result of queryInterface() is equal to null and react accord-

72 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 3.2: Interfaces, services and implementation

Illustration 3.3: TV System Specification

ingly� otherwise your code will not be compatible with implementations without the optional
interface and you might end up with null pointer exceptions. The following UNOIDL snippet
shows a fragment of the specification for the old-style com.sun.star.text.TextDocument service
in the OpenOffice.org API. Note the flag optional in square brackets, which makes the interfaces
XFootnotesSupplier and XEndnotesSupplier non-mandatory.
// com.sun.star.text.TextDocument
service TextDocument
{
 ...

 interface com::sun::star::text::XTextDocument;
 interface com::sun::star::util::XSearchable;
 interface com::sun::star::util::XRefreshable;
 [optional] interface com::sun::star::text::XFootnotesSupplier;
 [optional] interface com::sun::star::text::XEndnotesSupplier;
 ...
};

Service Constructors

New-style services can have constructors, similar to interface methods:
service SomeService: XSomeInterface {
 create1();
 create2([in] long arg1, [in] string arg2);
 create3([in] any... rest);
};

In the above example, there are three explicit constructors, named create1, create2, and create3.
The first has no parameters, the second has two normal parameters, and the third has a special rest
parameter, which accepts an arbitrary number of any values. Constructor parameters may only be
[in], and a rest parameter must be the only parameter of a constructor, and must be of type any;
also, unlike an interface method, a service constructor does not specify a return type.

The various language bindings map the UNO constructors into language-specific constructs, which
can be used in client code to obtain instances of those services, given a component context. The
general convention (followed,for example, by the Java and C++ language bindings) is to map each
constructor to a static method (resp. function) with the same name, that takes as a first parameter
an XComponentContext, followed by all the parameters specified in the constructor, and returns
an (appropriately typed) service instance. If an instance cannot be obtained, a
com.sun.star.uno.DeploymentException is thrown. The above SomeService would map to the
following Java 1.5 class, for example:
public class SomeService {
 public static XSomeInterface create1(
 com.sun.star.uno.XComponentContext context) { ... }
 public static XSomeInterface create2(
 com.sun.star.uno.XComponentContext context, int arg1, String arg2) { ... }
 public static XSomeInterface create3(
 com.sun.star.uno.XComponentContext context, Object... rest) { ... }
}

Service constructors can also have exception specifications (�raises (Exception1, ...)�),
which are treated in the same way as exception specifications of interface methods. (If a
constructor has no exception specification, it may only throw runtime exceptions,
com.sun.star.uno.DeploymentException in particular.)

If a new-style service is written using the short form,
service SomeService: XSomeInterface;

then it has an implicit constructor. The exact behavior of the implicit constructor is language-
binding�specific, but it is typically named create, takes no arguments besides the XComponent-
Context, and may only throw runtime exceptions.

73

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html

Including Properties

When the structure of the OpenOffice.org API was founded, the designers discovered that the
objects in an office environment would have huge numbers of qualities that did not appear to be
part of the structure of the objects, rather they seemed to be superficial changes to the underlying
objects. It was also clear that not all qualities would be present in each object of a certain kind.
Therefore, instead of defining a complicated pedigree of optional and non-optional interfaces for
each and every quality, the concept of properties was introduced. Properties are data in an object
that are provided by name over a generic interface for property access, that contains getProper-
tyValue() and setPropertyValue() access methods. The concept of properties has other advan-
tages, and there is more to know about properties. Please refer to 3.3.4 Professional UNO - UNO
Concepts - Properties for further information about properties.

Old-style services can list supported properties directly in the UNOIDL specification. A property
defines a member variable with a specific type that is accessible at the implementing component by
a specific name. It is possible to add further restrictions to a property through additional flags.
The following old-style service references one interface and three optional properties. All known
API types can be valid property types:
// com.sun.star.text.TextContent
service TextContent
{
 interface com::sun::star::text::XTextContent;
 [optional, property] com::sun::star::text::TextContentAnchorType AnchorType;
 [optional, readonly, property] sequence<com::sun::star::text::TextContentAnchorType> AnchorTypes;
 [optional, property] com::sun::star::text::WrapTextMode TextWrap;
};

Possible property flags are:

• optional
The property does not have to be supported by the implementing component.

• readonly
The value of the property cannot be changed using com.sun.star.beans.XPropertySet.

• bound
Changes of property values are broadcast to com.sun.star.beans.XPropertyChangeLis-
teners, if any were registered through com.sun.star.beans.XPropertySet.

• constrained
The property broadcasts an event before its value changes. Listeners have the right to veto the
change.

• maybeambiguous
Possibly the property value cannot be determined in some cases, for example, in multiple selec-
tions with different values.

• maybedefault
The value might be stored in a style sheet or in the environment instead of the object itself.

• maybevoid
In addition to the range of the property type, the value can be void. It is similar to a null value
in databases.

• removable
The property is removable, this is used for dynamic properties.

• transient
The property will not be stored if the object is serialized

74 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html

Referencing other Services

Old-style services can include other old-style services. Such references may be optional. That a
service is included by another service has nothing to do with implementation inheritance, only the
specifications are combined. It is up to the implementer if he inherits or delegates the necessary
functionality, or if he implements it from scratch.

The old-style service com.sun.star.text.Paragraph in the following UNOIDL example includes
one mandatory service com.sun.star.text.TextContent and five optional services. Every Para-
graph must be a TextContent. It can be a TextTable and it is used to support formatting proper-
ties for paragraphs and characters:
// com.sun.star.text.Paragraph
service Paragraph
{
 service com::sun::star::text::TextContent;
 [optional] service com::sun::star::text::TextTable;
 [optional] service com::sun::star::style::ParagraphProperties;
 [optional] service com::sun::star::style::CharacterProperties;
 [optional] service com::sun::star::style::CharacterPropertiesAsian;
 [optional] service com::sun::star::style::CharacterPropertiesComplex;

 ...
};

If all the old-style services in the example above were multiple-inheritance interface types instead,
the structure would be similar: the multiple-inheritance interface type Paragraph would inherit
the mandatory interface TextContent and the optional interfaces TextTable, ParagraphProper-
ties, etc.

Service Implementations in Components

A component is a shared library or Java archive containing implementations of one or more services
in one of the target programming languages supported by UNO. Such a component must meet
basic requirements, mostly different for the different target language, and it must support the spec-
ification of the implemented services. That means all specified interfaces and properties must be
implemented. Components must be registered in the UNO runtime system. After the registration
all implemented services can be used by ordering an instance of the service at the appropriate
service factory and accessing the functionality over interfaces.

Based on our example specifications for a TVSet and a RemoteControl service, a component Remo-
teTVImpl could simulate a remote TV system:

Such a RemoteTV component could be a jar file or a shared library. It would contain two service
implementations, TVSet and RemoteControl. Once the RemoteTV component is registered with
the global service manager, users can call the factory method of the service manager and ask for a
TVSet or a RemoteControl service. Then they could use their functionality over the interfaces

75

Illustration 3.4: RemoteTVImpl Component

http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Paragraph.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Paragraph.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Paragraph.html

XPower, XChannel and XStandby. When a new implementation of these services with better
performance or new features is available later on, the old component can be replaced without
breaking existing code, provided that the new features are introduced by adding interfaces.

Structs
A struct type defines several elements in a record. The elements of a struct are UNO types with
a unique name within the struct. Structs have the disadvantage not to encapsulate data, but the
absence of get() and set() methods can help to avoid the overhead of method calls over a UNO
bridge. UNO supports single inheritance for struct types. A derived struct recursively inherits
all elements of the parent and its parents.
// com.sun.star.lang.EventObject
/** specifies the base for all event objects and identifies the

source of the event.
 */
struct EventObject
{

/** refers to the object that fired the event.
 */
com::sun::star::uno::XInterface Source;

};

// com.sun.star.beans.PropertyChangeEvent
struct PropertyChangeEvent : com::sun::star::lang::EventObject {
 string PropertyName;
 boolean Further;
 long PropertyHandle;
 any OldValue;
 any NewValue;
};

A new feature of OpenOffice.org 2.0 is the polymorphic struct type. A polymorphic struct type
template is similar to a plain struct type, but it has one or more type parameters, and its members can
have these parameters as types. A polymorphic struct type template is not itself a UNO type� it
has to be instantiated with actual type arguments to be used as a type.
// A polymorphic struct type template with two type parameters:
struct Poly<T,U> {
 T member1;
 T member2;
 U member3;
 long member4;
};

// Using an instantiation of Poly as a UNO type:
interface XIfc { Poly<boolean, any> fn(); };

In the example, Poly<boolean, any> will be an instantiated polymorphic struct type with the
same form as the plain struct type
struct PolyBooleanAny {
 boolean member1;
 boolean member2;
 any member3;
 long member4;
};

Polymorphic struct types were added primarily to support rich interface type attributes that are as
expressive as maybeambiguous, maybedefault, or maybevoid properties (see
com.sun.star.beans.Ambiguous, com.sun.star.beans.Defaulted,
com.sun.star.beans.Optional), but they are probably useful in other contexts, too.

76 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Optional.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Optional.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Optional.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Defaulted.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Defaulted.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Defaulted.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Ambiguous.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Ambiguous.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Ambiguous.html

Predefined Values
The API offers many predefined values, that are used as method parameters, or returned by
methods. In UNO IDL there are two different data types for predefined values: constants and
enumerations.

const

A const defines a named value of a valid UNO IDL type. The value depends on the specified type
and can be a literal (integer number, floating point number or a character), an identifier of another
const type or an arithmetic term using the operators: +, -, *, /, ~, &, |, %, ^, <<, >>.
Since a wide selection of types and values is possible in a const, const is occasionally used to build
bit vectors which encode combined values.
const short ID = 23;
const boolean ERROR = true;
const double PI = 3.1415;

Usually const definitions are part of a constants group.

constants

The constants type defines a named group of const values. A const in a constants group is
denoted by the group name and the const name. In the UNO IDL example below,
ImageAlign.RIGHT refers to the value 2:
constants ImageAlign {
 const short LEFT = 0;
 const short TOP = 1;
 const short RIGHT = 2;
 const short BOTTOM = 3;
};

enum

An enum type is equivalent to an enumeration type in C++. It contains an ordered list of one or
more identifiers representing long values of the enum type. By default, the values are numbered
sequentially, beginning with 0 and adding 1 for each new value. If an enum value has been
assigned a value, all following enum values without a predefined value get a value starting from
this assigned value.
// com.sun.star.uno.TypeClass
enum TypeClass {
 VOID,
 CHAR,
 BOOLEAN,
 BYTE,
 SHORT,
 ...
};

enum Error {
 SYSTEM = 10, // value 10
 RUNTIME, // value 11
 FATAL, // value 12
 USER = 30, // value 30
 SOFT // value 31
};

If enums are used during debugging, you should be able to derive the numeric value of an enum
by counting its position in the API reference. However, never use literal numeric values instead of
enums in your programs.

Once an enum type has been specified and published, you can trust that it is not extended later on, for that
would break existing code. However, new const vaues may be added to a constant group.

77

Sequences
A sequence type is a set of elements of the same type, that has a variable number of elements. In
UNO IDL, the used element always references an existing and known type or another sequence
type. A sequence can occur as a normal type in all other type definitions.
sequence< com::sun::star::uno::XInterface >
sequence< string > getNamesOfIndex(sequence< long > indexes);

Modules
Modules are namespaces, similar to namespaces in C++ or packages in Java. They group services,
interfaces, structs, exceptions, enums, typedefs, constant groups and submodules with related
functional content or behavior. They are utilized to specify coherent blocks in the API, this allows
for a well-structured API. For example, the module com.sun.star.text contains interfaces and
other types for text handling. Some other typical modules are com.sun.star.uno,
com.sun.star.drawing, com.sun.star.sheet and com.sun.star.table. Identifiers inside a
module do not clash with identifiers in other modules, therefore it is possible for the same name to
occur more than once. The global index of the API reference shows that this does happen.

Although it may seem that the modules correspond with the various parts of OpenOffice.org, there
is no direct relationship between the API modules and the OpenOffice.org applications Writer,
Calc and Draw. Interfaces from the module com.sun.star.text are used in Calc and Draw.
Modules like com.sun.star.style or com.sun.star.document provide generic services and
interfaces that are not specific to any one part of OpenOffice.org.

The modules you see in the API reference were defined by nesting UNO IDL types in module
instructions. For example, the module com.sun.star.uno contains the interface XInterface:
module com {
 module sun {
 module star {
 module uno {
 interface XInterface {
 ...
 };
 };
 };
 };
};

Exceptions
An exception type indicates an error to the caller of a function. The type of an exception gives a
basic description of the kind of error that occurred. In addition, the UNO IDL exception types
contain elements which allow for an exact specification and a detailed description of the error. The
exception type supports inheritance, this is freqzuently used to define a hierarchy of errors.
Exceptions are only used to raise errors, not as method parameters or return types.

UNO IDL requires that all exceptions must inherit from com.sun.star.uno.Exception. This is a
precondition for the UNO runtime.
// com.sun.star.uno.Exception is the base exception for all exceptions
exception Exception {
 string Message;
 Xinterface Context;
};

// com.sun.star.uno.RuntimeException is the base exception for serious problems
// occuring at runtime, usually programming errors or problems in the runtime environment
exception RuntimeException : com::sun::star::uno::Exception {
};

// com.sun.star.uno.SecurityException is a more specific RuntimeException
exception SecurityException : com::sun::star::uno::RuntimeException {

78 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/module-ix.html

};

Exceptions may only be thrown by operations which were specified to do so. In contrast,
com.sun.star.uno.RuntimeExceptions can always occur.

The methods acquire() and release of the UNO base interface com.sun.star.uno.XInterface are an
exception to the above rule. They are the only operations that may not even throw runtime exceptions. But
in Java and C++ programs, you do not use these methods directly, they are handled by the respective
language binding.

Singletons
Singletons are used to specify named objects where exactly one instance can exist in the life of a
UNO component context. A singleton references one interface type and specifies that the only
existing instance of this singleton can be reached over the component context using the name of the
singleton. If no instance of the singleton exists, the component context will instantiate a new one.
An example of such a new-style singleton is
module com { module sun { module star { module deployment {
singleton thePackageManagerFactory: XPackageManagerFactory;
}; }; }; };

The various language bindings offer language-specific ways to obtain the instance of a new-style
singleton, given a component context. For example, in Java and C++ there is a static method (resp.
function) named get, that takes as its only argument an XComponentContext and returns the
(appropriately typed) singleton instance. If the instance cannot be obtained, a
com.sun.star.uno.DeploymentException is thrown.

There are also old-style singletons, which reference (old-style) services instead of interfaces.
However, for old-style services, the language bindings offer no get functionality.

3.2.2 Understanding the API Reference

Specification, Implementation and Instances
The API specifications you find in the API reference are abstract. The service descriptions of the
API reference are not about classes that previously exist somewhere. The specifications are first,
then the UNO implementation is created according to the specification. That holds true even for
legacy implementations that had to be adapted to UNO.

Moreover, since a component developer is free to implement services and interfaces as required,
there is not necessarily a one-to-one relationship between a certain service specification and a real
object. The real object can be capable of more things than specified in a service definition. For
example, if you order a service at the factory or receive an object from a getter or getProperty-
Value() method, the specified features will be present, but there may be additional features. For
instance, the text document model has a few interfaces which are not included in the specification
for the com.sun.star.text.TextDocument.

Because of the optional interfaces and properties, it is impossible to comprehend fully from the
API reference what a given instance of an object in OpenOffice.org is capable of. The optional
interfaces and properties are correct for an abstract specification, but it means that when you leave
the scope of mandatory interfaces and properties, the reference only defines how things are
allowed to work, not how they actually work.

79

http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html

Another important point is the fact that there are several entry points where object implementa-
tions are actually available. You cannot instantiate every old-style service that can be found in the
API reference by means of the global service manager. The reasons are:

• Some old-style services need a certain context. For instance, it does not make sense to instan-
tiate a com.sun.star.text.TextFrame independently from an existing text document or any
other surrounding where it could be of any use. Such services are usually not created by the
global service manager, but by document factories which have the necessary knowledge to
create objects that work in a certain surrounding. That does not mean you will never be able to
get a text frame from the global service manager to insert. So, if you wish to use a service in the
API reference, ask yourself where you can get an instance that supports this service, and
consider the context in which you want to use it. If the context is a document, it is quite possible
that the document factory will be able to create the object.

• Old-style services are not only used to specify possible class implementations. Sometimes they
are used to specify nothing but groups of properties that can be referenced by other old-style
services. That is, there are services with no interfaces at all. You cannot create such a service at
the service manager.

• A few old-style services need special treatment. For example, you cannot ask the service
manager to create an instance of a com.sun.star.text.TextDocument. You must load it using
the method loadComponentFromUrl() at the desktop's com.sun.star.frame.XComponent-
Loader interface.

In the first and the last case above, using multiple-inheritance interface types instead of old-style
services would have been the right design choice, but the mentioned services predate the avail-
ability of multiple-inheritance interface types in UNO.

Consequently, it is sometimes confusing to look up a needed functionality in the API reference, for
you need a basic understanding how a functionality works, which services are involved, where
they are available etc., before you can really utilize the reference. This manual aims at giving you
this understanding about the OpenOffice.org document models, the database integration and the
application itself.

Object Composition
Interfaces support single and multiple inheritance, and they are all based on
com.sun.star.uno.XInterface. In the API reference, this is mirrored in the Base Hierarchy section
of any interface specification. If you look up an interface, always check the base hierarchy section
to understand the full range of supported methods. For instance, if you look up
com.sun.star.text.XText, you see two methods, insertTextContent() and removeTextCon-
tent(), but there are nine more methods provided by the inherited interfaces. The same applies to
exceptions and sometimes also to structs, which support single inheritance as well.

The service specifications in the API reference can contain a section Included Services , which is
similar to the above in that a single included old-style service might encompass a whole world of
services. However, the fact that a service is included has nothing to do with class inheritance. In
which manner a service implementation technically includes other services, by inheriting from
base implementations, by aggregation, some other kind of delegation or simply by re-imple-
menting everything is by no means defined (which it is not, either, for UNO interface inheritance).
And it is uninteresting for an API user � he can absolutely rely on the availability of the described
functionality, but he must never rely on inner details of the implementation, which classes provide
the functionality, where they inherit from and what they delegate to other classes.

80 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextFrame.html

3.3 UNO Concepts
Now that you have an advanced understanding of OpenOffice.org API concepts and you under-
stand the specification of UNO objects, we are ready to explore UNO, i.e. to see how UNO objects
connect and communicate with each other.

3.3.1 UNO Interprocess Connections
UNO objects in different environments connect via the interprocess bridge. You can execute calls
on UNO object instances, that are located in a different process. This is done by converting the
method name and the arguments into a byte stream representation, and sending this package to
the remote process, for example, through a socket connection. Most of the examples in this manual
use the interprocess bridge to communicate with the OpenOffice.org.

This section deals with the creation of UNO interprocess connections using the UNO API.

Starting OpenOffice.org in Listening Mode
Most examples in this developers guide connect to a running OpenOffice.org and perform API
calls, which are then executed in OpenOffice.org. By default, the office does not listen on a
resource for security reasons. This makes it necessary to make OpenOffice.org listen on an inter-
process connection resource, for example, a socket. Currently this can be done in two ways:

• Start the office with an additional parameter:
soffice -accept=socket,host=0,port=2002;urp;
This string has to be quoted on unix shells, because the semicolon ';' is interpreted by the shells

• Place the same string without '-accept=' into a configuration file. You can edit the file
<OfficePath>/share/registry/data/org/openoffice/Setup.xcu
and replace the tag
<prop oor:name="ooSetupConnectionURL"/>
with
<prop oor:name="ooSetupConnectionURL">
 <value>socket,host=localhost,port=2002;urp;StarOffice.ServiceManager
 </value>
</prop>
If the tag is not present, add it within the tag
<node oor:name="Office"/>
This change affects the whole installation. If you want to configure it for a certain user in a
network installation, add the same tag within the node <node oor:name="Office/> to the file
Setup.xcu in the user dependent configuration directory
<OfficePath>/user/registry/data/org/openoffice/

Choose the procedure that suits your requirements and launch OpenOffice.org in listening mode
now. Check if it is listening by calling netstat -a or -na on the command-line. An output similar to
the following shows that the office is listening:

TCP <Hostname>:8100 <Fully qualified hostname>: 0 Listening
If you use the -n option, netstat displays addresses and port numbers in numerical form. This is
sometimes useful on UNIX systems where it is possible to assign logical names to ports.

If the office is not listening, it probably was not started with the proper connection URL parameter.
Check the Setup.xcu file or your command-line for typing errors and try again.

81

Note: In versions before OpenOffice.org 1.1.0, there are several differences.

The configuration setting that makes the office listen everytime is located elsewhere. Open the file <Office-
Path>/share/config/registry/instance/org/openoffice/Setup.xml in an editor, and look for the element:

<ooSetupConnectionURL cfg:type="string"/>

Extend it with the following code:

<ooSetupConnectionURL cfg:type="string">
socket,port=2083;urp;
</ooSetupConnectionURL>

The commandline option -accept is ignored when there is a running instance of the office, including the
quick starter and the online help. If you use it, make sure that no soffice process runs on your system.

The various parts of the connection URL will be discussed in the next section.

Importing a UNO Object
The most common use case of interprocess connections is to import a reference to a UNO object
from an exporting server. For instance, most of the Java examples described in this manual retrieve
a reference to the OpenOffice.org ComponentContext. The correct way to do this is using the
com.sun.star.bridge.UnoUrlResolver service. Its main interface
com.sun.star.bridge.XUnoUrlResolver is defined in the following way:
interface XUnoUrlResolver: com::sun::star::uno::XInterface
{
 /** resolves an object on the UNO URL */
 com::sun::star::uno::XInterface resolve([in] string sUnoUrl)
 raises (com::sun::star::connection::NoConnectException,
 com::sun::star::connection::ConnectionSetupException,
 com::sun::star::lang::IllegalArgumentException);
};

The string passed to the resolve() method is called a UNO URL. It must have the following
format:

An example URL could be uno:socket,host=localhost,port=2002;urp;StarOffice.ServiceManager. The
parts of this URL are:

I. The URL schema uno:. This identifies the URL as UNO URL and distinguishes it from others,
such as http: or ftp: URLs.

II. A string which characterizes the type of connection to be used to access the other process. Option-
ally, directly after this string, a comma separated list of name-value pairs can follow, where
name and value are separated by a '='. The currently supported connection types are described
in 3.3.1 Professional UNO - UNO Concepts - UNO Interprocess Connections - Opening a Connection.
The connection type specifies the transport mechanism used to transfer a byte stream, for
example, TCP/IP sockets or named pipes.

III. A string which characterizes the type of protocol used to communicate over the established byte
stream connection. The string can be followed by a comma separated list of name-value pairs,

82 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html

which can be used to customize the protocol to specific needs. The suggested protocol is urp
(UNO Remote Protocol). Some useful parameters are explained below. Refer to the document
named UNO-URL at udk.openoffice.org. for the complete specification.

IV.A process must explicitly export a certain object by a distinct name. It is not possible to access
an arbitrary UNO object (which would be possible with IOR in CORBA, for instance).

The following example demonstrates how to import an object using the UnoUrlResolver:
(ProfUNO/InterprocessConn/UrlResolver.java):
 XComponentContext xLocalContext =
 com.sun.star.comp.helper.Bootstrap.createInitialComponentContext(null);

 // initial serviceManager
 XMultiComponentFactory xLocalServiceManager = xLocalContext.getServiceManager();

 // create a URL resolver
 Object urlResolver = xLocalServiceManager.createInstanceWithContext(
 "com.sun.star.bridge.UnoUrlResolver", xLocalContext);

 // query for the XUnoUrlResolver interface
 XUnoUrlResolver xUrlResolver =
 (XUnoUrlResolver) UnoRuntime.queryInterface(XUnoUrlResolver.class, urlResolver);

 // Import the object
 Object rInitialObject = xUrlResolver.resolve(
 “uno:socket,host=localhost,port=2002;urp;StarOffice.ServiceManager”);

 // XComponentContext
 if (null != rInitialObject) {
 System.out.println("initial object successfully retrieved");
 } else {
 System.out.println("given initial-object name unknown at server side");
 }

The usage of the UnoUrlResolver has certain disadvantages. You cannot:

• be notified when the bridge terminates for whatever reasons

• close the underlying interprocess connection

• offer a local object as an initial object to the remote process

These issues are addressed by the underlying API, which is explained below. in 3.3.1 Professional
UNO - UNO Concepts - UNO Interprocess Connections - Opening a Connection.

Characteristics of the Interprocess Bridge
The whole bridge is threadsafe and allows multiple threads to execute remote calls. The dispatcher
thread inside the bridge cannot block because it never executes calls. It instead passes the requests
to worker threads.

• A synchronous call sends the request through the connection and lets the requesting thread wait
for the reply. All calls that have a return value, an out parameter, or throw an exceptions other
than a RuntimeException must be synchronous.

• An asynchronous (or oneway) call sends the request through the connection and immediately
returns without waiting for a reply. It is currently specified at the IDL interface if a request is
synchronous or asynchronous by using the [oneway] modifier.

Although there are no general problems with the specification and the implementation of the UNO oneway
feature, there are several API remote usage scenarios where oneway calls cause deadlocks in
OpenOffice.org. Therefore do not introduce new oneway methods with new OpenOffice.org UNO APIs.

For synchronous requests, thread identity is guaranteed. When process A calls process B, and
process B calls process A, the same thread waiting in process A will take over the new request.

83

This avoids deadlocks when the same mutex is locked again. For asynchronous requests, this is not
possible because there is no thread waiting in process A. Such requests are executed in a new
thread. The series of calls between two processes is guaranteed. If two asynchronous requests from
process A are sent to process B, the second request waits until the first request is finished.

Although the remote bridge supports asynchronous calls, this feature is disabled by default. Every
call is executed synchronously. The oneway flag of UNO interface methods is ignored. However,
the bridge can be started in a mode that enables the oneway feature and thus executes calls flagged
with the [oneway] modifier as asynchronous calls. To do this, the protocol part of the connection
string on both sides of the remote bridge must be extended by ',Negotiate=0,ForceSynchro-
nous=0' . For example:

soffice “-accept=socket,host=0,port=2002;urp,Negotiate=0,ForceSynchronous=0;”
for starting the office and

"uno:socket,host=localhost,port=2002;urp,Negotiate=0,ForceSynchronous=0;StarOf-
fice.ServiceManager"
as UNO URL for connecting to it.

The asynchronous mode can cause deadlocks in OpenOffice.org. It is recommended not to activate it if one
side of the remote bridge is OpenOffice.org.

Opening a Connection
The method to import a UNO object using the UnoUrlResolver has drawbacks as described in the
previous chapter. The layer below the UnoUrlResolver offers full flexibility in interprocess
connection handling.

UNO interprocess bridges are established on the com.sun.star.connection.XConnection inter-
face, which encapsulates a reliable bidirectional byte stream connection (such as a TCP/IP connec-
tion).
interface XConnection: com::sun::star::uno::XInterface
{
 long read([out] sequence < byte > aReadBytes , [in] long nBytesToRead)
 raises(com::sun::star::io::IOException);
 void write([in] sequence < byte > aData)
 raises(com::sun::star::io::IOException);
 void flush() raises(com::sun::star::io::IOException);
 void close() raises(com::sun::star::io::IOException);
 string getDescription();
};

There are different mechanisms to establish an interprocess connection. Most of these mechanisms
follow a similar pattern. One process listens on a resource and waits for one or more processes to
connect to this resource.

This pattern has been abstracted by the services com.sun.star.connection.Acceptor that
exports the com.sun.star.connection.XAcceptor interface and
com.sun.star.connection.Connector that exports the com.sun.star.connection.XConnector
interface.
interface XAcceptor: com::sun::star::uno::XInterface
{
 XConnection accept([in] string sConnectionDescription)
 raises(AlreadyAcceptingException,
 ConnectionSetupException,
 com::sun::star::lang::IllegalArgumentException);

 void stopAccepting();
};

interface XConnector: com::sun::star::uno::XInterface
{
 XConnection connect([in] string sConnectionDescription)

84 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/connection/XConnector.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/XConnector.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/XConnector.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/Connector.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/Connector.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/Connector.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/XAcceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/XAcceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/XAcceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/Acceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/Acceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/Acceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/XConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/XConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/XConnection.html

 raises(NoConnectException,ConnectionSetupException);
};

The acceptor service is used in the listening process while the connector service is used in the
actively connecting service. The methods accept() and connect() get the connection string as a
parameter. This is the connection part of the UNO URL (between uno: and ;urp).

The connection string consists of a connection type followed by a comma separated list of name-
value pairs. The following table shows the connection types that are supported by default.

Connection
type

socket Reliable TCP/IP socket connection

Parameter Description

host Hostname or IP number of the resource to listen on/connect. May be
localhost. In an acceptor string, this may be 0 ('host=0'), which means,
that it accepts on all available network interfaces.

port TCP/IP port number to listen on/connect to.

tcpNoDelay Corresponds to the socket option tcpNoDelay. For a UNO connection,
this parameter should be set to 1 (this is NOT the default - it must be
added explicitly). If the default is used (0), it may come to 200 ms
delays at certain call combinations.

pipe A named pipe (uses shared memory). This type of interprocess connection is marginally
faster than socket connections and works only if both processes are located on the same
machine. It does not work on Java by default, because Java does not support named pipes
directly

Parameter Description

name Name of the named pipe. Can only accept one process on name on one
machine at a time.

You can add more kinds of interprocess connections by implementing connector and acceptor services, and
choosing the service name by the scheme com.sun.star.connection.Connector.<connection-
type>, where <connection-type> is the name of the new connection type.

If you implemented the service com.sun.star.connection.Connector.mytype, use the UnoUrlRe-
solver with the URL 'uno:mytype,param1=foo;urp;StarOffice.ServiceManager' to establish the interprocess
connection to the office.

85

Creating the Bridge

The XConnection instance can now be used to establish a UNO interprocess bridge on top of the
connection, regardless if the connection was established with a Connector or Acceptor service (or
another method). To do this, you must instantiate the service com.sun.star.bridge.BridgeFac-
tory. It supports the com.sun.star.bridge.XBridgeFactory interface.
interface XBridgeFactory: com::sun::star::uno::XInterface
{
 XBridge createBridge(
 [in] string sName,
 [in] string sProtocol ,
 [in] com::sun::star::connection::XConnection aConnection ,
 [in] XInstanceProvider anInstanceProvider)
 raises (BridgeExistsException , com::sun::star::lang::IllegalArgumentException);
 XBridge getBridge([in] string sName);
 sequence < XBridge > getExistingBridges();
};

The BridgeFactory service administrates all UNO interprocess connections. The createBridge()
method creates a new bridge:

86 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 3.5: The interaction of services that are needed to initiate a UNO interprocess bridge. The
interfaces have been simplified.

http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XBridgeFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XBridgeFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XBridgeFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/BridgeFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/BridgeFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/BridgeFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/BridgeFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/BridgeFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/BridgeFactory.html

• You can give the bridge a distinct name with the sName argument. Later the bridge can be
retrieved by using the getBridge() method with this name. This allows two independent code
pieces to share the same interprocess bridge. If you call createBridge() with the name of an
already working interprocess bridge, a BridgeExistsException is thrown. When you pass an
empty string, you always create a new anonymous bridge, which can never be retrieved by
getBridge() and which never throws a BridgeExistsException.

• The second parameter specifies the protocol to be used on the connection. Currently, only the
'urp' protocol is supported. In the UNO URL, this string is separated by two ';'. The urp string
may be followed by a comma separated list of name-value pairs describing properties for the
bridge protocol. The urp specification can be found on udk.openoffice.org.

• The third parameter is the XConnection interface as it was retrieved by Connector/Acceptor
service.

• The fourth parameter is a UNO object, which supports the com.sun.star.bridge.XInstan-
ceProvider interface. This parameter may be a null reference if you do not want to export a
local object to the remote process.

interface XInstanceProvider: com::sun::star::uno::XInterface
{
 com::sun::star::uno::XInterface getInstance([in] string sInstanceName)
 raises (com::sun::star::container::NoSuchElementException);
};

The BridgeFactory returns a com.sun.star.bridge.XBridge interface.
interface XBridge: com::sun::star::uno::XInterface
{
 XInterface getInstance([in] string sInstanceName);
 string getName();
 string getDescription();
};

The XBridge.getInstance() method retrieves an initial object from the remote counterpart. The
local XBridge.getInstance() call arrives in the remote process as an
XInstanceProvider.getInstance() call. The object returned can be controlled by the string
sInstanceName. It completely depends on the implementation of XInstanceProvider, which
object it returns.

The XBridge interface can be queried for a com.sun.star.lang.XComponent interface, that adds a
com.sun.star.lang.XEventListener to the bridge. This listener will be terminated when the
underlying connection closes (see above). You can also call dispose() on the XComponent interface
explicitly, which closes the underlying connection and initiates the bridge shutdown procedure.

Closing a Connection
The closure of an interprocess connection can occur for the following reasons:

• The bridge is not used anymore. The interprocess bridge will close the connection when all the
proxies to remote objects and all stubs to local objects have been released. This is the normal
way for a remote bridge to destroy itself. The user of the interprocess bridge does not need to
close the interprocess connection directly� it is done automatically. When one of the communi-
cating processes is implemented in Java, the closure of a bridge is delayed to that point in time
when the VM finalizes the last proxies/stubs. Therefore it is unspecified when the interprocess
bridge will be closed.

• The interprocess bridge is directly disposed by calling its dispose() method.

• The remote counterpart process crashes.

• The connection fails. For example, failure may be due to a dialup internet connection going
down.

87

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XBridge.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XBridge.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XBridge.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XInstanceProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XInstanceProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XInstanceProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XInstanceProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XInstanceProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XInstanceProvider.html

• An error in marshalling/unmarshalling occurs due to a bug in the interprocess bridge imple-
mentation, or an IDL type is not available in one of the processes.

Except for the first reason, all other connection closures initiate an interprocess bridge shutdown
procedure. All pending synchronous requests abort with a com.sun.star.lang.DisposedExcep-
tion, which is derived from the com.sun.star.uno.RuntimeException. Every call that is initi-
ated on a disposed proxy throws a DisposedException. After all threads have left the bridge
(there may be a synchronous call from the former remote counterpart in the process), the bridge
explicitly releases all stubs to the original objects in the local process, which were previously held
by the former remote counterpart. The bridge then notifies all registered listeners about the
disposed state using com.sun.star.lang.XEventListener. The example code for a connection-
aware client below shows how to use this mechanism. The bridge itself is destroyed, after the last
proxy has been released.

Unfortunately, the various listed error conditions are not distinguishable.

Example: A Connection Aware Client
The following example shows an advanced client which can be informed about the status of the
remote bridge. A complete example for a simple client is given in the chapter 2 First Steps.

The following Java example opens a small awt window containing the buttons new writer and
new calc that opens a new document and a status label. It connects to a running office when a
button is clicked for the first time. Therefore it uses the connector/bridge factory combination, and
registers itself as an event listener at the interprocess bridge.

When the office is terminated, the disposing event is terminated, and the Java program sets the text
in the status label to 'disconnected' and clears the office desktop reference. The next time a button
is pressed, the program knows that it has to re-establish the connection.

The method getComponentLoader() retrieves the XComponentLoader reference on demand:

(ProfUNO/InterprocessConn/ConnectionAwareClient.java)
 XComponentLoader _officeComponentLoader = null;

 // local component context
 XComponentContext _ctx;

 protected com.sun.star.frame.XComponentLoader getComponentLoader()
 throws com.sun.star.uno.Exception {
 XComponentLoader officeComponentLoader = _officeComponentLoader;

 if (officeComponentLoader == null) {
 // instantiate connector service
 Object x = _ctx.getServiceManager().createInstanceWithContext(
 "com.sun.star.connection.Connector", _ctx);

 XConnector xConnector = (XConnector) UnoRuntime.queryInterface(XConnector.class, x);

 // helper function to parse the UNO URL into a string array
 String a[] = parseUnoUrl(_url);
 if (null == a) {
 throw new com.sun.star.uno.Exception("Couldn't parse UNO URL "+ _url);
 }

 // connect using the connection string part of the UNO URL only.
 XConnection connection = xConnector.connect(a[0]);

 x = _ctx.getServiceManager().createInstanceWithContext(
 "com.sun.star.bridge.BridgeFactory", _ctx);

 XBridgeFactory xBridgeFactory = (XBridgeFactory) UnoRuntime.queryInterface(
 XBridgeFactory.class , x);

 // create a nameless bridge with no instance provider
 // using the middle part of the UNO URL
 XBridge bridge = xBridgeFactory.createBridge("" , a[1] , connection , null);

 // query for the XComponent interface and add this as event listener

88 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html

 XComponent xComponent = (XComponent) UnoRuntime.queryInterface(
 XComponent.class, bridge);
 xComponent.addEventListener(this);

 // get the remote instance
 x = bridge.getInstance(a[2]);

 // Did the remote server export this object ?
 if (null == x) {
 throw new com.sun.star.uno.Exception(
 "Server didn't provide an instance for" + a[2], null);
 }

 // Query the initial object for its main factory interface
 XMultiComponentFactory xOfficeMultiComponentFactory = (XMultiComponentFactory)
 UnoRuntime.queryInterface(XMultiComponentFactory.class, x);

 // retrieve the component context (it's not yet exported from the office)
 // Query for the XPropertySet interface.
 XPropertySet xProperySet = (XPropertySet)
 UnoRuntime.queryInterface(XPropertySet.class, xOfficeMultiComponentFactory);

 // Get the default context from the office server.
 Object oDefaultContext =
 xProperySet.getPropertyValue("DefaultContext");

 // Query for the interface XComponentContext.
 XComponentContext xOfficeComponentContext =
 (XComponentContext) UnoRuntime.queryInterface(
 XComponentContext.class, oDefaultContext);

 // now create the desktop service
 // NOTE: use the office component context here !
 Object oDesktop = xOfficeMultiComponentFactory.createInstanceWithContext(
 "com.sun.star.frame.Desktop", xOfficeComponentContext);

 officeComponentLoader = (XComponentLoader)
 UnoRuntime.queryInterface(XComponentLoader.class, oDesktop);

 if (officeComponentLoader == null) {
 throw new com.sun.star.uno.Exception(
 "Couldn't instantiate com.sun.star.frame.Desktop" , null);
 }
 _officeComponentLoader = officeComponentLoader;
 }
 return officeComponentLoader;
 }

This is the button event handler:
 public void actionPerformed(ActionEvent event) {
 try {
 String sUrl;
 if (event.getSource() == _btnWriter) {
 sUrl = "private:factory/swriter";
 } else {
 sUrl = "private:factory/scalc";
 }
 getComponentLoader().loadComponentFromURL(
 sUrl, "_blank", 0,new com.sun.star.beans.PropertyValue[0]);
 _txtLabel.setText("connected");
 } catch (com.sun.star.connection.NoConnectException exc) {
 _txtLabel.setText(exc.getMessage());
 } catch (com.sun.star.uno.Exception exc) {
 _txtLabel.setText(exc.getMessage());
 exc.printStackTrace();
 throw new java.lang.RuntimeException(exc.getMessage());
 }
 }

And the disposing handler clears the _officeComponentLoader reference:
 public void disposing(com.sun.star.lang.EventObject event) {
 // remote bridge has gone down, because the office crashed or was terminated.
 _officeComponentLoader = null;
 _txtLabel.setText("disconnected");
 }

89

3.3.2 Service Manager and Component Context
This chapter discusses the root object for connections to OpenOffice.org (and to any UNO applica-
tion) � the service manager. The root object serves as the entry point for every UNO application
and is passed to every UNO component during instantiation.

Two different concepts to get the root object currently exist. StarOffice6.0 and OpenOffice.org1.0
use the previous concept. Newer versions or product patches use the newer concept and provide
the previous concept for compatibility issues only. First we will look at the previous concept, the
service manager as it is used in the main parts of the underlying OpenOffice.org implementation of
this guide. Second, we will introduce the component context� which is the newer concept and
explain the migration path.

Service Manager
The com.sun.star.lang.ServiceManager is the main factory in every UNO application. It instan-
tiates services by their service name, to enumerate all implementations of a certain service, and to
add or remove factories for a certain service at runtime. The service manager is passed to every
UNO component during instantiation.

XMultiServiceFactory Interface

The main interface of the service manager is the com.sun.star.lang.XMultiServiceFactory
interface. It offers three methods: createInstance(), createInstanceWithArguments() and
getAvailableServiceNames().
interface XMultiServiceFactory: com::sun::star::uno::XInterface
{
 com::sun::star::uno::XInterface createInstance([in] string aServiceSpecifier)
 raises(com::sun::star::uno::Exception);

 com::sun::star::uno::XInterface createInstanceWithArguments(
 [in] string ServiceSpecifier,
 [in] sequence<any> Arguments)
 raises(com::sun::star::uno::Exception);

 sequence<string> getAvailableServiceNames();
};

• createInstance() returns a default constructed service instance. The returned service is guar-
anteed to support at least all interfaces, which were specified for the requested servicename.
The returned XInterface reference can now be queried for the interfaces specified at the
service description.

When using the service name, the caller does not have any influence on which concrete imple-
mentation is instantiated. If multiple implementations for a service exist, the service manager is
free to decide which one to employ. This in general does not make a difference to the caller
because every implementation does fulfill the service contract. Performance or other details
may make a difference. So it is also possible to pass the implementation name instead of the
service name, but it is not advised to do so as the implementation name may change.

In case the service manager does not provide an implementation for a request, a null reference
is returned, so it is mandatory to check. Every UNO exception may be thrown during instantia-
tion. Some may be described in the specification of the service that is to be instantiated, for
instance, because of a misconfiguration of the concrete implementation. Another reason may be
the lack of a certain bridge, for instance the Java-C++ bridge, in case a Java component shall be
instantiated from C++ code.

• createInstanceWithArguments() instantiates the service with additional parameters. A
service signals that it expects parameters during instantiation by supporting the

90 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/ServiceManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/ServiceManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/ServiceManager.html

com.sun.star.lang.XInitialization interface. The service definition should describe the
meaning of each element of the sequence. There maybe services which can only be instantiated
with parameters.

• getAvailableServiceNames() returns every servicename the service manager does support.

XContentEnumerationAccess Interface

The com.sun.star.container.XContentEnumerationAccess interface allows the creation of an
enumeration of all implementations of a concrete servicename.
interface XContentEnumerationAccess: com::sun::star::uno::XInterface
{
 com::sun::star::container::XEnumeration createContentEnumeration([in] string aServiceName);

 sequence<string> getAvailableServiceNames();

};

The createContentEnumeration() method returns a com.sun.star.container.XEnumeration
interface. Note that it may return an empty reference in case the enumeration is empty.
interface XEnumeration: com::sun::star::uno::XInterface
{
 boolean hasMoreElements();

 any nextElement()
 raises(com::sun::star::container::NoSuchElementException,
 com::sun::star::lang::WrappedTargetException);

};

In the above case, the returned any of the method Xenumeration.nextElement() contains a
com.sun.star.lang.XSingleServiceFactory interface for each implementation of this specific
service. You can, for instance, iterate over all implementations of a certain service and check each
one for additional implemented services. The XSingleServiceFactory interface provides such a
method. With this method, you can instantiate a feature rich implementation of a service.

XSet Interface

The com.sun.star.container.XSet interface allows the insertion or removal of
com.sun.star.lang.XSingleServiceFactory or com.sun.star.lang.XSingleComponentFac-
tory implementations to the service manager at runtime without making the changes permanent.
When the office application terminates, all the changes are lost. The object must also support the
com.sun.star.lang.XServiceInfo interface that provides information about the implementation
name and supported services of the component implementation.

This feature may be of particular interest during the development phase. For instance, you can
connect to a running office, insert a new factory into the service manager and directly instantiate
the new service without having it registered before.

The chapter 4.9.6 Writing UNO Components - Deployment Options for Components - Special Service
Manager Configurations shows an example that demonstrates how a factory is inserted into the
service manager.

Component Context
The service manager was described above as the main factory that is passed to every new instanti-
ated component. Often a component needs more functionality or information that must be
exchangeable after deployment of an application. In this context, the service manager approach is
limited.

91

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumeration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumeration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumeration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContentEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContentEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContentEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html

Therefore, the concept of the component context was created. In future, it will be the central object in
every UNO application. It is basically a read-only container offering named values. One of the
named values is the service manager. The component context is passed to a component during its
instantiation. This can be understood as an environment where components live (the relationship is
similar to shell environment variables and an executable program).

ComponentContext API

The component context only supports the com.sun.star.uno.XComponentContext interface.

// module com::sun::star::uno
interface XComponentContext : XInterface
{
 any getValueByName([in] string Name);
 com::sun::star::lang::XMultiComponentFactory getServiceManager();
};

The getValueByName() method returns a named value. The getServiceManager() is a conve-
nient way to retrieve the value named /singleton/com.sun.star.lang.theServiceManager. It
returns the ServiceManager singleton, because most components need to access the service
manager. The component context offers at least three kinds of named values:

Singletons (/singletons/...)
The singleton concept was introduced in 3.2.1 Professional UNO - API Concepts - Data Types. In
OpenOffice.org 1.0.2 there is only the ServiceManager singleton. From OpenOffice.org 1.1.0, a
singleton /singletons/com.sun.star.util.theMacroExpander has been added, which can
be used to expand macros in configuration files. Other possible singletons can be found in the
IDL reference.

Implementation properties (not yet defined)
These properties customize a certain implementation and are specified in the module descrip-
tion of each component. A module description is an xml-based description of a module (DLL or
jar file) which contains the formal description of one or more components.

Service properties (not yet defined)
These properties can customize a certain service independent from the implementation and are
specified in the IDL specification of a service.
Note that service context properties are different from service properties. Service context prop-
erties are not subject to change and are the same for every instance of the service that shares the
same component context. Service properties are different for each instance and can be changed
at runtime through the XPropertySet interface.

92 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 3.6: ComponentContext and the ServiceManager

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html

Note, that in the scheme above, the ComponentContext has a reference to the service manager, but
not conversely.

Besides the interfaces discussed above, the ServiceManager supports the
com.sun.star.lang.XMultiComponentFactory interface.
interface XMultiComponentFactory : com::sun::star::uno::XInterface
{

com::sun::star::uno::XInterface createInstanceWithContext(
 [in] string aServiceSpecifier,
 [in] com::sun::star::uno::XComponentContext Context)
 raises (com::sun::star::uno::Exception);

com::sun::star::uno::XInterface createInstanceWithArgumentsAndContext(
 [in] string ServiceSpecifier,
 [in] sequence<any> Arguments,
 [in] com::sun::star::uno::XComponentContext Context)
 raises (com::sun::star::uno::Exception);

sequence< string > getAvailableServiceNames();
};

It replaces the XMultiServiceFactory interface. It has an additional XComponentContext param-
eter for the two object creation methods. This parameter enables the caller to define the component
context that the new instance of the component receives. Most components use their initial compo-
nent context to instantiate new components. This allows for context propagation.

The illustration above shows the context propagation. A user might want a special component to
get a customized context. Therefore, the user creates a new context by simply wrapping an existing
one. The user overrides the desired values and delegates the properties that he is not interested
into the original C1 context.The user defines which context Instance A and B receive. Instance A
and B propagate their context to every new object that they create. Thus, the user has established
two instance trees, the first tree completely uses the context Ctx C1, while the second tree uses Ctx
C2.

93

Illustration 3.7: Context propagation.

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html

Availability

The final API for the component context is available in StarOffice 6.0 and OpenOffice 1.0. Use this
API instead of the API explained in the service manager section. Currently the component context
does not have a persistent storage, so named values can not be added to the context of a deployed
OpenOffice.org. Presently, there is no additional benefit from the new API until there is a future
release.

Compatibility Issues and Migration Path

As discussed previously, both concepts are currently used within the office. The ServiceManager
supports the interfaces com.sun.star.lang.XMultiServiceFactory and
com.sun.star.lang.XMultiComponentFactory. Calls to the XMultiServiceFactory interface
are delegated to the XMultiComponentFactory interface. The service manager uses its own XCom-
ponentContext reference to fill the missing parameter. The component context of the ServiceM-
anager can be retrieved through the XPropertySet interface as 'DefaultContext'.
// Query for the XPropertySet interface.
// Note xOfficeServiceManager is the object retrieved by the
// UNO URL resolver
XPropertySet xPropertySet = (XPropertySet)

UnoRuntime.queryInterface(XPropertySet.class, xOfficeServiceManager);

// Get the default context from the office server.
Object oDefaultContext = xpropertysetMultiComponentFactory.getPropertyValue("DefaultContext");

// Query for the interface XComponentContext.
xComponentContext = (XComponentContext) UnoRuntime.queryInterface(

XComponentContext.class, objectDefaultContext);

This solution allows the use of the same service manager instance, regardless if it uses the old or
new style API. In future, the whole OpenOffice.org code will only use the new API. However, the
old API will still remain to ensure compatibility.

The described compromise has a drawback. The service manager now knows the component context, that
was not necessary in the original design. Thus, every component that uses the old API (plain createIn-
stance()) breaks the context propagation (see Illustration 3.2). Therefore, it is recommended to use the
new API in every new piece of code that is written.

3.3.3 Using UNO Interfaces
Every UNO object must inherit from the interface com.sun.star.uno.XInterface. Before using
an object, know how to use it and how long it will function. By prescribing XInterface to be the

94 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 3.8Compromise between service-manger-only und component context
concept

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html

base interface for each and every UNO interface, UNO lays the groundwork for object communica-
tion. For historic reasons, the UNOIDL description of XInterface lists the functionality that is
associated with XInterface in the C++ (or binary UNO) language binding; other language bind-
ings offer similar functionality by different mechanisms:
// module com::sun::star::uno
interface XInterface
{
 any queryInterface([in] type aType);
 [oneway] void acquire();
 [oneway] void release();
};

The methods acquire() and release() handle the lifetime of the UNO object by reference
counting. Detailed information about Reference counting is discussed in chapter 3.3.8 Professional
UNO - UNO Concepts - Lifetime of UNO Objects. All current language bindings take care of
acquire() and release() internally whenever there is a reference to a UNO object.

The queryInterface() method obtains other interfaces exported by the object. The caller asks the
implementation of the object if it supports the interface specified by the type argument. The type
parameter must denote a UNO interface type. The call may return with an interface reference of
the requested type or with a void any. In C++ or Java simply test if the result is not equal null.

Unknowingly, we encountered XInterface when the service manager was asked to create a
service instance:
 XComponentContext xLocalContext =
 com.sun.star.comp.helper.Bootstrap.createInitialComponentContext(null);

 // initial serviceManager
 XMultiComponentFactory xLocalServiceManager = xLocalContext.getServiceManager();

 // create a urlresolver
 Object urlResolver = xLocalServiceManager.createInstanceWithContext(
 "com.sun.star.bridge.UnoUrlResolver", xLocalContext);

The IDL specification of XMultiComponentFactory shows:
// module com::sun::star::lang
interface XMultiComponentFactory : com::sun::star::uno::XInterface
{
 com::sun::star::uno::XInterface createInstanceWithContext(
 [in] string aServiceSpecifier,
 [in] com::sun::star::uno::XComponentContext Context)
 raises (com::sun::star::uno::Exception);
 ...
}

The above code shows that createInstanceWithContext() provides an instance of the given
service, but it only returns a com.sun.star.uno.XInterface. This is mapped to java.lang.Object
by the Java UNO binding afterwards.

In order to access a service, you need to know which interfaces the service exports. This informa-
tion is available in the IDL reference. For instance, for the com.sun.star.bridge.UnoUrlRe-
solver service, you learn:
// module com::sun::star::bridge
service UnoUrlResolver: XUnoUrlResolver;

This means the service you ordered at the service manager must support
com.sun.star.bridge.XUnoUrlResolver. Next query the returned object for this interface:
// query urlResolver for its com.sun.star.bridge.XUnoUrlResolver interface
XUnoUrlResolver xUrlResolver = (XUnoUrlResolver)
 UnoRuntime.queryInterface(UnoUrlResolver.class, urlResolver);
// test if the interface was available
if (null == xUrlResolver) {
 throw new java.lang.Exception(
 “Error: UrlResolver service does not export XUnoUrlResolver interface”);
}
// use the interface
Object remoteObject = xUrlResolver.resolve(
 “uno:socket,host=0,port=2002;urp;StarOffice.ServiceManager”);

95

http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html

For a new-style service like com.sun.star.bridge.UnoUrlResolver, there is a superior way to obtain
an instance of it, see 3.4.1 Professional UNO - UNO Language Bindings - Java Language Binding - Type Mappings
- Mapping of Services and 3.4.2 Professional UNO - UNO Language Bindings - C++ Language Binding - Type
Mappings - Mapping of Services.

The object decides whether or not it returns the interface. You have encountered a bug if the object
does not return an interface that is specified to be mandatory in a service. When the interface refer-
ence is retrieved, invoke a call on the reference according to the interface specification. You can
follow this strategy with every service you instantiate at a service manager, leading to success.

With this method, you may not only get UNO objects through the service manager, but also by
normal interface calls:
// Module com::sun::star::text
interface XTextRange: com::sun::star::uno::XInterface
{
 XText getText();
 XTextRange getStart();

};

The returned interface types are specified in the operations, so that calls can be invoked directly on
the returned interface. Often, an object implementing multiple interfaces are returned, instead of
an object implementing one certain interface.

You can then query the returned object for the other interfaces specified in the given old-style
service, here com.sun.star.drawing.Text.

UNO has a number of generic interfaces. For example, the interface com.sun.star.frame.XCom-
ponentLoader:
// module com::sun::star::frame
interface XComponentLoader: com::sun::star::uno::XInterface
{
 com::sun::star::lang::XComponent loadComponentFromURL([in] string aURL,
 [in] string aTargetFrameName,
 [in] long nSearchFlags,
 [in] sequence<com::sun::star::beans::PropertyValue> aArgs)
 raises(com::sun::star::io::IOException,
 com::sun::star::lang::IllegalArgumentException);
};

It becomes difficult to find which interfaces are supported beside XComponent, because the kind of
returned document (text, calc, draw, etc.) depends on the incoming URL.

These dependencies are described in the appropriate chapters of this manual.

Tools such as the InstanceInspector component is a quick method to find out which interfaces a
certain object supports. The InstanceInspector component comes with the OpenOffice.org SDK
that allows the inspection of a certain object at runtime. Do not rely on implementation details of
certain objects. If an object supports more interfaces than specified in the service description, query
the interface and perform calls. The code may only work for this distinct office version and not
work with an update of the office!

Unfortunately, there may still be bugs in the service specifications. Please provide feedback about missing
interfaces to openoffice.org to ensure that the specification is fixed and that you can rely on the support of this
interface.

There are certain specifications a queryInterface() implementation must not violate:

• If queryInterface() on a specific object returned a valid interface reference for a given type, it
must return a valid reference for any successive queryInterface() calls on this object for the
same type.

96 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html

• If queryInterface() on a specific object returned a null reference for a given type, it must
always return a null reference for the same type.

• If queryInterface() on reference A returns reference B, queryInterface() on B for Type A
must return interface reference A or calls made on the returned reference must be equivalent to
calls made on reference A.

• If queryInterface() on a reference A returns reference B, queryInterface() on A and B for
XInterface must return the same interface reference (object identity).

These specifications must not be violated because a UNO runtime environment may choose to
cache queryInterface() calls. The rules are basically identical to the rules of QueryInterface in
MS COM.

3.3.4 Properties
Properties are name-value pairs belonging to a service and determine the characteristics of an
object in a service instance. Usually, properties are used for non-structural attributes, such as font,
size or color of objects, whereas get and set methods are used for structural attributes like a parent
or sub-object.

In almost all cases, com.sun.star.beans.XPropertySet is used to access properties by name.
Other interfaces, for example, are com.sun.star.beans.XPropertyAccess which is used to set
and retrieve all properties at once or com.sun.star.beans.XMultiPropertySet which is used to
access several specified properties at once. This is useful on remote connections. Additionally,
there are interfaces to access properties by numeric ID, such as com.sun.star.beans.XFastProp-
ertySet.

The following example demonstrates how to query and change the properties of a given text docu-
ment cursor using its XPropertySet interface:
 // get an XPropertySet, here the one of a text cursor
 XPropertySet xCursorProps = (XPropertySet)
 UnoRuntime.queryInterface(XPropertySet.class, mxDocCursor);

 // get the character weight property
 Object aCharWeight = xCursorProps.getPropertyValue("CharWeight");
 float fCharWeight = AnyConverter.toFloat(aCharWeight);
 System.out.println("before: CharWeight=" + fCharWeight);

 // set the character weight property to BOLD
 xCursorProps.setPropertyValue("CharWeight", new Float(com.sun.star.awt.FontWeight.BOLD));

 // get the character weight property again
 aCharWeight = xCursorProps.getPropertyValue("CharWeight");
 fCharWeight = AnyConverter.toFloat(aCharWeight);
 System.out.println("after: CharWeight=" + fCharWeight);

A possible output of this code could be:

before: CharWeight=100.0
after: CharWeight=150.0

The sequence of property names must be sorted.

The following example deals with multiple properties at once:
// get an XMultiPropertySet, here the one of the first paragraph
XEnumerationAccess xEnumAcc = (XEnumerationAccess) UnoRuntime.queryInterface(
 XEnumerationAccess.class, mxDocText);
XEnumeration xEnum = xEnumAcc.createEnumeration();
Object aPara = xEnum.nextElement();
XMultiPropertySet xParaProps = (XMultiPropertySet) UnoRuntime.queryInterface(
 XMultiPropertySet.class, aPara);

// get three property values with a single UNO call

97

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XFastPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XFastPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XFastPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XFastPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XFastPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XFastPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html

String[] aNames = new String[3];
aNames[0] = "CharColor";
aNames[1] = "CharFontName";
aNames[2] = "CharWeight";
Object[] aValues = xParaProps.getPropertyValues(aNames);

// print the three values
System.out.println("CharColor=" + AnyConverter.toLong(aValues[0]));
System.out.println("CharFontName=" + AnyConverter.toString(aValues[1]));
System.out.println("CharWeight=" + AnyConverter.toFloat(aValues[2]));

Properties can be assigned flags to determine a specific behavior of the property, such as read-
only, bound, constrained or void. Possible flags are specified in com.sun.star.beans.Proper-
tyAttribute. Read-only properties cannot be set. Bound properties broadcast changes of their
value to registered listeners and constrained properties veto changes to these listeners.

Properties might have a status specifying where the value comes from. See
com.sun.star.beans.XPropertyState. The value determines if the value comes from the object,
a style sheet or if it cannot be determined at all. For example, in a multi-selection with multiple
values within this selection.

The following example shows how to find out status information about property values:
 // get an XPropertySet, here the one of a text cursor
 XPropertySet xCursorProps = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, mxDocCursor);

 // insert “first” in NORMAL character weight
 mxDocText.insertString(mxDocCursor, "first ", true);
 xCursorProps.setPropertyValue("CharWeight", new Float(com.sun.star.awt.FontWeight.NORMAL));

 // append “second” in BODL characer weight
 mxDocCursor.collapseToEnd();
 mxDocText.insertString(mxDocCursor, "second", true);
 xCursorProps.setPropertyValue("CharWeight", new Float(com.sun.star.awt.FontWeight.BOLD));

 // try to get the character weight property of BOTH words
 mxDocCursor.gotoStart(true);
 try {

Object aCharWeight = xCursorProps.getPropertyValue("CharWeight");
float fCharWeight = AnyConverter.toFloat(aCharWeight);
System.out.println("CharWeight=" + fCharWeight);

 } catch (NullPointerException e) {
System.out.println("CharWeight property is NULL");

 }

 // query the XPropertState interface of the cursor properties
 XPropertyState xCursorPropsState = (XPropertyState) UnoRuntime.queryInterface(
 XPropertyState.class, xCursorProps);

 // get the status of the character weight property
 PropertyState eCharWeightState = xCursorPropsState.getPropertyState("CharWeight");
 System.out.print("CharWeight property state has ");
 if (eCharWeightState == PropertyState.AMBIGUOUS_VALUE)
 System.out.println("an ambiguous value");
 else
 System.out.println("a clear value");

The property state of character weight is queried for a string like this:

first second

And the output is:

CharWeight property is NULL
CharWeight property state has an ambiguous value

The description of properties available for a certain object is given by
com.sun.star.beans.XPropertySetInfo. Multiple objects can share the same property informa-
tion for their description. This makes it easier for introspective caches that are used in scripting
languages where the properties are accessed directly, without directly calling the methods of the
interfaces mentioned above.

This example shows how to find out which properties an object provides using
com.sun.star.beans.XPropertySetInfo:
try {

98 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyState.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyState.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyState.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyAttribute.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyAttribute.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyAttribute.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyAttribute.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyAttribute.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyAttribute.html

 // get an XPropertySet, here the one of a text cursor
 XPropertySet xCursorProps = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, mxDocCursor);

 // get the property info interface of this XPropertySet
 XPropertySetInfo xCursorPropsInfo = xCursorProps.getPropertySetInfo();

 // get all properties (NOT the values) from XPropertySetInfo
 Property[] aProps = xCursorPropsInfo.getProperties();
 int i;
 for (i = 0; i < aProps.length; ++i) {
 // number of property within this info object
 System.out.print("Property #" + i);

 // name of property
 System.out.print(": Name<" + aProps[i].Name);

 // handle of property (only for XFastPropertySet)
 System.out.print("> Handle<" + aProps[i].Handle);

 // type of property
 System.out.print("> " + aProps[i].Type.toString());

 // attributes (flags)
 System.out.print(" Attributes<");
 short nAttribs = aProps[i].Attributes;
 if ((nAttribs & PropertyAttribute.MAYBEVOID) != 0)
 System.out.print("MAYBEVOID|");
 if ((nAttribs & PropertyAttribute.BOUND) != 0)
 System.out.print("BOUND|");
 if ((nAttribs & PropertyAttribute.CONSTRAINED) != 0)
 System.out.print("CONSTRAINED|");
 if ((nAttribs & PropertyAttribute.READONLY) != 0)
 System.out.print("READONLY|");
 if ((nAttribs & PropertyAttribute.TRANSIENT) != 0)
 System.out.print("TRANSIENT|");
 if ((nAttribs & PropertyAttribute.MAYBEAMBIGUOUS) != 0)
 System.out.print("MAYBEAMBIGUOUS|");
 if ((nAttribs & PropertyAttribute.MAYBEDEFAULT) != 0)
 System.out.print("MAYBEDEFAULT|");
 if ((nAttribs & PropertyAttribute.REMOVEABLE) != 0)
 System.out.print("REMOVEABLE|");
 System.out.println("0>");
 }
} catch (Exception e) {
 // If anything goes wrong, give the user a stack trace
 e.printStackTrace(System.out);
}

The following is an example output for the code above. The output shows the names of the text
cursor properties, and their handle, type and property attributes. The handle is not unique, since
the specific object does not implement com.sun.star.beans.XFastPropertySet, so proper handles are
not needed here.

Using default connect string: socket,host=localhost,port=8100
Opening an empty Writer document
Property #0: Name<BorderDistance> Handle<93> Type<long> Attributes<MAYBEVOID|0>
Property #1: Name<BottomBorder> Handle<93> Type<com.sun.star.table.BorderLine> Attributes<MAYBEVOID|0>
Property #2: Name<BottomBorderDistance> Handle<93> Type<long> Attributes<MAYBEVOID|0>
Property #3: Name<BreakType> Handle<81> Type<com.sun.star.style.BreakType> Attributes<MAYBEVOID|0>

...

Property #133: Name<TopBorderDistance> Handle<93> Type<long> Attributes<MAYBEVOID|0>
Property #134: Name<UnvisitedCharStyleName> Handle<38> =Type<string> Attributes<MAYBEVOID|0>
Property #135: Name<VisitedCharStyleName> Handle<38> Type<string> Attributes<MAYBEVOID|0>

In some cases properties are used to specify the options in a sequence of
com.sun.star.beans.PropertyValue. See com.sun.star.view.PrintOptions or
com.sun.star.document.MediaDescriptor for examples properties in sequences. These are not
accessed by the methods mentioned above, but by accessing the sequence specified in the language
binding.

This example illustrates how to deal with sequences of property values:
// create a sequence of PropertyValue
PropertyValue[] aArgs = new PropertyValue[2];

// set name/value pairs (other fields are irrelevant here)
aArgs[0] = new PropertyValue();
aArgs[0].Name = "FilterName";
aArgs[0].Value = "HTML (StarWriter)";

99

http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrintOptions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrintOptions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrintOptions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XFastPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XFastPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XFastPropertySet.html

aArgs[1] = new PropertyValue();
aArgs[1].Name = "Overwrite";
aArgs[1].Value = Boolean.TRUE;

// use this sequence of PropertyValue as an argument
// where a service with properties but witouth any interfaces is specified
com.sun.star.frame.XStorable xStorable = (com.sun.star.frame.XStorable) UnoRuntime.queryInterface(
 com.sun.star.frame.XStorable.class, mxDoc);
xStorable.storeAsURL("file:///tmp/devmanual-test.html", aArgs);

Usually the properties supported by an object, as well as their type and flags are fixed over the life-
time of the object. There may be exceptions. If the properties can be added and removed externally,
the interface com.sun.star.beans.XPropertyContainer has to be used. In this case, the fixed
com.sun.star.beans.XPropertySetInfo changes its supplied information over the lifetime of
the object. Listeners for such changes can register at com.sun.star.beans.XPropertyChangeLis-
tener.

If you use a component from other processes or remotely, try to adhere to the rule to use
com.sun.star.beans.XPropertyAccess and com.sun.star.beans.XMultiPropertySet instead
of having a separate call for each single property.

The following diagram shows the relationship between the property-related interfaces.

Starting with OpenOffice.org 2.0, interface attributes are comparable in expressiveness to the prop-
erties described above:

• A [property] T P (with type T and name P) corresponds to an [attribute] T P.

• A [property, readonly] T P corresponds to an [attribute, readonly] T P.

100 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 3.9: Properties

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyContainer.html

• A [property, bound] T P corresponds to an [attribute, bound] T P.

• A [property, maybeambiguous] T P corresponds to an [attribute]
com.sun.star.beans.Ambiguous<T> P.

• A [property, maybedefault] T P corresponds to an [attribute]
com.sun.star.beans.Defaulted<T> P.

• A [property, maybevoid] T P corresponds to an [attribute]
com.sun.star.beans.Optional<T> P.

• A [property, optional] T P corresponds to an [attribute] T P { get raises
(com.sun.star.beans.UnknownPropertyException); set raises
(com.sun.star.beans.UnknownPropertyException); }.

• A [property, constrained] T P corresponds to an [attribute] T P { set raises
(com.sun.star.beans.PropertyVetoException); }.

Interface attributes offer the following advantages compared to properties:

• The attributes an object supports follows directly from the description of the interface types the
object supports.

• Accessing an interface attribute is type-safe, whereas accessing a property uses the generic any.
This is an advantage mainly in statically typed languages like Java and C++, where accessing an
interface attribute typically also requires less code to be written than for accessing a generic
property.

The main disadvantage is that the set of interface attributes supported by an object is static, so that
scenarios that exploit the dynamic nature of XpropertySet, and so on, do not map well to inter-
face attributes. In cases where it might be useful to have all the interface attributes supported by an
object also accessible via XPropertySet etc., the Java and C++ language bindings offer experi-
mental, not yet published support to do just that.See www.openoffice.org to find out more.

3.3.5 Collections and Containers
Collections and containers are concepts for objects that contain multiple sub-objects where the
number of sub-objects is usually not predetermined. While the term collection is used when the
sub-objects are implicitly determined by the collection itself, the term container is used when it is
possible to add new sub-objects and remove existing sub-objects explicitly. Thus, containers add
methods like insert() and remove() to the collection interfaces.

101

In general, the OpenOffice.org API collection and container interfaces contain any type that can be
represented by the UNO type any. However, many container instances can be bound to a specific
type or subtypes of this type. This is a runtime and specification agreement, and cannot be checked
at runtime.

The base interface for collections is com.sun.star.container.XElementAccess that determines
the types of the sub-object, if they are determined by the collection, and the number of contained
sub-objects. Based on XElementAccess, there are three main types of collection interfaces:

• com.sun.star.container.XIndexAccess
Offers direct access to the sub-objects by a subsequent numeric index beginning with 0.

• com.sun.star.container.XNameAccess
Offers direct access to the sub-objects by a unique name for each sub object.

• com.sun.star.container.XEnumerationAccess
Creates uni-directional iterators that enumerate all sub-objects in an undefined order.

com.sun.star.container.XIndexAccess is extended by com.sun.star.container.XIndexRe-
place to replace existing sub-objects by index, and com.sun.star.container.XIndexContainer
to insert and remove sub-objects. You can find the same similarity for
com.sun.star.container.XNameAccess and other specific collection types.

102 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 3.10: Interfaces in com.sun.star.container

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XElementAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XElementAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XElementAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/module-ix.html

All containers support com.sun.star.container.XContainer that has interfaces to register
com.sun.star.container.XContainerListener interfaces. This way it is possible for an applica-
tion to learn about insertion and removal of sub-objects in and from the container.

The com.sun.star.container.XIndexAccess is appealing to programmers because in most cases, it is
easy to implement. But this interface should only be implemented if the collection really is indexed.

Refer to the module com.sun.star.container in the API reference for details about collection
and container interfaces.

The following examples demonstrate the usage of the three main collection interfaces. First, we
iterate through an indexed collection. The index always starts with 0 and is continuous:
// get an XIndexAccess interface from the collection
XIndexAccess xIndexAccess = (XIndexAccess) UnoRuntime.queryInterface(
 XIndexAccess.class, mxCollection);

// iterate through the collection by index
int i;
for (i = 0; i < xIndexAccess.getCount(); ++i) {
 Object aSheet = xIndexAccess.getByIndex(i);
 Named xSheetNamed = (XNamed) oRuntime.queryInterface(XNamed.class, aSheet);
 System.out.println("sheet #" + i + " is named '" + xSheetNamed.getName() + "'");
}

Our next example iterates through a collection with named objects. The element names are unique
within the collection and case sensitive.
// get an XNameAccess interface from the collection
XNameAccess xNameAccess = (XNameAccess) UnoRuntime.queryInterface(XNameAccess.class, mxCollection);

// get the list of names
String[] aNames = xNameAccess.getElementNames();

// iterate through the collection by name
int i;
for (i = 0; i < aNames.length; ++i) {
 // get the i-th object as a UNO Any
 Object aSheet = xNameAccess.getByName(aNames[i]);

 // get the name of the sheet from its XNamed interface
 XNamed xSheetNamed = (XNamed) UnoRuntime.queryInterface(XNamed.class, aSheet);
 System.out.println("sheet '" + aNames[i] + "' is #" + i);
}

The next example shows how we iterate through a collection using an enumerator. The order of the
enumeration is undefined. It is only defined that all elements are enumerated. The behavior is
undefined, if the collection is modified after creation of the enumerator.
// get an XEnumerationAccess interface from the collection
XEnumerationAccess xEnumerationAccess = (XEnumerationAccess) UnoRuntime.queryInterface(
 XEnumerationAccess.class, mxCollection);

// create an enumerator
XEnumeration xEnum = xEnumerationAccess.createEnumeration();

// iterate through the collection by name
while (xEnum.hasMoreElements()) {
 // get the next element as a UNO Any
 Object aSheet = xEnum.nextElement();

 // get the name of the sheet from its XNamed interface
 XNamed xSheetNamed = (XNamed) UnoRuntime.queryInterface(XNamed.class, aSheet);
 System.out.println("sheet '" + xSheetNamed.getName() + "'");
}

For an example showing the use of containers, see 8.4.1 Text Documents - Overall Document Features
- Styles where a new style is added into the style family ParagraphStyles.

103

http://api.openoffice.org/docs/common/ref/com/sun/star/container/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainer.html

3.3.6 Event Model
Events are a well known concept in graphical user interface (GUI) models, although they can be
used in many contexts. The purpose of events is to notify an application about changes in the
components used by the application. In a GUI environment, for example, an event might be the
click on a button. Your application might be registered to this button and thus be able to execute
certain code when this button is clicked.

The OpenOffice.org event model is similar to the JavaBeans event model. Events in OpenOffice.org
are, for example, the creation or activation of a document, as well as the change of the current
selection within a view. Applications interested in these events can register handlers (listener inter-
faces) that are called when the event occurs. Usually these listeners are registered at the object
container where the event occurs or to the object itself. These listener interfaces are named
X...Listener.

Event listeners are subclasses of com.sun.star.lang.XEventListener that receives one event by
itself, the deletion of the object to which the listener is registered. On this event, the listener has to
unregister from the object, otherwise it would keep it alive with its interface reference counter.

Important! Implement the method disposing() to unregister at the object you are listening to and release
all other references to this object.

Many event listeners can handle several events. If the events are generic, usually a single callback
method is used. Otherwise, multiple callback methods are used. These methods are called with at
least one argument: com.sun.star.lang.EventObject. This argument specifies the source of the
event, therefore, making it possible to register a single event listener to multiple objects and still
know where an event is coming from. Advanced listeners might get an extended version of this
event descriptor struct.

3.3.7 Exception Handling
UNO uses exceptions as a mechanism to propagate errors from the called method to the caller. This
error mechanism is preferred instead of error codes (as in MS COM) to allow a better separation of
the error handling code from the code logic. Furthermore, Java, C++ and other high-level program-

104 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 3.11

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html

ming languages provide an exception handling mechanism, so that this can be mapped easily into
these languages.

In IDL, an exception is a structured container for data, comparable to IDL structs. Exceptions
cannot be passed as a return value or method argument, because the IDL compiler does not allow
this. They can be specified in raise clauses and transported in an any. There are two kinds of
exceptions, user-defined exceptions and runtime exceptions.

User-Defined Exceptions
The designer of an interface should declare exceptions for every possible error condition that might
occur. Different exceptions can be declared for different conditions to distinguish between
different error conditions.

The implementation may throw the specified exceptions and exceptions derived from the specified
exceptions. The implementation must not throw unspecified exceptions, that is, the implementa-
tion must not throw an exception if no exception is specified. This applies to all exceptions except
for RuntimeExceptions, described later.

When a user-defined exception is thrown, the object should be left in the state it was in before the
call. If this cannot be guaranteed, then the exception specification must describe the state of the
object. Note that this is not recommended.

Every UNO IDL exception must be derived from com.sun.star.uno.Exception, whether directly
or indirectly. Its UNO IDL specification looks like this:
module com { module sun { module star { module uno {
exception Exception
{
 string Message;
 com::sun::star::uno::XInterface Context;
};
}; }; }; };

The exception has two members:

• The message should contain a detailed readable description of the error (in English), which is
useful for debugging purposes, though it cannot be evaluated at runtime. There is currently no
concept of having localized error messages.

• The Context member should contain the object that initially threw the exception.

The following .IDL file snippet shows a method with a proper exception specification and proper
documentation.
module com { module sun { module star { module beans {

interface XPropertySet: com::sun::star::uno::XInterface
{
 ...
 /** @returns
 the value of the property with the specified name.

 @param PropertyName
 This parameter specifies the name of the property.

 @throws UnknownPropertyException
 if the property does not exist.

 @throws com::sun::star::uno::lang::WrappedTargetException
 if the implementation has an internal reason for the
 exception. In this case the original exception
 is wrapped into that WrappedTargetException.
 */
 any getPropertyValue([in] string PropertyName)
 raises(com::sun::star::beans::UnknownPropertyException,
 com::sun::star::lang::WrappedTargetException);
 ...
};

105

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html

}; }; }; };

Runtime Exceptions
Throwing a runtime exception signals an exceptional state. Runtime exceptions and exceptions
derived from runtime exceptions cannot be specified in the raise clause of interface methods in
IDL.

These are a few reasons for throwing a runtime exception are:

• The connection of an underlying interprocess bridge has broken down during the call.

• An already disposed object is called (see com.sun.star.lang.XComponent and the called
object cannot fulfill its specification because of its disposed state.

• A method parameter was passed in an explicitly forbidden manner. For instance, a null inter-
face reference was passed as a method argument where the specification of the interface explic-
itly forbids this.

Every UNO call may throw a com.sun.star.uno.RuntimeException, except acquire and release.
This is independent of how many calls have been completed successfully. Every caller should
ensure that its own object is kept in a consistent state even if a call to another object replied with a
runtime exception. The caller should also ensure that no resource leaks occur in these cases. For
example, allocated memory, file descriptors, etc.

If a runtime exception occurs, the caller does not know if the call has been completed successfully
or not. The com.sun.star.uno.RuntimeException is derived from com.sun.star.uno.Excep-
tion. Note, that in the Java UNO binding, the com.sun.star.uno.Exception is derived from
java.lang.Exception, while the com.sun.star.uno.RuntimeException is directly derived from
java.lang.RuntimeException.

A common misuse of the runtime exception is to reuse it for an exception that was forgotten
during interface specification. This should be avoided under all circumstances. Consider, defining
a new interface.

An exception should not be misused as a new kind of programming flow mechanism. It should
always be possible that during a session of a program, no exception is thrown. If this is not the
case, the interface design should be reviewed.

Good Exception Handling
This section provides tips on exception handling strategies. Under certain circumstances, the code
snippets we call bad below might make sense, but often they do not.

• Do not throw exceptions with empty messages

Often, especially in C++ code where you generally do not have a stack trace, the message within
the exception is the only method that informs the caller about the reason and origin of the excep-
tion. The message is important, especially when the exception comes from a generic interface
where all kinds of UNO exceptions can be thrown.

When writing exceptions, put descriptive text into them. To transfer the text to another exception,
make sure to copy the text.

• Do not catch exceptions without handling them

Many people write helper functions to simplify recurring coding tasks. However, often code will
be written like the following:

106 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html

// Bad example for exception handling
public static void insertIntoCell(XPropertySet xPropertySet) {
 [...]
 try {
 xPropertySet.setPropertyValue("CharColor",new Integer(0));
 } catch (Exception e) {
 }
}

This code is ineffective, because the error is hidden. The caller will never know that an error has
occurred. This is fine as long as test programs are written or to try out certain aspects of the API
(although even test programs should be written correctly). Exceptions must be addressed because
the compiler can not perform correctly. In real applications, handle the exception.

The appropriate solution depends on the appropriate handling of exceptions. The following is the
minimum each programmer should do:
// During early development phase, this should be at least used instead
public static void insertIntoCell(XPropertySet xPropertySet) {
 [...]
 try {
 xPropertySet.setPropertyValue("CharColor",new Integer(0));
 } catch (Exception e) {
 e.dumpStackTrace();
 }
}

The code above dumps the exception and its stack trace, so that a message about the occurrence of
the exception is received on stderr. This is acceptable during development phase, but it is insuffi-
cient for deployed code. Your customer does not watch the stderr window.

The level where the error can be handled must be determined. Sometimes, it would be better not to
catch the exception locally, but further up the exception chain. The user can then be informed of
the error through dialog boxes. Note that you can even specify exceptions on the main() function:
// this is how the final solution could look like
public static void insertIntoCell(XPropertySet xPropertySet) throws UnknownPropertyException,
 PropertyVetoException, IllegalArgumentException, WrappedTargetException {
 [...]
 xPropertySet.setPropertyValue("CharColor",new Integer(0));
}

As a general rule, if you cannot recover from an exception in a helper function, let the caller deter-
mine the outcome. Note that you can even throw exceptions at the main() method.

3.3.8 Lifetime of UNO Objects
The UNO component model has a strong impact on the lifetime of UNO objects, in contrast to
CORBA, where object lifetime is completely unspecified. UNO uses the same mechanism as Micro-
soft COM by handling the lifetime of objects by reference counting.

Each UNO runtime environment defines its own specification on lifetime management. While in C
++ UNO, each object maintains its own reference count. Java UNO uses the normal Java garbage
collector mechanism. The UNO core of each runtime environment needs to ensure that it upholds
the semantics of reference counting towards other UNO environments.

The last paragraph of this chapter explains the differences between the lifetime of Java and C++
objects in detail.

acquire() and release()
Every UNO interface is derived from com.sun.star.uno.XInterface:
// module com::sun::star::uno
interface XInterface
{

107

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html

 any queryInterface([in] type aType);
 [oneway] void acquire();
 [oneway] void release();
};

UNO objects must maintain an internal reference counter. Calling acquire() on a UNO interface
increases the reference count by one. Calling release() on UNO interfaces decreases the refer-
ence count by one. If the reference count drops to zero, the UNO object may be destroyed. Destruc-
tion of an object is sometimes called death of an object or that the object dies. The reference count of
an object must always be non-negative.

Once acquire() is called on the UNO object, there is a reference or a hard reference to the object, as
opposed to a weak reference. Calling release() on the object is often called releasing or clearing
the reference.

The UNO object does not export the state of the reference count, that is, acquire() and release()
do not have return values. Generally, the UNO object should not make any assumptions on the
concrete value of the reference count, except for the transition from one to zero.

The invocation of a method is allowed first when acquire () has been called before. For every call
to acquire() , there must be a corresponding release call, otherwise the object leaks.

The UNO Java binding encapsulates acquire() and release() in the
UnoRuntime.queryInterface() call. The same applies to the Reference<> template in C++. As long
as the interface references are obtained through these mechanisms, acquire() and release() do not
have to be called in your programs.

The XComponent Interface
A central problem of reference counting systems is cyclic references. Assume Object A keeps a
reference on object B and B keeps a direct or indirect reference on object A. Even if all the external
references to A and B are released, the objects are not destroyed, which results in a resource leak.

In general, a Java developer does not have to be concerned about this kind of issue, as the garbage collector
algorithm detects ring references. However, in the UNO world one never knows, whether object A and
object B really live in the same Java virtual machine. If they do, the ring reference is really garbage collected.
If they do not, the object leaks, because the Java VM is not able to inspect the object outside of the VM for its
references.

In UNO, the developer must explicitly decide when to the break cyclic references. To support this
concept, the interface com.sun.star.lang.XComponent exists. When an XComponent is disposed
of, it can inform other objects that have expressed interest to be notified.
// within the module com::sun::star::lang
// when dispose() is called, previously added XEventListeners are notified
interface XComponent: com::sun::star::uno::XInterface
{
 void dispose();
 void addEventListener([in] XEventListener xListener);
 void removeEventListener([in] XEventListener aListener);
};

108 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 3.12: Cyclic Reference

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html

// An XEventListener is notified by calling its disposing() method
interface XEventListener: com::sun::star::uno::XInterface
{
 void disposing([in] com::sun::star::lang::EventObject Source);
};

Other objects can add themselves as com.sun.star.lang.XEventListener to an XComponent.
When the dispose() method is called, the object notifies all XEventListeners through the
disposing() method and releases all interface references, thus breaking the cyclic reference.

A disposed object is unable to comply with its specification, so it is necessary to ensure that an
object is not disposed of before calling it. UNO uses an owner/user concept for this purpose. Only
the owner of an object is allowed to call dispose and there can only be one owner per object. The
owner is always free to dispose of the object. The user of an object knows that the object may be
disposed of at anytime. The user adds an event listener to discover when an object is being
disposed. When the user is notified, the user releases the interface reference to the object. In this
case, the user should not call removeEventListener(), because the disposed object releases the
reference to the user.

One major problem of the owner/user concept is that there always must be someone who calls dispose().
This must be considered at the design time of the services and interfaces, and be specified explicitly.

This solves the problem described above. However, there are a few conditions which still have to
be met.

109

Illustration 3.13: Object C calls dispose() on XComponent of Object B

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html

If an object is called while it is disposed of, it should behave passively. For instance, if removeLis-
tener() is called, the call should be ignored. If methods are called while the object is no longer
able to comply with its interface specification, it should throw a
com.sun.star.lang.DisposedException, derived from com.sun.star.uno.RuntimeException.
This is one of the rare situations in which an implementation should throw a RuntimeException.
The situation described above can always occur in a multithreaded environment, even if the caller
has added an event listener to avoid calling objects which were disposed of by the owner.

The owner/user concept may not always be appropriate, especially when there is more than one
possible owner. In these cases, there should be no owner but only users. In a multithreaded
scenario, dispose() might be called several times. The implementation of an object should be able
to cope with such a situation.

The XComponent implementation should always notify the disposing() listeners that the object is
being destroyed, not only when dispose() is called, but when the object is deleted. When the
object is deleted, the reference count of the object drops to zero. This may happen when the
listeners do not hold a reference on the broadcaster object.

The XComponent does not have to be implemented when there is only one owner and no further
users.

Children of the XEventListener Interface
The com.sun.star.lang.XEventListener interface is the base for all listener interfaces . This
means that not only XEventListeners, but every listener must implement disposing(), and
every broadcaster object that allows any kind of listener to register, must call disposing() on the
listeners as soon as it dies. However, not every broadcaster is forced to implement the XComponent
interface with the dispose() method, because it may define its own condition when it is disposed.

In a chain of broadcaster objects where every element is a listener of its predecessor and only the
root object is an XComponent that is being disposed, all the other chain links must handle the
disposing() call coming from their predecessor and call disposing() on their registered
listeners.

110 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 3.14: B releases all interface references, which leads to destruction of Object A, which then
releases its reference to B, thus the cyclic reference is broken.

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html

Weak Objects and References
A strategy to avoid cyclic references is to use weak references. Having a weak reference to an object
means that you can reestablish a hard reference to the object again if the object still exists, and
there is another hard reference to it.

In the cyclic reference shown in illustration 3.4: RemoteTVImpl Component, object B could be speci-
fied to hold a hard reference on object A, but object A only keeps a weak reference to B. If object A
needs to invoke a method on B, it temporarily tries to make the reference hard. If this succeeds, it
invokes the method and releases the hard reference afterwards.

To be able to create a weak reference on an object, the object needs to support it explicitly by
exporting the com.sun.star.uno.XWeak interface. The illustration 3.5: The interaction of services that
are needed to initiate a UNO interprocess bridge. The interfaces have been simplified. depicts the UNO
mechanism for weak references.

When an object is assigned to a weak reference, the weak reference calls queryAdapter() at the
original object and adds itself (with the com.sun.star.uno.XReference interface) as reference to
the adapter.

When a hard reference is established from the weak reference, it calls the queryAdapted()
method at the com.sun.star.uno.XAdapter interface of the adapter object. When the original
object is still alive, it gets a reference for it, otherwise a null reference is returned.

The adapter notifies the destruction of the original object to all weak references which breaks the
cyclic reference between the adapter and weak reference.

4 Writing UNO Components describes the helper classes in C++ and Java that implement a Xweak
interface and a weak reference.

Differences Between the Lifetime of C++ and Java Objects
Read 3.4.2 Professional UNO - UNO Language Bindings - C++ Language Binding and 3.4.1 Professional UNO -
UNO Language Bindings - Java Language Binding for information on language bindings, and 4.6 Writing UNO
Components - C++ Component and 4.5.6 Writing UNO Components - Simple Component in Java - Storing the
Service Manager for Further Use about component implementation before beginning this section.

111

Illustration 3.15: The UNO weak reference mechanism

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XAdapter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XAdapter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XAdapter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XReference.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XReference.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XReference.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html

The implementation of the reference count specification is different in Java UNO and C++ UNO. In
C++ UNO, every object maintains its own reference counter. When you implement a C++ UNO
object, instantiate it, acquire it and afterwards release it, the destructor of the object is called imme-
diately. The following example uses the standard helper class ::cppu::OWeakObject and prints a
message when the destructor is called. (ProfUNO/Lifetime/object_lifetime.cxx)
class MyOWeakObject : public ::cppu::OWeakObject
{
public:
 MyOWeakObject() { fprintf(stdout, "constructed\n"); }
 ~MyOWeakObject() { fprintf(stdout, "destroyed\n"); }
};

The following method creates a new MyOWeakObject, acquires it and releases it for demonstration
purposes. The call to release() immediately leads to the destruction of MyOWeakObject. If the
Reference<> template is used, you do not need to care about acquire() and release().
void simple_object_creation_and_destruction()
{
 // create the UNO object
 com::sun::star::uno::XInterface * p = new MyOWeakObject();

 // acquire it
 p->acquire();
 // releast it
 fprintf(stdout, "before release\n");
 p->release();
 fprintf(stdout, "after release\n");
}

This piece of code produces the following output:

constructed
before release
destroyed
after release

Java UNO objects behave differently, because they are finalized by the garbage collector at a time
of its choosing. com.sun.star.uno.XInterface has no methods in the Java UNO language
binding, therefore no methods need to be implemented, although MyUnoObject implements
XInterface: (ProfUNO/Lifetime/MyUnoObject.java)
class MyUnoObject implements com.sun.star.uno.XInterface {

 public MyUnoObject() {
 }

 void finalize() {
 System.out.println("finalizer called");
 }

 static void main(String args[]) throws java.lang.InterruptedException {
 com.sun.star.uno.XInterface a = new MyUnoObject();
 a = null;

 // ask the garbage collector politely
 System.gc();
 System.runFinalization();

 System.out.println("leaving");

 // It is java VM dependent, whether or not the finalizer was called
 }
}

The output of this code depends on the Java VM implementation. The output �finalizer called� is
not a usual result. Be aware of the side effects when UNO brings Java and C++ together.

When a UNO C++ object is mapped to Java, a Java proxy object is created that keeps a hard UNO
reference to the C++ object. The UNO core takes care of this. The Java proxy only clears the refer-
ence when it enters the finalize() method, thus the destruction of the C++ object is delayed until
the Java VM collects some garbage.

112 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html

When a UNO Java object is mapped to C++, a C++ proxy object is created that keeps a hard UNO
reference to the Java object. Internally, the Java UNO bridge keeps a Java reference to the original
Java object. When the C++ proxy is no longer used, it is destroyed immediately. The Java UNO
bridge is notified and immediately frees the Java reference to the original Java object. When the
Java object is finalized is dependent on the garbage collector.

When a Java program is connected to a running OpenOffice.org, the UNO objects in the office
process are not destroyed until the garbage collector finalizes the Java proxies or until the interpro-
cess connection is closed (see 3.3.1 Professional UNO - UNO Concepts - UNO Interprocess Connec-
tions).

3.3.9 Object Identity
UNO guarantees if two object references are identical, that a check is performed and it always
leads to a correct result, whether it be true or false. This is different from CORBA, where a return
of false does not necessarily mean that the objects are different.

Every UNO runtime environment defines how this check should be performed. In Java UNO, there
is a static areSame() function at the com.sun.star.uno.UnoRuntime class. In C++, the check is
performed with the Reference<>::operator == () function that queries both references for
XInterface and compares the resulting XInterface pointers.

This has a direct effect in the API design. For instance, look at com.sun.star.lang.XComponent:
interface XComponent: com::sun::star::uno::XInterface
{
 void dispose();
 void addEventListener([in] XEventListener xListener);
 void removeEventListener([in] XEventListener aListener);
};

The method removeEventListener() that takes a listener reference, is logical if the implementa-
tion can check for object identity, otherwise it could not identify the listener that has to be
removed. CORBA interfaces are not designed in this manner. They need an object ID, because
object identity is not guaranteed.

3.4 UNO Language Bindings
This chapter documents the mapping of UNO to various programming languages or component
models. This language binding is sometimes called a UNO Runtime Environment (URE). Each
URE needs to fulfill the specifications given in the earlier chapters. The use of UNO services and
interfaces are also explained in this chapter. Refer to 4 Writing UNO Components for information
about the implementation of UNO objects.

Each section provides detail information for the following topics:

• Mapping of all UNO types to the programming language types.

• Mapping of the UNO exception handling to the programming language.

• Mapping of the fundamental object features (querying interfaces, object lifetime, object
identity).

• Bootstrapping of a service manager.Other programming language specific material (like core
libraries in C++ UNO).

113

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html

Java, C++, OpenOffice.org Basic, and all languages supporting MS OLE automation or the
Common Language Infrastructure (CLI) on the win32 platform are currently supported. In the
future, the number of supported language bindings may be extended.

3.4.1 Java Language Binding
The Java language binding gives developers the choice of using Java or UNO components for client
programs. A Java program can access components written in other languages and built with a
different compiler, as well as remote objects, because of the seamless interaction of UNO bridges.

Java delivers a rich set of classes that can be used within client programs or component implemen-
tations. However, when it comes to interaction with other UNO objects, use UNO interfaces,
because only those are known to the bridge and can be mapped into other environments.

To control the office from a client program, the client needs a Java 1.3 (or later) installation, a free
socket port, and the following jar files juh.jar, jurt.jar, ridl.jar, and unoil.jar. A Java installation on
the server-side is not necessary. A step-by-step description is given in the chapter 2 First Steps

When using Java components, the office is installed with Java support. Also make sure that Java is
enabled: there is a switch that can be set to achieve this in the Tools - Options - OpenOffice.org -
Security dialog. All necessary jar files should have been installed during the OpenOffice.org setup.
A detailed explanation can be found in the chapter 4.5.6 Writing UNO Components - Simple Compo-
nent in Java - Storing the Service Manager for Further Use.

The Java UNO Runtime is documented in the Java UNO Reference which can be found in the
OpenOffice.org Software development Kit (SDK) or on api.openoffice.org.

Getting a Service Manager
Office objects that provide the desired functionality are required when writing a client application
that accesses the office. The root of all these objects is the service manager component, therefore
clients need to instantiate it. Service manager runs in the office process, therefore office must be
running first when you use Java components that are instantiated by the office. In a client-server
scenario, the office has to be launched directly. The interprocess communication uses a remote
protocol that can be provided as a command-line argument to the office:

soffice -accept=socket,host=localhost,port=8100;urp
The client obtains a reference to the global service manager of the office (the server) using a local
com.sun.star.bridge.UnoUrlResolver. The global service manager of the office is used to get
objects from the other side of the bridge. In this case, an instance of the
com.sun.star.frame.Desktop is acquired:
import com.sun.star.uno.XComponentContext;
import com.sun.star.comp.helper.Bootstrap;
import com.sun.star.lang.XMultiComponentFactory;
import com.sun.star.bridge.UnoUrlResolver;
import com.sun.star.bridge.XUnoUrlResolver;
import com.sun.star.beans.XPropertySet
import com.sun.star.uno.UnoRuntime;

XComponentContext xcomponentcontext = Bootstrap.createInitialComponentContext(null);

// create a connector, so that it can contact the office
XUnoUrlResolver urlResolver = UnoUrlResolver.create(xcomponentcontext);

Object initialObject = urlResolver.resolve(
 "uno:socket,host=localhost,port=8100;urp;StarOffice.ServiceManager");

XMultiComponentFactory xOfficeFactory = (XMultiComponentFactory) UnoRuntime.queryInterface(
 XMultiComponentFactory.class, initialObject);

114 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html

// retrieve the component context as property (it is not yet exported from the office)
// Query for the XPropertySet interface.
XPropertySet xProperySet = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, xOfficeFactory);

// Get the default context from the office server.
Object oDefaultContext = xProperySet.getPropertyValue("DefaultContext");

// Query for the interface XComponentContext.
XComponentContext xOfficeComponentContext = (XComponentContext) UnoRuntime.queryInterface(
 XComponentContext.class, oDefaultContext);

// now create the desktop service
// NOTE: use the office component context here!
Object oDesktop = xOfficeFactory.createInstanceWithContext(
 “com.sun.star.frame.Desktop", xOfficeComponentContext);

As the example shows, a local component context is created through the
com.sun.star.comp.helper.Bootstrap class (a Java UNO runtime class). Its implementation
provides a service manager that is limited in the number of services it can create. The names of
these services are:

com.sun.star.lang.ServiceManager
com.sun.star.lang.MultiServiceFactory
com.sun.star.loader.Java
com.sun.star.loader.Java2
com.sun.star.bridge.UnoUrlResolver
com.sun.star.bridge.BridgeFactory
com.sun.star.connection.Connector
com.sun.star.connection.Acceptor
They are sufficient to establish a remote connection and obtain the fully featured service manager
provided by the office.

The service manager of the local component context could create other components, but this is only possible
if the service manager is provided with the respective factories during runtime. An example that shows how
this works can be found in the implementation of the Bootstrap class in the project javaunohelper.
There is also a service manager that uses a registry database to locate services. It is implemented by the class
com.sun.star.comp.helper.RegistryServiceFactory in the project javaunohelper. However, the implementa-
tion uses a native registry service manager instead of providing a pure Java implementation.

Transparent Use of Office UNO Components
If some client code wants to use office UNO components, then a typical use case is that the client
code first looks for an existing office installation. If an installation is found, the client checks if the
office process is already running. If no office process is running, an office process is started. After
that, the client code connects to the running office using remote UNO mechanisms in order to get
the remote component context of that office. After this, the client code can use the remote compo-
nent context to access arbitrary office UNO components. From the perspective of the client code,
there is no difference between local and remote components.

The bootstrap method

Therefore, the remote office component context is provided in a more transparent way by the
com.sun.star.comp.helper.Bootstrap.bootstrap() method, which bootstraps the component
context from a UNO installation. A simple client application may then look like:
(ProfUNO/SimpleBootstrap_java/SimpleBootstrap_java.java)
// get the remote office component context
XComponentContext xContext =
 com.sun.star.comp.helper.Bootstrap.bootstrap();

// get the remote office service manager
XMultiComponentFactory xServiceManager =
 xContext.getServiceManager();

115

http://api.openoffice.org/docs/common/ref/com/sun/star/connection/Acceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/Acceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/Acceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/Connector.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/Connector.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/Connector.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/BridgeFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/BridgeFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/BridgeFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/loader/Java2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/loader/Java2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/loader/Java2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/loader/Java.html
http://api.openoffice.org/docs/common/ref/com/sun/star/loader/Java.html
http://api.openoffice.org/docs/common/ref/com/sun/star/loader/Java.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/MultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/MultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/MultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/ServiceManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/ServiceManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/ServiceManager.html

// get an instance of the remote office desktop UNO service
Object desktop = xServiceManager.createInstanceWithContext(
 "com.sun.star.frame.Desktop", xContext);

The com.sun.star.comp.helper.Bootstrap.bootstrap() method first bootstraps a local
component context and then tries to establish a named pipe connection to a running office. If no
office is running, an office process is started. If the connection succeeds, the remote component
context is returned.

Note, that the com.sun.star.comp.helper.Bootstrap.bootstrap() method is only available since
OpenOffice.org 1.1.2.

SDK tooling

For convenience, the OpenOffice.org Software Development Kit (SDK) provides some tooling for
writing Java client applications.

One of the requirements for a Java client application is that Java finds the
com.sun.star.comp.helper.Bootstrap class and all the UNO types (for example, UNO inter-
faces) and other Java UNO language binding classes (for example, com.sun.star.uno.AnyCon-
verter) used by the client code. A natural approach would be to add the UNO jar files to the Java
CLASSPATH, but this requires the knowledge of the location of a UNO installation. Other
approaches would be to use the Java extension mechanism or to deploy the jar files containing the
UNO types in the client jar file. Both of those approaches have several drawbacks, the most impor-
tant one is the problem of type conflicts, for example, if a deployed component adds new UNO
types. The SDK tooling therefore provides a more dynamic approach, namely a customized class
loader. The customized class loader has an extended search path, which also includes the path to a
UNO installation. The UNO installation is auto-detected on the system by using a search algo-
rithm.

Customized Class Loader

The concept is based on the requirement that every class that uses UNO types, or other classes that
come with a office installation, gets loaded by a customized class loader. This customized class
loader recognizes the location of a UNO installation and loads every class from a jar or class file
that belongs to the office installation. That means that the customized class loader must be instanti-
ated and initialized before the first class that uses UNO is loaded.

The SDK tooling allows to build a client jar file, which can be invoked by the following:

java -jar SimpleBootstrap_java.jar
The client jar file contains the following files:

META-INF/MANIFEST.MF
com/sun/star/lib/loader/InstallationFinder$StreamGobbler.class
com/sun/star/lib/loader/InstallationFinder.class
com/sun/star/lib/loader/Loader$CustomURLClassLoader.class
com/sun/star/lib/loader/Loader.class
com/sun/star/lib/loader/WinRegKey.class
com/sun/star/lib/loader/WinRegKeyException.class
win/unowinreg.dll
SimpleBootstrap_java.class
A client application created by using the SDK tooling will automatically load the class
com.sun.star.lib.loader.Loader, which sets up the customized class loader for loading the
application class. In order to achieve this, the SDK tooling creates a manifest file that contains the
following Main-Class entry

Main-Class: com.sun.star.lib.loader.Loader

116 OpenOffice.org 2.3 Developer's Guide • June 2007

The customized loader needs a special entry in the manifest file that specifies the name of the class
that contains the client application code:

Name: com/sun/star/lib/loader/Loader.class
Application-Class: SimpleBootstrap_java
The implementation of com.sun.star.lib.loader.Loader.main reads this entry and calls the
main method of the application class after the customized class loader has been created and set up
properly. The SDK tooling will take over the task of writing the correct manifest entry for the
application class.

Finding a UNO Installation

The location of a UNO installation can be specified by the Java system property
com.sun.star.lib.loader.unopath. The system property can be passed to the client application
by using the -D flag, e.g

java -Dcom.sun.star.lib.loader.unopath=/opt/OpenOffice.org/program -jar
SimpleBootstrap_java.jar
In addition, it is possible to specify a UNO installation by setting the environment variable
UNO_PATH to the program directory of a UNO installation, for example,

setenv UNO_PATH /opt/OpenOffice.org/program

This does not working with Java 1.3.1 and Java 1.4, because environment variables are not supported in
those Java versions.

If no UNO installation is specified by the user, the default UNO installation on the system is
searched. The search algorithm is platform dependent.

On the Windows platform, the UNO installation is found by reading the default value of the key
'Software\OpenOffice.org\UNO\InstallPath' from the root key HKEY_CURRENT_USER in the
Windows Registry. If this key is missing, the key is read from the root key
HKEY_LOCAL_MACHINE. One of those keys is always written during the installation of an
office. In a single user installation the key is written to HKEY_CURRENT_USER, in a multi-user
installation of an administrator to HKEY_LOCAL_MACHINE. Note that the default installation is
the last installed office, but with the restriction, that HKEY_CURRENT_USER has a higher priority
than HKEY_LOCAL_MACHINE. The reading from the Windows Registry requires that the native
library unowinreg.dll is part of the application jar file or can be found in the
java.library.path. The SDK tooling automatically will put the native library into the jar file
containing the client application.

On the Unix/Linux platforms, the UNO installation is found from the PATH environment variable.
Note that for Java 1.3.1 and Java 1.4, the installation is found by using the which command,
because environment variables are not supported with those Java versions. Both methods require
that the soffice executable or a symbolic link is in one of the directories listed in the PATH envi-
ronment variable. For older versions than OpenOffice.org 2.0 the above described methods may
fail. In this case the UNO installation is taken from the .sversionrc file in the user's home direc-
tory. The default installation is the last entry in the .sversionrc file which points to a UNO instal-
lation. Note that there won't be a .sversionrc file with OpenOffice.org 2.0 anymore.

Handling Interfaces
The service manager is created in the server process and the Java UNO remote bridge ensures that
its XInterface is transported back to the client. A Java proxy object is constructed that can be used
by the client code. This object is called the initial object, because it is the first object created by the
bridge. When another object is obtained through this object, then the bridge creates a new proxy.

117

For instance, if a function is called that returns an interface. That is, the original object is actually
running in the server process (the office) and calls to the proxy are forwarded by the bridge. Not
only interfaces are converted, but function arguments, return values and exceptions.

The Java bridge maps objects on a per-interface basis, that is, in the first step only the interface is
converted that is returned by a function described in the API reference. For example, if you have
the service manager and use it to create another component, you initially get a
com.sun.star.uno.XInterface:
XInterface xint= (XInterface)
serviceManager.createInstance(“com.sun.star.bridge.oleautomation.Factory”);

You know from the service description that Factory implements a com.sun.star.lang.XMulti-
ServiceFactory interface. However, you cannot cast the object or call the interface function on the
object, since the object is only a proxy for just one interface, XInterface. Therefore, you have to
use a mechanism that is provided with the Java bridge that generates proxy objects on demand.
For example:
XMultiServiceFactory xfac = (XMultiServiceFactory) UnoRuntime.queryInterface(
 XMultiServiceFactory.class, xint);

If xint is a proxy, then queryInterface() hands out another proxy for XMultiServiceFactory
provided that the original object implements it. Interface proxies can be used as arguments in func-
tion calls on other proxy objects. For example:
// client side
// obj is a proxy interface and returns another interface through its func() method
XSomething ret = obj.func();

// anotherObject is a proxy interface, too. Its method func(XSomething arg)
// takes the interface ret obtained from obj
anotherObject.func(ret);

In the server process, the obj object would receive the original ret object as a function argument.

It is also possible to have Java components on the client side. As well, they can be used as function
arguments, then the bridge would set up proxies for them in the server process.

Not all language concepts of UNO have a corresponding language element in Java. For example,
there are no structs and all-purpose out parameters. Refer to 3.4.1 Professional UNO - UNO
Language Bindings - Java Language Binding - Type Mappings for how those concepts are mapped.

Interface handling normally involves the ability of com.sun.star.uno.XInterface to acquire and
release objects by reference counting. In Java, the programmer does not bother with acquire()
and release(), since the Java UNO runtime automatically acquires objects on the server side
when com.sun.star.uno.UnoRuntime.queryInterface() is used. Conversely, when the Java
garbage collector deletes your references, the Java UNO runtime releases the corresponding office
objects. If a UNO object is written in Java, no reference counting is used to control its lifetime. The
garbage collector takes that responsibility.

Sometimes it is necessary to find out if two interfaces belong to the same object. In Java, you would
compare the references with the equality operator '=='. This works as long as the interfaces refer to
a local Java object. Often the interfaces are proxies and the real objects reside in a remote process.
There can be several proxies that belong to the same object, because objects are bridged on a per-
interface basis. Those proxies are Java objects and comparing their references would not establish
them as parts of the same object. To determine if interfaces are part of the same UNO object, use
the method areSame() at the com.sun.star.uno.UnoRuntime class:

static public boolean areSame(Object object1, Object object2)

118 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html

Type Mappings

Mapping of Simple Types

The following table shows the mapping of simple UNO types to the corresponding Java types.

119

UNO Java
void void
boolean boolean
byte byte
short short
unsigned short short
long int
unsigned long int
hyper long
unsigned hyper long
float float
double double
char char
string java.lang.String
type com.sun.star.uno.Type
any java.lang.Object/com.sun.star.uno.Any

The mapping between the values of the corresponding UNO and Java types is obvious, except for
a few cases that are explained in the following sections:

Mapping of Unsigned Integer Types

An unsigned UNO integer type encompasses the range from 0 to 2N ? 1, inclusive, while the corre-
sponding signed Java integer type encompasses the range from ? 2N ? 1 to 2N ? 1 ? 1, inclusive (where
N is 16, 32, or 64 for unsigned short, unsigned long, or unsigned hyper, respectively). The
mapping is done modulo N, that is: 0 is mapped to 0; 2N ? 1 ? 1 is mapped to 2N ? 1 ? 1; 2N ? 1 is
mapped to ? 2N ? 1; and 2N ? 1 is mapped to ? 1.

Users should be careful when using any of the deprecated UNO unsigned integer types. A user is
responsible for correctly interpreting values of signed Java integer types as unsigned integer values
in such cases.

Mapping of String

The mapping between the UNO string type and java.lang.String is straightforward, except
for three details:

• Only non-null references to java.lang.String are allowed in the context of UNO.

• The length of a string that can be represented by a java.lang.String object is limited. It is an
error to use a longer UNO string value in the context of the Java language binding.

• An object of type java.lang.String can represent an arbitrary sequence of UTF-16 code units,
whereas a value of the UNO string type is an arbitrary sequence of Unicode scalar values.
This only matters in so far as some individual UTF-16 code units (namely the individual high-
and low-surrogate code points in the range D800�DFFF) have no corresponding Unicode scalar
values, and are thus forbidden in the context of UNO. For example, the Java string "\uD800" is
illegal in this context, while the string "\uD800\uDC00" would be legal. See www.unicode.org for
more information on the details of Unicode.

120 OpenOffice.org 2.3 Developer's Guide • June 2007

Mapping of Type

The Java class com.sun.star.uno.Type is used to represent the UNO type type; only non-null
references to com.sun.star.uno.Type are valid. (It is a historic mistake that com.sun.star.Type
is not final. You should never derive from it in your code.)

In many places in the Java UNO runtime, there are convenience functions that take values of type
java.lang.Class where conceptually a value of com.sun.star.uno.Type would be expected. For
example, there are two overloaded versions of the method com.sun.star.uno.Uno-
Runtime.queryInterface, one with a parameter of type com.sun.star.uno.Type and one with a
parameter of type java.lang.Class. See the documentation of com.sun.star.uno.Type for the
details of how values of java.lang.Class are interpreted in such a context.

Mapping of Any

There is a dedicated com.sun.star.uno.Any type, but it is not always used. An any in the API
reference is represented by a java.lang.Object in Java UNO. An Object reference can be used to
refer to all possible Java objects. This does not work with primitive types, but if you need to use
them as an any, there are Java wrapper classes available that allow primitive types to be used as
objects. Also, a Java Object always brings along its type information by means of an instance of
java.lang.Class. Therefore a variable declared as:
Object ref;

can be used with all objects and its type information is available by calling:
ref.getClass();

Those qualities of Object are sufficient to replace the Any in most cases. Even Java interfaces
generated from IDL interfaces do not contain Anys, instead Object references are used in place of
Anys. Cases where an explicit Any is needed to not loose information contain unsigned integer
types, all interface types except the basic XInterface, and the void type.

However, implementations of those interfaces must be able to deal with real Anys that can also be passed by
means of Object references.

To facilitate the handling of the Any type, use the com.sun.star.uno.AnyConverter class. It is
documented in the Java UNO reference. The following list sums up its methods:

static boolean isArray(java.lang.Object object)
static boolean isBoolean(java.lang.Object object)
static boolean isByte(java.lang.Object object)
static boolean isChar(java.lang.Object object)
static boolean isDouble(java.lang.Object object)
static boolean isFloat(java.lang.Object object)
static boolean isInt(java.lang.Object object)
static boolean isLong(java.lang.Object object)
static boolean isObject(java.lang.Object object)
static boolean isShort(java.lang.Object object)
static boolean isString(java.lang.Object object)
static boolean isType(java.lang.Object object)
static boolean isVoid(java.lang.Object object)
static java.lang.Object toArray(java.lang.Object object)
static boolean toBoolean(java.lang.Object object)
static byte toByte(java.lang.Object object)
static char toChar(java.lang.Object object)
static double toDouble(java.lang.Object object)
static float toFloat(java.lang.Object object)
static int toInt(java.lang.Object object)
static long toLong(java.lang.Object object)
static java.lang.Object toObject(Type type, java.lang.Object object)
static short toShort(java.lang.Object object)
static java.lang.String toString(java.lang.Object object)
static Type toType(java.lang.Object object)

The Java com.sun.star.uno.Any is needed in situations when the type needs to be specified
explicitly. Assume there is a C++ component with an interface function which is declared in
UNOIDL as:

121

//UNOIDL
void foo(any arg);

The corresponding C++ implementation could be:
void foo(const Any& arg)
{
 const Type& t = any.getValueType();
 if (t == cppu::UnoType< XReference >::get())
 {
 Reference<XReference> myref = *reinterpret_cast<const Reference<XReference>*>(arg.getValue());

...
 }
}

In the example, the any is checked if it contains the expected interface. If it does, it is assigned
accordingly. If the any contained a different interface, a query would be performed for the
expected interface. If the function is called from Java, then an interface has to be supplied that is an
object. That object could implement several interfaces and the bridge would use the basic XInter-
face. If this is not the interface that is expected, then the C++ implementation has to call query-
Interface to obtain the desired interface. In a remote scenario, those queryInterface() calls
could lead to a noticeable performance loss. If you use a Java Any as a parameter for foo(), the
intended interface is sent across the bridge.

It is a historic mistake that com.sun.star.uno.Any is not final. You should never derive from it in
your code.

Mapping of Sequence Types

A UNO sequence type with a given component type is mapped to the Java array type with corre-
sponding component type.

• UNO sequence<long> is mapped to Java int[].

• UNO sequence< sequence<long> > is mapped to Java int[][].

Only non-null references to those Java array types are valid. As usual, non-null references to other
Java array types that are assignment compatible to a given array type can also be used, but doing
so can cause java.lang.ArrayStoreExceptions. In Java, the maximal length of an array is
limited; therefore, it is an error if a UNO sequence that is too long is used in the context of the Java
language binding.

Mapping of Enum Types

An UNO enum type is mapped to a public, final Java class with the same name, derived from the
class com.sun.star.uno.Enum. Only non-null references to the generated final classes are valid.

The base class com.sun.star.uno.Enum declares a protected member to store the actual value, a
protected constructor to initialize the value and a public getValue() method to get the actual
value. The generated final class has a protected constructor and a public method getDefault()
that returns an instance with the value of the first enum member as a default. For each member of
a UNO enum type, the corresponding Java class declares a public static member of the given Java
type that is initialized with the value of the UNO enum member. The Java class for the enum type
has an additional public method fromInt() that returns the instance with the specified value. The
following IDL definition for com.sun.star.uno.TypeClass:
module com { module sun { module star { module uno {

enum TypeClass {
 INTERFACE,
 SERVICE,
 IMPLEMENTATION,
 STRUCT,
 TYPEDEF,
 ...
};

122 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/TypeClass.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/TypeClass.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/TypeClass.html

}; }; }; };

is mapped to:
package com.sun.star.uno;

public final class TypeClass extends com.sun.star.uno.Enum {
 private TypeClass(int value) {
 super(value);
 }

 public static TypeClass getDefault() {
 return INTERFACE;
 }

 public static final TypeClass INTERFACE = new TypeClass(0);
 public static final TypeClass SERVICE = new TypeClass(1);
 public static final TypeClass IMPLEMENTATION = new TypeClass(2);
 public static final TypeClass STRUCT = new TypeClass(3);
 public static final TypeClass TYPEDEF = new TypeClass(4);
 ...

 public static TypeClass fromInt(int value) {
 switch (value) {
 case 0:
 return INTERFACE;
 case 1:
 return SERVICE;
 case 2:
 return IMPLEMENTATION;
 case 3:
 return STRUCT;
 case 4:
 return TYPEDEF;
 ...
 }
 }
}

Mapping of Struct Types

A plain UNO struct type is mapped to a public Java class with the same name. Only non-null refer-
ences to such a class are valid. Each member of the UNO struct type is mapped to a public field
with the same name and corresponding type. The class provides a default constructor which
initializes all members with default values, and a constructor which takes explicit values for all
struct members. If a plain struct type inherits from another struct type, the generated class extends
the class of the inherited struct type.
module com { module sun { module star { module chart {

struct ChartDataChangeEvent: com::sun::star::lang::EventObject {
 ChartDataChangeType Type;
 short StartColumn;
 short EndColumn;
 short StartRow;
 short EndRow;
};

}; }; }; };

is mapped to:
package com.sun.star.chart;

public class ChartDataChangeEvent extends com.sun.star.lang.EventObject {
 public ChartDataChangeType Type;
 public short StartColumn;
 public short EndColumn;
 public short StartRow;
 public short EndRow;

 public ChartDataChangeEvent() {
 Type = ChartDataChangeType.getDefault();
 }

 public ChartDataChangeEvent(
 Object Source, ChartDataChangeType Type,
 short StartColumn, short EndColumn, short StartRow, short EndRow)
 {
 super(Source);

123

 this.Type = Type;
 this.StartColumn = StartColumn;
 this.EndColumn = EndColumn;
 this.StartRow = StartRow;
 this.EndRow = EndRow;
 }
}

Similar to a plain struct type, a polymorphic UNO struct type template is also mapped to a Java
class. The only difference is how struct members with parametric types are handled, and this
handling in turn differs between Java 1.5 and older versions.

Take, for example, the polymorphic struct type template:
module com { module sun { module star { module beans {

struct Optional<T> {
 boolean IsPresent;
 T Value;
};

}; }; }; };

In Java 1.5, a polymorphic struct type template with a list of type parameters is mapped to a
generic Java class with a corresponding list of unbounded type parameters. For
com.sun.star.beans.Optional, that means that the corresponding Java 1.5 class looks something
like the following example:
package com.sun.star.beans;

public class Optional<T> {
 public boolean IsPresent;
 public T Value;

 public Optional() {}

 public Optional(boolean IsPresent, T Value) {
 this.IsPresent = IsPresent;
 this.Value = Value;
 }
}

Instances of such polymorphic struct type templates map to Java 1.5 in a natural way. For example,
UNO Optional<string> maps to Java Optional<String>. However, UNO type arguments that
would normally map to primitive Java types map to corresponding Java wrapper types instead:

• boolean maps to java.lang.Boolean;

• byte maps to java.lang.Byte;

• short and unsigned short map to java.lang.Short;

• long and unsigned long map to java.lang.Integer;

• hyper and unsigned hyper map to java.lang.Long;

• float maps to java.lang.Float;

• double maps to java.lang.Double;

• char maps to java.lang.Character.

For example, UNO Optional<long> maps to Java Optional<Integer>. Also note that UNO type
arguments of both any and com.sun.star.uno.XInterface map to java.lang.Object, and thus,
for example, both Optional<any> and Optional<XInterface> map to Java Optional<Object>.

Still, there are a few problems and pitfalls when dealing with parametric members of default-
constructed polymorphic struct type instances:

• One problem is that such members are initialized to null by the default constructor, but null is
generally not a legal value in the context of Java UNO, except for values of any or interface
type. For example, new Optional<PropertyValue>().Value is of type

124 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Optional.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Optional.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Optional.html

com.sun.star.beans.PropertyValue (a struct type), but is a null reference. Similarly, new
Optional<Boolean>().Value is also a null reference (instead of a reference to Boolean.FALSE,
say). The chosen solution is to generally allow null references as values of Java class fields that
correspond to parametric members of polymorphic UNO struct types. However, to avoid any
problems, it is a good idea to not rely on the default constructor in such situations, and instead
initialize any problematic fields explicitly. (Note that this is not really a problem for Optional,
as Optional<T>().IsPresent will always be false for a default-constructed instance and
thus, because of the documented conventions for com.sun.star.beans.Optional, the actual
contents of Value should be ignored, anyway; in other cases, like with
com.sun.star.beans.Ambiguous, this can be a real issue, however.)

• Another pitfall is that a parametric member of type any of a default-constructed polymorphic
struct type instance (think new Optional<Object>().Value in Java 1.5, Optional<Any> o;
o.Value in C++) has different values in the Java language binding and the C++ language
binding. In Java, it contains a null reference of type XInterface (i.e., the Java value null),
whereas in C++ it contains void. Again, to avoid any problems, it is best not to rely on the
default constructor in such situations.

In Java versions prior to 1.5, which do not support generics, a polymorphic struct type template is
mapped to a plain Java class in such a way that any parametric members are mapped to class
fields of type java.lang.Object. This is generally less favorable than using generics, as it reduces
type-safety, but it has the advantage that it is compatible with Java 1.5 (actually, a single Java class
file is generated for a given UNO struct type template, and that class file works with both Java 1.5
and older versions). In a pre-1.5 Java, the Optional example will look something like the
following:
package com.sun.star.beans;

public class Optional {
 public boolean IsPresent;
 public Object Value;

 public Optional() {}

 public Optional(boolean IsPresent, Object Value) {
 this.IsPresent = IsPresent;
 this.Value = Value;
 }
}

How java.lang.Object is used to represent values of arbitrary UNO types is detailed as follows:

• Values of the UNO types boolean, byte, short, long, hyper, float, double, and char are
represented by non-null references to the corresponding Java types java.lang.Boolean,
java.lang.Byte, java.lang.Short, java.lang.Integer, java.lang.Long,
java.lang.Float, java.lang.Double, and java.lang.Character.

• Values of the UNO types unsigned short, unsigned long, and unsigned hyper are repre-
sented by non-null references to the corresponding Java types java.lang.Short,
java.lang.Integer, and java.lang.Long. Whether a value of such a Java type corresponds to
a signed or unsigned UNO type must be deducible from context.

• Values of the UNO types string, type, any, and the UNO sequence, enum, struct, and inter-
face types (which all map to Java reference types) are represented by their standard Java
mappings.

• The UNO type void and UNO exception types cannot be used as type arguments of instanti-
ated polymorphic struct types.

This is similar to how java.lang.Object is used to represent values of the UNO any type. The
difference is that there is nothing like com.sun.star.uno.Any here, which is used to disambiguate
those cases where different UNO types map to the same subclass of java.lang.Object. Instead,

125

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Ambiguous.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Ambiguous.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Ambiguous.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Optional.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Optional.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Optional.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html

here it must always be deducible from context exactly which UNO type a given Java reference
represents.

The problems and pitfalls mentioned for Java 1.5, regarding parametric members of default-
constructed polymorphic struct type instances, apply for older Java versions as well.

Mapping of Exception Types

A UNO exception type is mapped to a public Java class with the same name. Only non-null refer-
ences to such a class are valid.

There are two UNO exceptions that are the base for all other exceptions. These are the
com.sun.star.uno.Exception and com.sun.star.uno.RuntimeException that are inherited by
all other exceptions. The corresponding exceptions in Java inherit from Java exceptions:
module com { module sun { module star { module uno {

exception Exception {
 string Message;
 XInterface Context;
};

exception RuntimeException {
 string Message;
 XInterface Context;
};

}; }; }; };

The com.sun.star.uno.Exception in Java:
package com.sun.star.uno;

public class Exception extends java.lang.Exception {
 public Object Context;

 public Exception() {}

 public Exception(String Message) {
 super(Message);
 }

 public Exception(String Message, Object Context) {
 super(Message);
 this.Context = Context;
 }
}

The com.sun.star.uno.RuntimeException in Java:
package com.sun.star.uno;

public class RuntimeException extends java.lang.RuntimeException {
 public Object Context;

 public RuntimeException() {}

 public RuntimeException(String Message) {
 super(Message);
 }

 public RuntimeException(String Message, Object Context) {
 super(Message);
 this.Context = Context;
 }
}

As shown, the Message member has no direct counterpart in the respective Java class. Instead, the
constructor argument Message is used to initialize the base class, which is a Java exception. The
message is accessible through the inherited getMessage() method. All other members of a UNO
exception type are mapped to public fields with the same name and corresponding Java type. A
generated Java exception class always has a default constructor that initializes all members with
default values, and a constructor which takes values for all members.

126 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html

If an exception inherits from another exception, the generated class extends the class of the inher-
ited exception.

Mapping of Interface Types

A UNO interface type is mapped to a public Java interface with the same name. Unlike for Java
classes that represent UNO sequence, enum, struct, and exception types, a null reference is actually
a legal value for a Java interface that represents a UNO interface type� the Java null reference
represents the UNO null reference.

If a UNO interface type inherits one ore more other interface types, the Java interface extends the
corresponding Java interfaces.

The UNO interface type com.sun.star.uno.XInterface is special: Only when that type is used
as a base type of another interface type is it mapped to the Java type com.sun.star.uno.XInter-
face. In all other cases (when used as the component type of a sequence type, as a member of a
struct or exception type, or as a parameter or return type of an interface method) it is mapped to
java.lang.Object. Nevertheless, valid Java values of that type are only the Java null reference
and references to those instances of java.lang.Object that implement
com.sun.star.uno.XInterface.

A UNO interface attribute of the form
[attribute] Type Name {
 get raises (ExceptionG1, ..., ExceptionGM);
 set raises (ExceptionS1, ..., ExceptionSM);
};

is represented by two Java interface methods
Type getName() throws ExceptionG1, ..., ExceptionGM;
void setName(Type value) throws ExceptionS1, ..., ExceptionSM;

If the attribute is marked readonly, then there is no set method. Whether or not the attribute is
marked bound has no impact on the signatures of the generated Java methods.

A UNO interface method of the form
Type0 name([in] Type1 arg1, [out] Type2 arg2, [inout] Type3 arg3) raises (Exception1, ..., ExceptionN);

is represented by a Java interface method
Type0 name(Type1 arg1, Type2[] arg2, Type3[] arg3) throws Exception1, ..., ExceptionN;

Whether or not the UNO method is marked oneway has no impact on the signature of the gener-
ated Java method. As can be seen, out and inout parameters are handled specially. To help
explain this, take the example UNOIDL definitions
struct FooStruct {
 long nval;
 string strval;
};

interface XFoo {
 string funcOne([in] string value);
 FooStruct funcTwo([inout] FooStruct value);
 sequence<byte> funcThree([out] sequence<byte> value);
};

The semantics of a UNO method call are such that the values of any in or inout parameters are
passed from the caller to the callee, and, if the method is not marked oneway and the execution
terminated successfully, the callee passes back to the caller the return value and the values of any
out or inout parameters. Thus, the handling of in parameters and the return value maps naturally
to the semantics of Java method calls. UNO out and inout parameters, however, are mapped to
arrays of the corresponding Java types. Each such array must have at least one element (i.e., its
length must be at least one; practically, there is no reason why it should ever be larger). Therefore,
the Java interface corresponding to the UNO interface XFoo looks like the following:

127

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html

public interface XFoo extends com.sun.star.uno.XInterface {
 String funcOne(String value);
 FooStruct funcTwo(FooStruct[] value);
 byte[] funcThree(byte[][] value);
}

This is how FooStruct would be mapped to Java:
public class FooStruct {
 public int nval;
 public String strval;

 public FooStruct() {
 strval="";
 }

 public FooStruct(int nval, String strval) {
 this.nval = nval;
 this.strval = strval;
 }
}

When providing a value as an inout parameter, the caller has to write the input value into the
element at index zero of the array. When the function returns successfully, the value at index zero
reflects the output value, which may be the unmodified input value, a modified copy of the input
value, or a completely new value. The object obj implements XFoo:
// calling the interface in Java
obj.funcOne(null); // error, String value is null
obj.funcOne(""); // OK

FooStruct[] inoutstruct= new FooStruct[1];
obj.funcTwo(inoutstruct); // error, inoutstruct[0] is null

inoutstruct[0]= new FooStruct(); // now we initialize inoutstruct[0]
obj.funcTwo(inoutstruct); // OK

When a method receives an argument that is an out parameter, upon successful return, it has to
provide a value by storing it at index null of the array.
// method implementations of interface XFoo
public String funcOne(/*in*/ String value) {
 assert value != null; // otherwise, it is a bug of the caller
 return null; // error; instead use: return "";
}

public FooStruct funcTwo(/*inout*/ FooStruct[] value) {
 assert value != null && value.length >= 1 && value[0] != null;
 value[0] = null; // error; instead use: value[0] = new FooStruct();
 return null; // error; instead use: return new FooStruct();
}

public byte[] funcThree(/*out*/ byte[][] value) {
 assert value != null && value.length >= 1;
 value[0] = null; // error; instead use: value[0] = new byte[0];
 return null; // error; instead use: return new byte[0];
}

Mapping of UNOIDL Typedefs

UNOIDL typedefs are not visible in the Java language binding. Each occurrence of a typedef is
replaced with the aliased type when mapping from UNOIDL to Java.

Mapping of Individual UNOIDL Constants

An individual UNOIDL constant
module example {
 const long USERFLAG = 1;
};

is mapped to a public Java interface with the same name:
package example;

public interface USERFLAG {
 int value = 1;
}

128 OpenOffice.org 2.3 Developer's Guide • June 2007

Note that the use of individual constants is deprecated.

Mapping of UNOIDL Constant Groups

A UNOIDL constant group
module example {
 constants User {
 const long FLAG1 = 1;
 const long FLAG2 = 2;
 const long FLAG3 = 3;
 };
};

is mapped to a public Java interface with the same name:
package example;

public interface User {
 int FLAG1 = 1;
 int FLAG2 = 2;
 int FLAG3 = 3;
}

Each constant defined in the group is mapped to a field of the interface with the same name and
corresponding type and value.

Mapping of UNOIDL Modules

A UNOIDL module is mapped to a Java package with the same name. This follows from the fact
that each named UNO and UNOIDL entity is mapped to a Java class with the same name.
(UNOIDL uses �::� to separate the individual identifiers within a name, as in
�com::sun::star::uno�, whereas UNO itself and Java both use �.�, as in �com.sun.star.uno�;
therefore, the name of a UNOIDL entity has to be converted in the obvious way before it can be
used as a name in Java.) UNO and UNOIDL entities not enclosed in any module (that is, whose
names do not contain any �.� or �::�, respectively), are mapped to Java classes in an unnamed
package.

Mapping of Services

A new-style services is mapped to a public Java class with the same name. The class has one or
more public static methods that correspond to the explicit or implicit constructors of the service.

For a new-style service with a given interface type XIfc, an explicit constructor of the form
name([in] Type1 arg1, [in] Type2 arg2) raises (Exception1, ..., ExceptionN);

is represented by the Java method
public static XIfc name(com.sun.star.uno.XComponentContext context, Type1 arg1, Type2 arg2)
 throws Exception1, ..., ExceptionN { ... }

A UNO rest parameter (any...) is mapped to a Java rest parameter (java.lang.Object...) in
Java 1.5, and to java.lang.Object[] in older versions of Java.

If a new-style service has an implicit constructor, the corresponding Java method is of the form
public static XIfc create(com.sun.star.uno.XComponentContext context) { ... }

The semantics of both explicit and implicit service constructors in Java are as follows:

• The first argument to a service constructor is always a com.sun.star.uno.XComponentCon-
text, which must be non-null. Any further arguments are used to initialize the created service
(see below).

129

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html

• The service constructor first uses
com.sun.star.uno.XComponentContext:getServiceManager to obtain a service manager (a
com.sun.star.lang.XMultiComponentFactory) from the given component context.

• The service constructor then uses
com.sun.star.lang.XMultiComponentFactory:createInstanceWithArgumentsAndContext
to create a service instance, passing it the list of arguments (without the initial XComponentCon-
text). If the service constructor has a single rest parameter, its sequence of any values is used
directly, otherwise the given arguments are made into a sequence of any values. In the case of
an implicit service constructor, no arguments are passed, and
com.sun.star.lang.XMultiComponentFactory:createInstanceWithContext is used
instead.

• If any of the above steps fails with an exception that the service constructor may throw
(according to its exception specification), the service constructor also fails by throwing that
exception. Otherwise, if any of the above steps fails with an exception that the service
constructor may not throw, the service constructor instead fails by throwing a
com.sun.star.uno.DeploymentException. Finally, if no service instance could be created
(because either the given component context has no service manager, or the service manager
does not support the requested service), the service constructor fails by throwing a
com.sun.star.uno.DeploymentException. The net effect is that a service constructor either
returns a non-null instance of the requested service, or throws an exception; a service
constructor will never return a null instance.

Old-style services are not mapped into the Java language binding.

Mapping of Singletons

A new-style singleton of the form
singleton Name: XIfc;

is mapped to a public Java class with the same name. The class has a single method
public static XIfc get(com.sun.star.uno.XComponentContext context) { ... }

The semantics of such a singleton getter method in Java are as follows:

• The com.sun.star.uno.XComponentContext argument must be non-null.

• The singleton getter uses com.sun.star.uno.XComponentContext:getValueByName to obtain
the singleton instance (within the �/singletons/� name space).

• If no singleton instance could be obtained, the singleton getter fails by throwing a
com.sun.star.uno.DeploymentException. The net effect is that a singleton getter either
returns the requested non-null singleton instance, or throws an exception; a singleton getter will
never return a null instance.

Old-style singletons are not mapped into the Java language binding.

Inexact approximation of UNO Value Semantics

Some UNO types that are generally considered to be value types are mapped to reference types in
Java. Namely, these are the UNO types string, type, any, and the UNO sequence, enum, struct,
and exception types. The problem is that when a value of such a type (a Java object) is used

• as the value stored in an any;

• as the value of a sequence component;

• as the value of a struct or exception member;

130 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html#getValueByName
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html#getValueByName
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html#getValueByName
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html#createInstanceWithContext
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html#createInstanceWithContext
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html#createInstanceWithContext
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html#createInstanceWithArgumentsAndContext
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html#createInstanceWithArgumentsAndContext
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html#createInstanceWithArgumentsAndContext
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html#getServiceManager
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html#getServiceManager
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html#getServiceManager

• as the value of an interface attribute;

• as an argument or return value in an interface method invocation;

• as an argument in a service constructor invocation;

• as a raised exception;

then Java does not create a clone of that object, but instead shares the object via multiple references
to it. If the object is now modified through any one of its references, all other references observe the
modification, too. This violates the intended value semantics.

The solution chosen in the Java language binding is to forbid modification of any Java objects that
are used to represent UNO values in any of the situations listed above. Note that for Java objects
that represent values of the UNO type string, or a UNO enum type, this is trivially warranted, as
the corresponding Java types are immutable. This would also hold for the UNO type type, if the
Java class com.sun.star.Type were final.

In the sense used here, modifying a Java object A includes modifying any other Java object B that is
both (1) reachable from A by following one or more references, and (2) used to represent a UNO
value in any of the situations listed above. For a Java object that represents a UNO any value, the
restriction to not modify it only applies to a wrapping object of type com.sun.star.uno.Any
(which should really be immutable), or to an unwrapped object that represents a UNO value of
type string or type, or of a sequence, enum, struct or exception type.

Note that the types java.lang.Boolean, java.lang.Byte, java.lang.Short,
java.lang.Integer, java.lang.Long, java.lang.Float, java.lang.Double, and
java.lang.Character, used to represent certain UNO values as any values or as parametric
members of instantiated polymorphic struct types, are immutable, anyway, and so need not be
considered specially here.

3.4.2 C++ Language Binding
This chapter describes the UNO C++ language binding. It provides an experienced C++
programmer the first steps in UNO to establish UNO interprocess connections to a remote
OpenOffice.org and to use its UNO objects.

Library Overview
Illustration 3.8Compromise between service-manger-only und component context concept gives an over-
view about the core libraries of the UNO component model.

131

These shared libraries can be found in the <officedir>/program folder of your OpenOffice.org instal-
lation. The label (C) in the illustration above means C linkage and (C++) means C++ linkage. For
all libraries, a C++ compiler to build is required.

The basis for all UNO libraries is the sal library. It contains the system abstraction layer (sal) and
additional runtime library functionality, but does not contain any UNO-specific information. The
commonly used C-functions of the sal library can be accessed through C++ inline wrapper classes.
This allows functions to be called from any other programming language, because most program-
ming languages have some mechanism to call a C function.

The salhelper library is a small C++ library which offers additional runtime library functionality,
that could not be implemented inline.

The cppu (C++ UNO) library is the core UNO library. It offers methods to access the UNO type
library, and allows the creation, copying and comparing values of UNO data types in a generic
manner. Moreover, all UNO bridges (= mappings + environments) are administered in this library.

The examples msci_uno.dll, libsunpro5_uno.so and libgcc2_uno.so are only examples for language
binding libraries for certain C++ compilers.

The cppuhelper library is a C++ library that contains important base classes for UNO objects and
functions to bootstrap the UNO core. C++ Components and UNO programs have to link the
cppuhelper library.

132 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 3.16: Shared Libraries for C++ UNO

All the libraries shown above will be kept compatible in all future releases of UNO. You will be
able to build and link your application and component once, and run it with the current and later
versions of OpenOffice.org.

System Abstraction Layer
C++ UNO client programs and C++ UNO components use the system abstraction layer (sal) for
types, files, threads, interprocess communication, and string handling. The sal library offers oper-
ating system dependent functionality as C functions. The aim is to minimize or to eliminate oper-
ating system dependent #ifdef in libraries above sal. Sal offers high performance access because
sal is a thin layer above the API offered by each operating system.

In OpenOffice.org GUI APIs are encapsulated in the vcl library.

Sal exports only C symbols. The inline C++ wrapper exists for convenience. Refer to the UNO C++
reference that is part of the OpenOffice.org SDK or in the References section of udk.openoffice.org to
gain a full overview of the features provided by the sal library. In the following sections, the C++
wrapper classes will be discussed. The sal types used for UNO types are discussed in section 3.4.2
Professional UNO - UNO Language Bindings - C++ Language Binding - Type Mappings. If you want to
use them, look up the names of the appropriate include files in the C++ reference.

File Access
The classes listed below manage platform independent file access. They are C++ classes that call
corresponding C functions internally.

• osl::FileBase

• osl::VolumeInfo

• osl::FileStatus

• osl::File

• osl::DirectoryItem

• osl::Directory

An unfamiliar concept is the use of absolute filenames throughout the whole API. In a multi-
threaded program, the current working directory cannot be relied on, thus relative paths must be
explicitly made absolute by the caller.

Threadsafe Reference Counting
The functions osl_incrementInterlockedCount() and osl_decrementInterlockedCount() in
the global C++ namespace increase and decrease a 4-byte counter in a threadsafe manner. This is
needed for reference counted objects. Many UNO APIs control object lifetime through refcounting.
Since concurrent incrementing the same counter does not increase the reference count reliably,
these functions should be used. This is faster than using a mutex on most platforms.

133

Threads and Thread Synchronization
The class osl::Thread is meant to be used as a base class for your own threads. Overwrite the run()
method.

The following classes are commonly used synchronization primitives:

osl::Mutex

• osl::Condition

• osl::Semaphore

Socket and Pipe
The following classes allow you to use interprocess communication in a platform independent
manner:

• osl::Socket

• osl::Pipe

Strings
The classes rtl::OString (8-bit, encoded) and rtl::OUString (16-bit, UTF-16) are the base-string
classes for UNO programs. The strings store their data in a heap memory block. The string is
refcounted and incapable of changing, thus it makes copying faster and creation is an expensive
operation. An OUString can be created using the static function OUString::createFromASCII()
or it can be constructed from an 8-bit string with encoding using this constructor:

OUString(const sal_Char * value,
sal_Int32 length,
rtl_TextEncoding encoding,
sal_uInt32 convertFlags = OSTRING_TO_OUSTRING_CVTFLAGS);

It can be converted into an 8-bit string, for example, for printf() using the rtl::OUStringTo-
OString() function that takes an encoding, such as RTL_TEXTENCODING_ASCII_US.

For fast string concatenation, the classes rtl::OStringBuffer and rtl::OUStringBuffer should be used,
because they offer methods to concatenate strings and numbers. After preparing a new string
buffer, use the makeStringAndClear() method to create the new OUString or OString. The
following example illustrates this:
 sal_Int32 n = 42;
 double pi = 3.14159;

 // create a buffer with a suitable size, rough guess is sufficient
 // stringbuffer extends if necessary
 OUStringBuffer buf(128);

 // append an ascii string
 buf.appendAscii("pi (here ");

 // numbers can be simply appended
 buf.append(pi);
 // RTL_CONSTASCII_STRINGPARAM()
 // lets the compiler count the stringlength, so this is more efficient than
 // the above appendAscii call, where the length of the string must be calculated at
 // runtime
 buf.appendAscii(RTL_CONSTASCII_STRINGPARAM(") multiplied with "));
 buf.append(n);
 buf.appendAscii(RTL_CONSTASCII_STRINGPARAM(" gives "));
 buf.append((double)(n * pi));
 buf.appendAscii(RTL_CONSTASCII_STRINGPARAM("."));

 // now transfer the buffer into the string.
 // afterwards buffer is empty and may be reused again !
 OUString string = buf.makeStringAndClear();

134 OpenOffice.org 2.3 Developer's Guide • June 2007

 // You could of course use the OStringBuffer directly to get an OString
 OString oString = rtl::OUStringToOString(string , RTL_TEXTENCODING_ASCII_US);

 // just to print something
 printf("%s\n" ,oString.getStr());

Establishing Interprocess Connections
Any language binding supported by UNO establishes interprocess connections using a local
service manager to create the services necessary to connect to the office. Refer to chapter 3.3.1
Professional UNO - UNO Concepts - UNO Interprocess Connections for additional information. The
following client program connects to a running office and retrieves the com.sun.star.lang.XMul-
tiServiceFactory in C++: (ProfUNO/CppBinding/office_connect.cxx)
#include <stdio.h>

#include <cppuhelper/bootstrap.hxx>
#include <com/sun/star/bridge/XUnoUrlResolver.hpp>
#include <com/sun/star/lang/XMultiServiceFactory.hpp>

using namespace com::sun::star::uno;
using namespace com::sun::star::lang;
using namespace com::sun::star::bridge;
using namespace rtl;
using namespace cppu;

int main()
{
 // create the initial component context
 Reference< XComponentContext > rComponentContext =
 defaultBootstrap_InitialComponentContext();

 // retrieve the service manager from the context
 Reference< XMultiComponentFactory > rServiceManager =
 rComponentContext->getServiceManager();

 // instantiate a sample service with the service manager.
 Reference< XInterface > rInstance =
 rServiceManager->createInstanceWithContext(
 OUString::createFromAscii("com.sun.star.bridge.UnoUrlResolver"),
 rComponentContext);

 // Query for the XUnoUrlResolver interface
 Reference< XUnoUrlResolver > rResolver(rInstance, UNO_QUERY);

 if(! rResolver.is())
 {
 printf("Error: Couldn't instantiate com.sun.star.bridge.UnoUrlResolver service\n");
 return 1;
 }
 try
 {
 // resolve the uno-URL
 rInstance = rResolver->resolve(OUString::createFromAscii(
 "uno:socket,host=localhost,port=2002;urp;StarOffice.ServiceManager"));

 if(! rInstance.is())
 {
 printf("StarOffice.ServiceManager is not exported from remote process\n");
 return 1;
 }

 // query for the simpler XMultiServiceFactory interface, sufficient for scripting
 Reference< XMultiServiceFactory > rOfficeServiceManager (rInstance, UNO_QUERY);

 if(! rOfficeServiceManager.is())
 {
 printf("XMultiServiceFactory interface is not exported\n");
 return 1;
 }

 printf("Connected sucessfully to the office\n");
 }
 catch(Exception &e)
 {
 OString o = OUStringToOString(e.Message, RTL_TEXTENCODING_ASCII_US);
 printf("Error: %s\n", o.pData->buffer);
 return 1;
 }
 return 0;

135

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html

}

Transparent Use of Office UNO Components
When writing C++ client applications, the office component context can be obtained in a more
transparent way. For more details see section 3.4.1 Professional UNO - UNO Language Bindings -
Java Language Binding - Transparent Use of Office UNO Components.

The bootstrap function

Also for C++, a bootstrap function is provided, which bootstraps the component context from a
UNO installation. An example for a simple client application shows the following code snipplet:
(ProfUNO/SimpleBootstrap_cpp/SimpleBootstrap_cpp.cxx)
// get the remote office component context
Reference< XComponentContext > xContext(::cppu::bootstrap());

// get the remote office service manager
Reference< XMultiComponentFactory > xServiceManager(
 xContext->getServiceManager());

// get an instance of the remote office desktop UNO service
// and query the XComponentLoader interface
Reference < XComponentLoader > xComponentLoader(
 xServiceManager->createInstanceWithContext(OUString(
 RTL_CONSTASCII_USTRINGPARAM("com.sun.star.frame.Desktop")),
 xContext), UNO_QUERY_THROW);

The ::cppu::bootstrap() function is implemented in a similar way as the Java
com.sun.star.comp.helper.Bootstrap.bootstrap() method. It first bootstraps a local compo-
nent context by calling the ::cppu::defaultBootstrap_InitialComponentContext() function
and then tries to establish a named pipe connection to a running office by using the
com.sun.star.bridge.UnoUrlResolver service. If no office is running, an office process is
started. If the connection succeeds, the remote component context is returned.

The ::cppu::bootstrap() function is only available since OpenOffice.org 2.0.

SDK tooling

For convenience , the OpenOffice.org Software Development Kit (SDK) provides some tooling for
writing C++ client applications.

Application Loader

A C++ client application that uses UNO is linked to the C++ UNO libraries, which can be found in
the program directory of a UNO installation. When running the client application, the C++ UNO
libraries are found only, if the UNO program directory is included in the PATH (Windows) or
LD_LIBRARY_PATH (Unix/Linux) environment variable.

As this requires the knowledge of the location of a UNO installation, the SDK provides an applica-
tion loader (unoapploader.exe for Windows, unoapploader for Unix/Linux), which detects a
UNO installation on the system and adds the program directory of the UNO installation to the
PATH / LD_LIBRARY_PATH environment variable. After that, the application process is loaded and
started, whereby the new process inherits the environment of the calling process, including the
modified PATH / LD_LIBRARY_PATH environment variable.

The SDK tooling allows to build a client executable file (e.g. SimpleBootstrap_cpp for
Unix/Linux), which can be invoked by

./SimpleBootstrap_cpp

136 OpenOffice.org 2.3 Developer's Guide • June 2007

In this case, the SimpleBootstrap_cpp executable is simply the renamed unoapploader execut-
able. All the application code is part of a second executable file, which must have the same name as
the first executable, but prefixed by a underscore '_'; that means in the example above the second
executable is named _SimpleBootstrap_cpp.

On the Unix/Linux platforms the application loader writes error messages to the stderr stream.
On the Windows platform error messages are written to the error file <application name>-
error.log in the application's executable file directory. If this fails, the error file is written to the
directory designated for temporary files.

Finding a UNO Installation

A UNO installation can be specified by the user by setting the UNO_PATH environment variable to
the program directory of a UNO installation, e.g.

setenv UNO_PATH /opt/OpenOffice.org/program
If no UNO installation is specified by the user, the default installation on the system is taken.

On the Windows platform, the default installation is read from the default value of the key 'Soft-
ware\OpenOffice.org\UNO\InstallPath' from the root key HKEY_CURRENT_USER in the
Windows Registry. If this key is missing, the key is read from the root key
HKEY_LOCAL_MACHINE.

On the Unix/Linux platforms, the default installation is found from the PATH environment vari-
able. This requires that the soffice executable or a symbolic link is in one of the directories listed
in the PATH environment variable.

Type Mappings

Mapping of Simple Types

The following table shows the mapping of simple UNO types to the corresponding C++ types.

137

UNO C++
void void
boolean sal_Bool
byte sal_Int8
short sal_Int16
unsigned short sal_uInt16
long sal_Int32
unsigned long sal_uInt32
hyper sal_Int64
unsigned hyper sal_uInt64
float float
double double
char sal_Unicode
string rtl::OUString
type com::sun::star::uno::Type
any com::sun::star::uno::Any

For historic reasons, the UNO type boolean is mapped to some C++ type sal_Bool, which has
two distinct values sal_False and sal_True, and which need not be the C++ bool type. The
mapping between the values of UNO boolean and sal_False and sal_True is straightforward,
but it is an error to use any potential value of sal_Bool that is distinct from both sal_False and
sal_True.

The UNO integer types are mapped to C++ integer types with ranges that are guaranteed to be at
least as large as the ranges of the corresponding UNO types. However, the ranges of the C++ types
might be larger, in which case it would be an error to use values outside of the range of the corre-
sponding UNO types within the context of UNO. Currently, it would not be possible to create C++
language bindings for C++ environments that offer no suitable integral types that meet the
minimal range guarantees.

The UNO floating point types float and double are mapped to C++ floating point types float
and double, which must be capable of representing at least all the values of the corresponding
UNO types. However, the C++ types might be capable of representing more values, for which it is
implementation-defined how they are handled in the context of UNO. Currently, it would not be
possible to create C++ language bindings for C++ environments that offer no suitable float and
double types.

The UNO char type is mapped to the integral C++ type sal_Unicode, which is guaranteed to at
least encompass the range from 0 to 65535. Values of UNO char are mapped to values of
sal_Unicode in the obvious manner. If the range of sal_Unicode is larger, it is an error to use
values outside of that range.

For the C++ typedef types sal_Bool, sal_Int8, sal_Int16, sal_Int32, sal_Int64, and
sal_Unicode, it is guaranteed that no two of them are synonyms for the same fundamental C++
type. This guarantee does not extend to the three types sal_uInt8, sal_uInt16, and sal_uInt32,
however.

Mapping of String

The mapping between the UNO string type and rtl::OUString is straightforward, except for
two details:

• The length of a string that can be represented by an rtl::OUString object is limited. It is an
error to use a longer UNO string value in the context of the C++ language binding.

138 OpenOffice.org 2.3 Developer's Guide • June 2007

• An object of type rtl::OUString can represent an arbitrary sequence of UTF-16 code units,
whereas a value of the UNO string type is an arbitrary sequence of Unicode scalar values.
This only matters in so far as some individual UTF-16 code units (namely the individual high-
and low-surrogate code points in the range D800�DFFF) have no corresponding Unicode scalar
values, and are thus forbidden in the context of UNO. For example, the C++ string
static sal_Unicode const chars[] = { 0xD800 };
rtl::OUString(chars, 1);
is illegal in this context, while the string

static sal_Unicode const chars[] = { 0xD800, 0xDC00 };
rtl::OUString(chars, 2);
would be legal. See www.unicode.org for more information on the details of Unicode.

Mapping of Type

The UNO type type is mapped to com::sun::star::uno::Type. It holds the name of a type and
the com.sun.star.uno.TypeClass. The type allows you to obtain a
com::sun::star::uno::TypeDescription that contains all the information defined in the IDL.
For a given UNO type, a corresponding com::sun::star::Type instance can be obtained through
the cppu::UnoTxpe class template:
// Get the UNO type long:
com::sun::star::uno::Type longType = cppu::UnoType< sal_Int32 >::get();

// Get the UNO type char:
com::sun::star::uno::Type charTpye = cppu::UnoType< cppu::UnoCharType >::get();

// Get the UNO type string:
com::sun::star::uno::Type stringType = cppu::UnoType< rtl::OUString >::get();

// Get the UNO interface type com.sun.star.container.XEnumeration:
com::sun::star::uno::Type enumerationType =
 cppu::UnoType< com::sun::star::container::XEnumeration >::get();

Some C++ types that represent UNO types cannot be used as C++ template arguments, or ambigu-
ously represent more than one UNO type, so there are special C++ types cppu::UnoVoidType,
cppu::UnoUnsignedShortType, cppu::UnoCharType, and cppu::UnoSequenceType that can be
used as arguments for cppu::UnoType in those cases.

The overloaded getCppuType function was an older mechanism to obtain
com::sun::star::uno::Type instances. It is deprecated now (certain uses of getCppuType in
template code would not work as intended), and cppu::UnoType should be used instead.

Mapping of Any

The IDL any is mapped to com::sun::star::uno::Any. It holds an instance of an arbitrary UNO type.
Only UNO types can be stored within the any, because the data from the type library are required
for any handling.

A default constructed Any contains the void type and no value. You can assign a value to the Any
using the operator <<= and retrieve a value using the operator >>=.
// default construct an any
Any any;

sal_Int32 n = 3;

// Store the value into the any
any <<= n;

// extract the value again
sal_Int32 n2;
any >>= n2;
assert(n2 == n);
assert(3 == n2);

139

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/TypeClass.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/TypeClass.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/TypeClass.html

The extraction operator >>= carries out widening conversions when no loss of data can occur, but
data cannot be directed downward. If the extraction was successful, the operator returns
sal_True, otherwise sal_False.
Any any;
sal_Int16 n = 3;
any <<= n;

sal_Int8 aByte = 0;
sal_Int16 aShort = 0;
sal_Int32 aLong = 0;

// this will succeed, conversion from int16 to int32 is OK.
assert(any >>= aLong);
assert(3 == aLong);

// this will succeed, conversion from int16 to int16 is OK
assert(any >>= aShort);
assert(3 == aShort

// the following two assertions will FAIL, because conversion
// from int16 to int8 may involve loss of data..

// Even if a downcast is possible for a certain value, the operator refuses to work
assert(any >>= aByte);
assert(3 == aByte);

Instead of using the operator for extracting, you can also get a pointer to the data within the Any.
This may be faster, but it is more complicated to use. With the pointer, care has to be used during
casting and proper type handling, and the lifetime of the Any must exceed the pointer usage.
Any a = ...;
if(a.getTypeClass() == TypeClass_LONG && 3 == *(sal_Int32 *)a.getValue())
{
}

You can also construct an Any from a pointer to a C++ UNO type that can be useful. For instance:
Any foo()
{
 sal_Int32 i = 3;
 if(...)
 i = ..;
 return Any(&i, cppu::UnoType< sal_Int32 >::get());
}

Mapping of Struct Types

A plain UNO struct type is mapped to a C++ struct with the same name. Each member of the UNO
struct type is mapped to a public data member with the same name and corresponding type. The C
++ struct provides a default constructor which initializes all members with default values, and a
constructor which takes explicit values for all members. If a plain struct type inherits from another
struct type, the generated C++ struct derives from the C++ struct corresponding to the inherited
UNO struct type.

A polymorphic UNO struct type template with a list of type parameters is mapped to a C++ struct
template with a corresponding list of type parameters. For example, the C++ template corre-
sponding to com.sun.star.beans.Optional looks something like
template< typename T > struct Optional {
 sal_Bool IsPresent;
 T Value;

 Optional(): IsPresent(sal_False), Value() {}

 Optional(sal_Bool theIsPresent, T const & theValue): IsPresent(theIsPresent), Value(theValue) {}
};

As can be seen in the example above, the default constructor uses default initialization to give
values to any parametric data members. This has a number of consequences:

• Some compilers do not implement default initialization correctly for all types. For example,
Microsoft Visual C++ .NET 2003 leaves objects of primitive types uninitialized, instead of zero-

140 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Optional.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Optional.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Optional.html

initializing them. (Which means, for example, that after Optional<sal_Int32> o; the expres-
sion o.Value has an undefined value, instead of being zero.)

• The default value of a UNO enum type is its first member. A (deprecated) feature of UNO
enum types is to give specific numeric values to individual members. Now, if a UNO enum
type whose first member has a numeric value other than zero is used as the type of a parametric
member, default-initializing that member will give it the numeric value zero, even if zero does
not correspond to the default member of the UNO enum type (it need not even correspond to
any member of the UNO enum type).

• Another pitfall is that a parametric member of type any of a default-constructed polymorphic
struct type instance (think Optional<Any> o; o.Value in C++, new
Optional<Object>().Value in Java 1.5) has different values in the C++ language binding and
the Java language binding. In C++, it contains void, whereas in Java it contains a null reference
of type XInterface. To avoid any problems, it is best not to rely on the default constructor in
such situations.

On some platforms, the C++ typedef types sal_uInt16 (representing the UNO type unsigned
short) and sal_Unicode (representing the UNO type char) are synonyms for the same funda-
mental C++ type. This could lead to problems when either of those types is used as a type argu-
ment of a polymorphic struct type. The chosen solution is to generally forbid the (deprecated)
UNO types unsigned short, unsigned long, and unsigned hyper as type arguments of poly-
morphic struct types.
getCppuType(static_cast< com::sun::star::beans::Optional< sal_Unicode > >(0))

and
getCppuType(static_cast< com::sun::star::beans::Optional< sal_uInt16 > >(0))

cannot return different data for the two different UNO types (as the two function calls are to the
same identical function on those platforms). The chosen solution is to generally forbid the (depre-
cated) UNO types unsigned short, unsigned int, and unsigned long as type arguments of
polymorphic struct types.

Mapping of Interface Types

A value of a UNO interface type (which is a null reference or a reference to an object implementing
the given interface type) is mapped to the template class:
template< class t >
com::sun::star::uno::Reference< t >

The template is used to get a type safe interface reference, because only a correctly typed interface
pointer can be assigned to the reference. The example below assigns an instance of the desktop
service to the rDesktop reference:
// the xSMgr reference gets constructed somehow
{
 ...
 // construct a deskop object and acquire it
 Reference< XInterface > rDesktop = xSMgr->createInstance(
 OUString::createFromAscii("com.sun.star.frame.Desktop"”));
 ...
 // reference goes out of scope now, release is called on the interface
}

The constructor of Reference calls acquire() on the interface and the destructor calls release()
on the interface. These references are often called smart pointers. Always use the Reference
template consistently to avoid reference counting bugs.

The Reference class makes it simple to invoke queryInterface() for a certain type:
// construct a deskop object and acquire it
Reference< XInterface > rDesktop = xSMgr->createInstance(
 OUString::createFromAscii("com.sun.star.frame.Desktop"));

141

http://com.sun.star.frame.Desktop/
http://com.sun.star.frame.Desktop/
http://com.sun.star.frame.Desktop/

// query it for the XFrameLoader interface
Reference< XFrameLoader > rLoader(rDesktop , UNO_QUERY);
// check, if the frameloader interface is supported
if(rLoader.is())
{
 // now do something with the frame loader
 ...
}

The UNO_QUERY is a dummy parameter that tells the constructor to query the first constructor argu-
ment for the XFrameLoader interface. If the queryInterface() returns successfully, it is assigned
to the rLoader reference. You can check if querying was successful by calling is() on the new
reference.

Methods on interfaces can be invoked using the operator ->:
xSMgr->createInstance(...);

The operator ->() returns the interface pointer without acquiring it, that is, without incre-
menting the refcount.

If you need the direct pointer to an interface for some purpose, you can also call get() at the reference class.

You can explicitly release the interface reference by calling clear()at the reference or by assigning
a default constructed reference.

You can check if two interface references belong to the same object using the operator ==.

Mapping of Sequence Types

An IDL sequence is mapped to:
template< class t >
com::sun::star::uno::Sequence< t >

The sequence class is a reference to a reference counted handle that is allocated on the heap.

The sequence follows a copy-on-modify strategy. If a sequence is about to be modified, it is
checked if the reference count of the sequence is 1. If this is the case, it gets modified directly,
otherwise a copy of the sequence is created that has a reference count of 1.

A sequence can be created with an arbitrary UNO type as element type, but do not use a non-UNO
type. The full reflection data provided by the type library are needed for construction, destruction
and comparison.

You can construct a sequence with an initial number of elements. Each element is default
constructed.
{
 // create an integer sequence with 3 elements,
 // elements default to zero.
 Sequence< sal_Int32 > seqInt(3);
 // get a read/write array pointer (this method checks for
 // the refcount and does a copy on demand).
 sal_Int32 *pArray = seqInt.getArray();

 // if you know, that the refocunt is one
 // as in this case, where the sequence has just been
 // constructed, you could avoid the check,
 // which is a C-call overhead,
 // by writing sal_Int32 *pArray = (sal_Int32*) seqInt.getConstArray();

 // modify the members
 pArray[0] = 4;
 pArray[1] = 5;
 pArray[2] = 3;
}

142 OpenOffice.org 2.3 Developer's Guide • June 2007

You can also initialize a sequence from an array of the same type by using a different constructor.
The new sequence is allocated on the heap and all elements are copied from the source.
{
 sal_Int32 sourceArray[3] = {3,5,3};

 // result is the same as above, but we initialize from a buffer.
 Sequence< sal_Int32 > seqInt(sourceArray , 3);
}

Complex UNO types like structs can be stored within sequences, too:
{
 // construct a sequence of Property structs,
 // the structs are default constructed
 Sequence< Property > seqProperty(2);
 seqProperty[0].Name = OUString::createFromAscii("A");
 seqProperty[0].Handle = 0;
 seqProperty[1].Name = OUString::createFromAscii("B");
 seqProperty[1].Handle = 1;

 // copy construct the sequence (The refcount is raised)
 Sequence< Property > seqProperty2 = seqProperty;

 // access a sequence
 for(sal_Int32 i = 0 ; i < seqProperty.getLength() ; i ++)
 {
 // Please NOTE : seqProperty.getArray() would also work, but
 // it is more expensive, because a
 // unnessecary copy construction
 // of the sequence takes place.
 printf("%d\n" , seqProperty.getConstArray()[i].Handle);
 }
}

The size of sequences can be changed using the realloc() method, which takes the new number
of elements as a parameter. For instance:
// construct an empty sequence
Sequence < Any > anySequence;

// get your enumeration from somewhere
Reference< XEnumeration > rEnum = ...;

// iterate over the enumeration
while(rEnum->hasMoreElements())
{
 anySequence.realloc(anySequence.getLength() + 1);
 anySequence[anySequence.getLength()-1] = rEnum->nextElement();
}

The above code shows an enumeration is transformed into a sequence,using an inefficient method.
The realloc() default constructs a new element at the end of the sequence. If the sequence is
shrunk by realloc, the elements at the end are destroyed.

The sequence is meant as a transportation container only, therefore it lacks methods for efficient
insertion and removal of elements. Use a C++ Standard Template Library vector as an interme-
diate container to manipulate a list of elements and finally copy the elements into the sequence.

Sequences of a specific type are a fully supported UNO type. There can also be a sequence of
sequences. This is similar to a multidimensional array with the exception that each row may vary
in length. For instance:
{
 sal_Int32 a[] = { 1,2,3 }, b[] = {4,5,6}, c[] = {7,8,9,10};
 Sequence< Sequence< sal_Int32 > > aaSeq (3);
 aaSeq[0] = Sequence< sal_Int32 >(a , 3);
 aaSeq[1] = Sequence< sal_Int32 >(b , 3);
 aaSeq[2] = Sequence< sal_Int32 >(c , 4);
}

is a valid sequence of sequence< sal_Int32>.

The maximal length of a com::sun::star::uno::Sequence is limited; therefore, it is an error if a
UNO sequence that is too long is used in the context of the C++ language binding.

143

Mapping of Services

A new-style service is mapped to a C++ class with the same name. The class has one or more
public static member functions that correspond to the explicit or implicit constructors of the
service.

For a new-style service with a given interface type XIfc, an explicit constructor of the form
name([in] Type1 arg1, [in] Type2 arg2) raises (Exception1, ..., ExceptionN);

is represented by the C++ member function
public:
static com::sun::star::uno::Reference< XIfc > name(
 com::sun::star::uno::Reference< com::sun::star::uno::XComponentContext > const & context,
 Type1 arg1, Type2 arg2)
 throw (Exception1, ..., ExceptionN, com::sun::star::uno::RuntimeException) { ... }

If a service constructor has a rest parameter (any...), it is mapped to a parameter of type
com::sun::star::uno::Sequence< com::sun::star::uno::Any > const & in C++.

If a new-style service has an implicit constructor, the corresponding C++ member function is of the
form
public:
static com::sun::star::uno::Reference< XIfc > create(
 com::sun::star::uno::Reference< com::sun::star::uno::XComponentContext > const & context)
 throw (com::sun::star::uno::RuntimeException) { ... }

The semantics of both explicit and implicit service constructors in C++ are as follows. They are the
same as for Java:

• The first argument to a service constructor is always a com.sun.star.uno.XComponentCon-
text, which must be a non-null reference. Any further arguments are used to initialize the
created service (see below).

• The service constructor first uses
com.sun.star.uno.XComponentContext:getServiceManager to obtain a service manager (a
com.sun.star.lang.XMultiComponentFactory) from the given component context.

• The service constructor then uses
com.sun.star.lang.XMultiComponentFactory:createInstanceWithArgumentsAndContext
to create a service instance, passing it the list of arguments without the initial XComponentCon-
text. If the service constructor has a single rest parameter, its sequence of any values is used
directly, otherwise the given arguments are made into a sequence of any values. In the case of
an implicit service constructor, no arguments are passed, and
com.sun.star.lang.XMultiComponentFactory:createInstanceWithContext is used
instead.

• If any of the above steps fails with an exception that the service constructor may throw
(according to its exception specification), the service constructor also fails by throwing that
exception. Otherwise, if any of the above steps fails with an exception that the service
constructor may not throw, the service constructor instead fails by throwing a
com.sun.star.uno.DeploymentException. Finally, if no service instance could be created
(because either the given component context has no service manager, or the service manager
does not support the requested service), the service constructor fails by throwing a
com.sun.star.uno.DeploymentException. The net effect is that a service constructor either
returns a non-null instance of the requested service, or throws an exception; a service
constructor will never return a null instance.

Old-style services are not mapped into the C++ language binding.

144 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html#createInstanceWithContext
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html#createInstanceWithContext
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html#createInstanceWithContext
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html#createInstanceWithArgumentsAndContext
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html#createInstanceWithArgumentsAndContext
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html#createInstanceWithArgumentsAndContext
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html#getServiceManager
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html#getServiceManager
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html#getServiceManager
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html

Mapping of Singletons

A new-style singleton of the form
singleton Name: XIfc;

is mapped to a C++ class with the same name. The class has a single member function
public:
static com::sun::star::uno::Reference< XIfc > get(
 com::sun::star::uno::Reference< com::sun::star::uno::XComponentContext > const & context)
 throw (com::sun::star::uno::RuntimeException) { ... }

The semantics of such a singleton getter function in C++ are as follows (they are the same as for
Java):

• The com.sun.star.uno.XComponentContext argument must be non-null.

• The singleton getter uses com.sun.star.uno.XComponentContext:getValueByName to obtain
the singleton instance (within the �/singletons/� name space).

• If no singleton instance could be obtained, the singleton getter fails by throwing a
com.sun.star.uno.DeploymentException. The net effect is that a singleton getter either
returns the requested non-null singleton instance, or throws an exception; a singleton getter will
never return a null instance.

Old-style services are not mapped into the C++ language binding.

Using Weak References
The C++ binding offers a method to hold UNO objects weakly, that is, not holding a hard reference
to it. A hard reference prevents an object from being destroyed, whereas an object that is held
weakly can be deleted anytime. The advantage of weak references is used to avoid cyclic refer-
ences between objects.

An object must actively support weak references by supporting the com.sun.star.uno.XWeak
interface. The concept is explained in detail in chapter 3.3.8 Professional UNO - UNO Concepts - Life-
time of UNO Objects.

Weak references are often used for caching. For instance, if you want to reuse an existing object,
but do not want to hold it forever to avoid cyclic references.

Weak references are implemented as a template class:
template< class t >
class com::sun::star::uno::WeakReference<t>

You can simply assign weak references to hard references and conversely. The following examples
stress this:
// forward declaration of a function that
Reference< XFoo > getFoo();

int main()
{
 // default construct a weak reference.
 // this reference is empty
 WeakReference < XFoo > weakFoo;
 {
 // obtain a hard reference to an XFoo object
 Reference< XFoo > hardFoo = getFoo();
 assert(hardFoo.is());

 // assign the hard reference to weak referencecount
 weakFoo = hardFoo;

 // the hardFoo reference goes out of scope. The object itself
 // is now destroyed, if no one else keeps a reference to it.
 // Nothing happens, if someone else still keeps a reference to it
 }

145

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html#getValueByName
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html#getValueByName
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html#getValueByName
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html

 // now make the reference hard again
 Reference< XFoo > hardFoo2 = weakFoo;

 // check, if this was successful
 if(hardFoo2.is())
 {
 // the object is still alive, you can invoke calls on it again
 hardFoo2->foo();
 }
 else
 {
 // the objects has died, you can't do anything with it anymore.
 }
}

A call on a weak reference can not be invoked directly. Make the weak reference hard and check
whether it succeeded or not. You never know if you will get the reference, therefore always handle
both cases properly.

It is more expensive to use weak references instead of hard references. When assigning a weak
reference to a hard reference, a mutex gets locked and some heap allocation may occur. When the
object is located in a different process, at least one remote call takes place, meaning an overhead of
approximately a millisecond.

The XWeak mechanism does not support notification at object destruction. For this purpose,
objects must export XComponent and add com.sun.star.lang.XEventListener.

Exception Handling in C++
For throwing and catching of UNO exceptions, use the normal C++ exception handling mecha-
nisms. Calls to UNO interfaces may only throw the com::sun::star::uno::Exception or
derived exceptions. The following example catches every possible exception:
try
{
 Reference< XInterface > rInitialObject =
 xUnoUrlResolver->resolve(OUString::createFromAsci(
 “uno:socket,host=localhost,port=2002;urp;StarOffice.ServiceManager”));
}
catch(com::sun::star::uno::Exception &e)
{
 OString o = OUStringToOString(e.Message, RTL_TEXTENCODING_ASCII_US);
 printf("An error occurred: %s\n", o.pData->buffer);
}

If you want to react differently for each possible exception type, look up the exceptions that may be
thrown by a certain method. For instance the resolve() method in
com.sun.star.bridge.XUnoUrlResolver is allowed to throw three kinds of exceptions. Catch
each exception type separately:
try
{
 Reference< XInterface > rInitialObject =
 xUnoUrlResolver->resolve(OUString::createFromAsci(
 “uno:socket,host=localhost,port=2002;urp;StarOffice.ServiceManager”));
}
catch(ConnectionSetupException &e)
{
 OString o = OUStringToOString(e.Message, RTL_TEXTENCODING_ASCII_US);
 printf("%s\n", o.pData->buffer);
 printf("couldn't access local resource (possible security resons)\n");
}
catch(NoConnectException &e)
{
 OString o = OUStringToOString(e.Message, RTL_TEXTENCODING_ASCII_US);
 printf("%s\n", o.pData->buffer);
 printf("no server listening on the resource\n");
}
catch(IllegalArgumentException &e)
{
 OString o = OUStringToOString(e.Message, RTL_TEXTENCODING_ASCII_US);
 printf("%s\n", o.pData->buffer);
 printf("uno URL invalid\n");

146 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html

}
catch(RuntimeException & e)
{
 OString o = OUStringToOString(e.Message, RTL_TEXTENCODING_ASCII_US);
 printf("%s\n", o.pData->buffer);
 printf("an unknown error has occurred\n");
}

When implementing your own UNO objects (see 4.6 Writing UNO Components - C++ Component),
throw exceptions using the normal C++ throw statement:
void MyUnoObject::initialize(const Sequence< Any > & args.getLength()) throw(Exception)
{
 // we expect 2 elements in this sequence
 if(2 != args.getLength())
 {
 // create an error message
 OUStringBuffer buf;
 buf.appendAscii(“MyUnoObject::initialize, expected 2 args, got ”);
 buf.append(args.getLength());
 buf.append(“.”);

 // throw the exception
 throw Exception(buf.makeStringAndClear() , *this);
 }
 ...
}

Note that only exceptions derived from com::sun::star::uno::Exception may be thrown at
UNO interface methods. Other exceptions (for instance the C++ std::exception) cannot be bridged
by the UNO runtime if the caller and called object are not within the same UNO Runtime Environ-
ment. Moreover, most current Unix C++ compilers, for instance gcc 3.0.x, do not compile code.
During compilation, exception specifications are loosen in derived classes by throwing exceptions
other than the exceptions specified in the interface that it is derived. Throwing unspecified excep-
tions leads to a std::unexpected exception and causes the program to abort on Unix systems.

3.4.3 OpenOffice.org Basic
OpenOffice.org Basic provides access to the OpenOffice.org API from within the office application.
It hides the complexity of interfaces and simplifies the use of properties by making UNO objects
look like Basic objects. It offers convenient Runtime Library (RTL) functions and special Basic
properties for UNO. Furthermore, Basic procedures can be easily hooked up to GUI elements, such
as menus, toolbar icons and GUI event handlers.

This chapter describes how to access UNO using the OpenOffice.org Basic scripting language. In
the following sections, OpenOffice.org Basic is referred to as Basic.

Handling UNO Objects

Accessing UNO Services

UNO objects are used through their interface methods and properties. Basic simplifies this by
mapping UNO interfaces and properties to Basic object methods and properties.

First, in Basic it is not necessary to distinguish between the different interfaces an object supports
when calling a method. The following illustration shows an example of an UNO service that
supports three interfaces:

147

In Java and C++, it is necessary to obtain a reference to each interface before calling one of its
methods. In Basic, every method of every supported interface can be called directly at the object
without querying for the appropriate interface in advance. The '.' operator is used:
 ' Basic
 oExample = getExampleObjectFromSomewhere()
 oExample.doNothing() ' Calls method doNothing of XFoo1
 oExample.doSomething() ' Calls method doSomething of XFoo2
 oExample.doSomethingElse(42) ' Calls method doSomethingElse of XFoo2

Additionally, OpenOffice.org Basic interprets pairs of get and set methods at UNO objects as Basic
object properties if they follow this pattern:

SomeType getSomeProperty()
void setSomeProperty(SomeType aValue)

In this pattern, OpenOffice.org Basic offers a property of type SomeType named SomeProperty.
This functionality is based on the com.sun.star.beans.Introspection service. For additional
details, see 6.2.3 Advanced UNO - Language Bindings - UNO Reflection API.

The get and set methods can always be used directly. In our example service above, the methods
getIt() and setIt(), or read and write a Basic property It are used:
 Dim x as Integer
 x = oExample.getIt() ' Calls getIt method of XFoo3

 ' is the same as

 x = oExample.It ' Read property It represented by XFoo3

 oExample.setIt(x) ' Calls setIt method of XFoo3

 ' is the same as

 oExample.It = x ' Modify property It represented by XFoo3

If there is only a get method, but no associated set method, the property is considered to be read
only.
 Dim x as Integer, y as Integer
 x = oExample.getMore() ' Calls getMore method of XFoo1
 y = oExample.getLess() ' Calls getLess method of XFoo1

 ' is the same as

 x = oExample.More ' Read property More represented by XFoo1
 y = oExample.Less ' Read property Less represented by XFoo1

 ' but

 oExample.More = x ' Runtime error “Property is read only”
 oExample.Less = y ' Runtime error “Property is read only”

148 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 3.17: Basic Hides Interfaces

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Introspection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Introspection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Introspection.html

Properties an object provides through com.sun.star.beans.XPropertySet are available through
the . operator. The methods of com.sun.star.beans.XPropertySet can be used also. The object
oExample2 in the following example has three integer properties Value1, Value2 and Value3 :
 Dim x as Integer, y as Integer, z as Integer
 x = oExample2.Value1
 y = oExample2.Value2
 z = oExample2.Value3

 ' is the same as

 x = oExample2.getPropertyValue(“Value1”)
 y = oExample2.getPropertyValue(“Value2”)
 z = oExample2.getPropertyValue(“Value3”)

 ' and

 oExample2.Value1 = x
 oExample2.Value2 = y
 oExample2.Value3 = z

 ' is the same as

 oExample2.setPropertyValue(“Value1”, x)
 oExample2.setPropertyValue(“Value2”, y)
 oExample2.setPropertyValue(“Value3”, z)

Basic uses com.sun.star.container.XNameAccess to provide named elements in a collection
through the . operator. However, XNameAccess only provides read access. If a collection offers
write access through com.sun.star.container.XNameReplace or
com.sun.star.container.XNameContainer, use the appropriate methods explicitly:
 ' oNameAccessible is an object that supports XNameAccess
 ' including the names “Value1”, “Value2”
 x = oNameAccessible.Value1
 y = oNameAccessible.Value2

 ' is the same as

 x = oNameAccessible.getByName(“Value1”)
 y = oNameAccessible.getByName(“Value2”)

 ' but

 oNameAccessible.Value1 = x ' Runtime Error, Value1 cannot be changed
 oNameAccessible.Value2 = y ' Runtime Error, Value2 cannot be changed

 ' oNameReplace is an object that supports XNameReplace
 ' replaceByName() sets the element Value1 to 42
 oNameReplace.replaceByName("Value1", 42)

Instantiating UNO Services

In Basic, instantiate services using the Basic Runtime Library (RTL) function createUnoService().
This function expects a fully qualified service name and returns an object supporting this service, if
it is available:
 oSimpleFileAccess = CreateUnoService("com.sun.star.ucb.SimpleFileAccess")

This call instantiates the com.sun.star.ucb.SimpleFileAccess service. To ensure that the func-
tion was successful, the returned object can be checked with the IsNull function:
 oSimpleFileAccess = CreateUnoService("com.sun.star.ucb.SimpleFileAccess")
 bError = IsNull(oSimpleFileAccess) ' bError is set to False

 oNoService = CreateUnoService("com.sun.star.nowhere.ThisServiceDoesNotExist")
 bError = IsNull(oNoService) ' bError is set to True

Instead of using CreateUnoService() to instantiate a service, it is also possible to get the global
UNO com.sun.star.lang.ServiceManager of the OpenOffice.org process by calling GetPro-
cessServiceManager(). Once obtained, use createInstance() directly:
 oServiceMgr = GetProcessServiceManager()
 oSimpleFileAccess = oServiceMgr.createInstance("com.sun.star.ucb.SimpleFileAccess")

149

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/ServiceManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/ServiceManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/ServiceManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/SimpleFileAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/SimpleFileAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/SimpleFileAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html

 ' is the same as

 oSimpleFileAccess = CreateUnoService("com.sun.star.ucb.SimpleFileAccess")

The advantage of GetProcessServiceManager() is that additional information and pass in argu-
ments is received when services are instantiated using the service manager. For instance, to
initialize a service with arguments, the createInstanceWithArguments() method of
com.sun.star.lang.XMultiServiceFactory has to be used at the service manager, because there
is no appropriate Basic RTL function to do that. Example:
 Dim args(1)
 args(0) = "Important information"
 args(1) = "Even more important information"
 oService = oServiceMgr.createInstanceWithArguments _
 ("com.sun.star.nowhere.ServiceThatNeedsInitialization", args())

The object returned by GetProcessServiceManager() is a normal Basic UNO object supporting
com.sun.star.lang.ServiceManager. Its properties and methods are accessed as described
above.

In addition, the Basic RTL provides special properties as API entry points. They are described in
more detail in 12.3 OpenOffice.org Basic and Dialogs - Features of OpenOffice.org Basic:

OpenOffice.org Basic RTL Property Description

ThisComponent Only exists in Basic code which is embedded in a Writer,
Calc, Draw or Impress document. It contains the document
model the Basic code is embedded in.

StarDesktop The com.sun.star.frame.Desktop singleton of the
office application. It loads document components and
handles the document windows. For instance, the document
in the top window can be retrieved using
oDoc = StarDesktop.CurrentComponent

Getting Information about UNO Objects

The Basic RTL retrieves information about UNO objects. There are functions to evaluate objects
during runtime and object properties used to inspect objects during debugging.

Checking for interfaces during runtime

Although Basic does not support the queryInterface concept like C++ and Java, it can be useful
to know if a certain interface is supported by a UNO Basic object or not. The function HasUnoInt-
erfaces() detects this.

The first parameter HasUnoInterfaces() expects the object that should be tested. Parameter(s) of
one or more fully qualified interface names can be passed to the function next. The function returns
True if all these interfaces are supported by the object, otherwise False.

Sub Main
 Dim oSimpleFileAccess
 oSimpleFileAccess = CreateUnoService("com.sun.star.ucb.SimpleFileAccess")

 Dim bSuccess
 Dim IfaceName1$, IfaceName2$, IfaceName3$
 IfaceName1$ = "com.sun.star.uno.XInterface"
 IfaceName2$ = "com.sun.star.ucb.XSimpleFileAccess2"
 IfaceName3$ = "com.sun.star.container.XPropertySet"

 bSuccess = HasUnoInterfaces(oSimpleFileAccess, IfaceName1$)
 MsgBox bSuccess ' Displays True because XInterface is supported

 bSuccess = HasUnoInterfaces(oSimpleFileAccess, IfaceName1$, IfaceName2$)
 MsgBox bSuccess ' Displays True because XInterface
 ' and XSimpleFileAccess2 are supported

 bSuccess = HasUnoInterfaces(oSimpleFileAccess, IfaceName3$)
 MsgBox bSuccess ' Displays False because XPropertySet is NOT supported

150 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/ServiceManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/ServiceManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/ServiceManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html

 bSuccess = HasUnoInterfaces(oSimpleFileAccess, IfaceName1$, IfaceName2$, IfaceName3$)
 MsgBox bSuccess ' Displays False because XPropertySet is NOT supported
End Sub

Testing if an object is a struct during runtime

As described in the section 3.4.3 Professional UNO - UNO Language Bindings - OpenOffice.org Basic -
Type Mappings - Structs above, structs are handled differently from objects, because they are treated
as values. Use the IsUnoStruct () function to check it the UNO Basic object represents an object
or a struct. This function expects one parameter and returns True if this parameter is a UNO struct,
otherwise False. Example:

Sub Main
 Dim bIsStruct
 ' Instantiate a service
 Dim oSimpleFileAccess
 oSimpleFileAccess = CreateUnoService("com.sun.star.ucb.SimpleFileAccess")
 bIsStruct = IsUnoStruct(oSimpleFileAccess)
 MsgBox bIsStruct ' Displays False because oSimpleFileAccess is NO struct
 ' Instantiate a Property struct
 Dim aProperty As New com.sun.star.beans.Property
 bIsStruct = IsUnoStruct(aProperty)
 MsgBox bIsStruct ' Displays True because aProperty is a struct
 bIsStruct = IsUnoStruct(42)
 MsgBox bIsStruct ' Displays False because 42 is NO struct
End Sub

Testing objects for identity during runtime

To find out if two UNO OpenOffice.org Basic objects refer to the same UNO object instance, use
the function EqualUnoObjects(). Basic is not able to apply the comparison operator = to argu-
ments of type object, for example, If Obj1 = Obj2 Then which leads to a runtime error.

Sub Main

 Dim bIdentical
 Dim oSimpleFileAccess, oSimpleFileAccess2, oSimpleFileAccess3
 ' Instantiate a service
 oSimpleFileAccess = CreateUnoService("com.sun.star.ucb.SimpleFileAccess")
 oSimpleFileAccess2 = oSimpleFileAccess ' Copy the object reference
 bIdentical = EqualUnoObjects(oSimpleFileAccess, oSimpleFileAccess2)
 MsgBox bIdentical ' Displays True because the objects are identical
 ' Instantiate the service a second time
 oSimpleFileAccess3 = CreateUnoService("com.sun.star.ucb.SimpleFileAccess")
 bIdentical = EqualUnoObjects(oSimpleFileAccess, oSimpleFileAccess3)
 MsgBox bIdentical ' Displays False, oSimpleFileAccess3 is another instance

 bIdentical = EqualUnoObjects(oSimpleFileAccess, 42)
 MsgBox bIdentical ' Displays False, 42 is not even an object
 ' Instantiate a Property struct
 Dim aProperty As New com.sun.star.beans.Property
 Dim aProperty2
 aProperty2 = aProperty ' Copy the struct
 bIdentical = EqualUnoObjects(aProperty, aProperty2)
 MsgBox bIdentical ' Displays False because structs are values
 ' and so aProperty2 is a copy of aProperty
End Sub

Basic hides interfaces behind OpenOffice.org Basic objects that could lead to problems when devel-
opers are using API structures. It can be difficult to understand the API reference and find the
correct method of accessing an object to reach a certain goal.

To assist during development and debugging, every UNO object in OpenOffice.org Basic has
special properties that provide information about the object structure. These properties are all
prefixed with Dbg_ to emphasize their use for development and debugging purposes. The type of
these properties is String. To display the properties use the MsgBox function.

Inspecting interfaces during debugging

The Dbg_SupportedInterfaces lists all interfaces supported by the object. In the following
example, the object returned by the function GetProcessServiceManager() described in the
previous section is taken as an example object.

 oServiceManager = GetProcessServiceManager()
 MsgBox oServiceManager.Dbg_SupportedInterfaces

151

This call displays a message box:

The list contains all interfaces supported by the object. For interfaces that are derived from other
interfaces, the super interfaces are indented as shown above for com.sun.star.container.XSet,
which is derived from com.sun.star.container.XEnumerationAccess based upon
com.sun.star.container.XElementAccess.

If the text �(ERROR: Not really supported!)� is printed behind an interface name, the implementation of the
object usually has a bug, because the object pretends to support this interface (per
com.sun.star.lang.XTypeProvider, but a query for it fails. For details, see 6.2.3 Advanced UNO -
Language Bindings - UNO Reflection API).

Inspecting properties during debugging

The Dbg_Properties lists all properties supported by the object through
com.sun.star.beans.XPropertySet and through get and set methods that could be mapped to
Basic object properties:

 oServiceManager = GetProcessServiceManager()
 MsgBox oServiceManager.Dbg_Properties

This code produces a message box like the following example:

152 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 3.18: Dbg_SupportedInterfaces
Property

Illustration 3.19: Dbg_Properties

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XElementAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XElementAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XElementAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XSet.html

Inspecting Methods During Debugging

The Dbg_Methods lists all methods supported by an object. Example:
 oServiceManager = GetProcessServiceManager()
 MsgBox oServiceManager.Dbg_Methods

This code displays:

The notations used in Dbg_Properties and Dbg_Methods refer to internal implementation type
names in Basic. The Sbx prefix can be ignored. The remaining names correspond with the normal
Basic type notation. The SbxEMPTY is the same type as Variant. Additional information about
Basic types is available in the next chapter.

Basic uses the com.sun.star.lang.XTypeProvider interface to detect which interfaces an object
supports. Therefore, it is important to support this interface when implementing a component that should be
accessible from Basic. For details, see 4 Writing UNO Components.

Mapping of UNO and Basic Types
Basic and UNO use different type systems. While OpenOffice.orgBasic is compatible to Visual
Basic and its type system, UNO types correspond to the IDL specification (see 3.2.1 Professional
UNO - API Concepts - Data Types), therefore it is necessary to map these two type systems. This
chapter describes which Basic types have to be used for the different UNO types.

Mapping of Simple Types

In general, the OpenOffice.orgBasic type system is not rigid. Unlike C++ and Java,
OpenOffice.orgBasic does not require the declaration of variables, unless the Option Explicit
command is used that forces the declaration. To declare variables, the Dim command is used. Also,
a OpenOffice.orgBasic type can be optionally specified through the Dim command. The general
syntax is:

153

Illustration 3.20: Dbg_Methods

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html

 Dim VarName [As Type][, VarName [As Type]]...

All variables declared without a specific type have the type Variant. Variables of type Variant
can be assigned values of arbitrary Basic types. Undeclared variables are Variant unless type
postfixes are used with their names. Postfixes can be used in Dim commands as well. The following
table contains a complete list of types supported by Basic and their corresponding postfixes:

Type Postfix Range

Boolean True or False
Integer % -32768 to 32767
Long & -2147483648 to 2147483647
Single ! Floating point number

negative: -3.402823E38 to -1.401298E-45
positive: 1.401298E-45 to 3.402823E38

Double # Double precision floating point number
negative: -1.79769313486232E308 to -4.94065645841247E-324
positive: 4.94065645841247E-324 to 1.79769313486232E308

Currency @ Fixed point number with four decimal places
-922,337,203,685,477.5808 to 922,337,203,685,477.5807

Date 01/01/100 to 12/31/9999
Object Basic Object

String $ Character string

Variant arbitrary Basic type

Consider the following Dim examples.
 Dim a, b ' Type of a and b is Variant
 Dim c as Variant ' Type of c is Variant

 Dim d as Integer ' Type of d is Integer (16 bit!)

 ' The type only refers to the preceding variable
 Dim e, f as Double ' ATTENTION! Type of e is Variant!
 ' Only the type of f is Double

 Dim g as String ' Type of g is String

 Dim i as Date ' Type of g is Date

 ' Usage of Postfixes
 Dim i% ' is the same as
 Dim i as Integer

 Dim d# ' is the same as
 Dim d as Double

 Dim s$ ' is the same as
 Dim s as String

The correlation below is used to map types from UNO to Basic and vice versa.

UNO Basic

void internal type

boolean Boolean
byte Integer
short Integer
unsigned short internal type

long Long
unsigned long internal type

154 OpenOffice.org 2.3 Developer's Guide • June 2007

UNO Basic

hyper internal type

unsigned hyper internal type

float Single
double Double
char internal type

string String
type com.sun.star.reflection.XIdlClass
any Variant

The simple UNO type type is mapped to the com.sun.star.reflection.XIdlClass interface to
retrieve type specific information. For further details, refer to 6.2.3 Advanced UNO - Language Bind-
ings - UNO Reflection API.

When UNO methods or properties are accessed, and the target UNO type is known, Basic auto-
matically chooses the appropriate types:
 ' The UNO object oExample1 has a property “Count” of type short
 a% = 42
 oExample1.Count = a% ' a% has the right type (Integer)

 pi = 3,141593
 oExample1.Count = pi ' pi will be converted to short, so Count will become 3

 s$ = “111”
 oExample1.Count = s$ ' s$ will be converted to short, so Count will become 111

Occasionally, OpenOffice.orgBasic does not know the required target type, especially if a param-
eter of an interface method or a property has the type any. In this situation, OpenOffice.orgBasic
mechanically converts the OpenOffice.orgBasic type into the UNO type shown in the table above,
although a different type may be expected. The only mechanism provided by OpenOffice.orgBasic
is an automatic downcast of numeric values:

Long and Integer values are always converted to the shortest possible integer type:

• to byte if -128 <= Value <= 127
• to short if -32768 <= Value <= 32767
The Single/Double values are converted to integers in the same manner if they have no decimal
places.

This mechanism is used, because some internal C++ tools used to implement UNO functionality in
OpenOffice.org provide an automatic upcast but no downcast. Therefore, it can be successful to
pass a byte value to an interface expecting a long value, but not vice versa.

In the following example, oNameCont is an object that supports com.sun.star.container.XName-
Container and contains elements of type short. Assume FirstValue is a valid entry.
 a% = 42
 oNameCount.replaceByName(“FirstValue”, a%) ' Ok, a% is downcasted to type byte

 b% = 123456
 oNameCount.replaceByName(“FirstValue”, b%) ' Fails, b% is outside the short range

The method call fails, therefore the implementation should throw the appropriate exception that is
converted to a OpenOffice.orgBasic error by the OpenOffice.orgBasic RTL. It may happen that an
implementation also accepts unsuitable types and does not throw an exception. Ensure that the
values used are suitable for their UNO target by using numeric values that do not exceed the target
range or converting them to the correct Basic type before applying them to UNO.

155

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/XIdlClass.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/XIdlClass.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/XIdlClass.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/XIdlClass.html

Always use the type Variant to declare variables for UNO Basic objects, not the type Object. The
OpenOffice.orgBasic type Object is tailored for pure OpenOffice.orgBasic objects and not for UNO
OpenOffice.orgBasic objects. The Variant variables are best for UNO Basic objects to avoid prob-
lems that can result from the OpenOffice.orgBasic specific behavior of the type Object:
 Dim oService1 ' Ok
 oService1 = CreateUnoService("com.sun.star.anywhere.Something")

 Dim oService2 as Object ' NOT recommended
 oService2 = CreateUnoService("com.sun.star.anywhere.SomethingElse")

Mapping of Sequences and Arrays

Many UNO interfaces use sequences, as well as simple types. The OpenOffice.orgBasic counterpart
for sequences are arrays. Arrays are standard elements of the Basic language. The example below
shows how they are declared:
 Dim a1(100) ' Variant array, index range: 0-100 -> 101 elements

 Dim a2%(5) ' Integer array, index range: 0-5 -> 6 elements

 Dim a3$(0) ' String array, index range: 0-0 -> 1 element

 Dim a4&(9, 19) ' Long array, index range: (0-9) x (0-19) -> 200 elements

Basic does not have a special index operator like [] in C++ and Java. Array elements are accessed
using normal parentheses ():
 Dim i%, a%(10)
 for i% = 0 to 10 ' this loop initializes the array
 a%(i%) = i%
 next i%

 dim s$
 for i% = 0 to 10 ' this loop adds all array elements to a string
 s$ = s$ + " " + a%(i%)
 next i%
 msgbox s$ ' Displays the string containing all array elements

 Dim b(2, 3)
 b(2, 3) = 23
 b(0, 0) = 0
 b(2, 4) = 24 ' Error ”Subscript out of range”

As the examples show, the indices in Dim commands differ from C++ and Java array declarations.
They do not describe the number of elements, but the largest allowed index. There is one more
array element than the given index. This is important for the mapping of OpenOffice.orgBasic
arrays to UNO sequences, because UNO sequences follow the C++/Java array semantic.

When the UNO API requires a sequence, the Basic programmer uses an appropriate array. In the
following example, oSequenceContainer is an object that has a property TheSequence of type
sequence<short>. To assign a sequence of length 10 with the values 0, 1, 2, ... 9 to this property,
the following code can be used:
 Dim i%, a%(9) ' Maximum index 9 -> 10 elements
 for i% = 0 to 9 ' this loop initializes the array
 a%(i%) = i%
 next i%

 oSequenceContainer.TheSequence = a%()

 ' If “TheSequence” is based on XPropertySet alternatively
 oSequenceContainer.setPropertyValue(“TheSequence”, a%())

The Basic programmer must be aware of the different index semantics during programming. In the
following example, the programmer passed a sequence with one element, but actually passed two
elements:
 ' Pass a sequence of length 1 to the TheSequence property:
 Dim a%(1) ' WRONG: The array has 2 elements, not only 1!
 a%(0) = 3 ' Only Element 0 is initialized,
 ' Element 1 remains 0 as initialized by Dim

 ' Now a sequence with two values (3,0) is passed what

156 OpenOffice.org 2.3 Developer's Guide • June 2007

 ' may result in an error or an unexpected behavior!
 oSequenceContainer.setPropertyValue(“TheSequence”, a%())

When using Basic arrays as a whole for parameters or for property access, they should always be followed
by '()' in the Basic code, otherwise errors may occur in some situations.

It can be useful to use a OpenOffice.orgBasic RTL function called Array() to create, initialize and
assign it to a Variant variable in a single step, especially for small sequences:
 Dim a ' should be declared as Variant
 a = Array(1, 2, 3)

 ' is the same as

 Dim a(2)
 a(0) = 1
 a(1) = 2
 a(2) = 3

Sometimes it is necessary to pass an empty sequence to a UNO interface. In Basic, empty sequences
can be declared by omitting the index from the Dim command:
 Dim a%() ' empty array/sequence of type Integer

 Dim b$() ' empty array/sequence of String

Sequences returned by UNO are also represented in Basic as arrays, but these arrays do not have to
be declared as arrays beforehand. Variables used to accept a sequence should be declared as
Variant. To access an array returned by UNO, it is necessary to get information about the number
of elements it contains with the Basic RTL functions LBound() and UBound().

The function LBound() returns the lower index and UBound() returns the upper index. The
following code shows a loop going through all elements of a returned sequence:
 Dim aResultArray ' should be declared as Variant
 aResultArray = oSequenceContainer.TheSequence

 dim i%, iFrom%, iTo%
 iFrom% = LBound(aResultArray())
 iTo% = UBound(aResultArray())
 for i% = iFrom% to iTo% ' this loop displays all array elements
 msgbox aResultArray(i%)
 next i%

The function LBound() is a standard Basic function and is not specific in a UNO context. Basic
arrays do not necessarily start with index 0, because it is possible to write something similar to:
Dim a (3 to 5)

This causes the array to have a lower index of 3. However, sequences returned by UNO always
have the start index 0. Usually only UBound() is used and the example above can be simplified to:
 Dim aResultArray ' should be declared as Variant
 aResultArray = oSequenceContainer.TheSequence

 Dim i%, iTo%
 iTo% = UBound(aResultArray())
 For i% = 0 To iTo% ' this loop displays all array elements
 MsgBox aResultArray(i%)
 Next i%

The element count of a sequence/array can be calculated easily:
 u% = UBound(aResultArray())
 ElementCount% = u% + 1

For empty arrays/sequences UBound returns -1. This way the semantic of UBound stays consistent
as the element count is then calculated correctly as:
 ElementCount% = u% + 1 ' = -1 + 1 = 0

157

The mapping between UNO sequences and Basic arrays depends on the fact that both use a zero-based
index system. To avoid problems, the syntax
Dim a (IndexMin to IndexMin)
or the Basic command Option Base 1 should not be used. Both cause all Basic arrays to start with an
index other than 0.

UNO also supports sequences of sequences. In Basic, this corresponds with arrays of arrays. Do not
mix up sequences of sequences with multidimensional arrays. In multidimensional arrays, all sub
arrays always have the same number of elements, whereas in sequences of sequences every
element sequence can have a different size. Example:
 Dim aArrayOfArrays ' should be declared as Variant
 aArrayOfArrays = oExample.ShortSequences ' returns a sequence of sequences of short

 Dim i%, NumberOfSequences%
 Dim j%, NumberOfElements%
 Dim aElementArray

 NumberOfSequences% = UBound(aArrayOfArrays()) + 1
 For i% = 0 to NumberOfSequences% - 1 ' loop over all sequences
 aElementArray = aArrayOfArrays(i%)
 NumberOfElements% = UBound(aElementArray()) + 1

 For j% = 0 to NumberOfElements% - 1 ' loop over all elements
 MsgBox aElementArray(j%)
 Next j%
 Next i%

To create an array of arrays in Basic, sub arrays are used as elements of a master array:
 ' Declare master array
 Dim aArrayOfArrays(2)

 ' Declare sub arrays
 Dim aArray0(3)
 Dim aArray1(2)
 Dim aArray2(0)

 ' Initialise sub arrays
 aArray0(0) = 0
 aArray0(1) = 1
 aArray0(2) = 2
 aArray0(3) = 3

 aArray1(0) = 42
 aArray1(1) = 0
 aArray1(2) = -42

 aArray2(0) = 1

 ' Assign sub arrays to the master array
 aArrayOfArrays(0) = aArray0()
 aArrayOfArrays(1) = aArray1()
 aArrayOfArrays(2) = aArray2()

 ' Assign the master array to the array property
 oExample.ShortSequences = aArrayOfArrays()

In this situation, the runtime function Array() is useful. The example code can then be written
much shorter:
 ' Declare master array
 Dim aArrayOfArrays(2)

 ' Create and assign sub arrays
 aArrayOfArrays(0) = Array(0, 1, 2, 3)
 aArrayOfArrays(1) = Array(42, 0, -42)
 aArrayOfArrays(2) = Array(1)

 ' Assign the master array to the array property
 oExample.ShortSequences = aArrayOfArrays()

If you nest Array(), more compact code can be written, but it becomes difficult to understand the
resulting arrays:
 ' Declare master array variable as variant
 Dim aArrayOfArrays

 ' Create and assign master array and sub arrays
 aArrayOfArrays = Array(Array(0, 1, 2, 3), Array(42, 0, -42), Array(1))

158 OpenOffice.org 2.3 Developer's Guide • June 2007

 ' Assign the master array to the array property
 oExample.ShortSequences = aArrayOfArrays()

Sequences of higher order can be handled accordingly.

Mapping of Structs

UNO struct types can be instantiated with the Dim As New command as a single instance and
array.
 ' Instantiate a Property struct
 Dim aProperty As New com.sun.star.beans.Property

 ' Instantiate an array of Locale structs
 Dim Locales(10) As New com.sun.star.lang.Locale

For instantiated polymorphic struct types, there is a special syntax of the Dim As New command,
giving the type as a string literal instead of as a name:
 Dim o As New "com.sun.star.beans.Optional<long>"

The string literal representing a UNO name is built according to the following rules:

• The strings representing the relevant simple UNO types are "boolean", "byte", "short",
"long", "hyper", "float", "double", "char", "string", "type", and "any", respectively.

• The string representing a UNO sequence type is "[]" followed by the string representing the
component type.

• The string representing a UNO enum, plain struct, or interface type is the name of that type.

• The string representing an instantiated polymorphic struct type is the name of the polymorphic
struct type template, followed by "<", followed by the representations of the type arguments
(separated from one another by ","), followed by ">".

No spurious spaces or other characters may be introduced into these string representations.

UNO struct instances are handled like UNO objects. Struct members are accessed using the . oper-
ator. The Dbg_Properties property is supported. The properties Dbg_SupportedInterfaces and
Dbg_Methods are not supported because they do not apply to structs.:
 ' Instantiate a Locale struct
 Dim aLocale As New com.sun.star.lang.Locale

 ' Display properties
 MsgBox aLocale.Dbg_Properties

 ' Access “Language” property
 aLocale.Language = "en"

Objects and structs are different. Objects are handled as references and structs as values. When
structs are assigned to variables, the structs are copied. This is important when modifying an object
property that is a struct, because a struct property has to be reassigned to the object after reading
and modifying it.

In the following example, oExample is an object that has the properties MyObject and MyStruct.

• The object provided by MyObject supports a string property ObjectName.

• The struct provided by MyStruct supports a string property StructName.

Both oExample.MyObject.ObjectName and oExample.MyStruct.StructName should be modi-
fied. The following code shows how this is done for an object:
 ' Accessing the object
 Dim oObject
 oObject = oExample.MyObject
 oObject.ObjectName = “Tim” ' Ok!

159

 ' or shorter

 oExample.MyObject.ObjectName = “Tim” ' Ok!

The following code shows how it is done correctly for the struct (and possible mistakes):
 ' Accessing the struct
 Dim aStruct
 aStruct = oExample.MyStruct ' aStruct is a copy of oExample.MyStruct!
 aStruct.StructName = “Tim” ' Affects only the property of the copy!

 ' If the code ended here, oExample.MyStruct wouldn't be modified!

 oExample.MyStruct = aStruct ' Copy back the complete struct! Now it's ok!

 ' Here the other variant does NOT work at all, because
 ' only a temporary copy of the struct is modified!
 oExample.MyStruct.StructName = “Tim” ' WRONG! oExample.MyStruct is not modified!

Mapping of Enums and Constant Groups

Use the fully qualified names to address the values of an enum type by their names. The following
examples assume that oExample and oExample2 support com.sun.star.beans.XPropertySet
with a property Status of the enum type com.sun.star.beans.PropertyState:
 Dim EnumValue
 EnumValue = com.sun.star.beans.PropertyState.DEFAULT_VALUE
 MsgBox EnumValue ' displays 1

 eExample.Status = com.sun.star.beans.PropertyState.DEFAULT_VALUE

Basic does not support Enum types. In Basic, enum values coming from UNO are converted to
Long values. As long as Basic knows if a property or an interface method parameter expects an
enum type, then the Long value is internally converted to the right enum type. Problems appear
with Basic when interface access methods expect an Any:
 Dim EnumValue
 EnumValue = oExample.Status ' EnumValue is of type Long

 ' Accessing the property implicitly
 oExample2.Status = EnumValue ' Ok! EnumValue is converted to the right enum type

 ' Accessing the property explicitly using XPropertySet methods
 oExample2.setPropertyValue(“Status”, EnumValue) ' WRONG! Will probably fail!

The explicit access could fail, because EnumValue is passed as parameter of type Any to setProp-
ertyValue(), therefore Basic does not know that a value of type PropertyState is expected. There
is still a problem, because the Basic type for com.sun.star.beans.PropertyState is Long. This
problem is solved in the implementation of the com.sun.star.beans.XPropertySet interface. For
enum types, the implicit property access using the Basic property syntax Object.Property is
preferred to calling generic methods using the type Any. In situations where only a generic inter-
face method that expects an enum for an Any, there is no solution for Basic.

Constant groups are used to specify a set of constant values in IDL. In Basic, these constants can be
accessed using their fully qualified names. The following code displays some constants from
com.sun.star.beans.PropertyConcept:
 MsgBox com.sun.star.beans.PropertyConcept.DANGEROUS ' Displays 1
 MsgBox com.sun.star.beans.PropertyConcept.PROPERTYSET ' Displays 2

A constant group or enum can be assigned to an object. This method is used to shorten code if
more than one enum or constant value has to be accessed:
 Dim oPropConcept
 oPropConcept = com.sun.star.beans.PropertyConcept
 msgbox oPropConcept.DANGEROUS ' Displays 1
 msgbox oPropConcept.PROPERTYSET ' Displays 2

160 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyConcept.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyConcept.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyConcept.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyState.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyState.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyState.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyState.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyState.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyState.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html

Case Sensitivity
Generally Basic is case insensitive. However, this does not always apply to the communication
between UNO and Basic. To avoid problems with case sensitivity write the UNO related code as if
Basic was case sensitive. This facilitates the translation of a Basic program to another language, and
Basic code becomes easier to read and understand. The following discusses problems that might
occur.

Identifiers that differ in case are considered to be identical when they are used with UNO object
properties, methods and struct members.
 Dim ALocale As New com.sun.star.lang.Locale
 alocale.language = "en" ' Ok
 MsgBox aLocale.Language ' Ok

The exceptions to this is if a Basic property is obtained through com.sun.star.container.XName-
Access as described above, its name has to be written exactly as it is in the API reference. Basic
uses the name as a string parameter that is not interpreted when accessing
com.sun.star.container.XNameAccess using its methods.

' oNameAccessible is an object that supports XNameAccess
 ' including the names “Value1”, “Value2”
 x = oNameAccessible.Value1 ' Ok
 y = oNameAccessible.VaLUe2 ' Runtime Error, Value2 is not written correctly

 ' is the same as

 x = oNameAccessible.getByName(“Value1”) ' Ok
 y = oNameAccessible.getByName(“VaLUe2”) ' Runtime Error, Value2 is not written correctly

Exception Handling
Unlike UNO, Basic does not support exceptions. All exceptions thrown by UNO are caught by the
Basic runtime system and transformed to a Basic error. Executing the following code results in a
Basic error that interrupts the code execution and displays an error message:
 Sub Main
 Dim oLib
 oLib = BasicLibraries.getByName("InvalidLibraryName")
 End Sub

The BasicLibraries object used in the example contains all the available Basic libraries in a
running office instance. The Basic libraries contained in BasicLibraries is accessed using
com.sun.star.container.XNameAccess. An exception was provoked by trying to obtain a non-
existing library. The BasicLibraries object is explained in more detail in 12.4 OpenOffice.org Basic
and Dialogs - Advanced Library Organization.

The call to getByName() results in this error box:

However, the Basic runtime system is not always able to recognize the Exception type. Sometimes
only the exception message can be displayed that has to be provided by the object implementation.

161

Illustration 3.21: Unhandled UNO Exception

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html

Exceptions transformed to Basic errors can be handled just like any Basic error using the On Error
GoTo command:
 Sub Main
 On Error Goto ErrorHandler ' Enables error handling

 Dim oLib
 oLib = BasicLibraries.getByName("InvalidLibraryName")
 MsgBox "After the Error"
 Exit Sub

 ' Label
 ErrorHandler:
 MsgBox "Error code: " + Err + Chr$(13) + Error$
 Resume Next ' Continues execution at the command following the error command
 End Sub

When the exception occurs, the execution continues at the ErrorHandler label. In the error
handler, some properties are used to get information about the error. The Err is the error code that
is 1 for UNO exceptions. The Error$ contains the text of the error message. Executing the program
results in the following output:

Another message box �After the Error� is displayed after the above dialog box, because Resume
Next goes to the code line below the line where the exception was thrown. The Exit Sub
command is required so that the error handler code would be executed again.

Listeners
Many interfaces in UNO are used to register listener objects implementing special listener inter-
faces, so that a listener gets feedback when its appropriate listener methods are called.
OpenOffice.org Basic does not support the concept of object implementation, therefore a special
RTL function named CreateUnoListener() has been introduced. It uses a prefix for method
names that can be called back from UNO. The CreateUnoListener() expects a method name
prefix and the type name of the desired listener interface. It returns an object that supports this
interface that can be used to register the listener.

The following example instantiates an com.sun.star.container.XContainerListener. Note the
prefix ContListener_:
 Dim oListener
 oListener = CreateUnoListener("ContListener_", "com.sun.star.container.XContainerListener")

The next step is to implement the listener methods. In this example, the listener interface has the
following methods:

Methods of com.sun.star.container.XContainerListener
disposing() Method of the listener base interface com.sun.star.lang.XEventListener,

contained in every listener interface, because all listener interfaces must be
derived from this base interface. Takes a com.sun.star.lang.EventObject

elementInserted() Method of interface com.sun.star.container.XContainerListener.
Takes a com.sun.star.container.ContainerEvent.

162 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 3.22: Handled UNO Exception

http://api.openoffice.org/docs/common/ref/com/sun/star/container/ContainerEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/ContainerEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/ContainerEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html

Methods of com.sun.star.container.XContainerListener
elementRemoved() Method of interface com.sun.star.container.XContainerListener.

Takes a com.sun.star.container.ContainerEvent.

elementReplaced() Method of interface com.sun.star.container.XContainerListener.
Takes a com.sun.star.container.ContainerEvent.

In the example, ContListener_ is specified as a name prefix, therefore the following subs have to
be implemented in Basic.

• ContListener_disposing
• ContListener_elementInserted
• ContListener_elementRemoved
• ContListener_elementReplaced
Every listener type has a corresponding Event struct type that contains information about the
event. When a listener method is called, an instance of this Event type is passed as a parameter. In
the Basic listener methods these Event objects can be evaluated by adding an appropriate Variant
parameter to the procedure header. The following code shows how the listener methods in the
example could be implemented:
 Sub ContListener_disposing(oEvent)
 MsgBox "disposing"
 MsgBox oEvent.Dbg_Properties
 End Sub

 Sub ContListener_elementInserted(oEvent)
 MsgBox "elementInserted"
 MsgBox oEvent.Dbg_Properties
 End Sub

 Sub ContListener_elementRemoved(oEvent)
 MsgBox "elementRemoved"
 MsgBox oEvent.Dbg_Properties
 End Sub

 Sub ContListener_elementReplaced(oEvent)
 MsgBox "elementReplaced"
 MsgBox oEvent.Dbg_Properties
 End Sub

It is necessary to implement all listener methods, including the listener methods of the parent inter-
faces of a listener. Basic runtime errors will occur whenever an event occurs and no corresponding
Basic sub is found, especially with disposing(), because the broadcaster might be destroyed a
long time after the Basic program was ran. In this situation, Basic shows a "Method not found"
message. There is no indication of which method cannot be found or why Basic is looking for a
method.

We are listening for events at the basic library container. Our simple implementation for events
triggered by user actions in the Tools - Macro - Organizer dialog displays a message box with the
corresponding listener method name and a message box with the Dbg_Properties of the event
struct. For the disposing() method, the type of the event object is com.sun.star.lang.EventOb-
ject. All other methods belong to com.sun.star.container.XContainerListener, therefore the
type of the event object is com.sun.star.container.ContainerEvent. This type is derived from
com.sun.star.lang.EventObject and contains additional container related information.

If the event object is not needed, the parameter could be left out of the implementation. For
example, the disposing() method could be:
 ' Minimal implementation of Sub disposing
 Sub ContListener_disposing
 End Sub

The event objects passed to the listener methods can be accessed like other struct objects. The
following code shows an enhanced implementation of the elementRemoved() method that evalu-

163

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/ContainerEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/ContainerEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/ContainerEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/ContainerEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/ContainerEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/ContainerEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/ContainerEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/ContainerEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/ContainerEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html

ates the com.sun.star.container.ContainerEvent to display the name of the module removed
from Library1 and the module source code:
 sub ContListener_ElementRemoved(oEvent)
 MsgBox "Element " + oEvent.Accessor + " removed"
 MsgBox "Source =" + Chr$(13) + Chr$(13) + oEvent.Element
 End Sub

When the user removes Module1, the following message boxes are displayed by
ContListener_ElementRemoved():

When all necessary listener methods are implemented, add the listener to the broadcaster object by
calling the appropriate add method. To register an XContainerListener, the corresponding regis-
tration method at our container is addContainerListener():
 Dim oLib
 oLib = BasicLibraries.Library1 ' Library1 must exist!
 oLib.addContainerListener(oListener) ' Register the listener

The naming scheme XSomeEventListener <> addSomeEventListener() is used throughout the
OpenOffice.org API.

The listener for container events is now registered permanently. When a container event occurs,
the container calls the appropriate method of the com.sun.star.container.XContainerLis-
tener interface in our Basic code.

3.4.4 Automation Bridge

Introduction
The OpenOffice.org software supports Microsoft's Automation technology. This offers program-
mers the possibility to control the office from external programs. There is a range of efficient IDEs
and tools available for developers to choose from.

Automation is language independent. The respective compilers or interpreters must, however,
support Automation. The compilers transform the source code into Automation compatible
computing instructions. For example, the string and array types of your language can be used
without caring about their internal representation in Automation, which is BSTR and SAFEARRAY. A
client program that controls OpenOffice.org can be represented by an executable (Visual Basic, C+
+) or a script (JScript, VB Script). The latter requires an additional program to run the scripts, such
as Windows Scripting Host (WSH) or Internet Explorer.

UNO was not designed to be compatible with Automation and COM, although there are similari-
ties. OpenOffice.org deploys a bridging mechanism provided by the Automation Bridge to make

164 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 3.23: ContListener_ElementRemoved Event Callback

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/ContainerEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/ContainerEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/ContainerEvent.html

UNO and Automation work together. The bridge consists of UNO services, however, it is not
necessary to have a special knowledge about them to write Automation clients for OpenOffice.org.
For additional information, refer to (see 3.4.4 Professional UNO - UNO Language Bindings - Automa-
tion Bridge - The Bridge Services).

Different languages have different capabilities. There are differences in the manner that the same
task is handled, depending on the language used. Examples in Visual Basic, VB Script and JScript
are provided. They will show when a language requires special handling or has a quality to be
aware of. Although Automation is supposed to work across languages, there are subtleties that
require a particular treatment by the bridge or a style of coding. For example, JScript does not
know out parameters, therefore Array objects have to be used. Currently, the bridge has been
tested with C++, JScript, VBScript and Visual Basic, although other languages can be used as well.

The name Automation Bridge implies the use of the Automation technology. Automation is part of
the collection of technologies commonly referred to as ActiveX or OLE, therefore the term OLE
Bridge is misleading and should be avoided. Sometimes the bridge is called COM bridge, which is
also wrong, since the only interfaces which are processed by the bridge are IUnknown and IDis-
patch.

Requirements
The Automation technology can only be used with OpenOffice.org on a Windows platform
(Windows 95, 98, NT4, ME, 2000, XP). There are COM implementations on Macintosh OS and
UNIX, but there has been no effort to support Automation on these platforms.

Using Automation involves creating objects in a COM-like fashion, that is, using functions like
CreateObject() in VB or CoCreateInstance() in C. This requires the OpenOffice.org automa-
tion objects to be registered with the Windows system registry. This registration is carried out
whenever an office is installed on the system. If the registration did not take place, for example
because the binaries were just copied to a certain location, then Automation clients will not work
correctly or not at all. Refer to 3.4.4 Professional UNO - UNO Language Bindings - Automation Bridge -
The Service Manager Component for additional information.

A Quick Tour
The following example shows how to access OpenOffice.org functionality through Automation.
Note the inline comments. The only automation specific call is WScript.CreateObject() in the
first line, the remaining are OpenOffice.org API calls. The helper functions createStruct() and
insertIntoCell() are shown at the end of the listing
'This is a VBScript example
'The service manager is always the starting point
'If there is no office running then an office is started up
Set objServiceManager= WScript.CreateObject("com.sun.star.ServiceManager")
'Create the CoreReflection service that is later used to create structs
Set objCoreReflection= objServiceManager.createInstance("com.sun.star.reflection.CoreReflection")

'Create the Desktop
Set objDesktop= objServiceManager.createInstance("com.sun.star.frame.Desktop")

'Open a new empty writer document
Dim args()
Set objDocument= objDesktop.loadComponentFromURL("private:factory/swriter", "_blank", 0, args)

'Create a text object
Set objText= objDocument.getText

'Create a cursor object
Set objCursor= objText.createTextCursor

'Inserting some Text

165

objText.insertString objCursor, "The first line in the newly created text document." & vbLf, false

'Inserting a second line
objText.insertString objCursor, "Now we're in the second line", false

'Create instance of a text table with 4 columns and 4 rows
Set objTable= objDocument.createInstance("com.sun.star.text.TextTable")
objTable.initialize 4, 4

'Insert the table
objText.insertTextContent objCursor, objTable, false

'Get first row
Set objRows= objTable.getRows
Set objRow= objRows.getByIndex(0)

'Set the table background color
objTable.setPropertyValue "BackTransparent", false
objTable.setPropertyValue "BackColor", 13421823

'Set a different background color for the first row
objRow.setPropertyValue "BackTransparent", false
objRow.setPropertyValue "BackColor", 6710932

'Fill the first table row
insertIntoCell "A1","FirstColumn", objTable // insertIntoCell is a helper function, see below
insertIntoCell "B1","SecondColumn", objTable
insertIntoCell "C1","ThirdColumn", objTable
insertIntoCell "D1","SUM", objTable

objTable.getCellByName("A2").setValue 22.5
objTable.getCellByName("B2").setValue 5615.3
objTable.getCellByName("C2").setValue -2315.7
objTable.getCellByName("D2").setFormula"sum "

objTable.getCellByName("A3").setValue 21.5
objTable.getCellByName("B3").setValue 615.3
objTable.getCellByName("C3").setValue -315.7
objTable.getCellByName("D3").setFormula "sum "

objTable.getCellByName("A4").setValue 121.5
objTable.getCellByName("B4").setValue -615.3
objTable.getCellByName("C4").setValue 415.7
objTable.getCellByName("D4").setFormula "sum "

'Change the CharColor and add a Shadow
objCursor.setPropertyValue "CharColor", 255
objCursor.setPropertyValue "CharShadowed", true

'Create a paragraph break
'The second argument is a com::sun::star::text::ControlCharacter::PARAGRAPH_BREAK constant
objText.insertControlCharacter objCursor, 0 , false

'Inserting colored Text.
objText.insertString objCursor, " This is a colored Text - blue with shadow" & vbLf, false

'Create a paragraph break (ControlCharacter::PARAGRAPH_BREAK).
objText.insertControlCharacter objCursor, 0, false

'Create a TextFrame.
Set objTextFrame= objDocument.createInstance("com.sun.star.text.TextFrame")

'Create a Size struct.
Set objSize= createStruct("com.sun.star.awt.Size") // helper function, see below
objSize.Width= 15000
objSize.Height= 400
objTextFrame.setSize(objSize)

' TextContentAnchorType.AS_CHARACTER = 1
objTextFrame.setPropertyValue "AnchorType", 1

'insert the frame
objText.insertTextContent objCursor, objTextFrame, false

'Get the text object of the frame
Set objFrameText= objTextFrame.getText

'Create a cursor object
Set objFrameTextCursor= objFrameText.createTextCursor

'Inserting some Text
objFrameText.insertString objFrameTextCursor, "The first line in the newly created text frame.", _
false
objFrameText.insertString objFrameTextCursor, _
vbLf & "With this second line the height of the frame raises.", false

'Create a paragraph break

166 OpenOffice.org 2.3 Developer's Guide • June 2007

'The second argument is a com::sun::star::text::ControlCharacter::PARAGRAPH_BREAK constant
objFrameText.insertControlCharacter objCursor, 0 , false

'Change the CharColor and add a Shadow
objCursor.setPropertyValue "CharColor", 65536
objCursor.setPropertyValue "CharShadowed", false

'Insert another string
objText.insertString objCursor, " That's all for now !!", false

On Error Resume Next
 If Err Then
 MsgBox "An error occurred"
End If

Sub insertIntoCell(strCellName, strText, objTable)
 Set objCellText= objTable.getCellByName(strCellName)
 Set objCellCursor= objCellText.createTextCursor
 objCellCursor.setPropertyValue "CharColor",16777215
 objCellText.insertString objCellCursor, strText, false
End Sub

Function createStruct(strTypeName)
 Set classSize= objCoreReflection.forName(strTypeName)
 Dim aStruct
 classSize.createObject aStruct
 Set createStruct= aStruct
End Function

This script created a new document and started the office, if necessary. The script also wrote text,
created and populated a table, used different background and pen colors. Only one object is
created as an ActiveX component called com.sun.star.ServiceManager. The service manager is
then used to create additional objects which in turn provided other objects. All those objects
provide functionality that can be used by invoking the appropriate functions and properties. A
developer must learn which objects provide the desired functionality and how to obtain them. The
chapter 2 First Steps introduces the main OpenOffice.org objects available to the programmer.

The Service Manager Component

Instantiation

The service manager is the starting point for all Automation clients. The service manager requires
to be created before obtaining any UNO object. Since the service manager is a COM component, it
has a CLSID and a programmatic identifier which is com.sun.star.ServiceManager. It is instanti-
ated like any ActiveX component, depending on the language used:
//C++
IDispatch* pdispFactory= NULL;
CLSID clsFactory= {0x82154420,0x0FBF,0x11d4,{0x83, 0x13,0x00,0x50,0x04,0x52,0x6A,0xB4}};
hr= CoCreateInstance(clsFactory, NULL, CLSCTX_ALL, __uuidof(IDispatch), (void**)&pdispFactory);

In Visual C++, use classes which facilitate the usage of COM pointers. If you use the Active
Template Library (ATL), then the following example looks like this:
CComPtr<IDispatch> spDisp;
if(SUCCEEDED(spDisp.CoCreateInstance("com.sun.star.ServiceManager")))
{
 // do something
}

JScript:
var objServiceManager= new ActiveXObject("com.sun.star.ServiceManager");

Visual Basic:
Dim objManager As Object
Set objManager= CreateObject("com.sun.star.ServiceManager")

VBScript with WSH:
Set objServiceManager= WScript.CreateObject("com.sun.star.ServiceManager")

167

JScript with WSH:
var objServiceManager= WScript.CreateObject("com.sun.star.ServiceManager");

The service manager can also be created remotely, that is. on a different machine, taking the secu-
rity aspects into account. For example, set up launch and access rights for the service manager in
the system registry (see �DCOM�).

The code for the service manager resides in the office executable soffice.exe. COM starts up the
executible whenever a client tries to obtain the class factory for the service manager, so that the
client can use it.

Registry Entries

For the instantiation to succeed, the service manager must be properly registered with the system
registry. The keys and values shown in the tables below are all written during setup. It is not
necessary to edit them to use the Automation capability of the office. Automation works immedi-
ately after installation. There are three different keys under HKEY_CLASSES_ROOT that have the
following values and subkeys:

Key Value
CLSID\{82154420-0FBF-11d4-8313-005004526AB4} "StarOffice Service Manager (Ver 1.0)"
Sub Keys
LocalServer32 "<OfficePath>\program\soffice.exe”
NotInsertable
ProgIDcom.sun.star.ServiceManager.1 "com.sun.star.ServiceManager.1"
Programmable
VersionIndependentProgID "com.sun.star.ServiceManager"

Key Value
com.sun.star.ServiceManager "StarOffice Service Manager"
Sub Keys
CLSID "{82154420-0FBF-11d4-8313-005004526AB4}"
CurVer "com.sun.star.ServiceManager.1"

Key Value
com.sun.star.ServiceManager.1 "StarOffice Service Manager (Ver 1.0)"
Sub Keys
CLSID "{82154420-0FBF-11d4-8313-005004526AB4}"

The value of the key CLSID\{82154420-0FBF-11d4-8313-005004526AB4}\LocalServer32
reflects the path of the office executable.

All keys have duplicates under HKEY_LOCAL_MACHINE\SOFTWARE\Classes\.

The service manager is an ActiveX component, but does not support self-registration. That is, the
office does not support the command line arguments -RegServer or -UnregServer.
The service manager, as well as all the objects that it creates and that originate from it indirectly as
return values of function calls are proper automation objects. They can also be accessed remotely
through DCOM.

168 OpenOffice.org 2.3 Developer's Guide • June 2007

From UNO Objects to Automation Objects

The service manager is based on the UNO service manager and similar to all other UNO compo-
nents, is not compatible with Automation. The service manager can be accessed through the COM
API, because the service manager is an Active X component contained in an executable that is the
OpenOffice.org. When a client creates the service manager, for example by calling
CreateObject(), and the office is not running, it is started up by the COM system. The office then
creates a class factory for the service manager and registers it with COM. At that point, COM uses
the factory to instantiate the service manager and return it to the client.

When the function IClassFactory::CreateInstance is called, the UNO service manager is
converted into an Automation object. The actual conversion is carried out by the UNO service
com.sun.star.bridge.oleautomation.BridgeSupplier (see 3.4.4 Professional UNO - UNO
Language Bindings - Automation Bridge - The Bridge Services). The resulting Automation object
contains the UNO object and translates calls to IDispatch::Invoke into calls to the respective
UNO interface function. The supplied function arguments, as well as the return values of the UNO
function are converted according to the defined mappings (see 3.4.4 Professional UNO - UNO
Language Bindings - Automation Bridge - Type Mappings). Returned objects are converted into Auto-
mation objects, so that all objects obtained are always proper Automation objects.

Using UNO from Automation
With the IDL descriptions and documentation, start writing code that uses an interface. This
requires knowledge about the programming language, especially how UNO interfaces can be
accessed in that language and how function calls work.

In some languages, such as C++, the use of interfaces and their functions is simple, because the IDL
descriptions map well with the respective C++ counterparts. For example, the syntax of functions
are similar, and interfaces and out parameters can also be realized. The C++ language is not the
best choice for Automation, because all interface calls have to use IDispatch, which is difficult to
use in C++. In other languages, such as VB and JScript, the IDispatch interface is hidden behind
an object syntax that leads to shorter and more understandable code.

Different interfaces can have functions with the same name. There is no way to call a function
which belongs to a particular interface, because interfaces can not be requested in Automation . If a
UNO object provides two functions with the same name, it is undefined which function will be
called. A solution for this issue is planned for the future.

Not all languages treat method parameters in the same manner, especially when it comes to input
parameters that are reused as output parameters. From the perspective of a VB programmer an out
parameter does not look different from an in parameter. However, to realize out parameters in
Jscript, use an Array or Value Object that is a special construct provided by the Automation
bridge. JScript does not support out parameters through calls by reference.

Calling Functions and Accessing Properties

The essence of Automation objects is the IDispatch interface. All function calls, including the
access to properties, ultimately require a call to IDispatch::Invoke. When using C++, the use of
IDispatch is rather cumbersome. For example, the following code calls
createInstance("com.sun.star.reflection.CoreReflection"):

OLECHAR* funcname = L”createInstance”;
DISPID id;
IDispatch* pdispFactory= NULL;
CLSID clsFactory= {0x82154420,0x0FBF,0x11d4,{0x83, 0x13,0x00,0x50,0x04,0x52,0x6A,0xB4}};
HRESULT hr= CoCreateInstance(clsFactory, NULL, CLSCTX_ALL, __uuidof(IDispatch), (void**)&pdispFactory);

169

http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/BridgeSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/BridgeSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/BridgeSupplier.html

if(SUCCEEDED(pdispFactory->GetIDsOfNames(IID_NULL, &funcName, 1, LOCALE_USER_DEFAULT, &id)))
{
 VARIANT param1;
 VariantInit(¶m1);
 param1.vt= VT_BSTR;
 param1.bstrVal= SysAllocString(L"com.sun.star.reflection.CoreReflection");
 DISPPARAMS dispparams= { ¶m1, 0, 1, 0};
 VARIANT result;
 VariantInit(&result);
 hr= pdispFactory->Invoke(id, IID_NULL, LOCALE_USER_DEFAULT, DISPATCH_METHOD,
 &dispparams, &result, NULL, 0);
}

First the COM ID for the method name createInstance() is retrieved from GetIdsOfNames, then
the ID is used to invoke() the method createInstance().
Before calling a certain function on the IDispatch interface, get the DISPID by calling GetIDsOf-
Names. The DISPIDs are generated by the bridge, as required. There is no fixed mapping from
member names to DISPIDs, that is, the DISPID for the same function of a second instance of an
object might be different. Once a DISPID is created for a function or property name, it remains the
same during the lifetime of this object.

Helper classes can make it easier. The next example shows the same call realized with helper
classes from the Active Template Library:

CComDispatchDriver spDisp(pdispFactory);
CComVariant param(L“com.sun.star.reflection.CoreReflection“);
CComVariant result;
hr= spUnk.Invoke1(L“createInstance“,param, result);

Some frameworks allow the inclusion of COM type libraries that is an easier interface to Automa-
tion objects during development. These helpers cannot be used with UNO, because the SDK does
not provide COM type libraries for UNO components. While COM offers various methods to
invoke functions on COM objects, UNO supports IDispatch only.

Programming of Automation objects is simpler with VB or JScript, because the IDispatch interface
is hidden and functions can be called directly. Also, there is no need to wrap the arguments into
VARIANTs.
//VB
Dim objRefl As Object
Set objRefl= dispFactory.createInstance(“com.sun.star.reflection.CoreReflection”)

//JScript
var objRefl= dispFactory.createInstance(“com.sun.star.reflection.CoreReflection”);

Pairs of get/set functions following the pattern
SomeType getSomeProperty()
void setSomeProperty(SomeType aValue)

are handled as COM object properties.

Accessing such a property in C++ is similar to calling a method. First, obtain a DISPID, then call
IDispatch::Invoke with the proper arguments.
 DISPID dwDispID;
 VARIANT value;
 VariantInit(&value);
 OLECHAR* name= L“AttrByte“;
 HRESULT hr = pDisp->GetIDsOfNames(IID_NULL, &name, 1, LOCALE_USER_DEFAULT, &dwDispID);
 if (SUCCEEDED(hr))
 {
 // Get the property
 DISPPARAMS dispparamsNoArgs = {NULL, NULL, 0, 0};
 pDisp->Invoke(dwDispID, IID_NULL,LOCALE_USER_DEFAULT, DISPATCH_PROPERTYGET,
 &dispparamsNoArgs, &value, NULL, NULL);
 // The VARIANT value contains the value of the property

 // Sset the property
 VARIANT value2;
 VariantInit(value2);
 value2.vt= VT_UI1;
 value2.bval= 10;

170 OpenOffice.org 2.3 Developer's Guide • June 2007

 DISPPARAMS disparams;
 dispparams.rgvarg = &value2;
 DISPID dispidPut = DISPID_PROPERTYPUT;
 dispparams.rgdispidNamedArgs = &dispidPut;
 pDisp->Invoke(dwDispID, IID_NULL,LOCALE_USER_DEFAULT, DISPATCH_PROPERTYPUT,
 &dispparams, NULL, NULL, NULL);
 }

When the property is an IUnknown*,IDispatch*, or SAFEARRAY*, the flag
DISPATCH_PROPERTYPUTREF must be used. This is also the case when a value is passed by reference
(VARIANT.vt = VT_BYREF | ...).

The following example shows using the ATL helper it looks simple:
CComVariant prop;
CComDispatchDriver spDisp(pDisp);
// get the property
spDisp.GetPropertyByName(L“AttrByte“,&prop);
//set the property
CComVariant newVal((BYTE) 10);
spDisp.PutPropertyByName(L“AttrByte“,&newVal);

The following example using VB and JScript it is simpler:
//VB
Dim prop As Byte
prop= obj.AttrByte

Dim newProp As Byte
newProp= 10
obj.AttrByte= newProp
'or
obj.AttrByte= 10

//JScript
var prop= obj.AttrByte;
obj.AttrByte= 10;

Service properties are not mapped to COM object properties. Use interfaces, such as
com.sun.star.beans.XPropertySet to work with service properties.

Return Values

There are three possible ways to return values in UNO:

• function return values

• inout parameters

• out parameters

Return values are commonplace in most languages, whereas inout and out parameters are not
necessarily supported. For example, in JScript.

To receive a return value in C++ provide a VARIANT argument to IDispatch::Invoke:
 //UNO IDL
long func();

//
 DISPPARAMS dispparams= { NULL, 0, 0, 0};
 VARIANT result;
 VariantInit(&result);
 hr= pdisp->Invoke(dispid, IID_NULL, LOCALE_USER_DEFAULT, DISPATCH_METHOD,
 &dispparams, &result, NULL, 0);

The following example shows using VB and JScript this is simple:
//VB
Dim result As Long
result= obj.func

//JScript
var result= obj.func

171

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html

When a function has inout parameters then provide arguments by reference in C++:
//UNO IDL
void func([inout] long val);

//C++
long longOut= 10;
VARIANT var;
VariantInit(&var);
var.vt= VT_BYREF | VT_I4;
var.plVal= &longOut;

DISPPARAMS dispparams= { &var, 0, 1, 0};
hr= pdisp->Invoke(dispid, IID_NULL, LOCALE_USER_DEFAULT, DISPATCH_METHOD,
 &dispparams, NULL, NULL, 0);

//The value of longOut will be modified by UNO function.

The above VB code is written like this, because VB uses call by reference by default. After the call
to func(), value contains the function output:
Dim value As Long
value= 10
obj.func value

The type of argument corresponds to the UNO type according to the default mapping, cf . 3.4.4
Professional UNO - UNO Language Bindings - Automation Bridge - Type Mappings. If in doubt, use
VARIANTs.
Dim value As Variant
value= 10;
obj.func value

However, there is one exception. If a function takes a character (char) as an argument and is called
from VB, use an Integer, because there is no character type in VB. For convenience, the COM
bridge also accepts a String as inout and out parameter:
//VB
Dim value As String
// string must contain only one character
value= "A"
Dim ret As String
obj.func value

JScript does not have inout or out parameters. As a workaround, the bridge accepts JScript Array
objects. Index 0 contains the value.
// Jscript
var inout= new Array();
inout[0]=123;
obj.func(inout);
var value= inout[0];

Out parameters are similar to inout parameters in that the argument does not need to be initial-
ized.
//C++
long longOut;
VARIANT var;
VariantInit(&var);
var.vt= VT_BYREF | VT_I4;
var.plVal= &longOut;

DISPPARAMS dispparams= { &var, 0, 1, 0};
hr= pdisp->Invoke(dispid, IID_NULL, LOCALE_USER_DEFAULT, DISPATCH_METHOD,
 &dispparams, NULL, NULL, 0);

//VB
Dim value As Long
obj.func value

//JScript
var out= new Array();
obj.func(out);
var value= out[0];

172 OpenOffice.org 2.3 Developer's Guide • June 2007

Usage of Types

Interfaces

Many UNO interface functions take interfaces as arguments. If this is the case, there are three
possibilities to get an instance that supports the needed interface:

• Ask the service manager to create a service that implements that interface.

• Call a function on a UNO object that returns that particular interface.

• Provide an interface implementation if a listener object is required. Refer to 3.4.4 Professional
UNO - UNO Language Bindings - Automation Bridge - Automation Objects with UNO Interfaces for
additional information.

If createInstance() is called on the service manager or another UNO function that returns an
interface, the returned object is wrapped, so that it appears to be a COM dispatch object. When it is
passed into a call to a UNO function then the original UNO object is extracted from the wrapper
and the bridge makes sure that the proper interface is passed to the function. If UNO objects are
used, UNO interfaces do not have to be dealt with. Ensure that the object obtained from a call to a
UNO object implements the proper interface before it is passed back into another UNO call.

Structs

Automation does not know about structs as they exist in other languages, for example, in C++.
Instead, it uses Automation objects that contain a set of properties similar to the fields of a C++
struct. Setting or reading a member ultimately requires a call to IDispatch::Invoke. However in
languages, such as VB, VBScript, and JScript, the interface call is obscured by the programming
language. Accessing the properties is as easy as with C++ structs.
// VB. obj is an object that implements a UNO struct
obj.Width= 100
obj.Height= 100

Whenever a UNO function requires a struct as an argument, the struct must be obtained from the
UNO environment. It is not possible to declare a struct. For example, assume there is an office
function setSize() that takes a struct of type Size. The struct is declared as follows:
// UNO IDL
struct Size
{
 long Width;
 long Height;
}

// the interface function, that will be called from script
void XShape::setSize(Size aSize)

You cannot write code similar to the following example (VBScript):
Class Size
 Dim Width
 Dim Height
End Class

'obtain object that implements Xshape

'now set the size
call objXShape.setSize(new Size) // wrong

The com.sun.star.reflection.CoreReflection service or the Bridge_GetStruct function that
is called on the service manager object can be used to create the struct. The following example uses
the CoreReflection service
'VBScript in Windows Scripting Host
Set objServiceManager= Wscript.CreateObject("com.sun.star.ServiceManager")

'Create the CoreReflection service that is later used to create structs
Set objCoreReflection= objServiceManager.createInstance("com.sun.star.reflection.CoreReflection")

173

http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/CoreReflection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/CoreReflection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/CoreReflection.html

'get a type description class for Size
Set classSize= objCoreReflection.forName("com.sun.star.awt.Size")
'create the actual object
Dim aSize
classSize.createObject aSize
'use aSize
aSize.Width= 100
aSize.Height= 12

'pass the struct into the function
objXShape.setSize aSize

The next example shows how Bridge_GetStruct is used.
Set objServiceManager= Wscript.CreateObject("com.sun.star.ServiceManager")
Set aSize= objServiceManager.Bridge_GetStruct("com.sun.star.awt.Size")
'use aSize
aSize.Width= 100
aSize.Height= 12

objXShape.setSize aSize

The Bridge_GetStruct function is provided by the service manager object that is initially created
by CreateObject (Visual Basic) or CoCreateInstance[Ex] (VC++).c

The corresponding C++ examples look complicated, but ultimately the same steps are necessary.
The method forName() on the CoreReflection service is called and returns a
com.sun.star.reflection.XIdlClass which can be asked to create an instance using createOb-
ject():
// create the service manager of OpenOffice
IDispatch* pdispFactory= NULL;
CLSID clsFactory= {0x82154420,0x0FBF,0x11d4,{0x83, 0x13,0x00,0x50,0x04,0x52,0x6A,0xB4}};
hr= CoCreateInstance(clsFactory, NULL, CLSCTX_ALL, __uuidof(IDispatch), (void**)&pdispFactory);

// create the CoreReflection service
OLECHAR* funcName= L"createInstance";
DISPID id;
pdispFactory->GetIDsOfNames(IID_NULL, &funcName, 1, LOCALE_USER_DEFAULT, &id);

VARIANT param1;
VariantInit(¶m1);
param1.vt= VT_BSTR;
param1.bstrVal= SysAllocString(L"com.sun.star.reflection.CoreReflection");
DISPPARAMS dispparams= { ¶m1, 0, 1, 0};
VARIANT result;
VariantInit(&result);
hr= pdispFactory->Invoke(id, IID_NULL, LOCALE_USER_DEFAULT, DISPATCH_METHOD,
 &dispparams, &result, NULL, 0);
IDispatch* pdispCoreReflection= result.pdispVal;
pdispCoreReflection->AddRef();
VariantClear(&result);

// create the struct's idl class object
OLECHAR* strforName= L"forName";
hr= pdispCoreReflection->GetIDsOfNames(IID_NULL, &strforName, 1, LOCALE_USER_DEFAULT, &id);
VariantClear(¶m1);
param1.vt= VT_BSTR;
param1.bstrVal= SysAllocString(L"com.sun.star.beans.PropertyValue");
hr= pdispCoreReflection->Invoke(id, IID_NULL, LOCALE_USER_DEFAULT,
 DISPATCH_METHOD, &dispparams, &result, NULL, 0);
IDispatch* pdispClass= result.pdispVal;
pdispClass->AddRef();
VariantClear(&result);

// create the struct
OLECHAR* strcreateObject= L"createObject";
hr= pdispClass->GetIDsOfNames(IID_NULL,&strcreateObject, 1, LOCALE_USER_DEFAULT, &id)
IDispatch* pdispPropertyValue= NULL;
VariantClear(¶m1);
param1.vt= VT_DISPATCH | VT_BYREF;
param1.ppdispVal= &pdispPropertyValue;
hr= pdispClass->Invoke(id, IID_NULL, LOCALE_USER_DEFAULT,
 DISPATCH_METHOD, &dispparams, NULL, NULL, 0);
// do something with the struct pdispPropertyValue contained in dispparams
// ...

pdispPropertyValue->Release();
pdispClass->Release();
pdispCoreReflection->Release();

174 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/XIdlClass.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/XIdlClass.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/XIdlClass.html

pdispFactory->Release();

The Bridge_GetStruct example.
// objectServiceManager is the service manager of the office
OLECHAR* strstructFunc= L"Bridge_GetStruct";
hr= objServiceManager->GetIDsOfNames(IID_NULL, &strstructFunc, 1, LOCALE_USER_DEFAULT, &id);
VariantClear(&result);
VariantClear(¶m1);
param1.vt= VT_BSTR;
param1.bstrVal= SysAllocString(
L"com.sun.star.beans.PropertyValue");
hr= objServiceManager->Invoke(id, IID_NULL,LOCALE_USER_DEFAULT, DISPATCH_METHOD,
 &dispparams, &result, NULL, 0);
IDispatch* pdispPropertyValue= result.pdispVal;
pdispPropertyValue->AddRef();
// do something with the struct pdispPropertyValue
...

JScript:
// struct creation via CoreReflection
var objServiceManager= new ActiveXObject("com.sun.star.ServiceManager");
var objCoreReflection= objServiceManager.createInstance("com.sun.star.reflection.CoreReflection");

var classSize= objCoreReflection.forName("com.sun.star.awt.Size");
var outParam= new Array();
classSize.createObject(outParam);
var size= outParam[0];
//use the struct
size.Width=111;
size.Height=112;
// --
// struct creation by bridge function
var objServiceManager= new ActiveXObject("com.sun.star.ServiceManager");
var size= objServiceManager.Bridge_GetStruct("com.sun.star.awt.Size");
size.Width=111;
size.Height=112;

Using Automation Objects From UNO
This language binding offers a way of accessing Automation objects from UNO. For an Automa-
tion object to be usable, it must be properly registered on the system and have a programmatic
identifier (ProgId) with which an instance can be created. From UNO, all Automation objects are
accessed via com.sun.star.script.XInvocation. XInvocation is a scripting interface that is intended
for dynamically performing calls similar to IDispatch. Since StarBasic uses XInvocation to
communicate with objects, Automation objects can be used from StarBasic.

Instantiation

To obtain an instance of an Automation object it is easiest to use the service
com.sun.star.bridge.oleautomation.Factory. It provides an XMultiServiceFactory interface which is
used to get the desired object. For example:
//C++

Reference<XInterface> xInt = serviceManager->createInstance(
 OUString::createFromAscii("com.sun.star.bridge.oleautomation.Factory"));

Reference<XMultiServiceFactory> automationFactory(xInt, UNO_QUERY);

if(automationFactory.is())
{
 Reference<XInterface> xIntApp = automationFactory->createInstance(
 OUString::createFromAscii("Word.Application"));

 Reference< XInvocation > xInvApp(xIntApp, UNO_QUERY);
 // call methods on the Automation object.
 ...
}

175

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/Factory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/Factory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/Factory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html

In StarBasic it looks quite simple:
'StarBasic
Dim automationFactory As Object
Set automationFactory = createUnoService("com.sun.star.bridge.oleautomation.Factory")

Dim objApp As Objects
Set objApp = automationFactory.createInstance("Word.Application")
'call methods on the Automation object

Accessing Automation Objects

All Automation objects are accessed through com.sun.star.script.XInvocation interface. The func-
tion getIntrospection is not implemented. To call a method, invoke is used. invoke is also used to
access properties with additional arguments. The methods setValue and getValue set or retrieve a
property value. These methods can only be used with properties that do not have additional argu-
ments.
hasMethod returns true for a name that represents a method or a property with arguments. And
last, hasProperty returns true for a name that represents a property with no arguments. Refer to
the IDL documentation for more information about XInvocation.

Properties with Arguments

Unlike UNO properties, Automation properties can have arguments. Therefore, setValue and
getValue method are not suitable for those properties. Instead invoke is used. If a property takes
arguments, then hasProperty returns false and hasMethod returns true. invoke must also be used
if the arguments of the property are optional and not provided in the call.

The bridge must recognize a write operation on a property. To achieve this, the caller has to
provide the actual property value (not additional arguments) in a structure of type
com.sun.star.bridge.oleautomation.PropertyPutArgument. Similar to IDispatch::Invoke,
the property value must be the last in the argument list. For example:
// MIDL
[propget,...] HRESULT Item([in] VARIANT val1, [out, retval] VARIANT* pVal);
[propput,...] HRESULT Item([in] VARIANT val1, [in] VARIANT newVal);

// C++
Sequence< sal_Int16> seqIndices;
Sequence<Any> seqOut;
//Prepare arguments
Any arArgs[2];
arArgs[0] <<= makeAny((sal_Int32) 0);
arArgs[1] <<= PropertyPutArgument(makeAny((sal_Int32) 0));
Sequence<Any> seqArgs(arArgs, 2);

//obj is a XInvocation of an Automation object
obj->invoke(OUString::createFromAscii("Item"), seqArgs, seqIndices, seqOut);

//now get the property value
Any arGet[1];
arGet[0] <<= makeAny((sal_Int32) 0);
Sequence<Any> seqGet(arGet, 1);
Any retVal = obj->invoke(OUString::createFromAscii("Item"), seqGet, seqIndices, seqOut);

In StarBasic, PropertyPutArgument is implicitly used:
'StarBasic

obj.Item(0) = 0

Dim propval As Variant
propval = obj.Item(0)

The property value that is obtained in a property get operation is the return value of invoke.

176 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/PropertyPutArgument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/PropertyPutArgument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/PropertyPutArgument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/PropertyPutArgument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/PropertyPutArgument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/PropertyPutArgument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#hasMethod
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#hasMethod
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#hasMethod
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#hasProperty
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#hasProperty
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#hasProperty
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#getValue
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#getValue
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#getValue
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#setValue
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#setValue
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#setValue
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#hasProperty
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#hasProperty
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#hasProperty
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#hasMethod
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#hasMethod
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#hasMethod
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#getValue
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#getValue
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#getValue
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#setValue
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#setValue
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#setValue
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#getIntrospection
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#getIntrospection
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#getIntrospection
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html

Optional Parameters, Default Values, Variable Argument Lists

The bridge supports all these special parameters. Optional parameters can be left out of the argu-
ment list of invoke. However, if a value is omitted, then all following arguments from the param-
eter list must also be omitted. This only applies for positional arguments and not for named argu-
ments.

If the Automation object specifies a default value for an optional parameter, then the bridge
supplies it, if no argument was provided by the caller.

If a method takes a variable argument list, then one can provide the respective UNO arguments as
ordinary arguments to invoke. IDispatch::Invoke would require those arguments in a SAFE-
ARRAY.

Named Arguments

To provide named arguments in an invoke call, one has to use instances of
com.sun.star.bridge.oleautomation.NamedArgument for each argument. This is the struct in
UNOIDL:
module com { module sun { module star { module bridge { module oleautomation {
struct NamedArgument
{
 /** The name of the argument, for which
 <member>NamedArgument::Value</member> is intended.
 */
 string Name;

 /** The value of the argument whoose name is the one as contained in the
 member <member>Name</member>.
 */
 any Value;
};

}; }; }; }; };

In a call both, named arguments and positional arguments can be used together. The order is, first
the positional arguments (the ordinary arguments), followed by named arguments. When named
arguments are used, then arguments can be omitted even if arguments are provided that follow
the omitted parameter. For example, assume that a method takes five arguments, which are all
optional, then the argument lists for XInvocation could be as follows:

 all provided: {A, B, C, D, E}

 arguments omitted: {A,B,C,D} or {A,B} but not {A, C, D}

 named arguments : {nA, nC, nB, nD}, {nC, nD}

 mixed arguments: { A, B, nD}, {A, nC}

Named arguments can also be used with properties that have additional arguments. However, the
property value itself cannot be a named argument, since it is already regarded as a named argu-
ment. Therefore, is is always the last argument .

Type Mappings
When a UNO object is called from an Automation environment, such as VB, then depending on the
signature of the called method, values of Automation types are converted to values of UNO types.
If values are returned, either as out-arguments or return value, then values of UNO types are
converted to values of Automation types. The results of these conversions are governed by the
values to be converted and the respective type mapping.

177

http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/NamedArgument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/NamedArgument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/NamedArgument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke

The type mapping describes how a type from the Automation environment is represented in the
UNO environment and vice versa. Automation types and UNO types are defined in the respective
IDL languages, MIDL and UNO IDL. Therefore, the type mapping will refer to the IDL types.

The IDL types have a certain representation in a particular language. This mapping from IDL types
to language specific types must be known in order to use the Automation bridge properly.
Languages for which a UNO language binding exists will find the mapping in the language
binding documentation. Automation capable languages can provide information about how Auto-
mation types are to be used (for example, Visual Basic, Delphi).

Some Automation languages may not provide a complete mapping for all Automation types. For
example, JScript cannot provide float values. If you use C or C++, then all Automation types can be
used directly.

A method call to an Automation object is performed through IDispatch::Invoke. Invoke takes an
argument of type DISPPARAMS, which contains the actual arguments for the method in an array of
VARIANTARG. These VARIANTARGs are to be regarded as holders for the actual types. In most Auto-
mation languages you are not even aware of IDispatch. For example:
//UNO IDL
string func([in] long value);
//VB
Dim value As Long
value= 100
Dim ret As String
ret= obj.func(value)

In this example, the argument is a long and the return value is a string. That is,
IDispatch::Invoke would receive a VARIANTARG that contains a long and returns a VARIANT that
contains a string.

When an Automation object is called from UNO through com.sun.star.script.XInvocation:invoke,
then all arguments are provided as anys. The any, similiar to the VARIANTARG, acts as a holder for
the actual type. To call Automation objects from UNO you will probably use StarBasic. Then the
XInvocation interface is hidden, as in IDispatch in Visual Basic.

The bridge converts values according to the type mapping specified at 3.4.4 Professional UNO -
UNO Language Bindings - Automation Bridge - Type Mappings - Default Mappings. Moreover, it tries
to coerce a conversion if a value does not have a type that conforms with the default mapping
(3.4.4 Professional UNO - UNO Language Bindings - Automation Bridge - Type Mappings - Conversion
Mappings).

In some situations, it may be necessary for an Automation client to tell the bridge what the argu-
ment is supposed to be. For this purpose you can use the Value Object (3.4.4 Professional UNO -
UNO Language Bindings - Automation Bridge - Type Mappings - Value Objects).

Default Mappings

The following table shows the mapping of UNO and Automation types. It is a bidirectional
mapping (which is partly true for the UNO sequence, which will be explained later on) and there-
fore it can be read from left to right and vice versa. The mapping of Automation types to UNO
types applies when:

• A method of a UNO object is called from an Automation environment and values are passed
for in or in/out parameters.

• A method of an Automation object is called from the UNO environment and the method
returns a value.

• A method of an Automation object is called from the UNO environment and the method
returns values in in/out or out - parameters.

178 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke

The mapping of UNO types to Automation types applies when:

• A method of an Automation object is called from an UNO environment and values are passed
for in or in/out-parameters.

• A method of a UNO object is called from an Automation environment and the method returns
a value.

• A method of a UNO object is called from an Automation environment and the method returns
values in in/out or out-parameters.

Automation IDL Types UNO IDL Types
boolean boolean
unsigned char byte
double double
float float
short short

unsigned short
long long

unsigned long
BSTR string
short char
long enum
IDispatch com.sun.star.script.XInvocation, UNO interface

struct

sequence<type>

type

IUnknown com.sun.star.uno.XInterface

SAFEARRAY(VARIANT)
SAFEARRAY(type)

sequence< type >

DATE com.sun.star.bridge.oleautomation.Date

CY com.sun.star.bridge.oleautomation.Currency

Decimal com.sun.star.bridge.oleautomation.Decimal

SCODE com.sun.star.bridge.oleautomation.SCode

VARIANT all of the above types or any

all of the above types any

The following sections discuss the respective mappings in more detail.

Mapping of Simple Types

Many languages have equivalents for the IDL simple types, such as integer and floating point
types. Some languages, however, may not support all these types. For example, JScript is a typeless
language and only recognizes a general number type. Internally, it uses four byte signed integer
values and double values to represent a number. When a UNO method is called that takes a float
as an argument, and that value is at some point returned to the caller, then the values may differ
slightly. This is because the bridge converts the double to a float, which is eventually converted
back to a double.

179

http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/SCode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/Decimal.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/Currency.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/Date.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html

If a UNO method takes an any as argument and the implementation expects a certain type within
the any, then the bridge is not always able to provide the expected value. Assuming, that a UNO
method takes an any that is supposed to contain a short and the method is to be called from
JScript, then the bridge will provide an any containing a four byte integer. This may result in an
exception from the initiator of the call The solution is to use a Value Object (3.4.4 Professional UNO
- UNO Language Bindings - Automation Bridge - Type Mappings - Value Objects).

Unlike Automation, there are unsigned integer types in UNO. To provide a positive value that
exceeds the maximum value of the corresponding signed type, you have to use the corresponding
negative value. For example, to call the following UNO function in VB with the value 32768
(0x8000) you need to pass -32768 .
//UNO IDL
void foo(unsigned short value);
'VB
Dim val As Integer 'two byte signed integer
val = -32768
obj.foo(val)

The rule for calculating the negative equivalent is:

signed_value = unsigned_value - (max_unsigned +1)

In the preceding example, unsigned_value is the value that we want to pass, and which is 32768.
This value is one too many for the VB type Integer, that is why we have to provide a negative
value. max_unsigned has the value 65535 for a two byte integer. So the equation is

-32768 = 32768 - (65535 + 1)

Alternatively you can use a type with a greater value range. The Automation bridge will then
perform a narrowing conversion.
Dim val As Long 'four byte signed integer
val = 32768
obj.foo(val) 'expects a two byte unsigned int

For more information about conversions see chapter 3.4.4 Professional UNO - UNO Language Bind-
ings - Automation Bridge - Type Mappings - Conversion Mappings.

Mapping of hyper and Decimal

Automation does not have an 8 byte integer value that compares to a UNO hyper. However, the
Automation type Decimal has a value space big enough to represent a hyper. Therefore, when
calling UNO methods from Automation, use Decimal whenever the UNO method requires a hyper
or unsigned hyper.

The Decimal type may not be supported by all Automation capable language. Examples are JScript
and VBScript, which should not be used when calling these UNO methods. This is because
provided values may be rounded and hence the results are tainted.

Visual Basic has the restriction that Decimal variables can only be declared as Variants. The assign-
ment of a value has to be done using the CDec function. Furthermore, VB does not allow the use of
integer literals bigger than 4 bytes. As a workaround, you can provide a string that contains the
value. For example:
Dim aHyper As Variant
aHyper = CDec(“9223372036854775807”)

Visual Basic .NET has the build-in type decimal and does not restrict the integer literals.

When Automation objects are called from UNO, then the
com.sun.star.bridge.oleautomation.Decimal type can be used to provide arguments with the Auto-
mation arguments of type Decimal. Returned Decimal values are converted to
com.sun.star.bridge.oleautomation.Decimal .

180 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/Decimal.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/Decimal.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/Decimal.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/Decimal.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/Decimal.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/Decimal.html

Mapping of String

A string is a data structure that is common in programming languages. Although the idea of a
string is the same, the implementations and their creation can be quite different. For example, a C+
+ programmer has a range of possibilities to choose from (for example, char*, char[], wchar_t*,
wchar_t[], std::string, CString, BSTR), whereas a JScript programmer can only use one kind
of string. To use Automation across languages, it is necessary to use a string type that is common
to all those languages, and that has the same binary representation. This particular string is
declared as BSTR in COM. The name can be different, depending on the language. For example, in
C++ there is a BSTR type, in VB it is called String, and in JScript every string defined is a BSTR.
Refer to the documentation covering the BSTR's equivalent if using an Automation capable
language not covered by this document.

Mapping of Interfaces and Structures

UNO interfaces or structures are represented as dispatch objects in the Automation environment.
That is, the converted value is an object that implements IDispatch. If an UNO interface was
mapped, then you also can access all other UNO interfaces of the object through IDispatch. In other
words, the dispatch object represents the UNO object with all its interfaces and not only the one
interface which was converted.

If a dispatch object, which actually is a UNO object or a structure, is now passed back to UNO,
then the bridge will extract the original UNO interface or structure and pass it on. Since the UNO
dispatch object represents the whole UNO object, that is, all its supported interfaces, you can use
the dispatch object as argument for all those interface types. For example:
//UNO IDL methods
XFoo getFoo();
void doSomething(XBar arg);

'VB
Dim objUno As Object
Set objUno = objOtherUnoObject.getFoo()

'The returned interface belongs to an UNO object which implements XFoo and XBar.
'Therefore we can use objUno in this call:
call objOtherUnoObject.doSomething(objUno)

If Automation objects are called from UNO, then the called methods may return other Automation
objects, either as IUnknown* or IDispatch*. These can then be used as arguments in later calls to
Automation objects or you can perform calls on them. In case of IUnknown, this is only possible if
the object also supports IDispatch. To make calls from UNO, the XInterface must first be queried
for XInvocation. When a method returns IDispatch, then on UNO side a XInvocation is received
and can be called immediately.

When these interfaces are passed back as arguments to a call to an Automation object, then the
bridge passes the original IUnknown or IDispatch pointer. This is dependent upon what the
parameter type is. Remember, calls can only be performed on Automation objects. Therefore
IUnknown and IDispatch are the only possible COM interfaces. If the expected parameter is a
VARIANT, then it will contain an IUnknown* if the Automation object was passed as IUnknown*
into the UNO environment. It will contain an IDispatch* if the object was passed as IDispatch*.
For example:
//MIDL
HRESULT getUnknown([out,retval] IUnknown ** arg);
HRESULT getDispatch([out, retval] IDispatch ** arg);

HRESULT setUnknown([in] IUnknown * arg);
HRESULT setDispatch([in] IDispatch * arg);
HRESULT setVariant([in] VARIANT arg);

'StarBasic
Dim objUnknown As Object
Dim objDispatch As Object

181

http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html

Set objUnknown = objAutomation.getUnknown()
Set objDispatch = objAutomation.getDispatch()

objAutomation.setUnknown objUnknown 'Ok
objAutomation.setDispatch objUnknown 'Ok, if objUnknow supports IDispatch,

 otherwise a CannotConvertException will be thrown.
objAutomation.setUnknown objDispatch 'OK

objAutomation.setVariant objUnknown 'VARTYPE is VT_Unknown
objAutomation.setVariant objDispatch 'VARTYPE is VT_DISPATCH

For the purpose of receiving events (listener) it is possible to implement UNO interfaces as
dispatch objects 3.4.4 Professional UNO - UNO Language Bindings - Automation Bridge - Automation
Objects with UNO Interfaces. That type of object is used as an argument in UNO functions where
particular interface types are required. The bridge will make sure that the proper interface is
provided to the UNO function. If the UNO interface is then passed back into the Automation envi-
ronment, the original Automation object will be passed.

If the Automation object is passed as argument for an any, then the any will contain an XInterface
if the object was passed as IUnknown or the any contains an XInvocation if the object was passed as
IDispatch. If, for example, the UNO interface XFoo is implemented as a dispatch object, an
instance to UNO as Any parameter is passed, and the Any contains XFoo rather then XInvocation,
then the dispatch object must be placed in a Value Object (3.4.4 Professional UNO - UNO Language
Bindings - Automation Bridge - Type Mappings - Value Objects). For example:
//UNO method
void foo([in] any)

'objUno contains an interface with the method foo.
'It expects that the argument with of type any contains an XFoo

'objFoo is a dispatch object implementing XFoo.

Dim objValueObject As Object
Set objValueObject = objServiceManager.Bridge_GetValueObject()
objValueObject.set “XFoo”, objFoo

objUno.foo objValueObject

Null pointers are converted to null pointers of the required type. That is, if an IDispatch pointer
with the value null is passed as an argument to a UNO method then the resulting argument is a
null pointer of the expected type. This also applies to UNO interface pointers, which are passed in
calls to Automation objects. When a UNO method takes a struct as an argument and it is called
from the Automation environment where a null pointer (IDispatch, or IUnknown) was supplied,
then the UNO method receives a struct that was default constructed.

Mapping of Sequence

Arrays in Automation have a particular type. The SAFEARRAY. A SAFEARRAY array is used when a
UNO function takes a sequence as an argument. To create a SAFEARRAY in C++, use Windows API
functions. The C++ name is also SAFEARRAY, but in other languages it might be named differently.
In VB for example, the type does not even exist, because it is mapped to an ordinary VB array:
Dim myarr(9) as String

JScript is different. It does not have a method to create a SAFEARRAY. Instead, JScript features an
Array object that can be used as a common array in terms of indexing and accessing its values. It is
represented by a dispatch object internally. JScript offers a VBArray object that converts a SAFE-
ARRAY into an Array object, which can then be processed further.

182 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html

The Automation bridge accepts both, SAFEARRAY and Array object, for arguments whose UNO
type is a sequence.

If a SAFEARRAY is obtained in JScript as a result of a call to an ActiveX component or a VB Script function
(for example, the Internet Explorer allows JScript and VBS code on the same page), then it can also be used
as an argument of a UNO function without converting it to an Array object.

UNO does not recognize multi-dimensional sequences. Instead, a sequences can have elements
that are also sequences. Those �inner� sequences can have different lengths, whereas the elements
of a dimension of a multi-dimensional array are all the same length.

To provide an argument for a sequence of sequences, a SAFEARRAY containing VARIANTs of SAFE-
ARRAYs has to be created. For example:
//UNO method
void foo([in] sequence< sequence< long > > value);

Dim seq(1) As Variant
Dim ar1(3) As Long
Dim ar2(4) As Long
'fill ar1, ar2
...

seq(0) = ar1
seq(1) = ar2

objUno.foo seq

The array seq corresponds to the �outer� sequence and contains two VARIANTs, which in turn
contain SAFEARRAYs of different lengths.

It is also possible to use a multi-dimensional SAFEARRAY if the elements of the sequence are all the
same length:
Dim seq(9, 1) As Long
'fill the sequence
...
objUno.foo seq

Be aware that Visual Basic uses a column-oriented ordering in contrast to C. That is, the C equiva-
lent to the VB array is
long seq[2][10]

The highest dimension in VB is represented by the right-most number.

This language binding specifies that the �outer� sequence corresponds to the highest dimension.
Therefore, the VB array seq(9,1) would map to a sequence of sequences where the outer sequence
has two elements and the inner sequences each have ten elements.

Returned sequences are converted into SAFEARRAYs containing VARIANTs. If a sequence of
sequences is returned, then the VARIANTs contain again SAFEARRAYs.

To process a returned SAFEARRAY in Jscript, use the VBArray object to convert the SAFEARRAY into
a JScript Array.
When a method of an Automation object is called from UNO and a parameter is a SAFEARRAY,
then a sequence is used on the UNO side. The element type of the sequence should correspond to
the element type of the SAFEARRAY according to the default mapping. If it does not, the bridge tries
to convert the elements into the expected element type.

If the parameter is a multi�dimensional SAFEARRAY, then one has to provide a sequence containing
sequences has to be provided. The number of nested sequences corresponds to the number of
dimensions. Since the elements of a dimension have the same length, the sequences that represent
that dimension should also have the same length. For example, assume the expected SAFEARRAY
can be expressed in C as

183

long ar[2][10]

Then the outer sequence must have two elements and each of those sequences has 10 elements.
That a returned sequence maps to a SAFEARRAY of VARIANTs is not ideal because it is ambiguous
when the array is passed back to UNO. However, the bridge solves this problem by using UNO
type information. For example, a returned sequence of longs will result in a SAFEARRAY of VARI-
ANTs containing long values. When the SAFEARRAY is passed in a method as an argument for a
parameter of type sequence<long > then it is converted accordingly. However, if the parameter is
an any, then the bridge does not have the necessary type information and converts the SAFEARRAY
to sequence<any>. That is, the called method receives an any containing a sequence<any>. If the
method now expects the any to contain a sequence<long> then it may fail. This is confusing if
there are pairs of methods like getxxx and setxxx, which take any arguments. Then you may get
a SAFEARRAY as a return value, which cannot be used in the respective setXXX call. For example:
//UNO IDL
any getByIndex();
void setByIndex([in] any value);

'VB
Dim arLong() As Variant
arLong = objUno.getByIndex() 'object returns sequence<long> in any
objUno.setByIndex arLong 'object receives sequence<any> in any and may cause an error.

To solve this problem, wrap the argument in a Value Object (3.4.4 Professional UNO - UNO
Language Bindings - Automation Bridge - Type Mappings - Value Objects):
'VB
Dim arLong() As Variant
arLong = objUno.getByIndex() 'object returns sequence<long> in any

Dim objValueObject As Object
Set objValueObject = objServiceManager.Bridge_GetValueObject()
objValueObject.set “[]long”, arLong

objUno.setByIndex objValueObject 'object receives sequence<long>

Mapping of type

Since there is no counterpart to the UNO type among the Automation types, it is mapped to an
object. The object implements IDispatch and a private tagging interface that is known to the
bridge. Therefore, whenever an object is passed in a call to a UNO object the bridge can determine
whether it represents a type. To obtain a type one calls Bridge_CreateType on the service
manager object and provides the name of the type. For example:
'Visual Basic
Dim objType
Set objType = objServiceManager.Bridge_CreateType(“com.sun.star.uno.XInterface”)

In case the provided argument does not represent a valid type, the call produces an error.

If a UNO method returns a type, either as return value or out - parameter, then it is automatically
converted to an object.
//UNOIDL
type foo([out] type t)

'Visual Basic

Dim objParam As Object
Dim objReturn As Object
Set objReturn = object.foo(objParam)

Conversion Mappings

As shown in the previous section, Automation types have a UNO counterpart according to the
mapping tables. If a UNO function expects a particular type as an argument, then supply the corre-
sponding Automation type. This is not always necessary as the bridge also accepts similar types.
For example:

184 OpenOffice.org 2.3 Developer's Guide • June 2007

//UNO IDL
void func(long value);
// VB
Dim value As Byte
value = 2
obj.func valLong

The following table shows the various Automation types, and how they are converted to UNO IDL
types if the expected UNO IDL type has not been passed.

Automation IDL Types
(source)

UNO IDL
Types (target)

boolean (true, false)
unsigned char, short, long, float, double: 0 = false, > 0 = true
string: "true" = true, "false" = false

boolean

boolean, unsigned char, short, long, float, double, string byte
double, boolean, unsigned char, short, long, float, string double
float, boolean, unsigned char, short, string float
short, unsigned char, long, float, double, string short
long, unsigned char, long, float, double, string long
BSTR, boolean, unsigned char, short, long, float, double string
short, boolean, unsigned char, long, float, double, string (1 character
long)

char

long, boolean, unsigned char, short, float, double, string enum

When you use a string for a numeric value, it must contain an appropriate string representation of
that value.

Floating point values are rounded if they are used for integer values.

Be careful using types that have a greater value space than the UNO type. Do not provide an argu-
ment that exceeds the value space which would result in an error. For example:
// UNO IDL
void func([in] byte value);

// VB
Dim value as Integer
value= 1000
obj.func value 'causes an error

The conversion mappings only work with in parameters, that is, during calls from an Automation
environment to a UNO function, as far as the UNO function takes in parameters.

Client-Side Conversions

The UNO IDL description and the defined mappings indicate what to expect as a return value
when a particular UNO function is called. However, the language used might apply yet another
conversion after a value came over the bridge.
// UNO IDL
float func();

// VB
Dim ret As Single
ret= obj.func() 'no conversion by VB

Dim ret2 As String
ret2= obj.func() 'VB converts float to string

When the function returns, VB converts the float value into a string and assigns it to ret2. Such
a conversion comes in useful when functions return a character, and a string is preferred instead of
a VB Integer value.

185

// UNO IDL
char func();

// VB
Dim ret As String
ret= obj.func() 'VB converts the returned short into a string

Be aware of the different value spaces if taking advantage of these conversions. That is, if the value
space of a variable that receives a return value is smaller than the UNO type, a runtime error might
occur if the value does not fit into the provided variable. Refer to the documentation of your
language for client-side conversions.

Client-side conversions only work with return values and not with out or inout parameters. The
current bridge implementation is unable to transport an out or inout parameter back to Automa-
tion if it does not have the expected type according to the default mapping.

Another kind of conversion is done implicitly. The user has no influence on the kind of conversion.
For example, the scripting engine used with the Windows Scripting Host or Internet Explorer uses
double values for all floating point values. Therefore, when a UNO function returns a float value,
then it is converted into a double which may cause a slightly different value. For example:
// UNO IDL
float func(); //returns 3.14

// JScript
var ret= obj.func(); // implicit conversion from float to double, ret= 3.14000010490417

Value Objects

A Value Object is an Automation object which can be obtained from the bridge. It can hold a value
and a type description, hence it resembles a UNO any or a VARIANT. A Value Object can stand in
for all kinds of arguments in a call to a UNO method from a automation language. A Value Object
is used when the bridge needs additional information for the parameter conversion. This is the
case when a UNO method takes an any as argument. In many cases, however, one can do without
a Value Object if one provides an argument which maps exactly to the expected UNO type
according to the default mapping. For example, a UNO method takes an any as argument which is
expected to contain a short. Then it would be sufficient to provide a Long in Visual Basic. But in
JScript there are no types and implicitly a four byte integer would be passed to the call. Then the
any would not contain a short and the call may fail. In that case the Value Object would guarantee
the proper conversion.

A Value Object also enables in/out and out parameter in languages which only know in-parame-
ters in functions. JScript is a particular case because one can use Array objects as well as Value
Objects for those parameters.

A Value Object exposes four functions that can be accessed through IDispatch. These are:
void Set([in]VARIANT type, [in]VARIANT value);

Assigns a type and a value.
void Get([out,retval] VARIANT* val);

Returns the value contained in the object. Get is used when the Value Object was used as
inout or out parameter.

void InitOutParam();
Tells the object that it is used as out parameter.

void InitInOutParam([in]VARIANT type, [in]VARIANT value);
Tells the object that it is used as inout parameter and passes the value for the in parameter,
as well as the type.

186 OpenOffice.org 2.3 Developer's Guide • June 2007

When the Value Object is used as in or inout parameter then specify the type of the value. The
names of types correspond to the names used in UNO IDL, except for the �object� name. The
following table shows what types can be specified.

Name (used with Value Object) UNO IDL
char char
boolean boolean
byte byte
unsigned unsigned byte
short short
unsigned short unsigned short
long long
unsigned long unsigned long
string string
float float
double double
any any
object some UNO interface

To show that the value is a sequence, put brackets before the names, for example:
[]char - sequence<char>
[][]char - sequence < sequence <char > >
[][][]char - sequence < sequence < sequence < char > > >

The Value Objects are provided by the bridge and can be obtained from the service manager
object. The service manager is a registered COM component with the ProgId
�com.sun.star.ServiceManager� (Chapter 3.4.4 Professional UNO - UNO Language Bindings - Auto-
mation Bridge - The Service Manager Component). For example:
// JScript
var valueObject= objSericeManager.Bridge_GetValueObject();

To use a Value Object as in parameter, specify the type and pass the value to the object:
// UNO IDL
void doSomething([in] sequence< short > ar);

// JScript
var value= objServiceManager.Bridge_GetValueObject();
var array= new Array(1,2,3);
value.Set("[]short",array);
object.doSomething(value);

In the previous example, the Value Object was defined to be a sequence of short values. The
array could also contain Value Objects again:
var value1= objServiceManager.Bridge_GetValueObject();
var value2= objServiceManager.Bridge_GetValueObject();
value1.Set("short“, 100);
value2.Set("short", 111);
var array= new Array();
array[0]= value1;
array[1]= value2;
var allValue= objServiceManager.Bridge_GetValueObject();
allValue.Set("[]short“, array);
object.doSomething(allValue);

If a function takes an out parameter, tell the Value Object like this:
// UNO IDL
void doSomething([out] long);

// JScript
var value= objServiceManager.Bridge_GetValueObject();
value.InitOutParam();

187

object.doSomething(value);
var out= value.Get();

When the Value Object is an inout parameter, it needs to know the type and value as well:
//UNO IDL
void doSomething([inout] long);

//JScript
var value= objServiceManager.Bridge_GetValueObject();
value.InitInOutParam("long", 123);
object.doSomething(value);
var out= value.Get();

Exceptions and Errorcodes

UNO interface functions may throw exceptions to communicate an error. Automation objects
provide a different error mechanism. First, the IDispatch interface describes a number of error
codes (HRESULTs) that are returned under certain conditions. Second, the Invoke function takes an
argument that can be used by the object to provide descriptive error information. The argument is
a structure of type EXCEPINFO and is used by the bridge to convey exceptions being thrown by the
called UNO interface function. In case the UNO method throws an exception the bridge fills
EXCEPINFO with these values:

EXCEPINFO::wCode = 1001

EXCEPINFO::bstrSource = �[automation bridge]�

EXCEPINFO::bstrDescription = type name of the exceptions + the message of the exception
(com::sun::star::uno::Exception::message)

Also the returned error code will be DISP_E_EXCEPTION .

Since the automation bridge processes the Invoke call and calls the respective UNO method in the
end, there can be other errors which are not caused by the UNO method itself. The following table
shows what these errors are and how they are caused.

188 OpenOffice.org 2.3 Developer's Guide • June 2007

HRESULT Reason
DISP_E_EXCEPTION • UNO interface function or property access function threw

an exception and the caller did not provide an
EXCEPINFO argument.

• Bridge error. A ValueObject could not be created when the
client called Bridge_GetValueObject.

• Bridge error. A struct could not be created when the client
called Bridge_GetStruct

• Bridge error. A wrapper for a UNO type could not be
created when the client called Bridge_CreateType

• Bridge error. The automation object contains a UNO object
that does not support the XInvocation interface. Could
be a failure of com.sun.star.script.Invocation
service.

• In JScript was an Array object passed as inout param and
the bridge could not retrieve the property �0�.

• A conversion of a VARIANTARG (DISPPARAMS structure)
failed for some reason.

• Parameter count does not tally with the count provided by
UNO type information (only when one DISPPARAMS
contains VT_DISPATCH). This is a bug.
DISP_E_BADPARAMCOUNT should be returned.

DISP_E_NONAMEDARGS • The caller provided �named arguments� for a call to a
UNO function.

DISP_E_BADVARTYPE • Conversion of VARIANTARGs failed.

• Bridge error: Caller provided a ValueObject and the
attempt to retrieve the value failed. This is possibly a bug.
DISP_E_EXCEPTION should be returned.

• A member with the current name does not exist according
to type information. This is a bug.
DISP_E_MEMBERNOTFOUND should be returned.

• The argument in Bridge_CreateType was no string or
could not be converted into one

DISP_E_BADPARAMCOUNT • A property was assigned a value and the caller provided
null or more than one arguments.

• The caller did not provide the number of arguments as
required by the UNO interface function.

• Bridge_CreateType was called wher the number of
arguments was not one.

DISP_E_MEMBERNOTFOUND • Invoke was called with a DISPID that was not issued by
GetIDsOfName

• There is no interface function (also property access func-
tion) with the name for which Invoke is currently being
called.

DISP_E_TYPEMISMATCH The called provided an argument of a false type.

189

http://api.openoffice.org/docs/common/ref/com/sun/star/script/Invocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Invocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Invocation.html

HRESULT Reason
DISP_E_OVERFLOW An argument could not be coerced to the expected type.

Internal call to XInvocation::invoke resulted in a
CannotConvertException being thrown. The field
reason has the value OUT_OF_RANGE which means that a
given value did not fit in the range of the destination type.

E_UNEXPECTED [2]results from com.sun.star.script.CannotConver-
tException of XInvocation::invoke with Fail-
Reason::UNKNOWN.
Internal call to XInvocation::invoke resulted in a
com.sun.star.script.CannotConvertException
being thrown. The field reason has the value UNKNOWN, which
signifies some unknown error condition.

E_POINTER Bridge_GetValueObject or Bridge_GetStruct called
and no argument for return value provided.

S_OK Ok.

Return values of IDispatch::GetIDsOfNames:

HRESULT Reason
E_POINTER Caller provided no argument that receives the DISPID.

DISP_E_UNKNOWNNAME There is no function or property with the given name.

S_OK Ok.

The functions IDispatch::GetTypeInfo and GetTypeInfoCount return E_NOTIMPL.

When a call from UNO to an Automation object is performed, then the following HRESULT values
are converted to exceptions. Keep in mind that it is determined what exceptions the functions of
XInvocation are allowed to throw.

Exceptions thrown by XInvocation::invoke() and their HRESULT counterparts:

 HRESULT Exception

DISP_E_BADPARAMCOUNT com.sun.star.lang.IllegalArgumentException
DISP_E_BADVARTYPE com.sun.star.uno.RuntimeException
DISP_E_EXCEPTION com.sun.star.reflection.InvocationTargetExcep-

tion
DISP_E_MEMBERNOTFOUND com.sun.star.lang.IllegalArgumentException
DISP_E_NONAMEDARGS com.sun.star.lang.IllegalArgumentException
DISP_E_OVERFLOW com.sun.star.script.CannotConvertException,

reason= FailReason::OUT_OF_RANGE
DISP_E_PARAMNOTFOUND com.sun.star.lang.IllegalArgumentException
DISP_E_TYPEMISMATCH com.sun.star.script.CannotConvertException,

reason= FailReason::UNKNOWN
DISP_E_UNKNOWNINTERFACE com.sun.star.uno.RuntimeException
DISP_E_UNKNOWNLCID com.sun.star.uno.RuntimeException
DISP_E_PARAMNOTOPTIONAL com.sun.star.script.CannotConvertException,

reason= FailReason::NO_DEFAULT_AVAILABLE

190 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/IllegalArgumentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/IllegalArgumentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/IllegalArgumentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/InvocationTargetException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/InvocationTargetException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/IllegalArgumentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html

XInvocation::setValue() throws the same as invoke() except for:

HRESULT Exception

DISP_E_BADPARAMCOUNT com.sun.star.uno.RuntimeException
DISP_E_MEMBERNOTFOUND com.sun.star.beans.UnknownPropertyException
DISP_E_NONAMEDARGS com.sun.star.uno.RuntimeException

XInvocation::getValue() throws the same as invoke() except for:

HRESULT Exception

DISP_E_BADPARAMCOUNT com.sun.star.uno.RuntimeException
DISP_E_EXCEPTION com.sun.star.uno.RuntimeException
DISP_E_MEMBERNOTFOUND com.sun.star.beans.UnknownPropertyException
DISP_E_NONAMEDARGS com.sun.star.uno.RuntimeException
DISP_E_OVERFLOW com.sun.star.uno.RuntimeException
DISP_E_PARAMNOTFOUND com.sun.star.uno.RuntimeException
DISP_E_TYPEMISMATCH com.sun.star.uno.RuntimeException
DISP_E_PARAMNOTOPTIONAL com.sun.star.uno.RuntimeException

Automation Objects with UNO Interfaces
It is common that UNO functions take interfaces as arguments. As discussed in section 3.4.4 Profes-
sional UNO - UNO Language Bindings - Automation Bridge - Usage of Types, those objects are usually
obtained as return values of UNO functions. With the Automation bridge, it is possible to imple-
ment those objects even as Automation objects and use them as arguments, just like UNO objects.

Although Automation objects can act as UNO objects, they are still not fully functional UNO
components. That is, they cannot be created by means of the service manager. Also, there is no
mapping of UNO exceptions defined. That is, an UNO object implemented as automation object
cannot make use of exceptions nor can it convey them in any other way.

One use case for such objects are listeners. For example, if a client wants to know when a writer
document is being closed, it can register the listener object with the document, so that it will be
notified when the document is closing.

Requirements

Automation objects implement the IDispatch interface, and all function calls and property opera-
tions go through this interface. We imply that all interface functions are accessed through the
dispatch interface when there is mention of an Automation object implementing UNO interfaces.
That is, the Automation object still implements IDispatch only.

Basically, all UNO interfaces can be implemented as long as the data types used with the functions
can be mapped to Automation types. The bridge needs to know what UNO interfaces are
supported by an Automation object, so that it can create a UNO object that implements all those
interfaces. This is done by requiring the Automation objects to support the property
Bridge_implementedInterfaces, which is an array of strings. Each of the strings is a fully quali-
fied name of an implemented interface. If an Automation object only implements one UNO inter-
face, then it does not need to support that property.

191

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/UnknownPropertyException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/UnknownPropertyException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html

You never implement com.sun.star.script.XInvocation and com.sun.star.uno.XInterface.
XInvocation cannot be implemented, because the bridge already maps IDispatch to XInvocation
internally. Imagine a function that takes an XInvocation:

// UNO IDL
void func([in] com.sun.star.script.XInvocation obj);

In this case, use any Automation object as argument. When an interface has this function,

void func([in] com.sun.star.XSomething obj)

the automation object must implement the functions of XSomething, so that they can be called through
IDispatch::Invoke.

Examples

The following example shows how a UNO interface is implemented in VB. It is about a listener
that gets notified when a writer document is being closed.

To rebuild the project use the wizard for an ActiveX dll and put this code in the class module. The
component implements the com.sun.star.lang.XEventListener interface.
Option Explicit
Private interfaces(0) As String

Public Property Get Bridge_ImplementedInterfaces() As Variant
 Bridge_ImplementedInterfaces = interfaces
End Property

Private Sub Class_Initialize()
interfaces(0) = "com.sun.star.lang.XEventListener"
End Sub

Private Sub Class_Terminate()
 On Error Resume Next
 Debug.Print "Terminate VBEventListener"
End Sub

Public Sub disposing(ByVal source As Object)
 MsgBox "disposing called"
End Sub

You can use these components in VB like this:
Dim objServiceManager As Object
Dim objDesktop As Object
Dim objDocument As Object
Dim objEventListener As Object

Set objServiceManager= CreateObject("com.sun.star.ServiceManager")
Set objDesktop= objServiceManager.createInstance("com.sun.star.frame.Desktop")

'Open a new empty writer document
Dim args()
Set objDocument= objDesktop.loadComponentFromURL("private:factory/swriter", "_blank", 0, args)
'create the event listener ActiveX component
Set objEventListener= CreateObject("VBasicEventListener.VBEventListener")

'register the listener with the document
objDocument.addEventListener objEventlistener

The next example shows a JScript implementation of a UNO interface and its usage from JScript.
To use JScript with UNO, a method had to be determined to realize arrays and out parameters.
Presently, if a UNO object makes a call to a JScript object, the bridge must be aware that it has to
convert arguments according to the JScript requirements. Therefore, the bridge must know that
one calls a JScript component, but the bridge is not capable of finding out what language was used.
The programmer has to provide hints, by implementing a property with the name
�_environment�that has the value "JScript".
// UNO IDL: the interface to be implemented
interface XSimple : public com.sun.star.uno.XInterface
{
 void func1([in] long val, [out] long outVal);
 long func2([in] sequence< long > val, [out] sequence< long > outVal);
 void func3([inout]long);

192 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html

};

// JScript: implementation of XSimple
function XSimplImpl()
{
 this._environment= "JScript";
 this.Bridge_implementedInterfaces= new Array("XSimple");

 // the interface functions
 this.func1= func1_impl;
 this.func2= func2_impl;
 this.func3= func3_impl;
}

function func1_impl(inval, outval)
{
 //outval is an array
 outval[0]= 10;
 ...
}

function func2_impl(inArray, outArray)
{
 outArray[0]= inArray;
 // or
 outArray[0]= new Array(1,2,3);

 return 10;
}

function func3_impl(inoutval)
{
 var val= inoutval[0];
 inoutval[0]= val+1;
}

Assume there is a UNO object that implements the following interface function:
//UNO IDL
void doSomething([in] XSimple);

Now, call this function in JScript and provide a JScript implementation of XSimple:
<script language="JScript">

var factory= new ActiveXObject("com.sun.star.ServiceManager");
// create the UNO component that implements an interface with the doSomething function
var oletest= factory.createInstance("oletest.OleTest");
oletest.doSomething(new XSimpleImpl());
...

To build a component with C++, write the component from scratch or use a kind of framework,
such as the Active Template Library (ATL). When a dual interface is used with ATL, the imple-
mentation of IDispatch is completely hidden and the functions must be implemented as if they
were an ordinary custom interface, that is, use specific types as arguments instead of VARIANTs. If a
UNO function has a return value, then it has to be specified as the first argument which is flagged
as �retval�.
</script>
// UNO IDL
interface XSimple : public com.sun.star.uno.XInterface
{
 void func1([in] long val, [out] long outVal);
 long func2([in] sequence< long > val, [out] sequence< long > outVal);
};

//IDL of ATL component
[
 object,
 uuid(xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx),
 dual,
 helpstring("ISimple Interface"),
 pointer_default(unique)
]
interface ISimple : IDispatch
{
 [id(1), helpstring("method func1")]
 HRESULT func1([in] long val, [out] long* outVal);
 [id(2), helpstring("method func2")]
 HRESULT func2([out,retval] long ret, [in] SAFEARRAY(VARIANT) val,
 [out] SAFEARRAY(VARIANT) * outVal);

193

 [propget, id(4), helpstring("property_implementedInterfaces")]
 HRESULT Bridge_implementedInterfaces([out, retval] SAFEARRAY(BSTR) *pVal);
};

DCOM
The Automation bridge maps all UNO objects to automation objects. That is, all those objects
implement the IDispatch interface. To access a remote interface, the client and server must be able
to marshal that interface. The marshaling for IDispatch is already provided by Windows, there-
fore all objects which originate from the bridge can be used remotely.

To make DCOM work, apply proper security settings for client and server. This can be done by
setting the appropriate registry entries or programmatically by calling functions of the security API
within the programs. The office does not deal with the security, hence the security settings can only
be determined by the registry settings which are not completely set by the office's setup. The AppID
key under which the security settings are recorded is not set. This poses no problem because the
dcomcnfg.exe configuration tools sets it automatically.

To access the service manager remotely, the client must have launch and access permission. Those
permissions appear as sub-keys of the AppID and have binary values. The values can be edited
with dcomcnfg. Also the identity of the service manager must be set to �Interactive User�. When
the office is started as a result of a remote activation of the service manager, it runs under the
account of the currently logged-on user (the interactive user).

In case of callbacks (office calls into the client), the client must adjust its security settings so that
incoming calls from the office are accepted. This happens when listener objects that are imple-
mented as Automation objects (not UNO components) are passed as parameters to UNO objects,
which in turn calls on those objects. Callbacks can also originate from the automation bridge, for
example, when JScript Array objects are used. Then, the bridge modifies the Array object by its
IDispatchEx interface. To get the interface, the bridge has to call QueryInterface with a call back
to the client.

To avoid these callbacks, VBArray objects and Value Objects could be used.

To set security properties on a client, use the security API within a client program or make use of
dcomcnfg again. The API can be difficult to use. Modifying the registry is the easiest method,
simplified by dcomcnfg. This also adds more flexibility, because administrators can easily change
the settings without editing source code and rebuilding the client. However, dcomcnfg only works
with COM servers and not with ordinary executables. To use dcomcnfg, put the client code into a
server that can be registered on the client machine. This not only works with exe servers, but also
with in-process servers, namely dlls. Those can have an AppID entry when they are remote, that is,
they have the DllSurrogate subkey set. To activate them an additional executable which instanti-
ates the in-process server is required. At the first call on an interface of the server DCOM initializes
security by using the values from the registry, but it only works if the executable has not called
CoInitializeSecurity beforehand.

To run JScript or VBScript programs, an additional program, a script controller that runs the script
is required, for example, the Windows Scripting Host (WSH). The problem with these controllers is
that they might impose their own security settings by calling CoInitializeSecurity on their own
behalf. In that case, the security settings that were previously set for the controller in the registry
are not being used. Also, the controller does not have to be configurable by dcomcnfg, because it
might not be a COM server. This is the case with WSH (not WSH remote).

To overcome these restrictions write a script controller that applies the security settings before a
scripting engine has been created. This is time consuming and requires some knowledge about the
engine, along with good programming skills. The Windows Script Components (WSC) is easier to
use. A WSC is made of a file that contains XML, and existing JScript and VBS scripts can be put

194 OpenOffice.org 2.3 Developer's Guide • June 2007

into the respective XML Element. A wizard generates it for you. The WSC must be registered,
which can be done with regsvr32.exe or directly through the context menu in the file explorer. To
have an AppID entry, declare the component as remotely accessible. This is done by inserting the
remotable attribute into the registration element in the wsc file:
<registration
 description="writerdemo script component"
 progid="dcomtest.writerdemo.WSC”
 version="1.00"
 classid="{90c5ca1a-5e38-4c6d-9634-b0c740c569ad}"
 remotable="true">

When the WSC is registered, there will be an appropriate AppID key in the registry. Use dcomcnfg
to apply the desired security settings on this component. To run the script. An executable is
required. For example:
Option Explicit
Sub main()
 Dim obj As Object
 Set obj = CreateObject("dcomtest.writerdemo.wsc”)
 obj.run
End Sub

In this example, the script code is contained in the run function. This is how the wsc file appears:
<?xml version="1.0"?>
<component>
<?component error="true" debug="true"?>
<registration
 description="writerdemo script component"
 progid="dcomtest.writerdemo.WSC”
 version="1.00"
 classid="{90c5ca1a-5e38-4c6d-9634-b0c740c569ad}"
 remotable="true">
</registration>
<public>
 <method name="run">
 </method>
</public>
<script language="JScript">
<![CDATA[
var description = new jscripttest;
function jscripttest()
{
 this.run = run;
}
function run()
{
var objServiceManager= new ActiveXObject("com.sun.star.ServiceManager”,"\\jl-1036");
var objCoreReflection= objServiceManager.createInstance("com.sun.star.reflection.CoreReflection");
var objDesktop= objServiceManager.createInstance("com.sun.star.frame.Desktop");
var objCoreReflection= objServiceManager.createInstance("com.sun.star.reflection.CoreReflection");
var args= new Array();
var objDocument= objDesktop.loadComponentFromURL("private:factory/swriter", "_blank", 0, args);
var objText= objDocument.getText();
var objCursor= objText.createTextCursor();
objText.insertString(objCursor, "The first line in the newly created text document.\n", false);
objText.insertString(objCursor, "Now we're in the second line", false);
var objTable= objDocument.createInstance("com.sun.star.text.TextTable");objTable.initialize(4, 4);
objText.insertTextContent(objCursor, objTable, false);
var objRows= objTable.getRows();
var objRow= objRows.getByIndex(0);
objTable.setPropertyValue("BackTransparent", false);
objTable.setPropertyValue("BackColor", 13421823);
objRow.setPropertyValue("BackTransparent", false);
objRow.setPropertyValue("BackColor", 6710932);
insertIntoCell("A1","FirstColumn", objTable);
insertIntoCell("B1","SecondColumn", objTable);
insertIntoCell("C1","ThirdColumn", objTable);
insertIntoCell("D1","SUM", objTable);
objTable.getCellByName("A2").setValue(22.5);
objTable.getCellByName("B2").setValue(5615.3);
objTable.getCellByName("C2").setValue(-2315.7);
objTable.getCellByName("D2").setFormula("sum <A2:C2>");objTable.getCellByName("A3").setValue(21.5);
objTable.getCellByName("B3").setValue(615.3);
objTable.getCellByName("C3").setValue(-315.7);
objTable.getCellByName("D3").setFormula("sum <A3:C3>");objTable.getCellByName("A4").setValue(121.5);
objTable.getCellByName("B4").setValue(-615.3);
objTable.getCellByName("C4").setValue(415.7);
objTable.getCellByName("D4").setFormula("sum <A4:C4>");
objCursor.setPropertyValue("CharColor", 255);
objCursor.setPropertyValue("CharShadowed", true);
objText.insertControlCharacter(objCursor, 0 , false);

195

objText.insertString(objCursor, " This is a colored Text - blue with shadow\n",
false);objText.insertControlCharacter(objCursor, 0, false);
var objTextFrame= objDocument.createInstance("com.sun.star.text.TextFrame”);
var objSize= createStruct("com.sun.star.awt.Size");
objSize.Width= 15000;
objSize.Height= 400;
objTextFrame.setSize(objSize);
objTextFrame.setPropertyValue("AnchorType", 1);
objText.insertTextContent(objCursor, objTextFrame, false);
var objFrameText= objTextFrame.getText();
var objFrameTextCursor= objFrameText.createTextCursor();
objFrameText.insertString(objFrameTextCursor, "The first line in the newly created text frame.",
 false);
objFrameText.insertString(objFrameTextCursor,
 "With this second line the height of the frame raises.", false);
objFrameText.insertControlCharacter(objCursor, 0 , false);
objCursor.setPropertyValue("CharColor", 65536);
objCursor.setPropertyValue("CharShadowed", false);
objText.insertString(objCursor, " That's all for now !!", false);

function insertIntoCell(strCellName, strText, objTable)
{
 var objCellText= objTable.getCellByName(strCellName);
 var objCellCursor= objCellText.createTextCursor();
 objCellCursor.setPropertyValue("CharColor",16777215);
 objCellText.insertString(objCellCursor, strText, false);
}
function createStruct(strTypeName)
{
 var classSize= objCoreReflection.forName(strTypeName);
 var aStruct= new Array();
 classSize.createObject(aStruct);
 return aStruct[0];
}
}
]]>
</script>
</component>

This WSC contains the WriterDemo example written in JScript.

The Bridge Services

Service: com.sun.star.bridge.oleautomation.BridgeSupplier

Prior to OpenOffice.org2.0 the service was named com.sun.star.bridge.OleBridgeSupplier2.

The component implements the com.sun.star.bridge.XBridgeSupplier2 interface and converts
Automation values to UNO values. The mapping of types occurs according to the mappings
defined in 3.4.4 Professional UNO - UNO Language Bindings - Automation Bridge - Type Mappings.

Usually you do not use this service unless you must convert a type manually.

A programmer uses the com.sun.star.ServiceManager ActiveX component to access the office.
The COM class factory for com.sun.star.ServiceManager uses BridgeSupplier internally to
convert the UNO service manager into an Automation object. Another use case for the BridgeSup-
plier might be to use the SDK without an office installation. For example, if there is a UNO compo-
nent from COM, write code which converts the UNO component without the need of an office.
That code could be placed into an ActiveX object that offers a function, such as
getUNOComponent().

The interface is declared as follows:
module com { module sun { module star { module bridge {

interface XBridgeSupplier2: com::sun::star::uno::XInterface
{

196 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XBridgeSupplier2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XBridgeSupplier2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XBridgeSupplier2.html

 any createBridge([in] any aModelDepObject,
 [in] sequence< byte > aProcessId,
 [in] short nSourceModelType,
 [in] short nDestModelType)
 raises(com::sun::star::lang::IllegalArgumentException);

}; }; }; };

The value that is to be converted and the converted value itself are contained in anys. The any is
similar to the VARIANT type in that it can contain all possible types of its type system, but that type
system only comprises UNO types and not Automation types. However, it is necessary that the
function is able to receive as well as to return Automation values. In C++, void pointers could have
been used, but pointers are not used with UNO IDL. Therefore, the any can contain a pointer to a
VARIANT and that the type should be an unsigned long.

To provide the any, write this C++ code:
Any automObject;
// pVariant is a VARIANT* and contains the value that is going to be converted
automObject.setValue((void*) &pVariant, cppu::UnoType< sal_uInt32 >::get());

Whether the argument aModelDepObject or the return value carries a VARIANT depends on the
mode in which the function is used. The mode is determined by supplying constant values as the
nSourceModelType and nDestModelType arguments. Those constant are defined as follows:
module com { module sun { module star { module bridge {
constants ModelDependent
{
 const short UNO = 1;
 const short OLE = 2;
 const short JAVA = 3;
 const short CORBA = 4;
};
}; }; }; };

The table shows the two possible modes:

nSourceModelType nDestModelType aModelDepObject Return Value

UNO OLE contains UNO value contains VARIANT*

OLE UNO contains VARIANT* contains UNO value

When the function returns a VARIANT* , that is, a UNO value is converted to an Automation value,
then the caller has to free the memory of the VARIANT:
sal_uInt8 arId[16];
rtl_getGlobalProcessId(arId);
Sequence<sal_Int8> procId((sal_Int8*)arId, 16);
Any anyDisp= xSupplier->createBridge(anySource, procId, UNO, OLE);
IDispatch* pDisp;
if(anyDisp.getValueTypeClass() == TypeClass_UNSIGNED_LONG)
{
 VARIANT* pvar= *(VARIANT**)anyDisp.getValue();
 if(pvar->vt == VT_DISPATCH)
 {
 pDisp= pvar->pdispVal;
 pDisp->AddRef();
 }
 VariantClear(pvar);
 CoTaskMemFree(pvar);
}

The function also takes a process ID as an argument. The implementation compares the ID with the
ID of the process the component is running in. Only if the IDs are identical a conversion is
performed. Consider the following scenario:

There are two processes. One process, the server process, runs the BridgeSupplier service.
The second, the client process, has obtained the XBridgeSupplier2 interface by means of the
UNO remote bridge. In the client process an Automation object is to be converted and the func-
tion XBridgeSupplier2::createBridge is called. The interface is actually a UNO interface
proxy and the remote bridge will ensure that the arguments are marshaled, sent to the server

197

process and that the original interface is being called. The argument aModelDepObject contains
an IDispatch* and must be marshaled as COM interface, but the remote bridge only sees an
any that contains an unsigned long and marshals it accordingly. When it arrives in the server
process, the IDispatch* has become invalid and calls on it might crash the application.

Service: com.sun.star.bridge.OleBridgeSupplierVar1

This service has been deprecated as of OpenOffice.org2.0.

Service: com.sun.star.bridge.oleautomation.ApplicationRegistration

Prior to OpenOffice.org2.0 this service was named com.sun.star.bridge.OleApplicationRegistration.

This service registers a COM class factory when the service is being instantiated and deregisters it
when the service is being destroyed. The class factory creates a service manager as an Automation
object. All UNO objects created by the service manager are then automatically converted into
Automation objects.

Service: com.sun.star.bridge.oleautomation.Factory

Prior to OpenOffice.org2.0 this service was named com.sun.star.bridge.OleObjectFactory.

This service creates ActiveX components and makes them available as UNO objects which imple-
ment XInvocation. For the purpose of component instantiation, the OleClient implements the
com.sun.star.lang.XMultiServiceFactory interface. The COM component is specified by its
programmatic identifier (ProgId).

Although any ActiveX component with a ProgId can be created, a component can only be used if it
supports IDispatch and provides type information through IDispatch::GetTypeInfo.

Unsupported COM Features
The Automation objects provided by the bridge do not provide type information. That is, IDis-
patch::GetTypeInfoCount and IDispatch::GetTypeInfo return E_NOTIMPL. Also, there are no
COM type libraries available and the objects do not implement the IProvideClassInfo[2] inter-
face.

GetIDsOfName processes only one name at a time. If an array of names is passed, then a DISPID is
returned for the first name.

IDispatch::Invoke does not support named arguments and the pExcepInfo and puArgErr param-
eter.

198 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html

3.4.5 CLI Language Binding

About the Language Binding
The CLI (Common Language Infrastructure) language binding allows CLI programs to connect to
an office and perform operations on it, such as creating and converting documents. A CLI-
program consists of IL (Intermediate Language) code and can be produced by tools, such as C# or
VB .NET compilers. The binding provides for type-safe programming. All UNO types are available
as CLI types.

CLI - components are not fully supported. That is, although one can implement UNO interfaces in
a CLI language there is no support for creating instances by means of the office's service manager.
More accurately, one cannot register the components with unopkg and load them later from
within the running program.

Currently the language binding is only available for the Windows operating system.

Terms
The following CLI-related abbreviations are used within this document:

 IL = Intermediate Language

 CLI = Common Language Infrastructure

 CLR = Common Language Runtime

 CTS = Common Type System

Requirements
The language binding is part of OpenOffice.org 2.0 and is only available for Windows platforms,
such as Windows XP and Windows 2000. Refer to the documentation of the Microsoft .NET Frame-
work to find out which operating systems are supported and which prerequisites have to be
fulfilled. A Microsoft .NET Framework Version 1.1 must be installed.

Supported Languages

The language binding should generally enable all CLI languages to be used with UNO. However,
not every language may be suitable, because of missing features. For example, since UNO uses out
parameters, the CLI language must support it as well, which is not given in JScript .NET.

The language binding was successfully tested with C# and VB code. We found that the C++
compiler provides false IL code in conjunction with arrays of enumeration values. This can cause
exceptions, as the following example shows:

__value enum Colors {Red, Green, Blue};
public __gc class Test
{
public:
 static void foo()
 {
 Colors ar[] = new Colors[1];
 ar[0] = Red;
 Object* o = ar->GetValue(0);
 }

199

//...
}

When calling ar->GetValue(0), then a System.ExecutionEngineException is thrown. Looking
at the IL reveals two significant differences to code produced by a C# compiler. First, the array ar
is constructed as array of System.Enum and not as Colors. Therefore ar->GetType() would return
a type for System.Enum instead of Colors. Second, ar->GetValue() is compiled to a �call�
instruction instead of �callvirt�. The example caused the same exception even when compiled
with a compiler from the framework SDK version 1.1.

As a workaround you can provide arrays of System.Int32 for pure in parameter. There is no
workaround for in/out and out parameter. Return values are not affected by this bug.

Another problem is that C++ does not support jagged arrays. Although it is possible to create an
array of System.Array it is no substitute for a jagged array, since they have different types. There-
fore, the compiler will produce an error if you try to pass an Array instance rather then a jagged
array.

The Language Binding DLLs
The language binding comprises five libraries. Some of these do not need to be dealt with by the
programmer, but others must be used during the development or deployment process. All libraries
compiled for the CLI are prefixed by �cli_� to separate them from ordinary native libraries:

• cli_uno.dll: This is the CLI-UNO bridge that realizes the interaction between managed code
(CLI) and UNO. It does not provide public types.

• cli_cppuhelper.dll: Provides bootstrapping code to bootstrap native UNO, that is, to use various
UNO services implemented in different languages. Types from this assembly are always used
in client programs.

• cli_ure.dll: Contains helper classes which are useful for implementing UNO interfaces. Types
from this assembly are not necessarily used.

• cli_types.dll: Provides classes and interfaces for components and client programs. It is a collec-
tion of all UNO interfaces currently used in the office. Types from this assembly are always
used in client programs.

• cli_basetypes.dll: As the name implies, it provides some base types, which are already needed
for the generated UNO types in cli_types.dll. Since it contains the Any type, probably all
programs need this library. Also the cli_types.dll depends on it.

These libraries are part of OpenOffice.org 2.0. Except for cli_uno.dll, they are installed in the
Global Assembly Cache (GAC).

Type Mapping

General

The CLI language binding is intended to run programs that connect to an office and that are
written in a CLI compliant language. Therefore, all UNO Types have to be mapped to a CLI type.
However, it is not necessary to have mappings for all CLI types unless you intend to interact with
arbitrary CLI programs (not UNO components) from UNO (binary UNO). Since we focus on inter-
action with UNO components, we will restrict the mapping to UNO types. Other mappings might
be introduced at a later stage (for example, System.Decimal, indexers, and so on.).

This document only covers the complete mapping of UNO types to CLI.

200 OpenOffice.org 2.3 Developer's Guide • June 2007

UNO types will be mapped to types from the Common Type System (CTS). Although some types
are not CLS compliant (for example, unsigned types are used), they should be usable from various
CLI programming languages.This document will represent CTS types by the respective class from
the framework class library, where possible. .NET languages may provide particular build-in
types, which can be used instead of those classes. For example, in C# you can use int rather than
System.Int32.

Since this type mapping specification targets the CLI as a whole, mappings can be given as IL
assembler code. However, for easier understanding, mappings are mostly described by C# exam-
ples.

Metadata is provided in IL assembler syntax.

This document refers to the subject of how UNO types are defined in a certain language. This
subject is to be regarded as hypothetical, since current implementations of the UNO runtime do
not allow for new types to be introduced by language bindings. For example, a component written
in C# or Java may contain new types which should be used across the UNO system. Currently,
new types have to be provided as binary output of the idlc compiler, which have to be made
known to UNO, for example by merging them into a central types.rdb. In a remote scenario, those
type binaries must be present in all participating processes.

Type Name Decoration

IDL type names can potentially conflict with type names of a particular language, or a name from
one language could also be used in another language. In these cases, interactions between those
language environments are prone to errors, because types are misinterpreted and incorrectly
handled. To counter the problem, the bridge decorates all imported and exported type names. For
example, the type a.b.c is transferred from one environment into a .NET environment. Then the
bridge prefixes the name with a string, so that the name is unoidl.a.b.c When that type is sent
back into the environment where it came from, then the bridge removes the "unoidl." prefix. Like-
wise, if a type that was defined in the CLI environment is transferred out of that environment, the
name is prefixed with "cli." On return, the prefix will be removed again. For more information,
see the concept paper Names in UNO. It can be found at:
http://udk.openoffice.org/common/man/names.html .

When CLI types are declared, their names must not start with "unoidl." And types declared in
UNOIDL must not start with "cli."

Type Mappings

Simple Types

Simple types are mapped according to the following table.

UNOIDL Type CLI Framework class (namespace System)

boolean Boolean
byte Byte
short Int16
long Int32

201

http://udk.openoffice.org/common/man/names.html
http://udk.openoffice.org/common/man/names.html
http://udk.openoffice.org/common/man/names.html

UNOIDL Type CLI Framework class (namespace System)

hyper Int64
unsigned short UInt16
unsigned long UInt32
unsigned hyper UInt64
float Single
double Double
char Char
string String
type Type
void (*) Void (**)

* In type declarations void is only used as a return type.
** Similar to UNOs com.sun.star.uno.TypeClass there is a System.TypeCode enumeration
which, however, does not contain a value for void.

any

the any type will be mapped to a value type with the name uno.Any. For example:
//UNOIDL
void func([in]any val);

//C#
virtual void func(uno.Any val);

Although a System.Object can represent all types, it was decided to not use it, for the following
reasons:

First, in UNO only, an interface can have no value, which amounts to a null reference in C# or a
null pointer in C++. The any can represent all uno types and additionally knows a void state (
com::sun::star::uno::TypeClass_VOID). If the any is mapped to System.Object then a CLI
null reference would represent both an interface with a null value and a void any. This distinction
is important.

Second, the any can contain a particular interface. The consumer of the any knows exactly what
type the any contains because of the provided type information, and is spared to determine the
type by using casts.

The function hasValue determines if the type class is of TypeClass_VOID, in other words, if the
any carries a value. The Any class also overrides the methods, Equals, ToString and GetHashCode
from System.Object. Thers is also an Equals implementation which takes an Any as argument.
Hence the argument does not require unboxing as the overridden Equals method does. The any
offers a bunch of constructors. For complete initialization it needs a System.Type and a
System.Object:
public Any(System.Type type, System.Object)

Because the type of an object can be identified by Object.GetType, it is in some cases unnecessary
to specify the type. Therefore there are also a couple of constructors, which only take the object as
argument. For example:
public Any(char value)
public Any(bool value)

202 OpenOffice.org 2.3 Developer's Guide • June 2007

However, when an UNO interface or struct is to be put in an Any then the type must be explicitly
provided, because structs can be derived and interface implementations can derive from multiple
interfaces. Then Object.GetType may then not return the intended type.

At this point the polymorphic structs needs to be mentioned in particular, because they currently
require to provide a uno.PolymorphicType in the Any constructor:
//C#

PolymorphicType t = PolymorphicType.GetType(
 typeof(unoidl.com.sun.star.beans.Optional),
 “unoidl.com.sun.star.beans.Optional<System.Char>”);
Any a = new Any(t, objStruct);

The Any contains a static member VOID which can be used whenever a void Any is needed:
//C#
obj.functionWithVoidAnyArgument(uno.Any.VOID);

The type and value contained in the Any can be accessed by read-only properties named Type and
Value. One can also subsequently assign new values by calling setValue. This can be useful, when
handling arrays. For example:
//C#
uno.Any[] ar = new uno.Any[1000];
foreach(uno.Any a in ar)
 a.setValue(typeof(char), 's');

One could also construct new Any instances and assign them:
foreach(uno.Any a in ar)
 a = new uno.Any('c');

setValue and the read access to the Type property may change the state of the instance. Therefore
one has to make sure that concurrent access is synchronized. When an Any is default constructed,
for example when creating an array of Anys, then the member representing the Any's type is null.
Only when the Type property is accessed and setValue has not been called yet, then the type is set
to void. This setting of the member may interfere with setValue, hence the need for synchroniza-
tion. However, in most cases synchronization is not necessary.

The uno.Any is contained in the cli_basetypes.dll and the C# source file can be found in the cli_ure
project (cli_ure/source/basetypes/uno/Any.cs).

interface

General

UNOIDL interface types map to CTS interface types with public accessibility. If a UNO interface
inherits an interface, then the target interface will do as well.

Methods

General

All methods have public accessibility. The method names and argument names of the target type
are the same as the respective names in the UNOIDL declaration. The return type and argument
types correspond to the mapping of the respective UNOIDL types. The order of the arguments is
the same as in the UNOIDL declaration.

203

Types declared in a CLI language, do not need to provide argument names in methods. Only their
types are required. If names are provided, then this is done for all arguments.

Exceptions, which are expressed by the raised keyword in UNOIDL, have no bearing on the target
type. The IL assembler method head does not reflect the exception. However, metadata, which
holds information about possible UNO exceptions, is available.

Parameter Types (in,out,in/out)

The CLI supports three kinds of parameter types: by-ref parameters, by-value parameters and
typed-reference parameters. Typed-reference parameters are very special types and are of no rele-
vance to this specification (for more information, see class System.TypedReference). Within the
CLR, objects are always passed as references. However, only objects that have a by-ref type, which
is indicated by the trailing '&' in the type name, can be assigned a new value. Therefore, by-ref
parameters can be used as in/out or just out parameters.

Parameters can have an in-attribute, out-attribute (CLI: InAttribute, OutAttribute) or both. They
are generated in different ways:

 By using language-specific key words, such as out in C#, which produces an OutAttribute

 By using attribute classes, such as System.Runtime.InteropServices.InAttribute and
System.Runtime.InteropServices.OutAttribute

 By explicitly defining parameters during dynamic code creation with the
System.Reflection.Emit framework (see method System.Reflection.Emit.Method-
Builder.DefineParameter)

Parameter types are mapped as follows:

UNOIDL keyword CIL parameter passing conven-
tion

CIL Custom Attributes

[in] by-value InAttribute
[out] by-ref OutAttribute
[inout] by-ref InAttribute, OutAttribute

In metadata a "by-value" type is represented by a CLI build-in type or class name. A "by-ref" type
additionally has an '&' appended. The InAttribute is represented by "[in]" and the OutAttribute by
" [out]". If both attributes are applied, then a combination of both markers appears in the metadata.
For example:
.method public hidebysig newslot virtual abstract
instance int16 func1([in] int16 'value') cil managed
{
}

.method public hidebysig newslot virtual abstract
instance int16 func2([out] int16& 'value') cil managed
{
}

.method public hidebysig newslot virtual abstract
instance int16 func3([out][in] int16& 'value') cil managed
{
}

It depends on the language, what ways of parameter passings are supported. The language may
also require a special syntax with dedicated keywords to mark a parameter to use a particular
parameter passing convention. Therefore a general example cannot be provided. However, here
are examples in C# and C++:

204 OpenOffice.org 2.3 Developer's Guide • June 2007

//UNOIDL
void foo1([in] short value);
void foo2([out] short value);
void foo3([inout] short value);

// C#
void foo1(short value);
void foo2(out short value);
void foo3(ref short value);

// C++ .NET
void foo(short value);
void foo2(short *value);
void foo3(short *value);

When one uses UNO types in a language that does not support the different parameter passings,
then that language might not be suitable for programming UNO code. For example, JScript .NET
does not support out parameters. Therefore it is inappropriate for most UNO applications.

A word about in-parameters. An UNOIDL in-parameter may not be changed from within the
method. This could be expressed in C++ with a const modifier. For example:
//C++ .NET
void foo(const Foo& value);

The const modifier, however, is not supported by the CLI and has only a meaning in code written
with the same language. For example, the C++ compiler creates an attribute, that will be evaluated
by the same compiler but it is not guaranteed that other compilers make use of this attribute. For
example:
//C++ .NET
void func(const Foo* a);

// IL asm
.method public hidebysig newslot virtual abstract instance void func(class Foo
modopt([Microsoft.VisualC]Microsoft.VisualC.IsConstModifier) a) cil managed

Since the C# compiler does not evaluate the IsConstModifier attribute, the argument could be
modified in a C# implementation of that function.

A compiler could evaluate the InAttribute and prevent that the argument is changed. Since that is
not required, in-parameters could be modified dependent on the language being used. Therefore,
every developer must follow the rule:

UNOIDL in-parameter may not be modified from within a method, even if allowed by the language.

Exceptions

CLI methods are not particularly marked if they throw exceptions. In ordner to not loose the infor-
mation what exceptions can be thrown by a UNO interface method a custom attribute may be
applied to that method. All exceptions which are indicated by the keyword raises in a UNOIDL
interface description are mapped to a custom attribute, named uno.ExceptionAttribute.. One
only need to use this attribute when one declares a new type in a CLI language. Otherwise it is
only for informational purposes. The climaker tool from the cli language binding provides assem-
blies in which methods which throw exceptions (other than com.sun.star.uno.RuntimeExcep-
tion) are tagged with this Attribute. If the attribute is not present a method can still throw a
RuntimeException or any other exception which is derives from it. .

One-Way Methods

The UNOIDL oneway attribute has no counterpart in the CLI. To retain this information, the
custom attribute uno.OnewayAttribute is applied.

205

Attributes

The UNOIDL attribute type is mapped to a CTS property. The type of the property is the mapping
of the type used in the attribute declaration in UNOIDL.

A UNOIDL readonly attribute is mapped to a read-only property. That is, the property only has a
get method.

UNOIDL method attributes can throw exceptions. These are expressed by the custom attribute
uno.ExceptionAttribute which shall be applied to the get and/or set method. It shall only be
applied if an exception is specified in UNOIDL.

XInterface

The CLI language binding does not support com.sun.star.uno.XInterface. Wherever a XInterface
occurs in a UNOIDL method signature, the method in the mapping contains a System.Object.

XInterface is used to control the lifetime of UNO objects. Since the CLR uses a garbage collection
mechanism, similar to Java and Smalltalk, there is no need for an explicit control of an object's life-
time.

XInterface also provides a means to obtain other implemented interfaces by calling queryInterface.
In CLI, code this is done by casting an object to the desired interface. If the object does not imple-
ment this interface, then a System.InvalidCastException is thrown.

For the previously stated reasons, the XInterface adds no functionality to an implementation.
Therefore, no mapping for this interface exists.

struct

A UNO IDL struct is mapped to CTS class type, which supports inheritance (that is, no sealed attri-
bute in the class head). A struct, such as defined by the C# struct keyword, is a value type and
therefore has no inheritance support. For example:
//C#
public struct Foo
{
}

IL class header:
.class public sequential ansi sealed beforefieldinit Foo
extends [mscorlib]System.ValueType
{
}

Also, the class inherits System.Object if the UNO struct has no base struct. Otherwise the target
class inherits the class that is the mapping of the respective UNO base struct. Members of a
UNOIDL struct are mapped to their respective target types. All members of the target type have
public accessibility.

For ease of use, the target has two constructors: one default constructor without arguments and
one that completely initializes the struct. The order of the arguments to the second constructor
corresponds to the position of the members in the respective UNOIDL description. That is, the first
argument initializes the member that is the mapping of the first member of the UNOIDL descrip-
tion. The names of the arguments are the same as the members that they initialize. Both construc-
tors initialize their base class appropriately by calling a constructor of the base class. In some

206 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#queryInterface
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#queryInterface
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#queryInterface
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html

languages, instance constructor initializers are implicitly provided. For example, in C# base() does
not need to be called in the initializer.

If a struct inherits another struct, the order of the arguments in a constructor is as follows: the
arguments for the struct at the root come first, followed by the arguments for the deriving struct,
and so on. The order of the arguments that initialize members of the same struct depends again on
the position of the respective members within the UNOIDL declaration. The argument for the first
member appears first, followed by the argument for the second member, and so on. The
constructor calls the constructor of the inherited class and passes the respective arguments.
//UNOIDL
struct FooBase
{
string s;
};

struct Foo: FooBase
{
long l;
};

// C#
public class FooBase
{
public FooBase() // base() implicitly called
{
}

public FooBase(string s) // base() implicitly
{
this.s = s;
}

public string s;
}

public class Foo: FooBase
{
public Foo()
{
}

public Foo(string s, int l): base(s)
{
this.l = l;
}

public int l;
}

Polymorphic structs

As of OpenOffice.org2.0, there is a new UNO IDL feature, the polymorphic struct. This struct is
similar to C++ templates, in that the struct is parameterized and members can use the parameters
as types. For example:

//UNO IDL
struct PolyStruct<T>
{
 T member;
};

//C#
public class PolyStruct
{
 public PolyStruct() // base() implicitly called
 {
 }

 public PolyStruct(object theMember)
 {
 member = theMember;
 }

 public object member;
}

207

As one can see, the type that is provided by the parameter is a System.Object. When instantiating a
polymorphic struct, one need not initialize the members that are Objects. They can be null.

const

If a UNOIDL const value is contained in a module rather then a constants group, then a class is
generated with the name of the const value. The only member is the constant. For example:
// UNO IDL
module com { sun { star { foo {
const long bar = 111;
}; }; }; };

// C# representation of the mapping
namespace unoidl.com.sun.star.foo
{
public class bar
{
public const int bar = 111;
}
}

In contrast to the Java mapping, interfaces are not used, because interfaces with fields are not CLS
compliant.

constants

A constants type is mapped to a class with the same name as the constants group. The namespace
of the class reflects the UNOIDL module containing the constants type. For example:
//UNOIDL
module com { sun { star { foo {
constants bar
{
const long a = 1;
const long b = 2;
};
};
// C# representation
namespace unoidl.com.sun.star.foo
{
public class bar
{
public const long a = 1;
public const long b = 2;
}
}

enum

UNOIDL enumeration types map to a CTS enumeration. The target type must inherit
System.Enum and have the attribute sealed. For example:
//UNOIDL
enum Color
{
green,
red
};

//C#
public enum Color
{
green,
red
}

sequence

A UNOIDL sequence maps to a CTS array. The target type may only contain CLS types, which is
always the case since this mapping specification only uses CLS types. The target array has exactly
one dimension. Therefore a sequence that contains a sequence is mapped to an array that contains
arrays. Those arrays are also called "jagged arrays". For example:

208 OpenOffice.org 2.3 Developer's Guide • June 2007

//UNOIDL
sequence<long> ar32;
sequence<sequence<long>> arar32;

//C#
int ar32;
int[] [] arar32;

exception

The com.sun.star.uno.Exception is mapped to an exception that uses the same namespace and
name. All members have public accessibility. The target unoidl.com.sun.star.uno.Exception
inherits System.Exception and has one member only, which represents the Context member of
the UNOIDL Exception. The target type does not have a member that represents the Message
member of the UNOIDL type. Instead, it uses the Message property of System.Object.

For ease of use the target has two constructors: one default constructor without arguments and one
that completely initializes the exception. The order of the arguments to the second constructor
corresponds to the position of the members in the respective UNOIDL description. That is, the first
argument initializes the member, which is the mapping of the first member of the UNOIDL
description. The names of the arguments are the same as the members, which they initialize. Both
constructors initialize their base class appropriately by calling a constructor of the base class. For
example:
//UNOIDL
module com { sun { star { uno {
exception Exception
{
string Message;
com::sun::star::uno::XInterface Context;
};
}; }; }; };

//C#
namespace unoidl.com.sun.star.uno
{
public class Exception: System.Exception
{
public System.Object Context;
public Exception(): base()
{
}
public Exception(string Message, System.Object Context): base(Message)
{
this.Context = Context;
}
}
}

All UNO exceptions inherit com.sun.star.uno.Exception. Likewise their mappings also inherit from
the unoidl.com.sun.star.uno.Exception. The order of the constructor's arguments then
depends on the inheritance chain. The arguments for the initialization of
unoidl.com.sun.star.uno.Exception come first followed by the arguments for the derived
exception and so on. The order of the arguments, which initialize the members of the same excep-
tion, depends again from the position of the respective members within the UNOIDL declaration.
The argument for the first member appears first, followed by the argument for the second member,
and so on. The constructor calls the constructor of the inherited class and passes the respective
arguments. For example, let us assume we have a exception FooException which has two
members:
//UNOIDL
module com { sun { star { uno {
exception FooException: com::sun::star::uno::Exception
{
 int value1;
 string value2;
};
}; }; }; };

209

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html

//C#
namespace com.sun.star.uno
{
public class FooException: com.sun.star.uno.Exception
{
 public int value1;
 public string value2;

 public FooException(): base()
 {
 }
 public FooException(string argMessage,
 System.Object Context, int value1,
 string value2): base(Message, Context)
 {
 this.value1 = value1;
 this.value2 = value2;
 }
}
}

services

For every single-interface-based service a CLI class is provided which enables typesafe instantia-
tion of the service. For example, if there were a service com.sun.star.Test then it could be created in
these two way
//C#
// com.sun.star.Test implements interface XTest
com.sun.star.uno.XComponentContext xContext = ...;

object service=
 xContext.getServiceManager().createInstanceWithContext(
 "com.sun.star.Test", xContext);
XTest x = (XTest) service;

// This is the new way

XTest y = com.sun.star.Test.create(xContext);

If a service constructor method is specified to throw exceptions, then the respective CLI method
hat the custom attribute uno.ExceptionAttribute applied to it.

See chapter Services/Service Constructors under 3.2.1 Professional UNO - API Concepts - Data
Types for further details.

singletons

Similar to the services there are CLI classes for new-style singletons. For example, if there were a
singleton com.sun.star.TestSingleton then it could be created in these two ways:
//C#
com.sun.star.uno.XComponentContext xContext = ...;
uno.Any a = xContext.getValueByName(“com.sun.star.TestSingleton”);
XTest x = (XTest) a.Value;

//The alternative:
XTest x = com.sun.star.TestSingleton.get(xContext);

Additional Structures

Whether a complete type mapping can be achieved depends on the capabilities of a target environ-
ment. UNOIDL attributes which have no counterpart in the CLI are mapped to custom attributes.
Hence no information becomes lost in the mapping. The attributes can be evaluated by:

 The CLI - UNO bridge

 Tools that generated source code files or documentation

210 OpenOffice.org 2.3 Developer's Guide • June 2007

 Tools that use CLI assemblies to dynamically provide type information to UNO.

ExceptionAttribute Attribute

The uno.ExceptionAttribute can be applied to interface methods, property methods (get or set) or
service constructor methods. It contains the information about what exceptions can be thrown by
the method. The source code can be found at
cli_ure/source/basetypes/uno/ExceptionAttribute.cs.

OnewayAttribute

The uno.OnewayAttribute is applied to those interface methods that UNOIDL declarations have
tapplied he oneway attribute to. The source code can be found at
cli_ure/source/basetypes/uno/OnewayAttribute.cs.

BoundPropertyAttribute

The uno.BoundPropertyAttribute is applied to properties whose respective UNOIDL declara-
tions have the bount attibute applied to it. The source code can be found at cli_ure/source/base-
types/uno/BoundPropertyAttribute.cs.

TypeParametersAttribute

The uno.TypeParametersAttribute is applied to polymorphic structs. It keeps the information of
the names in the type list of the struct. For example, a struct may be named com.sun.star.Foo<T,
C>. Then the attribute containes the information, that the name of the first type in the type list is
�T� and the second is �C�.

This attribute will become obsolete when the CLI supports templates and the CLI-UNO language
binding has adopted them. The source code can be found at
cli_ure/source/basetypes/uno/TypeParametersAttribute.cs.

ParameterizedTypeAttribute

The uno.ParameterizedTypeAttribute is applied to fields of polymorphic structs whose type is
specified in the type list. For example, the struct may be declared as com.sun.star.Foo<T,C> and
member is of type �T�. The member of the CLI struct would then be of type System.Object and the
applied ParameterizeTypeAttribute would declare that the actual type is �T�.

This attribute will become obsolete when the CLI supports templates and the CLI-UNO language
binding has adopted them. The source code can be found at
cli_ure/source/basetypes/uno/ParameterizedTypeAttribute.cs.

TypeArgumentsAttribute

The uno.TypeArgumentsAttribute is applied to instantiations of the polymorphic struct. That is,
it appears when a polymorphic struct is used as return value, parameter or field. It contains the
information about the actual types in the type list. For example, a function has a parameter of type
com.sun.star.StructFoo<char, long>. Then the CLI parameter has the attribute which contains
the list of types, in this case System.Char and System.Int32.

211

This attribute will become obsolete when the CLI supports templates and the CLI-UNO language
binding has adopted them. The source code can be found at cli_ure/source/basetypes/uno/Type-
ArgumentsAttribute.cs.

PolymorphicType

The uno.PolymorphicType is derived from System.Type. It is used whenever a type from a poly-
morphic struct is needed. For example:

//UNOIDL
void func1([in] type t);
void func2([in]any a);
type func3();
any func4();

If the caller intends to pass the type of an polymorphic struct in func1, then they cannot use
typeof(structname). Instead a uno.PolymorphicType must be created. The same goes for func2,
when the any contains a polymorphic struct. If a UNO method returns the type of polymorphic
struct, then the bridge ensures that a PolymorphicType is returned rather than System.Type.

The PolymorphicType is constructed by a static function:
 public static PolymorphicType GetType(Type type, string name)

The function ensures that there exist only one instance for the given combination of type and name.

This attribute will become obsolete when the CLI supports templates and the CLI-UNO language
binding has adopted them. The source code can be found at cli_ure/source/basetypes/uno/Poly-
morphicType.cs.

Lifetime Management and Obtaining Interfaces
The CLR is similar to the Java runtime in that it keeps track of the object's lifetime rather then
leaving the task to the developer. Once an object is no longer referenced (unreachable), the CLR
deletes that object. Therefore, reference counting, as used in C++, is not necessary. Hence
com.sun.star.uno.XInterface:acquire and com.sun.star.uno.XInterface:release are not needed.

XInterface has a third method, queryInterface, which is used to query an object for a particular
interface. This language binding does not use queryInterface. Instead objects can be cast to the
desired interface. For example:
// C#
try {
 XFoo bar = (XFoo) obj;
} catch (System.InvalidCastException e) {
 // obj does not support XFoo
}

// using keywords is and as
if (obj is XFoo) {
 // obj supports XFoo
}

XFoo foo = obj as XFoo;
if (foo != null)
{
 // obj supports XFoo
}

// C++ with managed extensions
XFoo * pFoo = dynamic_cast< XFoo * >(obj);
if (XFoo != 0)
{
 // obj supports XFoo
}

212 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#queryInterface
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#queryInterface
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#queryInterface
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#queryInterface
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#queryInterface
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#queryInterface
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#release
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#release
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#release
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#acquire
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#acquire
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#acquire

try {
XFoo * pFoo = __try_cast< XFoo * >(obj);
} catch (System::InvalidCastException * e) {
 // obj does not support XFoo
}

Writing Client Programs
To build a client program it must reference at least cli_types.dll and cli_cppuhelper.dll.
Also cli_ure can be referenced when one of its classes is used. These libraries are installed in the
GAC and the program folder of the office installation. The referencing is done by certain compiler
switches, for example /AI for C++ (with managed extensions) or /reference for the C# compiler. C
++ also requires dlls to be specified by the using the #using:

#using <mscorlib.dll>
#using <cli_types.dll>
The following example discusses how to use services provided by a running office process:

The starting point of every remote client program is a component context. It is created by a static
function defaultBootstrap_InitialComponentContext, which is provided by the class
uno.util.Bootstrap. The context provides the service manager by which UNO components can
be created. However, these components would still be local to the client process, that is, they are
not from a running office and therefore cannot affect the running office. What is actually needed is
a service manager of a running office. To achieve that, the component com.sun.star.bridge.UnoUrl-
Resolver is used, which is provided by the local service manager. The UnoUrlResolver connects to
the remote office and creates a proxy of the office's service manager in the client process. The
example code is as follows:
//C# example
System.Collections.Hashtable ht = new System.Collections.Hashtable();
ht.Add("SYSBINDIR", "file:///<office-dir>/program");
unoidl.com.sun.star.uno.XComponentContext xLocalContext =

uno.util.Bootstrap.defaultBootstrap_InitialComponentContext(
 "file:///<office-dir>/program/uno.ini", ht.GetEnumerator());

unoidl.com.sun.star.bridge.XUnoUrlResolver xURLResolver =

(unoidl.com.sun.star.bridge.XUnoUrlResolver)
xLocalContext.getServiceManager().

createInstanceWithContext("com.sun.star.bridge.UnoUrlResolver",
 xLocalContext);

unoidl.com.sun.star.uno.XComponentContext xRemoteContext =

(unoidl.com.sun.star.uno.XComponentContext) xURLResolver.resolve(
"uno:socket,host=localhost,port=2002;urp;StarOffice.ComponentContext");

unoidl.com.sun.star.lang.XMultiServiceFactory xRemoteFactory =
(unoidl.com.sun.star.lang.XMultiServiceFactory)

xRemoteContext.getServiceManager();

With the factory of the running office at hand, all components of the remote office are accesible.

For a client to connect to a running office, the office must have been started with the proper param-
eters. In this case, the command line looks like this:

soffice -accept=socket,host=localhost,port=2002;urp;

More information about interprocess communication can be found in the Developer's Guide, in
chapter 3.3.1 Professional UNO - UNO Concepts - UNO Interprocess Connections.

The example shows a scenario where an office is controlled remotely. It is, however, possible to
write UNO applications that do not depend on a running office. Then, you would typically
provide an own database of registered services. For more information, see 4.9.5 Writing UNO
Components - Deployment Options for Components - Manual Component Installation.

213

http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html

There is an overloaded function uno.util.Bootstrap.defaultBootstrap_InitialComponentContext,
which does not take arguments. It is intended to always connect to the most recently installed
office. It is even capable of starting the office. To do that, the function needs to know where the
office is located. This information is obtained from the windows registry. During installation either
the key HKEY_CURRENT_USER\Software\OpenOffice.org\UNO\InstallPath or
HKEY_LOCAL_MACHINE\Software\OpenOffice.org\UNO\InstallPath is written dependent on
whether the user chooses a user installation or an installation for all users. The function uses the
key in HKEY_CURRENT_USER first, and if it does not exists it uses the key in HKEY_LOCAL_MACHINE.
In case the office does not start, check these keys. Also make sure that the PATH environment vari-
able does not contain the program path to a different office.Implementing UNO Interfaces

The CLI-UNO language binding does not support UNO components that are written in a CLI
language. Instead, it acts as a liaison between a CLI client program and an office. The client
program usually obtains UNO objects from the office and performs operations on them. Therefore,
it is rarely necessary to implement UNO interfaces.

To receive notifications from UNO objects, then, it is necessary to implement the proper interfaces.
Also, interfaces can be implemented in order to use the objects as arguments to UNO methods.

Interfaces are implemented by declaring a class that derives from one or more interfaces, and
which provides implementations for the interface methods. How this is done is covered by the
respective documentation of the various CLI languages.

The Override Problem

The term �override problem� describes a problem that occurs when a virtual function of a base
object becomes unreachable because an interface method overrides the implementation of the base
class. For example, all CLI objects derive from System.Object. If an interface has a method that
has the same signature as one of System.Object's methods, then the respective method of
System.Object is unreachable if the interface method is virtual.

For example, consider the following declaration of the interface XFoo and its implementing class :
using namespace System;

public __gc __interface XFoo
{
public:

virtual String* ToString();
};

public __gc class Foo : public XFoo
{
public:

virtual String * ToString()
{

return NULL;
}

};

If the method ToString of an instance is called, then the implementation of the interface method is
invoked. For example:

int main(void)
{

Foo * f = new Foo();
Object * o = f;
f->ToString(); // calls Foo.ToString
o->ToString(); // calls Foo.ToString

 return 0;
}

This may not be intended, because the interface method likely has a different semantic than its
namesake of System.Object.

214 OpenOffice.org 2.3 Developer's Guide • June 2007

A solution is to prevent the interface method from overriding the method of System.Object
without making the interface method non-virtual. The CLI provides a remedy by way of the
�newslot� flag, which is attached to the method header in the IL code. CLI languages may have
different means for denoting a method with �newslot�.

The following examples show ways of implementing XFoo in different languages, so that
Object.ToString can still be called.

//C++
//interface methods should be qualified with the interface they belong to
public __gc class A: public XFoo
{
public:

virtual String* XFoo::ToString()
{

Console::WriteLine("A::foo");
return NULL;

}
};

Although XFoo::ToString is virtual, it cannot be overridden in an inheriting class, because the CLI
method header contains the final attribute. In an inheriting class one can, however, derive again from XFoo
and provide an implementation.

In C# there are different ways provide an implementation:
// IL contains: newslot final virtual
public new string ToString()
{
}

The keyword new inserts the newslot attribute in the CLI method header. This implementation
cannot be overridden in an inheriting class.

//IL contains: newslot virtual
public new virtual string ToString()
{
}

This method can be overridden in a derived class.
// Using a qualified method name for the implementation. The virtual
//modifier is not allowed
string XFoo.ToString()
{

return null;
}

This implementation cannot be overridden in a derived class. An instance of the implementing
class must be cast to XFoo before the method can be called.

'VB .NET
Public Shadows Function ToString() As String Implements XFoo.ToString

Console.WriteLine("Foo.toString")
End Function

This implementation cannot be overridden in a derived class.
Public Overridable Shadows Function ToString() As String _
Implements XFoo.ToString
 Console.WriteLine("Foo.toString"
End Function

This method can be overridden.

215

Important Interfaces and Implementations (Helper Classes)

UNO objects implement a set of UNO interfaces, some of which are always dependent on require-
ments. The interfaces below belong to the assembly called cli_types.dll within your office's
program directory:

com.sun.star.lang.XTypeProvider (recommended for all UNO objects)

com.sun.star.uno.XWeak (recommended for all UNO objects)

com.sun.star.lang.XComponent (optional)

com.sun.star.beans.XPropertySet (optional, required for service implementation concerning
defined service properties)

Making object development a little easier, the language binding provides helper implementations
for most of the above interfaces. The helper classes belong to the uno.util namespace, and are
contained in the assembly called cli_ure.dll. Notice that there is a helper missing that imple-
ments a listener container similar to the one in C++ or Java. The main reason for its existence is to
ensure the automatic notification of event listeners (see com.sun.star.lang.XComponent,
com.sun.star.lang.XEventListener). The CLI languages provide a simple mechanism for events
(delegates) which makes a helper class superfluous in this particular case, because event notifica-
tion is easily implemented using language features.

uno.util.WeakBase

This class implements the XTypeProvider and XWeak interfaces. XWeak is used to implement a
UNO weak reference mechanism, and it may seem strange that System.WeakReference is not
used. You have to remember that your UNO object is held from within other language environ-
ments that do not support weak references. This way, weak references are implemented as a UNO
concept. Of course, the helper implementation uses System.WeakReference, as can every compo-
nent or application, as long as it is not passed into calls to UNO interfaces. Also, the compiler will
not be able to compile the implementation properly.

uno.util.WeakComponentBase

This class derives from uno.util.WeakBase and implements the XComponent interface. Use this
class as base class if the component needs to perform a special cleanup. The class has two protected
member functions that are called upon disposal of the object:

 preDisposing() - called before all registered event listeners are notified

 postDisposing() - called after all registered event listeners are notified. Resource cleanup should
be performed in this method.

Inherit from uno.util.WeakComponentBase and override the appropriate methods.

216 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html

4 Writing UNO Components

OpenOffice.org can be extended by UNO components. UNO components are shared libraries or jar
files with the ability to instantiate objects that can integrate themselves into the UNO environment.
A UNO component can access existing features of OpenOffice.org, and it can be used from within
OpenOffice.org through the object communication mechanisms provided by UNO.

OpenOffice.org provides many entry points for these extensions.

• Arbitrary objects written in Java or C++ can be called from the user interface, display their own
GUI, and work with the entire application.

• Calc Add-Ins can be used to create new formula sets that are presented in the formula auto-
pilot.

• Chart Add-Ins can insert new Chart types into the charting tool.

• New database drivers can be installed into the office to extend data access.

• Entire application modules are exchangeable, for instance the linguistics module.

• It is possible to create new document types and add them to the office. For instance, a personal
information manager could add message, calendar, task and journal document components, or
a project manager could support a new project document.

• Developers can leverage the OpenOffice.org XML file format to read and write new file formats
through components.

From OpenOffice.org 1.1.0 there is comprehensive support for component extensions. The entire
product cycle of a component is now covered:

The design and development of components has been made easier by adding wizards for compo-
nents to the NetBeans IDE. You can find more detailed info under
http://wiki.services.openoffice.org/wiki/OpenOffice_NetBeans_Integration.

Components can integrate themselves into the user interface, using simple configuration files. You
can add new menus, toolbar items, and help items for a component simply by editing XML config-
uration files.

Components are deployed with the Extension Manager. See chapter 5 Extensions.

Last but not least, this is not the only way to add features to the office. Learning how to write
components and how to use the OpenOffice.org API at the same time teaches you the techniques
used in the OpenOffice.org code base, thus enabling you to work with the existing OpenOffice.org
source code, extend it or introduce bug fixes.

Components are the basis for all of these extensions. This chapter teaches you how to write UNO
components. It assumes that you have at least read the chapter 2 First Steps and� depending on
your target language� the section about the Java or C++ language binding in 3 Professional UNO.

217

http://wiki.services.openoffice.org/wiki/OpenOffice_NetBeans_Integration
http://wiki.services.openoffice.org/wiki/OpenOffice_NetBeans_Integration
http://wiki.services.openoffice.org/wiki/OpenOffice_NetBeans_Integration

4.1 Required Files
OpenOffice.org Software Development Kit (SDK)

The SDK provides a build environment for your projects, separate from the OpenOffice.org
build environment. It contains the necessary tools for UNO development, C and C++ libraries,
JARs , UNO type definitions and example code. But most of the necessary libraries and files are
shared with an existing OpenOffice.org installation which is a prerequisite for a SDK.

The SDK development tools (executables) contained in the SDK are used in the following
chapter. Become familiar with the following table that lists the executables from the SDK. These
executables are found in the platform specific bin folder of the SDK installation. In Windows,
they are in the folder <SDK>\windows\bin, on Linux they are stored in <SDK>/linux/bin and on
Solaris in <SDK>/solaris/bin.

Executable Description

idlc The UNOIDL compiler that creates binary type description files with the
extension .urd for registry database files.

idlcpp The idlc preprocessor used by idlc.

cppumaker The C++ UNO maker that generates headers with UNO types mapped from binary
type descriptions to C++ from binary type descriptions.

javamaker Java maker that generates interface and class definitions for UNO types mapped
from binary type descriptions to Java from binary type descriptions.

xml2cmp XML to Component that can extract type names from XML object descriptions for
use with cppumaker and javamaker, creates functions.

regmerge The registry merge that merges binary type descriptions into registry files.

regcomp The register component that tells a registry database file that there is a new compo-
nent and where it can be found.

unopkg The command line tool of the extension manager.

regview The registry view that outputs the content of a registry database file in readable
format.

autodoc The automatic documentation tool that evaluates Javadoc style comments in idl files
and generates documentation from them.

rdbmaker The registry database maker that creates registry files with selected types and their
dependencies.

uno The UNO executable. It is a standalone UNO environment which is able to run UNO
components supporting the com.sun.star.lang.XMain interface, one possible
use is:
$ uno -s ServiceName -r MyRegistry.rdb -- MyMainClass arg1

GNU Make
The makefiles in the SDK assume that the GNU make is used. Documentation for GNU make
command line options and syntax are available at www.gnu.org. In Windows, not every GNU
make seems stable, notably some versions of Cygwin make were reported to have problems
with the SDK makefiles. Other GNU make binaries, such as the one from unixutils.sourceforge.net
work well even on the Windows command line. The package UnxUtils comes with a zsh shell
and numerous utilities, such as find, sed. To install UnxUtils, download and unpack the archive,
and add <UnxUtils>\usr\local\wbin to the PATH environment variable. Now launch sh.exe
from <UnxUtils>\bin and issue the command make from within zsh or use the Windows
command line to run make. For further information about zsh, go to zsh.sunsite.dk.

218 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMain.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMain.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMain.html

4.2 Using UNOIDL to Specify New Components
Component development does not necessarily start with the declaration of new interfaces or new
types. Try to use the interfaces and types already defined in the OpenOffice.org API. If existing
interfaces cover your requirements and you need to know how to implement them in your own
component, go to section 4.3 Writing UNO Components - Component Architecture. The following
describes how to declare your own interfaces and other types you might need.

UNO uses its own meta language UNOIDL (UNO Interface Definition Language) to specify types.
Using a meta language for this purpose enables you to generate language specific code, such as
header files and class definitions, to implement objects in any target language supported by UNO.
UNOIDL keeps the foundations of UNO language independent and takes the burden of mechanic
language adaptation from the developer's shoulders when implementing UNO objects.

To define a new interface, service or other entity, write its specification in UNOIDL, then compile it
with the UNOIDL compiler idlc. After compilation, merge the resulting binary type description
into a type library that is used during the make process to create necessary language dependent
type representations, such as header or Java class files. The chapter 3 Professional UNO provides the
various type mappings used by cppumaker and javamaker in the language binding sections. Refer
to the section 4.9.2 Writing UNO Components - Deployment Options for Components - Background:
UNO Registries - UNO Type Library for details about type information in the registry-based type
library.

 When writing your own specifications, please consult the chapter A IDL Design Guide which treats design
principles and conventions used in API specifications. Follow the rules for universality, orthogonality, inher-
itance and uniformity of the API as described in the Design Guide.

4.2.1 Writing the Specification
There are similarities between C++, CORBA IDL and UNOIDL, especially concerning the syntax
and the general usage of the compiler. If you are familiar with reading C++ or CORBA IDL, you
will be able to understand much of UNOIDL, as well.

As a first example, consider the IDL specification for the com.sun.star.bridge.XUnoUrlRe-
solver interface. An idl file usually starts with a number of preprocessor directives, followed by
module instructions and a type definition:
#ifndef __com_sun_star_bridge_XUnoUrlResolver_idl__
#define __com_sun_star_bridge_XUnoUrlResolver_idl__

#include <com/sun/star/uno/XInterface.idl>
#include <com/sun/star/lang/IllegalArgumentException.idl>
#include <com/sun/star/connection/ConnectionSetupException.idl>
#include <com/sun/star/connection/NoConnectException.idl>

module com { module sun { module star { module bridge {

/** service <type scope="com::sun::star::bridge">UnoUrlResolver</type>
implements this interface.

 */
published interface XUnoUrlResolver: com::sun::star::uno::XInterface
{
 // method com::sun::star::bridge::XUnoUrlResolver::resolve
 /** resolves an object, on the UNO URL.
 */
 com::sun::star::uno::XInterface resolve([in] string sUnoUrl)
 raises (com::sun::star::connection::NoConnectException,
 com::sun::star::connection::ConnectionSetupException,
 com::sun::star::lang::IllegalArgumentException);
};

}; }; }; };

219

http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html

#endif

We will discuss this idl file step by step below, and we will write our own UNOIDL specification
as soon as possible. The file specifying com.sun.star.bridge.XUnoUrlResolver is locatedin the
idl folder of your SDK installation, <SDK>/idl/com/sun/star/bridge/XUnoUrlResolver.idl.

UNOIDL definition file names have the extension . idl by convention. The descriptions must use
the US ASCII character set without special characters and separate symbols by whitespace, i.e.
blanks, tabs or linefeeds.

Preprocessing
Just like a C++ compiler, the UNOIDL compiler idlc can only use types it already knows. The idlc
knows 15 simple types such as boolean, int or string (they are summarized below). Whenever a
type other than a simple type is used in the idl file, its declaration has to be included first. For
instance, to derive an interface from the interface XInterface, include the corresponding file
XInterface.idl. Including means telling the preprocessor to read a given file and execute the
instructions found in it.
#include <com/sun/star/uno/XInterface.idl> // searched in include path given in -I parameter
#include "com/sun/star/uno/XInterface.idl" // searched in current path, then in include path

There are two ways to include idl files. A file name in angled brackets is searched on the include
path passed to idlc using its -I option. File names in double quotes are first searched on the current
path and then on the include path.

The XUnoUrlResolver definition above includes com.sun.star.uno.XInterface and the three
exceptions thrown by the method resolve(), com.sun.star.lang.IllegalArgumentException,
com.sun.star.connection.ConnectionSetupException and
com.sun.star.connection.NoConnectException.

In OpenOffice.org 2.0, it is no longer necessary to explicitly state that an interface type derives
from XInterface� if an interface type derives from no other interface type, it is implicitly taken to
derive from XInterface. However, even in such situations it is important to explicitly include the
file XInterface.idl.

Furthermore, to avoid warnings about redefinition of already included types, use #ifndef and
#define as shown above. Note how the entire definition for XUnoUrlResolver is enclosed
between #ifndef and #endif. The first thing the preprocessor does is to check if the flag
__com_sun_star_bridge_XUnoUrlResolver_idl__ has already been defined. If not, the flag is
defined and idlc continues with the definition of XUnoUrlResolver.

Adhere to the naming scheme for include flags used by the OpenOffice.org developers: Use the file
name of the IDL file that is to be included, add double underscores at the beginning and end of the
macro, and replace all slashes and dots by underscores.

For other preprocessing instructions supported by idlc refer to Bjarne Stroustrup: The C++
Programming Language.

Grouping Definitions in Modules
To avoid name clashes and allow for a better API structure, UNOIDL supports naming scopes. The
corresponding instruction is module:
module mymodule {
};

220 OpenOffice.org 2.3 Developer's Guide • June 2007

http://www.research.att.com/~bs/3rd.html
http://www.research.att.com/~bs/3rd.html
http://www.research.att.com/~bs/3rd.html
http://www.research.att.com/~bs/3rd.html
http://www.research.att.com/~bs/3rd.html
http://www.research.att.com/~bs/3rd.html
http://www.research.att.com/~bs/3rd.html
http://www.research.att.com/~bs/3rd.html
http://www.research.att.com/~bs/3rd.html
http://www.research.att.com/~bs/3rd.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/NoConnectException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/NoConnectException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/NoConnectException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/ConnectionSetupException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/ConnectionSetupException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/ConnectionSetupException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/IllegalArgumentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/IllegalArgumentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/IllegalArgumentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html

Instructions are only known inside the module mymodule for every type defined within the pair of
braces of this module {} . Within each module, the type identifiers are unique. This makes an
UNOIDL module similar to a Java package or a C++ namespace.

Modules may be nested. The following code shows the interface XUnoUrlResolver contained in
the module bridge that is contained in the module star, which is in turn contained in the module
sun of the module com.
module com { module sun { module star { module bridge {
 // interface XUnoUrlResolver in module com::sun::star::bridge
}; }; }; };

It is customary to write module names in lower case letters. Use your own module hierarchy for
your IDL types. To contribute code to OpenOffice.org, use the org::openoffice namespace or
com::sun::star. Discuss the name choice with the leader of the API project on www.openoffice.org
to add to the latter modules. The com::sun::star namespace mirrors the historical roots of
OpenOffice.org in StarOffice and will probably be kept for compatibility purposes.

Types defined in UNOIDL modules have to be referenced using full-type or scoped names, that is,
you must enter all modules your type is contained in and separate the modules by the scope oper-
ator ::. For instance, to reference XUnoUrlResolver in another idl definition file, write
com::sun::star::bridge::XUnoUrlResolver.

Besides, modules have an advantage when it comes to generating language specific files. The tools
cppumaker and javamaker automatically create subdirectories for every referenced module, if
required. Headers and class definitions are kept in their own folders without any further effort.

One potential source of confusion is that UNOIDL and C++ use �::� to separate the individual
identifiers within a name, whereas UNO itself (e.g., in methods like
com.sun.star.lang.XMultiComponentFactory:createInstanceWithContext) and Java
use �.�.

Simple Types
Before we can go about defining our first interface, you need to know the simple types you may
use in your interface definition. You should already be familiar with the simple UNO types from
the chapters 2 First Steps and 3 Professional UNO. Since we have to use them in idl definition files,
we repeat the type keywords and their meaning here.

221

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html#createInstanceWithContext
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html#createInstanceWithContext
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html#createInstanceWithContext

simple UNO type Type description

char 16-bit unicode character type

boolean boolean type; true and false

byte 8-bit ordinal integer type

short signed 16-bit ordinal integer type

unsigned short unsigned 16-bit ordinal integer type (deprecated)

long signed 32-bit ordinal integer type

unsigned long unsigned 32-bit integer type (deprecated)

hyper signed 64-bit ordinal integer type

unsigned hyper unsigned 64-bit ordinal integer type (deprecated)

float processor dependent float

double processor dependent double

string string of 16-bit unicode characters

any universal type, takes every simple or compound UNO type, similar to
Variant in other environments or Object in Java

void Indicates that a method does not provide a return value

Defining an Interface
Interfaces describe aspects of objects. To specify a new behavior for the component, start with an
interface definition that comprises the methods offering the new behavior. Define a pair of plain
get and set methods in a single step using the attribute instruction. Alternatively, choose to
define your own operations with arbitrary arguments and exceptions by writing the method signa-
ture, and the exceptions the operation throws. We will first write a small interface definition with
attribute instructions, then consider the resolve() method in XUNoUrlResolver.

Let us assume we want to contribute an ImageShrink component to OpenOffice.org to create
thumbnail images for use in OpenOffice.org tables. There is already a
com.sun.star.document.XFilter interface offering methods supporting file conversion. In addi-
tion, a method is required to get and set the source and target directories, and the size of the
thumbnails to create. It is common practice that a service and its prime interface have corre-
sponding names, so our component shall have an org::openoffice::test::XImageShrink inter-
face with methods to do so through get and set operations.

Attributes

The attribute instruction creates these operations for the experimental interface definition:

Look at the specification for our XImageShrink interface1:
(Components/Thumbs/org/openoffice/test/XImageShrink.idl)
#ifndef __org_openoffice_test_XImageShrink_idl__
#define __org_openoffice_test_XImageShrink_idl__
#include <com/sun/star/uno/XInterface.idl>
#include <com/sun/star/awt/Size.idl>

1 Perhaps in real life it would be better to define a more universal XBatchConverter interface for the source and target
directories and derive XImageShrink from it. There are other options as well, but we want to keep things simple.

222 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/document/XFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XFilter.html

module org { module openoffice { module test {

interface XImageShrink : com::sun::star::uno::XInterface
{
 [attribute] string SourceDirectory;
 [attribute] string DestinationDirectory;
 [attribute] com::sun::star::awt::Size Dimension;
};

}; }; };

#endif

We protect the interface from being redefined using #ifndef, then added #include
com.sun.star.uno.XInterface and the struct com.sun.star.awt.Size. These were found in the
API reference using its global index. Our interface will be known in the org::openoffice::test
module, so it is nested in the corresponding module instructions.

Define an interface using the interface instruction. It opens with the keyword interface, gives
an interface name and derives the new interface from a parent interface (also called super inter-
face). It then defines the interface body in braces. The interface instruction concludes with a
semicolon.

In this case, the introduced interface is XImageShrink. By convention, all interface identifiers start
with an X. Every interface must inherit from the base interface for all UNO interfaces XInterface
or from one of its derived interfaces. The simple case of single inheritance is expressed by a colon :
followed by the fully qualified name of the parent type. The fully qualified name of a UNOIDL type
is its identifier, including all containing modules separated by the scope operator ::. Here we
derive from com::sun::star::uno::XInterface directly. If you want to declare a new interface
that inherits from multiple interfaces, you do not use the colon notation, but instead list all inher-
ited interfaces within the body of the new interface:
interface XMultipleInheritance {
 interface XBase1;
 interface XBase2;
};

 UNOIDL allows forward declaration of interfaces used as parameters, return values or struct members.
However, an interface you want to derive from must be a fully defined interface.

After the super interface the interface body begins. It may contain attribute and method declara-
tions, and, in the case of a multiple-inheritance interface, the declaration of inherited interfaces.
Consider the interface body of XImageShrink. It contains three attributes and no methods. Inter-
face methods are discussed below.

An attribute declaration opens with the keyword attribute in square brackets, then it gives a
known type and an identifier for the attribute, and concludes with a semicolon.

In our example, the string attributes named SourceDirectory and DestinationDirectory and
a com::sun::star::awt::Size attribute known as Dimension were defined:
 [attribute] string SourceDirectory;
 [attribute] string DestinationDirectory;
 [attribute] com::sun::star::awt::Size Dimension;

During code generation in Java and C++, the attribute declaration leads to pairs of get and set
methods. For instance, the Java interface generated by javamaker from this type description
contains the following six methods:
 // from attribute SourceDir
 public String getSourceDirectory();
 public void setSourceDirectory(String _sourcedir);
 // from attribute DestinationDir
 public String getDestinationDirectory();
 public void setDestinationDirectory(String _destinationdir);
 // from attribute Dimension

223

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Size.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Size.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Size.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html

 public com.sun.star.awt.Size getDimension();
 public void setDimension(com.sun.star.awt.Size _dimension);

As an option, define that an attribute cannot be changed from the outside using a readonly flag.
To set this flag, write [attribute, readonly]. The effect is that only a get() method is created
during code generation, but not a set() method. Another option is to mark an attribute as bound;
that flag is of interest when mapping interface attributes to properties, see 4.5.6 Writing UNO
Components - Simple Component in Java - Storing the Service Manager for Further Use and 4.6 Writing
UNO Components - C++ Component.

Since OpenOffice.org 2.0, there can be exception specifications for attributes, individually for the
operations of getting and setting an attribute:
 [attribute] long Age {
 get raises (DatabaseException); // raised when retrieving the age from the database fails
 set raises (IllegalArgumentException, // raised when the new age is negative
 DatabaseException); // raised when storing the new age in the database fails
 };

If no exception specification is given, only runtime exceptions may be thrown.

Methods

When writing a real component, define the methods by providing their signature and the exceptions
they throw in the idl file. Our XUnoUrlResolver example above features a resolve() method
taking a UNO URL and throwing three exceptions.
interface XUnoUrlResolver: com::sun::star::uno::XInterface
{
 com::sun::star::uno::XInterface resolve([in] string sUnoUrl)
 raises (com::sun::star::connection::NoConnectException,
 com::sun::star::connection::ConnectionSetupException,
 com::sun::star::lang::IllegalArgumentException);
};

The basic structure of a method is similar to C++ functions or Java methods. The method is defined
giving a known return type, the operation name, an argument list in brackets () and if necessary, a
list of the exceptions the method may throw. The argument list, the exception clause raises ()
and an optional [oneway] flag preceding the operation are special in UNOIDL.

• Each argument in the argument list must commence with one of the direction flags [in] , [
out] or [inout] before a known type and identifier for the argument is given. The direction
flag specifies how the operation may use the argument:

Direction Flags
for Methods

Description

in Specifies that t he method shall evaluate the argument as input parameter,
but it cannot change it.

out Specifies that t he argument does not parameterize the method, instead the
method uses the argument as output parameter.

inout Specifies that the operation is parameterized by the argument and that the
method uses the argument as output parameter as well.

Try to avoid the [inout] and [out] qualifiers, as they are awkward to handle in certain
language bindings, like the Java language binding. The argument list can be empty. Multiple
arguments must be separated by commas.

• Exceptions are given through an optional raises () clause containing a comma-separated list
of known exceptions given by their full name. The presence of a raises() clause means that
only the listed exceptions, com.sun.star.uno.RuntimeException and their descendants may
be thrown by the implementation. By specifying exceptions for metnods, the implementer of
your interface can return information to the caller, thus avoiding possible error conditions.

224 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html

If you prepend a [oneway] flag to an operation, the operation can be executed asynchronously if
the underlying method invocation system does support this feature. For example, a UNO Remote
Protocol (URP) bridge is such a system that supports oneway calls. A oneway operation can not
have a return value, or out or inout parameters. It must not throw other exceptions than
com.sun.star.uno.RuntimeException.

 Although there are no general problems with the specification and the implementation of the UNO oneway
feature, there are several API remote usage scenarios where oneway calls cause deadlocks in
OpenOffice.org. Therefore it is not recommended to introduce new oneway methods with new
OpenOffice.org UNO APIs.

 You can not override an attribute or a method inherited from a parent interface, that would not make sense
in an abstract specification anyway. Furthermore, overloading is not possible. The qualified interface identi-
fier in conjunction with the name of the method creates a unique method name.

Defining a Service
UNOIDL Services combine interfaces and properties to specify a certain functionality. In addition,
old-style services can include other services. For these purposes, interface, property and
service declarations are used within service specifications. Usually services are the basis for an
object implementation, although there are old-style services in the OpenOffice.org API that only
serve as foundation or addition to other services, but are not meant to be implemented by them-
selves2.

We are ready to assemble our ImageShrink service. Our service will read image files from a source
directory and write shrinked versions of the found images to a destination directory. Our XImage-
Shrink interface offers the needed capabilities, together with the interface com.sun.star.docu-
ment.XFilter that supports two methods:

boolean filter([in] sequence< com::sun::star::beans::PropertyValue > aDescriptor)
void cancel()

A new-style service can only encompass one interface, so we need to combine XImageShrink and
XFilter in a single, multiple-inheritance interface:
#ifndef __org_openoffice_test_XImageShrinkFilter_idl__
#define __org_openoffice_test_XImageShrinkFilter_idl__
#include <com/sun/star/document/XFilter.idl>
#include <org/openoffice/test/XImageShrink.idl>

module org { module openoffice { module test {

interface XImageShrinkFilter {
 interface XImageShrink;
 interface com::sun::star::document::XFilter;
};

}; }; };

#endif

The following code shows the ImageShrink service specification:
(Components/Thumbs/org/openoffice/test/ImageShrink.idl)
#ifndef __org_openoffice_test_ImageShrink_idl__
#define __org_openoffice_test_ImageShrink_idl__
#include <org/openoffice/test/XImageShrinkFilter.idl>

module org { module openoffice { module test {

service ImageShrink: XImageShrinkFilter;

2 The services com.sun.star.text.BaseFrame or com.sun.star.style.CharacterProperties are part of other
services, but are not implemented as such anywhere.

225

http://api.openoffice.org/docs/common/ref/com/sun/star/document/XFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrame.html

}; }; };

#endif

Define a service using the service declaration. A new-style service opens with the keyword
service, followed by a service name, a colon, the name of the interface supported by the service,
and is terminated by a semicolon. The first letter of a service name should be an upper-case letter.

An old-style service is much more complex. It opens with the keyword service, followed by a
service name and the service body in braces. The service instruction concludes with a semicolon.
The body of a service can reference interfaces and services using interface and service instruc-
tions, and it can identify properties supported by the service through [property] instructions.

• Interface keywords followed by interface names in a service body indicates that the service
supports these interfaces. By default, the interface forces the developer to implement this
interface. To suggest an interface for a certain service, prepend an [optional] flag in front of
the keyword interface. This weakens the specification to a permission. An optional interface
can be implemented. Use one interface declaration for each supported interface or give a
comma-separated list of interfaces to be exported by a service. You must terminate the inter-
face instruction using a semicolon.

• service instructions in a service body include other services. The effect is that all interface and
property definitions of the other services become part of the current service. A service reference
can be optional using the [optional] flag in front of the service keyword. Use one declara-
tion per service or a comma-separated list for the services to reference. The service declara-
tion ends with a semicolon.

• [property] declaration s describe qualities of a service that can be reached from the outside
under a particular name and type. As opposed to interface attributes, these qualities are not
considered to be a structural part of a service. Refer to the section 3.3.4 Professional UNO - UNO
Concepts - Properties in the chapter 3 Professional UNO to determine when to use interface attri-
butes and when to introduce properties in a service . The property keyword must be enclosed
in square brackets, and continue with a known type and a property identifier. Just like a service
and an interface, make a property non-mandatory writing [property, optional]. Besides
optional,there is a number of other flags to use with properties. The following table shows all
flags that can be used with [property]:

Property Flags Description

optional Property is non-mandatory.

readonly The value of the property cannot be changed using the setter methods for prop-
erties, such as setPropertyValue(string name).

bound Changes of values are broadcast to com.sun.star.beans.XProperty-
ChangeListeners registered with the component.

constrained The component must broadcast an event before a value changes, listeners can
veto.

maybeambiguous The value cannot be determined in some cases, for example, in multiple selec-
tions.

maybedefault The value might come from a style or the application environment instead of
from the object itself.

maybevoid The property type determines the range of possible values, but sometimes there
may be situations where there is no information available. Instead of defining
special values for each type denoting that there are no meaningful values, the
UNO type void can be used. Its meaning is comparable to null in relational
databases.

226 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html

Property Flags Description

removable The property is removable. If a property is made removable, you must check
for the existence of a property using hasPropertyByName() at the interface
com.sun.star.beans.XPropertySetInfo and consider providing the
capability to add or remove properties using com.sun.star.beans.XProp-
ertyContainer.

transient The property will not be stored if the object is serialized (made persistent).

Several properties of the same type can be listed in one property declaration. Remember to
add a semicolon at the end. Implement the interface com.sun.star.beans.XPropertySet
when putting properties in your service, otherwise the properties specified will not work for
others using the component.

 Some old-style services, which specify no interfaces at all, only properties, are used as a sequence of
com.sun.star.beans.PropertyValue in OpenOffice.org, for example,
com.sun.star.document.MediaDescriptor.

The following UNOIDL snippet shows the service, the interfaces and the properties supported by
the old-style service com.sun.star.text.TextDocument as defined in UNOIDL. Note the optional
interfaces and the optional and read-only properties.
service TextDocument
{
 service com::sun::star::document::OfficeDocument;

 interface com::sun::star::text::XTextDocument;
 interface com::sun::star::util::XSearchable;
 interface com::sun::star::util::XRefreshable;
 interface com::sun::star::util::XNumberFormatsSupplier;

 [optional] interface com::sun::star::text::XFootnotesSupplier;
 [optional] interface com::sun::star::text::XEndnotesSupplier;
 [optional] interface com::sun::star::util::XReplaceable;
 [optional] interface com::sun::star::text::XPagePrintable;
 [optional] interface com::sun::star::text::XReferenceMarksSupplier;
 [optional] interface com::sun::star::text::XLineNumberingSupplier;
 [optional] interface com::sun::star::text::XChapterNumberingSupplier;
 [optional] interface com::sun::star::beans::XPropertySet;
 [optional] interface com::sun::star::text::XTextGraphicObjectsSupplier;
 [optional] interface com::sun::star::text::XTextEmbeddedObjectsSupplier;
 [optional] interface com::sun::star::text::XTextTablesSupplier;
 [optional] interface com::sun::star::style::XStyleFamiliesSupplier;

 [optional, property] com::sun::star::lang::Locale CharLocale;
 [optional, property] string WordSeparator;

 [optional, readonly, property] long CharacterCount;
 [optional, readonly, property] long ParagraphCount;
 [optional, readonly, property] long WordCount;

};

 You might encounter two more keywords in old-style service bodies. The keyword observes can stand in
front of interface references and means that the given interfaces must be "observed". Since the observes
concept is disapproved of, no further explanation is provided.

If a service references another service using the keyword needs in front of the reference, then this service
depends on the availability of the needed service at runtime. Services should not use needs as it is consid-
ered too implementation specific.

Defining a Sequence
A sequence in UNOIDL is an array containing a variable number of elements of the same UNOIDL
type. The following is an example of a sequence term:
// this term could occur in a UNOIDL definition block somewhere
sequence< com::sun::star::uno::XInterface >

227

http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html

It starts with the keyword sequence and gives the element type enclosed in angle brackets <>. The
element type must be a known type. A sequence type can be used as parameter, return value,
property or struct member just like any other type. Sequences can also be nested, if necessary.
// this could be a nested sequence definition
sequence< sequence< long > >

// this could be an operation using sequences in some interface definition
sequence< string > getNamesOfIndex(sequence< long > indexes);

Defining a Struct
A struct is a compound type which puts together arbitrary UNOIDL types to form a new data
type. Its member data are not encapsulated, rather they are publicly available. Structs are
frequently used to handle related data easily, and the event structs broadcast to event listeners.

A plain struct instruction opens with the keyword struct, gives an identifier for the new struct
type and has a struct body in braces. It is terminated by a semicolon. The struct body contains a list
of struct member declarations that are defined by a known type and an identifier for the struct
member. The member declarations must end with a semicolon, as well.
#ifndef __com_sun_star_reflection_ParamInfo_idl__
#define __com_sun_star_reflection_ParamInfo_idl__

#include <com/sun/star/reflection/ParamMode.idl>

module com { module sun { module star { module reflection {

interface XIdlClass; // forward interface declaration

struct ParamInfo
{
 string aName;
 ParamMode aMode;
 XIdlClass aType;
};

}; }; }; };

#endif

UNOIDL supports inheritance of struct types. Inheritance is expressed by a colon : followed by
the full name of the parent type. A struct type recursively inherits all members of the parent struct
and their parents. For instance, derive from the struct com.sun.star.lang.EventObject to put
additional information about new events into customized event objects to send to event listeners.
// com.sun.star.beans.PropertyChangeEvent inherits from com.sun.star.lang.EventObject
// and adds property-related information to the event object
struct PropertyChangeEvent : com::sun::star::lang::EventObject
{
 string PropertyName;
 boolean Further;
 long PropertyHandle;
 any OldValue;
 any NewValue;
};

A new feature of OpenOffice.org 2.0 are polymorphic struct types. A polymorphic struct type
template is similar to a plain struct type, but it has one or more type parameters enclosed in angle
brackets <>, and its members can have these parameters as types:
// A polymorphic struct type template with two type parameters:
struct Poly<T,U> {
 T member1;
 T member2;
 U member3;
 long member4;
};

A polymorphic struct type template is not itself a UNO type� it has to be instantiated with actual
type arguments to be used as a type:

228 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html

// Using an instantiation of Poly as a type in UNOIDL:
interface XIfc { Poly<boolean, any> fn(); };

Defining an Exception
An exception type is a type that contains information about an error . If an operation detects an
error that halts the normal process flow, it must raise an exception and send information about the
error back to the caller through an exception object. This causes the caller to interrupt its normal
program flow as well and react according to the information received in the exception object. For
details about exceptions and their implementation, refer to the chapters 3.4 Professional UNO -
UNO Language Bindings and 3.3.7 Professional UNO - UNO Concepts - Exception Handling.

There are a number of exceptions to use. The exceptions should be sufficient in many cases,
because a message string can be sent back to the caller. When defining an exception, do it in such a
way that other developers could reuse it in their contexts.

An exception declaration opens with the keyword exception, gives an identifier for the new
exception type and has an exception body in braces. It is terminated by a semicolon. The exception
body contains a list of exception member declarations that are defined by a known type and an
identifier for the exception member. The member declarations must end with a semicolon, as well.

Exceptions must be based on com.sun.star.uno.Exception or com.sun.star.uno.RuntimeEx-
ception, directly or indirectly through derived exceptions of these two exceptions.
com.sun.star.uno.Exceptions can only be thrown in operations specified to raise them while
com.sun.star.uno.RuntimeExceptions can always occur. Inheritance is expressed by a colon :,
followed by the full name of the parent type.
// com.sun.star.uno.Exception is the base exception for all exceptions
exception Exception {
 string Message;
 XInterface Context;
};

// com.sun.star.lang.IllegalArgumentException tells the caller which
// argument caused trouble
exception IllegalArgumentException: com::sun::star::uno::Exception
{
 /** identifies the position of the illegal argument.
 <p>This field is -1 if the position is not known.</p>
 */
 short ArgumentPosition;

};

// com.sun.star.uno.RuntimeException is the base exception for serious errors
// usually caused by programming errors or problems with the runtime environment
exception RuntimeException : com::sun::star::uno::Exception {
};

// com.sun.star.uno.SecurityException is a more specific RuntimeException
exception SecurityException : com::sun::star::uno::RuntimeException {
};

Predefining Values
Predefined values can be provided, so that implementers do not have to use cryptic numbers or
other literal values. There are two kinds of predefined values, constants and enums. Constants can
contain values of any basic UNO type, except void. The enums are automatically numbered long
values.

Const and Constants

The constants type is a container for const types. A constants instruction opens with the
keyword constants, gives an identifier for the new group of const values and has the body in

229

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html

braces. It terminates with a semicolon. The constants body contains a list of const definitions that
define the values of the members starting with the keyword const followed by a known type
name and the identifier for the const in uppercase letters. Each const definition must assign a
value to the const using an equals sign. The value must match the given type and can be an
integer or floating point number, or a character, or a suitable const value or an arithmetic term
based on the operators in the table below. The const definitions must end with a semicolon, as
well.
#ifndef __com_sun_star_awt_FontWeight_idl__
#define __com_sun_star_awt_FontWeight_idl__

module com { module sun { module star { module awt {

constants FontWeight
{
 const float DONTKNOW = 0.000000;
 const float THIN = 50.000000;
 const float ULTRALIGHT = 60.000000;
 const float LIGHT = 75.000000;
 const float SEMILIGHT = 90.000000;
 const float NORMAL = 100.000000;
 const float SEMIBOLD = 110.000000;
 const float BOLD = 150.000000;
 const float ULTRABOLD = 175.000000;
 const float BLACK = 200.000000;
};

}; }; }; };

Operators Allowed in const Meaning

+ addition

- subtraction

* multiplication

/ division

% modulo division

- negative sign

+ positive sign

| bitwise or

^ bitwise xor

& bitwise and

~ bitwise not

>> << bitwise shift right, shift left

 Use constants to group const types. In the Java language, binding a constants group leads to one class
for all const members, whereas a single const is mapped to an entire class.

Enum

An enum type holds a group of predefined long values and maps them to meaningful symbols. It is
equivalent to the enumeration type in C++. An enum instruction opens with the keyword enum,
gives an identifier for the new group of enum values and has an enum body in braces. It terminates
with a semicolon. The enum body contains a comma-separated list of symbols in uppercase letters
that are automatically mapped to long values counting from zero, by default.
#ifndef __com_sun_star_style_ParagraphAdjust_idl__
#define __com_sun_star_style_ParagraphAdjust_idl__

module com { module sun { module star { module style {

enum ParagraphAdjust

230 OpenOffice.org 2.3 Developer's Guide • June 2007

{
 LEFT,
 RIGHT,
 BLOCK,
 CENTER,
 STRETCH
};

}; }; }; };
#endif

In this example, com.sun.star.style.ParagraphAdjust:LEFT corresponds to 0, ParagraphAd-
just.RIGHT corresponds to 1 and so forth.

An enum member can also be set to a long value using the equals sign. All the following enum
values are then incremented starting from this value. If there is another assignment later in the
code, the counting starts with that assignment:
enum Error {
 SYSTEM = 10, // value 10
 RUNTIME, // value 11
 FATAL, // value 12
 USER = 30, // value 30
 SOFT // value 31
};

 The explicit use of enum values is deprecated and should not be used. It is a historical characteristic of the
enum type but it makes not really sense and makes, for example language bindings unnecessarily compli-
cated.

Using Comments
Comments are code sections ignored by idlc. In UNOIDL, use C++ style comments. A double slash
// marks the rest of the line as comment. Text enclosed between /* and */ is a comment that may
span over multiple lines.
service ImageShrink
{
 // the following lines define interfaces:
 interface org::openoffice::test::XImageShrink; // our home-grown interface
 interface com::sun::star::document::XFilter;

 /* we could reference other interfaces, services and properties here.
 However, the keywords uses and needs are deprecated
 */
};

Based on the above, there are documentation comments that are extracted when idl files are
processed with autodoc, the UNOIDL documentation generator. Instead of writing /* or //to mark
a plain comment, write /** or /// to create a documentation comment.
/** Don't repeat asterisks within multiple line comments,
 * <- as shown here
 */

/// Don't write multiple line documentation comments using triple slashes,
/// since only this last line will make it into the documentation

Our XUnoUrlResolver sample idl file contains plain comments and documentation comments.
/** service <type scope="com::sun::star::bridge">UnoUrlResolver</type>
 implements this interface.
 */
interface XUnoUrlResolver: com::sun::star::uno::XInterface
{
 // method com::sun::star::bridge::XUnoUrlResolver::resolve
 /** resolves an object, on the UNO URL.
 */

 ...
}

231

http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphAdjust.html#LEFT
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphAdjust.html#LEFT
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphAdjust.html#LEFT

Note the additional <type/> tag in the documentation comment pointing out that the service
UnoUrlResolver implements the interface XUnoUrlResolver. This tag becomes a hyperlink in
HTML documentation generated from this file. The chapter B IDL Documentation Guide provides a
comprehensive description for UNOIDL documentation comments.

Singleton
A singleton declaration defines a global name for a UNO object and determines that there can
only be one instance of this object that must be reachable under this name. The singleton instance
can be retrieved from the component context using the name of the singleton. If the singleton
has not been instantiated yet, the component context creates it. A new-style singleton declaration,
that binds a singleton name to an object with a certain interface type, looks like this:
singleton thePackageManagerFactory: com::sun::star::depoyment::XPackageManager;

There are also old-style singletons, which reference (old-style) services instead of interfaces.

Reserved Types
There are types in UNOIDL which are reserved for future use. The idlc will refuse to compile the
specifications if they are tried.

Array

The keyword array is reserved, but it cannot be used in UNOIDL. There will be sets containing a
fixed number of elements, as opposed to sequences, that can have an arbitrary number of elements.

Union

There is also a reserved keyword for union types that cannot be used in UNOIDL. A union will
look at a variable value from more than one perspective. For instance, a union for a long value is
defined and this same value is accessed as a whole, or accessed by its high and low part separately
through a union.

Published Entities
A new feature of OpenOffice.org 2.0 is the UNOIDL published keyword. If you mark a declara-
tion (of a struct, interface, service, etc.) as published, you give the guarantee that you will not
change the declaration in the future, so that clients of your API can depend on that. On the other
hand, leaving a declaration unpublished is like a warning to your clients that the declared entity
may change or even vanish in a future version of your API. The idlc will give an error if you try to
use an unpublished entity in the declaration of a published one, as that would not make sense.

The OpenOffice.org API has always been intended to never change in incompatible ways. This is
now reflected formally by publishing all those entities of the OpenOffice.org 2.0 API that were
already available in previous API versions. Some new additions to the API have been left unpub-
lished, however, to document that they are probably not yet in their final form. When using such
additions, keep in mind that you might need to adapt your code to work with future versions of
OpenOffice.org. Generally, each part of the OpenOffice.org API should stabilize over time,
however, and so each addition should eventually be published. Consider this as a means in
attempting to make new functionality available as early as possible, and at the same time ensure
that no APIs are fixed prematurely, before they have matured to a truly useful form.

232 OpenOffice.org 2.3 Developer's Guide • June 2007

4.2.2 Generating Source Code from UNOIDL Definitions
The type description provided in .idl files is used in the subsequent process to create type informa-
tion for the service manager and to generate header and class files. Processing the UNOIDL defini-
tions is a three-step process.

1. Compile the .idl files using idlc . The result are .urd files (UNO reflection data) containing binary
type descriptions.

2. Merge the .urd files into a registry database using regmerge . The registry database files have the
extension .rdb (registry database). They contain binary data describing types in a tree-like struc-
ture starting with / as the root. The default key for type descriptions is the /UCR key (UNO
core reflection).

3. Generate sources from registry files using javamaker or cppumaker . The tools javamaker and cppu-
maker map UNOIDL types to Java and C++ as described in the chapter 3.4 Professional UNO -
UNO Language Bindings. The registries used by these tools must contain all types to map to the
programming language used, including all types referenced in the type descriptions. Therefore,
javamaker and cppumaker need the registry that was merged, but the entire office registry as
well. OpenOffice.org comes with a complete registry database providing all types used by UNO
at runtime. The SDK uses the database (type library) of an existing OpenOffice.org installation.

The following shows the necessary commands to create Java class files and C++ headers from .idl
files in a simple setup under Linux. We assume the jars from <OFFICE_PROGRAM_PATH>/classes
have been added to your CLASSPATH, the SDK is installed in /home/sdk, and /home/sdk/linux/bin is
in the PATH environment variable, so that the UNO tools can be run directly. The project folder is
/home/sdk/Thumbs and it contains the above .idl file XImageShrink.idl.

make project folder the current directory
cd /home/sdk/Thumbs

compile XImageShrink.idl using idlc
usage: idlc [-options] file_1.idl ... file_n.idl
-C adds complete type information including services
-I includepath tells idlc where to look for include files
#
idlc writes the resulting urds to the current folder by default
idlc -C -I../idl XImageShrink.idl
create registry database (.rdb) file from UNO registry data (.urd) using regmerge
usage: regmerge mergefile.rdb mergeKey regfile_1.urd ... regfile_n.urd
mergeKey entry in the tree-like rdb structure where types from .urd should be recorded, the tree
starts with the root / and UCR is the default key for type descriptions
#
regmerge writes the rdb to the current folder by default
regmerge thumbs.rdb /UCR XImageShrink.urd
generate Java class files for new types from rdb
-B base node to look for types, in this case UCR
-T type to generate Java files for
-nD do not generate sources for dependent types, they are available in the Java UNO jar files
#
javamaker creates a directory tree for the output files according to
the modules the given types were placed in. The tree is created in the current folder by default
javamaker -BUCR -Torg.openoffice.test.XImageShrink -nD <OFFICE_PROGRAM_PATH>/types.rdb thumbs.rdb
generate C++ header files (hpp and hdl) for new types and their dependencies from rdb
-B base node to look for types, in this case UCR
-T type to generate Java files for
#
cppumaker creates a directory tree for the output files according to
the modules the given types were placed in. The tree is created in the current folder by default
cppumaker -BUCR -Torg.openoffice.test.XImageShrink <OFFICE_PROGRAM_PATH>/types.rdb thumbs.rdb

After issuing these commands you have a registry database thumbs.rdb and a Java class file
XImageShrink.class. (In versions of OpenOffice.org prior to 2.0, javamaker produced Java source files
instead of class files; you therefore had to call javac on the source files in an additional step.) You
can run regview against thumbs.rdb to see what regmerge has accomplished.

233

regview thumbs.rdb

The result for our interface XImageShrink looks like this:

Registry "file:///home/sdk/Thumbs/thumbs.rdb":

/
 / UCR
 / org
 / openoffice
 / test
 / XImageShrink
 Value: Type = RG_VALUETYPE_BINARY
 Size = 316
 Data = minor version: 0
 major version: 1
 type: 'interface'
 uik: { 0x00000000-0x0000-0x0000-0x00000000-0x00000000 }

 name: 'org/openoffice/test/XImageShrink'
 super name: 'com/sun/star/uno/XInterface'
 Doku: ""
 IDL source file: "/home/sdk/Thumbs/XImageShrink.idl"
 number of fields: 3
 field #0:
 name='SourceDirectory'
 type='string'
 access=READWRITE
 Doku: ""
 IDL source file: ""
 field #1:
 name='DestinationDirectory'
 type='string'
 access=READWRITE
 Doku: ""
 IDL source file: ""
 field #2:
 name='Dimension'
 type='com/sun/star/awt/Size'
 access=READWRITE
 Doku: ""
 IDL source file: ""
 number of methods: 0
 number of references: 0

Source generation can be fully automated with makefiles. For details, see the sections 4.5.9 Writing
UNO Components - Simple Component in Java - Running and Debugging Java Components and 4.6.10
Writing UNO Components - C++ Component - Building and Testing C++ Components below. You are
now ready to implement your own types and interfaces in a UNO component. The next section
discusses the UNO core interfaces to implement in UNO components.

4.3 Component Architecture
UNO components are archive files or dynamic link libraries with the ability to instantiate objects
which can integrate themselves into the UNO environment. For this purpose, components must
contain certain static methods (Java) or export functions (C++) to be called by a UNO service
manager. In the following, these methods are called component operations.

There must be a method to supply single-service factories for each object implemented in the
component. Through this method, the service manager can get a single factory for a specific object
and ask the factory to create the object contained in the component. Furthermore, there has to be a
method which writes registration information about the component, which is used when a compo-
nent is registered with the service manager. In C++, an additional function is necessary that
informs the component loader about the compiler used to build the component.

The component operations are always necessary in components and they are language specific.
Later, when Java and C++ are discussed, we will show how to write them.

234 OpenOffice.org 2.3 Developer's Guide • June 2007

The illustration shows a component which contains three implemented objects. Two of them, srv1
and srv2 implement a single service specification (Service1 and Service2), whereas srv3_4 supports
two services at once (Service3 and Service4).

The objects implemented in a component must support a number of core UNO interfaces to be
fully usable from all parts of the OpenOffice.org application. These core interfaces are discussed in
the next section. The individual functionality of the objects is covered by the additional interfaces
they export. Usually these interfaces are enclosed in a service specification.

4.4 Core Interfaces to Implement
It is important to know where the interfaces to implement are located. The interfaces here are
located at the object implementations in the component. When writing UNO components, the
desired methods have to be implemented into the application and also, the core interfaces used to
enable communication with the UNO environment. Some of them are mandatory, but there are
others to choose from.

Interface Required Should be
implemented

Optional Special Cases Helper class
available for
C++ and Java

XInterface ● ●

XTypeProvider ● ●

235

Illustration 4.1: A Component implementing three UNO objects

Interface Required Should be
implemented

Optional Special Cases Helper class
available for
C++ and Java

XServiceInfo ●

XWeak ● ●

XComponent ● ●

XInitialization ●

XMain ●

XAggregation ●

XUnoTunnel ●

The interfaces listed in the table above have been characterized here briefly. More descriptions of
each interface are provided later, as well as if helpers are available and which conditions apply.

com.sun.star.uno.XInterface
The component will not work without it. The base interface XInterface gives access to higher
interfaces of the service and allows other objects to tell the service when it is no longer needed,
so that it can destroy itself.

// com::sun::star::uno::XInterface

any queryInterface([in] type aType);
[oneway] void acquire(); // increase reference counter in your service implementation
[oneway] void release(); // decrease reference counter, delete object when counter becomes zero

Usually developers do not call acquire() explicitly, because it is called automatically by the
language bindings when a reference to a component is retrieved through UnoRuntime.query-
Interface() or Reference<destInterface>(sourceInterface, UNO_QUERY) . The counter-
part release() is called automatically when the reference goes out of scope in C++ or when
the Java garbage collector throws away the object holding the reference.

com.sun.star.lang.XTypeProvider
This interface is used by scripting languages such as OpenOffice.org Basic to get type informa-
tion. OpenOffice.org Basic cannot use the component without it.

// com::sun::star::lang::XTypeProvider

sequence<type> getTypes();
sequence<byte> getImplementationId();
It is possible that XTypeProvider and XServiceInfo (below) will be deprecated in the future,
and that alternative, language-binding�specific mechanisms will be made available to query an
object for its characteristics.

com.sun.star.lang.XServiceInfo
This interface is used by other objects to get information about the service implementation.

// com::sun::star::lang::XServiceInfo

string getImplementationName();
boolean supportsService([in] string ServiceName);
sequence<string> getSupportedServiceNames();

com.sun.star.uno.XWeak
This interface allows clients to keep a weak reference to the object. A weak reference does not
prevent the object from being destroyed if another client keeps a hard reference to it, therefore
it allows a hard reference to be retrieved again. The technique is used to avoid cyclic references.
Even if the interface is not required by you, it could be implemented for a client that may want
to establish a weak reference to an instance of your object.

// com.sun.star.uno.XWeak

236 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html

com::sun::star::uno::XAdapter queryAdapter(); // creates Adapter

com.sun.star.lang.XComponent
This interface is used if cyclic references can occur in the component holding another object and
the other object is holding a reference to that component. It can be specified in the service
description who shall destroy the object.

// com::sun::star::lang::XComponent

void dispose(); //an object owning your component may order it to delete itself using dispose()
void addEventListener(com::sun::star::lang::XEventListener xListener); // add dispose listeners
void removeEventListener (com::sun::star::lang::XEventListener aListener); // remove them

com.sun.star.lang.XInitialization
This interface is used to allow other objects to use createInstanceWithArguments() or
createInstanceWithArgumentsAndContext() with the component. It should be implemented
and the arguments processed in initialize():

// com::sun::star::lang::XInitialization

void initialize(sequence< any > aArguments) raises (com::sun::star::uno::Exception);

com.sun.star.lang.XMain
This interface is for use with the uno executable to instantiate the component independently
from the OpenOffice.org service manager.

// com.sun.star.lang.XMain

long run (sequence< string > aArguments);

com.sun.star.uno.XAggregation
This interfaces makes the implementation cooperate in an aggregation. If implemented, other
objects can aggregate to the implementation. Aggregated objects behave as if they were one. If
another object aggregates the component, it holds the component and delegates calls to it, so
that the component seems to be one with the aggregating object.

// com.sun.star.uno.XAggregation

void setDelegator(com.sun.star.uno.XInterface pDelegator);
any queryAggregation(type aType);

com.sun.star.lang.XUnoTunnel
This interface provides a pointer to the component to another component in the same process.
This can be achieved with XUnoTunnel. XUnoTunnel should not be used by new components,
because it is to be used for integration of existing implementations, if all else fails.

By now you should be able to decide which interfaces are interesting in your case. Sometimes the
decision for or against an interface depends on the necessary effort as well. The following section
discusses for each of the above interfaces how you can take advantage of pre-implemented helper
classes in Java or C++, and what must happen in a possible implementation, no matter which
language is used.

4.4.1 XInterface
All service implementations must implement com.sun.star.uno.XInterface. If a Java compo-
nent is derived from a Java helper class that comes with the SDK, it supports XInterface automat-
ically. Otherwise, it is sufficient to add XInterface or any other UNO interface to the implements
list. The Java UNO runtime takes care of XInterface. In C++, there are helper classes to inherit
that already implement XInterface. However, if XInterface is to be implemented manually,
consider the code below.

237

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XUnoTunnel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XUnoTunnel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XUnoTunnel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XAggregation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XAggregation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XAggregation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMain.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMain.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMain.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html

The IDL specification for com.sun.star.uno.XInterface looks like this:
// module com::sun::star::uno
interface XInterface
{
 any queryInterface([in] type aType);
 [oneway] void acquire();
 [oneway] void release();
};

Requirements for queryInterface()
When queryInterface() is called, the caller asks the implementation if it supports the interface
specified by the type argument. The UNOIDL base type stores the name of a type and its
com.sun.star.uno.TypeClass. The call must return an interface reference of the requested type if
it is available or a void any if it is not. There are certain conditions a queryInterface() imple-
mentation must meet:

Constant Behaviour
If queryInterface() on a specific object has once returned a valid interface reference for a
given type, it must always return a valid reference for any subsequent queryInterface() call
for the same type on this object. A query for XInterface must always return the same reference.

If queryInterface() on a specific object has once returned a void any for a given type, it must
always return a void any for the same type.

Symmetry
If queryInterface() for XBar on a reference xFoo returns a reference xBar, then queryInter-
face() on reference xBar for type XFoo must return xFoo or calls made on the returned refer-
ence must be equivalent to calls to xFoo.

Object Identity
In C++, two objects are the same if their XInterface are the same. The queryInterface() for
XInterface will have to be called on both. In Java, check for the identity by calling the runtime
function com.sun.star.uni.UnoRuntime.areSame().

The reason for this specifications is that a UNO runtime environment may choose to cache query-
Interface() calls. The rules are identical to the rules of the function QueryInterface() in MS
COM.

 If you want to implement queryInterface() in Java, for example, you want to export less interfaces than
you implement, your class must implement the Java interface com.sun.star.uno.IQueryInterface.

Reference Counting
The methods acquire() and release() handle the lifetime of the UNO object. This is discussed in
detail in chapter 3.3.8 Professional UNO - UNO Concepts - Lifetime of UNO Objects. Acquire and
release must be implemented in a thread-safe fashion. This is demonstrated in C++ in the section
about C++ components below.

4.4.2 XTypeProvider
Every UNO object should implement the com.sun.star.lang.XTypeProvider interface.

238 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/TypeClass.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/TypeClass.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/TypeClass.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html

Some applications need to know which interfaces an UNO object supports, for example, the
OpenOffice.org Basic engine or debugging tools, such as the InstanceInspector. The
com.sun.star.lang.XTypeProvider interface was introduced to avoid going through all known
interfaces calling queryInterface() repetitively. The XTypeProvider interface is implemented by
Java and C++ helper classes. If the XTypeProvider must be implemented manually, use the
following methods:
// module com::sun::star::lang
interface XTypeProvider: com::sun::star::uno::XInterface
{
 sequence<type> getTypes();
 sequence<byte> getImplementationId();
};

The sections about Java and C++ components below show examples of XTypeProvider implemen-
tations.

Provided Types
The com.sun.star.lang.XTypeProvider:getTypes() method must return a list of types for all
interfaces that queryInterface() provides. The OpenOffice.org Basic engine depends on this
information to establish a list of method signatures that can be used with an object.

ImplementationID
For caching purposes, the getImplementationId() method has been introduced. The method
must return a byte array containing an identifier for the implemented set of interfaces in this
implementation class. It is important that one ID maps to one set of interfaces, but one set of inter-
faces can be known under multiple IDs. Every implementation class should generate a static ID.

4.4.3 XServiceInfo
Every service implementation should export the com.sun.star.lang.XServiceInfo interface.
XServiceInfo must be implemented manually, because only the programmer knows what
services the implementation supports. The sections about Java and C++ components below show
examples for XServiceInfo implementations.

This is how the IDL specification for XServiceInfo looks like:
// module com::sun::star::lang
interface XServiceInfo: com::sun::star::uno::XInterface
{
 string getImplementationName();
 boolean supportsService([in] string ServiceName);
 sequence<string> getSupportedServiceNames();
};

Implementation Name
The method getImplementationName() provides access to the implementation name of a service
implementation. The implementation name uniquely identifies one implementation of service
specifications in a UNO object. The name can be chosen freely by the implementation alone,
because it does not appear in IDL. However, the implementation should adhere to the following
naming conventions:

239

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html#getTypes
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html#getTypes
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html#getTypes
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html

Company
prefix

dot "comp" dot module
name

dot unique object
name in module

implemented service(s)

com.sun.star . comp . forms . ODataBaseForm com.sun.star.forms.DataBaseForm

org.openoffice . comp . test . OThumbs org.openoffice.test.ImageShrink
org.openoffice.test.ThumbnailInsert
...

If an object implements one single service, it can use the service name to derive an implementation
name. Implementations of several services should use a name that describes the entire object.

If a createInstance() is called at the service manager using an implementation name, an instance
of exactly that implementation is received. An implementation name is equivalent to a class name
in Java. A Java component simply returns the fully qualified class name in getImplementation-
Name().

 It is good practice to program against the specification and not against the implementation, otherwise, your
application could break with future versions. OpenOffice.orgs API implementation is not supposed to be
compatible, only the specification is.

Supported Service Names
The methods getSupportedServiceNames() and supportsService() deal with the availability
of services in an implemented object. Note that the supported services are the services imple-
mented in one class that supports these services, not the services of all implementations contained
in the component file. If the illustration 4.1: A Component implementing three UNO objects, XSer-
viceInfo is exported by the implemented objects in a component, not by the component. That
means, srv3_4 must support XServiceInfo and return "Service3" and "Service4" as supported
service names.

The service name identifies a service as it was specified in IDL. If an object is instantiated at the
service manager using the service name, an object that complies to the service specification is
returned.

 The single service factories returned by components that are used to create instances of an implementation
through their interfaces com.sun.star.lang.XSingleComponentFactory or
com.sun.star.lang.XSingleServiceFactory must support XServiceInfo. The single factories
support this interface to allow UNO to inspect the capabilities of a certain implementation before instanti-
ating it. You can take advantage of this feature through the com.sun.star.container.XContentEnu-
merationAccess interface of a service manager.

4.4.4 XWeak
A component supporting XWeak offers other objects to hold a reference on itself without preventing
it from being destroyed when it is no longer needed. Thus, cyclic references can be avoided easily.
The chapter 3.3.8 Professional UNO - UNO Concepts - Lifetime of UNO Objects discusses this in detail.
In Java, derive from the Java helper class com.sun.star.lib.uno.helper.WeakBase to support
XWeak. If a C++ component is derived from one of the ::cppu::Weak...ImplHelperNN template
classes as proposed in the section 4.6 Writing UNO Components - C++ Component, a XWeak support
is obtained, virtually for free. For the sake of completeness, this is the XWeak specification:
// module com::sun::star::uno::XWeak

interface XWeak: com::sun::star::uno::XInterface
{
 com::sun::star::uno::XAdapter queryAdapter();

240 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContentEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContentEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContentEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContentEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContentEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContentEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleComponentFactory.html

};

4.4.5 XComponent
If the implementation holds a reference to another UNO object internally, there may be a problem
of cyclic references that might prevent your component and the other object from being destroyed
forever. If it is probable that the other object may hold a reference to your component, implement
com.sun.star.lang.XComponent that contains a method dispose() . Chapter 3.3.8 Professional
UNO - UNO Concepts - Lifetime of UNO Objects discusses the intricacies of this issue.

Supporting XComponent in a C++ or Java component is simple, because there are helper classes to
derive from that implement XComponent. The following code is an example if you must implement
XComponent manually.

The interface XComponent specifies these operations:
// module com::sun::star::lang

interface XComponent: com::sun::star::uno::XInterface
{
 void dispose();
 void addEventListener([in] XEventListener xListener);
 void removeEventListener([in] XEventListener aListener);
};

XComponent uses the interface com.sun.star.lang.XEventListener:
// module com::sun::star::lang
interface XEventListener: com::sun::star::uno::XInterface
{
 void disposing([in] com::sun::star::lang::EventObject Source);
};

Disposing of an XComponent
The idea behind XComponent is that the object is instantiated by a third object that makes the third
object the owner of first object. The owner is allowed to call dispose() . When the owner calls
dispose() at your object, it must do three things:

• Release all references it holds.

• Inform registered XEventListeners that it is being disposed of by calling their method
disposing().

• Behave as passive as possible afterwards. If the implementation is called after being disposed,
throw a com.sun.star.lang.DisposedException if you cannot fulfill the method specifica-
tion.

That way the owner of XComponent objects can dissolve a possible cyclic reference.

4.4.6 XInitialization
The interface com.sun.star.lang.XInitialization is usually implemented manually, because
only the programmer knows how to initialize the object with arguments received from the service
manager through createInstanceWithArguments() or createInstanceWithArgumentsAndCon-
text() . In Java, XInitialization is used as well, but know that the Java factory helper provides
a shortcut that uses arguments without implementing XInitialization directly. The Java factory
helper can pass arguments to the class constructor under certain conditions. Refer to the section

241

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html

4.5.7 Writing UNO Components - Simple Component in Java - Create Instance With Arguments for more
information.

The specification for XInitialization looks like this:
// module com::sun::star::lang

interface XInitialization : com::sun::star::uno::XInterface
{
 void initialize(sequence< any > aArguments) raises (com::sun::star::uno::Exception);
};

An old-style UNOIDL service specification will typically specify which arguments and in which
order are expected within the any sequence.

With the advent of new-style service specifications with explicit constructors, you can now declare
explicitly what arguments can be passed to an object when creating it. The arguments listed in a
constructor are exactly the arguments passed to XInitialization.initialize (the various
language bindings currently use XInitialization internally to implement service constructors;
that may change in the future, however).

4.4.7 XMain
The implementation of com.sun.star.lang.XMain is used for special cases. Its run() operation is
called by the uno executable. The section 4.10 Writing UNO Components - The UNO Executable below
discusses the use of XMain and the uno executable in detail.
// module com::sun::star::lang

interface XMain: com::sun::star::uno::XInterface
{
 long run([in] sequence< string > aArguments);
};

4.4.8 XAggregation
A concept called aggregation is commonly used to plug multiple objects together to form one single
object at runtime. The main interface in this context is com.sun.star.uno.XAggregation. After
plugging the objects together, the reference count and the queryInterface() method is delegated
from multiple slave objects to one master object.

It is a precondition that at the moment of aggregation, the slave object has a reference count of
exactly one, which is the reference count of the master. Additionally, it does not work on proxy
objects, because in Java, multiple proxy objects of the same interface of the same slave object might
exist.

While aggregation allows more code reuse than implementation inheritance, the facts mentioned
above, coupled with the implementation of independent objects makes programming prone to
errors. Therefore the use of this concept is discourage and not explained here. For further informa-
tion visit http://udk.openoffice.org/common/man/concept/unointro.html#aggregation .

4.4.9 XUnoTunnel
The com.sun.star.lang.XUnoTunnel interface allows access to the this pointer of an object. This
interface is used to cast a UNO interface that is coming back to its implementation class through a
UNO method. Using this interface is a result of an unsatisfactory interface design, because it indi-
cates that some functionality only works when non-UNO functions are used. In general, these

242 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XUnoTunnel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XUnoTunnel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XUnoTunnel.html
http://udk.openoffice.org/common/man/concept/unointro.html#aggregation
http://udk.openoffice.org/common/man/concept/unointro.html#aggregation
http://udk.openoffice.org/common/man/concept/unointro.html#aggregation
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XAggregation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XAggregation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XAggregation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMain.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMain.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMain.html

objects cannot be replaced by a different implementation, because they undermine the general
UNO interface concept. This interface can be understood as admittance to an already existing code
that cannot be split into UNO components easily. If designing new services, do not use this inter-
face.
interface XUnoTunnel: com::sun::star::uno::XInterface
{
 hyper getSomething([in] sequence< byte > aIdentifier);
};

The byte sequence contains an identifier that both the caller and implementer must know. The
implementer returns the this pointer of the object if the byte sequence is equal to the byte
sequence previously stored in a static variable. The byte sequence is usually generated once per
process per implementation.

 Note that the previously mentioned 'per process' is important because the this pointer of a class you know
is useless, if the instance lives in a different process.

4.5 Simple Component in Java
This section shows how to write Java components. The examples in this chapter are in the samples
folder that was provided with the programmer's manual.

A Java component is a library of Java classes (a jar) containing objects that implement arbitrary
UNO services. For a service implementation in Java, implement the necessary UNO core interfaces
and the interfaces needed for your purpose. These could be existing interfaces or interfaces defined
by using UNOIDL.

Besides these service implementations, Java components need two methods to instantiate the
services they implement in a UNO environment: one to get single factories for each service imple-
mentation in the jar, and another one to write registration information into a registry database.
These methods are called static component operations in the following:

The method that provides single factories for the service implementations in a component is
__getServiceFactory():

public static XSingleServiceFactory __getServiceFactory(String implName,
 XMultiServiceFactory multiFactory,
 XRegistryKey regKey)

In theory, a client obtains a single factory from a component by calling __getServiceFactory()
on the component implementation directly. This is rarely done because in most cases service
manager is used to get an instance of the service implementation. The service manager uses
__getServiceFactory() at the component to get a factory for the requested service from the
component, then asks this factory to create an instance of the one object the factory supports.

To find a requested service implementation, the service manager searches its registry database for
the location of the component jar that contains this implementation. For this purpose, the compo-
nent must have been registered beforehand. UNO components are able to write the necessary
information on their own through a function that performs the registration and which can be called
by the registration tool regcomp. The function has this signature:

public static boolean __writeRegistryServiceInfo(XRegistryKey regKey)

These two methods work together to make the implementations in a component available to a
service manager. The method __writeRegistryServiceInfo() tells the service manager where to
find an implementation while __getServiceFactory() enables the service manager to instantiate
a service implementation, once found.

The necessary steps to write a component are:

243

1. Define service implementation classes.

2. Implement UNO core interfaces.

3. Implement your own interfaces.

4. Provide static component operations to make your component available to a service manager.

4.5.1 Class Definition with Helper Classes

XInterface, XTypeProvider and XWeak
The OpenOffice.org Java UNO environment contains Java helper classes that implement the
majority of the core interfaces that are implemented by UNO components. There are two helper
classes:

• The helper com.sun.star.lib.uno.helper.WeakBase is the minimal base class and implements
XInterface, XTypeProvider and Xweak.

• The helper com.sun.star.lib.uno.helper.ComponentBase that extends WeakBase and implements
XComponent.

The com.sun.star.lang.XServiceInfo is the only interface that should be implemented, but it is
not part of the helpers.

Use the naming conventions described in section 4.4.3 Writing UNO Components - Core Interfaces to
Implement - XServiceInfo for the service implementation. Following the rules, a service org.openof-
fice.test.ImageShrink should be implemented in org.openoffice. comp .test.ImageShrink.

A possible class definition that uses WeakBase could look like this:
(Components/Thumbs/org/openoffice/comp/test/ImageShrink.java)
package org.openoffice.comp.test;

public class ImageShrink extends com.sun.star.lib.uno.helper.WeakBase
 implements com.sun.star.lang.XServiceInfo,
 org.openoffice.test.XImageShrinkFilter {

 com.sun.star.uno.XComponentContext xComponentContext = null;

 /** Creates a new instance of ImageShrink */
 public ImageShrink(com.sun.star.uno.XComponentContext XComponentContext xContext) {
 this.xComponentContext = xContext;
 }
 ...

}

XServiceInfo
If the implementation only supports one service, use the following code to implement XServi-
ceInfo: (Components/Thumbs/org/openoffice/comp/test/ImageShrink.java)
 ...

 //XServiceInfo implementation

 // hold the service name in a private static member variable of the class
 protected static final String __serviceName = "org.openoffice.test.ImageShrink";

 public String getImplementationName() {
 return getClass().getName();
 }

 public boolean supportsService(String serviceName) {

244 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html

 if (serviceName.equals(__serviceName))
 return true;
 return false;
 }

 public String[] getSupportedServiceNames() {
 return new String[] { __serviceName };
 }

 ...

An implementation of more than one service in one UNO object is more complex. It has to return
all supported service names in getSupportedServiceNames(), furthermore it must check all
supported service names in supportsService(). Note that several services packaged in one
component file are not discussed here, but objects supporting more than one service. Refer to 4.1 :
A Component implementing three UNO objects for the implementation of srv3_4.

4.5.2 Implementing your own Interfaces
The functionality of a component is accessible only by its interfaces. When writing a component,
choose one of the available API interfaces or define an interface. UNO types are used as method
arguments to other UNO objects. Java does not support unsigned integer types, so their use is
discouraged. In the chapter 4.2 Writing UNO Components - Using UNOIDL to Specify new Compo-
nents, the org.openoffice.test.XImageShrinkFilter interface specification was written and an
interface class file was created. Its implementation is straightforward, you create a class that imple-
ments your interfaces: (Components/Thumbs/org/openoffice/comp/test/ImageShrink.java)
package org.openoffice.comp.test;

public class ImageShrink extends com.sun.star.lib.uno.helper.WeakBase
 implements com.sun.star.lang.XServiceInfo,
 org.openoffice.test.XImageShrinkFilter {
 ...

 String destDir = "";
 String sourceDir = "";
 boolean cancel = false;
 com.sun.star.awt.Size dimension = new com.sun.star.awt.Size();

 // XImageShrink implementation (a sub-interface of XImageShrinkFilter)
 public void cancel() {
 cancel = true;
 }

 public boolean filter(com.sun.star.beans.PropertyValue[] propertyValue) {
 // while cancel = false,
 // scale images found in sourceDir according to dimension and
 // write them to destDir, using the image file format given in
 // []propertyValue

// (implementation omitted)
 cancel = false;
 return true;
 }

 // XIMageShrink implementation
 public String getDestinationDirectory() {
 return destDir;
 }

 public com.sun.star.awt.Size getDimension() {
 return dimension;
 }

 public String getSourceDirectory() {
 return sourceDir;
 }

 public void setDestinationDirectory(String str) {
 destDir = str;
 }

 public void setDimension(com.sun.star.awt.Size size) {

245

 dimension = size;
 }

 public void setSourceDirectory(String str) {
 sourceDir = str;
 }

 ...
}

For the component to run, the new interface class file must be accessible to the Java Virtual
Machine. Unlike stand-alone Java applications, it is not sufficient to set the CLASSPATH environ-
ment variable. Instead, the class path is passed to the VM when it is created. Prior to
OpenOffice.org1.1.0, one could modify the class path by editing the SystemClasspath entry of the
java(.ini|rc) which was located in the folder <officepath>\user\config. Another way was to use the
Options dialog. To navigate to the class path settings, one had to expand the OpenOffice.org node
in the tree on the left-hand side and chose Security . On the right-hand side, there was a field
called User Classpath.

As of OpenOffice.org1.1.0 the component , class files, and type library are packed into a extension,
which is then registered by the pkgchk executable. And as of OpenOffice.org1.2.0, the unopkg tool
is used to to thi s. The jar files are then automatically added to the class path.

 It is also important that the binary type library of the new interfaces are provided together with the compo-
nent, otherwise the component is not accessible from OpenOffice.org Basic. Basic uses the UNO core reflec-
tion service to get type information at runtime. The core reflection is based on the binary type library.

4.5.3 Providing a Single Factory Using Helper Method
The component must be able to create single factories for each service implementation it contains
and return them in the static component operation __getServiceFactory(). The OpenOffice.org
Java UNO environment provides a Java class com.sun.star.comp.loader.FactoryHelper that
creates a default implementation of a single factory through its method getServiceFactory() .
The following example could be written:
(Components/Thumbs/org/openoffice/comp/test/ImageShrink.java)
package org.openoffice.comp.test;

import com.sun.star.lang.XSingleServiceFactory;
import com.sun.star.lang.XMultiServiceFactory;
import com.sun.star.registry.XRegistryKey;
import com.sun.star.comp.loader.FactoryHelper;

public class ImageShrink ... {

 ...

 // static __getServiceFactory() implementation
 // static member __serviceName was introduced above for XServiceInfo implementation
 public static XSingleServiceFactory __getServiceFactory(String implName,
 XMultiServiceFactory multiFactory,
 com.sun.star.registry.XRegistryKey regKey) {

 com.sun.star.lang.XSingleServiceFactory xSingleServiceFactory = null;
 if (implName.equals(ImageShrink.class.getName()))
 xSingleServiceFactory = FactoryHelper.getServiceFactory(ImageShrink.class,
 ImageShrink.__serviceName, multiFactory, regKey);
 return xSingleServiceFactory;
 }

 ...

}

The FactoryHelper is contained in the jurt jar file. The getServiceFactory() method takes as a
first argument a Class object. When createInstance() is called on the default factory, it creates
an instance of that Class using newInstance() on it and retrieves the implementation name

246 OpenOffice.org 2.3 Developer's Guide • June 2007

through getName(). The second argument is the service name. The multiFactory and regKey
arguments were received in __getServiceFactory() and are passed to the FactoryHelper.

 In this case, the implementation name, which the default factory finds through Class.getName() is
org.openoffice.comp.test.ImageShrink and the service name is org.openoffice.test.Image-
Shrink. The implementation name and the service name are used for the separate XServiceInfo implemen-
tation within the default factory. Not only do you support the XServiceInfo interface in your service imple-
mentation, but the single factory must implement this interface as well.

The default factory created by the FactoryHelper expects a public constructor in the implementa-
tion class of the service and calls it when it instantiates the service implementation. The constructor
can be a default constructor, or it can take a com.sun.star.uno.XComponentContext or a
com.sun.star.lang.XMultiServiceFactory as an argument. Refer to 4.5.7 Writing UNO Compo-
nents - Simple Component in Java - Create Instance With Arguments for other arguments that are
possible.

Java components are housed in jar files. When a component has been registered, the registry
contains the name of the jar file, so that the service manager can find it. However, because a jar file
can contain several class files, the service manager must be told which one contains the
__getServiceFactory() method. That information has to be put into the jar's Manifest file, for
example:
RegistrationClassName: org.openoffice.comp.test.ImageShrink

4.5.4 Write Registration Info Using Helper Method
UNO components have to be registered with the registry database of a service manager. In an
office installation, this is the file types.rdb (up through 1.1.0, applicat.rdb) for all predefined services.
A service manager can use this database to find the implementations for a service. For instance, if
an instance of your component is created using the following call.
Object imageShrink = xRemoteServiceManager.createInstance("org.openoffice.test.ImageShrink");

Using the given service or implementation name, the service manager looks up the location of the
corresponding jar file in the registry and instantiates the component.

 If you want to use the service manager of the Java UNO runtime,
com.sun.star.comp.servicemanager.ServiceManager (jurt.jar), to instantiate your service implementation,
then you would have to create the service manager and add the factory for �org.openoffice.test.Image-
Shrink� programmatically, because the Java service manager does not use the registry.

Alternatively, you can use com.sun.star.comp.helper.RegistryServiceFactory from juh.jar which is registry-
based. Its drawback is that it delegates to a C++ implementation of the service manager through the java-
bridge.

During the registration, a component writes the necessary information into the registry. The
process to write the information is triggered externally when a client calls the
__writeRegistryServiceInfo() method at the component.
public static boolean __writeRegistryServiceInfo(XRegistryKey regKey)

The caller passes an com.sun.star.registry.XRegistryKey interface that is used by the method
to write the registry entries. Again, the FactoryHelper class offers a way to implement the method:
(Components/Thumbs/org/openoffice/comp/test/ImageShrink.java)
 ...

 // static __writeRegistryServiceInfo implementation
 public static boolean __writeRegistryServiceInfo(XRegistryKey regKey) {
 return FactoryHelper.writeRegistryServiceInfo(ImageShrink.class.getName(),
 __serviceName, regKey);

247

http://api.openoffice.org/docs/common/ref/com/sun/star/registry/XRegistryKey.html
http://api.openoffice.org/docs/common/ref/com/sun/star/registry/XRegistryKey.html
http://api.openoffice.org/docs/common/ref/com/sun/star/registry/XRegistryKey.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html

 }

The writeRegistryServiceInfo method takes three arguments:

• implementation name

• service name

• XRegistryKey

Use tools, such as regcomp or the Java application com.sun.star.tools.uno.RegComp to register a
component. These tools take the path to the jar file containing the component as an argument.
Since the jar can contain several classes, the class that implements the
__writeRegistryServiceInfo() method must be pointed out by means of the manifest. Again,
the RegistrationClassName entry determines the correct class. For example:
RegistrationClassName: org.openoffice.comp.test.ImageShrink

The above entry is also necessary to locate the class that provides __getServiceFactory(), there-
fore the functions __writeRegistryServiceInfo() and __getServiceFactory() have to be in
the same class.

4.5.5 Implementing without Helpers

XInterface
As soon as the component implements any UNO interface, com.sun.star.uno.XInterface is
included automatically. The Java interface definition generated by javamaker for
com.sun.star.uno.XInterface only contains a TypeInfo member used by Java UNO internally
to store certain UNO type information:
// source file com/sun/star/uno/XInterface.java gcorresponding to the class generated by

package com.sun.star.uno;

public interface XInterface
{
 // static Member
 public static final com.sun.star.lib.uno.typeinfo.TypeInfo UNOTYPEINFO[] = null;
}

Note that XInterface does not have any methods, in contrast to its IDL description. That means, if
implements com.sun.star.uno.XInterface is added to a class definition, there is nothing to
implement.

The method queryInterface() is unnecessary in the implementation of a UNO object, because
the Java UNO runtime environment obtains interface references without support from the UNO
objects themselves. Within Java, the method UnoRuntime.queryInterface() is used to obtain
interfaces instead of calling com.sun.star.uno.XInterface:queryInterface(), and the Java
UNO language binding hands out interfaces for UNO objects to other processes on its own as well.

The methods acquire() and release() are used for reference counting and control the lifetime of
an object, because the Java garbage collector does this, there is no reference counting in Java
components.

XTypeProvider
Helper classes with default com.sun.star.lang.XTypeProvider implementations are still under
development for Java. Meanwhile, every Java UNO object implementation can implement the

248 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#queryInterface
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#queryInterface
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#queryInterface
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html

XTypeProvider interface as shown in the following code. In your implementation, adjust
getTypes(): (Components/Thumbs/org/openoffice/comp/test/ImageShrink.java)
 ...

 // XTypeProvider implementation

 // maintain a static implementation id for all instances of ImageShrink
 // initialized by the first call to getImplementationId()
 protected static byte[] _implementationId;

 public com.sun.star.uno.Type[] getTypes() {
// instantiate Type instances for each interface you support and place them in a Type[] array

 // (this object supports XServiceInfo, XTypeProvider, and XImageShrinkFilter)
 return new com.sun.star.uno.Type[] {
 new com.sun.star.uno.Type(com.sun.star.lang.XServiceInfo.class),
 new com.sun.star.uno.Type(com.sun.star.lang.XTypeProvider.class),
 new com.sun.star.uno.Type(org.openoffice.test.XImageShrinkFilter.class) };
 }

 synchronized public byte[] getImplementationId() {
 if (_implementationId == null) {
 _implementationId= new byte[16];
 int hash = hashCode(); // hashCode of this object
 _implementationId[0] = (byte)(hash & 0xff);
 _implementationId[1] = (byte)((hash >>> 8) & 0xff);
 _implementationId[2] = (byte)((hash >>> 16) & 0xff);
 _implementationId[3] = (byte)((hash >>>24) & 0xff);

}
 return _implementationId;
 }

 ...

The suggested implementation of the getImplementationId() method is not optimal, it uses the
hashCode() of the first instance that initializes the static field. The future UNO helper class will
improve this.

XComponent
XComponent is an optional interface that is useful when other objects hold references to the compo-
nent. The notification mechanism of XComponent enables listener objects to learn when the compo-
nent stops to provide its services, so that the objects drop their references to the component. This
enables the component to delete itself when its reference count drops to zero. From section 4.4
Writing UNO Components - Core Interfaces to Implement, there must be three things done when
dispose() is called at an XComponent:

• Inform registered XEventListener s that the object is being disposed of by calling their method
disposing().

• Release all references the object holds, including all XEvenListener objects.

• On further calls to the component, throw an com.sun.star.lang.DisposedException in case
the required task can not be fulfilled anymore, because the component was disposed.

In Java, the object cannot be deleted, but the garbage collector will do this. It is sufficient to release
all references that are currently being held to break the cyclic reference, and to call disposing()
on all com.sun.star.lang.XEventListeners.

The registration and removal of listener interfaces is a standard procedure in Java. Some IDEs even
create the necessary methods automatically. The following example could be written: (Compo-
nents/Thumbs/org/openoffice/comp/test/ImageShrink.java)
 ...

 //XComponent implementation

 // hold a list of eventListeners
 private java.util.ArrayList eventListeners = new java.util.ArrayList();

249

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html

 public void dispose {
 java.util.ArrayList listeners;
 synchronized (this) {
 listeners = eventListeners;
 eventListeners = null;
 }
 for (java.util.Iterator i = listeners.iterator(); i.hasNext();) {
 fireDisposing((XEventListener) i.next());
 }
 releaseReferences();
 }

 public void addEventListener(XEventListener listener) {
 bool fire = false;
 synchronized (this) {
 if (eventListeners == null) {
 fire = true;
 } else {
 eventListeners.add(listener);
 }
 }
 if (fire) {
 fireDisposing(listener);
 }
 }

 public synchronized void removeEventListener(XEventListener listener) {
 if (eventListeners != null) {
 int i = eventListeners.indexOf(listener);
 if (i >= 0) {
 eventListeners.remove(i);
 }
 }
 }

 private void fireDisposing(XEventListener listener) {
 com.sun.star.uno.EventObject event = new com.sun.star.uno.EventObject(this);
 try {
 listener.disposing(event);
 } catch (com.sun.star.uno.DisposedException e) {
 // it is not an error if some listener is disposed simultaneously
 }
 }

 private void releaseReferences() {
 xComponentContext = null;
 // ...
 }

4.5.6 Storing the Service Manager for Further Use
A component usually runs in the office process. There is no need to create an interprocess channel
explicitly. A component does not have to create a service manager, because it is provided to the
single factory of an implementation by the service manager during a call to createInstance() or
createInstanceWithContext(). The single factory receives an XComponentContext or an XMul-
tiServiceFactory, and passes it to the corresponding constructor of the service implementation.
From the component context, the implementation gets the service manager using getServiceMan-
ager() at the com.sun.star.uno.XComponentContext interface.

4.5.7 Create Instance with Arguments
A factory can create an instance of components and pass additional arguments. To do that, a client
calls the createInstanceWithArguments() function of the com.sun.star.lang.XSingleSer-
viceFactory interface or the createInstanceWithArgumentsAndContext() of the
com.sun.star.lang.XSingleComponentFactory interface.
//javamaker generated interface
//XSingleServiceFactory interface
public java.lang.Object createInstanceWithArguments(java.lang.Object[] aArguments)
 throws com.sun.star.uno.Exception;

//XSingleComponentFactory

250 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html

public java.lang.Object createInstanceWithArgumentsAndContext(java.lang.Object[] Arguments,
 com.sun.star.uno.XComponentContext Context)
 throws com.sun.star.uno.Exception;

Both functions take an array of values as an argument. A component implements the
com.sun.star.lang.XInitialization interface to receive the values. A factory passes the array
on to the single method initialize() supported by XInitialization.
public void initialize(java.lang.Object[] aArguments) throws com.sun.star.uno.Exception;

Alternatively, a component may also receive these arguments in its constructor. If a factory is
written, determine exactly which arguments are provided by the factory when it instantiates the
component. When using the FactoryHelper, implement the constructors with the following argu-
ments:

First Argument Second Argument Third Argument

com.sun.star.uno.XComponentContext com.sun.star.registry.XRegistryKey java.lang.Object[]

com.sun.star.uno.XComponentContext com.sun.star.registry.XRegistryKey

com.sun.star.uno.XComponentContext java.lang.Object[]

com.sun.star.uno.XComponentContext

java.lang.Object[]

The FactoryHelper automatically passes the array of arguments it received from the createIn-
stanceWithArguments[AndContext]() call to the appropriate constructor. Therefore, it is not
always necessary to implement XInitialization to use arguments.

4.5.8 Possible Structures for Java Components
The implementation of a component depends on the needs of the implementer. The following
examples show some possible ways to assemble a component. There can be one implemented
object or several implemented objects per component file.

One Implementation per Component File
There are additional options if implementing one service per component file:

• Use a flat structure with the static component operations added to the service implementation
class directly.

• Reserve the class with the implementation name for the static component operation and use an
inner class to implement the service.

Implementation Class with Component Operations

An implementation class contains the static component operations. The following sample imple-
ments an interface com.sun.star.test.XSomething in an implementation class
JavaComp.TestComponent:
// UNOIDL: interface example specification
module com { module sun { module star { module test {

interface XSomething: com::sun::star::uno::XInterface
{
 string methodOne([in]string val);
};
}; }; }; };

251

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html

A component that implements only one service supporting XSomething can be assembled in one
class as follows:
package JavaComp;

...

public class TestComponent implements XSomething, XTypeProvider, XServiceInfo {

 public static final String __serviceName="com.sun.star.test.JavaTestComponent";
 public static XSingleServiceFactory __getServiceFactory(String implName,
 XMultiServiceFactory multiFactory, XRegistryKey regKey) {
 XSingleServiceFactory xSingleServiceFactory = null;

 if (implName.equals(TestComponent.class.getName()))
 xSingleServiceFactory = FactoryHelper.getServiceFactory(TestComponent.class,
 TestComponent.__serviceName, multiFactory, regKey);
 return xSingleServiceFactory;
 }

 public static boolean __writeRegistryServiceInfo(XRegistryKey regKey){
 return FactoryHelper.writeRegistryServiceInfo(TestComponent.class.getName(),
 TestComponent.__serviceName, regKey);
 }

 // XSomething
 string methodOne(String val) {
 return val;
 }
 //XTypeProvider
 public com.sun.star.uno.Type[] getTypes() {
 ...
 }
 // XTypeProvider
 public byte[] getImplementationId() {
 ...
 }
 //XServiceInfo
 public String getImplementationName() {
 ...
 }
 // XServiceInfo
 public boolean supportsService(/*IN*/String serviceName) {
 ...
 }
 //XServiceInfo
 public String[] getSupportedServiceNames() {
 ...
 }
}

The class implements the XSomething interface. The IDL description and documentation provides
information about its functionality. The class also contains the functions for factory creation and
registration, therefore the manifest entry must read as follows:
RegistrationClassName: JavaComp.TestComponent

Implementation Class with Component Operations and Inner Implementation Class

To implement the component as inner class of the one that provides the service factory through
__getServiceFactory(),it must be a static inner class, otherwise the factory provided by the
FactoryHelper cannot create the component. An example for an inner implementation class is
located in the sample com.sun.star.comp.demo.DemoComponent.java provided with the SDK. The
implementation of __getServiceFactory() and __writeRegistryServiceInfo() is omitted
here, because they act the same as in the implementation class with component operations above.
package com.sun.star.comp.demo;

public class DemoComponent {
 ...
 // static inner class implements service com.sun.star.demo.DemoComponent
 static public class _Implementation implements XTypeProvider,
 XServiceInfo, XInitialization, XWindowListener,
 XActionListener, XTopWindowListener {
 static private final String __serviceName = "com.sun.star.demo.DemoComponent";
 private XMultiServiceFactory _xMultiServiceFactory;

252 OpenOffice.org 2.3 Developer's Guide • June 2007

 // Constructor
 public _Implementation(XMultiServiceFactory xMultiServiceFactory) {
 }
 }

 // static method to get a single factory creating the given service from the factory helper
 public static XSingleServiceFactory __getServiceFactory(String implName,
 XMultiServiceFactory multiFactory,
 XRegistryKey regKey) {
 ...
 }

 // static method to write the service information into the given registry key
 public static boolean __writeRegistryServiceInfo(XRegistryKey regKey) {
 ...
 }

}

The manifest entry for this implementation structure again has to point to the class with the static
component operations:
RegistrationClassName: com.sun.star.comp.demo.DemoComponent

Multiple Implementations per Component File
To assemble several service implementations in one component file, implement each service in its
own class and add a separate class containing the static component operations. The following code
sample features two services: TestComponentA and TestComponentB implementing the interfaces
XSomethingA and XSomethingB with a separate static class TestServiceProvider containing the
component operations.

The following are the UNOIDL specifications for XSomethingA and XSomethingB:
module com { module sun { module star { module test {
interface XSomethingA: com::sun::star::uno::XInterface
{
 string methodOne([in]string value);
};
}; }; }; };

module com { module sun { module star { module test {
interface XSomethingB: com::sun::star::uno::XInterface
{
 string methodTwo([in]string value);
};
}; }; }; };

TestComponentA implements XSomethingA:
(Components/JavaComponent/TestComponentA.java):
package JavaComp;

public class TestComponentA implements XTypeProvider, XServiceInfo, XSomethingA {
 static final String __serviceName= "JavaTestComponentA";
 static byte[] _implementationId;

 public TestComponentA() {
 }

 // XSomethingA
 public String methodOne(String val) {
 return val;
 }

 //XTypeProvider
 public com.sun.star.uno.Type[] getTypes() {
 Type[] retValue= new Type[3];
 retValue[0]= new Type(XServiceInfo.class);
 retValue[1]= new Type(XTypeProvider.class);
 retValue[2]= new Type(XSomethingA.class);
 return retValue;
 }

 //XTypeProvider
 synchronized public byte[] getImplementationId() {

253

 if (_implementationId == null) {
 _implementationId= new byte[16];
 int hash = hashCode();
 _implementationId[0] = (byte)(hash & 0xff);
 _implementationId[1] = (byte)((hash >>> 8) & 0xff);
 _implementationId[2] = (byte)((hash >>> 16) & 0xff);
 _implementationId[3] = (byte)((hash >>>24) & 0xff);
 }
 return _implementationId;
 }

 //XServiceInfo
 public String getImplementationName() {
 return getClass().getName();
 }
 // XServiceInfo
 public boolean supportsService(/*IN*/String serviceName) {
 if (serviceName.equals(__serviceName))
 return true;
 return false;
 }

 //XServiceInfo
 public String[] getSupportedServiceNames() {
 String[] retValue= new String[0];
 retValue[0]= __serviceName;
 return retValue;
 }
}

TestComponentB implements XSomethingB. Note that it receives the component context and
initialization arguments in its constructor. (Components/JavaComponent/TestComponentB.java)
package JavaComp;

public class TestComponentB implements XTypeProvider, XServiceInfo, XSomethingB {
 static final String __serviceName= "JavaTestComponentB";
 static byte[] _implementationId;
 private XComponentContext context;
 private Object[] args;
 public TestComponentB(XComponentContext context, Object[] args) {
 this.context= context;
 this.args= args;
 }

 // XSomethingB
 public String methodTwo(String val) {
 if (args.length > 0 && args[0] instanceof String)
 return (String) args[0];
 return val;
 }

 //XTypeProvider
 public com.sun.star.uno.Type[] getTypes() {
 Type[] retValue= new Type[3];
 retValue[0]= new Type(XServiceInfo.class);
 retValue[1]= new Type(XTypeProvider.class);
 retValue[2]= new Type(XSomethingB.class);
 return retValue;
 }

 //XTypeProvider
 synchronized public byte[] getImplementationId() {
 if (_implementationId == null) {
 _implementationId= new byte[16];
 int hash = hashCode();
 _implementationId[0] = (byte)(hash & 0xff);
 _implementationId[1] = (byte)((hash >>> 8) & 0xff);
 _implementationId[2] = (byte)((hash >>> 16) & 0xff);
 _implementationId[3] = (byte)((hash >>>24) & 0xff);
 }
 return _implementationId;
 }

 //XServiceInfo
 public String getImplementationName() {
 return getClass().getName();
 }

 // XServiceInfo
 public boolean supportsService(/*IN*/String serviceName) {
 if (serviceName.equals(__serviceName))
 return true;

254 OpenOffice.org 2.3 Developer's Guide • June 2007

 return false;
 }

 //XServiceInfo
 public String[] getSupportedServiceNames() {
 String[] retValue= new String[0];
 retValue[0]= __serviceName;
 return retValue;
 }
}

TestServiceProvider implements __getServiceFactory() and
__writeRegistryServiceInfo(): (Components/JavaComponent/TestServiceProvider.java)
package JavaComp;
...
public class TestServiceProvider
{
 public static XSingleServiceFactory __getServiceFactory(String implName,
 XMultiServiceFactory multiFactory,
 XRegistryKey regKey) {
 XSingleServiceFactory xSingleServiceFactory = null;

 if (implName.equals(TestComponentA.class.getName()))
 xSingleServiceFactory = FactoryHelper.getServiceFactory(TestComponentA.class,
 TestComponentA.__serviceName, multiFactory, regKey);
 else if (implName.equals(TestComponentB.class.getName()))
 xSingleServiceFactory= FactoryHelper.getServiceFactory(TestComponentB.class,
 TestComponentB.__serviceName, multiFactory, regKey);
 return xSingleServiceFactory;
 }

 public static boolean __writeRegistryServiceInfo(XRegistryKey regKey){
 boolean bregA= FactoryHelper.writeRegistryServiceInfo(TestComponentA.class.getName(),
 TestComponentA.__serviceName, regKey);
 boolean bregB= FactoryHelper.writeRegistryServiceInfo(TestComponentB.class.getName(),
 TestComponentB.__serviceName, regKey);
 return bregA && bregB;
 }
}

The corresponding manifest entry must point to the static class with the component operations, in
this case JavaComp.TestServiceProvider:
RegistrationClassName: JavaComp.TestServiceProvider

4.5.9 Running and Debugging Java Components
In order to run a Java component within an office, it needs to be registered first. During the process
of registration, the location of the component, its service name and implementation name, are
written into a registry database � the services.rdb.

 As of OpenOffice.org1.1.0 the registration database (applicat.rdb) was split into the services.rdb and the
types.rdb. As the names suggest, the services.rdb contains information about services (location, names, ect),
whereas the types.rdb holds type descriptions (interfaces, enumerations, etc.)

Formerly the regcomp tool was used for registering components. However, it was superseded by
pkgchk which came with OpenOffice.org1.1.0 and later by unopkg which came with OpenOffice.org1.2.0 .
For more details about unopkg refer to chapter 5 Extensions.

By using regcomp you have the option of registering components so that the information is kept in a
separate database (other then the services.rdb). This might come in handy if you do not want to
clutter up the services.rdb while developing components. Then, however, the office needs to be
told to use that .rdb, which is done by modifying the uno(.ini|rc).

If the component uses new types, then they must be made available to the office by merging the
type information into the services.rdb. Again, you have the option of using a different database as
long as the uno.(ini|rc) is modified accordingly. This step can be omitted if unopkg is being used.

255

The following is a step by step description of the registration process using regcomp:

Note, if errors are encountered, refer to the troubleshooting section at the end of this chapter.

Register Component File
This step creates a registry file that contains the location of the component file and all the neces-
sary type information. To register, place a few files to the proper locations:

• Copy the regcomp tool from the SDK distribution to <OfficePath>/program.

• Copy the component jar to <OfficePath>/program/classes.

• Copy the .rdb file containing the new types created to <OfficePath>/program. If new types
were not defined, dismiss this step. In this case, regcomp automatically creates a new rdb file
with registration information.

On the command prompt, change to <OfficePath>/program, then run regcomp with the following
options. Line breaks were applied to improve readability, but the command must be entered in
a single line:

$ regcomp -register -r <your_registry>.rdb
 -br services.rdb
 -br types.rdb
 -l com.sun.star.loader.Java
 -c file:///<OfficePath>/program/classes/<your_component>.jar

For the org.openoffice.test.ImageShrink service whose type description was merged into
thumbs.rdb , which is implemented in thumbs.jar, the corresponding command would be:

$ regcomp -register -r thumbs.rdb
 -br services.rdb
 -br types.rdb
 -l com.sun.star.loader.Java
 -c file:///i:/StarOffice6.0/program/classes/thumbs.jar

Instead of regcomp, there is also a Java tool to register components, however, it can only write to
the same registry it reads from. It cannot be used to create a separate registry database. For
details, see the section 4.9 Writing UNO Components - Deployment Options for Components.

Make Registration available to OpenOffice.org
OpenOffice.org must be told to use the registry. Close all OpenOffice.org parts, including the
Quickstarter that runs in the Windows task bar. Edit the file uno(.ini|rc) in <OfficePath>/program
as follows:

[Bootstrap]
UNO_TYPES=$SYSBINDIR/types.rdb $SYSBINDIR/<your_registry>.rdb
UNO_SERVICES=$SYSBINDIR/services.rdb $SYSBINDIR/<your_registry>.rdb
For details about the syntax of uno(.ini|rc) and alternative registration procedures, refer to the
section 4.9 Writing UNO Components - Deployment Options for Components. If OpenOffice.org is
restarted, the component should be available.

Test the Registration
A short OpenOffice.org Basic program indicates if the program runs went smoothly, by
selecting Tools � Macro and entering a new macro name on the left, such as TestImageShrink
and click New to create a new procedure. In the procedure, enter the appropriate code of the
component. The test routine for ImageShrink would be:

Sub TestImageShrink
 oTestComp = createUnoService("org.openoffice.test.ImageShrink")
 MsgBox oTestComp.dbg_methods
 MsgBox oTestComp.dbg_properties
 MsgBox oTestComp.dbg_supportedInterfaces
end sub
The result should be three dialogs showing the methods, properties and interfaces supported
by the implementation. Note that the interface attributes do not appear as get/set methods, but
as properties in Basic. If the dialogs do not show what is expected, refer to the section 4.5.9

256 OpenOffice.org 2.3 Developer's Guide • June 2007

Writing UNO Components - Simple Component in Java - Testing and Debugging Java Components -
Troubleshooting.

Debugging
To increase turnaround cycles and source level debugging, configure the IDE to use GNU make-
files for code generation and prepare OpenOffice.org for Java debugging. If NetBeans are used, the
following steps are necessary:

Support for GNU make
A NetBeans extension, available on makefile.netbeans.org, that addsbasic support for GNU make-
files. When it is enabled, edit the makefile in the IDE and use the makefile to build. To install
and enable this module, select Tools � Setup Wizard and click Next to go to the Module instal-
lation page. Find the module Makefiles and change the corresponding entry to True in the
Enabled column. Finish using the setup wizard. If the module is not available in the installa-
tion, use Tools � Update Center to get the module from www.netbeans.org. A new entry, Make-
file Support, appears in the online help when Help � Contents is selected. Makefile Support
provides further configuration options. The settings Run a Makefile and Test a Makefile can
be found in Tools � Options � Uncategorized � Compiler Types and � Execution Types.

Put the makefile into the project source folder that was mounted when the project was created.
To build the project using the makefile, highlight the makefile in the Explorer and press F11.

Documentation for GNU make command-line options and syntax are available at www.gnu.org.
The sample Thumbs in the samples folder along with this manual contains a makefile that with a
few adjustments is useful for Java components.

Component Debugging
If NetBeans or Forte for Java is used, the Java Virtual Machine (JVM) that is launched by
OpenOffice.org can be attached. Configure the JVM used by OpenOffice.org to listen for
debugger connections. Prior to OpenOffice.org2.0 this was done by adding these lines to the
java(.ini|rc) in <OfficePath>/user/config:

-Xdebug
-Xrunjdwp:transport=dt_socket,server=y,address=8000,suspend=n
As of OpenOffice.org2.0, these lines are added in the options dialog: expand the OpenOffice.org
node in the tree on the left-hand side and chose Java . On the right-hand side, push the Parame-
ters button to open a dialog. In this dialog, enter the debug options as two separate entries.
Note that the parameters have to entered the same way as they would be provided on the
command line when starting the Java executable. That is, retain the leading '-' and spaces, if
necessary.

 The additional entries correspond exactly to the options you would use when running the java executable
from the command line in debug mode. For more information refer to the Java SDK documentation.

The last line causes the JVM to listen for a debugger on port 8000. The JVM starts listening as soon
as it runs and does not wait until a debugger connects to the JVM. Launch the office and instantiate
the Java component, so that the office invokes the JVM in listening mode.

Once a Java component is instantiated, the JVM keeps listening even if the component goes out of
scope. Open the appropriate source file in the NetBeans editor and set breakpoints as needed.
Choose Debug - Attach, select Java Platform Debugger Architecture (JPDA) as debugger type
and SocketAttach (Attaches by socket to other VMs) as the connector. The Host should be local-
host and the Port must be 8000. Click OK to connect the Java Debugger to the JVM the office has
started previously step.

257

Once the debugger connects to the running JVM, NetBeans switches to debug mode, the output
windows shows a message that a connection on port 8000 is established and threads are visible, as
if the debugging was local. If necessary, start your component once again. As soon as the compo-
nent reaches a breakpoint in the source code, the source editor window opens with the breakpoint
highlighted by a green arrow.

The Java Environment in OpenOffice.org
When UNO components written in Java are to be used within the office, the office has to be config-
ured appropriately. Prior to OpenOffice.org2.0, this configuration happened during the installa-
tion, when the Java setup was performed. Then, a user could choose a Java Runtime Environment
or choose to install a JRE. After installing the office, the selected JRE could still be changed with the
jvmsetup program, which was located in the program folder. The data for running the Java Virtual
Machine was stored in the java(.ini|rc) file and other configuration files.

 The java(.ini|rc) actually is an implementation detail. Unfortunately, it needs to be modified under some rare
circumstances, for example for debugging purposes. You must not rely on the existence of the file nor should
you make assumptions about its contents.

In an office with a lower version than 2.0, the java(.ini|rc) is located in the <officepath>\user\config
directory. A client can use that file to pass additional properties to the Java Virtual Machine, which
are then available as system properties. For example, to pass the property MyAge, invoke Java like
this:

java -DMyAge=30 RunClass

If you want to have that system property accessible by your Java component you can put that
property into java(ini|rc) within the [Java] section. For example:
[Java]
Home=file:///C:/Program%20Files/Java/j2re1.4.2

VMType=JRE
Version=1.4.2
RuntimeLib=file:///C:/Program%20Files/Java/j2re1.4.2/bin/client/jvm.dll
SystemClasspath=d:\645m15\program\classes\classes.jar;; ...
Java=1
JavaScript=1
Applets=1
 MyAge=27

To debug a Java component, it is necessary to start the JVM with additional parameters. The
parameters can be put in the java.ini the same way as they would appear on the command-line. For
example , add those lines to the [Java] section:
-Xdebug
-Xrunjdwp:transport=dt_socket,server=y,address=8000

More about debugging can be found in the JDK documentation and in the OpenOffice.org Soft-
ware Development Kit.

Java components are also affected by the following configuration settings. They can be changed in
the Tools - Options dialog. In the dialog, expand the OpenOffice.org node on the left-hand side
and choose Security. This brings up a new pane on the right-hand side that allows Java specific
settings:

Java Setting Description

Enable If checked, Java is used with the office. This affects Java components, as well as
applets.

Security checks If checked, the security manager restricts resource access of applets.

Net access Determines where an applet can connect.

258 OpenOffice.org 2.3 Developer's Guide • June 2007

Java Setting Description

ClassPath Additional jar files and directories where the JVM should search for classes. Also
known as user classpath.

Applets If checked, applets are executed.

In OpenOffice.org2.0 there is no java(.ini|rc) anymore. All basic Java settings are set in the options
dialog: tree node OpenOffice.org->Java. The Parameters dialog can be used to specify the debug
options and other arguments.

For applets there are still a few settings on the security panel (tree node OpenOffice.org->Security).

Troubleshooting
If the component encounters problems, review the following checklist to check if the component is
configured correctly.

Check Registry Keys
To check if the registry database is correctly set up, run regview against the three keys that make
up a registration in the /UCR, /SERVICES and /IMPLEMENTATIONS branch of a registry
database. The following examples show how to read the appropriate keys and how a proper
configuration should look. In our example, service ImageShrink, and the
key /UCR/org/openoffice/test/XImageShrink contain the type information specified in
UNOIDL (the exact output from regview might differ between versions of OpenOffice.org):

dump XImageShrink type information

$ regview thumbs.rdb /UCR/org/openoffice/test/XImageShrink
Registry "file:///X:/office60eng/program/thumbs.rdb":

/UCR/org/openoffice/test/XImageShrink
 Value: Type = RG_VALUETYPE_BINARY
 Size = 364
 Data = minor version: 0
 major version: 1
 type: 'interface'
 uik: { 0x00000000-0x0000-0x0000-0x00000000-0x00000000 }
 name: 'org/openoffice/test/XImageShrink'
 super name: 'com/sun/star/uno/XInterface'
 Doku: ""
 IDL source file: "X:\SO\sdk\examples\java\Thumbs\org\openoffice\test\XImageShrink.idl"
 number of fields: 3
 field #0:
 name='SourceDirectory'
 type='string'
 access=READWRITE
 Doku: ""
 IDL source file: ""
 field #1:
 name='DestinationDirectory'
 type='string'
 access=READWRITE
 Doku: ""
 IDL source file: ""
 field #2:
 name='Dimension'
 type='com/sun/star/awt/Size'
 access=READWRITE
 Doku: ""
 IDL source file: ""
 number of methods: 0
 number of references: 0
The /SERVICES/org.openoffice.test.ImageShrink key must point to the implementation name
org.openoffice. comp .test.ImageShrink that was chosen for this service:

dump service name registration

$ regview thumbs.rdb /SERVICES/org.openoffice.test.ImageShrink

259

Registry "file:///X:/office60eng/program/thumbs.rdb":

/SERVICES/org.openoffice.test.ImageShrink
 Value: Type = RG_VALUETYPE_STRINGLIST
 Size = 45
 Len = 1
 Data = 0 = "org.openoffice.comp.test.ImageShrink"
Finally, the /IMPLEMENTATIONS/org.openoffice.comp.test.ImageShrink key must contain
the loader and the location of the component jar:

dump implementation name registration

$ regview thumbs.rdb /IMPLEMENTATIONS/org.openoffice.comp.test.ImageShrink
Registry "file:///X:/office60eng/program/thumbs.rdb":

/IMPLEMENTATIONS/org.openoffice.comp.test.ImageShrink
 / UNO
 / ACTIVATOR
 Value: Type = RG_VALUETYPE_STRING
 Size = 26
 Data = "com.sun.star.loader.Java2"

 / SERVICES
 / org.openoffice.test.ImageShrink
 / LOCATION
 Value: Type = RG_VALUETYPE_STRING
 Size = 50
 Data = "file:///X:/office60eng/program/classes/thumbs.jar"

If the UCR key is missing, the problem is with regmerge. The most probable cause are
missing .urd files. Be careful when writing the makefile. If .urd files are missing when regmerge
is launched by the makefile, regmerge continues and creates a barebone .rdb file, sometimes
without any type info.

If regview can not find the /SERVICES and /IMPLEMENTATIONS keys or they have the
wrong content, the problem occurred when regcomp was run. This can be caused by wrong path
names in the regcomp arguments.

Also, a wrong SystemClasspath setup in java(.ini|rc) (prior to OpenOffice.org2.0) could be the
cause of regcomp error messages about missing classes. Check what the SystemClasspath entry
in java(.ini|rc) specifies for the Java UNO runtime jars.

Ensure that regcomp is being run from the current directory when registering Java components.
In addition, ensure <OfficePath>/program is the current folder when regcomp is run. Verify that
regcomp is in the current folder.

Check the Java VM settings
Whenever the VM service is instantiated by OpenOffice.org, it uses the Java configuration
settings in OpenOffice.org. This happens during the registration of Java components, therefore
make sure that Java is enabled. Choose Tools-Options in OpenOffice.org, so that the dialog
appears. Expand the OpenOffice.org node and select Security. Select the Enable checkbox in
the Java section and click OK.

Check the Manifest
Make sure the manifest file contains the correct entry for the registration class name. The file
must contain the following line:

RegistrationClassName: <full name of package and class>
Please make sure that the manifest file ends up with a new line. The registration class name
must be the one that implements the __writeRegistryServiceInfo() and
__getServiceFactory() methods. The RegistrationClassName to be entered in the manifest
for our example is org.openoffice.comp.test.ImageShrink.

Adjust CLASSPATH for Additional Classes
OpenOffice.org maintains its own system classpath and a user classpath when it starts the Java
VM for Java components. The jar file that contains the service implementation is not required in

260 OpenOffice.org 2.3 Developer's Guide • June 2007

the system or user classpath. If a component depends on jar files or classes that are not part of
the Java UNO runtime jars, then they must be put on the classpath. This can be achieved by
editing the classpath in the options dialog (Tools � Options � OpenOffice.org � Security) .

Disable Debug Options
If the debug options (-Xdebug, -Xrunjdwp) are in the java(.ini|rc) (prior to OpenOffice.org2.0)
file, disable them by putting semicolons at the beginning of the respective lines. For
OpenOffice.org2.0 and later, make sure the debug options are removed in the Parameters
dialog. This dialog can be found in the options dialog (Tools � Options � OpenOffice.org �
Java). The regcomp or tool or the Extension Manager may hang, because the JVM is waiting for
a debugger to be attached.

4.6 C++ Component
In this section, a sample component containing two service implementations with helpers and
without helpers implemented are presented. The complete source code and the gnu makefile are in
samples/simple_cpp_component.

The first step for the C++ component is to define a language-independent interface, so that the
UNO object can communicate with others. The IDL specification for the component defines one
interface my_module.XSomething and two old-style services implementing this interface (if new-
style services were used instead, the example would not be much different). In addition, the
second service called my_module.MyService2 implements the com.sun.star.lang.XInitial-
ization interface, so that MyService2 can be instantiated with arguments passed to it during
runtime.
#include <com/sun/star/uno/XInterface.idl>
#include <com/sun/star/lang/XInitialization.idl>

module my_module
{

interface XSomething : com::sun::star::uno::XInterface
{
 string methodOne([in] string val);
};

service MyService1
{
 interface XSomething;
};

service MyService2
{
 interface XSomething;
 interface com::sun::star::lang::XInitialization;
};

};

This IDL is compiled to produce a binary type library file (.urd file), by executing the following
commands. The types are compiled and merged into a registry simple_component.rdb, that will be
linked into the OpenOffice.org installation later.
$ idlc -I<SDK>/idl some.idl
$ regmerge simple_component.rdb /UCR some.urd

The cppumaker tool must be used to map IDL to C++:
$ cppumaker -BUCR -Tmy_module.XSomething <officepath>/program/types.rdb simple_component.rdb

For each given type, a pair of header files is generated, a .hdl and a .hpp file. To avoid conflicts, all
C++ declarations of the type are in the .hdl and all definitions, such as constructors, are in the .hpp
file. The .hpp is the one to include for any type used in C++.

261

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html

The next step is to implement the core interfaces, and the implementation of the component opera-
tions component_getFactory(), component_writeInfo() and
component_getImplementationEnvironment()with or without helper methods.

4.6.1 Class Definition with Helper Template Classes

XInterface, XTypeProvider and XWeak
The SDK offers helpers for ease of developing. There are implementation helper template classes
that deal with the implementation of com.sun.star.uno.XInterface and
com.sun.star.lang.XTypeProvider, as well as com.sun.star.uno.XWeak. These classes let you
focus on the interfaces you want to implement.

The implementation of my_module.MyService2 uses the ::cppu::WeakImplHelper3<> helper.
The �3� stands for the number of interfaces to implement. The class declaration inherits from this
template class which takes the interfaces to implement as template parameters.
(Components/CppComponent/service2_impl.cxx)
#include <cppuhelper/implbase3.hxx> // "3" implementing three interfaces
#include <cppuhelper/factory.hxx>
#include <cppuhelper/implementationentry.hxx>

#include <com/sun/star/lang/XServiceInfo.hpp>
#include <com/sun/star/lang/XInitialization.hpp>
#include <com/sun/star/lang/IllegalArgumentException.hpp>
#include <my_module/XSomething.hpp>

using namespace ::rtl; // for OUString
using namespace ::com::sun::star; // for sdk interfaces
using namespace ::com::sun::star::uno; // for basic types

namespace my_sc_impl {

class MyService2Impl : public ::cppu::WeakImplHelper3< ::my_module::XSomething,
 lang::XServiceInfo,
 lang::XInitialization >
{
 ...
};
}

The next section focusses on coding com.sun.star.lang.XServiceInfo,
com.sun.star.lang.XInitialization and the sample interface my_module.XSomething.

The cppuhelper shared library provides additional implementation helper classes, for example,
supporting com.sun.star.lang.XComponent. Browse the ::cppu namespace in the C++ reference of
the SDK or on udk.openoffice.org.

XServiceInfo
An UNO service implementation supports com.sun.star.lang.XServiceInfo providing infor-
mation about its implementation name and supported services. The implementation name is a
unique name referencing the specific implementation. In this case,
my_module.my_sc_impl.MyService1 and my_module.my_sc_impl.MyService2 respectively. The
implementation name is used later when registering the implementation into the
simple_component.rdb registry used for OpenOffice.org. It links a service name entry to one imple-
mentation, because there may be more than one implementation. Multiple implementations of the
same service may have different characteristics, such as runtime behavior and memory footprint.

262 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html

Our service instance has to support the com.sun.star.lang.XServiceInfo interface. This inter-
face has three methods, and can be coded for one supported service as follows:
(Components/CppComponent/service2_impl.cxx)
// XServiceInfo implementation
OUString MyService2Impl::getImplementationName()
 throw (RuntimeException)
{
 // unique implementation name
 return OUString(RTL_CONSTASCII_USTRINGPARAM("my_module.my_sc_impl.MyService2"));
}
sal_Bool MyService2Impl::supportsService(OUString const & serviceName)
 throw (RuntimeException)
{
 // this object only supports one service, so the test is simple
 return serviceName.equalsAsciiL(RTL_CONSTASCII_STRINGPARAM("my_module.MyService2"));
}
Sequence< OUString > MyService2Impl::getSupportedServiceNames()
 throw (RuntimeException)
{
 return getSupportedServiceNames_MyService2Impl();
}

4.6.2 Implementing your own Interfaces
For the my_module.XSomething interface, add a string to be returned that informs the caller when
methodOne() was called successfully . (Components/CppComponent/service2_impl.cxx)
OUString MyService2Impl::methodOne(OUString const & str)
 throw (RuntimeException)
{
 return OUString(RTL_CONSTASCII_USTRINGPARAM(
 "called methodOne() of MyService2 implementation: ")) + str;
}

4.6.3 Providing a Single Factory Using a Helper Method
C++ component libraries must export an external "C" function called component_getFactory()
that supplies a factory object for the given implementation. Use
::cppu::component_getFactoryHelper() to create this function. The declarations for it are
included through cppuhelper/implementationentry.hxx.

The component_getFactory() method appears at the end of the following listing. This method
assumes that the component includes a static ::cppu::ImplementationEntry array
s_component_entries[], which contains a number of function pointers. The listing shows how to
write the component, so that the function pointers for all services of a multi-service component are
correctly initialized. (Components/CppComponent/service2_impl.cxx)
#include <cppuhelper/implbase3.hxx> // "3" implementing three interfaces
#include <cppuhelper/factory.hxx>
#include <cppuhelper/implementationentry.hxx>

#include <com/sun/star/lang/XServiceInfo.hpp>
#include <com/sun/star/lang/XInitialization.hpp>
#include <com/sun/star/lang/IllegalArgumentException.hpp>
#include <my_module/XSomething.hpp>

using namespace ::rtl; // for OUString
using namespace ::com::sun::star; // for sdk interfaces
using namespace ::com::sun::star::uno; // for basic types

namespace my_sc_impl
{

class MyService2Impl : public ::cppu::WeakImplHelper3<
 ::my_module::XSomething, lang::XServiceInfo, lang::XInitialization >
{
 OUString m_arg;

263

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html

public:
 // focus on three given interfaces,
 // no need to implement XInterface, XTypeProvider, XWeak

 // XInitialization will be called upon createInstanceWithArguments[AndContext]()
 virtual void SAL_CALL initialize(Sequence< Any > const & args)
 throw (Exception);
 // XSomething
 virtual OUString SAL_CALL methodOne(OUString const & str)
 throw (RuntimeException);
 // XServiceInfo
 virtual OUString SAL_CALL getImplementationName()
 throw (RuntimeException);
 virtual sal_Bool SAL_CALL supportsService(OUString const & serviceName)
 throw (RuntimeException);
 virtual Sequence< OUString > SAL_CALL getSupportedServiceNames()
 throw (RuntimeException);
};

// Implementation of XSomething, XServiceInfo and XInitilization omitted here:
...

// component operations from service1_impl.cxx
extern Sequence< OUString > SAL_CALL getSupportedServiceNames_MyService1Impl();
extern OUString SAL_CALL getImplementationName_MyService1Impl();
extern Reference< XInterface > SAL_CALL create_MyService1Impl(
 Reference< XComponentContext > const & xContext)
 SAL_THROW(());
// component operations for MyService2Impl
static Sequence< OUString > getSupportedServiceNames_MyService2Impl()
{
 Sequence<OUString> names(1);
 names[0] = OUString(RTL_CONSTASCII_USTRINGPARAM("my_module.MyService2"));
 return names;
}

static OUString getImplementationName_MyService2Impl()
{
 return OUString(RTL_CONSTASCII_USTRINGPARAM(
 "my_module.my_sc_implementation.MyService2"));
}

Reference< XInterface > SAL_CALL create_MyService2Impl(
 Reference< XComponentContext > const & xContext)
 SAL_THROW(())
{
 return static_cast< lang::XTypeProvider * >(new MyService2Impl());
}

{
 {
 create_MyService1Impl, getImplementationName_MyService1Impl,
 getSupportedServiceNames_MyService1Impl, ::cppu::createSingleComponentFactory,
 0, 0
 },
 {
 create_MyService2Impl, getImplementationName_MyService2Impl,
 getSupportedServiceNames_MyService2Impl, ::cppu::createSingleComponentFactory,
 0, 0
 },
 { 0, 0, 0, 0, 0, 0 }
};
}

extern "C"
{
void * SAL_CALL component_getFactory(
 sal_Char const * implName, lang::XMultiServiceFactory * xMgr,
 registry::XRegistryKey * xRegistry)
{
 return ::cppu::component_getFactoryHelper(
 implName, xMgr, xRegistry, ::my_sc_impl::s_component_entries);
}

// getImplementationEnvironment and component_writeInfo are described later, we omit them here
...
}

The static variable s_component_entries defines a null-terminated array of entries concerning the
service implementations of the shared library. A service implementation entry consists of function
pointers for

• object creation: create_MyServiceXImpl()

264 OpenOffice.org 2.3 Developer's Guide • June 2007

• implementation name: getImplementationName_MyServiceXImpl()

• supported service names: getSupportedServiceNames_MyServiceXImpl()

• factory helper to be used: ::cppu::createComponentFactory()

The last two values are reserved for future use and therefore can be 0.

4.6.4 Write Registration Info Using a Helper Method
Use ::cppu::component_writeInfoHelper() to implement component_writeInfo(): This func-
tion is called by regcomp during the registration process.
[ScOURCE:Components/simple_cpp_component/service2_impl.cxx]
extern "C" sal_Bool SAL_CALL component_writeInfo(
 lang::XMultiServiceFactory * xMgr, registry::XRegistryKey * xRegistry)
{
 return ::cppu::component_writeInfoHelper(
 xMgr, xRegistry, ::my_sc_impl::s_component_entries);
}

Note that component_writeInfoHelper() uses the same array of ::cppu::Implementatio-
nEntry structs as component_getFactory(),that is, s_component_entries.

4.6.5 Provide Implementation Environment
The function called component_getImplementationEnvironment() tells the shared library
component loader which compiler was used to build the library. This information is required if
different components have been compiled with different compilers. A specific C++-compiler is
called an environment. If different compilers were used, the loader has to bridge interfaces from
one compiler environment to another, building the infrastructure of communication between those
objects. It is mandatory to have the appropriate C++ bridges installed into the UNO runtime. In
most cases, the function mentioned above can be implemented this way: (Components/CppCom-
ponent/service2_impl.cxx)
extern "C" void SAL_CALL component_getImplementationEnvironment(
 sal_Char const ** ppEnvTypeName, uno_Environment ** ppEnv)
{
 *ppEnvTypeName = CPPU_CURRENT_LANGUAGE_BINDING_NAME;
}

The macro CPPU_CURRENT_LANGUAGE_BINDING_NAME is a C string defined by the compiling envi-
ronment, if you use the SDK compiling environment. For example, when compiling with the
Microsoft Visual C++ compiler, it defines to "msci", but when compiling with the GNU gcc 3, it
defines to "gcc3".

4.6.6 Implementing without Helpers
In the following section, possible implementations without helpers are presented. This is useful if
more interfaces are to be implemented than planned by the helper templates. The helper templates
only allow up to ten interfaces. Also included in this section is how the core interfaces work.

265

XInterface Implementation
Object lifetime is controlled through the common base interface com.sun.star.uno.XInterface
methods acquire() and release() . These are implemented using reference-counting, that is,
upon each acquire(), the counter is incremented and upon each release(), it is decreased. On
last decrement, the object dies. Programming in a thread-safe manner, the modification of this
counter member variable is commonly performed by a pair of sal library functions called
osl_incrementInterlockedcount() and osl_decrementInterlockedcount() (include
osl/interlck.h). (Components/CppComponent/service1_impl.cxx)

 Be aware of symbol conflicts when writing code. It is common practice to wrap code into a separate
namespace, such as "my_sc_impl". The problem is that symbols may clash during runtime on Unix when
your shared library is loaded.

namespace my_sc_impl
{
class MyService1Impl
 ...
{
 oslInterlockedCount m_refcount;
public:
 inline MyService1Impl() throw ()
 : m_refcount(0)
 {}

 // XInterface
 virtual Any SAL_CALL queryInterface(Type const & type)
 throw (RuntimeException);
 virtual void SAL_CALL acquire()
 throw ();
 virtual void SAL_CALL release()
 throw ();
 ...
};
void MyService1Impl::acquire()
 throw ()
{
 // thread-safe incrementation of reference count
 ::osl_incrementInterlockedCount(&m_refcount);
}
void MyService1Impl::release()
 throw ()
{
 // thread-safe decrementation of reference count
 if (0 == ::osl_decrementInterlockedCount(&m_refcount))
 {
 delete this; // shutdown this object
 }
}

In the queryInterface() method, interface pointers have to be provided to the interfaces of the
object. That means, cast this to the respective pure virtual C++ class generated by the cppumaker
tool for the interfaces. All supported interfaces must be returned, including inherited interfaces like
XInterface. (Components/CppComponent/service1_impl.cxx)
Any MyService1Impl::queryInterface(Type const & type)
 throw (RuntimeException)
{
 if (type.equals(::cppu::UnoType< Reference< XInterface > >::get()))
 {
 // return XInterface interface (resolve ambiguity caused by multiple inheritance from
 // XInterface subclasses by casting to lang::XTypeProvider)
 Reference< XInterface > x(static_cast< lang::XTypeProvider * >(this));
 return makeAny(x);
 }
 if (type.equals(::cppu::UnoType< Reference< lang::XTypeProvider > >::get()))
 {
 // return XInterface interface
 Reference< XInterface > x(static_cast< lang::XTypeProvider * >(this));
 return makeAny(x);
 }
 if (type.equals((::cppu::UnoType< Reference< lang::XServiceInfo > >::get()))
 {
 // return XServiceInfo interface
 Reference< lang::XServiceInfo > x(static_cast< lang::XServiceInfo * >(this));
 return makeAny(x);
 }
 if (type.equals(::cppu::UnoType< Reference< ::my_module::XSomething > >::get()))

266 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html

 {
 // return sample interface
 Reference< ::my_module::XSomething > x(static_cast< ::my_module::XSomething * >(this));
 return makeAny(x);
 }
 // querying for unsupported type
 return Any();
}

XTypeProvider Implementation
When implementing the com.sun.star.lang.XTypeProvider interface, two methods have to be
coded. The first one, getTypes() provides all implemented types of the implementation, excluding
base types, such as com.sun.star.uno.XInterface. The second one, getImplementationId()
provides a unique ID for this set of interfaces. A thread-safe implementation of the above
mentioned looks like the following example: (Components/CppComponent/service1_impl.cxx)
Sequence< Type > MyService1Impl::getTypes()
 throw (RuntimeException)
{
 Sequence< Type > seq(3);
 seq[0] = ::cppu::UnoType< Reference< lang::XTypeProvider > >::get();
 seq[1] = ::cppu::UnoType< Reference< lang::XServiceInfo > >::get();
 seq[2] = ::cppu::UnoType< Reference< ::my_module::XSomething > >::get();
 return seq;
}
Sequence< sal_Int8 > MyService1Impl::getImplementationId()
 throw (RuntimeException)
{
 static Sequence< sal_Int8 > * s_pId = 0;
 if (! s_pId)
 {
 // create unique id
 Sequence< sal_Int8 > id(16);

 ::rtl_createUuid((sal_uInt8 *)id.getArray(), 0, sal_True);
 // guard initialization with some mutex
 ::osl::MutexGuard guard(::osl::Mutex::getGlobalMutex());
 if (! s_pId)
 {
 static Sequence< sal_Int8 > s_id(id);
 s_pId = &s_id;
 }
 }
 return *s_pId;
}

 In general, do not acquire() mutexes when calling alien code if you do not know what the called code is
doing. You never know what mutexes the alien code is acquiring which can lead to deadlocks. This is the
reason, why the latter value (uuid) is created before the initialization mutex is acquired. After the mutex is
successfully acquired, the value of s_pID is checked again and assigned if it has not been assigned before.
This is the design pattern known as �double-checked locking.�

The above initialization of the implementation ID does not work reliably on certain platforms. See 6.4.1
Advanced UNO - Design Patterns - Double-Checked Locking for better ways to implemnt this.

Providing a Single Factory
The function component_getFactory() provides a single object factory for the requested imple-
mentation, that is, it provides a factory that creates object instances of one of the service implemen-
tations. Using a helper from cppuhelper/factory.hxx, this is implemented quickly in the following
code: (Components/CppComponent/service1_impl.cxx)
#include <cppuhelper/factory.hxx>

namespace my_sc_impl
{
...
static Reference< XInterface > SAL_CALL create_MyService1Impl(
 Reference< XComponentContext > const & xContext)

267

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html

 SAL_THROW(())
{
 return static_cast< lang::XTypeProvider * >(new MyService1Impl());
}
static Reference< XInterface > SAL_CALL create_MyService2Impl(
 Reference< XComponentContext > const & xContext)
 SAL_THROW(())
{
 return static_cast< lang::XTypeProvider * >(new MyService2Impl());
}
}

extern "C" void * SAL_CALL component_getFactory(
 sal_Char const * implName, lang::XMultiServiceFactory * xMgr, void *)
{
 Reference< lang::XSingleComponentFactory > xFactory;
 if (0 == ::rtl_str_compare(implName, "my_module.my_sc_impl.MyService1"))
 {
 // create component factory for MyService1 implementation
 OUString serviceName(RTL_CONSTASCII_USTRINGPARAM("my_module.MyService1"));
 xFactory = ::cppu::createSingleComponentFactory(
 ::my_sc_impl::create_MyService1Impl,
 OUString(RTL_CONSTASCII_USTRINGPARAM("my_module.my_sc_impl.MyService1")),
 Sequence< OUString >(&serviceName, 1));
 }
 else if (0 == ::rtl_str_compare(implName, "my_module.my_sc_impl.MyService2"))
 {
 // create component factory for MyService12 implementation
 OUString serviceName(RTL_CONSTASCII_USTRINGPARAM("my_module.MyService2"));
 xFactory = ::cppu::createSingleComponentFactory(
 ::my_sc_impl::create_MyService2Impl,
 OUString(RTL_CONSTASCII_USTRINGPARAM("my_module.my_sc_impl.MyService2")),
 Sequence< OUString >(&serviceName, 1));
 }
 if (xFactory.is())
 xFactory->acquire();
 return xFactory.get(); // return acquired interface pointer or null
}

In the example above, note the function ::my_sc_impl::create_MyService1Impl() that is called
by the factory object when it needs to instantiate the class. A component context
com.sun.star.uno.XComponentContext is provided to the function, which may be passed to the
constructor of MyService1Impl.

Write Registration Info
The function component_writeInfo() is called by the shared library component loader upon
registering the component into a registry database file (.rdb). The component writes information
about objects it can instantiate into the registry when it is called by regcomp .
(Components/CppComponent/service1_impl.cxx)
extern "C" sal_Bool SAL_CALL component_writeInfo(
 lang::XMultiServiceFactory * xMgr, registry::XRegistryKey * xRegistry)
{
 if (xRegistry)
 {
 try
 {
 // implementation of MyService1A
 Reference< registry::XRegistryKey > xKey(
 xRegistry->createKey(OUString(RTL_CONSTASCII_USTRINGPARAM(
 "my_module.my_sc_impl.MyService1/UNO/SERVICES"))));
 // subkeys denote implemented services of implementation
 xKey->createKey(OUString(RTL_CONSTASCII_USTRINGPARAM(
 "my_module.MyService1")));
 // implementation of MyService1B
 xKey = xRegistry->createKey(OUString(RTL_CONSTASCII_USTRINGPARAM(
 "my_module.my_sc_impl.MyService2/UNO/SERVICES")));
 // subkeys denote implemented services of implementation
 xKey->createKey(OUString(RTL_CONSTASCII_USTRINGPARAM(
 "my_module.MyService2")));
 return sal_True; // success
 }
 catch (registry::InvalidRegistryException &)
 {
 // function fails if exception caught
 }
 }
 return sal_False;

268 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html

}

4.6.7 Storing the Service Manager for Further Use
The single factories expect a static create_< ImplementationClass> () function. For instance,
create_MyService1Impl()takes a reference to the component context and instantiates the imple-
mentation class using new ImplementationClass(). A constructor can be written for <Implemen-
tationClass> that expects a reference to an com.sun.star.uno.XComponentContext and stores
the reference in the instance for further use.
static Reference< XInterface > SAL_CALL create_MyService2Impl(
 Reference< XComponentContext > const & xContext)
 SAL_THROW(())
{
 // passing the component context to the constructor of MyService2Impl
 return static_cast< lang::XTypeProvider * >(new MyService2Impl(xContext));
}

4.6.8 Create Instance with Arguments
If the service should be raised passing arguments through
com.sun.star.lang.XMultiComponentFactory:createInstanceWithArgumentsAndContext()
and com.sun.star.lang.XMultiServiceFactory:createInstanceWithArguments(), it has to
implement the interface com.sun.star.lang.XInitialization. The second service
my_module.MyService2 implements it, expecting a single string as an argument.
(Components/CppComponent/service2_impl.cxx)
// XInitialization implementation
void MyService2Impl::initialize(Sequence< Any > const & args)
 throw (Exception)
{
 if (1 != args.getLength())
 {
 throw lang::IllegalArgumentException(
 OUString(RTL_CONSTASCII_USTRINGPARAM("give a string instanciating this component!")),
 (::cppu::OWeakObject *)this, // resolve to XInterface reference
 0); // argument pos
 }
 if (! (args[0] >>= m_arg))
 {
 throw lang::IllegalArgumentException(
 OUString(RTL_CONSTASCII_USTRINGPARAM("no string given as argument!")),
 (::cppu::OWeakObject *)this, // resolve to XInterface reference
 0); // argument pos
 }
}

4.6.9 Multiple Components in One Dynamic Link Library
The construction of C++ components allows putting as many service implementations into a
component file as desired. Ensure that the component operations are implemented in such a way
that component_writeInfo() and component_getFactory() handle all services correctly. Refer
to the sample component simple_component to see an example on how to implement two services
in one link library.

269

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html#createInstanceWithArguments
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html#createInstanceWithArguments
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html#createInstanceWithArguments
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html#createInstanceWithArgumentsAndContext
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html#createInstanceWithArgumentsAndContext
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html#createInstanceWithArgumentsAndContext
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html

4.6.10 Building and Testing C++ Components

Build Process
For details about building component code, see the gnu makefile. It uses a number of platform
dependent variables used in the SDK that are included from <SDK>/settings/settings.mk. For
simplicity, details are omitted here, and the build process is just sketched in eight steps:

1. The UNOIDL compiler compiles the .idl file some.idl into an urd file.

2. The resulting binary .urd files are merged into a new simple_component.rdb.

3. The tool xml2cmp parses the xml component description simple_component.xml for types needed
for compiling. This file describes the service implementation(s) for deployment, such as the
purpose of the implementation(s) and used types. Visit
http://udk.openoffice.org/common/man/module_description.html for details about the
syntax of these XML files.

4. The types parsed in step 3 are passed to cppumaker, which generates the appropriate header
pairs into the output include directory using simple_component.rdb and the OpenOffice.org type
library types.rdb that is stored in the program directory of your OpenOffice.org installation.

 For your own component you can simplify step 3 and 4, and pass the types used by your component to
cppumaker using the -T option.

5. The source files service1_impl.cxx and service2_impl.cxx are compiled.

6. The shared library is linked out of object files, linking dynamically to the UNO base libraries
sal, cppu and cppuhelper. The shared library's name is libsimple_component.so on Unix and
simple_component.dll on Windows.

 In general, the shared library component should limit its exports to only the above mentioned functions
(prefixed with component_) to avoid symbol clashes on Unix. In addition, for the gnu gcc3 C++ compiler, it
is necessary to export the RTTI symbols of exceptions, too.

7. The shared library component is registered into simple_component.rdb. This can also be done
manually running

$ regcomp -register -r simple_component.rdb -c simple_component.dll

Test Registration and Use
The component's registry simple_component.rdb has entries for the registered service implementa-
tions. If the library is registered successfully, run:
$ regview simple_component.rdb

The result should look similar to the following:

/
 / UCR
 / my_module
 / XSomething

 ... interface information ...

 / IMPLEMENTATIONS
 / my_module.my_sc_impl.MyService2
 / UNO
 / ACTIVATOR
 Value: Type = RG_VALUETYPE_STRING
 Size = 34

270 OpenOffice.org 2.3 Developer's Guide • June 2007

 Data = "com.sun.star.loader.SharedLibrary"

 / SERVICES
 / my_module.MyService2
 / LOCATION
 Value: Type = RG_VALUETYPE_STRING
 Size = 21
 Data = "simple_component.dll"

 / my_module.my_sc_impl.MyService1
 / UNO
 / ACTIVATOR
 Value: Type = RG_VALUETYPE_STRING
 Size = 34
 Data = "com.sun.star.loader.SharedLibrary"

 / SERVICES
 / my_module.MyService1
 / LOCATION
 Value: Type = RG_VALUETYPE_STRING
 Size = 21
 Data = "simple_component.dll"

 / SERVICES
 / my_module.MyService1
 Value: Type = RG_VALUETYPE_STRINGLIST
 Size = 40
 Len = 1
 Data = 0 = "my_module.my_sc_impl.MyService1"

 / my_module.MyService2
 Value: Type = RG_VALUETYPE_STRINGLIST
 Size = 40
 Len = 1
 Data = 0 = "my_module.my_sc_impl.MyService2"

OpenOffice.org recognizes registry files being inserted into the unorc file (on Unix, uno.ini on
Windows) in the program directory of your OpenOffice.org installation. Extend the types and
services in that file by simple_component.rdb. The given file has to be an absolute file URL, but if the
rdb is copied to the OpenOffice.org program directory, a $ORIGIN macro can be used, as shown in
the following unorc file:
[Bootstrap]
UNO_TYPES=$ORIGIN/types.rdb $ORIGIN/simple_component.rdb
UNO_SERVICES=$ORIGIN/services.rdb $ORIGIN/simple_component.rdb

Second, when running OpenOffice.org, extend the PATH (Windows) or LD_LIBRARY_PATH
(Unix), including the output path of the build, so that the loader finds the component. If the shared
library is copied to the program directory or a link is created inside the program directory (Unix
only), do not extend the path.

Launching the test component inside a OpenOffice.org Basic script is simple to do, as shown in the
following code:
Sub Main

 REM calling service1 impl
 mgr = getProcessServiceManager()
 o = mgr.createInstance("my_module.MyService1")
 MsgBox o.methodOne("foo")
 MsgBox o.dbg_supportedInterfaces

 REM calling service2 impl
 dim args(0)
 args(0) = "foo"
 o = mgr.createInstanceWithArguments("my_module.MyService2", args())
 MsgBox o.methodOne("bar")
 MsgBox o.dbg_supportedInterfaces

End Sub

This procedure instantiates the service implementations and performs calls on their interfaces. The
return value of the methodOne() call is brought up in message boxes. The Basic object property
dbg_supportedInterfaces retrieves its information through the com.sun.star.lang.XTypePro-
vider interfaces of the objects.

271

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html

4.7 Integrating Components into OpenOffice.org
If a component needs to be called from the OpenOffice.org user interface, it must be able to take
part in the communication between the UI layer and the application objects. OpenOffice.org uses
command URLs for this purpose. When a user chooses an item in the user interface, a command
URL is dispatched to the application framework and processed in a chain of responsibility until an
object accepts the command and executes it, thus consuming the command URL. This mechanism
is known as the dispatch framework , it is covered in detail in chapter 7.1.6 Office Development -
OpenOffice.org Application Environment - Using the Dispatch Framework.

From version 1.1.0, OpenOffice.org provides user interface support for custom components by two
basic mechanisms:

• Components can be enabled to process command URLs. There are two ways to accomplish this.
You can either make them a protocol handler for command URLs or integrate them into the job
execution environment of OpenOffice.org. The protocol handler technique is simple, but it can
only be used with command URLs in the dispatch framework. A component for the job execu-
tion environment can be used with or without command URLs, and has comprehensive support
when it comes to configuration, job environment, and lifetime issues.

• The user interface can be adjusted to new components. On the one hand, you can add new
menus and toolbar items and configure them to send the command URLs needed for your
component. On the other hand, it is possible to disable existing commands. All this is possible
by adding certain files to the extension. When users of your component install the extension, the
GUI is adjusted automatically.

The left side of Illustration 4.2 shows the two possibilities for processing command URLs: either
custom protocol handlers or the specialized job protocol. On the right, you see the job execution
environment, which is used by the job protocol, but can also be used without command URLs from
any source code.

272 OpenOffice.org 2.3 Developer's Guide • June 2007

This section describes how to use these mechanisms. It discusses protocol handlers and jobs, then
describes how to customize the OpenOffice.org user interface for components.

4.7.1 Protocol Handler
The dispatch framework binds user interface controls, such as menu or toolbar items, to the func-
tionality of OpenOffice.org. Every function that is reachable in the user interface is described by a
command URL and corresponding parameters.

The protocol handler mechanism is an API that enables programmers to add arbitrary URL
schemas to the existing set of command URLs by writing additional protocol handlers for them.

273

Illustration 4.2: Processing command URLs and the job execution environment

Such a protocol handler must be implemented as a UNO component and registered in the
OpenOffice.org configuration for the new URL schema.

Overview
To issue a command URL, the first step is to locate a dispatch object that is responsible for the
URL. Start with the frame that contains the document for which the command is meant. Its inter-
face method com.sun.star.frame.XDispatchProvider:queryDispatch()is called with a URL
and special search parameters to locate the correct target. This request is passed through the
following instances:

disabling commands Checks if command is on the list of disabled commands, described in 4.7.4
Writing UNO Components - Integrating Components into OpenOffice.org -
Disable Commands

interception Intercepts command and re-routes it, described in 7.1.6 Office Development -
OpenOffice.org Application Environment - Using the Dispatch Framework -
Dispatch Interception

targeting Determines target frame for command, described in 7.1.5 Office Develop-
ment - OpenOffice.org Application Environment - Handling Documents -
Loading Documents - Target Frame

controller Lets the controller of the frame try to handle the command, described in
7.1.6 Office Development - OpenOffice.org Application Environment - Using the
Dispatch Framework - Processing Chain

protocol handler Determines if there is a custom handler for the command, described in this
section

interpret as loadable content Loads content from file, described in 7.1.5 Office Development -
OpenOffice.org Application Environment - Handling Documents - Loading
Documents - URL Parameter. Generally contents are loaded into a frame by a
com.sun.star.frame.FrameLoader , but if a content (e.g. a sound)
needs no frame, a com.sun.star.frame.ContentHandler service is
used, which needs no target frame for its operation.

The list shows that the protocol handler will only be used if the URL has not been called before.
Because targeting has already been done, it is clear that the command will run in the located target
frame environment, which is usually "_self".

 The target "_blank" cannot be used for a protocol handler. Since "_blank" leads to the creation of a new frame
for a component, there would be no component yet for the protocol handler to work with.

A protocol handler decides by itself if it returns a valid dispatch object, that is, it is asked to agree
with the given request by the dispatch framework. If a dispatch object is returned, the requester
can use it to dispatch the URL by calling its dispatch() method.

Implementation
A protocol handler implementation must follow the service definition
com.sun.star.frame.ProtocolHandler. At least the interface com.sun.star.frame.XDis-
patchProvider must be supported.

274 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/ProtocolHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/ProtocolHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/ProtocolHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/ContentHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/ContentHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/ContentHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html#queryDispatch
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html#queryDispatch
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html#queryDispatch

The interface XDispatchProvider supports two methods:
XDispatch queryDispatch([in] ::com::sun::star::util::URL URL,
 [in] string TargetFrameName,
 [in] long SearchFlags)
sequence< XDispatch > queryDispatches([in] sequence< DispatchDescriptor > Requests)

The protocol handler is asked for its agreement to execute a given URL by a call to the interface
method com.sun.star.frame.XDispatchProvider:queryDispatch(). The incoming URL
should be parsed and validated. If the URL is valid and the protocol handler is able to handle it, it
should return a dispatch object, thus indicating that it accepts the request.

The dispatch object must support the interface com.sun.star.frame.XDispatch with the
methods

[oneway] void dispatch([in] ::com::sun::star::util::URL URL,
 [in] sequence< ::com::sun::star::beans::PropertyValue > Arguments)
addStatusListener [oneway] void addStatusListener([in] XStatusListener Control,
 [in] ::com::sun::star::util::URL URL)
removeStatusListener [oneway] void removeStatusListener([in] XStatusListener Control,
 [in] ::com::sun::star::util::URL URL)

Optionally, the dispatch object can support the interface com.sun.star.frame.XNotifyingDis-
patch, which derives from XDispatch and introduces a new method dispatchWithNotifica-
tion(). This interface is preferred if it is present.

[oneway] void dispatchWithNotification(
 [in] com::sun::star::util::URL URL,
 [in] sequence<com::sun::star::beans::PropertyValue> Arguments,
 [in] com::sun::star::frame::XDispatchResultListener Listener);

A basic protocol handler is free to implement XDispatch itself, so it can simply return itself in the
queryDispatch() implementation. But it is advisable to return specialized helper dispatch objects
instead of the protocol handler instance. This helps to decrease the complexity of status updates. It
is easier to notify status listeners for a single-use dispatch object instead of multi-use dispatch
objects, which have to distinguish the URLs given in addStatusListener() all the time.

 To supply the UI with status information for a command, it is required to call back a
com.sun.star.frame.XStatusListener during its registration immediately, for example:

public void addStatusListener(XStatusListener xControl, URL aURL) {
 FeatureStateEvent aState = new FeatureStateEvent();
 aState.FeatureURL = aURL;
 aState.IsEnabled = true;
 aState.State = Boolean.TRUE;
 xControl.statusChanged(aState);
 m_lListenerContainer.add(xControl);
}

A protocol handler can support the interface com.sun.star.lang.XInitialization if it wants to
be initialized with a com.sun.star.frame.Frame environment to work with. XInitialization
contains one method:

void initialize([in] sequence< any > aArguments)

A protocol handler is generally used in a well known com.sun.star.frame.Frame context, there-
fore the dispatch framework always passes this frame context through initialize() as the first
argument, if XInitialization is present. Its com.sun.star.frame.XFrame interface provides

275

Illustration 4.3: Protocol handler

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStatusListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStatusListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStatusListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XNotifyingDispatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XNotifyingDispatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XNotifyingDispatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XNotifyingDispatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XNotifyingDispatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XNotifyingDispatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html#queryDispatch
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html#queryDispatch
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html#queryDispatch

access to the controller, from which you can get the document model and have a good starting
point to work with the document.

Illustration 4.3 shows how to get to the controller and the document model from an XFrame inter-
face. The chapter 7.1.3 Office Development - OpenOffice.org Application Environment - Using the
Component Framework describes the usage of frames, controllers and models in more detail.

 A protocol handler can be implemented as a singleton, but this poses multithreading difficulties. In a multi-
threaded environment it is most unlikely that the initial frame context matches every following dispatch
request. So you have to be prepared for calls to initialize() by multiple threads for multiple frames. A
dispatch object can also be used more then once, but must be bound to the target frame that was specified in
the original queryDispatch()call. A change of the frame context can cause trouble if the protocol handler
returns itself as a dispatch object. A protocol handler singleton must return new dispatch objects for every
request, which has to be initialized with the current context of the protocol handler, and you have to
synchronize between initialize() and queryDispatch(). The protocol handler would have to serve
as a kind of factory for specialized dispatch objects.
You can avoid these problems, if you write your protocol handler as a multi-instance service.

The opportunity to deny a queryDispatch() call allows you to register a protocol handler for a
URL schema using wildcards, and to accept only a subset of all possible URLs. That way the
handler object can validate incoming URLs and reject them if they appear to be invalid. However,
this feature should not be used to register different protocol handlers for the same URL schema
and accept different subsets by different handler objects, because it would be very difficult to
avoid ambiguities.

Since a protocol handler is a UNO component, it must contain the component operations needed
by a UNO service manager. These operations are certain static methods in Java or export functions
in C++. It also has to implement the core interfaces used to enable communication with UNO and
the application environment. For more information on the component operations and core inter-
faces, please see 4.3 Writing UNO Components - Component Architecture and 4.4 Writing UNO
Components - Core Interfaces to Implement.

276 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 4.4: Frame-controller-model organization

Java Protocol Handler - vnd.sun.star.framework.ExampleHandler

The following example shows a simple protocol handler implementation in Java. For simplicity,
the component operations are omitted.
// imports
#import com.sun.star.beans.*;
#import com.sun.star.frame.*;
#import com.sun.star.uno.*;
#import com.sun.star.util.*;

// definition
public class ExampleHandler implements com.sun.star.frame.XDispatchProvider,
 com.sun.star.lang.XInitialization {
 // member
 /** points to the frame context in which this handler runs, is set in initialize()*/
 private com.sun.star.frame.XFrame m_xContext;

 // Dispatch object as inner class
 class OwnDispatch implements com.sun.star.frame.XDispatch {
 /** the target frame, in which context this dispatch must work */
 private com.sun.star.frame.XFrame m_xContext;

 /** describe the function of this dispatch.
 * Because a URL can contain e.g. optional arguments
 * this URL means the main part of such URL sets only. */
 private com.sun.star.util.URL m_aMainURL;

 /** contains all interested status listener for this dispatch */
 private java.lang.HashMap m_lListener;

 /** take over all neccessary parameters from outside. */
 public OwnDispatch(com.sun.star.frame.XFrame xContext, com.sun.star.util.URL aMainURL) {
 m_xContext = xContext;
 m_aMainURL = aMainURL;
 }

 /** execute the functionality, which is described by this URL.
 *
 * @param aURL
 * this URL can describe the main function, we already know;
 * but it can specify a sub function too! But queryDispatch()
 * and dispatch() are used in a generic way ...
 * m_aMainURL and aURL will be the same.
 *
 * @param lArgs
 * optional arguments for this request
 */
 public void dispatch(com.sun.star.util.URL aURL, com.sun.star.beans.PropertyValue lArgs)
 throws com.sun.star.uno.RuntimeException {
 // ... do function
 // ... inform listener if neccessary
 }

 /** register a new listener and bind it toe given URL.
 *
 * Note: Because the listener does not know the current state
 * and may nobody change it next time, it is neccessary to inform it
 * immediatly about this current state. So the listener is up to date.
 */
 public void addStatusListener(com.sun.star.frame.XStatusListener xListener,
 com.sun.star.util.URL aURL) throws com.sun.star.uno.RuntimeException {
 // ... register listener for given URL
 // ... inform it immediatly about current state!
 xListener.statusChanged(...);
 }

 /** deregister a listener for this URL. */
 public void removeStatusListener(com.sun.star.frame.XStatusListener xListener,
 com.sun.star.util.URLaURL) throws com.sun.star.uno.RuntimeException {
 // ... deregister listener for given URL
 }
 }

 /** set the target frame reference as context for all following dispatches. */
 public void initialize(com.sun.star.uno.Any[] lContext) {
 m_xContext = (com.sun.star.frame.XFrame)com.sun.star.uno.AnyConverter.toObject(lContext[0]);
 }

 /** should return a valid dispatch object for the given URL.
 *
 * In case the URL is not valid an empty reference can be returned.
 * The parameter sTarget and nFlags can be ignored. The will be "_self" and 0
 * everytime.
 */

277

 public com.sun.star.frame.XDispatch queryDispatch(com.sun.star.util.URL aURL,
 java.lang.String sTarget, int nFlags) throws com.sun.star.uno.RuntimeException {
 // check if given URL is valid for this protocol handler
 if (!aURL.Main.startsWith("myProtocol_1://") && !aURL.Main.startsWith("myProtocol_2://"))
 return null;
 // and return a specialized dispatch object
 // Of course "return this" would be possible too ...
 return (com.sun.star.frame.XDispatch)(new OwnDispatch(m_xContext, aURL));
 }

 /** optimized API call for remote.
 *
 * It should be forwarded to queryDispatch() for every request item of the
 * given DispatchDescriptor list.
 *
 * But note: it is not allowed to pack the return list of dispatch objects.
 * Every request in source list must match to a reference (null or valid) in
 * the destination list!
 */
 public com.sun.star.frame.XDispatch[] queryDispatches(
 com.sun.star.frame.DispatchDescriptor[] lRequests) throws com.sun.star.uno.RuntimeException
{
 int c = lRequests.length;
 com.sun.star.frame.XDispatch[] lDispatches = new com.sun.star.frame.XDispatch[c];
 for (int i=0; i<c; ++i)
 lDispatches[i] = queryDispatch(lRequests[i].FeatureURL,
 lRequests[i].FrameName, lRequests[i].SearchFlags);
 return lDispatches;
 }
}

C++ Protocol Handler - org.openoffice.Office.addon.example

The next example shows a protocol handler in C++. The section 4.7.3 Writing UNO Components -
Integrating Components into OpenOffice.org - User Interface Add-Ons below will integrate this example
handler into the graphical user interface of OpenOffice.org.

The following code shows the UNO component operations that must be implemented in a C++
protocol handler example. The three C functions return vital information to the UNO environment:

• component_getImplementationEnvironment()tells the shared library component loader
which compiler was used to build the library.

• component_writeInfo()is called during the registration process by the registration tool
regcomp , or indirectly when you use the Extension Manager.

• component_getFactory()provides a single service factory for the requested implementation.
This factory can be asked to create an arbitrary number of instances for only one service specifi-
cation, therefore it is called a single service factory, as opposed to a multi-service factory, where
you can order instances for many different service specifications. (A single service factory has
nothing to do with a singleton).

#include <stdio.h>

#ifndef _RTL_USTRING_HXX_
#include <rtl/ustring.hxx>
#endif

#ifndef _CPPUHELPER_QUERYINTERFACE_HXX_
#include <cppuhelper/queryinterface.hxx> // helper for queryInterface() impl
#endif
#ifndef _CPPUHELPER_FACTORY_HXX_
#include <cppuhelper/factory.hxx> // helper for component factory
#endif
// generated c++ interfaces

#ifndef _COM_SUN_STAR_LANG_XSINGLESERVICEFACTORY_HPP_
#include <com/sun/star/lang/XSingleServiceFactory.hpp>
#endif
#ifndef _COM_SUN_STAR_LANG_XMULTISERVICEFACTORY_HPP_
#include <com/sun/star/lang/XMultiServiceFactory.hpp>
#endif
#ifndef _COM_SUN_STAR_LANG_XSERVICEINFO_HPP_
#include <com/sun/star/lang/XServiceInfo.hpp>
#endif
#ifndef _COM_SUN_STAR_REGISTRY_XREGISTRYKEY_HPP_
#include <com/sun/star/registry/XRegistryKey.hpp>

278 OpenOffice.org 2.3 Developer's Guide • June 2007

#endif

// include our specific addon header to get access to functions and definitions
#include <addon.hxx>

using namespace ::rtl;
using namespace ::osl;
using namespace ::cppu;
using namespace ::com::sun::star::uno;
using namespace ::com::sun::star::lang;
using namespace ::com::sun::star::registry;

//##
//#### EXPORTED ##
//##

/**
 * Gives the environment this component belongs to.
 */
extern "C" void SAL_CALL component_getImplementationEnvironment(const sal_Char ** ppEnvTypeName,
uno_Environment ** ppEnv)
{

*ppEnvTypeName = CPPU_CURRENT_LANGUAGE_BINDING_NAME;
}

/**
 * This function creates an implementation section in the registry and another subkey
 *
 * for each supported service.
 * @param pServiceManager the service manager
 * @param pRegistryKey the registry key
 */
extern "C" sal_Bool SAL_CALL component_writeInfo(void * pServiceManager, void * pRegistryKey) {
 sal_Bool result = sal_False;

 if (pRegistryKey) {
 try {
 Reference< XRegistryKey > xNewKey(
 reinterpret_cast< XRegistryKey * >(pRegistryKey)->createKey(
 OUString(RTL_CONSTASCII_USTRINGPARAM("/" IMPLEMENTATION_NAME "/UNO/SERVICES"))));

 const Sequence< OUString > & rSNL = Addon_getSupportedServiceNames();
 const OUString * pArray = rSNL.getConstArray();
 for (sal_Int32 nPos = rSNL.getLength(); nPos--;)

 xNewKey->createKey(pArray[nPos]);

 return sal_True;
 }
 catch (InvalidRegistryException &) {

 // we should not ignore exceptions
 }
 }
 return result;
}

/**
 * This function is called to get service factories for an implementation.
 *
 * @param pImplName name of implementation
 * @param pServiceManager a service manager, need for component creation
 * @param pRegistryKey the registry key for this component, need for persistent data
 * @return a component factory
 */
extern "C" void * SAL_CALL component_getFactory(const sal_Char * pImplName,
 void * pServiceManager, void * pRegistryKey) {
 void * pRet = 0;

 if (rtl_str_compare(pImplName, IMPLEMENTATION_NAME) == 0) {
 Reference< XSingleServiceFactory > xFactory(createSingleFactory(
 reinterpret_cast< XMultiServiceFactory * >(pServiceManager),
 OUString(RTL_CONSTASCII_USTRINGPARAM(IMPLEMENTATION_NAME)),
 Addon_createInstance,
 Addon_getSupportedServiceNames()));

 if (xFactory.is()) {
 xFactory->acquire();
 pRet = xFactory.get();
 }
 }

 return pRet;
}

279

//##
//#### Helper functions for the implementation of UNO component interfaces #########################
//##

::rtl::OUString Addon_getImplementationName()
throw (RuntimeException) {
 return ::rtl::OUString (RTL_CONSTASCII_USTRINGPARAM (IMPLEMENTATION_NAME));
}

sal_Bool SAL_CALL Addon_supportsService(const ::rtl::OUString& ServiceName)
throw (RuntimeException)
{
 return ServiceName.equalsAsciiL(RTL_CONSTASCII_STRINGPARAM (SERVICE_NAME));
}

Sequence< ::rtl::OUString > SAL_CALL Addon_getSupportedServiceNames()
throw (RuntimeException)
{

Sequence < ::rtl::OUString > aRet(1);
 ::rtl::OUString* pArray = aRet.getArray();
 pArray[0] = ::rtl::OUString (RTL_CONSTASCII_USTRINGPARAM (SERVICE_NAME));
 return aRet;
}

Reference< XInterface > SAL_CALL Addon_createInstance(const Reference< XMultiServiceFactory > & rSMgr)
throw(Exception)

{
return (cppu::OWeakObject*) new Addon(rSMgr);

}

The C++ protocol handler in the example has the implementation name
org.openoffice.Office.addon.example. It supports the URL protocol schema
org.openoffice.Office.addon.example: and provides three different URL commands: Function1 ,
Function2 and Help.

The protocol handler implements the com.sun.star.frame.XDispatch interface, so it can return a
reference to itself when it is queried for a dispatch object that matches the given URL.

The implementation of the dispatch() method below shows how the supported commands are
routed inside the protocol handler. Based on the path part of the URL, a simple message box
displays which function has been called. The message box is implemented using the UNO toolkit
and uses the container windows of the given frame as parent window.
#ifndef _Addon_HXX
#include <addon.hxx>
#endif
#ifndef _OSL_DIAGNOSE_H_
#include <osl/diagnose.h>
#endif
#ifndef _RTL_USTRING_HXX_
#include <rtl/ustring.hxx>
#endif
#ifndef _COM_SUN_STAR_LANG_XMULTISERVICEFACTORY_HPP_
#include <com/sun/star/lang/XMultiServiceFactory.hpp>
#endif
#ifndef _COM_SUN_STAR_BEANS_PROPERTYVALUE_HPP_
#include <com/sun/star/beans/PropertyValue.hpp>
#endif
#ifndef _COM_SUN_STAR_FRAME_XFRAME_HPP_
#include <com/sun/star/frame/XFrame.hpp>
#endif
#ifndef _COM_SUN_STAR_FRAME_XCONTROLLER_HPP_
#include <com/sun/star/frame/XController.hpp>
#endif
#ifndef _COM_SUN_STAR_AWT_XTOOLKIT_HPP_
#include <com/sun/star/awt/XToolkit.hpp>
#endif
#ifndef _COM_SUN_STAR_AWT_XWINDOWPEER_HPP_
#include <com/sun/star/awt/XWindowPeer.hpp>
#endif
#ifndef _COM_SUN_STAR_AWT_WINDOWATTRIBUTE_HPP_
#include <com/sun/star/awt/WindowAttribute.hpp>
#endif
#ifndef _COM_SUN_STAR_AWT_XMESSAGEBOX_HPP_
#include <com/sun/star/awt/XMessageBox.hpp>
#endif

using rtl::OUString;
using namespace com::sun::star::uno;
using namespace com::sun::star::frame;
using namespace com::sun::star::awt;
using com::sun::star::lang::XMultiServiceFactory;

280 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatch.html

using com::sun::star::beans::PropertyValue;
using com::sun::star::util::URL;

// This is the service name an Add-On has to implement
#define SERVICE_NAME "com.sun.star.frame.ProtocolHandler"

/**
 * Show a message box with the UNO based toolkit
 */
static void ShowMessageBox(const Reference< XToolkit >& rToolkit, const Reference< XFrame >& rFrame,
const OUString& aTitle, const OUString& aMsgText)
{
 if (rFrame.is() && rToolkit.is())
 {
 // describe window properties.
 WindowDescriptor aDescriptor;
 aDescriptor.Type = WindowClass_MODALTOP ;
 aDescriptor.WindowServiceName = OUString(RTL_CONSTASCII_USTRINGPARAM("infobox"));
 aDescriptor.ParentIndex = -1 ;
 aDescriptor.Parent = Reference< XWindowPeer >(rFrame->getContainerWindow(),
 UNO_QUERY) ;
 aDescriptor.Bounds = Rectangle(0,0,300,200) ;
 aDescriptor.WindowAttributes = WindowAttribute::BORDER |
 WindowAttribute::MOVEABLE |
 WindowAttribute::CLOSEABLE;

 Reference< XWindowPeer > xPeer = rToolkit->createWindow(aDescriptor);
 if (xPeer.is())
 {
 Reference< XMessageBox > xMsgBox(xPeer, UNO_QUERY);
 if (xMsgBox.is())
 {
 xMsgBox->setCaptionText(aTitle);
 xMsgBox->setMessageText(aMsgText);
 xMsgBox->execute();
 }
 }
 }
}

//##
//#### Implementation of the ProtocolHandler and Dispatch Interfaces ###################
//##

// XInitialization
/**
 * Called by the Office framework.
 * We store the context information
 * given, like the frame we are bound to, into our members.
 */
void SAL_CALL Addon::initialize(const Sequence< Any >& aArguments) throw (Exception,
RuntimeException)
{
 Reference < XFrame > xFrame;
 if (aArguments.getLength())
 {
 aArguments[0] >>= xFrame;
 mxFrame = xFrame;
 }

 // Create the toolkit to have access to it later
 mxToolkit = Reference< XToolkit >(mxMSF->createInstance(
 OUString(RTL_CONSTASCII_USTRINGPARAM(
 "com.sun.star.awt.Toolkit"))), UNO_QUERY);
}

// XDispatchProvider
/**
 * Called by the Office framework.
 * We are ask to query the given URL and return a dispatch object if the URL
 * contains an Add-On command.
 */
Reference< XDispatch > SAL_CALL Addon::queryDispatch(const URL& aURL, const ::rtl::OUString&
sTargetFrameName, sal_Int32 nSearchFlags)

 throw(RuntimeException)
{
 Reference < XDispatch > xRet;
 if (aURL.Protocol.compareToAscii("org.openoffice.Office.addon.example:") == 0)
 {
 if (aURL.Path.compareToAscii("Function1") == 0)
 xRet = this;
 else if (aURL.Path.compareToAscii("Function2") == 0)
 xRet = this;
 else if (aURL.Path.compareToAscii("Help") == 0)
 xRet = this;
 }

281

 return xRet;
}

/**
 * Called by the Office framework.
 * We are ask to query the given sequence of URLs and return dispatch objects if the URLs
 * contain Add-On commands.
 */
Sequence < Reference< XDispatch > > SAL_CALL Addon::queryDispatches(

const Sequence < DispatchDescriptor >& seqDescripts)
throw(RuntimeException)

{
 sal_Int32 nCount = seqDescripts.getLength();
 Sequence < Reference < XDispatch > > lDispatcher(nCount);

 for(sal_Int32 i=0; i<nCount; ++i)
 lDispatcher[i] = queryDispatch(seqDescripts[i].FeatureURL, seqDescripts[i].FrameName,
seqDescripts[i].SearchFlags);

 return lDispatcher;
}

// XDispatch
/**
 * Called by the Office framework.
 * We are ask to execute the given Add-On command URL.
 */
void SAL_CALL Addon::dispatch(const URL& aURL, const Sequence < PropertyValue >& lArgs) throw
(RuntimeException)
{
 if (aURL.Protocol.compareToAscii("org.openoffice.Office.addon.example:") == 0)
 {
 if (aURL.Path.compareToAscii("Function1") == 0)
 {
 ShowMessageBox(mxToolkit, mxFrame,
 OUString(RTL_CONSTASCII_USTRINGPARAM("SDK Add-On example")),
 OUString(RTL_CONSTASCII_USTRINGPARAM("Function 1 activated")));
 }
 else if (aURL.Path.compareToAscii("Function2") == 0)
 {
 ShowMessageBox(mxToolkit, mxFrame,
 OUString(RTL_CONSTASCII_USTRINGPARAM("SDK Add-On example")),
 OUString(RTL_CONSTASCII_USTRINGPARAM("Function 2 activated")));
 }
 else if (aURL.Path.compareToAscii("Help") == 0)
 {
 // Show info box
 ShowMessageBox(mxToolkit, mxFrame,
 OUString(RTL_CONSTASCII_USTRINGPARAM("About SDK Add-On example")),
 OUString(RTL_CONSTASCII_USTRINGPARAM("This is the SDK Add-On example")));

}
 }
}
/**
 * Called by the Office framework.
 * We are asked to store a status listener for the given URL.
 */
void SAL_CALL Addon::addStatusListener(const Reference< XStatusListener >& xControl, const URL& aURL)

throw (RuntimeException)
{
}

/**
 * Called by the Office framework.
 * We are asked to remove a status listener for the given URL.
 */
void SAL_CALL Addon::removeStatusListener(const Reference< XStatusListener >& xControl,

const URL& aURL)
throw (RuntimeException)

{
}

//##
//#### Implementation of the recommended/mandatory interfaces of a UNO component ###################
//##

// XServiceInfo
::rtl::OUString SAL_CALL Addon::getImplementationName()

throw (RuntimeException)
{

return Addon_getImplementationName();
}

sal_Bool SAL_CALL Addon::supportsService(const ::rtl::OUString& rServiceName)
throw (RuntimeException)

{

282 OpenOffice.org 2.3 Developer's Guide • June 2007

 return Addon_supportsService(rServiceName);
}

Sequence< ::rtl::OUString > SAL_CALL Addon::getSupportedServiceNames()
throw (RuntimeException)

{
 return Addon_getSupportedServiceNames();
}

Configuration
A protocol handler needs configuration entries, which provide the framework with the necessary
information to find the handler. The schema of the configuration branch org.openoffice.Office.Proto-
colHandler defines how to bind handler instances to their URL schemas:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE oor:component-schema SYSTEM "../../../../component-schema.dtd">
<oor:component-schema xmlns:oor="http://openoffice.org/2001/registry"
xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
oor:name="ProtocolHandler" oor:package="org.openoffice.Office" xml:lang="en-US">

<templates>
 <group oor:name="Handler">
 <prop oor:name="Protocols" oor:type="oor:string-list"/>
 </group>
</templates>
 <component>
 <set oor:name="HandlerSet" oor:node-type="Handler"/>
 </component>

</oor:component-schema>

Each set node entry specifies one protocol handler, using its UNO implementation name. The only
property it has is the Protocols item. Its type must be [string-list] and it contains a list of URL
schemas bound to the handler. Wildcards are allowed, otherwise the entire string must match the
dispatched URL.

Configuration for vnd.sun.star.framework.ExampleHandler

The following example ProtocolHandler.xcu contains the protocol handler configuration for the
example's Java protocol handler:
<?xml version='1.0' encoding='UTF-8'?>
<oor:component-data oor:name="ProtocolHandler" oor:package="org.openoffice.Office"
xmlns:oor="http://openoffice.org/2001/registry" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<node oor:name="HandlerSet">
 <node oor:name="vnd.sun.star.framework.ExampleHandler" oor:op="replace">
 <prop oor:name="Protocols">
 <value>myProtocol_1://* myProtocol_2://*</value>
 </prop>
 </node>
</node>

</oor:component-data>

The example adds two new URL protocols using wildcards:
myProtocol_1://*
myProtocol_2://*

Both protocols are bound to the handler implementation vnd.sun.star.framework.ExampleHan-
dler. Note that this must be the implementation name of the handler, not the name of the service
com.sun.star.frame.ProtocolHandler it implements. Because all implementations of the
service com.sun.star.frame.ProtocolHandler share the same UNO service name, you cannot
use this name in the configuration files.

To prevent ambiguous implementation names, the following naming schema for implementation
names is frequently used:

vnd.<namespace_of_company>.<namespace_of_implementation>.<class_name>

283

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/ProtocolHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/ProtocolHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/ProtocolHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/ProtocolHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/ProtocolHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/ProtocolHandler.html

e.g. vnd.sun.star.framework.ExampleHandler
 <namespace_of_company> = sun.star
<namespace_of_implementation> = framework
<class_name> = ExampleHandler

An alternative would be the naming convention proposed in 4.4.3 Writing UNO Components - Core
Interfaces to Implement - XServiceInfo:

<namespace_of_creator>.comp.<namespace_of_implementation>.<class_name>

e.g. org.openoffice.comp.framework.OProtocolHandler

All of these conventions are proposals; what matters is:

• use the implementation name in the configuration file, not the general service name
"com.sun.star.frame.ProtocolHandler"

• be careful to choose an implementation name that is likely to be unique, and be aware that your
handler ceases to function when another developer adds a handler with the same name.

Configuration for org.openoffice.Office.addon.example

The following ProtocolHandler.xcu file configures the example's C++ protocol handler with the
implementation name org.openoffice.Office.addon.example in the configuration branch
org.openoffice.Office.ProtocolHandler followingthe same schema.
<?xml version="1.0" encoding="UTF-8"?>
<oor:component-data xmlns:oor="http://openoffice.org/2001/registry"
xmlns:xs="http://www.w3.org/2001/XMLSchema" oor:name="ProtocolHandler"
oor:package="org.openoffice.Office">
 <node oor:name="HandlerSet">
 <node oor:name="org.openoffice.Office.addon.example" oor:op="replace">
 <prop oor:name="Protocols" oor:type="oor:string-list">
 <value>org.openoffice.Office.addon.example:*</value>
 </prop>
 </node>
 </node>
</oor:component-data>

The configuration adds one new URL protocol using wildcards:
org.openoffice.Office.addon.example:*

Based on this URL protocol, the C++ protocol handler can route, for example, a dispatched URL

org.openoffice.Office.addon.example:Function1

to the corresponding target routine. See the implementation of the dispatch() method in the
XDispatch interface of the C++ source fragment above.

Installation
When the office finds a protocol handler implementation for a URL in the configuration files, it
asks the global service manager to instantiate that implementation. All components must be regis-
tered with the service manager before they can be instantiated. This happens automatically when
an extension is being installed (see chapter 5 Extensions).

The easiest method to configure and register a new protocol handler in a single step is therefore to
use the Extension Manager. An extension for the example protocol handler could contain the
following directory structure:
ExampleHandler.oxt:
 META-INF/manifest.xml
 ProtocolHandler.xcu
 windows.plt/

examplehandler.dll
 solaris_sparc.plt/

284 OpenOffice.org 2.3 Developer's Guide • June 2007

 libexamplehandler.so
 linux_x86.plt/
 libexamplehandler.so

The .xcu file can go directly into the root of the extension, the shared libraries for the various plat-
forms go to their respective .plt directories. Both the .xcu and the libraries have to be referenced in
the manifest.xml

The package installation is as simple as changing to the <OfficePath>/program directory with a
command-line shell and running

$ unopkg add /foo/bar/ExampleHandler.oxt

or simply starting the Extension Manager in your office to install the extensions via the UI.

For an detailedexplanation of the extension structure please refer to 5 Extensions.

4.7.2 Jobs

Overview
A job in OpenOffice.org is a UNO component that can be executed by the job execution environ-
ment upon an event. It can read and write its own set of configuration data in the configuration
branch org.openoffice.Office.Jobs, and it can be activated and deactivated from a certain point in time
using special time stamps. It may be started with or without an environment, and it is protected
against termination and lifetime issues.

The event that starts a job can be triggered by:

• any code in OpenOffice.org that detects a defined state at runtime and passes an event string to
the service com.sun.star.task.JobExecutor through its interface method
com.sun.star.task.XJobExecutor:trigger(). The job executor looks in the configuration of
OpenOffice.org if there are any jobs registered for this event and executes them.

• the global document event broadcaster

• the dispatch framework, which provides for a vnd.star.sun.job: URL schema to start jobs using a
command URL. This URL schema can execute jobs in three different ways: it can issue an event
for job components that are configured to wait for it, it can call a component by an alias that has
been given to the component in the configuration or it can execute a job component directly by
its implementation name.

If you call trigger() at the job executor or employ the global event broadcaster, the office needs a
valid set of configuration data for every job you want to run. The third approach, to use a
vnd.star.sun.job: command URL, works with or without prior configuration.

Illustration 4.4 shows an example job that counts how many times it has been triggered by an event
and deactivates itself when it has been executed twice. It uses its own job-specific configuration
layer to store the number of times it has been invoked. This value is passed to each newly created
job instance as an initialization argument, and can be checked and written back to the configura-
tion. When the counter exceeds two, the job uses the special deactivation feature of the job execu-
tion environment. Each job can have a user time stamp and and administrator time stamp to
control activation and deactivation. When a job is deactivated, the execution environment updates
the user time stamp value, so that subsequent events do not start this job again. It can be enabled
by a newer time stamp value in the administration layer.

285

http://api.openoffice.org/docs/common/ref/com/sun/star/task/XJobExecutor.html#trigger
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XJobExecutor.html#trigger
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XJobExecutor.html#trigger
http://api.openoffice.org/docs/common/ref/com/sun/star/task/JobExecutor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/JobExecutor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/JobExecutor.html

Execution Environment
Jobs are executed in a job execution environment, which handles a number of tasks and problems
that can occur when jobs are executed. In particular,

• it initializes the job with all necessary data

• it starts the job using the correct interfaces

• it keeps the job alive by acquiring a UNO reference

• it waits until the job finishes its work, including listening for asynchronous jobs

• it updates the configuration of a job after it has finished

• it informs listeners about the execution

• it protects the job from office termination, or informs it when it is impossible to veto termination

286 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 4.5: Flow diagram of an example job

For this purpose, the job execution environment creates special wrapper objects for jobs. This
wrapper object implements mechanisms to support lifetime control. The wrapper vetoes termina-
tion of the com.sun.star.frame.Desktop and the closing of frames that contain document models
as long as there are dependent active jobs. It might also register as a
com.sun.star.util.XCloseListener at a com.sun.star.frame.Frame or com.sun.star.docu-
ment.OfficeDocument to handle the close communication on behalf of the job. It also listens for
asynchronous job instances, and it is responsible for updates to the configuration data after a job
has finished (see 4.7.2 Writing UNO Components - Integrating Components into OpenOffice.org - Jobs -
Returning Results).

A central problem of external components in OpenOffice.org is their lifetime control. Every
external component must deal with the possibility that the environment will terminate. It is not
efficient to implement lifetime strategies in every job, so the job execution environment takes care
of this problem. That way, a job can execute, while difficult situations are handled by the execution
environment.

Another advantage of this approach is that it ensures future compatibility. If the mechanism
changes in the future, termination is detected and prevented, and it is unnecessary to adapt every
existing job implementation.

Implementation

A job must implement the service com.sun.star.task.Job if it needs to block the thread in which
it is executed or com.sun.star.task.AsyncJob if the current state of the office is unimportant for
the job. The service that a job implementation supports is detected at runtime. If both are available,
the synchronous service com.sun.star.task.Job is preferred by the job execution environment.

287

http://api.openoffice.org/docs/common/ref/com/sun/star/task/Job.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/Job.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/Job.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/AsyncJob.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/AsyncJob.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/AsyncJob.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/Job.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/Job.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/Job.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html

A synchronous job must not make assumptions about the environment, neither that it is the only
job that runs currently nor that another object waits for its results. Only the thread context of a
synchronous job is blocked until the job finishes its work.

An asynchronous job is not allowed to use threads internally, because OpenOffice.org needs to
control thread creation. How asynchronous jobs are executed is an implementation detail of the
global job execution environment.

Jobs that need a user interface must proceed with care, so that they do not interfere with the
message loop of OpenOffice.org. The following rules apply:

• You cannot display any user interface from a synchronous job, because repaint errors and other
threading issues will occur.

• The easiest way to have a user interface for an asynchronous job is to use a non-modal dialog. If
you need a modal dialog to get user input, problems can occur. The best way is to use the frame
reference that is part of the job environment initialization data, and to get its container window
as a parent window. This parent window can be used to create a dialog with the user interface
toolkit com.sun.star.awt.Toolkit. The C++ protocol handler discussed in 4.7.1 Writing UNO
Components - Integrating Components into OpenOffice.org - Protocol Handler - Implementation shows
how a modal message box uses this approach.

• Using a native toolkit or the Java AWT for your GUI can lead to a non-painting OpenOffice.org.
To avoid this, the user interface must be non-modal and the implementation must allow the
office to abort the job by supporting com.sun.star.lang.XComponent or
com.sun.star.util.XCloseable.

288 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 4.6: Job framework

http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Toolkit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Toolkit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Toolkit.html

The optional interfaces com.sun.star.lang.XComponent or com.sun.star.util.XCloseable
should be supported so that jobs can be disposed of in a controlled manner. When these interfaces
are present, the execution environment can call dispose() or close() rather than waiting for a job
to finish. Otherwise OpenOffice.org must wait until the job is done. Invisible jobs can be especially
problematic, because they cannot be recognized as the reason why OpenOffice.org refuses to exit.

Initialization

A job is initialized by a call to its main interface method, which starts the job. For synchronous jobs,
the execution environment calls com.sun.star.task.XJob:execute(), whereas asynchronous
jobs are run through com.sun.star.task.XAsyncJob:executeAsync().

Both methods take one parameter Arguments, which is a sequence of
com.sun.star.beans.NamedValue structs. This sequence describes the job context.

It contains the environment where the job is running, which tells if the job was called by the job
executor, the dispatch framework or the global event broadcaster service, and possibly provides a
frame or a document model for the job to work with.

 Section 4.7.1 Writing UNO Components - Integrating Components into OpenOffice.org - Protocol Handler - Imple-
mentation shows how to use a frame to get its associated document model.

The Arguments parameter also yields configuration data, if the job has been configured in the
configuration branch org.openoffice.Office.Jobs. This data is separated into basic configuration and
additional arguments stored in the configuration. The job configuration is described in section 4.7.2
Writing UNO Components - Integrating Components into OpenOffice.org - Jobs - Configuration.

Finally, Arguments can contain dynamic parameters given to the job at runtime. For instance, if a job
has been called by the dispatch framework, and the dispatched command URL used parameters,
these parameters can be passed on to the job through the execution arguments.

The following table shows the exact specification for the execution Arguments:

Elements of the Execution Arguments Sequence
Environment sequence< com.sun.star.beans.NamedValue >. Contains environment data. The following

named values are defined:

EnvType string. Determines in which environment a job is executed. Defined Values:
 "EXECUTOR": job has been executed by a call to trigger() at the job exec-
utor
 "DISPATCH": job is dispatched as vnd.sun.star.job: URL
 "DOCUMENTEVENT": job has been executed by the global event broadcaster
mechanism

Event-
Name [optional] string. Only exists, if EnvType is "EXECUTOR" or "DOCUMENTE-

VENT". Contains the name of the event for which this job was registered in
configuration. During runtime, this information can be used to handle different
function sets by the same component implementation.

Frame [optional] com.sun.star.frame.XFrame. Only exists, if EnvType is "DISPATCH".
Contains the frame context of this job. Furthermore, the sub list DynamicData
can contain the optional argument list of the corresponding
com.sun.star.frame.XDispatch:dispatch() request.

Model [optional] com.sun.star.frame.XModel. Only exists, if EnvType is "DOCUMENT-
EVENT". Contains the document model that can be used by the job.

289

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatch.html#dispatch
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatch.html#dispatch
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatch.html#dispatch
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XAsyncJob.html#executeAsync
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XAsyncJob.html#executeAsync
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XAsyncJob.html#executeAsync
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XJob.html#execute
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XJob.html#execute
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XJob.html#execute
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html

Elements of the Execution Arguments Sequence
Config [optional] [sequence< com.sun.star.beans.NamedValue >]. Contains the generic set of job

configuration properties as described in 4.7.2 Writing UNO Components - Integrating Compo-
nents into OpenOffice.org - Jobs - Configuration but not the job specific data set. That is, this
sub list only includes the properties Alias and Service, not the property Arguments.
The property Arguments is reflected in the element JobConfig (see next element below)
Note: this sub list only exists if the job is configured with this data.

Alias string. This property is declared as the name of the corresponding set node in
the configuration set Jobs. It must be a unique name, which represents the
structured information of a job.

Service string. Represents the UNO implementation name of the job component.

JobConfig [optional] [sequence< com.sun.star.beans.NamedValue >]
This sub list contains the job-specific set of configuration data as specified in the Argu-
ments property of the job configuration. Its items depend on the job implementation.
Note: this sub list only exists if the job is configured with this data.

DynamicData [optional] [sequence< com.sun.star.beans.NamedValue >]. Contains optional parameters of
the call that started the execution of this job. In particular, it can include the parameters of
a com.sun.star.frame.XDispatch:dispatch() request, if Environment-EnvType
is "DISPATCH"

The following example shows how a job can analyze the given arguments and how the environ-
ment in which the job is executed can be detected:
public synchronized java.lang.Object execute(com.sun.star.beans.NamedValue[] lArgs)
 throws com.sun.star.lang.IllegalArgumentException, com.sun.star.uno.Exception {

 // extract all possible sub list of given argument list
 com.sun.star.beans.NamedValue[] lGenericConfig = null;
 com.sun.star.beans.NamedValue[] lJobConfig = null;
 com.sun.star.beans.NamedValue[] lEnvironment = null;
 com.sun.star.beans.NamedValue[] lDispatchArgs = null;

 int c = lArgs.length;
 for (int i=0; i<c; ++i) {
 if (lArgs[i].Name.equals("Config"))
 lGenericConfig = (com.sun.star.beans.NamedValue[])
 com.sun.star.uno.AnyConverter.toArray(lArgs[i].Value);
 else
 if (lArgs[i].Name.equals("JobConfig"))
 lJobConfig = (com.sun.star.beans.NamedValue[])
 com.sun.star.uno.AnyConverter.toArray(lArgs[i].Value);
 else
 if (lArgs[i].Name.equals("Environment"))
 lEnvironment = (com.sun.star.beans.NamedValue[])
 com.sun.star.uno.AnyConverter.toArray(lArgs[i].Value);
 else
 if (lArgs[i].Name.equals("DynamicData"))
 lDispatchArgs = (com.sun.star.beans.NamedValue[])
 com.sun.star.uno.AnyConverter.toArray(lArgs[i].Value);
 else
 // It is not realy an error – because unknown items can be ignored ...
 throw new com.sun.star.lang.IllegalArgumentException("unknown sub list
detected");
 }

 // Analyze the environment info. This sub list is the only guarenteed one!
 if (lEnvironment==null)
 throw new com.sun.star.lang.IllegalArgumentException("no environment");

 java.lang.String sEnvType = null;
 java.lang.String sEventName = null;
 com.sun.star.frame.XFrame xFrame = null;
 com.sun.star.frame.XModel xModel = null;

 c = lEnvironment.length;
 for (int i=0; i<c; ++i) {
 if (lEnvironment[i].Name.equals("EnvType"))
 sEnvType = com.sun.star.uno.AnyConverter.toString(lEnvironment[i].Value);
 else
 if (lEnvironment[i].Name.equals("EventName"))
 sEventName = com.sun.star.uno.AnyConverter.toString(lEnvironment[i].Value);
 else
 if (lEnvironment[i].Name.equals("Frame"))

290 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatch.html#dispatch
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatch.html#dispatch
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatch.html#dispatch
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html

 xFrame = (com.sun.star.frame.XFrame)com.sun.star.uno.AnyConverter.toObject(
 new com.sun.star.uno.Type(com.sun.star.frame.XFrame.class),
lEnvironment[i].Value);
 else
 if (lEnvironment[i].Name.equals("Model"))
 xModel = (com.sun.star.frame.XModel)com.sun.star.uno.AnyConverter.toObject(
 new com.sun.star.uno.Type(com.sun.star.frame.XModel.class),
 lEnvironment[i].Value);
 }

 // Further the environment property "EnvType" is required as minimum.
 if (
 (sEnvType==null) ||
 (
 (!sEnvType.equals("EXECUTOR")) &&
 (!sEnvType.equals("DISPATCH")) &&
 (!sEnvType.equals("DOCUMENTEVENT"))
)
)
 {
 throw new com.sun.star.lang.IllegalArgumentException("no valid value for EnvType");
 }

 // Analyze the set of shared config data.
 java.lang.String sAlias = null;
 if (lGenericConfig!=null) {
 c = lGenericConfig.length;
 for (int i=0; i<c; ++i) {
 if (lGenericConfig[i].Name.equals("Alias"))
 sAlias = com.sun.star.uno.AnyConverter.toString(lGenericConfig[i].Value);
 }
 }
}

Returning Results
Once a synchronous job has finished its work, it returns its result using the any return value of the
com.sun.star.task.XJob:execute() method. An asynchronous jobs send back the result
through the callback method jobFinished() to its com.sun.star.task.XJobListener. The
returned any parameter must contain a sequence< com.sun.star.beans.NamedValue > with the
following elements:

Elements of the Job Return Value
Deactivate boolean. Asks the job executor to disable a job from further execution. Note that

this feature is only available if the next event is triggered by the job executor or the
event broadcaster. If it comes, for example, from the dispatch framework using an
URL with an <alias> argument, the deactivation will be ignored.
This value should be used carefully if the Environment-EnvType is
"DISPATCH", because users will be irritated if clicking a UI element, such as an
Add-On menu entry, has no effect.

SaveArguments sequence< com.sun.star.beans.NamedValue >. Must contain a list of job specific
data, which are written directly to the Arguments list into the job configuration.
Note: Merging is not supported. The list must be complete and replaces all values
in the configuration. The necessary data can be copied and adjusted from the
JobConfig element of the execution arguments.

SendDispatchResult com.sun.star.frame.DispatchResultEvent. If a job is designed to be usable in the
dispatch framework, this contains a struct, which is send to all interested dispatch
result listeners.

Tip: This value should be omitted if Environment-EnvType is not "DISPATCH".

291

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/DispatchResultEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/DispatchResultEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/DispatchResultEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XJobListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XJobListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XJobListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XJob.html#execute
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XJob.html#execute
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XJob.html#execute

Configuration
Although jobs that are called through a vnd.sun.star.jobs: URL by their implementation name do not
require it, a job usually has configuration data. The configuration package org.openoffice.Office.Jobs
contains all necessary information:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE oor:component-schema SYSTEM "../../../../component-schema.dtd">
<oor:component-schema xmlns:oor="http://openoffice.org/2001/registry"
xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
oor:name="Jobs" oor:package="org.openoffice.Office" xml:lang="en-US">
 <templates>
 <group oor:name="Job">
 <prop oor:name="Service" oor:type="xs:string"/>
 <group oor:name="Arguments" oor:extensible="true"/>
 </group>
 <group oor:name="TimeStamp">
 <prop oor:name="AdminTime" oor:type="xs:string"/>
 <prop oor:name="UserTime" oor:type="xs:string"/>
 </group>
 <group oor:name="Event">
 <set oor:name="JobList" oor:node-type="TimeStamp"/>
 </group>
 </templates>
 <component>
 <set oor:name="Jobs" oor:node-type="Job"/>
 <set oor:name="Events" oor:node-type="Event"/>
 </component>
</oor:component-schema>

The Job template contains all properties that describe a job component. Instances of this template
are located inside the configuration set Jobs.

Properties of the Job template
Alias string. This property is declared as the name of the corresponding set node inside the configu-

ration set Jobs. It must be a unique name, which represents the structured information of a
job. In the example .xcu file below its value is "SyncJob". In the job execution arguments this
property is passed as Config - Alias

Service string. Represents the UNO implementation name of the job component. In the job execution
arguments this property is passed as Config - Service

Arguments set of any entries. This list can be filled with any values and represents the private set of
configuration data for this job. In the job execution arguments this property is passed as
JobConfig

The job property Alias was created to provide you with more flexibility for a developing compo-
nents. You can use the same UNO implementation, but register it with different Aliases. At
runtime the job instance will be initialized with its own configuration data and can detect which
representation is used.

 You cannot use the generic UNO service names com.sun.star.task.Job or
com.sun.star.task.AsyncJob for the Service job property, because the job executor cannot identify
the correct job implementation. To avoid ambiguities, it is necessary to use the UNO implementation name
of the component.

Every job instance can be bound to multiple events. An event indicates a special office state, which
can be detected at runtime (for example, OnFirstVisibleTask), and which can be triggered by a
call to the job executor when the first document window is displayed.

292 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/task/AsyncJob.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/AsyncJob.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/AsyncJob.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/Job.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/Job.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/Job.html

Properties of the Event template
EventName string. This property is declared as the name of the corresponding set node inside the configu-

ration set Events. It must be a unique name, which describes a functional state. In the example
.xcu file below its value is "onFirstVisibleTask".

Section 4.7.2 Writing UNO Components - Integrating Components into OpenOffice.org - Jobs - List of
Supported Events summarizes the events currently triggered by the office. In addition, devel-
opers can use arbitrary event strings with the vnd.sun.star.jobs: URL or in calls to trigger() at
the com.sun.star.task.JobExecutor service.

JobList set of TimeStamp entries. This set contains a list of all Alias names of jobs that are bound to
this event. Every job registration can be combined with time stamp values. Please refer to the
description of the template TimeStamp below for details

As an optional feature, every job registration that is bound to an event can be enabled or disabled
by two time stamp values. In a shared installation of OpenOffice.org, an administrator can use the
AdminTime value to reactivate jobs for every newly started user office instance; regardless of earlier
executions of these jobs. That can be useful, for example, for updating user installations if new
functions have been added to the shared installation.

Properties of the TimeStamp template
AdminTime string. This value must be formatted according to the ISO 8601. It contains the time stamp,

which can only be adjusted by an administrator, to reactivate this job.

UserTime string. This value must be formatted according to the ISO 8601. It contains the time, when this
job was finished successfully last time upon the configured event.

Using this time stamp feature can sometimes be complicated. For example, assume that there is a
job that was installed using the Extension Manager. The job is enabled for a registered event by
default, but after the first execution it is disabled. By default, both values (AdminTime and User-
Time) do not exist for a configured event. A Jobs.xcu fragment, as part of the extension, must also
not contain the AdminTime and UserTime entries. Because both values are not there, no check can
be made and the job is enabled. A job can be deactivated by the global job executor once it has
finished its work successfully (depending on the Deactivate return value). In that case, the User-
Time entry is generated and set to the current time. An administrator can set a newer and valid
AdminTime value in order to reactivate the job again, or the user can remove his UserTime entry
manually from the configuration file of the user installation.

The following Jobs.xcu file shows an example job configuration:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE oor:component-data SYSTEM "../../../../component-update.dtd">
<oor:component-data oor:name="Jobs" oor:package="org.openoffice.Office"
xmlns:oor="http://openoffice.org/2001/registry" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <node oor:name="Jobs">
 <node oor:name="SyncJob" oor:op="replace">
 <prop oor:name="Service">
 <value>com.sun.star.comp.framework.java.services.SyncJob</value>
 </prop>
 <node oor:name="Arguments">
 <prop oor:name=”arg_1” oor:type=”xs:string” oor:op="replace">
 <value>val_1</value>
 </prop>
 </node>
 </node>
 </node>
 <node oor:name="Events">
 <node oor:name="onFirstVisibleTask" oor:op="fuse">
 <node oor:name="JobList">
 <node oor:name="SyncJob" oor:op="replace"/>
 </node>
 </node>
 </node>
</oor:component-data>

This example job has the following characteristics:

293

http://api.openoffice.org/docs/common/ref/com/sun/star/task/JobExecutor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/JobExecutor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/JobExecutor.html

• Its alias name is "SyncJob"

• The UNO implementation name of the component is
com.sun.star.comp.framework.java.services.SyncJob.

• The job has its own set of configuration data with one item. It is a string, its name is arg_1 and
its value is "val_1".

• The job is bound to the global event onFirstVisibleTask, which is triggered when the first
document window of a new OpenOffice.org instance is displayed. The next execution of this job
is guaranteed, because there are no time stamp values present.

When specifying the event to which the job is bound (onFirstVisibleTask in the above example), it
is important to use oor:op="fuse", so that multiple Jobs.xcu particles merge losslessly. but note that
oor:op="fuse" is only available since OpenOffice.org 2.0.3, and that a Jobs.xcu file that uses it
cannot be used with older versions of OpenOffice.org. With older versions of OpenOffice.org, it
was common to use oor:op="replace" instead of oor:op="fuse", which potentially caused event
bindings to get lost when multiple Jobs.xcu particles were merged.

 A job is not executed when it has deactivated itself and is called afterwards by a vnd.sun.star.jobs:event=...
command URL. This can be confusing to users, especially with add-ons, since it would seem that the
customized UI items do not function.

Installation
The easiest way to register an external job component is to use the Extension Manager (see chapter
5 Extensions). An extension for the example job of this chapter can have the following directory
structure:
SyncJob.oxt:
 META-INF/manifest.xml
 Jobs.xcu
 windows.plt/
 SyncJob.jar

Using the vnd.sun.star.jobs: URL Schema
This section describes the necessary steps to execute a job by issuing a command URL at the
dispatch framework. Based upon the protocol handler mechanism, a specialized URL schema has
been implemented in OpenOffice.org. It is registered for the URL schema
"vnd.sun.star.jobs:*" which uses the following syntax:

vnd.sun.star.jobs:{[event=<name>]}{,[alias=<name>]}{,[service=<name>]}

Elements of a vnd.sun.star.jobs: URL
event=<name> string. Contains an event string, which can also be used as parameter of the interface

method com.sun.star.task.XJobExecutor:trigger(). It corresponds to the
node name of the set Events in the configuration package org.openoffice.Office.Jobs.
Using the event parameter of a vnd.sun.star.jobs: URL will start all jobs that are
registered for this event in the configuration.
Note: Disabled jobs, that is jobs with a user time stamp that is newer than the adminis-
trator time stamp, are not triggered by event URLs.

alias=<name> string. Contains an alias name of a configured job. This name is not used by the job
execution API. It is a node name of the set Jobs in the configuration package
org.openoffice.Office.Jobs . Using the alias part of a vnd.sun.star.jobs: URL only
starts the requested job.

294 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/task/XJobExecutor.html#trigger
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XJobExecutor.html#trigger
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XJobExecutor.html#trigger

Elements of a vnd.sun.star.jobs: URL
service=<name> string. Contains the UNO implementation name of a configured or unconfigured

com.sun.star.task.Job or com.sun.star.task.AsyncJob service. It is not necessary that
such jobs are registered in the configuration, provided that they work without configu-
ration data or implements necessary configuration on their own.

It is possible to combine elements so as to start several jobs at once with a single URL. For instance,
you could dispatch a URL vnd.sun.star.jobs:event=e1,alias=a1,event=e2 ,.... However, URLs that start
several jobs at once should be used carefully, since there is no check for double or concurrent
requests. If a service is designed asynchronously, it will be run concurrently with another, synchro-
nous job. If both services work at the same area, there might be race conditions and they must
synchronize their work. The generic job execution mechanism does not provide this functionality.

The following configuration file for the configuration package org.openoffice.Office.Jobs shows two
jobs, which are registered for different events:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE oor:component-data SYSTEM "../../../../component-update.dtd">
<oor:component-data oor:name="Jobs" oor:package="org.openoffice.Office"
xmlns:oor="http://openoffice.org/2001/registry" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <node oor:name="Jobs">
 <node oor:name="Job_1" oor:op="replace">
 <prop oor:name="Service">
 <value>vnd.sun.star.jobs.Job_1</value>
 </prop>
 <node oor:name="Arguments">
 <prop oor:name=”arg_1” oor:type=”xs:string” oor:op="replace">
 <value>val_1</value>
 </prop>
 </node>
 </node>
 <node oor:name="Job_2" oor:op="replace">
 <prop oor:name="Service">
 <value>vnd.sun.star.jobs.Job_2</value>
 </prop>
 <node oor:name="Arguments"/>
 </node>
 </node>
 <node oor:name="Events">
 <node oor:name="onFirstVisibleTask" oor:op="fuse">
 <node oor:name="JobList">
 <node oor:name="Job_1" oor:op="replace">
 <prop oor:name="AdminTime">
 <value>01.01.2003/00:00:00</value>
 </prop>
 <prop oor:name="UserTime">
 <value>01.01.2003/00:00:01</value>
 </prop>
 </node>
 <node oor:name="Job_2" oor:op="replace"/>
 </node>
 </node>
 </node>
</oor:component-data>

The first job can be described by the following properties:

Properties of �Job_1�
alias Job_1
UNO implementation name vnd.sun.star.jobs.Job_1
activation state Disabled for job execution (because its AdminTime is older than its UserTime)

own configuration contains one string item arg1 with the value "val1"

event registration job is registered for the event string "onFirstVisibleTask"

The second job can be described by these properties:

Properties of �Job_2�
alias Job_2

295

http://api.openoffice.org/docs/common/ref/com/sun/star/task/AsyncJob.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/AsyncJob.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/AsyncJob.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/Job.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/Job.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/Job.html

Properties of �Job_2�
UNO implementation name vnd.sun.star.jobs.Job_2
activation state Enabled for job execution (because it uses default values for AdminTime and

UserTime)

own configuration no own configuration items registered

event registration job is registered for the event string "onFirstVisibleTask"

The following demonstrates use cases for all possible vnd.sun.star.job: URLs. Not all possible
scenarios are shown here. The job dispatch can be used in different ways and the combination of
jobs can produce different results:

vnd.sun.star.jobs:event=onFirstVisibleTask

This URL starts Job_2 only, Job_1 is marked DISABLED, since its AdminTime stamp is older than
its UserTime stamp.

The job is initialized with environment information through the Environment sub list, as shown in
section 4.7.2 Writing UNO Components - Integrating Components into OpenOffice.org - Jobs - Initializa-
tion. Optional dispatch arguments are passed in DynamicData, and generic configuration data,
including the event string, is received in Config. However, it is not initialized with configuration
data of its own in JobConfig because Job_2 is not configured with such information. On the other
hand, Job_2 may return data after finishing its work, which will be written back to the configura-
tion.

Furthermore, the job instance can expect that the Frame property from the Environment sub list
points to the frame in which the dispatch request is to be executed.

vnd.sun.star.jobs:alias=Job_1

This starts Job_1 only. It is initialized with an environment, and optionally initialized with
dispatch arguments, generic configuration data, and configuration data of its own. However, the
event name is not set here because this job was triggered directly, not using an event name.

vnd.sun.star.jobs:service=vnd.sun.star.jobs.Job_3

A vnd.sun.star.jobs.Job_3 is not registered in the job configuration package. However, if this
implementation was registered with the global service manager, and if it provided the
com.sun.star.task.XJob or com.sun.star.task.XAsyncJob interfaces, it would be executed by
this URL. If both interfaces are present, the synchronous version is preferred.

The given UNO implementation name vnd.sun.star.jobs.Job_3 is used directly for creation at
the UNO service manager. In addition, this job instance is only initialized with an environment
and possibly with optional dispatch arguments� there is no configuration data for the job to use.

List of supported Events

Supported events triggered by code
onFirstRunInitialization Called on startup once after OpenOffice.org is installed. Should be used for

post-setup operations.

onFirstVisibleTask Called after a document window has been shown for the first time after
launching the application. Note: The quickstarter influences this behavior.
With the quickstarter, closing the last document does not close the applica-
tion. Opening a new document in this situation does not trigger this event.

296 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/task/XAsyncJob.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XAsyncJob.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XAsyncJob.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XJob.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XJob.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XJob.html

Supported events triggered by code
onDocumentOpened Indicates that a new document was opened. It does not matter if a new or an

existing document was opened. Thus it represents the combined OnNew and
OnLoad events of the global event broadcaster.

Supported events triggered by the global event broadcaster
OnStartApp Application has been started

OnCloseApp Application is going to be closed

OnNew New Document was created

OnLoad Document has been loaded

OnSaveAs Document is going to be saved under a new name

OnSaveAsDone Document was saved under a new name

OnSave Document is going to be saved

OnSaveDone Document was saved

OnPrepareUnload Document is going to be removed

OnUnload Document has been removed

OnFocus Document was activated

OnUnfocus Document was deactivated

OnPrint Document will be printed

OnModifyChange Modified state of the document has changed

 Event names are case sensitive.

4.7.3 Add-Ons
A OpenOffice.org add-on is an extension providing one or more functions through the user inter-
face of OpenOffice.org. A typical add-on is available as an extension for easier deployment with
the Extension Manager. An add-on contains configuration files which specify the user interface,
registration for a protocol schema and first-time instantiation.

The Extension Manager merges the configuration files with the menu and toolbar items for an
add-on directly into the OpenOffice.org configuration files.

297

Overview
OpenOffice.org supports the integration of add-ons into the following areas of the GUI.

Menu items for add-ons can be added to an Add-Ons submenu of the Tools menu and a corre-
sponding add-ons popup toolbar icon:

It is also possible to create custom menus in the Menu Bar. You are free to choose your own menu
title, and you can create menu items and submenus for your add-on. Custom menus are inserted
between the Tools and Window menus. Separators are supported as well:

You can create toolbar icons in the Function Bar, which is usually the topmost toolbar. Below you
see two toolbar items, an icon for Function 1 and a text item for Function 2 :

The Help menu offers support for add-ons through help menu items that open the online help of
an add-on. They are inserted below the Help - Registration item under a separator.

298 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 4.7: Add-Ons submenu and toolbar popup

Illustration 4.8: Custom top-level menu

Illustration 4.9: Toolbar icons for Function 1 and
Function 2

Guidelines
For a smooth integration, a developer should be aware of the following guidelines:

Add-Ons Submenu

• Since the Tools - Add-Ons menu is shared by all installed add-ons, an add-on should save
space and use a submenu when it has more than two functions. The name of the add-on should
be part of the menu item names or the submenu title.

• If your add-on has many menu items, use additional submenus to enhance the overview. Use
four to seven entries for a single menu. If you exceed this limit, start creating submenus.

Custom Top-Level Menu

• Only frequently used add-ons or add-ons that offer very important functions in a user environ-
ment should use their own top-level menu.

• Use submenus to enhance the overview. Use four to seven entries for a single menu. If you
exceed this limit, start creating submenus.

• Use the option to group related items by means of separator items.

Toolbar

• Only important functions should be integrated into the toolbar.

• Use the option to group functions by means of separator items.

Add-On Help menu

Every add-on should provide help to user. This help has to be made available through an entry in
the OpenOffice.org Help menu. Every add-on should only use a single Help menu item.

If the add-on comes with its own dialogs, it should also offer Help buttons in the dialogs.

Configuration
The user interface definitions of all add-ons are stored in the special configuration branch
org.openoffice.Office.Addons .

The schema of the configuration branch org.openoffice.Office.Addons specifies how to define a user
interface extension.
<?xml version='1.0' encoding='UTF-8'?>
<oor:component-schema oor:name="Addons" oor:package="org.openoffice.Office" xml:lang="en-US"
xmlns:oor="http://openoffice.org/2001/registry" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <templates>
 <group oor:name="MenuItem">
 <prop oor:name="URL" oor:type="xs:string"/>
 <prop oor:name="Title" oor:type="xs:string" oor:localized="true"/>
 <prop oor:name="ImageIdentifier" oor:type="xs:string"/>
 <prop oor:name="Target" oor:type="xs:string"/>
 <prop oor:name="Context" oor:type="xs:string"/>
 <set oor:name="Submenu" oor:node-type="MenuItem"/>
 </group>
 <group oor:name="PopupMenu">
 <prop oor:name="Title" oor:type="xs:string" oor:localized="true"/>
 <prop oor:name="Context" oor:type="xs:string"/>
 <set oor:name="Submenu" oor:node-type="MenuItem"/>
 </group>
 <group oor:name="ToolBarItem">

299

 <prop oor:name="URL" oor:type="xs:string"/>
 <prop oor:name="Title" oor:type="xs:string" oor:localized="true"/>
 <prop oor:name="ImageIdentifier" oor:type="xs:string"/>
 <prop oor:name="Target" oor:type="xs:string"/>
 <prop oor:name="Context" oor:type="xs:string"/>
 </group>
 <group oor:name="UserDefinedImages">
 <prop oor:name="ImageSmall" oor:type="xs:hexBinary"/>
 <prop oor:name="ImageBig" oor:type="xs:hexBinary"/>
 <prop oor:name="ImageSmallHC" oor:type="xs:hexBinary"/>
 <prop oor:name="ImageBigHC" oor:type="xs:hexBinary"/>
 <prop oor:name=”ImageSmallURL” oor:type=”xs:string”/>
 <prop oor:name=”ImageBigURL” oor:type=”xs:string”/>
 <prop oor:name=”ImageSmallHCURL” oor:type=”xs:string”/>
 <prop oor:name=”ImageBigHCURL” oor:type=”xs:string”/>
 </group>
 <group oor:name="Images">
 <prop oor:name="URL" oor:type="xs:string"/>
 <node-ref oor:name="UserDefinedImages" oor:node-type="UserDefinedImages"/>
 </group>
 <set oor:name="ToolBarItems" oor:node-type="ToolBarItem"/>
 </templates>
 <component>
 <group oor:name="AddonUI">
 <set oor:name="AddonMenu" oor:node-type="MenuItem"/>
 <set oor:name="Images" oor:node-type="Images"/>
 <set oor:name="OfficeMenuBar" oor:node-type="PopupMenu"/>
 <set oor:name="OfficeToolBar" oor:node-type="ToolBarItems"/>
 <set oor:name="OfficeHelp" oor:node-type="MenuItem"/>
 </group>
 </component>
</oor:component-schema>

Menus

As explained in the previous section, OpenOffice.org supports two menu locations where an add-
on can be integrated: a top-level menu or the Tools - Add-Ons submenu. The configuration branch
org.openoffice.Office.Addons provides two different nodes for these locations:

Supported sets of org.openoffice.Office.Addons to define an Add-On menu
OfficeMenuBar A menu defined in this set will be a top-level menu in the OpenOffice.org

Menu Bar.

AddonMenu A menu defined in this set will be a pop-up menu which is part of the Add-
Ons menu item located on the bottom position of the Tools menu.

Submenu in Tools - Add-Ons

To integrate add-on menu items into the Tools � Add-Ons menu, use the AddonMenu set. The
AddonMenu set consists of nodes of type MenuItem. The MenuItem node-type is also used for the
submenus of a top-level add-on menu.

Properties of template MenuItem
oor:name string. The name of the configuration node. The name must begin with an ASCII letter

character. It must be unique within the OfficeMenuBar set. Therefore, it is mandatory
to use a schema such as org.openoffice.<developer>.<product>.<addon
name> or com.<company>.<product>.<addon name> to avoid name conflicts.
Keep in mind that your configuration file will be merged into the OpenOffice.org
configuration branch. You do not know which add-ons, or how many add-ons, are
currently installed.
The node name of menu items of a submenu must be unique only within their
submenu. A configuration set cannot guarantee the order of its entries, so you should
use a schema such as string + number, for example �m1�, as the name is used to sort the
entries.

300 OpenOffice.org 2.3 Developer's Guide • June 2007

Properties of template MenuItem
URL string. Specifies the command URL that should be dispatched when the user activates

the menu entry. It will be ignored if the MenuItem is the title of a a submenu.
To define a separator you can use the special command URL "private:separator". A
separator ignores all other properties.

Title string. Contains the title of a top-level menu item. This property supports localization:
The default string, which is used when OpenOffice.org cannot find a string definition
for its current language, uses the value element without an attribute. You define a
string for a certain language with the xml:lang attribute. Assign the language/locale
to the attribute, for example <value xml:lang="en-US">string</value>.

ImageIdentifier string. Defines an optional image URL that could address an internal OpenOffice.org
image or an external user-defined image. The syntax of an internal image URL is:
private:image/<number> where number specifies the image.

External user-defined images are supported using the placeholder variable %origin%
representing the folder where the component will be installed by the pkgchk tool. The
pkgchk tool will exchanges %origin% by another placeholder, which is substituted
during runtime by OpenOffice.org to the real installation folder. Since OpenOffice.org
supports two different configuration folders (user and share) this mechanism is neces-
sary to determine the installation folder of a component.

For example the URL %origin%/image will be substituted to something like

vnd.sun.star.expand:$UNO_USER_PACKAGES_CACHE/uno_packages/component.zip.
1051610942/image .

The placeholder vnd.sun.star.expand:$UNO_USER_PACKAGES_CACHE will then be
substituted during runtime by the real path.

As the ImageIdentifier property can only hold one URL but OpenOffice.org
supports four different images (small/large image and both as high contrast), a naming
schema is used to address them. OpenOffice.org adds _16.bmp and _26.bmp to the
provided URL to address the small and large image. _16h.bmp and _26h.bmp is added to
address the high contrast images. If the high contrast images are omitted the normal
images are used instead.

OpenOffice.org supports bitmaps with 1, 4, 8, 16, 24 bit color depth. Magenta (color
value red=0xffff, green=0x0000, blue=0xffff) is used as the transparent color, which
means that the background color of the display is used instead of the image pixel color
when the image is drawn.

For optimal results the size of small images should be 16x16 pixel and for big images
26x26 pixel. Other image sizes are scaled automatically by OpenOffice.org.
If no high contrast image is provided, OpenOffice.org uses the normal image for high
contrast environments. Images that are not valid will be ignored.
 This property has a higher priority than the Images set when OpenOffice.org searches
for images.

301

Properties of template MenuItem
Target string. Specifies the target frame for the command URL. Normally an add-on will use

one of the predefined target names:

_top
Returns the top frame of the called frame, which is the first frame where isTop()
returns true when traversing up the hierarchy.

_parent
Returns the next frame above in the frame hierarchy.

_self
Returns the frame itself, same as an empty target frame name. This means you are
searching for a frame you already have, but it is legal to do so.

_blank
Creates a new top-level frame whose parent is the desktop frame.

Context string. A list of service names, separated by a comma, that specifies in which context the
add-on menu function should be visible. An empty Context means that the function
should visible in all contexts.
The OpenOffice.org application modules use the following services names:

Writer: com.sun.star.text.TextDocument
Spreadsheet: com.sun.star.sheet.SpreadsheetDocument
Presentation: com.sun.star.presentation.PresentationDocument
Draw: com.sun.star.drawing.DrawingDocument
Formula: com.sun.star.formula.FormulaProperties
Chart: com.sun.star.chart.ChartDocument
Bibliography: com.sun.star.frame.Bibliography

The context service name for add-ons is determined by the service name of the model
that is bound to the frame, which is associated with UI element (toolbar, menu bar, ...).
Thus the service name of the Writer model is com.sun.star.text.TextDocument.
That means, the context name is bound to the model of an application module. If a
developer implements a new desktop component that has a model, it is possible to use
its service name as a context for add-on UI items.

Submenu A set of MenuItem entries. Optional to define a submenu for the menu entry.

The next examples shows a configuration file specifying a single menu item titled Add-On Func-
tion 1. The unique node name of the add-on is called org.openoffice.example.addon.example.function1.
<?xml version='1.0' encoding='UTF-8'?>
<oor:component-data xmlns:oor="http://openoffice.org/2001/registry"
xmlns:xs="http://www.w3.org/2001/XMLSchema" oor:name="Addons" oor:package="org.openoffice.Office">
 <node oor:name="AddonUI">
 <node oor:name="AddonMenu">
 <node oor:name="org.openoffice.Office.addon.example.function1" oor:op="replace">
 <prop oor:name="URL" oor:type="xs:string">
 <value>org.openoffice.Office.addon.example:Function1</value>
 </prop>
 <prop oor:name="ImageIdentifier" oor:type="xs:string"
 <value/>
 </prop>
 <prop oor:name="Title" oor:type="xs:string">
 <value/>
 <value xml:lang="en-US">Add-On Function 1</value>
 </prop>
 <prop oor:name="Target" oor:type="xs:string">
 <value>_self</value>
 </prop>
 <prop oor:name="Context" oor:type="xs:string">
 <value>com.sun.star.text.TextDocument</value>
 </prop>
 </node>
 </node>
 </node>

302 OpenOffice.org 2.3 Developer's Guide • June 2007

Top-level Menu

If you want to integrate an add-on into the OpenOffice.org Menu Bar, you have to use the Office-
MenuBar set. An OfficeMenuBar set consists of nodes of type PopupMenu .

Properties of template PopupMenu
oor:name string. The name of the configuration node. The name must begin with an ASCII letter

character. It must be unique within the OfficeMenuBar set. Therefore, it is mandatory
to use a schema such as org.openoffice.<developer>.<product>.<addon
name> or com.<company>.<product>.<addon name> to avoid name conflicts.
Please keep in mind that your configuration file will be merged into the OpenOffice.org
configuration branch. You do not know what add-ons, or how many add-ons, are
currently installed.

Title string. Contains the title of a top-level menu item. This property supports localization:
The default string, which is used when OpenOffice.org cannot find a string definition
for its current language, uses the value element without an attribute. You define a
string for a certain language with the xml:lang attribute. Assign the language/locale
to the attribute, for example <value xml:lang="en-US">string</value>.

Context string. A list of service names, separated by a comma, that specifies in which context the
add-on menu should be visible. An empty context means that the function should be
visible in all contexts.
The OpenOffice.org application modules use the following services names:

Writer: com.sun.star.text.TextDocument
Spreadsheet: com.sun.star.sheet.SpreadsheetDocument
Presentation: com.sun.star.presentation.PresentationDocument
Draw: com.sun.star.drawing.DrawingDocument
Formula: com.sun.star.formula.FormulaProperties
Chart: com.sun.star.chart.ChartDocument
Bibliography: com.sun.star.frame.Bibliography

The context service name for add-ons is determined by the service name of the model
that is bound to the frame, which is associated with UI element (toolbar, menu bar, ...).
Thus the service name of the Writer model is com.sun.star.text.TextDocument.
That means, the context name is bound to the model of an application module. If a
developer implements a new desktop component that has a model it is possible to use
its service name as a context for add-on UI items.

Submenu A set of MenuItem entries. Defines the submenu of the top-level menu. It must be
defined on a top-level menu otherwise the whole menu will be ignored.
For more information how to define a submenu please refer to section 4.7.3 Writing
UNO Components - Integrating Components into OpenOffice.org - User Interface Add-Ons -
Guidelines where the MenuItem template is described.

The following example defines a top-level menu titled Add-On example with a single menu item
titled Add-On Function 1. The menu item has a self-defined image used for displaying it next to
the menu title.
In the example the nodes are called oor:name="org.openoffice.example.addon" and
oor:name="m1".

Do not forget to specify the oor:op="replace" attribute in your self-defined nodes. The replace
operation must be used to add a new node to a set or extensible node. Thus the real meaning of the
operation is "add or replace". Dynamic properties can only be added once and are then considered
mandatory, so during layer merging the replace operation always means "add" for them.
For more details about the configuration and their file formats please read 16 Configuration
Management.
<?xml version='1.0' encoding='UTF-8'?>
<oor:component-data xmlns:oor="http://openoffice.org/2001/registry"
xmlns:xs="http://www.w3.org/2001/XMLSchema" oor:name="Addons" oor:package="org.openoffice.Office">

303

 <node oor:name="AddonUI">
 <node oor:name="OfficeMenuBar">
 <node oor:name="org.openoffice.example.addon" oor:op="replace">
 <prop oor:name="Title" oor:type="xs:string">
 <value/>
 <value xml:lang="en-US">Add-On example</value>
 <value xml:lang=”de”>Add-On Beispiel</value>
 </prop>
 <prop oor:name="Context" oor:type="xs:string">
 <value>com.sun.star.text.TextDocument</value>
 </prop>
 <node oor:name="Submenu">
 <node oor:name="m1" oor:op="replace">
 <prop oor:name="URL" oor:type="xs:string">
 <value>org.openoffice.Office.addon.example:Function1</value>
 </prop>
 <prop oor:name="Title" oor:type="xs:string">
 <value/>
 <value xml:lang=”en-US”>Add-On Function 1</value>
 <value xml:lang="de">Add-On Funktion 1</value>
 </prop>
 <prop oor:name="Target" oor:type="xs:string">
 <value>_self</value>
 </prop>
 </node>
 </node>
 </node>
 </node>
 </node>
</oor:component-data>

Toolbars

An add-on can also be integrated into the Function Bar of OpenOffice.org. The
org.openoffice.Office.Addons configuration branch has a set called OfficeToolBar where you can
add toolbar items for an add-on. The toolbar structure uses an embedded set called ToolbarItems
, which is used by OpenOffice.org to group toolbar items from different add-ons. OpenOffice.org
automatically inserts a separator between different add-ons toolbar items.

 The space of the Function Bar is limited, so only the most used/important functions should be added to the
OfficeToolBar set. Otherwise OpenOffice.org will add scroll-up/down buttons at the end of the Function
Bar and the user has to scroll the toolbar to have access to all toolbar buttons.

Properties of template ToolBarItems
oor:name string. The name of the configuration node. The name must begin with an ASCII letter

character. It must be unique within the OfficeMenuBar set. Therefore it is mandatory
to use a schema such as org.openoffice.<developer>.<product>.<addon
name> or com.<company>.<product>.<addon name> to avoid name conflicts.
Please keep in mind that your configuration file will be merged into the OpenOffice.org
configuration branch. You do not know what add-ons, or how many add-ons, are
currently installed.

The ToolBarItems set is a container for the ToolBarItem nodes.

Properties of template ToolBarItem
oor:name string. The name of the configuration node. It must be unique inside your own Tool-

BarItems set. A configuration set cannot guarantee the order of its entries, therefore
use a schema such as string + number, for example "m1", as the name is used to sort
the entries. Please be aware that the name must begin with an ASCII letter character.

URL string. Specifies the command URL that should be dispatched when the user activates
the menu entry. To define a separator you can use the special command URL
"private:separator". A separator ignores all other properties.

304 OpenOffice.org 2.3 Developer's Guide • June 2007

Properties of template ToolBarItem
Title string. Contains the title of a top-level menu item. This property supports localization:

The default string, which is used when OpenOffice.org cannot find a string definition
for its current language, uses the value element without an attribute. You define a
string for a certain language with the xml:lang attribute. Assign the language/locale
to the attribute, for example <value xml:lang="en-US">string</value>.

ImageIdentifier string. Defines an optional image URL that could address an internal OpenOffice.org
image or an external user-defined image. The syntax of an internal image URL is:
private:image/<number> where number specifies the image.

External user-defined images are supported using the placeholder variable %origin%,
representing the folder where the component will be installed by the pkgchk tool. The
pkgchk tool exchanges %origin% with another placeholder, which is substituted during
runtime by OpenOffice.org to the real installation folder. Since OpenOffice.org supports
two different configuration folders (user and share) this mechanism is necessary to
determine the installation folder of a component.

For example the URL %origin%/image will be substituted with something like

vnd.sun.star.expand:$UNO_USER_PACKAGES_CACHE/uno_packages/component.zip.
1051610942/image .

The placeholder vnd.sun.star.expand:$UNO_USER_PACKAGES_CACHE is then substi-
tuted during runtime with the real path.

Since the ImageIdentifier property can only hold one URL but OpenOffice.org
supports four different images (small/large image, and both as high contrast), a
naming schema is used to address them. OpenOffice.org adds _16.bmp and _26.bmp to
the provided URL to address the small and large image. _16h.bmp and _26h.bmp is
added to address the high contrast images. If the high contrast images are omitted, the
normal images are used instead.

OpenOffice.org supports bitmaps with 1, 4, 8, 16, 24 bit color depth. Magenta (color
value red=0xffff, green=0x0000, blue=0xffff) is used as the transparent color, which
means that the background color of the display is used instead of the image pixel color
when the image is drawn.

For optimal results, the size of small images should be 16x16 pixel, and for big images
26x26 pixel. Other image sizes are scaled automatically by OpenOffice.org.
If no high contrast image is provided, OpenOffice.org uses the normal image for high
contrast environments. Images that are not valid are ignored.
This property has a higher priority than the Images set when OpenOffice.org searches
for images.

Target string. Specifies the target frame for the command URL. Normally an add-on will use
one of the predefined target names:

_top
Returns the top frame of the called frame, which is the first frame where isTop()
returns true when traversing up the hierarchy.

_parent
Returns the next frame above in the frame hierarchy.

_self
Returns the frame itself, same as an empty target frame name. This means you are
searching for a frame you already have, but it is legal to do so.

_blank
Creates a new top-level frame whose parent is the desktop frame.

305

Properties of template ToolBarItem
Context string. A list of service names, separated by a comma, that specifies in which context the

add-on menu should be visible. An empty context means that the function should be
visible in all contexts.
The OpenOffice.org application modules use the following services names:

Writer: com.sun.star.text.TextDocument
Spreadsheet: com.sun.star.sheet.SpreadsheetDocument
Presentation: com.sun.star.presentation.PresentationDocument
Draw: com.sun.star.drawing.DrawingDocument
Formula: com.sun.star.formula.FormulaProperties
Chart: com.sun.star.chart.ChartDocument
Bibliography: com.sun.star.frame.Bibliography

The context service name for add-ons is determined by the service name of the model
that is bound to the frame, which is associated with an UI element (toolbar, menu
bar, ...). Thus the service name of the Writer model is com.sun.star.text.Text-
Document. That means, the context name is bound to the model of an application
module. If you implement a new desktop component that has a model, it is possible to
use its service name as a context for add-on UI items.

The following example defines one toolbar button for the function called
org.openoffice.Office.addon.example:Function1 . The toolbar button is only visible when
using the OpenOffice.org Writer module.
<?xml version='1.0' encoding='UTF-8'?>
<oor:component-data xmlns:oor="http://openoffice.org/2001/registry"
xmlns:xs="http://www.w3.org/2001/XMLSchema" oor:name="Addons" oor:package="org.openoffice.Office">
 <node oor:name="AddonUI">
 <node oor:name="OfficeToolBar">
 <node oor:name="org.openoffice.Office.addon.example" oor:op="replace">
 <node oor:name=”m1”>
 <prop oor:name="URL" oor:type="xs:string">
 <value>org.openoffice.Office.addon.example:Function1</value>
 </prop>
 <prop oor:name="Title" oor:type="xs:string">
 <value/>
 <value xml:lang=”en-US”>Function 1</value>
 <value xml:lang="de">Funktion 1</value>
 </prop>
 <prop oor:name="Target" oor:type="xs:string">
 <value>_self</value>
 </prop>
 <prop oor:name="Context" oor:type="xs:string">
 <value>com.sun.star.text.TextDocument</value>
 </prop>
 </node>
 </node>
 </node>
 </node>
</oor:component-data>

Images for Toolbars and Menus

OpenOffice.org supports images in menus and toolboxes. In addition to the property ImageIdenti-
fier, the add-ons configuration branch has a fourth set called Images that let developers define and
use their own images. The image data can be integrated into the configuration either as hex
encoded binary data or as references to external bitmap files. The Images set binds a command
URL to user defined images.

306 OpenOffice.org 2.3 Developer's Guide • June 2007

Properties of template Images
oor:name string. The name of the configuration node. It must be unique inside the configura-

tion branch. Therefore it is mandatory to use a schema such as
org.openoffice.<developer>.<add-on name> or
com.<company>.<product>.<add-on name> to avoid name conflicts. Please
keep in mind that your configuration file will be merged into the OpenOffice.org
configuration branch. You do not know how many or which add-ons were installed
before by the user.
Please be aware that the name must begin with an ASCII letter character.

URL string. Specifies the command URL that should be bound to the defined images.
OpenOffice.org searches for images with the command URL that a menu
item/toolbox item contains.

UserDefinedImages Group of properties. This optional group provides self-defined images data to
OpenOffice.org. There are two different groups of properties to define the image
data. One property group provides the image data as ongoing hex values specifying
an uncompressed bitmap format stream. The other property group uses URLs to
external bitmap files. The names of these properties end with 'URL'. OpenOffice.org
supports bitmap streams with 1, 4, 8, 16, 24 bit color depth. Magenta (color value
red=0xffff, green=0x0000, blue=0xffff) is used as the transparent color, meaning that
the background color of the display will be used instead of the image pixel color
when the image is drawn.
For best quality, the size of small images should be 16x16 pixel, and for big images
26x26 pixel. Other image sizes will be scaled automatically by OpenOffice.org.
If no high contrast image data is provided, OpenOffice.org uses the normal image for
high contrast environments. Image data that is not valid will be ignored.

An Images node uses a second node called UserDefinedImages where the user defined images
data are stored.

Properties of template UserDefinedImages
ImageSmall HexBinary. Used for normal menu/toolbar items, standard size is 16x16 pixel.

ImageBig HexBinary. Only toolbars can use big images. Standard size is 26x26 pixel. The user can
activate large buttons with the Tools � Options � View � Large Buttons check box.

ImageSmallHC HexBinary. Used for high contrast environments, which means that the background
color of a menu or toolbar is below a certain threshold value for the brightness.

ImageBigHC HexBinary. Only toolbars can use big images. Used for high contrast environments,
which means that the background color of a toolbar is below a certain threshold value
for the brightness.

ImageSmallURL string. An URL to an external image which is used for menu items and normal toolbar
buttons. External user-defined images are supported using the placeholder variable
%origin%, representing the folder where the component will be installed by the pkgchk
tool. The pkgchk tool exchanges %origin% with another placeholder, which is substi-
tuted during runtime by OpenOffice.org to the real installation folder. Since
OpenOffice.org supports two different configuration folders (user and share) this mech-
anism is necessary to determine the installation folder of a component.

For example the URL %origin%/image will be substituted with something like

vnd.sun.star.expand:$UNO_USER_PACKAGES_CACHE/uno_packages/component.zip.
1051610942/image .

The placeholder vnd.sun.star.expand:$UNO_USER_PACKAGES_CACHE is then substi-
tuted during runtime with the real path.

ImageBigURL string. An URL to an external image which is used for big toolbar buttons.

307

Properties of template UserDefinedImages
ImageSmallHCURL string. An URL to an external image which is used for menu items and normal toolbar

button in a high contrast environment.

ImageBigHCURL string. An URL to an external image which is used for big toolbar buttons in a high
contrast environment.

The embedded image data have a higher priority when used in conjunction with the URL proper-
ties. The embedded and URL properties can be mixed without a problem.

The next example creates two user-defined images for the function
org.openoffice.Office.addon.example:Function1 . The normal image is defined using the
embedded image data property ImageSmall and has a size of 16x16 pixel and a 4-bit color depth.
The other one uses the URL property ImageSmallHCURL to reference an external bitmap file for the
high contrast image.
<?xml version='1.0' encoding='UTF-8'?>
<oor:component-data xmlns:oor="http://openoffice.org/2001/registry"
xmlns:xs="http://www.w3.org/2001/XMLSchema" oor:name="Addons" oor:package="org.openoffice.Office">
 <node oor:name="AddonUI">
 <node oor:name="Images">
 <node oor:name="com.sun.star.comp.framework.addon.image1" oor:op="replace">
 <prop oor:name="URL" oor:type="xs:string">
 <value>org.openoffice.Office.addon.example:Function1</value>
 </prop>
 <node oor:name=”UserDefinedImages”>
 <prop oor:name=”ImageSmall”>
 <value>424df80000000000000076000000280000001000000010000000010004000000000000000
000120b0000120b000000000000000000000000ff0000ffff0000ff0000ffff0000ff000000ff00ff00ffffff00c0c0c00080808
00000000000000080000080800000800000808000008000000080008000cccccccccccccccc2c266b181b666c2c5cc66b818b666
5c555566b181b66655555566b818b66655555566b181b6665555a8666bbb6668a55a0a866666668a0a5000a8666668a000a6000a
86668a000a556000a868a000a55556000a8a000a5555556000a000a55555555600000a55555555556000a55555555555560a5555
5550000</value>
 </prop>
 <prop oor:name=”ImageSmallHCURL”>
 <value>%origin%/function1.bmp</value>
 </prop>
 </node>
 </node>
 </node>
 </node>
</oor:component-data>

Help Integration

OpenOffice.org supports the integration of add-ons into its Help menu. The add-on help menu
items are inserted below the Registration menu item, guarded by separators. This guarantees that
users have quick access to the add-on help.
The OfficeHelp set uses the same MenuItem node-type as the AddonMenu set, but there are some
special treatments of the properties.

Properties of template MenuItem
oor:name string. The name of the configuration node. It must be unique inside the configuration

branch. Therefore it is mandatory to use a schema such as org.openoffice.<devel-
oper>.<add-on name> or com.<company>.<product>.<add-on name> to avoid
name conflicts. Please keep in mind that your configuration file will be merged into the
OpenOffice.org configuration branch. You do not know how many or which add-ons
were installed before by the user.
Please be aware that the name must begin with an ASCII letter character.

URL string. Specifies the help command URL that should be dispatched when the user acti-
vates the menu entry.
Separators defined by the special command URL "private:separator" are
supported, but should not be used in the help menu, because every add-on should only
use one menu item.

308 OpenOffice.org 2.3 Developer's Guide • June 2007

Properties of template MenuItem
Title string. Contains the title of a top-level menu item. This property supports localization:

The default string, which is used when OpenOffice.org cannot find a string definition
for its current language, uses the value element without an attribute. You define a
string for a certain language with the xml:lang attribute. Assign the language/locale
to the attribute, for example <value xml:lang="en-US">string</value>.

ImageIdentifier string. Defines an optional image URL that could address an internal OpenOffice.org
image or an external user-defined image. The syntax of an internal image URL is:
private:image/<number> where number specifies the image.

External user-defined images are supported using the placeholder variable %origin%,
representing the folder where the component will be installed by the pkgchk tool. The
pkgchk tool exchanges %origin% with another placeholder, which is substituted during
runtime by OpenOffice.org to the real installation folder. Since OpenOffice.org supports
two different configuration folders (user and share), this mechanism is necessary to
determine the installation folder of a component.

For example the URL %origin%/image is substituted with something like

vnd.sun.star.expand:$UNO_USER_PACKAGES_CACHE/uno_packages/component.zip.
1051610942/image .

The placeholder vnd.sun.star.expand:$UNO_USER_PACKAGES_CACHE is then substi-
tuted during runtime by the real path.

Since the ImageIdentifier property can only hold one URL but OpenOffice.org
supports four different images (small/large image and both as high contrast), a naming
schema is used to address them. OpenOffice.org adds _16.bmp and _26.bmp to the
provided URL to address the small and large image. _16h.bmp and _26h.bmp is added to
address the high contrast images. If the high contrast images are omitted, the normal
images are used instead.

OpenOffice.org supports bitmaps with 1, 4, 8, 16, 24 bit color depth. Magenta (color
value red=0xffff, green=0x0000, blue=0xffff) is used as the transparent color, which
means that the background color of the display is used instead of the image pixel color
when the image is drawn.

For optimal results the size of small images should be 16x16 pixel and for big images
26x26 pixel. Other image sizes will be scaled automatically by OpenOffice.org.
If no high contrast image is provided, OpenOffice.org uses the normal image for high
contrast environments. Images that are not valid are ignored.
This property has a higher priority than the Images set when OpenOffice.org searches
for images.

Target string. Specifies the target frame for the command URL. Normally an add-on will use
one of the predefined target names:

_top
Returns the top frame of the called frame, which is the first frame where isTop()
returns true when traversing up the hierarchy.

_parent
Returns the next frame above in the frame hierarchy.

_self
Returns the frame itself, same as an empty target frame name. This means you are
searching for a frame you already have, but it is legal to do so.

_blank
Creates a new top-level frame whose parent is the desktop frame.

309

Properties of template MenuItem
Context string. A list of service names, separated by a comma, that specifies in which context the

add-on menu should be visible. An empty context means that the function is visible in
all contexts.
The OpenOffice.org application modules use the following services names:

Writer: com.sun.star.text.TextDocument
Spreadsheet: com.sun.star.sheet.SpreadsheetDocument
Presentation: com.sun.star.presentation.PresentationDocument
Draw: com.sun.star.drawing.DrawingDocument
Formula: com.sun.star.formula.FormulaProperties
Chart: com.sun.star.chart.ChartDocument
Bibliography: com.sun.star.frame.Bibliography

The context service name for add-ons is determined by the service name of the model
that is bound to the frame, which is associated with an UI element (toolbar, menu
bar, ...). Thus the service name of the Writer model is com.sun.star.text.Text-
Document. That means, the context name is bound to the model of an application
module. If a developer implements a new desktop component that has a model, it is
possible to use its service name as a context for add-on UI items.

Submenu A set of MenuItem entries. Not used for OfficeHelp MenuItems , any definition
inside will be ignored.

The following example shows the single help menu item for the add-on example.
<?xml version='1.0' encoding='UTF-8'?>
<oor:component-data xmlns:oor="http://openoffice.org/2001/registry"
xmlns:xs="http://www.w3.org/2001/XMLSchema" oor:name="Addons" oor:package="org.openoffice.Office">
 <node oor:name="AddonUI">
 <node oor:name="OfficeHelp">
 <node oor:name="com.sun.star.comp.framework.addon" oor:op="replace">
 <prop oor:name="URL" oor:type="xs:string"
 <value>org.openoffice.Office.addon.example:Help</value>
 </prop>
 <prop oor:name="ImageIdentifier" oor:type="xs:string">
 <value/>
 </prop>
 <prop oor:name="Title" oor:type="xs:string">
 <value xml:lang="de">Über Add-On Beispiel</value>
 <value xml:lang="en-US">About Add-On Example</value>
 </prop>
 <prop oor:name="Target" oor:type="xs:string">
 <value>_self</value>
 </prop>
 </node>
 </node>
 </node>
</oor:component-data>

Installation
After finishing the implementation of the UNO component and the definition of the user interface
part you can create an extension. An extension can be used by an end-user to install the add-on
into OpenOffice.org.

The configuration files that were created for the add-on, such as protocol handler, jobs, and user
interface definition must be added to the root of the zip file. The structure of a zip file supporting
Windows should resemble the following code:
example_addon.oxt:
 META_INF/
 manifest.xml
 Addons.xcu
 ProtocolHandler.xcu
 windows.plt/
 example_addon.dll

310 OpenOffice.org 2.3 Developer's Guide • June 2007

Before you install the extension, make absolutely sure there are no running instances of OpenOffice.org.
The unopkg tool recognizes a running OpenOffice.org in a local installation, but not in a networked
installation. Installing into a running office installation might cause inconsistencies and destroy
your installation!

The extension installation for the example add-on is as simple as changing to the
<OfficePath>/program directory with a command-line shell and running

[<OfficePath>/program] $ unopkg add /foo/bar/example_addon.zip

For an explanation of other deployment options, please refer to 4.9 Writing UNO Components - Deploy-
ment Options for Components and for an explanation about extensions refer to 5 Extensions.

4.7.4 Disable Commands
In OpenOffice.org, there may be situations where functions should be disabled to prevent users
from changing or destroying documents inadvertently. OpenOffice.org maintains a list of disabled
commands that can be maintained by users and developers through the configuration API.

A command request can be created by any object, but in most cases, user interface objects create
these requests. Consider, for instance, a toolbox where different functions acting on the office
component are presented as buttons. Once a button is clicked, the desired functionality should be
executed. If the code assigned to the button is provided with a suitable command URL, the
dispatch framework can handle the user action by creating the request and finding a component
that can handle it.

The dispatch framework works with the design pattern chain of responsibility: everything a compo-
nent needs to know if it wants to execute a request is the last link in a chain of objects capable of
executing requests. If this object gets the request, it checks whether it can handle it or otherwise
passes it to the next chain member until the request is executed or the end of the chain is reached.
The disable commands implementation is the first chain member and can therefore work as a wall
for all disabled commands. They are not be sent to the next chain member, and disappear.

 shows how the disable commands feature affects the normal command application flow.

311

 Since the disable commands implementation is the first part in the dispatch chain, there is no way to circum-
vent it. The disabled command must be removed from the list, otherwise it remains disabled.

312 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 4.10: How the disable commands feature works

Configuration
The disable commands feature uses the configuration branch org.openoffice.Office.Commands to read
which commands should be disabled. The following schema applies:
<?xml version='1.0' encoding='UTF-8'?>
<oor:component-schema oor:name="Commands" oor:package="org.openoffice.Office" xml:lang="en-US"
xmlns:oor="http://openoffice.org/2001/registry" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <templates>
 <group oor:name="CommandType">
 <prop oor:name="Command" oor:type="xs:string"/>
 </group>
 </templates>
 <component>
 <group oor:name="Execute">
 <set oor:name="Disabled" oor:node-type="CommandType"/>
 </group>
 </component>
</oor:component-schema>

The configuration schema for disabled commands is very simple. The
org.openoffice.Office.Commands branch has a group called Execute. This group has only one set
called Disabled. The Disabled set supports nodes of the type CommandType. The following table
describes the supported properties of CommandType.

Properties of the CommandType group
oor:component
-data

string. It must be unique inside the Disabled set, but has no additional meaning for the
implementation of the disable commands feature. Use a consecutive numbering scheme;
even numbers are allowed.

Command string. This is the command name with the preceding protocol. That means the command
URL .uno:Open (which shows the File � Open dialog) must be written as Open.
The valid commands can be found in the document Index of Command Names in the Docu-
mentation section of the framework project on the OpenOffice.org web page. The
OpenOffice.org SDK also includes the latest list of command names.

The example below shows a configuration file that disables the commands for File � Open, Edit �
Select All, Help � About OpenOffice.org and File � Exit.
<?xml version="1.0" encoding="UTF-8" ?>
<oor:component-data oor:name="Commands" oor:package="org.openoffice.Office"
xmlns:oor="http://openoffice.org/2001/registry" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <node oor:name="Execute">
 <node oor:name="Disabled">
 <node oor:name="m1" oor:op="replace">
 <prop oor:name="Command">
 <value>Open</value>
 </prop>
 </node>
 <node oor:name="m2" oor:op="replace">
 <prop oor:name="Command">
 <value>SelectAll</value>
 </prop>
 </node>
 <node oor:name="m3" oor:op="replace">
 <prop oor:name="Command">
 <value>About</value>
 </prop>
 </node>
 <node oor:name="m4" oor:op="replace">
 <prop oor:name="Command">
 <value>Quit</value>
 </prop>
 </node>
 </node>
 </node>
</oor:component-data>

313

http://www.openoffice.org/files/documents/25/60/commands_11beta.html
http://www.openoffice.org/files/documents/25/60/commands_11beta.html
http://www.openoffice.org/files/documents/25/60/commands_11beta.html
http://framework.openoffice.org/servlets/ProjectDocumentList
http://framework.openoffice.org/servlets/ProjectDocumentList
http://framework.openoffice.org/servlets/ProjectDocumentList
http://framework.openoffice.org/servlets/ProjectDocumentList
http://framework.openoffice.org/servlets/ProjectDocumentList
http://framework.openoffice.org/servlets/ProjectDocumentList

Disabling Commands at Runtime
The following code example first removes all commands that were defined in the user layer of the
configuration branch org.openoffice.Office.Commands as having a defined starting point. Then
it checks if it can get dispatch objects for some pre-defined commands.
Then the example disables these commands and tries to get dispatch objects for them again. At the
end, the code removes the disabled commands again, otherwise OpenOffice.org would not be fully
useable any longer.
import com.sun.star.bridge.XUnoUrlResolver;
import com.sun.star.uno.UnoRuntime;
import com.sun.star.uno.XComponentContext;
import com.sun.star.lang.XMultiComponentFactory;
import com.sun.star.beans.XPropertySet;
import com.sun.star.beans.PropertyValue;
import com.sun.star.lang.XMultiServiceFactory;
import com.sun.star.lang.XSingleServiceFactory;
import com.sun.star.util.XURLTransformer;
import com.sun.star.frame.XDesktop;

import com.sun.star.beans.UnknownPropertyException;

/*
 * Provides example code how to enable/disable
 * commands.
 */
public class DisableCommandsTest extends java.lang.Object {

 /*
 * A list of command names
 */
 final static private String[] aCommandURLTestSet =
 {
 new String("Open"),
 new String("About"),
 new String("SelectAll"),
 new String("Quit"),
 };

 private static XComponentContext xRemoteContext = null;
 private static XMultiComponentFactory xRemoteServiceManager = null;
 private static XURLTransformer xTransformer = null;
 private static XMultiServiceFactory xConfigProvider = null;

 /*
 * @param args the command line arguments
 */
 public static void main(String[] args) {

 try {
 // connect
 XComponentContext xLocalContext =
 com.sun.star.comp.helper.Bootstrap.createInitialComponentContext(null);
 XMultiComponentFactory xLocalServiceManager = xLocalContext.getServiceManager();
 Object urlResolver = xLocalServiceManager.createInstanceWithContext(
 "com.sun.star.bridge.UnoUrlResolver", xLocalContext);
 XUnoUrlResolver xUnoUrlResolver = (XUnoUrlResolver) UnoRuntime.queryInterface(
 XUnoUrlResolver.class, urlResolver);
 Object initialObject = xUnoUrlResolver.resolve(
 "uno:socket,host=localhost,port=2083;urp;StarOffice.ServiceManager");
 XPropertySet xPropertySet = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, initialObject);
 Object context = xPropertySet.getPropertyValue("DefaultContext");
 xRemoteContext = (XComponentContext)UnoRuntime.queryInterface(
 XComponentContext.class, context);
 xRemoteServiceManager = xRemoteContext.getServiceManager();
 Object transformer = xRemoteServiceManager.createInstanceWithContext(
 "com.sun.star.util.URLTransformer", xRemoteContext);
 xTransformer = (com.sun.star.util.XURLTransformer)UnoRuntime.queryInterface(
 com.sun.star.util.XURLTransformer.class, transformer);

 Object configProvider = xRemoteServiceManager.createInstanceWithContext(
 "com.sun.star.configuration.ConfigurationProvider", xRemoteContext);
 xConfigProvider = (com.sun.star.lang.XMultiServiceFactory)UnoRuntime.queryInterface(
 com.sun.star.lang.XMultiServiceFactory.class, configProvider);

 // First we need a defined starting point. So we have to remove
 // all commands from the disabled set!
 enableCommands();

 // Check if the commands are usable
 testCommands(false);

314 OpenOffice.org 2.3 Developer's Guide • June 2007

 // Disable the commands
 disableCommands();

 // Now the commands should not be usable anymore
 testCommands(true);

 // Remove disable commands to make Office usable again
 enableCommands();
 }
 catch (java.lang.Exception e){
 e.printStackTrace();
 }
 finally {
 System.exit(0);
 }
 }

 /**
 * Test the commands that we enabled/disabled
 */
 private static void testCommands(boolean bDisabledCmds) throws com.sun.star.uno.Exception {
 // We need the desktop to get access to the current frame
 Object desktop = xRemoteServiceManager.createInstanceWithContext(
 "com.sun.star.frame.Desktop", xRemoteContext);
 com.sun.star.frame.XDesktop xDesktop = (com.sun.star.frame.XDesktop)UnoRuntime.queryInterface(
 com.sun.star.frame.XDesktop.class, desktop);
 com.sun.star.frame.XFrame xFrame = xDesktop.getCurrentFrame();
 com.sun.star.frame.XDispatchProvider xDispatchProvider = null;
 if (xFrame != null) {
 // We have a frame. Now we need access to the dispatch provider.
 xDispatchProvider = (com.sun.star.frame.XDispatchProvider)UnoRuntime.queryInterface(
 com.sun.star.frame.XDispatchProvider.class, xFrame);
 if (xDispatchProvider != null) {
 // As we have the dispatch provider we can now check if we get a dispatch
 // object or not.
 for (int n = 0; n < aCommandURLTestSet.length; n++) {
 // Prepare the URL
 com.sun.star.util.URL[] aURL = new com.sun.star.util.URL[1];
 aURL[0] = new com.sun.star.util.URL();
 com.sun.star.frame.XDispatch xDispatch = null;

 aURL[0].Complete = ".uno:" + aCommandURLTestSet[n];
 xTransformer.parseSmart(aURL, ".uno:");

 // Try to get a dispatch object for our URL
 xDispatch = xDispatchProvider.queryDispatch(aURL[0], "", 0);

 if (xDispatch != null) {
 if (bDisabledCmds)
 System.out.println("Something is wrong, I got dispatch object for "

 + aURL[0].Complete);
 else
 System.out.println("Ok, dispatch object for " + aURL[0].Complete);
 }
 else {
 if (!bDisabledCmds)
 System.out.println("Something is wrong, I cannot get dispatch object for "

 + aURL[0].Complete);
 else
 System.out.println("Ok, no dispatch object for " + aURL[0].Complete);
 }
 resetURL(aURL[0]);
 }
 }
 else
 System.out.println("Couldn't get XDispatchProvider from Frame!");
 }
 else
 System.out.println("Couldn't get current Frame from Desktop!");
 }

 /**
 * Ensure that there are no disabled commands in the user layer. The
 * implementation removes all commands from the disabled set!
 */
 private static void enableCommands() {
 // Set the root path for our configuration access
 com.sun.star.beans.PropertyValue[] lParams = new com.sun.star.beans.PropertyValue[1];

 lParams[0] = new com.sun.star.beans.PropertyValue();
 lParams[0].Name = new String("nodepath");
 lParams[0].Value = "/org.openoffice.Office.Commands/Execute/Disabled";

 try {
 // Create configuration update access to have write access to the configuration
 Object xAccess = xConfigProvider.createInstanceWithArguments(
 "com.sun.star.configuration.ConfigurationUpdateAccess", lParams);

315

 com.sun.star.container.XNameAccess xNameAccess = (com.sun.star.container.XNameAccess)
 UnoRuntime.queryInterface(com.sun.star.container.XNameAccess.class, xAccess);
 if (xNameAccess != null) {
 // We need the XNameContainer interface to remove the nodes by name
 com.sun.star.container.XNameContainer xNameContainer =
 (com.sun.star.container.XNameContainer)
 UnoRuntime.queryInterface(com.sun.star.container.XNameContainer.class, xAccess);

 // Retrieves the names of all Disabled nodes
 String[] aCommandsSeq = xNameAccess.getElementNames();
 for (int n = 0; n < aCommandsSeq.length; n++) {
 try {
 // remove the node
 xNameContainer.removeByName(aCommandsSeq[n]);
 }
 catch (com.sun.star.lang.WrappedTargetException e) {
 }
 catch (com.sun.star.container.NoSuchElementException e) {
 }
 }
 }

 // Commit our changes
 com.sun.star.util.XChangesBatch xFlush =
 (com.sun.star.util.XChangesBatch)UnoRuntime.queryInterface(
 com.sun.star.util.XChangesBatch.class, xAccess);
 xFlush.commitChanges();
 }
 catch (com.sun.star.uno.Exception e) {
 System.out.println("Exception detected!");
 System.out.println(e);
 }
 }

 /**
 * Disable all commands defined in the aCommandURLTestSet array
 */
 private static void disableCommands() {
 // Set the root path for our configuration access
 com.sun.star.beans.PropertyValue[] lParams = new com.sun.star.beans.PropertyValue[1];
 lParams[0] = new com.sun.star.beans.PropertyValue();
 lParams[0].Name = new String("nodepath");
 lParams[0].Value = "/org.openoffice.Office.Commands/Execute/Disabled";

 try {
 // Create configuration update access to have write access to the configuration
 Object xAccess = xConfigProvider.createInstanceWithArguments(
 "com.sun.star.configuration.ConfigurationUpdateAccess", lParams);

 com.sun.star.lang.XSingleServiceFactory xSetElementFactory =
 (com.sun.star.lang.XSingleServiceFactory)UnoRuntime.queryInterface(
 com.sun.star.lang.XSingleServiceFactory.class, xAccess);

 com.sun.star.container.XNameContainer xNameContainer =
 (com.sun.star.container.XNameContainer)UnoRuntime.queryInterface(
 com.sun.star.container.XNameContainer.class, xAccess);

 if (xSetElementFactory != null && xNameContainer != null) {
 Object[] aArgs = new Object[0];

 for (int i = 0; i < aCommandURLTestSet.length; i++) {
 // Create the nodes with the XSingleServiceFactory of the configuration
 Object xNewElement = xSetElementFactory.createInstanceWithArguments(aArgs);
 if (xNewElement != null) {
 // We have a new node. To set the properties of the node we need
 // the XPropertySet interface.
 com.sun.star.beans.XPropertySet xPropertySet =
 (com.sun.star.beans.XPropertySet)UnoRuntime.queryInterface(
 com.sun.star.beans.XPropertySet.class,
 xNewElement);

 if (xPropertySet != null) {
 // Create a unique node name.
 String aCmdNodeName = new String("Command-");
 aCmdNodeName += i;

 // Insert the node into the Disabled set
 xPropertySet.setPropertyValue("Command", aCommandURLTestSet[i]);
 xNameContainer.insertByName(aCmdNodeName, xNewElement);
 }
 }
 }

 // Commit our changes
 com.sun.star.util.XChangesBatch xFlush = (com.sun.star.util.XChangesBatch)
 UnoRuntime.queryInterface(com.sun.star.util.XChangesBatch.class, xAccess);

316 OpenOffice.org 2.3 Developer's Guide • June 2007

 xFlush.commitChanges();
 }
 }
 catch (com.sun.star.uno.Exception e) {
 System.out.println("Exception detected!");
 System.out.println(e);
 }
 }

 /**
 * reset URL so it can be reused
 *
 * @param aURL
 * the URL that should be reseted
 */
 private static void resetURL(com.sun.star.util.URL aURL) {
 aURL.Protocol = "";
 aURL.User = "";
 aURL.Password = "";
 aURL.Server = "";
 aURL.Port = 0;
 aURL.Path = "";
 aURL.Name = "";
 aURL.Arguments = "";
 aURL.Mark = "";
 aURL.Main = "";
 aURL.Complete = "";
 }
}

4.7.5 Intercepting Context Menus
A context menu is displayed when an object is right clicked. Typically, a context menu has context
dependent functions to manipulate the selected object, such as cut, copy and paste. Developers can
intercept context menus before they are displayed to cancel the execution of a context menu, add,
delete, or modify the menu by replacing context menu entries or complete sub menus. It is possible
to provide new customized context menus.

Context menu interception is implemented by the observer pattern. This pattern defines a one-to-
many dependency between objects, so that when an object changes state, all its dependents are
notified. The implementation supports more than one interceptor.
The root access point for intercepting context menus is a com.sun.star.frame.Controller object.
The controller implements the interface com.sun.star.ui.XContextMenuInterception to
support context menu interception.

Register and Remove an Interceptor
The com.sun.star.ui.XContextMenuInterception interface enables the developer to register
and remove the interceptor code. When an interceptor is registered, it is notified whenever a
context menu is about to be executed. Registering an interceptor adds it to the front of the inter-
ceptor chain, so that it is called first. The order of removals is arbitrary. It is not necessary to
remove the interceptor that registered last.

Writing an Interceptor

Notification

A context menu interceptor implements the com.sun.star.ui.XContextMenuInterceptorinter-
face. This interface has one function that is called by the responsible controller whenever a context
menu is about to be executed.

ContextMenuInterceptorAction notifyContextMenuExecute ([in] ContextMenuExecuteEvent aEvent)

317

http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Controller.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Controller.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Controller.html

The com.sun.star.ui.ContextMenuExecuteEvent is a struct that holds all the important infor-
mation for an interceptor.

Members of com.sun.star.ui.ContextMenuExecuteEvent

ExecutePosition com.sun.star.awt.Point. Contains the position the context menu will be
executed.

SourceWindow com.sun.star.awt.XWindow. Contains the window where the context
menu has been requested.

ActionTriggerCon-
tainer

com.sun.star.container.XIndexContainer. The structure of the inter-
cepted context menu. The member implements the
com.sun.star.ui.ActionTriggerContainer service.

Selection com.sun.star.view.XSelectionSupplier. Provides the current selec-
tion inside the source window.

Querying a Menu Structure

The ActionTriggerContainer member is an indexed container of context menu entries, where
each menu entry is a property set. It implements the com.sun.star.ui.ActionTriggerContainer
service. The interface com.sun.star.container.XIndexContainer directly accesses the inter-
cepted context menu structure through methods to access, insert, remove and replace menu
entries.

All elements in an ActionTriggerContainer member support the com.sun.star.beans.XProp-
ertySet interface to get and set property values. There are two different types of menu entries
with different sets of properties:

Type of Menu Entry Service Name

Menu entry "com.sun.star.ui.ActionTrigger"

Separator "com.sun.star.ui.ActionTriggerSeparator"

It is essential to determine the type of each menu entry be querying it for the interface
com.sun.star.lang.XServiceInfo and calling

boolean supportsService ([in] string ServiceName)

The following example shows a small helper class to determine the correct menu entry type.
(OfficeDev/MenuElement.java)
// A helper class to determine the menu element type
public class MenuElement
{
 static public boolean IsMenuEntry(com.sun.star.beans.XPropertySet xMenuElement) {
 com.sun.star.lang.XServiceInfo xServiceInfo =
 (com.sun.star.lang.XServiceInfo)UnoRuntime.queryInterface(
 com.sun.star.lang.XServiceInfo.class, xMenuElement);

 return xServiceInfo.supportsService("com.sun.star.ui.ActionTrigger");
 }

 static public boolean IsMenuSeparator(com.sun.star.beans.XPropertySet xMenuElement) {
 com.sun.star.lang.XServiceInfo xServiceInfo =
 (com.sun.star.lang.XServiceInfo)UnoRuntime.queryInterface(
 com.sun.star.lang.XServiceInfo.class, xMenuElement);

 return xServiceInfo.supportsService("com.sun.star.ui.ActionTriggerSeparator");
 }
}

Figure 4.1: Determine the menu element type

The com.sun.star.ui.ActionTrigger service supported by selectable menu entries has the
following properties:

318 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XSelectionSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XSelectionSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XSelectionSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html#Selection
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html#Selection
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html#Selection
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html#ActionTriggerContainer
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html#ActionTriggerContainer
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html#ActionTriggerContainer
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html#ActionTriggerContainer
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html#ActionTriggerContainer
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html#ActionTriggerContainer
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html#SourceWindow
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html#SourceWindow
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html#SourceWindow
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Point.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Point.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Point.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html#ExecutePosition
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html#ExecutePosition
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html#ExecutePosition
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html

Properties of com.sun.star.ui.ActionTrigger

Text string. Contains the text of the label of the menu entry.

CommandURL string. Contains the command URL that defines which function will be executed if the
menu entry is selected by the user.

HelpURL string. This optional property contains a help URL that points to the help text.

Image com.sun.star.awt.XBitmap. This property contains an image that is shown left of the
menu label. The use is optional so that no image is used if this member is not initialized.

SubContainer com.sun.star.container.XIndexContainer. This property contains an optional
sub menu.

The com.sun.star.ui.ActionTriggerSeparator service defines only one optional property:

Property of com.sun.star.ui.ActionTriggerSeparator

Separator-
Type

com.sun.star.ui.ActionTriggerSeparatorType. Specifies a certain type of a
separator. Currently the following types are possible:

const int LINE = 0
const int SPACE = 1
const int LINEBREAK = 2

Changing a Menu

It is possible to accomplish certain tasks without implementing code in a context menu interceptor,
such as preventing a context menu from being activated. Normally, a context menu is changed to
provide additional functions to the user.

As previously discussed, the context menu structure is queried through the ActionTriggerCon-
tainer member that is part of the com.sun.star.ui.ContextMenuExecuteEvent structure. The
com.sun.star.ui.ActionTriggerContainer service has an additional interface
com.sun.star.lang.XMultiServiceFactory that creates com.sun.star.ui.ActionTrigger-
Container, com.sun.star.ui.ActionTrigger and com.sun.star.ui.ActionTriggerSeparator
objects. These objects are used to extend a context menu.

The com.sun.star.lang.XMultiServiceFactory implementation of the ActionTriggerContainer
implementation supports the following strings:

String Object

"com.sun.star.ui.ActionTrigger" Creates a normal menu entry.

"com.sun.star.ui.ActionTriggerContainer" Creates an empty sub menu1 .

"com.sun.star.ui.ActionTriggerSeparator" Creates an unspecified separator2 .
1 A sub menu cannot exist by itself. It has to be inserted into a com.sun.star.ui.ActionTrigger !

2 The separator has no special type. It is the responsibility of the concrete implementation to render an unspecified sepa-
rator.

Finishing Interception

Every interceptor that is called directs the controller how it continues after the call returns. The
enumeration com.sun.star.ui.ContextMenuInterceptorAction defines the possible return
values.

319

http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuInterceptorAction.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuInterceptorAction.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuInterceptorAction.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerSeparator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerSeparator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerSeparator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerSeparatorType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerSeparatorType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerSeparatorType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerSeparator.html#SeparatorType
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerSeparator.html#SeparatorType
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerSeparator.html#SeparatorType
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerSeparator.html#SeparatorType
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerSeparator.html#SeparatorType
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerSeparator.html#SeparatorType
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerSeparator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerSeparator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerSeparator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerSeparator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerSeparator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerSeparator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html#SubContainer
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html#SubContainer
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html#SubContainer
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XBitmap.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XBitmap.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XBitmap.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html#Image
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html#Image
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html#Image
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html#HelpURL
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html#HelpURL
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html#HelpURL
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html#CommandURL
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html#CommandURL
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html#CommandURL
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html#Text
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html#Text
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html#Text
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html

Values of com.sun.star.ui.ContextMenuInterceptorAction
IGNORED Called object has ignored the call. The next registered

com.sun.star.ui.XContextMenuInterceptor should be notified.

CANCELLED The context menu must not be executed. No remaining interceptor will be
called.

EXECUTE_MODIFIED The context menu has been modified and should be executed without noti-
fying the next registered com.sun.star.ui.XContextMenuInter-
ceptor.

CONTINUE_MODIFIED The context menu was modified by the called object. The next registered
com.sun.star.ui.XContextMenuInterceptor should be notified.

The following example shows a context menu interceptor that adds a a sub menu to a menu that
has been intercepted at a controller, where this com.sun.star.ui.XContextMenuInterceptor has
been registered. This sub menu is inserted ino the context menu at the topmost position. It
provides help functions to the user that are reachable through the menu Help.
(OfficeDev/ContextMenuInterceptor.java)
import com.sun.star.ui.*;
import com.sun.star.lang.XMultiServiceFactory;
import com.sun.star.beans.XPropertySet;
import com.sun.star.container.XIndexContainer;
import com.sun.star.uno.UnoRuntime;
import com.sun.star.uno.Exception;
import com.sun.star.beans.UnknownPropertyException;
import com.sun.star.lang.IllegalArgumentException;

public class ContextMenuInterceptor implements XContextMenuInterceptor {

 public ContextMenuInterceptorAction notifyContextMenuExecute(
 com.sun.star.ui.ContextMenuExecuteEvent aEvent) throws RuntimeException {

 try {

 // Retrieve context menu container and query for service factory to
 // create sub menus, menu entries and separators
 com.sun.star.container.XIndexContainer xContextMenu = aEvent.ActionTriggerContainer;
 com.sun.star.lang.XMultiServiceFactory xMenuElementFactory =
 (com.sun.star.lang.XMultiServiceFactory)UnoRuntime.queryInterface(
 com.sun.star.lang.XMultiServiceFactory.class, xContextMenu);
 if (xMenuElementFactory != null) {
 // create root menu entry for sub menu and sub menu
 com.sun.star.beans.XPropertySet xRootMenuEntry =
 (XPropertySet)UnoRuntime.queryInterface(
 com.sun.star.beans.XPropertySet.class,
 xMenuElementFactory.createInstance ("com.sun.star.ui.ActionTrigger "));
 // create a line separator for our new help sub menu
 com.sun.star.beans.XPropertySet xSeparator =
 (com.sun.star.beans.XPropertySet)UnoRuntime.queryInterface(
 com.sun.star.beans.XPropertySet.class,
 xMenuElementFactory.createInstance("com.sun.star.ui.ActionTriggerSeparator"))
;

 Short aSeparatorType = new Short(ActionTriggerSeparatorType.LINE);

 xSeparator.setPropertyValue("SeparatorType", (Object)aSeparatorType);

 // query sub menu for index container to get access
 com.sun.star.container.XIndexContainer xSubMenuContainer =
 (com.sun.star.container.XIndexContainer)UnoRuntime.queryInterface(
 com.sun.star.container.XIndexContainer.class,
 xMenuElementFactory.createInstance(
 "com.sun.star.ui.ActionTriggerContainer"));

 // intialize root menu entry "Help"
 xRootMenuEntry.setPropertyValue("Text", new String("Help"));
 xRootMenuEntry.setPropertyValue("CommandURL", new String("slot:5410"));
 xRootMenuEntry.setPropertyValue("HelpURL", new String("5410"));
 xRootMenuEntry.setPropertyValue("SubContainer", (Object)xSubMenuContainer);

 // create menu entries for the new sub menu

 // intialize help/content menu entry
 // entry "Content"
 XPropertySet xMenuEntry = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xMenuElementFactory.createInstance (

320 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuInterceptorAction.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuInterceptorAction.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuInterceptorAction.html

 "com.sun.star.ui.ActionTrigger "));
 xMenuEntry.setPropertyValue("Text", new String("Content"));
 xMenuEntry.setPropertyValue("CommandURL", new String("slot:5401"));
 xMenuEntry.setPropertyValue("HelpURL", new String("5401"));

 // insert menu entry to sub menu
 xSubMenuContainer.insertByIndex (0, (Object)xMenuEntry);
 // intialize help/help agent
 // entry "Help Agent"
 xMenuEntry = (com.sun.star.beans.XPropertySet)UnoRuntime.queryInterface(
 com.sun.star.beans.XPropertySet.class,
 xMenuElementFactory.createInstance (
 "com.sun.star.ui.ActionTrigger "));
 xMenuEntry.setPropertyValue("Text", new String("Help Agent"));
 xMenuEntry.setPropertyValue("CommandURL", new String("slot:5962"));
 xMenuEntry.setPropertyValue("HelpURL", new String("5962"));

 // insert menu entry to sub menu
 xSubMenuContainer.insertByIndex(1, (Object)xMenuEntry);

 // intialize help/tips
 // entry "Tips"
 xMenuEntry = (com.sun.star.beans.XPropertySet)UnoRuntime.queryInterface(
 com.sun.star.beans.XPropertySet.class,
 xMenuElementFactory.createInstance(
 "com.sun.star.ui.ActionTrigger "));
 xMenuEntry.setPropertyValue("Text", new String("Tips"));
 xMenuEntry.setPropertyValue("CommandURL", new String("slot:5404"));
 xMenuEntry.setPropertyValue("HelpURL", new String("5404"));

 // insert menu entry to sub menu
 xSubMenuContainer.insertByIndex (2, (Object)xMenuEntry);
 // add separator into the given context menu
 xContextMenu.insertByIndex (0, (Object)xSeparator);
 // add new sub menu into the given context menu
 xContextMenu.insertByIndex (0, (Object)xRootMenuEntry);

 // The controller should execute the modified context menu and stop notifying other
 // interceptors.
 return com.sun.star.ui.ContextMenuInterceptorAction.EXECUTE_MODIFIED ;
 }
 }
 catch (com.sun.star.beans.UnknownPropertyException ex) {
 // do something useful
 // we used a unknown property
 }
 catch (com.sun.star.lang.IndexOutOfBoundsException ex) {
 // do something useful
 // we used an invalid index for accessing a container
 }
 catch (com.sun.star.uno.Exception ex) {
 // something strange has happend!
 }
 catch (java.lang.Throwable ex) {
 // catch java exceptions – do something useful
 }

 return com.sun.star.ui.ContextMenuInterceptorAction.IGNORED;
 }

4.8 File Naming Conventions
As a recommendation, UNO component libraries should be named according to the following
naming scheme:

<NAME>[<VERSION>].uno.(so|dll|dylib|jar)

This recommendation applies to shared libraries and Java archives,which are deployed by the
Extension Manager as described in section 5 Extensions.

This file name convention results in file names such as:

321

component.uno.so
component1.uno.dll
component0.1.3.uno.dylib
component.uno.jar

<NAME> should be a descriptive name, optionally extended by version information as shown
below, followed by the characters .uno and the necessary file extension.

The term .uno is placed next to the platform-specific extension to emphasize that this is a special
type of shared library, jar, or zip file.

Usually a shared library or jar has to be registered with UNO to be useful, as its shared library
interface only consists of the component operations.

Since the given naming scheme is only a suggestion, there might be component shared libraries
that do not contain the .uno addition in their names. Therefore, no tool should build assumptions
on whether a shared library name contains .uno or not.

<VERSION> is optional and should be in the form:
<VERSION> = <MAJOR> [.<MINOR> [.<MICRO>]]
<MAJOR> = <NUMBER>
<MINOR> = <NUMBER>
<MICRO> = <NUMBER>
<NUMBER> = 0 | 1–9 0–9*

Using the version tag in the file name of a shared library or jar is primarily meant for simple
components that are not part of an extension deployed by the Extension Manager. Such components
are usually made up of a single shared library, and different file names for different versions can
be useful, for instance in bug reports.

The version of components that are part of the OpenOffice.org installation is already well defined
by the version and build number of the installed OpenOffice.org itself.

It is up to the developer how the version scheme is used. You can count versions of a given compo-
nent shared library using MAJOR alone, or add MINOR and MICRO as needed.

 If version is used, it must be placed before the platform-specific extension, never after it. Under Linux and
Solaris, there is a convention to add a version number after the .so, but that version number has different
semantics than the version number used here. In short, those version numbers change whenever the shared
library's interface changes, whereas the UNO component interface with the component operations
component_getFactory() etc. never changes.

The following considerations give an overview of ways that a component can evolve:

A component shared library's interface, as defined by the component operations such as
component_getFactory() is assumed to be stable.

The UNO services offered by a component can change:

• compatibly : by changing an implementation in the component file but adhering to its specifica-
tion, or by adding a new UNO service implementation to a component file

• incompatibly: by removing an implementation, or by removing a UNO service from a compo-
nent

• indirectly compatibly: when one of the UNO services changes compatibility and the component
is adapted accordingly. This can happen when a service specification is extended by additional
optional interfaces, and the component is altered to support these interfaces.

322 OpenOffice.org 2.3 Developer's Guide • June 2007

When an implementation in a component file is changed, for instance when a bug is fixed, such a
change will typically be compatible unless clients made themselves dependent on the bug. This can
happen when clients considered the bug a feature or worked around the bug in a way that made
them dependent on the bug. Therefore developers must be careful to program according to the
specification, not the implementation.

Finally, a component shared library can change its dependencies on other shared libraries. Exam-
ples of such dependencies are:

C/C++ runtime libraries
such as libc.so.6, libstdc++.so.3.0.1, and libstlport_gcc.so

UNO runtime libraries
such as libcppu.so.3.1.0 and libcppuhelpergcc3.so.3.1.0

OpenOffice.org libraries
such as libsvx644li.so

Dependency changes are typically incompatible, as they rely on compatible or incompatible
changes of the component's environment.

4.9 Deployment Options for Components
Component are usually distributed and deployed as extensions (see chapter 5 Extensions).
However, by using legacy tools, such as regcomp, and regmerge, it is also possible to install
components, which can be more convenient during development.

4.9.1 Background: UNO Registries
This section explains the necessary steps to deploy new UNO components manually into an
installed OpenOffice.org. Background information is provided and the tools required to test
deployment are described. The developer and deployer of the component should be familiar with
this section. If the recommendations provided are accepted, interoperability of components of
different vendors can be achieved easily.

UNO registries store binary data in a tree-like structure. The stored data can be accessed within a
registry programmatically through the com.sun.star.registry.SimpleRegistry service,
however this is generally not necessary. Note that UNO registries have nothing to do with the
Windows registry, except that they follow a similar concept for data storage.

UNO-registries mainly store two types of data :

Type-library
To invoke UNO calls from BASIC or through an interprocess connection, the core UNO bridges
need information about the used data types. UNO stores this information into a type library, so
that the same data is reusable from any bridge. This is in contrast to the CORBA approach,
where code is generated for each data type that needs to be compiled and linked into huge
libraries. Every UNOIDL type description is stored as a binary large object (BLOB) that is inter-
preted by the com.sun.star.reflection.TypeDescriptionProvider service.

Information about registered components
One basic concept of UNO is to create an instance of a component simply by its service name
through the ServiceManager. The association between the service name and the shared library
or .jar-file where the necessary compiled code is found is stored into a UNO-registry.

323

http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/TypeDescriptionProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/TypeDescriptionProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/TypeDescriptionProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/registry/SimpleRegistry.html
http://api.openoffice.org/docs/common/ref/com/sun/star/registry/SimpleRegistry.html
http://api.openoffice.org/docs/common/ref/com/sun/star/registry/SimpleRegistry.html

The structure of this data is provided below. Future versions of OpenOffice.org will probably
store this information in an XML file that will make it modifiable using a simple text editor.

Both types of data are necessary to run a UNO-C++ process. If the types of data are not present, it
could lead to termination of the program. UNO processes in general open their registries during
startup and close them when the process terminates. Both types of data are commonly stored in a
file with an .rdb suffix (rdb=registry database), but this suffix is not mandatory.

UNO Type Library
All type descriptions must be available within the registry under the /UCR main key (UCR = Uno
Core Reflection) to be usable in a UNO C++ process . Use the regview tool to view the file <office-
path>/program/ types .rdb. The regview tool comes with the OpenOffice.org SDK.

For instance:

$ regview types.rdb /UCR

prints all type descriptions used within the office to stdout. To check if a certain type is included
within the registry, invoke the following command:

$ regview types.rdb /UCR/com/sun/star/bridge/XUnoUrlResolver

/UCR/com/sun/star/bridge/XUnoUrlResolver
 Value: Type = RG_VALUETYPE_BINARY
 Size = 461
 Data = minor version: 0
 major version: 1
 type: 'interface'
 name: 'com/sun/star/bridge/XUnoUrlResolver'
 super name: 'com/sun/star/uno/XInterface'
 Doku: ""
 number of fields: 0
 number of methods: 1
 method #0: com/sun/star/uno/XInterface resolve([in] string sUnoUrl)
 raises com/sun/star/connection/NoConnectException,
 com/sun/star/connection/ConnectionSetupException,
 com/sun/star/lang/IllegalArgumentException
 Doku: ""
 number of references: 0

The regview tool decodes the format of the BLOB containing the type description and presents it in
a readable form.

Component Registration
The UNO component provides the data about what services are implemented. In order not to load
all available UNO components into memory when starting a UNO process, the data is assembled
once during setup and stored into the registry. The process of writing this information into a
registry is called component registration. The tools used to perform this task are discussed below.

For an installed OpenOffice.org, the services.rdb contains the component registration information.
The data is stored within the /IMPLEMENTATIONS and /SERVICES key. The code below shows
a sample SERVICES key for the com.sun.star.io.Pipe service.

$ regview services.rdb /SERVICES/com.sun.star.io.Pipe

/SERVICES/com.sun.star.io.Pipe
 Value: Type = RG_VALUETYPE_STRINGLIST
 Size = 38
 Len = 1
 Data = 0 = "com.sun.star.comp.io.stm.Pipe"

The code above contains one implementation name, but it could contain more than one. In this
case, only the first is used. The following entry can be found within the IMPLEMENTATIONS section:

324 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/io/Pipe.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/Pipe.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/Pipe.html

$ regview services.rdb /IMPLEMENTATIONS/com.sun.star.comp.io.stm.Pipe

/IMPLEMENTATIONS/com.sun.star.comp.io.stm.Pipe
 / UNO
 / ACTIVATOR
 Value: Type = RG_VALUETYPE_STRING
 Size = 34
 Data = "com.sun.star.loader.SharedLibrary"
 / SERVICES
 / com.sun.star.io.Pipe
 / LOCATION
 Value: Type = RG_VALUETYPE_STRING
 Size = 8
 Data = "stm.dll"

The implementations section holds three types of data.

1. The loader to be used when the component is requested at runtime (here
com.sun.star.loader.SharedLibrary).

2. The services supported by this implementation.

3. The URL to the file the loader uses to access the library (the url may be given relative to the
OpenOffice.org library directory for native components as it is in this case).

4.9.2 Command Line Registry Tools
There are various tools to create, modify and use registries. This section shows some common use
cases. The regmerge tool is used to merge multiple registries into a sub-key of an existing or new
registry. For instance:

$ regmerge new.rdb / test1.rdb test2.rdb

merges the contents of test1.rdb and test2.rdb under the root key / of the registry database new.rdb .
The names of the keys are preserved, because both registries are merged into the root-key. In case
new.rdb existed before, the previous contents remain in new.rdb unless an identical key names exist
in test1.rdb and test2.rdb. In this case, the content of these keys is overwritten with the ones in
test1.rdb or test2.rdb. So the above command is semantically identical to:

$ regmerge new.rdb / test1.rdb
$ regmerge new.rdb / test2.rdb

The following command merges the contents of test1.urd and test2.urd under the key /UCR into the
file myapp_types.rdb.

$ regmerge myapp_types.rdb /UCR test1.urd test2.urd

The names of the keys in test1.urd and test2.urd should only be added to the /UCR key. This is a
real life scenario as the files produced by the idl-compiler have a .urd-suffix. The regmerge tool
needs to be run before the type library can be used in a program, because UNO expects each type
description below the /UCR key.

Component Registration Tool
Components can be registered using the regcomp tool. Below, the components necessary to estab-
lish an interprocess connection are registered into the myapp_services.rdb.

$ regcomp -register -r myapp_services.rdb \
 -c uuresolver.dll \
 -c brdgfctr.dll \
 -c acceptor.dll \
 -c connectr.dll \
 -c remotebridge.dll

325

http://api.openoffice.org/docs/common/ref/com/sun/star/loader/SharedLibrary.html
http://api.openoffice.org/docs/common/ref/com/sun/star/loader/SharedLibrary.html
http://api.openoffice.org/docs/common/ref/com/sun/star/loader/SharedLibrary.html

The \ means command line continuation. The option -r gives the registry file where the informa-
tion is written to. If it does not exist, it is created, otherwise the new data is added. In case there are
older keys, they are overwritten. The registry file (here myapp_services.rdb) must NOT be opened by
any other process at the same time. The option -c is followed by a single name of a library that is
registered. The -c option can be given multiple times. The shared libraries registered in the
example above are needed to use the UNO interprocess bridge.

Registering a Java component is currently more complex. It works only in an installed office envi-
ronment, the <OfficePath>/program must be the current working directory, the office setup must
point to a valid Java installation that can be verified using jvmsetup from <OfficePath>/program, and
Java must be enabled. See Tools - Options - General - Security. In OpenOffice.org2.0, make sure
that a Java is selected by using the Java panel of the options dialog (Tools-Options -
OpenOffice.org � Java).

The office must not run. On Unix, the LD_LIBRARY_PATH environment variable must addition-
ally contain the directories listed by the javaldx tool (which is installed with the office).

Copy the regcomp executable into the <officepath>/program directory. The regcomp tool must then be
invoked using the following parameters :

$ regcomp -register -r your_registry.rdb \
 -br <officepath>/program/services.rdb \
 -l com.sun.star.loader.Java2 \
 -c file:///d:/test/JavaTestComponent.jar

The option -r (registry) tells regcomp where to write the registration data and the -br (bootstrap
registry) option points regcomp to a registry to read common types from. The regcomp tool does not
know the library that has the Java loader. The -l option gives the service name of the loader to use
for the component that must be com.sun.star.loader.Java2. The option can be omitted for C++
components, because regcomp defaults to the com.sun.star.loader.SharedLibrary loader. The
option -c gives the file url to the Java component.

File urls can be given absolute or relative. Absolute file urls must begin with 'file:/// '. All other
strings are interpreted as relative file urls. The '3rdpartYcomp/filterxy.dll',
'../../3rdpartycomp/filterxyz.dll', and 'filterxyz.dll' are a few examples. Relative file urls are interpreted
relative to all paths given in the PATH variable on Windows and LD_LIBRARY_PATH variable on
Unix.

Java components require an absolute file URL for historical reasons.

 The regcomp tool should be used only during the development and testing phase of components. For
deploying final components, the Extension Manager should be used instead. See 5 Extensions.

UNO Type Library Tools
There are several tools that currently access the type library directly. They are encountered when
new UNOIDL types are introduced.

– idlc , Compiles .idl files into .urd-registry-files.

– cppumaker , Generates C++ header for a given UNO type list from a type registry used with the
UNO C++ binding.

– javamaker , Generates Java .class files for a given type list from a type registry.

– rdbmaker , Creates a new registry by extracting given types (including dependent types) from
another registry, and is used for generating minimal, but complete type libraries for compo-
nents. It is useful when building minimal applications that use UNO components.

– regcompare , Compares a type library to a reference type library and checks for compatibility.

326 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/loader/SharedLibrary.html
http://api.openoffice.org/docs/common/ref/com/sun/star/loader/SharedLibrary.html
http://api.openoffice.org/docs/common/ref/com/sun/star/loader/SharedLibrary.html

– regmerge , Merges multiple registries into a certain sub-key of a new or already existing registry.

4.9.3 Manual Component Installation

Manually Merging a Registry and Adding it to uno.ini or soffice.ini
Registry files used by OpenOffice.org are configured within the uno(.ini|rc) file found in the
program directory. After a default OpenOffice.org installation, the files look like this:
uno.ini :
[Bootstrap]
UNO_TYPES=$ORIGIN/types.rdb
UNO_SERVICES=$ORIGIN/services.rdb

The two UNO variables are relevant for UNO components. The UNO_TYPES variable gives a
space separated list of type library registries, and the UNO_SERVICES variable gives a space sepa-
rated list of registries that contain component registration information. These registries are opened
read-only. The same registry may appear in UNO_TYPES and UNO_SERVICES variables. The
$ORIGIN points to the directory where the ini/rc file is located.

OpenOffice.org uses the types.rdb as a type and the services.rdb as a component registration infor-
mation repository. When a programmer or software vendor releases a UNO component, the
following files must be provided at a minimum:

• A file containing the code of the new component, for instance a shared library, a jar file, or
maybe a python file in the future.

• A registry file containing user defined UNOIDL types, if any.

• (optional) A registry file containing registration information of a pre-registered component. The
registry provider should register the component with a relative path to be beneficial in other
OpenOffice.org installations.

The latter two can be integrated into a single file.

 In fact, a vendor may release more files, such as documentation, the .idl files of the user defined types, the
source code, and configuration files. While every software vendor is encouraged to do this, there are
currently no recommendations how to integrate these files into OpenOffice.org. These type of files are
ignored in the following paragraphs. These issues will be addressed in next releases of OpenOffice.org.

The recommended method to add a component to OpenOffice.org manually is described in the
following steps:

1. Copy new shared library components into the <OfficePath>/program directory and new Java
components into the <OfficePath>/program/classes directory.

2. Copy the registry containing the type library into the <OfficePath>/program directory, if needed
and available.

3. Copy the registry containing the component registration information into the
<OfficePath>/program directory, if required. Otherwise, register the component with the regcomp
command line tool coming with the OpenOffice.org SDK into a new registry.

4. Modify the uno(.ini|rc) file, and add the type registry to the UNO_TYPES variable and the
component registry to the UNO_SERVICES variable. The new uno(.ini|rc) might look like this:

[Bootstrap]
UNO_TYPES=$ORIGIN/types.rdb $ORIGIN/filterxyz_types.rdb
UNO_SERVICES=$ORIGIN/services.rdb $ORIGIN/filterxyz_services.rdb

327

After these changes are made, every office that is restarted can use the new component. The
uno(.ini|rc) changes directly affect the whole office network installation. If adding a component
only for a single user, pass the modified UNO_TYPES and UNO_SERVICES variables per
command line. An example might be:

$ soffice “-env:UNO_TYPES=$ORIGIN/types.rdb $ORIGIN/filterxyz_types.rdb“
 “-env:UNO_SERVICES=$ORIGIN/services.rdb
$ORIGIN/filter_xyz_services.rdb”).

4.9.4 Bootstrapping a Service Manager
Bootstrapping a service manager means to create an instance of a service manager that is able to
instantiate the UNO objects needed by a user. All UNO applications, that want to use the UnoUrl-
Resolver for connections to the office, have to bootstrap a local service manager in order to create a
UnoUrlResolver object. If developers create a new language binding, for instance for a scripting
engine, they have to find a way to bootstrap a service manager in the target environment.

There are many methods to bootstrap a UNO C++ application, each requiring one or more registry
files to be prepared. Once the registries are prepared, there are different options available to boot-
strap your application. A flexible approach is to use UNO bootstrap parameters and the
defaultBootstrap_InitialComponentContext() function.
#include <cppuhelper/bootstrap.hxx>

using namespace com::sun::star::uno;
using namespace com::sun::star::lang;
using namespace rtl;
using namespace cppu;
int main()
{
 // create the initial component context
 Reference< XComponentContext > rComponentContext =
 defaultBootstrap_InitialComponentContext();

 // retrieve the service manager from the context
 Reference< XMultiComponentFactory > rServiceManager =
 rComponentContext()->getServiceManager();

 // instantiate a sample service with the service manager.
 Reference< XInterface > rInstance =
 rServiceManger->createInstanceWithContext(
 OUString::createFromAscii("com.sun.star.bridge.UnoUrlResolver"),
 rComponentContext);

 // continue to connect to the office
}

No arguments, such as a registry name, are passed to this function. These are given using bootstrap
parameters . Bootstrap parameters can be passed through a command line, an . ini file or using envi-
ronment variables.

For bootstrapping the UNO component context, the following two variables are relevant:

1) UNO_TYPES
Gives a space separated list of type library registry files. Each registry must be given as an abso-
lute or relative file url. Note that some special characters within the path require encoding, for
example, a space must become a %20. The registries are opened in read-only.

2) UNO_SERVICES
Gives a space separated list of registry files with component registration information. The regis-
tries are opened in read-only. The same registry may appear in UNO_TYPES and
UNO_SERVICES variables.

An absolute file URL must begin with the file:/// prefix (on windows, it must look like
file:///c:/mytestregistry.rdb). To make a file URL relative, the file:/// prefix must be omitted. The rela-
tive url is interpreted relative to the current working directory.

328 OpenOffice.org 2.3 Developer's Guide • June 2007

Within the paths, use special placeholders.

Bootstrap variable Meaning

$SYSUSERHOME Path of the user's home directory (see osl_getHomeDir())

$SYSBINDIR Path to the directory of the current executable.

$ORIGIN Path to the directory of the ini/rc file.

$SYSUSERCONFIG Path to the directory where the user's configuration data is stored (see
osl_getConfigDir())

The advantage of this method is that the executable can be configured after it has been built. The
OpenOffice.org bootstraps the service manager with this mechanism.

Consider the following example:

A tool needs to be written that converts documents between different formats. This is achieved by
connecting to OpenOffice.org and doing the necessary conversions. The tool is named docconv. In
the code, the defaultBootstrap_InitialComponentContext() function is used as described
above to create the component context. Two registries are prepared: docconv_services.rdb with the
registered components and types.rdb that contains the types coming with OpenOffice.org. Both files
are placed beside the executable. The easiest method to configure the application is to create a
docconv(.ini|rc) ascii file in the same folder as your executable, that contains the following two
lines:
UNO_TYPES=$ORIGIN/types.rdb
UNO_SERVICES=$ORIGIN/docconv_services.rdb

No matter where the application is started form, it will always use the mentioned registries. Note
that this also works on different machines when the volume is mapped to different location mount
points as $SYSBINDIR is evaluated at runtime.

The second possibility is to set UNO_TYPES and UNO_SERVICES as environment variables, but
this method has drawbacks. All UNO applications started with this shell use the same registries.

The third possibility is to pass the variables as command line parameters, for instance
docconv -env:UNO_TYPES=$ORIGIN/types.rdb -env:
UNO_SERVICES=$ORIGIN/docconv_services.rdb

Note that on UNIX shells, you need to quote the $ with a backslash \.

The command line arguments do not need to be passed to the UNO runtime, because it is generally
retrieved from some static variables. How this is done depends on the operating system, but it is
hidden from the programmer. The docconv executable should ignore all command line parameters
beginning with '-env:'. The easiest way to do this is to ignore argc and argv[] and to use the
rtl_getCommandLineArg() functions defined in rtl/process.h header instead which automatically
strips the additional parameters.

1) Combine the methods mentioned above. Command line parameters take precedence over .ini
file variables and .ini file parameter take precedence over environment variables. That way, it is
possible to overwrite the UNO_SERVICES variable on the command line for one invocation of
the program only.

4.9.5 Special Service Manager Configurations
The com.sun.star.container.XSet interface allows the insertion or removal of
com.sun.star.lang.XSingleServiceFactory or com.sun.star.lang.XSingleComponentFac-
tory implementations into or from the service manager at runtime without making these changes
persistent. When the office applications terminate, all the changes are lost. The inserted object must

329

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XSet.html

support the com.sun.star.lang.XServiceInfo interface. This interface returns the same infor-
mation as the XServiceInfo interface of the component implementation which is created by the
component factory.

With this feature, a running office can be connected, a new factory inserted into the service
manager and the new service instantiated without registering it beforehand. This method of hard
coding the registered services is not acceptable with OpenOffice.org, because it must be extended
after compilation.

Java applications can use a native persistent service manager in their own process using JNI (see
3.4.1 Professional UNO - UNO Language Bindings - Java Language Binding), or in a remote process.
But note, that all services will be instantiated in this remote process.

Dynamically Modifying the Service Manager
Bootstrapping in pure Java is simple, by calling the static runtime method createInitialCompo-
nentContext() from the Bootstrap class. The following small test program shows how to insert
service factories into the service manager at runtime. The sample uses the Java component from
the section 4.5.6 Writing UNO Components - Simple Component in Java - Storing the Service Manager
for Further Use. The complete code can be found with the JavaComp sample component.

The example shows that there is the possibility to control through command line parameter,
whether the service is inserted in the local Java service manager or the remote office service
manager. If it is inserted into the office service manager, access the service through OpenOffice.org
Basic. In both cases, the component runs in the local Java process.

If the service is inserted into the office service manager, instantiate the component through
OpenOffice.org Basic calling createUnoService(" JavaTestComponentB"), as long as the Java
process is not terminated. Note, to add the new types to the office process by one of the above
explained mechanisms, use uno.ini.
 public static void insertIntoServiceManager(
 XMultiComponentFactory serviceManager, Object singleFactory)
 throws com.sun.star.uno.Exception {
 XSet set = (XSet) UnoRuntime.queryInterface(XSet.class, serviceManager);
 set.insert(singleFactory);
 }

 public static void removeFromServiceManager(
 XMultiComponentFactory serviceManager, Object singleFactory)
 throws com.sun.star.uno.Exception {
 XSet set = (XSet) UnoRuntime.queryInterface(XSet.class, serviceManager);
 set.remove(singleFactory);

 }

 public static void main(String[] args) throws java.lang.Exception {
 if (args.length != 1) {
 System.out.println("usage: RunComponent local|uno-url");
 System.exit(1);
 }
 XComponentContext xLocalComponentContext =
 Bootstrap.createInitialComponentContext(null);

 // initial serviceManager
 XMultiComponentFactory xLocalServiceManager = xLocalComponentContext.getServiceManager();

 XMultiComponentFactory xUsedServiceManager = null;
 XComponentContext xUsedComponentContext = null;
 if (args[0].equals("local")) {
 xUsedServiceManager = xLocalServiceManager;
 xUsedComponentContext = xLocalComponentContext;

 System.out.println("Using local servicemanager");
 // now the local servicemanager is used !
 }
 else {
 // otherwise interpret the string as uno-url
 Object xUrlResolver = xLocalServiceManager.createInstanceWithContext(
 "com.sun.star.bridge.UnoUrlResolver", xLocalComponentContext);

330 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html

 XUnoUrlResolver urlResolver = (XUnoUrlResolver) UnoRuntime.queryInterface(
 XUnoUrlResolver.class, xUrlResolver);
 Object initialObject = urlResolver.resolve(args[0]);
 xUsedServiceManager = (XmultiComponentFactory) UnoRuntime.queryInterface(
 XMultiComponentFactory.class, initialObject);

 System.out.println("Using remote servicemanager");
 // now the remote servicemanager is used.
 }

 // retrieve the factory for the component implementation
 Object factory = TestServiceProvider.__getServiceFactory(
 "componentsamples.TestComponentB", null, null);

 // insert the factory into the servicemanager
 // from now on, the service can be instantiated !
 insertIntoServiceManager(xUsedServiceManager, factory);

 // Now instantiate one of the services via the servicemanager !
 Object objTest= xUsedServiceManager.createInstanceWithContext(
 "JavaTestComponentB",xUsedComponentContext);

 // query for the service interface
 XSomethingB xs= (XSomethingB) UnoRuntime.queryInterface(
 XSomethingB.class, objTest);

 // and call the test method.
 String s= xs.methodOne("Hello World");
 System.out.println(s);

 // wait until return is pressed
 System.out.println("Press return to terminate");
 while (System.in.read() != 10);

 // remove it again from the servicemanager, otherwise we have
 // a dangling reference (in case we use the remote service manager)
 removeFromServiceManager(xUsedServiceManager, factory);

 // quit, even when a remote bridge is running
 System.exit(0);
 }

Creating a ServiceManager from a Given Registry File
To create a service manager from a given registry, use a single registry that contains the type
library and component registration information. Hard code the name of the registry in the program
and use the createRegistryServiceFactory() function located in the cppuhelper library.

#include <cppuhelper/servicefactory.hxx>

using namespace com::sun::star::uno;
using namespace com::sun::star::lang;
using namespace rtl;
using namespace cppu;
int main()
{
 // create the service manager on the registry test.rdb
 Reference< XMultiServiceFactory > rServiceManager =
 createRegistryServiceFactory(OUString::createFromAscii(“test.rdb”));

 // instantiate a sample service with the service manager.
 Reference< XInterface > rInstance =
 rServiceManger->createInstance(
 OUString::createFromAscii(“com.sun.star.bridge.UnoUrlResolver”));

 // continue to connect to the office
}

 This instantiates the old style service manager without the possibility of offering a component context. In
future versions, (642) you will be able to use the new service manager here.

331

4.10 The UNO Executable
In chapter 3.4.2 Professional UNO - UNO Language Bindings - C++ Language Binding, several
methods to bootstrap a UNO application were introduced. In this section, the option UNO execut-
able is discussed. With UNO executable, there is no need to write executables anymore, instead
only components are developed. Code within executables is locked up, it can only run by starting
the executable, and it can never be used in another context. Components offer the advantage that
they can be used from anywhere. They can be executed from Java or from a remote process.

For these cases, the com.sun.star.lang.XMain interface was introduced. It has one method:
/* module com.sun.star.lang.XMain */
interface XMain: com::sun::star::uno::XInterface
{
 long run([in] sequence< string > aArguments);
};

Instead of writing an executable, write a component and implement this interface. The component
gets the fully initialized service manager during instantiation. The run() method then should do
what a main() function would have done. The UNO executable offers one possible infrastructure
for using such components.

Basically, the uno tool can do two different things:

1) Instantiate a UNO component which supports the com.sun.star.lang.XMain interface and
executes the run() method.
// module com::sun::star::lang
interface XMain: com::sun::star::uno::XInterface
{
 long run([in] sequence< string > aArguments);
};

2) Export a UNO component to another process by accepting on a resource, such as a tcp/ip
socket or named pipe, and instantiating it on demand.

In both cases, the uno executable creates a UNO component context which is handed to the instan-
tiated component. The registries that should be used are given by command line arguments. The
goal of this tool is to minimize the need to write executables and focus on writing components. The
advantage for component implementations is that they do not care how the component context is
bootstrapped. In the future there may be more ways to bootstrap the component context. While
executables will have to be adapted to use the new features, a component supporting XMain can be
reused.

Standalone Use Case
Simply typing uno gives the following usage screen :

uno (-c ComponentImplementationName -l LocationUrl | -s ServiceName)
 [-ro ReadOnlyRegistry1] [-ro ReadOnlyRegistry2] ... [-rw ReadWriteRegistry]
 [-u uno:(socket[,host=HostName][,port=nnn]|pipe[,name=PipeName]);urp;Name
 [--singleaccept] [--singleinstance]]
 [-- Argument1 Argument2 ...]

Choosing the implementation to be instantiated
Using the option -s servicename gives the name of the service which shall be instantiated. The
uno executable then tries to instantiate a service by this name, using the registries as listed
below.

Alternatively, the -l and -c options can be used. The -l gives an url to the location of the shared
library or .jar file, and -c the name of the desired service implementation inside the component.
Remember that a component may contain more than one implementation.

332 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMain.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMain.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMain.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMain.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMain.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMain.html

Choosing the registries for the component context (optional)
With the option -ro, give a file url to a registry file containing component's registration informa-
tion and/or type libraries. The -ro option can be given multiple times. The -rw option can only
be given once and must be the name of a registry with read/write access. It will be used when
the instantiated component tries to register components at runtime. This option is rarely
needed.

Note that the uno tool ignores bootstrap variables, such as UNO_TYPES and UNO_SERVICES.

The UNO URL (optional)
Giving a UNO URL causes the uno tool to start in server mode, then it accepts on the connec-
tion part of the UNO URL. In case another process connects to the resource (tcp/ip socket or
named pipe), it establishes a UNO interprocess bridge on top of the connection (see also 3.3.1
Professional UNO - UNO Concepts - UNO Interprocess Connections). Note that urp should always
be used as protocol. An instance of the component is instantiated when the client requests a
named object using the name, which was given in the last part of the UNO URL.

Option --singleaccept
Only meaningful when a UNO URL is given. It tells the uno executable to accept only one
connection, thus blocking any further connection attempts.

Option --singleinstance
Only meaningful when a UNO URL is given. It tells the uno executable to always return the
same (first) instance of the component, thus multiple processes communicate to the same
instance of the implementation. If the option is not given, every getInstance() call at the
com.sun.star.bridge.XBridge interface instantiates a new object.

Option -- (double dash)
Everything following –- is interpreted as an option for the component itself. The arguments are
passed to the component through the initialize() call of com.sun.star.lang.XInitial-
ization interface.

 The uno executable currently does not support the bootstrap variable concept as introduced by 3.4.2 Profes-
sional UNO - UNO Language Bindings - C++ Language Binding. The uno registries must be given explicitly
given by command line.

The following example shows how to implement a Java component suitable for the uno executable.

import com.sun.star.uno.XComponentContext;
import com.sun.star.comp.loader.FactoryHelper;
import com.sun.star.lang.XSingleServiceFactory;
import com.sun.star.lang.XMultiServiceFactory;
import com.sun.star.registry.XRegistryKey;

public class UnoExeMain implements com.sun.star.lang.XMain
{
 final static String __serviceName = "MyMain";
 XComponentContext _ctx;

 public UnoExeMain(XComponentContext ctx)
 {
 // in case we would need the component context !
 _ctx = ctx;
 }

 public int run(/*IN*/String[] aArguments)
 {
 System.out.println("Hello world !");
 return 0;
 }

 public static XSingleServiceFactory __getServiceFactory(
 String implName, XMultiServiceFactory multiFactory, XRegistryKey regKey)
 {
 XSingleServiceFactory xSingleServiceFactory = null;

 if (implName.equals(UnoExeMain.class.getName()))
 {

333

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XBridge.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XBridge.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XBridge.html

 xSingleServiceFactory =
 FactoryHelper.getServiceFactory(
 UnoExeMain.class, UnoExeMain.__serviceName, multiFactory, regKey);
 }
 return xSingleServiceFactory;
 }

 public static boolean __writeRegistryServiceInfo(XRegistryKey regKey)
 {
 boolean b = FactoryHelper.writeRegistryServiceInfo(
 UnoExeMain.class.getName(),
 UnoExeMain.__serviceName, regKey);
 return b;
 }
}

The class itself inherits from com.sun.star.lang.XMain. It implements a constructor with the
com.sun.star.uno.XComponentContext interface and stores the component context for future
use. Within its run() method, it prints 'Hello World'. The last two mandatory functions are respon-
sible for instantiating the component and writing component information into a registry. Refer to
4.5.6 Writing UNO Components - Simple Component in Java - Storing the Service Manager for Further
Use for further information.

The code needs to be compiled and put into a .jar file with an appropriate manifest file:
RegistrationClassName: UnoExeMain

These commands create the jar:

javac UnoExeMain
jar -cvfm UnoExeMain.jar Manifest UnoExeMain.class

To be able to use it, register it with the following command line into a separate registry file (here
test.rdb). The <OfficePath>/program directory needs to be the current directory, and the regcomp and
uno tools must have been copied into this directory.

regcomp -register \
 -br <officepath>/program/services.rdb \
 -r test.rdb \
 -c file:///c:/devmanual/Develop/samples/unoexe/UnoExeMain.jar \
 -l com.sun.star.loader.Java2

The \ means command line continuation.

The component can now be run:

uno -s MyMain -ro types.rdb -ro services.rdb -ro test.rdb

This command should give the output "hello world !"

Server Use Case
This use case enables the export of any arbitrary UNO component as a remote server. As an
example, the com.sun.star.io.Pipe service is used which is already implemented by a compo-
nent coming with the office. It exports an com.sun.star.io.XOutputStream and a
com.sun.star.io.XInputStream interface. The data is written through the output stream into the
pipe and the same data from the input stream is read again. To export this component as a remote
server, switch to the <OfficePath>/program directory and issue the following command line.

i:\o641l\program>uno -s com.sun.star.io.Pipe -ro types.rdb -ro services.rdb -u
uno:socket,host=0,port=2002;urp;test

> accepting socket,host=0,port=2083...

Now a client program can connect to the server. A client may look like the following:
import com.sun.star.lang.XServiceInfo;
import com.sun.star.uno.XComponentContext;
import com.sun.star.bridge.XUnoUrlResolver;
import com.sun.star.io.XOutputStream;

334 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/io/XInputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XInputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XInputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XOutputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XOutputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XOutputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/Pipe.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/Pipe.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/Pipe.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMain.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMain.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMain.html

import com.sun.star.io.XInputStream;
import com.sun.star.uno.UnoRuntime;

// Note: This example does not do anything meaningful, it shall just show,
// how to import an arbitrary UNO object from a remote process.
class UnoExeClient {
 public static void main(String [] args) throws java.lang.Exception {
 if (args.length != 1) {
 System.out.println("Usage : java UnoExeClient uno-url");
 System.out.println(" The imported object must support the com.sun.star.io.Pipe service");
 return;
 }

 XComponentContext ctx =
 com.sun.star.comp.helper.Bootstrap.createInitialComponentContext(null);

 // get the UnoUrlResolver service
 Object o = ctx.getServiceManager().createInstanceWithContext(
 "com.sun.star.bridge.UnoUrlResolver" , ctx);
 XUnoUrlResolver resolver = (XUnoUrlResolver) UnoRuntime.queryInterface(
 XUnoUrlResolver.class, o);

 // connect to the remote server and retrieve the appropriate object
 o = resolver.resolve(args[0]);

 // Check if we got what we expected
 // Note: This is not really necessary, you can also use the try and error approach
 XServiceInfo serviceInfo = (XServiceInfo) UnoRuntime.queryInterface(XServiceInfo.class,o);
 if (serviceInfo == null) {
 throw new com.sun.star.uno.RuntimeException(
 "error: The object imported with " + args[0] + " did not support XServiceInfo", null);
 }

 if (!serviceInfo.supportsService("com.sun.star.io.Pipe")) {
 throw new com.sun.star.uno.RuntimeException(
 "error: The object imported with "+args[0]+" does not support the pipe service", null);
 }

 XOutputStream output = (XOutputStream) UnoRuntime.queryInterface(XOutputStream.class,o);
 XInputStream input = (XInputStream) UnoRuntime.queryInterface(XInputStream.class,o);

 // construct an array.
 byte[] array = new byte[]{1,2,3,4,5};

 // send it to the remote object
 output.writeBytes(array);
 output.closeOutput();

 // now read it again in two blocks
 byte [][] read = new byte[1][0];
 System.out.println("Available bytes : " + input.available());
 input.readBytes(read,2);
 System.out.println("read " + read[0].length + ":" + read[0][0] + "," + read[0][1]);
 System.out.println("Available bytes : " + input.available());
 input.readBytes(read,3);
 System.out.println("read " + read[0].length + ":" + read[0][0] +
 "," + read[0][1] + "," + read[0][2]);

 System.out.println("Terminating client");
 System.exit(0);
 }
}

After bootstrapping the component context, the UnoUrlResolver service is instantiated to access
remote objects. After resolving the remote object, check whether it really supports the Pipe service.
For instance, try to connect this client to a running OpenOffice.org � this check will fail. A byte
array with five elements is written to the remote server and read again with two readBytes()
calls. Starting the client with the following command line connects to the server started above. You
should get the following output:

I:\tmp>java UnoExeClient uno:socket,host=localhost,port=2083;urp;test
Available bytes : 5
read 2:1,2
Available bytes : 3
read 3:3,4,5
Terminating client

335

Using the uno Executable
The main benefit of using the uno tool as a replacement for writing executables is that the service
manager initialization is separated from the task-solving code and the component can be reused.
For example, to have multiple XMain implementations run in parallel in one process. There is more
involved when writing a component compared to writing an executable. With the bootstrap vari-
able mechanism there is a lot of freedom in bootstrapping the service manager (see chapter 3.4.2
Professional UNO - UNO Language Bindings - C++ Language Binding).

The uno tool is a good starting point when exporting a certain component as a remote server.
However, when using the UNO technology later, the tool does have some disadvantages, such as
multiple objects can not be exported or the component can only be initialized with command line
arguments. If the uno tool becomes insufficient, the listening part in an executable will have to be
re-implemented.

 To instantiate Java components in build version 641, you need a complete setup so that the uno executable
can find the java.ini file.

4.11 Accessing Dialogs
This chapter describes how UNO Components can interact with dialogs that have been created
with the Dialog Editor integrated in the OpenOffice.org Basic IDE. Before OpenOffice.org 2.0.4
dialogs designed with this Dialog Editor could only be reasonably used in the context of
OpenOffice.org Basic respectively in the scope of the Scripting Framework (see 19 Scripting Frame-
work). The reason for this restriction was the fact that only scripts managed by the Scripting
Franework could be assigned as action to control events. It was already possible to instantiate
dialogs using the com.sun.star.awt.XDialogProvider API, but there was no other way to
get call backs from the events as to directly add listeners using the corresponding AWT control
interfaces. This is a very inconvenient way to use dialogs created with the Dialog Editor.

From OpenOffice.org 2.0.4 also component methods can be bound to control events. The following
chapters describe both how the binding to component methods is done in Dialog Editor and how
the component has to be designed to use this mechanism.

4.11.1 Assigning Component Methods to Control Events
How a dialog is generally designed in the Basic IDE Dialog editor is described in 12.1
OpenOffice.org Basic and Dialogs - First Steps with OpenOffice.org Basic . The assignment of macros to
control events is also described there in the sub chapter Adding Event Handlers , but the Assign
Action dialog showed in the following illustration can also be used to bind component methods to
control events.

336 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogProvider.html

Instead of pressing the Macro... button the Component... button has to be used. It opens a Assign
Component dialog.

337

Illustration 4.11: Assign Action dialog

Illustration 4.12: Assign Component dialog

Besides the standard buttons this dialog only contains an edit field to enter the name of the
Component's method the event should be bound to. Unlike in the case of assigning macros it's not
possible to browse to a component's methods because at design time no component instance exists.
So the name has to be entered by hand.

The next illustration shows how the new assignment is shown in the Assign Action dialog.

 When designing dialogs that should be used for components, it could make sense to create a new library
first (see 12.2.1 OpenOffice.org Basic and Dialogs - OpenOffice.org Basic IDE - Managing Basic and Dialog Libraries
- Macro Organizer Dialog) and create the dialog there. Reason: The Standard library cannot be exported, but
exporting the library containing the dialog as extension can be very useful in order to deploy it together with
extension which contains the component.

The implementation of methods that should be assigned to events is explained in the following
chapter.

4.11.2 Using Dialogs in Components
In general components using dialogs are like any other component. But they need some additional
code to instantiate and display the dialog(s) to be used and to accept the events created by the
dialog controls.

Instantiate and display a dialog
To do this an extended version of the com.sun.star.awt.DialogProvider service - described in
chapter 19 Scripting Framework - has to be used. The extended service version
com.sun.star.awt.DialogProvider2 supports com.sun.star.awt.XDialogProvider2
providing an additional method com.sun.star.awt.XDialog createDialogWithHandler](...)

338 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 4.13: Assign Action dialog with assigned component method

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialog.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialog.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialog.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogProvider2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogProvider2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogProvider2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/DialogProvider2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/DialogProvider2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/DialogProvider2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/DialogProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/DialogProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/DialogProvider.html

that allows to pass an interface when creating the dialog. This interface will be used as event
handler and called if events are bound to the component.

The following code is take from the DialogComponent SDK example that can be found in
SDK/examples/DevelopersGuide/Components and shows how a dialog is created and displayed
using the DialogProvider2 service:
// XTestDialogHandler
public String createDialog(String DialogURL, XModel xModel, XFrame xFrame) {
 m_xFrame = xFrame;

 try {
 XMultiComponentFactory xMCF = m_xCmpCtx.getServiceManager();
 Object obj;

 // If valid we must pass the XModel when creating a DialogProvider object
 if(xModel != null) {
 Object[] args = new Object[1];
 args[0] = xModel;

 obj = xMCF.createInstanceWithArgumentsAndContext(
 "com.sun.star.awt.DialogProvider2", args, m_xCmpCtx);
 }
 else {
 obj = xMCF.createInstanceWithContext(
 "com.sun.star.awt.DialogProvider2", m_xCmpCtx);
 }

 XDialogProvider2 xDialogProvider = (XDialogProvider2)
 UnoRuntime.queryInterface(XDialogProvider2.class, obj);

 XDialog xDialog = xDialogProvider.createDialogWithHandler(DialogURL, this);
 if(xDialog != null)
 xDialog.execute();
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 return "Created dialog \"" + DialogURL + "\"";
}

The variable m_xCmpCtx is the com.sun.star.uno.XComponentContext interface passed to the
component while initialisation. If the dialog that should be created is placed inside a document a
com.sun.star.frame.XModel interface xModel representing this document has to be passed. It's
used as argument to initialise the DialogProvider service enabling the access to the document's
Dialog Libraries. If xModel is null the dialog has to be placed in the application library container.
This also has to be reflected in the DialogURL passed to the method.

Example code for a Basic/Dialog library Library1 placed in a document:
Sub TestDialogComponent()
 oComp = CreateUnoService("com.sun.star.test.TestDialogHandler")
 oComp.createDialog("vnd.sun.star.script:Library1.Dialog1?location=document", _
 ThisComponent, StarDesktop.getActiveFrame())
End Sub

Example code for a Basic/Dialog library Library1 placed in �My Macros�:
Sub TestDialogComponent()
 oComp = CreateUnoService("com.sun.star.test.TestDialogHandler")
 oComp.createDialog("vnd.sun.star.script:Library1.Dialog1?location=application", _
 null, StarDesktop.getActiveFrame())
End Sub

The dialog contained in the DialogComponent.odt sample document in SDK/examples/Develop-
ersGuide/Components/DialogComponent looks like this.

339

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html

The button labels show which component method is called in each case. The next chapter explains
how these methods can be implemented inside the component. Method �doit3� isn't implemented
at all. It's called in the sample dialog to show the resulting error message:

Accept events created by dialog controls
The event handling functionality can be implemented in two different ways. The test component
described here uses both ways.

The first way is to implement a the generic handler interface com.sun.star.awt.XDialogEven-
tHandler containing two methods:
interface XDialogEventHandler: com::sun::star::uno::XInterface
{
 bool callHandlerMethod
 (
 [in] com::sun::star::awt::XDialog xDialog,
 [in] any Event,
 [in] string MethodName
)

 sequence<string> getSupportedMethodNames();
}

340 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 4.14: Sample dialog

Illustration 4.15: Error message for not existing
method

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogEventHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogEventHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogEventHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogEventHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogEventHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogEventHandler.html

If an event occurs that is bound to a component method and the component implements this inter-
face the method callHandlerMethod will be called first with the method name used in the event
binding passed as MethodName parameter. In this example this would be:
xHandler.callHandlerMethod(xDialog, aEvent, “handleEvent”);

xDialog points to the same dialog instance that has been returned by the createDialogWithHan-
dler() method. Event represents the event object originally passed to the awt listener method. E.g.
in case of the �When initiating� event used in this example the corresponding awt listener interface
is com.sun.star.awt.XActionListener and an com.sun.star.awt.ActionEvent is passed to its
actionPerformed method when the event occurs. This ActionEvent object will also be passed to
callHandlerMethod. The Event object has to be passed as any, because other events use different
listener interfaces with other event object types. callHandlerMethod returns a bool value.
Returning true means that the event has been handled.

The method getSupportedMethodNames() should return the names of all methods handled by
callHandlerMethod(). It's intended for later use, especially to expand the user interface to allow
browsing a component's methods.

If the event has not been handled, because callHandlerMethod returns false or
com.sun.star.awt.XDialogEventHandler isn't supported at all by the component, the Dialog-
Provider uses the com.sun.star.beans.Introspection service to detect if one of the following
methods is provided by one of the interfaces supported by the component:
void [MethodName]
(
 [in] com::sun::star::awt::XDialog xDialog,
 [in] any aEvent
);

or

void [MethodName](void);

The second method is only used if the first one is not available. In this example the component
would have to support an interface containing a method handleEvent with one of these signa-
tures. It also has to support com.sun.star.lang.XTypeProvider because otherwise the introspec-
tion mechanism does not work.

As already mentioned the sample component supports both ways to implement handler methods.
com.sun.star.awt.XDialogEventHandler is implemented like this:
private String aHandlerMethod1 = "doit1";
private String aHandlerMethod2 = "doit2";

//XDialogEventHandler
public boolean callHandlerMethod(/*IN*/XDialog xDialog, /*IN*/Object EventObject,
 /*IN*/String MethodName) {
 if (MethodName.equals(aHandlerMethod1)) {
 showMessageBox("DialogComponent", "callHandlerMethod() handled \"" + aHandlerMethod1 + "\"");
 return true;
 }
 else if (MethodName.equals(aHandlerMethod2)) {
 showMessageBox("DialogComponent", "callHandlerMethod() handled \"" + aHandlerMethod2 + "\"");
 return true;
 }
 return false;
}

public String[] getSupportedMethodNames() {
 String[] retValue= new String[1];
 retValue[0]= aHandlerMethod1;
 retValue[1]= aHandlerMethod2;
 return retValue;
}

The implementation is very simple to show only the logic. For the two handled method names the
method displays a MessageBox and return true. Otherwise false is returned.

The other methods bound to the sample dialog control events are implemented using the other
way. The interface com.sun.star.test.XTestDialogHandler looks like this:

341

http://api.openoffice.org/docs/common/ref/com/sun/star/test/XTestDialogHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/test/XTestDialogHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/test/XTestDialogHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogEventHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogEventHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogEventHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Introspection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Introspection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Introspection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogEventHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogEventHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogEventHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/ActionEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/ActionEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/ActionEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XActionListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XActionListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XActionListener.html

module com { module sun { module star { module test {
 interface XTestDialogHandler {
 string createDialog([in] string DialogURL, [in] ::com::sun::star::frame::XModel xModel,
 [in] ::com::sun::star::frame::XFrame xFrame);
 void copyText([in] ::com::sun::star::awt::XDialog xDialog, [in] any aEventObject);
 void handleEvent();
 void handleEventWithArguments([in] ::com::sun::star::awt::XDialog xDialog,
 [in] any aEventObject);
 };
}; }; }; };

Besides the already described createDialog method three methods are defined to handle events.
handleEvent and handleEventWithArguments are implemented very simple and only display a
message box:
public void handleEvent() {
 showMessageBox("DialogComponent", "handleEvent() called");
}

public void handleEventWithArguments(XDialog xDialog, Object aEventObject) {
 showMessageBox("DialogComponent", "handleEventWithArguments() called\n\n" +
 "Event Object = " + aEventObject);
}

The method copy text shows, how the passed XDialog interface can be used to access controls on
the dialog itself. The details are not described here. For more information see 12.6 OpenOffice.org
Basic and Dialogs - Creating Dialogs at Runtime.
public void copyText(XDialog xDialog, Object aEventObject) {
 XControlContainer xControlContainer = (XControlContainer)UnoRuntime.queryInterface(
 XControlContainer.class, xDialog);

 String aTextPropertyStr = "Text";
 String aText = "";
 XControl xTextField1Control = xControlContainer.getControl("TextField1");
 XControlModel xControlModel1 = xTextField1Control.getModel();
 XPropertySet xPropertySet1 = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xControlModel1);
 try {
 aText = (String)xPropertySet1.getPropertyValue(aTextPropertyStr);
 }
 catch (Exception e) {
 e.printStackTrace();
 }

 XControl xTextField2Control = xControlContainer.getControl("TextField2");
 XControlModel xControlModel2 = xTextField2Control.getModel();
 XPropertySet xPropertySet2 = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xControlModel2);
 try {
 xPropertySet2.setPropertyValue(aTextPropertyStr, aText);
 }
 catch (Exception e) {
 e.printStackTrace();
 }

 showMessageBox("DialogComponent", "copyText() called");
}

Simple components using dialogs can be realised very easily by supporting XDialogEventHandler
as then no own interfaces have to be created. For complex components it could make more sense to
define handler interfaces to avoid a huge switch/case blocks in XDialogEventHandler:: callHan-
dlerMethod.

342 OpenOffice.org 2.3 Developer's Guide • June 2007

5 Extensions

An extension is a file intended for the distribution of code and / or data which is to be used by
OOo. The file has the file extension �oxt�(formerly .uno.pkg and .zip), and it acts as a container for
various items, such as libraries, JARs, configuration data, type libraries, Basic libraries, Basic
dialogs, etc. Before OOo can use any content of the extension, it needs to be installed by the Exten-
sion Manager.

5.1 Extension Manager
The Extension Manager is a tool for managing extensions and other deployable items, such as
separate libraries, JARs, configuration data files. This includes adding, removing, enabling and
disabling of these items.

The Extension Manager can be started from within the office by pressing the menu item Tools |
Extension Manager or by running the unopkg executable, which is contained in the program direc-
tory of the office installation.

When an extension is installed, then a copy is created which is kept either in the user installation or
the shared installation (<office-directory>/share). The original extension can therefore be (re)
moved after installation.

5.1.1 Deployment Items
The Extension Manager can be used to deploy various types of files. It is primarily used for exten-
sions. The latest incarnation of an extensions is the .oxt file, which has superseded �.uno.pkg� and
�.zip�.

Apart from extensions the Extension Manager can also manage these types:

• Configuration data (.xcu, .xcs)

• UNO Libraries (.dll /.so).

• JARs (.jar)

• Type libraries (.rdb)

5.1.2 Installing Extensions for All or a Single User
When installing an extension one has to decide if all possible users can use it or only oneself. In the
first case, users cannot enable, disable or remove the extension. This can only be done by the

343

administrator. That also means, that in case the extension changes the appearance (toolbars, menu
bar, etc.), all users are affected. They may, however, configure their office so that particular menu
or toolbar items are not shown. There is currently no way to centrally install an extension for
particular user groups.

If an extension is to be installed for all users or only for the single user is determined during instal-
lation. The person, who is going to install the extension, must select in the Extension Manager
dialog either �My Extensions� or �OpenOffice.org Extensions� before pressing the �Add...� button.
In the first case, the extension will only be installed for the current user, whereas in the latter case it
will be installed for all users.

When running unopkg in a windowless mode then the option �--shared� determines if an exten-
sion can be used by all users. For example:

[<OfficePath>/program] $ unopkg add --shared my_extension.oxt

would install my_extensions, so that it can be used by all users.

Extensions which are installed for all users are also called shared extensions, and those installed
only for the user (who installed it) are called user extensions.

5.1.3 Extension Manager in OpenOffice.org
Within a running office the Extension Manager is started through the menu item �Tools | Exten-
sion Manager ...�. When started in this way, extensions can only be installed as user extensions.
All items deployed under �OpenOffice.org Extensions cannot be modified. But it is possible to
export them.

5.1.4 unopkg
The unopkg executable offers another way to start the Extension Manager. It supersedes the
pkgchk executable which was used in OpenOffice.org 1.1.0 and older versions and which no
longer works.

In contrast to the Extension Manager in OpenOffice.org unopkg can also manage shared exten-
sions. For example:

[<OfficePath>/program] $ unopkg add --shared my_extension.oxt

installs my_extension.oxt for all users.

unopkg offers a windowless mode in which all interactions occurs through the console. This is the
default. If unopkg is started with the subcommand �gui� then the Extension Manager dialog
appears which is exactly the same as the one in OpenOffice.org.

[<OfficePath>/program] $ unopkg gui

The difference is that in the dialog all items deployed under �OpenOffice.org Extensions� can be
modified and new items can be added there as well. All actions, that is, adding, removing, etc. can
be done in the dialog. Therefore �unopkg gui� does not require any more parameters.

It follows a short overview what can be done with unopkg. Since there are many more commands,
have a look at the help text that can be obtained by calling �unopkg -h”.

First of all open a console and change into the program directory of the office installation.

Adding an extension for a single user:
[<OfficePath>/program] $ unopkg add my_extension.oxt

344 OpenOffice.org 2.3 Developer's Guide • June 2007

Adding an extension for all users:
[<OfficePath>/program] $ unopkg add --shared my_extension.oxt

Removing a user extension is done via the identifier of the extension (see 5.3 Extensions - Extension
Identifiers):

[<OfficePath>/program] $ unopkg remove my.domain.my_extension-id

Remove a shared extension:
[<OfficePath>/program] $ unopkg remove --shared my.domain.my_extension-id

Before you install an extension or other item for all users, make absolutely sure there are no running
instances of OpenOffice.org. unopkg cannot recognize if there are running instances of
OpenOffice.org from different users. Installing into a running office installation might cause incon-
sistencies and destroy your installation!

When a user starts OpenOffice.org and then starts unopkg, then the Extension Manager from the
office is used and unopkg terminates. Then, however, no shared extensions and other shared items
can be modified.

Although it is now possible to deploy �live� into a running OpenOffice.org process, there are
some limitations you should be aware of: Removing a type library from a running process is not
possible, because this may lead to crashes when the type is needed. Thus if you, for example,
uninstall a package that comes with a UNO type library, these types will vanish upon next process
startup, but not before.

There may also be problems with cached configuration data, because parts of the running process
do not listen for configuration updates (for example, menu bars). Most often, those parts read the
configuration just once upon startup.

5.1.5 Location of installed Extensions
Sometimes an extension developer needs to know the path to the root of his installed extension e.g.
to load some additional data. You can use the singleton PackageInformationProvider to get an
URL for an installed extension with a given Extension Identifier. For more information about
Extension Identifiers see 5.3 Extensions - Extension Identifiers. For more information see
com.sun.star.deployement.PackageInformationProvider and have a look at
com.sun.star.deployment.XPackageInformationProvider.
...
namespace css = com::sun::star;
css::uno::Reference< css::uno::XComponentContext > mxContext;
...
css::uno::Reference< css::deployment::XPackageInformationProvider >
 xInfoProvider(css::deployment::PackageInformationProvider::get(mxContext));

// "MY_PACKAGE_ID" is the identifier of the package where we want to get location from
rtl::OUString sLocation = xInfoProvider->getPackageLocation(

rtl::OUString::createFromAscii("MY_PACKAGE_ID"));
...

5.2 File Format
An extension is a zip file having a name that ends on �.oxt� (formerly �.uno.pkg� or �.zip�).
The file extension .oxt is associated with the MIME / media type vnd.openofficeorg.extension. An
extension can contain UNO components, type libraries, configuration files, dialog or basic libraries,
etc.

345

http://api.openoffice.org/docs/common/ref/com/sun/star/deployment/XPackageInformationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/deployment/XPackageInformationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/deployment/XPackageInformationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/deployement/PackageInformationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/deployement/PackageInformationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/deployement/PackageInformationProvider.html

An extension should also contain a description.xml (see 5.5 Extensions - description.xml) and must
contain a directory META-INF (all uppercase). The META-INF directory contains a manifest.xml
which lists all items and their media-type.

For backward compatibility, legacy bundles (extension uno.pkg, .zip) that have been formerly deployed
using pkgchk are deployable, too. Migrate legacy bundles to the current .oxt format. This can easily be done
using the GUI, exporting a legacy bundle as .an .oxt file. When a legacy bundle is exported, a
manifest.xml file is generated, enumerating the detected items of the bundle.

Depending on the media-type the respective file needs to be treated particularly. For example a
UNO component needs to be registered before it can be used. All media types which does not
require a particular handling of the file are ignored currently (and actually need not be contained
in the manifest.xml).

It follows a description of possible extension items and their media-types:

Shared Library UNO Components
The media-type for a shared library UNO component is �application/vnd.sun.star.uno-compo-
nent;type=native�, for example,

<manifest:file-entry manifest:media-type="application/vnd.sun.star.uno-component;type=native"
 manifest:full-path="myComponent.uno.so"/>

Shared Library UNO Components for particular Platforms
When you implement a UNO native component, for example, a .dll or .so file, then this file is
only deployable on that specific platform. It is often convenient to package a bundle for
different platforms. For instance, you compile your component for x86 Linux, Solaris SPARC
and Windows. You have to tell the Extension Manager which version of your component file
corresponds to which platform via a platform attribute supplied with the media-type, for
example,

<manifest:file-entry manifest:media-type=
 "application/vnd.sun.star.uno-component;type=native;platform=Windows"
 manifest:full-path="windows/mycomp.uno.dll"/>
<manifest:file-entry manifest:media-type=
 "application/vnd.sun.star.uno-component;type=native;platform=Linux_x86"
 manifest:full-path="linux/myComp.uno.so"/>
<manifest:file-entry manifest:media-type=
 "application/vnd.sun.star.uno-component;type=native;platform=Solaris_SPARC"
 manifest:full-path="solsparc/myComp.uno.so"/>

RDB Type Library
The media-type for a UNO RDB type library is �application/vnd.sun.star.uno-
typelibrary;type=RDB�, for example,

<manifest:file-entry manifest:media-type="application/vnd.sun.star.uno-typelibrary;type=RDB"
 manifest:full-path="myTypes.uno.rdb"/>

Jar Type Library
The media-type for a UNO Jar typelibrary is �application/vnd.sun.star.uno-
typelibrary;type=Java�, for example,

<manifest:file-entry manifest:media-type="application/vnd.sun.star.uno-typelibrary;type=Java"
 manifest:full-path="myTypes.uno.jar"/>

Keep in mind that the RDB variant of that type library must be deployed also. This is currently
necessary, because your Java UNO types may be referenced from native UNO code.

Uno Jar Components
The media-type for a UNO Jar component is �application/vnd.sun.star.uno-
component;type=Java�, for example,

346 OpenOffice.org 2.3 Developer's Guide • June 2007

<manifest:file-entry manifest:media-type="application/vnd.sun.star.uno-component;type=Java"
 manifest:full-path="myComponent.uno.jar"/>

UNO Python Components
unopkg now supports registration of Python components (.py files). Those files are registered
using the com.sun.star.loader.Python loader. For details concerning Python-UNO, please
refer to http://udk.openoffice.org/python/python-bridge.html.
The media-type for a UNO Python component is �application/vnd.sun.star.uno-
component;type=Python�, for example,

<manifest:file-entry manifest:media-type="application/vnd.sun.star.uno-component;type=Python"
 manifest:full-path="myComponent.uno.py"/>

OpenOffice.org Basic Libraries
OpenOffice.org Basic libraries are linked to the basic library container files. Refer to 12
OpenOffice.org Basic and Dialogs for additional information.
The media-type for a OpenOffice.org Basic Library is �application/vnd.sun.star.basic-library�,
for example,

<manifest:file-entry manifest:media-type="application/vnd.sun.star.basic-library"
 manifest:full-path="myBasicLib/"/>

Dialog Libraries
Dialog libraries are linked to the basic dialog library container files. Refer to 12 OpenOffice.org
Basic and Dialogs for additional information.
The media-type for a dialog library is �application/vnd.sun.star.dialog-library�, for example,

<manifest:file-entry manifest:media-type="application/vnd.sun.star.dialog-library"
 manifest:full-path="myDialog/"/>

Configuration Data Files
The media-type for a configuration data file is �application/vnd.sun.star.configuration-data�,
for example,

<manifest:file-entry manifest:media-type="application/vnd.sun.star.configuration-data"
 manifest:full-path="myData.xcu"/>

Configuration Schema Files
The media-type for a configuration schema file is �application/vnd.sun.star.configuration-
schema�, for example,

<manifest:file-entry manifest:media-type="application/vnd.sun.star.configuration-schema"
 manifest:full-path="mySchema.xcs"/>

Be careful not to install schemata (.xcs files) which contain the same elements (oor:package,
oor:name) but have different definitions.

Extension Tooltip Description
If you want to add a tooltip description (which shows up in the balloon help of a bundle node
in the Extension Manager dialog), then you can do so by specifying localized UTF-8 files, for
example,

<manifest:file-entry manifest:media-type="application/vnd.sun.star.package-bundle-description;locale=en"
 manifest:full-path="readme.en" />
<manifest:file-entry manifest:media-type="application/vnd.sun.star.package-bundle-description;locale=de"
 manifest:full-path="readme.de" />
manifest:media-type="application/vnd.sun.star.package-bundle-description"
 manifest:full-path="readme.txt" />

The best matching locale (against the current installation's locale) is taken. The locale is of the
form "locale=language-country-variant".

All other contents of the extension are simply copied into the Extension Manager cache. You can,
for instance, deploy an image for add-on menus within a package, or any other file needed by your

347

http://udk.openoffice.org/python/python-bridge.html
http://udk.openoffice.org/python/python-bridge.html
http://udk.openoffice.org/python/python-bridge.html

component. The OpenOffice.org configuration is used to find out in which path this file is located
in a particular installation.
When you define a package containing additional files, include an .xcu configuration data file,
which points to your files. Use a variable %origin% as a placeholder for the exact path where the
file will be copied by the Extension Manager. When unopkg installs the data, it replaces the path
with anURL containg a macro an writes into the configuration. This URL has to be expanded
before it is a valid file URL. This can be done using the com.sun.star.util.MacroExpander service.
The %origin% variable is, for instance, used by the ImageIdentifier property of add-on menus
and toolbar items, which is described in the 4.7.3 Writing UNO Components - Integrating Components
into OpenOffice.org - User Interface Add-Ons - Configuration section.

5.3 Extension Identifiers
Extensions now have unique identifiers. This removes the previous restriction that no two exten-
sions with identical file names can be deployed.

Technically, an extension identifier is a finite sequence of Unicode scalar values. Identifier identity
is element-by-element identity of the sequences (no case folding, no normalization, etc.). It is
assumed that extension writers cooperate to keep extension identifiers unique. By convention, use
lowercase reversed-domain-name syntax (e.g., �org.openoffice.�) prefixes to generate unique
(but still humanly comprehensible) identifiers. When you write an extension, use the reversed
domain name of a site you controll (and not �org.openoffice.�) as prefix. Identifiers starting
with the prefix �org.openoffice.legacy.� are reserved for legacy extensions (see next).

The extension identifier is obtained from the description.xml contained in the extension. If the
extension does not specify such an explicit identifier, then an implict identifier is generated by
prepending �org.openoffice.legacy.� to the (obvious sequence of Unicode scalar values repre-
senting the) file name of the extension. (Uniqueness of identifiers is then guaranteed by the
assumption underlying legacy extension management that no two legacy extensions have the same
file name.)

5.4 Extension Versions
Extensions are often improved over time. That is, publishers want to ship new versions of the same
extension with added functionality and/or bug fixes. Adding extension versions allows publishers
to ship new versions, and allows [PRODCUTNAME] to detect and handle the case that an exten-
sion installed by the user is an update of an existing extension.

Technically, an extension version v is defined as an infinite sequence of non-negative integers v =
�v0, v1, ...� where all but a finite number of elements have the value zero. A total order is defined on
versions via lexicographical comparison. A textual representation of a version v = �v0, v1, ...� is a
finite string built from the BNF
version ::= [element (“.” element)*]
element ::= (“0” | “1” | “2” | “3” | “4” | “5” | “6” | “7” | “8” | “9”)+

of n ? 0 elements where each element is a decimal representation of vi for 0 ? i < n, and each vi = 0
for i ? n.

The extension version is obtained from the description.xml contained in the extension. If the exten-
sion does not specify such an explicit version, then an implict textual version representation of the
empty string (representing a version of all zeroes) is assumed.

348 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/util/MacroExpander.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/MacroExpander.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/MacroExpander.html

No general semantics are prescribed to versions, other than the total order which determines
whether one version is less than, equal to, or greater than another version, respectively. However,
extension publishers are encouraged to use the widely accepted three-level scheme of major
(incompatible changes), minor (compatible changes), micro (bug fixes) where applicable.

5.5 description.xml
The description.xml is a means to provide additional useful information, such as dependencies,
license and update information. It will be extended to support new features in the future. The file
must be located in the root of the extension and the name is case sensitive.

The description.xml is searched case sensitive in an oxt package. This is important to know when
you package your extensions content into a new oxt package.

5.5.1 Description of XML Elements

Element <description>
XPath: /description

Parent element: document root

Child elements:

<registration> (page 350)

<dependencies> (page 351)

<update-information> (page 351)

<description> is the root element of the description.xml.

Table 1 Attributes of <description>

349

Attribute Description

xmlns The default namespace of element description and all children must be defined as

"http://openoffice.org/extensions/description/2006"

xmlns:dep The namespace for dependency information must also be defined as

"http://openoffice.org/extensions/description/2006"

xmlns:xlink The xlink namespace must be defined as

"http://www.w3.org/1999/xlink"

other
namespace defi-
nitions

Other namespaces can be added as necessary

Element <identifier>
XPath: /description/identifer

Parent: <description> (page 349)

Child elements: none

Table 2 Attributes of <identifier>

Attribute Description

value Required. The extension identifier.

Element <version>
XPath: /description/version

Parent: <description> (page 349)

Child elements: none

Table 3 Attributes of <version>

Attribute Description

value Required. A textual representation of the extension version.

Element <registration>
XPath: /description/registration

Parent: <description> (page 349)

Child elements:

<simple-license> (page 351)

350 OpenOffice.org 2.3 Developer's Guide • June 2007

http://openoffice.org/extensions/description/2006
http://openoffice.org/extensions/description/2006
http://openoffice.org/extensions/description/2006
http://openoffice.org/extensions/description/2006
http://openoffice.org/extensions/description/2006
http://openoffice.org/extensions/description/2006

The registration element currently only contains the <simple-license> element. If the
<registration> element exists, then it must have a child element. For more information about using
licenses see chapter 5.6.

Element <dependencies>
XPath: /description/dependencies

Parent: <description> (page 349)

Child elements:

<OpenOffice.org-minimal-version> (page 352)

others

Element <update-information>
XPath: /description/update-information

Parent: <description> (page 349)

Child elements:

<src> (page 352)

<update-information> must have one or more <src> children. The second, third, etc. element are
regarded as fallback, that is, the elements provide URLs to mirrors. The Extension Manager will
try to get update information by using a URL and only use a different URL if an error occurred. That
is, if for example the first URL references an atom feed that does not contain any references at all,
but is a valid feed, then the Extension Manager assumes that there are no update information
available. Then URLs from other <src> elements are not examined. Therefore the update information
referenced by every URL must be identical. For more information about online updates of exten-
sions see chapter 5.9.

Element <simple-license>
XPath: /description/registration/simple-license

Parent: <registration> (page 350)

Child elements:

<license-text> (page 353)

The element contains the <license-text> elements, determines if all user must agree to the license,
or just the person who installs it, and determines a default <license-text> element .

If the <simple-license> element exists, then it must have at least one child element.

351

Table 4 Attributes of <simple-license>

Attribute Description

accept-by Required.Value is either �user� or �admin�. �user� means that every user has to
agree to the license. That is, the extension can only be installed as user extension but
not as shared extension. If it has the value �admin� then it can be deployed as shared
extension as well. In that case only the person who installs it has to agree to the
license. Individual users will not be asked to accept the license. They can use the
extension right away. In case the value is �user� and the extension is being
installed as user extension then the user must always agree to the license.

default-license-id Required. Determines what <license-text> is used if no <license-text>
element has a lang attribute whoose value matches the locals of OOo. There must
always be exactly one <license-text> element whith a license-id attribute
whoose value matches that of the default-license-id. The type is xsd:IDREF

suppress-on-update Optional. When the attribute is not provided then the value �false� is assumed.
The value true indicates that the license for this extension will not be displayed
during installation when the same extension (same id but probably different
version) is already installed. This applies for the automatic update as well as for
manually installing an extension. The version of the already installed extension
does not matter. Suppressing the license can be useful during the online update,
because otherwise the update operation could be interrupted by many license
dialogs.

Element <OpenOffice.org-minimal-version>
XPath: /description/dependencies/OpenOffice.org-minimal-version

Parent: <dependencies> (page 351)

Child elements: none

Table 5 Attributes of <OpenOffice.org-minimal-version>

Attribute Description

xmlns:dep The namespace for dependency information (inherited from
<description>, see page 349) must be defined as

"http://openoffice.org/extensions/description/2006"

dep:name Required. The string �OpenOffice.org value� (where value is the
value of the attribute value).

dep:OpenOffice.org-minimal-version Optional. This attribute should never be used with this element.

value Required. The required underlying OpenOffice.org version (�2.1�,
�2.2�, etc.), starting with OpenOffice.org 2.1.

Element <src>
XPath: /description/update-information/src

Parent: <update-information> (page 351)

Child elements: none

352 OpenOffice.org 2.3 Developer's Guide • June 2007

http://openoffice.org/extensions/description/2006
http://openoffice.org/extensions/description/2006
http://openoffice.org/extensions/description/2006

Table 6 Attributes of <src>

Attribute Description

xlink:href Required. The value is a URL which provides the update information directly or an atom
feed which in turn references the update information. The URL can point directly to a file
or it may invoke code, such as a servlet, cgi, etc, that returns the atom feed or the update
information.

Element <license-text>
XPath: /description/registration/simple-license/license-text

Parent: <simple-license> (page 351)

Child elements: none

The element contains information about where to find the file containing the license text, which
language it uses, and if this element is the �default� <license-text>

Table 7 Attributes of <license-text>

Attribute Description

xlink:href Required. The value is a relative URL to the file which contains the license text. The base
URL is the URL of the root directory of the extension. That is, if the extension has been
unzipped, then the resulting directory is the root directory.

lang Required. A language identifier according to RFC 3066. Values can be for example: en,
en-US, en-US-variant, etc. Currently OOo does not make use of variants.

license-id Optional. However one license-text element must have this attribute and the value must
match the value of the default-license-id attribute of the <simple-license>
element. The type is xsd:ID.

5.5.2 Example
<?xml version="1.0" encoding="UTF-8"?>
<description xmlns="http://openoffice.org/extensions/description/2006"
xmlns:d="http://openoffice.org/extensions/description/2006"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 <version value="1.0" />

 <dependencies>
 <OpenOffice.org-minimal-version value="2.2" d:name="OpenOffice.org 2.2"/>
 </dependencies>

 <update-information>
 <src xlink:href="http://extensions.openoffice.org/testarea/desktop/license/update/lic3.update.xml"
/>
 </update-information>

 <registration>
 <simple-license accept-by="admin" default-license-id="en-NZ" suppress-on-update="true" >
 <license-text xlink:href="registration/license_de-DE.txt" lang="de-DE" />
 <license-text xlink:href="registration/license_en-GB.txt" lang="en-GB" />
 <license-text xlink:href="registration/license_en-NZ.txt" lang="en-NZ" license-id="en-NZ" />
 <license-text xlink:href="registration/license_en-US.txt" lang="en-US" />
 </simple-license>
 </registration>
</description>

353

This description.xml contains these information:

• The version is 1.0.

• It only works with OpenOffice.org 2.2 and better.

• It supports the update feature and update information can be obtained at the specified address.

• When this extension is installed as shared extension then a license text is being displayed.
Different localizations of the license text are available.

5.6 Simple License
This feature is about displaying a license text to the user during installation. The user can agree or
decline the license, where in the latter case the installation will be aborted. It is called �Simple
License� because there is no tamper resistant mechanism that prevents the installation in case the
user does not agree to the license. It also does not do anything more than just displaying a license
text. However it provides a way to use localized licenses. More on that later.

The license text is displayed either in a dialog or in the console dependent on the way the package
manager was started. When it was started by the tools->Package Manager menu item or by
invoking unopkg gui in the console then a dialog is used. By using unopkg add the license text will
be displayed in the console and user input has to be done through the same.

The license dialog or the license text in the console is displayed when the extension is being
installed. Currently there are two modes to install extensions, user mode and shared mode. An exten-
sion that was installed in user mode (let's call it a user extension) can only be used by just that person
who installed it. If the extension was installed in shared mode (let's call it a shared extension), then it
can be used by all users. Since the license text is only displayed during installation, all users who
are using a shared extension will not see any license text (except the user who installed this shared
extension). However, the publisher of the extension may think it necessary that everyone who
wants to use it has to agree to the license first. For this purpose, he can mark the extension accord-
ingly. This extension can then only be installed in user mode and not in shared mode. Likewise the
extension can be marked indicating that only the person who installs it needs to agree to the
license. Such an extension can be installed in both modes. But when installing in user mode then
every user has to agree to the license nonetheless.

Here is an example of the description.xml:

<?xml version="1.0" encoding="UTF-8"?>
<description xmlns="http://openoffice.org/extensions/description/2006"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 <registration>
 <simple-license accept-by="user" default-license-id="de">
 <license-text xlink:href="registration/license_de.txt" lang="de" license-id="de" />
 <license-text xlink:href="registration/license_en_US.txt" lang="en-US" />
 </simple-license>
 </registration>
</description>

In this example, the license would have to be agreed to by all users (that means no shared mode
installation). This is indicated by the value �user� of the attribute accept-by in the <simple-
license> element. The attribute could also have the value �admin�, which would indicate that the
license needs only be agreed to by the person who installs it.

354 OpenOffice.org 2.3 Developer's Guide • June 2007

The <license-text> elements contain information about the files which contain the text that is
displayed. The content of these files must be UTF-8 encoded. It is displayed exactly as it is in the
file. That is, no formatting occurs. There can be one to many <license-text> elements, where
each element provides information about a different language of the license text. The attribute
xlink:href contains a relative URL (relative to the root directory of the extension) which points to
a file which countains the license text in exacty one language. Which language is indicated by lang
attribute.

If the package manager does not find a <license-text> element which matches the locale of OOo
then it will pick the <license-text> that is marked as the default language. This mark is
expressed by the license-id attribute of <license-text> and the default-license-id attribute
of the <simple-license> element. There must always be exactly one <license-text> whose
attribute value is the same as that from <simple-license>. This <license-text> element is then
used as the default.

5.6.1 Determining the Locale of the License
The locale used by OOo and the license text files is expressed by a language string according to
RFC 3066. This string contains the language and can optionally contain a country and further infor-
mation. Let's assume that the office uses britisch english (en-GB) end the extension has two license
text files, one in german (de), which is also the default, and the other in english from New Zealand
(en-NZ). Obviously there is no perfekt match, since en-GB is not en-NZ. But we would not want to
use the default yet, because en-NZ is most probably closer to en-GB as german. Therefore we use
an algorithm that tries to find a �close match� of the local before it resorts to the default. Here is
the algorithm:

In order to find the appropriate <license-text> element, the values of lang attribute are
compared with the office's Locale. Both are represented as strings according to RFC3066. The
comparison is done case sensitive.

Input to the algorithm:

● All license-text elements.

● The locale of the office

Output of the algoritm:

● A license-text element

Algorithm:

1. The language, country and variant part of the office's locale are used to find a matching
license-text. If there is an exact match then the respective license-text is selected
as output and we are done. Only the first match is used.

2. The language and country part of the office's locale are used to find a matching
license-text. If there is an exact match then the respective license-text is selected
as output and we are done.

3. The language and country part of the office's locale are used to find a matching
license-text. This time, we try to match only the language and country parts. For
example, the office locale strings �en-US�, �en-US-east� match the lang attribute with the
values �en-US-north�, �en-US-south�,etc. The first license-text with a matching lang
attribute is selected as output. If there is a match then we are done.

355

4. Only the language part of the office's locale is used to find a matching license-text. If
there is an exact match then the respective license-text is selected as output and we
are done. Only the first match is used.

5. Only the language part of the office's locale is used to find a matching license-text.
This time, we try to match only the language part. For example, the office locale strings
�en�, �en-US�, �en-US-east� match the lang attribute with the values �en-GB�,�en-GB-
north�, etc. The first license-text with a matching lang attributed is selected as
output. If there is a match then we are done.

6. The license-text element which is marked as �default� will be selected. That is, the
value of the attribute license-id must match the default-license-id of the
simple-license element.

The following example show what values would match.

Example 1: Locale of OOo is en-US and the relevant part of the description.xml is:
<simple-license accept-by="user" default-license-id="en-US" >
 <license-text xlink:href="lic_en-GB" lang="en-GB" />
 <license-text xlink:href="lic_en-US" lang="en-US" license-id="en-US" />
</simple-license>

The <license-text> with lang=�en-US� will be selected.

Example 2: Locale of OOo is en-US and the relevant part of the description.xml is:
<simple-license accept-by="user" default-license-id="en-NZ" >
 <license-text xlink:href="lic_en-GB" lang="en-GB" />
 <license-text xlink:href="lic_en-NZ" lang="en-NZ" license-id="en-NZ" />
</simple-license>

The <license-text> with lang=�en-GB� will be selected.

Example 3: Locale of OOo is en-US and the relevant part of the description.xml is:
<simple-license accept-by="user" default-license-id="en-NZ" >
 <license-text xlink:href="lic_en" lang="en" />
 <license-text xlink:href="lic_en-GB" lang="en-GB" />
 <license-text xlink:href="lic_en-NZ" lang="en-NZ" license-id="en-NZ" />
</simple-license>

The <license-text> with lang=�en� will be selected.

Example 4: Locale of OOo is de-DE and the relevant part of the description.xml is:
<simple-license accept-by="user" default-license-id="en-NZ" >
 <license-text xlink:href="lic_en" lang="en" />
 <license-text xlink:href="lic_en-GB" lang="en-GB" />
 <license-text xlink:href="lic_en-NZ" lang="en-NZ" license-id="en-NZ" />
</simple-license>

The <license-text> with lang=�en-NZ� will be selected.

5.7 Dependencies
One can imagine a large variety of dependencies an extension can have on its environment: avail-
ability of certain UNO types and services, availability of features only present since some specific
version of OOo, availability of other installed extensions, availability of third-party libraries, etc.

To support this, a mechanism is introduced so that extensions can bring along a specification of
their dependencies. When a user wants to install an extension, the application first checks whether
all dependencies are met. If not, an error dialog is displayed informing the user that the extension
could not be installed.

The only actual dependency currently defined is <OpenOffice.org-minimal-version value=�X�>,
where X is the required underlying OpenOffice.org version (�2.1�, �2.2�, etc.), starting with

356 OpenOffice.org 2.3 Developer's Guide • June 2007

OpenOffice.org 2.1. (Even if an extension is installed in a derived product like StarOffice, this
dependency is on the underlying OpenOffice.org version.)

OOo 2.0.3 and earlier are not prepared to correctly handle extensions with dependencies. In
OOo 2.0.3 and earlier, if a .uno.pkg (or .zip) extension specifies any dependencies, they are
effectively ignored and the extension is installed nonetheless. An .oxt extension cannot be
installed at all in OOo 2.0.3 and earlier. So, if an extension shall run in any OOo version, it should
be named .uno.pkg and should not specify any dependencies; if an extension shall only run in
OOo 2.0.4 and later, it should be named .oxt and should not specify any dependencies; and if an
extension shall only run in a future OOo version, it should be named .oxt and should specify the
appropriate dependencies (which will be defined by the time the given OOo version is available).

There is a certain dilemma: On the one hand, nothing is yet known about the kinds of dependen-
cies that will be defined in the future. On the other hand, at least some information about the
unsatisfied dependencies of a future extension must be displayed in OOo 2.0.4. Therefore, each
dependency specified by an extension must contain a human-readable (non-localized, English)
name that can be displayed to the user, conveying at least rudimentary information about the
nature of the unsatisfied dependency. Future versions of OOo that already know a certain kind of
dependency are expected to display more detailed information.

Likewise, when new dependencies are defined over time, old versions of OOo will not know about
them. Those old OOo will thus reject extensions making use of those dependencies, even if the old
OOo version would actually satisfy the dependencies. Therefore, each dependency specified by an
extension may optionally contain an OpenOffice.org-minimal-version attribute that speci-
fies the minimal version of OOo that would satisfy the dependency. Old versions of OOo that do
not know the given dependency will then check for the optional attribute and, if present, neverthe-
less accept the dependency if the given version is large enough. This feature is only supported
since OOo 2.3.

Within the description.xml, dependencies are recorded as follows: An XML element whose name
consists of the namespace name http://openoffice.org/extensions/description/2006
and the local part dependencies may appear at most once as a child of the root element. This
element has as its element content an arbitrary number of child elements that are not further
constrained expect for the following: Each such child element should have an attribute whose
name consists of the namespace name http://openoffice.org/extensions/descrip-
tion/2006 and the local part name, and it may optionally have an attribute whose name consists
of the namespace http://openoffice.org/extensions/description/2006 and the local
part OpenOffice.org-minimal-version. Each such child element represents one depen-
dency, and the value of its name attribute shall contain the human-readable dependency name
(and the value, after normalization, should not be empty).

If an extensions is either not of type .oxt, .uno.pkg, or .zip, or does not contain a
description.xml, or the description.xml does not contain a dependencies element, or the depen-
dencies element does not contain any child elements, then the extension does not specify any
dependencies.

5.8 System Integration
When installing OpenOffice.org, the installation routine is adding information to the system which
can be used by other software products to install extensions. For example, double-clicking on an
extension in a file browser should start the Extension Manager and install the extension. Also mail
clients and web browser should offer a way of installing the extension, when it comes as an attach-
ment of an e-mail or is the target of a link.

357

Extension which are installed by way of using the system integration are always installed as user
extensions.

The system integration is available since OOo 2.2.

5.9 Online Update of Extensions
Extensions are often improved over a period of time. That is, publishers ship new versions of the
same extension with added functionality and/or bug fixes. Currently users must update their
extensions manually, that is, find out where to get updates, obtain the updates, remove the old
extensions, install the new extension. This feature will make updating easier. Users can run the
update mechanism from the Extension Manager. A dialog will show available updates and the
user will be able to choose which to install.

More particular information for this feature can be found in the specification at:

http://specs.openoffice.org/appwide/packagemanager/online_update_for_extensions.odt

Currently the update mechanism completely replaces an installed extension. That is, the update is
actually a complete new extension which could also be installed separately without replacing an
earlier version of this extension.

5.9.1 Running Online - Update
The update procedure needs to be started by the user in the Extension Manager. One can update
all installed extensions by pressing the �Updates� button or select particular extensions, press the
right mouse button and select �Update� in the context menu. The extension manager will then try
to obtain update information for the affected extension. If it finds that a new version of an extension
is available then it will be displayed in the update window.

In some cases an update cannot be installed, for example because the installed extension is shared
by all users and the current user does not have permission to manage shared extensions. In this
case a message to this regard is displayed in the window. To update shared extensions one needs
to close OpenOffice.org and run unopkg gui. Then the user has access to all extensions.

An extension may also not be installable, because it has unfulfilled dependencies. For example, the
extensions requires a particular version of OpenOffice.org.

The user can determine which of the updates he wants to install by checking them. When the
�Download and Installation� button is pressed then, as the name suggests, the extensions are being
downloaded and installed.

5.9.2 Concept
The actual download location of an update is contained in the update information which is typically
a xml file which is hosted on a server. Every update information contains only information for
exactly one extension. The most important information are the location of the update and the
version of this extension.

The Extension Manager needs to get hold of the update information in order to decide if the respec-
tive extension is a valid update. For example, it only makes sense to take a version into account
that is greater than the version of the already installed extension. The information where the

358 OpenOffice.org 2.3 Developer's Guide • June 2007

http://specs.openoffice.org/appwide/packagemanager/online_update_for_extensions.odt

update information is located is contained in the description.xml of each extension. In particular the
children of the <update-information> element (see page 351), contain URLs which reference the
update information. The Extension Manager uses these URL to download the update information and
later uses the information in the update information to download the respective extension.

In case that an extension does not contain a description.xml or the description.xml does not contain
the <update-information> element, the Extension Manager uses a default location to get update
information. This location is build-in, and is therefore determined by the publisher of
OpenOffice.org. Currently this information is contained in the version.(ini|rc) of the the office
installation.

Now the attentive reader may be wondering, because it was mentioned before that the update infor-
mation only contain information for just one extension. How come that just one build-in URL can
be used to get information for multiple extensions? The answer is that there is a way to bundle
several update information in one piece of data. This is done by using an XML atom feed which can
reference multiple update information. For example a feed could reference multiple update informa-
tion, which refer all to an extension with the same Id but have different versions. It could also
contain references to update information of distinct extensions (different Id). Then the Extensions
Manager will pick out the information it needs.

359

Not only the build-in URL can reference an atom feed but also every extension.

5.9.3 Example Scenario for Providing Updates

Using an Atom Feed
By using an atom feed one has greater flexibility in terms of where the actual updates are hosted.
For example, a company which has published many extensions, may utilize just one atom feed
which are referenced by all extensions. The location of this atom feed must be well chosen, because
changing it may break the automatic update. Then the Extension Manager cannot obtain update
information for these extensions anymore. For this reason, the company could set up a dedicated
server which is guaranteed to be available in the foreseeable future. The actual extensions can then
be hosted on different servers. The atom feed file needs only be edited if an update information file is
moved to a different place, or when update information for new extensions become available.

If no actual update is available, for example, there is just version 1.0, then the update information
could still refer to this extension. This does not do any harm because the Extension Manager
compares the version number of the installed extension and the version which is contained in the
update information, in order to display only real updates.

The location of the extension used as update could be the same as the location where customers
download the extension for the first time. For example, there could be a web site which contains
links to extensions. Let's assume one link is:

http://mycomp/extension.oxt

The extension references a feed at:

http://openoffice.org/extensions/updatefeed.xml

The feed contains the reference to the update information:

http://mycomp/updates/extension.update.xml

and this file refers to the update which is again:

http://mycomp/extension.oxt

If now version 2.0 of the extension becomes available, then the publisher could simply replace the
extension at http://mycomp/extension.oxt and change the update information so that it reflects the
new version. This way, users download always the latest version from the website and the Exten-
sion Manager can use this extension as update for an older version which is already installed.

5.9.4 Migration of Update Information
I could become necessary to change the server which hosts the update feed or update information. If
this results in a different URL for these files, then the automatic update will not work. Therefore
the following procedure is recommended.

1. Plan for a transition period, that is long enough for most users to get a new update.

2. Set up the new server, or the locations for hosting the update information, and run both servers in
parallel. That is, the same update information and updates should be available from both servers.

3. Prepare new versions for extensions that contain an URL to the new server.

360 OpenOffice.org 2.3 Developer's Guide • June 2007

4. Switch of the old server after the transition period. Users, which have obtained the update, will
be able to use the update mechanism as before. All other users will not be able to get an update
anymore.

5.9.5 Description of the Update Information
If the update information can be contained in a file which can be directly accessed through a URL
or are generated on demand (HTTP get request). If it is a file then it could be named according to
this pattern:

<extension_file_name>.update.xml

For example, the update information file for the extension myextension.oxt is
myextension.update.xml. The .oxt file extension is not used.

It follows the description of the XML structure of the update information data:

Element <description>
XPath: /description

Parent element: document root

Child elements:

<identifier> (page 361)

<version> (page 362)

<update-download> (page 362)

<dependencies> (page 362)

<description> is the root element of the update information XML document.

Table 8Attribute <description>

Attribute Description

xmlns The default namespace of element description and all children must be defined
as

"http://openoffice.org/extensions/update/2006"

xmlns:dep The namespace for dependency information must be defined as

"http://openoffice.org/extensions/description/2006"

xmlns:xlink The xlink namespace must be defined as

"http://www.w3.org/1999/xlink"

other namespace defini-
tions

Other namespaces can be added as necessary.

Element <identifier>
XPath: /description/identifier

Parent element: <description> (page 361)

361

http://openoffice.org/extensions/description/2006
http://openoffice.org/extensions/description/2006
http://openoffice.org/extensions/description/2006
http://openoffice.org/extensions/update/2006
http://openoffice.org/extensions/update/2006
http://openoffice.org/extensions/update/2006

Child elements: none

Table 9 Attributes of <identifier>

Attribute Description

value Required. The extension identifier.

Element <version>
XPath: /description/version

Parent element: <description> (page 361)

Child elements: none

Table 10 Attributes of <version>

Attribute Description

value Required. A textual representation of the extension version.

Element <update-download>
XPath: /description/update-download

Parent element: <description> (page 361)

Child elements:

<src> (page 362)

<update-download> must have one or more <src> children. The second, third, etc. <src> element
are regarded as fallback, that is, the elements provide URLs to mirrors. The Extension Manager
will try to download the extension by using the first URL and only uses the next URL if an error
occurred, for example because the the connection was interrupted.

Element <dependencies>
XPath: /description/dependencies

Parent element: <description> (page 361)

Child elements:

<dep:OpenOffice.org-minimal-version> (page 363)

others

Element <src>
XPath: /description/update-download/src

Parent element: <update-download> (page 362)

Child elements: none

362 OpenOffice.org 2.3 Developer's Guide • June 2007

Table 11 Attributes of <src>

Attribute Description

xlink:href Required. The value is a URL which refers to the extension

Element <dep:OpenOffice.org-minimal-version>
XPath: /description/dependencies/dep:OpenOffice.org-minimal-version

Parent element: <dependencies> (page 362)

Child elements: none

Table 12 Attributes of <dep:OpenOffice.org-minimal-version>

Attribute Description

xmlns:dep The namespace for dependency information (inherited from <description>, see
page 361) must be defined as

"http://openoffice.org/extensions/description/2006"

dep:name Required. The string �OpenOffice.org value� (where value is the value of the
attribute value).

value Required. The required underlying OpenOffice.org version (�2.1�, �2.2�, etc.),
starting with OpenOffice.org 2.1.

5.9.6 Description of Atom Feed
The description of the atom feed is available at:

http://wiki.services.openoffice.org/wiki/Update_Notification_Protocol

5.9.7 Examples

description.xml Containing Direct Reference to the Update
Information
The following content of a description.xml directly references update information:
<?xml version="1.0" encoding="UTF-8"?>
<description xmlns="http://openoffice.org/extensions/description/2006"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 <version value="1.0" />

 <update-information>
 <src
xlink:href="http://extensions.openoffice.org/testarea/desktop/simple/update/plain1.update.xml" />
 <src
xlink:href="http://extensions.mirror.openoffice.org./testarea/desktop/simple/update/plain1.update.xml" /
>
 </update-information>
</description>

The second src element contains a URL to a mirror which will be used by the Extension Manager if
the location referenced by the URL in the first src element cannot be reached.

363

http://wiki.services.openoffice.org/wiki/Update_Notification_Protocol
http://openoffice.org/extensions/description/2006
http://openoffice.org/extensions/description/2006
http://openoffice.org/extensions/description/2006

This is the content of plain1.update.xml:
<?xml version="1.0" encoding="UTF-8"?>
<description xmlns="http://openoffice.org/extensions/update/2006"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 <identifier value="org.openoffice.legacy.plain1.oxt"/>
 <version value="2.0" />
 <update-download>
 <src xlink:href="http://extensions.openoffice.org/testarea/desktop/simple/update/plain1.oxt" />
 </update-download>
</description>

The src element contains a URL to version 2.0 of plain1.oxt. Plain1.oxt has the identifier
org.openoffice.legacy.plain1.oxt because it does not define an identifier in its description.xml.
Otherwise the identifier would be the same as the one in the description.xml.

Using the Atom Feed
This is the content of the description.xml of feed1.oxt which references an atom feed:
<?xml version="1.0" encoding="UTF-8"?>
<description xmlns="http://openoffice.org/extensions/description/2006"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 <version value="1.0" />
 <update-information>
 <src xlink:href="http://extensions.openoffice.org/testarea/desktop/updatefeed/update/feed1.xml" />
 </update-information>
</description>

The feed:
<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom" xml:lang="en-US">

 <title>Extensions Update Feed</title>
 <link rel="alternate" type="text/html"
href="http://update.services.openoffice.org/ooo/snapshot.html"/>
 <updated>2006-11-06T18:30:02Z</updated>
 <author>
 <name>The OpenOffice.org Project</name>
 <uri>http://openoffice.org</uri>
 <email>updatefeed@openoffice.org</email>
 </author>
 <id>urn:uuid:a4ccd383-1dd1-11b2-a95c-0003ba566e9d</id>
 <entry>
 <title>feed1.oxt version 2.0 available</title>
 <link rel="alternate" type="text/html"
 href="http://extensions.openoffice.org"/>
 <id>urn:uuid:a4ccd383-1dd1-11b2-a95c-0003ba566e9f</id>
 <category term="org.openoffice.legacy.feed1.oxt" label="feed1.oxt" />
 <updated>2006-11-06T18:30:02Z</updated>
 <summary>Click here to go to the download page.</summary>
 <content type="application/xml"
src="http://extensions.openoffice.org/testarea/desktop/updatefeed/update/feed1.update.xml" />
 </entry>
 <entry>
 <title>feed2.oxt version 2.0 available</title>
 <link rel="alternate" type="text/html"
 href="http://extensions.openoffice.org"/>
 <id>urn:uuid:a4ccd383-1dd1-11b2-a95c-0003ba566eaf</id>
 <category term="org.openoffice.legacy.feed2.oxt" label="feed2.oxt" />
 <updated>2006-11-06T18:30:02Z</updated>
 <summary>Click here to go to the download page.</summary>
 <content type="application/xml"
src="http://extensions.openoffice.org/testarea/desktop/updatefeed/update/feed2.update.xml" />
 </entry>
</feed>

The feed contains two entry elements and each references the update information for a different
extensions. It could, however, also reference the update information for two different versions of the
same extension.

The update information for the version of feed1.oxt:
<?xml version="1.0" encoding="UTF-8"?>
<description xmlns="http://openoffice.org/extensions/update/2006"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 <identifier value="org.openoffice.legacy.feed1.oxt"/>

364 OpenOffice.org 2.3 Developer's Guide • June 2007

 <version value="2.0" />
 <update-download>
 <src
xlink:href="http://extensions.openoffice.org/testarea/desktop/updatefeed/update/feed1.oxt" />
 </update-download>
</description>

5.10 Options Dialog
Extensions can add options pages to OOo's options dialog. It is also possible to start an options
dialog from within the Extension Manager on behalf of a particular extensions. An options page
represents a child window that is displayed within the options dialog. An extension can provide
multiple options pages. It can determine that they can be added to already existing nodes, such as
�OpenOffice.org Writer� or �Internet Settings�. It is also possible to create completely new nodes.

The specification for this feature can be found at:

http://specs.openoffice.org/appwide/packagemanager/options_dialog_for_extensions.odt

In the following paragraphs we will show what has to be done in order to add options pages to an
extension. Along the way we will go into some details where necessary. It is assumed that the
reader has already knowledge about extension programming and that he or she knows how the
OOo's registry (including xcs and xcu files) works.

A note about writing some terms. When we refer to elements from the configuration schema of
OOo then we use the respective uppercase names, for example Node, Module. The plural will
expressed by adding a pipe symbol an the respective postfix, for example Node|s, Module|s.

5.11 Creating the GUI of the Options Page
The GUI of an options page needs to be created by the dialog editor of OOo. Exporting the dialog
will result in saving a .xdl file and perhaps multiple .properties files. The xdl file contains the
description of the dialog in XML whereas the properties files contain localized strings. For
example, if the dialog is named Dialog1 and it contains strings which are localized for German and
US � English, then you will obtain these files:

Dialog1.xdl

Dialog1_de_DE.properties

Dialog1_en-US.properties

Please make sure that you have set the property �With title bar� to �no� for the whole dialog.

The exported files can be anywhere in the extensions, except in META-INF. They must also be in
the same directory.

The options dialog will use the service com.sun.star.awt.ContainerWindowProvider to create the
options pages. The service constructors takes an URL to the xdl file and an an event handler
component. The latter will be used to process events which have been defined in the dialog editor
for particular controls. It is also used for saving and loading the data of the controls which are on
the options pages.

365

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/ContainerWindowProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/ContainerWindowProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/ContainerWindowProvider.html
http://specs.openoffice.org/appwide/packagemanager/options_dialog_for_extensions.odt

5.12 Saving and Reading Data for the Options Page
An options page typically allows the user to enter some data, which of course must be saved when
the user presses the OK button. When the options page is displayed it should show the data which
the user entered previously. In case nothing has ever been entered, the options page could show
some �default� data or nothing at all.

How the data is saved and where it is stored is not covered by the specification. It only defines the
events �ok�, �initialize�, and �back� which the extension needs to process in order to save the
entered data, initialize the controls with data, or restore the state of the controls with the previ-
ously saved data. The �ok� and �back� events are triggered by the �OK� and �Back� button of the
options dialog. �initialize� is called before the options page is being displayed. In most cases
�initialize� and �back� have the same meaning.

In order to receive these events one has to provide a service that implements the interface
com.sun.star.awt.XContainerWindowEventHandler. The component is then installed like any
other component. That is, one provides for example a jar file or a dll and adds the proper entries to
the manifest.xml.

The action events are processed in the com.sun.star.awt.XContainerWindowEventHandler.call-
HandlerMethod. This method takes three parameter. The first is a com.sun.star.awt.XWindow
which represents the dialog for which the event is called. The second is an com.sun.star.uno.Any,
which describes the actual event. Therefore the IDL calls it the �EventObject�. The last parameter is
a string which contains a �method name�. This method may not exists, but the name identifies an
action which should be invoked.

In case of our previously mentioned events the method is called with the respective XWindow
interface, a method name of �external_event�, and an any containing either �ok�, �back�, or
�initialize�. For example, the java code could look like this:
 public boolean callHandlerMethod(com.sun.star.awt.XWindow aWindow,
 Object aEventObject, String sMethod)
 throws WrappedTargetException {
 if (sMethod.equals("external_event")){
 try {
 return handleExternalEvent(aWindow, aEventObject);
 } catch (com.sun.star.uno.RuntimeException re) {
 throw re;
 } catch (com.sun.star.uno.Exception e) {
 throw new WrappedTargetException(sMethod, this, e);
 }
 } else if (sMethod.equals("another_method_name")){

...
 }

 return true;
 }

 private boolean handleExternalEvent(com.sun.star.awt.XWindow aWindow, Object aEventObject)
 throws com.sun.star.uno.Exception {
 try {
 String sMethod = AnyConverter.toString(aEventObject);
 if (sMethod.equals("ok")) {
 saveData(aWindow);
 } else if (sMethod.equals("back") || sMethod.equals("initialize")) {
 loadData(aWindow);
 }
 } catch (com.sun.star.lang.IllegalArgumentException e) {
 throw new com.sun.star.lang.IllegalArgumentException(
 "Method external_event requires a string in the event object argument.", this,

 (short) -1);
 }

The method saveData and loadData need to be implemented according to where the data actually
is stored. In most cases the OOo's registry is a suitable place. Then, of course, one needs to provide
a configuration schema (requires an appropriate entry in the manifest.xml as well).

For example:
<?xml version="1.0" encoding="UTF-8"?>

366 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XContainerWindowEventHandler/callHandlerMethod.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XContainerWindowEventHandler/callHandlerMethod.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XContainerWindowEventHandler/callHandlerMethod.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XContainerWindowEventHandler/callHandlerMethod.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XContainerWindowEventHandler/callHandlerMethod.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XContainerWindowEventHandler/callHandlerMethod.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XContainerWindowEventHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XContainerWindowEventHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XContainerWindowEventHandler.html

<oor:component-schema xmlns:oor="http://openoffice.org/2001/registry"
xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
oor:name="ExtensionData" oor:package="org.openoffice.desktop.deployment.options" xml:lang="en-US">
 <info>
 <author></author>
 <desc>Contains the options data used for the test extensions.</desc>
 </info>
 <templates>
 <group oor:name="Leaf">
 <info>

<desc>The data for one leaf.</desc>
 </info>
 <prop oor:name="String0" oor:type="xs:string">
 <value></value>
 </prop>
 <prop oor:name="String1" oor:type="xs:string">
 <value></value>
 </prop>
 <prop oor:name="String2" oor:type="xs:string">
 <value></value>
 </prop>
 <prop oor:name="String3" oor:type="xs:string">
 <value></value>
 </prop>
 <prop oor:name="String4" oor:type="xs:string">
 <value></value>
 </prop>
 </group>
 </templates>
 <component>
 <group oor:name="Leaves">
 <node-ref oor:name="Writer1" oor:node-type="Leaf" />
 <node-ref oor:name="Writer2" oor:node-type="Leaf" />

<!-- -->
 </group>
 </component>
</oor:component-schema>

Please make sure that the package (oor:package) together with the name (oor:name) for this
schema are unique. For example, it should start with YOUR reversed domain name (do not use
org.openoffice in your code), followed by the product name and other values which together
uniquely identify this registry node.

 In the example I have defined a group �Leaves�, which contains several entries and which are all
of the same type. Each entry holds the data for one options page. In this case, each options page
may provide five different strings.

If a new version of the extension uses the same schema, then data, which have been entered by a
user for the previous version, will be automatically applied for the new version. If this is not
wanted then one need to provide a new schema. In our case we could just change the attribute
oor:component-schema@ oor:name to a value, for example, ExtensionData2.

Now the question is, how one can access the controls on the options page in order to set the data or
read from them. The following code example shows the whole service as Java implementation.
Please have look at the loadData and saveData method. Please be aware that is is only an example
and may need to be adapted to personal needs.

package com.sun.star.comp.extensionoptions;

import com.sun.star.lib.uno.helper.Factory;
import com.sun.star.lib.uno.helper.WeakBase;
import com.sun.star.lang.XMultiComponentFactory;
import com.sun.star.lang.XSingleComponentFactory;
import com.sun.star.lang.XMultiServiceFactory;
import com.sun.star.lang.WrappedTargetException;
import com.sun.star.lang.IllegalArgumentException;
import com.sun.star.lang.XInitialization;
import com.sun.star.lang.XTypeProvider;
import com.sun.star.lang.XServiceInfo;
import com.sun.star.lang.WrappedTargetException;
import com.sun.star.uno.UnoRuntime;
import com.sun.star.uno.Any;
import com.sun.star.uno.AnyConverter;
import com.sun.star.uno.XComponentContext;
import com.sun.star.uno.Exception;
import com.sun.star.registry.XRegistryKey;

367

import com.sun.star.awt.XContainerWindowEventHandler;
import com.sun.star.awt.XControl;
import com.sun.star.awt.XControlModel;
import com.sun.star.awt.XControlContainer;
import com.sun.star.container.XNameAccess;
import com.sun.star.container.NoSuchElementException;
import com.sun.star.beans.PropertyValue;
import com.sun.star.beans.PropertyState;
import com.sun.star.beans.XPropertySet;
import com.sun.star.beans.UnknownPropertyException;
import com.sun.star.beans.PropertyVetoException;
import com.sun.star.util.XChangesBatch;

/** A handler which supports multiple options pages which all
 * have the same controls.
 */
public class OptionsEventHandler {

 public static class _OptionsEventHandler extends WeakBase
 implements XServiceInfo, XContainerWindowEventHandler {

 static private final String __serviceName =
 "com.sun.star.comp.extensionoptions.OptionsEventHandler";

 private XComponentContext m_cmpCtx;

 private XMultiComponentFactory m_xMCF;

 private XNameAccess m_xAccessLeaves;

 /**Names of supported options pages.
 */
 private String[] m_arWindowNames = {
 "Writer1", "Writer2", "Writer3", "Calc1", "Calc2", "Calc3",
 "Draw1", "Draw2", "Draw3", "Node1_1", "Node1_2", "Node1_3",
 "Node2_1", "Node2_2", "Node2_3", "Node3_1", "Node3_2", "Node3_3"};

 /**Names of the controls which are supported by this handler. All these
 *controls must have a "Text" property.
 */
 private String[] m_arStringControls = {
 "String0", "String1", "String2", "String3", "String4"};

 public _OptionsEventHandler(XComponentContext xCompContext) {
 m_cmpCtx = xCompContext;
 m_xMCF = m_cmpCtx.getServiceManager();

 //Create the com.sun.star.configuration.ConfigurationUpdateAccess
 //for the registry node which contains the data for our option
 //pages.
 XMultiServiceFactory xConfig;
 try {
 xConfig = (XMultiServiceFactory) UnoRuntime.queryInterface(
 XMultiServiceFactory.class,
 m_cmpCtx.getServiceManager().createInstanceWithContext(
 "com.sun.star.configuration.ConfigurationProvider", m_cmpCtx));
 } catch (com.sun.star.uno.Exception e) {
 e.printStackTrace();
 return;
 }

 //One argument for creating the ConfigurationUpdateAccess is the "nodepath".
 //Our nodepath point to the node of which the direct subnodes represent the
 //different options pages.
 Object[] args = new Object[1];
 args[0] = new PropertyValue(
 "nodepath", 0, "/org.openoffice.desktop.deployment.options.ExtensionData/Leaves",
 PropertyState.DIRECT_VALUE);

 //We get the com.sun.star.container.XNameAccess from the instance of
 //ConfigurationUpdateAccess and save it for later use.
 try {
 m_xAccessLeaves = (XNameAccess) UnoRuntime.queryInterface(
 XNameAccess.class, xConfig.createInstanceWithArguments(
 "com.sun.star.configuration.ConfigurationUpdateAccess", args));

 } catch (com.sun.star.uno.Exception e) {
 e.printStackTrace();
 return;
 }
 }

 /** This method returns an array of all supported service names.
 * @return Array of supported service names.
 */
 public String[] getSupportedServiceNames() {
 return getServiceNames();

368 OpenOffice.org 2.3 Developer's Guide • June 2007

 }

 /** This method is a simple helper function to used in the
 * static component initialisation functions as well as in
 * getSupportedServiceNames.
 */
 public static String[] getServiceNames() {
 String[] sSupportedServiceNames = { __serviceName };
 return sSupportedServiceNames;
 }

 /** This method returns true, if the given service will be
 * supported by the component.
 * @param sServiceName Service name.
 * @return True, if the given service name will be supported.
 */
 public boolean supportsService(String sServiceName) {
 return sServiceName.equals(__serviceName);
 }

 /** Return the class name of the component.
 * @return Class name of the component.
 */
 public String getImplementationName() {
 return _OptionsEventHandler.class.getName();
 }

 //XContainerWindowEventHandler
 public boolean callHandlerMethod(com.sun.star.awt.XWindow aWindow,
 Object aEventObject, String sMethod)
 throws WrappedTargetException {
 if (sMethod.equals("external_event")){
 try {
 return handleExternalEvent(aWindow, aEventObject);
 } catch (com.sun.star.uno.RuntimeException re) {
 throw re;
 } catch (com.sun.star.uno.Exception e) {
 throw new WrappedTargetException(sMethod, this, e);
 }
 }

 return true;
 }

 //XContainerWindowEventHandler
 public String[] getSupportedMethodNames() {
 return new String[] {"external_event"};
 }

 private boolean handleExternalEvent(com.sun.star.awt.XWindow aWindow, Object aEventObject)
 throws com.sun.star.uno.Exception {
 try {
 String sMethod = AnyConverter.toString(aEventObject);
 if (sMethod.equals("ok")) {
 saveData(aWindow);
 } else if (sMethod.equals("back") || sMethod.equals("initialize")) {
 loadData(aWindow);
 }
 } catch (com.sun.star.lang.IllegalArgumentException e) {
 throw new com.sun.star.lang.IllegalArgumentException(
 "Method external_event requires a string in the event object argument.",
 this, (short) -1);
 }

 return true;
 }

 private void saveData(com.sun.star.awt.XWindow aWindow)
 throws com.sun.star.lang.IllegalArgumentException,
 com.sun.star.uno.Exception {

 //Determine the name of the options page. This serves two purposes. First, if this
 //options page is supported by this handler and second we use the name two locate
 //the corresponding data in the registry.
 String sWindowName = getWindowName(aWindow);
 if (sWindowName == null)
 throw new com.sun.star.lang.IllegalArgumentException(
 "This window is not supported by this handler", this, (short) -1);

 //To access the separate controls of the window we need to obtain the
 //XControlContainer from the window implementation
 XControlContainer xContainer = (XControlContainer) UnoRuntime.queryInterface(
 XControlContainer.class, aWindow);
 if (xContainer == null)
 throw new com.sun.star.uno.Exception(
 "Could not get XControlContainer from window.", this);

369

 //This is an implementation which will be used for several options pages
 //which all have the same controls. m_arStringControls is an array which
 //contains the names.
 for (int i = 0; i < m_arStringControls.length; i++) {

 //To obtain the data from the controls we need to get their model.
 //First get the respective control from the XControlContainer.
 XControl xControl = xContainer.getControl(m_arStringControls[i]);

 //This generic handler and the corresponding registry schema support
 //up to five text controls. However, if a options page does not use all
 //five controls then we will not complain here.
 if (xControl == null)
 continue;

 //From the control we get the model, which in turn supports the
 //XPropertySet interface, which we finally use to get the data from
 //the control.
 XPropertySet xProp = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, xControl.getModel());

 if (xProp == null)
 throw new com.sun.star.uno.Exception(
 "Could not get XPropertySet from control.", this);
 //Get the "Text" property.
 Object aText = xProp.getPropertyValue("Text");
 String sValue = null;

 //The value is still contained in a com.sun.star.uno.Any - so convert it.
 try {
 sValue = AnyConverter.toString(aText);
 } catch (com.sun.star.lang.IllegalArgumentException e) {
 throw new com.sun.star.lang.IllegalArgumentException(
 "Wrong property type.", this, (short) -1);
 }

 //Now we have the actual string value of the control. What we need now is
 //the XPropertySet of the respective property in the registry, so that we
 //can store the value.
 //To access the registry we have previously created a service instance
 //of com.sun.star.configuration.ConfigurationUpdateAccess which supports
 //com.sun.star.container.XNameAccess. The XNameAccess is used to get the
 //particular registry node which represents this options page.
 //Fortunately the name of the window is the same as the registry node.
 XPropertySet xLeaf = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, m_xAccessLeaves.getByName(sWindowName));
 if (xLeaf == null)
 throw new com.sun.star.uno.Exception(
 "XPropertySet not supported.", this);

 //Finally we can set the value
 xLeaf.setPropertyValue(m_arStringControls[i], sValue);
 }

 //Committing the changes will cause or changes to be written to the registry.
 XChangesBatch xUpdateCommit =
 (XChangesBatch) UnoRuntime.queryInterface(XChangesBatch.class, m_xAccessLeaves);
 xUpdateCommit.commitChanges();
 }

 private void loadData(com.sun.star.awt.XWindow aWindow)
 throws com.sun.star.uno.Exception {

 //Determine the name of the window. This serves two purposes. First, if this
 //window is supported by this handler and second we use the name two locate
 //the corresponding data in the registry.
 String sWindowName = getWindowName(aWindow);
 if (sWindowName == null)
 throw new com.sun.star.lang.IllegalArgumentException(
 "The window is not supported by this handler", this, (short) -1);

 //To acces the separate controls of the window we need to obtain the
 //XControlContainer from window implementation
 XControlContainer xContainer = (XControlContainer) UnoRuntime.queryInterface(
 XControlContainer.class, aWindow);
 if (xContainer == null)
 throw new com.sun.star.uno.Exception(
 "Could not get XControlContainer from window.", this);

 //This is an implementation which will be used for several options pages
 //which all have the same controls. m_arStringControls is an array which
 //contains the names.
 for (int i = 0; i < m_arStringControls.length; i++) {

 //load the values from the registry
 //To access the registry we have previously created a service instance
 //of com.sun.star.configuration.ConfigurationUpdateAccess which supports

370 OpenOffice.org 2.3 Developer's Guide • June 2007

 //com.sun.star.container.XNameAccess. We obtain now the section
 //of the registry which is assigned to this options page.
 XPropertySet xLeaf = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, m_xAccessLeaves.getByName(sWindowName));
 if (xLeaf == null)
 throw new com.sun.star.uno.Exception(
 "XPropertySet not supported.", this);

 //The properties in the registry have the same name as the respective
 //controls. We use the names now to obtain the property values.
 Object aValue = xLeaf.getPropertyValue(m_arStringControls[i]);

 //Now that we have the value we need to set it at the corresponding
 //control in the window. The XControlContainer, which we obtained earlier
 //is the means to get hold of all the controls.
 XControl xControl = xContainer.getControl(m_arStringControls[i]);

 //This generic handler and the corresponding registry schema support
 //up to five text controls. However, if a options page does not use all
 //five controls then we will not complain here.
 if (xControl == null)
 continue;

 //From the control we get the model, which in turn supports the
 //XPropertySet interface, which we finally use to set the data at the
 //control
 XPropertySet xProp = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, xControl.getModel());

 if (xProp == null)
 throw new com.sun.star.uno.Exception(
 "Could not get XPropertySet from control.", this);

 //This handler supports only text controls, which are named "Pattern Field"
 //in the dialog editor. We set the "Text" property.
 xProp.setPropertyValue("Text", aValue);
 }
 }

 //Checks if the name property of the window is one of the supported names and returns
 //always a valid string or null
 private String getWindowName(com.sun.star.awt.XWindow aWindow)
 throws com.sun.star.uno.Exception {

 if (aWindow == null)
 new com.sun.star.lang.IllegalArgumentException(
 "Method external_event requires that a window is passed as argument",
 this, (short) -1);

 //We need to get the control model of the window. Therefore the first step is
 //to query for it.
 XControl xControlDlg = (XControl) UnoRuntime.queryInterface(
 XControl.class, aWindow);

 if (xControlDlg == null)
 throw new com.sun.star.uno.Exception(
 "Cannot obtain XControl from XWindow in method external_event.");
 //Now get model
 XControlModel xModelDlg = xControlDlg.getModel();

 if (xModelDlg == null)
 throw new com.sun.star.uno.Exception(
 "Cannot obtain XControlModel from XWindow in method external_event.", this);
 //The model itself does not provide any information except that its
 //implementation supports XPropertySet which is used to access the data.
 XPropertySet xPropDlg = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, xModelDlg);
 if (xPropDlg == null)
 throw new com.sun.star.uno.Exception(
 "Cannot obtain XPropertySet from window in method external_event.", this);

 //Get the "Name" property of the window
 Object aWindowName = xPropDlg.getPropertyValue("Name");

 //Get the string from the returned com.sun.star.uno.Any
 String sName = null;
 try {
 sName = AnyConverter.toString(aWindowName);
 } catch (com.sun.star.lang.IllegalArgumentException e) {
 throw new com.sun.star.uno.Exception(
 "Name - property of window is not a string.", this);
 }

 //Eventually we can check if we this handler can "handle" this options page.
 //The class has a member m_arWindowNames which contains all names of windows
 //for which it is intended
 for (int i = 0; i < m_arWindowNames.length; i++) {

371

 if (m_arWindowNames[i].equals(sName)) {
 return sName;
 }
 }
 return null;
 }
 }

 /**
 * Gives a factory for creating the service.
 * This method is called by the <code>JavaLoader</code>
 * <p>
 * @return returns a <code>XSingleComponentFactory</code> for creating
 * the component
 * @param sImplName the name of the implementation for which a
 * service is desired
 * @see com.sun.star.comp.loader.JavaLoader
 */
 public static XSingleComponentFactory __getComponentFactory(String sImplName)
 {
 XSingleComponentFactory xFactory = null;

 if (sImplName.equals(_OptionsEventHandler.class.getName()))
 xFactory = Factory.createComponentFactory(_OptionsEventHandler.class,
 _OptionsEventHandler.getServiceNames());

 return xFactory;
 }

 /**
 * Writes the service information into the given registry key.
 * This method is called by the <code>JavaLoader</code>
 * <p>
 * @return returns true if the operation succeeded
 * @param regKey the registryKey
 * @see com.sun.star.comp.loader.JavaLoader
 */
 public static boolean __writeRegistryServiceInfo(XRegistryKey regKey) {
 return Factory.writeRegistryServiceInfo(_OptionsEventHandler.class.getName(),
 _OptionsEventHandler.getServiceNames(),
 regKey);
 }

 /** This method is a member of the interface for initializing an object
 * directly after its creation.
 * @param object This array of arbitrary objects will be passed to the
 * component after its creation.
 * @throws Exception Every exception will not be handled, but will be
 * passed to the caller.
 */
 public void initialize(Object[] object)
 throws com.sun.star.uno.Exception {
 }

}

5.13 Defining the Usage of Options Pages
It needs to be defined somewhere how the options dialog shall display the options pages for partic-
ular extensions. This information needs to be provided by the extensions in form of a xcu file
which contains the appropriate registry entries. The schema is already provided in the office instal-
lation. The file is:

<office>/share/registry/schema/org/openoffice/Office/OptionsDialog.xcs. Here are the relevant
parts for the options pages:
<oor:component-schema xmlns:oor="http://openoffice.org/2001/registry"
xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
oor:name="OptionsDialog" oor:package="org.openoffice.Office" xml:lang="en-US">
 <templates>
 <group oor:name="Module">
 <info>

<desc>Defines a Module. The options dialog displays entries in its tree
 view only if they are defined to belong to the Module for which the
 options dialog is being displayed. The exception is the options dialog
 which is invoked from the Extension Manager, where the Module is
 irrelevant.</desc>

 </info>

372 OpenOffice.org 2.3 Developer's Guide • June 2007

 <set oor:name="Nodes" oor:node-type="OrderedNode">
<info>
 <desc>A set member countains a Node (see type Node) which has been
 assigned to this Module. Also entities which do not own the Module
 may add members to the set. Please look at the specification for
 applying restrictions
 (http://specs.openoffice.org/appwide/packagemanager/options_dialog_for_extensions.odt)
 The actual Node|s are kept in a separate set (OptionsDialog/Nodes),
 to prevent redundancy, because a Node can be assigned to several
 Module|s. The position of a node (the tree view element) within the
 tree view of the options dialog is determined by the property Index
 of each set member. The position can be different dependent on the
 Module. Therefore the order is determined per Module. Only the owner
 of the Module should set the position (property Index).
 The order is undefined if two or more members have the same value for
 the Index property.
 See also the description for OrderedNode.
 </desc>
</info>

 </set>
 </group>

 <group oor:name="Node">
 <info>

<desc>Defines a node (the tree view element) which can be displayed in
 the tree view of the options dialog.</desc>

 </info>
 <prop oor:name="Label" oor:type="xs:string" oor:localized="true"

 oor:nillable="false">
<info>
 <desc>The localized name which is displayed next to the node in the
 options dialog. If two different nodes (the tree view element) happen
 to have the same localized name then both are displayed.</desc>
</info>

 </prop>
 <prop oor:name="OptionsPage" oor:type="xs:string">

<info>
 <desc>URL which references the dialog editor resource. This options
 page should only contain information for the user and should not
 accept input.</desc>
</info>

 </prop>
 <prop oor:name="AllModules" oor:type="xs:boolean">

<info>
 <desc>If true then this Node shall be displayed independent of the
 Module for which the options dialog is displayed - that is, always.
 In this case it must not be assigned directly to one ore more
 Module|s. That is, it must not exist as member in Module/Nodes of no
 existing Module.
 This is an optimization so that an extension need not provide
 entries for all Module|s.
 The default value is false.
 </desc>
</info>
<value>false</value>

 </prop>
 <prop oor:name="GroupId" oor:type="xs:string">

<info>
 <desc>Identifies a group of Node|s. All nodes (the tree view elements)
 which refer to the same group are displayed next to each other. If
 this property is set then GroupIndex must also have a value. The
 group will be used by Node|s which have been added to existing
 Module|s. If one defines a Module AND Node|s which are used in this
 Module, then GroupId must not be set. In this case one uses
 Module/Nodes/Index to determine the position of the nodes (the tree
 view element).
 The empty string is no valid identifier and represents nil.
 See also GroupIndex.
 </desc>
</info>
<value></value>

 </prop>
 <prop oor:name="GroupIndex" oor:type="xs:int">

<info>
 <desc>The index of the Node within the group. The index starts with
 null. If this property is set then property GroupId must also have
 a value. If a Node of this group is displayed depends on the
 respective Module to which it is assigned. For example, if there are
 the Nodes A(index 0), B (index 1), and C (index 2) in a group,
 and B is assigned to a different Module, then only A and
 B are displayed together although there indices are 0 and 2 (B has 1).
 The value -1 is regarded as nil.
 Actually one could have allowed to define a group per Module, so that
 the order could be different depending on the Module. But this would
 have added more complexity to the data structures.
 </desc>
</info>

373

<value>-1</value>
 </prop>
 <set oor:name="Leaves" oor:node-type="Leaf">

<info>
 <desc>Leaves which are assigned to this node. Extensions can add to this
 set new Leaf|s.</desc>
</info>

 </set>
 </group>

 <group oor:name="Leaf">
 <info>

<desc>Defines a leaf (the tree view element). A Leaf must be assigned to
 exactly one Node. </desc>

 </info>
 <prop oor:name="Id" oor:type="xs:string">

<info>
 <desc>The unique identifier of the Leaf. This must be the extension
 identifier if this Leaf was defined by an extension.</desc>
</info>

 </prop>
 <prop oor:name="Label" oor:type="xs:string" oor:localized="true"

 oor:nillable="false">
<info>
 <desc>The localized name that is displayed for the leaf in the options
 dialog.</desc>
</info>

 </prop>
 <prop oor:name="OptionsPage" oor:type="xs:string" oor:nillable="false">

<info>
 <desc>A URL which references the window resource.</desc>
</info>

 </prop>
 <prop oor:name="EventHandlerService" oor:type="xs:string" oor:nillable="false">

<info>
 <desc>Name of the event handler service which is used as argument in
 com.sun.star.awt.XContainerWindowProvider.createContainerWindow. This
 handler does not even process events from the dialog but also
 provides for saving and reading the respective values.</desc>
</info>

 </prop>
 <prop oor:name="GroupId" oor:type="xs:string">

<info>
 <desc>Identifies a group of Leaf|s. All Leaf|s which have the same
 GroupId form a group and the corresponding entries in the tree view
 are displayed next to each other.
 If this property is set then the property GroupIndex must
 also be set.
 The GroupIndex represents the position within the group. If one
 owns the Node (e.g. defined it oneself) then one can set the GroupId
 to the name of the Node to which this Leaf is assigned. The Leaf|s of
 this particular group are displayed first under the node (the tree
 view element) before any other groups.
 If one does not own the Node then one should not use the Node name as
 group id.
 The empty string is regarded as nil.
 </desc>
</info>
<value></value>

 </prop>
 <prop oor:name="GroupIndex" oor:type="xs:int">

<info>
 <desc>The index of the Leaf within the group. The index starts with
 null. If this property is set then GroupId must also have
 a value. If there are two Leaf|s with the same index in the same
 group then then their order is undefined.
 The value -1 is regarded as nil.</desc>
</info>
<value>-1</value>

 </prop>
 </group>

 <group oor:name="OrderedNode">
 <info>

<desc>Represents a reference to a Node and an optional index.
 Instances of this type are used in a set (see Module). The name of the
 set member must be the same as the one of the respective Node. The
 index determines the position of the node (the tree view element) in
 the options dialog for a particular Module.</desc>

 </info>
 <prop oor:name="Index" oor:type="xs:int">

<info>
 <desc>Determines the position of the node in the options dialog.
 The index starts with null. That is, the corresponding node
 appears at the first position in the tree view of the options dialog.
 If the value is -1 then the index is undefined. If one adds
 Node|s to a Module which one does not define oneself (e.g. the Module

374 OpenOffice.org 2.3 Developer's Guide • June 2007

 is owned by someone else), then one must not set the Index. This
 applies, for example, to extensions which add their Node|s to existing
 Module|s.
 The value -1 is regarded as nil.
 </desc>
</info>
<value>-1</value>

 </prop>
 </group>
 </templates>

 <component>
 <set oor:name="Modules" oor:node-type="Module">
 <info>

<desc>List of availabe application contexts</desc>
 </info>
 </set>
 <set oor:name="Nodes" oor:node-type="Node">
 <info>

<desc>List of available nodes.</desc>
 </info>
 </set>
 </component>
</oor:component-schema>

5.13.1 The Options Dialog of the Extension Manager
The options dialog which is invoked from the Extension Manager only shows nodes with leaves
which have been added by the currently selected extensions. The dialog has no particular applica-
tion context, so that all nodes are displayed, independent of the application contexts which they
are assigned to.

5.13.2 Adding a Leaf to an Existing Node
Let us start with something simple and assume that we want to add a leaf under the
�OpenOffice.org� writer node. The leaves and nodes, which we are talking about, appear in the tree
view of the options dialog on the left side. A leaf has the meaning of an entry which cannot be
expanded further. Selecting a leaf will cause the options page being displayed on the right side.
Please do not confuse these node and leaves with the elements from the schema. The latter use
uppercase names and the plural is indicated using a pipe symbol, such as �Node|s�. There is also
a xml element �node� in the xcu file. In case the meaning is unclear in the respective context, we
will add small note.

The schema in the OptionsDialog.xcs defines two sets which we can add to. One contains Modules,
which we do not need at the moment, and the other contains Nodes, which is the place we will add
to. As the name suggest, it contains Node|s and not Leaf|s. But every Node contains a set of Leaf|
s, which is named Leaves. This means, that we have to add a Leaf to the Leaves set of the writer
Node. This is done by putting the following xcu file into the extension (do not forget to add the
corresponding entry into the manisfest.xml) .
<?xml version='1.0' encoding='UTF-8'?>

<!DOCTYPE oor:component-data SYSTEM "../../../../component-update.dtd">
<oor:component-data oor:name="OptionsDialog" oor:package="org.openoffice.Office"
xmlns:oor="http://openoffice.org/2001/registry" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <node oor:name="Nodes">
 <node oor:name="Writer" oor:op="fuse">
 <node oor:name="Leaves">

<node oor:name="org.openoffice.framework.desktop.test.deployment.options.leaf1"
 oor:op="fuse">
 <prop oor:name="Id">
 <value>org.openoffice/framework/desktop/test/deployment/options/leaf1</value>
 </prop>
 <prop oor:name="Label">
 <value xml:lang="en-US">Writer leaf1 en-US</value>

375

 </prop>
 <prop oor:name="OptionsPage">
 <value>%origin%/dialogs/writer1/Writer1.xdl</value>
 </prop>
 <prop oor:name="EventHandlerService">
 <value>com.sun.star.comp.extensionoptions.DialogHandler</value>
 </prop>
</node>

 </node>
 </node>
 </node>
</oor:component-data>

In the following examples I will leave out the xml, doctype and root element so we can focus on
the relevant parts. In the previous example we see the lines:
<node oor:name="Nodes">
 <node oor:name="Writer" oor:op="fuse">
 <node oor:name="Leaves">

The first line represents the set Nodes. The second line shows that we add to the writer Node. And
the last line represents the Leaves set within the writer Node. The names of Node|s should be
unique, as we will see later. The name is the value of the oor:name attribute of the set entry. That
is, there is no special property �name�. The names for already existing Node|s and Module|s are
rather short and are reserved exclusively for the office. The list of those names can be found here:

http://wiki.services.openoffice.org/wiki/Framework/Article/Options_Dialog_Configuration

Currently the already existing nodes are not defined in the registry (but may be in future versions).
Therefore, the node Writer, which is a set entry,may not exist yet, unless another extension has
already added to this node. To make sure that there is this node we use the operation fuse.
Leaves is the set within a Node (the type defined in the templates section of the schema) to which
we add our leaf:
<node oor:name="Leaves">
 <node oor:name="org.openoffice.framework.desktop.test.deployment.options.leaf1"
 oor:op="fuse">
 <prop oor:name="Id">
 <value>org.openoffice/framework/desktop/test/deployment/options/leaf1</value>
 </prop>
 <prop oor:name="Label">
 <value xml:lang="en-US">Writer leaf1 en-US</value>
 </prop>
 <prop oor:name="OptionsPage">
 <value>%origin%/dialogs/writer1/Writer1.xdl</value>
 </prop>
 <prop oor:name="EventHandlerService">
 <value>com.sun.star.comp.extensionoptions.DialogHandler</value>
 </prop>
 </node>
</node>

When we add to a set then we must provide a unique name for the oor:name attribute of the node
element. We did this by calling it:
org.openoffice.framework.desktop.test.deployment.options.leaf1

It is always good to use long names to ensure uniqueness. Starting with the reversed domain
name is a good practice, because most developers or companies own a domain, which is already
unique. Node names must use ASCII letters and special characters must be �xml encoded�. That is
signs, such as �<�, �>�, �&�, etc must be replaced by �<� , �>�, �&� , etc. This is also
valid for all other xml attribute values or the text between enclosing xml elements. Our leaf node
also uses the fuse operator, to ensure that it is added to the set.

It is also useful to avoid �/� within oor:name. This will make it harder when using the API to
access the values (see com.sun.star.container.XHierarchicalNameAccess). Then one need to encode
the name in a particular way. See chapter 16.1.2 Configuration Management - Overview - Architec-
ture.

The value of the property Id must be same as the extension identifier. The identifier is used to
locate the leaves which belong to a particular extension. This happens when the options dialog is

376 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XHierarchicalNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XHierarchicalNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XHierarchicalNameAccess.html
http://wiki.services.openoffice.org/wiki/Framework/Article/Options_Dialog_Configuration

started in the Extension Manager. In this case only the entries for the selected extension are
displayed.

The property Label contains the string which appears in the tree view. One can provide many
different localized strings. However it is good to have at least an en-US string, which will be used
as default in case there is no string which locale matches that of the office.

The property OptionsPage contains the URL to the xdl file of the dialog which shall appear when
the user selects the corresponding entry in the tree view. Please note that it always starts with
%origin% and is followed by the relative path to the file.

The property EventHandlerService contains the service name of the handler, which is also
contained in the extension. One should take care to choose a unique name. It is not necessary to
provide any IDL description or type library for the service.

5.13.3 Adding Several Leaves
It may be necessary to add more then one leaf. This is easily done by just writing the next leaf defi-
nition after the previous:
<node oor:name="Nodes">
 <node oor:name="Writer" oor:op="fuse">
 <node oor:name="Leaves">
 <node oor:name="oorg.openoffice.framework.desktop.test.deployment.options.leaves3.Writer.3"
 oor:op="fuse">
 <!-- leaving out the properties for the sake of brevity -->
 </node>
 <node oor:name="org.openoffice.framework.desktop.test.deployment.options.leaves3.Writer.1"
 oor:op="fuse">
 <!-- leaving out the properties for the sake of brevity -->
 </node>
 <node oor:name="org.openoffice.framework.desktop.test.deployment.options.leaves3.Writer.2"
 oor:op="fuse">
 </node>
 </node>
 </node>
 <node oor:name="Calc" oor:op="fuse">
 <node oor:name="Leaves">
 <node oor:name="org.openoffice.framework.desktop.test.deployment.options.leaves3.Calc.3"
 oor:op="fuse">
 <!-- leaving out the properties for the sake of brevity -->
 </node>
 <node oor:name="org.openoffice.framework.desktop.test.deployment.options.leaves3.Calc.1"
 oor:op="fuse">
 <!-- leaving out the properties for the sake of brevity -->
 </node>
 <node oor:name="org.openoffice.framework.desktop.test.deployment.options.leaves3.Calc.2"
 oor:op="fuse">
 <!-- leaving out the properties for the sake of brevity -->
 </node>
 </node>
 </node>
</node>

In the example we have also added three other Leaf|s to the Calc Node.

One Leaf can only be assigned to exactly one Node. If there is no suitable existing Node which is displayed
in all options dialogs where one needs to display the own Leaf, then one should define a Node oneself and
assign the Leaf to it.

377

5.13.4 Grouping of Leaves
When we add several Leaf|s to the same Node then we may wish to determine in which order
they appear. This is done by using the properties GroupId and GroupIndex in Leaf. The
GroupId is used to define a group. All Leaf|s with the same GroupId form this group. The
GroupIndex determines the position of the Leaf with regard to this group. If there are multiple
groups of Leaf|s assigned to the same Node, then it is undefined in which order the groups are
displayed. However, the members of a group are always displayed contiguously .

The value for the GroupId must be unique. One can use the same patter here as for the names of
Leaf|s, Node|s, etc.

One special GroupId is the one which has the same value as the Node name. This group is always
displayed first under the node in the tree view. We will get to that later.

Usually, when an extension provides Leaf|s which are all assigned to the same Node, then one
makes them belong to the same group.

Do not add to groups which you have not defined yourself. This may lead to clashing indices and is gener-
ally bad style.

Grouping Leaf|s is optional. But when one does it, then all Leaf|s should be part of a group.

<node oor:name="Nodes">
 <node oor:name="Writer" oor:op="fuse">
 <node oor:name="Leaves">
 <node oor:name="org.openoffice.framework.desktop.test.deployment.options.leaves2.Writer.3"
 oor:op="fuse">

<prop oor:name="Id">
 <value>org.openoffice/framework/desktop/test/deployment/options/leaves2</value>
</prop>

 <!-- leaving out some properties for the sake of brevity -->
 <prop oor:name="GroupId">
 <value>org.openoffice.framework.desktop.test.deployment.options.leaves2.Writer.group</value>
 </prop>
 <prop oor:name="GroupIndex">
 <value>2</value>
 </prop>
 </node>
 <node oor:name="org.openoffice.framework.desktop.test.deployment.options.leaves2.Writer.1"
 oor:op="fuse">
 <prop oor:name="Id">
 <value>org.openoffice/framework/desktop/test/deployment/options/leaves2</value>
 </prop>
 <!-- leaving out some properties for the sake of brevity -->
 <prop oor:name="GroupId">
 <value>org.openoffice.framework.desktop.test.deployment.options.leaves2.Writer.group</value>
 </prop>
 <prop oor:name="GroupIndex">
 <value>0</value>
 </prop>
 </node>
 <node oor:name="org.openoffice.framework.desktop.test.deployment.options.leaves2.Writer.2"
 oor:op="fuse">
 <prop oor:name="Id">
 <value>org.openoffice/framework/desktop/test/deployment/options/leaves2</value>
 </prop>
 <!-- leaving out some properties for the sake of brevity -->
 <prop oor:name="GroupId">
 <value>org.openoffice.framework.desktop.test.deployment.options.leaves2.Writer.group</value>
 </prop>
 <prop oor:name="GroupIndex">
 <value>1</value>
 </prop>
 </node>
 </node>
 </node>
 </node>
</node>

378 OpenOffice.org 2.3 Developer's Guide • June 2007

5.13.5 Adding Nodes
Apart from Leaf|s one can also define one's own Node|s. First we would like to define one simple
Node along with a few Leaf|s:
<node oor:name="Nodes">
 <node oor:name="org.openoffice.framework.desktop.test.deployment.options.nodes2.node 3"
 oor:op="fuse">
 <prop oor:name="Label">
 <value xml:lang="en-US">nodes2 node 3 en-US</value>
 <value xml:lang="de">nodes2 node 3 de</value>
 </prop>
 <prop oor:name="OptionsPage">
 <value>%origin%/dialogs/node3/page/node3.xdl</value>
 </prop>
 <prop oor:name="AllModules">
 <value>true</value>
 </prop>

 <node oor:name="Leaves">
 <node oor:name="org.openoffice.framework.desktop.test.deployment.options.nodes2.node 3.leaf 3"
 oor:op="fuse">
 <!-- leaving out some properties for the sake of brevity -->
 </node>
 <node oor:name="org.openoffice.framework.desktop.test.deployment.options.nodes2.node 3.leaf 1"
 oor:op="fuse">
 <!-- leaving out some properties for the sake of brevity -->
 </node>
 <node oor:name="org.openoffice.framework.desktop.test.deployment.options.nodes2.node 3.leaf 2"
 oor:op="fuse">
 <!-- leaving out some properties for the sake of brevity -->
 </node>
 </node>
 </node>
</node>

Nodes without any leaves are not displayed.

Because a Node is represented in the tree view with a string, it needs to provide a localized name
the same as Leaf|s do. To do this we add under the property Label several localized values.

The property OptionsPage has the same meaning as the same property in Leaf. There is,
however, the restriction that the options page must not take user input. Instead is should contain
some explanatory words about the node.

The property AllModules needs to be set to true when one wants that the Node appears in the
options dialog from all applications. Now, let me explain shortly the meaning of Module, because
it will be important for the definition of Node|s. The options dialog opened from the Tools |
Options... menu entry refers always to a particular Module, which depends on the current applica-
tion. All Node|s can be assigned to one or multiple Module|s. That is, a Node may be defined to
appear only in the options dialog of the Writer and Calc application. How this is done will be
explained later. However, often one wishes to have the Node displayed in every options dialog. To
save the effort of assigning a Node to all existing Module|s separately, one can do this just once by
setting the property of AllModules to true. This is also useful in the case where new Module|s are
added later, because these new Module|s would not know about those Nodes.

Only Node|s which are assigned to a Module are displayed. The assignment is done by adding a member to
set Module/Nodes (this will be explained later) or by setting Node/AllModules to true. The latter assigns
the Node to all Modul|s.

379

5.13.6 Adding Several Nodes
As one might have imagined, adding several nodes is similar to adding various leaves. The defini-
tions are just written one after the other:
<node oor:name="Nodes">
 <node oor:name="org.openoffice.framework.desktop.test.deployment.options.nodes2.node 3"
 oor:op="fuse">
 <!-- leaving out all properties and leaves for the sake of brevity -->
 </node>
 <node oor:name="oorg.openoffice.framework.desktop.test.deployment.options.nodes2.node 1"
 oor:op="fuse">
 <!-- leaving out all properties and leaves for the sake of brevity -->
 </node>
 <node oor:name="org.openoffice.framework.desktop.test.deployment.options.nodes2.node 2"
 oor:op="fuse">
 <!-- leaving out all properties and leaves for the sake of brevity -->
 </node>
</node>

5.13.7 Absolute Position of Leaves
When one defines a Node and Leaf|s for this Node at the same time then one would like to specify
the position of those leaves as well. This can be done be defining group of Leaf|s which has the
same name as the Node to which they are assigned. This group is special because its Leaf|s are the
first which appear under the corresponding node in the tree view. Otherwise the use of
GroupIndex and GroupId is identical as explained in �Grouping of Leaves�.

<node oor:name="Nodes">
 <node oor:name="org.openoffice.framework.desktop.test.deployment.options.nodes2.node 3"
 oor:op="fuse">
 <!-- leaving out some properties for the sake of brevity -->
 <node oor:name="Leaves">
 <node oor:name="org.openoffice.framework.desktop.test.deployment.options.nodes2.node 3.leaf 3"
 oor:op="fuse">
 <prop oor:name="GroupId">
 <value>org.openoffice.framework.desktop.test.deployment.options.nodes2.node 3</value>
 </prop>
 <prop oor:name="GroupIndex">
 <value>2</value>
 </prop>
 </node>
 <node oor:name="org.openoffice.framework.desktop.test.deployment.options.nodes2.node 3.leaf 1"
 oor:op="fuse">
 <prop oor:name="GroupId">
 <value>org.openoffice.framework.desktop.test.deployment.options.nodes2.node 3</value>
 </prop>
 <prop oor:name="GroupIndex">
 <value>0</value>
 </prop>
 </node>
 <node oor:name="org.openoffice.framework.desktop.test.deployment.options.nodes2.node 3.leaf 2"
 oor:op="fuse">
 <prop oor:name="GroupId">
 <value>org.openoffice.framework.desktop.test.deployment.options.nodes2.node 3</value>
 </prop>
 <prop oor:name="GroupIndex">
 <value>2</value>
 </prop>
 </node>
 </node>
 </node>
</node>

5.13.8 Grouping of Nodes
Similar to Leaf|s, Node|s can be grouped as well. For example, an extension would like to add
three nodes to the options dialog of the Writer. Then one may want that these nodes are displayed

380 OpenOffice.org 2.3 Developer's Guide • June 2007

contiguously. This will also be achieved by defining a group with the property GroupId and an
index with the property GroupIndex. The index only determines the position within the group.

Do not add to groups which you have not defined yourself. This may lead to clashing indices and is gener-
ally bad style.

Grouping Node|s is optional. But when one does it, then all Node|s should be part of a group.

<node oor:name="Nodes">
 <node oor:name="org.openoffice.framework.desktop.test.deployment.options.nodes2.node 3"
 oor:op="fuse">
 <!-- leaving out some properties for the sake of brevity -->
 <prop oor:name="GroupId">
 <value>org.openoffice.framework.desktop.test.deployment.options.nodes2.group</value>
 </prop>
 <prop oor:name="GroupIndex">
 <value>2</value>
 </prop>
 <!-- Next Node -->
 <node oor:name="org.openoffice.framework.desktop.test.deployment.options.nodes2.node 1"
 oor:op="fuse">
 <!-- leaving out some properties for the sake of brevity -->
 <prop oor:name="GroupId">
 <value>org.openoffice.framework.desktop.test.deployment.options.nodes2.group</value>
 </prop>
 <prop oor:name="GroupIndex">
 <value>0</value>
 </prop>
 <node oor:name="org.openoffice.framework.desktop.test.deployment.options.nodes2.node 2"
 oor:op="fuse">
 <!-- leaving out some properties for the sake of brevity -->
 <prop oor:name="GroupId">
 <value>org.openoffice.framework.desktop.test.deployment.options.nodes2.group</value>
 </prop>
 <prop oor:name="GroupIndex">
 <value>1</value>
 </prop>
 </node>
</node>

The ordering of Node|s within a group is basically the same as with Leaf|s. But there is a small
difference. In contrast to Leaf|s, Node|s can be assigned to various Module|s, whereas as Leaf can
only be assigned to one Node. So actually one could define an order of Node|s per Module. The
order could then differ depending on the Module. For example, we define Node A and B which are
assigned to the �Writer� Module (actually the names for the modules are longer, for example,
com.sun.star.text.TextDocument) and the �Calc� Module. We could define that in the options
dialog of the Writer node A is before B and in the options dialog of Calc B is before A.

This would have added some more complexity to the data structures. With respect to the ease of
use we decided for a compromise. One can only define one order independent of the Module. In
the previous example the nodes A and B would have the same order in the Writer's and Calc's
options dialog. But what if one Node is not assigned to a particular Module but the others are? For
example, there are the Node|s A, B, C which have the indices 0, 1, 2. Only A and C are assigned to
the �Writer� Module. Then in the options dialog of the Writer the node A would immediately
followed by C.

5.13.9 Assigning Nodes to Modules
In the previous paragraphs we have explained what has to be done so that a node appears in the
options dialog of an application no matter what the application is. Now we will explain how one
can pick out the application where the node should appear.

381

Having a look at the schema of the OtionsDialog.xcs one notices that there is another set, named
Modules, to which we can add entries which then determine where the nodes are displayed. If
one does not care for a particular application then one should use the AllModules property of the
Node, so that they are always displayed.

<node oor:name="Modules">
 <node oor:name="com.sun.star.text.TextDocument" oor:op="fuse">
 <node oor:name="Nodes">
 <node oor:name="org.openoffice.framework.desktop.test.deployment.options.nodes4.node 1"
 oor:op="fuse">
 </node>
 <node oor:name="org.openoffice.framework.desktop.test.deployment.options.nodes4.node 2"
 oor:op="fuse">
 </node>
 </node>
 </node>
 <node oor:name="com.sun.star.sheet.SpreadsheetDocument" oor:op="fuse">
 <node oor:name="Nodes">
 <node oor:name="org.openoffice.framework.desktop.test.deployment.options.nodes4.node 1"
 oor:op="fuse">
 </node>
 </node>
 </node>
</node>

<node oor:name="Nodes">
 <node oor:name="org.openoffice.framework.desktop.test.deployment.options.nodes4.node 1"
 oor:op="fuse">
 <!-- leaving out some properties for the sake of brevity -->
 </node>
 <node oor:name="org.openoffice.framework.desktop.test.deployment.options.nodes4.node 2"
 oor:op="fuse">
 <!-- leaving out some properties for the sake of brevity -->
 </node>
</node>

The example shows the definition of two Node|s. Both are displayed in the options dialog of the
Writer but only �node 1� is displayed in the options dialog of Calc. This demonstrates also that a
node can be assigned to various Module|s.

The names of the application contexts defined by OOo can be found here:

http://wiki.services.openoffice.org/wiki/Framework/Article/Options_Dialog_Configuration

5.13.10 Defining a Module
It is possible to define a Module of one's own. How an extension can provide a real module (not the
type Module) is not part of this documentation. However, if this module does not exist, there won´t
be an options dialog on behalf of this module and the Node|s assigned to it are not displayed. Only
the options dialog from the Extension Manager may show the nodes because it does not depend
on a particular module.

Here is an example of defining a Module.

<node oor:name="Modules">
 <node oor:name="org.openoffice.framework.desktop.test.deployment.options.modules1.module1"
 oor:op="fuse">
 <node oor:name="org.openoffice.framework.desktop.test.deployment.options.modules1.module2"
 oor:op="fuse">
 </node>
</node>

382 OpenOffice.org 2.3 Developer's Guide • June 2007

http://wiki.services.openoffice.org/wiki/Framework/Article/Options_Dialog_Configuration

5.13.11 Absolute Position of Nodes
If one defines an own Module, then it is possible to define an order for the Node|s which one
assigns to it. These Node|s will be the first which are displayed in the options dialog followed by
the Node|s which have been assigned by others.

For example:
<node oor:name="Modules">
 <node oor:name="org.openoffice.framework.desktop.test.deployment.options.modules1.module1"
 oor:op="fuse">
 <node oor:name="Nodes">
 <node oor:name="org.openoffice.framework.desktop.test.deployment.options.modules1.node 1"
 oor:op="fuse">
 <prop oor:name="Index">
 <value>0</value>
 </prop>
 </node>
 <node oor:name="org.openoffice.framework.desktop.test.deployment.options.modules1.node 2"
 oor:op="fuse">
 <prop oor:name="Index">
 <value>1</value>
 </prop>
 </node>
 <node oor:name="org.openoffice.framework.desktop.test.deployment.options.modules1.node 3"
 oor:op="fuse">
 <prop oor:name="Index">
 <value>2</value>
 </prop>
 </node>
 </node>
 </node>
 <node oor:name="org.openoffice.framework.desktop.test.deployment.options.modules1.module2"
 oor:op="fuse">
 <node oor:name="Nodes">
 <node oor:name="org.openoffice.framework.desktop.test.deployment.options.modules1.node 1"
 oor:op="fuse">
 <prop oor:name="Index">
 <value>0</value>
 </prop>
 </node>
 <node oor:name="org.openoffice.framework.desktop.test.deployment.options.modules1.node 3"
 oor:op="fuse">
 <prop oor:name="Index">
 <value>1</value>
 </prop>
 </node>
 </node>
 </node>
</node>

<node oor:name="Nodes">
 <node oor:name="org.openoffice.framework.desktop.test.deployment.options.modules1.node 3"
 oor:op="fuse">
 <!-- leaving out some properties for the sake of brevity -->
 </node>
 <node oor:name="org.openoffice.framework.desktop.test.deployment.options.modules1.node 1"
 oor:op="fuse">
 <!-- leaving out some properties for the sake of brevity -->
 </node>
 <node oor:name="org.openoffice.framework.desktop.test.deployment.options.modules1.node 2"
 oor:op="fuse">
 <!-- leaving out some properties for the sake of brevity -->
 </node>
</node>

As you can see, every Node which is assigned to a Module can be paired with an index (property
Index).

383

If one decides to provide an index then one should do this for all Node|s.

If a particular index is not used, for example, only index 0, 1, 5 are used, then the missing indices are left out
when the nodes are displayed. That is, the tree view will not show gaps for the missing indices 2,3, and 4.

384 OpenOffice.org 2.3 Developer's Guide • June 2007

6 Advanced UNO

6.1 Choosing an Implementation Language
The UNO technology provides a framework for cross-platform and language independent
programming. All the OpenOffice.org components can be implemented in any language supported
by UNO, as long as they only communicate with other components through their IDL interfaces.

 Note: The condition "as long as they only communicate with other components through their IDL interfaces"
is to be strictly taken. In fact, a lot of implementations within OpenOffice.org export UNO interfaces and still
use private C++ interfaces. This is a tribute to older implementations that cannot be rewritten in an accept-
able timeframe.

A developer can customize the office to their needs with this flexibility, but they will have to
decide which implementation language should be selected for a specific problem.

6.1.1 Supported Programming Environments
The support for programming languages in UNO and OpenOffice.org is divided into three
different categories.

1) Languages that invoke calls on existing UNO objects are possibly implemented in other
programming languages. Additionally, it may be possible to implement certain UNO interfaces,
but not UNO components that can be instantiated by the service manager.

2) Languages that implement UNO components. UNO objects implemented in such a language
are accessible from any other language that UNO supports, just by instantiating a service by
name at the servicemanager. For instance, the developer can implement a OpenOffice.org Calc
addin (see 9 Spreadsheet Documents).

3) Languages that are used to write code to be delivered within OpenOffice.org documents and
utilize dialogs designed with the OpenOffice.org dialog editor.

The following table lists programming languages currently supported by UNO. 'Yes' in the table
columns denotes full support, 'no' denotes that there is no support and is not even planned in the
future. 'Maybe in future' means there is currently no support, but this may change with future
releases.

Language UNO scripting UNO components Deployment with
 OpenOffice.org docu-
ments

C++ yes yes no

385

Language UNO scripting UNO components Deployment with
 OpenOffice.org docu-
ments

C maybe in future maybe in future no

Java yes yes maybe in future

StarBasic yes no yes

OLE automation
(win32 only)

yes maybe in future maybe in future

Python maybe in future
 (under development)

maybe in future
 (under development)

maybe in future

Java
Java is a an accepted programming language offering a standard library with a large set of features
and available extensions. Additional extensions will be available in the future, such as JAX-RPC for
calling webservices. It is a typesafe language with a typesafe UNO binding. Although interfaces
have to be queried explicitly, the type safety makes it suitable for larger projects. UNO components
can be implemented with Java, that is, the Java VM is started on demand inside the office process
when a Java component is instantiated. The OfficeBean allows embedding OpenOffice.org docu-
ments in Java Applets and Applications.

There is a constant runtime overhead of about 1 to 2 ms per call that is caused by the bridge
conversion routines when calling UNO objects implemented in other language bindings. Since
OpenOffice.org consists of C++ code, every Java call into the office needs to be bridged. This poses
no problems if there are a few calls per user interaction. The runtime overhead will hurt the appli-
cation when routines produce hundreds or thousands of calls.

C++
C++ is an accepted programming language offering third-party products. In addition to C++ being
fast since it is compiled locally, it offers the fastest communication with OpenOffice.org because
most of the essential parts of office have been developed in C++. This advantage becomes less
important as you call into the office through the interprocess bridge, because every remote call
means a constant loss of 1 to2 ms. The fastest code to extend the office can be implemented as a C+
+ UNO component. It is appropriate for larger projects due to its strong type safety at compile
time.

C++ is difficult to learn and coding, in general, takes longer, for example, in Java. The components
must be built for every platform, that leads to a higher level of complexity during development
and deployment.

OpenOffice.org Basic
OpenOffice.org Basic is the scripting language developed for and integrated directly into
OpenOffice.org. It currently offers the best integration with OpenOffice.org, because you can insert
code into documents, attach arbitrary office events, such as document loading, keyboard shortcuts
or menu entries, to Basic code and use dialogs designed within the OpenOffice.org IDE. In Basic,
calls are invoked on an object rather than on a specific interface. Interfaces, such as
com.sun.star.beans.XPropertySet are integrated as Basic object properties. Basic always runs
in the office process and thus avoids costly interprocess calls.

386 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html

The language is type unsafe, that is, only a minimal number of errors are found during compila-
tion. Most errors appear at runtime, therefore it is not the best choice for large projects. The
language is OpenOffice.org specific and only offers a small set of runtime functionality with little
third-party support. All office functionality is used through UNO. UNO components cannot be
implemented with Basic. The only UNO objects that can be implemented are listeners. Finally,
Basic does not offer any thread support.

OLE Automation Bridge
The OLE Automation bridge opens the UNO world to programming environments that support
OLE automation, such as Visual Basic, JScript, Delphi or C++ Builder. Programmers working on
the Windows platform can write programs for OpenOffice.org without leaving their language by
learning a new API. These programmers have access to the libraries provided by their language. It
is possible to implement UNO objects, if the programming language supports object implementa-
tion.

This bridge is only useful on a Win32 machine, thereby being a disadvantage . Scripts always run
in a different process so that every UNO call has at least the usual interprocess overhead of 1 to 2
ms. Currently Automation UNO components cannot be implemented for the service manager, but
this may change in the future.

Python
A Python scripting bridge (PyUNO) is currently developed by Ralph Thomas. It is available in an
experimental alpha state with known limitations. For details, see PyUNO on udk.openoffice.org.

6.1.2 Use Cases
The following list gives typical UNO applications for the various language environments.

Java
• Servlets creating Office Documents on the fly, Java Server Pages

• Server-Based Collaboration Platforms, Document Management Systems

• Calc add-ins

• Chart add-ins

• Database Drivers

C++
• Filters reading document data and generating Office Documents through UNO calls

• Database Drivers

• Database Drivers

• Calc add-ins

387

• Chart add-ins

OpenOffice.org Basic
• Office Automation

• Event-driven data-aware forms

OLE Automation
• Office Automation, creating and controlling Office Documents from other applications and

from Active Server Pages

Python
• Calc add-ins

6.1.3 Recommendation
All languages have their advantages and disadvantages as previously discussed , but there is not
one language for all purposes, depending on your use. Consider carefully before starting a new
project and evaluate the language to use so that it saves you time.

Sometimes it may be useful to use multiple languages to gain the advantages of both languages.
For instance, currently it is not possible to attach a keyboard event to a java method, therefore,
write a small basic function, which forwards the event to a java component.

The number of languages supported by UNO may increase and some of the limitations shown in
the table above may disappear.

6.2 Language Bindings
UNO language bindings enable developers to use and implement UNO objects in arbitrary
programming languages. Thus, the existing language bindings connect between implementation
environments, such as Java, C++, OpenOffice.org Basic and OLE Automation. The connection is
accomplished by bridges. The following terms are used in our discussion about the implementation
of language bindings.

In our context, the target language or target environment denotes the language or environment from
which the UNO component model is accessed. The bridging language is the language used for
writing the bridge code.

An object-oriented language determines the layout of its objects in memory. We call an object that
is based on this layout a language object. The layout along with everything that relates to it, such as
creation, destruction, and interaction, is the object model of a language.

A UNO proxy (short: proxy) is created by a bridge and it is a language object that represents a UNO
object in the target language. It provides the same functionality as the original UNO object. There
are two terms which further specialize a UNO proxy. The UNO interface proxy is a UNO proxy

388 OpenOffice.org 2.3 Developer's Guide • June 2007

representing exactly one interface of a UNO object, whereas a UNO object proxy represents an uno
object with all its interfaces.

An interface bridge bridges one UNO interface to one interface of the target language, that is, to a
UNO interface proxy. When the proxy is queried for another interface that is implemented by the
UNO object, then another interface proxy is returned. In contrast, an object bridge bridges entire
UNO objects into UNO object proxies of the target language. The object proxy receives calls for all
interfaces of the UNO object.

6.2.1 Implementing UNO Language Bindings
This section introduces the basic steps to create a new language binding. The steps required
depend on the target language. The section provides an overview of existing language bindings to
help you to decide what is necessary for your case. It is recommended that you read the sources for
available language bindings and transfer the solutions they offer to the new circumstances of your
target language.

Overview of Language Bindings and Bridges
Creating a language binding for UNO involves the following tasks:

Language Specification and UNO Feature Support

When writing a language binding, consider how to map UNOIDL types to your target language,
treat simple types and handle complex types, such as struct, sequence, interface and any.
Furthermore, UNOIDL features, such as services, properties and exceptions must be matched to
the capabilities of the target language and accommodated, if need be.

Code Generator

If the target language requires type definitions at compile time, a code generator must translate
UNOIDL type definitions to the target language type definitions according to the language specifi-
cation, so that the types defined in UNOIDL can be used.

UNO Bridge

UNO communication is based on calls to interfaces. Bridges supply the necessary means to use
interfaces of UNO objects between implementation environments. The key for bridging is an inter-
mediate environment called binary UNO,that consists of binary data formats for parameters and
return values, and a C dispatch method used to call arbitrary operations on UNO interfaces. A
bridge must be capable of the following tasks:

• Between the target language and OpenOffice.org:

• a) Converting operation parameters from the target language to binary UNO.

• b) Transforming operation calls in the target language to calls in binary UNO in a
different environment.

• c) Transporting the operation call with its parameters to OpenOffice.org and the return
values back to the target language.

• d) Mapping return values from binary UNO to the target language.

389

• Between OpenOffice.org and the target language, that is, during callbacks or when using a
component in the target language:

• a) Converting operation parameters from binary UNO to the target language.

• b) Transforming operation calls in binary UNO to calls in the target language.

• c) Transporting the operation call with its parameters to the target language and the
return values back to OpenOffice.org.

• d) Converting return values from the target language to binary UNO.

The Reflection API delivers information about UNO types and is used by bridges to support type
conversions (com.sun.star.script.Converter), and method invocations
(com.sun.star.script.Invocation and com.sun.star.script.XInvocation). Furthermore, it
supplies runtime type information and creates instances of certain UNO types, such as structs
(com.sun.star.reflection.CoreReflection).

UNO Component Loader

An implementation loader is required to load and activate code produced by the target language
if implementations in the target language are to be instantiated. This involves locating the compo-
nent files produced by the target language, and mechanisms to load and execute the code
produced by the target language, such as launching a runtime environment. Currently there are
implementation loaders for jar files and locally shared libraries on the platforms supported by
UNO.

Bootstrapping

A UNO language binding must prepare itself so that it can bridge to the UNO environments. It
depends on the target environment how this is achieved. In Java, C++, and Python, a local service
manager in the target environment is used to instantiate a com.sun.star.bridge.UnoUrlResolver
that connects to OpenOffice.org. In the Automation bridge, the object com.sun.star.ServiceManager
is obtained from the COM runtime system and in OpenOffice.org Basic the service manager is
available from a special method of the Basic runtime environment,
getProcessServiceManager().

Implementation Options
There are two different approaches when creating a UNO language binding.

A) Programming languages checking types at compile time.
Examples are the languages Java or C++. In these environments, it is necessary to query for
interfaces at certain objects and then invoke calls compile-time-typesafe on these interfaces.

B) Programming languages checking types at runtime.
Examples are the languages StarBasic, Python or Perl. In these languages, the interfaces are not
queried explicitly as there is no compiler to check the signature of a certain method. Instead,
methods are directly invoked on objects. During execution, the runtime engine checks if a
method is available at one of the exported interfaces, and if not, a runtime error is raised. Typi-
cally, such a binding has a slight performance disadvantage compared to the solution above.

You can achieve different levels of integration with both types of language binding.

1) Call existing UNO interfaces implemented in different bindings.
This is the normal scripting use case, for example, connect to a remote running office, instan-
tiate some services and invoke calls on these services (unidirectional binding).

390 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/CoreReflection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/CoreReflection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/CoreReflection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Invocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Invocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Invocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Converter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Converter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Converter.html

2) Implement UNO interfaces and let them be called from different bindings.
In addition to 1) above, a language binding is able to implement UNO interfaces, for example,
for instance listener interfaces, so that your code is notified of certain events (limited bidirectional
binding).

3) Implement a UNO component that is instantiated on demand from any other language at the
global service manager.
In addition to 2) above, a binding must provide the code which starts up the runtime engine of
the target environment. For example, when a Java UNO component is instantiated by the
OpenOffice.org process, the Java VM must be loaded and initialized, before the actual compo-
nent is loaded (bidirectional binding).

A language binding should always be bidirectional. That is, it should be possible to access UNO
components implemented in the target language from OpenOffice.org, as well as accessing UNO
components that are implemented in a different language from the target language.

The following table provides an overview about the capabilities of the different language bindings
currently available for OpenOffice.org:

Language scripting
 (accessing office objects)

interface
 implementation

component
 development

C++ (platform dependent) yes yes yes

Java yes yes yes

StarBasic yes (only listener interfaces) no

OLE automation
(Win32 only)

yes yes no (maybe in
the future)

The next section outlines the implementation of a C++ language binding. The C++ binding itself is
extremely platform and compiler dependent, which provides a barrierwhen porting
OpenOffice.org to a new platform. Although this chapter focuses on C++ topics, the chapter can be
applied for other typesafe languages that store their code in a shared library, for instance, Delphi,
because the same concepts apply.

The section 6.2.3 Advanced UNO - Language Bindings - UNO Reflection API considers the UNO
reflection and invocation API, which offers generic functionality to inspect and call UNO objects.
The section 6.2.4 Advanced UNO - Language Bindings - XInvocation Bridge explains how the Reflec-
tion API is used to implement a runtime type-checking language binding.

The final chapter 6.2.5 Advanced UNO - Language Bindings - Implementation Loader briefly describes
the concept of implementation loaders that instantiates components on demand independently of the
client and the implementation language.The integration of a new programming language into the
UNO component framework is completed once you have a loader.

6.2.2 UNO C++ bridges
This chapter focuses on writing a UNO bridge locally, specifically writing a C++ UNO bridge to
connect to code compiled with the C++ compiler. This is an introduction for bridge implementers..
It is assumed that the reader has a general understanding of compilers and a of 80x86 assembly
language. Refer to the section 6.2.5 Advanced UNO - Language Bindings - Implementation Loader for
additional information.

391

Binary UNO Interfaces
A primary goal when using a new compiler is to adjust the C++-UNO data type generator (cppu-
maker tool) to produce binary compatible declarations for the target language. The tested cppu core
functions can be used when there are similar sizes and alignment of UNO data types. The layout of
C++ data types, as well as implementing C++-UNO objects is explained in 3.4.2 Professional UNO -
UNO Language Bindings - C++ Language Binding.

When writing C++ UNO objects, you are implementing UNO interfaces by inheriting from pure
virtual C++ classes, that is, the generated cppumaker classes (see .hdl files). When you provide an
interface, you are providing a pure virtual class pointer. The following paragraph describes how
the memory layout of a C++ object looks.

A C++-UNO interface pointer is always a pointer to a virtual function table (vftable), that is, a C++
this pointer. The equivalent binary UNO interface is a pointer to a struct _uno_Interface that
contains function pointers. This struct holds a function pointer to a uno_DispatchMethod() and
also a function pointer to acquire() and release():
// forward declaration of uno_DispatchMethod()

typedef void (SAL_CALL * uno_DispatchMethod)(
 struct _uno_Interface * pUnoI,
 const struct _typelib_TypeDescription * pMemberType,
 void * pReturn,
 void * pArgs[],
 uno_Any ** ppException);

// Binary UNO interface

typedef struct _uno_Interface
{

 /** Acquires uno interface.

 @param pInterface uno interface
 */
 void (SAL_CALL * acquire)(struct _uno_Interface * pInterface);
 /** Releases uno interface.

 @param pInterface uno interface
 */
 void (SAL_CALL * release)(struct _uno_Interface * pInterface);
 /** dispatch function
 */
 uno_DispatchMethod pDispatcher ;

} uno_Interface;

Similar to com.sun.star.uno.XInterface, the life-cycle of an interface is controlled using the
acquire() and release() functions of the binary UNO interface. Any other method is called
through the dispatch function pointer pDispatcher. The dispatch function expects the binary
UNO interface pointer (this), the interface member type of the function to be called, an optional
pointer for a return value, the argument list and finally a pointer to signal an exception has
occurred.

The caller of the dispatch function provides memory for the return value and the exception holder
(uno_Any).

The pArgs array provides pointers to binary UNO values, for example, a pointer to an interface
reference (_uno_Interface **) or a pointer to a SAL 32 bit integer (sal_Int32 *).

A bridge to binary UNO maps interfaces from C++ to binary UNO and conversely. To achieve this,
implement a mechanism to produce proxy interfaces for both ends of the bridge.

392 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html

C++ Proxy
A C++ interface proxy carries its interface type (reflection), as well as its destination binary UNO
interface (this pointer). The proxy's vftable pointer is patched to a generated vftable that is
capable of determining the index that was called ,as well as the this pointer of the proxy object to
get the interface type.

The vftable requires an assembly code. The rest is programmed in C/C++. You are not allowed to
trash the registers. On many compilers, the this pointer and parameters are provided through
stack space. The following provides an example of a Visual C++ 80x86:

vftable slot0:
mov eax, 0
jmp cpp_vftable_call
vftable slot0:
mov eax, 1
jmp cpp_vftable_call
vftable slot0:
mov eax, 2
jmp cpp_vftable_call
...

static __declspec(naked) void __cdecl cpp_vftable_call(void)
{
__asm

 {
 sub esp, 8 // space for immediate return type
 push esp
 push eax // vtable index
 mov eax, esp
 add eax, 16
 push eax // original stack ptr
 call cpp_mediate // proceed in C/C++
 add esp, 12
 // depending on return value, fill registers
 cmp eax, typelib_TypeClass_FLOAT
 je Lfloat
 cmp eax, typelib_TypeClass_DOUBLE
 je Ldouble
 cmp eax, typelib_TypeClass_HYPER
 je Lhyper
 cmp eax, typelib_TypeClass_UNSIGNED_HYPER
 je Lhyper
 // rest is eax
 pop eax
 add esp, 4
 ret

Lhyper: pop eax
 pop edx
 ret

Lfloat: fld dword ptr [esp]
 add esp, 8
 ret

Ldouble: fld qword ptr [esp]
 add esp, 8
 ret
 }

}

The vftable is filled with pointers to the different slot code (snippets). The snippet code recognizes
the table index being called and calls cpp_vftable_call(). That function calls a C/C++ function
(cpp_mediate()) and sets output registers upon return, for example, for floating point numbers
depending on the return value type.

Remember that the vftable handling described above follows the Microsoft calling convention, that
is, the this pointer is always the first parameter on the stack. This is currently not the case for gcc
that prepends a pointer to a complex return value before the this pointer on the stack if a method
returns a struct. This complicates the (static) vftable treatment, because different vftable slots have
to be generated for different interface types, adjusting the offset to the proxy this pointer:

Microsoft Visual C++ call stack layout (esp offset [byte]):

0: return address

393

Microsoft Visual C++ call stack layout (esp offset [byte]):

4: this pointer

8: optional pointer, if return value is complex (i.e. struct to be copy-constructed)

12: param0

16: param1

20: ...

 This is usually the hardest part for stack-oriented compilers. Afterwards proceed in C/C++
(cpp_mediate()) to examine the proxy interface type, read out parameters from the stack and
prepare the call on the binary UNO destination interface.

Each parameter is read from the stack and converted into binary UNO. Use cppu core functions if
you have adjusted the cppumaker code generation (alignment, sizes) to the binary UNO layout (see
cppu/inc/uno/data.h).

After calling the destination uno_dispatch() method, convert any out/inout and return the
values back to C++-UNO, and return to the caller. If an exception is signalled (*ppException !=
0), throw the exception provided to you in ppException. In most cases, you can utilize Runtime
Type Information (RTTI) from your compiler framework to throw exceptions in a generic manner.
Disassemble code throwing a C++ exception, and observe what the compiler generates.

Binary UNO Proxy
The proxy code is simple for binary UNO. Convert any in/inout parameters to C++-UNO values,
preparing a call stack. Then perform a virtual function call that is similar to the following example
for Microsoft Visual C++:
void callVirtualMethod(

 void * pThis, sal_Int32 nVtableIndex,
 void * pRegisterReturn, typelib_TypeClass eReturnTypeClass,
 sal_Int32 * pStackLongs, sal_Int32 nStackLongs)

{
 // parameter list is mixed list of * and values
 // reference parameters are pointers

__asm
 {
 mov eax, nStackLongs
 test eax, eax
 je Lcall
 // copy values
 mov ecx, eax
 shl eax, 2 // sizeof(sal_Int32) == 4
 add eax, pStackLongs // params stack space

Lcopy: sub eax, 4
 push dword ptr [eax]
 dec ecx
 jne Lcopy

Lcall:
 // call
 mov ecx, pThis
 push ecx // this ptr
 mov edx, [ecx] // pvft
 mov eax, nVtableIndex
 shl eax, 2 // sizeof(void *) == 4
 add edx, eax
 call [edx] // interface method call must be __cdecl!!!

 // register return
 mov ecx, eReturnTypeClass
 cmp ecx, typelib_TypeClass_VOID
 je Lcleanup
 mov ebx, pRegisterReturn

// int32
 cmp ecx, typelib_TypeClass_LONG
 je Lint32
 cmp ecx, typelib_TypeClass_UNSIGNED_LONG
 je Lint32

394 OpenOffice.org 2.3 Developer's Guide • June 2007

 cmp ecx, typelib_TypeClass_ENUM
 je Lint32

// int8
 cmp ecx, typelib_TypeClass_BOOLEAN
 je Lint8
 cmp ecx, typelib_TypeClass_BYTE
 je Lint8

// int16
 cmp ecx, typelib_TypeClass_CHAR
 je Lint16
 cmp ecx, typelib_TypeClass_SHORT
 je Lint16
 cmp ecx, typelib_TypeClass_UNSIGNED_SHORT
 je Lint16

// float
 cmp ecx, typelib_TypeClass_FLOAT
 je Lfloat

// double
 cmp ecx, typelib_TypeClass_DOUBLE
 je Ldouble

// int64
 cmp ecx, typelib_TypeClass_HYPER
 je Lint64
 cmp ecx, typelib_TypeClass_UNSIGNED_HYPER

 je Lint64
 jmp Lcleanup // no simple type

Lint8:
 mov byte ptr [ebx], al
 jmp Lcleanup

Lint16:
 mov word ptr [ebx], ax
 jmp Lcleanup

Lfloat:
 fstp dword ptr [ebx]
 jmp Lcleanup

Ldouble:
 fstp qword ptr [ebx]
 jmp Lcleanup

Lint64:
 mov dword ptr [ebx], eax
 mov dword ptr [ebx+4], edx
 jmp Lcleanup

Lint32:
 mov dword ptr [ebx], eax
 jmp Lcleanup

Lcleanup:
 // cleanup stack
 mov eax, nStackLongs
 shl eax, 2 // sizeof(sal_Int32) == 4
 add eax, 4 // this ptr
 add esp, eax
 }

}

First stack data is pushed to the stack., including a this pointer, then the virtual function's pointer
is retrieved and called. When the call returns, the return register values are copied back. It is also
necessary to catch all exceptions generically and retrieve information about type and data of a
thrown exception. In this case, look at your compiler framework functions also.

Additional Hints
Every local bridge is different, because of the compiler framework and code generation and
register allocation. Before starting, look at your existing bridge code for the processor, compiler,
and the platform in module bridges/source/cpp_uno that is part of the OpenOffice.org source tree on
www.openoffice.org.

Also test your bridge code extensively and build the module cppu with debug symbols before
implementing the bridge, because cppu contains alignment and size tests for the compiler.

For quick development, use the executable build in cppu/test raising your bridge library, doing lots
of calls with all kinds of data on mapped interfaces.

Also test your bridge in a non-debug build. Often, bugs in assembly code only occur in non-debug
versions, because of trashed registers. In most cases, optimized code allocates or uses more
processor registers than non-optimized (debug) code.

395

6.2.3 UNO Reflection API
This section describes the UNO Reflection API. This API includes services and interfaces that can
be used to get information about interfaces and objects at runtime.

XTypeProvider Interface
The interface com.sun.star.lang.XTypeProvider allows the developer to retrieve all types
provided by an object. These types are usually interface types and the XTypeProvider interface
can be used at runtime to detect which interfaces are supported by an object. This interface should
be supported by every object to make it scriptable from OpenOffice.org Basic.

Converter Service
The service com.sun.star.script.Converter supporting the interface
com.sun.star.script.XTypeConverter provides basic functionality that is important in the
reflection context. It converts values to a particular type. For the method
com.sun.star.script.XTypeConverter:convertTo(), the target type is specified as type,
allowing any type available in the UNO type system. The method
com.sun.star.script.XTypeConverter:convertToSimpleType() converts a value into a simple
type that is specified by the corresponding com.sun.star.uno.TypeClass. If the requested
conversion is not feasible, both methods throw a com.sun.star.script.CannotConvertExcep-
tion.

CoreReflection Service
The service com.sun.star.reflection.CoreReflection supporting the interface
com.sun.star.reflection.XIdlReflection is an important entry point for the Uno Reflection
API. The XIdlReflection interface has two methods that each return a com.sun.star.reflec-
tion.XIdlClass interface for a given name (method forName()) or any value (method
getType()).

The interface XIdlClass is one of the central interfaces of the Reflection API. It provides informa-
tion about types, especially about class or interface, and struct types. Besides general information,
for example, to check type identity through the method equals() or to determine a type or class
name by means of the method getName(), it is possible to ask for the fields or members, and
methods supported by an interface type (method getFields() returning a sequence of XIdlField
interfaces and method getMethods() returning a sequence of XIdlMethod interfaces).

The interface XIdlField is deprecated and should not be used. Instead the interface
com.sun.star.reflection.XIdlField2 is available by querying it from an XIdlField interface
returned by an XIdlClass method.

The interface XIdlField or XIdlField2 represents a struct member of a struct or get or set
accessor methods of an interface type. It provides information about the field (methods getType()
and getAccessMode()) and reads and � if allowed by the access mode � modifies its value for a
given instance of the corresponding type (methods get() and set()).

The interface XIdlMethod represents a method of an interface type. It provides information about
the method (methods getReturnType(), getParameterTypes(), getParameterInfos(), getEx-
ceptionTypes() and getMode()) and invokes the method for a given instance of the corre-
sponding type (method invoke()).

396 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/XIdlField2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/XIdlField2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/XIdlField2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/XIdlClass.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/XIdlClass.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/XIdlClass.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/XIdlClass.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/XIdlClass.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/XIdlClass.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/XIdlReflection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/XIdlReflection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/XIdlReflection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/CoreReflection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/CoreReflection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/CoreReflection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/TypeClass.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/TypeClass.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/TypeClass.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XTypeConverter.html#convertToSimpleType
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XTypeConverter.html#convertToSimpleType
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XTypeConverter.html#convertToSimpleType
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XTypeConverter.html#convertTo
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XTypeConverter.html#convertTo
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XTypeConverter.html#convertTo
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XTypeConverter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XTypeConverter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XTypeConverter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Converter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Converter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Converter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html

Introspection

The service com.sun.star.beans.Introspection supporting the interface
com.sun.star.beans.XIntrospection is used to inspect an object of interface or struct type to
obtain information about its members and methods. Unlike the CoreReflection service, and the
XIdlClass interface ,the inspection is not limited to one interface type but to all interfaces
supported by an object. To detect the interfaces supported by an object, the Introspection service
queries for the XTypeProvider interface. If an object does not support this interface, the introspec-
tion does not work correctly.

To inspect an object, pass it as an any value to the inspect() method of XIntrospection. The
result of the introspection process is returned as com.sun.star.beans.XIntrospectionAccess
interface. This interface is used to obtain information about the inspected object. All information
returned refers to the complete object as a combination of several interfaces. When accessing an
object through XIntrospectionAccess, it is impossible to distinguish between the different inter-
faces.

The com.sun.star.beans.XIntrospectionAccess interface provides a list of all properties
(method getProperties()) and methods (method getMethods()) supported by the object. The
introspection maps methods matching the pattern
FooType getFoo()
 setFoo(FooType)

to a property Foo of type FooType.

com.sun.star.beans.XIntrospectionAccess also supports a categorization of properties and
methods. For instance, it is possible to exclude "dangerous" methods ,such as the reference
counting methods com.sun.star.uno.XInterface:acquire() and
com.sun.star.uno.XInterface:release() from the set of methods returned by getMethods().
When the Introspection service is used to bind a new scripting language, it is useful to block the
access to functionality that could crash the entire OpenOffice.org application when used in an
incorrect manner.

The XIntrospectionAccess interface does not allow the developer to invoke methods and access
properties directly. To invoke methods, the invoke() method of the XIdlMethod interfaces
returned by the methods getMethods() and getMethod() are used. To access properties, a
com.sun.star.beans.XPropertySet interface is used that can be queried from the
com.sun.star.beans.XIntrospectionAccess:queryAdapter() method. This method also
provides adapter interfaces for other generic access interfaces like
com.sun.star.container.XNameAccess and com.sun.star.container.XIndexAccess, if these
interfaces are also supported by the original object.

Invocation

The service com.sun.star.script.Invocation supporting the interface
com.sun.star.lang.XSingleServiceFactory provides a generic, high-level access (higher
compared to the Introspection service) to the properties and methods of an object. The object
that should be accessed through Introspection is passed to the
com.sun.star.lang.XSingleServiceFactory:createInstanceWithArguments() method. The
returned XInterface can then be queried for com.sun.star.script.XInvocation2 derived from
com.sun.star.script.XInvocation.

The XInvocation interface invokes methods and access properties directly by passing their names
and additional parameters to the corresponding methods (method invoke(), getValue() and
setValue()). It is also possible to ask if a method or property exists with the methods
hasMethod() and hasProperty().

397

http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html#createInstanceWithArguments
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html#createInstanceWithArguments
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html#createInstanceWithArguments
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Invocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Invocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Invocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XIntrospectionAccess.html#queryAdapter
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XIntrospectionAccess.html#queryAdapter
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XIntrospectionAccess.html#queryAdapter
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#release
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#release
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#release
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#acquire
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#acquire
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#acquire
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XIntrospectionAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XIntrospectionAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XIntrospectionAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XIntrospectionAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XIntrospectionAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XIntrospectionAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XIntrospectionAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XIntrospectionAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XIntrospectionAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XIntrospection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XIntrospection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XIntrospection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Introspection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Introspection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Introspection.html

When invoking a method with invoke(), the parameters are passed as a sequence of any values.
The Invocation service automatically converts these arguments, if possible to the appropriate
target types using the com.sun.star.script.Converter service that is further described below.
The Introspection functionality is suitable for binding scripting languages to UNO that are not
or only weakly typed.

The XInvocation2 interface extends the Invocation functionality by methods to ask for further
information about the properties and methods of the object represented by the Invocation
instance. It is possible to ask for the names of all the properties and methods (method getMember-
Names()) and detailed information about them represented by the com.sun.star.script.Invo-
cationInfo struct type (methods getInfo() and getInfoForName()).

Members of struct com.sun.star.script.InvocationInfo
aName Name of the method or property.

eMemberType Kind of the member (method or property).

PropertyAttribute Only for property members: This field may contain zero or more constants of the
com::sun::star::beans::PropertyAttribute constants group. It is not guaranteed that all
necessary constants are set to describe the property completely, but a flag will be set
if the corresponding characteristic really exists. For example,iIf the READONLY flag
is set, the property is read only. If it is not set, the property nevertheless can be read
only. This field is irrelevant for methods and is set to 0.

aType Type of the member, when referring to methods, the return type

aParamTypes Types of method parameters, for properties this sequence is empty

aParamModes Mode of method parameters (in, out, inout), for properties this sequence is
empty.

The Invocation service is based on the Introspection service. The XInvocation interface has a
method getIntrospection() to ask for the corresponding XIntrospectionAccess interface. The
Invocation implementation currently implemented in OpenOffice.org supports this, but in
general, an implementation of XInvocation does not provide access to an XInvocationAccess
interface.

InvocationAdapterFactory

The service com.sun.star.script.InvocationAdapterFactory supporting the interfaces
com.sun.star.script.XInvocationAdapterFactory and
com.sun.star.script.XInvocationAdapterFactory2 are used to create adapters that map a
generic XInvocation interface to specific interfaces. This functionality is especially essential for
creating scripting language bindings that do not only access UNO from the scripting language, but
also to implement UNO objects using the scripting language. Without the InvocationAdapter-
Factory functionality, this would only be possible if the scripting language supported the imple-
mentation of interfaces directly.

By means of the InvocationAdapterFactory functionality it is only necessary to map the
scripting language specific native invocation interface, for example, realized by an OLE IDispatch
interface, to the UNO XInvocation interface. Then, any combination of interfaces needed to repre-
sent the services supported by a UNO object are provided as an adapter using the
com.sun.star.script.XInvocationAdapterFactory2:createAdapter() method.

Another important use of the invocation adapter is to create listener interfaces that are passed to
the corresponding add...Listener() method of an UNO interface and maps to the methods of an
interface to XInvocation. In this case, usually the
com.sun.star.script.XInvocationAdapterFactory:createAdapter() method is used.

398 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocationAdapterFactory.html#createAdapter
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocationAdapterFactory.html#createAdapter
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocationAdapterFactory.html#createAdapter
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocationAdapterFactory2.html#createAdapter
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocationAdapterFactory2.html#createAdapter
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocationAdapterFactory2.html#createAdapter
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocationAdapterFactory2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocationAdapterFactory2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocationAdapterFactory2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocationAdapterFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocationAdapterFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocationAdapterFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/InvocationAdapterFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/InvocationAdapterFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/InvocationAdapterFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/InvocationInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/InvocationInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/InvocationInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/InvocationInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/InvocationInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/InvocationInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/InvocationInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/InvocationInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/InvocationInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Converter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Converter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Converter.html

XTypeDescription

Internally, types in UNO are represented by the type type. This type also has an interface repre-
sentation com.sun.star.reflection.XTypeDescription. A number of interfaces derived from
XTypeDescription represent types. These interfaces are:

• com.sun.star.reflection.XArrayTypeDescription
• com.sun.star.reflection.XCompoundTypeDescription
• com.sun.star.reflection.XEnumTypeDescription
• com.sun.star.reflection.XIndirectTypeDescription
• com.sun.star.reflection.XUnionTypeDescription
• com.sun.star.reflection.XInterfaceTypeDescription
• com.sun.star.reflection.XInterfaceAttributeTypeDescription
• com.sun.star.reflection.XInterfaceMemberTypeDescription
• com.sun.star.reflection.XInterfaceMethodTypeDescription
The corresponding services are com.sun.star.reflection.TypeDescriptionManager and
com.sun.star.reflection.TypeDescriptionProvider. These services support
com.sun.star.container.XHierarchicalNameAccess and asks for a type description interface
by passing the fully qualified type name to the
com.sun.star.container.XHierarchicalNameAccess:getByHierarchicalName() method.

The TypeDescription services and interfaces are listed here for completeness. Ordinarily this
functionality would not be used when binding a scripting language to UNO, because the high-level
services Invocation, Introspection and Reflection provide all the functionality required. If the
binding is implemented in C++, the type type and the corresponding C API are used directly.

The following illustration provides an overview of how the described services and interfaces work
together. Each arrow expresses a "uses" relationship. The interfaces listed for a service are not
necessarily supported by the service directly, but contain interfaces that are strongly related to the
services.

399

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XHierarchicalNameAccess.html#getByHierarchicalName
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XHierarchicalNameAccess.html#getByHierarchicalName
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XHierarchicalNameAccess.html#getByHierarchicalName
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XHierarchicalNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XHierarchicalNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XHierarchicalNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/TypeDescriptionProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/TypeDescriptionProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/TypeDescriptionProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/TypeDescriptionManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/TypeDescriptionManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/TypeDescriptionManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/XInterfaceMethodTypeDescription.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/XInterfaceMemberTypeDescription.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/XInterfaceAttributeTypeDescription.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/XInterfaceTypeDescription.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/XUnionTypeDescription.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/XIndirectTypeDescription.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/XEnumTypeDescription.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/XCompoundTypeDescription.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/XArrayTypeDescription.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/XTypeDescription.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/XTypeDescription.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/XTypeDescription.html

6.2.4 XInvocation Bridge

Scripting Existing UNO Objects
This section describes UNO bridges for type-unsafe (scripting) programming languages. These
bridges are based on the com.sun.star.script.Invocation service.

The most common starting point for a new scripting language binding is that you want to control
OpenOffice.org from a script running externally. To accomplish this, you need to know what your
scripting language offers to extend the language, for example, Python or Perl extend the language
with a module concept using locally shared libraries.

In general, your bridge must offer a static method that is called from a script. Within this method,
bootstrap a UNO C++ component context as described in 4.9.4 Writing UNO Components - Deploy-
ment Options for Components - Bootstrapping a Service Manager.

400 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 6.1

http://api.openoffice.org/docs/common/ref/com/sun/star/script/Invocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Invocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Invocation.html

Proxying a UNO Object

Next, this component context must be passed to the script programmer, so that you can instantiate
a com.sun.star.bridge.UnoUrlResolver and connect to a running office within the script.

The component context can not be passed directly as a C++ UNO reference, because the scripting
engine does not recognize it, therefore build a language dependent proxy object around the C++
object Reference.

For example, Python offers an API to create a proxy. Typically calls invoked on the proxy from a
script are narrowed into one single C function. The Python runtime passes method names and an
array containing the arguments to this C function.

If a proxy is implemented for a concrete interface, the method names that you received could in
theory be compared to all method names offered by the UNO interface. This is not feasible,
because of all the interfaces used in OpenOffice.org. The com.sun.star.script.Invocation
service exists for this purpose. It offers a simple interface com.sun.star.lang.XSingleService-
Factory that creates a proxy for an arbitrary UNO object using the createInstanceWithArgu-
ments() method and passing the object the proxy acts for. Use the com.sun.star.script.XInvo-
cation interface that is exported by this proxy to invoke a method on the UNO object.

401

Illustration 6.2

http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Invocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Invocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Invocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html

Argument Conversion

In addition, argument conversion must be c onsidered by specifying how each UNO type should
be mapped to your target language.

Convert the language dependent data types to UNO data types before calling
com.sun.star.script.XInvocation:invoke() and convert the UNO datatypes (return value
and out parameters) to language dependent types after the call has been exectuted. The conversion
routines are typically recursive functions, because data values are nested in complex types, such as
struct or any.

When UNO object references are returned by method calls to UNO objects, create new language
dependent proxies as discussed above. When passing a previously returned UNO object as a
parameter to a new method call, the language binding must recognize that it is a proxied object
and pass the original UNO object reference to the com.sun.star.script.XInvocation:invoke()
call instead.

A special case for conversions are UNOIDL structs. You want to call a method that takes a struct as
an argument. The first problem is the struct must be created by the bridge and the script
programmer must be able to set members at the struct. One solution is that the bridge implementer
creates a UNO struct using core C functions from the cppu library, but this is complicated and
results in a lot of difficulty.

Therefore, a solution has been created that accesses structs through the XInvocation interface, as if
they were UNO objects. This simplifies struct handling for bridge programmers. Refer to the refer-
ence documentation of com.sun.star.reflection.CoreReflection and the

402 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 6.3

http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/CoreReflection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/CoreReflection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/CoreReflection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke

com.sun.star.script.Invocation service and the com.sun.star.beans.XMaterialHolder
interface.

Exception Handling

UNO method calls may throw exceptions and must be mapped to the desired target language
appropriately, depending on the capabilities of your target language. Ideally, the target language
supports an exception concept, but error handlers, such as in OpenOffice.org Basic can be used
also. A third way and worst case scenario is to check after every API call if an exception has been
thrown,. In case the UNO object throws an excception, the XInvocation proxy throws a
com.sun.star.reflection.InvocationTargetException. The exception has an additional any
member, that contains the exception that was really thrown.

Note that the XInvocation proxy may throw a com.sun.star.script.CannotConvertException
indicating that the arguments passed by the script programmer cannot be matched to the argu-
ments of the desired function. For example, there are missing arguments or the types are incompat-
ible. This must be reported as an error to the script programmer.

Property Support

The com.sun.star.script.Invocation has special getProperty() and setProperty()
methods. These methods are used when the UNO object supports a property set and your target
language, for example, supports something similar to the following:
object.propname = 'foo';.

Note that every property is also reachable by
com.sun.star.script.XInvocation:invoke('setPropertyValue', ...), so these set or
getProperty functions are optional.

Implementing UNO objects
When it is possible to implement classes in your target language, consider offering support for
implementation of UNO objects. This is useful for callbacks, for example, event listeners. Another
typical use case is to provide a datasource through a com.sun.star.io.XInputStream.

The script programmer determines which UNOIDL types the developed class implements, such as
flagged by a special member name, for example, such as __supportedUnoTypes.

When an instance of a class is passed as an argument to a call on an external UNO object, the
bridge code creates a new language dependent proxy that additionally supports the XInvocation
interface. the bridge code hands the XInvocation reference of the bridge's proxy to the called
object. This works as long as the com.sun.star.script.XInvocation:invoke() method is used
directly, for instance OpenOffice.org Basic, except if the called object expects an XInputStream.

The com.sun.star.script.InvocationAdapterFactory service helps by creating a proxy for a
certain object that implements XInvocation and a set of interfaces, for example, given by the
__supportedUnoTypes variable. The proxy returned by the createAdapater() method must be
passed to the called object instead of the bridge's XInvocation implementation. When the Adapter
is queried for one of the supported types, an appropriate proxy supporting that interface is
created.

If a UNO object invokes a call on the object, the bridge proxy's
com.sun.star.script.XInvocation:invoke() method is called. It converts the passed argu-
ments from UNO types to language dependent types and conversely using the same routines you

403

http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/InvocationAdapterFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/InvocationAdapterFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/InvocationAdapterFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XInputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XInputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XInputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Invocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Invocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Invocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/InvocationTargetException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/InvocationTargetException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/InvocationTargetException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMaterialHolder.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMaterialHolder.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMaterialHolder.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Invocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Invocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Invocation.html

have for the other calling direction. Finally, it delegates the call to the implementation within the
script.

It may become difficult if you do not want to start with an external scripting engine, but want to
use the scripting engine inside the OpenOffice.org process instead. This must be supported by the
target language. Often it is possible to load some library dynamically and access the scripting
runtime engine through a C API. It should be implemented as a UNO C++ component. There are
currently no generic UNO interfaces for this case, except for the com.sun.star.loader.XImple-
mentationLoader. Define your own interfaces that best match your requirements. You might
instantiate from Basic and retrieve an initial object or start a script. Future versions of
OpenOffice.org may have a more comprehensive solution.

Example: Python Bridge PyUNO
This section provides an example of how the Python UNO bridge PyUNO bootstraps a service
manager and how it makes use of the Invocation service to realize method invocation. While
some parts are implementation or Python specific, the example provides a general understanding
of language bindings.

The Python bridge PyUNO uses the cppu helper library to bootstrap a local service manager that is
asked for a UnoUrlResolver service in Python.

In UNO.py, Python calls PyUNO.bootstrap() and receives a local component context. Note the
parameter setup in that, it points to an ini file that configures the bootstrapped service manager
with a type library. The file setup.ini corresponds to the uno.ini file that is used with the global
service manager of the office.
import PyUNO
import os

setup_ini = 'file:///%s/setup.ini' % os.getenv ('PWD')
class UNO:

 def __init__ (self, connection='socket,host=localhost,port=2083;urp', setup=setup_ini):
 """ do the bootstrap

 connection can be one or more of the following:

 socket,
 host = localhost | <hostname> | <ip-addr>,

404 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 6.4

http://api.openoffice.org/docs/common/ref/com/sun/star/loader/XImplementationLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/loader/XImplementationLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/loader/XImplementationLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/loader/XImplementationLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/loader/XImplementationLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/loader/XImplementationLoader.html

 port = <port>,
 service = soffice,
 user = <username>,
 password = <password>
 ;urp

 """

 self.XComponentContext = PyUNO.bootstrap (setup)
 self.XUnoUrlResolver, o = \
 self.XComponentContext.ServiceManager.createInstanceWithContext (
 'com.sun.star.bridge.UnoUrlResolver', self.XComponentContext)
 self.XNamingService, o = self.XUnoUrlResolver.resolve (
 'uno:%s;StarOffice.NamingService' % connection)
 self.XMultiServiceFactory, o = self.XNamingService.getRegisteredObject (
 'StarOffice.ServiceManager')
 self.XComponentLoader, o = \
 self.XMultiServiceFactory.createInstance ('com.sun.star.frame.Desktop')
 ...

Python uses function tables to map Python to C functions. PyUNO_module.cc defines a table with
the mappings for the PyUNO object. As shown in the following example, PyUNO.bootstrap() is
mapped to the C function newBootstrapPyUNO():
static struct PyMethodDef PyUNOModule_methods [] =
 {
 {"bootstrapPyUNO", bootstrapPyUNO, 1},
 {"bootstrap ", newBootstrapPyUNO , 1},
 {"createIdlStruct", createIdlStruct, 1},
 {"true", createTrueBool, 1},
 {"false", createFalseBool, 1},
 {NULL, NULL}
 };

The function newBootstrapPyUNO() calls Util::bootstrap() in PyUNO_Util.cc and passes the
location of the setup.ini file.
static PyObject* newBootstrapPyUNO (PyObject* self, PyObject* args)
{
 char* ini_file_location;
 Reference<XComponentContext> tmp_cc;
 Any a;

 if (!PyArg_ParseTuple (args, "s", &ini_file_location))
 return NULL;
 tmp_cc = Util::bootstrap (ini_file_location);
 ...

Util::bootstrap() uses defaultBootstrap_InitialComponentContext(iniFile) from
cppuhelper/bootstrap.hxx to create a local component context and its parameter iniFile points to the
setup.ini file that configures the local service manager to use service.rdb and types.rdb (until 1.1.0
applicat.rdb). This local component context instantiates services, such as the UnoUrlResolver.
 Reference<XComponentContext> bootstrap (char* ini_file_location)
 {
 Reference<XComponentContext> my_component_context;
 try
 {

 my_component_context = defaultBootstrap_InitialComponentContext (
 OUString::createFromAscii (ini_file_location));

 }
 catch (com::sun::star::uno::Exception e)
 {

 printf (OUStringToOString (e.Message, osl_getThreadTextEncoding ()).getStr ());
 }
 return my_component_context;
 }

Now newBootstrapPyUNO() continues to set up a UNO proxy. It creates local instances of
com.sun.star.script.Invocation and com.sun.star.script.Converter, and calls
PyUNO_new(), passing the local ComponentContext, a reference to the XSingleServiceFactory
interface of com.sun.star.script.Invocation and a reference to the XTypeConverter interface
of com.sun.star.script.Converter.
static PyObject* newBootstrapPyUNO (PyObject* self, PyObject* args)
{
 char* ini_file_location;
 Reference<XComponentContext> tmp_cc;
 Any a;

405

http://api.openoffice.org/docs/common/ref/com/sun/star/script/Converter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Converter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Converter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Invocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Invocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Invocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Converter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Converter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Converter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Invocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Invocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Invocation.html

 if (!PyArg_ParseTuple (args, "s", &ini_file_location))
 return NULL;
 tmp_cc = Util::bootstrap (ini_file_location) ;
 Reference<XMultiServiceFactory> tmp_msf (tmp_cc->getServiceManager (), UNO_QUERY);
 if (!tmp_msf.is ())
 {
 PyErr_SetString (PyExc_RuntimeError, "Couldn't bootstrap from inifile");
 return NULL;
 }
 Reference<XSingleServiceFactory> tmp_ssf (tmp_msf->createInstance (

 OUString (RTL_CONSTASCII_USTRINGPARAM ("com.sun.star.script.Invocation "))), UNO_QUERY);
 Reference<XTypeConverter> tmp_tc (tmp_msf->createInstance (

 OUString (RTL_CONSTASCII_USTRINGPARAM ("com.sun.star.script.Converter "))), UNO_QUERY);
 if (!tmp_tc.is ())
 {
 PyErr_SetString (PyExc_RuntimeError, "Couldn't create XTypeConverter");
 return NULL;
 }
 if (!tmp_ssf.is ())
 {
 PyErr_SetString (PyExc_RuntimeError, "Couldn't create XInvocation");
 return NULL;
 }
 a <<= tmp_cc;

 return PyUNO_new (a, tmp_ssf, tmp_tc) ;

}

PyUNO_new() in PyUNO.cc is the function responsible for building all Python proxies. The call to
PyUNO_new() here in newBootstrapPyUno() builds the first local PyUNO proxy for the Compo-
nentContext object a which has been returned by Util::bootstrap().

For this purpose, PyUNO_new() uses the Invocation service to retrieve an XInvocation2 interface
to the ComponentContext service passed in the parameter a:
// PyUNO_new
//
// creates Python object proxies for the given target UNO interfaces
// targetInterface given UNO interface
// ssf XSingleServiceFactory interface of com.sun.star.script.Invocation service
// tc XTypeConverter interface of com.sun.star.script.Converter service

PyObject* PyUNO_new (Any targetInterface,
 Reference<XSingleServiceFactory> ssf,
 Reference<XTypeConverter> tc)

 ...
 Sequence<Any> arguments (1);
 Reference<XInterface> tmp_interface;
 ...
 // put the target object into a sequence of Any for the call to
 // ssf->createInstanceWithArguments()
 // ssf is the XSingleServiceFactory interface of the com.sun.star.script.Invocation service
 arguments[0] <<= targetInterface;

 // obtain com.sun.star.script.XInvocation2 for target object from Invocation
 // let Invocation create an XInvocation object for the Any in arguments
 tmp_interface = ssf->createInstanceWithArguments (arguments);
 // query XInvocation2 interface
 Reference<XInvocation2 > tmp_invocation (tmp_interface, UNO_QUERY);
 ...

The Python proxy invokes methods, and creates and converts UNO types. This Python specific and
involves the implementation of several functions according to the Python API.

Finally __init__() in UNO.py in the above example uses the PyUNO object to obtain a local
UnoUrlResolver that retrieves the initial object from the office.

6.2.5 Implementation Loader
When you are raising a service by name using the com.sun.star.lang.ServiceManager service,
the service manager decides an implementation name, code location and an appropriate loader to
raise the code. It is commonly reading out of a persistent registry storage, for example, services.rdb
(until 1.1.0 applicat.rdb), for this purpose. Previously, the regcomp tool has registered components

406 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/ServiceManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/ServiceManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/ServiceManager.html

into that registry during the OpenOffice.org setup. The tool uses a service called
com.sun.star.registry.ImplementationRegistration for this task.

A loader knows how to load a component from a shared library, a .jar or script file and is able to
obtain the service object factory for an implementation and retrieve information being written to
the registry. A specific loader defines how a component implementer has to package code so that it
is recognized by UNO. For instance in C++, a component is a shared library and in Java it is a .jar
file. In a yet to be developed loader, the implementer of the loader has to decide, what a compo-
nent is in that particular language � it might as well be a single script file.

The com.sun.star.loader.XImplementationLoader interface looks like the following:
interface XImplementationLoader: com::sun::star::uno::XInterface
{

 com::sun::star::uno::XInterface activate ([in] string implementationName,
 [in] string implementationLoaderUrl,
 [in] string locationUrl,
 [in] com::sun::star::registry::XRegistryKey xKey)
 raises(com::sun::star::loader::CannotActivateFactoryException);

 boolean writeRegistryInfo ([in] com::sun::star::registry::XRegistryKey xKey,
 [in] string implementationLoaderUrl,
 [in] string locationUrl)
 raises(com::sun::star::registry::CannotRegisterImplementationException);

};

The locationUrl argument describes the location of the implementation file,for example, a jar file
or a shared library. The implementationLoaderUrl argument is not used and is obsolete. The
registry key xKey writes information about the implementations within a component into a persis-
tent storage. Refer to 4.6.4 Writing UNO Components - C++ Component - Write Registration Info Using
Helper Method for additional information.

The method writeRegistryMethod() is called by the regcomp tool to register a component into a
registry.

The activate() method returns a factory com.sun.star.lang.XSingleComponentFactory for a
concrete implementation name.

407

Illustration 6.5

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/loader/XImplementationLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/loader/XImplementationLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/loader/XImplementationLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/registry/ImplementationRegistration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/registry/ImplementationRegistration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/registry/ImplementationRegistration.html

The loader is often implemented in C/C++. When the loader is instantiated, it is responsible for
starting up the language runtime, for example, Java VM, Python interpreter, through implementa-
tion. After starting up the runtime, the loader starts up the UNO language binding as discussed in
the previous chapter, and bridge the XRegistryKey interface and the initial factory interface.

Shared Library Loader
This section discusses the loader for local components written in C++ that are loaded by the
com.sun.star.loader.SharedLibrary service. Every type safe programming language that
stores its code in shared libraries should implement the bridge with environments and mappings
as discussed in chapters 6.2.1 Advanced UNO - Language Bindings - Implementing UNO Language
Bindings - Overview of Language Bindings and Bridges - UNO Bridge and 6.2.2 Advanced UNO -
Language Bindings - UNO C++ Bridges. These programming languages can reuse the existing loader
without creating a new one.

When the shared library is mapped into the running process, for example, using osl
_loadModule(), the shared library loader retrieves defined C symbols out of the library to deter-
mine the compiler that built the code . This function symbol is called
component_getImplementationEnvironment(). When the code is compiled with the Microsoft
Visual C++ compiler, it sets a pointer to a string called "msci", with gcc 3.0.1 a string "gcc3"
which is a UNO environment type name. A UNO environment is connected with the code that
runs in it, for example, the code compiled with gcc3 runs in the UNO environment with type name
gcc3.

In addition to the environment type name, a UNO environment defines a context pointer. The
context pointer and environment type name define a unique UNO environment. Although the
context pointer is mostly null, it is required to identify the environments apart for the same type,
for example, to identify different Java virtual machine environments when running a UNO object
in two different Java virtual machines within the same process. Both environments have the same
type name "java", but different context pointers. In local (C++) code, the context pointer is irrele-
vant , that is, set to null.The type name determines the UNO runtime environment.

When the loader knows the environment the code comes from, it decides if bridging is required.
Bridging is needed if the loader code is compiled with a different compiler, thus running in a
different environment. In this case, the loader raises a bridge to speak UNO with the component
code.

The loader calls on two more functions related to the above XimplementationLoader interface. All
of these symbols are C functions and have the following signatures:
extern "C" void SAL_CALL component_getImplementationEnvironment(

 const sal_Char ** ppEnvTypeName, uno_Environment ** ppEnv);
extern "C" sal_Bool SAL_CALL component_writeInfo(

 void * pServiceManager, void * pRegistryKey);
extern "C" void SAL_CALL component_getFactory(

 const sal_Char * pImplName, void * pServiceManager, void * pRegistryKey);

The latter two functions expect incoming C++-UNO interfaces, therefore the loader needs to bridge
interfaces before calling the functions as stated above.

Bridges
The loader uses the cppu core runtime to map an interface, specifying the UNO runtime environ-
ment that needs the interface mapping. The cppu core runtime raises and connects the appropriate
bridges, and provides a unidirectional mapping that uses underlying bidirectional bridges. Under
Unix, the name of the bridge library follows the naming convention
lib<SourceEnvironment>_<TargetEnvironment>., Under Windows, <SourceEnvironment>_<TargetEn-

408 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/loader/SharedLibrary.html
http://api.openoffice.org/docs/common/ref/com/sun/star/loader/SharedLibrary.html
http://api.openoffice.org/docs/common/ref/com/sun/star/loader/SharedLibrary.html

vironment>.dll is used. For instance, libgcc3_uno.so is the bridge library for mappings from gcc3 to
binary UNO,and msci_uno.dll maps from MS Visual C++ to binary UNO. The bridges mentioned
above all bridge to binary UNO. Binary UNO is only used as an intermediate environment. In
general, do not program binary UNO in clients. The purpose is to reduce the number of necessary
bridge implementations. New bridges have to map only to binary UNO instead of all conceivable
bridge combinations.

6.2.6 Help with New Language Bindings
Every UNO language binding is different, therefore only most important points were stressed, that
is, those that are likely to appear in almost every language binding implementation. Object issues,
such as lifetime, object identity, any handling, and bootstrapping were not discussed, because they
are too language dependent. For more information on these issues, subscribe to the dev@udk.openof-
fice.org mailing list to discuss these issues for your programming language.

6.3 Differences Between UNO and Corba
This subsection discusses the differences between UNO and CORBA by providing the funda-
mental differences and if the different concepts could be mapped into the world of the other
model. Consider the following feature comparison. The column titled "Mapping possible" states if
a feature could be mapped by a (yet to be developed) generic bridge.

UNO CORBA Mapping
possible

multiple inheritance of interfaces no yes yes

inheritance of structs yes no yes

inheritance of exceptions yes no yes

mandatory base interface for all interfaces yes no yes

mandatory base exception for all exceptions yes no yes

context of methods no yes no

char no yes yes

8 bit string no yes yes

array no yes yes

union no yes yes

assigned values for enum yes no yes

meta type 'type' yes no yes

object identity yes no no

lifetime mechanism yes no no

succession of oneway calls yes no no

in process communication yes no no

thread identity yes no no

409

UNO CORBA Mapping
possible

customized calls no yes yes

less code generation yes no no

• Multiple Inheritance
CORBA supports multiple inheritance of interfaces, whereas UNO only supports single inheri-
tance.
Mapping: Generates an additional interface with all methods and attributes of the inherited
interfaces that must be implemented in addition to the other interfaces.

• Inheritance of Structs
In contrast to CORBA, UNO supports inheritance of struct types. This is useful to define general
types and more detailed subtypes.
Mapping: Generate a struct with all members, plus all members of the inherited structs.

• Inheritance of Exceptions
CORBA does not support inheritance for exceptions, whereas UNO does. Inheritance of excep-
tions allows the specification of a complex exception concept. It is possible to make fine gran-
ular concepts using the detailed exceptions in the layer where they are useful and the base
exception in higher levels. The UNO error handling is based on exceptions and with inheritance
of exceptions it is possible to specify 'error classes' with a base exception and more detailed
errors of the same 'error class' that inherit from this base exception. On higher level APIs it is
enough to declare the base exception to specify the 'error class' and it is possible to support all
errors of this 'error class'.
Mapping: Generates an exception with all members, plus all members of the inherited excep-
tions. This is the same solution as for structs.

• Mandatory Base Interfaces
UNO specifies a mandatory base interface for all interfaces. This interface provides acquire()
and release() functions for reference counting. The minimum life time of an object is
managed by means of reference counting.

• Mandatory Base Exception
UNO specifies a mandatory base exception for all exceptions. This base exception contains a
string member Messagethat describes the reason for the exception in readable format. The base
exception makes it also possible to catch all UNO exceptions separately.

• Method Context
CORBA supports a request context. This context consists of a name-value pair which is speci-
fied for methods in UNOIDL. The context is used for describing the current state of the caller
object. A request context provides additional, operation-specific information that may affect the
performance of a request.

• Type char
UNO does not support 8-bit characters. In UNO, char represents a 16-bit unicode character.
Mapping: To support 8-bit characters it is possible to expand the TypeClass enum to support
8-bit characters and strings. The internal representation does not change anything, the Type-
Class is only relevant for mapping.

• 8 bit string
UNO does not support 8-bit strings. In UNO, string represents a 16-bit unicode string.
Mapping: The same possibility as for char.

• Type array
UNO does not support arrays at the moment, but is planned for the future.

410 OpenOffice.org 2.3 Developer's Guide • June 2007

• Type union
UNO does not support unions at the moment, but is planned for the future.

• Assigned Values for enums
UNO supports the assignment of values for enum values in IDL. This means that it is possible
to use these values directly to specify or operate with the required enum value in target
languages supporting this feature, for example, . C, C++.
Mapping: Possible by using the names of the values.

6.4 UNO Design Patterns and Coding Styles
This chapter discusses design patterns and coding recommendations for OpenOffice.org. Possible
candidates are:

• Singleton: global service manager, Desktop, UCB

• Factory: decouple specification and implementation, cross-environment instantiation, context-
specific instances

• Listener: eliminate polling

• Element access: it is arguable if that is a design pattern or just an API

• Properties: solves remote batch access, but incurs the problem of compile-time type indifference

• UCB commands: universal dispatching of content specific operations

• Dispatch commands: universal dispatching of object specific operations, chain of responsibility

6.4.1 Double-Checked Locking
The double-checked locking idiom is sometimes used in C/C++ code to speed up creation of a
single-instance resource. In a multi-threaded environment, typical C++ code that creates a single-
instance resource might look like the following example:
#include "osl/mutex.hxx"

T * getInstance1()
{
 static T * pInstance = 0;
 ::osl::MutexGuard aGuard(::osl::Mutex::getGlobalMutex());
 if (pInstance == 0)
 {
 static T aInstance;
 pInstance = &aInstance;
 }
 return pInstance;
}

A mutex guards against multiple threads simultaneously updating pInstance, and the nested
static aInstance is guaranteed to be created only when first needed, and destroyed when the
program terminates.

The disadvantage of the above function is that it must acquire and release the mutex every time it
is called. The double-checked locking idiom was developed to reduce the need for locking, leading
to the following modified function. Do not use.:
#include "osl/mutex.hxx"

T * getInstance2()
{
 static T * pInstance = 0;
 if (pInstance == 0)

411

 {
 ::osl::MutexGuard aGuard(::osl::Mutex::getGlobalMutex());
 if (pInstance == 0)
 {
 static T aInstance;
 pInstance = &aInstance;
 }
 }
 return pInstance;
}

This version needs to acquire and release the mutex only when pInstance has not yet been initial-
ized, resulting in a possible performance improvement. The mutex is still needed to avoid race
conditions when multiple threads simultaneously see that pInstance is not yet initialized, and all
want to update it at the same time. The problem with getInstance2 is that it does not work.

Assume that thread 1 calls getInstance2 first, finding pInstance uninitialized. It acquires the
mutex, creates aInstance that results in writing data into aInstance's memory, updates
pInstance that results in writing data into pIntance's memory, and releases the mutex. Some
hardware memory models a write the operations that transfer aInstance's and pInstance's data
to main memory to be re-ordered by the processor executing thread 1. Now, if thread 2 enters
getInstance2 when pInstance's data has already been written to main memory by thread 1, but
aInstance's data has not been written yet (remember that write operations may be done out of
order), then thread 2 sees that pInstance has already been initialized and exits from
getInstance2 directly. Thread 2 dereferences pInstance thereafter, accessing aInstance's
memory that has not yet been written into. Anything may happen in this situation.

In Java, double-checked locking can never be used, because it is broken and cannot be fixed.

In C and C++, the problem can be solved, but only by using platform-specific instructions, typi-
cally some sort of memory-barrier instructions. There is a macro
OSL_DOUBLE_CHECKED_LOCKING_MEMORY_BARRIER in osl/doublecheckedlocking.h that uses the
double-checked locking idiom in a way that actually works in C and C++.
#include "osl/doublecheckedlocking.h"
#include "osl/mutex.hxx"

T * getInstance3()
{
 static T * p = 0;
 T * pInstance = p;
 if (p == 0)
 {
 ::osl::MutexGuard aGuard(osl::Mutex::getGlobalMutex());
 p = pInstance;
 if (p == 0)
 {
 static T aInstance;
 p = &aInstance;
 OSL_DOUBLE_CHECKED_LOCKING_MEMORY_BARRIER();
 pInstance = p;
 }
 }
 else
 OSL_DOUBLE_CHECKED_LOCKING_MEMORY_BARRIER();
 return p;
}

The first (inner) use of OSL_DOUBLE_CHECKED_LOCKING_MEMORY_BARRIER ensures that aInstance's
data has been written to main memory before pInstance's data is written, therefore a thread can
not see pInstance to be initialized when aInstance's data has not yet reached main memory. This
solves the problem described above.

The second (outer) usage of OSL_DOUBLE_CHECKED_LOCKING_MEMORY_BARRIER is required to solve
a problem concerning the reordering on Alpha processors.

412 OpenOffice.org 2.3 Developer's Guide • June 2007

For more information about this problem, see Reordering on an Alpha processor by Bill Pugh
(www.cs.umd.edu/~pugh/java/memoryModel/AlphaReordering.html) and Pattern-Oriented Software Architecture,
Volume 2: Patterns for Concurrent and Networked Objects by Douglas C. Schmidt et al (Wiley, 2000). Also see
the Usenet article Re:Talking about volatile and threads synchronization by Davide Butenhof (October 2002) on
why the outer barrier can be moved into an else clause.

If you are coding in C++, there is an easier way to use double-checked locking without worrying
about the fine points. Use the rtl_Instance template from rtl/instance.hxx:
#include "osl/getglobalmutex.hxx"
#include "osl/mutex.hxx"
#include "rtl/instance.hxx"

namespace {
 struct Init()
 {
 T * operator()()
 {
 static T aInstance;
 return &aInstance;
 }
 };
}

T * getInstance4()
{
 return rtl_Instance< T, Init, ::osl::MutexGuard, ::osl::GetGlobalMutex >::create(
 Init(), ::osl::GetGlobalMutex());
}

Note that an extra function class is required in this case. The documentation of rtl_Instance
contains further examples of how this template can be used.

413

file:///D:/devguide/transformation/DevelopersGuide_pdf_oo/OfficeDev/%EF%BB%BFhttp://groups.google.com/groups%3Fq=g:thl3619352568d&dq=&hl=en&lr=&ie=UTF-8&oe=UTF-8&selm=RKAp9.4$AL4.369752@news.cpqcorp.net
file:///D:/devguide/transformation/DevelopersGuide_pdf_oo/OfficeDev/%EF%BB%BFhttp://groups.google.com/groups%3Fq=g:thl3619352568d&dq=&hl=en&lr=&ie=UTF-8&oe=UTF-8&selm=RKAp9.4$AL4.369752@news.cpqcorp.net
file:///D:/devguide/transformation/DevelopersGuide_pdf_oo/OfficeDev/%EF%BB%BFhttp://groups.google.com/groups%3Fq=g:thl3619352568d&dq=&hl=en&lr=&ie=UTF-8&oe=UTF-8&selm=RKAp9.4$AL4.369752@news.cpqcorp.net
file:///D:/devguide/transformation/DevelopersGuide_pdf_oo/OfficeDev/%EF%BB%BFhttp://www.cs.umd.edu/~pugh/java/memoryModel/AlphaReordering.html
file:///D:/devguide/transformation/DevelopersGuide_pdf_oo/OfficeDev/%EF%BB%BFhttp://www.cs.umd.edu/~pugh/java/memoryModel/AlphaReordering.html
file:///D:/devguide/transformation/DevelopersGuide_pdf_oo/OfficeDev/%EF%BB%BFhttp://www.cs.umd.edu/~pugh/java/memoryModel/AlphaReordering.html

If you are looking for more general information, the article The "Double-Checked Locking is Broken" Declaration
(http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html) is a good source on double-
checked locking, while Computer Architecture: A Quantitative Approach, Third Edition by John L. Hennessy
and David A. Patterson (Morgan Kaufmann, 2002) and UNIX® Systems for Modern Architectures: Symmetric
Multiprocessing and Caching for Kernel Programmers by Curt Schimmel (Addison-Wesley, 1994) offer detailed
information about hardware memory models.

414 OpenOffice.org 2.3 Developer's Guide • June 2007

http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html
http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html
http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

7 Office Development

This chapter describes the application environment of the OpenOffice.org application. It assumes
that you have read the chapter 2 First Steps, and that you are able to connect to the office and load
documents.

In most cases, developers use the functionality of OpenOffice.org by opening and modifying docu-
ments. The interfaces and services common to all document types and how documents are
embedded in the surrounding application environment are discussed.

It is also possible to extend the functionality of OpenOffice.org by replacing the services mentioned
here by intercepting the communication between objects or by creating your own document type
and integrating it into the desktop environment. All these things are discussed in this chapter.

7.1 OpenOffice.org Application Environment

7.1.1 Overview
The OpenOffice.org application environment is made up of the desktop environment and the frame-
work API.

415

 Illustration 7.1: OpenOffice.org Application Environment

The desktop environment consists of the desktop and auxiliary objects. It employs the framework
API to carry out its functions. The framework API currently has two parts: the component framework
and dispatch framework. The component framework follows a special Frame-Controller-Model para-
digm to manage components viewable in OpenOffice.org. The dispatch framework handles
command requests sent by the GUI.

Desktop Environment
The com.sun.star.frame.Desktop service is the central management instance for the
OpenOffice.org application framework. All OpenOffice.org application windows are organized in
a hierarchy of frames that contain viewable components. The desktop is the root frame for this
hierarchy. From the desktop you can load viewable components, access frames and components,
terminate the office, traverse the frame hierarchy and dispatch command requests.

The name of this service originates at StarOffice 5.x, where all document windows were embedded
into a common application window that was occupied by the StarOffice desktop, mirroring the
Windows desktop. The root frame of this hierarchy was called the desktop frame. The name of this
service and the interface name com.sun.star.frame.XDesktop were kept for compatibility
reasons.

The desktop object and frame objects use auxiliary services, such as the
com.sun.star.document.TypeDetection service and other, opaque implementations that
interact with the UNO-based office, but are not accessible through the OpenOffice.org API. Exam-
ples for the latter are the global document event handling and its user interface (Tools � Configure
� Events), and the menu bars that use the dispatch API without being UNO services themselves.
The desktop service, together with these surrounding objects, is called the desktop environment.

The viewable components managed by the desktop can be three different kinds of objects: full-
blown office documents with a document model and controllers, components with a controller but
no model, such as the bibliography and database browser, or simple windows without API-
enabled controllers, for example, preview windows. The commonality between these types of
components is the com.sun.star.lang.XComponent interface. Components with controllers are
also called office components, whereas simple window components are called trivial components.

Frames in the OpenOffice.org API are the connecting link between windows, components and the
desktop environment. The relationship between frames and components are discussed in the next
section 7.1.1 Office Development - OpenOffice.org Application Environment - Overview - Framework API.

416 OpenOffice.org 2.3 Developer's Guide • June 2007

 Illustration 7.2: The Desktop terminates the office and manages components and frames

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/TypeDetection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/TypeDetection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/TypeDetection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDesktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDesktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDesktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html

Like all other services, the com.sun.star.frame.Desktop service can be exchanged by another
implementation that extends the functionality of OpenOffice.org. By exchanging the desktop
service it is possible to use different kinds of windows or to make OpenOffice.org use MDI instead
of SDI. This is not an easy thing to do, but it is possible without changing any code elsewhere in
OpenOffice.org.

Framework API
The framework API does not define an all-in-one framework with strongly coupled interfaces, but
defines specialized frameworks that are grouped together by implementing the relevant interfaces
at OpenOffice.org components. Each framework concentrates on a particular aspect, so that each
component decides the frameworks it wants to participate in.

Currently, there are two of these frameworks: the component framework that implements the frame-
controller-model paradigm and the dispatch framework that handles command requests from and to
the application environment. The controller and frame implementations form the bridge between
the two frameworks, because controllers and frames implement interfaces from the component
framework and dispatch framework.

The framework API is an abstract specification. Its current implementation uses the Abstract
Window Toolkit (AWT) specified in com.sun.star.awt, which is an abstract specification as well.
The current implementation of the AWT is the Visual Component Library (VCL), a cross-platform
toolkit for windows and controls written in C++ created before the specification of
com.sun.star.awt and adapted to support com.sun.star.awt.

Frame-Controller-Model Paradigm in OpenOffice.org

The well known Model-View-Controller (MVC) paradigm separates three application areas: docu-
ment data (model), presentation (view) and interaction (controller). OpenOffice.org has a similar
abstraction, called the Frame-Controller-Model (FCM) paradigm. The FCM paradigm shares
certain aspects with MVC , but it has different purposes, therefore it is best to approach FCM inde-
pendently from MVC. The model and controller in MVC and FCM are quite different things.

The FCM paradigm in OpenOffice.org separates three application areas: document object (model),
screen interaction with the model (controller) and controller-window linkage (frame).

• The model holds the document data and has methods to change these data without using a
controller object. Text, drawings, and spreadsheet cells are accessed directly at the model.

• The controller has knowledge about the current view status of the document and manipulates
the screen presentation of the document, but not the document data. It observes changes made
to the model, and can be duplicated to have multiple controllers for the same model.

• The frame contains the controller for a model and knows the windows that are used with it, but
does not have window functionality.

The purpose of FCM is to have three exchangeable parts that are used with an exchangeable
window system:

It is possible to write a new controller that presents an existing model in a different manner
without changing the model or the frame. A controller depends on the model it presents, therefore
a new controller for a new model can be written.

Developers can introduce new models for new document types without taking care of the frame
and underlying window management system. However, since there is no default controller, it is
necessary to write a suitable controller also.

417

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html

By keeping all window-related functionality separate from the frame, it is possible to use one
single frame implementation for every possible window in the entire OpenOffice.org application.
Thus, the presentation of all visible components is customized by exchanging the frame implemen-
tation. At runtime you can access a frame and replace the controller, together with the model it
controls, by a different controller instance.

Frames

Linking Components and Windows

The main role of a frame in the Frame-Controller-Model paradigm is to act as a liaison between
viewable components and the window system.

Frames can hold one component, or a component and one or more subframes. The following
diagrams: Illustration 7.3: Frame containing a component and Illustration 7.4: Frame containing a
component and a sub-frame depict both possibilities. The first illustration 7.3 shows a frame
containing only a component. It is connected with two window instances: the container window
and component window.

When a frame is constructed, the frame must be initialized with a container window using
com.sun.star.frame.XFrame:initialize(). This method expects the
com.sun.star.awt.XWindow interface of a surrounding window instance, which becomes the
container window of the frame. The window instance passed to initialize() must also support
com.sun.star.awt.XTopWindow to become a container window. The container window must
broadcast window events, such as windowActivated(), and appear in front of other windows or
be sent to the background. The fact that container windows support com.sun.star.awt.XTop-
Window does not mean the container window is an independent window of the underlying
window system with a title bar and a system menu. An XTopWindow acts as a window if necessary,
but it can also be docked or depend on a surrounding application window.

After initializing the frame, a component is set into the frame by a frame loader implementation
that loads a component into the frame. It calls com.sun.star.frame.XFrame:setComponent()
that takes another com.sun.star.awt.XWindow instance and the com.sun.star.frame.XCon-
troller interface of a controller.Usually the controller is holding a model, therefore the compo-
nent gets a component window of its own, separate from the container window.

A frame with a component is associated with two windows: the container window which is an
XTopWindow and the component window, which is the rectangular area that displays the component
and receives GUI events for the component while it is active. When a frame is initialized with an
instance of a window in a call to initialize(), this window becomes its container window. When
a component is set into a frame using setComponent(), another com.sun.star.awt.XWindow
instance is passed becoming the component window.

When a frame is added to the desktop frame hierarchy, the desktop becomes the parent frame of
our frame. For this purpose, the com.sun.star.frame.XFramesSupplier interface of the desktop
is passed to the method setCreator() at the XFrame interface. This happens internally when the
method append() is called at the com.sun.star.frame.XFrames interface supplied by the
desktop.

418 OpenOffice.org 2.3 Developer's Guide • June 2007

 Illustration 7.3: Frame containing a component

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrames.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrames.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrames.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFramesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFramesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFramesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XController.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XController.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XController.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XController.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XController.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XController.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html#setComponent
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html#setComponent
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html#setComponent
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTopWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTopWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTopWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTopWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTopWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTopWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTopWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTopWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTopWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html#initialize
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html#initialize
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html#initialize

 A component window can have sub-windows, and that is the case with all documents in OpenOffice.org.
For instance, a text document has sub-windows for the toolbars and the editable text. Form controls are
sub-windows, as well, however, these sub-windows depend on the component window and do not appear
in the Frame-Controller-Model paradigm, as discussed above.

The second diagram shows a frame with a component and a sub-frame with another component.
Each frame has a container window and component window.

In the OpenOffice.org GUI, sub-frames appear as dependent windows. The sub-frame in Illustra-
tion 7.4 could be a dockable window, such as the beamer showing the database browser or a
floating frame in a document created with Insert � Frame.

Note that a frame with a component and sub-frame is associated with four windows. The frame
and the sub-frame have a container window and a component window for the component.

When a sub-frame is added to a surrounding frame, the frame becomes the parent of the sub-frame
by a call to setCreator() at the sub-frame. This happens internally when the method append() is
called at the com.sun.star.frame.XFrames interface supplied by the surrounding frame.

The section 7.1.4 Office Development - OpenOffice.org Application Environment - Creating Frames
Manually shows examples for the usage of the XFrame interface that creates frames in the desktop
environment, constructs dockable and standalone windows, and inserts components into frames.

Communication through Dispatch Framework

Besides the main role of frames as expressed in the com.sun.star.frame.XFrame interface, frames
play another role by providing a communication context for the component they contain, that is,
every communication from a controller to the desktop environment, and the user interface and

419

 Illustration 7.4: Frame containing a component and a sub-frame

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrames.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrames.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrames.html

conversely is done through the frame. This aspect of a frame is published through the
com.sun.star.frame.XDispatchProvider interface, that uses special command requests to
trigger actions.

The section 7.1.6 Office Development - OpenOffice.org Application Environment - Using the Dispatch
Framework discusses the usage of the dispatch API.

Components in Frames

The desktop environment section discussed the three kinds of viewable components that can be
inserted into a frame. If the component has a controller and a model like a document, or if it has
only a controller, such as the bibliography and database browser, it implements the
com.sun.star.frame.Controller service represented by the interface
com.sun.star.frame.XController. In the call to
com.sun.star.frame.XFrame:setComponent(), the controller is passed with the component
window instance. If the component has no controller, it directly implements
com.sun.star.lang.XComponent and com.sun.star.awt.XWindow. In this case, the component is
passed as XWindow parameter, and the XController parameter must be an XController reference
set to null.

If the viewable component is a trivial component (implementing XWindow only), the frame holds a
reference to the component window, controls the lifetime of the component and propagates certain
events from the container window to the component window. If the viewable component is an
office component (having a controller), the frame adds to these basic functions a set of features for
integration of the component into the environment by supporting additional command URLs for
the component at its com.sun.star.frame.XDispatchProvider interface.

Controllers

Controllers in OpenOffice.org are between a frame and document model. This is their basic role as
expressed in com.sun.star.frame.XController, which has methods getModel() and
getFrame(). The method getFrame() provides the frame the controller is attached to. The method
getModel() returns a document model, but it may return an empty reference if the component
does not have a model.

Usually the controller objects support additional interfaces specific to the document type they
control, such as com.sun.star.sheet.XSpreadsheetView for Calc document controllers or
com.sun.star.text.XTextViewCursorSupplier for Writer document controllers.

420 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextViewCursorSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextViewCursorSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextViewCursorSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheetView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheetView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheetView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XController.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XController.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XController.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html#setComponent
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html#setComponent
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html#setComponent
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XController.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XController.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XController.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Controller.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Controller.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Controller.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html

There can be more than one controller instance with frames of their own controlling the same
document model simultaneously. Multiple controllers and frames are created by OpenOffice.org
when the user clicks Window � New Window.

Windows

Windows in the OpenOffice.org API are rectangular areas that are positioned and resized, and
inform listeners about UI events (com.sun.star.awt.XWindow). They have a platform-specific
counterpart that is wrapped in the com.sun.star.awt.XWindowPeer interface, which is invali-
dated (redrawn), and sets the system pointer and hands out the toolkit for the window. The usage
of the window interfaces is outlined in the section 7.1.3 Office Development - OpenOffice.org Applica-
tion Environment - Using the Component Framework - Window Interfaces below.

Dispatch Framework

The dispatch framework is designed to provide a uniform access to components for a GUI by using
command URLs that mirror menu items, such as Edit � Select All with various document compo-
nents. Only the component knows how to execute a command. Similarly, different document
components trigger changes in the UI by common commands. For example, a controller might
create UI elements like a menu bar, or open a hyperlink.

Command dispatching follows a chain of responsibility. Calls to the dispatch API are moderated
by the frame, so all dispatch API calls from the UI to the component and conversely are handled by
the frame. The frame passes on the command until an object is found that can handle it. It is
possible to restrict, extend or redirect commands at the frame through a different frame implemen-
tation or through other components connecting to the frame.

It has already been discussed that frames and controllers have an interface
com.sun.star.frame.XDispatchProvider. The interface is used to query a dispatch object for a
command URL from a frame and have the dispatch object execute the command. This interface is
one element of the dispatch framework.

By offering the interception of dispatches through the interface com.sun.star.frame.XDispatch-
ProviderInterception, the Frame service offers a method to modify a component's handling of
GUI event s while keeping its whole API available simultaneously.

421

 Illustration 7.5: Controller with Model and Frame

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProviderInterception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProviderInterception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProviderInterception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProviderInterception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProviderInterception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProviderInterception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindowPeer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindowPeer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindowPeer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html

 Normally, command URL dispatches go to a target frame which decides what to do with it. A component
can use globally accessible objects like the desktop service to bypass restrictions set by a frame, but this is not
recommended. It is impossible to prevent a implemention of components against the design principles,
because the framework API is made for components that adhere to its design.

The usage of the Dispatch Framework is described in the section 7.1.6 Office Development -
OpenOffice.org Application Environment - Using the Dispatch Framework.

422 OpenOffice.org 2.3 Developer's Guide • June 2007

7.1.2 Using the Desktop

423

 Illustration 7.6: Desktop Service and Component Framework

The com.sun.star.frame.Desktop service available at the global service manager includes the
service com.sun.star.frame.Frame. The Desktop service specification provides three interfaces:
com.sun.star.frame.XDesktop, com.sun.star.frame.XComponentLoader and
com.sun.star.document.XEventBroadcaster, as shown in the following UML chart:

The interface com.sun.star.frame.XDesktop provides access to frames and components, and
controls the termination of the office process. It defines the following methods:

com::sun::star::frame::XFrame getCurrentFrame ()
com::sun::star::container::XEnumerationAccess getComponents ()
com::sun::star::lang::XComponent getCurrentComponent ()
boolean terminate ()
void addTerminateListener ([in] com::sun::star::frame::XTerminateListener xListener)
void removeTerminateListener ([in] com::sun::star::frame::XTerminateListener xListener)

The methods getCurrentFrame() and getCurrentComponent() distribute the active frame and
document model, whereas getComponents() returns a com.sun.star.container.XEnumera-
tionAccess to all loaded documents. For documents loaded in the desktop environment the
methods getComponents() and getCurrentComponent() always return the
com.sun.star.lang.XComponent interface of the document model.

 If a specific document component is required, but are not sure whether this component is the current compo-
nent, use getComponents() to get an enumeration of all document components, check each for the exis-
tence of the com.sun.star.frame.XModel interface and use getURL() at XModel to identify your docu-
ment. Since not all components have to support XModel, test for XModel before calling getURL().

The office process is usually terminated when the user selects File - Exit or after the last applica-
tion window has been closed. Clients can terminate the office through a call to terminate()and
add a terminate listener to veto the shutdown process.

As long as the Windows quickstarter is active, the soffice executable is not terminated.

The following sample shows an com.sun.star.frame.XTerminateListener implementation that
prevents the office from being terminated when the class TerminationTest is still active:
import com.sun.star.frame.TerminationVetoException;
import com.sun.star.frame.XTerminateListener;

424 OpenOffice.org 2.3 Developer's Guide • June 2007

 Illustration 7.7: UML description of the desktop service

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XTerminateListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XTerminateListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XTerminateListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDesktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDesktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDesktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDesktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDesktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDesktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html

public class TerminateListener implements XTerminateListener {

 public void notifyTermination (com.sun.star.lang.EventObject eventObject) {
 System.out.println("about to terminate...");
 }

 public void queryTermination (com.sun.star.lang.EventObject eventObject)
 throws TerminationVetoException {

 // test if we can terminate now
 if (TerminationTest.isAtWork() == true) {
 System.out.println("Terminate while we are at work? No way!");
 throw new TerminationVetoException() ; // this will veto the termination,
 // a call to terminate() returns false
 }
 }

 public void disposing (com.sun.star.lang.EventObject eventObject) {
 }
}

The following class TerminationTest tests the TerminateListener above.
import com.sun.star.bridge.XUnoUrlResolver;
import com.sun.star.uno.UnoRuntime;
import com.sun.star.uno.XComponentContext;
import com.sun.star.lang.XMultiComponentFactory;
import com.sun.star.beans.XPropertySet;
import com.sun.star.beans.PropertyValue;

import com.sun.star.frame.XDesktop;
import com.sun.star.frame.TerminationVetoException;
import com.sun.star.frame.XTerminateListener;

public class TerminationTest extends java.lang.Object {

 private static boolean atWork = false;

 public static void main(String[] args) {

 XComponentContext xRemoteContext = null;
 XMultiComponentFactory xRemoteServiceManager = null;
 XDesktop xDesktop = null;

 try {
 // connect and retrieve a remote service manager and component context
 XComponentContext xLocalContext =
 com.sun.star.comp.helper.Bootstrap.createInitialComponentContext(null);
 XMultiComponentFactory xLocalServiceManager = xLocalContext.getServiceManager();
 Object urlResolver = xLocalServiceManager.createInstanceWithContext(
 "com.sun.star.bridge.UnoUrlResolver", xLocalContext);
 XUnoUrlResolver xUnoUrlResolver = (XUnoUrlResolver) UnoRuntime.queryInterface(
 XUnoUrlResolver.class, urlResolver);
 Object initialObject = xUnoUrlResolver.resolve(
 "uno:socket,host=localhost,port=2083;urp;StarOffice.ServiceManager");
 XPropertySet xPropertySet = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, initialObject);
 Object context = xPropertySet.getPropertyValue("DefaultContext");
 xRemoteContext = (XComponentContext)UnoRuntime.queryInterface(
 XComponentContext.class, context);
 xRemoteServiceManager = xRemoteContext.getServiceManager();

 // get Desktop instance
 Object desktop = xRemoteServiceManager.createInstanceWithContext (
 "com.sun.star.frame.Desktop ", xRemoteContext);
 xDesktop = (XDesktop)UnoRuntime.queryInterface(XDesktop.class, desktop);

 TerminateListener terminateListener = new TerminateListener ();
 xDesktop.addTerminateListener (terminateListener);

 // try to terminate while we are at work
 atWork = true;
 boolean terminated = xDesktop.terminate ();
 System.out.println("The Office " +
 (terminated == true ? "has been terminated" : "is still running, we are at work"));

 // no longer at work
 atWork = false;
 // once more: try to terminate
 terminated = xDesktop.terminate ();
 System.out.println("The Office " +
 (terminated == true ? "has been terminated" :
 "is still running. Someone else prevents termination, e.g. the quickstarter"));
 }
 catch (java.lang.Exception e){
 e.printStackTrace();
 }

425

 finally {
 System.exit(0);
 }

 }
 public static boolean isAtWork() {
 return atWork;
 }

}

The office freezes when terminate() is called if there are unsaved changes. As a workaround set all
documents into an unmodified state through their com.sun.star.util.XModifiable interface or
store them using com.sun.star.frame.XStorable.

The Desktop offers a facility to load components through its interface com.sun.star.frame.XCom-
ponentLoader. It has one method:

com::sun::star::lang::XComponent loadComponentFromURL ([in] string aURL,
 [in] string aTargetFrameName,
 [in] long nSearchFlags,
 [in] sequence < com::sun::star::beans::PropertyValue aArgs >)

Refer to chapter 7.1.5 Office Development - OpenOffice.org Application Environment - Handling Docu-
ments for details about the loading process.

For versions beyond 641, the desktop also provides an interface that allows listeners to be notified
about certain document events through its interface com.sun.star.document.XEventBroad-
caster.

void addEventListener ([in] com::sun::star::document::XEventListener xListener)
void removeEventListener ([in] com::sun::star::document::XEventListener xListener)

The XEventListener must implement a single method (besides disposing()):
[oneway] void notifyEvent ([in] com::sun::star::document::EventObject Event)

The struct com.sun.star.document.EventObject has a string member EventName that assumes
one of the values specified in com.sun.star.document.Events. The corresponding events are
found on the Events tab of the Tools � Configure dialog when the option OpenOffice.org is
selected.

The desktop broadcasts these events for all loaded documents.

The current version of OpenOffice.org does not have a GUI element as a desktop. The redesign of
the OpenOffice.org GUI in StarOffice 5.x and later resulted in the com.sun.star.frame.Frame
service part of the desktop service is now non-functional. While the XFrame interface can still be
queried from the desktop, almost all of its methods are dummy implementations. The default
implementation of the desktop object in OpenOffice.org is not able to contain a component and
refuses to be attached to it, because the desktop is still a frame that is the root for the common hier-
archy of all frames in OpenOffice.org. The desktop has to be a frame because its
com.sun.star.frame.XFramesSupplier interface must be passed to
com.sun.star.frame.XFrame:setCreator() at the child frames, therefore the desktop becomes
the parent frame. However, the following functionality of com.sun.star.frame.Frame is still in
place:

The desktop interface com.sun.star.frame.XFramesSupplier offers methods to access frames.
This interface inherits from com.sun.star.frame.XFrame, and introduces the following methods:

com::sun::star::frame::XFrames getFrames ()
com::sun::star::frame::XFrame getActiveFrame ()
void setActiveFrame ([in] com::sun::star::frame::XFrame xFrame)

The method getFrames() returns a com.sun.star.frame.XFrames container, that is a
com.sun.star.container.XIndexAccess, with additional methods to add and remove frames:

void append ([in] com::sun::star::frame::XFrame xFrame)
sequence < com::sun::star::frame::XFrame > queryFrames ([in] long nSearchFlags)
void remove ([in] com::sun::star::frame::XFrame xFrame)

426 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrames.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrames.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrames.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFramesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFramesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFramesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html#setCreator
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html#setCreator
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html#setCreator
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFramesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFramesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFramesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/Events.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/Events.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/Events.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XModifiable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XModifiable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XModifiable.html

This XFrames collection is used when frames are added to the desktop to become application
windows.

Through getActiveFrame(), you access the active sub-frame of the desktop frame, whereas
setActiveFrame() is called by a sub-frame to inform the desktop about the active sub-frame.

The object returned by getFrames() does not support XTypeProvider, therefore it cannot be used
with OpenOffice.org Basic.

The parent interface of XFramesSupplier, com.sun.star.frame.XFrame is functional by
accessing the frame hierarchy below the desktop. These methods are discussed in the section 7.1.3
Office Development - OpenOffice.org Application Environment - Using the Component Framework -
Frames below:

com::sun::star::frame::XFrame findFrame ([in] string aTargetFrameName, [in] long nSearchFlags);
boolean isTop ();

The generic dispatch interface com.sun.star.frame.XDispatchProvider executes functions of
the internal Desktop implementation that are not accessible through specialized interfaces.
Dispatch functions are described by a command URL. The XDispatchProvider returns a dispatch
object that dispatches a given command URL. A reference of command URLs supported by the
desktop is available on OpenOffice
(http://www.openoffice.org/files/documents/25/60/commands_11beta.html). Through the
com.sun.star.frame.XDispatchProviderInterception, client code intercepts thecommand
dispatches at the desktop. The dispatching process is described in section 7.1.6 Office Development -
OpenOffice.org Application Environment - Using the Dispatch Framework.

7.1.3 Using the Component Framework
The component framework comprises the interfaces of frames, controllers and models used to
manage components in the OpenOffice.org desktop environment. In our context, everything that
"dwells" in a frame of the desktop environment is called a component, because the interface
com.sun.star.lang.XComponent is the common denominator for objects that are loaded into
frames.

Frames, controllers and models hold references to each other. The frame is by definition the default
owner of the controller and the model, that is,. it is responsible to call dispose() on the controller
and model when it is destroyed itself. Other objects that are to hold references to the frame,
controller, or model must register as listeners to be informed when these references become
invalid. Therefore XModel,
XController and XFrame inherit from XComponent:

void dispose ()
void addEventListener ([in] com::sun::star::lang::XEventListener xListener)
void removeEventListener ([in] com::sun::star::lang::XEventListener aListener)

The process to resolve the circular dependencies of the component framework is a complex. For
instance, the objects involved in the process may be in a condition where they may not be disposed
of. Refer to the section 7.1.5 Office Development - OpenOffice.org Application Environment - Handling
Documents - Closing Documents for additional details.

Theoretically every UNO object could exist in a frame, as long as it is willing to let the frame
control its existence when it ends.

A trivial component (XWindow only) is enough for simple viewing purposes, where no activation of
a component and related actions like cursor positioning or user interactions are necessary.

If the component participates in more complex interactions, it must implement the controller
service.

427

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProviderInterception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProviderInterception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProviderInterception.html
http://www.openoffice.org/files/documents/25/60/commands_11beta.html
http://www.openoffice.org/files/documents/25/60/commands_11beta.html
http://www.openoffice.org/files/documents/25/60/commands_11beta.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html

Many features of the desktop environment are only available if the URL of a component is known.
For example:

• Presenting the URL or title of the document.

• Inserting the document into the autosave queue.

• Preventing the desktop environment from loading documents twice.

• Allow for participation in the global document event handling.

In this case, com.sun.star.frame.XModel comes into operation, since it has methods to handle
URLs, among others.

So a complete office component is made up of

• a controller object that presents the model or shows a view to the model that implements the
com.sun.star.frame.Controller service, but publishes additional document-specific inter-
faces. For almost all OpenOffice.org document types there are document specific controller
object specifications,such as com.sun.star.sheet.SpreadsheetView, and
com.sun.star.drawing.DrawingDocumentDrawView. For controllers, refer to the section 7.1.3
Office Development - OpenOffice.org Application Environment - Using the Component Framework -
Controllers.

• a model object implementing the com.sun.star.document.OfficeDocument service. Refer to
the section 7.1.3 Office Development - OpenOffice.org Application Environment - Using the Compo-
nent Framework - Models.

Getting Frames, Controllers and Models from Each Other
Usually developers require the controller and frame of an already loaded document model. The
com.sun.star.frame.XModel interface of OpenOffice.org document models gets the controller
that provides access to the frame through its com.sun.star.frame.XController interface. The
following illustration shows the methods that get the controller and frame for a document model
and conversely. From the frame , obtain the corresponding component and container window.

428 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XController.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XController.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XController.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocumentDrawView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocumentDrawView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocumentDrawView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Controller.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Controller.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Controller.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html

If the loaded component is a trivial component and implements com.sun.star.awt.XWindow only,
the window and the window peer is reached by querying these interfaces from the
com.sun.star.lang.XComponent returned by loadComponentFromURL().

Frames

429

 Illustration 7.8: Frame-Controller-Model Organization

 Illustration 7.9: Frame Service

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html

XFrame

Frame Setup

The main role of a frame is to link components into a surrounding window system. This role is
expressed by the following methods of the frame's main interface com.sun.star.frame.XFrame:

// methods for container window
void initialize ([in] com::sun::star::awt::XWindow xWindow);
com::sun::star::awt::XWindow getContainerWindow ();

// methods for component window and controller
boolean setComponent ([in] com::sun::star::awt::XWindow xComponentWindow,
 [in] com::sun::star::frame::XController xController);
com::sun::star::awt::XWindow getComponentWindow ();
com::sun::star::frame::XController getController ();

The first two methods deal with the container window of a frame, the latter three are about linking
the component and the component window with the frame. The method initialize() expects a
top window that is created by the AWT toolkit that becomes the container window of the frame
and is retrieved by getContainerWindow().

Frame Hierarchies

When frames link components into a surrounding window system, they build a frame hierarchy.
This aspect is covered by the hierarchy-related XFrame methods:

[oneway] void setCreator ([in] com::sun::star::frame::XFramesSupplier xCreator);
com::sun::star::frame::XFramesSupplier getCreator ();
string getName ();
[oneway] void setName ([in] string aName);
com::sun::star::frame::XFrame findFrame ([in] string aTargetFrameName, [in] long nSearchFlags);
boolean isTop ();

The XFrame method setCreator() informs a frame about its parent frame and must be called by a
frames container (com.sun.star.frame.XFrames) when a frame is added to it by a call to
com.sun.star.frame.XFrames:append(). A frames container is provided by frames supporting
the interface com.sun.star.frame.XFramesSupplier. XFramesSupplier is currently supported
by the desktop frame and by the default frame implementation used by OpenOffice.org docu-
ments. It is described below.

The frame has a custom name that is read through getName() and written through setName().
Frames in the desktop hierarchy created by GUI interaction usually do not have names. The
getName() returns an empty string for them, whereas frames that are created for special purposes,
such as the beamer frame or the online help, have names. Developers can set a name and use it to
address a frame in findFrame() calls or when loading a component into the frame. Custom frame
names must not start with an underscore.Leading underscores are reserved for special frame
names.See below.

Every frame in the frame hierarchy is accessed through any other frame in this hierarchy by calling
the findFrame() method. This method searches for a frame with a given name in five steps: self,
children, siblings, parent, and create if not found. The findFrame() checks the called frame, then
calls findFrame() at its children, then its siblings and at its parent frame. The fifth step in the
search strategy is reached if the search makes it to the desktop without finding a frame with the
given name. In this case, a new frame is created and assigned the name that was searched for. If
the top frame is outside the desktop hierarchy, a new frame is not created.

The name used with findFrame() can be an arbitrary string without a leading underscore or one
of the following reserved frame names. These names are for internal use for loading
documents.Some of the reserved names are logical in a findFrame() call, also. A complete list of
reserved frame names can be found in section 7.1.5 Office Development - OpenOffice.org Application
Environment - Handling Documents - Loading Documents - Target Frame.

430 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFramesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFramesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFramesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrames.html#append
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrames.html#append
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrames.html#append
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrames.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrames.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrames.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html

_top
Returns the top frame of the called frame, first frame where isTop() returns true when trav-
eling up the hierarchy.

_parent
Returns the next frame above in the frame hierarchy.

_self
Returns the frame itself, same as an empty target frame name. This means you are searching for
a frame you already have, but it is legal to do so.

_blank
Creates a new top-level frame whose parent is the desktop frame.

Calls with "_top" or "_parent" return the frame itself if the called frame is a top frame or has no
parent. This is compatible to the targetting strategies of web browsers.

We have seen that findFrame() is called recursively. To control the recursion, the search flags
parameter specified in the constants group com.sun.star.frame.FrameSearchFlag is used. For
all of the five steps mentioned above, a suitable flag exists (SELF, CHILDREN, SIBLINGS,
PARENT, CREATE). Every search step can be prohibited by deleting the appropriate FrameSearch-
Flag. The search flag parameter can also be used to avoid ambiguities caused by multiple occur-
rences of a frame name in a hierarchy by excluding parts of the frame tree from the search. If
findFrame() is called for a reserved frame name, the search flags are ignored.

 An additional flag can be used to extend a bottom-up search to all OpenOffice.org application windows, no
matter where the search starts. Based on the five flags for the five steps, the default frame search stops
searching when it reaches a top frame and does not continue with other OpenOffice.org windows. Setting
the TASKS flag overrides this.

There are separate frame hierarchies that do not interact with each other. If a frame is created, but
not inserted into any hierarchy, it becomes the top frame of its own hierarchy. This frame and its
contents can not be accessed from other hierarchies by traversing the frame hierarchies through
API calls. , Also, this frame and its content cannot reach frames and their contents in other hierar-
chies. It is the code that creates a frame and decides if the new frame becomes part of an existing
hierarchy, thus enabling it to find other frames ,and making it and its viewable component visible
to the other frames. Examples for frames that are not inserted into an existing hierarchy are
preview frames in dialogs, such as the document preview in the File � New � Templates and
Documents dialog.

This is the only way the current frame and desktop implementation handle this. If one exchanges either or
both of them by another implementation, the treatment of the "_blank" target and the CREATE SearchFlag
may differ.

Frame Actions

Several actions take place at a frame. The context of viewable components can change, a frame may
be activated or the relationship between frame and component may be altered. For instance, when
the current selection in a document has been changed, the controller informs the frame about it by
calling contextChanged(). The frame then tells its frame action listeners that the context has
changed. The frame action listeners are also informed about changes in the relationship between
the frame and component, and about frame activation. The corresponding XFrame methods are:

void contextChanged ();
[oneway] void activate ();
[oneway] void deactivate ();
boolean isActive ();
[oneway] void addFrameActionListener ([in] com::sun::star::frame::XFrameActionListener xListener);

431

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameSearchFlag.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameSearchFlag.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameSearchFlag.html

[oneway] void removeFrameActionListener ([in] com::sun::star::frame::XFrameActionListener xListener
);

The method activate() makes the given frame the active frame in its parent container. If the
parent is the desktop frame, this makes the associated component the current component.
However, this is not reflected in the user interface by making the corresponding window the top
window. If the container of the active frame is to be the top window, use setFocus() at the
com.sun.star.awt.XWindow interface of the container window.

The interface com.sun.star.frame.XFrameActionListener used with addFrameActionLis-
tener() must implement the following method:

Method of com.sun.star.frame.XFrameActionListener
frameAction() Takes a struct com.sun.star.frame.FrameActionEvent. The struct contains

two members: the source com.sun.star.frame.XFrame Frame and an enum
com.sun.star.frame.FrameActionEvent Action value with one of the
following values:

COMPONENT_ATTACHED: a component has been attached to a frame. This is
almost the same as the instantiation of the component within that frame. The
component is attached to the frame immediately before this event is broadcast.

COMPONENT_DETACHING: a component is detaching from a frame. This is the
same as the destruction of the component which was in that frame. The moment the
event is broadcast the component is still attached to the frame, but in the next
moment it will not be..

COMPONENT_REATTACHED: a component has been attached to a new model. In
this case, the component remains the same, but operates on a new model compo-
nent.

FRAME_ACTIVATED: a component has been activated. Activations are broadcast
from the top component which was not active, down to the innermost component.

FRAME_DEACTIVATING: broadcast immediately before the component is deacti-
vated. Deactivations are broadcast from the innermost component which does not
stay active up to the outermost component which does not stay active.

CONTEXT_CHANGED: a component has changed its internal context, for example,
the selection. If the activation status within a frame changes, this is a context
change, also.

FRAME_UI_ACTIVATED: broadcast by an active frame when it is getting UI
control (tool control).

FRAME_UI_DEACTIVATING: broadcast by an active frame when it is losing UI
control (tool control).

432 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameActionEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameActionEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameActionEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameActionEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameActionEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameActionEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrameActionListener.html#frameAction
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrameActionListener.html#frameAction
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrameActionListener.html#frameAction
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrameActionListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrameActionListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrameActionListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrameActionListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrameActionListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrameActionListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html

 At this time, the XFrame methods used to build a frame-controller-model relationship can only be fully
utilized by frame loader implementations or customized trivial components. Outside a frame loader you can
create a frame, but the current implementations cannot create a standalone controller that could be used
with setComponent(). Therefore, you can not remove components from one frame and add them to
another or create additional controllers for a loaded model using the component framework. This is due to
restrictions of the VCL and the C++ implementation of the current document components.

Currently, the only way for clients to construct a frame and insert a OpenOffice.org document into it, is to
use the com.sun.star.frame.XComponentLoader interface of the com.sun.star.frame.Desktop
or the interfaces com.sun.star.frame.XSynchronousFrameLoader, the preferred frame loader inter-
face, and the asynchronous com.sun.star.frame.XFrameLoader of the
com.sun.star.frame.FrameLoader service that is available at the global service factory.

The recommended method to get additional controllers for loaded models is to use the OpenNewView prop-
erty with loadComponentFromURL() at the com.sun.star.frame.XComponentLoader interface of
the desktop.

There is also another possibility: dispatch a �.uno:NewWindow� command to a frame that contains that
model.

XFramesSupplier

The Frame interface com.sun.star.frame.XFramesSupplier offers methods to access sub-frames
of a frame. The frame implementation of OpenOffice.org supports this interface. This interface
inherits from com.sun.star.frame.XFrame, and introduces the following methods:

com::sun::star::frame::XFrames getFrames ()
com::sun::star::frame::XFrame getActiveFrame ()
void setActiveFrame ([in] com::sun::star::frame::XFrame xFrame)

The method getFrames() returns a com.sun.star.frame.XFrames container, that is a
com.sun.star.container.XIndexAccess with additional methods to add and remove frames:

void append ([in] com::sun::star::frame::XFrame xFrame)
sequence < com::sun::star::frame::XFrame > queryFrames ([in] long nSearchFlags)
void remove ([in] com::sun::star::frame::XFrame xFrame);

This XFrames collection is used when frames are appended to a frame to become sub-frames. The
append() method implementation must extend the existing frame hierarchy by an internal call to
setCreator() at the parent frame in the frame hierarchy. The parent frame is always the frame
whose XFramesSupplier interface is used to append a new frame.

Through getActiveFrame() access the active sub-frame in a frame with subframes. If there are no
sub-frames or a sub-frame is currently non active, the active frame is null. The
setActiveFrame() is called by a sub-frame to inform the frame about the activation of the sub-
frame. In setActiveFrame(), the method setActiveFrame() at the creator is called, then the
registered frame action listeners are notified by an appropriate call to frameAction() with
com.sun.star.frame.FrameActionEvent:Action set to FRAME_UI_ACTIVATED.

XDispatchProvider and XDispatchProviderInterception

Frame services also support com.sun.star.frame.XDispatchProvider and
com.sun.star.frame.XDispatchProviderInterception. The section 7.1.6 Office Development -
OpenOffice.org Application Environment - Using the Dispatch Framework explains how these interfaces
are used.

XStatusIndicatorFactory

The frame implementation supplies a status indicator through its interface
com.sun.star.task.XStatusIndicatorFactory. A status indicator can be used by a frame

433

http://api.openoffice.org/docs/common/ref/com/sun/star/task/XStatusIndicatorFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XStatusIndicatorFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XStatusIndicatorFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProviderInterception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProviderInterception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProviderInterception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameActionEvent.html#Action
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameActionEvent.html#Action
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameActionEvent.html#Action
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrames.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrames.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrames.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFramesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFramesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFramesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrameLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrameLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrameLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XSynchronousFrameLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XSynchronousFrameLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XSynchronousFrameLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html

loader to show the loading process for a document. The factory has only one method that returns
an object supporting com.sun.star.task.XStatusIndicator:

com::sun::star::task::XStatusIndicator createStatusIndicator ()

The status indicator is displayed by a call to com.sun.star.task.XStatusIndicator:start().
Pass a text and a numeric range, and use setValue() to let the status bar grow until the maximum
range is reached. The method end() removes the status indicator.

Controllers

XController

A com.sun.star.frame.XController inherits from com.sun.star.lang.XComponent and intro-
duces the following methods:

com::sun::star::frame::XFrame getFrame ()
void attachFrame (com::sun::star::frame::XFrame xFrame)
com::sun::star::frame::XModel getModel ()
boolean attachModel (com::sun::star::frame::XModel xModel)
boolean suspend (boolean bSuspend)
any getViewData ()
void restoreViewData (any Data)

The com.sun.star.frame.XController links model and frame through the methods
get/attachModel() and get/attachFrame(). These methods and the corresponding methods in
the com.sun.star.frame.XModel and com.sun.star.frame.XFrame interfaces act together.
calling attachModel() at the controller must be accompanied by a corresponding call of connect-
Controller() at the model, and attachFrame() at the controller must have its counterpart
setComponent() at the frame.

The controller is asked for permission to dispose of the entire associated component by using
suspend(). The suspend() method shows dialogs, for example, to save changes. To avoid the
dialog, close the corresponding frame without using suspend() before. The section 7.1.5 Office
Development - OpenOffice.org Application Environment - Handling Documents - Closing Documents
provides additional information.

Developers retrieve and restore data used to setup the view at the controller by calling
get/restoreViewData(). These methods are usually called on loading and saving the document,
but they also allow developers to manipulate the state of a view from the outside. The exact
content of this data depends on the concrete controller/model pair.

XDispatchProvider

Through com.sun.star.frame.XDispatchProvider, the controller participates in the dispatch
framework. It is described in section 7.1.6 Office Development - OpenOffice.org Application Environ-
ment - Using the Dispatch Framework.

434 OpenOffice.org 2.3 Developer's Guide • June 2007

 Illustration 7.10: Controller Service

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XController.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XController.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XController.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XController.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XController.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XController.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XStatusIndicator.html#start
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XStatusIndicator.html#start
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XStatusIndicator.html#start
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XStatusIndicator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XStatusIndicator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XStatusIndicator.html

XSelectionSupplier

The optional Controller interface com.sun.star.view.XSelectionSupplier accesses the
selected object and informs listeners when the selection changes:

boolean select ([in] any aSelection)
any getSelection ()
void addSelectionChangeListener ([in] com::sun::star::view::XSelectionChangeListener xListener)
void removeSelectionChangeListener ([in] com::sun::star::view::XSelectionChangeListener xListener)

The type of selection depends on the type of the document and the selected object. It is also
possible to get the current selection in the active or last controller of a model by calling the method
getCurrentSelection() in the com.sun.star.frame.XModel interface.

XContextMenuInterception

The optional Controller interface com.sun.star.ui.XContextMenuInterception intercepts
requests for context menus in the document's window. See chapter 4.7.5 Writing UNO Components
- Integrating Components into OpenOffice.org - Intercepting Context Menus.

Document Specific Controller Services

The com.sun.star.frame.Controller specification is generic and does not describe additional
features required for a fully functional document controller specification, such as the controller
specifications for Writer, Calc and Draw documents. The following table shows the controller
services specified for OpenOffice.org document components.

Once the reference to a controller is retrieved, you can query for these interfaces. Use the
com.sun.star.lang.XServiceInfo interface of the model to ask it for the supported service(s).
The component implementations in OpenOffice.org support the following services. Refer to the
related chapters for additional information about the interfaces you get from the controllers of
OpenOffice.org documents.

Component
and Chapter

Specialized Controller
Service

General Description

Writer 8.5 Text
Documents - Text
Document
Controller

com.sun.star.text.Text-
DocumentView

The text view supplies a text view cursor that has
knowledge about the current page layout and page
number. It can walk through document pages, screen
pages and lines. The selected ruby text is also avail-
able, a special Asian text formatting, comparable to
superscript.

Calc 9.5 Spread-
sheet Documents
- Controlling
Spreadsheet
Documents

com.sun.star.sheet.Spread
sheetView

The spreadsheet view is extremely powerful. It
includes the services
com.sun.star.sheet.SpreadsheetViewPane
and com.sun.star.sheet.SpreadsheetViewS-
ettings. The view pane handles the currently visible
cell range and provides controllers for form controls
in the spreadsheet. The view settings deal with the
visibility of spreadsheet elements, such as the grid
and current zoom mode. Furthermore, the spread-
sheet view provides access to the active sheet in the
view and the collection of all view panes, allowing to
split and freeze the view, and control the interactive
selection of a cell range.

435

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetViewSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetViewSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetViewSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetViewSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetViewSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetViewSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetViewPane.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetViewPane.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetViewPane.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocumentView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocumentView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Controller.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Controller.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Controller.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XSelectionSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XSelectionSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XSelectionSupplier.html

Component
and Chapter

Specialized Controller
Service

General Description

Draw 10.7
Drawing -
Drawing and
Presentation
Document
Controller

com.sun.star.drawing.Draw
ingDocumentDrawView

The drawing document view toggles master page
mode and layer mode, controls the current page and
supplies the currently visible rectangle.

Impress 10.7
Drawing -
Drawing and
Presentation
Document
Controller

com.sun.star.drawing.Draw
ingDocumentDrawView
com.sun.star.presenta-
tion.PresentationView

The presentation view does not introduce presenta-
tion specific features. Running presentations are
controlled by the
com.sun.star.presentation.XPresentation-
Supplier interface of the presentation document
model.

DataBaseAccess com.sun.star.sdb.Data-
SourceBrowser

This controller has no published functionality that
would be useful for developers.

Bibliography (no special controller specified) -

Writer (PagePre-
view)

(no special controller specified) -

Writer/Webdoc-
ument
(SourceView)

(no special controller specified) -

Calc (PagePre-
view)

(no special controller specified) -

Chart 11.4
Charts - Chart
Document
Controller

(no special controller specified) -

Math (no special controller specified) -

Models
There is not an independent specification for a model service. The interface
com.sun.star.frame.XModel is currently supported by Writer, Calc, Draw and Impress docu-
ment components. In our context, we call objects supporting com.sun.star.frame.XModel, model
objects. All OpenOffice.org document components have the service
com.sun.star.document.OfficeDocument in common. An OfficeDocument implements the
following interfaces:

XModel

The interface com.sun.star.frame.XModel inherits from com.sun.star.lang.XComponent and
introduces the following methods, which handle the model's resource description, manage its
controllers and retrieves the current selection.

string getURL ()
sequence < com::sun::star::beans::PropertyValue > getArgs ()
boolean attachResource ([in] string aURL,
 [in] sequence < com::sun::star::beans::PropertyValue aArgs >)

com::sun::star::frame::XController getCurrentController ()
void setCurrentController (com::sun::star::frame::XController xController)
void connectController (com::sun::star::frame::XController xController)
void disconnectController (com::sun::star::frame::XController xController)
void lockControllers ()

436 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSourceBrowser.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSourceBrowser.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/XPresentationSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/XPresentationSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/XPresentationSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/XPresentationSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/XPresentationSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/XPresentationSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/PresentationView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/PresentationView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocumentDrawView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocumentDrawView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocumentDrawView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocumentDrawView.html

void unlockControllers ()
boolean hasControllersLocked ()
com::sun::star::uno::XInterface getCurrentSelection ()

The method getURL() provides the URL where a document was loaded from or last stored using
storeAsURL(). As long as a new document has not been saved, the URL is an empty string. The
method getArgs() returns a sequence of property values that report the resource description
according to com.sun.star.document.MediaDescriptor, specified on loading or saving with
storeAsURL. The method attachResource() is used by the frame loader implementations to
inform the model about its URL and MediaDescriptor.

The current or last active controller for a model isretrieved through getCurrentController().
The corresponding method setCurrentController() sets a different current controller at models
where additional controllers are available. However, additional controllers can not be created at
this time for OpenOffice.org components using the component API. The method connectCon-
troller() is used by frame loader implementations and provides the model with a new controller
that has been created for it, without making it the current controller. The
disconnectController() tells the model that a controller may no longer be used. Finally, the
model holds back screen updates using lockControllers() and unlockControllers(). For each
call to lockControllers(), there must be a call to unlockControllers() to remove the lock. The
method hasControllersLocked() tells if the controllers are locked.

The currently selected object is retrieved by a call to getCurrentSelection(). This method is an
alternative to getSelection() at the com.sun.star.view.XSelectionSupplier interface
supported by controller services.

XModifiable

The interface com.sun.star.util.XModifiable traces the modified status of a document:
void addModifyListener ([in] com::sun::star::util::XModifyListener aListener)
void removeModifyListener ([in] com::sun::star::util::XModifyListener aListener)
boolean isModified ()
void setModified ([in] boolean bModified)

XStorable

The interface com.sun.star.frame.XStorable stores a document under an arbitrary URL or its
current location. Details about how to use this interface are discussed in the chapter 7.1.5 Office
Development - OpenOffice.org Application Environment - Handling Documents

XPrintable

The interface com.sun.star.view.XPrintable is used to set and get the printer and its settings,
and dispatch print jobs. These methods and special printing features for the various document
types are described in the chapters 8.2.3 Text Documents - Handling Text Document Files - Printing
Text Documents, 9.2.3 Spreadsheet Documents - Handling Spreadsheet Document Files - Printing Spread-
sheet Documents, 10.2.3 Drawing - Handling Drawing Document Files - Printing Drawing Documents
and 10.4.2 Drawing - Handling Presentation Document Files - Printing Presentation Documents.

sequence< com::sun::star::beans::PropertyValue > getPrinter ()
void setPrinter ([in] sequence< com::sun::star::beans::PropertyValue > aPrinter)
void print ([in] sequence< com::sun::star::beans::PropertyValue > xOptions)

XEventBroadcaster

For versions later than 641, the optional interface com.sun.star.document.XEventBroadcaster
at office documents enables developers to add listeners for events related to office documents in

437

http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XPrintable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XPrintable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XPrintable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XModifiable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XModifiable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XModifiable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XSelectionSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XSelectionSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XSelectionSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html

general, or for events specific for the individual document type.See 7.2.8 Office Development -
Common Application Features - Document Events).

void addEventListener ([in] com::sun::star::document::XEventListener xListener)
void removeEventListener ([in] com::sun::star::document::XEventListener xListener)

The XEventListener must implement a single method, besides disposing():
[oneway] void notifyEvent ([in] com::sun::star::document::EventObject Event)

The struct com.sun.star.document.EventObject has a string member EventName, that assumes
one of the values specified in com.sun.star.document.Events. These events are also on the
Events tab of the Tools � Configure dialog.

The general events are the same events as those provided at the XEventBroadcaster interface of
the desktop. While the model is only concerned about its own events, the desktop broadcasts the
events for all the loaded documents.

XEventsSupplier

The optional interface com.sun.star.document.XEventsSupplier binds the execution of
dispatch URLs to document events, thus providing a configurable event listener as a simplification
for the more general event broadcaster or listener mechanism of the
com.sun.star.document.XEventBroadcaster interface. This is done programmatically versus
manually in Tools � Configure � Events.

XDocumentInfoSupplier

The optional interface com.sun.star.document.XDocumentInfoSupplier provides access to
document information as described in section 7.2.7 Office Development - Common Application
Features - Document Info.Document information is presented in the File � Properties dialog in the
GUI.

XViewDataSupplier

The optional com.sun.star.document.XViewDataSupplier interface sets and restores view data.
com::sun::star::container::XIndexAccess getViewData ()
void setViewData ([in] com::sun::star::container::XIndexAccess aData)

The view data are a com.sun.star.container.XIndexAccess to sequences of
com.sun.star.beans.PropertyValue structs. Each sequence represents the settings of a view to
the model that supplies the view data.

Document Specific Features

Every service specification for real model objects provides more interfaces that constitute the actual
model functionality For example, a text document service com.sun.star.text.TextDocument
provides text related interfaces. Having received a reference to a model, developers query for these
interfaces. The com.sun.star.lang.XServiceInfo interface of a model can be used to ask for
supported services. The OpenOffice.org document types support the following services:

Document Service Chapter

Calc com.sun.star.sheet.Spread-
sheetDocument

9 Spreadsheet Documents

Draw com.sun.star.drawing.Drawing-
Document

10 Drawing

438 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XViewDataSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XViewDataSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XViewDataSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XDocumentInfoSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XDocumentInfoSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XDocumentInfoSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/Events.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/Events.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/Events.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/EventObject.html

Document Service Chapter

Impress com.sun.star.presentation.Pres
entationDocument

10 Drawing

Math com.sun.star.formula.Formul-
aProperties

-

Writer (all Writer
modules)

com.sun.star.text.TextDocument 8 Text Documents

Chart com.sun.star.chart.ChartDocu-
ment

11 Charts

Refer to the related chapters for additional information about the interfaces of the documents of
OpenOffice.org.

Window Interfaces
The window interfaces of the component window and container window control the
OpenOffice.org application windows. This chapter provides a short overview.

XWindow

The interface com.sun.star.awt.XWindow is supported by the component and controller
windows. This interface comprises methods to resize a window, control its visibility, enable and
disable it, and make it the focus for input device events. Listeners are informed about window
events.

[oneway] void setPosSize (long X, long Y, long Width, long Height, short Flags);
com::sun::star::awt::Rectangle getPosSize ();
[oneway] void setVisible (boolean Visible);
[oneway] void setEnable (boolean Enable);
[oneway] void setFocus ();
[oneway] void addWindowListener (com::sun::star::awt::XWindowListener xListener);
[oneway] void removeWindowListener (com::sun::star::awt::XWindowListener xListener);
[oneway] void addFocusListener (com::sun::star::awt::XFocusListener xListener);
[oneway] void removeFocusListener (com::sun::star::awt::XFocusListener xListener);
[oneway] void addKeyListener (com::sun::star::awt::XKeyListener xListener);
[oneway] void removeKeyListener (com::sun::star::awt::XKeyListener xListener);
[oneway] void addMouseListener (com::sun::star::awt::XMouseListener xListener);
[oneway] void removeMouseListener (com::sun::star::awt::XMouseListener xListener);
[oneway] void addMouseMotionListener (com::sun::star::awt::XMouseMotionListener xListener);
[oneway] void removeMouseMotionListener (com::sun::star::awt::XMouseMotionListener xListener);
[oneway] void addPaintListener (com::sun::star::awt::XPaintListener xListener);
[oneway] void removePaintListener (com::sun::star::awt::XPaintListener xListener);

The com.sun.star.awt.XWindowListener gets the following notifications. The
com.sun.star.awt.WindowEvent has members describing the size and position of the window.

[oneway] void windowResized ([in] com::sun::star::awt::WindowEvent e)
[oneway] void windowMoved ([in] com::sun::star::awt::WindowEvent e)
[oneway] void windowShown ([in] com::sun::star::lang::EventObject e)
[oneway] void windowHidden ([in] com::sun::star::lang::EventObject e);

What the other listeners do are evident by their names.

XTopWindow

The interface com.sun.star.awt.XTopWindow is available at container windows. It informs
listeners about top window events, and it can put itself in front of other windows or withdraw into
the background. It also has a method to control the current menu bar:

[oneway] void addTopWindowListener (com::sun::star::awt::XTopWindowListener xListener);
[oneway] void removeTopWindowListener (com::sun::star::awt::XTopWindowListener xListener);
[oneway] void toFront ();

439

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTopWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTopWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTopWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/WindowEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/WindowEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/WindowEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindowListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindowListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindowListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/formula/FormulaProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/formula/FormulaProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/PresentationDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/PresentationDocument.html

[oneway] void toBack ();
[oneway] void setMenuBar (com::sun::star::awt::XMenuBar xMenu);

 Although the XTopWindow interface has a method setMenuBar(), this method is not usable at this time.
The com.sun.star.awt.XMenuBar interface is deprecated.

The top window listener receives the following messages. All methods take a
com.sun.star.awt.WindowEvent with members describing the size and position of the window.

[oneway] void windowOpened ([in] com::sun::star::awt::WindowEvent e)
[oneway] void windowClosing ([in] com::sun::star::awt::WindowEvent e)
[oneway] void windowClosed ([in] com::sun::star::awt::WindowEvent e)
[oneway] void windowMinimized ([in] com::sun::star::awt::WindowEvent e)
[oneway] void windowNormalized ([in] com::sun::star::awt::WindowEvent e)
[oneway] void windowActivated ([in] com::sun::star::awt::WindowEvent e)
[oneway] void windowDeactivated ([in] com::sun::star::awt::WindowEvent e)

XWindowPeer

Each XWindow has a com.sun.star.awt.XWindowPeer. The com.sun.star.awt.XWindowPeer
interface accesses the window toolkit implementation used to create it and provides the pointer of
the pointing device, and controls the background color. It is also used to invalidate a window or
portions of it to trigger a redraw cycle.

com::sun::star::awt::XToolkit getToolkit ()
[oneway] void setPointer ([in] com::sun::star::awt::XPointer Pointer)
[oneway] void setBackground ([in] long Color)
[oneway] void invalidate ([in] short Flags)
[oneway] void invalidateRect ([in] com::sun::star::awt::Rectangle Rect,
 [in] short Flags)

7.1.4 Creating Frames Manually

Frame Creation

]Every time a frame is needed in OpenOffice.org, the com.sun.star.frame.Frame service is
created. OpenOffice.org has an implementation for this service, available at the global service
manager.

This service can be replaced by a different implementation, for example, your own implementation
in Java, by registering it at the service manager. In special cases, it is possible to use a custom frame
implementation instead of the com.sun.star.frame.Frame service by instantiating a specific
implementation using the implementation name with the factory methods of the service manager.
Both methods can alter the default window and document handling in OpenOffice.org, thus
changing or extending its functionality.

Assigning Windows to Frames

Every frame can be assigned to any OpenOffice.org window. For instance, the same frame imple-
mentation is used to load a component into an application window of the underlying windowing
system or into a preview window of a OpenOffice.org dialog. The com.sun.star.frame.Frame
service implementation does not depend on the type of the window, although the entirety of the
frame and window will be a different object by the user.

If you have a window in your application and want to load a OpenOffice.org document, create a
frame and window object, and put them together by a call to initialize(). A default frame is
created by instantiating an object implementing the com.sun.star.frame.Frame service at the
global service manager. For window creation, the current com.sun.star.awt implementation has
to be used to create windows in all languages supporting UNO. This toolkit offers a method to

440 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindowPeer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindowPeer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindowPeer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindowPeer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindowPeer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindowPeer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/WindowEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/WindowEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/WindowEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XMenuBar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XMenuBar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XMenuBar.html

create window objects that wrap a platform specific window, such as a Java AWT window or a
Windows system window represented by its window handle. A Java example is given below.

Two conditions apply to windows that are to be used with OpenOffice.org frames.

The first condition is that the window must be created by the current com.sun.star.awt.Toolkit
service implementation. Not every object implementing the com.sun.star.awt.XWindow interface
is used as an argument in the initialize() method, because it is syntactically correct, but it is
restricted to objects created by the current com.sun.star.awt implementation. The insertion of a
component into a frame only works if all involved windows are .xbl created by the same toolkit
implementation. All internal office components, such as Writer and Calc, are implemented using
the Visual Component Library (VCL), so that they do not work if the container window is not
implemented by VCL. The current toolkit uses this library internally, so all the windows created by
the awt toolkit are passed to a frame.No others work at this time. Using VCL directly is not recom-
mended. The code has to be rewritten, whenever this complication has incurred by the current
office implementation and is removed, and the toolkit implementation is exchangeable.

The second condition is that if a frame and its component are supposed to get windowActivated()
messages, the window object implements the additional interface com.sun.star.awt.XTop-
Window. This is necessary for editing components, because the windowActivated event shows a
cursor or a selection in the document. As long as this condition is met, further code is not necessary
for the interaction between the frame and window, because the frame gets all the necessary events
from the window by registering the appropriate listeners in the call to initialize().

When you use the com.sun.star.awt.Toolkit to create windows, supply a
com.sun.star.awt.WindowDescriptor struct to describe what kind of window is required. Set
the Type member of this struct to com.sun.star.awt.WindowClass:TOP and the WindowService-
Name member to "window" if you want to have an application window, or to "dockingwindow" if a
window is need to be inserted in other windows created by the toolkit.

Setting Components into Frame Hierarchies

Once a frame has been initialized with a window, it can be added to a frames supplier, such as the
desktop using the frames container provided by
com.sun.star.frame.XFramesSupplier:getFrames(). Its method
com.sun.star.frame.XFrames:append() inserts the new frame into the XFrames container and
calls setCreator() at the new frame, passing the XFramesSupplier interface of the parent frame.

 The parent frame must be set as the creator of the newly created frame. The current implementation of the
frames container calls setCreator() internally when frames are added to it using append().

The following example creates a new window and a frame, plugs them together, and adds them to
the desktop, thus creating a new, empty OpenOffice.org application window. (OfficeDev/Desk-
topEnvironment/FunctionHelper.java)
 // Conditions: xSMGR = m_xServiceManager
 // Get access to vcl toolkit of remote office to create
 // the container window of new target frame.
 com.sun.star.awt.XToolkit xToolkit =
 (com.sun.star.awt.XToolkit)UnoRuntime.queryInterface(
 com.sun.star.awt.XToolkit.class,
 xSMGR.createInstance("com.sun.star.awt.Toolkit"));

 // Describe the properties of the container window.
 // Tip: It is possible to use native window handle of a java window
 // as parent for this. see chapter "OfficeBean" for further informations
 com.sun.star.awt.WindowDescriptor aDescriptor =
 new com.sun.star.awt.WindowDescriptor();
 aDescriptor.Type = com.sun.star.awt.WindowClass.TOP ;
 aDescriptor.WindowServiceName = "window" ;
 aDescriptor.ParentIndex = -1;
 aDescriptor.Parent = null;
 aDescriptor.Bounds = new com.sun.star.awt.Rectangle(0,0,0,0);

441

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrames.html#append
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrames.html#append
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrames.html#append
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFramesSupplier.html#getFrames
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFramesSupplier.html#getFrames
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFramesSupplier.html#getFrames
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/WindowClass.html#TOP
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/WindowClass.html#TOP
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/WindowClass.html#TOP
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/WindowDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/WindowDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/WindowDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Toolkit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Toolkit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Toolkit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTopWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTopWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTopWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTopWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTopWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTopWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Toolkit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Toolkit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Toolkit.html

 aDescriptor.WindowAttributes =
 com.sun.star.awt.WindowAttribute.BORDER |
 com.sun.star.awt.WindowAttribute.MOVEABLE |
 com.sun.star.awt.WindowAttribute.SIZEABLE |
 com.sun.star.awt.WindowAttribute.CLOSEABLE ;

 com.sun.star.awt.XWindowPeer xPeer = xToolkit.createWindow(aDescriptor) ;

 com.sun.star.awt.XWindow xWindow = (com.sun.star.awt.XWindow)UnoRuntime.queryInterface (
 com.sun.star.awt.XWindow .class, xPeer);

 // Create a new empty target frame.
 // Attention: Before OpenOffice.org build 643 we must use
 // com.sun.star.frame.Task instead of com.sun.star.frame.Frame,
// because the desktop environment accepts only this special frame type
 // as direct children. It will be deprecated from build 643
 xFrame = (com.sun.star.frame.XFrame)UnoRuntime.queryInterface(
 com.sun.star.frame.XFrame.class,
 xSMGR.createInstance ("com.sun.star.frame.Task "));

 // Set the container window on it.
 xFrame.initialize(xWindow) ;
// Insert the new frame in desktop hierarchy.
 // Use XFrames interface to do so. It provides access to the
 // child frame container of the parent node.
 // Note: append(xFrame) calls xFrame.setCreator(Desktop) automaticly.
 com.sun.star.frame.XFramesSupplier xTreeRoot =
 (com.sun.star.frame.XFramesSupplier)UnoRuntime.queryInterface(
 com.sun.star.frame.XFramesSupplier.class,
 xSMGR.createInstance("com.sun.star.frame.Desktop"));
com.sun.star.frame.XFrames xChildContainer = xTreeRoot.getFrames ();
xChildContainer.append(xFrame) ;
// Make some other initializations.
 xPeer.setBackground(0xFFFFFFFF);
 xWindow.setVisible(true);
 xFrame.setName("newly created 1") ;

7.1.5 Handling Documents

Loading Documents
The framework API defines a simple but powerful interface to load viewable components, the
com.sun.star.frame.XComponentLoader. This interface is implemented by the globally acces-
sible com.sun.star.frame.Desktop service,to query the XComponentLoader from the desktop.

442 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html

The interface com.sun.star.frame.XComponentLoader has one method:
com::sun::star::lang::XComponent loadComponentFromURL ([in] string aURL,

 [in] string aTargetFrameName,
 [in] long nSearchFlags,
 [in] sequence < com::sun::star::beans::PropertyValue aArgs >)

The use fo this method is demonstrated below in the service com.sun.star.document.MediaDe-
scriptor.

MediaDescriptor

A call to loadComponentFromURL() receives a sequence of com.sun.star.beans.PropertyValue
structs as a parameter, which implements the com.sun.star.document.MediaDescriptor
service, consisting of property definitions. It describes where a resource or medium should be
loaded from and how this should be done.

The media descriptor is also used for saving a document to a location using the interface
com.sun.star.frame.XStorable. It transports the "where to" and the "how" of the storing proce-
dure. The table below shows the properties defined in the media descriptor.

Some properties are used for loading and saving while others apply to one or the other. If a media
descriptor is used, only a few of the members are specified. The others assume default values.
Strings default to empty strings in general and interface references default to empty references. For
all other properties, the default values are specified in the description column of the table.

443

 Illustration 7.11: Services Involved in Document Loading

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html

Some properties are tagged deprecated. There are old implementations that still use these proper-
ties. They are supported, but are discouraged to use them. Use the new property that can be found
in the description column of the deprecated property.

To develop a UNO component that uses the media descriptor, note that all the properties are
under control of the framework API. Never create your own property names for the media
descriptor, or name clashes may be induced if the framework defines a property that uses the same
name. Instead, use the ComponentData property to transport document specific information.
ComponentData is specified to be an any, therefore it can be a sequence of property values by itself.
If you do use it. make an appropriate specification available to users of your component.

Properties of com.sun.star.document.MediaDescriptor
AsTemplate boolean. Setting AsTemplate to true creates a new untitled docu-

ment out of the loaded document, even if it has no template exten-
sion.

Loading a template, that is, a document with a template extension,
creates a new untitled document by default, but setting the AsTem-
plate property to false loads a template for editing.

Author string. Only for storing versions in components supporting
versioning: author of version.

CharacterSet string. Defines the character set for document formats that contain
single byte characters, if necessary. Which character set names are
valid depends on the filter implementation, but with the current
filters you can employ the character sets used for the conversion of
byte to unicode strings.

Comment string. Only for storing versions in components supporting
versioning: comment (description) for stored version.

ComponentData any. This is a parameter that is used for any properties specific for a
special office component type.

FileName - deprecated string. Same as URL (added for compatibility reasons)

FilterData any. This is a parameter that is used for any properties specific for a
special filter type.

FilterName string. Name of a filter that should be used for loading or storing the
component. Names must match the names of the typedetection
configuration.Invalid names are ignored. If a name is specified on
loading, it will be verified by a filter detection, but in case of doubt it
will be preferred.

FilterFlags - deprecated string. For compatibility reasons: same as FilterOptions

FilterOptions string. Some filters need additional parameters. Use only together
with property FilterName. Details must be documented by the filter.
This is an old format for some filters. If a string is not enough, filters
can use the property FilterData.

Hidden boolean. Defines if the loaded component is made visible. If this
property is not specified, the component is made visible by default.
Making a hidden component visible by calling setVisible() at the
container window is not recommended at this time.

444 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#Hidden
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#FilterOptions
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#FilterFlags
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#FilterFlags
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#FilterFlags
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#FilterName
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#FilterData
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#FileName
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#FileName
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#FileName
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#ComponentData
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#Comment
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#Comment
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#Comment
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#CharacterSet
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#Author
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#AsTemplate
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#AsTemplate
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#AsTemplate
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html

Properties of com.sun.star.document.MediaDescriptor
InputStream com.sun.star.io.XInputStream. Used when loading a document.

Reading must be done using this stream. If no stream is provided, the
loader creates a stream by itself using the URL, version number,
readonly flag, password, or anything requiredfor stream creation,
given in the media descriptor.

The model becomes the final owner of the stream and usually holds
the reference to lock the file. Therefore, it is not allowed to keep a
reference to this InputStream after loading the component.It is
useless, because an InputStream is only usable once for reading. Even
if it implements the com.sun.star.io.XSeekable interface, do
not interfere with the model's reading process. Consider all the
objects involved in the loading process as temporary.

InteractionHandler com.sun.star.task.XInteractionHandler. Object implementing the
com.sun.star.task.InteractionHandler service that handles
exceptional situations where proceeding with the task is impossible
without additional information or impossible at all.

OpenOffice.org provides a default implementation that can handle
many situations. If no InteractionHandler is set, a suitable exception
is thrown.

It is not allowed to keep a reference to this object, not even in the
loaded or stored components' copy of the MediaDescriptor provided
by its arguments attribute.

JumpMark string. Jump to a marked position after loading. The office document
loaders expect simple strings used like targets in HTML
documents.Do not use a leading # character. The meaning of a jump
mark depends upon the filter, but in Writer, bookmarks can be used,
whereas in Calc cells, cell ranges and named areas are supported.

MediaType (string) string. Type of the medium to load that must match to one of the
types defined in the typedetection configuration, otherwise it is
ignored. The typedetection configuration can be found in several
different xcu files in the config/registry/modules/org/openoffice/TypeDe-
tection folders of the user or share tree. The MediaType is found in the
"Type" property. This parameter bypasses the type detection of the
desktop environment, so that passing a wrong MediaType causes
load failures.

OpenFlags - deprecated string. For compatibility reasons: string that summarizes some flags
for loading. The string contains capital letters for the flags:

"ReadOnly" - "R"
 "Preview" - "B"
 "AsTemplate" - "T"
 "Hidden" - "H"

Use the corresponding boolean parameters instead.

OpenNewView boolean. Affects the behavior of the component loader when a
resource is already loaded. If true, the loader tries to open a new view
for a document already loaded. For components supporting multiple
views, a second window is opened as if the user clicked Window �
New Window.Other components are loaded one more time. Without
this property, the default behavior of the loader applies, for example,
the loader of the desktop activates a document if the user tries to load
it a second time.

445

http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#OpenNewView
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#OpenFlags
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#OpenFlags
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#OpenFlags
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#MediaType
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#MediaType
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#MediaType
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#JumpMark
http://api.openoffice.org/docs/common/ref/com/sun/star/task/InteractionHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/InteractionHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/InteractionHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#InteractionHandler
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XSeekable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XSeekable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XSeekable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#InputStream

Properties of com.sun.star.document.MediaDescriptor
Overwrite boolean. For storing only: overwrite existing files with the same

name, default is true, so an com.sun.star.io.IOException
occurs if the target file already exists. If the default is changed and the
file exists, the UCB throws an exception. If the file is loaded through
API, this exception is transported to the caller or handled by an inter-
action handler.

Password string. A password for loading or storing a component, if necessary.
If no password is specified, loading of a password protected docu-
ment fails, storing is done without encryption.

PostData reference <XinputStream>. HTTP post data to send to a location
described by the media descriptor to get a result that is loaded as a
component, usually in webforms. Default is: no PostData.

PostString - deprecated string. Same as PostData, but the data is transferred as a string (just
for compatibility).

Preview boolean. Setting this to true tells the loaded component that it is
loaded as a preview, so that it can optimize loading and viewing for
this special purpose. Default is false.

ReadOnly boolean. Tells if a document is to be loaded in a (logical) readonly or
in read/write mode. If opening in the desired mode is impossible, an
error occurs. By default, the loaded content decides what to do. If its
UCB content supports a "readonly" property, the logical open mode
depends on that property, otherwise it is read/write.

This property only affects the UI. Opening a document in read only
mode does not prevent the component from being modified by API
calls, but all modifying functionality in the UI is disabled or removed.

Referer
(the wrong spelling is kept for
compatibility reasons)

string. A URL describing the environment of the request; for
example,. a referrer may be the URL of a document, if a hyperlink
inside this document is clicked to load another document. The
referrer may be evaluated by the addressed UCB content or the
loaded document.

Without a referrer, the processing of URLs that require security
checks is denied, for instance macro: URLs.

StatusIndicator

com.sun.star.task.XStatusIndicator. Object implementing
the com.sun.star.task.XStatusIndicator interface that gives
status information, such as text or progress, for the target frame.

OpenOffice.org provides a default implementation that is retrieved
by calling createStatusIndicator() at the frame you load a
component into. Usually you do not need this parameter if you do
not want to use any other indicator than the one in the status bar of
the document window. It is not allowed to keep a reference to this
object, not even in the loaded or stored component's copy of the
MediaDescriptor provided by its getArgs() method.

TemplateName string. The logical name of a template to load. Together with the
TemplateRegionName property this is used instead of the URL of the
template. The logical names are the template names you see in the
templates dialog.

TemplateRegionName string. See TemplateName. The template region names are the folder
names you see in the templates dialog.

446 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#TemplateRegionName
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#TemplateName
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XStatusIndicator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XStatusIndicator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XStatusIndicator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XStatusIndicator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XStatusIndicator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XStatusIndicator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#StatusIndicator
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#StatusIndicator
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#StatusIndicator
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#Referer
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#ReadOnly
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#Preview
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#PostString
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#PostString
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#PostString
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#PostData
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#Password
http://api.openoffice.org/docs/common/ref/com/sun/star/io/IOException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/IOException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/IOException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#Overwrite

Properties of com.sun.star.document.MediaDescriptor
Unpacked boolean. For storing: Setting this to true means that a zip file is not

used to save the document. Use a folder instead for UCB contents that
support folders, such as file, WebDAV, and ftp. Default is false.

URL string. The location of the component in URL syntax.

Version short. For components supporting versioning: the number of the
version to be loaded or saved. Default is zero and means that no
version is created or loaded, and the main document is processed.

ViewData any. Data to set a special view state after loading. The type depends
on the component and is retrieved from a controller object by its
com.sun.star.document.XViewDataSupplier interface.
Default is: no ViewData.

ViewId short. For components supporting different views: a number to define
the view that should be constructed after loading. Default is: zero,
and this should be treated by the component as the default view.

MacroExecutionMode short. How should the macro be executed - the value should be one
from com.sun.star.document.MacroExecMode constants group

UpdateDocMode short. Can the document be updated depending on links. The value
should be one from com.sun.star.document.UpdateDocMode
constant group

The media descriptor used for loading and storing components is passed as an in/out parameter to
some objects that participate in the loading or storing process, that is, the com.sun.star.docu-
ment.TypeDetection service or a com.sun.star.document.ExtendedTypeDetection service.
These objects add additional information they have gathered to the media descriptor, so that other
objects called later do not have to reinvestigate this.

The first object that gets the media descriptor might need an input stream, but assume that there is
currently none. The object creates one and uses it. If the stream happens to be seekable (usually it
is), the object puts the stream into the media descriptor, so that it passes it to other objects that
need the stream as well. They do not have to create it again. It is important for streams created for
a remote resource, such as http contents.

If the stream, provided from the outside or created by the first consumer, is not seekable, every
consumer creates one. It creates a buffering stream component that reads in the original stream
and provides a seekable stream for all further consumers. This buffered stream can be put into the
media descriptor.

As previously mentioned, the easiest way to load a document is to call loadComponentFromURL()
at the desktop service, but any other object could implement this interface.

URL Parameter

The URL is part of the media descriptor and also an explicit parameter for loadComponentFro-
mURL(). This enables script code to load a document without creating a media descriptor at the
cost of code redundancy. The URL parameter of loadComponentFromURL() overrides a possible
URL property passed in the media descriptor. Aside from valid URLs that describe an existing file,
the following URLs are used to open viewable components in OpenOffice.org:

Component URL

Writer private:factory/swriter

Calc private:factory/scalc

Draw private:factory/sdraw

447

http://api.openoffice.org/docs/common/ref/com/sun/star/document/ExtendedTypeDetection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/ExtendedTypeDetection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/ExtendedTypeDetection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/TypeDetection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/TypeDetection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/TypeDetection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/TypeDetection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/TypeDetection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/TypeDetection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/UpdateDocMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/UpdateDocMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/UpdateDocMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#UpdateDocMode
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MacroExecMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MacroExecMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MacroExecMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#MacroExecutionMode
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#ViewId
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XViewDataSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XViewDataSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XViewDataSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#ViewData
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#Version
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#URL
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#Unpacked

Component URL

Impress private:factory/simpress

Database .component:DB/QueryDesign
.component:DB/TableDesign
.component:DB/RelationDesign
.component:DB/DataSourceBrowser
.component:DB/FormGridView

Bibliography .component:Bibliography/View1

Target Frame

The URL and media descriptor loadComponentFromURL() have two additional arguments, the
target frame name and search flags. The method loadComponentFromURL() looks for a frame in
the frame hierarchy and loads the component into the frame it finds. It uses the same algorithm as
findFrame() at the com.sun.star.frame.XFrame interface, described in section 7.1.3 Office Devel-
opment - OpenOffice.org Application Environment - Using the Component Framework - Frames - XFrame -
Frame Hierarchies.

The target frame name is a reserved name starting with an underscore or arbitrary name. The
reserved names denote frequently used frames in the frame hierarchy or special functions, whereas
an arbitrary name is searched recursively. If a reserved name is used, the search flags are ignored
and set to 0. The following reserved names are supported:

_self
Returns the frame itself. The same as with an empty target frame name. This means to search
for a frame you already have, but it is legal.

_top
Returns the top frame of the called frame .,The first frame where isTop() returns true when
traveling up the hierarchy. If the starting frame does not have a parent frame, the call is treated
as a search for "_self". This behavior is compatible to the frame targeting in a web browser.

_parent
Returns the next frame above in the frame hierarchy. If the starting frame does not have a
parent frame, the call is treated as a search for "_self". This behavior is compatible to the
frame targeting in a web browser.

_blank
Creates a new top-level frame as a child frame of the desktop. If the called frame is not part of
the desktop hierarchy, this call fails. Using the "_blank" target loads open documents again
that result in a read-only document, depending on the UCB content provider for the compo-
nent. If loading is done as a result of a user action, this becomes confusing to theusers, therefore
the "_default" target is recommended in calls from a user interface, instead of "_blank".
Refer to the next section for a discussion about the _default target..

_default
Similar to "_blank", but the implementation defines further behavior that has to be docu-
mented by the implementer. The com.sun.star.frame.XComponentLoader implemented at
the desktop object shows the following default behavior.

First, it checks if the component to load is already loaded in another top-level frame. If this is
the case, the frame is activated and brought to the foreground. When the OpenNewView prop-
erty is set to true in the media descriptor, the loader creates a second controller to show another
view for the loaded document. For components supporting this, a second window is opened as
if the user clicked Window � New Window. The other components are loaded one more time,

448 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html

as if the "_blank" target had been used. Currently, almost all office components implementing
com.sun.star.frame.XModel have multiple controllers, except for HTML and writer docu-
ments in the online view. The database and bibliography components have no model, therefore
they cannot open a second view at all and OpenNewView leads to an exception with them.

Next, the loader checks if the active frame contains an unmodified, empty document of the
same document type as the component that is being loaded. If so, the component is loaded into
that frame, replacing the empty document, otherwise a new top-level frame is created similar to
a call with "_blank".

Names starting with an underscore must not be used as real names for a frame.

If the given frame name is an arbitrary string, the loader searches for this frame in the frame hier-
archy. The search is done in the following order: self, children, siblings, parent, create if not found.
Each of these search steps can be skipped by deleting it from the
com.sun.star.frame.FrameSearchFlag bit vector:

Constants in com.sun.star.frame.FrameSearchFlag group

SELF search current frame

CHILDREN search children recursively

SIBLINGS search frames on the same level

PARENT search frame above the current frame in the hierarchy

CREATE create new frame if not found

TASKS do not stop searching when a top frame is reached, but continue with other top frames

ALL search the frame hierarchy below the current top frame, do not create new frame: SELF |
CHILDREN | SIBLINGS | PARENT

GLOBAL search all frames, do not create new frame: SELF | CHILDREN | SIBLINGS | PARENT |
TASKS

A typical case for a named frame is a situation where a frame is needed to be reused for subse-
quent loading of components, for example, a frame attached to a preview window or a docked
frame, such as the frame in OpenOffice.org that opens the address book when the F4 key is
pressed.

The frame names "_self", "_top" and "_parent" define a frame target relative to a starting
frame. They can only be used if the component loader interface finds the frame and the setCompo-
nent() can be used with the frame. The desktop frame is the root, therefore it does not have a top
and parent frame. The component loader of the desktop cannot use these names, because the
desktop refuses to have a component set into it.. However, if a frame implemented
com.sun.star.frame.XComponentLoader, these names could be used.

OpenOffice.org 1.1.0 will have a frame implementation that supports XComponentLoader.

The reserved frame names are also used as a targeting mechanism in the dispatch framework with
regard to as far as the relative frame names being resolved. For additional information, see chapter
7.1.6 Office Development - OpenOffice.org Application Environment - Using the Dispatch Framework.

The example below creates a frame, and uses the target frame and search flag parameters of load-
ComponentFromURL() to load a document into it. (OfficeDev/DesktopEnvironment/Function-
Helper.java)
 // Conditions: sURL = "private:factory/swriter"
 // xSMGR = m_xServiceManager
 // xFrame = reference to a frame
 // lProperties[] = new com.sun.star.beans.PropertyValue[0]

449

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameSearchFlag.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameSearchFlag.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameSearchFlag.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameSearchFlag.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameSearchFlag.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameSearchFlag.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html

 // First prepare frame for loading.
 // We must adress it inside the frame tree without any complications.
 // To do so we set an unambiguous name and use it later.
 // Don't forget to reset the name to the original name after that.

 String sOldName = xFrame.getName();
 String sTarget = "odk_officedev_desk";
 xFrame.setName(sTarget);

 // Get access to the global component loader of the office
 // for synchronous loading of documents.
 com.sun.star.frame.XComponentLoader xLoader =
 (com.sun.star.frame.XComponentLoader)UnoRuntime.queryInterface(
 com.sun.star.frame.XComponentLoader.class,
 xSMGR.createInstance("com.sun.star.frame.Desktop"));

 // Load the document into the target frame by using our unambigous name
 // and special search flags.
 xDocument = xLoader.loadComponentFromURL(
 sURL, sTarget, com.sun.star.frame.FrameSearchFlag.CHILDREN, lProperties);

 // dont forget to restore old frame name ...
 xFrame.setName(sOldName);

The loadComponentFromURL() call returns a reference to a com.sun.star.lang.XComponent
interface. The object belonging to this interface depends on the loaded component. If it is a compo-
nent that only provides a component window, but not a controller, the returned component is this
window. If it is an office component that provides a controller, the returned component is the
controller or its model, if these is one. All Writer, Calc, Draw, Impress or Math documents in
OpenOffice.org support a model, therefore the loadComponentFromURL() call returns it. The data-
base and bibliography components however, return a controller, because they do not have a
model.

Closing Documents
The loadComponentFromURL() returns a com.sun.star.lang.XComponent interface has previ-
ously been discussed. The return value is a reference to a com.sun.star.lang.XComponent inter-
face, the corresponding object is a disposable component, and the caller must take care of lifetime
problems. An XComponent supports the following methods:

void dispose ()
void addEventListener ([in] com::sun::star::lang::XEventListener xListener)
void removeEventListener ([in] com::sun::star::lang::XEventListener aListener)

In principle, there is a simple rule. The documentation of a com.sun.star.lang.XComponent spec-
ifies the objects that can own a component. Normally, a client using an XComponent is the owner of
the XComponent and has the responsibility to dispose of it or it is not the owner. If it is not the
owner, it may add itself as a com.sun.star.lang.XEventListener at the XComponent and not call
dispose() on it. This type of XEventListener supports one method in which a component reacts
upon the fact that another component is about to be disposed of:

void disposing ([in] com::sun::star::lang::EventObject Source)

However, the frame, controller and model are interwoven tightly, and situations do occur in which
there are several owners, for example, if there is more than one view for one model, or one of these
components is in use and cannot be disposed of, for example, while a print job is running or a
modal dialog is open. Therefore, developers must cope with these situations and remember a few
things concerning the deletion of components.

Closing a document has two aspects. It is possible that someone else wants to close a document
being currently worked on And you may want to close a component someone else is using at the
same time. Both aspects are discussed in the following sections. A code example that closes a docu-
ment is provided at the end of this section.

450 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html

Reacting Upon Closing

The first aspect is that someone else wants to close a component for which you hold a reference. In
the current version of OpenOffice.org, there are three possibilities.

• If the component is used briefly as a stack variable, you do not care about the component after
loading, or you are sure there will be no interference, it is justifiable to load the component
without taking further measures. If the user is going to close the component, let the reference go
out of scope, or release the reference when no longer required.

• If a reference is used, but it is not necessary to react when it becomes invalid and the object
supports com.sun.star.uno.XWeak, you can hold a weak reference instead of a hard reference.
Weak references are automatically converted to null if the object they reference is going to be
disposed. Because the generic frame implementation, and also the controllers and models of all
standard document types implement XWeak, it is recommended to use it when possible.

• If a hard reference is held or you want to know that the component has been closed and the
new situation has to be accommodated, add a com.sun.star.lang.XEventListener at the
com.sun.star.lang.XComponent interface. In this case, release the reference on a
disposing() notification.

Sometimes it is necessary to exercise more control over the closing process, therefore a new,
optional interface com.sun.star.util.XCloseable has been introduced whichis supported in
versions beyond 641. If the object you are referencing is a com.sun.star.util.XCloseable,
register it as a com.sun.star.util.XCloseListener and throw a com.sun.star.util.CloseVe-
toException when prompted to close. Since XCloseable is specified as an optional interface for
frames and models, do not assume that this interface is supported. It is possible that the code runs
with a OpenOffice.org version where frames and models do not implement XCloseable. Therefore
,be prepared for the case when you receive null when you try to query XCloseable. The XClose-
able interface is described in more detail below.

How to Trigger Closing

The second aspect � to close a view of a component or the entire viewable component yourself � is
more complex. The necessary steps depend on how you want to treat modified documents. Besides
you have to prepare for the new com.sun.star.util.XCloseable interface, which will be imple-
mented in future versions of OpenOffice.org.

Although XCloseable is not supported in the current version of OpenOffice.org, you already have to check
for this interface to write compatible code. Not checking for XCloseable will be illegal in future versions. If
a component supports this interface, you must not use any closing procedure other than calling close() at
that interface.

The following three diagrams show the decisions to be made when closing a frame or a document
model. The important points are: if you expect modifications, you must either handle them using
com.sun.star.util.XModifiable and com.sun.star.frame.XStorable, or let the user do the
necessary interaction by calling suspend() on the controller. In any case, check if the frame or
model is an XCloseable and prefer com.sun.star.util.XCloseable:close() over a call to
dispose(). The first two diagrams illustrate the separate closing process for frames and models,
the third diagram covers the actual termination of frames and models.

451

http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseable.html#close
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseable.html#close
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseable.html#close
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XModifiable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XModifiable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XModifiable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/CloseVetoException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/CloseVetoException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/CloseVetoException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/CloseVetoException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/CloseVetoException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/CloseVetoException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html

452 OpenOffice.org 2.3 Developer's Guide • June 2007

 Illustration 7.13: Closing a Model

 Illustration 7.12: Closing a Frame

XCloseable

The dispose mechanism has shortcomings in complex situations, such as the frame-controller-
model interaction. The dispose call cannot be rejected, but as shown above, sometimes it is neces-
sary to prevent destruction of objects due to shared ownership or a state of the documents that
forbids destruction.

A closing mechanism is required that enables all involved objects to negotiate if deletion is possible
and to veto, if necessary. By offering the interface com.sun.star.util.XCloseable, a component
tells it must be destroyed by calling close(). Calling dispose() on an XCloseable might lead to
deadlocks or crash the entire application.

In OpenOffice.org, model or frame objects are possible candidates for implementing the interface
XCloseable, therefore query for that interface before destroying the object. Call dispose()
directly if the model or frame does not support the interface, thus declaring that it handles all the
problems.

An object implementing XCloseable registers close listeners. When a close request is received, all
listeners are asked for permission. If a listener wants to deprecate, it throws an exception derived
from com.sun.star.util.CloseVetoException containing the reason why the component can
not be closed. This exception is passed to the close requester. The XCloseable itself can veto the
destruction by throwing an exception. If there is no veto, the XCloseable calls dispose() on itself
and returns.

The XCloseable handles problems that occur if a component rejects destruction. A script
programmer usually can not cope with a component not used anymore and refuses to be
destroyed. Ensure that the component is destroyed to avoid a memory leak. The close() method
offers a method to pass the responsibility to close the object to any possible close listener that
vetoes closing or to the XCloseable if the initial caller is not able to stay in memory to try again
later. This responsibility is referred to as delivered ownership. The mechanism sets some constraints
on the possible reasons for an objection against a close request.

A close listener that is asked for permission can object for any reason if the close call does not force
it to assume ownership of the closeable object.The close requester is aware of a possible failure. If
the close call forces the ownership, the close listener must be careful. An objection is only allowed
if the reason is temporary. As soon as the reason no longer exists, the owner automatically calls
close on the object that should be closed, now being in the same situation as the initial close
requester.

A permanent reason for objection is not allowed. For example,. the document is modified is not a
valid reason to object, because it is unlikely that the document becomes unmodified by itself.
Consequently, it could never be closed. Therefore, if an API programmer wants to avoid data loss,
he must use the com.sun.star.util.XModifiable and com.sun.star.frame.XStorable inter-
faces of the document. The fact that a model refuses to be closed if it is modified is not dependable.

453

 Illustration 7.14: Terminate Frame/Model

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XModifiable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XModifiable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XModifiable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/CloseVetoException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/CloseVetoException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/CloseVetoException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseable.html

The interface com.sun.star.util.XCloseable inherits from com.sun.star.util.XCloseBroad-
caster and has the following methods:

[oneway] void addCloseListener ([in] com::sun::star::util::XCloseListener Listener);
[oneway] void removeCloseListener ([in] com::sun::star::util::XCloseListener Listener);
void close ([in] boolean DeliverOwnership)

The com.sun.star.util.XCloseListener is notified twice when close() is called on an XClos-
able :

void queryClosing ([in] com::sun::star::lang::EventObject Source,
 [in] boolean GetsOwnership)
void notifyClosing ([in] com::sun::star::lang::EventObject Source)

Both com.sun.star.util.XCloseable:close() and
com.sun.star.util.XCloseListener:queryClosing() throw a com.sun.star.util.CloseVe-
toException.

In the closing negotiations, an XClosable is asked to close itself. In the call to close(), the caller
passes a boolean parameter DeliverOwnership to tell the XClosable that it will give up owner-
ship in favor of an XCloseListener, or the XCloseable that might have to finish a job first, but
will close the XClosable immediately when the job is completed.

After a call to close(), the XClosable notifies its listeners twice. First, it checks if itcan be closed.
If not, it throws a CloseVetoException, otherwise it uses queryClosing() to see if a listener has
any objections against closing. The value of DeliverOwnership is conveyed in the GetsOwnership
parameter of queryClosing(). If no listener disapproves of closing, the XClosable exercises
notifyClosing() on the listeners and disposes itself. The result of a call to close() on a model is
that all frames, controllers and the model itself are destroyed. The result of a call to close() on a
frame is that this frame is closed, but the model stays alive if there are other controllers.

If an XCloseListener does not agree on closing, it throws a CloseVetoException, and the XClos-
able lets the exception pass in close(), so that the caller receives the exception. The CloseVeto-
Exception tells the caller that closing failed. If the caller delegated its ownership in the call to
close() by setting the DeliverOwnership parameter to true, an XCloseListener knows that it
automatically assumes ownership by throwing a CloseVetoException.The caller knows that
someone else is now the owner if it receives a CloseVetoException. The new owner is compelled
to close the XClosable as soon as possible. If the XCloseable was the object that threw an excep-
tion, it is compelled also to close itself as soon as possible.

 No API exists for trivial components. As a consequence, components are not allowed to do anything that
prevents them from being destroyed. For example, since the office crashes when a container window or
component window has an open modal dialog, every component that wants to open a modal dialog must
implement the com.sun.star.frame.XController interface.

If a model object supports XCloseable, calling dispose() on it is forbidden, try to close() the
XCloseable and catch a possible CloseVetoException. Components that cannot cope with a
destroyed model add a close listener at the model. This enables them to object when the model
receives a close() request. They also add as a close listener if they are not already added as an
(dispose) event listener. This can be done by every controller object that uses that model. Tt is also
possible to let the model iterate through its controllers and call their suspend() methods explicitly
as a part of its implementation of the close method. It is only necessary to know that a method
close() must be called to close the model with its controllers. The method the model chooses is an
implementation detail.

The example below closes a loaded document component. It does not save modified documents or
prompts the user to save. (OfficeDev/DesktopEnvironment/FunctionHelper.java)
// Conditions: xDocument = m_xLoadedDocument
 // Check supported functionality of the document (model or controller).
 com.sun.star.frame.XModel xModel =
 (com.sun.star.frame.XModel)UnoRuntime.queryInterface(

454 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XController.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XController.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XController.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/CloseVetoException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/CloseVetoException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/CloseVetoException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/CloseVetoException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/CloseVetoException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/CloseVetoException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseListener.html#queryClosing
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseListener.html#queryClosing
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseListener.html#queryClosing
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseable.html#close
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseable.html#close
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseable.html#close
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseable.html

 com.sun.star.frame.XModel.class,xDocument);

 if(xModel!=null)
 {
 // It is a full featured office document.
 // Try to use close mechanism instead of a hard dispose().
 // But maybe such service is not available on this model.
 com.sun.star.util.XCloseable xCloseable =
 (com.sun.star.util.XCloseable)UnoRuntime.queryInterface(
 com.sun.star.util.XCloseable.class,xModel);

 if(xCloseable!=null)
 {
 try
 {
 // use close(boolean DeliverOwnership)
 // The boolean parameter DeliverOwnership tells objects vetoing the close process that they may
 // assume ownership if they object the closure by throwing a CloseVetoException
 // Here we give up ownership. To be on the safe side, catch possible veto exception anyway.
 xCloseable.close(true);
 }
 catch(com.sun.star.util.CloseVetoException exCloseVeto)
 {
 }
 }
 // If close is not supported by this model - try to dispose it.
 // But if the model disagree with a reset request for the modify state
 // we shouldn't do so. Otherwhise some strange things can happen.
 else
 {
 com.sun.star.lang.XComponent xDisposeable =
 (com.sun.star.lang.XComponent)UnoRuntime.queryInterface(
 com.sun.star.lang.XComponent.class,xModel);
 xDisposeable.dispose();
 }
 catch(com.sun.star.beans.PropertyVetoException exModifyVeto)
 {
 }
 }
 }
 }

Storing Documents
After loading an office component successfully, the returned interface cis used to manipulate the
component. Document specific interfaces, such as the interfaces com.sun.star.text.XTextDocu-
ment, com.sun.star.sheet.XSpreadsheetDocument or com.sun.star.drawing.XDrawPages-
Supplier are retrieved using queryInterface().

If the office component supports the com.sun.star.frame.XStorable interface applying to every
component implementing the service com.sun.star.document.OfficeDocument, it can be stored:

void store ()
void storeAsURL ([in] string sURL,
 [in] sequence< com::sun::star::beans::PropertyValue > lArguments)
void storeToURL ([in] string sURL,
 [in] sequence< com::sun::star::beans::PropertyValue > lArguments)
boolean hasLocation ()
string getLocation ()
boolean isReadonly ()

The XStorable offers the methods store(), storeAsURL() and storeToURL() for storing. The
latter two methods are called with a media descriptor.

The method store() overwrites an existing file. Calling this method on a document that was
created from scratch using a private:factory/... URL leads to an exception.

The other two methods storeAsURL() and storeToURL() leave the original file untouched and
differ after the storing procedure. The storeToURL() method saves the current document to the
desired location without touching the internal state of the document. The method storeAsURL sets
the Modified attribute of the document, accessible through its com.sun.star.util.XModifiable
interface, to false and updates the internal media descriptor of the document with the parameters
passed in the call. This changes the document URL.

455

http://api.openoffice.org/docs/common/ref/com/sun/star/util/XModifiable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XModifiable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XModifiable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPagesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPagesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPagesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPagesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPagesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPagesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheetDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheetDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheetDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextDocument.html

The following example exports a Writer document, Writer/Web document or Calc sheet to HTML.
(OfficeDev/DesktopEnvironment/FunctionHelper.java)
 // Conditions: sURL = "file:///home/target.htm"
 // xDocument = m_xLoadedDocument

 // Export can be achieved by saving the document and using
 // a special filter which can write the desired format.
 // Normally this filter should be searched inside the filter
 // configuration (using service com.sun.star.document.FilterFactory)
 // but here we use well known filter names directly.

 String sFilter = null;

 // Detect document type by asking XServiceInfo
 com.sun.star.lang.XServiceInfo xInfo = (com.sun.star.lang.XServiceInfo)UnoRuntime.queryInterface (
 com.sun.star.lang.XServiceInfo .class, xDocument);

 // Determine suitable HTML filter name for export.
 if(xInfo!=null)
 {
 if(xInfo.supportsService ("com.sun.star.text.TextDocument ") == true)
 sFilter = new String("HTML (StarWriter) ");
 else
 if(xInfo.supportsService ("com.sun.star.text.WebDocument ") == true)
 sFilter = new String("HTML ");
 else
 if(xInfo.supportsService ("com.sun.star.sheet.SpreadsheetDocument ") == true)
 sFilter = new String("HTML (StarCalc) ");
 }

 if(sFilter!=null)
 {
 // Build necessary argument list for store properties.
 // Use flag "Overwrite" to prevent exceptions, if file already exists.

 com.sun.star.beans.PropertyValue[] lProperties =
 new com.sun.star.beans.PropertyValue[2];
 lProperties[0] = new com.sun.star.beans.PropertyValue();
 lProperties[0].Name = "FilterName ";
 lProperties[0].Value = sFilter;
 lProperties[1] = new com.sun.star.beans.PropertyValue();
 lProperties[1].Name = "Overwrite ";
 lProperties[1].Value = new Boolean(true);

 com.sun.star.frame.XStorable xStore = (com.sun.star.frame.XStorable)UnoRuntime.queryInterface (
 com.sun.star.frame.XStorable .class, xDocument);

 xStore.storeAsURL (sURL, lProperties);
 }

If a model is loaded or stored successfully, all parts of the media descriptor not explicitly excluded
according to the media descriptor table in section 7.1.5 Office Development - OpenOffice.org Applica-
tion Environment - Handling Documents - Loading Documents - MediaDescriptor must be provided by
the methods getURL() and getArgs() in thecom.sun.star.frame.XModel interface. The separa-
tion of the URL and the other arguments is used, because the URL is the often the most wanted
part for itsperformance optimized access.

 The XModel offers a method attachResource() that changes the media descriptor of the document, but
this method should only be used in special cases, for example, by the implementer of a new document
model and controller. The method attachResource() does not force reloading of the document. Valida-
tion checks are done when a document is loaded through MediaDescriptor. For example, if the resource is
write protected, add Readonly to the MediaDescriptor and the filter name must match the data. A possible
use for attachResource() could be creating a document from a template, where after loading success-
fully, the document's resource is changed to an "unnamed" state by deleting the URL.

Printing Documents
Printing revolves around the interface com.sun.star.view.XPrintable. Its methods and special
printing features for the various document types are described in the document chapters 8.2.3 Text
Documents - Handling Text Document Files - Printing Text Documents, 9.2.3 Spreadsheet Documents -
Handling Spreadsheet Document Files - Printing Spreadsheet Documents, 10.2.3 Drawing - Handling

456 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/view/XPrintable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XPrintable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XPrintable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html

Drawing Document Files - Printing Drawing Documents and 10.4.2 Drawing - Handling Presentation
Document Files - Printing Presentation Documents.

7.1.6 Using the Dispatch Framework
]The component framework with the Frame-Controller-Model paradigm builds the skeleton of the
global object structure. Other frameworks are defined that enrich the communication between an
office component and the desktop environment. Usually they start at a frame object for the frame
anchors an office component in the desktop environment.

One framework is the dispatch framework. Its main purpose defines interfaces for a generic commu-
nication between an office component and a user interface. This communication process handles
requests for command executions and gives information about the various attributes of an office
component. Generic means that the user interface does not have to know all the interfaces
supported by the office component.The user interfaces sends messages to the office component and
receives notifications.Tthe messages use a simple format. The entire negotiation about supported
commands and parameters can happen at runtime while an application built on the specialized
interfaces of the component are created at compile or interpret time. This generic approach is
achieved by looking at an office component differently, not as objects with method-based inter-
faces, but as slot machines that take standardized command tokens.

We have discussed the differences between the different document types. The common function-
ality covers the generic features, that is, an office component is considered to be the entirety of its
controller, its model and many document-specific interfaces. To implement a user interface for a
component, it would be closely bound to the component and its specialized interfaces. If different
components use different interfaces and methods for their implementations, similar functions
cannot be visualized by the same user interface implementation. For instance, an action like Edit �
Select All leads to different interface calls depending on the document type it is sent to. From a
user interface perspective, it would be better to define abstract descriptions of the actions to be
performed and let the components decide how to handle these actions, or not to handle . These
abstract descriptions and how to handle them is specified in the dispatch framework.

Command URL
In the dispatch framework, every possible user action is defined as an executable command, and
every possible visualization as a reflection of something that is exposed by the component is
defined as an attribute. Every executable command and every attribute is a feature of the office
component, and the dispatch framework gives every feature a name called command URL. It is
represented by a com.sun.star.util.URL struct.

Command URLs are strings that follow the protocol_scheme:protocol_specific_part pattern. Public
URL schemes, such as file: or http can be used here.Executing a request with a URL that points to a
location of a document means that this document is loaded. In general, both parts of the command
URL can be arbitrary strings, but a request cannot be executed if there is an object that does not
know how to handle its command URL.

Processing Chain
A request is created by any object.User interface objects can create requests. Consider a toolbox
where different functions acting on the office component are presented as buttons. When a button
is clicked, the desired functionality is executed. If the code assigned to the button is provided with
a suitable command URL, it handles the user action by creating the request and finding a compo-

457

http://api.openoffice.org/docs/common/ref/com/sun/star/util/URL.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/URL.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/URL.html

nent that can handle it. The button handler does not require any prior knowledge of the compo-
nent and how it would go about its task.

This situation is handled by the design pattern chain of responsibility. Everything a component
needs to know to execute a request is the last link of a chain of objects capable of executing
requests. If this object gets the request, it checks if it can handle it or passes it to the next chain
member until the request is executed, or the end of the chain is reached.

The chain members in the dispatch framework are objects implementing the interface
com.sun.star.frame.XDispatchProvider. Every frame and controller supports it.In the simplest
case, the chain consists of two members, a frame and its controller, but concatenating several chain
parts on demand of a frame or a controller is possible. A controller once called, passes on the call,
that is, it can use internal frames created by its implementation. A frame also passes the call to
other objects, for example, its parent frame.

The current implementation of the chain is different from a simple chain.A frame is always the
leading chain member and must be called initially, but in the default implementation used in
OpenOffice.org, the frame first(!) asks its controller before it goes on with the request. Other frame
implementations handle this in a different way. Other chain members are inserted into the call
sequence before the controller uses the dispatch interception capability of a frame. The developers
should not rely on any particular order inside the chain.

The dispatch framework uses a generic approach to describe and handle requests with a lose
coupling between the participating objects. To work correctly, it is necessary to follow certain rules:

1. Every chain starts at a frame, and this object decides if it passes on the call to its controller. The
controller is not called directly from the outside. This is not compulsory for internal usage of the
dispatch API inside an office component implementation. Ther two reasons for this rule are:

• A frame providesa com.sun.star.frame.XDispatchProviderInterception interface,
where other dispatch providers dock. The frame implementation guarantees that these inter-
ceptors are called before the frame handles the request or passes it to the controller. This
allows a sophisticated customization of the dispatch handling.

• If a component is placed into a context where parts of its functionality are not be exposed to
the outside, a special frame implementation is used to suppress or handle requests before
they are passed to the controller. This frame can add or remove arguments to requests and
exchange them.

2. A command URL isparsed into a com.sun.star.util.URL struct before passing it to a dispatch
provider, because it is assumed that the call is passed on to several objects. Having a preparsed
URL saves parsing the command string repeatedly. Parsing means that the members Complete,
Main, Protocol and at least one more member of the com.sun.star.util.URL struct,
depending on the given protocol scheme have to be set. Additional members are set if the
concrete URL protocol supports them. For well known protocol schemes and protocol schemes
specific to OpenOffice.org, the service com.sun.star.util.URLTransformer is used to fill the
struct from a command URL string. For other protocols, the members are set explicitly, but it is
also possible to write an extended version of the URLTransformer service to carry out URL
parsing. An extended URLTransformer must support all protocols supported by the default
URLTransformer implementation, for example, by instantiating the old implementation by its
implementation name and forwarding all known URLs to it, except URLs with new protocols.

The dispatch framework connects an object that creates a request with another object that reacts on
the request. In addition, it provides feedback to the requester. It can tell if the request is currently
allowed or not. If the request acts on a specific attribute of an object, it c provides the current status
of this attribute. Altogether, this is called status information, represented by a
com.sun.star.frame.FeatureStateEvent struct. This information is reflected in a user interface
by enabling or disabling controls to show their availability, or by displaying the status of objects.

458 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FeatureStateEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FeatureStateEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FeatureStateEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/URLTransformer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/URLTransformer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/URLTransformer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/URL.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/URL.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/URL.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/URL.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/URL.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/URL.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProviderInterception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProviderInterception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProviderInterception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html

For example, a pressed button for the bold attribute of text, or a numeric value for the text height
in a combo box.

The com.sun.star.frame.XDispatchProvider interface does not handle requests, but delegates
every request to an individual dispatch object implementing com.sun.star.frame.XDispatch.

 This is the concept, but the implementation is not forced and it may decide to return the same object for
every request. It is not recommened to use the dispatch provider object as a dispatch object.

Dispatch Process
This section describes the necessary steps to handle dispatch providers and dispatch objects. The
illustration below shows the services and interfaces of the the Dispatch framework.

459

 Illustration 7.15: Dispatch Framework

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html

Getting a Dispatch Object

First, create a command URL that represents the desired functionality ensuring that it is parsed as
described above. Tables with possible command URLs for the default office components of
OpenOffice.org are located in the appendix.

Request the com.sun.star.frame.XDispatchProvider interface of the frame that contains the
office component for a dispatch object for the command URL by calling its queryDispatch()
method.

com::sun::star::frame::XDispatch queryDispatch ([in] com::sun::star::util::URL URL,
 [in] string TargetFrameName,
 [in] long SearchFlags)
sequence< com::sun::star::frame::XDispatch > queryDispatches (
 [in] sequence< com::sun::star::frame::DispatchDescriptor > Requests)

The additional parameters (TargetFrameName, SearchFlags) of this call are only used for
dispatching public URL schemes, because they specify a target frame and frame search mode to
the loading process. Valid target names and search flags are described in the section 7.1.5 Office
Development - OpenOffice.org Application Environment - Handling Documents - Loading Documents -
Target Frame. The targets "_self", "_parent" and "_top" are well defined, so that they can be
used, because a queryDispatch() call starts at a frame object. Using frame names or search flags
with command URLs does not have any meaning in the office components in OpenOffice.org.

You receive a dispatch object that supports at least com.sun.star.frame.XDispatch:
[oneway] void dispatch ([in] com::sun::star::util::URL URL,
 [in] sequence< com::sun::star::beans::PropertyValue > Arguments)
[oneway] void addStatusListener ([in] com::sun::star::frame::XStatusListener Control,
 [in] com::sun::star::util::URL URL)
[oneway] void removeStatusListener ([in] com::sun::star::frame::XStatusListener Control,
 [in] com::sun::star::util::URL URL)

Listening for Status Information

If a dispatch object is received, add a listener for status events by calling its addStatusListener()
method. A com.sun.star.frame.XStatusListener implements:

[oneway] void statusChanged ([in] com::sun::star::frame::FeatureStateEvent Event)

Keep a reference to the dispatch object until you call the removeStatusListener() method,
because it is not sure that any other object will keep it alive. If a status listener is not registered,
because you want to dispatch a command,and are not interested in status events, release all refer-
ences to the dispatch object immediately after usage. If a dispatch object is not received, the desired
functionality is not available. If you have a visual user interface element that represents that func-
tionality, disable it.

If a status listener is registered and there is status information, a com.sun.star.frame.Featur-
eStateEvent is received immediately after registering the listener. Status information is still
received later if the status changes and you are still listening. The IsEnabled member of the
com.sun.star.frame.FeatureStateEvent tells you if the functionality is currently available, and
the State member holds information about a status that could be represented by UI elements. Its
type depends on the command URL. A boolean status information is visualized in a pressed or not
pressed look of a toolbox button. Other types need complex elements, such as combo boxes or
spinfields embedded in a toolbox that show the current font and font size. If the State member is
empty, the action does not have an explicit status, such as the menu item File � Print. The current
status can be ambiguous, because more than one object is selected and the objects are in a different
status, for example. selected text that is partly formatted bold and partly regular.

A special event is a status event where the Requery flag is set. This is a request to release all refer-
ences to the dispatch object and to ask the dispatch provider for a new object, because the old one
has become invalid. This allows the office components to accommodate internal context changes. It

460 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FeatureStateEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FeatureStateEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FeatureStateEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FeatureStateEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FeatureStateEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FeatureStateEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FeatureStateEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FeatureStateEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FeatureStateEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStatusListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStatusListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStatusListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html

is possible that a dispatch object is not received, because the desired functionality has become
unavailable.

If you do not get any status information in your statusChanged() implementation, assume that
the functionality is always available, but has no explicit status.

If you are no longer interested in status events, use the removeStatusListener() method and
release all references to the dispatch object. You may get a disposing() callback from the dispatch
object when it is going to be destroyed. It is not necessary to call removeStatusListener().
Ensure that you do not hold any references to the dispatch object anymore.

Listening for Context Changes

Sometimes internal changes, for example, travelling from a text paragraph to a text table, or
selecting a different type of object, force an office component to invalidate all referenced dispatch
objects and provides other dispatch objects, including dispatches for command URLs it could not
handle before. The component then calls the contextChanged() method of its frame, and the
frame broadcasts the corresponding com.sun.star.frame.FrameActionEvent. For this reason,
register a frame action listener using addFrameActionListener() at frames you want dispatch
objects. Refer to section 7.1.3 Office Development - OpenOffice.org Application Environment - Using the
Component Framework - Frames - XFrame - Frame Actions for additional information. If the listener is
called back with a CONTEXT_CHANGED event, release all dispatch objects and query new
dispatch objects for every command URL you require. You can also try command URLs that did
not get a dispatch object before.

If you are no longer interested in context changes of a frame, use the removeFrameActionLis-
tener() method of the frame to deregister and release all references to the frame. If you get a
disposing() request from the frame in between, it is not necessary to call removeFrameAction-
Listener(), but you must release all frame references you are currently holding.

Dispatching a Command

If the desired functionality is available, execute it by calling the dispatch() method of the
dispatch object. This method is called with the same command URL you used to get it, and option-
ally with a sequence of arguments of type com.sun.star.beans.PropertyValue that depend on
the command. It is not redundant that supplied the URL again, because it is allowed to use one
dispatch object for many command URLs. The appendix shows the names and types for the
parameters. However, the command URLs for simple user interface elements, such as menu entries
or toolbox buttons send no parameters. Complex user interface elements use parameters, for
example, a combo box in a toolbar that changes the font height.
(OfficeDev/DesktopEnvironment/FunctionHelper.java)
 // Conditions: sURL = "private:factory/swriter"
 // lProperties = new com.sun.star.beans.PropertyValue[0]
 // xSMGR = m_xServiceManager
 // xListener = this
// xFrame = a given frame

 // Query the frame for right interface which provides access to all
 // available dispatch objects.
 com.sun.star.frame.XDispatchProvider xProvider =
 (com.sun.star.frame.XDispatchProvider)UnoRuntime.queryInterface (
 com.sun.star.frame.XDispatchProvider .class, xFrame);
// Create and parse a valid URL
 // Note: because it is an in/out parameter we must use an array of URLs
 com.sun.star.util.XURLTransformer xParser =
 (com.sun.star.util.XURLTransformer)UnoRuntime.queryInterface (
 com.sun.star.util.XURLTransformer .class,

461

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameActionEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameActionEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameActionEvent.html

 xSMGR.createInstance("com.sun.star.util.URLTransformer"));

 com.sun.star.util.URL[] aParseURL = new com.sun.star.util.URL[1];
 aParseURL[0] = new com.sun.star.util.URL();
 aParseURL[0].Complete = sURL;

xParser.parseStrict (aParseURL);

 // Ask for dispatch object for requested URL and use it.
 // Force given frame as target "" which means the same like "_self".
 xDispatcher = xProvider.queryDispatch(aParseURL[0],"",0);

if(xDispatcher!=null)
 {
 xDispatcher.addStatusListener (xListener,aParseURL[0]);
 xDispatcher.dispatch (aParseURL[0],lProperties);
 }

Dispatch Results
Every dispatch object implement optional interfaces. An important extension is the
com.sun.star.frame.XNotifyingDispatch interface for dispatch results. The dispatch() call is
a void method and should be treated as an asynchronous or oneway call, therefore a dispatch
result can not be passed as a return value, rather, a callback interface is necessary. The interface
that provides dispatch results by a callback is the com.sun.star.frame.XNotifyingDispatch
interface:

[oneway] void dispatchWithNotification ([in] com::sun::star::util::URL URL,
 [in] sequence< com::sun::star::beans::PropertyValue > Arguments,
 [in] com::sun::star::frame::XDispatchResultListener Listener)

Its method dispatchWithNotification() takes a com.sun.star.frame.XDispatchResultLis-
tener interface that is called after a dispatched URL has been executed.

Although the dispatch process is considered to be asynchronous, this is not necessarily so. Therefore, be
prepared to get the dispatch result notification before the dispatch call returns.

The dispatch result is transferred as a com.sun.star.frame.DispatchResultEvent struct in the
callback method dispatchFinished(). The State member of this struct tells if the dispatch was
successful or not, while the Result member contains the value that would be returned if the call
had been executed as a synchronous function call. The appendix shows the types of return values.
If a public URL is dispatched, the dispatch result is a reference to the frame the component was
loaded into. (OfficeDev/DesktopEnvironment/FunctionHelper.java)
 // Conditions: sURL = "private:factory/swriter"
 // lProperties = new com.sun.star.beans.PropertyValue[0]
 // xSMGR = m_xServiceManager
 // xListener = this

 // Query the frame for right interface which provides access to all
 // available dispatch objects.
 com.sun.star.frame.XDispatchProvider xProvider =
 (com.sun.star.frame.XDispatchProvider)UnoRuntime.queryInterface (
 com.sun.star.frame.XDispatchProvider .class, xFrame);
 // Create and parse a valid URL
 // Note: because it is an in/out parameter we must use an array of URLs
 com.sun.star.util.XURLTransformer xParser =
 (com.sun.star.util.XURLTransformer)UnoRuntime.queryInterface(
 com.sun.star.util.XURLTransformer .class,
 xSMGR.createInstance ("com.sun.star.util.URLTransformer "));
 // Ask for right dispatch object for requested URL and use it.
 // Force given frame as target "" which means the same like "_self".
 // Attention: The interface XNotifyingDispatch is an optional one!
 com.sun.star.frame.XDispatch xDispatcher =
 xProvider.queryDispatch (aURL,"",0);

 com.sun.star.frame.XNotifyingDispatch xNotifyingDispatcher =
 (com.sun.star.frame.XNotifyingDispatch)UnoRuntime.queryInterface (
 com.sun.star.frame.XNotifyingDispatch.class , xDispatcher);

462 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/DispatchResultEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/DispatchResultEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/DispatchResultEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchResultListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchResultListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchResultListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchResultListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchResultListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchResultListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XNotifyingDispatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XNotifyingDispatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XNotifyingDispatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XNotifyingDispatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XNotifyingDispatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XNotifyingDispatch.html

 if(xNotifyingDispatcher!=null)
 xNotifyingDispatcher.dispatchWithNotification (aURL, lProperties, xListener);

Dispatch Interception
The dispatch framework described in the last chapter establishes a communication between a user
interfaces and an office component. Both can be OpenOffice.org default components or custom
components. Sometimes it is not necessary to replace a UI element by a new implementation. It can
be sufficient to influence its visualized state or to redirect user interactions to external code. This is
the typical use for dispatch interception.

The dispatch communication works in two directions: status information is transferred from the
office component to the UI elements and user requests travel from the UI element to the office
component. Both go through the same switching center that is, an object implementing
com.sun.star.frame.XDispatch. The UI element gets this object by calling queryDispatch() at
the frame containing the office component, and usually receives an object that connects to code
inside the frame, the office component or global services in OpenOffice.org. The frame offers an
interface that is used to return third-party dispatch objects that provide the UI element with status
updates. For example, it is possible to disable a UI element that would not be disabled otherwise.
Another possibility is to write replacement code that is called by the UI element if the user
performs a suitable action.

Dispatch objects are provided by objects implementing the com.sun.star.frame.XDispatchPro-
vider interface, and that is the interface you are required to implement. There is an extra step
where the dispatch provider must be attached to the frame to intercept the dispatching communi-
cation, therefore the dispatch provider becomes a part of the chain of responsibility described in the
previous section. This is accomplished by implementing com.sun.star.frame.XDispatchPro-
viderInterceptor.

This chain usually only consists of the frame and the controller of the office component it contains,
but the frame offers the com.sun.star.frame.XDispatchProviderInterception interface where
other providers are inserted. They are called before the frame tries to find a dispatch object for a
command URL, so that it is possible to put the complete dispatch communication in a frame under
external control. More than one interceptor can be registered, thus building a bigger chain.

Routing every dispatch through the whole chain becomes a performance problem, because could
be more than a hundred possible clients asking for a dispatch object. For this reason there is also an
API that limits the routing procedure to particular commands or command groups. This is
described below.

Once the connection is established, the dispatch interceptor decides how requests for a dispatch
object are dealt with. When asked for a dispatch object for a Command URL, it can:

• Return an empty interface that disables the corresponding functionality.

There's a bug in Ooo1.0/SO6.0 that this does not work, so disabling must be done explicitly (see
below). It will be fixed in Ooo1.02/SO6.02.

• Pass the request to the next chain member, called slave dispatcher provider described below if it is
not interested in that functionality.

• Handle the request and return an object implementing com.sun.star.frame.XDispatch. As
described in the previous chapter, client objects may register at this object as status event
listeners. The dispatch object returns any possible status information as long as the type of the
"State" member in the com.sun.star.frame.FeatureStateEvent struct has one of the
expected types, otherwise the client requesting the status information can not handle it prop-
erly. The expected types must be documented together with the existing commands.For
example, if a menu entry wants status information, it handles a void, that is, do nothing special

463

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FeatureStateEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FeatureStateEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FeatureStateEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProviderInterception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProviderInterception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProviderInterception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProviderInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProviderInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProviderInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProviderInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProviderInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProviderInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatch.html

or a boolean state by displaying a check mark, but nothing else.
The status information could contain a disable directive. Note that a dispatch object returns
status information immediately when a listener registers. Any , events change can be broad-
casted at arbitrary points in time.

• The returned dispatch object is also used by client objects to dispatch the command that
matches the command URL. The dispatch object receiving this request checks if the code it
wants to execute is valid under the current conditions. It is not sufficient to rely on disable
requests, because a client is not forced to register as a status listener if it wants to dispatch a
request.

The slave dispatch provider and master dispatch provider in the com.sun.star.frame.XDispatchPro-
viderInterceptor interface are a bit obscure at first. They are two pointers to chain members in
both directions, next and previous, where the first and last member in the chain have special mean-
ings and responsibilities.

The command dispatching passes through a chain of dispatch providers, starting at the frame. If
the frame is answered to include an interceptor in this chain, the frame inserts the interceptor in
the chain and passes the following chain member to the new chain member, so that calls are passed
along the chain if it does not want to handle them.

If any interceptor is deregistered, the frame puts the lose ends together by adjusting the master and
slave pointer of the chain successor and predecessor of the element that is going to be removed
from the chain. All of them are interceptors, so only the last slave is a dispatch provider.

The frame takes care of the whole chain in the register or deregister of calls in the dispatch
provider interceptor, so that the implementer of an interceptor does not have to be concerned with
the chain construction.

7.1.7 Java Window Integration
This section discusses experiences obtained during the development of Java-OpenOffice.org inte-
gration. Usually, developers use the OfficeBean for this purpose. The following provides back-
ground information about possible strategies to reach this goal.

There are multiple possibilities to integrate local windows with OpenOffice.org windows. This
chapter shows the integration of OpenOffice.org windows into a Java bean environment. Some of
this information maybe helpful with other local window integrations.

The Window Handle
An important precondition is the existence of a system window handle of the own Java window.
For this, use a java.awt.Canvas and the following JNI methods:

• a method to query the window handle (HWND on Windows, X11 ID on UNIX)

• a method to identify the operating system, for example, UNIX, Windows, or Macintosh

For an example, see bean/com/sun/star/beans/LocalOfficeWindow.java

The two methods getNativeWindow() and getNativeWindowSystemType() are declared and
exported, but implemented for windows in
bean/native/win32/com_sun_star_beans_LocalOfficeWindow.c through JNI

464 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/source/browse/api/odk/source/bean/native/win32/com_sun_star_beans_LocalOfficeWindow.c
http://api.openoffice.org/source/browse/api/odk/source/bean/native/win32/com_sun_star_beans_LocalOfficeWindow.c
http://api.openoffice.org/source/browse/api/odk/source/bean/native/win32/com_sun_star_beans_LocalOfficeWindow.c
http://api.openoffice.org/source/browse/api/odk/source/bean/com/sun/star/beans/LocalOfficeWindow.java
http://api.openoffice.org/source/browse/api/odk/source/bean/com/sun/star/beans/LocalOfficeWindow.java
http://api.openoffice.org/source/browse/api/odk/source/bean/com/sun/star/beans/LocalOfficeWindow.java
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProviderInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProviderInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProviderInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProviderInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProviderInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProviderInterceptor.html

 It has to be a java.awt.Cavans. These JNI methods cannot be implemented at a Swing control, because it
does not have its own system window. You can use a java.awt.Canvas in a Swing container environ-
ment.

 The handle is not available before the window is visible, otherwise the JNI function does not work. One
possibility is to cache the handle and set it in show() or setVisible().

Using the Window Handle
The window handle create the OpenOffice.org window. There are two ways to accomplish this:

A Hack

This option is mentioned because there are situations where this is the only feasible method. The
knowledge of this option can help in other situations.

Add the UNO interface com.sun.star.awt.XWindowPeer so that it is usable for the
OpenOffice.org window toolkit. This interface can have an empty implementation. In
com.sun.star.awt.XToolkit:createWindow(), another interface com.sun.star.awt.XSystem-
DependentWindowPeer is expected that queries the HWND. Thus, XWindowPeer is for transporting
and com.sun.star.awt.XSystemDependentWindowPeer queries the HWND.

This method getsa com.sun.star.awt.XWindow as a child of your own Java window, that is used
to initialize a com.sun.star.frame.XFrame.
(OfficeDev/DesktopEnvironment/FunctionHelper.java)
com.sun.star.awt.XToolkit xToolkit =
 (com.sun.star.awt.XToolkit)UnoRuntime.queryInterface(
 com.sun.star.awt.XToolkit.class,
 xSMGR.createInstance("com.sun.star.awt.Toolkit"));

// this is the canvas object with the JNI methods
 aParentView = ...
 // some JNI methods cannot work before this
aParentView.setVisible(true);

// now wrap the canvas (JavaWindowPeerFake) and add the necessary interfaces
com.sun.star.awt.XWindowPeer xParentPeer =
 (com.sun.star.awt.XWindowPeer)UnoRuntime.queryInterface(
 com.sun.star.awt.XWindowPeer.class,
 new JavaWindowPeerFake(aParentView));

com.sun.star.awt.WindowDescriptor aDescriptor = new com.sun.star.awt.WindowDescriptor();
aDescriptor.Type = com.sun.star.awt.WindowClass.TOP;
aDescriptor.WindowServiceName = "workwindow";
aDescriptor.ParentIndex = 1;
aDescriptor.Parent = xParentPeer;
aDescriptor.Bounds = new com.sun.star.awt.Rectangle(0,0,0,0);
if (aParentView.getNativeWindowSystemType()==com.sun.star.lang.SystemDependent.SYSTEM_WIN32)
 aDescriptor.WindowAttributes = com.sun.star.awt.WindowAttribute.SHOW;
else

 aDescriptor.WindowAttributes = com.sun.star.awt.WindowAttribute.SYSTEMDEPENDENT;

// now the toolkit can create an com.sun.star.awt.XWindow
 com.sun.star.awt.XWindowPeer xPeer = xToolkit.createWindow(aDescriptor);
com.sun.star.awt.XWindow xWindow =
 (com.sun.star.awt.XWindow)UnoRuntime.queryInterface(

 com.sun.star.awt.XWindow.class,
 xPeer);

Legal Solution

The com.sun.star.awt.Toolkit service has a method com.sun.star.awt.XSystemChildFac-
tory with a method createSystemChild(). This accepts an any with a wrapped HWND or X
Window ID, as long and the system type, such as Windows, Java, and UNIX directly. Here you

465

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XSystemChildFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XSystemChildFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XSystemChildFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XSystemChildFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XSystemChildFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XSystemChildFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Toolkit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Toolkit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Toolkit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XSystemDependentWindowPeer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XSystemDependentWindowPeer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XSystemDependentWindowPeer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XSystemDependentWindowPeer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XSystemDependentWindowPeer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XSystemDependentWindowPeer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XSystemDependentWindowPeer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XSystemDependentWindowPeer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XSystemDependentWindowPeer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XToolkit.html#createWindow
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XToolkit.html#createWindow
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XToolkit.html#createWindow
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindowPeer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindowPeer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindowPeer.html

create an com.sun.star.awt.XWindow. This method cannot be used in OpenOffice.org build
versions before src642, because the process ID parameter is unknown to the Java environment.
Newer versions do not check this parameter, thus this new, method works.

 As a user of com.sun.star.awt.XSystemChildFactory:createSystemChild() ensure that your
client (Java application) and your server (OpenOffice.org) use the same display. Otherwise the window
handle is not interchangeable.

(OfficeDev/DesktopEnvironment/FunctionHelper.java)
com.sun.star.awt.XToolkit xToolkit =
 (com.sun.star.awt.XToolkit)UnoRuntime.queryInterface(
 com.sun.star.awt.XToolkit.class,
 xSMGR.createInstance("com.sun.star.awt.Toolkit"));

// this is the canvas with the JNI functions
 aParentView = ...
 // some JNI funtions will not work withouth this
aParentView.setVisible(true);

// no wrapping necessary, simply use the HWND
com.sun.star.awt.XSystemChildFactory xFac =
 (com.sun.star.awt.XSystemChildFactory)UnoRuntime.queryInterface(
 com.sun.star.awt.XSystemChildFactory.class,
 xToolkit);

Integer nHandle = aParentView.getHWND();
byte[] lIgnoredProcessID = new byte[0];

com.sun.star.awt.XWindowPeer xPeer =
 xFac.createSystemChild(
 (Object)nHandle,
 lIgnoredProcessID,
 com.sun.star.lang.SystemDependent.SYSTEM_WIN32);

com.sun.star.awt.XWindow xWindow =
 (com.sun.star.awt.XWindow)UnoRuntime.queryInterface(
 com.sun.star.awt.XWindow.class,
 xPeer);

 The old method still works and can be used, but it should be considered deprecated. If in doubt, implement
both and try the new method at runtime. If it does not work, try the hack.

Resizing

Another difficulty is resizing the window. Normally, the child window expects resize events of the
parent. The child does not resize it window, because it must know the layout of the parent
window. The VCL, OpenOffice.org's windowing engine creates a special system child window,
thus we can resize windows.

The parent window can be filled "full size" with the child window, but only for UNIX and not for
Windows. The VCL's implementation is system dependent.

The bean deals with this issue by adding another function to the local library. Windows adds arbi-
trary properties to an HWND. You can also subclass the window, that is, each Windows window
has a function pointer or callback to the function that performs the event handling (WindowProce-
dure). Using this, it is possible to treat events by calling your own methods. This is useful when-
ever the window is not created by you and you need to influence the behavior of the window.

In this case, the Java window has not been created by us, but we need to learn about resize events
to forward these to the OpenOffice.org window. Look at the file
bean/native/win32/com_sun_star_beans_LocalOfficeWindow.c, and find the method OpenOfficeWnd-
Proc(). In the first call of the JNI function
Java_com_sun_star_beans_LocalOfficeWindow_getNativeWindow() of this file, the own
handler is applied to the foreign window.

466 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/source/browse/api/odk/source/bean/native/win32/com_sun_star_beans_LocalOfficeWindow.c
http://api.openoffice.org/source/browse/api/odk/source/bean/native/win32/com_sun_star_beans_LocalOfficeWindow.c
http://api.openoffice.org/source/browse/api/odk/source/bean/native/win32/com_sun_star_beans_LocalOfficeWindow.c
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XSystemChildFactory.html#createSystemChild
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XSystemChildFactory.html#createSystemChild
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XSystemChildFactory.html#createSystemChild
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html

 The old bean implementation had a bug that is fixed in newer versions. If you did not check if the function
pointer was set, and called Java_com_sun_star_beans_LocalOfficeWindow_getNativeWindow()
multiple times, you created a chain of functions that called each other with the result of an endless recursion
leading to a stack overflow. If the own handler is already registered, it is now marked in one of the previ-
ously mentioned properties registered with an HWND:

In the future, VCL will do this sub-classing by itself, even on Windows. This will lead to equal
behavior between Windows and UNIX.

The initial size of the window is a related problem. If a canvas is connected with a OpenOffice.org
window, set both sizes to a valid, positive value, otherwise the OpenOffice.org window will not be
visible. If you are using a non-product build of OpenOffice.org, you see an assertion failed "small
world isn't it". This might change when the sub-classing is done by VCL in the future.

There is still one unresolved problem. The code mentioned above works with Java 1.3, but not for
Java 1.4. There, the behavior of windows is changed. Where Java 1.3 sends real resize events from
the own WindowProc, Java 1.4 does a re-parenting. The canvas window is destroyed and created
again. This leads to an empty window with no OpenOffice.org window. This problem is under
investigation.

More Remote Problems
There are additional difficulties to window handles and local window handles. Some personal
experiences of one of the OpenOffice.org authors are provided:

• Listeners in Java should be implemented in a thread. The problem is that SolarMutex, a mutex
semaphore of OpenOffice.org, one-way UNO methods and the global Java GUI thread do not
work together.

• The Java applet should release its listeners. If they stay in the containers of OpenOffice.org after
the Java process ends, UNO throws a com.sun.star.lang.DisposedException, which are not
caught correctly. Java does not know destructors, therefore it is a difficult to follow this advice.
One possibility is to register a Thread object at java.Runtime as a ShutDownHook. This is called
even when CTRL-C is pressed on the command line where you can deregister the listeners.
Because listeners are threads, there is some effort.

7.2 Common Application Features

7.2.1 Clipboard
This chapter introduces the usage of the clipboard service
com.sun.star.datatransfer.clipboard.SystemClipboard. The clipboard serves as a data exchange
mechanism between OpenOffice.org custom components, or between custom components and
external applications. It is usually used for copy and paste operations.

 Note: The architecture of the OpenOffice.org clipboard service is strongly conforming to the Java clipboard
specification.

Different platforms use different methods for describing data formats available on the clipboard.
Under Windows, clipboard formats are identified by unique numbers, for example, under X11, a
clipboard format is identified by an ATOM. To have a platform independent mechanism, the
OpenOffice.org clipboard supports the concept of DataFlavors. Each instance of a DataFlavor

467

http://api.openoffice.org/docs/common/ref/com/sun/star/datatransfer/clipboard/SystemClipboard.html
http://api.openoffice.org/docs/common/ref/com/sun/star/datatransfer/clipboard/SystemClipboard.html
http://api.openoffice.org/docs/common/ref/com/sun/star/datatransfer/clipboard/SystemClipboard.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html

represents the opaque concept of a data format as it would appear on a clipboard. A DataFlavor
defined in com.sun.star.datatransfer.DataFlavor has three members:

Members of com.sun.star.datatransfer.DataFlavor
MimeType A string that describes the data. This string must conform to Rfc2045 and

Rfc2046 with one exception. The quoted parameter may contain spaces. In
section 7.2.1 Office Development - Common Application Features - Clipboard -
OpenOffice.org Clipboard Data Formats, a list of common DataFlavors supported
by OpenOffice.org is provided.

HumanPresentableName The human presentable name for the data format that this DataFlavor repre-
sents.

DataType The type of the data. In section 7.2.1 Office Development - Common Application
Features - Clipboard - OpenOffice.org Clipboard Data Formats there is a list of
common DataFlavors supported by OpenOffice.org and their corresponding
DataType.

The carrier of the clipboard data is a transferable object that implements the interface
com.sun.star.datatransfer.XTransferable. A transferable object offers one or many different
DataFlavors.

Using the Clipboard

Pasting Data

The following Java example demonstrates the use of the clipboard service to paste from the clip-
board. (OfficeDev/Clipboard/Clipboard.java)
import com.sun.star.datatransfer.*;
import com.sun.star.datatransfer.clipboard.*;
import com.sun.star.uno.AnyConverter;
...

// instantiate the clipboard service

Object oClipboard =
 xMultiComponentFactory.createInstanceWithContext(
 "com.sun.star.datatransfer.clipboard.SystemClipboard",
 xComponentContext);

// query for the interface XClipboard

XClipboard xClipboard = (XClipboard)
 UnoRuntime.queryInterface(XClipboard.class, oClipboard);

//---
// get a list of formats currently on the clipboard
//---

XTransferable xTransferable = xClipboard.getContents();

DataFlavor[] aDflvArr = xTransferable.getTransferDataFlavors();

// print all available formats

System.out.println("Reading the clipboard...");
System.out.println("Available clipboard formats:");

DataFlavor aUniFlv = null;

for (int i=0;i<aDflvArr.length;i++)
{

 System.out.println("MimeType: " +
 aDflvArr[i].MimeType +
 " HumanPresentableName: " +
 aDflvArr[i].HumanPresentableName);

 // if there is the format unicode text on the clipboard save the
 // corresponding DataFlavor so that we can later output the string

468 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/datatransfer/XTransferable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/datatransfer/XTransferable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/datatransfer/XTransferable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/datatransfer/DataFlavor.html#DataType
http://api.openoffice.org/docs/common/ref/com/sun/star/datatransfer/DataFlavor.html#HumanPresentableName
http://api.openoffice.org/docs/common/ref/com/sun/star/datatransfer/DataFlavor.html#MimeType
http://api.openoffice.org/docs/common/ref/com/sun/star/datatransfer/DataFlavor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/datatransfer/DataFlavor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/datatransfer/DataFlavor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/datatransfer/DataFlavor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/datatransfer/DataFlavor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/datatransfer/DataFlavor.html

 if (aDflvArr[i].MimeType.equals("text/plain;charset=utf-16"))
 {
 aUniFlv = aDflvArr[i];
 }

}

System.out.println("");

try
{

 if (aUniFlv != null)
 {
 System.out.println("Unicode text on the clipboard...");
 Object aData = xTransferable.getTransferData(aUniFlv);
 System.out.println(AnyConverter.toString(aData));
 }

}
catch(UnsupportedFlavorException ex)
{

 System.err.println("Requested format is not available");
}

...

Copying Data

To copy to the clipboard, implement a transferable object that supports the interface
com.sun.star.datatransfer.XTransferable. The transferable object offers arbitrary formats
described by DataFlavors.

The following Java example demonstrates the implementation of a transferable object. This trans-
ferable object contains only one format, unicode text.
(OfficeDev/Clipboard/TextTransferable.java)
//---------------------------------------
 // A simple transferable containing only
 // one format, unicode text
 //---------------------------------------

public class TextTransferable implements XTransferable
 {
 public TextTransferable(String aText)
 {
 text = aText;
 }

 // XTransferable methods

 public Object getTransferData(DataFlavor aFlavor) throws UnsupportedFlavorException
 {
 if (!aFlavor.MimeType.equalsIgnoreCase(UNICODE_CONTENT_TYPE))
 throw new UnsupportedFlavorException();

 return text;
 }

 public DataFlavor[] getTransferDataFlavors()
 {
 DataFlavor[] adf = new DataFlavor[1];
 DataFlavor uniflv = new DataFlavor(
 UNICODE_CONTENT_TYPE,
 "Unicode Text",
 new Type(String.class));

 adf[0] = uniflv;

 return adf;
 }

 public boolean isDataFlavorSupported(DataFlavor aFlavor)
 {
 return aFlavor.MimeType.equalsIgnoreCase(UNICODE_CONTENT_TYPE);
 }

 // members
 private final String text;
 private final String UNICODE_CONTENT_TYPE = "text/plain;charset=utf-16";
 }

Everyone providing data to the clipboard becomes a clipboard owner. A clipboard owner is an
object that implements the interface com.sun.star.datatransfer.clipboard.XClipboardOwner.
If the current clipboard owner loses ownership of the clipboard, it receives a notification from the
clipboard service. The clipboard owner can use this notification to destroy the transferable object
that was formerly on the clipboard. If the transferable object is a self-destroying object, destroying

469

http://api.openoffice.org/docs/common/ref/com/sun/star/datatransfer/clipboard/XClipboardOwner.html
http://api.openoffice.org/docs/common/ref/com/sun/star/datatransfer/clipboard/XClipboardOwner.html
http://api.openoffice.org/docs/common/ref/com/sun/star/datatransfer/clipboard/XClipboardOwner.html
http://api.openoffice.org/docs/common/ref/com/sun/star/datatransfer/XTransferable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/datatransfer/XTransferable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/datatransfer/XTransferable.html

clears all references to the object. If the clipboard service is the last client, clearing the reference to
the transferable object leads to destruction.

All data types except for text have to be transferred as byte array. The next example shows this for
a bitmap.
public class BmpTransferable implements XTransferable
{
 public BmpTransferable(byte[] aBitmap)
 {
 mBitmapData = aBitmap;
 }

 // XTransferable methods
 public Object getTransferData(DataFlavor aFlavor) throws UnsupportedFlavorException
 {
 if (!aFlavor.MimeType.equalsIgnoreCase(BITMAP_CONTENT_TYPE))
 throw new UnsupportedFlavorException();

 return mBitmapData;
 }
 public DataFlavor[] getTransferDataFlavors()
 {
 DataFlavor[] adf = new DataFlavor[1];
 DataFlavor bmpflv= new DataFlavor(
 BITMAP_CONTENT_TYPE,
 "Bitmap",
 new Type(byte[].class));
 adf[0] = bmpflv;

 return adf;
 }
 public boolean isDataFlavorSupported(DataFlavor aFlavor)
 {
 return aFlavor.MimeType.equalsIgnoreCase(BITMAP_CONTENT_TYPE);
 }

 // members
 private byte[] mBitmapData;
 private final String BITMAP_CONTENT_TYPE = "application/x-openoffice;windows_formatname="Bitmap"";
}

The following Java example shows an implementation of the interface com.sun.star.data-
transfer.clipboard.XClipboardOwner. (OfficeDev/Clipboard/ClipboardOwner.java)
...

//--
// A simple clipboard owner implementation
//--

public class ClipboardOwner implements XClipboardOwner
{

 public void lostOwnership(
 XClipboard xClipboard,
 XTransferable xTransferable)
 {
 System.out.println("");
 System.out.println("Lost clipboard ownership...");
 System.out.println("");

 isowner = false;
 }

 public boolean isClipboardOwner()
 {
 return isowner;
 }

 private boolean isowner = true;
}

...

The last two samples combined show how it is possible to copy data to the clipboard as demon-
strated in the following Java example. (OfficeDev/Clipboard/Clipboard.java)
import com.sun.star.datatransfer.*;
 import com.sun.star.datatransfer.clipboard.*;
 import com.sun.star.uno.AnyConverter;
...

// instantiate the clipboard service

470 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/datatransfer/clipboard/XClipboardOwner.html
http://api.openoffice.org/docs/common/ref/com/sun/star/datatransfer/clipboard/XClipboardOwner.html
http://api.openoffice.org/docs/common/ref/com/sun/star/datatransfer/clipboard/XClipboardOwner.html
http://api.openoffice.org/docs/common/ref/com/sun/star/datatransfer/clipboard/XClipboardOwner.html
http://api.openoffice.org/docs/common/ref/com/sun/star/datatransfer/clipboard/XClipboardOwner.html
http://api.openoffice.org/docs/common/ref/com/sun/star/datatransfer/clipboard/XClipboardOwner.html

Object oClipboard =
 xMultiComponentFactory.createInstanceWithContext(
 "com.sun.star.datatransfer.clipboard.SystemClipboard",
 xComponentContext);

// query for the interface XClipboard

XClipboard xClipboard = (Xclipboard)UnoRuntime.queryInterface(XClipboard.class, oClipboard);
//---
 // becoming a clipboard owner
 //---
System.out.println("Becoming a clipboard owner...");
 System.out.println("");
ClipboardOwner aClipOwner = new ClipboardOwner();

 xClipboard.setContents(new TextTransferable("Hello World!"), aClipOwner);
while (aClipOwner.isClipboardOwner())
 {
 System.out.println("Still clipboard owner...");
 Thread.sleep(1000);
 }
...

Becoming a Clipboard Viewer

It is useful to listen to clipboard changes. User interface controls may change their visible appear-
ance depending on the current clipboard content. To avoid polling on the clipboard, the clipboard
service supports an asynchronous notification mechanism. Every client that needs notification
about clipboard changes implements the interface
com.sun.star.datatransfer.clipboard.XClipboardListener and registers as a clipboard
listener.
Implementing the interface com.sun.star.datatransfer.clipboard.XClipboardListener is
simple as the next Java example demonstrates. (OfficeDev/Clipboard/ClipboardListener.java)
//----------------------------
 // A simple clipboard listener
 //----------------------------
public class ClipboardListener implements XClipboardListener
 {
 public void disposing(EventObject event)
 {
 }

 public void changedContents(ClipboardEvent event)
 {
 System.out.println("");
 System.out.println("Clipboard content has changed!");
 System.out.println("");
 }
 }

If the interface was implemented by the object, it registers as a clipboard listener. A clipboard
listener deregisters if clipboard notifications are no longer necessary. Both aspects are demon-
strated in the next example. (OfficeDev/Clipboard/Clipboard.java)
// instantiate the clipboard service
Object oClipboard =
 xMultiComponentFactory.createInstanceWithContext(
 "com.sun.star.datatransfer.clipboard.SystemClipboard",
 xComponentContext);
// query for the interface XClipboard
XClipboard xClipboard = (XClipboard)
 UnoRuntime.queryInterface(XClipboard.class, oClipboard);
//---
 // registering as clipboard listener
 //---
XClipboardNotifier xClipNotifier = (XClipboardNotifier)
 UnoRuntime.queryInterface(XClipboardNotifier.class, oClipboard);
ClipboardListener aClipListener= new ClipboardListener();
xClipNotifier.addClipboardListener(aClipListener);
...
//---
 // unregistering as clipboard listener
 //---
xClipNotifier.removeClipboardListener(aClipListener);
...

471

http://api.openoffice.org/docs/common/ref/com/sun/star/datatransfer/clipboard/XClipboardListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/datatransfer/clipboard/XClipboardListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/datatransfer/clipboard/XClipboardListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/datatransfer/clipboard/XClipboardListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/datatransfer/clipboard/XClipboardListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/datatransfer/clipboard/XClipboardListener.html

OpenOffice.org Clipboard Data Formats
This section describes common clipboard data formats that OpenOffice.org supports and their
corresponding DataType.
As previously mentioned, data formats are described by DataFlavors. The important characteris-
tics of a DataFlavor are the MimeType and DataType. The OpenOffice.org clipboard service uses a
standard MimeType for different data formats if there is one registered at Iana. For example, for
HTML text, the MimeType "text/html" is used, Rich Text uses the MimeType
"text/richtext", and text uses "text/plain". If there is no corresponding MimeType regis-
tered at Iana, OpenOffice.org defines a private MimeType. Private OpenOffice.org MimeType
always has the MimeType "application/x-openoffice". Each private OpenOffice.org Mime-
Type has a parameter "windows_formatname" identifying the clipboard format name used under
Windows. The used Windows format names are the format names used with older OpenOffice.org
versions. Common Windows format names are "Bitmap", "GDIMetaFile", "FileName",
"FileList", and "DIF".
The DataType of a DataFlavor identifies how the data are exchanged. There are only two Data-
Types that can be used. The DataType for Unicode text is a string, and in Java, String.class, For
all other data formats, the DataType is a sequence of bytes in Java byte[].class.

The following table lists common data formats, and their corresponding MimeType and Data-
Types:

Form MimeType DataType (in Java) Description
Unicode Text text/plain;charset=utf-16 String.class Unicode Text

Richtext text/richtext byte[].class Richtext

Bitmap application/x-
openoffice;windows_formatname="Bitm
ap"

byte[].class A bitmap in
OpenOffice bitmap
format.

HTML Text text/html byte[].class HTML Text

7.2.2 Internationalization
The I18N framework provides interfaces to access locale-dependent data (e.g. calendar data,
currency) and methods (e.g. collation and transliteration). The I18N framework offers full-featured
internationalization functionality that covers a range of geographic locations that include South
Asia (China, Japan, and Korea, or CJK), Europe, Middle East (Hebrew, Arabic) and South-East
Asia (Thai, Indian). Also, the I18N framework builds on the component model UNO, thus making
the addition of new internationalization components easy.

Introduction
The I18N framework contains a lot of data and many interfaces and methods not important to
developers of external code using the OpenOffice.org API, but only for developers of the
OpenOffice.org application itself. This chapter is split into two parts, one that gives a short over-
view on using the API and is restricted to what is useful to external developers, and a second part
that focuses on how to implement a new locale supporting the API (Note that this section does not
cover how to translate and localize the OpenOffice.org resources).

472 OpenOffice.org 2.3 Developer's Guide • June 2007

http://www.iana.org/
http://www.iana.org/
http://www.iana.org/
http://www.iana.org/
http://www.iana.org/
http://www.iana.org/

Overview and Using the API

XLocaleData

The com.sun.star.i18n.XLocaleData interface provides access to locale-specific information,
such as decimal separators, group (thousands) separators, currency information, calendar data,
and number format codes. No further functionality is discussed.

XCharacterClassification

The com.sun.star.i18n.XCharacterClassification interface is used to determine the Unicode
type of a character (such as uppercase, lowercase, letter, digit, punctuation) or the script type. It
also provides methods to perform simple uppercase to lowercase and lowercase to upper case
conversions that are locale-dependent but do not need real transliteration. An example of locale-
dependent case conversion is the Turkish lowercase i to uppercase I-dot and lowercase i-dotless to
uppercase I conversion, as opposed to the western lowercase i to uppercase I conversion.

There was a bug in OpenOffice.org 1.0.2 that prevents this special example of Turkish case conversion to
work properly. The issue is resolved for OpenOffice.org 1.1.0.

Another provided functionality is parsing methods to isolate and determine identifiers, numbers,
and quoted strings in a given string. See the description of com.sun.star.i18n.XCharacterClas-
sification methods parseAnyToken() and parsePredefinedToken(). The parser uses
com.sun.star.i18n.XLocaleData to obtain the locale-dependent decimal and group separators.

XCalendar

The com.sun.star.i18n.XCalendar interface enables the application to use any calendar avail-
able for a given locale, not being restricted to the Gregorian calendar. You may query the interface
for the available calendars for a given locale with method getAllCalendars() and load one of the
available calendars using method loadCalendar(), or you may use the default calendar loaded
with method loadDefaultCalendar(). Normally, a Gregorian calendar is available with the name
"gregorian" in the Name field of com.sun.star.i18n.Calendar even if the default calendar is not
a Gregorian calendar, but this is not mandatory. Available calendars are obtained through the
com.sun.star.i18n.XLocaleData interface.

You must initially load a calendar before using any of the interface methods that perform calendar calcula-
tions.

XExtendedCalendar

The com.sun.star.i18n.XExtendedCalendar interface was introduced with OpenOffice.org 1.1.0
and provides additional functionality to display locale and calendar dependent calendar values.
This interface is derived from com.sun.star.i18n.XCalendar. The interface provides a method
to obtain display strings of date parts for specific calendars of a specific locale.

XNumberFormatCode

The com.sun.star.i18n.XNumberFormatCode interface provides access to predefined number
format codes for a given locale, which in turn are obtained through the
com.sun.star.i18n.XLocaleData interface. Normally you do not need to bother with it because
the application's number formatter 7.2.5 Office Development - Common Application Features - Number

473

http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XLocaleData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XLocaleData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XLocaleData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XNumberFormatCode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XNumberFormatCode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XNumberFormatCode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XCalendar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XCalendar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XCalendar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XExtendedCalendar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XExtendedCalendar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XExtendedCalendar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XLocaleData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XLocaleData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XLocaleData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/Calendar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/Calendar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/Calendar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XCalendar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XCalendar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XCalendar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XLocaleData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XLocaleData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XLocaleData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XCharacterClassification.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XCharacterClassification.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XCharacterClassification.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XCharacterClassification.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XCharacterClassification.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XCharacterClassification.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XCharacterClassification.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XCharacterClassification.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XCharacterClassification.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XLocaleData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XLocaleData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XLocaleData.html

Formats manages the codes. It just might serve to get the available codes and determine default
format codes of a specific category.

XNativeNumberSupplier

The com.sun.star.i18n.XNativeNumberSupplier interface was introduced with OpenOffice.org
1.1.0 and provides functionality to convert between ASCII Arabic digits/numeric strings and
native numeral strings, such as Korean number symbols.

XCollator

The com.sun.star.i18n.XCollator interface provides locale-dependent collation algorithms for
sorting purposes. There is at least one collator algorithm available per locale, though there may be
more than one, for example dictionary and telephone algorithms, or stroke, radical, pinyin
in Chinese locales. There is always one default algorithm for each locale that may be loaded using
method loadDefaultCollator(), and all available algorithms may be queried with method
listCollatorAlgorithms() of those a selected algorithm may be loaded using loadCollatorAl-
gorithm(). The available collator implementations and options are obtained through the
com.sun.star.i18n.XLocaleData interface.

You must initially load an algorithm prior to using any of the compare...() methods, otherwise the result
will be 0 indicating any comparison being equal.

Since collation may be a very time consuming procedure, use it only for user-visible data, for example for
sorted lists. If, for example, you only need a case insensitive comparison without displaying the results to
the user, use the com.sun.star.i18n.XTransliteration interface instead.

XTransliteration

The com.sun.star.i18n.XTransliteration interface provides methods to perform locale-
dependent character conversions, such as case conversions, conversions between Hiragana and
Katakana, and Half-width and Full-width. Transliteration is also used by the collators if, for
example, a case insensitive sort is to be performed. The available transliteration implementations
are obtained through the com.sun.star.i18n.XLocaleData interface.

You must initially load a transliteration module prior to using any of the transliterating or comparing
methods, otherwise the result is unpredictable.

If you only need to determine if two strings are equal for a specific transliteration (for example a case insen-
sitive comparison) use the equals() method instead of the compare...() methods, it may have a faster
implementation.

XTextConversion

The com.sun.star.i18n.XTextConversion interface provides methods to perform locale-depen-
dent text conversions, such as Hangul/Hanja conversion for Korean, or translation between
Chinese simplified and Chinese traditional.

XBreakIterator

The com.sun.star.i18n.XBreakIterator interface may be used to traverse the text in character
mode or word mode, to jump to the beginning or to the end of a sentence, to find the beginning or
the end of a given script type, and, as the name suggests, to determine a line break position,

474 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XBreakIterator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XBreakIterator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XBreakIterator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XTextConversion.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XTextConversion.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XTextConversion.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XLocaleData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XLocaleData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XLocaleData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XTransliteration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XTransliteration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XTransliteration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XTransliteration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XTransliteration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XTransliteration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XLocaleData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XLocaleData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XLocaleData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XCollator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XCollator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XCollator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XNativeNumberSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XNativeNumberSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XNativeNumberSupplier.html

optionally using a com.sun.star.linguistic2.XHyphenator. The service implementation
obtains lists of forbidden characters (characters that are not allowed at the beginning or the end of
a line in certain locales) through the com.sun.star.i18n.XLocaleData interface. The XBreakIt-
erator interface also offers methods to determine the script type of a character or to find the
beginning or end of a script type along a sequence of characters.

XIndexEntrySupplier

The com.sun.star.i18n.XIndexEntrySupplier interface may be used to obtain information on
index entries to generate a "table of alphabetical index" for a given locale. Since not all languages
are alphabetical in the western sense (for example, CJK languages), different methods are needed.

XExtendedIndexEntrySupplier

The com.sun.star.i18n.XExtendedIndexEntrySupplier interface was introduced with
OpenOffice.org 1.1.0 and provides additional functionality to generate index entries for languages
that need phonetically sorted indexes, such as Japanese. The interface is derived from
com.sun.star.i18n.XIndexEntrySupplier.

XInputSequenceChecker

The com.sun.star.i18n.XInputSequenceChecker interface was introduced with OpenOffice.org
1.1.0 and provides input sequence checking for Thai and Hindi.

Implementing a New Locale
The procedures, directory layout, and file contents described here reflect the structure of the i18npool
module as of OpenOffice.org version 1.1.0, and not the i18n module for OpenOffice.org 1.0.2.

XLocaleData

One of the most important tasks in implementing a new locale is to define all the locale data to be
used, listed in the following table as types returned by the com.sun.star.i18n.XLocaleData
interface methods:

Type Count

com.sun.star.i18n.LanguageCountryInfo exactly 1

com.sun.star.i18n.LocaleDataItem exactly 1

sequence<com.sun.star.i18n.Calendar> 1 or more

sequence<com.sun.star.i18n.Currency> 1 or more

sequence<com.sun.star.i18n.FormatElement> at least all com.sun.star.i18n.NumberFormat-
Index format codes (see below)

sequence<com.sun.star.i18n.Implementation> collator
implementations

0 or more, if none specified the ICU collator
will be called for the language given in
<LanguageCountryInfo>

sequence<string> search options (transliteration modules) 0 or more

sequence<string> collation options (transliteration modules) 0 or more

sequence<string> names of supported transliterations
(transliteration modules)

0 or more

475

http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/Implementation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/Implementation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/Implementation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/NumberFormatIndex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/NumberFormatIndex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/NumberFormatIndex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/NumberFormatIndex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/NumberFormatIndex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/NumberFormatIndex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/FormatElement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/FormatElement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/FormatElement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/Currency.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/Currency.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/Currency.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/Calendar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/Calendar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/Calendar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/LocaleDataItem.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/LanguageCountryInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XLocaleData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XLocaleData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XLocaleData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XInputSequenceChecker.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XInputSequenceChecker.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XInputSequenceChecker.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XIndexEntrySupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XIndexEntrySupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XIndexEntrySupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XExtendedIndexEntrySupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XExtendedIndexEntrySupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XExtendedIndexEntrySupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XIndexEntrySupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XIndexEntrySupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XIndexEntrySupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XLocaleData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XLocaleData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XLocaleData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XHyphenator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XHyphenator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XHyphenator.html

Type Count

com.sun.star.i18n.ForbiddenCharacters exactly 1, though may have empty elements

sequence<string> reserved words all words of com.sun.star.i18n.reservedWords

sequence<com.sun.star.beans.PropertyValues> numbering
levels

(no public XLocaleData API method available, used by and
accessible through com.sun.star.text.XDefaultNumbering-
Provider method getDefaultContinuousNumberingLevels()
implemented in i18npool)

exactly 8 <NumberingLevel> entities

sequence<com.sun.star.container.XIndexAccess> outline
styles

(no public XLocaleData API method available, used by and
accessible through com.sun.star.text.XDefaultNumbering-
Provider method getDefaultOutlineNumberings() imple-
mented in i18npool)

exactly 8 <OutlineStyle> entities consisting of
5 <OutlineNumberingLevel> entities each

Locale data is defined in an XML file. It is translated into a C++ source file during the build
process, which is compiled and linked together with other compiled locale data files into shared
libraries. The contents of the XML file, their elements, and how they are to be defined are described
in i18npool/source/localedata/data/locale.dtd. The latest revision available for a specific CVS branch of
that file provides up-to-date information about the definitions, as well as additional information.

If the language-country combination is not already listed in tools/inc/lang.hxx and
tools/source/intntl/isolang.cxx and svx/source/dialog/langtab.src, OpenOffice.org is probably not
prepared to deal with your specific locale. For assistance, you can consult
http://l10n.openoffice.org/adding_language.html#step1 (Add the New Language to the Resource
System) and join the dev@l10n.openoffice.org mailing list (see also
http://l10n.openoffice.org/servlets/ProjectMailingListList).

In order to conform with the available build infrastructure, the name of your locale data file should
follow the conventions used in the i18npool/source/localedata/data directory:
<language>_<country>.xml, where language is a lowercase, two letter ISO-639 code, and country is
an uppercase two letter ISO-3166 code. Start by copying the en_US.xml file to your
<language>_<country>.xml file and adopt the entries to suit your needs. Add the corresponding
*.cxx and *.obj target file name to the i18npool/source/localedata/data/makefile.mk. Note that there is an
explicit rule defined, so that you do not need to add the *.xml file name anywhere. You must also
add the locale to the aDllsTable structure located in i18npool/source/localedata/data/localedata.cxx.
Make sure to specify the correct library name, since it must correspond to the library name used in
the makefile. Finally, the public symbols to be exported must be added to the linker map file corre-
sponding to the library. You can use the i18npool/source/localedata/data/linkermapfile-check.awk script
to assist you. Instructions for how to use the script are located the header comments of the file.

<LC_FORMAT><FormatElement>
To be able to load documents of versions up to and including StarOffice 5.2 (old binary file
format), each locale must define all number formats mentioned in
com.sun.star.i18n.NumberFormatIndex and assign the proper formatindex="..." attri-
bute.
Failing to do so may result in data not properly displayed or not displayed at all if a built-in
"System" or "Default" format code was used (as generally done by the average user) and the
document is loaded under a locale not having those formats defined. Since old versions did
merge some format information of the [Windows] Regional Settings, it might be necessary to
define some duplicated codes to fill all positions. To verify that all necessary elements are
defined, use a non-product build of OpenOffice.org and open a number formatting dialog, and

476 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/NumberFormatIndex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/NumberFormatIndex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/NumberFormatIndex.html
http://l10n.openoffice.org/servlets/ProjectMailingListList
http://l10n.openoffice.org/servlets/ProjectMailingListList
http://l10n.openoffice.org/servlets/ProjectMailingListList
http://l10n.openoffice.org/adding_language.html#step1
http://l10n.openoffice.org/adding_language.html#step1
http://l10n.openoffice.org/adding_language.html#step1
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XDefaultNumberingProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XDefaultNumberingProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XDefaultNumberingProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XDefaultNumberingProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XDefaultNumberingProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XDefaultNumberingProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XDefaultNumberingProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XDefaultNumberingProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XDefaultNumberingProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XDefaultNumberingProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XDefaultNumberingProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XDefaultNumberingProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValues.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValues.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValues.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/reservedWords.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/reservedWords.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/reservedWords.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/ForbiddenCharacters.html

select your locale from the Language list box. An assertion message box appears if there are any
missing elements. The errors are only shown the very first time the locale is selected in a given
document.

<LC_FORMAT><FormatElement><FormatCode>
In general, definition of number format codes follows the user visible rules, apart from that any
non-ASCII character must be entered using UTF-8 encoding. For a detailed description of codes
and a list of possible keywords please consult the OpenOffice.org English online help on section
"number format codes".
Be sure to use the separators you declared in the <LC_CTYPE> section in the number format
codes, for example <DecimalSeparator>, <ThousandSeparator>, otherwise the number
formatter generates incorrect formats.
Verify the defined codes again by using the number formatter dialog of a non-product
OpenOffice.org build. If anything is incorrect, an assertion message box appears containing
information about the error.
The format indices 1..49 are reserved and, for backward compatibility, must be used as stated in
offapi/com/sun/star/i18n/NumberFormatIndex.idl. Note that 48 and 49 are used internally and must
not be used in locale data XML files. All other formats must be present.

<FormatCode usage="DATE"> and <FormatCode usage="DATE_TIME">
Characters of date and time keywords, such as YYYY for year, had previously been localized
for a few locales (for example, JJJJ in German). The new I18N framework no longer follows that
approach, because it may lead to ambiguous and case insensitive character combinations that
cannot be resolved at runtime. Localized keyword support is only given for some old locales,
other locales must define their codes using English notation.
The table below shows the localized keyword codes:

DayOfWeek Era Year Month Day Hour

English (and all other locales not
mentioned)

A G Y M D H

de_AT, de_CH, de_DE, de_LI,
de_LU J T

nl_BE, nl_NL J U

fr_BE, fr_CA, fr_CH, fr_FR, fr_LU,
fr_MC O A J

it_CH, it_IT O X A G

pt_BR, pt_PT O A

es_AR, es_BO, es_CL, es_CO,
es_CR, es_DO, es_EC, es_ES,
es_GT, es_HN, es_MX, es_NI,
es_PA, es_PE, es_PR, es_PY, es_SV,
es_UY, es_VE

O A

da_DK T

nb_NO, nn_NO, no_NO T

sv_FI, sv_SE T

fi_FI V K P T

<FormatCode usage="DATE" formatindex="21"> and
<FormatCode usage="DATE_TIME" formatindex="47">

The formatindex="21" com.sun.star.i18n.NumberFormatIndex DATE_SYS_DDMMYYYY format
code is used to edit date formatted data. It represents a date using the most detailed informa-
tion available, for example, a 4-digit year and instead of a 2-digit year. The YMD default order

477

http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/NumberFormatIndex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/NumberFormatIndex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/NumberFormatIndex.html

(how a date is assembled) is determined from the order encountered in this format.
Similarly, the formatindex="47" com.sun.star.i18n.NumberFormatIndex
DATETIME_SYS_DDMMYYYY_HHMMSS format code is used to edit date-time data. Both format codes
must display data in a way that is parable by the application, in order to be able to reassemble
edited data. This generally means using only YYYY,MM,DD,HH,MM,SS keywords and
<DateSeparator> and <TimeSeparator>.

<FormatCode usage="CURRENCY">
The [$xxx-yyy] notation is needed for compatibility reasons. The xxx part denotes the currency
symbol, and the yyy part specifies the locale identifier in Microsoft Language ID hexadecimal
notation. For example, having �409� as the locale identifier (English-US) and �$� as the
currency symbol results in [$$-409]. A list of available Language IDs known to the
OpenOffice.org application can be found at project util module tools in file tools/inc/lang.hxx.
Format indices 12, 13, 14, 15, 17 with [$xxx-yyy] notation must use the xxx currency symbol that
has the attribute usedInCompatibleFormatCodes="true" (see element <LC_CURRENCY> in the
locale.dtd file).

XCalendar

The interface com.sun.star.i18n.XCalendar provides a general calendar service. All calendar
implementations are managed by a class CalendarImpl, the front-end, which dynamically calls a
language-specific implementation.

Calendar_gregorian is a wrapper to ICU's Calendar class.

If you need to implement a locale-specific calendar, you can choose to either derive your class from
Calendar_gregorian or to write your own class.

There are three steps needed to create a locale-specific calendar:

1. Name your calendar <name> (for example, 'gengou' for Japanese Calendar) and add it to the
locale data XML file with proper day/month/era names.

2. Derive a class either from Calendar_gregorian or XCalendar, name it as Calendar_<name>,
which will be loaded by CalendarImpl when the calendar is specified.

3. Add your new calendar as a service in i18npool/source/registerservices/registerservices.cxx.

If you plan to derive from the Gregorian calendar, you need to know the mapping between your
new calendar and the Gregorian calendar. For example, the Japanese Emperor Era calendar has a
starting year offset to Gregorian calendar for each era. You will need to override the method
Calendar_gregorian::mapToGregorian() and Calendar_gregorian::mapFromGregorian() to
map the Era/Year/Month/Day between the Gregorian calendar and the calendar for your
language.

XCharacterClassification

The interface com.sun.star.i18n.XCharacterClassification provides toUpper(), toLower(),
toTitle() and methods to get various character attributes defined by Unicode. These functions
are implemented by the cclass_unicode class. If you need language specific requirements for
these functions, you can derive a language specific class cclass_<locale_name> from
cclass_unicode and overwrite the methods. In most cases, the attributes are well defined by
Unicode, so you do not need to create your own class.

The class also provides a generic parser. If a particular language needs special number parsing,
detected non-ASCII numbers are fed to the com.sun.star.i18n.NativeNumberSupplier service
to obtain the ASCII representation, which in turn is interpreted and converted to a double preci-
sion floating point value.

478 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XCharacterClassification.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XCharacterClassification.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XCharacterClassification.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XCalendar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XCalendar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XCalendar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/NumberFormatIndex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/NumberFormatIndex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/NumberFormatIndex.html

A manager class CharacterClassificationImpl will handle the loading of language specific
implementations of CharacterClassification on the fly. If no implementation is provided, the
implementation defaults to class cclass_unicode.

XBreakIterator

The interface com.sun.star.i18n.XBreakIterator provides support for
Character(Cell)/Word/Sentence/Line-break services. For example, BreakIterator provides the
APIs to iterate a string by character, word, line and sentence. The interface is used by the Output
layer for the following operations:

• Cursor positioning and selection: Since a character or cell can take more than one code point,
cursor movement cannot be done by simply incrementing or decrementing the index.

• Complex Text Layout Languages (CTL): In CTL languages (such as Thai, Hebrew, Arabic and
Indian), multiple characters can combine to form a display cell. Cursor movement must
traverse a display cell instead of a single character.

Line breaking must be highly configurable in desktop publishing applications. The line breaking
algorithm should be able to find a line break with or without a hyphenator. Additionally, it should
be able to parse special characters that are illegal if they occur at the end or beginning of a line.

Both requirements are locale-sensitive.

The BreakIterator components are managed by the class BreakIteratorImpl, which will load
the language-specific component in service name BreakIterator_<language> dynamically.

The base break iterator class BreakIterator_Unicode is a wrapper to the ICU BreakIterator
class. While this class meets the requirements for western languages, it does not meet the require-
ments for other languages, such as those of South Asia (CJK) and South East Asia (Indian, Thai,
Arabic), where enhanced functionality is required, as described previously.

Thus the current BreakIterator base class has two derived classes, BreakIterator_CJK and
BreakIterator_CTL. BreakIterator_CJK provides a dictionary based word break for Chinese
and Japanese, and a forbidden rule driven line break for Chinese, Japanese and Korean.
BreakIterator_CTL provides a more specific definition of character/cell/cluster grouping for
languages like Thai and Arabic.

Use the following steps to create a language-specific BreakIterator service:

1. Derive a class either from BreakIterator_CJK or BreakIterator_CTL, name it as
BreakIterator_<language>.

2. Add new service in registerservices.cxx
There are three methods for word breaking: nextWord(), previousWord(), getWordBoundary().
You can overwrite them with your own language rules.

BreakIterator_CJK provides input string caching and dictionary searching for longest matching.
You can provide a sorted dictionary (the encoding must be UTF-8) by creating the following file:
i18npool/source/breakiterator/data/<language>.dict.

The utility gendict will convert the file to C code, which will be compiled into a shared library for
dynamic loading.

All dictionary searching and loading is performed in the xdictionary class. The only thing you
need to do is to derive your class from BreakIterator_CJK and create an instance of the xdic-
tionary with the language name and pass it to the parent class.

479

http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XBreakIterator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XBreakIterator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XBreakIterator.html

XCollator

The interface com.sun.star.i18n.XCollator must be used to provide text collation for the new
locale. There are two types of collations, single level and multiple level collation.

Most European and English locales need multiple level collation. OpenOffice.org uses the ICU
collator to cover these needs.

Most CJK languages only require single level collation. There is a two step lookup table that
performs the collation for these languages. If you have a new language or algorithm in this cate-
gory, you can derive a new service from Collator_CJK and provide index and weight tables. Here
is a sample implementation:
#include <collator_CJK.hxx>
static sal_uInt16 index[] = {
...
};

static sal_uInt16 weight[] = {
...
};

sal_Int32 SAL_CALL Collator_zh_CN_pinyin::compareSubstring(
 const ::rtl::OUString& str1, sal_Int32 off1, sal_Int32 len1,
 const ::rtl::OUString& str2, sal_Int32 off2, sal_Int32 len2)
 throw (::com::sun::star::uno::RuntimeException)
{
 return compare(str1, off1, len1, str2, off2, len2, index, weight);
}

sal_Int32 SAL_CALL Collator_zh_CN_pinyin::compareString(
 const ::rtl::OUString& str1,
 const ::rtl::OUString& str2)
 throw (::com::sun::star::uno::RuntimeException)
{
 return compare(str1, 0, str1.getLength(), str2, 0, str2.getLength(),
 index, weight);
}

Front end implementation Collator will load and cache the language-specific service on the name
Collator_<locale> dynamically.

The steps to add new services:

1. Derive the new service from the above class

2. Provide the index and weight tables

3. Register the new service in registerservices.cxx

4. Add the new service in the collation section in the locale data file.

XTransliteration

The interface com.sun.star.i18n.XTransliteration can be used for string conversion. The
front end implementation TransliterationImpl will load and cache specific transliteration
services by a predefined enum in com.sun.star.i18n.TransliterationModules or
com.sun.star.i18n.TransliterationModulesNew, or dynamically by implementation name.

Transliterations have been defined in three categories: Ignore, OneToOne and Numeric. All of them
are derived from transliteration_commonclass.

Ignore services are for ignore case, half/full width, and Katakana/Hiragana. You can derive your
new service from it, and overwrite folding/transliteration methods.

OneToOne services are for one to one mapping, such as converting lowercase to uppercase. The
class provides two more services, to take a mapping table or mapping function to do folding and
transliteration. You can derive a class from it and provide a table or function for the parent class to
do the transliteration.

480 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/TransliterationModulesNew.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/TransliterationModulesNew.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/TransliterationModulesNew.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/TransliterationModules.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/TransliterationModules.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/TransliterationModules.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XTransliteration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XTransliteration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XTransliteration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XCollator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XCollator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XCollator.html

Numeric services are used to convert a number to a number string in specific languages. It can be
used to format Date string and other types of strings.

To add a new transliteration

1. Derive a new class from the three classes previously mentioned.

2. Overwrite folding/transliteration methods or provide a table for the parent to perform the
transliteration.

3. Register the new service in registerservices.cxx

4. Add the new service in the transliteration section in the locale data file

XTextConversion

The interface com.sun.star.i18n.XTextConversion can be used for string conversion. The
service com.sun.star.i18n.TextConversion implementing the interface provides a function to
determine if the text conversion should be interactive or not along with functions that can be used
for automatic and interactive conversion.

It is possible to create conversion-dictionaries com.sun.star.linguistic2.XConversionDic-
tionary, which are searched for entries to be used by the text conversion service, thus allowing the
user to customize the text conversion.

The following is an example:
//***
// comment: Step 1: get the Desktop object from the office
// Step 2: open an empty text document
// Step 3: insert a sample text
// Step 4: convert sample text
// Step 5: insert converted text
//***

import com.sun.star.uno.UnoRuntime;

public class TextConversion {

 public static void main(String args[]) {
 // You need the desktop to create a document
 // The getDesktop method does the UNO bootstrapping, gets the
 // remote servie manager and the desktop object.
 com.sun.star.frame.XDesktop xDesktop = null;
 xDesktop = getDesktop();

 com.sun.star.text.XTextDocument xTextDocument =
 createTextdocument(xDesktop);

 com.sun.star.i18n.XTextConversion xTextConversion =
 getTextConversion();

 try {
 // Korean sample text
 String aHeader = "\u7b2c\u0020\u0031\u0020\u7ae0\u0020\ud55c\ubb38\uc758\u0020\uad6c
\uc870\u0028\u69cb\u9020\u0029";
 String aText = "\uc6b0\uc120\u0020\ud55c\uc790\ub294\u0020\uc11c
\uc220\uc5b4\u0020\u0028\u654d\u8ff0\u8a9e\u0029\uc758\u0020\uc704\uce58\uac00\u0020\uc6b0\ub9ac
\ub9d0\uacfc\u0020\ub2e4\ub974\ub2e4\u002e";

 // access interfaces and cursor to be used
 com.sun.star.text.XText xText = (com.sun.star.text.XText)
 UnoRuntime.queryInterface(
 com.sun.star.text.XText.class, xTextDocument.getText());
 com.sun.star.text.XSimpleText xSimpleText = (com.sun.star.text.XSimpleText)
 UnoRuntime.queryInterface(
 com.sun.star.text.XSimpleText.class, xText);
 com.sun.star.text.XTextCursor xCursor = xText.createTextCursor();

 // set text properties (font, language) to be used for the sample
 com.sun.star.beans.XPropertySet xPS = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(
 com.sun.star.beans.XPropertySet.class, xCursor);
 com.sun.star.lang.Locale aKorean = new com.sun.star.lang.Locale("ko", "KR", "");
 xPS.setPropertyValue("CharFontNameAsian", "Gulim");
 xPS.setPropertyValue("CharLocaleAsian", aKorean);

481

http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XConversionDictionary.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XConversionDictionary.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XConversionDictionary.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XConversionDictionary.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XConversionDictionary.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XConversionDictionary.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/TextConversion.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/TextConversion.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/TextConversion.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XTextConversion.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XTextConversion.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XTextConversion.html

 xPS.setPropertyValue("CharHeightAsian", new Integer(24));
 xPS.setPropertyValue("CharHeight", new Integer(24));

 // insert original text
 xSimpleText.insertString(xCursor, "Original text:", false);
 xSimpleText.insertControlCharacter(xCursor,
com.sun.star.text.ControlCharacter.PARAGRAPH_BREAK, false);
 xSimpleText.insertString(xCursor, aHeader, false);
 xSimpleText.insertControlCharacter(xCursor,
com.sun.star.text.ControlCharacter.PARAGRAPH_BREAK, false);
 xSimpleText.insertString(xCursor, aText, false);
 xSimpleText.insertControlCharacter(xCursor,
com.sun.star.text.ControlCharacter.PARAGRAPH_BREAK, false);
 xSimpleText.insertControlCharacter(xCursor,
com.sun.star.text.ControlCharacter.PARAGRAPH_BREAK, false);
 xSimpleText.insertControlCharacter(xCursor,
com.sun.star.text.ControlCharacter.PARAGRAPH_BREAK, false);

 //
 // apply Hangul->Hanja conversion
 //
 short nConversionType = com.sun.star.i18n.TextConversionType.TO_HANJA;
 int nConversionOptions = com.sun.star.i18n.TextConversionOption.NONE;
 //
 // call to function for non-interactive text conversion
 // (usually not used for Hangul/Hanja conversion but here used
 // anyway for the examples sake)
 aHeader = xTextConversion.getConversion(aHeader, 0, aHeader.length(),
 aKorean, nConversionType, nConversionOptions);
 //
 // sample for function calls in an interactive conversion
 StringBuffer aBuf = new StringBuffer(aText);
 int i = 0;
 boolean bFound = true;
 int nLen = aText.length();
 while (i < nLen - 1 && bFound) {
 com.sun.star.i18n.TextConversionResult aResult =
 xTextConversion.getConversions(aText, i, nLen - i,
 aKorean, nConversionType, nConversionOptions);

 // check if convertible text portion was found
 bFound = !(aResult.Boundary.startPos == 0 && aResult.Boundary.endPos == 0);
 if (bFound) {
 String[] aCandidates = aResult.Candidates;

 // let the user choose one candidate from the list
 // (in this non-interactive example we'll always choose
 // the first one)
 String aChoosen = aCandidates[0];

 aBuf.replace(aResult.Boundary.startPos,
 aResult.Boundary.endPos,
 aChoosen);

 // continue with text after current converted
 // text portion
 if (aResult.Boundary.endPos > i)
 i = aResult.Boundary.endPos;
 else {
 // or advance at least one position
 System.out.println("unexpected forced advance...");
 ++i;
 }
 }
 }
 aText = aBuf.toString();

 // insert converted text
 xSimpleText.insertString(xCursor, "Converted text:", false);
 xSimpleText.insertControlCharacter(xCursor,
com.sun.star.text.ControlCharacter.PARAGRAPH_BREAK, false);
 xSimpleText.insertString(xCursor, aHeader, false);
 xSimpleText.insertControlCharacter(xCursor,
com.sun.star.text.ControlCharacter.PARAGRAPH_BREAK, false);
 xSimpleText.insertString(xCursor, aText, false);
 }
 catch(Exception e) {
 e.printStackTrace(System.err);
 }

 System.out.println("Done");

 System.exit(0);
 }

 public static com.sun.star.frame.XDesktop getDesktop() {
 com.sun.star.frame.XDesktop xDesktop = null;

482 OpenOffice.org 2.3 Developer's Guide • June 2007

 com.sun.star.lang.XMultiComponentFactory xMCF = null;

 try {
 com.sun.star.uno.XComponentContext xContext = null;

 // get the remote office component context
 xContext = com.sun.star.comp.helper.Bootstrap.bootstrap();

 // get the remote office service manager
 xMCF = xContext.getServiceManager();
 if(xMCF != null) {
 System.out.println("Connected to a running office ...");

 Object oDesktop = xMCF.createInstanceWithContext(
 "com.sun.star.frame.Desktop", xContext);
 xDesktop = (com.sun.star.frame.XDesktop) UnoRuntime.queryInterface(
 com.sun.star.frame.XDesktop.class, oDesktop);
 }
 else
 System.out.println("Can't create a desktop. No connection, no remote office
servicemanager available!");
 }
 catch(Exception e) {
 e.printStackTrace(System.err);
 System.exit(1);
 }

 return xDesktop;
 }

 public static com.sun.star.i18n.XTextConversion getTextConversion() {
 com.sun.star.i18n.XTextConversion xTextConv = null;
 com.sun.star.lang.XMultiComponentFactory xMCF = null;

 try {
 com.sun.star.uno.XComponentContext xContext = null;

 // get the remote office component context
 xContext = com.sun.star.comp.helper.Bootstrap.bootstrap();

 // get the remote office service manager
 xMCF = xContext.getServiceManager();
 if(xMCF != null) {
 Object oObject = xMCF.createInstanceWithContext(
 "com.sun.star.i18n.TextConversion", xContext);
 xTextConv = (com.sun.star.i18n.XTextConversion) UnoRuntime.queryInterface(
 com.sun.star.i18n.XTextConversion.class, oObject);
 }
 else
 System.out.println("Can't create a text conversion service. No office servicemanager
available!");
 if(xTextConv != null)
 System.out.println("Successfully instantiated text conversion service.");
 }
 catch(Exception e) {
 e.printStackTrace(System.err);
 System.exit(1);
 }

 return xTextConv;
 }

 public static com.sun.star.text.XTextDocument createTextdocument(
 com.sun.star.frame.XDesktop xDesktop)
 {
 com.sun.star.text.XTextDocument aTextDocument = null;

 try {
 com.sun.star.lang.XComponent xComponent = CreateNewDocument(xDesktop,
 "swriter");
 aTextDocument = (com.sun.star.text.XTextDocument)
 UnoRuntime.queryInterface(
 com.sun.star.text.XTextDocument.class, xComponent);
 }
 catch(Exception e) {
 e.printStackTrace(System.err);
 }

 return aTextDocument;
 }

 protected static com.sun.star.lang.XComponent CreateNewDocument(
 com.sun.star.frame.XDesktop xDesktop,
 String sDocumentType)

483

 {
 String sURL = "private:factory/" + sDocumentType;

 com.sun.star.lang.XComponent xComponent = null;
 com.sun.star.frame.XComponentLoader xComponentLoader = null;
 com.sun.star.beans.PropertyValue xValues[] =
 new com.sun.star.beans.PropertyValue[1];
 com.sun.star.beans.PropertyValue xEmptyArgs[] =
 new com.sun.star.beans.PropertyValue[0];

 try {
 xComponentLoader = (com.sun.star.frame.XComponentLoader)
 UnoRuntime.queryInterface(
 com.sun.star.frame.XComponentLoader.class, xDesktop);

 xComponent = xComponentLoader.loadComponentFromURL(
 sURL, "_blank", 0, xEmptyArgs);
 }
 catch(Exception e) {
 e.printStackTrace(System.err);
 }

 return xComponent ;
 }
}

XNativeNumberSupplier

The interface com.sun.star.i18n.XNativeNumberSupplier provides the functionality to convert
between ASCII Arabic digit numbers and locale-dependent numeral representations. It performs
the conversion by implementing special transliteration services. The interface also provides a
mechanism to generate attributes to be stored in the XML file format (see the XML file format
documentation, section "Common Data Style Attributes", "number:transliteration-..."), as well as a
conversion of those XML attributes needed to map back to a specific representation style. If you
add a number transliteration for a specific locale and reuse one of the com.sun.star.i18n.Nativ-
eNumberMode constants, please add the description to com.sun.star.i18n.NativeNumberMode if
your changes are to be added back to the OpenOffice.org code repository.

XIndexEntrySupplier

The interface com.sun.star.i18n.XIndexEntrySupplier can be used to provide the function-
ality to generate index pages. The main method of this interface is getIndexCharacter(). Front
end implementation IndexEntrySupplier will dynamically load and cache language specific
service based on the name IndexEntrySupplier_<locale>.

Languages to be indexed have been divided into two sets. The first set contains Latin1 languages,
which can be covered by 256 Unicode code points. A one step lookup table is used to generate
index characters. An alphabetic and numeric table has been generated, which covers most Latin1
languages. But if you need another algorithm or have a conflict with the table, you can create your
own table and derive a new class from IndexEntrySupplier_Euro. Here is a sample implementa-
tion:

#include <sal/types.h>
#include <indexentrysupplier_euro.hxx>
#include <indexdata_alphanumeric.h>

OUString SAL_CALL i18n::IndexEntrySupplier_alphanumeric::getIndexCharacter(
 const OUString& rIndexEntry,
 const lang::Locale& rLocale, const OUString& rSortAlgorithm)
 throw (uno::RuntimeException)
{
 return getIndexString(rIndexEntry, idxStr);
}
where idxStr is the table.

484 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XIndexEntrySupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XIndexEntrySupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XIndexEntrySupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/NativeNumberMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/NativeNumberMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/NativeNumberMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/NativeNumberMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/NativeNumberMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/NativeNumberMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/NativeNumberMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/NativeNumberMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/NativeNumberMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XNativeNumberSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XNativeNumberSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/XNativeNumberSupplier.html

For the languages that could not be covered in the first set, such as CJK, a two step lookup table is
used. Here is a sample implementation:

#include <indexentrysupplier_cjk.hxx>
#include <indexdata_zh_pinyin.h>

OUString SAL_CALL i18n::IndexEntrySupplier_zh_pinyin::getIndexCharacter(
 const OUString& rIndexEntry,
 const lang::Locale& rLocale, const OUString& rSortAlgorithm)
 throw (uno::RuntimeException)
{
 return getIndexString(rIndexEntry, idxStr, idx1, idx2);
}
where idx1 and idx2 are two step tables and idxStr contains all the index keys that will be
returned. If you have a new language or algorithm, you can derive a new service from
IndexEntrySupplier_CJK and provide tables for the parent class to generate the index.

Note that the index depends on collation, therefore, each index algorithm should have a collation
algorithm to support it.

To add new service:

1. Derive the new service from IndexEntrySupplier_Euro.

2. Provide a table for the lookup

3. Register new service in registerservices.cxx

A Comment on Search and Replace

Search and replace is also locale-dependent because there may be special search options that are
only available for a particular locale. For instance, if the Asian languages support is enabled, you'll
see an additional option for "Sounds like (Japanese)" in the Edit - Find & Replace dialog box. With
this option, you can turn on or off certain options specific to Japanese in the search and replace
process.

Search and replace relies on the transliteration modules for various search options. The translitera-
tion modules are loaded and the search string is converted before the search process.

7.2.3 Linguistics
The Linguistic API provides a set of UNO services used for spell checking, hyphenation or
accessing a thesaurus. Through the Linguistic API, developers add new implementations and inte-
grate them into OpenOffice.org. Users of the Linguistic API call its methods Usually this function-
ality is used by one or more clients, that is, applications or components, to process documents ,
such as text documents or spreadsheets.

Services Overview
The services provided by the Linguistic API are:

• com.sun.star.linguistic2.LinguServiceManager
• com.sun.star.linguistic2.DictionaryList
• com.sun.star.linguistic2.LinguProperties
Also there is at least one or more implementation for each of the following services:

485

http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/DictionaryList.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguServiceManager.html

• com.sun.star.linguistic2.SpellChecker
• com.sun.star.linguistic2.Hyphenator
• com.sun.star.linguistic2.Thesaurus
The service implementations for spell checker, thesaurus and hyphenator supply the respective
functionality. Each of the implementations support a different set of languages. Refer to
com.sun.star.linguistic2.XSupportedLocales.

For example, there could be two implementations for a spell checker, usually from different
supporting parties: the first supporting English, French and German, and the second supporting
Russian and English. Similar settings occur for the hyphenator and thesaurus.

It is not convenient for each application or component to know all these implementations and to
choose the appropriate implementation for the specific purpose and language, therefore a medi-
ating instance is required.

This instance is the LinguServiceManager. Spell checking, hyphenation and thesaurus function-
ality is accessed from a client by using the respective interfaces from the LinguServiceManager.

The LinguServiceManager dispatches the interface calls from the client to a specific service imple-
mentation,if any, of the respective type that supports the required language.
For example, if the client requires spell checking of a French word, the first spell checker imple-
mentations from those mentioned above are called.

If there is more than one spell checker available for one language, as in the above example for the
English language, the LinguServiceManager starts with the first one that was supplied in the
setConfiguredServices() method of its interface. The thesaurus behaves in a similar manner.
 For more details, refer to the interface description com.sun.star.linguistic2.XLinguService-
Manager.

The LinguProperties service provides, among others, properties that are required by the spell
checker, hyphenator and thesaurus that are modified by the client. Refer to
thecom.sun.star.linguistic2.LinguProperties.
The DictionaryList (see com.sun.star.linguistic2.DictionaryList) provides a set of user
defined or predefined dictionaries for languages that are activated and deactivated. If they are
active, they are used by the spell checker and hyphenator. These are used by the user to override
results from the spell checker and hyphenator implementations, thus allowing the user to
customize spell checking and hyphenation.

In the code snippets and examples in the following chapters, we will use the following members
and interfaces: (OfficeDev/Linguistic/LinguisticExamples.java)
// used interfaces
import com.sun.star.lang.XMultiServiceFactory;
import com.sun.star.linguistic2.XLinguServiceManager;
import com.sun.star.linguistic2.XSpellChecker;
import com.sun.star.linguistic2.XHyphenator;
import com.sun.star.linguistic2.XThesaurus;
import com.sun.star.linguistic2.XSpellAlternatives;
import com.sun.star.linguistic2.XHyphenatedWord;
import com.sun.star.linguistic2.XPossibleHyphens;
import com.sun.star.linguistic2.XMeaning;
import com.sun.star.linguistic2.XSearchableDictionaryList;
import com.sun.star.linguistic2.XLinguServiceEventListener;
import com.sun.star.linguistic2.LinguServiceEvent;
import com.sun.star.beans.XPropertySet;
import com.sun.star.beans.PropertyValue;
import com.sun.star.uno.XComponentContext;
import com.sun.star.uno.XNamingService;
import com.sun.star.lang.XMultiComponentFactory;
import com.sun.star.lang.EventObject;
import com.sun.star.lang.Locale;
import com.sun.star.bridge.XUnoUrlResolver;
import com.sun.star.uno.UnoRuntime;
import com.sun.star.uno.Any;
import com.sun.star.lang.XComponent;

486 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/DictionaryList.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/DictionaryList.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/DictionaryList.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XLinguServiceManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XLinguServiceManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XLinguServiceManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XLinguServiceManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XLinguServiceManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XLinguServiceManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XSupportedLocales.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XSupportedLocales.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XSupportedLocales.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/Thesaurus.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/Hyphenator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/SpellChecker.html

//
// members for commonly used interfaces
//

// The MultiServiceFactory interface of the Office
protected XMultiServiceFactory mxFactory = null;

// The LinguServiceManager interface
protected XLinguServiceManager mxLinguSvcMgr = null;

// The SpellChecker interface
protected XSpellChecker mxSpell = null;

// The Hyphenator interface
protected XHyphenator mxHyph = null;

// The Thesaurus interface
protected XThesaurus mxThes = null;

// The DictionaryList interface
protected XSearchableDictionaryList mxDicList = null;

// The LinguProperties interface
protected XPropertySet mxLinguProps = null;

To establish a connection to the office and have our mxFactory object initialized with its XMulti-
ServiceFactory, the following code is used: (OfficeDev/Linguistic/LinguisticExamples.java)
public void Connect(String sConnection)
 throws com.sun.star.uno.Exception,
 com.sun.star.uno.RuntimeException,
 Exception
{
 XComponentContext xContext =
 com.sun.star.comp.helper.Bootstrap.createInitialComponentContext(null);
 XMultiComponentFactory xLocalServiceManager = xContext.getServiceManager();

 Object xUrlResolver = xLocalServiceManager.createInstanceWithContext(
 "com.sun.star.bridge.UnoUrlResolver", xContext);
 XUnoUrlResolver urlResolver = (XUnoUrlResolver)UnoRuntime.queryInterface(
 XUnoUrlResolver.class, xUrlResolver);
 Object rInitialObject = urlResolver.resolve("uno:" + sConnection +
 ";urp;StarOffice.NamingService");
 XNamingService rName = (XNamingService)UnoRuntime.queryInterface(XNamingService.class,
 rInitialObject);
 if(rName != null)
 {
 Object rXsmgr = rName.getRegisteredObject("StarOffice.ServiceManager");
 mxFactory = (XMultiServiceFactory)
 UnoRuntime.queryInterface(XMultiServiceFactory.class, rXsmgr);
 }
}

And the LinguServiceManager object mxLinguSvcMgr is initialized like similar to the following
snippet: (OfficeDev/Linguistic/LinguisticExamples.java)
/** Get the LinguServiceManager to be used. For example to access spell checker,
 thesaurus and hyphenator, also the component may choose to register itself
 as listener to it in order to get notified of relevant events. */
public boolean GetLinguSvcMgr()
 throws com.sun.star.uno.Exception
{
 if (mxFactory != null) {
 Object aObj = mxFactory.createInstance(
 "com.sun.star.linguistic2.LinguServiceManager");
 mxLinguSvcMgr = (XLinguServiceManager)
 UnoRuntime.queryInterface(XLinguServiceManager.class, aObj);
 }
 return mxLinguSvcMgr != null;
}

The empty list of temporary property values used for the current function call only and the
language used may look like the following:
// list of property values to used in function calls below.
// Only properties with values different from the (default) values
// in the LinguProperties property set need to be supllied.
// Thus we may stay with an empty list in order to use the ones
// form the property set.
PropertyValue[] aEmptyProps = new PropertyValue[0];

// use american english as language
Locale aLocale = new Locale("en","US","");

487

Using temporary property values:

To change a value for the example IsGermanPreReform to a different value for one or a limited
number of calls without modifying the default values, provide this value as a member of the last
function argument used in the examples below before calling the respective functions.
// another list of property values to used in function calls below.
// Only properties with values different from the (default) values
// in the LinguProperties property set need to be supllied.
PropertyValue[] aProps = new PropertyValue[1];
aProps[0] = new PropertyValue();
aProps[0].Name = "IsGermanPreReform";
aProps[0].Value = new Boolean(true);

Replace the aEmptyProps argument in the function calls with aProps to override the value of
IsGermanPreReform from the LinguProperties. Other properties are overridden by adding them
to the aProps object.

Using Spellchecker
The interface used for spell checking is com.sun.star.linguistic2.XSpellChecker. Accessing
the spell checker through the LinguServiceManager and initializing the mxSpell object is done by:
(OfficeDev/Linguistic/LinguisticExamples.java)
/** Get the SpellChecker to be used.
*/
public boolean GetSpell()
 throws com.sun.star.uno.Exception,
 com.sun.star.uno.RuntimeException
{
 if (mxLinguSvcMgr != null)
 mxSpell = mxLinguSvcMgr.getSpellChecker();
 return mxSpell != null;
}

Relevant properties
The properties of the LinguProperties service evaluated by the spell checker are:

Spell-checking Properties of com.sun.star.linguistic2.LinguProperties Description

IsIgnoreControlCharacters Defines if control characters should be ignored or not.
IsUseDictionaryList Defines if the dictionary-list should be used or not.
IsGermanPreReform Defines if the new German spelling rules should be used for German

language text or not.
IsSpellUpperCase Defines if words with only uppercase letters should be subject to

spellchecking or not.
IsSpellWithDigits Defines if words containing digits or numbers should be subject to

spellchecking or not.
IsSpellCapitalization dDefines if the captitalization of words should be checked or not.

Changing the values of these properties in the LinguProperties affect all subsequent calls to the
spell checker. Instantiate a com.sun.star.linguistic2.LinguProperties instance and change it
by calling com.sun.star.beans.XPropertySet:setPropertyValue(). The changes affect the
whole office unless another modifies the properties again. This is done implicitly when changing
the linguistic settings through Tools - Options - Language Settings - Writing Aids.

The following example shows verifying single words:
(OfficeDev/Linguistic/LinguisticExamples.java)
// test with correct word
String aWord = "horseback";
boolean bIsCorrect = mxSpell.isValid(aWord, aLocale, aEmptyProps);

488 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html#setPropertyValue
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html#setPropertyValue
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html#setPropertyValue
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguProperties.html#IsSpellCapitalization
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguProperties.html#IsSpellWithDigits
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguProperties.html#IsSpellUpperCase
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguProperties.html#IsGermanPreReform
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguProperties.html#IsUseDictionaryList
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguProperties.html#IsIgnoreControlCharacters
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XSpellChecker.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XSpellChecker.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XSpellChecker.html

System.out.println(aWord + ": " + bIsCorrect);

// test with incorrect word
aWord = "course";
bIsCorrect = mxSpell.isValid(aWord, aLocale , aEmptyProps);
System.out.println(aWord + ": " + bIsCorrect);

Tne following example shows spelling a single word and retrieving possible corrections:
aWord = "house";
XSpellAlternatives xAlt = mxSpell.spell(aWord, aLocale, aEmptyProps);
if (xAlt == null)
 System.out.println(aWord + " is correct.");
else
{
 System.out.println(aWord + " is not correct. A list of proposals follows.");
 String[] aAlternatives = xAlt.getAlternatives();
 if (aAlternatives.length == 0)
 System.out.println("no proposal found.");
 else
 {
 for (int i = 0; i < aAlternatives.length; ++i)
 System.out.println(aAlternatives[i]);
 }
}

For a description of the return types interface, refer to com.sun.star.linguistic2.XSpellA-
lternatives.

Using Hyphenator
The interface used for hyphenation is com.sun.star.linguistic2.XHyphenator. Accessing the
hyphenator through the LinguServiceManager and initializing the mxHyph object is done by:
(OfficeDev/Linguistic/LinguisticExamples.java)
/** Get the Hyphenator to be used.
*/
public boolean GetHyph()
 throws com.sun.star.uno.Exception,
 com.sun.star.uno.RuntimeException
{
 if (mxLinguSvcMgr != null)
 mxHyph = mxLinguSvcMgr.getHyphenator();
 return mxHyph != null;
}

Relevant properties
The properties of the LinguProperties service evaluated by the hyphenator are:

Hyphenating Properties of com.sun.star.linguistic2.LinguProperties
IsIgnoreControlCharacters Defines if control characters should be ignored or not.
IsUseDictionaryList Defines if the dictionary-list should be used or not.
IsGermanPreReform Defines if the new German spelling rules should be used for German

language text or not.
HyphMinLeading The minimum number of characters of a hyphenated word to remain

before the hyphenation character.
HyphMinTrailing The minimum number of characters of a hyphenated word to remain after

the hyphenation character.
HyphMinWordLength The minimum length of a word to be hyphenated.

Changing the values of these properties in the Lingu-Properties affect all subsequent calls to the
hyphenator.

A valid hyphenation position is a possible one that meets the restrictions given by the HyphMin-
Leading, HyphMinTrailing and HyphMinWordLength values.

489

http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguProperties.html#HyphMinWordLength
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguProperties.html#HyphMinTrailing
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguProperties.html#HyphMinLeading
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguProperties.html#IsGermanPreReform
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguProperties.html#IsUseDictionaryList
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguProperties.html#IsIgnoreControlCharacters
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XHyphenator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XHyphenator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XHyphenator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XSpellAlternatives.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XSpellAlternatives.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XSpellAlternatives.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XSpellAlternatives.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XSpellAlternatives.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XSpellAlternatives.html

For example, if HyphMinWordLength is 7, "remove" does not have a valid hyphenation position.
Also, this is the case when HyphMinLeading is 3 or HyphMinTrailing is 5.

The following example shows a word hypenated: (OfficeDev/Linguistic/LinguisticExamples.java)
// maximum number of characters to remain before the hyphen
// character in the resulting word of the hyphenation
short nMaxLeading = 6;

XHyphenatedWord xHyphWord = mxHyph.hyphenate("horseback", aLocale, nMaxLeading , aEmptyProps);
if (xHyphWord == null)
 System.out.println("no valid hyphenation position found");
else
{
 System.out.println("valid hyphenation pos found at " + xHyphWord.getHyphenationPos()
 + " in " + xHyphWord.getWord());
 System.out.println("hyphenation char will be after char " + xHyphWord.getHyphenPos()
 + " in " + xHyphWord.getHyphenatedWord());
}

If the hyphenator implementation is working correctly, it reports a valid hyphenation position of 4
that is after the 'horse' part. Experiment with other values for nMaxLeading and other words. For
example, if you set it to 4, no valid hyphenation position is found since there is no hyphenation
position in the word 'horseback' before and including the 's'.

For a description of the return types interface, refer tocom.sun.star.linguistic2.XHyphenated-
Word.

The example below shows querying for an alternative spelling. In some languages, for example
German in the old (pre-reform) spelling, there are words where the spelling of changes when they
are hyphenated at specific positions. To inquire about the existence of alternative spellings, the
queryAlternativeSpelling() function is used: (OfficeDev/Linguistic/LinguisticExamples.java)
//! Note: 'aProps' needs to have set 'IsGermanPreReform' to true!
xHyphWord = mxHyph.queryAlternativeSpelling("Schiffahrt",
 new Locale("de","DE",""), (short)4, aProps);
if (xHyphWord == null)
 System.out.println("no alternative spelling found at specified position.");
else
{
 if (xHyphWord.isAlternativeSpelling())
 System.out.println("alternative spelling detectetd!");
 System.out.println("valid hyphenation pos found at " + xHyphWord.getHyphenationPos()
 + " in " + xHyphWord.getWord());
 System.out.println("hyphenation char will be after char " + xHyphWord.getHyphenPos()
 + " in " + xHyphWord.getHyphenatedWord());
}

The return types interface is the same as in the above example
(com.sun.star.linguistic2.XHyphenatedWord).

The next example demonstrates getting possible hyphenation positions. To determine all possible
hyphenation positions in a word, do this: (OfficeDev/Linguistic/LinguisticExamples.java)
XPossibleHyphens xPossHyph = mxHyph.createPossibleHyphens("waterfall", aLocale, aEmptyProps);
if (xPossHyph == null)
 System.out.println("no hyphenation positions found.");
else
 System.out.println(xPossHyph.getPossibleHyphens());

For a description of the return types interface, refer to com.sun.star.linguistic2.XPossible-
Hyphens.

Using Thesaurus
The interface used for the thesaurus is com.sun.star.linguistic2.XThesaurus. Accessing the
thesaurus through the LinguServiceManager and initializing the mxThes object is done by:
(OfficeDev/Linguistic/LinguisticExamples.java)
/** Get the Thesaurus to be used.
*/
public boolean GetThes()

490 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XThesaurus.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XThesaurus.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XThesaurus.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XPossibleHyphens.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XPossibleHyphens.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XPossibleHyphens.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XPossibleHyphens.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XPossibleHyphens.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XPossibleHyphens.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XHyphenatedWord.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XHyphenatedWord.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XHyphenatedWord.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XHyphenatedWord.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XHyphenatedWord.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XHyphenatedWord.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XHyphenatedWord.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XHyphenatedWord.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XHyphenatedWord.html

 throws com.sun.star.uno.Exception,
 com.sun.star.uno.RuntimeException
{
 if (mxLinguSvcMgr != null)
 mxThes = mxLinguSvcMgr.getThesaurus();
 return mxThes != null;
}

The properties of the LinguProperties service evaluated by the thesaurus are:

Thesaurus related Properties of com.sun.star.linguistic2.LinguProperties
IsIgnoreControlCharacters Defines if control characters should be ignored or not.
IsGermanPreReform Defines if the new German spelling rules should be used for German

language text or not.

Changing the values of these properties in the LinguProperties affect all subsequent calls to the
thesaurus. The following example about retrieving synonyms shows this:
(OfficeDev/Linguistic/LinguisticExamples.java)
XMeaning[] xMeanings = mxThes.queryMeanings("house", aLocale, aEmptyProps);
if (xMeanings == null)
 System.out.println("nothing found.");
else
{
 for (int i = 0; i < xMeanings.length; ++i)
 {
 System.out.println("Meaning: " + xMeanings[i].getMeaning());
 String[] aSynonyms = xMeanings[i].querySynonyms();
 for (int k = 0; k < aSynonyms.length; ++k)
 System.out.println(" Synonym: " + aSynonyms[k]);
 }
}

The reason to subdivide synonyms into different meanings is becausethere are different synonyms
for some words that are not even closely related. For example, the word 'house' has the synonyms
'home', 'place', 'dwelling', 'family', 'clan', 'kindred', 'room', 'board', and 'put up'.

The first three in the aboce list have the meaning of 'building where one lives' where the next three
mean that of 'a group of people sharing common ancestry' and the last three means that of 'to
provide with lodging'. Thus, having meanings is a way to group large sets of synonyms into
smaller ones with approximately the same definition.

Events
There are several types of events. For example, all user dictionaries
com.sun.star.linguistic2.XDictionary report their status changes as events
com.sun.star.linguistic2.DictionaryEvent to the DictionaryList, which collects and trans-
forms their information into DictionaryList events com.sun.star.linguistic2.Dictionar-
yListEvent, and passes those on to its own listeners.

Thus, it is possible to register to the DictionaryList as a listener to be informed about relevant
changes in the dictionaries., There is no need to register as a listener for each dictionary.

The spell checker and hyphenator implementations monitor the changes in the LinguProperties
for changes of their relevant properties. If such a property changes its value, the implementation
launches an event com.sun.star.linguistic2.LinguServiceEventthat hints to its listeners that
spelling or hyphenation should be reevaluated. For this purpose, those implementations support
the com.sun.star.linguistic2.XLinguServiceEventBroadcaster interface.

The LinguServiceManager acts as a listener for com.sun.star.linguistic2.DictionaryListE-
vent and com.sun.star.linguistic2.LinguServiceEvent events. The respective interfaces are
com.sun.star.linguistic2.XDictionaryListEventListener] and
com.sun.star.linguistic2.XLinguServiceEventListener. The events from the Dictionar-
yList are transformed into com.sun.star.linguistic2.LinguServiceEvent events and passed

491

http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguServiceEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguServiceEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguServiceEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XLinguServiceEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XLinguServiceEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XLinguServiceEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguServiceEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguServiceEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguServiceEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/DictionaryListEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/DictionaryListEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/DictionaryListEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/DictionaryListEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/DictionaryListEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/DictionaryListEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XLinguServiceEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XLinguServiceEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XLinguServiceEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguServiceEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguServiceEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguServiceEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/DictionaryListEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/DictionaryListEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/DictionaryListEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/DictionaryListEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/DictionaryListEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/DictionaryListEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/DictionaryEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/DictionaryEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/DictionaryEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XDictionary.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XDictionary.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XDictionary.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguProperties.html#IsGermanPreReform
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguProperties.html#IsIgnoreControlCharacters
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguProperties.html

to the listeners of the LinguServiceManager, along with the received events from the spell
checkers and hyphenators.

Therefore, a client that wants to be notified when spell checking or hyphenation changes, for
example, when it features automatic spell checking or automatic hyphenation, needs to be regis-
tered as com.sun.star.linguistic2.XLinguServiceEventListener to the LinguServiceMan-
ager only.

Implementing the com.sun.star.linguistic2.XLinguServiceEventListener interface is
similar to the following snippet: (OfficeDev/Linguistic/LinguisticExamples.java)
/** simple sample implementation of a clients XLinguServiceEventListener
 * interface implementation
 */
public class Client
 implements XLinguServiceEventListener
{
 public void disposing (EventObject aEventObj)
 {
 //! any references to the EventObjects source have to be
 //! released here now!

 System.out.println("object listened to will be disposed");
 }

 public void processLinguServiceEvent(LinguServiceEvent aServiceEvent)
 {
 //! do here whatever you think needs to be done depending
 //! on the event recieved (e.g. trigger background spellchecking
 //! or hyphenation again.)

 System.out.println("Listener called");
 }
};

After the client has been instantiated, it needs to register as com.sun.star.linguistic2.XLin-
guServiceEventListener. For the sample client above, this looks like:
(OfficeDev/Linguistic/LinguisticExamples.java)
XLinguServiceEventListener aClient = new Client();

// now add the client as listener to the service manager to
// get informed when spellchecking or hyphenation may produce
// different results then before.
mxLinguSvcMgr.addLinguServiceManagerListener(aClient);

This enables the sample client to receive com.sun.star.linguistic2.LinguServiceEvents and
act accordingly. Before the sample client terminates, it has to stop listening for events from the
LinguServiceManager:
//! remove listener before programm termination.
//! should not be omitted.
mxLinguSvcMgr.removeLinguServiceManagerListener(aClient);

In the LinguisticExamples.java sample, a property is modified for the listener to be called.

Implementing a Spell Checker
A sample implementation of a spell checker isfound in the
(OfficeDev/Linguistic/SampleSpellChecker.java) file from the examples for linguistics.

The spell checker implements the following interfaces:

• com.sun.star.linguistic2.XSpellChecker
• com.sun.star.linguistic2.XLinguServiceEventBroadcaster
• com.sun.star.lang.XInitialization
• com.sun.star.lang.XServiceDisplayName
• com.sun.star.lang.XServiceInfo

492 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceDisplayName.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XLinguServiceEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XSpellChecker.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguServiceEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguServiceEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguServiceEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XLinguServiceEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XLinguServiceEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XLinguServiceEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XLinguServiceEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XLinguServiceEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XLinguServiceEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XLinguServiceEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XLinguServiceEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XLinguServiceEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XLinguServiceEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XLinguServiceEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XLinguServiceEventListener.html

• com.sun.star.lang.XComponent
and

• com.sun.star.lang.XTypeProvider , to access your add-in interfaces from OpenOffice.org
Basic, otherwise, this interface is not mandatory.

To implement a spell checker of your own, modify the sample in the following ways:

Choose a unique service implementation nameto distinguish your service implementation from any
other. To do this, edit the string in the line
 public static String _aSvcImplName = "com.sun.star.linguistic2.JavaSamples.SampleSpellChecker";

Then, specify the list of languages supported by your service. Edit the
public Locale[] getLocales()

function and modify the
public boolean hasLocale(Locale aLocale)

function accordingly. The next step is to change the
private short GetSpellFailure(...)

as required. This function determines if a word is spelled correctly in a given language. If the word
is OK return -1, otherwise return an appropriate value of the type
com.sun.star.linguistic2.SpellFailure.

Check if you need to edit or remove the
private boolean IsUpper(...)

and
private boolean HasDigits(...)

functions. Consider this only if you are planning to support non-western languages and need
sophisticated versions of those, or do not need them at all. Do not forget to change the code at the
end of
public boolean isValid(...)

accordingly.

Supply your own version of
private XSpellAlternatives GetProposals(...)

It provides the return value for the
public XSpellAlternatives spell(...)

function call if the word was found to be incorrect. The main purpose is to provide proposals for
how the word might be written correctly. Note the list ay be empty.

Next, edit the text in
public String getServiceDisplayName(...)

It should be unique but it is not necessary. If you are developing a set of services, that is,
spellchecker, hyphenator and thesaurus, it should be the same for all of them. This text is
displayed in dialogs to show a more meaningful text than the service implementation name.

Now, have a look in the constructor
public SampleSpellChecker()

at the property names. Remove the entries for the properties that are not relevant to your service
implementation. If you make modification, also look in the file PropChgHelper_Spell.java in the
function

493

http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/SpellFailure.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/SpellFailure.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/SpellFailure.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html

public void propertyChange(...)

and change it accordingly.

Set the values of bSCWA and bSWWA to true only for those properties that are relevant to your imple-
mentation, thus avoiding sending unnecessary com.sun.star.linguistic2.LinguServiceEvent
events, that is, avoid triggering spell-checking in clients if there is no requirement.

Finally, after registration of the service (see 4.9 Writing UNO Components - Deployment Options for
Components) it has to be activated to be used by the LinguServiceManager. After restarting
OpenOffice.org, this is done in the following manner:

Open the dialog Tools � Options � Language Settings � Writing Aids. In the section Writing
Aids, in the box Available Language Modules, a new entry with text of the Service Display Name
that you chose is displayed in the implementation. Check the empty checkbox to the left of that
entry. If you want to use your module, uncheck any other listed entry. If you want to make more
specific settings per language, press the Edit button next to the modules box and use that dialog.

The Context menu of the Writer that pops up when pressing the right-mouse button over an incor-
rectly spelled word currently has a bug that may crash the program when the Java implementation
of a spell checker is used. The spell check dialog is functioning.

Implementing a Hyphenator
A sample implementation of a hyphenator is found in the (OfficeDev/Linguistic/SampleHyphen-
ator.java) file from the examples for linguistic.

The hyphenator implements the following interfaces:

• com.sun.star.linguistic2.XHyphenator
• com.sun.star.linguistic2.XLinguServiceEventBroadcaster
• com.sun.star.lang.XInitialization
• com.sun.star.lang.XServiceDisplayName
• com.sun.star.lang.XServiceInfo
• com.sun.star.lang.XComponent
and

• com.sun.star.lang.XTypeProvider , if you want to access your add-in interfaces from
OpenOffice.org Basic, otherwise, this interface is not mandatory.

Aside from choosing a new service implementation name, the process of implementing the
hyphenator is the same as implementing the spell checker, except that you need to implement the
com.sun.star.linguistic2.XHyphenator interface instead of the
com.sun.star.linguistic2.XSpellChecker interface.

You can choose a different set of languages to be supported. When editing the sample code,
modify the hasLocale() and getLocales() methods to reflect the set of languages your implementa-
tion supports.

To implement the com.sun.star.linguistic2.XHyphenator interface, modify the functions
public XHyphenatedWord hyphenate(...)
public XHyphenatedWord queryAlternativeSpelling(...)
public XPossibleHyphens createPossibleHyphens(...)<

in the sample hyphenator source file at the stated positions.

Look in the constructor

494 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XHyphenator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XHyphenator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XHyphenator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XSpellChecker.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XSpellChecker.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XSpellChecker.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XHyphenator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XHyphenator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XHyphenator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceDisplayName.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XLinguServiceEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XHyphenator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguServiceEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguServiceEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/LinguServiceEvent.html

public SampleHyphenator()

at the relevant properties and modify the
public void propertyChange(...)

function in the file (OfficeDev/Linguistic/PropChgHelper_Hyph.java) accordingly.

The rest, registration and activation is again the same as for the spell checker.

Implementing a Thesaurus
A sample implementation of a thesaurus is found in the
(OfficeDev/Linguistic/SampleThesaurus.java) file from the examples for linguistic.

The thesaurus implements the following interfaces:

• com.sun.star.linguistic2.XThesaurus
• com.sun.star.lang.XInitialization
• com.sun.star.lang.XServiceDisplayName
• com.sun.star.lang.XServiceInfo
• com.sun.star.lang.XComponent
and

• com.sun.star.lang.XTypeProvider , if you want to access your add-in interfaces from
OpenOffice.org Basic, otherwise, this interface is not mandatory.

For the implementation of the thesaurus, modify the sample thesaurus by following the same
procedure as for the spell checker and thesaurus:

Choose a different implementation name for the service and modify the
public Locale[] getLocales()

and
public boolean hasLocale(...)

functions.

The only function to be modified at the stated position to implement the
com.sun.star.linguistic2.XThesaurus interface is
public XMeaning[] queryMeanings(...)

Look in the constructor
public SampleThesaurus()

to see if there are properties you do not require.

Registration and activation is the same as for the spell checker and hyphenator.

7.2.4 Integrating Import and Export Filters
This section explains the implementation of OpenOffice.org import and export filter components,
focussing on filter components. It is intended as a brief introduction for developers who want to
implement OpenOffice.org filters for foreign file formats.

495

http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XThesaurus.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XThesaurus.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XThesaurus.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceDisplayName.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/linguistic2/XThesaurus.html

Approaches
They are several ways to get information into or out of OpenOffice.org: You can

• link against the application core

• use the document API

• use the XML file format

Each method has unique advantages and disadvantages, that are summarized briefly:

Using the core data structure and linking against the application core is the traditional way to
implement filters in OpenOffice.org. The advantages of this method are efficiency and direct access
to the document. However, the core implementation provides an implementation centric view of
the applications. Additionally, there are a number of technical disadvantages. Every change in the
core data structures or objects must be followed by corresponding changes in code that uses them.
Consequently, filters need to be recompiled to match the binary layout of the application core
objects. While these are manageable, albeit cumbersome, for closed source applications, this
method is expected to create a maintenance nightmare if application and filters are developed
separately as is customary in open source applications. Simultaneous delivery of a new application
build and the corresponding filters developed by third parties looks challenging.

Using the OpenOffice.org API based on UNO is more advantageous, since it solves the technical
problems indicated in the above paragraph. The idea is to read data from a file on loading and
build up a document using the OpenOffice.org API, and to iterate over a document model and
write the corresponding data to a file on storing. The UNO component technology insulates the
filter from binary layout, and other compiler and version dependent issues. Additionally, the API
is expected to be more stable than the core interfaces, and provides an abstraction from the core
applications. In fact, the example filter implementation of this section makes use of this strategy
and is based on the OpenOffice.org API.

The third is to import and export documents using the XML-based file format. UNO-based XML
import and export components feature all of the advantages of the previous method, but addition-
ally provide the filter implementer with a clean, structured, and fully documented view of the
document. A significant difficulty in conversion between formats is the conceptual mapping from
the one format to the other. From OpenOffice.org 1.1.0 there are XML filter components that carry
out the mapping at runtime, so that filter implementers can read from XML streams when
exporting and write to XML streams when importing.

The following section describes the second method using the UNO-based API. Further details on
the third method, based on the generic XML format are found in the xml project of OpenOffice.org
under http://xml.openoffice.org/filter/. The third method to create XML based filters is described
afterwards.

Document API Filter Development
First, we provide an overview of the import and export process using a document API, and gain an
understanding of the general concepts.

Introduction

Inside OpenOffice.org a document is represented by its document service, called model. On disk,
the same document is represented as a file or possibly as a dynamic generated output, for example,
of a database statement. We cannot assign it to a file on disk, so we call it content to describe it. A
filter component is used to convert between these different formats.

496 OpenOffice.org 2.3 Developer's Guide • June 2007

http://xml.openoffice.org/filter/
http://xml.openoffice.org/filter/
http://xml.openoffice.org/filter/

If you make use of UNO, this above diagram can be turned into programming reality quite easily.
The three entities in the diagram, content, model, and filter, all have direct counterparts in UNO
services. The services consist of several interfaces that map to a specific implementation, for
example, using C++ or Java.

The filter writer creates a class that implements the com.sun.star.document.ExportFilter or
com.sun.star.document.ImportFilter services, or both. To achieve this, the corresponding
stream or URL is obtained from the com.sun.star.document.MediaDescriptor. The incoming
data is then interpreted and the model is used by calling the appropriate methods. The available
methods depend on the type of document as described by the document service.

For a list of available document services, refer to the section 7.1.3 Office Development -
OpenOffice.org Application Environment - Using the Component Framework - Models - Document Specific
Features.

Filtering Process

Inside OpenOffice.org, the whole process of loading or saving contents is realized as a modular
system that is based on UNO services. It functions generically in many components and is easily
adapted to the developer's needs through the addition of custom modules or the removal of others.

Loading:
A URL or a stream is passed to
com.sun.star.frame.XComponentLoader:loadComponentFromURL(). The load properties
create a com.sun.star.document.MediaDescriptor that is filled with the URL or stream, and
the load properties. The component loader implementation passes the information about the
resource to the TypeDetection.

The com.sun.star.document.TypeDetection uses the MediaDescriptor to determine a
unique type name that is necessary to create a filter instance at the
com.sun.star.document.FilterFactory.

497

 Illustration 7.16: Import/Export Filter Process

http://api.openoffice.org/docs/common/ref/com/sun/star/document/FilterFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/FilterFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/FilterFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/TypeDetection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/TypeDetection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/TypeDetection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html#loadComponentFromURL
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html#loadComponentFromURL
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html#loadComponentFromURL
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/ImportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/ImportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/ImportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/ExportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/ExportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/ExportFilter.html

The TypeDetection also employs the com.sun.star.document.ExtendedTypeDetectionthat
examines the given resource and confirms the unique type name determined by TypeDetec-
tion. The MediaDescriptor is updated, if necessary, and a unique type name is returned.

Finally, the component loader ensures there is a frame, or creates a new one, if necessary, and
asks a frame loader service (com.sun.star.frame.FrameLoader or
com.sun.star.frame.SynchronousFrameLoader) to load the resource into the frame. Its inter-
face com.sun.star.frame.XFrameLoader has a method load() that takes a frame, the Media-
Descriptor and an event listener, and creates a com.sun.star.document.ImportFilter
instance at the FilterFactory to load the resource into the given frame. For this purpose, it
calls createInstance() with the filter implementation name (such as
com.sun.star.comp.Writer.GenericXMLFilter) or createInstanceWithArguments() with the
implementation name and additional arguments used to initialize the filter.

Then, the loader calls setTargetDocument() and filter() on the ImportFilter service. The
ImportFilter creates its results in the given target document.

Storing to a URL:
A URL or a stream is passed to storeToURL() or storeAsURL() in the interface
com.sun.star.frame.XStorable, implemented by office documents. The store properties
create a media descriptor that is filled with the URL or stream, and the store properties. The
TypeDetection provides a unique type name that is used with the FilterFactory to create a
com.sun.star.document.ExportFilter.

The XStorable implementation calls setSourceDocument() and filter() at the filter, which
writes the results to the storage specified in the MediaDescriptor passed to filter().

 Many existing filters are legacy filters. The XStorable implementation does not use the FilterFactory
to create them, but triggers filtering by internal calls.

If a URL or an already open stream takes part in the load or save process of the OpenOffice.org,
the following services and operations are involved:

498 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/document/ExportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/ExportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/ExportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/ImportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/ImportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/ImportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrameLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrameLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrameLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/SynchronousFrameLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/SynchronousFrameLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/SynchronousFrameLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/ExtendedTypeDetection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/ExtendedTypeDetection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/ExtendedTypeDetection.html

In the following, the modules that participate in the loading process are discussed in detail.

MediaDescriptor

The media descriptor is an abstract description of a content specifying the where from and the how
for the handling of the content to be performed. A content is also called a medium. Refer to 7.1.5
Office Development - OpenOffice.org Application Environment - Handling Documents - Loading Docu-
ments - MediaDescriptor for further information. Inside the OpenOffice.org, it is realized as a
sequence of com.sun.star.beans.PropertyValue structs as a parameter.

A descriptor is passed to various methods which are involved in the load and save process.

Every member of the process can use this descriptor and change it to update the information about
the document. This descriptor is used as an [inout] parameter by
com.sun.star.document.XTypeDetection:queryTypeByDescriptor() and
com.sun.star.document.XExtendedFilterDetection:detect(). The MediaDescriptor is [in]
only in com.sun.star.frame.XComponentLoader:loadComponentFromURL(),
com.sun.star.frame.XFrameLoader:load() and com.sun.star.document.XFilter:filter().

499

 Illustration 7.17: General Filtering Process

http://api.openoffice.org/docs/common/ref/com/sun/star/document/XFilter.html#filter
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XFilter.html#filter
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XFilter.html#filter
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrameLoader.html#load
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrameLoader.html#load
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrameLoader.html#load
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html#loadComponentFromURL
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html#loadComponentFromURL
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html#loadComponentFromURL
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XExtendedFilterDetection.html#detect
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XExtendedFilterDetection.html#detect
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XExtendedFilterDetection.html#detect
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XTypeDetection.html#queryTypeByDescriptor
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XTypeDetection.html#queryTypeByDescriptor
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XTypeDetection.html#queryTypeByDescriptor
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html

With methods that take the MediaDescriptor as [in] parameter only, a manual synchronization
must be done by the outside code. The caller of a method that accepts the MediaDescriptor as [in]
parameter only merges the results, for example, return values, manually into the original
descriptor. The model is not available at loading time. It is the result of the load request.

 It is not allowed to hold a member of this descriptor by reference longer than it is used, especially a possible
stream item. For example, it would not be possible to close a stream that is still referenced by others. It is
only allowed to use it directly or as a copy.

 The stream part of the MediaDescriptor is a special item. If a stream exists, it must be used. Only if a
stream does not exist, is it allowed to open a new one using the URL. The stream should be set in the Medi-
aDescriptor to provide it for following users of the descriptor.
One rule exists for all: the stream inside the descriptor should be seekable. In case it is not, it makes no sense
to provide it to the other members of the whole process, especially used sub-modules. On the other hand, a
module can be called with a non-seekable stream from outside to perform the operation. For example, for
detection or loading it should be no problem. In case a non-seekable stream comes in, but seeking is impor-
tant, it must be used buffered.
Another central question is: who controls the lifetime of the stream or the stream position ? The lifetime of a
non-seekable stream is controlled by the creator everytime. It has to be deleted after using. Seekable streams
should be added to the MediaDescriptor and will be released by the creator of the MediaDescriptor.
Every (sub-) module must be called with a stream seeked to position 0. Of course, non-seekable streams
must be newly created and unused. Internally it can do anything with this stream. Furthermore it is not
necessary (or even impossible) to restore any positions. The user of the module has to do such things.

TypeDetection

Every content to be loaded must be specified, that is, the type of content represented in the
OpenOffice.org must be well known in OpenOffice.org. The type is usually document
type,.however, the results of active contents, for example, macros, or database contents are also
described here.

A special service com.sun.star.document.TypeDetection is used to accomplish this. It provides
an API to associate, for example, a URL or a stream with the extensions well known to
OpenOffice.org, MIME types or clipboard formats. The resulting value is an internal unique type
name used for further operations by using other services, for example,
com.sun.star.frame.FrameLoaderFactory. This type name can be a part of the already
mentioned MediaDescriptor.

It is not necessary or useful to replace this service by custom implementations.,It works in a generic
method on top of a special configuration. Extending the type detection is done by changing the
configuration and is described later. It is required to make these changes if new content formats are
provided for OpenOffice.org, because this is the reason to integrate custom filters into the product.

ExtendedTypeDetection

Based on the registered types, flat detection is already possible, that is,. the assignment of types, for
example, to a URL, on the basis of configuration data only. Tlat detection cannot always get a
correct result if you imagine someone modifying the file extension of a text document from .odt
to .txt.. To ensure correct results, we need deep detection, that is, the content has to be exam-
inedThe com.sun.star.document.ExtendedTypeDetection service performs this task. It is called
detector. It gets all the information collected on a document and decides the type to assign it to. In
the new modular type detection, the detector is meant as a UNO service that registers itself in the
OpenOffice.org and is requested by the generic TypeDetection mechanism, if necessary.

500 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/document/ExtendedTypeDetection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/ExtendedTypeDetection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/ExtendedTypeDetection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameLoaderFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameLoaderFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameLoaderFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/TypeDetection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/TypeDetection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/TypeDetection.html

To extend the list of the known content types of OpenOffice.org, we suggest implementing a
detector component in addition to a filter. It improves the generic detection of OpenOffice.org and
makes the results more secure.

Inside OpenOffice.org, a detector service is called with an already opened stream that is used to
find out the content type. In case no stream is given, it indicates that someone else uses this service,
for example, outside OpenOffice.org). It is then allowed to open your own stream by using the
URL part of the MediaDescriptor. If the resulting stream is seekable, it should be set inside the
descriptor after its position is reset to 0. If the stream is not seekable, it is not allowed to set it.
Please follow the already mentioned rules for handling streams.

FrameLoader

Frame loaders load a detected type. A visual component is expected as the result. Such visual
components are:

• trivial components only implementing com.sun.star.awt.XWindow
• simple office components implementing the com.sun.star.frame.Controller service

• full featured office components implementing the com.sun.star.document.OfficeDocument
service.

Further details are found in section 7.1.1 Office Development - OpenOffice.org Application Environment
- Overview - Framework API.

A frame loader service exist in different versions:

• com.sun.star.frame.FrameLoader for asynchronous

• com.sun.star.frame.SynchronousFrameLoader for synchronous load processes.

It can be searched or created by another service com.sun.star.frame.FrameLoaderFactorythat
is described below. The synchronous version is optional. Both services can be implemented at the
same component, but the synchronous version is preferred, if it is supported.

There are two ways to extend OpenOffice.org to load a new content format:

• implementing a frame loader that uses its own internal mechanism to create the expected visual
component, for example, . local file access.

• implementing a filter that does the same,but isused by a generic frame loader implementation.

Note that the first method does not work for exporting, because a loader service can not be used at
save timeTo enable a content format for import and export is to provide a filter service. A generic
frame loader implementation already exists in OpenOffice.orgthat uses all well known registered
filters in a uniform way. So the second method is preferred.

Filter

Most of the services described before are used for loading. Normally, they are not necessary for
saving, except the MediaDescriptor. Only filters are fixed members of both processes.

These objects also represent a service. Their task is to import or export the content of a type into or
from a model. Accordingly, import filters are distinguished from export filters. It is possible to
provide both functionality in the same implementation.

A filter is acquired from the factory service com.sun.star.document.FilterFactory. It provides
a low-level access to the configuration that knows all registered filters of OpenOffice.org, supports
search functionality, and creates and initializes filter components. The description of this factory
and its configuration are provided below.

501

http://api.openoffice.org/docs/common/ref/com/sun/star/document/FilterFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/FilterFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/FilterFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameLoaderFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameLoaderFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameLoaderFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/SynchronousFrameLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/SynchronousFrameLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/SynchronousFrameLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Controller.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Controller.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Controller.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html

If a filter wants to be initialized with its own configuration data or get existing parameters of the
corresponding create request, it implements the interface com.sun.star.lang.XInitialization.
The method initialize() is used directly after creation by the factory and is the first request on a
new filter instance. The parameter list of initialize() uses the following protocol:

• The first item in the list is a sequence of com.sun.star.beans.PropertyValue structs, that
describe the configuration properties of the filter.

• All other items are directly copied from the parameter Arguments of the factory interface
method com.sun.star.lang.XMultiServiceFactory:createInstanceWithArguments().

A filter should be initialized, because one generic implementation is registered to handle different
types, it must know which specialization is required. The simplest way to achieve this for the filter
is to know its own configuration data, especially the unique internal name.

This information is used internally then, or it is provided by the interface
com.sun.star.container.XNamed. An owner of a filter uses the provided name to find specific
information about this component by using the FilterFactory service.

 The interface provides functionality for reading and writing of this name. It is not allowed to change an
internal filter name during runtime of OpenOffice.org, because all filter names must be unique and it is not
possible for a filter instance to alter its name. Calls to com.sun.star.container.XNamed:setName()
should be ignored or forwarded to the FilterFactory service, which knows all unique names and can solve
ambigities!

This code snippet initializes a filter instance:
private String m_sInternalName;
public void initialize(Object[] lArguments)
 throws com.sun.star.uno.Exception
 {
 // no arguments – no initialization
 if (lArguments.length<1)
 return;

 // Arguments[0] = own configuration data
 com.sun.star.beans.PropertyValue[] lConfig =
 (com.sun.star.beans.PropertyValue[])lArguments[0];

 // Arguments[1..n] = optional arguments of create request
 for (int n=1; n<lArguments.length; ++n)
 {
 ...
 }

 // analyze own configuration data for our own internal
 // filter name! Important for generic filter services,
 // which are registered more then once. They can use this
 // information to find out, which specialization of it
 // is required.
 for (int i=0; i<lConfig.length; ++i)
 {
 if (lConfig[i].Name.equals("Name"))
 {
 m_sInternalName =
 AnyConverter.toString(lConfig[i].Value);

 // Tip: A generic filter implementation can use this internal
 // name at runtime, to detect which specialization of it is required.
 if (m_sInternalName==”filter_format_1”)
 m_eHandle = E_FORMAT_1;
 else
 if (m_sInternalName==”filter_format_2”)
 ...
 }
 }
 }

Furthermore, depending on its action a filter supports the services
com.sun.star.document.ImportFilter for import or com.sun.star.document.ExportFilter
for export functionality.

502 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/document/ExportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/ExportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/ExportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/ImportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/ImportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/ImportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html#setName
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html#setName
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html#setName
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html#createInstanceWithArguments
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html#createInstanceWithArguments
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html#createInstanceWithArguments
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html

The common interface of both services is com.sun.star.document.XFilter starts or cancels the
filter process. How the cancelling is implemented is an internal detail of the filter implementation,
however a thread is a good solution.

On calling com.sun.star.document.XFilter:filter(), the already mentioned MediaDe-
scriptor is passed to the service. It includes the necessary information about the content, for
example, the URL or the stream, but not the source or the target model for the filter process.

Additional interfaces are part of the service description, com.sun.star.document.XImporter and
com.sun.star.document.XExporter to get this information. These interfaces are used directly
before the filter operation is started. A filter saves the model set by setTargetDocument() and
setSourceDocument(), and uses it inside its filter operation.

 The filter() method does not include any information about the required import or export functionality.
It seems that it is not possible to implement both at the same object. The interfaces XImporter/XExporter are
used to solve this conflict. Only one of them is called for one filter() request. So an internal flag that indi-
cates the using of an interface helps.

This example code detects the required filter operation: (OfficeDev/FilterDevelopment/Ascii-
Filter/AsciiReplaceFilter.java)
private boolean m_bImport;

 // used to tell us: "you will be used for import"
 public void setTargetDocument(
 com.sun.star.lang.XComponent xDocument)
 throws com.sun.star.lang.IllegalArgumentException
 {
 m_bImport = true;
 }

 // used to tell us: "you will be used for export"
 public void setSourceDocument(
 com.sun.star.lang.XComponent xDocument)
 throws com.sun.star.lang.IllegalArgumentException
 {
 m_bImport = false;
 }

 // detect required type of filter operation
 public boolean filter(
 com.sun.star.beans.PropertyValue[] lDescriptor)
 {
 boolean bState = false;
 if (m_bImport==true)
 bState = impl_import(lDescriptor);
 else
 bState = impl_export(lDescriptor);
 return bState;
 }

The MediaDescriptor does not include the model, but it should include the already opened
stream, true for the current implementation in OpenOffice.org. If it is there, it must be used. Only if
a stream does not exist, it indicates that someone else uses this filter service, for example, outside
OpenOffice.org, it creates a stream of your own by using the URL parameter of the descriptor.

In general, a filter must not change the position of an incoming stream without reading or writing
data. The position inside the stream is 0. Follow the previouslymentioned rules for handling
streams of the section about the MediaDescriptor above. We can make these rules easier, because
currently there are no external filters used inside office. See descriptions of the chapter �MediaDe-
scriptor� before ...)).

Filter Options

It is possible to parameterize a filter component. For example, the OpenOffice.org filter "Text -
txt - csv (StarCalc)" needs a separator used to detect columns. This information is trans-
ported inside the MediaDescriptor. A special property named FilterData of type any exists. The
value depends on the filter implementation and is not specified.

503

http://api.openoffice.org/docs/common/ref/com/sun/star/document/XExporter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XExporter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XExporter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XImporter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XImporter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XImporter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XFilter.html#filter
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XFilter.html#filter
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XFilter.html#filter
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XFilter.html

 There is another string property named FilterOptions. It should be used if the flexibility of an any is not
required. For historical reasons, a third-string property FilterFlags exists. It is deprecated, so it is not
recommend for use.

A generic UI that uses a filter as one part of a load request does not know about special parame-
ters. Normally, the FilterData are not set inside the media descriptor, therefore a filter should use
default values. It should be possible to prompt the user for better values by registering another
component that implements the service com.sun.star.ui.dialogs.FilterOptionsDialog. It is
called UIComponent. It enables a filter developer to query for user options before the filter opera-
tion is performed. It does not show this dialog inside the filter, because any UI can be suppressed,
for example, an external application uses the API of OpenOffice.org for scripting running in a
hidden mode. The code that uses the filter decides if it is necessary and allowed to use the dialog.
If not, the filter lives with missing parameters and uses default values. If it is not possible to have
defaults, it aborts the filter() request returning false.

The UIComponent provides an interface com.sun.star.beans.XPropertyAccess used to set the
whole MediaDescriptor before executing the dialog using the FilterOptionsDialog interface
com.sun.star.ui.dialogs.XExecutableDialog and retrieves the changes. The user of the dialog
decides if the changes are merged with the original ones or replaced. Using the whole descriptor
provides the informtion about the environment in which the filter works, for example, the URL or
information about preview mode. The parameters of a filter depend on it. Normally a UICompo-
nent is shown if no FilterData or FilterOptions are part of the descriptor, so that they are added. In
the case where they exist, it is necessary to change it.

 If the filter programmer wants to implement a generic dialog for different filters, then he must know which
of these filters the UIComponent is shown. This information exists inside the MediaDescriptor, called Filter-
Name. The outside code which uses the dialog knows this filter alsoand should set it in the descriptor,
because the implementation name of the component must be known to create the dialog. This information
exists inside the configuration where it is registered for a filter.

Configuring a Filter in OpenOffice.org

As previously discussed, the whole process of loading and saving content works generically in
many components and can be adapted to the needs of a user through the addition of custom
modules or the removal of others. All this information about services and parameters are orga-
nized in a special configuration branch of OpenOffice.org called org.openoffice.Office.TypeDetection.
The principal structure is shown below:

504 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/ui/dialogs/XExecutableDialog.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/dialogs/XExecutableDialog.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/dialogs/XExecutableDialog.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/dialogs/FilterOptionsDialog.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/dialogs/FilterOptionsDialog.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/dialogs/FilterOptionsDialog.html

As shown on the left, the file consists of lists called sets. The list items are described by the struc-
tures shown on the right to which the arrows point. It works similar to 1:n relations in a database.
Every filter, frame loader, detector is registered for one or multiple types. The detection of the
proper type is important for the functionality of the whole system. If the right loader or filter
cannot be found, the load or save request does not produce the right results.

To extend OpenOffice.org to load or save new content formats, a new type entry is added
describing the new content. Furthermore, a filter item is registered for this new type. An optional
and recommended change for a detector can be done.

 It is not a good idea to edit the configuration branch files directly to make these changes. It is better to use
the configuration API to do so, because the format of the file may be changed in the future. The properties
describing the components, such as types and filters, are always the same and are not likely to be changed or
in an incompatible manner. It is better to add entries by specifying their properties using the API only. To
make this easier for external programmers, this manual provides a OpenOffice.org Basic script that is used
for that purpose called regfilter.bas.

The work to be done by the filter programmer is to provide an ini file that includes the properties and start
the basic script inside OpenOffice.org. The script reads the file and uses it to change the configuration
package. These changes are done for the user layer of the configuration, so it is possible to restore the orig-
inal state. There is also an example ini file in the samples folder for this manual that can be used for your
own purposes called regfilter.ini.

505

 Illustration 7.18: Structure of org.openoffice.Office.TypeDetection Configuration Branch

General Notes

In OpenOffice.org, there are services providing a special API to access the underlying configura-
tion repository. Most of these services support container functionality and allow read access
whereas some services offer write access also . During runtime, every configuration item, such as
type, filter, and detector, is represented as a sequence of com.sun.star.beans.PropertyValue
structs. The next sections describe the names and values of those structures.

Necessary Steps

To extend OpenOffice.org by new content formats, use the following steps:

1. Implement a filter component. It must be able to load or save the type it is registered for. For
access to the office, only the API of the document service or universal content provider keeps
the filter compatible with new versions of OpenOffice.org.

2. Provide an implementation of a com.sun.star.document.ExtendedTypeDetection service to
analyze a given content. It must return an internal type name representing the type or an empty
value for unknown formats.

3. Add a filter options dialog if the implemented filter requires additional parameters. Keep it
separate from the filter and change the given MediaDescriptor based on user input.
Document the parameters so that an external script programmer can use this information to
provide proper values to the MediaDescriptor.

4. Register the component libraries as UNO services inside OpenOffice.org. This is done by the
mechanism described in the chapter 4.9 Writing UNO Components - Deployment Options for
Components.

5. Adapt the configuration branch org.openoffice.Office.TypeDetection so that it knows these new
components. Use OpenOffice.org Basic script regfilter.bas that is provided as an additional tool
in this chapter. It requires an ini file that is specified inside the subroutine Main of the script and
has to be adjusted for your own purposes. It is well documented, and uses the names and value
types described in this manual.

Properties of a Type

Every type inside OpenOffice.org is specified by the properties shown in the table below. These
values are accessible at the previously mentioned service com.sun.star.document.TypeDetec-
tion using the interface com.sun.star.container.XNameAccess. Write access is not available
here. All types are addressed by their internal names.

Properties of a Document Type, available at TypeDetection
Name string. The internal name of a type must be unique and is also used as a list entry.

It contains any special characters, but they must been coded.

UIName string. Displays the type at the user interface under a localized name. You must
assign a value for a language, thus supporting CJK versions. All Unicode charac-
ters are permitted here.

MediaType string. Describes the MIME type of the contents. The reason is that the internal
names can be altered at any time without affecting the process.

ClipboardFormat string. The format is a unique description of this type for use in clipboards.

URLPattern sequence<string>. Important components of a type are the patterns. They enable
the support of your own URL schemata, for example, in OpenOffice.org
"private:factory/swriter" for opening an empty text document. The wildcards '*' or
'?' are supported here.

506 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/TypeDetection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/TypeDetection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/TypeDetection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/TypeDetection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/TypeDetection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/TypeDetection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/ExtendedTypeDetection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/ExtendedTypeDetection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/ExtendedTypeDetection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html

Properties of a Document Type, available at TypeDetection
Extensions sequence<string>. The type of a content can be derived from its URL by its exten-

sion. In most cases, the flat detection depends on them alone.

Preferred boolean. Since file extensions cannot always be assigned to a unique type, this flag
was introduced. It indicates the preferred type for a group of types with similar
properties, otherwise, the first match is used.

DocumentIconID int. You can assign an icon to a type. To do this, the ID is used as reference to a
resource. This feature is currently not supported in OpenOffice.org.

Properties of an ExtendedTypeDetection Service

In contrast to filters or frame loaders, the ExtendedTypeDetection has no configuration API on top
of its configuration data. The normal configuration API of OpenOffice.org has to be used, as
described in 16 Configuration Management. The configuration set org.openoffice.Office.Type-
Detection/DetectServices could be used, but it is better to use the already mentioned basic
macro regfilter.bas in combination with regfilter.ini. Such detector services are used automatically
during type detection of content. A detector service is addressed by its UNO implementation
name.

Property Name Description
ServiceName string. This must be a valid UNO implementation name. This field cannot contain

the service name, because this value must be unique, otherwise it would be impos-
sible to distinguish more than one registered entry, for a service name is not
unique. This value is also an entry in the corresponding configuration list.

Types sequence<string>. A list of type names recognized by this service that makes it
possible to write a servicethat detects more than one type.

Properties of a Filter

Every filter is registered for only one type . Multiple registrations are to be done by multiple
configuration entries. One type is handled by more than one filter. Flags also regulate the use of
the preferred filter. A filter is described by the following properties:

Property Name Description
Name string. The internal name of a filter must be unique and is also used as list entry. It

contains special characters, but they must be encoded.

UIName string. A filter should be able to show a localized name in selection dialogs. You
must assign a value for a language, thus supporting CJK versions. All Unicode
characters are permitted here.

Installed boolean. This flag indicates the installation status of a filter. A filter is generally
registered equally for all users. In a network installation you should deactivate this
for certain groups or single users.

Note: A filter works only if the component library has already been registered in
OpenOffice.org.

Order int. This number shows filters in a user defined order. Valid values are greater then
0. If the number is set to 0, sorting is done alphabetically by the UIName property
of the filter. The same applies to filters that have the same Order value.

507

Property Name Description
Type string. A filter must register itself for the type it can handle. Multiple assignments

are not allowed. Multiple configuration entries must be created, one for every
supported type.

DocumentService string. Describes the component for which the filter operates,For example,
"com.sun.star.text.TextDocument", depending upon the use., This is
considered the output or goal of the filter process. A UNO service name is
expected. Note: The implementation name cannot be used here, the generic type of
the document is needed.

FilterService string. This is the UNO implementation name of the filter. It should be clear that
this field can not contain the service name of a filter, otherwise OpenOffice.org
could not distinguish more then one registered filter.

UIComponent string. Describes an implementation of a UI dialog used by the filter to let the user
modify certain properties for filtering. For example, the "Text - txt - csv
(StarCalc)" needs information about the used column separators to load data.
To distinguish between different implementations, it must be the real UNO imple-
mentation name, not a service name.

Flags int. Describes the filter, as shown in the table below. This is where, the organiza-
tion into import and export filters takes place. Note that external filters must set the
ThirdParty flag to be detected.

UserData sequence<string>. Some filters need to store more configuration data than usual.
This is realized through this entry. The format of the string list is not restricted.

FileFormatVersion int. Indicates a version number of a document that can be edited by this filter.

TemplateName string. The name of a template file for importing styles. It is a special feature for
importing documents only and not useable for export. Every OpenOffice.org docu-
ment service knows default styles. If this TemplateName is set, it merges these
default styles with the styles of the template, and the template styles are merged
with all styles of a document that is imported by this filter.

Most functionality of a Filter is listed by its flags. They are necessary to prevent a filter from being
displayed in a UI, and to classify import and export, or internal a nd external filters, and prefer
some filters to others. Currently supported flags are:

Name Value Description

Import 0x00000001 h This filter supports the specification of a com.sun.star.docu-
ment.ImportFilter and is used for loading content.

Export 0x00000002 h This filter supports the specification of a com.sun.star.docu-
ment.ExportFilter and is used for saving content.

Template 0x00000004 h These filters are specialized to handle template formats. By
default, a filtered document is used as a template to create a new
document .

Internal 0x00000008 h This filter should never be shown on any UI and not be avail-
able.

OwnTemplate 0x00000010 h Templates used with the template API of OpenOffice.org and it
supports the internal template features. For older versions, it is
useable for internal content formats only.

Own 0x00000020 h Tag the intrinsic content formats of OpenOffice.org based on
OLE storage or zip packages.

508 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/document/ExportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/ExportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/ExportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/ExportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/ExportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/ExportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/ImportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/ImportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/ImportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/ImportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/ImportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/ImportFilter.html

Name Value Description

Alien 0x00000040 h A filter with this flag is not fully compatible with the current
document format. It is unclear what document features will be
lost during saving. This flag decides if a warning box on saving
has to be shown.

UsesOptions
 (deprecated)

0x00000080 h This filter could be customized during processing. Older
versions of OpenOffice.org used it to customize the "SaveAs"
dialog. Newer versions uses the filter property "UIComponent"
to tell if a filter provides filter options.

Default 0x00000100 h Mark a filter as the default filter for saving. Only one filter in an
application module, distinguished through the DocumentSer-
vice property, has this flag set.

NotInFileDialog 0x00001000 h Suppress display of a filter in file open and save dialogs.

NotInChooser 0x00002000 h Suppress display of a filter in UI elements for choosing filters.

ThirdParty 0x00080000 h These filters are developed by external parties. For historical
reasons, the filter detection of OpenOffice.org differentiates
between old internal and new external ones, because the former
are not UNO based and are used differently.

Preferred 0x10000000 h If more than one filter is registered for the same type, this flag
prefers one of them at loading time if the user does not select a
specific filter. In contrast to the Default flag, it does not depend
on the application module, but there can only be one preferred
filter for a type.

 Besides these filter flags there are other flags existing that are used currently, but are not documented here.
Use documented flags only.

The service com.sun.star.document.FilterFactory provides these data. It supports read access
by using the interface com.sun.star.container.XNameAccess. All items are addressed by their
internal names. The return value is represented as a list of type com.sun.star.beans.Property-
Value structures. It uses the filter properties shown above.

Another aspect of this service is the factory interface com.sun.star.lang.XMultiServiceFac-
tory. It creates filter instances using an internal type, or an internal filter name directly. Using a
type name searches for a suitable filter and creates, initializes and returns it. Using a filter name
directly follows the algorithm shown in the box below. Note that creation of filters is possible for
external ones only that have set the FilterService property. Most of the current filters of
OpenOffice.org are internal filters, implemented as local code, but not as a UNO service. They can
not be created by this FilterFactory. It is possible to ask only for their properties.

 Direct creation of a filter instance is only possible using a special argument in the
createInstanceWithArguments() call of the interface XMultiServiceFactory. To do so, a
com.sun.star.beans.PropertyValue FilterName with the internal name of the requested filter as
value must be used. Otherwise, the service specifier, that is, the first argument of the create call, is inter-
preted as an internal type name. It will be used to search a suitable, preferred filter that will be created. It is a
combination of searching and creation. Future implementations will split that to make it clearer. In future
implementations, a registered filter must be searched through the provided query mechanism and created
by using this factory interface.

509

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/FilterFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/FilterFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/FilterFactory.html

Properties of a FrameLoader

OpenOffice.org distinguishes asynchronous (com.sun.star.frame.FrameLoader) and synchro-
nous (com.sun.star.frame.SynchronousFrameLoader) frame loader implementations, but the
configuration does not recognize that. The interface is supported by the loader is detected at
runtime , the synchronous interface being preferred. The following properties describe a loader:

Properties of a FrameLoader
Name string. This must be a valid UNO implementation name. It should be obvious that this

field can not contain the service name, because this value must be unique. Otherwise
OpenOffice.org could not distinguish more than one registered entry, for there can be
several implementations for a service name. This value is also an entry in the corre-
sponding configuration list.

UIName string. Displays the loader at a localized user interface. You must assign a value for a
language, thus supporting CJK versions. All Unicode characters are permitted.

Types sequence<string>. A list of type names recognized by this service You can also imple-
ment and register loader for groups of types.

The service com.sun.star.frame.FrameLoaderFactory makes this data available. It uses the
same mechanism as the com.sun.star.document.FilterFactory, that is, an interface for data
access, com.sun.star.container.XNameAccess, and another one for creation of such a Frame-
Loader, com.sun.star.lang.XMultiServiceFactory.

There are other properties than the properties described, for example, for the ContentHandler.
They are not necessary for the environment of filters, or loading and saving documents, so they are
not described. Additional information is found at http://framework.openoffice.org.

There is one entry in the configuration, used as a fallback if a registered item is not found, the
generic FrameLoader. It is not necessary for an external developer to provide a frame loader to add
support for an unknown document format to OpenOffice.org. It is enough to register a new filter
component that is used by this special loader in a generic manner.

XML Based Filter Development

Introduction

This chapter outlines the development of XML based filtering components that use the XML filter
adaptor framework. The XML filter adaptor is a generic com.sun.star.document.XFilter imple-
mentation. It has been designed to be reusable, and to supply a standard method of designing and
referencing XML based import and export filters. The XML filter adaptor does not perform any of
the filtering functionality itself, but instead is used to instantiate a filtering component.

The advantage of the XML filter adaptor framework is that you do not have to work with docu-
ment models to create a document from an import file, nor do you have to iterate over a document
model to export it to a different file format. Rather, you can use the OpenOffice.org XML file
format to import and export. When importing, you parse your import file and send OpenOffice.org
XML to the filter adaptor, which creates a document for you in the GUI. When exporting, the office
sends a description of the current document as OpenOffice.org XML, so that you can export
without having to iterate over a document model.

The course of action during export and import can be described as follows: when a user clicks
File-Open, or some UNO code calls loadComponentFromURL(), the office looks in the type detec-
tion configuration to identify an import filter and optionally checks the file format by doing some
deep detection. It instantiates the import filter it finds and uses its method importer() to pass a

510 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/xml/XImportFilter.html#importer
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/XImportFilter.html#importer
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/XImportFilter.html#importer
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XFilter.html
http://framework.openoffice.org/
http://framework.openoffice.org/
http://framework.openoffice.org/
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/FilterFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/FilterFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/FilterFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameLoaderFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameLoaderFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameLoaderFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/SynchronousFrameLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/SynchronousFrameLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/SynchronousFrameLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameLoader.html

MediaDescriptor for the source, a specialized XML document handler for OpenOffice.org XML,
and user data. The import filter has to read the import source and deliver OpenOffice.org XML to
the document handler received in the call to importer(), emulating a SAX parser that calls the
parser callback functions.

Similarly, the office instantiates an export filter after clicking File-Save (As) or a call to
storeXXX(), and uses its method exporter() to pass a target location and user data. In this case,
the office expects the export filter to be a com.sun.star.xml.sax.XDocumentHandler, which is
able to handle OpenOffice.org XML. The office creates an export stream with OpenOffice.org XML,
and parses this XML so that the export filter receives the SAX callbacks and can translate them to
whatever is necessary, writing the result to the target received in the call to
com.sun.star.xml.XExportFilter:exporter().

Components of a Filter

For a filter of this type to operate, three things are necessary.

1. The XML filter adaptor.

2. A filtering component that implements the required interfaces.

3. A valid filter and type definition.

Both the XML filter adaptor and the filtering component are UNO components that can be instanti-
ated through the com.sun.star.lang.XMultiServiceFactory:createInstance() method.
Since the XML filter adaptor is generic, the filtering component is all that needs to be implemented.
Once this has been done, the TypeDetection.xcu file can be expanded to include the newly created
filter definition.

Writing the Filtering Component

The filtering component must implement the following interfaces as described by the
com.sun.star.xml.ImportFilter service and the com.sun.star.xml.ExportFilter service:

Importer:
com.sun.star.xml.XMLImportFilter

Exporter:
com.sun.star.xml.XMLExportFilter and com.sun.star.xml.sax.XDocumentHandler

XImportFilter

The servicecom.sun.star.xml.XMLImportFilter defines an interface with the following method:
boolean importer(
 [in] sequence< com::sun::star::beans::PropertyValue > aSourceData,
 [in] com::sun::star::xml::sax::XDocumentHandler xDocHandler,
 [in] sequence< string > msUserData)

aSourceData is a MediaDescriptor, which can be used to obtain the following information:

• An XInputStream
This is a stream that is attached to the source to be read. This can be a file, or some other data
source.

• Filename
This is the name of the file on the disk, that the input stream comes from.

• Url
This is a url describing the location being read.

511

http://api.openoffice.org/docs/common/ref/com/sun/star/xml/XMLImportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/XMLImportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/XMLImportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/sax/XDocumentHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/sax/XDocumentHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/sax/XDocumentHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/XMLExportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/XMLExportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/XMLExportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/XMLImportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/ExportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/ExportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/ExportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/ImportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/ImportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/ImportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html#createInstance
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html#createInstance
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html#createInstance
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/XExportFilter.html#exporter
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/XExportFilter.html#exporter
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/XExportFilter.html#exporter
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/sax/XDocumentHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/sax/XDocumentHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/sax/XDocumentHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/XExportFilter.html#exporter
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/XExportFilter.html#exporter
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/XExportFilter.html#exporter

xDocHandler is a SAX event handler that can be used when parsing an XInputStream, which may
or may not contain OpenOffice.org XML. Before this stream can be read by OpenOffice.org, it will
need to be transformed into OpenOffice.org XML.

msUserData is an array of Strings , that contains the information supplied in the UserData
section of the Filter definition in the TypeDetection.xcu file.

XExportFilter

The com.sun.star.xml.XExportFilter defines an interface with the following method:
boolean exporter(
[in] sequence< com::sun::star::beans::PropertyValue > aSourceData,
[in] sequence< string > msUserData)

aSourceData and msUserData contain the same type of information as in the importer, except that
the MediaDescriptor contains an XOutputStream , which can be used to write to.

XDocumentHandler

When the export takes place, the new Filtering component must also be an XDocumentHandler , to
allow the output based on SAX events to be filtered, if required. For this reason, an XDocumen-
tHandler is not passed to the exporter, and any exporter that is used by the XML filter adaptor
must implement the com.sun.star.xml.sax.XDocumentHandler interface.

The Importer

Evaluating XImportFilter Parameters

The writing of an importer usually starts with extracting the required variables from the Mediade-
scriptor and the userData . These variables are required for the filtering component to operate
correctly. Depending on the requirements of the individual filter, the first thing to do is to extract
the information from the MediaDescriptor, referred to as aSourceData in the interface definition.
This can be achieved as follows:

Get the number of elements in the MediaDescriptor
sal_Int32 nLength = aSourceData.getLength();

Iterate through the MediaDescriptor to find the information needed: an input stream, a file
name, or a URL.
for (sal_Int32 i = 0; i < nLength; i++) {

 if (pValue[i].Name.equalsAsciiL (RTL_CONSTASCII_STRINGPARAM("InputStream")))
 pValue[i].Value >>= xInputStream;

 else if (pValue[i].Name.equalsAsciiL(RTL_CONSTASCII_STRINGPARAM("FileName")
 pValue[i].Value >>= sFileName;

 else if (pValue[i].Name.equalsAsciiL(RTL_CONSTASCII_STRINGPARAM("URL")))
 pValue[i].Value >>= sURL;
}

The msUserData parameter passed to importer() contains information that defines how the filter
operates, so this information must be referenced as required.

Importer Filtering

An XInputStream implementation has now been obtained that contains all of the information you
want to process. From the filtering perspective, you can just read from this stream and carry out
whatever processing is required in order for the input to be transformed into OpenOffice.org XML.
Once this has been done, however, you need to write the result to where it can be parsed into
OpenOffice.org's internal format. A Pipe can be used to achieve this. A Pipe is a form of buffer
that can be written to and read from. For the importer, read from the XInputStream that was

512 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/xml/XImportFilter.html#importer
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/XImportFilter.html#importer
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/XImportFilter.html#importer
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/sax/XDocumentHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/sax/XDocumentHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/sax/XDocumentHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/XExportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/XExportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/XExportFilter.html

extracted from the MediaDescriptor, and once the filtering has taken place, write to a Pipe that
has been created. This Pipe can be read from when it comes to parsing. This is how the Pipe is
created:
Reference <XInterface> xPipe;

// We Create our pipe
xPipe= XflatXml::xMSF->createInstance(OUString::createFromAscii("com.sun.star.io.Pipe"));

// We get an inputStream to our Pipe
Reference< com::sun::star::io::XInputStream > xPipeInput (xPipe,UNO_QUERY);

// We get an OutputStream to our Pipe
Reference< com::sun::star::io::XOutputStream > xTmpOutputStream (xPipe,UNO_QUERY);

The XInputStream can be read from, and the XOutputstream can be written to.

Parsing the Result

Once the desired OpenOffice.org XML has been produced and written to the XOutputStream of
the Pipe, the XinputStream of the Pipe can be parsed with the aid of the XdocumentHandler.
// Create a Parser
const OUString sSaxParser(RTL_CONSTASCII_USTRINGPARAM("com.sun.star.xml.sax.Parser"));
Reference < com::sun::star::xml::sax::XParser > xSaxParser(xMSF->createInstance(sSaxParser), UNO_QUERY);

// Create an InputSource using the Pipe
com::sun::star::xml::sax::InputSource aInput;
aInput.sSystemId = sFileName; // File Name
aInput.aInputStream = xPipeInput; // Pipe InputStream

// Set the SAX Event Handler
xSaxParser->setDocumentHandler(xHandler);

// Parse the result
try {
 xSaxParser->parseStream(aInput);
}
catch(Exception &exc){
 // Perform exception handling
}

Assuming that the XML was valid, no exceptions will be thrown and the importer will return true.
At this stage, the filtering is complete and the imported document will be displayed.

The Exporter

Evaluating XExportFilter Parameters

The exporter() method operates in much the same way as importer(), except that instead of the
exporter using a provided XDocumentHandler, it is itself a com.sun.star.xml.sax.XDocumen-
tHandler implementation.

When the exporter() method is invoked, the necessary variables need to be extracted for use by
the filter. This is the same thing that happens with the importer, except that the MediaDescriptor
contains an XOutputStream , instead of the importer's XInputStream . Once the variables have
been extracted (and� in some cases� a Pipe has been created) the exporter() method returns. It
does not carry out the filtering at this stage.

The pipe is only necessary if the output needs to be processed further after being processed by the XDocu-
mentHandler. Otherwise, the result from the XDocumentHandler implementation can be written directly
to the XOutputStream provided. For instance, this is the case with a FlatXML filter.

Exporter Filtering

After the exporter() method returns, the XML filter adaptor then invokes the
com.sun.star.xml.sax.XDocumentHandler methods to parse the XML output.

513

http://api.openoffice.org/docs/common/ref/com/sun/star/xml/sax/XDocumentHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/sax/XDocumentHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/sax/XDocumentHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/XExportFilter.html#exporter
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/XExportFilter.html#exporter
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/XExportFilter.html#exporter
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/sax/XDocumentHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/sax/XDocumentHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/sax/XDocumentHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/sax/XDocumentHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/sax/XDocumentHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/sax/XDocumentHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/XImportFilter.html#importer
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/XImportFilter.html#importer
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/XImportFilter.html#importer
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/XExportFilter.html#exporter
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/XExportFilter.html#exporter
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/XExportFilter.html#exporter

For the filtering, the com.sun.star.xml.sax.XDocumentHandler implementation is used. This
consists of a set of SAX event handling methods, which define how particular XML tags are
handled. These methods are:
startDocument(){
}
endDocument(){
}
startElement(){
}
endElement(){
}
charactors(){
}
ignorableWhitespace(){
}
processingInstruction(){
}
setDocumentLocator(){
}

The result of this event handling can be processed and written to the XOutputStream that was
extracted from the MediaDescriptor .

Configuration

For OpenOffice.org to be able to make use of this filtering component, the filter and the type that it
handles must be defined in the TypeDetection.xcu file.

The type section defines certain file types and their extensions. The filter section contains the actual
filter definition.

Below is an example of a type and filter definition in the TypeDetection.xcu file. It describes a Pock-
etWord filter.
<!-- Type section -->
<node oor:name="writer_PocketWord_File" oor:op="replace">
 <prop oor:name="UIName">

<value xml:lang="en-US">Pocket Word</value>
 </prop>
 <prop oor:name="Data">

<value>0,,,,psw,20002,</value>
 </prop>
</node>

<!-- Filter section -->
<node oor:name="PocketWord File" oor:op="replace">
 <prop oor:name="UIName">
 <value xml:lang="en-US">Pocket Word</value>
 </prop>
 <prop oor:name="Data">
 <value>

0,
writer_PocketWord_File,
com.sun.star.text.TextDocument,
com.sun.star.comp.Writer.XmlFilterAdaptor,
524355,
com.sun.star.documentconversion.XMergeBridge;

 classes/pocketword.jar;
 com.sun.star.comp.Writer.XMLImporter;
 com.sun.star.comp.Writer.XMLExporter;
 staroffice/sxw;application/x-pocket-word,

0,
,

</value>
 </prop>
 <prop oor:name="Installed" oor:type="xs:boolean">
 <value>true</value>
 </prop>
</node>

The type section defines a type writer_PocketWord_File with "Pocket Word" as UIName in File -
Open . The file extension of this type is specified as .psw in the Data property.

The filter section defines the same UI name "Pocket Word" for the filter, and a number of settings
in the Data property, simply separated by commas:

514 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/xml/sax/XDocumentHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/sax/XDocumentHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/xml/sax/XDocumentHandler.html

Type
This is the id of the file type definition that defines the type of file that this filter can handle, in
this case "writer_PocketWord_File”. This value refers to the oor:name of the type section.

Office application
This is the application that will be used to open the document, in this case Writer
(�com.sun.star.text.TextDocument�).

Filter Component
This is the component that OpenOffice.org will initialize when importing or exporting, in this
case �com.sun.star.comp.Writer.XmlFilterAdaptor�.

User Data
Section containing the filtering component that the XML filter adaptor will initialize and use for
filtering. In this example
�com.sun.star.documentconversion.XMergeBridge;classes/pocketword.jar;com.sun.s
tar.comp.Writer.XMLImporter;
com.sun.star.comp.Writer.XMLExporter;staroffice/sxw;application/x-pocket-word�

From this example, you see that this Filter uses the XML filter adaptor. When the XML filter
adaptor initializes, it initializes the XMergeBridge that is specified in the UserData section. The
rest of the information in the UserData section has been included for use by the XMergeBridge
filtering component, including the com.sun.star.comp.Writer.XMLImporter, which will be used
by the XML filter adaptor to create the XDocumentHandler when importing.

Sample Filter Component Implementations

There are currently three filtering components which use the XML filter adaptor.

The first one is the XMergeBridge. This has been created as a means of linking the XMerge Small
Device filter framework with OpenOffice.org. This means that any available XMerge plugin, can
also be used as a OpenOffice.org filter. This is currently hosted within the XMerge project in
openoffice cvs at

xml/xmerge/java/org/openoffice/xmerge/xmergebridge

The final two are a Java and a C++ implementation of a Flat OpenOffice.org XML reader and writer.
These are intended to be sample filter component implementations, and offer a skeleton filter
component that can be expanded upon by developers wishing to create their own filtering compo-
nents. These are temporarily hosted in cvs at

xml/xmerge/java/org/openoffice/xmerge/xmergebridge/FlatXml

Additional Components

In order for Java based components to operate effectively, a set of wrapper classes have been
added to the javaunohelper package. These files allow for an XInputStream or an XOutputStream to
be accessed using the same methods as a normal Java InputStream or OutputStream. These
classes are located in the javaunohelper package at

com.sun.star.lib.uno.adapter.XInputStreamToInputStreamAdapter
com.sun.star.lib.uno.adapter.XInputStreamToInputStreamAdapter

For more information on the use of these helper classes, see the flatxmljava example.

XML Filter Detection

The number of XML files that conform to differing DTD specifications means that a single filter
and file type definition is insufficient to handle all of the possible formats available. In order to

515

allow OpenOffice.org to handle multiple filter definitions and implementations, it is necessary to
implement an additional filter detection module that is capable of determining the type of XML file
being read, based on its DocType declaration.

To accomplish this, a filter detection service com.sun.star.document.ExtendedTypeDetection
can be implemented, which is capable of handling and distinguishing between many different
XML based file formats. This type of service supersedes the basic flat detection, which uses the
file's suffix to determine the Type, and instead, carries out a deep detection which uses the file's
internal structure and content to detect its true type.

Requirements for Deep Detection

There are three requirements for implementing a deep detection module that is capable of identi-
fying one or more unique XML types. These include:

• An extended type definition for describing the format in more detail (TypeDetection.xcu).

• A DetectService implementation.

• A DetectService definition (TypeDetection.xcu).

Extending the File Type Definition

Since many different XML files can conform to different DTDs, the type definition of a particular
XML file needs to be extended. To do this, some or all of the DocType information can be contained
as part of the file type definition. This information is held as part of the ClipboardFormat property
of the type node. A unique namespace or preface identifies the String at this point in the sequence
as being a DocType declaration.

Sample Type definition:
<node oor:name="writer_DocBook_File" oor:op="replace">
 <prop oor:name="UIName">

<value XML:lang="en-US">DocBook</value>
 </prop>
 <prop oor:name="Data">

<value> 0,
,
doctype:-//OASIS//DTD DocBook XML V4.1.2//EN,
,
XML,
20002,

</value>
 </prop>
</node>

The ExtendedTypeDetection Service Implementation

In order for the type detection code to function as an ExtendedTypeDetection service, you must
implement the detect() method as defined by the com.sun.star.document.XExtendedFilter-
Detection interface definition:
string detect([inout]sequence<com::sun::star::beans::PropertyValue > Descriptor);

This method supplies you with a sequence of ProptertyValues from which you can use to extract
the current TypeName and the URL of the file being loaded:
::rtl::OUString SAL_CALL FilterDetect::detect(com::sun::star::uno::Sequence<
com::sun::star::beans::PropertyValue >& aArguments) throw (com::sun::star::uno::RuntimeException) {
const PropertyValue * pValue = aArguments.getConstArray();
sal_Int32 nLength;
::rtl::OString resultString;
nLength = aArguments.getLength();
for (sal_Int32 i = 0; i < nLength; i++) {

if (pValue[i].Name.equalsAsciiL(RTL_CONSTASCII_STRINGPARAM("TypeName"))) {
}
else if (pValue[i].Name.equalsAsciiL(RTL_CONSTASCII_STRINGPARAM("URL"))) {

pValue[i].Value >>= sUrl;

516 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/document/XExtendedFilterDetection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XExtendedFilterDetection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XExtendedFilterDetection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XExtendedFilterDetection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XExtendedFilterDetection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XExtendedFilterDetection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/ExtendedTypeDetection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/ExtendedTypeDetection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/ExtendedTypeDetection.html

}
}

Once you have the URL of the file, you can then use it to create a ::ucb::Content from which you
can open an XInputStream to the file:
Reference< com::sun::star::ucb::XCommandEnvironment > xEnv;
::ucb::Content aContent(sUrl,xEnv);
xInStream = aContent.openStream();

You can now use this XInputStream to read the header of the file being loaded. Because the exact
location of the DocType information within the file is not known, the first 1000 bytes of information
will be read:
::rtl::OString resultString;
com::sun::star::uno::Sequence< sal_Int8 > aData;
long bytestRead =xInStream->readBytes (aData, 1000);
resultString=::rtl::OString(
(const sal_Char *)aData.getConstArray(),bytestRead) ;

Once you have this information, you can start looking for a type that describes the file being
loaded. In order to do this, you need to get a list of the types currently supported:
Reference <XNameAccess> xTypeCont(mxMSF->createInstance(OUString::createFromAscii(

"com.sun.star.document.TypeDetection")),UNO_QUERY);
Sequence <::rtl::OUString> myTypes= xTypeCont->getElementNames();
nLength = myTypes.getLength();

For each of these types, you must first determine whether the ClipboardFormat property contains
a DocType:
Loc_of_ClipboardFormat=...;
Sequence<::rtl::OUString> ClipboardFormatSeq;
Type_Props[Loc_of_ClipboardFormat].Value >>=ClipboardFormatSeq ;
while() {

if(ClipboardFormatSeq.match(OUString::createFromAscii("doctype:") {
//if it contains a DocType, start to compare to header

}
}

All of the possible DocType declarations of the file types can be checked to determine a match. If a
match is found, the type corresponding to the match is returned. If no match is found, an empty
string is returned. This will force OpenOffice.org into flat detection mode.

TypeDetection.xcu DetectServices Entry

Now that you have created the ExtendedTypeDetection service implementation, you need to tell
OpenOffice.org when to use this service.

First create a DetectServices node, unless one already exists, and then add the information
specific to the detection service that has been implemented, that is, the name of the service and the
file types that use it.
<node oor:name="DetectServices">
<node oor:name="com.sun.star.comp.filters.XMLDetect" oor:op="replace">

<prop oor:name="ServiceName">
<value XML:lang="en-US">com.sun.star.comp.filters.XMLDetect</value>

</prop>
<prop oor:name="Types">

<value>writer_DocBook_File</value>
<value>writer_Flat_XML_File</value>

</prop>
</node>
</node>

7.2.5 Number Formats
Number formats are template strings consisting of format codes defining how numbers or text
appear, for example,, whether or not to display trailing zeroes, group by thousands, separators,
colors, and how many decimals are displayed. This does not include any font attributes, except for

517

colors. They are found wherever number formats are applied, for example, on the Numbers tab of
the Format � Cells dialog in spreadsheets.

Number formats are defined on the document level. A document displaying formatted values has
a collection of number formats, each with a unique index key within that document. Identical
formats are not necessarily represented by the same index key in different documents.

Managing Number Formats
Documents provide their formats through the interface com.sun.star.util.XNumberFor-
matsSupplierthat has one method getNumberFormats() that returns
com.sun.star.util.NumberFormats. Using NumberFormats, developers can read and modify
number formats in documents, and also add new formats.

You have to retrieve the NumberFormatsSupplier as a property at a few objects from their
com.sun.star.beans.XPropertySet interface, for example, from data sources supporting the
com.sun.star.sdb.DataSource service and from database connections supporting the service
com.sun.star.sdb.DatabaseEnvironment, or com.sun.star.sdb.DatabaseAccess. In addi-
tion, all UNO controls offering the service com.sun.star.awt.UnoControlFormattedFieldModel
have a NumberFormatsSupplier property.

NumberFormats Service

The com.sun.star.util.NumberFormats service specifies a container of number formats and
implements the interfaces com.sun.star.util.XNumberFormatTypes and
com.sun.star.util.XNumberFormats.

XNumberFormats

NumberFormats supports the interface com.sun.star.util.XNumberFormats. This interface
provides access to the number formats of a container. It is used to query the properties of a number
format by an index key, retrieve a list of available number format keys of a given type for a given
locale, query the key for a user-defined format string, or add new format codes into the list or to
remove formats.

com::sun::star::beans::XPropertySet getByKey ([in] long nKey)
sequence< long > queryKeys ([in] short nType,
 [in] com::sun::star::lang::Locale nLocale,
 [in] boolean bCreate)
long queryKey ([in] string aFormat,
 [in] com::sun::star::lang::Locale nLocale,
 [in] boolean bScan)

long addNew ([in] string aFormat, [in] com::sun::star::lang::Locale nLocale)
long addNewConverted ([in] string aFormat, [in] com::sun::star::lang::Locale nLocale,
 [in] com::sun::star::lang::Locale nNewLocale)

void removeByKey ([in] long nKey)
string generateFormat ([in] long nBaseKey, [in] com::sun::star::lang::Locale nLocale,
 [in] boolean bThousands, [in] boolean bRed, [in] short nDecimals, [in] short nLeading)

The important methods are probably queryKey() and addNew(). The method queryKey() finds
the key for a given format string and locale, whereas addNew() creates a new format in the
container and returns its key for immediate use. The bScan is reserved for future use and should
be set to false.
The properties of a single number format are obtained by a call to getByKey() which returns a
com.sun.star.util.NumberFormatProperties service for the given index key.

518 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/util/NumberFormatProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/NumberFormatProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/NumberFormatProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormats.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormats.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormats.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormats.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormats.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormats.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatTypes.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatTypes.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatTypes.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/NumberFormats.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/NumberFormats.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/NumberFormats.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFormattedFieldModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFormattedFieldModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFormattedFieldModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DatabaseAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DatabaseAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DatabaseAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DatabaseEnvironment.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DatabaseEnvironment.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DatabaseEnvironment.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/NumberFormats.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/NumberFormats.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/NumberFormats.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatsSupplier.html

XNumberFormatTypes

The interface com.sun.star.util.XNumberFormatTypes offers functions to retreive the index
keys of specific predefined number format types. The predefined types are addressed by constants
from com.sun.star.util.NumberFormat.The NumberFormat contains values for predefined
format types, such as PERCENT, TIME, CURRENCY, and TEXT.

long getStandardIndex ([in] com::sun::star::lang::Locale nLocale)
long getStandardFormat ([in] short nType,
 [in] com::sun::star::lang::Locale nLocale)
long getFormatIndex ([in] short nIndex,
 [in] com::sun::star::lang::Locale nLocale)

boolean isTypeCompatible ([in] short nOldType, [in] short nNewType)
long getFormatForLocale ([in] long nKey,
 [in] com::sun::star::lang::Locale nLocale)

In most cases you will need getStandardFormat(). It expects a type constant from the Number-
Format group and the locale t to use, and returns the key of the corresponding predefined format.

Applying Number Formats
To format numeric values, an XNumberFormatsSupplier is attached to an instance of a
com.sun.star.util.NumberFormatter, available at the global service manager. For this purpose,
its main interface com.sun.star.util.XNumberFormatter has a method attachNumberFor-
matsSupplier(). When the XNumberFormatsSupplier is attached, strings and numeric values are
formatted using the methods of the NumberFormatter. To specify the format to apply, you have to
get the unique index key for one of the formats defined in NumberFormats. These keys are avail-
able at the XNumberFormats and XNumberFormatTypes interface of NumberFormats.

Numbers in documents, such as in table cells, formulas, and text fields, are formatted by applying
the format key to the NumberFormat property of the appropriate element.

NumberFormatter Service

The service com.sun.star.util.NumberFormatter implements the interfaces
com.sun.star.util.XNumberFormatter and com.sun.star.util.XNumberFormatPreviewer.

XNumberformatter

The interface com.sun.star.util.XNumberFormatter converts numbers to strings, or strings to
numbers, or detects a number format matching a given string.

void attachNumberFormatsSupplier ([in] com::sun::star::util::XNumberFormatsSupplier xSupplier)
com::sun::star::util::XNumberFormatsSupplier getNumberFormatsSupplier ()
long detectNumberFormat ([in] long nKey, [in] string aString)
double convertStringToNumber ([in] long nKey, [in] string aString)
string convertNumberToString ([in] long nKey, [in] double fValue);
com::sun::star::util::color queryColorForNumber ([in] long nKey, [in] double fValue,
 [in] com::sun::star::util::color aDefaultColor)
string formatString ([in] long nKey, [in] string aString);
com::sun::star::util::color queryColorForString ([in] long nKey, [in] string aString,
 [in] com::sun::star::util::color aDefaultColor)

string getInputString ([in] long nKey, [in] double fValue)

XNumberformatPreviewer
string convertNumberToPreviewString ([in] string aFormat, [in] double fValue,
 [in] com::sun::star::lang::Locale nLocale,
 [in] boolean bAllowEnglish)

519

http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatPreviewer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatPreviewer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatPreviewer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/NumberFormatter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/NumberFormatter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/NumberFormatter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/NumberFormatter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/NumberFormatter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/NumberFormatter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/NumberFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/NumberFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/NumberFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatTypes.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatTypes.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatTypes.html

com::sun::star::util::color queryPreviewColorForNumber ([in] string aFormat, [in] double fValue,
 [in] com::sun::star::lang::Locale nLocale,
 [in] boolean bAllowEnglish,
 [in] com::sun::star::util::color aDefaultColor)

This interface com.sun.star.util.XNumberFormatPreviewerconverts values to strings according
to a given format code without inserting the format code into the underlying
com.sun.star.util.NumberFormats collection.

The example below demonstrates the usage of these interfaces. (OfficeDev/Number_Formats.java)
public void doSampleFunction() throws RuntimeException, Exception
{
 // Assume:
 // com.sun.star.sheet.XSpreadsheetDocument maSpreadsheetDoc;
 // com.sun.star.sheet.XSpreadsheet maSheet;

 // Query the number formats supplier of the spreadsheet document
 com.sun.star.util.XNumberFormatsSupplier xNumberFormatsSupplier =
 (com.sun.star.util.XNumberFormatsSupplier)
 UnoRuntime.queryInterface(
 com.sun.star.util.XNumberFormatsSupplier.class, maSpreadsheetDoc);

 // Get the number formats from the supplier
 com.sun.star.util.XNumberFormats xNumberFormats =
 xNumberFormatsSupplier.getNumberFormats();

 // Query the XNumberFormatTypes interface
 com.sun.star.util.XNumberFormatTypes xNumberFormatTypes =
 (com.sun.star.util.XNumberFormatTypes)
 UnoRuntime.queryInterface(
 com.sun.star.util.XNumberFormatTypes.class, xNumberFormats);

 // Get the number format index key of the default currency format,
 // note the empty locale for default locale
 com.sun.star.lang.Locale aLocale = new com.sun.star.lang.Locale();
 int nCurrencyKey = xNumberFormatTypes.getStandardFormat(
 com.sun.star.util.NumberFormat.CURRENCY, aLocale);

 // Get cell range B3:B11
 com.sun.star.table.XCellRange xCellRange =
 maSheet.getCellRangeByPosition(1, 2, 1, 10);

 // Query the property set of the cell range
 com.sun.star.beans.XPropertySet xCellProp =
 (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(
 com.sun.star.beans.XPropertySet.class, xCellRange);

 // Set number format to default currency
 xCellProp.setPropertyValue("NumberFormat", new Integer(nCurrencyKey));

 // Get cell B3
 com.sun.star.table.XCell xCell = maSheet.getCellByPosition(1, 2);

 // Query the property set of the cell
 xCellProp = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(
 com.sun.star.beans.XPropertySet.class, xCell);

 // Get the number format index key of the cell's properties
 int nIndexKey = ((Integer) xCellProp.getPropertyValue("NumberFormat")).intValue();

 // Get the properties of the number format
 com.sun.star.beans.XPropertySet xProp = xNumberFormats.getByKey(nIndexKey);

 // Get the format code string of the number format's properties
 String aFormatCode = (String) xProp.getPropertyValue("FormatString");
 System.out.println("FormatString: `" + aFormatCode + "'");

 // Create an arbitrary format code
 aFormatCode = "\"wonderful \"" + aFormatCode;

 // Test if it is already present
 nIndexKey = xNumberFormats.queryKey(aFormatCode, aLocale, false);

 // If not, add to number formats collection
 if (nIndexKey == -1)
 {
 try
 {
 nIndexKey = xNumberFormats.addNew(aFormatCode, aLocale);
 }
 catch(com.sun.star.util.MalformedNumberFormatException ex)
 {

520 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/util/NumberFormats.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/NumberFormats.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/NumberFormats.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatPreviewer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatPreviewer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatPreviewer.html

 System.out.println("Bad number format code: " + ex);
 nIndexKey = -1;
 }
 }

 // Set the new format at the cell
 if (nIndexKey != -1)
 xCellProp.setPropertyValue("NumberFormat", new Integer(nIndexKey));
}

7.2.6 Document Events
Recurring actions, such as loading, printing or saving, that occur when working with documents,
are document events, and all documents in OpenOffice.org offer an interface that sends notifica-
tions when these events take place.

There are general events common every document, such as loading, printing, or saving, and there
are other events that are specific to a particular document type. Both can be accessed through the
same interface.

In the document events API, these events are represented by an event name. The following table
shows a list of all general document event names:

General Document Event Names

OnNew New Document was created

OnLoad Document has been loaded

OnSaveAs Document is going to be saved under a new name

OnSaveAsDone Document was saved under a new name

OnSave Document is going to be saved

OnSaveDone Document was saved

OnPrepareUnload Document is going to be removed, but still fully available

OnUnload Document has been removed, document ist still valid, but closing can no longer
be prevented

OnFocus Document was activated

OnUnfocus Document was deactivated

OnPrint Document will be printed

OnModifyChange Modified state of the document has changed

These event names are documented in the com.sun.star.document.Events service. Note that this
service description exceeds the scope of events that happen on the document as a whole� so it also
contains events that can only be accessed by finding the part of the document where the event
occurred, for example, a button in a form. This list of events can also be extended by new events,
so that future versions of OpenOffice.org can support new types of events through the same API.
Therefore, every client that wants to deal with a particular document event must check if this event
is supported, or whether it should be prepared to catch an exception.

Every client that is interested in document events can register for being notified. The necessary
interface for notification is com.sun.star.document.XEventBroadcaster, which is an optional
interface of the servicecom.sun.star.document.OfficeDocument. All document objects in
OpenOffice.org implement this interface. It has two methods to add and remove listeners for docu-
ment events:

[oneway] void addEventListener([in] ::com::sun::star::document::XEventListener Listener);
[oneway] void removeEventListener([in] ::com::sun::star::document::XEventListener Listener);

521

http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/Events.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/Events.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/Events.html

The listeners must implement the interface com.sun.star.document.XEventListener and get a
notification through a call of their method:

[oneway] void notifyEvent([in] ::com::sun::star::document::EventObject Event);

The argument of this call is a com.sun.star.document.EventObject struct, which is derived
from the usual com.sun.star.lang.EventObject and contains two members: the member
Source, which contains an interface pointer to the event source (here the com.sun.star.docu-
ment.OfficeDocument service) and the member EventName which can be one of the names shown
in the preceding table.

Both methods in the interface com.sun.star.document.XEventBroadcaster can cause problems
in scripting languages if the object that implements this interface also implements
com.sun.star.lang.XComponent, because it has two very similar methods:

[oneway] void addEventListener([in] ::com::sun::star::lang::XEventListener Listener);
[oneway] void removeEventListener([in] ::com::sun::star::lang::XEventListener Listener);

Unfortunately this applies to all OpenOffice.org documents.

In C++ and Java this is no problem, because the complete signature of a method, including the
arguments, is used to identify it.

In OpenOffice.org Basic, the fully qualified name including the interface can be used from version
1.1.0:
Sub RegisterListener

 oListener = CreateUnoListener("DocumentListener_","com.sun.star.document.XEventListener")

 ThisComponent.com_sun_star_document_XEventBroadcaster_addEventListener(oListener)
End Sub

Sub DocumentListener_notifyEvent(o as object)

 IF o.EventName = "OnPrepareUnload" THEN
print o.Source.URL

 ENDIF

end sub

Sub DocumentListener_disposing()
End Sub

But the OLE automation bridge, and possibly other scripting language bindings, are unable to
distinguish between both addEventListener() and removeEventListener() methods based on
the method signature and must be told which interface you want to use.

You must use the core reflection to get access to either method. The following code shows an
example in VBScript, which registers a document event listener at the current document.
set xContext = objServiceManager.getPropertyValue("DefaultContext")
set xCoreReflection = xContext.getValueByName("/singletons/com.sun.star.reflection.theCoreReflection")
set xClass = xCoreReflection.forName("com.sun.star.document.XEventBroadcaster")
set xMethod = xClass.getMethod("addEventListener")

dim invokeargs(0)
invokeargs(0) = myListener

set value = objServiceManager.Bridge_GetValueObject()
call value.InitInOutParam("[]any", invokeargs)
call xMethod.invoke(objDocument, value)

The C++ code below uses OLE Automation. Two helper functions are provided that help to
execute UNO operations.
// helper function to execute UNO operations via IDispatch
HRESULT ExecuteFunc(IDispatch* idispUnoObject,

 OLECHAR* sFuncName,
 CComVariant* params,
 unsigned int count,
 CComVariant* pResult)

{
 if(!idispUnoObject)

522 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventListener.html

 return E_FAIL;

 DISPID id;
 HRESULT hr = idispUnoObject->GetIDsOfNames(IID_NULL, &sFuncName, 1, LOCALE_USER_DEFAULT, &id);
 if(!SUCCEEDED(hr)) return hr;

 DISPPARAMS dispparams= { params, 0, count, 0};

 // DEBUG
 EXCEPINFO myInfo;
 return idispUnoObject->Invoke(id, IID_NULL,LOCALE_USER_DEFAULT, DISPATCH_METHOD,
 &dispparams, pResult, &myInfo, 0);
}

// helper function to execute UNO methods that return interfaces
HRESULT GetIDispByFunc(IDispatch* idispUnoObject,

 OLECHAR* sFuncName,
 CComVariant* params,
 unsigned int count,
 CComPtr<IDispatch>& pdispResult)

{
 if(!idispUnoObject)
 return E_FAIL;

 CComVariant result;
 HRESULT hr = ExecuteFunc(idispUnoObject, sFuncName, params, count, &result);
 if(!SUCCEEDED(hr)) return hr;

 if(result.vt != VT_DISPATCH || result.pdispVal == NULL)
 return E_FAIL;

 pdispResult = CComPtr<IDispatch>(result.pdispVal);

 return S_OK;
}

// it's assumed that pServiceManager (by creating it as a COM object), pDocument (f.e. by loading it) //
and pListener (the listener we want to add) are passed as parameters

HRESULT AddDocumentEventListener(
 CComPtr<IDispatch> pServiceManager, CComPtr<IDispatch> pDocument, CComPtr<IDispatch> pListener)

{
 CComPtr<IDispatch> pdispContext;
 hr = GetIDispByFunc(pServiceManager, L"getPropertyValue", &CComVariant(L"DefaultContext"), 1,

pdispContext);
 if(!SUCCEEDED(hr)) return hr;

 CComPtr<IDispatch> pdispCoreReflection;
 hr = GetIDispByFunc(pdispContext,

 L"getValueByName",
 &CcomVariant(L"/singletons/com.sun.star.reflection.theCoreReflection"),
 1,
 pdispCoreReflection);

 if(!SUCCEEDED(hr)) return hr;

 CComPtr<IDispatch> pdispClass;
 hr = GetIDispByFunc(pdispCoreReflection,

 L"forName",
 &CComVariant(L"com.sun.star.document.XEventBroadcaster"),
 1,
 pdispClass);

 if(!SUCCEEDED(hr)) return hr;

 CComPtr<IDispatch> pdispMethod;
 hr = GetIDispByFunc(pdispClass, L"getMethod", &CComVariant(L"addEventListener"), 1, pdispMethod);
 if(!SUCCEEDED(hr)) return hr;

 CComPtr<IDispatch> pdispListener;
 CComPtr<IDispatch> pdispValueObj;
 hr = GetIDispByFunc(mpDispFactory, L"Bridge_GetValueObject", NULL, 0, pdispValueObj);
 if(!SUCCEEDED(hr)) return hr;

 CComVariant pValParams[2];
 pValParams[1] = CComVariant(L"com.sun.star.document.XEventListener");
 pValParams[0] = CComVariant(pdispListener);
 CComVariant dummyResult;
 hr = ExecuteFunc(pdispValueObj, L"Set", pValParams, 2, &dummyResult);
 if(!SUCCEEDED(hr)) return hr;

 SAFEARRAY FAR* pPropVal = SafeArrayCreateVector(VT_VARIANT, 0, 1);
 long ix1 = 0;

 CComVariant aArgs(pdispValueObj);
 SafeArrayPutElement(pPropVal, &ix, &aArgs);

 CComVariant aDoc(pdispDocument);

523

 CComVariant pParams[2];
 pParams[1] = aDoc;
 pParams[0].vt = VT_ARRAY | VT_VARIANT; pParams[0].parray = pPropVal;

 CComVariant result;

 //invoking the method addeventlistner
 hr = ExecuteFunc(pdispMethod, L"invoke", pParams, 2, &result);
 if(!SUCCEEDED(hr)) return hr;

 return S_OK;
}

Another way to react to document events is to bind a macro to it� a process called event binding.
From OpenOffice.org 1.1.0 you can also use scripts in other languages, provided that a corre-
sponding scripting framework implementation is present.

All document objects in OpenOffice.org support event binding through an interface
com.sun.star.document.XEventsSupplier. This interface has only one method:

::com::sun::star::container::XNameReplace getEvents();

This method gives access to a container of event bindings. The container is represented by a
com.sun.star.container.XNameReplace interface that, together with the methods of its base
interfaces, offers the following methods:

void replaceByName([in] string aName, [in] any aElement);
any getByName([in] string aName);
sequence< string > getElementNames();
boolean hasByName([in] string aName);
type getElementType();
boolean hasElements();

Each container element represents an event binding. By default, all bindings are empty. The
element names are the event names shown in the preceding table. In addition, there are document
type-specific events. The method getElementNames() yields all possible events that are supported
by the object and hasByName() checks for the existence of a particular event.

For every supported event name you can use getByName() to query for the current event binding
or replaceByName() to set a new one. Both methods may throw a
com.sun.star.container.NoSuchElementException exception if an unsupported event name is
used.

The type of an event binding, which is wrapped in the any returned by getByName(), is a
sequence of com.sun.star.beans.PropertyValue that describes the event binding.

PropertyValue structs in the event binding description
EventType string. Can assume the values "StarBasic" or "Script". The event type

"Script" describes the location as URL. The event type "StarBasic" is
provided for compatibility reasons and describes the location of the macro
through the properties Library and MacroName, in addition to URL.

524 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/NoSuchElementException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/NoSuchElementException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/NoSuchElementException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventsSupplier.html

PropertyValue structs in the event binding description
Script string. Available for the event types Script and StarBasic. Describes the

location of the macro/script routine which is bound. For the URL property, a
command URL is expected (see 7.1.6 Office Development - OpenOffice.org Appli-
cation Environment - Using the Dispatch Framework). OpenOffice.org will execute
this command when the event occurs.

For the event type StarBasic, the URL uses the macro: protocol. For the
event type Script, other protocols are possible, especially the script: protocol.

The macro protocol has two forms:

macro:///<Library>.<Module>.<Method(args)>
macro://./<Library>.<Module>.<Method(args)>

The first form points to a method in the global basic storage, while the second
one points to a method embedded in the current document.
<Library>.<Module>.<Method(args)> represent the names of the library, the
module and the method. Currently, for args only string arguments (sepa-
rated by comma) are possible. If no args exist, empty brackets must be used,
because the brackets are part of the scheme. An example URL could look like:

macro:///MyLib.MyModule.MyMethod(foo,bar)

The exact form of the script: command URL protocol depends on the installed
scripting module. They will be available later as additional components for
OpenOffice.org 1.1.0.

Library string. Deprecated. Available for EventType "StarBasic". Can assume
the values "application" or empty string for the global basic storage, and
"document" for the document where the code is embedded.

MacroName string. Deprecated. Available for EventType "StarBasic". Describes the
macro location as <Library>.<MyModule>.<MyMethod>.

In OpenOffice.org 1.1.0 all properties (URL, Library, MacroName) will be returned for event bindings of
type StarBasic, regardless if the binding was created with a URL property only or with the Library and
MacroName property. The internal implementation does the necessary conversion. Older versions of
OpenOffice.org always returned only Library and MacroName, even if the binding was created with the
URL property.

In OpenOffice.org 1.1.0 there is another important extension in the area of document events and
event bindings. This version has a new service com.sun.star.frame.GlobalEventBroadcaster
that offers the same document-event-related functionality as described previously (interfaces
com.sun.star.document.XEventBroadcaster, com.sun.star.document.XEventsSupplier),
but it allows you to register for events that happen in any document and also allows you to set
bindings for all documents that are stored in the global UI configuration of OpenOffice.org. Using
this services frees you from registering at every single document that has been created or loaded.

Though a potential listener registers for event notifications at this global service and not at any
document itself, the received event source in the event notification is the document, not the Globa-
lEventBroadcaster. The reason for this is that usually a listener contains code that works on the
document, so it needs a reference to it.

The service com.sun.star.frame.GlobalEventBroadcaster also supports two more events that
do not occur in any document but are useful for working with document events:

525

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/GlobalEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/GlobalEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/GlobalEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/GlobalEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/GlobalEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/GlobalEventBroadcaster.html

Global Event Names

OnStartApp Application has been started

OnCloseApp Application is going to be closed. This event is fired after all documents have
been closed and nobody objected to the shutdown.

The event source in the notifications is NULL (empty).

All event bindings can be seen or set in the OpenOffice.org UI in the Tools-Configure dialog on
Events page. Two radio buttons on the right side of the dialog toggle between OpenOffice.org and
Document binding. In OpenOffice.org 1.1.0, you can still only bind to OpenOffice.org Basic macros
in the dialog. Bindings to script: URLs can only be set using the API, but the dialog is at least able
to display them. If, in OpenOffice.org 1.1.0, a global and a document binding are set for the same
event, first the global and then the document binding is executed. With older versions, only the
document binding was executed, and the global binding was only executed if no document
binding was set.

7.2.7 Path Organization
The path settings service is the central service that manages the paths of OpenOffice.org. Almost
every component inside OpenOffice.org uses one or more of the paths to access its resources
located on the file system.

Users can customize most of the paths in OpenOffice.org by choosing Tools � Options �
OpenOffice.org � Paths.

Path Settings
The com.sun.star.util.PathSettings service supports a number of properties which store the
OpenOffice.org predefined paths. There are two different groups of properties. One group stores
only a single path and the other group stores two or more paths - separated by a semicolon.

Properties of com.sun.star.util.PathSettings
Addin Single path Specifies the directory that contains spreadsheet add-ins which use the

old add-in API.

AutoCorrect Multi path Specifies the directories that contain the settings for the AutoCorrect
dialog.

AutoText Multi path Specifies the directories that contain the AutoText modules.

Backup Single path Specifies the directory for storing automatic backup copies of docu-
ments.

Basic Multi path Specifies the location of the Basic files that are used by the AutoPilots.

Bitmap Single path Specifies the directory that contains the external icons for the toolbars.

Config Single path Specifies the location of the configuration files. This property is not
visible in the OpenOffice.org path options dialog and cannot be changed
by users.

Dictionary Single path Specifies the location of the OpenOffice.org dictionaries.

Favorite Single path Specifies the directory that contains the saved folder bookmarks.

Filter Single path Specifies the directory where the filters are stored.

526 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/util/PathSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/PathSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/PathSettings.html

Properties of com.sun.star.util.PathSettings
Gallery Multi path Specifies the directories that contain the Gallery database and multi-

media files.

Graphic Single path Specifies the directory that is displayed when the dialog for opening a
graphic or for saving a new graphic is called.

Help Single path Specifies the location of the Office help files.

Linguistic Single path Specifies the directory where the spellcheck files are stored.

Module Single path Specifies the directory where the modules are stored.

Palette Single path Specifies the location of the palette files that contain user-defined colors
and patterns (*.SOB and *.SOF).

Plugin Multi path Specifies the directories where the Plugins are stored.

Storage Single path Specifies the directory where mail and news files as well as other infor-
mation (for example, about FTP Server) are stored. This property is not
visible in the OpenOffice.org path options dialog and cannot be changed
by users.

Temp Single path Specifies the directory for the office temp-files.

Template Multi path Specifies the directory for the OpenOffice.org document templates.

UIConfig Multi path Specifies the location of global directories when looking for user inter-
face configuration files. The user interface configuration is merged with
the user settings that are stored in the directory specified by UserConfig.

UserConfig Single path Specifies the directory that contains the user settings, including the user
interface configuration files for menus, toolbars, accelerators and status
bars.

UserDictionary Single path Specifies the directory for the custom dictionaries.

Work Single path Specifies the location of the work folder. This path can be modified
according to the user's needs and can be seen in the Open or Save dialog.

Configuration

The path settings service uses the group Path in the org.Openoffice.Office.Common branch to read
and store paths. The Current and Default groups in the share layer of the configuration branch
store the path settings properties. The Current group initialize the properties of the path settings
service during startup. If the user activates the Default button in the path options dialog, the
Default group values are copied to the current ones.

Note: The configuration branch separates the paths of a property with a colon (:), whereas the path settings
service separates multiple paths with a semicolon (;).

<?xml version='1.0' encoding='UTF-8'?>
<oor:component-schema oor:name="Common" oor:package="org.openoffice.Office" xml:lang="en-US"
xmlns:oor="http://openoffice.org/2001/registry" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://wwww.w3.org/2001/XMLSchema-instance”>
 <component>
 <group oor:name="Path">
 <group oor:name="Current">
 <prop oor:name="OfficeInstall" oor:type="xs:string">
 <value/>
 </prop>
 <prop oor:name="OfficeInstallURL" oor:type="xs:string">
 <value/>
 </prop>
 <prop oor:name="Addin" oor:type="xs:string">
 <value>$(progpath)/addin</value>
 </prop>
 <prop oor:name="AutoCorrect" oor:type="oor:string-list">
 <value oor:separator=":">$(insturl)/share/autocorr:$(userurl)/autocorr</value>
 </prop>

527

http://api.openoffice.org/docs/common/ref/com/sun/star/util/PathSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/PathSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/PathSettings.html

 <prop oor:name="AutoText" oor:type="oor:string-list">
 <value oor:separator=":">
 $(insturl)/share/autotext/$(vlang):$(userurl)/autotext
 </value>
 </prop>
 <prop oor:name="Backup" oor:type="xs:string">
 <value>$(userurl)/backup</value>
 </prop>
 <prop oor:name="Basic" oor:type="oor:string-list">
 <value oor:separator=":">$(insturl)/share/basic:$(userurl)/basic</value>
 </prop>
 <prop oor:name="Bitmap" oor:type="xs:string">
 <value>$(insturl)/share/config/symbol</value>
 </prop>
 <prop oor:name="Config" oor:type="xs:string">
 <value>$(insturl)/share/config</value>
 </prop>
 <prop oor:name="Dictionary" oor:type="xs:string">
 <value>$(insturl)/share/wordbook/$(vlang)</value>
 </prop>
 <prop oor:name="Favorite" oor:type="xs:string">
 <value>$(userurl)/config/folders</value>
 </prop>
 <prop oor:name="Filter" oor:type="xs:string">
 <value>$(progpath)/filter</value>
 </prop>
 <prop oor:name="Gallery" oor:type="oor:string-list">
 <value oor:separator=":">$(insturl)/share/gallery:$(userurl)/gallery</value>
 </prop>
 <prop oor:name="Graphic" oor:type="xs:string">
 <value>$(insturl)/share/gallery</value>
 </prop>
 <prop oor:name="Help" oor:type="xs:string">
 <value>$(instpath)/help</value>
 </prop>
 <prop oor:name="Linguistic" oor:type="xs:string">
 <value>$(insturl)/share/dict</value>
 </prop>
 <prop oor:name="Module" oor:type="xs:string">
 <value>$(progpath)</value>
 </prop>
 <prop oor:name="Palette" oor:type="xs:string">
 <value>$(userurl)/config</value>
 </prop>
 <prop oor:name="Plugin" oor:type="oor:string-list">
 <value oor:separator=":">$(userpath)/plugin</value>
 </prop>
 <prop oor:name="Storage" oor:type="xs:string">
 <value>$(userpath)/store</value>
 </prop>
 <prop oor:name="Temp" oor:type="xs:string">
 <value>$(temp)</value>
 </prop>
 <prop oor:name="Template" oor:type="oor:string-list">
 <value oor:separator=":">
 $(insturl)/share/template/$(vlang):$(userurl)/template
 </value>
 </prop>
 <prop oor:name="UIConfig" oor:type="oor:string-list">
 <value oor:separator=":"/>
 </prop>
 <prop oor:name="UserConfig" oor:type="xs:string">
 <value>$(userurl)/config</value>
 </prop>
 <prop oor:name="UserDictionary" oor:type="xs:string">
 <value>$(userurl)/wordbook</value>
 </prop>
 <prop oor:name="Work" oor:type="xs:string">
 <value>$(work)</value>
 </prop>
 </group>
 <group oor:name="Default">
 <prop oor:name="Addin" oor:type="xs:string">
 <value>$(progpath)/addin</value>
 </prop>
 <prop oor:name="AutoCorrect" oor:type="oor:string-list">
 <value oor:separator=":">
 $(insturl)/share/autocorr:$(userurl)/autocorr
 </value>
 </prop>
 <prop oor:name="AutoText" oor:type="oor:string-list">
 <value oor:separator=":">
 $(insturl)/share/autotext/$(vlang):$(userurl)/autotext
 </value>
 </prop>
 <prop oor:name="Backup" oor:type="xs:string">
 <value>$(userurl)/backup</value>

528 OpenOffice.org 2.3 Developer's Guide • June 2007

 </prop>
 <prop oor:name="Basic" oor:type="oor:string-list">
 <value oor:separator=":">$(insturl)/share/basic:$(userurl)/basic</value>
 </prop>
 <prop oor:name="Bitmap" oor:type="xs:string">
 <value>$(insturl)/share/config/symbol</value>
 </prop>
 <prop oor:name="Config" oor:type="xs:string">
 <value>$(insturl)/share/config</value>
 </prop>
 <prop oor:name="Dictionary" oor:type="xs:string">
 <value>$(insturl)/share/wordbook/$(vlang)</value>
 </prop>
 <prop oor:name="Favorite" oor:type="xs:string">
 <value>$(userurl)/config/folders</value>
 </prop>
 <prop oor:name="Filter" oor:type="xs:string">
 <value>$(progpath)/filter</value>
 </prop>
 <prop oor:name="Gallery" oor:type="oor:string-list">
 <value oor:separator=":">$(insturl)/share/gallery:$(userurl)/gallery</value>
 </prop>
 <prop oor:name="Graphic" oor:type="xs:string">
 <value>$(insturl)/share/gallery</value>
 </prop>
 <prop oor:name="Help" oor:type="xs:string">
 <value>$(instpath)/help</value>
 </prop>
 <prop oor:name="Linguistic" oor:type="xs:string">
 <value>$(insturl)/share/dict</value>
 </prop>
 <prop oor:name="Module" oor:type="xs:string">
 <value>$(progpath)</value>
 </prop>
 <prop oor:name="Palette" oor:type="xs:string">
 <value>$(userurl)/config</value>
 </prop>
 <prop oor:name="Plugin" oor:type="oor:string-list">
 <value oor:separator=":">$(userpath)/plugin</value>
 </prop>
 <prop oor:name="Temp" oor:type="xs:string">
 <value>$(temp)</value>
 </prop>
 <prop oor:name="Template" oor:type="oor:string-list">
 <value oor:separator=":">
 $(insturl)/share/template/$(vlang):$(userurl)/template
 </value>
 </prop>
 <prop oor:name="UIConfig" oor:type="oor:string-list">
 <value oor:separator=":"/>
 </prop>
 <prop oor:name="UserConfig" oor:type="xs:string">
 <value>$(userurl)/config</value>
 </prop>
 <prop oor:name="UserDictionary" oor:type="xs:string">
 <value>$(userurl)/wordbook</value>
 </prop>
 <prop oor:name="Work" oor:type="xs:string">
 <value>$(work)</value>
 </prop>
 </group>
 </group>
 </component>
</oor:component-schema>

Accessing Path Settings

The path settings service is a one-instance service that supports the com.sun.star.beans.XProp-
ertySet, com.sun.star.beans.XFastPropertySet and com.sun.star.beans.XMultiProper-
tySet interfaces for access to the properties.

The service can be created using the service manager of OpenOffice.org and the service name
com.sun.star.util.PathSettings. The following example creates the path settings service.
import com.sun.star.lang.XMultiServiceFactory;
import com.sun.star.uno.Exception;
import com.sun.star.uno.XInterface;
import com.sun.star.beans.XPropertySet

XPropertySet createPathSettings() {

 // Obtain Process Service Manager.
 XMultiServiceFactory xServiceFactory = ...

529

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XFastPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XFastPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XFastPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html

 // Create Path settings service. Needs to be done only once per process.
 XInterface xPathSettings;
 try {
 xPathSettings = xServiceFactory.createInstance("com.sun.star.util.PathSettings");
 }
 catch (com.sun.star.uno.Exception e) {
 }

 if (xPathSettings != null)
 return (XpropertySet) UnoRuntime.queryInterface(XPropertySet.class, xPathSettings);
 else
 return null;
}

The main interface of the path settings service is com.sun.star.beans.XPropertySet. You can
retrieve and write properties with this interface. It also supports getting information about the
properties themselves.

• com::sun::star::beans::XPropertySetInfo getPropertySetInfo();
The path settings service returns an XPropertySetInfo interface where more information
about the path properties can be retrieved. The information includes the name of the property,
a handle for faster access with XFastPropertySet, the type of the property value and attribute
values.

• void setPropertyValue([in] string aPropertyName, [in] any aValue);
This function can set the path properties to a new value. The path settings service expects that a
value of type string is provided. The string must be a correctly encoded file URL. If the path
property supports multiple paths, each path must be separated by a semicolon (;). Path vari-
ables are also allowed, so long as they can be resolved to a valid file URL.

• any getPropertyValue([in] string PropertyName);
This function retrieves the value of a path property. The property name must be provided and
the path is returned. The path settings service always returns the path as a file URL. If the prop-
erty value includes multiple paths, each path is separated by a semicolon (;).

Note: The path settings service always provides property values as file URLs. Properties which are marked
as multi path (see table above) use a semicolon (;) as a separator for the different paths. The service also
expects that a new value for a path property is provided as a file URL or has a preceding path variable,
otherwise a com.sun.star.lang.IllegalArgumentException is thrown.

 Illustration 7.6 shows how the path settings, path substitution, and configuration service work
together to read or write path properties.

530 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/IllegalArgumentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/IllegalArgumentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/IllegalArgumentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html

Important: Keep in mind that the paths managed by the path settings service are vital for almost all of the
functions in OpenOffice.org. Entering a wrong path can result in minor malfunctions or break the complete
OpenOffice.org installation. Although the path settings service performs a validity check on the provided
URL, this cannot prevent all problems.

The following code example uses the path settings service to retrieve and set the path properties.
import com.sun.star.bridge.XUnoUrlResolver;
import com.sun.star.uno.UnoRuntime;
import com.sun.star.uno.XComponentContext;
import com.sun.star.lang.XMultiComponentFactory;
import com.sun.star.beans.XPropertySet;
import com.sun.star.beans.PropertyValue;

import com.sun.star.beans.UnknownPropertyException;

/* Provides example code how to access and use the
 * path pathsettings servce.
 */
public class PathSettingsTest extends java.lang.Object {

 /*
 * List of predefined path variables supported by

531

Illustration 7.19: Interaction of path settings, path substitution and configuration

 * the path settings service.
 */
 private static String[] predefinedPathProperties = {
 "Addin",
 "AutoCorrect",
 "AutoText",
 "Backup",
 "Basic",
 "Bitmap",
 "Config",
 "Dictionary",
 "Favorite",
 "Filter",
 "Gallery",
 "Graphic",
 "Help",
 "Linguistic",
 "Module",
 "Palette",
 "Plugin",
 "Storage",
 "Temp",
 "Template",
 "UIConfig",
 "UserConfig",
 "UserDictionary",
 "Work"
 };

 /*
 * @param args the command line arguments
 */
 public static void main(String[] args) {

 XComponentContext xRemoteContext = null;
 XMultiComponentFactory xRemoteServiceManager = null;
 XPropertySet xPathSettingsService = null;

 try {
 // connect
 XComponentContext xLocalContext =
 com.sun.star.comp.helper.Bootstrap.createInitialComponentContext(null);
 XMultiComponentFactory xLocalServiceManager = xLocalContext.getServiceManager();
 Object urlResolver = xLocalServiceManager.createInstanceWithContext(
 "com.sun.star.bridge.UnoUrlResolver", xLocalContext);
 XUnoUrlResolver xUnoUrlResolver = (XUnoUrlResolver) UnoRuntime.queryInterface(
 XUnoUrlResolver.class, urlResolver);
 Object initialObject = xUnoUrlResolver.resolve(
 "uno:socket,host=localhost,port=2083;urp;StarOffice.ServiceManager");
 XPropertySet xPropertySet = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, initialObject);
 Object context = xPropertySet.getPropertyValue("DefaultContext");
 xRemoteContext = (XComponentContext)UnoRuntime.queryInterface(
 XComponentContext.class, context);
 xRemoteServiceManager = xRemoteContext.getServiceManager();

 Object pathSubst = xRemoteServiceManager.createInstanceWithContext(
 "com.sun.star.comp.framework.PathSettings", xRemoteContext);
 xPathSettingsService = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, pathSubst);

 /* Work with path settings */
 workWithPathSettings(xPathSettingsService);
 }
 catch (java.lang.Exception e){
 e.printStackTrace();
 }
 finally {
 System.exit(0);
 }
 }

 /*
 * Retrieve and set path properties from path settings service
 * @param xPathSettingsService the path settings service
 */
 public static void workWithPathSettings(XPropertySet xPathSettingsService) {
 if (xPathSettingsService != null) {
 for (int i=0; i<predefinedPathProperties.length; i++) {
 try {
 /* Retrieve values for path properties from path settings service*/
 Object aValue = xPathSettingsService.getPropertyValue(predefinedPathProperties[i]);

 // getPropertyValue returns an Object, you have to cast it to type that you need
 String aPath = (String)aValue;
 System.out.println("Property="+ predefinedPathProperties[i] + " Path=" + aPath);
 }

532 OpenOffice.org 2.3 Developer's Guide • June 2007

 catch (com.sun.star.beans.UnknownPropertyException e) {
 System.out.println("UnknownPropertyException has been thrown accessing
"+predefinedPathProperties[i]);
 }
 catch (com.sun.star.lang.WrappedTargetException e) {
 System.out.println("WrappedTargetException has been thrown accessing
"+predefinedPathProperties[i]);
 }
 }

 // Try to modfiy the work path property. After running this example
 // you should see the new value of "My Documents" in the path options
 // tab page, accessible via "Tools - Options – OpenOffice.org - Paths".
 // If you want to revert the changes, you can also do it with the path tab page.
 try {
 xPathSettingsService.setPropertyValue("Work", "$(temp)");
 String aValue = (String)xPathSettingsService.getPropertyValue("Work");
 System.out.println("The work path should now be " + aValue);
 }
 catch (com.sun.star.beans.UnknownPropertyException e) {
 System.out.println("UnknownPropertyException has been thrown accessing PathSettings
service");
 }
 catch (com.sun.star.lang.WrappedTargetException e) {
 System.out.println("WrappedTargetException has been thrown accessing PathSettings service");
 }
 catch (com.sun.star.beans.PropertyVetoException e) {
 System.out.println("PropertyVetoException has been thrown accessing PathSettings service");
 }
 catch (com.sun.star.lang.IllegalArgumentException e) {
 System.out.println("IllegalArgumentException has been thrown accessing PathSettings
service");
 }
 }
 }
}

Path Variables
Path variables are used as placeholders for system-dependent paths or parts of paths which are
only known during the runtime of OpenOffice.org. The path substitution service
com.sun.star.util.PathSubstitution - which manages all path variables of OpenOffice.org -
checks the runtime environment during startup and sets the values of the path variables. The path
substitution service supports a number of predefined path variables. They provide information
about important paths that OpenOffice.org currently uses. They are implemented as read-only
values and cannot be changed.

OpenOffice.org is a multi-platform solution that runs on different file systems. Obviously users
want to have a single user configuration on all workstations across all platforms in a networked
installation. For example, a user wants to use both the Windows and Unix version of
OpenOffice.org. The home directory and the working directory are located on a central file server
that uses Samba to provide access for Windows systems. The user only wants to have one user
installation for both systems, so that individual settings only need to be specified once.

The path settings service described in 7.2.11 Office Development - Common Application Features - Path
Organization - Path Settings utilizes the path substitution service. In the configuration of
OpenOffice.org, path variables describe the path settings, and these variables can be substituted by
platform-specific paths during startup. That way, path substitution gives users the power to apply
path settings only once, while the system takes care of the necessary platform-dependent and envi-
ronment adaptations.

 Illustration 7.5 shows how a path variable can resolve the path problem that arises when you use
the same user directory on different platforms.

533

http://api.openoffice.org/docs/common/ref/com/sun/star/util/PathSubstitution.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/PathSubstitution.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/PathSubstitution.html

The following sections describe predefined variables, how to define your own variables, and how
to resolve path variables with respect to paths in your programs.

Predefined Variables

The path substitution service supports a number of predefined path variables. They provide infor-
mation about the paths that OpenOffice.org currently uses. They are implemented as read-only
values and cannot be modified.

The predefined path variables can be separated into three distinct groups. The first group of vari-
ables specifies a single path, the second group specifies a list of paths that are separated by the shell
or operating system dependent character, and the third group specifies only a part of a path.

All predefined variable names are case insensitive, as opposed to the user-defined variables that
are described below.

Predefined variables supported by service com.sun.star.util.PathSubstitution
$(home) Single path The absolute path to the home directory of the current user. Under Windows

this depends on the specific versions: usually the <drive>:\Documents and
Settings\<username>\Application Data under Windows 2000/XP and <drive>:
\Windows\Profiles\<username>\Application Data under Windows NT and
Win9x, ME with multi user support. Windows 9x and ME without multi-user
support <drive>:\Windows\Application Data.

$(inst)
$(instpath)
$(insturl)

Single path The absolute installation path of OpenOffice.org. Normally the share and
program folders are located inside the installation folder. The $(instpath)
and $(insturl) variables are aliases to $(inst)— they are included for
downward compatibility and should not be used.

534 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 7.20: Path variables solve problems in heterogeneous environments

Predefined variables supported by service com.sun.star.util.PathSubstitution
$(prog)
$(progpath)
$(progurl)

Single path The absolute path of the program folder of OpenOffice.org. Normally the
executable and the shared libraries are located in this folder. The $(prog-
path) and $(progurl) variables are aliases to $(prog)—they are
supported for downward compatibility and should not be used.

$(temp) Single path The absolute path of the current temporary directory used by
OpenOffice.org.

$(user)
$(userpath)
$(userurl)

Single path The absolute path to the user installation folder of OpenOffice.org. The $
(userpath) and $(userurl) variables are aliases to $(user)— they are
supported for downward compatibility and should not be used.

$(work) Single path The absolute path of the working directory of the user. Under Windows this
is the My Documents folder. Under Unix this is the home directory of the user.

$(path) List of paths The value of the PATH environment variable of the OpenOffice.org process.
The single paths are separated by a ';' character independent of the system.

$(lang) Part of a path The country code used by OpenOffice.org, see the table Mapping ISO
639/3166 to $(lang) below for examples.

$(langid) Part of a path The language identifier used by OpenOffice.org. An identifier is composed of
a primary language identifier and a sublanguage identifier such as
0x0009=English (primary language identifier), 0x0409=English US (composed
language code).The language identifier is based on the Microsoft language
identifiers, for further information please see:

Table of Language Identifiers
http://msdn.microsoft.com/library/en-us/intl/nls_238z.asp

Primary Language Identifiers
http://msdn.microsoft.com/library/en-us/intl/nls_61df.asp

SubLanguage Identifiers
http://msdn.microsoft.com/library/en-us/intl/nls_19ir.asp

$(vlang) Part of a path The language used by OpenOffice.org as an English string, for example,
"german" for a German version of OpenOffice.org.

The values of $(lang), $(langid) and $(vlang) are based on the property ooLocale in the configura-
tion branch org.openoffice.Setup/L10N, that is normally located in the share directory. This property
follows the ISO 639-1/ISO3166 standards that define identification codes for languages and coun-
tries. The ooLocale property is written by the setup application during installation time. The
following are examples of table Mapping ISO 639/3166 to $(vlang):

Mapping from ISO639-1/ISO3166 to $(lang) and $(vlang)

ISO 639-1 ISO 3166 $(lang) $(vlang)

ar * 96 arabic

ca AD 37 catalan

ca ES 37 catalan

cs * 42 czech

cz * 42 czech

da DK 45 danish

de * 49 german

el * 30 greek

en * 1 english

535

http://api.openoffice.org/docs/common/ref/com/sun/star/util/PathSubstitution.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/PathSubstitution.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/PathSubstitution.html

Mapping from ISO639-1/ISO3166 to $(lang) and $(vlang)
en GB 1 english_uk

es * 34 spanish

fi FI 35 finnish

fr * 33 french

he * 97 hebrew

hu HU 36 hungarian

it * 39 italian

ja JP 81 japanese

ko * 82 korean

nb NO 47 norwegian

nl * 31 dutch

nn NO 47 norwegian

no NO 47 norwegian

pl PL 48 polish

pt BR 55 portuguese_brazilian

pt PT 3 portuguese

ru RU 7 russian

sk SK 43 slovak

sv * 46 swedish

th TH 66 thai

tr TR 90 turkish

zh CN 86 chinese_simplified

zh TW 88 chinese_traditional

Custom Path Variables

Syntax

The path substitution service supports the definition and usage of user-defined path variables. The
variable names must use this syntax:
variable ::= “$(“ letter { letter | digit } “)”
letter ::= "A"-"Z"|"a"-"z"
digit ::= "0"-"9"

The user-defined variables must be defined in the configuration branch org.openoffice.Office.Substi-
tution. OpenOffice.org employs a rule-based system to evaluate which definition of a user-defined
variable is chosen. The following sections describe the different parts of this rule-based system and
the configuration settings that are required for defining new path variables.

Environment Values

To bind a specific value to a user-defined path variable, the path substitution service uses environ-
ment values. The path substitution service chooses a variable definition based on the values of
these environment parameters. The following table describes which parameters can be used:

536 OpenOffice.org 2.3 Developer's Guide • June 2007

Environment parameters
Host This value can be a host name or an IP address , depending on the network configuration

(DNS server available). A host name is case insensitive and can also use the asterisk (*) wild-
card to represent match zero or more characters.

YPDomain The yellow pages domain or NIS domain. The value is case insensitive and can use the
asterisk (*) wildcard to represent match zero or more characters.

DNSDomain The domain name service. The value is case insensitive and can use the asterisk (*) wildcard
to represent match zero or more characters.

NTDomain Windows NT domain. The value is case insensitive and can use the asterisk (*) wildcard to
represent match zero or more characters.

OS The operating system parameter supports the following values:

• WINDOWS (all windows versions including Win9x, WinME, and WinXP)

• UNIX (includes LINUX and SOLARIS)

• SOLARIS

• LINUX

Rules

The user can define the mapping of environment parameter values to variable values. Each defini-
tion is called a rule and all rules for a particular variable are the rule set. You can only have one
environment parameter value for each rule.

The following example rules specify that the user-defined variable called devdoc is bound to the
directory s:\develop\documentation if OpenOffice.org is running under Windows. The second rule
binds devdoc to /net/develop/documentation if OpenOffice.org is running under Solaris.

Variable name=devdoc
Environment parameter=OS
Value=file:///s:/develop/documentation
Variable name=devdoc
Environment parameter=SOLARIS
Value=file:///net/develop/documentation

Analyzing User-Defined Rules

OpenOffice.org uses matching rules to find the active rule inside a provided rule set.

1. Tries to match with the Host environment parameter. If more than one rule matches� this can
be possible if you use the asterisk (*) wildcard character - the first matching rule is applied.

2. Tries to match with the different Domain parameters. There is no predefined order for the
domain parameters - the first matching rule is applied.

3. Try to match with the OS parameter. The specialized values have a higher priority than generic
ones, for example, LINUX has a higher priority than UNIX.

 Illustration 7.3 shows the analyzing and matching of user-defined rules.

537

The analyzing and matching process is done whenever a rule set has changed. Afterwards the
values of the user-defined path variables are set and can be retrieved using the interface
com.sun.star.util.XStringSubstitution.

538 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 7.21: Process of the rule set analyzing

http://api.openoffice.org/docs/common/ref/com/sun/star/util/XStringSubstitution.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XStringSubstitution.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XStringSubstitution.html

Configuration

The path substitution service uses the org.openoffice.Office.Substitution configuration branch for the
rule set definitions, which adhere to this schema:
<?xml version='1.0' encoding='UTF-8'?>
<oor:component-schema oor:name="Substitution" oor:package="org.openoffice.Office" xml:lang="en-US"
xmlns:oor="http://openoffice.org/2001/registry" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <templates>
 <group oor:name="SharePointMapping">
 <prop oor:name="Directory" oor:type="xs:string" oor:nillable="false"/>
 <group oor:name="Environment">
 <prop oor:name="OS" oor:type="xs:string"/>
 <prop oor:name="Host" oor:type="xs:string"/>
 <prop oor:name="DNSDomain" oor:type="xs:string"/>
 <prop oor:name="YPDomain" oor:type="xs:string"/>
 <prop oor:name="NTDomain" oor:type="xs:string"/>
 </group>
 </group>
 <set oor:name="SharePoint" oor:node-type="SharePointMapping"/>
 </templates>
 <component>
 <set oor:name="SharePoints" oor:node-type="SharePoint"/>
 </component>
</oor:component-schema>

The SharePoints set is the root container that store the definition of the different user-defined
path variables. The SharePoint set uses nodes of type SharePoint which defines a single user-
defined path variable.

Properties of the SharePoint set nodes
oor:component
-data

String. The name of the user-defined path variable. It must be unique inside the Share-
Points set.

The name must meet the requirements for path variable names, see 7.2.11 Office Develop-
ment - Common Application Features - Path Organization - Path Variables. The preceding char-
acters �$(� and the succeeding �)� must be omitted, for example, the node string for the
path variable $(devdoc) must be devdoc.

A SharePoint set is a container for the different rules, called SharePointMapping in the configu-
ration.

Properties of the SharePointMapping group
oor:component
-data

String - must be unique inside the SharePoint set, but with no additional meaning for
user-defined path variables. Use a consecutive numbering scheme - even numbers are
permitted.

Directory String - must be set and contain a valid and encoded file URL that represents the value of
the user-defined path variable for the rule.

Environment Group - contains a set of properties that define the environment parameter that this rule
must match. You can only use one environment in a rule.

OS The operating system. The following values are supported:

• WINDOWS = Matches all Windows OS from Win 98 and higher.

• LINUX = Matches all supported Linux systems.

• SOLARIS = Matches all supported Solaris systems.

• UNIX = Matches all supported Unix systems (Linux,Solaris)

Host The host name or IP address. The name or address can include the asterisk
(*) wildcard to match with zero or more characters. For example,
dev*.local.de refers to all systems where the host name starts with �dev�
and ends with �.local.de�

539

Properties of the SharePointMapping group
DNSDomain The domain name service. The value is case insensitive and can use the

asterisk (*) wildcard for zero or more characters.

YPDomain The yellow pages domain or NIS domain. The value is case insensitive and
can use the asterisk (*) wildcard for zero or more characters.

NTDomain Windows NT domain. The value is case insensitive and can use the asterisk
(*) wildcard for zero or more characters.

The following example uses two rules to map a Windows and Unix specific path to the user-
defined path variable MyDocuments.
<?xml version="1.0" encoding="utf-8"?>
<oor:component-data oor:name="Substitution" oor:context="org.openoffice.Office"
xsi:schemaLocation="http://openoffice.org/2001/registry component-update.xsd"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:oor="http://openoffice.org/2001/registry"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <node oor:name="SharePoints">
 <node oor:name="MyDocuments" oor:op=”replace”>
 <node oor:name="1" oor:op=”replace”>
 <prop oor:name="Directory"><value>file:///H:/documents</value></prop>
 <node oor:name="Environment">
 <prop oor:name="OS"><value>Windows</value></prop>
 </node>
 </node>
 <node oor:name="2" oor:op=”replace”>
 <prop oor:name="Directory"><value>file:///net/home/user/documents</value></prop>
 <node oor:name="Environment">
 <prop oor:name="OS"><value>UNIX</value></prop>
 </node>
 </node>
 </node>
 </node>
</oor:component-data>

Resolving Path Variables

This section explains how to use the OpenOffice.org implementation of the path substitution
service. The following code snippet creates a path substitution service.
import com.sun.star.lang.XMultiServiceFactory;
import com.sun.star.uno.Exception;
import com.sun.star.uno.XInterface;
import com.sun.star.util.XStringSubstitution

XStringSubstitution createPathSubstitution() {

 ///
 // Obtain Process Service Manager.
 ///

 XMultiServiceFactory xServiceFactory = ...

 ///
 // Create Path Substitution. This needs to be done only once per process.
 ///

 XInterface xPathSubst;
 try {
 xPathSubst = xServiceFactory.createInstance(
 "com.sun.star.util.PathSubstitution");
 }
 catch (com.sun.star.uno.Exception e) {
 }

 if (xPathSubst != null)
 return (XStringSubstitution)UnoRuntime.queryInterface(
 XStringSubstitution.class, xPathSubst);
 else
 return null;
}

The service is implemented as a one-instance service and supports the interface
com.sun.star.util.XStringSubstitution. The interface has three methods:

string substituteVariables([in] string aText, [in] boolean bSubstRequired)

540 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/util/XStringSubstitution.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XStringSubstitution.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XStringSubstitution.html

string reSubstituteVariables([in] string aText)
string getSubstituteVariableValue([in] string variable)

The method substituteVariables() returns a string where all known variables are replaced by
their value. Unknown variables are not replaced. The argument bSubstRequired can be used to
indicate that the client needs a full substitution� otherwise the function fails and throws a
com.sun.star.container.NoSuchElementException. For example: $(inst)/share/autotext/$(vlang)
could be substituted to file:///c:/OpenOffice.org1.0.2/share/autotext/english.

The method reSubstituteVariables() returns a string where parts of the provided path aText
are replaced by variables that represent this part of the path. If a matching variable is not found,
the path is not modified.

The predefined variable $(path) is not used for substitution. Instead, it is a placeholder for the
path environment variable does not have a static value during runtime. The path variables $
(lang), $(langid) and $(vlang), which represent a directory or a filename in a path, only match
inside or at the end of a provided path. For example: english is not replaced by $(vlang), whereas
file:///c:/english is replaced by file:///c:/$(vlang).

The method getSubstituteVariableValue()returns the current value of the provided path vari-
able as a predefined or a user-defined value. If an unknown variable name is provided, a
com.sun.star.container.NoSuchElementException is thrown. The argument variable can be
provided with preceding "$(" and succeeding ")" or without them. So both $(work) and work can
be used.

This code example shows how to access, substitute, and resubstitute path variables by means of the
OpenOffice.org API.
import com.sun.star.bridge.XUnoUrlResolver;
import com.sun.star.uno.UnoRuntime;
import com.sun.star.uno.XComponentContext;
import com.sun.star.lang.XMultiComponentFactory;
import com.sun.star.beans.XPropertySet;
import com.sun.star.beans.PropertyValue;

import com.sun.star.util.XStringSubstitution;
import com.sun.star.frame.TerminationVetoException;
import com.sun.star.frame.XTerminateListener;

/*
 * Provides example code how to access and use the
 * path substitution sercvice.
 */
public class PathSubstitutionTest extends java.lang.Object {

 /*
 * List of predefined path variables supported by
 * the path substitution service.
 */
 private static String[] predefinedPathVariables = {
 "$(home)","$(inst)","$(prog)","$(temp)","$(user)",
 "$(work)","$(path)","$(lang)","$(langid)","$(vlang)"
 };

 /*
 * @param args the command line arguments
 */
 public static void main(String[] args) {

 XComponentContext xRemoteContext = null;
 XMultiComponentFactory xRemoteServiceManager = null;
 XStringSubstitution xPathSubstService = null;

 try {
 // connect
 XComponentContext xLocalContext =
 com.sun.star.comp.helper.Bootstrap.createInitialComponentContext(null);
 XMultiComponentFactory xLocalServiceManager = xLocalContext.getServiceManager();
 Object urlResolver = xLocalServiceManager.createInstanceWithContext(
 "com.sun.star.bridge.UnoUrlResolver", xLocalContext);
 XUnoUrlResolver xUnoUrlResolver = (XUnoUrlResolver) UnoRuntime.queryInterface(
 XUnoUrlResolver.class, urlResolver);
 Object initialObject = xUnoUrlResolver.resolve(
 "uno:socket,host=localhost,port=2083;urp;StarOffice.ServiceManager");
 XPropertySet xPropertySet = (XPropertySet)UnoRuntime.queryInterface(

541

http://api.openoffice.org/docs/common/ref/com/sun/star/container/NoSuchElementException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/NoSuchElementException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/NoSuchElementException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/NoSuchElementException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/NoSuchElementException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/NoSuchElementException.html

 XPropertySet.class, initialObject);
 Object context = xPropertySet.getPropertyValue("DefaultContext");
 xRemoteContext = (XComponentContext)UnoRuntime.queryInterface(
 XComponentContext.class, context);
 xRemoteServiceManager = xRemoteContext.getServiceManager();

 Object pathSubst = xRemoteServiceManager.createInstanceWithContext(
 "com.sun.star.comp.framework.PathSubstitution", xRemoteContext);
 xPathSubstService = (XStringSubstitution)UnoRuntime.queryInterface(
 XStringSubstitution.class, pathSubst);

 /* Work with path variables */
 workWithPathVariables(xPathSubstService);
 }
 catch (java.lang.Exception e){
 e.printStackTrace();
 }
 finally {
 System.exit(0);
 }
 }

 /*
 * Retrieve, resubstitute path variables
 * @param xPathSubstService the path substitution service
 */
 public static void workWithPathVariables(XStringSubstitution xPathSubstService)
 {
 if (xPathSubstService != null) {
 for (int i=0; i<predefinedPathVariables.length; i++) {
 try {
 /* Retrieve values for predefined path variables */
 String aPath = xPathSubstService.getSubstituteVariableValue(
 predefinedPathVariables[i]);
 System.out.println("Variable="+ predefinedPathVariables[i] +
 " Path=" + aPath);

 /* Check resubstitute */
 String aValue = xPathSubstService.reSubstituteVariables(aPath);
 System.out.println("Path=" + aPath +
 " Variable=" + aValue);
 }
 catch (com.sun.star.container.NoSuchElementException e) {
 System.out.println("NoSuchElementExceptio has been thrown accessing"
 + predefinedPathVariables[i]);
 }
 }
 }
 }
}

7.2.8 OpenOffice.org Single Sign-On API

Overview
Users of a client application that can communicate with a variety of services on a network may
need to enter several passwords during a single session to access different services. This situation
can be further exacerbated if the client application also requires the user to enter a password each
time a particular network service is accessed during a session.

As most network users must authenticate to an OS at login time, it would make sense to access
some of the required network services at this time as well. A solution to this problem is provided
by the Single Sign-On (SSO) methodology, which is the ability to login in once and access several
protected network services.

The best known SSO is the Kerberos network authentication protocol (see rfc1510). Kerberos func-
tionality is commonly accessed through the Generic Security Service Application Program Inter-
face (GSS-API, see rfc2743). Central to GSS-API is the concept of a security context, which is the
"state of trust" that is initiated when a client (also known as source or initiator) identifies itself to a
network service (also known as target or acceptor). If mutual authentication is supported, then the
service can also authenticate itself to the client. To establish a security context, security tokens are

542 OpenOffice.org 2.3 Developer's Guide • June 2007

http://www.ietf.org/rfc/rfc2743.txt
http://www.ietf.org/rfc/rfc2743.txt
http://www.ietf.org/rfc/rfc2743.txt
http://www.ietf.org/rfc/rfc1510.txt
http://www.ietf.org/rfc/rfc1510.txt
http://www.ietf.org/rfc/rfc1510.txt

exchanged, processed, and verified between the client and the service. The client always initiates
this exchange. Once established, a security context can be used to encrypt or decrypt subsequent
client-service communications.

The OpenOffice.org SSO API is based on GSS-API. The SSO API supports the creation of security
contexts on the client and the service side as well as the generation of the security tokens that are
required for the exchange to complete the security context based authentication. The SSO API does
not support the actual exchange of security tokens or the encryption or decryption of client-service
communications in an established security context.

OpenOffice.org implements SSO in two different ways to authenticate with an LDAP server for
configuration purposes. The first is Kerberos based and the second is a simple non-standard
"cached username/password" SSO. The latter is provided as a fallback to support scenarios where
no Kerberos server is available.

Implementing the OpenOffice.org SSO API
Implementing the OpenOffice.org SSO API involves creating security context instances (see
XSSOInitiatorContext and XSSOAcceptorContext below) and using these instances to create
and process security tokens. All of the OpenOffice.org SSO interfaces are available from the
::com::sun::star::auth namespace. The major interfaces are shown in Illustration 7.2 and
described below.

XSSOManagerFactory
Represents the starting point for interaction with the SSO API. This interface is responsible for
providing XSSOManager (described below) instances based on the user's configured security
mechanism e.g. "KERBEROS".

XSSOManager
This interface is responsible for the creation of unestablished security contexts for clients
(XSSOInitiatorContext) and services (XSSOAcceptorContext). An XSSOManager instance
"supports" a single security mechanism, that is, the context instances that are created by an
XSSOManager instance only interact with a single security mechanism implementation.

XSSOInitiatorContext
This interface represents a client-side security context that is unestablished when it is created. A
single method, init(), is provided so that you can create an initial client-side security token
that can be delivered to the relevant service and for processing or validating returned service-
side security tokens (if mutual authentication is supported). The expected sequence of events
for this client-side security context is:

• The client calls init(), passes NULL as the parameter, receives an appropriate client-
side security token in return.

• The client sends the security token to the relevant service.

• If the service successfully processes this token, the client is authenticated.

• If mutual authentication is not supported, the client-side authentication sequence is
now complete.

• If mutual authentication is supported, the service sends a service-side security token to
the client.

• The client calls init() a second time and passes the returned service-side security
token as a parameter. If the token is successfully passed, the service is authenticated.

543

XSSOAcceptorContext
This interface represents a service-side security context that is not established when it is
created. A single method, accept(), is provided and is responsible for processing an initial
client-side security token. If mutual authentication is supported, the method also generates a
service-side security token for the client. The expected sequence of events for this service-side
security context is:

• The service receives the client-side security token.

• The service calls accept(), passes the client-side security token as a parameter, and if
successful, the client is authenticated.

• If mutual authentication is not supported, the service-side authentication sequence is
now complete.

• If mutual authentication is supported, accept() returns a non-zero length service-side
security token.

• The service sends the service-side security token to the client to authenticate the service.

544 OpenOffice.org 2.3 Developer's Guide • June 2007

The following example is a sample usage of the OpenOffice.org SSO API that provides the
authenticate() method of the fictitious client--side MySSO class. For simplicity, assume that
MySSO has the following members:

• mSourceName identifies a client-side user that needs to authenticate to a network service.

• mTargetName identifies the service to which the user needs to authenticate.

• mTargetHost identifies the network host where the service of interest is running.
namespace auth = ::com::sun::star::auth;
namespace lang = ::com::sun::star::lang;

545

Illustration 7.22: Major Interfaces of the OpenOffice.org SSO

namespace uno = ::com::sun::star::uno;

void MySSO::authenticate(void) {
 static const rtl::OUString kSSOService(
 RTL_CONSTASCII_USTRINGPARAM("com.sun.star.auth.SSOManagerFactory"));

 uno::Reference< lang::XMultiServiceFactory > theServiceFactory =
 ::comphelper::getProcessServiceFactory();

 // Create an SSO Manager Factory.
 uno::Reference< auth::XSSOManagerFactory > theSSOFactory(
 theServiceFactory->createInstance(kSSOService), uno::UNO_QUERY);
 if (!theSSOFactory.is()) {
 throw;
 }

 // Ask the SSO Manager Factory for an SSO Manager.
 uno::Reference<auth::XSSOManager> theSSOManager =
 theSSOFactory->getSSOManager();
 if (!theSSOManager.is()) {
 throw;
 }

 // Ask the SSO Manager to create an unestablished client/initiator side
 // security context based on user name, service name and service host.
 uno::Reference<auth::XSSOInitiatorContext> theInitiatorContext =
 theSSOManager->createInitiatorContext(mSourceName, mTargetName, mTargetHost);

 // Now create the client side security token to send to the service.
 uno::Sequence<sal_Int8> theClientToken = theInitiatorContext->init(NULL);

 // The client should now send 'theClientToken' to the service.
 // If mutual authentication is supported, the service will return a service
 // side security token.
 uno::Sequence<sal_Int8> theServerToken = sendToken(theClientToken);
 if (theInitiatorContext->getMutual()) {
 theInitiatorContext->init(theServerToken);
 }
}

The SSO Password Cache

When you implement the SSO API, you may require access to user passwords, especially if you are
relying on a preexisting underlying security mechanism. If you do not know how to gain such
access, you can use the OpenOffice.org SSO password cache. This cache provides basic support for
maintaining a list of user name or password entries. Individual entries have a default lifetime
corresponding to a single user session, but can optionally exist for multiple sessions. Support is
provided for adding, retrieving, and deleting cache entries. Only one entry per user name can exist
in the cache at any time. If you add an entry for an existing user name, the new entry replaces the
original entry.

The SSO password cache is represented by a single interface, namely the XSSOPasswordCache
interface, available in the ::com::sun::star::auth namespace.

546 OpenOffice.org 2.3 Developer's Guide • June 2007

8 Text Documents

8.1 Overview
In the OpenOffice.org API, a text document is a document model which is able to handle text
contents. A document in our context is a product of work that can be stored and printed to make
the result of the work a permanent resource. By model we mean data that forms the basis of a
document and is organized in a manner that allows working with the data independently from
their visual representation in a graphical user interface.

It is important to understand that developers have to work with the model directly, when they
want to change it through the OpenOffice.org API. The model has a controller object which enables
developers to manipulate the visual presentation of the document in the user interface. But the
controller is not used to change a document. The controller serves two purposes.

• The controller interacts with the user interface for movement, such as moving the visible text
cursor, flipping through screen pages or changing the zoom factor.

• The second purpose is getting information about the current view status, such as the current
selection, the current page, the total page count or the line count. Automatic page or line breaks
are not really part of the document data, but rather something that is needed in a certain
presentation of the document.

Keeping the difference between model and controller in mind, we will now discuss the parts of a
text document model in the OpenOffice.org API.

The text document model in the OpenOffice.org API has five major architectural areas, cf. Illustra-
tion 8.1 below. The five areas are:

• text

• service manager (document internal)

• draw page

• text content suppliers

• objects for styling and numbering

The core of the text document model is the text. It consists of character strings organized in para-
graphs and other text contents. The usage of text will be discussed in 8.3 Text Documents - Working
with Text Documents.

The service manager of the document model creates all text contents for the model, except for the
paragraphs. Note that the document service manager is different from the main service manager
that is used when connecting to the office. Each document model has its own service manager, so
that the services can be adapted to the document when required. Examples for text contents

547

created by the text document service manager are text tables, text fields, drawing shapes, text
frames or graphic objects. The service manager is asked for a text content, then you insert it into
the text.

Afterwards, the majority of these text contents in a text can be retrieved from the model using text
content suppliers. The exception are drawing shapes. They can be found on the DrawPage, which is
discussed below.

Above the text lies the DrawPage. It is used for drawing contents. Imagine it as a transparent layer
with contents that can affect the text under the layer, for instance by forcing it to wrap around
contents on the DrawPage. However, text can also wrap through DrawPage contents, so the simi-
larity is limited.

Finally, there are services that allow for document wide styling and structuring of the text. Among
them are style family suppliers for paragraphs, characters, pages and numbering patterns, and
suppliers for line and outline numbering.

Besides these five architectural areas, there are a number of aspects covering the document char-
acter of our model: It is printable, storable, modifiable, it can be refreshed, its contents are able to
be searched and replaced and it supplies general information about itself. These aspects are shown
at the lower right of the illustration.

548 OpenOffice.org 2.3 Developer's Guide • June 2007

Finally, the controller provides access to the graphical user interface for the model and has knowl-
edge about the current view status in the user interface, cf. the upper left of the diagram above.

The usage of text is discussed in the section 8.3.1 Text Documents - Working with Text Documents -
Word Processing below. This overview will be concluded by two examples:

549

Illustration 8.1 Text Document Model

8.1.1 Example: Fields in a Template
All following code samples are contained in TextDocuments.java. This file is located in the Samples
folder that comes with the resources for the developer's manual.

The examples use the environment from chapter 2 First Steps, for instance, connecting using the
getRemoteServiceManager() method.

We want to use a template file containing text fields and bookmarks and insert text into the fields
and at the cursor position. The suitable template file TextTemplateWithUserFields.odt lies in the
Samples folder, as well. Edit the path to this file below before running the sample.

The first step is to load the file as a template, so that OpenOffice.org creates a new, untitled docu-
ment. As in the chapter 2 First Steps, we have to connect, get the Desktop object, query its XCompo-
nentLoader interface and call loadComponentFromUrl(). This time we tell OpenOffice.org how it
should load the file. The key for loading parameters is the sequence of PropertyValue structs
passed to loadComponentFromUrl(). The appropriate PropertyValue name is AsTemplate and
we have to set AsTemplate to true. (Text/TextDocuments.java)
/** Load a document as template */
protected XComponent newDocComponentFromTemplate(String loadUrl) throws java.lang.Exception {
 // get the remote service manager
 mxRemoteServiceManager = this.getRemoteServiceManager(unoUrl);
 // retrieve the Desktop object, we need its XComponentLoader
 Object desktop = mxRemoteServiceManager.createInstanceWithContext(
 "com.sun.star.frame.Desktop", mxRemoteContext);
 XComponentLoader xComponentLoader = (XComponentLoader)UnoRuntime.queryInterface(
 XComponentLoader.class, desktop);

 // define load properties according to com.sun.star.document.MediaDescriptor
 // the boolean property AsTemplate tells the office to create a new document
 // from the given file
 PropertyValue[] loadProps = new PropertyValue[1];
 loadProps[0] = new PropertyValue();
 loadProps[0].Name = "AsTemplate";
 loadProps[0].Value = new Boolean(true);
 // load
 return xComponentLoader.loadComponentFromURL(loadUrl, "_blank", 0, loadProps);
}

Now that we are able to load a text document as template, we will open an existing template file
that contains five text fields and a bookmark. We want to demonstrate how to insert text at
predefined positions in a document.

Text fields and bookmarks are supplied by the appropriate XTextFieldsSupplier and XBook-
marksSupplier interfaces. Their fully qualified names are com.sun.star.text.XTextFieldsSup-
plier and com.sun.star.text.XBookmarksSupplier.

The XTextFieldsSupplier provides collections of text fields in our text. We use document vari-
able fields for our purpose, which arecom.sun.star.text.textfield.User services. All User
fields have a field master that holds the actual content of the variable. Therefore, the TextFields
collection, as well as the FieldMasters are required for our example. We get the field masters for
the five fields by name and set their Content property. Finally, we refresh the text fields so that
they reflect the changes made to the field masters.

The XBookmarksSupplier returns all bookmarks in our document. The collection of bookmarks is
a com.sun.star.container.XNameAccess, so that the bookmarks are retrieved by name. Every
object in a text supports the interface XTextContent that has a method getAnchor(). The anchor is
the text range an object takes up, so getAnchor() retrieves is an XTextRange. From the chapter 2
First Steps, a com.sun.star.text.XTextRange allows setting the string of a text range. Our book-
mark is a text content and therefore must support XTextContent. Inserting text at a bookmark
position is straightforward: get the anchor of the bookmark and set its string. (Text/TextDocu-
ments.java)
/** Sample for use of templates
 This sample uses the file TextTemplateWithUserFields.odt from the Samples folder.
 The file contains a number of User text fields (Variables - User) and a bookmark

550 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/User.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/User.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/User.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XBookmarksSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XBookmarksSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XBookmarksSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextFieldsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextFieldsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextFieldsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextFieldsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextFieldsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextFieldsSupplier.html

 which we use to fill in various values
 */
protected void templateExample() throws java.lang.Exception {
 // create a small hashtable that simulates a rowset with columns
 Hashtable recipient = new Hashtable();
 recipient.put("Company", "Manatee Books");
 recipient.put("Contact", "Rod Martin");
 recipient.put("ZIP", "34567");
 recipient.put("City", "Fort Lauderdale");
 recipient.put("State", "Florida");

 // load template with User fields and bookmark
 XComponent xTemplateComponent = newDocComponentFromTemplate(
 "file:///X:/devmanual/Samples/TextTemplateWithUserFields.odt");

 // get XTextFieldsSupplier and XBookmarksSupplier interfaces from document component
 XTextFieldsSupplier xTextFieldsSupplier = (XTextFieldsSupplier)UnoRuntime.queryInterface(
 XTextFieldsSupplier.class, xTemplateComponent);
 XBookmarksSupplier xBookmarksSupplier = (XBookmarksSupplier)UnoRuntime.queryInterface(
 XBookmarksSupplier.class, xTemplateComponent);

 // access the TextFields and the TextFieldMasters collections
 XNameAccess xNamedFieldMasters = xTextFieldsSupplier.getTextFieldMasters();
 XEnumerationAccess xEnumeratedFields = xTextFieldsSupplier.getTextFields();

 // iterate over hashtable and insert values into field masters
 java.util.Enumeration keys = recipient.keys();
 while (keys.hasMoreElements()) {
 // get column name
 String key = (String)keys.nextElement();

 // access corresponding field master
 Object fieldMaster = xNamedFieldMasters.getByName(
 "com.sun.star.text.FieldMaster.User." + key);

 // query the XPropertySet interface, we need to set the Content property
 XPropertySet xPropertySet = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, fieldMaster);

 // insert the column value into field master
 xPropertySet.setPropertyValue("Content", recipient.get(key));
 }

 // afterwards we must refresh the textfields collection
 XRefreshable xRefreshable = (XRefreshable)UnoRuntime.queryInterface(
 XRefreshable.class, xEnumeratedFields);
 xRefreshable.refresh();

 // accessing the Bookmarks collection of the document
 XNameAccess xNamedBookmarks = xBookmarksSupplier.getBookmarks();

 // find the bookmark named "Subscription"
 Object bookmark = xNamedBookmarks.getByName("Subscription");

 // we need its XTextRange which is available from getAnchor(),
 // so query for XTextContent
 XTextContent xBookmarkContent = (XTextContent)UnoRuntime.queryInterface(
 XTextContent.class, bookmark);

 // get the anchor of the bookmark (its XTextRange)
 XTextRange xBookmarkRange = xBookmarkContent.getAnchor();

 // set string at the bookmark position
 xBookmarkRange.setString("subscription for the Manatee Journal");
}

8.1.2 Example: Visible Cursor Position
As discussed earlier, the OpenOffice.org API distinguishes between the model and controller. This
difference is mirrored in two different kinds of cursors in the API: model cursors and visible
cursors. The visible cursor is also called view cursor.

The second example assumes that the user has selected a text range in a paragraph and expects
something to happen at that cursor position. Setting character and paragraph styles, and retrieving
the current page number at the view cursor position is demonstrated in the example. The view
cursor will be transformed into a model cursor.

551

We want to work with the current document, therefore we cannot use loadComponentFromURL().
Rather, we ask the com.sun.star.frame.Desktop service for the current component. Once we have
the current component� which is our document model� we go from the model to the controller
and get the view cursor.

The view cursor has properties for the current character and paragraph style. The example uses
built-in styles and sets the property CharStyleName to "Quotation" and ParaStyleName to
"Quotations". Furthermore, the view cursor knows about the automatic page breaks. Because we
are interested in the current page number, we get it from the view cursor and print it out.

The model cursor is much more powerful than the view cursor when it comes to possible move-
ments and editing capabilities. We create a model cursor from the view cursor. Two steps are
necessary: We ask the view cursor for its Text service, then we have the Text service create a
model cursor based on the current cursor position. The model cursor knows where the paragraph
ends, so we go there and insert a string. (Text/TextDocuments.java)
/** Sample for document changes, starting at the current view cursor position
 The sample changes the paragraph style and the character style at the current
 view cursor selection
 Open the sample file ViewCursorExampleFile, select some text and run the example
 The current paragraph will be set to Quotations paragraph style
 The selected text will be set to Quotation character style
 */
private void viewCursorExample() throws java.lang.Exception {
 // get the remote service manager
 mxRemoteServiceManager = this.getRemoteServiceManager(unoUrl);

 // get the Desktop service
 Object desktop = mxRemoteServiceManager.createInstanceWithContext(
 "com.sun.star.frame.Desktop", mxRemoteContext);

 // query its XDesktop interface, we need the current component
 XDesktop xDesktop = (XDesktop)UnoRuntime.queryInterface(
 XDesktop.class, desktop);

 // retrieve the current component and access the controller
 XComponent xCurrentComponent = xDesktop.getCurrentComponent();

 // get the XModel interface from the component
 XModel xModel = (XModel)UnoRuntime.queryInterface(XModel.class, xCurrentComponent);

 // the model knows its controller
 XController xController = xModel.getCurrentController();

 // the controller gives us the TextViewCursor
 // query the viewcursor supplier interface
 XTextViewCursorSupplier xViewCursorSupplier =
 (XTextViewCursorSupplier)UnoRuntime.queryInterface(
 XTextViewCursorSupplier.class, xController);

 // get the cursor
 XTextViewCursor xViewCursor = xViewCursorSupplier.getViewCursor();

 // query its XPropertySet interface, we want to set character and paragraph properties
 XPropertySet xCursorPropertySet = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xViewCursor);

 // set the appropriate properties for character and paragraph style
 xCursorPropertySet.setPropertyValue("CharStyleName", "Quotation");
 xCursorPropertySet.setPropertyValue("ParaStyleName", "Quotations");

 // print the current page number – we need the XPageCursor interface for this
 XPageCursor xPageCursor = (XPageCursor)UnoRuntime.queryInterface(
 XPageCursor.class, xViewCursor);
 System.out.println("The current page number is " + xPageCursor.getPage());

 // the model cursor is much more powerful, so
 // we create a model cursor at the current view cursor position with the following steps:
 // we get the Text service from the TextViewCursor, the cursor is an XTextRange and has
 // therefore a method getText()
 XText xDocumentText = xViewCursor.getText();

 // the text creates a model cursor from the viewcursor
 XTextCursor xModelCursor = xDocumentText.createTextCursorByRange(xViewCursor.getStart());

 // now we could query XWordCursor, XSentenceCursor and XParagraphCursor
 // or XDocumentInsertable, XSortable or XContentEnumerationAccess
 // and work with the properties of com.sun.star.text.TextCursor

 // in this case we just go to the end of the paragraph and add some text.

552 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html

 XParagraphCursor xParagraphCursor = (XParagraphCursor)UnoRuntime.queryInterface(
 XParagraphCursor.class, xModelCursor);

 // goto the end of the paragraph
 xParagraphCursor.gotoEndOfParagraph(false);
 xParagraphCursor.setString(" ***** Fin de semana! ******");
}

8.2 Handling Text Document Files

8.2.1 Creating and Loading Text Documents
If a document in OpenOffice.org is required, begin by getting a com.sun.star.frame.Desktop
service from the service manager. The desktop handles all document components in
OpenOffice.org, among other things. It is discussed thoroughly in the chapter 7 Office Development.
Office documents are often called components, because they support the
com.sun.star.lang.XComponent interface. An XComponent is a UNO object that can be disposed
explicitly and broadcast an event to other UNO objects when this happens.

The Desktop can load new and existing components from a URL. For this purpose it has a
com.sun.star.frame.XComponentLoader interface that has one single method to load and instan-
tiate components from a URL into a frame:

com.sun.star.lang::XComponent loadComponentFromURL([in] string aURL,
[in] string aTargetFrameName,
[in] long nSearchFlags,
[in] sequence< com::sun::star::beans::PropertyValue > aArgs);

The interesting parameters in our context are the URL that describes which resource should be
loaded and the sequence of load arguments. For the target frame pass "_blank" and set the search
flags to 0. In most cases you will not want to reuse an existing frame.

The URL can be a file: URL, a http: URL, an ftp: URL or a private: URL. Look up the correct
URL format in the load URL box in the function bar of OpenOffice.org. For new writer documents,
a special URL scheme has to be used. The scheme is "private:", followed by "factory" as hostname.
The resource is "swriter" for OpenOffice.org writer documents. For a new writer document, use
"private:factory/swriter".
The load arguments are described in com.sun.star.document.MediaDescriptor. The arguments
AsTemplate and Hidden have properties that are boolean values. If AsTemplate is true, the loader
creates a new untitled document from the given URL. If it is false, template files are loaded for
editing. If Hidden is true, the document is loaded in the background. This is useful when gener-
ating a document in the background without letting the user observe, for example, it can be used to
generate a document and print it without previewing. 7 Office Development describes other avail-
able options.

The section 8.1.1 Text Documents - Overview - Fields in a Template discusses a complete example
about how loading works. The following snippet loads a document in hidden mode: (Text/Text-
Documents.java)
// (the method getRemoteServiceManager is described in the chapter First Steps)
mxRemoteServiceManager = this.getRemoteServiceManager(unoUrl);

// retrieve the Desktop object, we need its XComponentLoader
Object desktop = mxRemoteServiceManager.createInstanceWithContext(
"com.sun.star.frame.Desktop", mxRemoteContext);

// query the XComponentLoader interface from the Desktop service
XComponentLoader xComponentLoader = (XComponentLoader)UnoRuntime.queryInterface(
 XComponentLoader.class, desktop);

// define load properties according to com.sun.star.document.MediaDescriptor

553

http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html

/* or simply create an empty array of com.sun.star.beans.PropertyValue structs:
 PropertyValue[] loadProps = new PropertyValue[0]
*/

// the boolean property Hidden tells the office to open a file in hidden mode
PropertyValue[] loadProps = new PropertyValue[1];
loadProps[0] = new PropertyValue();
loadProps[0].Name = "Hidden";
loadProps[0].Value = new Boolean(true);

// load
return xComponentLoader.loadComponentFromURL(loadUrl, "_blank", 0, loadProps);

8.2.2 Saving Text Documents

Storing
Documents are storable through their interface com.sun.star.frame.XStorable. This interface is
discussed in detail in 7 Office Development. An XStorable implements these operations:

boolean hasLocation()
string getLocation()
boolean isReadonly()
void store()
void storeAsURL([in] string aURL, sequence< com::sun::star::beans::PropertyValue > aArgs)
void storeToURL([in] string aURL, sequence< com::sun::star::beans::PropertyValue > aArgs)

The method names are evident. The method storeAsUrl() is the exact representation of File �
Save As, that is, it changes the current document location. In contrast, storeToUrl() stores a copy
to a new location, but leaves the current document URL untouched.

Exporting
For exporting purposes, a filter name can be passed to storeAsURL() and storeToURL() that trig-
gers an export to other file formats. The property needed for this purpose is the string argument
FilterName that takes filter names defined in the configuration file:

<OfficePath>\share\config\registry\modules\org\openoffice\TypeDetection\Filter*.xcu

In the *.xcu, look for <node oor:name=”...”/ oor:op=”replace”> elements, their oor:name
attribute contains the needed strings for FilterName. The proper filter name for StarWriter 5.x is
"StarWriter 5.0", and the export format "MS Word 97" is also popular. This is the element in <Offi-
cePath>\share\config\registry\modules\org\openoffice\TypeDetection\Filter\fcfg_writer_filtewrs.xcu
that describes the MS Word 97 filter:
<node oor:name="MS Word 97" oor:op="replace">

<prop oor:name="Flags"><value>IMPORT EXPORT ALIEN PREFERRED</value></prop>
<prop oor:name="UIComponent"/>
<prop oor:name="FilterService"/>
<prop oor:name="UserData"><value>CWW8</value></prop>
<prop oor:name="UIName">

<value xml:lang="x-default">Microsoft Word 97/2000/XP</value>
</prop>
<prop oor:name="FileFormatVersion"><value>0</value></prop>
<prop oor:name="Type"><value>writer_MS_Word_97</value></prop>
<prop oor:name="TemplateName"/>
<prop oor:name="DocumentService"><value>com.sun.star.text.TextDocument</value></prop>

</node>

The following method stores a document using this filter: (Text/TextDocuments.java)
/** Store a document, using the MS Word 97/2000/XP Filter */
 protected void storeDocComponent(XComponent xDoc, String storeUrl) throws java.lang.Exception {

 XStorable xStorable = (XStorable)UnoRuntime.queryInterface(XStorable.class, xDoc);
 PropertyValue[] storeProps = new PropertyValue[1];
 storeProps[0] = new PropertyValue();

554 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html

 storeProps[0].Name = "FilterName";
 storeProps[0].Value = "MS Word 97";
 xStorable.storeAsURL(storeUrl, storeProps);
 }

If an empty array of PropertyValue structs is passed, the native .odt format of OpenOffice.org is
used.

8.2.3 Printing Text Documents

Printer and Print Job Settings
Printing is a common office functionality. The chapter 7 Office Development provides in-depth
information about it. The writer document implements the com.sun.star.view.XPrintable
interface for printing. It consists of three methods:

sequence< com::sun::star::beans::PropertyValue > getPrinter ()
void setPrinter ([in] sequence< com::sun::star::beans::PropertyValue > aPrinter)
void print ([in] sequence< com::sun::star::beans::PropertyValue > xOptions)

The following code is used with a given document xDoc to print to the standard printer without
any settings: (Text/TextDocuments.java)

// query the XPrintable interface from your document
 XPrintable xPrintable = (XPrintable)UnoRuntime.queryInterface(XPrintable.class, xDoc);

 // create an empty printOptions array

PropertyValue[] printOpts = new PropertyValue[0];

// kick off printing
 xPrintable.print(printOpts);

There are two groups of properties involved in general printing. The first one is used with
setPrinter() and getPrinter() that controls the printer, and the second one is passed to
print() and controls the print job.

com.sun.star.view.PrinterDescriptor comprises the properties for the printer:

Properties of com.sun.star.view.PrinterDescriptor
Name string � Specifies the name of the printer queue to be used.

PaperOrientation com.sun.star.view.PaperOrientation. Specifies the orientation of
the paper.

PaperFormat com.sun.star.view.PaperFormat. Specifies a predefined paper size
or if the paper size is a user-defined size.

PaperSize com.sun.star.awt.Size. Specifies the size of the paper in 1/100 mm.

IsBusy boolean � Indicates if the printer is busy.

CanSetPaperOrientation boolean � Indicates if the printer allows changes to PaperOrienta-
tion.

CanSetPaperFormat boolean � Indicates if the printer allows changes to PaperFormat.

CanSetPaperSize boolean � Indicates if the printer allows changes to PaperSize.

com.sun.star.view.PrintOptions contains the following possibilities for a print job:

Properties of com.sun.star.view.PrintOptions
CopyCount short � Specifies the number of copies to print.

FileName string � Specifies the name of a file to print to, if set.

555

http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrintOptions.html#FileName
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrintOptions.html#CopyCount
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrintOptions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrintOptions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrintOptions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrintOptions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrintOptions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrintOptions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html#CanSetPaperSize
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html#CanSetPaperFormat
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html#CanSetPaperOrientation
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html#IsBusy
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Size.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Size.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Size.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html#PaperSize
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PaperFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PaperFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PaperFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html#PaperFormat
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PaperOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PaperOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PaperOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html#PaperOrientation
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html#Name
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XPrintable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XPrintable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XPrintable.html

Properties of com.sun.star.view.PrintOptions
Collate boolean � Advises the printer to collate the pages of the copies. If

true, a whole document is printed prior to the next copy, otherwise the
page copies are completed together.

Pages string � Specifies the pages to print in the same format as in the print
dialog of the GUI (e.g. "1, 3, 4-7, 9-")

The following method uses PrinterDescriptor and PrintOptions to print to a special printer,
and preselect the pages to print. (Text/TextDocuments.java)
protected void printDocComponent(XComponent xDoc) throws java.lang.Exception {
 XPrintable xPrintable = (XPrintable)UnoRuntime.queryInterface(XPrintable.class, xDoc);
 PropertyValue[] printerDesc = new PropertyValue[1];
 printerDesc[0] = new PropertyValue();
 printerDesc[0].Name = "Name";
 printerDesc[0].Value = "5D PDF Creator";

 xPrintable.setPrinter(printerDesc);

 PropertyValue[] printOpts = new PropertyValue[1];
 printOpts[0] = new PropertyValue();
 printOpts[0].Name = "Pages";
 printOpts[0].Value = "3-5,7";

 xPrintable.print(printOpts);
}

Printing Multiple Pages on one Page
The interface com.sun.star.text.XPagePrintable is used to print more than one document
page to a single printed page.

sequence< com::sun::star::beans::PropertyValue > getPagePrintSettings()
void setPagePrintSettings([in] sequence< com::sun::star::beans::PropertyValue > aSettings)
void printPages([in] sequence< com::sun::star::beans::PropertyValue > xOptions)

The first two methods getPagePrintSettings() and setPagePrintSettings() control the page
printing. They use a sequence of com.sun.star.beans.PropertyValues whose possible values
are defined in com.sun.star.text.PagePrintSettings:

Properties of com.sun.star.text.PagePrintSettings

PageRows short � Number of rows in which document pages should appear on
the output page.

PageColumns short � Number of columns in which document pages should appear
on the output page.

LeftMargin long � Left margin on the output page.

RightMargin long � Right margin on the output page.

TopMargin long � Top margin on the output page.

BottomMargin long � Bottom margin on the output page.

HoriMargin long � Margin between the columns on the output page.

VertMargin long � Margin between the rows on the output page.

IsLandscape boolean � Determines if the output page is in landscape format.

The method printPages() prints the document according to the previous settings. The argument
for the printPages() method may contain the PrintOptions as described in the section above
(containing the properties CopyCount, FileName, Collate and Pages).

556 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/text/PagePrintSettings.html#IsLandscape
http://api.openoffice.org/docs/common/ref/com/sun/star/text/PagePrintSettings.html#VertMargin
http://api.openoffice.org/docs/common/ref/com/sun/star/text/PagePrintSettings.html#HoriMargin
http://api.openoffice.org/docs/common/ref/com/sun/star/text/PagePrintSettings.html#BottomMargin
http://api.openoffice.org/docs/common/ref/com/sun/star/text/PagePrintSettings.html#TopMargin
http://api.openoffice.org/docs/common/ref/com/sun/star/text/PagePrintSettings.html#RightMargin
http://api.openoffice.org/docs/common/ref/com/sun/star/text/PagePrintSettings.html#LeftMargin
http://api.openoffice.org/docs/common/ref/com/sun/star/text/PagePrintSettings.html#PageColumns
http://api.openoffice.org/docs/common/ref/com/sun/star/text/PagePrintSettings.html#PageRows
http://api.openoffice.org/docs/common/ref/com/sun/star/text/PagePrintSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/PagePrintSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/PagePrintSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/PagePrintSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/PagePrintSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/PagePrintSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XPagePrintable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XPagePrintable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XPagePrintable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrintOptions.html#Pages
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrintOptions.html#Collate

8.3 Working with Text Documents

8.3.1 Word Processing
The text model in Illustration 8.1 shows that working with text starts with the method getText()
at the XTestDocument interface of the document model. It returns a com.sun.star.text.Text
service that handles text in OpenOffice.org.

The Text service has two mandatory interfaces and no properties:

The XText is used to edit a text, and XEnumerationAccess is used to iterate over text. The
following sections discuss these aspects of the Text service.

Editing Text
As previously discussed in the introductory chapter 2 First Steps, the interface
com.sun.star.text.XText incorporates three interfaces: XText, XSimpleText and XTextRange.
When working with an XText, you work with the string it contains, or you insert and remove
contents other than strings, such as tables, text fields, and graphics.

Strings

The XText is handled as a whole. There are two possibilities if the text is handled as one string. The
complete string can be set at once, or strings can be added at the beginning or end of the existing
text. These are the appropriate methods used for that purpose:

void setString([in] string text)
String getString()

Consider the following example: (Text/TextDocuments.java)
/** Setting the whole text of a document as one string */
protected void BodyTextExample() {
 // Body Text and TextDocument example
 try {
 // demonstrate simple text insertion
 mxDocText.setString("This is the new body text of the document."
 + "\n\nThis is on the second line.\n\n");
 } catch (Exception e) {
 e.printStackTrace (System.out);
 }
}

Beginning and end of a text can be determined calling getStart() and getEnd():
com::sun::star::text::XTextRange getStart()
com::sun::star::text::XTextRange getEnd()

The following example adds text using the start and end range of a text:
(Text/TextDocuments.java)
/** Adding a string at the end or the beginning of text */
protected void TextRangeExample() {
 try {

557

Illustration 8.2: Service com.sun.star.text.Text (mandatory interfaces only)

http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Text.html

 // Get a text range referring to the beginning of the text document
 XTextRange xStart = mxDocText.getStart();
 // use setString to insert text at the beginning
 xStart.setString ("This is text inserted at the beginning.\n\n");
 // Get a text range referring to the end of the text document
 XTextRange xEnd = mxDocText.getEnd();
 // use setString to insert text at the end
 xEnd.setString ("This is text inserted at the end.\n\n");
 } catch (Exception e) {
 e.printStackTrace(System.out);
 }
}

The above code is not very flexible. To gain flexibility, create a text cursor that is a movable text
range. Note that such a text cursor is not visible in the user interface. The XText creates a cursor
that works on the model immediately. The following methods can be used to get as many cursors
as required:

com::sun::star::text::XTextCursor createTextCursor()
com::sun::star::text::XTextCursor createTextCursorByRange(

com::sun::star::text::XTextRange aTextPosition)

The text cursor travels through the text as a "collapsed" text range with identical start and end as a
point in text, or it can expand while it moves to contain a target string. This is controlled with the
methods of the XTextCursor interface:

// moving the cursor
// if bExpand is true, the cursor expands while it travels
boolean goLeft([in] short nCount, [in] boolean bExpand)
boolean goRight([in] short nCount, [in] boolean bExpand)
void gotoStart([in] boolean bExpand)
void gotoEnd([in] boolean bExpand)
void gotoRange([in] com::sun::star::text::XTextRange xRange, [in] boolean bExpand)
// controlling the collapsed status of the cursor
void collapseToStart()
void collapseToEnd()
boolean isCollapsed()

In writer, a text cursor has three interfaces that inherit from XTextCursor:
com.sun.star.text.XWordCursor, com.sun.star.text.XSentenceCursor and
com.sun.star.text.XParagraphCursor. These interfaces introduce the following additional
movements and status checks:

boolean gotoNextWord([in] boolean bExpand)
boolean gotoPreviousWord([in] boolean bExpand)
boolean gotoEndOfWord([in] boolean bExpand)
boolean gotoStartOfWord([in] boolean bExpand)
boolean isStartOfWord()
boolean isEndOfWord()
boolean gotoNextSentence([in] boolean Expand)
boolean gotoPreviousSentence([in] boolean Expand)
boolean gotoStartOfSentence([in] boolean Expand)
boolean gotoEndOfSentence([in] boolean Expand)
boolean isStartOfSentence()
boolean isEndOfSentence()
boolean gotoStartOfParagraph([in] boolean bExpand)
boolean gotoEndOfParagraph([in] boolean bExpand)
boolean gotoNextParagraph([in] boolean bExpand)
boolean gotoPreviousParagraph([in] boolean bExpand)
boolean isStartOfParagraph()
boolean isEndOfParagraph()

Since XTextCursor inherits from XTextRange, a cursor is an XTextRange and incorporates the
methods of an XTextRange:

com::sun::star::text::XText getText()
com::sun::star::text::XTextRange getStart()
com::sun::star::text::XTextRange getEnd()
string getString()
void setString([in] string aString)

The cursor can be told where it is required and the string content can be set later. This does have a
drawback. After setting the string, the inserted string is always selected. That means further text
can not be added without moving the cursor again. Therefore the most flexible method to insert

558 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/text/XParagraphCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XParagraphCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XParagraphCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XSentenceCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XSentenceCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XSentenceCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XWordCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XWordCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XWordCursor.html

strings by means of a cursor is the method insertString() in XText. It takes an XTextRange as
the target range that is replaced during insertion, a string to insert, and a boolean parameter that
determines if the inserted text should be absorbed by the cursor after it has been inserted. The
XTextRange could be any XTextRange. The XTextCursor is an XTextRange, so it is used here:

void insertString([in] com::sun::star::text::XTextRange xRange,
 [in] string aString,
 [in] boolean bAbsorb)

To insert text sequentially the bAbsorb parameter must be set to false, so that the XTextRange
collapses at the end of the inserted string after insertion. If bAbsorb is true, the text range selects
the new inserted string. The string that was selected by the text range prior to insertion is deleted.

Consider the use of insertString() below: (Text/TextDocuments.java)
/** moving a text cursor, selecting text and overwriting it */
protected void TextCursorExample() {
 try {
 // First, get the XSentenceCursor interface of our text cursor
 XSentenceCursor xSentenceCursor = (XSentenceCursor)UnoRuntime.queryInterface(
 XSentenceCursor.class, mxDocCursor);

 // Goto the next cursor, without selecting it
 xSentenceCursor.gotoNextSentence(false);

 // Get the XWordCursor interface of our text cursor
 XWordCursor xWordCursor = (XWordCursor) UnoRuntime.queryInterface(
 XWordCursor.class, mxDocCursor);

 // Skip the first four words of this sentence and select the fifth
 xWordCursor.gotoNextWord(false);
 xWordCursor.gotoNextWord(false);
 xWordCursor.gotoNextWord(false);
 xWordCursor.gotoNextWord(false);
 xWordCursor.gotoNextWord(true);

 // Use the XSimpleText interface to insert a word at the current cursor
 // location, over-writing
 // the current selection (the fifth word selected above)
 mxDocText.insertString(xWordCursor, "old ", true);
 // Access the property set of the cursor, and set the currently selected text
 // (which is the string we just inserted) to be bold
 XPropertySet xCursorProps = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, mxDocCursor);
 xCursorProps.setPropertyValue("CharWeight", new Float(com.sun.star.awt.FontWeight.BOLD));

 // replace the '.' at the end of the sentence with a new string
 xSentenceCursor.gotoEndOfSentence(false);
 xWordCursor.gotoPreviousWord(true);
 mxDocText.insertString(xWordCursor,
 ", which has been changed with text cursors!", true);
 } catch (Exception e) {
 e.printStackTrace(System.out);
 }
}

Text Contents Other Than Strings

Up to this point, paragraphs made up of character strings has been discussed. Text can also contain
other objects besides character strings in paragraphs. They all support the interface
com.sun.star.text.XTextContent. In fact, everything in texts must support XTextContent.

A text content is an object that is attached to a com.sun.star.text.XTextRange. The text range it
is attached to is called the anchor of the text content.

All text contents mentioned below, starting with tables, support the service
com.sun.star.text.TextContent. It includes the interface com.sun.star.text.XTextContent
that inherits from the interface com.sun.star.lang.XComponent. The TextContent services may
have the following properties:

559

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextContent.html

Properties of com.sun.star.text.TextContent

AnchorType Describes the base the object is positioned to, according to
com.sun.star.text.TextContentAnchorType.

AnchorTypes A sequence of com.sun.star.text.TextContentAnchorType that
contains all allowed anchor types for the object.

TextWrap Determines the way the surrounding text flows around the object, according
to com.sun.star.text.WrapTextMode.

The method dispose() of the XComponent interface deletes the object from the document. Since a
text content is an XComponent, com.sun.star.lang.XEventListener can be added or removed
with the methods addEventListener() and removeEventListener(). These methods are called
back when the object is disposed. Other events are not supported.

The method getAnchor() at the XTextContent interface returns a text range which reflects the
text position where the object is located. This method may return a void object, for example, for
text frames that are bound to a page. The method getAnchor() is used in situations where an
XTextRange is required. For instance, placeholder fields
(com.sun.star.text.textfield.JumpEdit) can be filled out using their getAnchor() method.
Also, yo can get a bookmark, retrieve its XTextRange from getAnchor() and use it to insert a
string at the bookmark position.

The method attach() is an intended method to attach text contents to the document, but it is
currently not implemented.

All text contents� including paragraphs� can be created by the service manager of the document.
They are created using the factory methods createInstance() or createInstanceWithArgu-
ments() at the com.sun.star.lang.XMultiServiceFactory interface of the document.

All text contents� except for paragraphs� can be inserted into text using the
com.sun.star.text.XText method insertTextContent(). They can be removed by calling
removeTextContent(). Starting with the section 8.3.4 Text Documents - Working with Text Docu-
ments - Tables, there are code samples showing the usage of the document service manager with
insertTextContent().

void insertTextContent([in] com::sun::star::text::XTextRange xRange,
 [in] com::sun::star::text::XTextContent xContent, boolean bAbsorb);
void removeTextContent([in] com::sun::star::text::XTextContent xContent)

Paragraphs cannot be inserted by insertTextContent(). Only the interface XRelativeTextCon-
tentInsert can insert paragraphs. A paragraph created by the service manager can be used for
creating a new paragraph before or after a table, or a text section positioned at the beginning or the
end of page where no cursor can insert new paragraphs. Cf. the section 8.3.1 Text Documents -
Working with Text Documents - Word Processing - Inserting a Paraqraph where no Cursor can go below.

Control Characters

We have used Java escape sequences for paragraph breaks, but this may not be feasible in every
language. Moreover, OpenOffice.org supports a number of control characters that can be used.
There are two possibilities: use the method

void insertControlCharacter([in] com::sun::star::text::XTextRange xRange,
 [in] short nControlCharacter,
 [in] boolean bAbsorb)

to insert single control characters as defined in the constants group com.sun.star.text.Control-
Character, or use the corresponding unicode character from the following list as escape sequence
in a string if your language supports it. In Java, Unicode characters in strings can be incorporated
using the \uHHHH escape sequence, where H represents a hexadecimal digit

560 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/text/ControlCharacter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ControlCharacter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ControlCharacter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ControlCharacter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ControlCharacter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ControlCharacter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/JumpEdit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/JumpEdit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/JumpEdit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/WrapTextMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/WrapTextMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/WrapTextMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContent.html#TextWrap
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContentAnchorType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContentAnchorType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContentAnchorType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContent.html#AnchorTypes
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContentAnchorType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContentAnchorType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContentAnchorType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContent.html#AnchorType
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContent.html

PARAGRAPH_BREAK Insert a paragraph break (UNICODE 0x000D).

LINE_BREAK Inserts a line break inside of the paragraph (UNICODE 0x000A).

HARD_HYPHEN A character that appears like a dash, but prevents hyphenation at its position
(UNICODE 0x2011).

SOFT_HYPHEN Marks a preferred position for hyphenation (UNICODE 0x00AD).

HARD_SPACE A character that appears like a space, but prevents hyphenation at this point
(UNICODE 0x00A0).

APPEND_PARAGRAPH A new paragraph is appended (no UNICODE for this function).

The section 8.3.2 Text Documents - Working with Text Documents - Formatting describes how page
breaks are created by setting certain paragraph properties.

Iterating over Text
The second interface of com.sun.star.text.Text is XEnumerationAccess. AText service
enumerates all paragraphs in a text and returns objects which support com.sun.star.text.Para-
graph. This includes tables, because writer sees tables as specialized paragraphs that support the
com.sun.star.text.TextTable service.

Paragraphs also have an com.sun.star.container.XEnumerationAccess of their own. They can
enumerate every single text portion that they contain. A text portion is a text range containing a
uniform piece of information that appears within the text flow. An ordinary paragraph, formatted
in a uniform manner and containing nothing but a string, enumerates just a single text portion. In a
paragraph that has specially formatted words or other contents, the text portion enumeration
returns one com.sun.star.text.TextPortion service for each differently formatted string, and
for every other text content. Text portions include the service com.sun.star.text.TextRange and
have the properties listed below:

Properties of com.sun.star.text.TextPortion

TextPortionType string � Contains the type of the text portion (see below).

ControlCharacter short � Returns the control character if the text portion contains a control
character as defined in com.sun.star.text.ControlCharacter.

Bookmark com.sun.star.text.XTextContent. Contains the bookmark if the portion
has TextPortionType="Bookmark".

IsCollapsed boolean � Determines whether the portion is a point only.

IsStart boolean � Determines whether the portion is a start portion if two portions
are needed to include an object, that is, DocmentIndexMark.

Possible Values for TextPortionType are:

TextPortionType
(String)

Description

�Text� a portion with mere string content

�TextField� A com.sun.star.text.TextField content.

�TextContent� A text content supplied through the interface XContentEnumerationAc-
cess.

�Footnote� A footnote or an endnote.

�ControlCharacter� A control character.

�ReferenceMark� A reference mark.

561

http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextPortion.html#IsStart
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextPortion.html#IsCollapsed
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextPortion.html#Bookmark
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ControlCharacter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ControlCharacter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ControlCharacter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextPortion.html#ControlCharacter
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextPortion.html#TextPortionType
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextPortion.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextPortion.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextPortion.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextPortion.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextPortion.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextPortion.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Paragraph.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Paragraph.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Paragraph.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Paragraph.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Paragraph.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Paragraph.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Text.html

TextPortionType
(String)

Description

�DocumentIndexMark� A document index mark.

�Bookmark� A bookmark.

�Redline� A redline portion which is a result of the change tracking feature.

�Ruby� A ruby attribute which is used in Asian text.

The text portion enumeration of a paragraph does not supply contents which do belong to the
paragraph, but do not fuse together with the text flow. These could be text frames, graphic objects,
embedded objects or drawing shapes anchored at the paragraph, characters or as character. The
TextPortionType "TextContent" indicate if there is a content anchored at a character or as a
character. If you have a TextContent portion type, you know that there are shape objects anchored
at a character or as a character.

This last group of data contained in a text, Paragraphs and TextPortions in writer support the
interface com.sun.star.container.XContentEnumerationAccess. This interface tells which text
contents besides the text flow contents there are and supplies them as an
com.sun.star.container.XEnumeration:

sequence< string > getAvailableServiceNames()
com::sun::star::container::XEnumeration createContentEnumeration([in] string aServiceName)

The XContentEnumerationAccess of the paragraph lists the shape objects anchored at the para-
graph while the XContentEnumerationAccess lists the shape objects anchored at a character or as
a character.

Precisely the same enumerations are available for the current text cursor selection. The text cursor enumer-
ates paragraphs, text portions and text contents just like the service com.sun.star.text.Text itself.

The enumeration access to text through paragraphs and text portions is used if every single para-
graph in a text needs to be touched. The application area for this enumeration are export filters,
that uses this enumeration to go over the whole document, writing out the paragraphs to the target
file. The following code snippet centers all paragraphs in a text. (Text/TextDocuments.java)
/** This method demonstrates how to iterate over paragraphs */
protected void ParagraphExample () {
 try {
 // The service 'com.sun.star.text.Text' supports the XEnumerationAccess interface to
 // provide an enumeration
 // of the paragraphs contained by the text the service refers to.

 // Here, we access this interface
 XEnumerationAccess xParaAccess = (XEnumerationAccess) UnoRuntime.queryInterface(
 XEnumerationAccess.class, mxDocText);
 // Call the XEnumerationAccess's only method to access the actual Enumeration
 XEnumeration xParaEnum = xParaAccess.createEnumeration();

 // While there are paragraphs, do things to them
 while (xParaEnum.hasMoreElements()) {
 // Get a reference to the next paragraphs XServiceInfo interface. TextTables
 // are also part of this
 // enumeration access, so we ask the element if it is a TextTable, if it
 // doesn't support the
 // com.sun.star.text.TextTable service, then it is safe to assume that it
 // really is a paragraph
 XServiceInfo xInfo = (XServiceInfo) UnoRuntime.queryInterface(
 XServiceInfo.class, xParaEnum.nextElement());
 if (!xInfo.supportsService("com.sun.star.text.TextTable")) {
 // Access the paragraph's property set...the properties in this
 // property set are listed
 // in: com.sun.star.style.ParagraphProperties
 XPropertySet xSet = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, xInfo);
 // Set the justification to be center justified
 xSet.setPropertyValue("ParaAdjust", com.sun.star.style.ParagraphAdjust.CENTER);
 }
 }
 } catch (Exception e) {

e.printStackTrace (System.out);

562 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/text/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumeration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumeration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumeration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContentEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContentEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContentEnumerationAccess.html

 }
}

Inserting a Paragraph where no Cursor can go
The service com.sun.star.text.Text has an optional interface com.sun.star.text.XRelative-
TextContentInsert which is available in Text services in writer. The intention of this interface is
to insert paragraphs in positions where no cursor or text portion can be located to use the insert-
TextContent() method. These situation occurs when text sections or text tables are at the start or
end of the document, or if they follow each other directly.

void insertTextContentBefore([in] com::sun::star::text::XTextContent xNewContent,
 [in] com::sun::star::text::XTextContent xSuccessor)
void insertTextContentAfter([in] com::sun::star::text::XTextContent xNewContent,
 [in] com::sun::star::text::XTextContent xPredecessor)

The only supported text contents are com.sun.star.text.Paragraph as new content, and
com.sun.star.text.TextSection and com.sun.star.text.TextTable as successor or prede-
cessor.

Sorting Text
It is possible to sort text or the content of text tables.

Sorting of text is done by the text cursor that supports com.sun.star.util.XSortable. It contains
two methods:

sequence< com::sun::star::beans::PropertyValue > createSortDescriptor()
void sort([in] sequence< com::sun::star::beans::PropertyValue > xDescriptor)

The method createSortDescriptor() returns a sequence of com.sun.star.beans.Property-
Value that provides the elements as described in the service com.sun.star.text.TextSortDe-
scriptor
The method sort() sorts the text that is selected by the cursor, by the given parameters.

Sorting of tables happens directly at the table service, which supports XSortable. Sorting is a
common feature of OpenOffice.org and it is described in detail in 7 Office Development.

Inserting Text Files
The text cursor in writer supports the interface com.sun.star.document.XDocumentInsertable
which has a single method to insert a file at the current cursor position:

void insertDocumentFromURL([in] string aURL,
 [in] sequence< com::sun::star::beans::PropertyValue > aOptions)

Pass a URL and an empty sequence of PropertyValue structs. However, load properties could be
used as described in com.sun.star.document.MediaDescriptor.

Auto Text
The auto text function can be used to organize reusable text passages. They allow storing text,
including the formatting and all other contents in a text block collection to apply them later. Three
services deal with auto text in OpenOffice.org:

• com.sun.star.text.AutoTextContainer specifies the entire collection of auto texts

• com.sun.star.text.AutoTextGroup describes a category of auto texts

563

http://api.openoffice.org/docs/common/ref/com/sun/star/text/AutoTextGroup.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/AutoTextGroup.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/AutoTextGroup.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/AutoTextContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/AutoTextContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/AutoTextContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XDocumentInsertable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XDocumentInsertable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XDocumentInsertable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextSortDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextSortDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextSortDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextSortDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextSortDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextSortDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XSortable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XSortable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XSortable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextSection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextSection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextSection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Paragraph.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Paragraph.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Paragraph.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XRelativeTextContentInsert.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XRelativeTextContentInsert.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XRelativeTextContentInsert.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XRelativeTextContentInsert.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XRelativeTextContentInsert.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XRelativeTextContentInsert.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Text.html

• com.sun.star.text.AutoTextEntry is a single auto text. (Text/TextDocuments.java)
/** Insert an autotext at the current cursor position of given cursor mxDocCursor*/

// Get an XNameAccess interface to all auto text groups from the document factory
XNameAccess xContainer = (XNameAccess) UnoRuntime.queryInterface(
 XNameAccess.class, mxFactory.createInstance("com.sun.star.text.AutoTextContainer"));

// Get the autotext group Standard
xGroup = (XAutoTextGroup) UnoRuntime.queryInterface(
 XAutoTextGroup.class, xContainer.getByName("Standard"));

// get the entry Best Wishes (BW)
XAutoTextEntry xEntry = (XAutoTextEntry)UnoRuntime.queryInterface (
 XAutoTextEntry.class, xGroup.getByName ("BW"));

// insert the modified autotext block at the cursor position
xEntry.applyTo(mxDocCursor);

/** Add a new autotext entry to the AutoTextContainer
*/
// Select the last paragraph in the document
xParaCursor.gotoPreviousParagraph(true);

// Get the XAutoTextContainer interface of the AutoTextContainer service
XAutoTextContainer xAutoTextCont = (XAutoTextContainer) UnoRuntime.queryInterface(
 XAutoTextContainer.class, xContainer);

// If the APIExampleGroup already exists, remove it so we can add a new one
if (xContainer.hasByName("APIExampleGroup"))
 xAutoTextCont.removeByName("APIExampleGroup");

// Create a new auto-text group called APIExampleGroup
XAutoTextGroup xNewGroup = xAutoTextCont.insertNewByName ("APIExampleGroup");

// Create and insert a new auto text entry containing the current cursor selection
XAutoTextEntry xNewEntry = xNewGroup.insertNewByName(
 "NAE", "New AutoTextEntry", xParaCursor);

// Get the XSimpleText and XText interfaces of the new autotext block
 XSimpleText xSimpleText = (XSimpleText) UnoRuntime.queryInterface(
 XSimpleText.class, xNewEntry);
XText xText = (XText) UnoRuntime.queryInterface(XText.class, xNewEntry);

// Insert a string at the beginning of the autotext block
xSimpleText.insertString(xText.getStart(),
 "This string was inserted using the API!\n\n", false);

The current implementation forces the user to close the AutoTextEntry instance when they are
changed, so that the changes can take effect. However, the new AutoText is not written to disk
until the destructor of the AutoTextEntry instance inside the writer is called. When this example
has finished executing, the file on disk correctly contains the complete text "This string was
inserted using the API!\n\nSome text for a new autotext block", but there is no way
in Java to call the destructor. It is not clear when the garbage collector deletes the object and writes
the modifications to disk.

8.3.2 Formatting
A multitude of character, paragraph and other properties are available for text in OpenOffice.org.
However, the objects implemented in the writer do not provide properties that support
com.sun.star.beans.XPropertyChangeListener or com.sun.star.beans.XVetoableChange-
Listener yet.

Character and paragraph properties are available in the following services:

Services supporting Character
and Paragraph Properties

Remark

com.sun.star.text.TextCursor If collapsed, the CharacterProperties refer to the position
on the right hand side of the cursor.

564 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XVetoableChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XVetoableChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XVetoableChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XVetoableChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XVetoableChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XVetoableChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/AutoTextEntry.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/AutoTextEntry.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/AutoTextEntry.html

Services supporting Character
and Paragraph Properties

Remark

com.sun.star.text.Paragraph
com.sun.star.text.TextPortion
com.sun.star.text.TextTable-
Cursor
com.sun.star.text.Shape
com.sun.star.table.CellRange In text tables.

com.sun.star.text.TextDocument The model offers a selected number of character properties
which apply to the entire document. These are: CharFont-
Name,CharFontStyleName, CharFontFamily, CharF-
ontCharSet, CharFontPitch and their Asian counterparts
CharFontStyleNameAsian, CharFontFamilyAsian,
CharFontCharSetAsian, CharFontPitchAsian.

The character properties are described in the services com.sun.star.style.CharacterProper-
ties, com.sun.star.style.CharacterPropertiesAsian and com.sun.star.style.Character-
PropertiesComplex.

com.sun.star.style.CharacterProperties describes common character properties for all
language zones and character properties in Western text. The following table provides possible
values.

Properties of com.sun.star.style.CharacterProperties
CharFontName string � This property specifies the name of the font in western text.

CharFontStyleName string � This property contains the name of the font style.

CharFontFamily short � This property contains font family that is specified in
com.sun.star.awt.FontFamily. Possible values are: DONTKNOW,
DECORATIVE, MODERN, ROMAN, SCRIPT, SWISS, and SYSTEM.

CharFontCharSet short � This property contains the text encoding of the font that is speci-
fied in com.sun.star.awt.CharSet. Possible values are: DONTKNOW,
ANSI MAC, IBMPC_437, IBMPC_850, IBMPC_860, IBMPC_861,
IBMPC_863, IBMPC_865, and SYSTEM SYMBOL.

CharFontPitch short � This property contains the font pitch that is specified in
com.sun.star.awt.FontPitch. The word font pitch refers to characters
per inch, but the possible values are DONTKNOW, FIXED and VARIABLE.
VARIABLE points to the difference between proportional and unpropor-
tional fonts.

CharColor long � This property contains the value of the text color in ARGB nota-
tion. ARGB has four bytes denoting alpha, red, green and blue. In hex nota-
tion, this can be used conveniently: 0xAARRGGBB. The AA (Alpha) can be
00 or left out.

CharEscapement [optional] short � Property which contains the relative value of the
character height in subscription or superscription.

CharHeight float � This value contains the height of the characters in point.

CharUnderline short � This property contains the value for the character underline that
is specified in com.sun.star.awt.FontUnderline. A lot of underline
types are available. Some possible values are SINGLE, DOUBLE, and
DOTTED.

565

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontUnderline.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontUnderline.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontUnderline.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharUnderline
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharHeight
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharEscapement
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharColor
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontPitch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontPitch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontPitch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharFontPitch
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/CharSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/CharSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/CharSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharFontCharSet
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontFamily.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontFamily.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontFamily.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharFontFamily
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharFontStyleName
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharFontName
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesComplex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesComplex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesComplex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesComplex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesComplex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesComplex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTableCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTableCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextPortion.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Paragraph.html

Properties of com.sun.star.style.CharacterProperties
CharWeight float � This property contains the value of the font weight, cf.

[com.sun.star.awt.FontWeight. A lot of weights are possible. The
common ones are BOLD and NORMAL.

CharPosture long � This property contains the posture of the font as defined in
com.sun.star.awt.FontSlant. The most common values are ITALIC
and NONE.

CharAutoKerning [optional] boolean � Property to determine whether the kerning
tables from the current font are used.

CharBackColor [optional] long � Property which contains the text background color
in ARGB: 0xAARRGGBB.

CharBackTransparent [optional] boolean � Determines if the text background color is set to
transparent.

CharCaseMap [optional] short � Property which contains the value of the case-
mapping of the text for formatting and displaying. Possible CaseMaps are
NONE, UPPERCASE, LOWERCASE, TITLE, and SMALLCAPS as defined
in the constants group com.sun.star.style.CaseMap. (optional)

CharCrossedOut [optional] boolean � This property is true if the characters are
crossed out.

CharFlash [optional] boolean � If this optional property is true , then the char-
acters are flashing

CharStrikeout [optional] short � Determines the type of the strikethrough of the
character as defined in com.sun.star.awt.FontStrikeout. Values are
NONE, SINGLE, DOUBLE, DONTKNOW, BOLD, and SLASH X.

CharWordMode [optional] boolean � If this property is true , the underline and
strike-through properties are not applied to white spaces.

CharKerning [optional] short � Property which contains the value of the kerning
of the characters.

CharLocale struct com.sun.star.lang.Locale. Contains the locale (language and
country) of the characters.

CharKeepTogether [optional] boolean � Property which marks a range of characters to
prevent it from being broken into two lines.

CharNoLineBreak [optional] boolean � Property which marks a range of characters to
ignore a line break in this area.

CharShadowed [optional] boolean � True if the characters are formatted and
displayed with a shadow effect. (optional)

CharFontType [optional] short � Property which specifies the fundamental tech-
nology of the font as specified in com.sun.star.awt.FontType.
Possible values are DONTKNOW, RASTER, DEVICE, and SCALABLE.

CharStyleName [optional] string � Specifies the name of the style of the font.

CharContoured [optional] boolean � True if the characters are formatted and
displayed with a contour effect.

CharCombineIsOn [optional] boolean � True if text is formatted in two lines.

CharCombinePrefix [optional] string � Contains the prefix string (usually parenthesis)
before text that is formatted in two lines.

CharCombineSuffix [optional] string � Contains the suffix string (usually parenthesis)
after text that is formatted in two lines.

566 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharCombineSuffix
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharCombinePrefix
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharCombineIsOn
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharContoured
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharStyleName
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharFontType
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharShadowed
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharNoLineBreak
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharKeepTogether
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/Locale.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/Locale.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/Locale.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharLocale
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharKerning
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharWordMode
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontStrikeout.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontStrikeout.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontStrikeout.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharStrikeout
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharFlash
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharCrossedOut
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CaseMap.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CaseMap.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CaseMap.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharCaseMap
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharBackTransparent
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharBackColor
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharAutoKerning
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontSlant.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontSlant.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontSlant.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharPosture
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontWeight.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontWeight.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontWeight.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharWeight

Properties of com.sun.star.style.CharacterProperties
CharEmphasis [optional] short � Contains the font emphasis value

com.sun.star.text.FontEmphasis.

CharRelief [optional] short � Contains the relief value as FontRelief.

RubyText [optional] string � Contains the text that is set as ruby.

RubyAdjust [optional] short � Determines the adjustment of the ruby text as
RubyAdjust.

RubyCharStyleName [optional] string � Contains the name of the character style that is
applied to RubyText (optional).

RubyIsAbove [optional] boolean � Determines whether the ruby text is printed
above/left or below/right of the text (optional) .

CharRotation [optional] short � Determines the rotation of a character in degree.

CharRotationIsFitTo-
Line

[optional] short � Determines whether the text formatting tries to fit
rotated text into the surrounded line height.

CharScaleWidth [optional] short � Determines the percentage value of scaling of
characters.

HyperLinkURL [optional] string � contains the URL of a hyperlink if the URL is set.

HyperLinkTarget [optional] string � contains the name of the target for a hyperlink if
the target is set.

HyperLinkName [optional] string � contains the name of the hyperlink if the name is
set.

VisitedCharStyleName [optional] string � Contains the character style name for visited
hyperlinks.

UnvisitedCharStyleName [optional] string � Contains the character style name for unvisited
hyperlinks.

CharEscapementHeight [optional] byte � This is the additional height used for subscript or
superscript characters in units of percent. For subscript characters the value
is negative and for superscript characters positive.

CharNoHyphenation [optional] boolean � True if the word can be hyphenated at the
character.

CharUnderlineColor Color � Gives the color of the underline for that character.

CharUnderlineHasColor boolean � True if the CharunderlineColor is used for an underline

CharStyleNames [optional] sequence<string> � specifies the names of the all
styles applied to the font.

CharHidden [optional] boolean � True if the characters are invisible

TextUserDefinedAttrib-
utes

[optional] XNameContainer � This property stores xml attributes.
They will be saved to and restored from automatic styles inside xml files.

com.sun.star.style.CharacterPropertiesAsian describes properties used in Asian text. All of
these properties have a counterpart in CharacterProperties. They apply as soon as a text is
recognized as Asian by the employed Unicode character subset.

Properties of com.sun.star.style.CharacterPropertiesAsian
CharHeightAsian float � This value contains the height of the characters in point.

CharWeightAsian float � This property contains the value of the font weight.

567

http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html#CharWeightAsian
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html#CharHeightAsian
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#TextUserDefinedAttributes
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#TextUserDefinedAttributes
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharHidden
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharStyleNames
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharUnderlineHasColor
http://api.openoffice.org/docs/common/ref/com/sun/star/util/Color.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/Color.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/Color.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharUnderlineColor
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharNoHyphenation
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharEscapementHeight
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#UnvisitedCharStyleName
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#VisitedCharStyleName
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#HyperLinkName
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#HyperLinkTarget
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#HyperLinkURL
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharScaleWidth
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharRotationIsFitToLine
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharRotationIsFitToLine
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharRotation
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#RubyIsAbove
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#RubyCharStyleName
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#RubyAdjust
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#RubyText
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharRelief
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FontEmphasis.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FontEmphasis.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FontEmphasis.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharEmphasis

CharFontNameAsian string � This property specifies the name of the font style.

CharFontStyleNameAsian string � This property contains the name of the font style.

CharFontFamilyAsian short � This property contains the font family that is specified in
com.sun.star.awt.FontFamily.

CharFontCharSetAsian short � This property contains the text encoding of the font that is speci-
fied in com.sun.star.awt.CharSet.

CharFontPitchAsian short � This property contains the font pitch that is specified in
com.sun.star.awt.FontPitch.

CharPostureAsian long � This property contains the value of the posture of the font as
defined in com.sun.star.awt.FontSlant.

CharLocaleAsian struct com.sun.star.lang.Locale � Contains the value of the locale.

The complex properties com.sun.star.style.CharacterPropertiesComplex refer to the same
character settings as in CharacterPropertiesAsian, only they have the suffix �Complex� instead
of �Asian�.

com.sun.star.style.ParagraphProperties comprises paragraph properties.

Properties of com.sun.star.style.ParagraphProperties
ParaAdjust long � Determines the adjustment of a paragraph.

ParaLineSpacing [optional] struct com.sun.star.style.LineSpacing � Determines
the line spacing of a paragraph.

ParaBackColor [optional] long � Contains the paragraph background color.

ParaBackTransparent [optional] boolean � This value is true if the paragraph background
color is set to transparent.

ParaBackGraphicURL [optional] string � Contains the value of a link for the background
graphic of a paragraph.

ParaBackGraphicFilter [optional] string � Contains the name of the graphic filter for the
background graphic of a paragraph.

ParaBackGraphicLoca-
tion

[optional] long � Contains the value for the position of a background
graphic according to com.sun.star.style.GraphicLocation.

ParaLastLineAdjust short � Determines the adjustment of the last line.

ParaExpandSingleWord [optional] boolean � Determines if single words are stretched.

ParaLeftMargin long � Determines the left margin of the paragraph in 1/100 mm.

ParaRightMargin long � Determines the right margin of the paragraph in 1/100 mm.

ParaTopMargin long � Determines the top margin of the paragraph in 1/100 mm.

ParaBottomMargin long � Determines the bottom margin of the paragraph in 1/100 mm.

ParaLineNumberCount [optional] boolean � Determines if the paragraph is included in the
line numbering.

ParaLineNumberStart-
Value

[optional] boolean � Contains the start value for the line numbering.

ParaIsHyphenation [optional] boolean � Prevents the paragraph from getting hyphenated.

PageDescName [optional] string � If this property is set, it creates a page break before
the paragraph it belongs to and assigns the value as the name of the new
page style sheet to use.

568 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#PageDescName
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#ParaIsHyphenation
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#ParaLineNumberStartValue
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#ParaLineNumberStartValue
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#ParaLineNumberCount
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#ParaBottomMargin
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#ParaTopMargin
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#ParaRightMargin
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#ParaLeftMargin
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#ParaExpandSingleWord
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#ParaLastLineAdjust
http://api.openoffice.org/docs/common/ref/com/sun/star/style/GraphicLocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/GraphicLocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/GraphicLocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#ParaBackGraphicLocation
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#ParaBackGraphicLocation
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#ParaBackGraphicFilter
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#ParaBackGraphicURL
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#ParaBackTransparent
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#ParaBackColor
http://api.openoffice.org/docs/common/ref/com/sun/star/style/LineSpacing.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/LineSpacing.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/LineSpacing.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#ParaLineSpacing
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#ParaAdjust
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesComplex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesComplex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesComplex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/Locale.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/Locale.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/Locale.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html#CharLocaleAsian
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontSlant.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontSlant.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontSlant.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html#CharPostureAsian
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontPitch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontPitch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontPitch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html#CharFontPitchAsian
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/CharSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/CharSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/CharSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html#CharFontCharSetAsian
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontFamily.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontFamily.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontFamily.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html#CharFontFamilyAsian
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html#CharFontStyleNameAsian
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html#CharFontNameAsian

Properties of com.sun.star.style.ParagraphProperties

PageNumberOffset [optional] short � If a page break property is set at a paragraph, this
property contains the new value for the page number.

PageStyleName [optional] string � Contains the page style name.

ParaRegisterModeAc-
tive

[optional] boolean � Determines if the register mode is applied to a
paragraph.

ParaTabStops [optional] sequence < com.sun.star.style.TabStop >. Specifies
the positions and kinds of the tab stops within this paragraph.

ParaStyleName [optional] string � Contains the name of the current paragraph style.

DropCapFormat
[optional] struct com.sun.star.style.DropCapFormat specifies
whether the first characters of the paragraph are displayed in capital letters
and how they are formatted.

DropCapWholeWord [optional] boolean � Specifies if the property DropCapFormat is
applied to the whole first word.

ParaKeepTogether [optional] boolean � Setting this property to true prevents page or
column breaks between this and the following paragraph.

ParaSplit [optional] boolean � Setting this property to false prevents the para-
graph from getting split into two pages or columns.

NumberingLevel [optional] short � Specifies the numbering level of the paragraph.

NumberingRules com.sun.star.container.XIndexReplace. Contains the numbering
rules applied to this paragraph.

NumberingStartValue [optional] short � Specifies the start value for numbering if a new
numbering starts at this paragraph.

ParaIsNumberin-
gRestart

[optional] boolean � Determines if the numbering rules restart,
counting at the current paragraph.

NumberingStyleName [optional] string � Specifies the name of the style for the numbering.

ParaOrphans
[optional] byte � Specifies the minimum number of lines of the para-
graph that have to be at bottom of a page if the paragraph is spread over
more than one page.

ParaWidows
[optional] byte � Specifies the minimum number of lines of the para-
graph that have to be at top of a page if the paragraph is spread over more
than one page.

ParaShadowFormat [optional] struct com.sun.star.table.ShadowFormat. Determines
the type, color, and size of the shadow.

ParaIsHangingPunctua-
tion [optional] boolean � Determines if hanging punctuation is allowed.

ParaIsCharacterDis-
tance

[optional] boolean � Determines if a distance between Asian text,
western text or complex text is set.

ParaIsForbiddenRules [optional] boolean � Determines if the the rules for forbidden charac-
ters at the start or end of text lines are considered.

com.sun.star.style.ParagraphPropertiesAsian describes some further properties used in
Asian text.

Properties of com.sun.star.style.ParagraphPropertiesAsian
ParaIsHangingPunctua-
tion [optional] boolean � Determines if hanging punctuation is allowed.

569

http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphPropertiesAsian.html#ParaIsHangingPunctuation
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphPropertiesAsian.html#ParaIsHangingPunctuation
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphPropertiesAsian.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphPropertiesAsian.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphPropertiesAsian.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphPropertiesAsian.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphPropertiesAsian.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphPropertiesAsian.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphPropertiesAsian.html#ParaIsForbiddenRules
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphPropertiesAsian.html#ParaIsCharacterDistance
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphPropertiesAsian.html#ParaIsCharacterDistance
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphPropertiesAsian.html#ParaIsHangingPunctuation
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphPropertiesAsian.html#ParaIsHangingPunctuation
http://api.openoffice.org/docs/common/ref/com/sun/star/table/ShadowFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/ShadowFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/ShadowFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#ParaShadowFormat
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#ParaWidows
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#ParaOrphans
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#NumberingStyleName
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#ParaIsNumberingRestart
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#ParaIsNumberingRestart
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#NumberingStartValue
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#NumberingRules
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#NumberingLevel
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#ParaSplit
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#ParaKeepTogether
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#DropCapWholeWord
http://api.openoffice.org/docs/common/ref/com/sun/star/style/DropCapFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/DropCapFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/DropCapFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#DropCapFormat
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#ParaStyleName
http://api.openoffice.org/docs/common/ref/com/sun/star/style/TabStop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/TabStop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/TabStop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#ParaTabStops
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#ParaRegisterModeActive
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#ParaRegisterModeActive
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#PageStyleName
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#PageNumberOffset

Properties of com.sun.star.style.ParagraphPropertiesAsian
ParaIsCharacterDis-
tance

[optional] boolean � Determines if a distance between Asian text,
western text or complex text is set.

ParaIsForbiddenRules [optional] boolean � Determines if the the rules for forbidden charac-
ters at the start or end of text lines are considered.

Objects supporting these properties support com.sun.star.beans.XPropertySet, as well. To
change the properties, use the method setPropertyValue().
/** This snippet shows the necessary steps to set a property at the
 current position of a given text cursor mxDocCursor
*/

// query the XPropertySet interface
XPropertySet xCursorProps = (XPropertySet) UnoRuntime.queryInterface(XPropertySet.class, mxDocCursor);

// call setPropertyValue, passing in a Float object
xCursorProps.setPropertyValue("CharWeight", new Float (com.sun.star.awt.FontWeight.BOLD));

The same procedure is used for all properties. The more complex properties are described here.

If a change of the page style is required the paragraph property PageDescName has to be set using
an existing page style name. This forces a page break at the cursor position and the new inserted
page uses the requested page style. The property PageNumberOffset has to be set to start with a
new page count. If inserting an additional paragraph should be avoided, the cursor must be placed
at the beginning of the first paragraph before inserting it.

If a page break (or a column break) without a change in the used style is required, the property
BreakType is set using the values of com.sun.star.style.BreakType:

Page break Description

BreakType Page or column break as described in com.sun.star.style.BreakType. Possible
values are NONE, COLUMN_BEFORE, COLUMN_AFTER, COLUMN_BOTH,
PAGE_BEFORE, PAGE_AFTER, and PAGE_BOTH. Setting the property forces a page
or column break at the current text cursor position, paragraph or text table.

The property ParaLineNumberCount is used to include a paragraph in the line numbering. The
setting of the line numbering options is done using the property set provided by the
com.sun.star.text.XLineNumberingProperties interface implemented at the text document
model.

To create a hyperlink these properties are set at the current cursor position or the current
com.sun.star.text.Paragraph service.

Hyperlink properties are not specified for paragraphs in the API reference.

Hyperlink Properties Description

HyperLinkURL string � Contains the URL.

HyperLinkTarget string � Contains the name of the target frame and can
be left blank.

HyperLinkName string � The name of the hyperlink can be left blank.

UnvisitedCharStyleName
VisitedCharStyleName

string � The names of the character styles used to
emphasize visited or not visited links. If left blank, the
default character styles Internet Link/Visited Internet Link
are applied automatically.

570 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/text/Paragraph.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Paragraph.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Paragraph.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XLineNumberingProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XLineNumberingProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XLineNumberingProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/BreakType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/BreakType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/BreakType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/BreakType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/BreakType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/BreakType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/BreakType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphPropertiesAsian.html#ParaIsForbiddenRules
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphPropertiesAsian.html#ParaIsCharacterDistance
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphPropertiesAsian.html#ParaIsCharacterDistance

Hyperlink Properties Description

HyperLinkEvents Events attached to the hyperlink. The names of the events
are OnClick, OnMouseOver, and OnMouseOut. Each
returned event is a sequence of
com.sun.star.beans.PropertyValue, with three
elements named EventType, MacroName and Library. All
elements contain string values. The EventType contains the
value "StarBasic" for OpenOffice.org Basic macros . The
macro name contains the path to the macro, for example,
Standard.Module1.Main. The library contains the name of
the library.

Some properties are connected with each other. There may be side effects or dependencies between
the following properties:

Interdependencies between Properties

ParaRightMargin, ParaLeftMargin, ParaFirstLineIndent, ParaIsAutoFirstLineIndent
ParaTopMargin, ParaBottomMargin
ParaGraphicURL/Filter/Location, ParaBackColor, ParaBackTransparent
ParaIsHyphenation, ParaHyphenationMaxLeadingChars/MaxTrailingChars/MaxHyphens
Left/Right/Top/BottomBorder, Left/Right/Top/BottomBorderDistance, BorerDistance
DropCapFormat, DropCapWholeWord, DropCapCharStyleName
PageDescName, PageNumberOffset, PageStyleName
HyperLinkURL/Name/Target, UnvisitedCharStyleName, VisitedCharStyleName
CharEscapement, CharAutoEscapement, CharEscapementHeight
CharFontName, CharFontStyleName, CharFontFamily, CharFontPitch
CharStrikeOut, CharCrossedOut
CharUnderline, CharUnderlineColor, CharUnderlineHasColor
CharCombineIsOn, CharCombinePrefix, CharCombineSuffix
RubyText, RubyAdjust, RubyCharStyleName, RubyIsAbove

8.3.3 Navigating

Cursors
The text model cursor allows for free navigation over the model by character, words, sentences, or
paragraphs. There can be several model cursors at the same time. Model cursor creation, move-
ment and usage is discussed in the section 8.3.1 Text Documents - Working with Text Documents -
Word Processing . The text model cursors are com.sun.star.text.TextCursor services that are
based on the interface com.sun.star.text.XTextCursor, which is based on
com.sun.star.text.XTextRange.

The text view cursor enables the user to travel over the document in the view by character, line,
screen page and document page. There is only one text view cursor. Certain information about the
current layout, such as the number of lines and page number must be retrieved at the view cursor.
The chapter 8.5 Text Documents - Text Document Controller below discusses the view cursor in
detail. The text view cursor is a com.sun.star.text.TextViewCursor service that includes
com.sun.star.text.TextLayoutCursor.

571

http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextLayoutCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextLayoutCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextLayoutCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextViewCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextViewCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextViewCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html

Locating Text Contents
The text document model has suppliers that yield all text contents in a document as collections. To
find a particular text content, such as bookmarks or text fields, use the appropriate supplier inter-
face. The following supplier interfaces are available at the model:

Supplier interfaces Methods

XTextTablesSupplier Com.sun.star.container.XNameAccess getTextTables()
XTextFramesSupplier com.sun.star.container.XNameAccess getTextFrames()
XTextGraphicObjectsSup-
plier

com.sun.star.container.XNameAccess getGraphicObjects()

XTextEmbeddedObjectsSup-
plier

com.sun.star.container.XNameAccess getEmbeddedObjects()

XTextFieldsSupplier com.sun.star.container.XEnumerationAccess getTextFields()
com.sun.star.container.XNameAccess getTextFieldMasters()

XBookmarksSupplier com.sun.star.container.XNameAccess getBookmarks()
XReferenceMarksSupplier com.sun.star.container.XNameAccess getReferenceMarks()
XFootnotesSupplier com.sun.star.container.XIndexAccess getFootnotes()

com.sun.star.beans.XPropertySet getFootnoteSettings()
XEndnotesSupplier com.sun.star.container.XIndexAccess getEndnotes()

com.sun.star.beans.XPropertySet getEndnoteSettings()
XTextSectionsSupplier com.sun.star.container.XNameAccess getTextSections()
XDocumentIndexesSupplier com.sun.star.container.XIndexAccess getDocumentIndexes()
XRedlinesSupplier com.sun.star.container.XEnumerationAccess getRedlines()

You can work with text content directly, set properties and use its interfaces, or find out where it is
and do an action at the text content location in the text. To find out where a text content is located
call the getAnchor() method at the interface com.sun.star.text.XTextContent, which every
text content must support.

In addition, text contents located at the current text cursor position or the content where the cursor
is currently located are provided in the PropertySet of the cursor. The corresponding cursor
properties are:

• DocumentIndexMark
• TextField
• ReferenceMark
• Footnote
• Endnote
• DocumentIndex
• TextTable
• TextFrame
• Cell
• TextSection

Search and Replace
The writer model supports the interface com.sun.star.util.XReplaceable that inherits from the
interface com.sun.star.util.XSearchable for searching and replacing in text. It contains the
following methods:

572 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/util/XSearchable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XSearchable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XSearchable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XReplaceable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XReplaceable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XReplaceable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XRedlinesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XDocumentIndexesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextSectionsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XEndnotesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XFootnotesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XReferenceMarksSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XBookmarksSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextFieldsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextEmbeddedObjectsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextEmbeddedObjectsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextGraphicObjectsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextGraphicObjectsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextFramesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextTablesSupplier.html

com::sun::star::util::util.XSearchDescriptor createSearchDescriptor()
com::sun::star::util::XReplaceDescriptor createReplaceDescriptor()
com::sun::star::uno::XInterface findFirst([in] com::sun::star::util::XSearchDescriptor xDesc)
com::sun::star::uno::XInterface findNext([in] com::sun::star::uno::XInterface xStartAt,
 [in] com::sun::star::util::XSearchDescriptor xDesc)
com::sun::star::container::XIndexAccess findAll([in] com::sun::star::util::XSearchDescriptor xDesc)
long replaceAll([in] com::sun::star::util::XSearchDescriptor xDesc)

To search or replace text, first create a descriptor service using createSearchDescriptor() or
createReplaceDescriptor(). You receive a service that supports the interface
com.sun.star.util.XPropertyReplace with methods to describe what you are searching for,
what you want to replace with and what attributes you are looking for. It is described in detail
below.

Pass in this descriptor to the methods findFirst(), findNext(), findAll() or replaceAll().

The methods findFirst() and findNext() return a com.sun.star.uno.XInterface pointing to
an object that contains the found item. If the search is not successful, a null reference to an
XInterface is returned, that is, if you try to query other interfaces from it, null is returned. The
method findAll() returns a com.sun.star.container.XIndexAccess containing one or more
com.sun.star.uno.XInterface pointing to the found text ranges or if they failed an empty inter-
face. The method replaceAll() returns the number of replaced occurrences only.

573

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XPropertyReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XPropertyReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XPropertyReplace.html

The interface com.sun.star.util.XPropertyReplace is required to describe your search. It is a
powerful interface and inherits from XReplaceDescriptor, XSearchDescriptor and XProper-
tySet.
The target of your search is described by a string containing a search text or a style name using
setSearchString(). Correspondingly, provide the text string or style name that should replace
the found occurrence of the search target to the XReplaceDescriptor using setReplaceString().
Refine the search mode through the properties included in the service
com.sun.star.util.SearchDescriptor:

Properties of com.sun.star.util.SearchDescriptor
SearchBackwards boolean � Search backward

SearchCaseSensitive boolean � Search is case sensitive.

574 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 8.3: XPropertyReplace

http://api.openoffice.org/docs/common/ref/com/sun/star/util/SearchDescriptor.html#SearchCaseSensitive
http://api.openoffice.org/docs/common/ref/com/sun/star/util/SearchDescriptor.html#SearchBackwards
http://api.openoffice.org/docs/common/ref/com/sun/star/util/SearchDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/SearchDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/SearchDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/SearchDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/SearchDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/SearchDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XPropertyReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XPropertyReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XPropertyReplace.html

Properties of com.sun.star.util.SearchDescriptor
SearchRegularExpression boolean � Search interpreting the search string as a

regular expression.

SearchSimilarity boolean � Use similarity search using the four
following options:

SearchSimilarityAdd short � Determines the number of characters the
word in the document may be longer than the search
string for it to remain valid.

SearchSimilarityExchange short � Determines how many characters in the
search term can be exchanged.

SearchSimilarityRelax boolean � If true, the values of added, exchanged,
and removed characters are combined The search
term is then found if the word in the document can
be generated through any combination of these three
conditions.

SearchSimilarityRemove short � Determines how many characters the word
in the document may be shorter than the search
string for it to remain valid. The characters may be
removed from the word at any position.

SearchStyles boolean � Determines if the search and replace
string should be interpreted as paragraph style
names. Note that the Display Name of the style has
to be used.

SearchWords boolean � Determines if the search should find
complete words only.

In XPropertyReplace, the methods to get and set search attributes, and replace attributes allow
the attributes to search for to be defined and the attributes to insert instead of the existing attri-
butes. All of these methods expect a sequence of com.sun.star.beans.PropertyValue structs.

Any properties contained in the services com.sun.star.style.CharacterProperties,
com.sun.star.style.CharacterPropertiesAsian and com.sun.star.style.ParagraphProp-
erties can be used for an attribute search. If setValueSearch(false)is used, OpenOffice.org
checks if an attribute exists, whereas setValueSearch(true) finds specific attribute values. If only
searching to see if an attribute exists at all, it is sufficient to pass a PropertyValue struct with the
Name field set to the name of the required attribute.

The following code snippet replaces all occurrences of the text "random numbers" by the bold text
"replaced numbers" in a given document mxDoc.
XReplaceable xReplaceable = (XReplaceable) UnoRuntime.queryInterface(XReplaceable.class, mxDoc);
XReplaceDescriptor xRepDesc = xReplaceable.createReplaceDescriptor();

// set a string to search for
xRepDesc.setSearchString("random numbers");

// set the string to be inserted
xRepDesc.setReplaceString("replaced numbers");

// create an array of one property value for a CharWeight property
PropertyValue[] aReplaceArgs = new PropertyValue[1];

// create PropertyValue struct
aReplaceArgs[0] = new PropertyValue();
// CharWeight should be bold
aReplaceArgs[0].Name = "CharWeight";
aReplaceArgs[0].Value = new Float(com.sun.star.awt.FontWeight.BOLD);

// set our sequence with one property value as ReplaceAttribute
XPropertyReplace xPropRepl = (XPropertyReplace) UnoRuntime.queryInterface(

XPropertyReplace.class, xRepDesc);
xPropRepl.setReplaceAttributes(aReplaceArgs);

575

http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/SearchDescriptor.html#SearchWords
http://api.openoffice.org/docs/common/ref/com/sun/star/util/SearchDescriptor.html#SearchStyles
http://api.openoffice.org/docs/common/ref/com/sun/star/util/SearchDescriptor.html#SearchSimilarityRemove
http://api.openoffice.org/docs/common/ref/com/sun/star/util/SearchDescriptor.html#SearchSimilarityRelax
http://api.openoffice.org/docs/common/ref/com/sun/star/util/SearchDescriptor.html#SearchSimilarityExchange
http://api.openoffice.org/docs/common/ref/com/sun/star/util/SearchDescriptor.html#SearchSimilarityAdd
http://api.openoffice.org/docs/common/ref/com/sun/star/util/SearchDescriptor.html#SearchSimilarity
http://api.openoffice.org/docs/common/ref/com/sun/star/util/SearchDescriptor.html#SearchRegularExpression

// replace
long nResult = xReplaceable.replaceAll(xRepDesc);

8.3.4 Tables

Table Architecture
OpenOffice.org text tables consist of rows, rows consist of one or more cells, and cells can contain
text or rows. There is no logical concept of columns. From the API's perspective, a table acts as if it
had columns, as long as there are no split or merged cells.

Cells in a row are counted alphabetically starting from A, where rows are counted numerically,
starting from 1. This results in a cell-row addressing pattern, where the cell letter is denoted first
(A-Zff.), followed by the row number (1ff.):

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

A4 B4 C4 D4

When a cell is split vertically, the new cell gets the letter of the former right-hand-side neighbor cell
and the former neighbor cell gets the next letter in the alphabet. Consider the example table below:
B2 was split vertically, a new cell C2 is inserted and the former C2 became D2, D2 became E2, and
so forth.

When cells are merged vertically, the resulting cell counts as one cell and gets one letter. The
neighbor cell to the right gets the subsequent letter. B4 in the table below shows this. The former B4
and C4 have been merged, so the former D4 could become C4. The cell name D4 is no longer
required.

As shown, there is no way to address a column C anymore, for the cells C1 to C4 no longer form a
column:

A1 B1 C1 D1

A2 B2 vertically split
in two

C2 newly inserted D2 E2

A3 B3 C3 D3

A4 B4 merged with C4 C4

When cells are split horizontally, OpenOffice.org simply inserts as many rows into the cell as
required.

In our example table, we continued by splitting C2 first horizontally and then vertically so that
there is a range of four cells.

The writer treats the content of C2 as two rows and starts counting cells within rows. To address
the new cells, it extends the original cell name C2 by new addresses following the cell-row pattern.
The upper row gets row number 1 and the first cell in the row gets cell number 1, resulting in the
cell address C2.1.1, where the latter 1 indicates the row and the former 1 indicates the first cell in
the row. The right neighbor of C2.1.1 is C2.2.1. The subaddress 2.1 means the second cell in the first
row.

576 OpenOffice.org 2.3 Developer's Guide • June 2007

http://C2.1.1/
http://C2.1.1/
http://C2.1.1/

A1 B1 C1 D1

A2 B2 vertically split
in two

C2.1.1 C2.2.1

C2.1.2 C2.2.2

D2 E2

A3 B3 C3 D3

A4 B4 merged with C4 C4

The cell-row pattern is used for all further subaddressing as the cells are split and merged. The cell
addresses can change radically depending on the table structure generated by OpenOffice.org. The
next table shows what happens when E2 is merged with D3. The table is reorganized, so that it has
three rows instead of four. The second row contains two cells, A2 and B2 (sic!). The cell A2 has two
rows, as shown from the cell subaddresses: The upper row consists of four cells, namely A2.1.1
through A2.4.1, whereas the lower row consists of the three cells A2.1.2 through A2.3.2.

The cell range C2.1.1:C2.2.2 that was formerly contained in cell C2 is now in cell A2.3.1 that
denotes the third cell in the first row of A2. Within the address of the cell A2.3.1, OpenOffice.org
has started a new subaddressing level using the cell-row pattern again.

A1 B1 C1 D1

A2.1.1 A2.2.1 A2.3.1.1.1 A2.3.1.2.1

A2.3.1.1.2 A2.3.1.2.2

A2.4.1

A2.1.2 A2.2.2 A2.3.2

Former E2 merged with
former D3

Becomes B2!

A3 B3 C3

Cell addresses can become complicated. The cell address can be looked up in the user interface. Set
the GUI text cursor in the desired cell and observe the lower-right corner of the status bar in the
text document.

Remember that there are only "columns" in a text table, as long as there are no split or merged
cells.

Text tables support the service com.sun.star.text.TextTable, which includes the service
com.sun.star.text.TextContent:

577

http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html

The service com.sun.star.text.TextTable offers access to table cells in two different ways::

• Yields named table cells which are organized in rows and columns.

• Provides a table cursor to travel through the table cells and alter the cell properties.

These aspects are reflected in the interface com.sun.star.text.XTextTable which inherits from
com.sun.star.text.XTextContent. It can be seen as a rectangular range of cells defined by
numeric column indexes, as described by com.sun.star.table.XCellRange. This aspect makes
text tables compatible with spreadsheet tables. Also, text tables have a name, can be sorted, charts
can be based on them, and predefined formats can be applied to the tables. The latter aspects are
covered by the interfaces com.sun.star.container.XNamed, com.sun.star.util.XSortable,
com.sun.star.chart.XChartDataArray and com.sun.star.table.XAutoFormattable.

The usage of these interfaces and the properties of the TextTable service are discussed below.

578 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 8.4 Service com.sun.star.text.TextTable

http://api.openoffice.org/docs/common/ref/com/sun/star/table/XAutoFormattable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XAutoFormattable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XAutoFormattable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDataArray.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDataArray.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDataArray.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XSortable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XSortable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XSortable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html

Named Table Cells in Rows, Columns and the Table Cursor
The interface XTextTable introduces the following methods to initialize a table, work with table
cells, rows and columns, and create a table cursor:

void initialize([in] long nRows, [in] long nColumns)
sequence< string > getCellNames()
com::sun::star::table::XCell getCellByName([in] string aCellName)
com::sun::star::table::XTableRows getRows()
com::sun::star::table::XTableColumns getColumns()
com::sun::star::text::XTextTableCursor createCursorByCellName([in] string aCellName)

The method initialize() sets the number of rows and columns prior to inserting the table into
the text. Non-initialized tables default to two rows and two columns.

The method getCellNames() returns a sequence of strings containing the names of all cells in the
table in A1[.1.1] notation.

The method getCellByName() expects a cell name in A1[.1.1] notation, and returns a cell object
that is a com.sun.star.table.XCell and a com.sun.star.text.XText. The advantage of
getCellByName() is its ability to retrieve cells even in tables with split or merged cells.

The method getRows() returns a table row container supporting com.sun.star.table.XTable-
Rows that is a com.sun.star.container.XIndexAccess, and introduces the following methods to
insert an arbitrary number of table rows below a given row index position and remove rows from
a certain position:

void insertByIndex ([in] long nIndex, [in] long nCount)
void removeByIndex ([in] long nIndex, [in] long nCount)

The following table shows which XTableRows methods work under which circumstances.

Method in
com.sun.star.table.XTable-
Rows

In Simple table In Complex
Table

getElementType() X X

hasElements() X X

getByIndex() X X

getCount() X X

insertByIndex() X -

removeByIndex() X -

Every row returned by getRows() supports the service com.sun.star.text.TextTableRow, that
is, it is a com.sun.star.beans.XPropertySet which features these properties:

Properties of com.sun.star.text.TextTableRow
BackColor long � Specifies the color of the background in 0xAARRGGBB nota-

tion.

BackTransparent boolean � If true, the background color value in "BackColor" is
not visible.

BackGraphicURL string � Contains the URL of a background graphic.

BackGraphicFilter string � Contains the name of the file filter of a background
graphic.

BackGraphicLocation com.sun.star.style.GraphicLocation. Determines the posi-
tion of the background graphic.

579

http://api.openoffice.org/docs/common/ref/com/sun/star/style/GraphicLocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/GraphicLocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/GraphicLocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTableRow.html#BackGraphicLocation
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTableRow.html#BackGraphicFilter
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTableRow.html#BackGraphicURL
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTableRow.html#BackTransparent
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTableRow.html#BackColor
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTableRow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTableRow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTableRow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTableRow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTableRow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTableRow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableRows.html#removeByIndex
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableRows.html#removeByIndex
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableRows.html#removeByIndex
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableRows.html#insertByIndex
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableRows.html#insertByIndex
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableRows.html#insertByIndex
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html#getCount
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html#getCount
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html#getCount
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html#getByIndex
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html#getByIndex
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html#getByIndex
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XElementAccess.html#hasElements
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XElementAccess.html#hasElements
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XElementAccess.html#hasElements
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XElementAccess.html#getElementType
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XElementAccess.html#getElementType
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XElementAccess.html#getElementType
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableRows.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableRows.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableRows.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableRows.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableRows.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableRows.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableRows.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableRows.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableRows.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableRows.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableRows.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableRows.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCell.html

Properties of com.sun.star.text.TextTableRow
TableColumnSeparators Defines the column width and its merging behavior. It contains a

sequence of com.sun.star.text.TableColumnSeparator structs
with the fields Position and IsVisible. The value of Position is relative
to the table property
com.sun.star.text.TextTable:TableColumnRelativeSum.
IsVisible refers to merged cells where the separator becomes invisible.

Height long � Contains the height of the table row.

IsAutoHeight boolean � If the value of this property is true , the height of the
table row depends on the content of the table cells.

The method getColumns()is similar to getRows(), but restrictions apply. It returns a table column
container supporting com.sun.star.table.XTableColumns that is a
com.sun.star.container.XIndexAccess and introduces the following methods to insert an arbi-
trary number of table columns behind a given column index position and remove columns from a
certain position:

void insertByIndex([in] long nIndex, [in] long nCount)
void removeByIndex([in] long nIndex, [in] long nCount)

The following table shows which XTableColumns methods work in which situation.

Methods in
com.sun.star.table.XTable-
Columns

In Simple Table In Complex
Table

getElementType() X X

hasElements() X X

getByIndex() X (but returned object supports XInterface only) -

getCount() X -

insertByIndex() X -

removeByIndex() X -

The method createCursorByCellName() creates a text table cursor that can select a cell range in
the table, merge or split cells, and read and write cell properties of the selected cell range. It is a
com.sun.star.text.TextTableCursor service with the interfaces com.sun.star.text.XText-
TableCursor and com.sun.star.beans.XPropertySet.

580 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextTableCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextTableCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextTableCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextTableCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextTableCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextTableCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTableCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTableCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTableCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableColumns.html#removeByIndex
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableColumns.html#removeByIndex
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableColumns.html#removeByIndex
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableColumns.html#insertByIndex
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableColumns.html#insertByIndex
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableColumns.html#insertByIndex
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html#getCount
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html#getCount
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html#getCount
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html#getByIndex
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html#getByIndex
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html#getByIndex
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XElementAccess.html#hasElements
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XElementAccess.html#hasElements
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XElementAccess.html#hasElements
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XElementAccess.html#getElementType
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XElementAccess.html#getElementType
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XElementAccess.html#getElementType
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableColumns.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableColumns.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableColumns.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableColumns.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableColumns.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableColumns.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableColumns.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableColumns.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableColumns.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTableRow.html#IsAutoHeight
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTableRow.html#Height
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html#TableColumnRelativeSum
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html#TableColumnRelativeSum
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html#TableColumnRelativeSum
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TableColumnSeparator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TableColumnSeparator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TableColumnSeparator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTableRow.html#TableColumnSeparators

These are the methods contained in XTextTableCursor:
string getRangeName()
boolean goLeft([in] short nCount, [in] boolean bExpand)
boolean goRight([in] short nCount, [in] boolean bExpand)
boolean goUp([in] short nCount, [in] boolean bExpand)
boolean goDown([in] short nCount, [in] boolean bExpand)
void gotoStart([in] boolean bExpand)
void gotoEnd([in] boolean bExpand)
boolean gotoCellByName([in] string aCellName, [in] boolean bExpand)
boolean mergeRange()
boolean splitRange([in] short Count, [in] boolean Horizontal)

Traveling through the table calls the cursor's goLeft(), goRight(), goUp(), goDown(), goto-
Start(), gotoEnd(), and gotoCellByName() methods, passing true to select cells on the way.

Once a cell range is selected, apply character and paragraph properties to the cells in the range as
defined in the services com.sun.star.style.CharacterProperties,
com.sun.star.style.CharacterPropertiesAsian, com.sun.star.style.CharacterProperti-
esComplex and com.sun.star.style.ParagraphProperties. Moreover, split and merge cells
using the text table cursor. An example is provided below.

Indexed Cells and Cell Ranges
The interface com.sun.star.table.XCellRange provides access to cells using their row and
column index as position, and to create sub ranges of tables:

com::sun::star::table::XCell getCellByPosition([in] long nColumn, [in] long nRow)
com::sun::star::table::XCellRange getCellRangeByPosition([in] long nLeft, [in] long nTop,
 [in] long nRight, [in] long nBottom)

581

Illustration 8.5 com.sun.star.text.TextTableCursor

http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesComplex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesComplex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesComplex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesComplex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesComplex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesComplex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html

com::sun::star::table::XCellRange getCellRangeByName([in] string aRange)

The method getCellByPosition() returns a cell object supporting the interfaces
com.sun.star.table.XCell and com.sun.star.text.XText. To find the cell the name is inter-
nally created from the position using the naming scheme described above and returns this cell if it
exists. Calling getCellByPosition(1, 1)in the table at the beginning of this chapter returns the
cell "B2" .

The methods getCellRangeByPosition() and getCellRangeByName() return a range object that
is described below. The name of the range is created with the top-left cell and bottom-right cell of
the table separated by a colon : as in A1:B4. Both methods fail when the structure of the table
contains merged or split cells.

Table Naming, Sorting, Charting and Autoformatting
Each table has a unique name that can be read and written using the interface
com.sun.star.container.XNamed.

A text table is a com.sun.star.util.XSortable. Its method createSortDescriptor() returns a
sequence of com.sun.star.beans.PropertyValue structs that provides the elements as described
in the service com.sun.star.text.TextSortDescriptor. The method sort() sorts the table
content by the given parameters.

The interface com.sun.star.chart.XChartDataArray is used to connect a table or a range inside
of a table to a chart. It reads and writes the values of a range, and sets the column and row labels.
The inherited interface com.sun.star.chart.XChartData enables the chart to connect listeners to
be notified when changes to the values of a table are made. For details about charting, refer to
chapter 11 Charts.

The interface com.sun.star.table.XAutoFormattable provides in its method autoFormat() a
method to format the table using a predefined table format. To access the available auto formats,
the service com.sun.star.sheet.TableAutoFormats has to be accessed. For details, refer to
chapter 9.3.2 Spreadsheet Documents - Working with Spreadsheets - Formatting - Table Auto Formats.

Text Table Properties
The text table supports the properties described in the service com.sun.star.text.TextTable:

Properties of com.sun.star.text.TextTable
BackColor long � Contains the color of the table background.

BackGraphicFilter string � Contains the name of the file filter for the background graphic.

BackGraphicLocation com.sun.star.style.GraphicLocation. Determines the position of the
background graphic.

BackGraphicURL string � Contains the URL for the background graphic.

BackTransparent boolean � Determines if the background color is transparent.

BottomMargin long � Determines the bottom margin.

BreakType com.sun.star.style.BreakType. Determines the type of break that is
applied at the beginning of the table.

ChartColumnAsLabel boolean � Determines if the first column of the table should be treated as
axis labels when a chart is to be created.

582 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html#ChartColumnAsLabel
http://api.openoffice.org/docs/common/ref/com/sun/star/style/BreakType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/BreakType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/BreakType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html#BreakType
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html#BottomMargin
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html#BackTransparent
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html#BackGraphicURL
http://api.openoffice.org/docs/common/ref/com/sun/star/style/GraphicLocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/GraphicLocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/GraphicLocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html#BackGraphicLocation
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html#BackGraphicFilter
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html#BackColor
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TableAutoFormats.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TableAutoFormats.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TableAutoFormats.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XAutoFormattable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XAutoFormattable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XAutoFormattable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDataArray.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDataArray.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDataArray.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextSortDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextSortDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextSortDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XSortable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XSortable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XSortable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCell.html

Properties of com.sun.star.text.TextTable
ChartRowAsLabel boolean � Determines if the first row of the table should be treated as axis

labels when a chart is to be created.

HoriOrient short � Contains the horizontal orientation according to
com.sun.star.text.HoriOrientation.

IsWidthRelative boolean � Determines if the value of the relative width is valid.

KeepTogether boolean � Setting this property to true prevents page or column breaks
between this table and the following paragraph or text table.

LeftMargin long � Contains the left margin of the table.

PageDescName string � If this property is set, it creates a page break before the table and
assigns the value as the name of the new page style sheet to use.

PageNumberOffset short � If a page break property is set at the table, this property contains
the new value for the page number.

RelativeWidth short � Determines the width of the table relative to its environment.

RepeatHeadline boolean � Determines if the first row of the table is repeated on every new
page.

RightMargin long � Contains the right margin of the table.

ShadowFormat struct com.sun.star.table.ShadowFormat determines the type, color
and size of the shadow.

Split boolean � Setting this property to false prevents the table from getting
spread on two pages.

TableBorder struct com.sun.star.table.TableBorder. Contains the description of
the table borders.

TableColumnRela-
tiveSum

short � Contains the sum of the column width values used in TableCol-
umnSeparators.

TableColumnSepara-
tors

sequence < com.sun.star.text.TableColumnSeparator >. Defines
the column width and its merging behavior. It contains a sequence of
com.sun.star.text.TableColumnSeparator structs with the fields
Position and IsVisible. The value of Position is relative to the table property
com.sun.star.text.TextTable:TableColumnRelativeSum. IsVisible
refers to merged cells where the separator becomes invisible. In tables with
merged or split cells, the sequence TableColumnSeparators is empty.

TopMargin long � Determines the top margin.

Width long � Contains the absolute table width.

Inserting Tables
To create and insert a new text table, a five-step procedure must be followed:

1. Get the service manager of the text document, querying the document's factory interface
com.sun.star.lang.XMultiServiceFactory.

2. Order a new text table from the factory by its service name "com.sun.star.text.TextTable",
using the factory method createInstance().

3. From the object received, query the com.sun.star.text.XTextTable interface that inherits
from com.sun.star.text.XTextContent.

583

http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html#Width
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html#TopMargin
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html#TableColumnRelativeSum
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html#TableColumnRelativeSum
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html#TableColumnRelativeSum
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TableColumnSeparator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TableColumnSeparator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TableColumnSeparator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TableColumnSeparator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TableColumnSeparator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TableColumnSeparator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html#TableColumnSeparators
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html#TableColumnSeparators
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html#TableColumnRelativeSum
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html#TableColumnRelativeSum
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableBorder.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableBorder.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableBorder.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html#TableBorder
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html#Split
http://api.openoffice.org/docs/common/ref/com/sun/star/table/ShadowFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/ShadowFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/ShadowFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html#ShadowFormat
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html#RightMargin
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html#RepeatHeadline
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html#RelativeWidth
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html#PageNumberOffset
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html#PageDescName
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html#LeftMargin
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html#KeepTogether
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html#IsWidthRelative
http://api.openoffice.org/docs/common/ref/com/sun/star/text/HoriOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/HoriOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/HoriOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html#HoriOrient
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html#ChartRowAsLabel

4. If necessary, initialize the table with the number of rows and columns. For this purpose, XText-
Table offers the initialize() method.

5. Insert the table into the text using the insertTextContent() method at its
com.sun.star.text.XText interface. The method insertTextContent() expects an XText-
Content to insert. Since XTextTable inherits from XTextContent, pass the XTextTable inter-
face retrieved previously.

You are now ready to get cells, fill in text, values and formulas and set the table and cell properties
as needed.

In the following code sample, there is a small helper function to put random numbers between
-1000 and 1000 into the table to demonstrate formulas: (Text/TextDocuments.java)
/** This method returns a random double which isn't too high or too low
 */
protected double getRandomDouble()
{
 return ((maRandom.nextInt() % 1000) * maRandom.nextDouble());
}

The following helper function inserts a string into a cell known by its name and sets its text color to
white: (Text/TextDocuments.java)
/** This method sets the text colour of the cell refered to by sCellName to white and inserts
 the string sText in it
 */
public static void insertIntoCell(String sCellName, String sText, XTextTable xTable) {
 // Access the XText interface of the cell referred to by sCellName
 XText xCellText = (XText) UnoRuntime.queryInterface(
 XText.class, xTable.getCellByName(sCellName));

 // create a text cursor from the cells XText interface
 XTextCursor xCellCursor = xCellText.createTextCursor();

 // Get the property set of the cell's TextCursor
 XPropertySet xCellCursorProps = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xCellCursor);

 try {
 // Set the colour of the text to white
 xCellCursorProps.setPropertyValue("CharColor", new Integer(16777215));
 } catch (Exception e) {
 e.printStackTrace(System.out);
 }

 // Set the text in the cell to sText
 xCellText.setString(sText);
}

Using the above helper functions, create a text table and insert it into the text document.
(Text/TextDocuments.java)
/** This method shows how to create and insert a text table, as well as insert text and formulae

into the cells of the table
 */
protected void TextTableExample ()
{

try
{

// Create a new table from the document's factory
XTextTable xTable = (XTextTable) UnoRuntime.queryInterface(

XTextTable.class, mxDocFactory .createInstance(
"com.sun.star.text.TextTable"));

// Specify that we want the table to have 4 rows and 4 columns
xTable.initialize(4, 4);

// Insert the table into the document
mxDocText.insertTextContent(mxDocCursor, xTable, false);
// Get an XIndexAccess of the table rows
XIndexAccess xRows = xTable.getRows();

// Access the property set of the first row (properties listed in service description:
// com.sun.star.text.TextTableRow)
XPropertySet xRow = (XPropertySet) UnoRuntime.queryInterface(

XPropertySet.class, xRows.getByIndex (0));
// If BackTransparant is false, then the background color is visible
xRow.setPropertyValue("BackTransparent", new Boolean(false));
// Specify the color of the background to be dark blue

584 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html

xRow.setPropertyValue("BackColor", new Integer(6710932));

// Access the property set of the whole table
XPropertySet xTableProps = (XPropertySet)UnoRuntime.queryInterface(

XPropertySet.class, xTable);
// We want visible background colors
xTableProps.setPropertyValue("BackTransparent", new Boolean(false));
// Set the background colour to light blue
xTableProps.setPropertyValue("BackColor", new Integer(13421823));

// set the text (and text colour) of all the cells in the first row of the table
insertIntoCell("A1", "First Column", xTable);
insertIntoCell("B1", "Second Column", xTable);
insertIntoCell("C1", "Third Column", xTable);
insertIntoCell("D1", "Results", xTable);

// Insert random numbers into the first this three cells of each
// remaining row
xTable.getCellByName("A2").setValue(getRandomDouble());
xTable.getCellByName("B2").setValue(getRandomDouble());
xTable.getCellByName("C2").setValue(getRandomDouble());

xTable.getCellByName("A3").setValue(getRandomDouble());
xTable.getCellByName("B3").setValue(getRandomDouble());
xTable.getCellByName("C3").setValue(getRandomDouble());

xTable.getCellByName("A4").setValue(getRandomDouble());
xTable.getCellByName("B4").setValue(getRandomDouble());
xTable.getCellByName("C4").setValue(getRandomDouble());

// Set the last cell in each row to be a formula that calculates
// the sum of the first three cells
xTable.getCellByName("D2").setFormula("sum <A2:C2>");
xTable.getCellByName("D3").setFormula("sum <A3:C3>");
xTable.getCellByName("D4").setFormula("sum <A4:C4>");

}
catch (Exception e)
{

e.printStackTrace (System.out);
}

}

The next sample inserts auto text entries into a table, splitting cells during its course. (Text/Text-
Documents.java)
/** This example demonstrates the use of the AutoTextContainer, AutoTextGroup and AutoTextEntry services
 and shows how to create, insert and modify auto text blocks
 */
protected void AutoTextExample ()
{

try
{

// Go to the end of the document
mxDocCursor.gotoEnd(false);
// Insert two paragraphs
mxDocText.insertControlCharacter (mxDocCursor,

ControlCharacter.PARAGRAPH_BREAK, false);
mxDocText.insertControlCharacter (mxDocCursor,

ControlCharacter.PARAGRAPH_BREAK, false);
// Position the cursor in the second paragraph
XParagraphCursor xParaCursor = (XParagraphCursor) UnoRuntime.queryInterface(

XParagraphCursor.class, mxDocCursor);
xParaCursor.gotoPreviousParagraph (false);

// Get an XNameAccess interface to all auto text groups from the document factory
XNameAccess xContainer = (XNameAccess) UnoRuntime.queryInterface(

XNameAccess.class, mxFactory.createInstance (
"com.sun.star.text.AutoTextContainer"));

// Create a new table at the document factory
XTextTable xTable = (XTextTable) UnoRuntime.queryInterface(

XTextTable.class, mxDocFactory .createInstance(
"com.sun.star.text.TextTable"));

// Store the names of all auto text groups in an array of strings
String[] aGroupNames = xContainer.getElementNames();

// Make sure we have at least one group name
if (aGroupNames.length > 0)
{

// initialise the table to have a row for every autotext group
//in a single column + one
// additional row for a header
xTable.initialize(aGroupNames.length+1,1);

// Access the XPropertySet of the table

585

XPropertySet xTableProps = (XPropertySet)UnoRuntime.queryInterface(
XPropertySet.class, xTable);

// We want a visible background
xTableProps.setPropertyValue("BackTransparent", new Boolean(false));

// We want the background to be light blue
xTableProps.setPropertyValue("BackColor", new Integer(13421823));

// Inser the table into the document
mxDocText.insertTextContent(mxDocCursor, xTable, false);

// Get an XIndexAccess to all table rows
XIndexAccess xRows = xTable.getRows();

// Get the first row in the table
XPropertySet xRow = (XPropertySet) UnoRuntime.queryInterface(

XPropertySet.class, xRows.getByIndex (0));

// We want the background of the first row to be visible too
xRow.setPropertyValue("BackTransparent", new Boolean(false));

// And let's make it dark blue
xRow.setPropertyValue("BackColor", new Integer(6710932));

// Put a description of the table contents into the first cell
insertIntoCell("A1", "AutoText Groups", xTable);

// Create a table cursor pointing at the second cell in the first column
XTextTableCursor xTableCursor = xTable.createCursorByCellName ("A2");

// Loop over the group names
for (int i = 0 ; i < aGroupNames.length ; i ++)
{

// Get the name of the current cell
String sCellName = xTableCursor.getRangeName ();

// Get the XText interface of the current cell
XText xCellText = (XText) UnoRuntime.queryInterface (

XText.class, xTable.getCellByName (sCellName));

// Set the cell contents of the current cell to be
//the name of the of an autotext group
xCellText.setString (aGroupNames[i]);

// Access the autotext gruop with this name
XAutoTextGroup xGroup = (XAutoTextGroup) UnoRuntime.queryInterface (

XAutoTextGroup.class,xContainer.getByName(aGroupNames[i]));

// Get the titles of each autotext block in this group
String [] aBlockNames = xGroup.getTitles();

// Make sure that the autotext group contains at least one block
if (aBlockNames.length > 0)
{

// Split the current cell vertically into two seperate cells
xTableCursor.splitRange ((short) 1, false);

// Put the cursor in the newly created right hand cell
// and select it
xTableCursor.goRight ((short) 1, false);

// Split this cell horizontally to make a seperate cell
// for each Autotext block
if ((aBlockNames.length -1) > 0)

xTableCursor.splitRange (
(short) (aBlockNames.length - 1), true);

// loop over the block names
for (int j = 0 ; j < aBlockNames.length ; j ++)
{

// Get the XText interface of the current cell
xCellText = (XText) UnoRuntime.queryInterface (

XText.class, xTable.getCellByName (
xTableCursor.getRangeName()));

// Set the text contents of the current cell to the
 // title of an Autotext block

xCellText.setString (aBlockNames[j]);

// Move the cursor down one cell
xTableCursor.goDown((short)1, false);

}
}
// Go back to the cell we originally split
xTableCursor.gotoCellByName (sCellName, false);

586 OpenOffice.org 2.3 Developer's Guide • June 2007

// Go down one cell
xTableCursor.goDown((short)1, false);

}

XAutoTextGroup xGroup;
String [] aBlockNames;

// Add a depth so that we only generate 200 numbers before
// giving up on finding a random autotext group that contains autotext blocks
int nDepth = 0;
do
{

// Generate a random, positive number which is lower than
// the number of autotext groups
int nRandom = Math.abs (maRandom.nextInt() % aGroupNames.length);

// Get the autotext group at this name
xGroup = (XAutoTextGroup) UnoRuntime.queryInterface (

XAutoTextGroup.class, xContainer.getByName (
aGroupNames[nRandom]));

// Fill our string array with the names of all the blocks in this
// group
aBlockNames = xGroup.getElementNames();

// increment our depth counter
++nDepth;

}
while (nDepth < 200 && aBlockNames.length == 0);
// If we managed to find a group containg blocks...
if (aBlockNames.length > 0)
{

// Pick a random block in this group and get it's
// XAutoTextEntry interface
int nRandom = Math.abs (maRandom.nextInt()

% aBlockNames.length);
XAutoTextEntry xEntry = (XAutoTextEntry)

 UnoRuntime.queryInterface (
XAutoTextEntry.class, xGroup.getByName (

 aBlockNames[nRandom]));
// insert the modified autotext block at the end of the document
xEntry.applyTo (mxDocCursor);

// Get the titles of all text blocks in this AutoText group
String [] aBlockTitles = xGroup.getTitles();

// Get the XNamed interface of the autotext group
XNamed xGroupNamed = (XNamed) UnoRuntime.queryInterface (

 XNamed.class, xGroup);

// Output the short cut and title of the random block
//and the name of the group it's from
System.out.println ("Inserted the Autotext '" + aBlockTitles[nRandom]

+ "', shortcut '" + aBlockNames[nRandom] + "' from group '"
+ xGroupNamed.getName());

}
}

// Go to the end of the document
mxDocCursor.gotoEnd(false);
// Insert new paragraph
mxDocText.insertControlCharacter (

mxDocCursor, ControlCharacter.PARAGRAPH_BREAK, false);

// Position cursor in new paragraph
xParaCursor.gotoPreviousParagraph (false);

// Insert a string in the new paragraph
mxDocText.insertString (mxDocCursor, "Some text for a new autotext block", false);

// Go to the end of the document
mxDocCursor.gotoEnd(false);

}
catch (Exception e)
{

e.printStackTrace (System.out);
}

}

Accessing Existing Tables
To access the tables contained in a text document, the text document model supports the interface
com.sun.star.text.XTextTablesSupplier with one single method getTextTables(). It returns

587

http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextTablesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextTablesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextTablesSupplier.html

a com.sun.star.text.TextTables service, which is a named and indexed collection, that is,
tables are retrieved using com.sun.star.container.XNameAccess or
com.sun.star.container.XIndexAccess.

The following snippet iterates over the text tables in a given text document object mxDoc and colors
them green.
import com.sun.star.text.XTextTablesSupplier;
import com.sun.star.container.XNameAccess;
import com.sun.star.container.XIndexAccess;
import com.sun.star.beans.XPropertySet;

...

// first query the XTextTablesSupplier interface from our document
XTextTablesSupplier xTablesSupplier = (XTextTablesSupplier) UnoRuntime.queryInterface(

XTextTablesSupplier.class, mxDoc);
// get the tables collection
XNameAccess xNamedTables = xTablesSupplier.getTextTables();

// now query the XIndexAccess from the tables collection
XIndexAccess xIndexedTables = (XIndexAccess) UnoRuntime.queryInterface(

XIndexAccess.class, xNamedTables);

// we need properties
XPropertySet xTableProps = null;

// get the tables
for (int i = 0; i < xIndexedTables.getCount(); i++) {

Object table = xIndexedTables.getByIndex(i);
// the properties, please!
xTableProps = (XPropertySet) UnoRuntime.queryInterface(

XPropertySet.class, table);

// color the table light green in format 0xRRGGBB
xTableProps.setPropertyValue("BackColor", new Integer(0xC8FFB9));

}

8.3.5 Text Fields
Text fields are text contents that add a second level of information to text ranges. Usually their
appearance fuses together with the surrounding text, but actually the presented text comes from
elsewhere. Field commands can insert the current date, page number, total page numbers, a cross-
reference to another area of text, the content of certain database fields, and many variables, such as
fields with changing values, into the document. There are some fields that contain their own data,
where others get the data from an attached field master.

588 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTables.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTables.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTables.html

Fields are created using the com.sun.star.lang.XMultiServiceFactory of the model before
inserting them using insertTextContent(). The following text field services are available:

Text Field Service Name Description

com.sun.star.text.textfield.Annotation Annotation created through Insert � Note.

com.sun.star.text.textfield.Author Shows the author of the document.

589

Illustration 8.6Text Fields and Text Field Masters

http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/Author.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/Author.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/Author.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/Annotation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html

Text Field Service Name Description

com.sun.star.text.textfield.Bibliography Bibliographic entry created by Insert � Indexes
and Tables � Bibliography Entry. The content
is the source of the creation of bibliographic
indexes. The sequence <PropertyValue> in
the property "Fields" contains pairs of the
name of the field and its content, such as:

Identifier=ABC99
BibliographicType=1

The names of the fields are defined in
com.sun.star.text.BibliographyData-
Field. A bibliographic entry depends on
com.sun.star.text.FieldMaster.Bibli
ography

com.sun.star.text.textfield.Chapter Show the chapter information.

com.sun.star.text.textfield.CharacterCount Show the character count of the document.

com.sun.star.text.textfield.CombinedCharac-
ters

Combines up to six characters as one text object
that is formatted in two lines.

com.sun.star.text.textfield.ConditionalText Inserts text depending on a condition.

com.sun.star.text.textfield.Database The form letter field showing the content from
a database. Depends on
com.sun.star.text.FieldMaster.Data-
base.

com.sun.star.text.textfield.DatabaseName Shows the name of a database.

com.sun.star.text.textfield.DatabaseNextSet Increments the cursor that points to a database
selection.

com.sun.star.text.textfield.DatabaseNumber-
OfSet

Shows the set number of a database cursor.

com.sun.star.text.textfield.DatabaseSet-
Number

Databases - Any Record. Sets the number of a
database cursor.

com.sun.star.text.textfield.DateTime Shows a date or time value.

com.sun.star.text.textfield.DDE Shows the result of a DDE operation. Depends
on
com.sun.star.text.FieldMaster.DDE.

com.sun.star.text.textfield.docinfo.Change-
Author

Shows the name of the author of the last change
of the document.

com.sun.star.text.textfield.docinfo.Change-
DateTime

Shows the date and time of the last change of
the document.

com.sun.star.text.textfield.docinfo.Create-
Author

Shows the name of the creator of the document.

com.sun.star.text.textfield.docinfo.Create-
DateTime

Shows the date and time of the document
creation.

com.sun.star.text.textfield.docinfo.Descrip
tion

Shows the description contained in the docu-
ment information.

com.sun.star.text.textfield.docinfo.Edit-
Time

Shows the time of the editing of the document.

com.sun.star.text.textfield.docinfo.Info0 Shows the content of the first user defined info
field of the document info.

590 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/docinfo/Info0.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/docinfo/EditTime.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/docinfo/EditTime.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/docinfo/Description.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/docinfo/Description.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/docinfo/CreateDateTime.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/docinfo/CreateDateTime.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/docinfo/CreateAuthor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/docinfo/CreateAuthor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/docinfo/ChangeDateTime.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/docinfo/ChangeDateTime.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/docinfo/ChangeAuthor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/docinfo/ChangeAuthor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FieldMaster/DDE.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FieldMaster/DDE.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FieldMaster/DDE.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/DDE.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/DateTime.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/DatabaseSetNumber.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/DatabaseSetNumber.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/DatabaseNumberOfSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/DatabaseNumberOfSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/DatabaseNextSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/DatabaseName.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FieldMaster/Database.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FieldMaster/Database.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FieldMaster/Database.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FieldMaster/Database.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FieldMaster/Database.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FieldMaster/Database.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/Database.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/ConditionalText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/CombinedCharacters.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/CombinedCharacters.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/CharacterCount.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/Chapter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FieldMaster/Bibliography.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FieldMaster/Bibliography.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FieldMaster/Bibliography.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FieldMaster/Bibliography.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FieldMaster/Bibliography.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FieldMaster/Bibliography.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BibliographyDataField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BibliographyDataField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BibliographyDataField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BibliographyDataField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BibliographyDataField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BibliographyDataField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/Bibliography.html

Text Field Service Name Description

com.sun.star.text.textfield.docinfo.Info1 Shows the content of the second user defined
info field of the document info.

com.sun.star.text.textfield.docinfo.Info2 Shows the content of the third user defined info
field of the document info.

com.sun.star.text.textfield.docinfo.Info3 Shows the content of the fourth user defined
info field of the document info.

com.sun.star.text.textfield.docinfo.Keyword
s

Shows the keywords contained in the document
info.

com.sun.star.text.textfield.docinfo.Print-
Author

Shows the name of the author of the last
printing.

com.sun.star.text.textfield.docinfo.Print-
DateTime

Shows the date and time of the last printing.

com.sun.star.text.textfield.docinfo.Revi-
sion

Shows the revision contained in the document
info.

com.sun.star.text.textfield.docinfo.Subject Shows the subject contained in the document
info.

com.sun.star.text.textfield.docinfo.Title Shows the title contained in the document info.

com.sun.star.text.textfield.EmbeddedObject-
Count

Shows the number of embedded objects
contained in the document.

com.sun.star.text.textfield.ExtendedUser Shows the user data of the Office user.

com.sun.star.text.textfield.FileName Shows the file name (URL) of the document.

com.sun.star.text.textfield.GetExpression Variables � Show Variable. Shows the value set
by the previous occurrence of SetExpression.

com.sun.star.text.textfield.GetReference References � Insert Reference. Shows a refer-
ence to a reference mark, bookmark, number
range field, footnote or an endnote.

com.sun.star.text.textfield.GraphicObject-
Count

Shows the number of graphic object in the
document.

com.sun.star.text.textfield.HiddenParagraph Depending on a condition, the field hides the
paragraph it is contained in.

com.sun.star.text.textfield.HiddenText Depending on a condition the field shows or
hides a text.

com.sun.star.text.textfield.Input The field activates a dialog to input a value that
changes a related User field or SetExpres-
sion field.

com.sun.star.text.textfield.InputUser The field activates a dialog to input a string that
is displayed by the field. This field is not
connected to variables.

com.sun.star.text.textfield.JumpEdit A placeholder field with an attached interaction
to insert text, a text table, text frame, graphic
object or an OLE object.

com.sun.star.text.textfield.Macro A field connected to a macro that is executed on
a click to the field. To execute such a macro, use
the dispatch (cf. Appendix).

com.sun.star.text.textfield.PageCount Shows the number of pages of the document.

591

http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/PageCount.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/Macro.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/JumpEdit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/InputUser.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/Input.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/HiddenText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/HiddenParagraph.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/GraphicObjectCount.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/GraphicObjectCount.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/GetReference.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/GetExpression.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/FileName.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/ExtendedUser.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/EmbeddedObjectCount.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/EmbeddedObjectCount.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/docinfo/Title.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/docinfo/Subject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/docinfo/Revision.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/docinfo/Revision.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/docinfo/PrintDateTime.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/docinfo/PrintDateTime.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/docinfo/PrintAuthor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/docinfo/PrintAuthor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/docinfo/Keywords.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/docinfo/Keywords.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/docinfo/Info3.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/docinfo/Info2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/docinfo/Info1.html

Text Field Service Name Description

com.sun.star.text.textfield.PageNumber Shows the page number (current, previous,
next).

com.sun.star.text.textfield.ParagraphCount Shows the number of paragraphs contained in
the document.

com.sun.star.text.textfield.ReferenceP-
ageGet

Displays the page number with respect to the
reference point, that is determined by the text
field ReferencePageSet.

com.sun.star.text.textfield.ReferencePag-
eSet

Inserts a starting point for additional page
numbers that can be switched on or off.

com.sun.star.text.textfield.Script Contains a script or a URL to a script.

com.sun.star.text.textfield.SetExpression Variables � Set Variable. A variable field. The
value is valid until the next occurrence of SetEx-
pression field. The actual value depends on
com.sun.star.text.FieldMaster.SetEx
pression.

com.sun.star.text.textfield.TableCount Shows the number of text tables of the docu-
ment.

com.sun.star.text.textfield.TableFormula Contains a formula to calculate in a text table.

com.sun.star.text.textfield.TemplateName Shows the name of the template the current
document is created from.

com.sun.star.text.textfield.User Variables - User Field. Creates a global docu-
ment variable and displays it whenever this
field occurs in the text. Depends on
com.sun.star.text.FieldMaster.User.

com.sun.star.text.textfield.WordCount Shows the number of words contained in the
document.

All fields support the interfaces com.sun.star.text.XTextField,
com.sun.star.util.XUpdatable, com.sun.star.text.XDependentTextField and the service
com.sun.star.text.TextContent.

The method getPresentation() of the interface com.sun.star.text.XTextField returns the
textual representation of the result of the text field operation, such as a date, time, variable value,
or the command, such as CHAPTER, TIME (fixed) depending on the boolean parameter.

The method update() of the interface com.sun.star.util.XUpdatable affects only the following
field types:

• Date and time fields are set to the current date and time.

• The ExtendedUser fields that show parts of the user data set for OpenOffice.org, such as the
Name, City, Phone No. and the Author fields that are set to the current values.

• The FileName fields are updated with the current name of the file.

• The DocInfo.XXX fields are updated with the current document info of the document.

All other fields ignore calls to update().

Some of these fields need a field master that provides the data that appears in the field. This
applies to the field types Database, SetExpression, DDE, User and Bibliography. The interface
com.sun.star.text.XDependentTextField handles these pairs of FieldMasters and TextFields.
The method attachTextFieldMaster() must be called prior to inserting the field into the

592 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/text/XDependentTextField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XDependentTextField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XDependentTextField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XUpdatable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XUpdatable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XUpdatable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XDependentTextField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XDependentTextField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XDependentTextField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XUpdatable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XUpdatable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XUpdatable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/WordCount.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FieldMaster/User.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FieldMaster/User.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FieldMaster/User.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/User.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/TemplateName.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/TableFormula.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/TableCount.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FieldMaster/SetExpression.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FieldMaster/SetExpression.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FieldMaster/SetExpression.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FieldMaster/SetExpression.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FieldMaster/SetExpression.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FieldMaster/SetExpression.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/SetExpression.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/Script.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/ReferencePageSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/ReferencePageSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/ReferencePageGet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/ReferencePageGet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/ParagraphCount.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/PageNumber.html

document. The method getTextFieldMaster() does not work unless the dependent field is
inserted into the document.

To create a valid text field master, the instance has to be created using the
com.sun.star.lang.XMultiServiceFactory interface of the model with the appropriate service
name:

Text Field Master Service Names Description

com.sun.star.text.FieldMaster.User Contains the global variable that is created and
displayed by the fieldtype
com.sun.star.text.textfield.User.

com.sun.star.text.FieldMaster.DDE The DDE command for a
com.sun.star.text.textfield.DDE.

com.sun.star.text.FieldMaster.SetEx-
pression

Numbering settings if the corresponding
com.sun.star.text.textfield.SetExpres-
sion is a number range. A sub type of expression.

com.sun.star.text.FieldMaster.Database Data source definition for a
com.sun.star.text.textfield.Database.

com.sun.star.text.FieldMaster.Bibliog-
raphy

Display settings and sorting for
com.sun.star.text.textfield.Bibliog-
raphy.

The property Name has to be set after the field instance is created, except for the Database field
master type where the properties DatabaseName, DatabaseTableName, DataColumnName and
DatabaseCommandType are set instead of the Name property.

To access existing text fields and field masters, use the interface com.sun.star.text.XText-
FieldsSupplier that is implemented at the text document model.

Its method getTextFields() returns a com.sun.star.text.TextFields container which is a
com.sun.star.container.XEnumerationAccess and can be refreshed through the refresh()
method in its interface com.sun.star.util.XRefreshable.

Its method getTextFieldMasters() returns a com.sun.star.text.TextFieldMasters container
holding the text field masters of the document. This container provides a
com.sun.star.container.XNameAccess interface. All field masters, except for Database are
named by the service name followed by the name of the field master. The Database field masters
create their names by appending the DatabaseName, DataTableName and DataColumnName to the
service name.

Consider the following examples for this naming convention:

"com.sun.star.text.FieldMaster.SetExpression.Illustration" Master for Illustration number
range. Number ranges are built-
in SetExpression fields
present in every document.

"com.sun.star.text.FieldMaster.User.Company" Master for User field (global
document variable), inserted
with display name Company.

"com.sun.star.text.FieldMaster.Database.Bibliography.biblio.Identifier" Master for form letter field refer-
ring to the column Identifier in
the built-in dbase database table
biblio.

Each text field master has a property InstanceName that contains its name in the format of the
related container.

593

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextFieldMasters.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextFieldMasters.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextFieldMasters.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XRefreshable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XRefreshable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XRefreshable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextFields.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextFields.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextFields.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextFieldsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextFieldsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextFieldsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextFieldsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextFieldsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextFieldsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/Bibliography.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/Bibliography.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/Bibliography.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/Bibliography.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/Bibliography.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/Bibliography.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FieldMaster/Bibliography.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FieldMaster/Bibliography.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/Database.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/Database.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/Database.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FieldMaster/Database.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/SetExpression.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/SetExpression.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/SetExpression.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/SetExpression.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/SetExpression.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/SetExpression.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FieldMaster/SetExpression.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FieldMaster/SetExpression.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/DDE.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/DDE.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/DDE.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FieldMaster/DDE.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/User.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/User.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/User.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FieldMaster/User.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html

Some SetExpression text field masters are always available if they are not deleted. These are the
masters with the names Text, Illustration, Table and Drawing. They are predefined as number
range field masters used for captions of text frames, graphics, text tables and drawings. Note that
these predefined names are internal names that are usually not used at the user interface.

The following methods show how to create and insert text fields. (Text/TextDocuments.java)
/** This method inserts both a date field and a user field containing the number '42'
 */
protected void TextFieldExample() {
 try {
 // Use the text document's factory to create a DateTime text field,
 // and access it's
 // XTextField interface
 XTextField xDateField = (XTextField) UnoRuntime.queryInterface(
 XTextField.class, mxDocFactory.createInstance(
 "com.sun.star.text.TextField.DateTime"));

 // Insert it at the end of the document
 mxDocText.insertTextContent (mxDocText.getEnd(), xDateField, false);

 // Use the text document's factory to create a user text field,
 // and access it's XDependentTextField interface
 XDependentTextField xUserField = (XDependentTextField) UnoRuntime.queryInterface (
 XDependentTextField.class, mxDocFactory.createInstance(
 "com.sun.star.text.textField.User"));

 // Create a fieldmaster for our newly created User Text field, and access it's
 // XPropertySet interface
 XPropertySet xMasterPropSet = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, mxDocFactory.createInstance(
 "com.sun.star.text.FieldMaster.User"));

 // Set the name and value of the FieldMaster
 xMasterPropSet.setPropertyValue ("Name", "UserEmperor");
 xMasterPropSet.setPropertyValue ("Value", new Integer(42));

 // Attach the field master to the user field
 xUserField.attachTextFieldMaster (xMasterPropSet);

 // Move the cursor to the end of the document
 mxDocCursor.gotoEnd(false);
 // insert a paragraph break using the XSimpleText interface
 mxDocText.insertControlCharacter(
 mxDocCursor, ControlCharacter.PARAGRAPH_BREAK, false);

 // Insert the user field at the end of the document
 mxDocText.insertTextContent(mxDocText.getEnd(), xUserField, false);
 } catch (Exception e) {
 e.printStackTrace (System.out);
 }
}

8.3.6 Bookmarks
A Bookmark is a text content that marks a position inside of a paragraph or a text selection that
supports the com.sun.star.text.TextContent service. To search for a bookmark, the text docu-
ment model implements the interface com.sun.star.text.XBookmarksSupplier that supplies a
collection of the bookmarks. The collection supports the service com.sun.star.text.Bookmarks
which consists of com.sun.star.container.XNameAccess and
com.sun.star.container.XIndexAccess.

The bookmark name can be read and changed through its (com.sun.star.container.XNamed)
interface.

To insert, remove or change text, or attributes starting from the position of a bookmark, retrieve its
com.sun.star.text.XTextRange by calling getAnchor() at its com.sun.star.text.XTextCon-
tent interface. Then use getString() or setString() at the XTextRange, or pass this XTex-
tRange to methods expecting a text range, such as
com.sun.star.text.XSimpleText:createTextCursorByRange(),

594 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/text/XSimpleText.html#createTextCursorByRange
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XSimpleText.html#createTextCursorByRange
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XSimpleText.html#createTextCursorByRange
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Bookmarks.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Bookmarks.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Bookmarks.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XBookmarksSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XBookmarksSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XBookmarksSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContent.html

com.sun.star.text.XSimpleText:insertString() or
com.sun.star.text.XText:insertTextContent().

Make sure that the access to the bookmark anchor position always uses the correct text object. Since every
XTextRange knows its surrounding text, use the getText() method of the bookmark's anchor. It is not
allowed to call aText.createTextCursorByRange(oAnchor) when aText represents a different area
of the document than the bookmark (different text frames, body text and text frame...)

Use the createInstance method of the com.sun.star.lang.XMultiServiceFactory interface
provided by the text document model to insert an new bookmark into the document. The service
name is "com.sun.star.text.Bookmark". Then use the bookmark's
com.sun.star.container.XNamed interface and call setName(). If no name is set, OpenOffice.org
makes up generic names, such as Bookmark1 and Bookmark2. Similarly, if a name is used that is
not unique, writer automatically appends a number to the bookmark name. The bookmark object
obtained from createInstance() can only be inserted once.
// inserting and retrieving a bookmark
Object bookmark = mxDocFactory.createInstance ("com.sun.star.text.Bookmark");

// name the bookmark
XNamed xNamed = (XNamed) UnoRuntime.queryInterface (

XNamed.class, bookmark);
xNamed.setName("MyUniqueBookmarkName");

// get XTextContent interface
XTextContent xTextContent = (XTextContent) UnoRuntime.queryInterface (

XTextContent.class, bookmark);

// insert bookmark at the end of the document
// instead of mxDocText.getEnd you could use a text cursor's XTextRange interface or any XTextRange
mxDocText.insertTextContent (mxDocText.getEnd(), xTextContent, false);

// query XBookmarksSupplier from document model and get bookmarks collection
XBookmarksSupplier xBookmarksSupplier = (XBookmarksSupplier)UnoRuntime.queryInterface(
 XBookmarksSupplier.class, xWriterComponent);
XNameAccess xNamedBookmarks = xBookmarksSupplier.getBookmarks();

// retrieve bookmark by name
Object foundBookmark = xNamedBookmarks.getByName("MyUniqueBookmarkName");
XTextContent xFoundBookmark = (XTextContent)UnoRuntime.queryInterface(

XTextContent.class, foundBookmark);

// work with bookmark
XTextRange xFound = xFoundBookmark.getAnchor();
xFound.setString(" The throat mike, glued to her neck, "
 + "looked as much as possible like an analgesic dermadisk.");

8.3.7 Indexes and Index Marks
Indexes are text contents that pull together information that is dispersed over the document. They
can contain chapter headings, locations of key words, locations of arbitrary index marks and loca-
tions of text objects, such as illustrations, objects or tables. In addition, OpenOffice.org features a
bibliographical index.

Indexes
The following index services are available in OpenOffice.org:

Index Service Name Description

com.sun.star.text.DocumentIndex alphabetical index

com.sun.star.text.ContentIndex table of contents

com.sun.star.text.UserIndex user defined index

595

http://api.openoffice.org/docs/common/ref/com/sun/star/text/UserIndex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ContentIndex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/DocumentIndex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html#insertTextContent
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html#insertTextContent
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html#insertTextContent
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XSimpleText.html#insertString
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XSimpleText.html#insertString
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XSimpleText.html#insertString

Index Service Name Description

com.sun.star.text.IllustrationIndex table of all illustrations contained in the document

com.sun.star.text.ObjectIndex table of all objects contained in the document

com.sun.star.text.TableIndex table of all text tables contained in the document

com.sun.star.text.Bibliography bibliographical index

To access the indexes of a document, the text document model supports the interface
com.sun.star.text.XDocumentIndexesSupplier with a single method getDocumentIndexes().
The returned object is a com.sun.star.text.DocumentIndexes service supporting the interfaces
com.sun.star.container.XIndexAccess and com.sun.star.container.XNameAccess.

All indexes support the services com.sun.star.text.TextContent and
com.sun.star.text.BaseIndex that include the interface com.sun.star.text.XDocumentIndex.
This interface is used to access the service name of the index and update the current content of an
index:

string getServiceName()
void update()

Furthermore, indexes have properties and a name, and support:

• com.sun.star.beans.XPropertySet
provides the properties that determine how the index is created and which elements are
included into the index.

• com.sun.star.container.XNamed
provides a unique name of the index, not necessarily the title of the index.

An index is usually composed of two text sections which are provided as properties. The provided
property ContentSection includes the complete index and the property HeaderSection contains
the title if there is one. They enable the index to have background or column attributes indepen-
dent of the surrounding page format valid at the index position. In addition, there may be different
settings for the content and the heading of the index. However, these text sections are not part of
the document's text section container.

The indexes are structured by levels. The number of levels depends on the index type. The content
index has ten levels, corresponding to the number of available chapter numbering levels, which is
ten. Alphabetical indexes have four levels, one of which is used to insert separators, that are
usually characters that show the alphabet. The bibliography has 22 levels, according to the number
of available bibliographical type entries (com.sun.star.text.BibliographyDataType). All other
index types only have one level.

For all levels, define a separate structure that is provided by the property LevelFormat of the
service com.sun.star.text.BaseIndex. LevelFormat contains the various levels as a
com.sun.star.container.XIndexReplace object. Each level is a sequence of
com.sun.star.beans.PropertyValues which are defined in the service
com.sun.star.text.DocumentIndexLevelFormat. Although LevelFormat provides a level for
the heading, changing that level is not supported.

Each com.sun.star.beans.PropertyValues sequence has to contain at least one
com.sun.star.beans.PropertyValue with the name TokenType. This PropertyValue struct
must contain one of the following string values in its Value member variable:

596 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValues.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValues.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValues.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/DocumentIndexLevelFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/DocumentIndexLevelFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/DocumentIndexLevelFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValues.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValues.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValues.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseIndex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseIndex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseIndex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BibliographyDataType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BibliographyDataType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BibliographyDataType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XDocumentIndex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XDocumentIndex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XDocumentIndex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseIndex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseIndex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseIndex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/DocumentIndexes.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/DocumentIndexes.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/DocumentIndexes.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XDocumentIndexesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XDocumentIndexesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XDocumentIndexesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Bibliography.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TableIndex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ObjectIndex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/IllustrationIndex.html

TokenType Value
(String)

Meaning Additional Sequence
Members (optional)

“TokenEntryNumber” The number of an entry. This is
only supported in tables of content
and it marks the appearance of the
chapter number.

CharacterStyleName

“TokenEntryText” Text of the entry, for example, it
might contain the heading text in
tables of content or the name of a
text reference in a bibliography.

CharacterStyleName

“TokenTabStop” Marks a tab stop to be inserted. TabStopPosition
TabStopRightAligned
TabStopFillCharac-
ters
CharacterStyleName

“TokenText” Inserted text. CharacterStyleName
Text

“TokenPageNumber” Marks the insertion of the page
number.

CharacterStyleName

“TokenChapterInfo” Marks the insertion of a chapter
field to be inserted. Only
supported in alphabetical indexes.

CharacterStyleName
ChapterFormat

“TokenHyperlinkStart” Start of a hyperlink to jump to the
referred heading. Only supported in
tables of content.

“TokenHyperlinkEnd” End of a hyperlink to jump to the
referred heading. Only supported in
tables of content.

“TokenBibliography-
DataField”

Identifies one of the 30 possible
BibliographyDataFields. The number
30 comes from the IDL reference of
BilbliographyDataFields.

BibliographyData-
Field
CharacterStyleName

An example for such a sequence of PropertyValue struct could be constructed like this:
PropertyValue[] indexTokens = new PropertyValue[1];
indexTokens [0] = new PropertyValue();
indexTokens [0].Name = "TokenType";
indexTokens [0].Value = "TokenHyperlinkStart";

The following table explains the sequence members which can be present, in addition to the
TokenType member, as mentioned above.

Additional Properties of com.sun.star.text.DocumentIndexLevelFormat
CharacterStyleName string � Name of the character style that has to be applied to the appear-

ance of the entry.

TabStopPosition long � Position of the tab stop in 1/100 mm.

TabStopRightAligned boolean � The tab stop is to be inserted at the end of the line and right
aligned. This is used before page number entries.

TabStopFillCharacters string � The first character of this string is used as a fill character for the
tab stop.

ChapterFormat short � Type of the chapter info as defined in
com.sun.star.text.ChapterFormat.

BibliographyDataField Type of the bibliographical entry as defined in
com.sun.star.text.BibliographyDataField.

597

http://api.openoffice.org/docs/common/ref/com/sun/star/text/BibliographyDataField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BibliographyDataField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BibliographyDataField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ChapterFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ChapterFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ChapterFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/DocumentIndexLevelFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/DocumentIndexLevelFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/DocumentIndexLevelFormat.html

Index marks
Index marks are text contents whose contents and positions are collected and displayed in indexes.

To access all index marks that are related to an index, use the property IndexMarks of the index. It
contains a sequence of com.sun.star.text.XDocumentIndexMark interfaces.

All index marks support the service com.sun.star.text.BaseIndexMark that includes
com.sun.star.text.TextContent. Also, they all implement the interfaces
com.sun.star.text.XDocumentIndexMark and com.sun.star.beans.XPropertySet.

The XDocumentIndexMark inherits from XTextContent and defines two methods:
string getMarkEntry()
void setMarkEntry([in] string anIndexEntry)

OpenOffice.org supports three different index mark services:

• com.sun.star.text.DocumentIndexMark for entries in alphabetical indexes.

• com.sun.star.text.UserIndexMark for user defined indexes.

• com.sun.star.text.ContentIndexMark for entries in tables of content which are independent
from chapter headings.

An index mark can be set at a point in text or it can mark a portion of a paragraph, usually a word.
It cannot contain text across paragraph breaks. If the index mark does not include text, the BaseIn-
dexMark property AlternativeText has to be set, otherwise there will be no string to insert into
the index.

Inserting ContentIndexMarks and a table of contents index: (Text/TextDocuments.java)
/** This method demonstrates how to insert indexes and index marks
 */
protected void IndexExample ()
{

try
{

// Go to the end of the document
mxDocCursor.gotoEnd(false);
// Insert a new paragraph and position the cursor in it
mxDocText.insertControlCharacter (mxDocCursor, ControlCharacter.PARAGRAPH_BREAK, false

);
XParagraphCursor xParaCursor = (XParagraphCursor)

UnoRuntime.queryInterface(XParagraphCursor.class, mxDocCursor);
xParaCursor.gotoPreviousParagraph (false);

// Create a new ContentIndexMark and get it's XPropertySet interface
XPropertySet xEntry = (XPropertySet) UnoRuntime.queryInterface(XPropertySet.class,

mxDocFactory.createInstance ("com.sun.star.text.ContentIndexMark"));

// Set the text to be displayed in the index
xEntry.setPropertyValue ("AlternativeText", "Big dogs! Falling on my head!");

// The Level property _must_ be set
xEntry.setPropertyValue ("Level", new Short ((short) 1));

// Create a ContentIndex and access it's XPropertySet interface
XPropertySet xIndex = (XPropertySet) UnoRuntime.queryInterface(XPropertySet.class,

mxDocFactory.createInstance ("com.sun.star.text.ContentIndex"));

// Again, the Level property _must_ be set
xIndex.setPropertyValue ("Level", new Short ((short) 10));

// Access the XTextContent interfaces of both the Index and the IndexMark
XTextContent xIndexContent = (XTextContent) UnoRuntime.queryInterface(

XTextContent.class, xIndex);
XTextContent xEntryContent = (XTextContent) UnoRuntime.queryInterface(

XTextContent.class, xEntry);

// Insert both in the document
mxDocText.insertTextContent (mxDocCursor, xEntryContent, false);
mxDocText.insertTextContent (mxDocCursor, xIndexContent, false);

// Get the XDocumentIndex interface of the Index
XDocumentIndex xDocIndex = (XDocumentIndex) UnoRuntime.queryInterface(

XDocumentIndex.class, xIndex);

598 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/text/ContentIndexMark.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ContentIndexMark.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ContentIndexMark.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/UserIndexMark.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/UserIndexMark.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/UserIndexMark.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/DocumentIndexMark.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/DocumentIndexMark.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/DocumentIndexMark.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XDocumentIndexMark.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XDocumentIndexMark.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XDocumentIndexMark.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseIndexMark.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseIndexMark.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseIndexMark.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XDocumentIndexMark.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XDocumentIndexMark.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XDocumentIndexMark.html

// And call it's update method
xDocIndex.update();

}
catch (Exception e)
{

e.printStackTrace (System.out);
}

}

8.3.8 Reference Marks
A reference mark is a text content that is used as a target for
com.sun.star.text.textfield.GetReference text fields. These text fields show the contents of
reference marks in a text document and allows the user to jump to the reference mark. Reference
marks support the com.sun.star.text.XTextContent and com.sun.star.container.XNamed
interfaces. They can be accessed by using the text document's com.sun.star.text.XReference-
MarksSupplier interface that defines a single method getReferenceMarks().

The returned collection is a com.sun.star.text.ReferenceMarks service which has a
com.sun.star.container.XNameAccess and a com.sun.star.container.XIndexAccess inter-
face. (Text/TextDocuments.java)
/** This method demonstrates how to create and insert reference marks, and GetReference Text Fields
 */
protected void ReferenceExample () {
 try {
 // Go to the end of the document
 mxDocCursor.gotoEnd(false);

 // Insert a paragraph break
 mxDocText.insertControlCharacter(
 mxDocCursor, ControlCharacter.PARAGRAPH_BREAK, false);

 // Get the Paragraph cursor
 XParagraphCursor xParaCursor = (XParagraphCursor) UnoRuntime.queryInterface(
 XParagraphCursor.class, mxDocCursor);

 // Move the cursor into the new paragraph
 xParaCursor.gotoPreviousParagraph(false);

 // Create a new ReferenceMark and get it's XNamed interface
 XNamed xRefMark = (XNamed) UnoRuntime.queryInterface(XNamed.class,
 mxDocFactory.createInstance("com.sun.star.text.ReferenceMark"));

 // Set the name to TableHeader
 xRefMark.setName("TableHeader");

 // Get the TextTablesSupplier interface of the document
 XTextTablesSupplier xTableSupplier = (XTextTablesSupplier) UnoRuntime.queryInterface(
 XTextTablesSupplier.class, mxDoc);

 // Get an XIndexAccess of TextTables
 XIndexAccess xTables = (XIndexAccess) UnoRuntime.queryInterface(
 XIndexAccess.class, xTableSupplier.getTextTables());

 // We've only inserted one table, so get the first one from index zero
 XTextTable xTable = (XTextTable) UnoRuntime.queryInterface(
 XTextTable.class, xTables.getByIndex(0));

 // Get the first cell from the table
 XText xTableText = (XText) UnoRuntime.queryInterface(
 XText.class, xTable.getCellByName("A1"));

 // Get a text cursor for the first cell
 XTextCursor xTableCursor = xTableText.createTextCursor();

 // Get the XTextContent interface of the reference mark so we can insert it
 XTextContent xContent = (XTextContent) UnoRuntime.queryInterface(
 XTextContent.class, xRefMark);

 // Insert the reference mark into the first cell of the table
 xTableText.insertTextContent (xTableCursor, xContent, false);

 // Create a 'GetReference' text field to refer to the reference mark we just inserted,
 // and get it's XPropertySet interface
 XPropertySet xFieldProps = (XPropertySet) UnoRuntime.queryInterface(

599

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ReferenceMarks.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ReferenceMarks.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ReferenceMarks.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XReferenceMarksSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XReferenceMarksSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XReferenceMarksSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XReferenceMarksSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XReferenceMarksSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XReferenceMarksSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/GetReference.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/GetReference.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/GetReference.html

 XPropertySet.class, mxDocFactory.createInstance(
 "com.sun.star.text.TextField.GetReference"));

 // Get the XReferenceMarksSupplier interface of the document
 XReferenceMarksSupplier xRefSupplier = (XReferenceMarksSupplier) UnoRuntime.queryInterface(
 XReferenceMarksSupplier.class, mxDoc);

 // Get an XNameAccess which refers to all inserted reference marks
 XNameAccess xMarks = (XNameAccess) UnoRuntime.queryInterface(XNameAccess.class,
 xRefSupplier.getReferenceMarks());

 // Put the names of each reference mark into an array of strings
 String[] aNames = xMarks.getElementNames();

 // Make sure that at least 1 reference mark actually exists
 // (well, we just inserted one!)
 if (aNames.length > 0) {
 // Output the name of the first reference mark ('TableHeader')
 System.out.println ("GetReference text field inserted for ReferenceMark : "
 + aNames[0]);

 // Set the SourceName of the GetReference text field to 'TableHeader'
 xFieldProps.setPropertyValue("SourceName", aNames[0]);

 // specify that the source is a reference mark (could also be a footnote,
 // bookmark or sequence field)
 xFieldProps.setPropertyValue ("ReferenceFieldSource", new Short(
 ReferenceFieldSource.REFERENCE_MARK));

 // We want the reference displayed as 'above' or 'below'
 xFieldProps.setPropertyValue("ReferenceFieldPart",
 new Short (ReferenceFieldPart.UP_DOWN));

 // Get the XTextContent interface of the GetReference text field
 XTextContent xRefContent = (XTextContent) UnoRuntime.queryInterface(
 XTextContent.class, xFieldProps);

 // Go to the end of the document
 mxDocCursor.gotoEnd(false);

 // Make some text to precede the reference
 mxDocText.insertString(mxDocText.getEnd(), "The table ", false);

 // Insert the text field
 mxDocText.insertTextContent(mxDocText.getEnd(), xRefContent, false);

 // And some text after the reference..
 mxDocText.insertString(mxDocText.getEnd(),
 " contains the sum of some random numbers.", false);

 // Refresh the document
 XRefreshable xRefresh = (XRefreshable) UnoRuntime.queryInterface(
 XRefreshable.class, mxDoc);
 xRefresh.refresh();
 }
 } catch (Exception e) {
 e.printStackTrace(System.out);
 }
}

The name of a reference mark can be used in a com.sun.star.text.textfield.GetReference
text field to refer to the position of the reference mark.

8.3.9 Footnotes and Endnotes
Footnotes and endnotes are text contents that provide background information for the reader that
appears in page footers or at the end of a document.

Footnotes and endnotes implement the service com.sun.star.text.Footnote that includes
com.sun.star.text.TextContent. The Footnote service has the interfaces
com.sun.star.text.XText and com.sun.star.text.XFootnote that inherit from
com.sun.star.text.XTextContent. The XFootnote introduces the following methods:

string getLabel()
void setLabel([in] string aLabel)

600 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XFootnote.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XFootnote.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XFootnote.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Footnote.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Footnote.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Footnote.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/GetReference.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/GetReference.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/GetReference.html

The Footnote service defines a property ReferenceId that is used for import and export, and
contains an internal sequential number.

The interface com.sun.star.text.XText which is provided by the com.sun.star.text.Foot-
note service accesses the text object in the footnote area where the footnote text is located. It is not
allowed to insert text tables into this text object.

While footnotes can be placed at the end of a page or the end of a document, endnotes always
appear at the end of a document. Endnote numbering is separate from footnote numbering. Foot-
notes are accessed using the com.sun.star.text.XFootnotesSupplier interface of the text docu-
ment through the method getFootNotes(). Endnotes are accessed similarly by calling getEnd-
notes()at the text document's com.sun.star.text.XEndnotesSupplier interface. Both of these
methods return a com.sun.star.container.XIndexAccess.

A label is set for a footnote or endnote to determine if automatic footnote numbering is used. If no
label is set (= empty string), the footnote is labeled automatically. There are footnote and endnote
settings that specify how the automatic labeling is formatted. These settings are obtained from the
document model using the interfaces com.sun.star.text.XFootnotesSupplier and
com.sun.star.text.XEndnotesSupplier. The corresponding methods are getFootnoteSet-
tings() and getEndnoteSettings(). The object received is a com.sun.star.beans.XProper-
tySet and has the properties described in com.sun.star.text.FootnoteSettings:

Properties of com.sun.star.text.FootnoteSettings

AnchorCharStyleName string � Contains the name of the character style that is used for the label
in the document text.

CharStyleName string � Contains the name of the character style that is used for the label
in front of the footnote/endnote text.

NumberingType short � Contains the numbering type for the numbering of the footnotes or
endnotes.

PageStyleName string � Contains the page style that is used for the page that contains the
footnote or endnote texts.

ParaStyleName string � Contains the paragraph style that is used for the footnote or
endnote text.

Prefix string � Contains the prefix for the footnote or endnote symbol.

StartAt short � Contains the first number of the automatic numbering of footnotes
or endnotes.

Suffix string � Contains the suffix for the footnote/endnote symbol.

BeginNotice [optional] string � Contains the string at the restart of the footnote text
after a break.

EndNotice [optional] string � Contains the string at the end of a footnote part in
front of a break.

FootnoteCounting [optional] boolean � Contains the type of the counting for the footnote
numbers

PositionEndOfDoc [optional] boolean � If true, the footnote text is shown at the end of
the document.

The Footnotes service applies to footnotes and endnotes.

The following sample works with footnotes (Text/TextDocuments.java)
/** This method demonstrates how to create and insert footnotes, and how to access the
 XFootnotesSupplier interface of the document
 */
protected void FootnoteExample ()
{

601

http://api.openoffice.org/docs/common/ref/com/sun/star/text/FootnoteSettings.html#PositionEndOfDoc
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FootnoteSettings.html#FootnoteCounting
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FootnoteSettings.html#EndNotice
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FootnoteSettings.html#BeginNotice
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FootnoteSettings.html#Suffix
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FootnoteSettings.html#StartAt
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FootnoteSettings.html#Prefix
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FootnoteSettings.html#ParaStyleName
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FootnoteSettings.html#PageStyleName
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FootnoteSettings.html#NumberingType
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FootnoteSettings.html#CharStyleName
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FootnoteSettings.html#AnchorCharStyleName
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FootnoteSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FootnoteSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FootnoteSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FootnoteSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FootnoteSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/FootnoteSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XEndnotesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XEndnotesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XEndnotesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XFootnotesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XFootnotesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XFootnotesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XEndnotesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XEndnotesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XEndnotesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XFootnotesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XFootnotesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XFootnotesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Footnote.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Footnote.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Footnote.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Footnote.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Footnote.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Footnote.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html

try
{

// Create a new footnote from the document factory and get it's
// XFootnote interface
XFootnote xFootnote = (XFootnote) UnoRuntime.queryInterface(XFootnote.class,

mxDocFactory.createInstance ("com.sun.star.text.Footnote"));

// Set the label to 'Numbers'
xFootnote.setLabel ("Numbers");

// Get the footnotes XTextContent interface so we can...
XTextContent xContent = (XTextContent) UnoRuntime.queryInterface (

XTextContent.class, xFootnote);

// ...insert it into the document
mxDocText.insertTextContent (mxDocCursor, xContent, false);

// Get the XFootnotesSupplier interface of the document
XFootnotesSupplier xFootnoteSupplier = (XFootnotesSupplier) UnoRuntime.queryInterface(

XFootnotesSupplier.class, mxDoc);

// Get an XIndexAccess interface to all footnotes
XIndexAccess xFootnotes = (XIndexAccess) UnoRuntime.queryInterface (

XIndexAccess.class, xFootnoteSupplier.getFootnotes());

// Get the XFootnote interface to the first footnote inserted ('Numbers')
XFootnote xNumbers = (XFootnote) UnoRuntime.queryInterface (

XFootnote.class, xFootnotes.getByIndex(0));

// Get the XSimpleText interface to the Footnote
XSimpleText xSimple = (XSimpleText) UnoRuntime.queryInterface (

XSimpleText.class, xNumbers);

// Create a text cursor for the foot note text
XTextRange xRange = (XTextRange) UnoRuntime.queryInterface (

XTextRange.class, xSimple.createTextCursor());

// And insert the actual text of the footnote.
xSimple.insertString (

xRange, " The numbers were generated by using java.util.Random", false);
}
catch (Exception e)
{

e.printStackTrace (System.out);
}

}

8.3.10 Shape Objects in Text

Base Frames vs. Drawing Shapes
Shape objects are text contents that act independently of the ordinary text flow. The surrounding
text may wrap around them. Shape objects can lie in front or behind text, and be anchored to para-
graphs or characters in the text. Anchoring allows the shape objects to follow the paragraphs and
characters while the user is writing. Currently, there are two different kinds of shape objects in
OpenOffice.org, base frames and drawing shapes.

Base Frames

The first group are shape objects that are com.sun.star.text.BaseFrames. The three services
com.sun.star.text.TextFrame, com.sun.star.text.TextGraphicObject and
com.sun.star.text.TextEmbeddedObject are all based on the service
com.sun.star.text.BaseFrame. The TextFrames contain an independent text area that can be
positioned freely over ordinary text. The TextGraphicObjects are bitmaps or vector oriented
images in a format supported by OpenOffice.org internally. The TextEmbeddedObjects are areas
containing a document type other than the document they are embedded in, such as charts,
formulas, internal OpenOffice.org documents (Calc/Draw/Impress), or OLE objects.

602 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextEmbeddedObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextEmbeddedObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextEmbeddedObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextGraphicObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextGraphicObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextGraphicObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrame.html

The TextFrames, TextGraphicObjects and TextEmbeddedObjects in a text are supplied by their
corresponding supplier interfaces at the document model: com.sun.star.text.XTextFramesSup-
plier com.sun.star.text.XTextGraphicObjectsSupplier com.sun.star.text.XTextEmbed-
dedObjectsSupplier. These interfaces all have one single get method that supplies the respective
Shape objects collection:

com::sun::star::container::XNameAccess getTextFrames()
com::sun::star::container::XNameAccess getTextEmbeddedObjects()
com::sun::star::container::XNameAccess getTextGraphicObjects()

The method getTextFrames()returns a com.sun.star.text.TextFrames collection, getTextEm-
beddedObjects() returns a com.sun.star.text.TextEmbeddedObjects collection and getText-
GraphicObjects() yields a com.sun.star.text.TextGraphicObjects collection. All of these
collections support com.sun.star.container.XIndexAccess and
com.sun.star.container.XNameAccess. The TextFrames collection may (optional) support the
com.sun.star.container.XContainer interface to broadcast an event when an Element is added
to the collection. However, the current implementation of the TextFrames collection does not
support this.

The service com.sun.star.text.BaseFrame defines the common properties and interfaces of text
frames, graphic objects and embedded objects. It includes the services com.sun.star.text.Base-
FrameProperties and com.sun.star.text.TextContent, and defines the following interfaces.

The position and size of a BaseFrame is covered by com.sun.star.drawing.XShape. All Base-
Frame objects share a majority of the core implementation of drawing objects. Therefore, they have
a position and size on the DrawPage.

The name of a BaseFrame is set and read through com.sun.star.container.XNamed. The names
of the frame objects have to be unique for text frames, graphic objects and embedded objects,
respectively.

The com.sun.star.beans.XPropertySet has to be present, because any aspects of BaseFrames
are controlled through properties.

The interface com.sun.star.document.XEventsSupplier is not a part of the BaseFrame service,
but is available in text frames, graphic objects and embedded objects. This interface provides
access to the event macros that may be attached to the object in the GUI.

The properties of BaseFrames are those of the service com.sun.star.text.TextContent, as well
there is a number of frame properties defined in the service com.sun.star.text.BaseFrameProp-
erties:

Properties of com.sun.star.text.BaseFrameProperties
AnchorPageNo short � Contains the number of the page where the objects are anchored.

AnchorFrame com.sun.star.text.XTextFrame. Contains the text frame the current
frame is anchored to.

BackColor long � Contains the color of the background of the object.

BackGraphicURL string � Contains the URL for the background graphic.

BackGraphicFilter string � Contains the name of the file filter for the background graphic.

BackGraphicLocation Determines the position of the background graphic according to
com.sun.star.style.GraphicLocation.

LeftBorder struct com.sun.star.table.BorderLine. Contains the left border of
the object.

RightBorder struct com.sun.star.table.BorderLine. Contains the right border of
the object.

603

http://api.openoffice.org/docs/common/ref/com/sun/star/table/BorderLine.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/BorderLine.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/BorderLine.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#RightBorder
http://api.openoffice.org/docs/common/ref/com/sun/star/table/BorderLine.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/BorderLine.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/BorderLine.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#LeftBorder
http://api.openoffice.org/docs/common/ref/com/sun/star/style/GraphicLocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/GraphicLocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/GraphicLocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#BackGraphicLocation
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#BackGraphicFilter
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#BackGraphicURL
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#BackColor
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#AnchorFrame
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#AnchorPageNo
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextGraphicObjects.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextGraphicObjects.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextGraphicObjects.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextEmbeddedObjects.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextEmbeddedObjects.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextEmbeddedObjects.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextFrames.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextFrames.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextFrames.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextEmbeddedObjectsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextEmbeddedObjectsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextEmbeddedObjectsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextEmbeddedObjectsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextEmbeddedObjectsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextEmbeddedObjectsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextGraphicObjectsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextGraphicObjectsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextGraphicObjectsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextFramesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextFramesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextFramesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextFramesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextFramesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextFramesSupplier.html

Properties of com.sun.star.text.BaseFrameProperties

TopBorder struct com.sun.star.table.BorderLine. Contains the top border of
the object.

BottomBorder struct com.sun.star.table.BorderLine. Contains the bottom border
of the object.

BorderDistance long � Contains the distance from the border to the object.

LeftBorderDistance long � Contains the distance from the left border to the object.

RightBorderDistance long � Contains the distance from the right border to the object.

TopBorderDistance long � Contains the distance from the top border to the object.

BottomBorderDistance long � Contains the distance from the bottom border to the object.

BackTransparent boolean � If true, the property BackColor is ignored.

ContentProtected boolean � Determines if the content is protected.

LeftMargin long � Contains the left margin of the object.

RightMargin long � Contains the right margin of the object.

TopMargin long � Contains the top margin of the object.

BottomMargin long � Contains the bottom margin of the object.

Height long � Contains the height of the object (1/100 mm).

Width long � Contains the width of the object (1/100 mm).

RelativeHeight short � Contains the relative height of the object.

RelativeWidth short � Contains the relative width of the object.

IsSyncWidthToHeight boolean � Determines if the width follows the height.

IsSyncHeightToWidth boolean � Determines if the height follows the width.

HoriOrient short � Determines the horizontal orientation of the object according to
com.sun.star.text.HoriOrientation.

HoriOrientPosition long � Contains the horizontal position of the object (1/100 mm).

HoriOrientRelation short � Determines the environment of the object the orientation is
related according to com.sun.star.text.RelOrientation.

VertOrient short � Determines the vertical orientation of the object.

VertOrientPosition long � Contains the vertical position of the object (1/100 mm). Valid only
if TextEmbeddedObject::VertOrient is VertOrientation::NONE .

VertOrientRelation short � Determines the environment of the object the orientation is
related according to com.sun.star.text.RelOrientation.

HyperLinkURL string � Contains the URL of a hyperlink that is set at the object.

HyperLinkTarget string � Contains the name of the target for a hyperlink that is set at the
object.

HyperLinkName string � Contains the name of the hyperlink that is set at the object.

Opaque boolean � Determines if the object is opaque or transparent for text.

PageToggle boolean � Determines if the object is mirrored on even pages.

PositionProtected boolean � Determines if the position is protected.

Print boolean � Determines if the object is included in printing.

604 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#Print
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#PositionProtected
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#PageToggle
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#Opaque
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#HyperLinkName
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#HyperLinkTarget
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#HyperLinkURL
http://api.openoffice.org/docs/common/ref/com/sun/star/text/RelOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/RelOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/RelOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#VertOrientRelation
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#VertOrientPosition
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#VertOrient
http://api.openoffice.org/docs/common/ref/com/sun/star/text/RelOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/RelOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/RelOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#HoriOrientRelation
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#HoriOrientPosition
http://api.openoffice.org/docs/common/ref/com/sun/star/text/HoriOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/HoriOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/HoriOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#HoriOrient
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#IsSyncHeightToWidth
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#IsSyncWidthToHeight
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#RelativeWidth
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#RelativeHeight
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#Width
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#Height
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#BottomMargin
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#TopMargin
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#RightMargin
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#LeftMargin
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#ContentProtected
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#BackTransparent
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#BottomBorderDistance
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#TopBorderDistance
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#RightBorderDistance
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#LeftBorderDistance
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#BorderDistance
http://api.openoffice.org/docs/common/ref/com/sun/star/table/BorderLine.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/BorderLine.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/BorderLine.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#BottomBorder
http://api.openoffice.org/docs/common/ref/com/sun/star/table/BorderLine.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/BorderLine.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/BorderLine.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#TopBorder

Properties of com.sun.star.text.BaseFrameProperties

ShadowFormat struct com.sun.star.table.ShadowFormat. Contains the type of
the shadow of the object.

ServerMap boolean � Determines if the object gets an image map from a server.

Size struct com.sun.star.awt.Size. Contains the size of the object.

SizeProtected boolean � Determines if the size is protected.

Surround [deprecated]. Determines the type of the surrounding text.

SurroundAnchorOnly boolean � Determines if the text of the paragraph where the object is
anchored, wraps around the object.

Drawing Shapes

The second group of shape objects are the varied drawing shapes that can be inserted into text,
such as rectangles and ellipses. They are based on com.sun.star.text.Shape. The service
text.Shape includes com.sun.star.drawing.Shape, but adds a number of properties related to
shapes in text (cf. 8.3.10 Text Documents - Working with Text Documents - Shape Objects in Text -
Drawing Shapes below). In addition, drawing shapes support the interface
com.sun.star.text.XTextContent so that they can be inserted into an XText.

There are no specialized supplier interfaces for drawing shapes. All the drawing shapes on the
DrawPage object are supplied by the document model's com.sun.star.drawing.XDrawPageSup-
plier and its single method:

com::sun::star::drawing::XDrawPage getDrawPage()

The DrawPage not only contains drawing shapes, but the BaseFrame shape objects too, if the document
contains any.

Text Frames
A text frame is a com.sun.star.text.TextFrame service consisting of
com.sun.star.text.BaseFrame and the interface com.sun.star.text.XTextFrame.The XText-
Frame is based on com.sun.star.text.XTextContent and introduces one method to provide the
XText of the frame:

com::sun::star::text::XText getText()

The properties of com.sun.star.text.TextFrame that add to the BaseFrame are the following:

Properties of com.sun.star.text.TextFrame
FrameHeightAbsolute long � Contains the metric height value of the frame.

FrameWidthAbsolute long � Contains the metric width value of the frame.

FrameWidthPercent byte � Specifies a width relative to the width of the surrounding text.

FrameHeightPercent byte � Specifies a width relative to the width of the surrounding text.

FrameIsAutomaticHeight boolean � If "AutomaticHeight" is set, the object grows if it is required
by the frame content.

SizeType short � Determines the interpretation of the height and relative height
properties.

Additionally, text frames are com.sun.star.text.Text services and support all of its interfaces,
except for com.sun.star.text.XTextRangeMover.

605

http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextRangeMover.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextRangeMover.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextRangeMover.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextFrame.html#SizeType
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextFrame.html#FrameIsAutomaticHeight
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextFrame.html#FrameHeightPercent
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextFrame.html#FrameWidthPercent
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextFrame.html#FrameWidthAbsolute
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextFrame.html#FrameHeightAbsolute
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPageSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPageSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPageSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPageSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPageSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPageSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#SurroundAnchorOnly
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#Surround
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#SizeProtected
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Size.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Size.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Size.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#Size
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#ServerMap
http://api.openoffice.org/docs/common/ref/com/sun/star/table/ShadowFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/ShadowFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/ShadowFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html#ShadowFormat

Text frames can be connected to a chain, that is, the text of the first text frame flows into the next
chain element if it does not fit. The properties ChainPrevName and ChainNextName are provided to
take advantage of this feature. They contain the names of the predecessor and successor of a frame.
All frames have to be empty to chain frames, except for the first member of the chain.

Chained Text Frame Property

ChainPrevName string � Name of the predecessor of the frame.

ChainNextName string � Name of the successor of the frame.

The effect at the API is that the visible text content of the chain members is only accessible at the
first frame in the chain. The content of the following chain members is not shown when chained
before their content is set.

The API reference does not know the properties above. Instead, it specifies a
com.sun.star.text.ChainedTextFrame with an XChainable interface, but this is not yet
supported by text frames.

The following example uses text frames: (Text/TextDocuments.java)
/** This method shows how to create and manipulate text frames
 */
protected void TextFrameExample ()
{

try
{

// Use the document's factory to create a new text frame and immediately access
// it's XTextFrame interface
XTextFrame xFrame = (XTextFrame) UnoRuntime.queryInterface (

XTextFrame.class, mxDocFactory.createInstance (
"com.sun.star.text.TextFrame"));

// Access the XShape interface of the TextFrame
XShape xShape = (XShape) UnoRuntime.queryInterface(XShape.class, xFrame);
// Access the XPropertySet interface of the TextFrame
XPropertySet xFrameProps = (XPropertySet)UnoRuntime.queryInterface(

XPropertySet.class, xFrame);

// Set the size of the new Text Frame using the XShape's 'setSize' method
Size aSize = new Size();
aSize.Height = 400;
aSize.Width = 15000;
xShape.setSize(aSize);
// Set the AnchorType to com.sun.star.text.TextContentAnchorType.AS_CHARACTER
xFrameProps.setPropertyValue("AnchorType", TextContentAnchorType.AS_CHARACTER);
// Go to the end of the text document
mxDocCursor.gotoEnd(false);
// Insert a new paragraph
mxDocText.insertControlCharacter (

mxDocCursor, ControlCharacter.PARAGRAPH_BREAK, false);
// Then insert the new frame
mxDocText.insertTextContent(mxDocCursor, xFrame, false);

// Access the XText interface of the text contained within the frame
XText xFrameText = xFrame.getText();
// Create a TextCursor over the frame's contents
XTextCursor xFrameCursor = xFrameText.createTextCursor();
// Insert some text into the frame
xFrameText.insertString(

xFrameCursor, "The first line in the newly created text frame.", false);
xFrameText.insertString(

xFrameCursor, "\nThe second line in the new text frame.", false);
// Insert a paragraph break into the document (not the frame)
mxDocText.insertControlCharacter (

mxDocCursor, ControlCharacter.PARAGRAPH_BREAK, false);
 }
catch (Exception e)
{

e.printStackTrace (System.out);
}

}

606 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/text/ChainedTextFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ChainedTextFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ChainedTextFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ChainedTextFrame.html#ChainNextName
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ChainedTextFrame.html#ChainPrevName

Embedded Objects
A TextEmbeddedObject is a com.sun.star.text.BaseFrame providing the interface
com.sun.star.document.XEmbeddedObjectSupplier. The only method of this interface,

com::sun::star::lang::XComponent getEmbeddedObject ()

provides access to the model of the embedded document. That way, an embedded OpenOffice.org
spreadsheet, drawing, chart or a formula document can be used in a text over its document model.

An embedded object is inserted by using the document's factory to create an instance of the the
service com.sun.star.text.TextEmbeddedObject. The type of object is determined by setting
the string property CLSID to an appropriate value before inserting the object as text content in the
document.

///***
// comment: Step 1: get the Desktop object from the office
// Step 2: open an empty text document
// Step 3: insert a sample text table
// Step 4: insert a Chart object
// Step 5: insert data from text table into Chart object
//***

import com.sun.star.uno.UnoRuntime;

public class OleObject {

 public static void main(String args[]) {
 // You need the desktop to create a document
 // The getDesktop method does the UNO bootstrapping, gets the
 // remote servie manager and the desktop object.
 com.sun.star.frame.XDesktop xDesktop = null;
 xDesktop = getDesktop();

 com.sun.star.text.XTextDocument xTextDocument =
 createTextdocument(xDesktop);

 com.sun.star.text.XTextTable xTextTable =
 createExampleTable(xTextDocument);

 try {
 // create TextEmbeddedObject
 com.sun.star.lang.XMultiServiceFactory xDocMSF = (com.sun.star.lang.XMultiServiceFactory)
 UnoRuntime.queryInterface(com.sun.star.lang.XMultiServiceFactory.class, xTextDocument);
 com.sun.star.text.XTextContent xObj = (com.sun.star.text.XTextContent)
 UnoRuntime.queryInterface(com.sun.star.text.XTextContent.class,
 xDocMSF.createInstance("com.sun.star.text.TextEmbeddedObject"));

 // set class id for chart object to determine the type
 // of object to be inserted
 com.sun.star.beans.XPropertySet xPS = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, xObj);
 xPS.setPropertyValue("CLSID", "12dcae26-281f-416f-a234-c3086127382e");

 // insert object in document
 com.sun.star.text.XTextCursor xCursor = xTextDocument.getText().createTextCursor();
 com.sun.star.text.XTextRange xRange = (com.sun.star.text.XTextRange)
 UnoRuntime.queryInterface(com.sun.star.text.XTextRange.class, xCursor);
 xTextDocument.getText().insertTextContent(xRange, xObj, false);

 // access objects model
 com.sun.star.document.XEmbeddedObjectSupplier xEOS = (com.sun.star.document.XEmbeddedObjectS
upplier)
 UnoRuntime.queryInterface(com.sun.star.document.XEmbeddedObjectSupplier.class, xObj);
 com.sun.star.lang.XComponent xModel = xEOS.getEmbeddedObject();

 // get table data
 com.sun.star.chart.XChartDataArray xDocCDA = (com.sun.star.chart.XChartDataArray)
 UnoRuntime.queryInterface(com.sun.star.chart.XChartDataArray.class, xTextTable);
 double[][] aData = xDocCDA.getData();

 // insert table data in Chart object
 com.sun.star.chart.XChartDocument xChartDoc = (com.sun.star.chart.XChartDocument)
 UnoRuntime.queryInterface(com.sun.star.chart.XChartDocument.class, xModel);
 com.sun.star.chart.XChartDataArray xChartDataArray = (com.sun.star.chart.XChartDataArray)
 UnoRuntime.queryInterface(com.sun.star.chart.XChartDataArray.class, xChartDoc.getData());
 xChartDataArray.setData(aData);

 // to remove the embedded object just uncomment the next line
 //xTextDocument.getText().removeTextContent(xObj);
 }

607

http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextEmbeddedObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextEmbeddedObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextEmbeddedObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEmbeddedObjectSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEmbeddedObjectSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEmbeddedObjectSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrame.html

 catch(Exception e) {
 e.printStackTrace(System.err);
 }

 System.out.println("Done");

 System.exit(0);
 }

 protected static com.sun.star.text.XTextTable createExampleTable(
 com.sun.star.text.XTextDocument xTextDocument)
 {
 com.sun.star.lang.XMultiServiceFactory xDocMSF =
 (com.sun.star.lang.XMultiServiceFactory) UnoRuntime.queryInterface(
 com.sun.star.lang.XMultiServiceFactory.class, xTextDocument);

 com.sun.star.text.XTextTable xTT = null;

 try {
 Object oInt = xDocMSF.createInstance("com.sun.star.text.TextTable");
 xTT = (com.sun.star.text.XTextTable)
 UnoRuntime.queryInterface(com.sun.star.text.XTextTable.class,oInt);

 //initialize the text table with 4 columns an 5 rows
 xTT.initialize(4,5);

 } catch (Exception e) {
 System.err.println("Couldn't create instance "+ e);
 e.printStackTrace(System.err);
 }

 com.sun.star.text.XText xText = xTextDocument.getText();

 //create a cursor object
 com.sun.star.text.XTextCursor xTCursor = xText.createTextCursor();

 //insert the table
 try {
 xText.insertTextContent(xTCursor, xTT, false);

 } catch (Exception e) {
 System.err.println("Couldn't insert the table " + e);
 e.printStackTrace(System.err);
 }

 // inserting sample data
 (xTT.getCellByName("A2")).setValue(5.0);
 (xTT.getCellByName("A3")).setValue(5.5);
 (xTT.getCellByName("A4")).setValue(5.7);
 (xTT.getCellByName("B2")).setValue(2.3);
 (xTT.getCellByName("B3")).setValue(2.2);
 (xTT.getCellByName("B4")).setValue(2.4);
 (xTT.getCellByName("C2")).setValue(6);
 (xTT.getCellByName("C3")).setValue(6);
 (xTT.getCellByName("C4")).setValue(6);
 (xTT.getCellByName("D2")).setValue(3);
 (xTT.getCellByName("D3")).setValue(3.5);
 (xTT.getCellByName("D4")).setValue(4);
 (xTT.getCellByName("E2")).setValue(8);
 (xTT.getCellByName("E3")).setValue(5);
 (xTT.getCellByName("E4")).setValue(3);

 return xTT;
 }

 public static com.sun.star.frame.XDesktop getDesktop() {
 com.sun.star.frame.XDesktop xDesktop = null;
 com.sun.star.lang.XMultiComponentFactory xMCF = null;

 try {
 com.sun.star.uno.XComponentContext xContext = null;

 // get the remote office component context
 xContext = com.sun.star.comp.helper.Bootstrap.bootstrap();

 // get the remote office service manager
 xMCF = xContext.getServiceManager();
 if(xMCF != null) {
 System.out.println("Connected to a running office ...");

 Object oDesktop = xMCF.createInstanceWithContext(
 "com.sun.star.frame.Desktop", xContext);
 xDesktop = (com.sun.star.frame.XDesktop) UnoRuntime.queryInterface(
 com.sun.star.frame.XDesktop.class, oDesktop);
 }
 else

608 OpenOffice.org 2.3 Developer's Guide • June 2007

 System.out.println("Can't create a desktop. No connection, no remote office servicemana
ger available!");
 }
 catch(Exception e) {
 e.printStackTrace(System.err);
 System.exit(1);
 }

 return xDesktop;
 }

 public static com.sun.star.text.XTextDocument createTextdocument(
 com.sun.star.frame.XDesktop xDesktop)
 {
 com.sun.star.text.XTextDocument aTextDocument = null;

 try {
 com.sun.star.lang.XComponent xComponent = CreateNewDocument(xDesktop,
 "swriter");
 aTextDocument = (com.sun.star.text.XTextDocument)
 UnoRuntime.queryInterface(
 com.sun.star.text.XTextDocument.class, xComponent);
 }
 catch(Exception e) {
 e.printStackTrace(System.err);
 }

 return aTextDocument;
 }

 protected static com.sun.star.lang.XComponent CreateNewDocument(
 com.sun.star.frame.XDesktop xDesktop,
 String sDocumentType)
 {
 String sURL = "private:factory/" + sDocumentType;

 com.sun.star.lang.XComponent xComponent = null;
 com.sun.star.frame.XComponentLoader xComponentLoader = null;
 com.sun.star.beans.PropertyValue xValues[] =
 new com.sun.star.beans.PropertyValue[1];
 com.sun.star.beans.PropertyValue xEmptyArgs[] =
 new com.sun.star.beans.PropertyValue[0];

 try {
 xComponentLoader = (com.sun.star.frame.XComponentLoader)
 UnoRuntime.queryInterface(
 com.sun.star.frame.XComponentLoader.class, xDesktop);

 xComponent = xComponentLoader.loadComponentFromURL(
 sURL, "_blank", 0, xEmptyArgs);
 }
 catch(Exception e) {
 e.printStackTrace(System.err);
 }

 return xComponent ;
 }
}

Graphic Objects
A TextGraphicObject is a BaseFrame and does not provide any additional interfaces, compared
with com.sun.star.text.BaseFrame. However, it introduces a number of properties that allow
manipulating of a graphic object. They are described in the service com.sun.star.text.Text-
GraphicObject:

Properties of com.sun.star.text.TextGraphicObject

ImageMap com.sun.star.container.XIndexContainer. Returns the
client-side image map if one is assigned to the object.

ContentProtected boolean � Determines if the content is protected against changes
from the user interface.

SurroundContour boolean � Determines if the text wraps around the contour of the
object.

609

http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextGraphicObject.html#SurroundContour
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextGraphicObject.html#ContentProtected
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextGraphicObject.html#ImageMap
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextGraphicObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextGraphicObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextGraphicObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextGraphicObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextGraphicObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextGraphicObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextGraphicObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextGraphicObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextGraphicObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrame.html

Properties of com.sun.star.text.TextGraphicObject
ContourOutside boolean � The text flows only around the contour of the object.

ContourPolyPolygon [optional] struct com.sun.star.drawing.PointSequenceSe-
quence. Contains the contour of the object as PolyPolygon.

GraphicCrop struct com.sun.star.text.GraphicCrop. Contains the cropping of
the object.

HoriMirroredOnEvenPages boolean � Determines if the object is horizontally mirrored on even
pages.

HoriMirroredOnOddPages boolean � Determines if the object is horizontally mirrored on odd
pages.

VertMirrored boolean � Determines if the object is mirrored vertically.

GraphicURL string � Contains the URL of the background graphic of the object.

GraphicFilter string � Contains the name of the filter of the background graphic of
the object.

ActualSize com.sun.star.awt.Size. Contains the original size of the bitmap in
the graphic object.

AdjustLuminance short � Changes the display of the luminance. It contains percentage
values between -100 and +100.

AdjustContrast short � Changes the display of contrast. It contains percentage
values between -100 and +100.

AdjustRed short � Changes the display of the red color channel. It contains
percentage values between -100 and +100.

AdjustGreen short � Changes the display of the green color channel. It contains
percentage values between -100 and +100.

AdjustBlue short � Changes the display of the blue color channel. It contains
percentage values between -100 and +100.

Gamma double � Determines the gamma value of the graphic.

GraphicIsInverted boolean � Determines if the graphic is displayed in inverted colors. It
contains percentage values between -100 and +100.

Transparency short � Measure of transparency. It contains percentage values
between -100 and +100.

GraphicColorMode long � Contains the ColorMode according to
com.sun.star.drawing.ColorMode.

TextGraphicObject files can currently only be linked when inserted through API which means only their
URL is stored with the document. Embedding of graphics is not supported. This applies to background
graphics which can be set, for example, to paragraphs, tables or text sections.

Drawing Shapes
The writer uses the same drawing engine as OpenOffice.org impress and OpenOffice.org draw.
The limitations are that in writer only one draw page can exist and 3D objects are not supported.
All drawing shapes support these properties:

610 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ColorMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ColorMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ColorMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextGraphicObject.html#GraphicColorMode
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextGraphicObject.html#Transparency
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextGraphicObject.html#GraphicIsInverted
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextGraphicObject.html#Gamma
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextGraphicObject.html#AdjustBlue
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextGraphicObject.html#AdjustGreen
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextGraphicObject.html#AdjustRed
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextGraphicObject.html#AdjustContrast
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextGraphicObject.html#AdjustLuminance
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Size.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Size.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Size.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextGraphicObject.html#ActualSize
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextGraphicObject.html#GraphicFilter
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextGraphicObject.html#GraphicURL
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextGraphicObject.html#VertMirrored
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextGraphicObject.html#HoriMirroredOnOddPages
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextGraphicObject.html#HoriMirroredOnEvenPages
http://api.openoffice.org/docs/common/ref/com/sun/star/text/GraphicCrop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/GraphicCrop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/GraphicCrop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextGraphicObject.html#GraphicCrop
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PointSequenceSequence.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PointSequenceSequence.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PointSequenceSequence.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PointSequenceSequence.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PointSequenceSequence.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PointSequenceSequence.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextGraphicObject.html#ContourPolyPolygon
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextGraphicObject.html#ContourOutside

Properties of com.sun.star.drawing.Shape
ZOrder [optional] long � Is used to query or change the ZOrder of this

Shape .

LayerID [optional] short � This is the ID of the layer to which this shape
is attached.

LayerName [optional] string � This is the name of the layer to which this
Shape is attached.

Printable [optional] boolean � If this is false, the shape is not visible on
printer outputs.

MoveProtect [optional] boolean � When set to true, this shape cannot be
moved interactively in the user interface.

Name [optional] string � This is the name of this shape.

SizeProtect [optional] boolean � When set to true, this shape may not be
sized interactively in the user interface.

Style [optional] com.sun.star.style.XStyle. Determines the style
for this shape.

Transformation [optional] com.sun.star.drawing.HomogenMatrix This
property lets you get and set the transformation matrix for this shape.
The transformation is a 3x3 blended matrix and can contain transla-
tion, rotation, shearing and scaling.

ShapeUserDefinedAttributes [optional] com.sun.star.container.XNameContainer. This
property stores xml attributes. They are saved to and restored from
automatic styles inside xml files.

In addition to the properties of the shapes natively supported by the drawing engine, the writer
shape adds some properties, so that they are usable for text documents. These are defined in the
service com.sun.star.text.Shape:

Properties of com.sun.star.text.Shape
AnchorPageNo short � Contains the number of the page where the objects are anchored.

AnchorFrame com.sun.star.text.XTextFrame. Contains the text frame the current
frame is anchored to.

SurroundAnchorOnly boolean � Determines if the text of the paragraph in which the object is
anchored, wraps around the object.

AnchorType [optional] com.sun.star.text.TextContentAnchorType. Speci-
fies how the text content is attached to its surrounding text.

HoriOrient short � Determines the horizontal orientation of the object.

HoriOrientPosition long � Contains the horizontal position of the object (1/100 mm).

HoriOrientRelation short � Determines the environment of the object to which the orientation
is related.

VertOrient short � Determines the vertical orientation of the object.

VertOrientPosition long � Contains the vertical position of the object (1/100 mm). Valid only if
TextEmbeddedObject::VertOrient is VertOrientation::NONE.

VertOrientRelation short � Determines the environment of the object to which the orientation
is related.

LeftMargin long � Contains the left margin of the object.

RightMargin long � Contains the right margin of the object.

611

http://api.openoffice.org/docs/common/ref/com/sun/star/text/Shape.html#RightMargin
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Shape.html#LeftMargin
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Shape.html#VertOrientRelation
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Shape.html#VertOrientPosition
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Shape.html#VertOrient
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Shape.html#HoriOrientRelation
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Shape.html#HoriOrientPosition
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Shape.html#HoriOrient
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContentAnchorType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContentAnchorType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContentAnchorType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Shape.html#AnchorType
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Shape.html#SurroundAnchorOnly
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Shape.html#AnchorFrame
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Shape.html#AnchorPageNo
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Shape.html#ShapeUserDefinedAttributes
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/HomogenMatrix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/HomogenMatrix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/HomogenMatrix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Shape.html#Transformation
http://api.openoffice.org/docs/common/ref/com/sun/star/style/XStyle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/XStyle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/XStyle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Shape.html#Style
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Shape.html#SizeProtect
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Shape.html#Name
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Shape.html#MoveProtect
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Shape.html#Printable
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Shape.html#LayerName
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Shape.html#LayerID
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Shape.html#ZOrder
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Shape.html

Properties of com.sun.star.text.Shape
TopMargin long � Contains the top margin of the object.

BottomMargin long � Contains the bottom margin of the object.

Surround [deprecated]. Determines the type of the surrounding text.

SurroundAnchorOnly boolean � Determines if the text of the paragraph in which the object is
anchored, wraps around the object.

SurroundContour boolean � Determines if the text wraps around the contour of the object.

ContourOutside boolean � The text flows only around the contour of the object.

Opaque boolean � Determines if the object is opaque or transparent for text.

TextRange com.sun.star.text.XTextRange. Contains a text range where the
shape should be anchored to.

The chapter 10 Drawing describes how to use shapes and the interface of the draw page.

A sample that creates and inserts drawing shapes: (Text/TextDocuments.java)
/** This method demonstrates how to create and manipulate shapes, and how to access the draw page
 of the document to insert shapes
 */
protected void DrawPageExample () {
 try {
 // Go to the end of the document
 mxDocCursor.gotoEnd(false);
 // Insert two new paragraphs
 mxDocText.insertControlCharacter(mxDocCursor,
 ControlCharacter.PARAGRAPH_BREAK, false);
 mxDocText.insertControlCharacter(mxDocCursor,
 ControlCharacter.PARAGRAPH_BREAK, false);

 // Get the XParagraphCursor interface of our document cursor
 XParagraphCursor xParaCursor = (XParagraphCursor)
 UnoRuntime.queryInterface(XParagraphCursor.class, mxDocCursor);

 // Position the cursor in the 2nd paragraph
 xParaCursor.gotoPreviousParagraph(false);

 // Create a RectangleShape using the document factory
 XShape xRect = (XShape) UnoRuntime.queryInterface(
 XShape.class, mxDocFactory.createInstance(
 "com.sun.star.drawing.RectangleShape"));

 // Create an EllipseShape using the document factory
 XShape xEllipse = (XShape) UnoRuntime.queryInterface(
 XShape.class, mxDocFactory.createInstance(
 "com.sun.star.drawing.EllipseShape"));

 // Set the size of both the ellipse and the rectangle
 Size aSize = new Size();
 aSize.Height = 4000;
 aSize.Width = 10000;
 xRect.setSize(aSize);
 aSize.Height = 3000;
 aSize.Width = 6000;
 xEllipse.setSize(aSize);

 // Set the position of the Rectangle to the right of the ellipse
 Point aPoint = new Point();
 aPoint.X = 6100;
 aPoint.Y = 0;
 xRect.setPosition (aPoint);

 // Get the XPropertySet interfaces of both shapes
 XPropertySet xRectProps = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, xRect);
 XPropertySet xEllipseProps = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, xEllipse);

 // And set the AnchorTypes of both shapes to 'AT_PARAGRAPH'
 xRectProps.setPropertyValue("AnchorType", TextContentAnchorType.AT_PARAGRAPH);
 xEllipseProps.setPropertyValue("AnchorType", TextContentAnchorType.AT_PARAGRAPH);

 // Access the XDrawPageSupplier interface of the document
 XDrawPageSupplier xDrawPageSupplier = (XDrawPageSupplier) UnoRuntime.queryInterface(
 XDrawPageSupplier.class, mxDoc);

612 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Shape.html#TextRange
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Shape.html#Opaque
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Shape.html#ContourOutside
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Shape.html#SurroundContour
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Shape.html#SurroundAnchorOnly
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Shape.html#Surround
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Shape.html#BottomMargin
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Shape.html#TopMargin

 // Get the XShapes interface of the draw page
 XShapes xShapes = (XShapes) UnoRuntime.queryInterface(
 XShapes.class, xDrawPageSupplier.getDrawPage());

 // Add both shapes
 xShapes.add (xEllipse);
 xShapes.add (xRect);

 /*
 This doesn't work, I am assured that FME and AMA are fixing it.

 XShapes xGrouper = (XShapes) UnoRuntime.queryInterface(
 XShapes.class, mxDocFactory.createInstance(
 "com.sun.star.drawing.GroupShape"));

 XShape xGrouperShape = (XShape) UnoRuntime.queryInterface(XShape.class, xGrouper);
 xShapes.add (xGrouperShape);

 xGrouper.add (xRect);
 xGrouper.add (xEllipse);

 XShapeGrouper xShapeGrouper = (XShapeGrouper) UnoRuntime.queryInterface(
 XShapeGrouper.class, xShapes);
 xShapeGrouper.group (xGrouper);
 */

 } catch (Exception e) {
 e.printStackTrace(System.out);
 }
}

8.3.11 Redline
Redlines are text portions created in the user interface by switching on Edit - Changes - Record.
Redlines in a document are accessed through the com.sun.star.document.XRedlinesSupplier
interface at the document model. A collection of redlines as com.sun.star.beans.XPropertySet
objects are received that can be accessed as com.sun.star.container.XIndexAccess or as
com.sun.star.container.XEnumerationAccess. Their properties are described in
com.sun.star.text.RedlinePortion.

If a change is recorded, but not visible because the option Edit - Changes - Show has been
switched off, redline text is contained in the property RedlineText, which is a
com.sun.star.text.XText.

Calling XPropertySet.getPropertySetInfo() on a redline property set crashes the office.

8.3.12 Ruby
Ruby text is a character layout attribute used in Asian languages. Ruby text appears above or
below text in left to right writing, and left to right of text in top to bottom writing. For examples, cf.
www.w3.org/TR/1999/WD-ruby-19990322/.

Ruby text is created using the appropriate character properties from the service
com.sun.star.style.CharacterProperties wherever this service is supported. However, theA-
sian languages support must be switched on in Tools - Options - LanguageSettings - Languages.

There is no convenient supplier interface for ruby text at the model at this time. However, the
controller has an interface com.sun.star.text.XRubySelection that provides access to rubies
contained in the current selection.

To find ruby text in the model, enumerate all text portions in all paragraphs and check if the prop-
erty TextPortionType contains the string "Ruby" to find ruby text. When there is ruby text, access
the RubyText property of the text portion that contains ruby text as a string.

613

http://api.openoffice.org/docs/common/ref/com/sun/star/text/XRubySelection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XRubySelection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XRubySelection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/RedlinePortion.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/RedlinePortion.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/RedlinePortion.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XRedlinesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XRedlinesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XRedlinesSupplier.html

CharacterProperties for Ruby Text Description

com.sun.star.style.CharacterPropert
ies:RubyText Contains the text that is set as ruby.

com.sun.star.style.CharacterPropert
ies:RubyAdjust

Determines the adjustment of the ruby text as RubyAd-
just.

com.sun.star.style.CharacterPropert
ies:RubyCharStyleName

Contains the name of the character style that is applied to
RubyText.

com.sun.star.style.CharacterPropert
ies:RubyIsAbove

Determines if the ruby text is printed above/left or
below/right of the text

8.4 Overall Document Features

8.4.1 Styles
Styles distinguish sections in a document that are commonly formatted and separates this informa-
tion from the actual formatting. This way it is possible to unify the appearance of a document, and
adjust the formatting of a document by altering a style, instead of local format settings after the
document has been completed. Styles are packages of attributes that can be applied to text or text
contents in a single step.

The following style families are available in OpenOffice.org.

Style Families Description

CharacterStyles Character styles are used to format single characters or entire words and phrases.
Character styles can be nested.

ParagraphStyles Paragraph styles are used to format entire paragraphs. Apart from the normal
format settings for paragraphs, the paragraph style also defines the font to be used,
and the paragraph style for the following paragraph.

FrameStyles Frame styles are used to format graphic and text frames. These Styles are used to
quickly format graphics and frames automatically.

PageStyles Page styles are used to structure the page. If a "Next Style" is specified, the
OpenOffice.org automatically applies the specified page style when an automatic
page break occurs.

NumberingStyles Numbering styles are used to format paragraphs in numbered or bulleted text.

The text document model implements the interface com.sun.star.style.XStyleFamiliesSup-
plier to access these styles. Its method getStyleFamilies() returns a collection of
com.sun.star.style.StyleFamilies with a com.sun.star.container.XNameAccess interface.
The com.sun.star.container.XNameAccess interface retrieves the style families by the names
listed above. The StyleFamilies service supports a com.sun.star.container.XIndexAccess.

From the StyleFamilies, retrieve one of the families listed above by name or index. A collection
of styles are received which is a com.sun.star.style.StyleFamily service, providing access to
the single styles through an com.sun.star.container.XNameContainer or an
com.sun.star.container.XIndexAccess.

614 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/StyleFamily.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/StyleFamily.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/StyleFamily.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/StyleFamilies.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/StyleFamilies.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/StyleFamilies.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/XStyleFamiliesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/XStyleFamiliesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/XStyleFamiliesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/XStyleFamiliesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/XStyleFamiliesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/XStyleFamiliesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#RubyIsAbove
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#RubyIsAbove
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#RubyCharStyleName
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#RubyCharStyleName
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#RubyAdjust
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#RubyAdjust
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#RubyText
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#RubyText

Each style is a com.sun.star.style.Style and supports the interface
com.sun.star.style.XStyle that inherits from com.sun.star.container.XNamed. The XStyle
contains:

string getName()
void setName([in] string aName)
boolean isUserDefined()
boolean isInUse()
string getParentStyle()
void setParentStyle([in] string aParentStyle)

The office comes with a set of default styles. These styles use programmatic names on the API
level. The method setName() in XStyle always throws an exception if called at such styles. The
same applies to changing the property Category. At the user interface localized names are used.
The user interface names are provided through the property UserInterfaceName.

Note that page and numbering styles are not hierarchical and cannot have parent styles. The
method getParentStyle() always returns an empty string, and the method setParentStyle()
throws a com.sun.star.uno.RuntimeException when called at a default style.

The method isUserDefined() determines whether a style is defined by a user or is a built-in style.
A built-in style cannot be deleted. Additionally the built-in styles have two different names: a true
object name and an alias that is displayed at the user interface. This is not usually visible in an
English OpenOffice.org version, except for the default styles that are named "Standard" as
programmatic name and "Default" in the user interface.

The Style service defines the following properties which are shared by all styles:

Properties of com.sun.star.style.Style
IsPhysical [optional, readonly] boolean � Determines if a style is physically created.

FollowStyle [optional] boolean � Contains the name of the style that is applied to the
next paragraph.

DisplayName [optional, readonly] string � Contains the name of the style as is
displayed in the user interface.

IsAutoUpdate [optional] string � Determines if a style is automatically updated when the
properties of an object that the style is applied to are changed.

ParaStyleCondi-
tions

[optional, property] sequence< NamedValue > � Defines the context
and styles for conditional paragraphs. This property is only available if the style is
a conditional paragraph style.

To determine the user interface name, each style has a string property DisplayName that contains
the name that is used at the user interface. It is not allowed to use a DisplayName of a style as a
name of a user-defined style of the same style family.

The built-in styles are not created actually as long as they are not used in the document. The prop-
erty IsPhysical checks for this. It is necessary, for file export purposes, to detect styles which do
not need to be exported.

Conditional paragraph styles are handled by the property ParaStyleConditions. The sequence
consists of pairs where the name part (the first part) of the pair defines the context where the style
(the second part, a string that denotes a style name or an empty string) should be applied to.
Assigning an empty string to the style name will disable the conditional style for that context.

The StyleFamilies collection can load styles. For this purpose, the interface
com.sun.star.style.XStyleLoader is available at the StyleFamilies collection. It consists of
two methods:

void loadStylesFromURL([in] string URL,
 [in] sequence< com::sun::star::beans::PropertyValue > aOptions)
sequence< com::sun::star::beans::PropertyValue > getStyleLoaderOptions()

615

http://api.openoffice.org/docs/common/ref/com/sun/star/style/XStyleLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/XStyleLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/XStyleLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/Style.html#ParaStyleConditions
http://api.openoffice.org/docs/common/ref/com/sun/star/style/Style.html#ParaStyleConditions
http://api.openoffice.org/docs/common/ref/com/sun/star/style/Style.html#ParaStyleConditions
http://api.openoffice.org/docs/common/ref/com/sun/star/beans.html#NamedValue
http://api.openoffice.org/docs/common/ref/com/sun/star/beans.html#NamedValue
http://api.openoffice.org/docs/common/ref/com/sun/star/beans.html#NamedValue
http://api.openoffice.org/docs/common/ref/com/sun/star/style/Style.html#ParaStyleConditions
http://api.openoffice.org/docs/common/ref/com/sun/star/style/Style.html#ParaStyleConditions
http://api.openoffice.org/docs/common/ref/com/sun/star/style/Style.html#IsAutoUpdate
http://api.openoffice.org/docs/common/ref/com/sun/star/style/Style.html#DisplayName
http://api.openoffice.org/docs/common/ref/com/sun/star/style/Style.html#FollowStyle
http://api.openoffice.org/docs/common/ref/com/sun/star/style/Style.html#IsPhysical
http://api.openoffice.org/docs/common/ref/com/sun/star/style/Style.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/Style.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/Style.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/XStyle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/XStyle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/XStyle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/Style.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/Style.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/Style.html

The method loadStylesFromURL() enables the document to import styles from other documents.
The expected sequence of PropertyValue structs can contain the following properties:

Properties for loadStylesFromURL() Description

LoadTextStyles Determines if character and paragraph styles are to be
imported. It is not possible to select character styles and para-
graph styles separately.

LoadLoadFrameStyles boolean � Import frame styles only.

LoadPageStyles boolean � Import page styles only.

LoadNumberingStyles boolean � Import numbering styles only.

OverwriteStyles boolean � Determines if internal styles are overwritten if
the source document contains styles having the same name.

The method getStyleLoaderOptions() returns a sequence of these PropertyValue structs, set to
their default values.

Character Styles
Character styles support all properties defined in the services com.sun.star.style.Character-
Properties and com.sun.star.style.CharacterPropertiesAsian.

They are created using the com.sun.star.lang.XMultiServiceFactory interface of the text
document model using the service name "com.sun.star.style.CharacterStyle".

The default style that is shown in the user interface and accessible through the API is not a style,
but a tool to remove applied character styles. Therefore, its properties cannot be changed.

Set the property CharStyleName at an object including the service com.sun.star.style.Charac-
terProperties to set its character style.

Paragraph Styles
Paragraph styles support all properties defined in the services com.sun.star.style.Paragraph-
Properties and com.sun.star.style.ParagraphPropertiesAsian.

They are created using the com.sun.star.lang.XMultiServiceFactory interface of the text
document model using the service name "com.sun.star.style.ParagraphStyle".

Set the property ParaStyleName at an object, including the service com.sun.star.style.Para-
graphProperties to set its paragraph style.

Frame Styles
Frame styles support all properties defined in the services com.sun.star.text.BaseFrameProp-
erties.

The frame styles are applied to text frames, graphic objects and embedded objects.

They are created using the com.sun.star.lang.XMultiServiceFactory interface of the text
document model using the service name "com.sun.star.style.FrameStyle".

Set the property FrameStyleName at com.sun.star.text.BaseFrame objects to set their frame
style.

616 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphPropertiesAsian.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphPropertiesAsian.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphPropertiesAsian.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html

Page Styles
Page styles are controlled via properties. The page related properties are defined in the services
com.sun.star.style.PageStyle
They are created using the com.sun.star.lang.XMultiServiceFactory interface of the text
document model using the service name "com.sun.star.style.PageStyle".

As mentioned above, page styles are not hierarchical. The section 8.4.5 Text Documents - Overall
Document Features - Page Layout discusses page styles.

The PageStyle is set at the current text cursor position by setting the property PageDescName to an
existing page style name.This will insert a new page that uses the new page style. If no new page
should be inserted, the cursor has to be at the beginning of the first paragraph.

Numbering Styles
Numbering styles support all properties defined in the services com.sun.star.text.Numbering-
Style.

They are created using the com.sun.star.lang.XMultiServiceFactory interface of the text
document model using the service name "com.sun.star.style.NumberingStyle".

The structure of the numbering rules is described in section 8.4.3 Text Documents - Overall Docu-
ment Features - Line Numbering and Outline Numbering.

The name of the numbering style is set in the property NumberingStyleName of paragraphs (set
through the PropertySet of a TextCursor) or a paragraph style to apply the numbering to the
paragraphs.

The following example demonstrates the use of paragraph styles: (Text/TextDocuments.java)
/** This method demonstrates how to create, insert and apply styles
 */
protected void StylesExample() {
 try {
 // Go to the end of the document
 mxDocCursor.gotoEnd(false);

 // Insert two paragraph breaks
 mxDocText.insertControlCharacter(
 mxDocCursor, ControlCharacter.PARAGRAPH_BREAK, false);
 mxDocText.insertControlCharacter(
 mxDocCursor, ControlCharacter.PARAGRAPH_BREAK, false);

 // Create a new style from the document's factory
 XStyle xStyle = (XStyle) UnoRuntime.queryInterface(
 XStyle.class, mxDocFactory.createInstance("com.sun.star.style.ParagraphStyle"));

 // Access the XPropertySet interface of the new style
 XPropertySet xStyleProps = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, xStyle);

 // Give the new style a light blue background
 xStyleProps.setPropertyValue ("ParaBackColor", new Integer(13421823));

 // Get the StyleFamiliesSupplier interface of the document
 XStyleFamiliesSupplier xSupplier = (XStyleFamiliesSupplier)UnoRuntime.queryInterface(
 XStyleFamiliesSupplier.class, mxDoc);

 // Use the StyleFamiliesSupplier interface to get the XNameAccess interface of the
 // actual style families
 XNameAccess xFamilies = (XNameAccess) UnoRuntime.queryInterface (
 XNameAccess.class, xSupplier.getStyleFamilies());

 // Access the 'ParagraphStyles' Family
 XNameContainer xFamily = (XNameContainer) UnoRuntime.queryInterface(
 XNameContainer.class, xFamilies.getByName("ParagraphStyles"));

 // Insert the newly created style into the ParagraphStyles family
 xFamily.insertByName ("All-Singing All-Dancing Style", xStyle);

617

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingStyle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingStyle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingStyle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingStyle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingStyle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingStyle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/PageStyle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/PageStyle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/PageStyle.html

 // Get the XParagraphCursor interface of the document cursor
 XParagraphCursor xParaCursor = (XParagraphCursor) UnoRuntime.queryInterface(
 XParagraphCursor.class, mxDocCursor);

 // Select the first paragraph inserted
 xParaCursor.gotoPreviousParagraph(false);
 xParaCursor.gotoPreviousParagraph(true);

 // Access the property set of the cursor selection
 XPropertySet xCursorProps = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, mxDocCursor);

 // Set the style of the cursor selection to our newly created style
 xCursorProps.setPropertyValue("ParaStyleName", "All-Singing All-Dancing Style");

 // Go back to the end
 mxDocCursor.gotoEnd(false);

 // Select the last paragraph in the document
 xParaCursor.gotoNextParagraph(true);

 // And reset it's style to 'Standard' (the programmatic name for the default style)
 xCursorProps.setPropertyValue("ParaStyleName", "Standard");

 } catch (Exception e) {
 e.printStackTrace (System.out);
 }
}

8.4.2 Settings

General Document Information
Text documents offer general information about the document through their com.sun.star.docu-
ment.XDocumentInfoSupplier interface. The DocumentInfo is a common OpenOffice.org feature
and is discussed in 7 Office Development.

The XDocumentInfoSupplier has one single method:
com::sun::star::document::XDocumentInfo getDocumentInfo()

which returns a com.sun.star.document.DocumentInfo service, offering the statistical informa-
tion about the document that is available through File - Properties in the GUI.

Document Properties
The model implements a com.sun.star.beans.XPropertySet that provides properties
concerning character formatting and general settings.

The properties for character attributes are CharFontName,CharFontStyleName, CharFontFamily,
CharFontCharSet, CharFontPitch and their Asian counterparts CharFontStyleNameAsian,
CharFontFamilyAsian, CharFontCharSetAsian, CharFontPitchAsian.

The following properties handle general settings:

Properties of com.sun.star.text.TextDocument
CharLocale com.sun.star.lang.Locale. Default locale of the document.

CharacterCount long � Number of characters.

ParagraphCount long � Number of paragraphs.

WordCount long � Number of words.

618 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/text/AdvancedTextDocument.html#WordCount
http://api.openoffice.org/docs/common/ref/com/sun/star/text/AdvancedTextDocument.html#ParagraphCount
http://api.openoffice.org/docs/common/ref/com/sun/star/text/AdvancedTextDocument.html#CharacterCount
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/Locale.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/Locale.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/Locale.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/AdvancedTextDocument.html#CharLocale
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/DocumentInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/DocumentInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/DocumentInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XDocumentInfoSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XDocumentInfoSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XDocumentInfoSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XDocumentInfoSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XDocumentInfoSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XDocumentInfoSupplier.html

Properties of com.sun.star.text.TextDocument
WordSeparator string � Contains all that characters that are treated as separators

between words to determine word count.

RedlineDisplayType short � Displays redlines as defined in
com.sun.star.document.RedlineDisplayType.

RecordChanges boolean � Determines if redlining is switched on.

ShowChanges boolean � Determines if redlines are displayed.

RedlineProtectionKey sequence < byte >. Contains the password key.

ForbiddenCharacters com.sun.star.i18n.ForbiddenCharacters. Contains characters
that are not allowed to be at the first or last character of a text line.

TwoDigitYear short � Determines the start of the range, for example, when entering a
two-digit year.

IndexAutoMarkFileURL string � The URL to the file that contains the search words and settings
of the automatic marking of index marks for alphabetical indexes.

AutomaticControlFocus boolean � If true, the first form object is selected when the document is
loaded.

ApplyFormDesignMode boolean � Determines if form (database) controls are in the design
mode.

HideFieldTips boolean � If true, the automatic tips displayed for some types of text
fields are suppressed.

Creating Default Settings
The com.sun.star.lang.XMultiServiceFactory implemented at the model provides the service
com.sun.star.text.Defaults. Use this service to find out default values to set paragraph and
character properties of the document to default.

Creating Document Settings
Another set of properties can be created by the service name com.sun.star.document.Settings
that contains a number of additional settings.

8.4.3 Line Numbering and Outline Numbering
OpenOffice.org provides automatic numbering for texts. For instance, paragraphs can be
numbered or listed with bullets in a hierarchical manner, chapter headings can be numbered and
lines can be counted and numbered.

Paragraph and Outline Numbering
com.sun.star.text.NumberingRulesThe key for paragraph numbering is the paragraph prop-
erty NumberingRules. This property is provided by paragraphs and numbering styles and is a
member of com.sun.star.style.ParagraphProperties.

A similar object controls outline numbering and is returned from the method:
com::sun::star::container::XIndexReplace getChapterNumberingRules()

619

http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingRules.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingRules.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingRules.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/Settings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/Settings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/Settings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Defaults.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Defaults.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Defaults.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html#HideFieldTips
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html#ApplyFormDesignMode
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html#AutomaticControlFocus
http://api.openoffice.org/docs/common/ref/com/sun/star/text/GenericTextDocument.html#IndexAutoMarkFileURL
http://api.openoffice.org/docs/common/ref/com/sun/star/text/GenericTextDocument.html#TwoDigitYear
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/ForbiddenCharacters.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/ForbiddenCharacters.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/ForbiddenCharacters.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/Settings.html#ForbiddenCharacters
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html#RedlineProtectionKey
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html#ShowChanges
http://api.openoffice.org/docs/common/ref/com/sun/star/text/GenericTextDocument.html#RecordChanges
http://api.openoffice.org/docs/common/ref/com/sun/star/document/RedlineDisplayType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/RedlineDisplayType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/RedlineDisplayType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html#RedlineDisplayType
http://api.openoffice.org/docs/common/ref/com/sun/star/text/AdvancedTextDocument.html#WordSeparator

at the com.sun.star.text.XChapterNumberingSupplier interface that is implemented at the
document model.

These objects provide an interface com.sun.star.container.XIndexReplace. Each element of
the container represents a numbering level. The writer document provides ten numbering levels.
The highest level is zero. Each level of the container consists of a sequence of
com.sun.star.beans.PropertyValue.

The two related objects differ in some of properties they provide.

Both of them provide the following properties:

Common Properties for Paragraph and Outline Numbering in com.sun.star.text.Numberin-
gLevel
Adjust short � Adjustment of the numbering symbol defined in

com.sun.star.text.HoriOrientation.

ParentNumbering short � Determines if higher numbering levels are included in the
numbering, for example, 2.3.1.2.

Prefix
Suffix

string � Contains strings that surround the numbering symbol, for
example, brackets.

CharStyleName string � Name of the character style that is applied to the number
symbol.

StartWith short � Determines the value the numbering starts with. The default is
one.

FirstLineOffset
LeftMargin

long � Influences the left indent and left margin of the numbering.

SymbolTextDistance [optional] long � Distance between the numbering symbol and the
text of the paragraph.

NumberingType short � Determines the type of the numbering defined in
com.sun.star.style.NumberingType.

Only paragraphs have the following properties in their NumberingRules property:

Paragraph NumberingRules Properties
in com.sun.star.text.Numbering-
Level

Description

BulletChar string � Determines the bullet character if the numbering
type is set to NumberingType::CHAR_SPECIAL.

BulletFontName string � Determines the bullet font if the numbering type
is set to NumberingType::CHAR_SPECIAL.

GraphicURL string � Determines the type, size and orientation of a
graphic when the numbering type is set to
NumberingType::BITMAP.

GraphicBitmap Undocumented

GraphicSize Undocumented

VertOrient short � Vertical orientation of a graphic according to
com.sun.star.text.VertOrientation

Only the chapter numbering rules provide the following property:

620 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/text/VertOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/VertOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/VertOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingLevel.html#VertOrient
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingLevel.html#GraphicURL
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingLevel.html#BulletFontName
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingLevel.html#BulletChar
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingLevel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingLevel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingLevel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingLevel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingLevel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingLevel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/NumberingType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/NumberingType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/NumberingType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingLevel.html#NumberingType
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingLevel.html#SymbolTextDistance
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingLevel.html#LeftMargin
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingLevel.html#LeftMargin
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingLevel.html#LeftMargin
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingLevel.html#FirstLineOffset
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingLevel.html#FirstLineOffset
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingLevel.html#FirstLineOffset
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingLevel.html#StartWith
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingLevel.html#CharStyleName
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingLevel.html#Suffix
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingLevel.html#Suffix
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingLevel.html#Suffix
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingLevel.html#Prefix
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingLevel.html#Prefix
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingLevel.html#Prefix
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingLevel.html#ParentNumbering
http://api.openoffice.org/docs/common/ref/com/sun/star/text/HoriOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/HoriOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/HoriOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingLevel.html#Adjust
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingLevel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingLevel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingLevel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingLevel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingLevel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/NumberingLevel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XChapterNumberingSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XChapterNumberingSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XChapterNumberingSupplier.html

Property of com.sun.star.text.Chap-
terNumberingRule

Description

HeadingStyleName string � Contains the name of the paragraph style that marks
a paragraph as a chapter heading.

Note that the NumberingRules service is returned by value like most properties in the OpenOffice.org API,
therefore you must get the rules from the XPropertySet, change them and put the NumberingRules
object back into the property.

The following is an example for the NumberingRules service: (Text/TextDocuments.java)
/** This method demonstrates how to set numbering types and numbering levels using the

com.sun.star.text.NumberingRules service
 */
protected void NumberingExample() {
 try {
 // Go to the end of the document
 mxDocCursor.gotoEnd(false);
 // Get the RelativeTextContentInsert interface of the document
 XRelativeTextContentInsert xRelative = (XRelativeTextContentInsert)
 UnoRuntime.queryInterface(XRelativeTextContentInsert.class, mxDocText);

 // Use the document's factory to create the NumberingRules service, and get it's
 // XIndexAccess interface
 XIndexAccess xNum = (XIndexAccess) UnoRuntime.queryInterface(XIndexAccess.class,
 mxDocFactory.createInstance("com.sun.star.text.NumberingRules"));

 // Also get the NumberingRule's XIndexReplace interface
 XIndexReplace xReplace = (XIndexReplace) UnoRuntime.queryInterface(
 XIndexReplace.class, xNum);

 // Create an array of XPropertySets, one for each of the three paragraphs we're about
 // to create
 XPropertySet xParas[] = new XPropertySet[3];
 for (int i = 0 ; i < 3 ; ++ i) {
 // Create a new paragraph
 XTextContent xNewPara = (XTextContent) UnoRuntime.queryInterface(
 XTextContent.class, mxDocFactory.createInstance(
 "com.sun.star.text.Paragraph"));

 // Get the XPropertySet interface of the new paragraph and put it in our array
 xParas[i] = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, xNewPara);

 // Insert the new paragraph into the document after the fish section. As it is
 // an insert
 // relative to the fish section, the first paragraph inserted will be below
 // the next two
 xRelative.insertTextContentAfter (xNewPara, mxFishSection);

 // Separate from the above, but also needs to be done three times

 // Get the PropertyValue sequence for this numbering level
 PropertyValue[] aProps = (PropertyValue []) xNum.getByIndex(i);

 // Iterate over the PropertyValue's for this numbering level, looking for the
 // 'NumberingType' property
 for (int j = 0 ; j < aProps.length ; ++j) {
 if (aProps[j].Name.equals ("NumberingType")) {
 // Once we find it, set it's value to a new type,
 // dependent on which
 // numbering level we're currently on
 switch (i) {
 case 0 : aProps[j].Value = new Short(NumberingType.ROMAN_UPPER);
 break;
 case 1 : aProps[j].Value = new Short(NumberingType.CHARS_UPPER_LETTER);
 break;
 case 2 : aProps[j].Value = new Short(NumberingType.ARABIC);
 break;
 }
 // Put the updated PropertyValue sequence back into the
 // NumberingRules service
 xReplace.replaceByIndex (i, aProps);
 break;
 }
 }
 }
 // Get the XParagraphCursor interface of our text cursro
 XParagraphCursor xParaCursor = (XParagraphCursor) UnoRuntime.queryInterface(
 XParagraphCursor.class, mxDocCursor);

621

http://api.openoffice.org/docs/common/ref/com/sun/star/text/ChapterNumberingRule.html#HeadingStyleName
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ChapterNumberingRule.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ChapterNumberingRule.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ChapterNumberingRule.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ChapterNumberingRule.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ChapterNumberingRule.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ChapterNumberingRule.html

 // Go to the end of the document, then select the preceding paragraphs
 mxDocCursor.gotoEnd(false);
 xParaCursor.gotoPreviousParagraph false);
 xParaCursor.gotoPreviousParagraph true);
 xParaCursor.gotoPreviousParagraph true);

 // Get the XPropertySet of the cursor's currently selected text
 XPropertySet xCursorProps = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, mxDocCursor);

 // Set the updated Numbering rules to the cursor's property set
 xCursorProps.setPropertyValue ("NumberingRules", xNum);
 mxDocCursor.gotoEnd(false);

 // Set the first paragraph that was inserted to a numbering level of 2 (thus it will
 // have Arabic style numbering)
 xParas[0].setPropertyValue ("NumberingLevel", new Short ((short) 2));

 // Set the second paragraph that was inserted to a numbering level of 1 (thus it will
 // have 'Chars Upper Letter' style numbering)
 xParas[1].setPropertyValue ("NumberingLevel", new Short((short) 1));

 // Set the third paragraph that was inserted to a numbering level of 0 (thus it will
 // have 'Chars Upper Letter' style numbering)
 xParas[2].setPropertyValue("NumberingLevel", new Short((short) 0));
 } catch (Exception e) {
 e.printStackTrace (System.out);
 }
}

Line Numbering
The text document model supports the interface com.sun.star.text.XLineNumberingProper-
ties. The provided object has the properties described in the service
com.sun.star.text.LineNumberingProperties. It is used in conjunction with the paragraph
properties ParaLineNumberCount and ParaLineNumberStartValue.

Number Formats
The text document model provides access to the number formatter through aggregation, that is, it
provides the interface com.sun.star.util.XNumberFormatsSupplier seamlessly.

The number formatter is used to format numerical values. For details, refer to 7.2.5 Office Develop-
ment - Common Application Features - Number Formats.

In text, text fields with numeric content and table cells provide a property NumberFormat that
contains a long value that refers to a number format.

8.4.4 Text Sections
A text section is a range of complete paragraphs that can have its own format settings and source
location, separate from the surrounding text. Text sections can be nested in a hierarchical structure.

For example, a section is formatted to have text columns that different column settings in a text on
a paragraph by paragraph basis. The content of a section can be linked through file links or over a
DDE connection.

The text sections support the service com.sun.star.text.TextSection. To access the sections,
the text document model implements the interface com.sun.star.text.XTextSectionsSupplier
that provides an interface com.sun.star.container.XNameAccess . The returned objects support
the interface com.sun.star.container.XIndexAccess, as well.

Master documents implement the structure of sub documents using linked text sections.

622 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextSectionsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextSectionsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextSectionsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextSection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextSection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextSection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/LineNumberingProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/LineNumberingProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/LineNumberingProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XLineNumberingProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XLineNumberingProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XLineNumberingProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XLineNumberingProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XLineNumberingProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XLineNumberingProperties.html

An example demonstrating the creation, insertion and linking of text sections: (Text/TextDocu-
ments.java)
/** This method demonstrates how to create linked and unlinked sections
 */
protected void TextSectionExample() {
 try {
 // Go to the end of the document
 mxDocCursor.gotoEnd(false);
 // Insert two paragraph breaks
 mxDocText.insertControlCharacter(
 mxDocCursor, ControlCharacter.PARAGRAPH_BREAK, false);
 mxDocText.insertControlCharacter(
 mxDocCursor, ControlCharacter.PARAGRAPH_BREAK, true);

 // Create a new TextSection from the document factory and access it's XNamed interface
 XNamed xChildNamed = (XNamed) UnoRuntime.queryInterface(
 XNamed.class, mxDocFactory.createInstance("com.sun.star.text.TextSection"));
 // Set the new sections name to 'Child_Section'
 xChildNamed.setName("Child_Section");

 // Access the Child_Section's XTextContent interface and insert it into the document
 XTextContent xChildSection = (XTextContent) UnoRuntime.queryInterface(
 XTextContent.class, xChildNamed);
 mxDocText.insertTextContent (mxDocCursor, xChildSection, false);

 // Access the XParagraphCursor interface of our text cursor
 XParagraphCursor xParaCursor = (XParagraphCursor) UnoRuntime.queryInterface(
 XParagraphCursor.class, mxDocCursor);

 // Go back one paragraph (into Child_Section)
 xParaCursor.gotoPreviousParagraph(false);

 // Insert a string into the Child_Section
 mxDocText.insertString(mxDocCursor, "This is a test", false);

 // Go to the end of the document
 mxDocCursor.gotoEnd(false);

 // Go back two paragraphs
 xParaCursor.gotoPreviousParagraph (false);
 xParaCursor.gotoPreviousParagraph (false);
 // Go to the end of the document, selecting the two paragraphs
 mxDocCursor.gotoEnd(true);

 // Create another text section and access it's XNamed interface
 XNamed xParentNamed = (XNamed) UnoRuntime.queryInterface(XNamed.class,
 mxDocFactory.createInstance("com.sun.star.text.TextSection"));

 // Set this text section's name to Parent_Section
 xParentNamed.setName ("Parent_Section");

 // Access the Parent_Section's XTextContent interface ...
 XTextContent xParentSection = (XTextContent) UnoRuntime.queryInterface(
 XTextContent.class, xParentNamed);
 // ...and insert it into the document
 mxDocText.insertTextContent(mxDocCursor, xParentSection, false);

 // Go to the end of the document
 mxDocCursor.gotoEnd (false);
 // Insert a new paragraph
 mxDocText.insertControlCharacter(
 mxDocCursor, ControlCharacter.PARAGRAPH_BREAK, false);
 // And select the new pargraph
 xParaCursor.gotoPreviousParagraph(true);

 // Create a new Text Section and access it's XNamed interface
 XNamed xLinkNamed = (XNamed) UnoRuntime.queryInterface(
 XNamed.class, mxDocFactory.createInstance("com.sun.star.text.TextSection"));
 // Set the new text section's name to Linked_Section
 xLinkNamed.setName("Linked_Section");

 // Access the Linked_Section's XTextContent interface
 XTextContent xLinkedSection = (XTextContent) UnoRuntime.queryInterface(
 XTextContent.class, xLinkNamed);
 // And insert the Linked_Section into the document
 mxDocText.insertTextContent(mxDocCursor, xLinkedSection, false);

 // Access the Linked_Section's XPropertySet interface
 XPropertySet xLinkProps = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, xLinkNamed);
 // Set the linked section to be linked to the Child_Section
 xLinkProps.setPropertyValue("LinkRegion", "Child_Section");

 // Access the XPropertySet interface of the Child_Section
 XPropertySet xChildProps = (XPropertySet) UnoRuntime.queryInterface(

623

 XPropertySet.class, xChildNamed);
 // Set the Child_Section's background colour to blue
 xChildProps.setPropertyValue("BackColor", new Integer(13421823));

 // Refresh the document, so the linked section matches the Child_Section
 XRefreshable xRefresh = (XRefreshable) UnoRuntime.queryInterface(
 XRefreshable.class, mxDoc);
 xRefresh.refresh();
 } catch (Exception e) {
 e.printStackTrace (System.out);
 }
}

8.4.5 Page Layout
A page layout in OpenOffice.org is always a page style. A page can not be hard formatted. To
change the current page layout, retrieve the current page style from the text cursor property Page-
StyleName and get this page style from the StyleFamily PageStyles.

Changes of the page layout happen through the properties described in
com.sun.star.style.PageProperties. Refer to the API reference for details on all the possible
properties, including the header and footer texts which are part of these properties.

As headers or footers are connected to a page style, the text objects are provided as properties of
the style. Depending on the setting of the page layout, there is one header and footer text object per
style available or there are two, a left and right header, and footer text:.

com.sun.star.style.PagePro
perties containing Headers
and Footers

Description

HeaderText com.sun.star.text.Text
HeaderTextLeft com.sun.star.text.Text
HeaderTextRight com.sun.star.text.Text
FooterText com.sun.star.text.Text
FooterTextLeft com.sun.star.text.Text
FooterTextRight com.sun.star.text.Text

The page layout of a page style can be equal on left and right pages, mirrored, or separate for right
and left pages. This is controlled by the property PageStyleLayout that expects values from the
enum com.sun.star.style.PageStyleLayout. As long as left and right pages are equal, Header-
Text and HeaderRightText are identical. The same applies to the footers.

The text objects in headers and footers are only available if headers or footers are switched on,
using the properties HeaderIsOn and FooterIsOn.

Drawing objects cannot be inserted into headers or footers.

8.4.6 Columns
Text frames, text sections and page styles can be formatted to have columns. The width of columns
is relative since the absolute width of the object is unknown in the model. The layout formatting is
responsible for calculating the actual widths of the columns.

Columns are applied using the property TextColumns. It expects a com.sun.star.text.TextCol-
umns service that has to be created by the document factory. The interface
com.sun.star.text.XTextColumns refines the characteristics of the text columns before applying
the created TextColumns service to the property TextColumns.

624 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextColumns.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextColumns.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextColumns.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextColumns.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextColumns.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextColumns.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextColumns.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextColumns.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextColumns.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/PageStyleLayout.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/PageStyleLayout.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/PageStyleLayout.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/PageProperties.html#FooterTextRight
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/PageProperties.html#FooterTextLeft
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/PageProperties.html#FooterText
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/PageProperties.html#HeaderTextRight
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/PageProperties.html#HeaderTextLeft
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/PageProperties.html#HeaderText
http://api.openoffice.org/docs/common/ref/com/sun/star/style/PageProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/PageProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/PageProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/PageProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/PageProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/PageProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/PageProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/PageProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/PageProperties.html

Consider the following example to see how to work with text columns: (Text/TextDocuments.java)
/** This method demonstrates the XTextColumns interface and how to insert a blank paragraph
 using the XRelativeTextContentInsert interface
 */
protected void TextColumnsExample() {
 try {
 // Go to the end of the doucment
 mxDocCursor.gotoEnd(false);
 // insert a new paragraph
 mxDocText.insertControlCharacter(mxDocCursor, ControlCharacter.PARAGRAPH_BREAK, false);

 // insert the string 'I am a fish.' 100 times
 for (int i = 0 ; i < 100 ; ++i) {
 mxDocText.insertString(mxDocCursor, "I am a fish.", false);
 }
 // insert a paragraph break after the text
 mxDocText.insertControlCharacter(mxDocCursor, ControlCharacter.PARAGRAPH_BREAK, false);

 // Get the XParagraphCursor interface of our text cursor
 XParagraphCursor xParaCursor = (XParagraphCursor) UnoRuntime.queryInterface(
 XParagraphCursor.class, mxDocCursor);
 // Jump back before all the text we just inserted
 xParaCursor.gotoPreviousParagraph(false);
 xParaCursor.gotoPreviousParagraph(false);

 // Insert a string at the beginning of the block of text
 mxDocText.insertString(mxDocCursor, "Fish section begins:", false);

 // Then select all of the text
 xParaCursor.gotoNextParagraph(true);
 xParaCursor.gotoNextParagraph(true);

 // Create a new text section and get it's XNamed interface
 XNamed xSectionNamed = (XNamed) UnoRuntime.queryInterface(
 XNamed.class, mxDocFactory.createInstance("com.sun.star.text.TextSection"));

 // Set the name of our new section (appropiately) to 'Fish'
 xSectionNamed.setName("Fish");

 // Create the TextColumns service and get it's XTextColumns interface
 XTextColumns xColumns = (XTextColumns) UnoRuntime.queryInterface(
 XTextColumns.class, mxDocFactory.createInstance("com.sun.star.text.TextColumns"));

 // We want three columns
 xColumns.setColumnCount((short) 3);

 // Get the TextColumns, and make the middle one narrow with a larger margin
 // on the left than the right
 TextColumn[] aSequence = xColumns.getColumns ();
 aSequence[1].Width /= 2;
 aSequence[1].LeftMargin = 350;
 aSequence[1].RightMargin = 200;
 // Set the updated TextColumns back to the XTextColumns
 xColumns.setColumns(aSequence);

 // Get the property set interface of our 'Fish' section
 XPropertySet xSectionProps = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, xSectionNamed);

 // Set the columns to the Text Section
 xSectionProps.setPropertyValue("TextColumns", xColumns);

 // Get the XTextContent interface of our 'Fish' section
 mxFishSection = (XTextContent) UnoRuntime.queryInterface(
 XTextContent.class, xSectionNamed);

 // Insert the 'Fish' section over the currently selected text
 mxDocText.insertTextContent(mxDocCursor, mxFishSection, true);

 // Get the wonderful XRelativeTextContentInsert interface
 XRelativeTextContentInsert xRelative = (XRelativeTextContentInsert)
 UnoRuntime.queryInterface(XRelativeTextContentInsert.class, mxDocText);

 // Create a new empty paragraph and get it's XTextContent interface
 XTextContent xNewPara = (XTextContent) UnoRuntime.queryInterface(XTextContent.class,
 mxDocFactory.createInstance("com.sun.star.text.Paragraph"));

 // Insert the empty paragraph after the fish Text Section
 xRelative.insertTextContentAfter(xNewPara, mxFishSection);
 } catch (Exception e) {
 e.printStackTrace(System.out);
 }
}

625

The text columns property consists of com.sun.star.text.TextColumn structs. The Width
elements of all structs in the TextColumns sequence make up a sum, that is provided by the
method getReferenceValue() of the XTextColumns interface. To determine the metric width of
an actual column, the reference value and the columns width element have to be calculated using
the metric width of the object (page, text frame, text section) and a rule of three, for example:
nColumn3Width = aColumns[3].Width / xTextColumns.getReferenceValue() * RealObjectWidth

The column margins (LeftMargin, and RightMargin elements of the struct) are inside of the
column. Their values do not influence the column width. They just limit the space available for the
column content.

The default column setting in OpenOffice.org creates columns with equal margins at inner
columns, and no left margin at the leftmost column and no right margin at the rightmost column.
Therefore, the relative width of the first and last column is smaller than those of the inner columns.
This causes a limitation of this property: Setting the text columns with equal column content
widths and equal margins is only possible when the width of the object (text frame, text section)
can be determined. Unfortunately this is impossible when the width of the object depends on its
environment itself.

8.4.7 Link targets
The interface com.sun.star.document.XLinkTargetSupplier of the document model provides
all elements of the document that can be used as link targets. These targets can be used for load
URLs and sets the selection to a certain position object inside of a document. An example of a URL
containing a link target is "file:///c:/documents/document1|bookmarkname".

This interface is used from the hyperlink dialog to detect the links available inside of a document.

The interface com.sun.star.container.XNameAccess returned by the method getLinks()
provides access to an array of target types. These types are:

• Tables

• Text frame

• Graphics

• OLEObjects

• Sections

• Headings

• Bookmarks.

The names of the elements depend on the installed language.

Each returned object supports the interfaces com.sun.star.beans.XPropertySet and interface
com.sun.star.container.XNameAccess. The property set provides the properties LinkDisplay-
Name (string) and LinkDisplayBitmap (com.sun.star.awt.XBitmap). Each of these objects
provides an array of targets of the relating type. Each target returned supports the interface
com.sun.star.beans.XPropertySet and the property LinkDisplayName (string).

The name of the objects is the bookmark to be added to the document URL, for example, "Table1|
table". The LinkDisplayName contains the name of the object, e.g. "Table1".

626 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XBitmap.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XBitmap.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XBitmap.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XLinkTargetSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XLinkTargetSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XLinkTargetSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextColumn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextColumn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextColumn.html

8.5 Text Document Controller
The text document model knows its controller and it can lock the controller to block user interac-
tion. The appropriate methods in the model's com.sun.star.frame.XModel interface are:

void lockControllers()
void unlockControllers()
boolean hasControllersLocked()
com::sun::star::frame::XController getCurrentController()
void setCurrentController([in] com::sun::star::frame::XController xController)

The controller returned by getCurrentController()shares the following interfaces with all other
document controllers in OpenOffice.org:

• com.sun.star.frame.XController
• com.sun.star.frame.XDispatchProvider
• com.sun.star.ui.XContextMenuInterceptor
Document controllers are explained in the 7 Office Development.

8.5.1 TextView
The writer controller implementation supports the interface com.sun.star.view.XSelection-
Supplier that returns the object that is currently selected in the user interface.

Its method getSelection() returns an any that may contain the following object depending on
the selection:

Selection Returned Object

Text com.sun.star.container.XIndexAccess containing one or more
com.sun.star.uno.XInterface pointing to a text range.

Selection of table cells com.sun.star.uno.XInterface pointing to a table cursor.

Text frame com.sun.star.uno.XInterface pointing to a text frame.

Graphic object com.sun.star.uno.XInterface pointing to a graphic object.

OLE object com.sun.star.uno.XInterface pointing to an OLE object.

Shape, Form control com.sun.star.uno.XInterface pointing to a
com.sun.star.drawing.ShapeCollection containing one or more
shapes.

• com.sun.star.view.XControlAccess
provides access to the controller of form controls.

• com.sun.star.text.XTextViewCursorSupplier
provides access to the cursor of the view.

• com.sun.star.text.XRubySelection
provides access to rubies contained in the selection. This interface is necessary for Asian
language support.

• com.sun.star.view.XViewSettingsSupplier
provides access to the settings of the view as described in the service
com.sun.star.text.ViewSettings.

Properties of com.sun.star.text.ViewSettings

627

http://api.openoffice.org/docs/common/ref/com/sun/star/text/ViewSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ViewSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ViewSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ViewSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ViewSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ViewSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XViewSettingsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XViewSettingsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XViewSettingsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XRubySelection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XRubySelection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XRubySelection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextViewCursorSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextViewCursorSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextViewCursorSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XControlAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XControlAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XControlAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ShapeCollection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ShapeCollection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ShapeCollection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XSelectionSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XSelectionSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XSelectionSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XSelectionSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XSelectionSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XSelectionSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XController.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html

ShowAnnotations boolean � If true, annotations (notes) are visible.

ShowBreaks boolean � If true, paragraph line breaks are visible.

ShowDrawings boolean � If true, shapes are visible.

ShowFieldCommands boolean � If true, text fields are shown with their commands, other-
wise the content is visible.

ShowFootnoteBackground boolean � If true, footnotes symbols are displayed with gray back-
ground.

ShowGraphics boolean � If true, graphic objects are visible.

ShowHiddenParagraphs boolean � If true, hidden paragraphs are displayed.

ShowHiddenText boolean � If true, hidden text is displayed.

ShowHoriRuler boolean � If true, the horizontal ruler is displayed.

ShowHoriScrollBar boolean � If true, the horizontal scroll bar is displayed.

ShowIndexMarkBackground boolean � If true , index marks are displayed with gray background.

ShowParaBreaks boolean � If true , paragraph breaks are visible.

ShowProtectedSpaces boolean � If true, protected spaces (hard spaces) are displayed with
gray background.

ShowSoftHyphens boolean � If true, soft hyphens are displayed with gray background.

ShowSpaces boolean � If true, spaces are displayed with dots.

ShowTableBoundaries boolean � If true, table boundaries are displayed.

ShowTables boolean � If true, tables are visible.

ShowTabstops boolean � If true, tab stops are visible.

ShowTextBoundaries boolean � If true, text boundaries are displayed.

ShowTextFieldBackground boolean � If true, text fields are displayed with gray background.

ShowVertRuler boolean � If true, the vertical ruler is displayed.

ShowVertScrollBar boolean � If true, the vertical scroll bar is displayed.

SmoothScrolling boolean � If true, smooth scrolling is active.

SolidMarkHandles boolean � If true, handles of drawing objects are visible.

ZoomType short � defines the zoom type for the document as defined in
com.sun.star.view.DocumentZoomType

ZoomValue short � defines the zoom value to use, the value is given as percentage.
Valid only if the property ZoomType is set to
com.sun.star.view.DocumentZoomType:BY_VALUE.

In StarOffice 6.0 and OpenOffice.org 1.0 you can only influence the zoom factor by setting the
ZoomType to BY_VALUE and adjusting ZoomValue explicitly. The other zoom types have no effect.

8.5.2 TextViewCursor
The text controller has a visible cursor that is used in the GUI. Get the com.sun.star.text.Text-
ViewCursor by calling getTextViewCursor() at the com.sun.star.text.XTextViewCursorSup-
plier interface of the current text document controller.

628 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextViewCursorSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextViewCursorSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextViewCursorSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextViewCursorSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextViewCursorSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextViewCursorSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextViewCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextViewCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextViewCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextViewCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextViewCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextViewCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/DocumentZoomType.html#BY_VALUE
http://api.openoffice.org/docs/common/ref/com/sun/star/view/DocumentZoomType.html#BY_VALUE
http://api.openoffice.org/docs/common/ref/com/sun/star/view/DocumentZoomType.html#BY_VALUE
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ViewSettings.html#ZoomValue
http://api.openoffice.org/docs/common/ref/com/sun/star/view/DocumentZoomType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/DocumentZoomType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/DocumentZoomType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ViewSettings.html#ZoomType
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ViewSettings.html#SolidMarkHandles
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ViewSettings.html#SmoothScrolling
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ViewSettings.html#ShowVertScrollBar
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ViewSettings.html#ShowVertRuler
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ViewSettings.html#ShowTextFieldBackground
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ViewSettings.html#ShowTextBoundaries
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ViewSettings.html#ShowTabstops
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ViewSettings.html#ShowTables
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ViewSettings.html#ShowTableBoundaries
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ViewSettings.html#ShowSpaces
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ViewSettings.html#ShowSoftHyphens
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ViewSettings.html#ShowProtectedSpaces
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ViewSettings.html#ShowParaBreaks
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ViewSettings.html#ShowIndexMarkBackground
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ViewSettings.html#ShowHoriScrollBar
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ViewSettings.html#ShowHoriRuler
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ViewSettings.html#ShowHiddenText
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ViewSettings.html#ShowHiddenParagraphs
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ViewSettings.html#ShowGraphics
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ViewSettings.html#ShowFootnoteBackground
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ViewSettings.html#ShowFieldCommands
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ViewSettings.html#ShowDrawings
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ViewSettings.html#ShowBreaks
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ViewSettings.html#ShowAnnotations

It supports the following cursor capabilities that depend on having the necessary information
about the current layout state, therefore it is not supported by the model cursor.

com.sun.star.text.XPageCursor
boolean jumpToFirstPage()
boolean jumpToLastPage()
boolean jumpToPage([in] long pageNo)
long getPage()
boolean jumpToNextPage()
boolean jumpToPreviousPage()
boolean jumpToEndOfPage()
boolean jumpToStartOfPage()

com.sun.star.view.XScreenCursor
boolean screenDown()
boolean screenUp()

com.sun.star.view.XLineCursor
boolean goDown([in] long lines, [in] boolean bExpand)
boolean goUp([in] long lines, [in] boolean bExpand)
boolean isAtStartOfLine()
boolean isAtEndOfLine()
void gotoEndOfLine([in] boolean bExpand)
void gotoStartOfLine([in] boolean bExpand)

com.sun.star.view.XViewCursor
boolean goLeft([in] long characters, [in] boolean bExpand)
boolean goRight([in] long characters, [in] boolean bExpand)
boolean goDown([in] long characters, [in] boolean bExpand)
boolean goUp([in] long characters, [in] boolean bExpand)

Additionally the interface com.sun.star.beans.XPropertySet is supported.

Currently, the view cursor does not have the capabilities as the document cursor does. Therefore, it
is necessary to create a document cursor to have access to the full text cursor functionality. The
method createTextCursorByRange() is used:
XText xCrsrText = xViewCursor.getText();
// Create a TextCursor over the view cursor's contents
XTextCursor xDocumentCursor = xViewText.createTextCursorByRange(xViewCursor.getStart());
xDocumentCursor.gotoRange(xViewCursor.getEnd(), true);

629

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XViewCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XLineCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XScreenCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XPageCursor.html

9 Spreadsheet Documents

9.1 Overview
OpenOffice.org API knows three variants of tables: text tables (see 8.3.4 Text Documents - Working
with Text Documents - Tables), database tables (see 13.4.3 Database Access - Database Design - Using
SDBCX to Access the Database Design - Table Service) and spreadsheets. Each of the table concepts have
their own purpose. Text tables handle text contents, database tables offer database functionality
and spreadsheets operate on data cells that can be evaluated. Being specialized in such a way
means that each concept has its strength. Text tables offer full functionality for text formatting,
where spreadsheets support complex calculations. Alternately, spreadsheets support only basic
formatting capabilities and text tables perform elementary calculations.

The implementation of the various tables differ due to each of their specializations. Basic table
features are defined in the module com.sun.star.table. Regarding the compatibility of text and
spreadsheet tables, the corresponding features are also located in the module
com.sun.star.table. In addition, spreadsheet tables are fully based on the specifications given
and are extended by additional specifications from the module com.sun.star.sheet. Several
services of the spreadsheet application representing cells and cell ranges extend the common
services from the module com::sun::star::table. The following table shows the services for cells and
cell ranges.

Spreadsheet service Included com::sun::star::table service

com.sun.star.sheet.SheetCell com.sun.star.table.Cell
com.sun.star.sheet.Cells -

com.sun.star.sheet.SheetCellRange com.sun.star.table.CellRange
com.sun.star.sheet.SheetCellRanges -

com.sun.star.sheet.SheetCellCursor com.sun.star.table.CellCursor

The spreadsheet document model in the OpenOffice.org API has five major architectural areas (see
Illustration 9.2) The five areas are:

• Spreadsheets Container

• Service Manager (document internal)

• DrawPages

• Content Properties

• Objects for Styling

631

http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Cells.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/Cell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/module-ix.html

The core of the spreadsheet document model are the spreadsheets contained in the spreadsheets
container. When working with document data, almost everything happens in the spreadsheet
objects extracted from the spreadsheets container.

The service manager of the spreadsheet document model creates shape objects, text fields for page
headers and form controls that can be added to spreadsheets. Note, that the document service
manager is different from the main service manager used when connecting to the office. Each
document model has its own service manager, so that the services can be adapted to the document
they are required for. For instance, a text field is ordered and inserted into the page header text of a
sheet using com.sun.star.text.XText:insertTextContent()or the service manager is asked
for a shape object and inserts it into a sheet using add()at the drawpage.

632 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 9.1: Spreadsheet Document Component

http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html#insertTextContent
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html#insertTextContent
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html#insertTextContent

Each sheet in a spreadsheet document can have a drawpage for drawing contents. A drawpage can
be visualized as a transparent layer above a sheet. The spreadsheet model is able to provide all
drawpages in a spreadsheet document at once.

Linked and named contents from all sheets are accessed through content properties at the docu-
ment model. There are no content suppliers as in text documents, because the actual content of a
spreadsheet document lies in its sheet objects. Rather, there are only certain properties for named
and linked contents in all sheets.

Finally, there are services that allow for document wide styling and structuring of the spreadsheet
document. Among them are style family suppliers for cells and pages, and a number formats
supplier.

Besides these five architectural areas, there are document and calculation aspects shown at the
bottom of the illustration. The document aspects of our model are: it is printable, storable, and
modifiable, it can be protected and audited, and it supplies general information about itself. On the
lower left of the illustration, the calculation aspects are listed. Although almost all spreadsheet
functionality can be found at the spreadsheet objects, a few common functions are bound to the
spreadsheet document model: goal seeking, consolidation and recalculation of all cells.

Finally, the document model has a controller that provides access to the graphical user interface of
the model and has knowledge about the current view status in the user interface (see the upper left
of the illustration).

The usage of the spreadsheet objects in the spreadsheets container is discussed in detail in the
section 9.3 Spreadsheet Documents - Working with Spreadsheets. Before discussing spreadsheet objects,
consider two examples and how they handle a spreadsheet document, that is, how to create, open,
save and print.

9.1.1 Example: Adding a New Spreadsheet
The following helper method opens a new spreadsheet document component. The method
getRemoteServiceManager() retrieves a connection. Refer to chapter 2 First Steps for additional
information.
import com.sun.star.lang.XComponent;
import com.sun.star.frame.XComponentLoader;
import com.sun.star.beans.PropertyValue;

...

protected XComponent newSpreadsheetComponent() throws java.lang.Exception {
 String loadUrl = "private:factory/scalc";
 xRemoteServiceManager = this.getRemoteServiceManager(unoUrl);
 Object desktop = xRemoteServiceManager.createInstanceWithContext(
 "com.sun.star.frame.Desktop", xRemoteContext);
 XComponentLoader xComponentLoader = (XComponentLoader)UnoRuntime.queryInterface(
 XComponentLoader.class, desktop);
 PropertyValue[] loadProps = new PropertyValue[0];
 return xComponentLoader.loadComponentFromURL(loadUrl, "_blank", 0, loadProps);
}

Our helper returns a com.sun.star.lang.XComponent interface for the recently loaded document.
Now the XComponent is passed to the following method insertSpreadsheet() to add a new
spreadsheet to our document. (Spreadsheet/SpreadsheetDocHelper.java)
import com.sun.star.sheet.XSpreadsheetDcoument;
import com.sun.star.sheet.XSpreadsheet;

...

/** Inserts a new empty spreadsheet with the specified name.
 @param xSheetComponent The XComponent interface of a loaded document object
 @param aName The name of the new sheet.
 @param nIndex The insertion index.
 @return The XSpreadsheet interface of the new sheet.

633

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html

 */
public XSpreadsheet insertSpreadsheet(
 XComponent xSheetComponent, String aName, short nIndex) {
 XSpreadsheetDocument xDocument = (XSpreadsheetDocument)UnoRuntime.queryInterface(
 XSpreadsheetDocument.class, xSheetComponent);

 // Collection of sheets
 com.sun.star.sheet.XSpreadsheets xSheets = xDocument.getSheets();
 com.sun.star.sheet.XSpreadsheet xSheet = null;

 try {
 xSheets.insertNewByName(aName, nIndex);
 xSheet = xSheets.getByName(aName);
 } catch (Exception ex) {
 }

 return xSheet;
}

9.1.2 Example: Editing Spreadsheet Cells
The method insertSpreadsheet() returns a com.sun.star.sheet.XSpreadsheet interface. This
interface is passed to the method below, which shows how to access and modify the content and
formatting of single cells. The interface com.sun.star.sheet.XSpreadsheet returned by
insertSpreadsheet() is derived from com.sun.star.table.XCellRange. By working with it,
cells can be accessed immediately using getCellByPosition(): (Spreadsheet/GeneralTableSa-
mple.java)
void cellWork(XSpreadsheet xRange) {

 com.sun.star.beans.XPropertySet xPropSet = null;
 com.sun.star.table.XCell xCell = null;

 // Access and modify a VALUE CELL
 xCell = xRange.getCellByPosition(0, 0);
 // Set cell value.
 xCell.setValue(1234);

 // Get cell value.
 double nDblValue = xCell.getValue() * 2;
 xRange.getCellByPosition(0, 1).setValue(nDblValue);

 // Create a FORMULA CELL
 xCell = xRange.getCellByPosition(0, 2);
 // Set formula string.
 xCell.setFormula("=1/0");

 // Get error type.
 boolean bValid = (xCell.getError() == 0);
 // Get formula string.
 String aText = "The formula " + xCell.getFormula() + " is ";
 aText += bValid ? "valid." : "erroneous.";

 // Insert a TEXT CELL using the XText interface
 xCell = xRange.getCellByPosition(0, 3);
 com.sun.star.text.XText xCellText = (com.sun.star.text.XText)
 UnoRuntime.queryInterface(com.sun.star.text.XText.class, xCell);
 com.sun.star.text.XTextCursor xTextCursor = xCellText.createTextCursor();
 xCellText.insertString(xTextCursor, aText, false);
}

9.2 Handling Spreadsheet Document Files

9.2.1 Creating and Loading Spreadsheet Documents
If a document in OpenOffice.org API is required, begin by getting a
com.sun.star.frame.Desktop service from the service manager. The desktop handles all docu-
ment components in OpenOffice.org API. It is discussed thoroughly in the chapter 7 Office Develop-

634 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheet.html

ment. Office documents are often called components, because they support the
com.sun.star.lang.XComponent interface. An XComponent is a UNO object that can be disposed
of directly and broadcast an event to other UNO objects when the object is disposed.

The Desktop can load new and existing components from a URL. For this purpose it has a
com.sun.star.frame.XComponentLoader interface that has one single method to load and instan-
tiate components from a URL into a frame:

com::sun::star::lang::XComponent loadComponentFromURL([IN] string aURL,
 [IN] string aTargetFrameName,
 [IN] long nSearchFlags,
 [IN] sequence <com::sun::star::beans::PropertyValue[] aArgs >)

The interesting parameters in our context is the URL that describes the resource that is loaded and
the load arguments. For the target frame, pass a "_blank" and set the search flags to 0. In most
cases, existing frames are not reused.

The URL can be a file: URL, an http: URL, an ftp: URL or a private: URL. Locate the correct
URL format in the Load URL box in the function bar of OpenOffice.org API. For new spreadsheet
documents, a special URL scheme is used. The scheme is "private:", followed by "factory". The
resource is "scalc" for OpenOffice.org API spreadsheet documents. For a new spreadsheet docu-
ment, use "private:factory/scalc".
The load arguments are described in com.sun.star.document.MediaDescriptor. The properties
AsTemplate and Hidden are boolean values and used for programming. If AsTemplate is true, the
loader creates a new untitled document from the given URL. If it is false, template files are loaded
for editing. If Hidden is true, the document is loaded in the background. This is useful to generate
a document in the background without letting the user observe what is happening. For instance,
use it to generate a document and print it out without previewing. Refer to 7 Office Development for
other available options. This snippet loads a document in hidden mode:
 // the method getRemoteServiceManager is described in the chapter First Steps
 mxRemoteServiceManager = this.getRemoteServiceManager(unoUrl);

 // retrieve the Desktop object, we need its XComponentLoader
 Object desktop = mxRemoteServiceManager.createInstanceWithContext(
 "com.sun.star.frame.Desktop", mxRemoteContext);

 // query the XComponentLoader interface from the Desktop service
 XComponentLoader xComponentLoader = (XComponentLoader)UnoRuntime.queryInterface(
 XComponentLoader.class, desktop);

 // define load properties according to com.sun.star.document.MediaDescriptor

 /* or simply create an empty array of com.sun.star.beans.PropertyValue structs:
 PropertyValue[] loadProps = new PropertyValue[0]
 */

 // the boolean property Hidden tells the office to open a file in hidden mode
 PropertyValue[] loadProps = new PropertyValue[1];
 loadProps[0] = new PropertyValue();
 loadProps[0].Name = "Hidden";
 loadProps[0].Value = new Boolean(true);
 loadUrl = "file:///c:/MyCalcDocument.ods"

 // load
 return xComponentLoader.loadComponentFromURL(loadUrl, "_blank", 0, loadProps);

9.2.2 Saving Spreadsheet Documents

Storing
Documents are storable through their interface com.sun.star.frame.XStorable. This interface is
discussed in detail in 7 Office Development. An XStorable implements these operations:

boolean hasLocation()

635

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html

string getLocation()
boolean isReadonly()
void store()
void storeAsURL([in] string aURL, [in] sequence< com::sun::star::beans::PropertyValue > aArgs)
void storeToURL([in] string aURL, [in] sequence< com::sun::star::beans::PropertyValue > aArgs)

The method names are evident. The method storeAsUrl() is the exact representation of File �
Save As from the File menu, that is, it changes the current document location. In contrast, store-
ToUrl() stores a copy to a new location, but leaves the current document URL untouched.

Exporting
For exporting purposes, a filter name can be passed that triggers an export to other file formats.
The property needed for this purpose is the string argument FilterName that takes filter names
defined in the configuration file:

<OfficePath>\share\config\registry\instance\org\openoffice\Office\TypeDetection.xml

In TypeDetection.xml look for <Filter/> elements, their cfg:name attribute contains the needed
strings for FilterName. The proper filter name for StarWriter 5.x is "StarWriter 5.0", and the export
format "MS Word 97" is also popular. This is the element in TypeDetection.xml that describes the
MS Excel 97 filter:
<Filter cfg:name="MS Excel 97">
 <Installed cfg:type="boolean">true</Installed>
 <UIName cfg:type="string" cfg:localized="true">
 <cfg:value xml:lang="en-US">Microsoft Excel 97/2000/XP</cfg:value>
 </UIName>
 <Data cfg:type="string">5,calc_MS_Excel_97,com.sun.star.sheet.SpreadsheetDocument,,3,,0,,</Data>
 </Filter>

The following method stores a document using this filter:
/** Store a document, using the MS Excel 97/2000/XP Filter
 */
protected void storeDocComponent(XComponent xDoc, String storeUrl) throws java.lang.Exception {

 XStorable xStorable = (XStorable)UnoRuntime.queryInterface(XStorable.class, xDoc);
 PropertyValue[] storeProps = new PropertyValue[1];
 storeProps[0] = new PropertyValue();
 storeProps[0].Name = "FilterName";
 storeProps[0].Value = "MS Excel 97";
 xStorable.storeAsURL(storeUrl, storeProps);
}

If an empty array of PropertyValue structs is passed, the native .ods format of OpenOffice.org
API is used.

Filter Options
Loading and saving OpenOffice.org API documents is described in 7.1.5 Office Development -
OpenOffice.org Application Environment - Handling Documents. This section lists all the filter names
for spreadsheet documents and describes the filter options for text file import.

The filter name and options are passed on loading or saving a document in a sequence of
com.sun.star.beans.PropertyValues. The property FilterName contains the name and the
property FilterOptions contains the filter options.

All filter names are case-sensitive. For compatibility reasons the filter names will not be changed. Therefore,
some of the filters seem to have �curious� names.

636 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html

The list of filter names (the last two columns show the possible directions of the filters):

Filter name Description Import Export

StarOffice XML (Calc) Standard XML filter ● ●

calc_StarOffice_XML_Calc_Template XML filter for templates ● ●

StarCalc 5.0 The binary format of StarOffice Calc 5.x ● ●

StarCalc 5.0 Vorlage/Template StarOffice Calc 5.x templates ● ●

StarCalc 4.0 The binary format of StarCalc 4.x ● ●

StarCalc 4.0 Vorlage/Template StarCalc 4.x templates ● ●

StarCalc 3.0 The binary format of StarCalc 3.x ● ●

StarCalc 3.0 Vorlage/Template StarCalc 3.x templates ● ●

HTML (StarCalc) HTML filter ● ●

calc_HTML_WebQuery HTML filter for external data queries ●

MS Excel 97 Microsoft Excel 97/2000/XP ● ●

MS Excel 97 Vorlage/Template Microsoft Excel 97/2000/XP templates ● ●

MS Excel 95 Microsoft Excel 5.0/95 ● ●

MS Excel 5.0/95 Different name for the same filter ● ●

MS Excel 95 Vorlage/Template Microsoft Excel 5.0/95 templates ● ●

MS Excel 5.0/95 Vorlage/Template Different name for the same filter ● ●

MS Excel 4.0 Microsoft Excel 2.1/3.0/4.0 ●

MS Excel 4.0 Vorlage/Template Microsoft Excel 2.1/3.0/4.0 templates ●

Lotus Lotus 1-2-3 ●

Text - txt - csv (StarCalc) Comma separated values ● ●

Rich Text Format (StarCalc) ● ●

dBase ● ●

SYLK Symbolic Link ● ●

DIF Data Interchange Format ● ●

Filter Options for Lotus, dBase and DIF Filters

These filters accept a string containing the numerical index of the used character set for single-byte
characters, that is, 0 for the system character set.

Filter Options for the CSV Filter

This filter accepts an option string containing five tokens, separated by commas. The following
table shows an example string for a file with four columns of type date � number � number -
number. In the table the tokens are numbered from (1) to (5). Each token is explained below.

637

Example Filter Options
String

Field
Separator
(1)

Text
Delimiter
(2)

Character
Set
(3)

Number of
First Line
(4)

Cell Format Codes
for the four Columns
(5)

Colum
n

Code

File Format:
Four columns
date � num � num � num

, " System line no. 1 1
2
3
4

YY/MM/DD =
5
Standard = 1
Standard = 1
Standard = 1

Token 44 34 0 1 1/5/2/1/3/1/4/1

For the filter options above, set the PropertyValue FilterOptions in the load arguments to
"44,34,0,1,1/5/2/1/3/1/4/1". There are a number of possible settings for the five tokens.

1. Field separator(s) as ASCII values. Multiple values are separated by the slash sign (�/�), that is,
if the values are separated by semicolons and horizontal tabulators, the token would be 59/9.
To treat several consecutive separators as one, the four letters /MRG have to be appended to the
token. If the file contains fixed width fields, the three letters FIX are used.

2. The text delimiter as ASCII value, that is, 34 for double quotes and 39 for single quotes.

3. The character set used in the file as described above.

4. Number of the first line to convert. The first line in the file has the number 1.

5. Cell format of the columns. The content of this token depends on the value of the first token.

• If value separators are used, the form of this token is column/format[/column/format/...]
where column is the number of the column, with 1 being the leftmost column. The
format is explained below.

• If the first token is FIX it has the form start/format[/start/format/...], where start is the
number of the first character for this field, with 0 being the leftmost character in a line.
The format is explained below.

Format specifies which cell format should be used for a field during import:

Format Code Meaning

1 Standard

2 Text

3 MM/DD/YY

4 DD/MM/YY

5 YY/MM/DD

6 -

7 -

8 -

9 ignore field (do not import)

10 US-English

The type code 10 indicates that the content of a field is US-English. This is useful if a field
contains decimal numbers that are formatted according to the US system (using �.� as
decimal separator and �,� as thousands separator). Using 10 as a format specifier for this

638 OpenOffice.org 2.3 Developer's Guide • June 2007

field tells OpenOffice.org API to correctly interpret its numerical content, even if the
decimal and thousands separator in the current language are different.

9.2.3 Printing Spreadsheet Documents

Printer and Print Job Settings
Printing is a common office functionality. The chapter 7 Office Development provides in-depth
information about it. The spreadsheet document implements the com.sun.star.view.XPrintable
interface for printing. It consists of three methods:

sequence< com::sun::star::beans::PropertyValue > getPrinter()
void setPrinter([in] sequence< com::sun::star::beans::PropertyValue > aPrinter)
void print([in] sequence< com::sun::star::beans::PropertyValue > xOptions)

The following code is used with a given document xDoc to print to the standard printer without
any settings:
 // query the XPrintable interface from your document
 XPrintable xPrintable = (XPrintable)UnoRuntime.queryInterface(XPrintable.class, xDoc);

 // create an empty printOptions array
 PropertyValue[] printOpts = new PropertyValue[0];

 // kick off printing
 xPrintable.print(printOpts);

There are two groups of properties involved in general printing. The first one is used with
setPrinter() and getPrinter(), and controls the printer, and the second is passed to print()
and controls the print job.

com.sun.star.view.PrinterDescriptor comprises the properties for the printer:

Properties of com.sun.star.view.PrinterDescriptor

Name string � Specifies the name of the printer queue to be used.

PaperOrientation com.sun.star.view.PaperOrientation Specifies the orientation of
the paper.

PaperFormat com.sun.star.view.PaperFormat Specifies a predefined paper size
or if the paper size is a user-defined size.

PaperSize com.sun.star.awt.Size Specifies the size of the paper in 100th mm.

IsBusy boolean � Indicates if the printer is busy.

CanSetPaperOrientation boolean � Indicates if the printer allows changes to PaperOrientation.

CanSetPaperFormat boolean � Indicates if the printer allows changes to PaperFormat.

CanSetPaperSize boolean � Indicates if the printer allows changes to PaperSize.

com.sun.star.view.PrintOptions contains the following possibilities for a print job:

Properties of com.sun.star.view.PrintOptions
CopyCount short � Specifies the number of copies to print.

FileName string � If set, specifies the name of the file to print to.

Collate boolean � Advises the printer to collate the pages of the copies. If true, a
whole document is printed prior to the next copy, otherwise the page
copies are completed together.

639

http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrintOptions.html#Collate
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrintOptions.html#FileName
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrintOptions.html#CopyCount
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrintOptions.html#CopyCount
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrintOptions.html#CopyCount
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrintOptions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrintOptions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrintOptions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrintOptions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrintOptions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrintOptions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html#CanSetPaperSize
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html#CanSetPaperFormat
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html#CanSetPaperOrientation
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html#IsBusy
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Size.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Size.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Size.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html#PaperSize
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PaperFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PaperFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PaperFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html#PaperFormat
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PaperOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PaperOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PaperOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html#PaperOrientation
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html#Name
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XPrintable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XPrintable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XPrintable.html

Sort boolean � Advises the printer to sort the pages of the copies.

Pages string � Specifies the pages to print with the same format as in the print
dialog of the GUI, for example, "1, 3, 4-7, 9-".

The following method uses PrinterDescriptor and PrintOptions to print to a special printer,
and preselect the pages to print.
protected void printDocComponent(XComponent xDoc) throws java.lang.Exception {

 XPrintable xPrintable = (XPrintable)UnoRuntime.queryInterface(XPrintable.class, xDoc);
 PropertyValue[] printerDesc = new PropertyValue[1];
 printerDesc[0] = new PropertyValue();
 printerDesc[0].Name = "Name";
 printerDesc[0].Value = "5D PDF Creator";

 xPrintable.setPrinter(printerDesc);

 PropertyValue[] printOpts = new PropertyValue[1];
 printOpts[0] = new PropertyValue();
 printOpts[0].Name = "Pages";
 printOpts[0].Value = "3-5,7";

 xPrintable.print(printOpts);
}

Page Breaks and Scaling for Printout
Manual page breaks can be inserted and removed using the property IsStartOfNewPage of the
services com.sun.star.table.TableColumn and com.sun.star.table.TableRow. For details,
refer to the section about page breaks in the chapter 9 Spreadsheet Documents.

To reduce the page size of a sheet so that the sheet fits on a fixed number of printout pages, use the
properties PageScale and ScaleToPages of the current page style. Both of the properties are
short numbers. The PageScale property expects a percentage and ScaleToPages is the number of
pages the printout is to fit. The page style is available through the interface
com.sun.star.style.XStyleFamiliesSupplier of the document component, and is described in
the chapter 9.4.1 Spreadsheet Documents - Overall Document Features - Styles.

Print Areas
The Interface com.sun.star.sheet.XPrintAreas is available at spreadsheets. It provides access
to the addresses of all printable cell ranges, represented by a sequence of
com.sun.star.table.CellRangeAddress structs.

Methods of com.sun.star.sheet.XPrintAreas

getPrintAreas() Returns the print areas of the sheet.

setPrintAreas() Sets the print areas of the sheet.

getPrintTitleColumns() Returns true if the title columns are repeated on all subsequent print pages
to the right.

setPrintTitleColumns() Specifies if the title columns are repeated on all subsequent print pages to
the right.

getTitleColumns() Returns the range of columns that are marked as title columns.

setTitleColumns() Sets the range of columns marked as title columns.

getPrintTitleRows() Returns true if the title rows are repeated on all subsequent print pages to
the bottom.

640 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XPrintAreas.html#getPrintTitleRows
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XPrintAreas.html#getPrintTitleRows
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XPrintAreas.html#getPrintTitleRows
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XPrintAreas.html#setTitleColumns
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XPrintAreas.html#setTitleColumns
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XPrintAreas.html#setTitleColumns
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XPrintAreas.html#getTitleColumns
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XPrintAreas.html#getTitleColumns
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XPrintAreas.html#getTitleColumns
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XPrintAreas.html#setPrintTitleColumns
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XPrintAreas.html#setPrintTitleColumns
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XPrintAreas.html#setPrintTitleColumns
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XPrintAreas.html#getPrintTitleColumns
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XPrintAreas.html#getPrintTitleColumns
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XPrintAreas.html#getPrintTitleColumns
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XPrintAreas.html#setPrintAreas
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XPrintAreas.html#setPrintAreas
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XPrintAreas.html#setPrintAreas
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XPrintAreas.html#getPrintAreas
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XPrintAreas.html#getPrintAreas
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XPrintAreas.html#getPrintAreas
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XPrintAreas.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XPrintAreas.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XPrintAreas.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellRangeAddress.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellRangeAddress.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellRangeAddress.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XPrintAreas.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XPrintAreas.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XPrintAreas.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/XStyleFamiliesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/XStyleFamiliesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/XStyleFamiliesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableRow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableRow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableRow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableColumn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableColumn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableColumn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrintOptions.html#Pages
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrintOptions.html#Sort

Methods of com.sun.star.sheet.XPrintAreas

setPrintTitleRows() Specifies if the title rows are repeated on all subsequent print pages to the
bottom.

getTitleRows() Returns the range of rows that are marked as title rows.

setTitleRows() Sets the range of rows marked as title rows.

9.3 Working with Spreadsheet Documents

9.3.1 Document Structure

Spreadsheet Document
The whole spreadsheet document is represented by the service com.sun.star.sheet.Spread-
sheetDocument. It implements interfaces that provide access to the container of spreadsheets and
methods to modify the document wide contents, for instance, data consolidation.

641

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XPrintAreas.html#setTitleRows
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XPrintAreas.html#setTitleRows
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XPrintAreas.html#setTitleRows
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XPrintAreas.html#getTitleRows
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XPrintAreas.html#getTitleRows
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XPrintAreas.html#getTitleRows
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XPrintAreas.html#setPrintTitleRows
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XPrintAreas.html#setPrintTitleRows
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XPrintAreas.html#setPrintTitleRows

A spreadsheet document contains a collection of spreadsheets with at least one spreadsheet, repre-
sented by the service com.sun.star.sheet.Spreadsheets. The method getSheets() of the Inter-
face com.sun.star.sheet.XSpreadsheetDocument returns the interface
com.sun.star.sheet.XSpreadsheets for accessing the container of sheets.

642 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 9.2: Spreadsheet Document

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheets.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheets.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheets.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheetDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheetDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheetDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheets.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheets.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheets.html

When the spreadsheet container is retrieved from a document using its getSheets() method, it is
possible to access the sheets in three different ways:

by index
Using the interface com.sun.star.container.XIndexAccess allows access to spreadsheets by
their index.

with an enumeration
Using the service com.sun.star.sheet.SpreadsheetsEnumeration spreadsheets can be
accessed as an enumeration.

by name
The interface com.sun.star.sheet.XSpreadsheets is derived from
com.sun.star.container.XNameContainer and therefore contains all methods for accessing
the sheets with a name. It is possible to get a spreadsheet using
com.sun.star.container.XNameAccess) to replace it with another sheet (interface
com.sun.star.container.XNameReplace), and to insert and remove a spreadsheet (interface
com.sun.star.container.XNameContainer).

The following two helper methods demonstrate how spreadsheets are accessed by their indexes
and their names: (Spreadsheet/SpreadsheetDocHelper.java)

643

Illustration 9.3: Spreadsheets Container

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheets.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheets.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheets.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetsEnumeration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetsEnumeration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetsEnumeration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html

/** Returns the spreadsheet with the specified index (0-based).
 @param xDocument The XSpreadsheetDocument interface of the document.
 @param nIndex The index of the sheet.
 @return The XSpreadsheet interface of the sheet. */
public com.sun.star.sheet.XSpreadsheet getSpreadsheet(
 com.sun.star.sheet.XSpreadsheetDocument xDocument, int nIndex) {

 // Collection of sheets
 com.sun.star.sheet.XSpreadsheets xSheets = xDocument.getSheets();
 com.sun.star.sheet.XSpreadsheet xSheet = null;

 try {
 com.sun.star.container.XIndexAccess xSheetsIA = (com.sun.star.container.XIndexAccess)
 UnoRuntime.queryInterface(com.sun.star.container.XIndexAccess.class, xSheets);
 xSheet = (com.sun.star.sheet.XSpreadsheet) xSheetsIA.getByIndex(nIndex);
 } catch (Exception ex) {
 }

 return xSheet;
}

/** Returns the spreadsheet with the specified name.
 @param xDocument The XSpreadsheetDocument interface of the document.
 @param aName The name of the sheet.
 @return The XSpreadsheet interface of the sheet. */
public com.sun.star.sheet.XSpreadsheet getSpreadsheet(
 com.sun.star.sheet.XSpreadsheetDocument xDocument,
 String aName) {

 // Collection of sheets
 com.sun.star.sheet.XSpreadsheets xSheets = xDocument.getSheets();
 com.sun.star.sheet.XSpreadsheet xSheet = null;

 try {
 com.sun.star.container.XNameAccess xSheetsNA = (com.sun.star.container.XNameAccess)
 UnoRuntime.queryInterface(com.sun.star.container.XNameAccess.class, xSheets);
 xSheet = (com.sun.star.sheet.XSpreadsheet) xSheetsNA.getByName(aName);
 } catch (Exception ex) {
 }

 return xSheet;
}

The interface com.sun.star.sheet.XSpreadsheets contains additional methods that use the
name of spreadsheets to add new sheets, and to move and copy them:

 Methods of com.sun.star.sheet.XSpreadsheets

insertNewByName() Creates a new empty spreadsheet with the specified name and
inserts it at the specified position.

moveByName() Moves the spreadsheet with the specified name to a new position.

copyByName() Creates a copy of a spreadsheet, renames it and inserts it at a new
position.

The method below shows how a new spreadsheet is inserted into the spreadsheet collection of a
document with the specified name. (Spreadsheet/SpreadsheetDocHelper.java)
/** Inserts a new empty spreadsheet with the specified name.
 @param xDocument The XSpreadsheetDocument interface of the document.
 @param aName The name of the new sheet.
 @param nIndex The insertion index.
 @return The XSpreadsheet interface of the new sheet.
 */
public com.sun.star.sheet.XSpreadsheet insertSpreadsheet(
 com.sun.star.sheet.XSpreadsheetDocument xDocument,
 String aName, short nIndex) {
 // Collection of sheets
 com.sun.star.sheet.XSpreadsheets xSheets = xDocument.getSheets();
 com.sun.star.sheet.XSpreadsheet xSheet = null;

 try {
 xSheets.insertNewByName(aName, nIndex);
 xSheet = xSheets.getByName(aName);
 } catch (Exception ex) {
 }

 return xSheet;
}

644 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheets.html#copyByName
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheets.html#copyByName
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheets.html#copyByName
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheets.html#moveByName
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheets.html#moveByName
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheets.html#moveByName
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheets.html#insertNewByName
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheets.html#insertNewByName
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheets.html#insertNewByName
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheets.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheets.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheets.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheets.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheets.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheets.html

Spreadsheet Services - Overview
The previous section introduced the organization of the spreadsheets in a document and how they
can be handled. This section discusses the spreadsheets themselves. The following illustration
provides an overview about the main API objects that can be used in a spreadsheet.

The main services in a spreadsheet are com.sun.star.sheet.Spreadsheet,
com.sun.star.sheet.SheetCellRange, the cell service com.sun.star.sheet.SheetCell, the
collection of cell ranges com.sun.star.sheet.SheetCellRanges and the services
com.sun.star.table.TableColumn and com.sun.star.table.TableRow. An overview of the
capabilities of these services is provided below.

Capabilities of Spreadsheet

The spreadsheet is a com.sun.star.sheet.Spreadsheet service that includes the service
com.sun.star.sheet.SheetCellRange, that is, a spreadsheet is a cell range with additional capa-
bilities concerning the entire sheet:

645

Illustration 9.4: Main Spreadsheet Services

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableRow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableRow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableRow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableColumn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableColumn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableColumn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheet.html

• It can be named using com.sun.star.container.XNamed.

• It has interfaces for sheet analysis. Data pilot tables, sheet outlining, sheet auditing (detective)
and scenarios all are controlled from the spreadsheet object. The corresponding interfaces are
com.sun.star.sheet.XDataPilotTablesSupplier, com.sun.star.sheet.XScenariosSup-
plier, com.sun.star.sheet.XSheetOutline and com.sun.star.sheet.XSheetAuditing.

• Cells can be inserted, and entire cell ranges can be removed, moved or copied on the spread-
sheet level using com.sun.star.sheet.XCellRangeMovement.

• Drawing elements in a spreadsheet are part of the draw page available through
com.sun.star.drawing.XDrawPageSupplier.

• Certain sheet printing features are accessed at the spreadsheet. The
com.sun.star.sheet.XPrintAreas and com.sun.star.sheet.XSheetPageBreak are used to
get page breaks and control print areas.

• The spreadsheet maintains charts. The interface com.sun.star.table.XTableChartsSupplier
controls charts in the spreadsheet.

• All cell annotations can be retrieved on the spreadsheet level with
com.sun.star.sheet.XSheetAnnotationsSupplier.

646 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 9.5: Spreadsheet

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAnnotationsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAnnotationsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAnnotationsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableChartsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableChartsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableChartsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetPageBreak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetPageBreak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetPageBreak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XPrintAreas.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XPrintAreas.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XPrintAreas.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPageSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPageSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPageSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeMovement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeMovement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeMovement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAuditing.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAuditing.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAuditing.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetOutline.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetOutline.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetOutline.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XScenariosSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XScenariosSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XScenariosSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XScenariosSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XScenariosSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XScenariosSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDataPilotTablesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDataPilotTablesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDataPilotTablesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html

• A spreadsheet can be permanently protected from changes through
com.sun.star.util.XProtectable.

Capabilities of SheetCellRange

The spreadsheet, as well as the cell ranges in a spreadsheet are com.sun.star.sheet.SheetCell-
Range services. A SheetCellRange is a rectangular range of calculation cells that includes the
following services:

647

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XProtectable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XProtectable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XProtectable.html

The interfaces supported by a SheetCellRange are depicted in the following illustration:

648 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 9.6: Services supported by SheetCellRange

A SheetCellRange has the following capabilities:

• Supplies cells and sub-ranges of cells, as well as rows and columns. It has the interfaces
com.sun.star.sheet.XSheetCellRange and com.sun.star.table.XColumnRowRange.

• Performs calculations with a SheetCellRange. The interface com.sun.star.sheet.XSheetOp-
eration is for aggregate operations, com.sun.star.sheet.XMultipleOperation copies
formulas adjusting their cell references, com.sun.star.sheet.XSubTotalCalculatable
applies and removes sub totals, and com.sun.star.sheet.XArrayFormulaRange handles array
formulas.

649

Illustration 9.7: SheetCellRange Interfaces

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XArrayFormulaRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XArrayFormulaRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XArrayFormulaRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSubTotalCalculatable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSubTotalCalculatable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSubTotalCalculatable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XMultipleOperation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XMultipleOperation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XMultipleOperation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetOperation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetOperation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetOperation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetOperation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetOperation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetOperation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XColumnRowRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XColumnRowRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XColumnRowRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRange.html

• Formats cells in a range. The settings affect all cells in the range. There are cell properties, char-
acter properties and paragraph properties for formatting purposes. Additionally, a SheetCell-
Range supports auto formats with com.sun.star.table.XAutoFormattable and the content
of the cells can be indented using com.sun.star.util.XIndent. The interfaces
com.sun.star.sheet.XCellFormatRangesSupplier and com.sun.star.sheet.XUnique-
CellFormatRangesSupplier obtain enumeration of cells that differ in formatting.

• Works with the data in a cell range through a sequence of sequences of any that maps to the
two-dimensional cell array of the range. This array is available through
com.sun.star.sheet.XCellRangeData.

• Fills a cell range with data series automatically through its interface
com.sun.star.sheet.XCellSeries.

• Imports data from a database using com.sun.star.util.XImportable.

• Searches and replaces cell contents using com.sun.star.util.XSearchable.

• Perform queries for cell contents, such as formula cells, formula result types, or empty cells. The
interface com.sun.star.sheet.XCellRangesQuery of the included
com.sun.star.sheet.SheetRangesQuery service is responsible for this task.

• Merges cells into a single cell through com.sun.star.util.XMergeable.

• Sorts and filters the content of a SheetCellRange, using com.sun.star.util.XSortable,
com.sun.star.sheet.XSheetFilterable and com.sun.star.sheet.XSheetFilterableEx.

• Provides its unique range address in the spreadsheet document, that is, the start column and
row, end column and row, and the sheet where it is located. The
com.sun.star.sheet.XCellRangeAddressable:getRangeAddress() returns the corre-
sponding address description struct com.sun.star.table.CellRangeAddress.

• Charts can be based on a SheetCellRange, because it supports com.sun.star.chart.XChart-
DataArray.

650 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDataArray.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDataArray.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDataArray.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDataArray.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDataArray.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDataArray.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellRangeAddress.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellRangeAddress.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellRangeAddress.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeAddressable.html#getRangeAddress
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeAddressable.html#getRangeAddress
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeAddressable.html#getRangeAddress
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetFilterableEx.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetFilterableEx.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetFilterableEx.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetFilterable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetFilterable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetFilterable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XSortable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XSortable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XSortable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XMergeable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XMergeable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XMergeable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetRangesQuery.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetRangesQuery.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetRangesQuery.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XSearchable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XSearchable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XSearchable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XImportable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XImportable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XImportable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellSeries.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellSeries.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellSeries.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XUniqueCellFormatRangesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XUniqueCellFormatRangesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XUniqueCellFormatRangesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XUniqueCellFormatRangesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XUniqueCellFormatRangesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XUniqueCellFormatRangesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellFormatRangesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellFormatRangesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellFormatRangesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XIndent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XIndent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XIndent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XAutoFormattable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XAutoFormattable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XAutoFormattable.html

Capabilities of SheetCell

A com.sun.star.sheet.SheetCell is the base unit of OpenOffice.org Calc tables. Values,
formulas and text required for calculation jobs are all written into sheet cells. The SheetCell
includes the following services:

651

Illustration 9.8: SheetCell

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCell.html

The SheetCell exports the following interfaces:

The SheetCell service has the following capabilities:

• It can access the cell content. It can contain numeric values that are used for calculations,
formulas that operate on these values, and text supporting full-featured formatting and hyper-
link text fields. The access to the cell values and formulas is provided through the SheetCell
parent service com.sun.star.table.Cell. The interface com.sun.star.table.XCell is
capable of manipulating the values and formulas in a cell. For text, the service
com.sun.star.text.Text with the main interface com.sun.star.text.XText is available at a
SheetCell. Its text fields are accessed through com.sun.star.text.XTextFieldsSupplier.

• A SheetCell is a special case of a SheetCellRange. As such, it has all capabilities of the
com.sun.star.sheet.SheetCellRange described above.

• It can have an annotation: com.sun.star.sheet.XSheetAnnotationAnchor.

• It can provide its unique cell address in the spreadsheet document, that is, its column, row and
the sheet it is located in. The com.sun.star.sheet.XCellAddressable:getCellAddress()
returns the appropriate com.sun.star.table.CellAddress struct.

• It can be locked temporarily against user interaction with com.sun.star.document.XAction-
Lockable.

Capabilities of SheetCellRanges Container

The container of com.sun.star.sheet.SheetCellRanges is used where several cell ranges have
to be handled at once for cell query results and other situations. The SheetCellRanges service
includes cell, paragraph and character property services, and it offers a query option:

652 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 9.9: SheetCell Interfaces

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XActionLockable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XActionLockable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XActionLockable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XActionLockable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XActionLockable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XActionLockable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellAddress.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellAddress.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellAddress.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellAddressable.html#getCellAddress
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellAddressable.html#getCellAddress
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellAddressable.html#getCellAddress
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAnnotationAnchor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAnnotationAnchor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAnnotationAnchor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextFieldsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextFieldsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextFieldsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/Cell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/Cell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/Cell.html

The interfaces of com.sun.star.sheet.SheetCellRanges are element accesses for the ranges in
the SheetCellRanges container. These interfaces are discussed below.

653

Illustration 9.10: Services of SheetCellRanges

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRanges.html

The SheetCellRanges container has the following capabilities:

• It can be formatted using the character, paragraph and cell property services it includes.

• It yields independent cell ranges through the element access interfaces
com.sun.star.container.XIndexAccess, com.sun.star.container.XNameAccess and
com.sun.star.container.XEnumerationAccess.

• It can access, replace, append and remove ranges by name through
com.sun.star.container.XNameContainer

• It can add new ranges to SheetCellRanges by their address descriptions, access the ranges by
index, and obtain the cells in the ranges. This is possible through the interface
com.sun.star.sheet.XSheetCellRangeContainer that was originally based on
com.sun.star.container.XIndexAccess. The SheetCellRanges maintain a sub-container of
all cells in the ranges that are not empty, obtainable through the getCells() method.

• It can enumerate the ranges using com.sun.star.container.XEnumerationAccess.

• It can query the ranges for certain cell contents, such as formula cells, formula result types or
empty cells. The interface com.sun.star.sheet.XCellRangesQuery of the included
com.sun.star.sheet.SheetRangesQuery service is responsible for this task.

654 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 9.11: Implemented interfaces of SheetCellRanges

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetRangesQuery.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetRangesQuery.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetRangesQuery.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRanges.html#getCells
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRanges.html#getCells
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRanges.html#getCells
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRangeContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRangeContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRangeContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html

• The SheetCellRanges supports selected SheetCellRange features, such as searching and
replacing, indenting, sheet operations and charting.

Capabilities of Columns and Rows

All cell ranges are organized in columns and rows, therefore column and row containers are
retrieved from a spreadsheet, as well as from sub-ranges of a spreadsheet through
com.sun.star.table.XColumnRowRange. These containers are com.sun.star.table.TableCol-
umns and com.sun.star.table.TableRows. Both containers support index and enumeration
access. Only the TableColumns supports name access to the single columns and rows
(com.sun.star.table.TableColumn and com.sun.star.table.TableRow) of a SheetCellRange.

The following UML charts show table columns and rows. The first chart shows columns:

655

Illustration 9.12: Collection of table columns

http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableRow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableRow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableRow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableColumn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableColumn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableColumn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableRows.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableRows.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableRows.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableColumns.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableColumns.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableColumns.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableColumns.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableColumns.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableColumns.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XColumnRowRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XColumnRowRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XColumnRowRange.html

The collection of table rows differs from the collection of columns, that is, it does not support
com.sun.star.container.XNameAccess:

The services for table rows and columns control the table structure and grid size of a cell range:

• The containers for columns and rows have methods to insert and remove columns, and rows by
index in their main interfaces com.sun.star.table.XTableRows and
com.sun.star.table.XTableColumns.

• The services TableColumn and TableRow have properties to adjust their column width and row
height, toggle their visibility, and set page breaks.

Spreadsheet
A spreadsheet is a cell range with additional interfaces and is represented by the service
com.sun.star.sheet.Spreadsheet.

Properties of Spreadsheet

The properties of a spreadsheet deal with its visibility and its page style:

Properties of com.sun.star.sheet.Spreadsheet

IsVisible boolean � Determines if the sheet is visible in the GUI.

656 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 9.13: Collection of table rows

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheet.html#IsVisible
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableColumns.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableColumns.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableColumns.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableRows.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableRows.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableRows.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html

Properties of com.sun.star.sheet.Spreadsheet

PageStyle Contains the name of the page style of this spreadsheet. See 9.4.1 Spread-
sheet Documents - Overall Document Features - Styles for details about
styles.

Naming

The spreadsheet interface com.sun.star.container.XNamed obtains and changes the name of the
spreadsheet, and uses it to get a spreadsheet from the spreadsheet collection. Refer to 9.3.1 Spread-
sheet Documents - Working with Spreadsheets - Document Structure - Spreadsheet Document.

Inserting Cells, Moving and Copying Cell Ranges

The interface com.sun.star.sheet.XCellRangeMovement of the Spreadsheet service supports
inserting and removing cells from a spreadsheet, and copying and moving cell contents. When cells
are copied or moved, the relative references of all formulas are updated automatically. The sheet
index included in the source range addresses should be equal to the index of the sheet of this inter-
face.

 Methods of com.sun.star.sheet.XCellRangeMovement

insertCells]() Inserts a range of empty cells at a specific position. The direction of
the insertion is determined by the parameter nMode (type
com.sun.star.sheet.CellInsertMode).

removeRange() Deletes a range of cells from the spreadsheet. The parameter nMode
(type com.sun.star.sheet.CellDeleteMode) determines how
remaining cells will be moved.

copyRange() Copies the contents of a cell range to another place in the document.

moveRange() Moves the contents of a cell range to another place in the document.
Deletes all contents of the source range.

The following example copies a cell range to another location in the sheet. (Spreadsheet/Spread-
sheetSample.java)
/** Copies a cell range to another place in the sheet.
 @param xSheet The XSpreadsheet interface of the spreadsheet.
 @param aDestCell The address of the first cell of the destination range.
 @param aSourceRange The source range address.
 */
public void doMovementExample(com.sun.star.sheet.XSpreadsheet xSheet,
 com.sun.star.table.CellAddress aDestCell, com.sun.star.table.CellRangeAddress aSourceRange)
 throws RuntimeException, Exception {
 com.sun.star.sheet.XCellRangeMovement xMovement = (com.sun.star.sheet.XCellRangeMovement)
 UnoRuntime.queryInterface(com.sun.star.sheet.XCellRangeMovement.class, xSheet);
 xMovement.copyRange(aDestCell, aSourceRange);
}

Page Breaks

The methods getColumnPageBreaks() and getRowPageBreaks() of the interface
com.sun.star.sheet.XSheetPageBreak return the positions of column and row page breaks,
represented by a sequence of com.sun.star.sheet.TablePageBreakData structs. Each struct
contains the position of the page break and a boolean property that determines if the page break
was inserted manually. Inserting and removing a manual page break uses the property IsStar-
tOfNewPage of the services com.sun.star.table.TableColumn and
com.sun.star.table.TableRow.

657

http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableRow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableRow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableRow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableColumn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableColumn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableColumn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TablePageBreakData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TablePageBreakData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TablePageBreakData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetPageBreak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetPageBreak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetPageBreak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeMovement.html#moveRange
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeMovement.html#moveRange
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeMovement.html#moveRange
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeMovement.html#copyRange
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeMovement.html#copyRange
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeMovement.html#copyRange
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellDeleteMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellDeleteMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellDeleteMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeMovement.html#removeRange
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeMovement.html#removeRange
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeMovement.html#removeRange
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellInsertMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellInsertMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellInsertMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeMovement.html#insertCells
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeMovement.html#insertCells
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeMovement.html#insertCells
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeMovement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeMovement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeMovement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeMovement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeMovement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeMovement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheet.html#PageStyle

The following example prints the positions of all the automatic column page breaks:
(Spreadsheet/SpreadsheetSample.java)
 // --- Print automatic column page breaks ---
 com.sun.star.sheet.XSheetPageBreak xPageBreak = (com.sun.star.sheet.XSheetPageBreak)
 UnoRuntime.queryInterface(com.sun.star.sheet.XSheetPageBreak.class, xSheet);
 com.sun.star.sheet.TablePageBreakData[] aPageBreakArray = xPageBreak.getColumnPageBreaks();

 System.out.print("Automatic column page breaks:");
 for (int nIndex = 0; nIndex < aPageBreakArray.length; ++nIndex)
 if (!aPageBreakArray[nIndex].ManualBreak)
 System.out.print(" " + aPageBreakArray[nIndex].Position);
 System.out.println();

Cell Ranges
A cell range is a rectangular range of cells. It is represented by the service
com.sun.star.sheet.SheetCellRange.

Properties of Cell Ranges

The cell range properties deal with the position and size of a range, conditional formats, and cell
validation during user input.

Properties of com.sun.star.sheet.SheetCellRange
Position
Size

The position and size of the cell in 100th of a millimeter. The posi-
tion is relative to the first cell of the spreadsheet. Note, that this is
not always the first visible cell.

ConditionalFormat
ConditionalFormatLocal

Used to access conditional formats. See 9.3.2 Spreadsheet Docu-
ments - Working with Spreadsheets - Formatting - Conditional Formats
for details.

Validation
ValidationLocal

Used to access data validation. See 9.3.11 Spreadsheet Documents -
Working with Spreadsheets - Other Table Operations - Data Validation
for details.

This service extends the service com.sun.star.table.CellRange to provide common table cell
range functionality.

Cell and Cell Range Access

The interface com.sun.star.sheet.XSheetCellRange is derived from
com.sun.star.table.XCellRange. It provides access to cells of the range and sub ranges, and is
supported by the spreadsheet and sub-ranges of a spreadsheet. The methods in
com.sun.star.sheet.XSheetCellRange are:

com::sun::star::table::XCell getCellByPosition([in] long nColumn, [in] long nRow)
com::sun::star::table::XCellRange getCellRangeByPosition([in] long nLeft, [in] long nTop,
 [in] long nRight, [in] long nBottom)
com::sun::star::table::XCellRange getCellRangeByName ([in] string aRange)
com::sun::star::sheet::XSpreadsheet getSpreadsheet()

The interface com.sun.star.table.XCellRange provides methods to access cell ranges and single
cells from a cell range.

Cells are retrieved by their position. Cell addresses consist of a row index and a column index. The
index is zero-based, that is, the index 0 means the first row or column of the table.

Cell ranges are retrieved:

658 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRange.html#ValidationLocal
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRange.html#Validation
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRange.html#ConditionalFormatLocal
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRange.html#ConditionalFormat
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRange.html#Size
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRange.html#Position
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRange.html

by position
Addresses of cell ranges consist of indexes to the first and last row, and the first and last
column. Range indexes are always zero-based, that is, the index 0 points to the first row or
column of the table.

by name
It is possible to address a cell range over its name in A1:B2 notation as it would appear in the
application.

In a spreadsheet, �A1:B2�, �C1:D2�, or �E5� are valid ranges. Even user defined cell names, range
names, or database range names can be used.

Additionally, XCellRange contains the method getSpreadsheet() that returns the
com.sun.star.sheet.XSpreadsheet interface of the spreadsheet which contains the cell range.
 // --- First cell in a cell range. ---
 com.sun.star.table.XCell xCell = xCellRange.getCellByPosition(0, 0);

 // --- Spreadsheet that contains the cell range. ---
 com.sun.star.sheet.XSpreadsheet xSheet = xCellRange.getSpreadsheet();

There are no methods to modify the contents of all cells of a cell range. Access to cell range format-
ting is supported. Refer to the chapter 9.3.2 Spreadsheet Documents - Working with Spreadsheets -
Formatting for additional details.

In the following example, xRange is an existing cell range (a com.sun.star.table.XCellRange
interface): (Spreadsheet/GeneralTableSample.java)
 com.sun.star.beans.XPropertySet xPropSet = null;
 com.sun.star.table.XCellRange xCellRange = null;

 // *** Accessing a CELL RANGE ***

 // Accessing a cell range over its position.
 xCellRange = xRange.getCellRangeByPosition(2, 0, 3, 1);

 // Change properties of the range.
 xPropSet = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, xCellRange);
 xPropSet.setPropertyValue("CellBackColor", new Integer(0x8080FF));

 // Accessing a cell range over its name.
 xCellRange = xRange.getCellRangeByName("C4:D5");

 // Change properties of the range.
 xPropSet = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, xCellRange);
 xPropSet.setPropertyValue("CellBackColor", new Integer(0xFFFF80));

Merging Cell Ranges into a Single Cell

The cell range interface com.sun.star.util.XMergeable merges and undoes merged cell ranges.

• The method merge() merges or undoes merged the whole cell range.

• The method getIsMerged() determines if the cell range is completely merged.

(Spreadsheet/SpreadsheetSample.java)
 // --- Merge cells. ---
 com.sun.star.util.XMergeable xMerge = (com.sun.star.util.XMergeable)
 UnoRuntime.queryInterface(com.sun.star.util.XMergeable.class, xCellRange);
 xMerge.merge(true);

Column and Row Access

The cell range interface com.sun.star.table.XColumnRowRange accesses the column and row
ranges in the current cell range. A column or row range contains all the cells in the selected column
or row. This type of range has additional properties, such as, visibility, and width or height. For

659

http://api.openoffice.org/docs/common/ref/com/sun/star/table/XColumnRowRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XColumnRowRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XColumnRowRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XMergeable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XMergeable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XMergeable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheet.html

more information, see 9.3.1 Spreadsheet Documents - Working with Spreadsheets - Document Structure -
Columns and Rows.

• The method getColumns() returns the interface com.sun.star.table.XTableColumns of the
collection of columns.

• The method getRows() returns the interface com.sun.star.table.XTableRows of the collec-
tion of rows.

(Spreadsheet/SpreadsheetSample.java)
 // --- Column properties. ---
 com.sun.star.table.XColumnRowRange xColRowRange = (com.sun.star.table.XColumnRowRange)
 UnoRuntime.queryInterface(com.sun.star.table.XColumnRowRange.class, xCellRange);
 com.sun.star.table.XTableColumns xColumns = xColRowRange.getColumns();

 Object aColumnObj = xColumns.getByIndex(0);
 xPropSet = (com.sun.star.beans.XPropertySet) UnoRuntime.queryInterface(
 com.sun.star.beans.XPropertySet.class, aColumnObj);
 xPropSet.setPropertyValue("Width", new Integer(6000));

 com.sun.star.container.XNamed xNamed = (com.sun.star.container.XNamed)
 UnoRuntime.queryInterface(com.sun.star.container.XNamed.class, aColumnObj);
 System.out.println("The name of the wide column is " + xNamed.getName() + ".");

Data Array

The contents of a cell range that are stored in a 2-dimensional array of objects are set and obtained
by the interface com.sun.star.sheet.XCellRangeData.

• The method getDataArray() returns a 2-dimensional array with the contents of all cells of the
range.

• The method setDataArray() fills the data of the passed array into the cells. An empty cell is
created by an empty string. The size of the array has to fit in the size of the cell range.

The following example uses the cell range xCellRange that has the size of 2 columns and 3 rows.
(Spreadsheet/SpreadsheetSample.java)
 // --- Cell range data ---
 com.sun.star.sheet.XCellRangeData xData = (com.sun.star.sheet.XCellRangeData)
 UnoRuntime.queryInterface(com.sun.star.sheet.XCellRangeData.class, xCellRange);

 Object[][] aValues =
 {
 {new Double(1.1), new Integer(10)},
 {new Double(2.2), new String("")},
 {new Double(3.3), new String("Text")}
 };

 xData.setDataArray(aValues);

Absolute Address

The method getCellRangeAddress() of the interface com.sun.star.sheet.XCellRangeAd-
dressable returns a com.sun.star.table.CellRangeAddress struct that contains the absolute
address of the cell in the spreadsheet document, including the sheet index. This is useful to get the
address of cell ranges returned by other methods. (Spreadsheet/SpreadsheetSample.java)
 // --- Get cell range address. ---
 com.sun.star.sheet.XCellRangeAddressable xRangeAddr = (com.sun.star.sheet.XCellRangeAddressable)
 UnoRuntime.queryInterface(com.sun.star.sheet.XCellRangeAddressable.class, xCellRange);
 aRangeAddress = xRangeAddr.getRangeAddress();
 System.out.println("Address of this range: Sheet=" + aRangeAddress.Sheet);
 System.out.println(
 "Start column=" + aRangeAddress.StartColumn + "; Start row=" + aRangeAddress.StartRow);
 System.out.println(
 "End column =" + aRangeAddress.EndColumn + "; End row =" + aRangeAddress.EndRow);

660 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellRangeAddress.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellRangeAddress.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellRangeAddress.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeAddressable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeAddressable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeAddressable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeAddressable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeAddressable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeAddressable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableRows.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableRows.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableRows.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableColumns.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableColumns.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableColumns.html

Fill Series

The interface com.sun.star.sheet.XCellSeries fills out each cell of a cell range with values
based on a start value, step count and fill mode. It is possible to fill a series in each direction, speci-
fied by a com.sun.star.sheet.FillDirection constant. If the fill direction is horizontal, each
row of the cell range forms a separate series. Similarly each column forms a series on a vertical fill.

• The method fillSeries() uses the first cell of each series as start value. For example, if the fill
direction is �To top�, the bottom-most cell of each column is used as the start value. It expects a
fill mode to be used to continue the start value, a com.sun.star.sheet.FillMode constant. If
the values are dates, com.sun.star.sheet.FillDateMode constants describes the mode how
the dates are calculated. If the series reaches the specified end value, the calculation is stopped.

• The method fillAuto() determines the fill mode and step count automatically. It takes a
parameter containing the number of cells to be examined. For example, if the fill direction is
�To top� and the specified number of cells is three, the three bottom-most cells of each column
are used to continue the series.

The following example may operate on the following spreadsheet:

A B C D E F G

1 1
2 4

3 01/30/2002
4 Text 10

5 Jan 10
6

7 1 2
8 05/28/2002 02/28/2002

9 6 4

661

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FillDateMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FillDateMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FillDateMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FillMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FillMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FillMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FillDirection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FillDirection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FillDirection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellSeries.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellSeries.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellSeries.html

Inserting filled series in Java: (Spreadsheet/SpreadsheetSample.java)
public void doSeriesSample(com.sun.star.sheet.XSpreadsheet xSheet) {
 com.sun.star.sheet.XCellSeries xSeries = null;

 // Fill 2 rows linear with end value -> 2nd series is not filled completely
 xSeries = getCellSeries(xSheet, "A1:E2");
 xSeries.fillSeries(
 com.sun.star.sheet.FillDirection.TO_RIGHT, com.sun.star.sheet.FillMode.LINEAR,
 com.sun.star.sheet.FillDateMode.FILL_DATE_DAY, 2, 9);

 // Add months to a date
 xSeries = getCellSeries(xSheet, "A3:E3");
 xSeries.fillSeries(
 com.sun.star.sheet.FillDirection.TO_RIGHT, com.sun.star.sheet.FillMode.DATE,
 com.sun.star.sheet.FillDateMode.FILL_DATE_MONTH, 1, 0x7FFFFFFF);

 // Fill right to left with a text containing a value
 xSeries = getCellSeries(xSheet, "A4:E4");
 xSeries.fillSeries(
 com.sun.star.sheet.FillDirection.TO_LEFT, com.sun.star.sheet.FillMode.LINEAR,
 com.sun.star.sheet.FillDateMode.FILL_DATE_DAY, 10, 0x7FFFFFFF);

 // Fill with an user defined list
 xSeries = getCellSeries(xSheet, "A5:E5");
 xSeries.fillSeries(
 com.sun.star.sheet.FillDirection.TO_RIGHT, com.sun.star.sheet.FillMode.AUTO,
 com.sun.star.sheet.FillDateMode.FILL_DATE_DAY, 1, 0x7FFFFFFF);

 // Fill bottom to top with a geometric series
 xSeries = getCellSeries(xSheet, "G1:G5");
 xSeries.fillSeries(
 com.sun.star.sheet.FillDirection.TO_TOP, com.sun.star.sheet.FillMode.GROWTH,
 com.sun.star.sheet.FillDateMode.FILL_DATE_DAY, 2, 0x7FFFFFFF);

 // Auto fill
 xSeries = getCellSeries(xSheet, "A7:G9");
 xSeries.fillAuto(com.sun.star.sheet.FillDirection.TO_RIGHT, 2);
}

/** Returns the XCellSeries interface of a cell range.
 @param xSheet The spreadsheet containing the cell range.
 @param aRange The address of the cell range.
 @return The XCellSeries interface. */
private com.sun.star.sheet.XCellSeries getCellSeries(
 com.sun.star.sheet.XSpreadsheet xSheet, String aRange) {
 return (com.sun.star.sheet.XCellSeries) UnoRuntime.queryInterface(
 com.sun.star.sheet.XCellSeries.class, xSheet.getCellRangeByName(aRange));
}

This example produces the following result:

A B C D E F G

1 1 3 5 7 9 160
2 4 6 8 80

3 01/30/2002 02/28/2002 03/30/2002 04/30/2002 05/30/2002 40
4 Text 50 Text 40 Text 30 Text 20 Text 10 20

5 Jan Feb Mar Apr May 10
6

7 1 2 3 4 5 6 7
8 05/28/2002 02/28/2002 11/28/2001 08/28/2001 05/28/2001 02/28/2001 11/28/2000

9 6 4 2 0 -2 -4 -6

Operations

The cell range interface com.sun.star.sheet.XSheetOperation computes a value based on the
contents of all cells of a cell range or clears specific contents of the cells.

• The method computeFunction() returns the result of the calculation. The constants
com.sun.star.sheet.GeneralFunction specify the calculation method.

662 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/GeneralFunction.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/GeneralFunction.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/GeneralFunction.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetOperation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetOperation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetOperation.html

• The method clearContents() clears contents of the cells used. The parameter describes the
contents to clear, using the constants of com.sun.star.sheet.CellFlags.

The following code shows how to compute the average of a cell range and clear the cell contents:
 // --- Sheet operation. ---
 // Compute a function
 com.sun.star.sheet.XSheetOperation xSheetOp = (com.sun.star.sheet.XSheetOperation)
 UnoRuntime.queryInterface(com.sun.star.sheet.XSheetOperation.class, xCellRange);

 double fResult = xSheetOp.computeFunction(com.sun.star.sheet.GeneralFunction.AVERAGE);
 System.out.println("Average value of the data table A10:C30: " + fResult);

 // Clear cell contents
 xSheetOp.clearContents(
 com.sun.star.sheet.CellFlags.ANNOTATION | com.sun.star.sheet.CellFlags.OBJECTS);

Multiple Operations

A multiple operation combines a series of formulas with a variable and a series of values. The
results of each formula with each value is shown in the table. Additionally, it is possible to calcu-
late a single formula with two variables using a 2-value series. The method setTableOperation()
of the interface com.sun.star.sheet.XMultipleOperation inserts a multiple operation range.

The following example shows how to calculate the values 1 to 5 raised to the powers of 1 to 5 (each
value to each power). The first column contains the base values, and the first row the exponents,
for example, cell E3 contains the result of 24. Below there are three trigonometrical functions calcu-
lated based on a series of values, for example, cell C11 contains the result of cos(0.2).

A B C D E F G

1 =A2^B1 1 2 3 4 5

2 1
3 2

4 3
5 4

6 5
7

8 =SIN(A8) =COS(A8) =TAN(A8)
9 0

10 0.1
11 0.2

12 0.3
13 0.4

Note that the value series have to be included in the multiple operations cell range, but not the
formula cell range (in the second example). The references in the formulas address any cell outside
of the area to be filled. The column cell and row cell parameter have to reference these cells exactly.
In the second example, a row cell address does not have to be used, because the row contains the
formulas. (Spreadsheet/SpreadsheetSample.java)

663

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XMultipleOperation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XMultipleOperation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XMultipleOperation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellFlags.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellFlags.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellFlags.html

public void InsertMultipleOperation(com.sun.star.sheet.XSpreadsheet xSheet)
 throws RuntimeException, Exception {
 // --- Two independent value series ---
 com.sun.star.table.CellRangeAddress aFormulaRange = createCellRangeAddress(xSheet, "A1");
 com.sun.star.table.CellAddress aColCell = createCellAddress(xSheet, "A2");
 com.sun.star.table.CellAddress aRowCell = createCellAddress(xSheet, "B1");

 com.sun.star.table.XCellRange xCellRange = xSheet.getCellRangeByName("A1:F6");
 com.sun.star.sheet.XMultipleOperation xMultOp = (com.sun.star.sheet.XMultipleOperation)
 UnoRuntime.queryInterface(com.sun.star.sheet.XMultipleOperation.class, xCellRange);
 xMultOp.setTableOperation(
 aFormulaRange, com.sun.star.sheet.TableOperationMode.BOTH, aColCell, aRowCell);

 // --- A value series, a formula series ---
 aFormulaRange = createCellRangeAddress(xSheet, "B8:D8");
 aColCell = createCellAddress(xSheet, "A8");
 // Row cell not needed

 xCellRange = xSheet.getCellRangeByName("A9:D13");
 xMultOp = (com.sun.star.sheet.XMultipleOperation)
 UnoRuntime.queryInterface(com.sun.star.sheet.XMultipleOperation.class, xCellRange);
 xMultOp.setTableOperation(
 aFormulaRange, com.sun.star.sheet.TableOperationMode.COLUMN, aColCell, aRowCell);
}

/** Creates a com.sun.star.table.CellAddress and initializes it
 with the given range.
 @param xSheet The XSpreadsheet interface of the spreadsheet.
 @param aCell The address of the cell (or a named cell).
 */
public com.sun.star.table.CellAddress createCellAddress(
 com.sun.star.sheet.XSpreadsheet xSheet,
 String aCell) throws RuntimeException, Exception {
 com.sun.star.sheet.XCellAddressable xAddr = (com.sun.star.sheet.XCellAddressable)
 UnoRuntime.queryInterface(com.sun.star.sheet.XCellAddressable.class,
 xSheet.getCellRangeByName(aCell).getCellByPosition(0, 0));
 return xAddr.getCellAddress();
}

/** Creates a com.sun.star.table.CellRangeAddress and initializes
 it with the given range.
 @param xSheet The XSpreadsheet interface of the spreadsheet.
 @param aRange The address of the cell range (or a named range).
 */
public com.sun.star.table.CellRangeAddress createCellRangeAddress(
 com.sun.star.sheet.XSpreadsheet xSheet, String aRange) {
 com.sun.star.sheet.XCellRangeAddressable xAddr = (com.sun.star.sheet.XCellRangeAddressable)
 UnoRuntime.queryInterface(com.sun.star.sheet.XCellRangeAddressable.class,
 xSheet.getCellRangeByName(aRange));
 return xAddr.getRangeAddress();
}

Handling Array Formulas

The interface com.sun.star.sheet.XArrayFormulaRange handles array formulas.

• If the whole cell range contains an array formula, the method getArrayFormula() returns the
formula string, otherwise an empty string is returned.

• The method setArrayFormula() sets an array formula to the complete cell range.

(Spreadsheet/SpreadsheetSample.java)
 // --- Array formulas ---
 com.sun.star.sheet.XArrayFormulaRange xArrayFormula = (com.sun.star.sheet.XArrayFormulaRange)
 UnoRuntime.queryInterface(com.sun.star.sheet.XArrayFormulaRange.class, xCellRange);
 // Insert a 3x3 unit matrix.
 xArrayFormula.setArrayFormula("=A10:C12");
 System.out.println("Array formula is: " + xArrayFormula.getArrayFormula());

Due to a bug, this interface does not work correctly in the current implementation. The method accepts the
translated function names, but not the English names. This is inconsistent to the method setFormula() of
the interface com.sun.star.table.XCell.

664 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XArrayFormulaRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XArrayFormulaRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XArrayFormulaRange.html

Cells
A single cell of a spreadsheet is represented by the service com.sun.star.sheet.SheetCell. This
service extends the service com.sun.star.table.Cell, that provides fundamental table cell func-
tionality, such as setting formulas, values and text of a cell.

Properties of SheetCell

The service com.sun.star.sheet.SheetCell introduces new properties and interfaces, extending
the formatting-related cell properties of com.sun.star.table.Cell.

Properties of com.sun.star.sheet.SheetCell
Position
Size

The position and size of the cell in 100th of a millimeter. The position is
relative to the first cell of the spreadsheet. Note that this is not always
the first visible cell.

FormulaLocal Used to query or set a formula using function names of the current
language.

FormulaResultType The type of the result. It is a constant from the set
com.sun.star.sheet.FormulaResult.

ConditionalFormat
ConditionalFormatLocal

Used to access conditional formats. See 9.3.2 Spreadsheet Documents -
Working with Spreadsheets - Formatting - Conditional Formats for details.

Validation
ValidationLocal

Used to access data validation. See 9.3.11 Spreadsheet Documents -
Working with Spreadsheets - Other Table Operations - Data Validation for
details.

Access to Formulas, Values and Errors

The cell interface com.sun.star.table.XCell provides methods to access the value, formula,
content type, and error code of a single cell:

void setValue([in] double nValue)
double getValue()
void setFormula([in] string aFormula)
string getFormula()
com::sun::star::table::CellContentType getType()
long getError()

The value of a cell is a floating-point number. To set a formula to a cell, the whole formula string
has to be passed including the leading equality sign. The function names must be in English.

It is possible to set simple strings or even values with special number formats. In this case, the formula string
consists only of a string constant or of the number as it would be entered in the table (for instance date, time,
or currency values).

The method getType() returns a value of the enumeration com.sun.star.table.CellContent-
Type indicating the type of the cell content.

The following code fragment shows how to access and modify the content, and formatting of
single cells. The xRange is an existing cell range (a com.sun.star.table.XCellRange interface,
described in 9.3.1 Spreadsheet Documents - Working with Spreadsheets - Document Structure - Cell
Ranges). The method getCellByPosition() is provided by this interface. (Spreadsheet/Gener-
alTableSample.java)

665

http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellContentType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellContentType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellContentType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellContentType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellContentType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellContentType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCell.html#ValidationLocal
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCell.html#Validation
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCell.html#ConditionalFormatLocal
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCell.html#ConditionalFormat
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FormulaResult.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FormulaResult.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FormulaResult.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCell.html#FormulaResultType
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCell.html#FormulaLocal
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCell.html#Size
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCell.html#Position
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/Cell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/Cell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/Cell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/Cell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/Cell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/Cell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCell.html

 com.sun.star.beans.XPropertySet xPropSet = null;
 com.sun.star.table.XCell xCell = null;

 // *** Access and modify a VALUE CELL ***
 xCell = xRange.getCellByPosition(0, 0);
 // Set cell value.
 xCell.setValue(1234);

 // Get cell value.
 double nDblValue = xCell.getValue() * 2;
 xRange.getCellByPosition(0, 1).setValue(nDblValue);

 // *** Create a FORMULA CELL and query error type ***
 xCell = xRange.getCellByPosition(0, 2);
 // Set formula string.
 xCell.setFormula("=1/0");

 // Get error type.
 boolean bValid = (xCell.getError() == 0);
 // Get formula string.
 String aText = "The formula " + xCell.getFormula() + " is ";
 aText += bValid ? "valid." : "erroneous.";

 // *** Insert a TEXT CELL using the XText interface ***
 xCell = xRange.getCellByPosition(0, 3);
 com.sun.star.text.XText xCellText = (com.sun.star.text.XText)
 UnoRuntime.queryInterface(com.sun.star.text.XText.class, xCell);
 com.sun.star.text.XTextCursor xTextCursor = xCellText.createTextCursor();
 xCellText.insertString(xTextCursor, aText, false);

 // *** Change cell properties ***
 int nValue = bValid ? 0x00FF00 : 0xFF4040;
 xPropSet = (com.sun.star.beans.XPropertySet) UnoRuntime.queryInterface(
 com.sun.star.beans.XPropertySet.class, xCell);
 xPropSet.setPropertyValue("CellBackColor", new Integer(nValue));

Access to Text Content

The service com.sun.star.text.Text supports the modification of simple or formatted text
contents. Changing text contents and text formatting is provided by the interface
com.sun.star.text.XText as discussed in 2 First Steps. Refer to chapter 8.3.1 Text Documents -
Working with Text Documents - Word Processing - Editing Text for further information. It implements
the interfaces com.sun.star.container.XEnumerationAccess that provides access to the para-
graphs of the text and the interface com.sun.star.text.XText to insert and modify text contents.
For detailed information about text handling, see 8.3.1 Text Documents - Working with Text Docu-
ments - Word Processing - Editing Text. (Spreadsheet/SpreadsheetSample.java)
 // --- Insert two text paragraphs into the cell. ---
 com.sun.star.text.XText xText = (com.sun.star.text.XText)
 UnoRuntime.queryInterface(com.sun.star.text.XText.class, xCell);
 com.sun.star.text.XTextCursor xTextCursor = xText.createTextCursor();

 xText.insertString(xTextCursor, "Text in first line.", false);
 xText.insertControlCharacter(xTextCursor,
 com.sun.star.text.ControlCharacter.PARAGRAPH_BREAK, false);
 xText.insertString(xTextCursor, "Some more text.", false);

 // --- Query the separate paragraphs. ---
 String aText;
 com.sun.star.container.XEnumerationAccess xParaEA =
 (com.sun.star.container.XEnumerationAccess) UnoRuntime.queryInterface(
 com.sun.star.container.XEnumerationAccess.class, xCell);
 com.sun.star.container.XEnumeration xParaEnum = xParaEA.createEnumeration();

 // Go through the paragraphs
 while (xParaEnum.hasMoreElements()) {
 Object aPortionObj = xParaEnum.nextElement();
 com.sun.star.container.XEnumerationAccess xPortionEA =
 (com.sun.star.container.XEnumerationAccess) UnoRuntime.queryInterface(
 com.sun.star.container.XEnumerationAccess.class, aPortionObj);
 com.sun.star.container.XEnumeration xPortionEnum = xPortionEA.createEnumeration();
 aText = "";

 // Go through all text portions of a paragraph and construct string.
 while (xPortionEnum.hasMoreElements()) {
 com.sun.star.text.XTextRange xRange =
 (com.sun.star.text.XTextRange) xPortionEnum.nextElement();
 aText += xRange.getString();
 }
 System.out.println("Paragraph text: " + aText);
 }

666 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Text.html

The SheetCell interface com.sun.star.text.XTextFieldsSupplier contains methods that
provide access to the collection of text fields in the cell. For details on inserting text fields, refer to
8.3.5 Text Documents - Working with Text Documents - Text Fields.

Currently, the only possible text field in Calc cells is the hyperlink field com.sun.star.text.text-
field.URL.

 Absolute Address

The method getCellAddress() of the interface com.sun.star.sheet.XCellAddressable returns
a com.sun.star.table.CellAddress struct that contains the absolute address of the cell in the
spreadsheet document, including the sheet index. This is useful to get the address of cells returned
by other methods. (Spreadsheet/SpreadsheetSample.java)
 // --- Get cell address. ---
 com.sun.star.sheet.XCellAddressable xCellAddr = (com.sun.star.sheet.XCellAddressable)
 UnoRuntime.queryInterface(com.sun.star.sheet.XCellAddressable.class, xCell);
 com.sun.star.table.CellAddress aAddress = xCellAddr.getCellAddress();

 String aText = "Address of this cell: Column=" + aAddress.Column;
 aText += "; Row=" + aAddress.Row;
 aText += "; Sheet=" + aAddress.Sheet;
 System.out.println(aText);

Cell Annotations

A spreadsheet cell may contain one annotation that consists of simple unformatted Text.

667

http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellAddress.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellAddress.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellAddress.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellAddressable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellAddressable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellAddressable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/URL.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/URL.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/URL.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/URL.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/URL.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/URL.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextFieldsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextFieldsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextFieldsSupplier.html

This service com.sun.star.sheet.CellAnnotation represents an annotation. It implements inter-
faces to manipulate the contents and access the source cell.

• The interface com.sun.star.sheet.XSheetAnnotation implements methods to query data of
the annotation and to show and hide it. This interface is returned by the method getAnnota-
tion() of the interface com.sun.star.sheet.XSheetAnnotationAnchor.

• The method getParent() of the interface com.sun.star.container.XChild returns the cell
object that contains the annotation.

• The interface com.sun.star.text.XSimpleText modifies the text contents of the annotation.
See 8.3.1 Text Documents - Working with Text Documents - Word Processing - Editing Text for
details.

It is possible to access the annotations through a container object from the spreadsheet or directly
from a cell object.

• The method getAnnotations() of the interface com.sun.star.sheet.XSheetAnnotations-
Supplier returns the interface com.sun.star.sheet.XSheetAnnotations of the annotations
collection of this spreadsheet.

668 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 9.14: Cell annotations

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAnnotations.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAnnotations.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAnnotations.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAnnotationsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAnnotationsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAnnotationsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAnnotationsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAnnotationsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAnnotationsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XSimpleText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XSimpleText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XSimpleText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAnnotationAnchor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAnnotationAnchor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAnnotationAnchor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAnnotation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAnnotation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAnnotation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellAnnotation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellAnnotation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellAnnotation.html

• The method getAnnotation() of the interface com.sun.star.sheet.XSheetAnnotationAn-
chor returns the interface com.sun.star.sheet.XSheetAnnotation of an annotation object.

The service com.sun.star.sheet.CellAnnotations represents the collection of annotations for
the spreadsheet and implements two interfaces to access the annotations.

• The interface com.sun.star.sheet.XSheetAnnotations is derived from
com.sun.star.container.XIndexAccess to access and remove annotations through their
index. The method insertNew() attaches a new annotation to a cell.

• The method createEnumeration() of the interface com.sun.star.container.XEnumera-
tionAccess creates an enumeration object, represented by the service
com.sun.star.sheet.CellAnnotationsEnumeration, to access the annotations sequentially.

The following example inserts an annotation and makes it permanently visible.
(Spreadsheet/SpreadsheetSample.java)
public void doAnnotationSample(
 com.sun.star.sheet.XSpreadsheet xSheet,
 int nColumn, int nRow) throws RuntimeException, Exception {
 // create the CellAddress struct
 com.sun.star.table.XCell xCell = xSheet.getCellByPosition(nColumn, nRow);
 com.sun.star.sheet.XCellAddressable xCellAddr = (com.sun.star.sheet.XCellAddressable)
 UnoRuntime.queryInterface(com.sun.star.sheet.XCellAddressable.class, xCell);
 com.sun.star.table.CellAddress aAddress = xCellAddr.getCellAddress();
 // insert an annotation
 com.sun.star.sheet.XSheetAnnotationsSupplier xAnnotationsSupp =
 (com.sun.star.sheet.XSheetAnnotationsSupplier) UnoRuntime.queryInterface(
 com.sun.star.sheet.XSheetAnnotationsSupplier.class, xSheet);
 com.sun.star.sheet.XSheetAnnotations xAnnotations = xAnnotationsSupp.getAnnotations();
 xAnnotations.insertNew(aAddress, "This is an annotation");
 // make the annotation visible
 com.sun.star.sheet.XSheetAnnotationAnchor xAnnotAnchor =
 (com.sun.star.sheet.XSheetAnnotationAnchor) UnoRuntime.queryInterface(
 com.sun.star.sheet.XSheetAnnotationAnchor.class, xCell);
 com.sun.star.sheet.XSheetAnnotation xAnnotation = xAnnotAnchor.getAnnotation();
 xAnnotation.setIsVisible(true);
}

Cell Ranges and Cells Container
Cell range collections are represented by the service com.sun.star.sheet.SheetCellRanges.
They are returned by several methods, for instance the cell query methods of
com.sun.star.sheet.SheetRangesQuery. Besides standard container operations, it performs a
few spreadsheet functions also usable with a single cell range.

Properties of SheetCellRanges

Properties of com.sun.star.sheet.SheetCellRanges

ConditionalFormat
ConditionalFormatLocal

Used to access conditional formats. See 9.3.2 Spreadsheet Documents -
Working with Spreadsheets - Formatting - Conditional Formats for details.

Validation
ValidationLocal

Used to access data validation. See 9.3.11 Spreadsheet Documents -
Working with Spreadsheets - Other Table Operations - Data Validation for
details.

669

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRanges.html#ValidationLocal
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRanges.html#Validation
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRanges.html#ConditionalFormatLocal
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRanges.html#ConditionalFormat
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetRangesQuery.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetRangesQuery.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetRangesQuery.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellAnnotationsEnumeration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellAnnotationsEnumeration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellAnnotationsEnumeration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAnnotations.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAnnotations.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAnnotations.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellAnnotations.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellAnnotations.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellAnnotations.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAnnotation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAnnotation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAnnotation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAnnotationAnchor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAnnotationAnchor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAnnotationAnchor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAnnotationAnchor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAnnotationAnchor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAnnotationAnchor.html

Access to Single Cell Ranges in SheetCellRanges Container

The interfaces com.sun.star.container.XEnumerationAccess and
com.sun.star.container.XIndexAccess iterates over all contained cell ranges by index or
enumeration. With the com.sun.star.container.XNameContainer, it is possible to insert ranges
with a user-defined name. Later the range can be found, replaced or removed using the name.

The following interfaces and service perform cell range actions on all ranges contained in the
collection:

• Interface com.sun.star.util.XReplaceable (see 9.3.3 Spreadsheet Documents - Working with
Spreadsheets - Navigating)

• Service com.sun.star.sheet.SheetRangesQuery (see 9.3.3 Spreadsheet Documents - Working
with Spreadsheets - Navigating)

• Interface com.sun.star.util.XIndent (see 9.3.2 Spreadsheet Documents - Working with Spread-
sheets - Formatting)

• Interface com.sun.star.sheet.XSheetOperation (see 9.3.1 Spreadsheet Documents - Working
with Spreadsheets - Document Structure - Cell Ranges)

• Interface com.sun.star.chart.XChartDataArray (see 11 Charts)

The interfaces com.sun.star.sheet.XSheetCellRangeContainer and
com.sun.star.sheet.XSheetCellRanges support basic handling of cell range collections.

• The method getRangeAddressesAsString() returns the string representation of all cell ranges.

• The method getRangeAddresses() returns a sequence with all cell range addresses.

The interface com.sun.star.sheet.XSheetCellRangeContainer is derived from the interface
com.sun.star.sheet.XSheetCellRanges to insert and remove cell ranges.

• The methods addRangeAddress() and addRangeAddresses() insert one or more ranges into
the collection. If the boolean parameter bMergeRanges is set to true, the methods try to merge
the new range(s) with the ranges of the collection.

• The methods removeRangeAddress() and removeRangeAddresses() remove existing ranges
from the collection. Only ranges that are contained in the collection are removed. The methods
do not try to shorten a range.

The interface com.sun.star.sheet.XSheetCellRanges implements methods for access to cells
and cell ranges:

• The method getCells() returns the interface com.sun.star.container.XEnumerationAc-
cess of a cell collection. The service com.sun.star.sheet.Cells is discussed below. This
collection contains the cell addresses of non-empty cells in all cell ranges.

The service com.sun.star.sheet.Cells represents a collection of cells.

670 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Cells.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Cells.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Cells.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Cells.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Cells.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Cells.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRangeContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRangeContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRangeContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRangeContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRangeContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRangeContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDataArray.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDataArray.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDataArray.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetOperation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetOperation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetOperation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XIndent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XIndent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XIndent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetRangesQuery.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetRangesQuery.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetRangesQuery.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XReplaceable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XReplaceable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XReplaceable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html

The following example demonstrates the usage of cell range collections and cell collections.
(Spreadsheet/SpreadsheetSample.java)
/** All samples regarding cell range collections. */
public void doCellRangesSamples(com.sun.star.sheet.XSpreadsheetDocument xDocument)
 throws RuntimeException, Exception {

 // Create a new cell range container
 com.sun.star.lang.XMultiServiceFactory xDocFactory =
 (com.sun.star.lang.XMultiServiceFactory) UnoRuntime.queryInterface(
 com.sun.star.lang.XMultiServiceFactory.class, xDocument);
 com.sun.star.sheet.XSheetCellRangeContainer xRangeCont =
 (com.sun.star.sheet.XSheetCellRangeContainer) UnoRuntime.queryInterface(
 com.sun.star.sheet.XSheetCellRangeContainer.class,
 xDocFactory.createInstance("com.sun.star.sheet.SheetCellRanges"));

 // Insert ranges
 insertRange(xRangeCont, 0, 0, 0, 0, 0, false); // A1:A1
 insertRange(xRangeCont, 0, 0, 1, 0, 2, true); // A2:A3
 insertRange(xRangeCont, 0, 1, 0, 1, 2, false); // B1:B3

 // Query the list of filled cells
 System.out.print("All filled cells: ");
 com.sun.star.container.XEnumerationAccess xCellsEA = xRangeCont.getCells();
 com.sun.star.container.XEnumeration xEnum = xCellsEA.createEnumeration();
 while (xEnum.hasMoreElements()) {
 Object aCellObj = xEnum.nextElement();
 com.sun.star.sheet.XCellAddressable xAddr = (com.sun.star.sheet.XCellAddressable)
 UnoRuntime.queryInterface(com.sun.star.sheet.XCellAddressable.class, aCellObj);
 com.sun.star.table.CellAddress aAddr = xAddr.getCellAddress();
 System.out.print(getCellAddressString(aAddr.Column, aAddr.Row) + " ");
 }
 System.out.println();
}

/** Inserts a cell range address into a cell range container and prints a message.
 @param xContainer The com.sun.star.sheet.XSheetCellRangeContainer interface of the container.
 @param nSheet Index of sheet of the range.
 @param nStartCol Index of first column of the range.
 @param nStartRow Index of first row of the range.
 @param nEndCol Index of last column of the range.
 @param nEndRow Index of last row of the range.
 @param bMerge Determines whether the new range should be merged with the existing ranges.
 */
private void insertRange(
 com.sun.star.sheet.XSheetCellRangeContainer xContainer,
 int nSheet, int nStartCol, int nStartRow, int nEndCol, int nEndRow,
 boolean bMerge) throws RuntimeException, Exception {
 com.sun.star.table.CellRangeAddress aAddress = new com.sun.star.table.CellRangeAddress();
 aAddress.Sheet = (short)nSheet;
 aAddress.StartColumn = nStartCol;
 aAddress.StartRow = nStartRow;

671

Illustration 9.15: Cell collections

 aAddress.EndColumn = nEndCol;
 aAddress.EndRow = nEndRow;
 xContainer.addRangeAddress(aAddress, bMerge);
 System.out.println(
 "Inserting " + (bMerge ? " with" : "without") + " merge,"
 + " result list: " + xContainer.getRangeAddressesAsString());
}

Columns and Rows
Collection of table columns:

672 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 9.16: Collection of table columns

Collection of table rows:

The services com.sun.star.table.TableColumns and com.sun.star.table.TableRows repre-
sent collections of all columns and rows of a table. It is possible to access cells of columns and
rows, and insert and remove columns and rows using the interfaces
com.sun.star.table.XTableColumns and com.sun.star.table.XTableRows that are derived
from com.sun.star.container.XIndexAccess. The method createEnumeration() of the inter-
face com.sun.star.container.XEnumerationAccess creates an enumeration of all columns or
rows. The interface com.sun.star.container.XNameAccess accesses columns through their
names. The implementation of this interface is optional.

A single column or row is represented by the services com.sun.star.table.TableColumn and
com.sun.star.table.TableRow. They implement the interfaces com.sun.star.table.XCell-
Range that provide access to the cells and com.sun.star.beans.XPropertySet for modifying
settings. Additionally, the service TableColumn implements the interface
com.sun.star.container.XNamed. It provides the method getName() that returns the name of a
column. Changing the name of a column is not supported.

The interface com.sun.star.container.XIndexAccess returns columns and rows relative to the cell
range (index 0 is always the first column or row of the cell range). But the interface
com.sun.star.container.XNameAccess returns columns with their real names, regardless of the cell
range.

In the following example, xColumns is an interface of a collection of columns, xRows is an interface
of a collection of rows, and xRange is the range formed by the columns and rows.
(Spreadsheet/GeneralTableSample.java)

673

Illustration 9.17: Collection of table rows

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableRow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableRow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableRow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableColumn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableColumn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableColumn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableRows.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableRows.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableRows.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableColumns.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableColumns.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableColumns.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableRows.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableRows.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableRows.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableColumns.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableColumns.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableColumns.html

 com.sun.star.beans.XPropertySet xPropSet = null;

 // *** Modifying COLUMNS and ROWS ***
 // Get column C by index (interface XIndexAccess).
 Object aColumnObj = xColumns.getByIndex(2);
 xPropSet = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, aColumnObj);
 xPropSet.setPropertyValue("Width", new Integer(5000));

 // Get the name of the column.
 com.sun.star.container.XNamed xNamed = (com.sun.star.container.XNamed)
 UnoRuntime.queryInterface(com.sun.star.container.XNamed.class, aColumnObj);
 aText = "The name of this column is " + xNamed.getName() + ".";
 xRange.getCellByPosition(2, 2).setFormula(aText);

 // Get column D by name (interface XNameAccess).
 com.sun.star.container.XNameAccess xColumnsName = (com.sun.star.container.XNameAccess)
 UnoRuntime.queryInterface(com.sun.star.container.XNameAccess.class, xColumns);

 aColumnObj = xColumnsName.getByName("D");
 xPropSet = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, aColumnObj);
 xPropSet.setPropertyValue("IsVisible", new Boolean(false));

 // Get row 7 by index (interface XIndexAccess)
 Object aRowObj = xRows.getByIndex(6);
 xPropSet = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, aRowObj);
 xPropSet.setPropertyValue("Height", new Integer(5000));

 // Create a cell series with the values 1 ... 7.
 for (int nRow = 8; nRow < 15; ++nRow)
 xRange.getCellByPosition(0, nRow).setValue(nRow - 7);
 // Insert a row between 1 and 2
 xRows.insertByIndex(9, 1);
 // Delete the rows with the values 3 and 4.
 xRows.removeByIndex(11, 2);

9.3.2 Formatting

Cell Formatting
In cells, cell ranges, table rows, table columns and cell ranges collections, the cells are formatted
through the service com.sun.star.table.CellProperties. These properties are accessible
through the interface com.sun.star.beans.XPropertySet that is supported by all the objects
mentioned above. The service contains all properties that describe the cell formatting of the cell
range, such as the cell background color, borders, the number format and the cell alignment.
Changing the property values affects all cells of the object being formatted.

The cell border style is stored in the struct com.sun.star.table.TableBorder. A cell range
contains six different kinds of border lines: upper, lower, left, right, horizontal inner, and vertical
inner line. Each line is represented by a struct com.sun.star.table.BorderLine that contains the
line style and color. The boolean members Is...LineValid specifies the validity of the ...Line
members containing the line style. If the property contains the value true, the line style is equal in
all cells that include the line. The style is contained in the ...Line struct. The value false means
the cells are formatted differently and the content of the ...Line struct is undefined. When
changing the border property, these boolean values determine if the lines are changed to the style
contained in the respective ...Line struct.

Character and Paragraph Format
The following services of a cell range contain properties for the character style and paragraph
format:

• Service com.sun.star.style.ParagraphProperties

674 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/BorderLine.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/BorderLine.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/BorderLine.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableBorder.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableBorder.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableBorder.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellProperties.html

• Service com.sun.star.style.CharacterProperties
• Service com.sun.star.style.CharacterPropertiesAsian
• Service com.sun.star.style.CharacterPropertiesComplex
The chapter 8.3.2 Text Documents - Working with Text Documents - Formatting contains a description
of these properties.

This example formats a given cell range xCellRange: (Spreadsheet/SpreadsheetSample.java)
 // --- Change cell range properties. ---
 com.sun.star.beans.XPropertySet xPropSet = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, xCellRange);

 // from com.sun.star.styles.CharacterProperties
 xPropSet.setPropertyValue("CharColor", new Integer(0x003399));
 xPropSet.setPropertyValue("CharHeight", new Float(20.0));

 // from com.sun.star.styles.ParagraphProperties
 xPropSet.setPropertyValue("ParaLeftMargin", new Integer(500));

 // from com.sun.star.table.CellProperties
 xPropSet.setPropertyValue("IsCellBackgroundTransparent", new Boolean(false));
 xPropSet.setPropertyValue("CellBackColor", new Integer(0x99CCFF));

The code below changes the character and paragraph formatting of a cell. Assume that xCell is a
com.sun.star.table.XCell interface of a spreadsheet cell.
(Spreadsheet/SpreadsheetSample.java)
 // --- Change cell properties. ---
 com.sun.star.beans.XPropertySet xPropSet = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, xCell);

 // from styles.CharacterProperties
 xPropSet.setPropertyValue("CharColor", new Integer(0x003399));
 xPropSet.setPropertyValue("CharHeight", new Float(20.0));

 // from styles.ParagraphProperties
 xPropSet.setPropertyValue("ParaLeftMargin", new Integer(500));

 // from table.CellProperties
 xPropSet.setPropertyValue("IsCellBackgroundTransparent", new Boolean(false));
 xPropSet.setPropertyValue("CellBackColor", new Integer(0x99CCFF));

Indentation
The methods of the interface com.sun.star.util.XIndent change the left indentation of the cell
contents. This interface is supported by cells, cell ranges and collections of cell ranges. The inden-
tation is incremental and decremental, independent for each cell.

• The method decrementIndent() reduces the indentation of each cell by 1.

• The method incrementIndent() enlarges the indentation of each cell by 1.

The following sample shows how to increase the cell indentation by 1. (Spreadsheet/Spreadsheet-
Sample.java)
 // --- Change indentation. ---
 com.sun.star.util.XIndent xIndent = (com.sun.star.util.XIndent)
 UnoRuntime.queryInterface(com.sun.star.util.XIndent.class, xCellRange);
 xIndent.incrementIndent();

Due to a bug, this interface does not work in the current implementation. Workaround: Use the paragraph
property ParaIndent.

Equally Formatted Cell Ranges
It is possible to get collections of all equally formatted cell ranges contained in a source cell range.

675

http://api.openoffice.org/docs/common/ref/com/sun/star/util/XIndent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XIndent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XIndent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesComplex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesComplex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesComplex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html

Cell Format Ranges

The service com.sun.star.sheet.CellFormatRanges represents a collection of equally formatted
cell ranges. The cells inside of a cell range of the collection have the same formatting attributes. All
cells of the source range are contained in one of the ranges. If there is a non-rectangular, equal-
formatted range, it is split into several rectangular ranges.

Unique Cell Format Ranges

The service com.sun.star.sheet.UniqueCellFormatRanges represents, similar to Cell Format
Ranges above, a collection of equally formatted cell ranges, but this collection contains cell range
container objects (service com.sun.star.sheet.SheetCellRanges) that contain the cell ranges.
The cells of all ranges inside of a cell range container are equally formatted. The formatting attri-
butes of a range container differ from each other range container. All equally formatted ranges are
consolidated into one container.

676 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 9.18: Cell Format Ranges

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/UniqueCellFormatRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/UniqueCellFormatRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/UniqueCellFormatRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellFormatRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellFormatRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellFormatRanges.html

In the following example, the cells have two different background colors. The formatted ranges of
the range A1:G3 are queried in both described ways.

A B C D E F G

1

2

3

A com.sun.star.sheet.CellFormatRanges object contains the following ranges: A1:C2, D1:G1,
D2:F2, G2:G2, and A3:G3.

A com.sun.star.sheet.UniqueCellFormatRanges object contains two
com.sun.star.sheet.SheetCellRanges range collections. One collection contains the white
ranges, that is, A1:C2, D1:G1, G2:G2, and the other collection, the gray ranges, that is, D2:F2,
A3:G3.

677

Illustration 9.19: UniqueCellFormatRanges

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/UniqueCellFormatRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/UniqueCellFormatRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/UniqueCellFormatRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellFormatRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellFormatRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellFormatRanges.html

The following code is an example of accessing the formatted ranges in Java. The getCellRangeAd-
dressString is a helper method that returns the range address as a string. (Spreadsheet/Spread-
sheetSample.java)
/** All samples regarding formatted cell ranges. */
public void doFormattedCellRangesSamples(com.sun.star.sheet.XSpreadsheet xSheet)
 throws RuntimeException, Exception {
 // All ranges in one container
 xCellRange = xSheet.getCellRangeByName("A1:G3");
 System.out.println("Service CellFormatRanges:");
 com.sun.star.sheet.XCellFormatRangesSupplier xFormatSupp =
 (com.sun.star.sheet.XCellFormatRangesSupplier) UnoRuntime.queryInterface(
 com.sun.star.sheet.XCellFormatRangesSupplier.class, xCellRange);
 com.sun.star.container.XIndexAccess xRangeIA = xFormatSupp.getCellFormatRanges();
 System.out.println(getCellRangeListString(xRangeIA));

 // Ranges sorted in SheetCellRanges containers
 System.out.println("\nService UniqueCellFormatRanges:");
 com.sun.star.sheet.XUniqueCellFormatRangesSupplier xUniqueFormatSupp =
 (com.sun.star.sheet.XUniqueCellFormatRangesSupplier) UnoRuntime.queryInterface(
 com.sun.star.sheet.XUniqueCellFormatRangesSupplier.class, xCellRange);
 com.sun.star.container.XIndexAccess xRangesIA = xUniqueFormatSupp.getUniqueCellFormatRanges();
 int nCount = xRangesIA.getCount();
 for (int nIndex = 0; nIndex < nCount; ++nIndex) {
 Object aRangesObj = xRangesIA.getByIndex(nIndex);
 xRangeIA = (com.sun.star.container.XIndexAccess) UnoRuntime.queryInterface(
 com.sun.star.container.XIndexAccess.class, aRangesObj);
 System.out.println(
 "Container " + (nIndex + 1) + ": " + getCellRangeListString(xRangeIA));
 }
}

/** Returns a list of addresses of all cell ranges contained in the collection.
 @param xRangesIA The XIndexAccess interface of the collection.
 @return A string containing the cell range address list.
 */
private String getCellRangeListString(com.sun.star.container.XIndexAccess xRangesIA)
 throws RuntimeException, Exception {
 String aStr = "";
 int nCount = xRangesIA.getCount();
 for (int nIndex = 0; nIndex < nCount; ++nIndex) {
 if (nIndex > 0)
 aStr += " ";
 Object aRangeObj = xRangesIA.getByIndex(nIndex);
 com.sun.star.sheet.XSheetCellRange xCellRange = (com.sun.star.sheet.XSheetCellRange)
 UnoRuntime.queryInterface(com.sun.star.sheet.XSheetCellRange.class, aRangeObj);
 aStr += getCellRangeAddressString(xCellRange, false);
 }
 return aStr;
}

678 OpenOffice.org 2.3 Developer's Guide • June 2007

Table Auto Formats
Table auto formats are used to apply different formats to a cell range. A table auto format is a
collection of cell styles used to format all cells of a range. The style applied is dependent on the
position of the cell.

The table auto format contains separate information about four different row types and four
different column types:

• First row (header), first data area row, second data area row, last row (footer)

• First column, first data area column, second data area column, last column

The row or column types for the data area (between first and last row/column) are repeated in
sequence. Each cell of the formatted range belongs to one of the row types and column types,
resulting in 16 different auto-format fields. In the example below, the highlighted cell has the
formatting of the first data area row and last column field. Additionally, this example shows the
indexes of all the auto format fields. These indexes are used to access the field with the interface
com.sun.star.container.XIndexAccess.

First column Second data area
column

First data area
column

Last Column

First row (header) 0 2 1 3

First data area row 4 6 5 7

Second data area row 8 10 9 11

Last row (footer) 12 14 13 15

679

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html

A table auto format is represented by the service com.sun.star.sheet.TableAutoFormat. It
contains exactly 16 auto format fields (service com.sun.star.sheet.TableAutoFormatField).
Each auto format field contains all properties of a single cell.

The cell range interface com.sun.star.table.XAutoFormattable contains the method auto-
Format() that applies a table auto format to a cell range. The cell range must have a size of at least
3x3 cells. The boolean properties of the table auto format determine the formatting properties are
copied to the cells. The default setting of all the properties is true.

680 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 9.20: TableAutoFormat

http://api.openoffice.org/docs/common/ref/com/sun/star/table/XAutoFormattable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XAutoFormattable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XAutoFormattable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TableAutoFormatField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TableAutoFormatField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TableAutoFormatField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TableAutoFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TableAutoFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TableAutoFormat.html

In the current implementation it is not possible to modify the cell borders of a table auto format (the prop-
erty TableBorder is missing). Nevertheless, the property IncludeBorder controls whether the borders of
default auto formats are applied to the cells.

The collection of all table auto formats is represented by the service
com.sun.star.sheet.TableAutoFormats. There is only one instance of this collection in the
whole application. It contains all default and user-defined auto formats that are used in spread-
sheets and tables of the word-processing application. It is possible to iterate through all table auto
formats with an enumeration, or to access them directly using their index or their name.

The following example shows how to insert a new table auto format, fill it with properties, apply it
to a cell range and remove it from the format collection. (Spreadsheet/SpreadsheetSample.java)

681

Illustration 9.21: TableAutoFormats

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TableAutoFormats.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TableAutoFormats.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TableAutoFormats.html

public void doAutoFormatSample(
 com.sun.star.lang.XMultiServiceFactory xServiceManager,
 com.sun.star.sheet.XSpreadsheetDocument xDocument) throws RuntimeException, Exception {
 // get the global collection of table auto formats, use global service manager
 Object aAutoFormatsObj = xServiceManager.createInstance("com.sun.star.sheet.TableAutoFormats");
 com.sun.star.container.XNameContainer xAutoFormatsNA = (com.sun.star.container.XNameContainer)
 UnoRuntime.queryInterface(com.sun.star.container.XNameContainer.class, aAutoFormatsObj);

 // create a new table auto format and insert into the container
 String aAutoFormatName = "Temp_Example";
 boolean bExistsAlready = xAutoFormatsNA.hasByName(aAutoFormatName);
 Object aAutoFormatObj = null;
 if (bExistsAlready)
 // auto format already exists -> use it
 aAutoFormatObj = xAutoFormatsNA.getByName(aAutoFormatName);
 else {
 // create a new auto format (with document service manager!)
 com.sun.star.lang.XMultiServiceFactory xDocServiceManager =
 (com.sun.star.lang.XMultiServiceFactory) UnoRuntime.queryInterface(
 com.sun.star.lang.XMultiServiceFactory.class, xDocument);
 aAutoFormatObj = xDocServiceManager.createInstance("com.sun.star.sheet.TableAutoFormat");
 xAutoFormatsNA.insertByName(aAutoFormatName, aAutoFormatObj);
 }
 // index access to the auto format fields
 com.sun.star.container.XIndexAccess xAutoFormatIA = (com.sun.star.container.XIndexAccess)
 UnoRuntime.queryInterface(com.sun.star.container.XIndexAccess.class, aAutoFormatObj);

 // set properties of all auto format fields
 for (int nRow = 0; nRow < 4; ++nRow) {
 int nRowColor = 0;
 switch (nRow) {
 case 0: nRowColor = 0x999999; break;
 case 1: nRowColor = 0xFFFFCC; break;
 case 2: nRowColor = 0xEEEEEE; break;
 case 3: nRowColor = 0x999999; break;
 }

 for (int nColumn = 0; nColumn < 4; ++nColumn) {
 int nColor = nRowColor;
 if ((nColumn == 0) || (nColumn == 3))
 nColor -= 0x333300;

 // get the auto format field and apply properties
 Object aFieldObj = xAutoFormatIA.getByIndex(4 * nRow + nColumn);
 com.sun.star.beans.XPropertySet xPropSet = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, aFieldObj);
 xPropSet.setPropertyValue("CellBackColor", new Integer(nColor));
 }
 }

 // set the auto format to the second spreadsheet
 com.sun.star.sheet.XSpreadsheets xSheets = xDocument.getSheets();
 com.sun.star.container.XIndexAccess xSheetsIA = (com.sun.star.container.XIndexAccess)
 UnoRuntime.queryInterface(com.sun.star.container.XIndexAccess.class, xSheets);

 com.sun.star.sheet.XSpreadsheet xSheet =
 (com.sun.star.sheet.XSpreadsheet) xSheetsIA.getByIndex(1);

 com.sun.star.table.XCellRange xCellRange = xSheet.getCellRangeByName("A5:H25");
 com.sun.star.table.XAutoFormattable xAutoForm = (com.sun.star.table.XAutoFormattable)
 UnoRuntime.queryInterface(com.sun.star.table.XAutoFormattable.class, xCellRange);

 xAutoForm.autoFormat(aAutoFormatName);

 // remove the auto format
 if (!bExistsAlready)
 xAutoFormatsNA.removeByName(aAutoFormatName);
}

682 OpenOffice.org 2.3 Developer's Guide • June 2007

Conditional Formats
A cell can be formatted automatically with a conditional format, depending on its contents or the
result of a formula. A conditional format consists of several condition entries that contain the
condition and name of a cell style. The style of the first met condition, true or �not zero�, is
applied to the cell.

A cell or cell range object contains the properties ConditionalFormat and ConditionalFormat-
Local. These properties return the interface com.sun.star.sheet.XSheetConditionalEntries
of the conditional format container com.sun.star.sheet.TableConditionalFormat. The objects
of both properties are equal, except for the representation of formulas. The ConditionalFormat-
Local property uses function names in the current language.

After a conditional format is changed, it has to be reinserted into the property set of the cell or cell range.

A condition entry of a conditional format is represented by the service
com.sun.star.sheet.TableConditionalEntry. It implements two interfaces:

• The interface com.sun.star.sheet.XSheetCondition gets and sets the operator, the first and
second formula and the base address for relative references.

• The interface com.sun.star.sheet.XSheetConditionalEntry gets and sets the cell style
name.

The service com.sun.star.sheet.TableConditionalFormat contains all format conditions and
returns com.sun.star.sheet.TableConditionalEntry objects. The interface
com.sun.star.sheet.XSheetConditionalEntries inserts new conditions and removes them.

• The method addNew() inserts a new condition. It expects a sequence of
com.sun.star.beans.PropertyValue objects. The following properties are supported:

683

Illustration 9.22: TableConditionalFormats

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetConditionalEntries.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetConditionalEntries.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetConditionalEntries.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TableConditionalEntry.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TableConditionalEntry.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TableConditionalEntry.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TableConditionalFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TableConditionalFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TableConditionalFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetConditionalEntry.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetConditionalEntry.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetConditionalEntry.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCondition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCondition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCondition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TableConditionalEntry.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TableConditionalEntry.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TableConditionalEntry.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TableConditionalFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TableConditionalFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TableConditionalFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetConditionalEntries.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetConditionalEntries.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetConditionalEntries.html

• Operator: A com.sun.star.sheet.ConditionOperator constant describing the opera-
tion to perform.

• Formula1 and Formula2: Strings that contain the values or formulas to evaluate.
Formula2 is used only if the property Operator contains BETWEEN or NOT_BETWEEN.

• SourcePosition: A com.sun.star.table.CellAddress struct that contains the base
address for relative cell references in formulas.

• StyleName: The name of the cell style to apply.

• The methods removeByIndex() removes the condition entry at the specified position.

• The method clear() removes all condition entries.

The following example applies a conditional format to a cell range. It uses the cell style �MyNew-
CellStyle� that is applied to each cell containing a value greater than 1. The xSheet is the
com.sun.star.sheet.XSpreadsheet interface of a spreadsheet. (Spreadsheet/Spreadsheet-
Sample.java)
 // get the conditional format object of the cell range
 com.sun.star.table.XCellRange xCellRange = xSheet.getCellRangeByName("A1:B10");
 com.sun.star.beans.XPropertySet xPropSet = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, xCellRange);
 com.sun.star.sheet.XSheetConditionalEntries xEntries =
 (com.sun.star.sheet.XSheetConditionalEntries) xPropSet.getPropertyValue("ConditionalFormat");

 // create a condition and apply it to the range
 com.sun.star.beans.PropertyValue[] aCondition = new com.sun.star.beans.PropertyValue[3];
 aCondition[0] = new com.sun.star.beans.PropertyValue();
 aCondition[0].Name = "Operator";
 aCondition[0].Value = com.sun.star.sheet.ConditionOperator.GREATER;
 aCondition[1] = new com.sun.star.beans.PropertyValue();
 aCondition[1].Name = "Formula1";
 aCondition[1].Value = "1";
 aCondition[2] = new com.sun.star.beans.PropertyValue();
 aCondition[2].Name = "StyleName";
 aCondition[2].Value = "MyNewCellStyle";
 xEntries.addNew(aCondition);
 xPropSet.setPropertyValue("ConditionalFormat", xEntries);

9.3.3 Navigating
Unlike other document models that provide access to their content by content suppliers, the
spreadsheet document contains properties that allow direct access to various containers.

This design inconsistency may be changed in future versions. The properties remain for compatibility.

The properties allow access to various containers:

• NamedRanges: The container with all the named ranges. See 9.3.3 Spreadsheet Documents -
Working with Spreadsheets - Navigating - Named Ranges.

• ColumnLabelRanges and RowLabelRanges: Containers with row labels and column labels. See
9.3.3 Spreadsheet Documents - Working with Spreadsheets - Navigating - Label Ranges.

• DatabaseRanges: The container with all database ranges. See 9.3.5 Spreadsheet Documents -
Working with Spreadsheets - Database Operations - Database Ranges.

• SheetLinks, AreaLinks and DDELinks: Containers with external links. See 9.3.6 Spreadsheet
Documents - Working with Spreadsheets - Linking External Data - Sheet Links.

684 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellAddress.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellAddress.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellAddress.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/ConditionOperator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/ConditionOperator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/ConditionOperator.html

Cell Cursor
A cell cursor is a cell range with extended functionality and is represented by the service
com.sun.star.sheet.SheetCellCursor. With a cell cursor it is possible to move through a cell
range. Each table can contain only one cell cursor.

It implements all interfaces described in 9.3.1 Spreadsheet Documents - Working with Spreadsheets -
Document Structure - Cell Ranges and the basic cursor interfaces of the service
com.sun.star.table.CellCursor that represents the cell or cell range cursor of a table.

The interface com.sun.star.sheet.XSpreadsheet of a spreadsheet creates the cell cursors. The
methods return the interface com.sun.star.sheet.XSheetCellCursor of the cursor. It is derived
from the interface com.sun.star.sheet.XSheetCellRange that provides access to cells and cell
ranges. Refer to 9.3.1 Spreadsheet Documents - Working with Spreadsheets - Document Structure - Cell
Ranges for additional information.

• The method createCursor() creates a cursor that spans over the whole spreadsheet.

• The method createCursorByRange() creates a cursor that spans over the given cell range.

The SheetCellCursor includes the CellCursor service from the table module:

Cursor Movement

The service com.sun.star.table.CellCursor implements the interface
com.sun.star.table.XCellCursor that provides methods to move to specific cells of a cell range.
This interface is derived from com.sun.star.table.XCellRange so all methods that access single
cells can be used.

685

Illustration 9.23: Cell cursor

Illustration 9.24: Table cell cursor

http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellCursor.html

Methods of com.sun.star.table.XCellCursor
gotoStart() Moves to the first filled cell. This cell may be outside of the current range

of the cursor.

gotoEnd() Moves to the last filled cell. This cell may be outside of the current range
of the cursor.

gotoOffset() Moves the cursor relative to the current position, even if the cursor is a
range.

gotoPrevious() Moves the cursor to the latest available unprotected cell. In most
cases,this is the cell to the left of the current cell.

gotoNext() Moves the cursor to the next available unprotected cell. In most
cases,this is the cell to the right of the current cell.

The following example shows how to modify a cell beyond a filled area.The xCursor may be an
initialized cell cursor. (Spreadsheet/GeneralTableSample.java)
 // *** Use the cell cursor to add some data below of the filled area ***
 // Move to the last filled cell.
 xCursor.gotoEnd();
 // Move one row down.
 xCursor.gotoOffset(0, 1);
 xCursor.getCellByPosition(0, 0).setFormula("Beyond of the last filled cell.");

The interface com.sun.star.sheet.XSheetCellCursor sets the cursor to specific ranges in the
sheet.

• The method collapseToCurrentRegion() expands the cursor to the shortest cell range filled
with any data. A few examples from the spreadsheet below are: the cursor C2:C2 expands to
B2:D3, cursor C1:C2 expands to B1:D3 and cursor A1:D4 is unchanged.

A B C D E F G

1

2 1 3 {=C2:D3} {=C2:D3}
3 Text 2 4 {=C2:D3} {=C2:D3}

4

• The method collapseToCurrentArray() expands or shortens the cursor range to an array
formula range. This works only if the top-left cell of the current cursor contains an array
formula. An example using the spreadsheet above: All the cursors with a top-left cell located in
the range F2:G3 are modified to this array formula range, F2:F2 or G2:G4.

• The method collapseToMergedArea() expands the current cursor range so that all merged cell
ranges intersecting the current range fit completely.

• The methods expandToEntireColumns() and expandToEntireRows() expand the cursor
range so that it contains all cells of the columns or rows of the current range.

• The method collapseToSize() resizes the cursor range to the given dimensions. The start
address of the range is left unmodified. To move the cursor range without changing the current
size, use the method gotoOffset() from the interface com.sun.star.table.XCellCursor.

Some of the methods above have misleading names: collapseToCurrentRegion() and collapse-
ToMergedArea() expand the cursor range,but never shorten it and collapseToCurrentArray()may
expand or shorten the cursor range.

686 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellCursor.html#gotoNext
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellCursor.html#gotoNext
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellCursor.html#gotoNext
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellCursor.html#gotoPrevious
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellCursor.html#gotoPrevious
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellCursor.html#gotoPrevious
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellCursor.html#gotoOffset
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellCursor.html#gotoOffset
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellCursor.html#gotoOffset
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellCursor.html#gotoEnd
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellCursor.html#gotoEnd
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellCursor.html#gotoEnd
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellCursor.html#gotoStart
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellCursor.html#gotoStart
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellCursor.html#gotoStart
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellCursor.html

The following example tries to find the range of the array formula in cell F22.The xSheet is a
com.sun.star.sheet.XSpreadsheet interface of a spreadsheet and getCellRangeAd-
dressString() is a helper method that returns the range address as a string.
(Spreadsheet/SpreadsheetSample.java)
 // --- find the array formula using a cell cursor ---
 com.sun.star.table.XCellRange xRange = xSheet.getCellRangeByName("F22");
 com.sun.star.sheet.XSheetCellRange xCellRange = (com.sun.star.sheet.XSheetCellRange)
 UnoRuntime.queryInterface(com.sun.star.sheet.XSheetCellRange.class, xRange);
 com.sun.star.sheet.XSheetCellCursor xCursor = xSheet.createCursorByRange(xCellRange);

 xCursor.collapseToCurrentArray();
 com.sun.star.sheet.XArrayFormulaRange xArray = (com.sun.star.sheet.XArrayFormulaRange)
 UnoRuntime.queryInterface(com.sun.star.sheet.XArrayFormulaRange.class, xCursor);
 System.out.println(
 "Array formula in " + getCellRangeAddressString(xCursor, false)
 + " contains formula " + xArray.getArrayFormula());

Used Area

The cursor interface com.sun.star.sheet.XUsedAreaCursor contains methods to locate the used
area of the entire sheet. The used area is the smallest cell range that contains all cells of the spread-
sheet with any contents, such as values, text, and formulas, or visible formatting, such as borders
and background color. In the following example, xSheet is a com.sun.star.sheet.XSpreadsheet
interface of a spreadsheet. (Spreadsheet/SpreadsheetSample.java)
 // --- Find the used area ---
 com.sun.star.sheet.XSheetCellCursor xCursor = xSheet.createCursor();
 com.sun.star.sheet.XUsedAreaCursor xUsedCursor = (com.sun.star.sheet.XUsedAreaCursor)
 UnoRuntime.queryInterface(com.sun.star.sheet.XUsedAreaCursor.class, xCursor);
 xUsedCursor.gotoStartOfUsedArea(false);
 xUsedCursor.gotoEndOfUsedArea(true);
 System.out.println("The used area is: " + getCellRangeAddressString(xCursor, true));

Referencing Ranges by Name
Cell ranges can be assigned a name that they may be addressed by in formulas. This is done with
named ranges. Another way to use names for cell references in formulas is the automatic label
lookup which is controlled using label ranges.

Named Ranges
A named range is a named formula expression, where a cell range is just one possible content.
Thus, the content of a named range is always set as a string.

687

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XUsedAreaCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XUsedAreaCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XUsedAreaCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheet.html

The collection of named ranges is accessed using the document's NamedRanges property. A new
named range is added by calling the com.sun.star.sheet.XNamedRanges interface's addNew-
ByName() method. The method's parameters are:

• The name for the new named range.

• The content. This must be a string containing a valid formula expression. A commonly used
type of expression is an absolute cell range reference like �$Sheet1.$A1:$C3�.

• A reference position for relative references. If the content contains relative cell references, and
the named range is used in a formula, the references are adjusted for the formula's position. The
reference position states which cell the references are relative to.

• The type of the named range that controls if the named range is included in some dialogs. The
type must be a combination of the com.sun.star.sheet.NamedRangeFlag constants:

• If the FILTER_CRITERIA bit is set, the named range is offered as a criteria range in the
�Advanced Filter� dialog.

• If the PRINT_AREA, COLUMN_HEADER or ROW_HEADER bit is set, the named range is selected as
�Print range�, �Columns to repeat� or �Rows to repeat� in the Edit Print Ranges dialog.

The addNewFromTitles() method creates named ranges from header columns or rows in a cell
range. The com.sun.star.sheet.Border enum parameter selects which named ranges are
created:

• If the value is TOP, a named range is created for each column of the cell range with the name
taken from the range's first row, and the other cells of that column within the cell range as
content.

• For BOTTOM, the names are taken from the range's last row.

• If the value is LEFT, a named range is created for each row of the cell range with the name taken
from the range's first column, and the other cells of that row within the cell range as content.

688 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 9.25: Named ranges

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Border.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Border.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Border.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/NamedRangeFlag.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/NamedRangeFlag.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/NamedRangeFlag.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XNamedRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XNamedRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XNamedRanges.html

• For RIGHT, the names are taken from the range's last column.

The removeByName() method is used to remove a named range. The outputList() method writes
a list of all the named ranges into the document, starting at the specified cell position.

The com.sun.star.sheet.NamedRange service accesses an existing named range. The
com.sun.star.container.XNamed interface changes the name, and the
com.sun.star.sheet.XNamedRange interface changes the other settings. See the addNewByName
description above for the meaning of the individual values.

If the content of the name is a single cell range reference, the com.sun.star.sheet.XCellRang-
eReferrer interface is used to access that cell range.

The following example creates a named range that calculates the sum of the two cells above the
position where it is used. This is done by using the relative reference �G43:G44� with the reference
position G45. Then, the example uses the named range in two formulas. (Spreadsheet/Spread-
sheetSample.java)
 // insert a named range
 com.sun.star.beans.XPropertySet xDocProp = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, xDocument);
 Object aRangesObj = xDocProp.getPropertyValue("NamedRanges");
 com.sun.star.sheet.XNamedRanges xNamedRanges = (com.sun.star.sheet.XNamedRanges)
 UnoRuntime.queryInterface(com.sun.star.sheet.XNamedRanges.class, aRangesObj);
 com.sun.star.table.CellAddress aRefPos = new com.sun.star.table.CellAddress();
 aRefPos.Sheet = 0;
 aRefPos.Column = 6;
 aRefPos.Row = 44;
 xNamedRanges.addNewByName("ExampleName", "SUM(G43:G44)", aRefPos, 0);

 // use the named range in formulas
 xSheet.getCellByPosition(6, 44).setFormula("=ExampleName");
 xSheet.getCellByPosition(7, 44).setFormula("=ExampleName");

Label Ranges
A label range consists of a label area containing the labels, and a data area containing the data that
the labels address. There are label ranges for columns and rows of data, which are kept in two
separate collections in the document.

689

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeReferrer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeReferrer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeReferrer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeReferrer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeReferrer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeReferrer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XNamedRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XNamedRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XNamedRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/NamedRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/NamedRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/NamedRange.html

The com.sun.star.sheet.LabelRanges service contains the document's column label ranges or
row label ranges, depending if the ColumnLabelRanges or RowLabelRanges property was used to
get it. The com.sun.star.sheet.XLabelRanges interface's addNew() method is used to add a new
label range, specifying the label area and data area. The removeByIndex() method removes a label
range.

The com.sun.star.sheet.LabelRange service represents a single label range and contains the
com.sun.star.sheet.XLabelRange interface to modify the label area and data area.

690 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 9.26: Label Ranges

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XLabelRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XLabelRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XLabelRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/LabelRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/LabelRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/LabelRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XLabelRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XLabelRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XLabelRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/LabelRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/LabelRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/LabelRanges.html

The following example inserts a column label range with the label area G48:H48 and the data area
G49:H50, that is, the content of G48 is used as a label for G49:G50 and the content of H48 is used as
a label for H49:H50, as shown in the two formulas the example inserts. (Spreadsheet/Spreadsheet-
Sample.java)
 com.sun.star.table.XCellRange xRange = xSheet.getCellRangeByPosition(6, 47, 7, 49);
 com.sun.star.sheet.XCellRangeData xData = (com.sun.star.sheet.XCellRangeData)
 UnoRuntime.queryInterface(com.sun.star.sheet.XCellRangeData.class, xRange);
 Object[][] aValues =
 {
 {"Apples", "Oranges"},
 {new Double(5), new Double(7)},
 {new Double(6), new Double(8)}
 };
 xData.setDataArray(aValues);

 // insert a column label range
 Object aLabelsObj = xDocProp.getPropertyValue("ColumnLabelRanges");
 com.sun.star.sheet.XLabelRanges xLabelRanges = (com.sun.star.sheet.XLabelRanges)
 UnoRuntime.queryInterface(com.sun.star.sheet.XLabelRanges.class, aLabelsObj);
 com.sun.star.table.CellRangeAddress aLabelArea = new com.sun.star.table.CellRangeAddress();
 aLabelArea.Sheet = 0;
 aLabelArea.StartColumn = 6;
 aLabelArea.StartRow = 47;
 aLabelArea.EndColumn = 7;
 aLabelArea.EndRow = 47;
 com.sun.star.table.CellRangeAddress aDataArea = new com.sun.star.table.CellRangeAddress();
 aDataArea.Sheet = 0;
 aDataArea.StartColumn = 6;
 aDataArea.StartRow = 48;
 aDataArea.EndColumn = 7;
 aDataArea.EndRow = 49;
 xLabelRanges.addNew(aLabelArea, aDataArea);

 // use the label range in formulas
 xSheet.getCellByPosition(8, 48).setFormula("=Apples+Oranges");
 xSheet.getCellByPosition(8, 49).setFormula("=Apples+Oranges");

Querying for Cells with Specific Properties
Cells, cell ranges and collections of cell ranges are queried for certain cell contents through the
service com.sun.star.sheet.SheetRangesQuery. It implements interfaces to query cells and cell
ranges with specific properties.

The methods of the interface com.sun.star.sheet.XCellRangesQuery search for cells with
specific contents or properties inside of the given cell range. The methods of the interface
com.sun.star.sheet.XFormulaQuery search for cells in the entire spreadsheet that are reference
to or are referenced from formula cells in the given range.

691

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XFormulaQuery.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XFormulaQuery.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XFormulaQuery.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetRangesQuery.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetRangesQuery.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetRangesQuery.html

Due to a bug in the current implementation, both methods queryPrecedents() and
queryDependents() of the interface com.sun.star.sheet.XFormulaQuery cause an endless loop in
recursive mode, if parameter bRecursive is true.

All methods return the interface com.sun.star.sheet.XSheetCellRanges of a cell range collec-
tion. Cell range collections are described in the chapter 9.3.1 Spreadsheet Documents - Working with
Spreadsheets - Document Structure - Cell Ranges and Cells Container.

 Methods of com.sun.star.sheet.XCellRangesQuery

queryVisibleCells() Returns all cells that are not hidden.

queryEmptyCells() Returns all cells that do not have any content.

queryContentCells() Returns all cells that have the contents described by the passed parameter. The
flags are defined in com.sun.star.sheet.CellFlags.

queryFormulaCells() Returns all formula cells whose results have a specific type described by the
passed parameter. The result flags are defined in
com.sun.star.sheet.FormulaResult.

queryColumnDifferences() Returns all cells of the range that have different contents than the cell in the same
column of the specified row. See the example below.

queryRowDifferences() Returns all cells of the range that have different contents than the cell in the same
row of the specified column. See the example below.

queryIntersection() Returns all cells of the range that are contained in the passed range address.

Example:

A B C D E F G

1 1 1 2
2 1 2 2

3 1 2 1
4 1 1 1

The queried range is A1:C4 and the passed cell address is B2.

692 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 9.27: Query sheet ranges

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html#queryIntersection
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html#queryIntersection
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html#queryIntersection
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html#queryRowDifferences
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html#queryRowDifferences
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html#queryRowDifferences
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html#queryColumnDifferences
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html#queryColumnDifferences
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html#queryColumnDifferences
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FormulaResult.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FormulaResult.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FormulaResult.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html#queryFormulaCells
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html#queryFormulaCells
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html#queryFormulaCells
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellFlags.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellFlags.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellFlags.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html#queryContentCells
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html#queryContentCells
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html#queryContentCells
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html#queryEmptyCells
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html#queryEmptyCells
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html#queryEmptyCells
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html#queryVisibleCells
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html#queryVisibleCells
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html#queryVisibleCells
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XFormulaQuery.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XFormulaQuery.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XFormulaQuery.html

• queryColumnDifferences(): (the row number is of interest) The cells of column A are
compared with cell A2, the cells of column B with B2 and so on. The function returns the cell
range list B1:B1, B4:B4, C3:C4.

• queryRowDifferences(): (the column index is of interest) The function compares row 1 with
cell B1, row 2 with cell B2 and so on. It returns the cell range list C1:C1, A2:A2, A3:A3, C3:C3.

The following code queries all cells with text content: (Spreadsheet/SpreadsheetSample.java)
 // --- Cell Ranges Query ---
 // query addresses of all cells containing text
 com.sun.star.sheet.XCellRangesQuery xRangesQuery = (com.sun.star.sheet.XCellRangesQuery)
 UnoRuntime.queryInterface(com.sun.star.sheet.XCellRangesQuery.class, xCellRange);

 com.sun.star.sheet.XSheetCellRanges xCellRanges =
 xRangesQuery.queryContentCells((short)com.sun.star.sheet.CellFlags.STRING);
 System.out.println("Cells containing text: " + xCellRanges.getRangeAddressesAsString());

Search and Replace
The cell range interface com.sun.star.util.XReplaceable is derived from
com.sun.star.util.XSearchable providing search and replacement of text.

• The method createReplaceDescriptor() creates a new descriptor that contains all data for
the replace action. It returns the interface com.sun.star.util.XReplaceDescriptor of this
descriptor.

• The method replaceAll() performs a replacement in all cells according to the passed replace
descriptor.

The following example replaces all occurrences of �cell� with �text�: (Spreadsheet/Spreadsheet-
Sample.java)
 // --- Replace text in all cells. ---
 com.sun.star.util.XReplaceable xReplace = (com.sun.star.util.XReplaceable)
 UnoRuntime.queryInterface(com.sun.star.util.XReplaceable.class, xCellRange);
 com.sun.star.util.XReplaceDescriptor xReplaceDesc = xReplace.createReplaceDescriptor();
 xReplaceDesc.setSearchString("cell");
 xReplaceDesc.setReplaceString("text");
 // property SearchWords searches for whole cells!
 xReplaceDesc.setPropertyValue("SearchWords", new Boolean(false));
 int nCount = xReplace.replaceAll(xReplaceDesc);
 System.out.println("Search text replaced " + nCount + " times.");

The property SearchWords has a different meaning in spreadsheets: If true, only cells containing the
whole search text and nothing else is found. If false, cells containing the search string as a substring is
found.

9.3.4 Sorting

Table Sort Descriptor
A sort descriptor describes all properties of a sort operation. The service
com.sun.star.table.TableSortDescriptor2 extends the service
com.sun.star.util.SortDescriptor2 with table specific sorting properties, such as:

The sorting orientation using the boolean IsSortColumns.
A sequence of sorting fields using the SortFields property that contains a sequence of
com.sun.star.table.TableSortField structs.

693

http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableSortField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableSortField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableSortField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/SortDescriptor2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/SortDescriptor2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/SortDescriptor2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableSortDescriptor2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableSortDescriptor2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableSortDescriptor2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XReplaceDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XReplaceDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XReplaceDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XSearchable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XSearchable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XSearchable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XReplaceable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XReplaceable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XReplaceable.html

The size of the sequence using the MaxSortFieldsCount property.

The service com.sun.star.sheet.SheetSortDescriptor2 extends the service
com.sun.star.table.TableSortDescriptor2with spreadsheet specific sorting properties, such
as:

Moving cell formats with the cells they belong to using the boolean property BindFormatsToCon-
tent.The existence of column or row headers using the boolean property ContainsHeader.

Copying the sorted data to another position in the document using the boolean property CopyOut-
putData.

Position where sorted data are to be copied using the property OutputPosition.

If the IsUserListEnabled property is true, a user-defined sort list is used that specifies an order
for the strings it contains. The UserListIndex property selects an entry from the UserLists prop-
erty of the com.sun.star.sheet.GlobalSheetSettings service to find the sort list that is used.

To sort the contents of a cell range, the sort() method from the com.sun.star.util.XSortable
interface is called, passing a sequence of property values with properties from the
com.sun.star.sheet.SheetSortDescriptor2 service. The sequence can be constructed from
scratch containing the properties that should be set, or the return value of the createSortDe-
scriptor() method can be used and modified. If the cell range is a database range that has a

694 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 9.28: SheetSortDescriptor2

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetSortDescriptor2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetSortDescriptor2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetSortDescriptor2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XSortable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XSortable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XSortable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/GlobalSheetSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/GlobalSheetSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/GlobalSheetSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableSortDescriptor2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableSortDescriptor2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableSortDescriptor2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetSortDescriptor2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetSortDescriptor2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetSortDescriptor2.html

stored sort operation, createSortDescriptor() returns a sequence with the options of this sort
operation.

The fields that the cell range is sorted by are specified in the SortFields property as a sequence of
com.sun.star.table.TableSortField elements. In the com.sun.star.table.TableSortField
struct, the Field member specifies the field number by which to sort, and the boolean
IsAscending member switches between ascending and descending sorting for that field. The
boolean IsCaseSensitive specifies whether the case of letters is important when comparing
entries. The CollatorLocale is used to sort according to the sorting rules of a given locale. For
some locales, several different sorting rules exist. In this case, the CollatorAlgorithm is used to
select one of the sorting rules. The com.sun.star.i18n.Collator service is used to find the
possible CollatorAlgorithm values for a locale. Currently, it is not possible to have different
locales, algorithms and case sensitivity on the different fields.

The FieldType member, that is used to select textual or numeric sorting in text documents is ignored in the
spreadsheet application. In a spreadsheet, a cell always has a known type of text or value, which is used for
sorting, with numbers sorted before text cells.

The following example sorts the cell range by the second column in ascending order:
(Spreadsheet/SpreadsheetSample.java)
 // --- sort by second column, ascending ---

 // define the fields to sort
 com.sun.star.util.SortField[] aSortFields = new com.sun.star.table.TableSortField[1];
 aSortFields[0] = new com.sun.star.table.TableSortField();
 aSortFields[0].Field = 1;
 aSortFields[0].IsAscending = true;
 aSortFields[0].IsCaseSensitive = false;

 // define the sort descriptor
 com.sun.star.beans.PropertyValue[] aSortDesc = new com.sun.star.beans.PropertyValue[2];
 aSortDesc[0] = new com.sun.star.beans.PropertyValue();
 aSortDesc[0].Name = "SortFields";
 aSortDesc[0].Value = aSortFields;
 aSortDesc[1] = new com.sun.star.beans.PropertyValue();
 aSortDesc[1].Name = "ContainsHeader";
 aSortDesc[1].Value = new Boolean(true);

 // perform the sorting
 com.sun.star.util.XSortable xSort = (com.sun.star.util.XSortable)
 UnoRuntime.queryInterface(com.sun.star.util.XSortable.class, xRange);
 xSort.sort(aSortDesc);

9.3.5 Database Operations
This section discusses the operations that treat the contents of a cell range as database data, orga-
nized in rows and columns like a database table. These operations are filtering, sorting, adding of
subtotals and importing from an external database. Each of the operations is controlled using a
descriptor service. The descriptors can be used in two ways:

• Performing an operation on a cell range. This is described in the following sections about the
individual descriptors.

• Accessing the settings that are stored with a database range. This is described in the section
about database ranges.

695

http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/Collator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/Collator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/i18n/Collator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableSortField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableSortField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableSortField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableSortField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableSortField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableSortField.html

Filtering
A com.sun.star.sheet.SheetFilterDescriptor object is created using the createFilterDe-
scriptor() method from the range's com.sun.star.sheet.XSheetFilterable interface to filter

696 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 9.29: DatabaseRange

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetFilterable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetFilterable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetFilterable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetFilterDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetFilterDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetFilterDescriptor.html

data in a cell range. After applying the settings to the descriptor, it is passed to the filter()
method.

If true is passed as a bEmpty parameter to createFilterDescriptor(), the returned descriptor
contains default values for all settings. If false is passed and the cell range is a database range that
has a stored filter operation, the settings for that filter are used.

The com.sun.star.sheet.XSheetFilterDescriptor interface is used to set the filter criteria as a
sequence of com.sun.star.sheet.TableFilterField elements. The
com.sun.star.sheet.TableFilterField struct describes a single condition and contains the
following members:

• Connection has the values AND or OR, and specifies how the condition is connected to the
previous condition in the sequence. For the first entry, Connection is ignored.

• Field is the number of the field that the condition is applied to.

• Operator is the type of the condition, such as EQUAL or GREATER
• IsNumeric selects a numeric or textual condition.

• NumericValue contains the value that is used in the condition if IsNumeric is true.

• StringValue contains the text that is used in the condition if IsNumeric is false.

Additionally, the filter descriptor contains a com.sun.star.beans.XPropertySet interface for
settings that affect the whole filter operation.

If the property CopyOutputData is true, the data that matches the filter criteria is copied to a cell
range in the document that starts at the position specified by the OutputPosition property. Other-
wise, the rows that do not match the filter criteria are filtered (hidden) in the original cell range.

The following example filters the range that is in the variable xRange for values greater or equal to
1998 in the second column: (Spreadsheet/SpreadsheetSample.java)
 // --- filter for second column >= 1998 ---
 com.sun.star.sheet.XSheetFilterable xFilter = (com.sun.star.sheet.XSheetFilterable)
 UnoRuntime.queryInterface(com.sun.star.sheet.XSheetFilterable.class, xRange);
 com.sun.star.sheet.XSheetFilterDescriptor xFilterDesc =
 xFilter.createFilterDescriptor(true);
 com.sun.star.sheet.TableFilterField[] aFilterFields =
 new com.sun.star.sheet.TableFilterField[1];
 aFilterFields[0] = new com.sun.star.sheet.TableFilterField();
 aFilterFields[0].Field = 1;
 aFilterFields[0].IsNumeric = true;
 aFilterFields[0].Operator = com.sun.star.sheet.FilterOperator.GREATER_EQUAL;
 aFilterFields[0].NumericValue = 1998;
 xFilterDesc.setFilterFields(aFilterFields);
 com.sun.star.beans.XPropertySet xFilterProp = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, xFilterDesc);
 xFilterProp.setPropertyValue("ContainsHeader", new Boolean(true));
 xFilter.filter(xFilterDesc);

697

Illustration 9.30: SheetFilterDescriptor

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TableFilterField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TableFilterField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TableFilterField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TableFilterField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TableFilterField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TableFilterField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetFilterDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetFilterDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetFilterDescriptor.html

The com.sun.star.sheet.XSheetFilterableEx interface is used to create a filter descriptor from
criteria in a cell range in the same manner as the �Advanced Filter� dialog. The
com.sun.star.sheet.XSheetFilterableEx interface must be queried from the range that
contains the conditions, and the com.sun.star.sheet.XSheetFilterable interface of the range
to be filtered must be passed to the createFilterDescriptorByObject() call.

The following example performs the same filter operation as the example before, but reads the
filter criteria from a cell range:
 // --- do the same filter as above, using criteria from a cell range ---
 com.sun.star.table.XCellRange xCritRange = xSheet.getCellRangeByName("B27:B28");
 com.sun.star.sheet.XCellRangeData xCritData = (com.sun.star.sheet.XCellRangeData)
 UnoRuntime.queryInterface(com.sun.star.sheet.XCellRangeData.class, xCritRange);
 Object[][] aCritValues = {{"Year"}, {">= 1998"}};
 xCritData.setDataArray(aCritValues);
 com.sun.star.sheet.XSheetFilterableEx xCriteria = (com.sun.star.sheet.XSheetFilterableEx)
 UnoRuntime.queryInterface(com.sun.star.sheet.XSheetFilterableEx.class, xCritRange);
 xFilterDesc = xCriteria.createFilterDescriptorByObject(xFilter);
 if (xFilterDesc != null)
 xFilter.filter(xFilterDesc);

Subtotals
A com.sun.star.sheet.SubTotalDescriptor object is created using the createSubTotalDe-
scriptor() method from the range's com.sun.star.sheet.XSubTotalCalculatable interface to
create subtotals for a cell range. After applying the settings to the descriptor, it is passed to the
applySubTotals() method.

The bEmpty parameter to the createSubTotalDescriptor() method works in the same manner
as the parameter to the createFilterDescriptor() method described in the filtering section. If
the bReplace parameter to the applySubTotals() method is true, existing subtotal rows are
deleted before inserting new ones.

The removeSubTotals() method removes the subtotal rows from the cell range without modi-
fying the stored subtotal settings, so that the same subtotals can later be restored.

New fields are added to the subtotal descriptor using the com.sun.star.sheet.XSubTotalDe-
scriptor interface's addNew() method. The nGroupColumn parameter selects the column by which
values are grouped. The subtotals are inserted at changes of the column's values. The aSubTotal-
Columns parameter specifies which column subtotal values are calculated. It is a sequence of

698 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 9.31: SubtotalDescriptor

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSubTotalDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSubTotalDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSubTotalDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSubTotalDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSubTotalDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSubTotalDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSubTotalCalculatable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSubTotalCalculatable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSubTotalCalculatable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SubTotalDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SubTotalDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SubTotalDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetFilterable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetFilterable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetFilterable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetFilterableEx.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetFilterableEx.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetFilterableEx.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetFilterableEx.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetFilterableEx.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetFilterableEx.html

com.sun.star.sheet.SubTotalColumn entries where each entry contains the column number and
the function to be calculated.

To query or modify the fields in a subtotal descriptor, the com.sun.star.container.XIndexAc-
cess interface is used to access the fields. Each field's com.sun.star.sheet.XSubTotalField
interface gets and sets the group and subtotal columns.

The example below creates subtotals, grouping by the first column and calculating the sum of the
third column: (Spreadsheet/SpreadsheetSample.java)
 // --- insert subtotals ---
 com.sun.star.sheet.XSubTotalCalculatable xSub = (com.sun.star.sheet.XSubTotalCalculatable)
 UnoRuntime.queryInterface(com.sun.star.sheet.XSubTotalCalculatable.class, xRange);
 com.sun.star.sheet.XSubTotalDescriptor xSubDesc = xSub.createSubTotalDescriptor(true);
 com.sun.star.sheet.SubTotalColumn[] aColumns = new com.sun.star.sheet.SubTotalColumn[1];
 // calculate sum of third column
 aColumns[0] = new com.sun.star.sheet.SubTotalColumn();
 aColumns[0].Column = 2;
 aColumns[0].Function = com.sun.star.sheet.GeneralFunction.SUM;
 // group by first column
 xSubDesc.addNew(aColumns, 0);
 xSub.applySubTotals(xSubDesc, true);

Database Import
The com.sun.star.util.XImportable interface imports data from an external data source (data-
base) into spreadsheet cells. The database has to be registered in OpenOffice.org API, so that it can
be selected using its name. The doImport call takes a sequence of property values that select the
data to import.

Similar to the sort descriptor, the import descriptor's sequence of property values can be
constructed from scratch, or the return value of the createImportDescriptor() method can be
used and modified. The createImportDescriptor() method returns a description of the previ-
ously imported data if the cell range is a database range with stored import settings and the
bEmpty parameter is false.

The DatabaseName property selects a database. The SourceType selects the kind of object from the
database that is imported. It can have the following values:

• If SourceType is TABLE, the whole table that is named by SourceObject is imported.

• If SourceType is QUERY, the SourceObject must be the name of a named query.

• If SourceType is SQL, the SourceObject is used as a literal SQL command string.

If a database name is in the aDatabase variable and a table name in aTableName, the following
code imports that table from the database: (Spreadsheet/SpreadsheetSample.java)

699

Illustration 9.32:
DatabaseImportDescriptor

http://api.openoffice.org/docs/common/ref/com/sun/star/util/XImportable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XImportable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XImportable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSubTotalField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSubTotalField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSubTotalField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SubTotalColumn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SubTotalColumn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SubTotalColumn.html

 // --- import from database ---
 com.sun.star.beans.PropertyValue[] aImportDesc = new com.sun.star.beans.PropertyValue[3];
 aImportDesc[0] = new com.sun.star.beans.PropertyValue();
 aImportDesc[0].Name = "DatabaseName";
 aImportDesc[0].Value = aDatabase;
 aImportDesc[1] = new com.sun.star.beans.PropertyValue();
 aImportDesc[1].Name = "SourceType";
 aImportDesc[1].Value = com.sun.star.sheet.DataImportMode.TABLE;
 aImportDesc[2] = new com.sun.star.beans.PropertyValue();
 aImportDesc[2].Name = "SourceObject";
 aImportDesc[2].Value = aTableName;
 com.sun.star.table.XCellRange xImportRange = xSheet.getCellRangeByName("B33:B33");
 com.sun.star.util.XImportable xImport = (com.sun.star.util.XImportable)
 UnoRuntime.queryInterface(com.sun.star.util.XImportable.class, xImportRange);
 xImport.doImport(aImportDesc);

Database Ranges
A database range is a name for a cell range that also stores filtering, sorting, subtotal and import
settings, as well as some options.

The com.sun.star.sheet.SpreadsheetDocument service has a property DatabaseRanges that is
used to get the document's collection of database ranges. A new database range is added using the
com.sun.star.sheet.XDatabaseRanges interface's addNewByName() method that requires the
name of the new database range, and a com.sun.star.table.CellRangeAddress with the
address of the cell range as arguments. The removeByName() method removes a database range.

The com.sun.star.container.XNameAccess interface is used to get a single
com.sun.star.sheet.DatabaseRange object. Its com.sun.star.sheet.XCellRangeReferrer
interface is used to access the cell range that it is pointed to. The com.sun.star.sheet.XData-
baseRange interface retrieves or changes the com.sun.star.table.CellRangeAddress that is
named, and gets the stored descriptors.

All descriptors of a database range are updated when a database operation is carried out on the
cell range that the database range points to. The stored filter descriptor and subtotal descriptor can
also be modified by changing the objects that are returned by the getFilterDescriptor() and
getSubTotalDescriptor() methods. Calling the refresh() method carries out the stored opera-
tions again.

Whenever a database operation is carried out on a cell range where a database range is not
defined, a temporary database range is used to hold the settings. This temporary database range
has its IsUserDefined property set to false and is valid until another database operation is
performed on a different cell range. In this case, the temporary database range is modified to refer
to the new cell range.

The following example uses the IsUserDefined property to find the temporary database range,
and applies a background color to the corresponding cell range. If run directly after the database
import example above, this marks the imported data. (Spreadsheet/SpreadsheetSample.java)

700 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellRangeAddress.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellRangeAddress.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellRangeAddress.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDatabaseRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDatabaseRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDatabaseRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDatabaseRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDatabaseRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDatabaseRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeReferrer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeReferrer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeReferrer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DatabaseRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DatabaseRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DatabaseRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellRangeAddress.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellRangeAddress.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellRangeAddress.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDatabaseRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDatabaseRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDatabaseRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetDocument.html

 // use the temporary database range to find the imported data's size
 com.sun.star.beans.XPropertySet xDocProp = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, getDocument());
 Object aRangesObj = xDocProp.getPropertyValue("DatabaseRanges");
 com.sun.star.container.XNameAccess xRanges = (com.sun.star.container.XNameAccess)
 UnoRuntime.queryInterface(com.sun.star.container.XNameAccess.class, aRangesObj);
 String[] aNames = xRanges.getElementNames();
 for (int i=0; i<aNames.length; i++) {
 Object aRangeObj = xRanges.getByName(aNames[i]);
 com.sun.star.beans.XPropertySet xRangeProp = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, aRangeObj);
 boolean bUser = ((Boolean) xRangeProp.getPropertyValue("IsUserDefined")).booleanValue();
 if (!bUser) {
 // this is the temporary database range - get the cell range and format it
 com.sun.star.sheet.XCellRangeReferrer xRef = (com.sun.star.sheet.XCellRangeReferrer)
 UnoRuntime.queryInterface(com.sun.star.sheet.XCellRangeReferrer.class, aRangeObj);
 com.sun.star.table.XCellRange xResultRange = xRef.getReferredCells();
 com.sun.star.beans.XPropertySet xResultProp = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, xResultRange);
 xResultProp.setPropertyValue("IsCellBackgroundTransparent", new Boolean(false));
 xResultProp.setPropertyValue("CellBackColor", new Integer(0xFFFFCC));
 }
 }

9.3.6 Linking External Data
This section explains different ways to link data from external sources into a spreadsheet docu-
ment. Refer to the 9.3.5 Spreadsheet Documents - Working with Spreadsheets - Database Operations -
Database Import chapter for linking data from a database.

Sheet Links
Each sheet in a spreadsheet document can be linked to a sheet from a different document. The
spreadsheet document has a collection of all the sheet links to different source documents.

701

The interface com.sun.star.sheet.XSheetLinkable is relevant if the current sheet is used as
buffer for an external sheet link. The interfaces provides access to the data of the link. A link is
established using the com.sun.star.sheet.XSheetLinkable interface's link() method. The
method's parameters are:

• The source document's URL. When a sheet link is inserted or updated, the source document is
loaded from its URL. Unsaved changes in a source document that is open in memory are not
included. All URL types that can be used to load files can also be used in links, including HTTP
to link to data from a web server.

• The name of the sheet in the source document from the contents are copied from. If this string is
empty, the source document's first sheet is used, regardless of its name.

• The filter name and options that are used to load the source document. Refer to the 7.1.5 Office
Development - OpenOffice.org Application Environment - Handling Documents chapter. All spread-
sheet file filters can be used, so it is possible, for example, to link to a CSV text file.

• A com.sun.star.sheet.SheetLinkMode enum value that controls how the contents are
copied:

• If the mode is NORMAL, all cells from the source sheet are copied, including formulas.

• If the mode is VALUE, formulas are replaced by their results in the copy.

702 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 9.33: SheetLinks

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetLinkMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetLinkMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetLinkMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetLinkable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetLinkable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetLinkable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetLinkable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetLinkable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetLinkable.html

The link mode, source URL and source sheet name can also be queried and changed using the
getLinkMode(), setLinkMode(), getLinkUrl(), setLinkUrl(), getLinkSheetName() and
setLinkSheetName() methods. Setting the mode to NONE removes the link.

The com.sun.star.sheet.SheetLinks collection contains an entry for every source document
that is used in sheet links. If several sheets are linked to different sheets from the same source
document, there is only one entry for them. The name that is used for the
com.sun.star.container.XNameAccess interface is the source document's URL.

The com.sun.star.sheet.SheetLink service changes a link's source URL, filter or filter options
through the com.sun.star.beans.XPropertySet interface. The com.sun.star.util.XRefresh-
able interface is used to update the link. This affects all sheets that are linked to any sheet from the
link's source document.

External references in cell formulas are implemented using hidden linked sheets that show as sheet link
objects.

Cell Area Links
A cell area link is a cell area (range) in a spreadsheet that is linked to a cell area from a different
document.

To insert an area link, the com.sun.star.sheet.XAreaLinks interface's insertAtPosition()
method is used with the following parameters:

• The position where the link is placed in the document as a com.sun.star.table.CellAddress
struct.

• The source document's URL is used in the same manner as sheet links.

703

Illustration 9.34: CellAreaLinks

http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellAddress.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellAddress.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellAddress.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XAreaLinks.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XAreaLinks.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XAreaLinks.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XRefreshable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XRefreshable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XRefreshable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XRefreshable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XRefreshable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XRefreshable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetLink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetLink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetLink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetLinks.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetLinks.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetLinks.html

• A string describing the source range in the source document. This can be the name of a named
range or database range, or a direct cell reference, such as �sheet1.a1:c5�. Note that the
WebQuery import filter creates a named range for each HTML table. These names can be used
also.

• The filter name and filter options are used in the same manner as sheet links.

The removeByIndex() method is used to remove a link.

The com.sun.star.sheet.CellAreaLink service is used to modify or refresh an area link. The
com.sun.star.sheet.XAreaLink interface queries and modifies the link's source range and its
output range in the document. Note that the output range changes in size after updating if the size
of the source range changes.

The com.sun.star.beans.XPropertySet interface changes the link's source URL, filter name and
filter options. Unlike sheet links, these changes affect only one linked area. Additionally, the
RefreshDelay property is used to set an interval in seconds to periodically update the link. If the
value is 0, no automatic updates occur.

The com.sun.star.util.XRefreshable interface is used to update the link.

DDE Links
A DDE link is created whenever the DDE spreadsheet function is used in a cell formula.

The com.sun.star.sheet.DDELink service is only used to query the link's parameters using the
com.sun.star.sheet.XDDELink interface, and refresh it using the com.sun.star.util.XRefre-
shable interface. The DDE link's parameters, Application, Topic and Item are determined by the
formula that contains the DDE function, therefore it is not possible to change these parameters in
the link object.

704 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 9.35: DDELink

http://api.openoffice.org/docs/common/ref/com/sun/star/util/XRefreshable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XRefreshable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XRefreshable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XRefreshable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XRefreshable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XRefreshable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDDELink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDDELink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDDELink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DDELink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DDELink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DDELink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XRefreshable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XRefreshable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XRefreshable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XAreaLink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XAreaLink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XAreaLink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellAreaLink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellAreaLink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellAreaLink.html

The link's name used for the com.sun.star.container.XNameAccess interface consists of the
three parameter strings concatenated.

9.3.7 DataPilot

DataPilot Tables
The com.sun.star.sheet.DataPilotTables and related services create and modify DataPilot
tables in a spreadsheet.

The method getDataPilotTables() of the interface com.sun.star.sheet.XDataPilotTables-
Supplier returns the interface com.sun.star.sheet.XDataPilotTables of the collection of all
data pilot tables contained in the spreadsheet.

705

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDataPilotTables.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDataPilotTables.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDataPilotTables.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDataPilotTablesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDataPilotTablesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDataPilotTablesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDataPilotTablesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDataPilotTablesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDataPilotTablesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotTables.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotTables.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotTables.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html

The com.sun.star.sheet.DataPilotTables service is accessed by getting the
com.sun.star.sheet.XDataPilotTablesSupplier interface from a spreadsheet object and
calling the getDataPilotTables() method.

Only DataPilot tables that are based on cell data are supported by these services. DataPilot tables created
directly from external data sources or using the com.sun.star.sheet.DataPilotSource service cannot
be created or modified this way.

706 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 9.36: DataPilotTables

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDataPilotTablesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDataPilotTablesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDataPilotTablesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotTables.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotTables.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotTables.html

Creating a New DataPilot Table

The first step to creating a new DataPilot table is to create a new com.sun.star.sheet.DataPi-
lotDescriptor object by calling the com.sun.star.sheet.XDataPilotTables interface's
createDataPilotDescriptor() method. The descriptor is then used to describe the DataPilot
table's layout and options, and passed to the insertNewByName() method of XDataPilotTables.
The other parameters for insertNewByName() are the name for the new table, and the position
where the table is to be placed on the spreadsheet.

The com.sun.star.sheet.XDataPilotDescriptor interface offers methods to change the DataP-
ilot table settings:

• The cell range that contains the source data is set with the setSourceRange() method. It is a
com.sun.star.table.CellRangeAddress struct.

• The individual fields are handled using the getDataPilotFields(), getColumnFields(),
getRowFields(), getPageFields(), getDataFields() and getHiddenFields() methods.
The details are discussed below.

• The setTag() method sets an additional string that is stored with the DataPilot table, but does
not influence its results.

• The getFilterDescriptor() method returns a com.sun.star.sheet.SheetFilterDe-
scriptor object that can be used to apply filter criteria to the source data. Refer to the section
on data operations for details on how to use a filter descriptor.

The layout of the DataPilot table is controlled using the com.sun.star.sheet.DataPilotFields
service. Each com.sun.star.sheet.DataPilotField object has a property Orientation that
controls where in the DataPilot table the field is used. The com.sun.star.sheet.DataPilotFiel-
dOrientation enum contains the possible orientations:

• HIDDEN: The field is not used in the table.

• COLUMN: Values from this field are used to determine the columns of the table.

• ROW: Values from this field are used to determine the rows of the table.

• PAGE: The field is used in the table's �page� area, where single values from the field can be
selected.

• DATA: The values from this field are used to calculate the table's data area.

The Function property is used to assign a function to the field. For instance, if the field has a DATA
orientation, this is the function that is used for calculation of the results. If the field has COLUMN or
ROW orientation, it is the function that is used to calculate subtotals for the values from this field.

The getDataPilotFields() method returns a collection containing one
com.sun.star.sheet.DataPilotField entry for each column of source data, and one additional
entry for the �Data� column that becomes visible when two or more fields get the DATA orientation.
Each source column appears only once, even if it is used with several orientations or functions.

The getColumnFields(), getRowFields(), getPageFields() and getDataFields() methods
each return a collection of the fields with the respective orientation. In the case of
getDataFields(), a single source column can appear several times if it is used with different func-
tions. The getHiddenFields() method returns a collection of those fields from the getDataPi-
lotFields() collection that are not in any of the other collections.

Note: Page fields and the PAGE orientation are not supported by the current implementation. Setting a field's
orientation to PAGE has the same effect as using HIDDEN. The getPageFields() method always returns
an empty collection.

707

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotFieldOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotFieldOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotFieldOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotFieldOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotFieldOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotFieldOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotFields.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotFields.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotFields.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetFilterDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetFilterDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetFilterDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetFilterDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetFilterDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetFilterDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellRangeAddress.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellRangeAddress.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellRangeAddress.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDataPilotDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDataPilotDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDataPilotDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDataPilotTables.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDataPilotTables.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDataPilotTables.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotDescriptor.html

The exact effect of changing a field orientation depends on which field collection the field object
was taken from. If the object is from the getDataPilotFields() collection, the field is added to
the collection that corresponds to the new Orientation value. If the object is from any of the other
collections, the field is removed from the old orientation and added to the new orientation.

The following example creates a simple DataPilot table with one column, row and data field.
(Spreadsheet/SpreadsheetSample.java)
 // --- Create a new DataPilot table ---
 com.sun.star.sheet.XDataPilotTablesSupplier xDPSupp = (com.sun.star.sheet.XDataPilotTablesSupplier)
 UnoRuntime.queryInterface(com.sun.star.sheet.XDataPilotTablesSupplier.class, xSheet);
 com.sun.star.sheet.XDataPilotTables xDPTables = xDPSupp.getDataPilotTables();
 com.sun.star.sheet.XDataPilotDescriptor xDPDesc = xDPTables.createDataPilotDescriptor();

 // set source range (use data range from CellRange test)
 com.sun.star.table.CellRangeAddress aSourceAddress = createCellRangeAddress(xSheet, "A10:C30");
 xDPDesc.setSourceRange(aSourceAddress);

 // settings for fields
 com.sun.star.container.XIndexAccess xFields = xDPDesc.getDataPilotFields();
 Object aFieldObj;
 com.sun.star.beans.XPropertySet xFieldProp;

 // use first column as column field
 aFieldObj = xFields.getByIndex(0);
 xFieldProp = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, aFieldObj);
 xFieldProp.setPropertyValue("Orientation", com.sun.star.sheet.DataPilotFieldOrientation.COLUMN);

 // use second column as row field
 aFieldObj = xFields.getByIndex(1);
 xFieldProp = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, aFieldObj);
 xFieldProp.setPropertyValue("Orientation", com.sun.star.sheet.DataPilotFieldOrientation.ROW);

 // use third column as data field, calculating the sum
 aFieldObj = xFields.getByIndex(2);
 xFieldProp = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, aFieldObj);
 xFieldProp.setPropertyValue("Orientation", com.sun.star.sheet.DataPilotFieldOrientation.DATA);
 xFieldProp.setPropertyValue("Function", com.sun.star.sheet.GeneralFunction.SUM);

 // select output position
 com.sun.star.table.CellAddress aDestAddress = createCellAddress(xSheet, "A40");
 xDPTables.insertNewByName("DataPilotExample", aDestAddress, xDPDesc);

Modifying a DataPilot Table

The com.sun.star.sheet.DataPilotTable service is used to modify an existing DataPilot table.
The object for an existing table is available through the com.sun.star.container.XNameAccess
interface of the com.sun.star.sheet.DataPilotTables service. It implements the
com.sun.star.sheet.XDataPilotDescriptor interface, so that the DataPilot table can be modi-
fied in the same manner as the descriptor for a new table in the preceding section. After any
change to a DataPilot table's settings, the table is automatically recalculated.

Additionally, the com.sun.star.sheet.XDataPilotTable interface offers a getOutputRange()
method that is used to find which range on the spreadsheet the table occupies, and a refresh()
method that recalculates the table without changing any settings.

The following example modifies the table from the previous example to contain a second data field
using the same source column as the existing data field, but using the �average� function instead.
(Spreadsheet/SpreadsheetSample.java)
 // --- Modify the DataPilot table ---
 Object aDPTableObj = xDPTables.getByName("DataPilotExample");
 xDPDesc = (com.sun.star.sheet.XDataPilotDescriptor)
 UnoRuntime.queryInterface(com.sun.star.sheet.XDataPilotDescriptor.class, aDPTableObj);
 xFields = xDPDesc.getDataPilotFields();

 // add a second data field from the third column, calculating the average
 aFieldObj = xFields.getByIndex(2);
 xFieldProp = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, aFieldObj);
 xFieldProp.setPropertyValue("Orientation", com.sun.star.sheet.DataPilotFieldOrientation.DATA);
 xFieldProp.setPropertyValue("Function", com.sun.star.sheet.GeneralFunction.AVERAGE);

708 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDataPilotTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDataPilotTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDataPilotTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDataPilotDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDataPilotDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDataPilotDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotTables.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotTables.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotTables.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotTable.html

Note how the field object for the third column is taken from the collection returned by getDataPilot-
Fields() to create a second data field. If the field object was taken from the collection returned by
getDataFields(), only the existing data field's function would be changed by the
setPropertyValue() calls to that object.

Removing a DataPilot Table

To remove a DataPilot table from a spreadsheet, call the com.sun.star.sheet.XDataPilotTa-
bles interface's removeByName() method, passing the DataPilot table's name.

DataPilot Sources
The DataPilot feature in OpenOffice.org API Calc makes use of an external component that
provides the tabular results in the DataPilot table using the field orientations and other settings
that are made in the DataPilot dialog or interactively by dragging the fields in the spreadsheet.

Such a component might, for example, connect to an OLAP server, allowing the use of a DataPilot
table to interactively display results from that server.

709

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDataPilotTables.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDataPilotTables.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDataPilotTables.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDataPilotTables.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDataPilotTables.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDataPilotTables.html

The example that is used here provides four dimensions with the same number of members each,
and one data dimension that uses these members as digits to form integer numbers. A resulting
DataPilot table look similar to the following:

710 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 9.37: DataPilotSource

hundreds

ones tens 0 1 2

0 0 0 100 200

1 10 110 210

2 20 120 220

1 0 1 101 201

1 11 111 211

2 21 121 221

2 0 2 102 202

1 12 112 212

2 22 122 222

The example uses the following class to hold the settings that are applied to the DataPilot source:
(Spreadsheet/ExampleDataPiloSource.java)
class ExampleSettings
{
 static public final int nDimensionCount = 6;
 static public final int nValueDimension = 4;
 static public final int nDataDimension = 5;
 static public final String [] aDimensionNames = {
 "ones", "tens", "hundreds", "thousands", "value", "" };

 static public final String getMemberName(int nMember) {
 return String.valueOf(nMember);
 }

 public int nMemberCount = 3;
 public java.util.List aColDimensions = new java.util.ArrayList();
 public java.util.List aRowDimensions = new java.util.ArrayList();
}

To create a DataPilot table using a DataPilot source component, three steps are carried out:

1. The application gets the list of available dimensions (fields) from the component.

2. The application applies the user-specified settings to the component.

3. The application gets the results from the component.

The same set of objects are used for all three steps. The root object from which the other objects are
accessed is the implementation of the com.sun.star.sheet.DataPilotSource service.

The com.sun.star.sheet.DataPilotSourceDimensions, com.sun.star.sheet.DataPilot-
SourceHierarchies, com.sun.star.sheet.DataPilotSourceLevels and
com.sun.star.sheet.DataPilotSourceMembers services are accessed using their parent object
interfaces. That is:

• com.sun.star.sheet.DataPilotSourceDimensions is the parent object of
com.sun.star.sheet.XDimensionsSupplier

• com.sun.star.sheet.DataPilotSourceHierarchies is the parent object of
com.sun.star.sheet.XHierarchiesSupplier

• com.sun.star.sheet.DataPilotSourceLevels is the parent object of
com.sun.star.sheet.XLevelsSupplier

• com.sun.star.sheet.DataPilotSourceMembers is the parent object of
com.sun.star.sheet.XMembersSupplier

All contain the com.sun.star.container.XNameAccess interface to access their children.

711

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XMembersSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XMembersSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XMembersSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceMembers.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceMembers.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceMembers.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XLevelsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XLevelsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XLevelsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceLevels.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceLevels.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceLevels.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XHierarchiesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XHierarchiesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XHierarchiesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceHierarchies.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceHierarchies.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceHierarchies.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDimensionsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDimensionsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDimensionsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceDimensions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceDimensions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceDimensions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceMembers.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceMembers.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceMembers.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceLevels.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceLevels.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceLevels.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceHierarchies.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceHierarchies.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceHierarchies.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceHierarchies.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceHierarchies.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceHierarchies.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceDimensions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceDimensions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceDimensions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSource.html

Source Object

An implementation of the com.sun.star.sheet.DataPilotSource service must be registered, so
that a component can be used as a DataPilot source. If any implementations for the service are
present, the External source/interface option in the DataPilot Select Source dialog is enabled. Any
of the implementations can then be selected by its implementation name in the External Source
dialog, along with four option strings labeled �Source�, �Name�, �User� and �Password�. The
four options are passed to the component unchanged.

The option strings are passed to the com.sun.star.lang.XInitialization interface's
initialize() method if that interface is present. The sequence that is passed to the call contains
four strings with the values from the dialog. Note that the �Password� string is only saved in
OpenOffice.org API's old binary file format, but not in the XML-based format. If the component
needs a password, for example, to connect to a database, it must be able to prompt for that pass-
word.

The example below uses the first of the strings to determine how many members each dimension
should have: (Spreadsheet/ExampleDataPiloSource.java)
private ExampleSettings aSettings = new ExampleSettings();

public void initialize(Object[] aArguments) {
 // If the first argument (Source) is a number between 2 and 10,
 // use it as member count, otherwise keep the default value.
 if (aArguments.length >= 1) {
 String aSource = (String) aArguments[0];
 if (aSource != null) {
 try {
 int nValue = Integer.parseInt(aSource);
 if (nValue >= 2 && nValue <= 10)
 aSettings.nMemberCount = nValue;
 } catch (NumberFormatException e) {
 }
 }
 }
}

The source object's com.sun.star.beans.XPropertySet interface is used to apply two settings:
The ColumnGrand and RowGrand properties control if grand totals for columns or rows should be
added. The settings are taken from the DataPilot dialog. The example does not use them.

The com.sun.star.sheet.XDataPilotResults interface is used to query the results from the
component. This includes only the numeric �data� part of the table. In the example table above, it
would be the 9x3 area of cells that are right-aligned. The getResults() call returns a sequence of
rows, where each row is a sequence of the results for that row. The com.sun.star.sheet.DataRe-
sult struct contains the numeric value in the Value member, and a Flags member contains a
combination of the com.sun.star.sheet.DataResultFlags constants:

• HASDATA is set if there is a valid result at the entry's position. A result value of zero is different
from no result, so this must be set only if the result is not empty.

• SUBTOTAL marks a subtotal value that is formatted differently in the DataPilot table output.

• ERROR is set if the result at the entry's position is an error.

In the example table above, all entries have different Value numbers, and a Flags value of
HASDATA. The implementation for the example looks like this: (Spreadsheet/ExampleDataPilo-
Source.java)

712 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataResultFlags.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataResultFlags.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataResultFlags.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataResult.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataResult.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataResult.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataResult.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataResult.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataResult.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDataPilotResults.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDataPilotResults.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDataPilotResults.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSource.html

public com.sun.star.sheet.DataResult[][] getResults() {
 int[] nDigits = new int[ExampleSettings.nDimensionCount];
 int nValue = 1;
 for (int i=0; i<ExampleSettings.nDimensionCount; i++) {
 nDigits[i] = nValue;
 nValue *= 10;
 }

 int nMemberCount = aSettings.nMemberCount;
 int nRowDimCount = aSettings.aRowDimensions.size();
 int nColDimCount = aSettings.aColDimensions.size();

 int nRows = 1;
 for (int i=0; i<nRowDimCount; i++)
 nRows *= nMemberCount;
 int nColumns = 1;
 for (int i=0; i<nColDimCount; i++)
 nColumns *= nMemberCount;

 com.sun.star.sheet.DataResult[][] aResults = new com.sun.star.sheet.DataResult[nRows][];
 for (int nRow=0; nRow<nRows; nRow++) {
 int nRowVal = nRow;
 int nRowResult = 0;
 for (int nRowDim=0; nRowDim<nRowDimCount; nRowDim++) {
 int nDim = ((Integer)aSettings.aRowDimensions.get(nRowDimCount-nRowDim-1)).intValue();
 nRowResult += (nRowVal % nMemberCount) * nDigits[nDim];
 nRowVal /= nMemberCount;
 }

 aResults[nRow] = new com.sun.star.sheet.DataResult[nColumns];
 for (int nCol=0; nCol<nColumns; nCol++) {
 int nColVal = nCol;
 int nResult = nRowResult;
 for (int nColDim=0; nColDim<nColDimCount; nColDim++) {
 int nDim = ((Integer)
 aSettings.aColDimensions.get(nColDimCount-nColDim-1)).intValue();
 nResult += (nColVal % nMemberCount) * nDigits[nDim];
 nColVal /= nMemberCount;
 }

 aResults[nRow][nCol] = new com.sun.star.sheet.DataResult();
 aResults[nRow][nCol].Flags = com.sun.star.sheet.DataResultFlags.HASDATA;
 aResults[nRow][nCol].Value = nResult;
 }
 }
 return aResults;
}

The com.sun.star.util.XRefreshable interface contains a refresh() method that tells the
component to discard cached results and recalculate the results the next time they are needed. The
addRefreshListener() and removeRefreshListener() methods are not used by OpenOffice.org
API Calc. The refresh() implementation in the example is empty, because the results are always
calculated dynamically.

Dimensions

The com.sun.star.sheet.DataPilotSourceDimensions service contains an entry for each
dimension that can be used as column, row or page dimension, for each possible data (measure)
dimension, and one for the �data layout� dimension that contains the names of the data dimen-
sions.

The example below initializes a dimension's orientation as DATA for the data dimension, and is
otherwise HIDDEN. Thus, when the user creates a new DataPilot table using the example compo-
nent, the data dimension is already present in the �Data� area of the DataPilot dialog. (Spread-
sheet/ExampleDataPiloSource.java)
private ExampleSettings aSettings;
private int nDimension;
private com.sun.star.sheet.DataPilotFieldOrientation eOrientation;

public ExampleDimension(ExampleSettings aSet, int nDim) {
 aSettings = aSet;
 nDimension = nDim;
 eOrientation = (nDim == ExampleSettings.nValueDimension) ?
 com.sun.star.sheet.DataPilotFieldOrientation.DATA :
 com.sun.star.sheet.DataPilotFieldOrientation.HIDDEN;
}

713

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceDimensions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceDimensions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceDimensions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XRefreshable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XRefreshable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XRefreshable.html

The com.sun.star.sheet.DataPilotSourceDimension service contains a
com.sun.star.beans.XPropertySet interface that is used for the following properties of a
dimension:

• Original (read-only) contains the dimension object from which a dimension was cloned, or
null if it was not cloned. A description of the com.sun.star.util.XCloneable interface is
described below.

• IsDataLayoutDimension (read-only) must contain true if the dimension is the �data layout�
dimension, otherwise false.

• Orientation controls how a dimension is used in the DataPilot table. If it contains the
com.sun.star.sheet.DataPilotFieldOrientation enum values COLUMN or ROW, the dimen-
sion is used as a column or row dimension, respectively. If the value is DATA, the dimension is
used as data (measure) dimension. The PAGE designates a page dimension, but is not currently
used in OpenOffice.org API Calc. If the value is HIDDEN, the dimension is not used.

• Position contains the position of the dimension within the orientation. This controls the order
of the dimensions. If a dimension's orientation is changed, it is added at the end of the dimen-
sions for that orientation, and the Position property reflects that position.

• Function specifies the function that is used to aggregate data for a data dimension.

• UsedHierarchy selects which of the dimension's hierarchies is used in the DataPilot table. See
the section on hierarchies below.

• Filter specifies a list of filter criteria to be applied to the source data before processing. It is
currently not used by OpenOffice.org API Calc.

In the following example, the setPropertyValue() method for the dimension only implements
the modification of Orientation and Position, using two lists to store the order of column and
row dimensions. Page dimensions are not supported in the example. (Spreadsheet/ExampleDataP-
iloSource.java)

714 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotFieldOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotFieldOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotFieldOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloneable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloneable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloneable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceDimension.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceDimension.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceDimension.html

public void setPropertyValue(String aPropertyName, Object aValue)
 throws com.sun.star.beans.UnknownPropertyException {
 if (aPropertyName.equals("Orientation")) {
 com.sun.star.sheet.DataPilotFieldOrientation eNewOrient =
 (com.sun.star.sheet.DataPilotFieldOrientation) aValue;
 if (nDimension != ExampleSettings.nValueDimension &&
 nDimension != ExampleSettings.nDataDimension &&
 eNewOrient != com.sun.star.sheet.DataPilotFieldOrientation.DATA) {

 // remove from list for old orientation and add for new one
 Integer aDimInt = new Integer(nDimension);
 if (eOrientation == com.sun.star.sheet.DataPilotFieldOrientation.COLUMN)
 aSettings.aColDimensions.remove(aDimInt);
 else if (eOrientation == com.sun.star.sheet.DataPilotFieldOrientation.ROW)
 aSettings.aRowDimensions.remove(aDimInt);
 if (eNewOrient == com.sun.star.sheet.DataPilotFieldOrientation.COLUMN)
 aSettings.aColDimensions.add(aDimInt);
 else if (eNewOrient == com.sun.star.sheet.DataPilotFieldOrientation.ROW)
 aSettings.aRowDimensions.add(aDimInt);

 // change orientation
 eOrientation = eNewOrient;
 }
 } else if (aPropertyName.equals("Position")) {
 int nNewPos = ((Integer) aValue).intValue();
 Integer aDimInt = new Integer(nDimension);
 if (eOrientation == com.sun.star.sheet.DataPilotFieldOrientation.COLUMN) {
 aSettings.aColDimensions.remove(aDimInt);
 aSettings.aColDimensions.add(nNewPos, aDimInt);
 }
 else if (eOrientation == com.sun.star.sheet.DataPilotFieldOrientation.ROW) {
 aSettings.aRowDimensions.remove(aDimInt);
 aSettings.aRowDimensions.add(nNewPos, aDimInt);
 }
 } else if (aPropertyName.equals("Function") || aPropertyName.equals("UsedHierarchy") ||
 aPropertyName.equals("Filter")) {
 // ignored
 } else
 throw new com.sun.star.beans.UnknownPropertyException();
}

The associated getPropertyValue() method returns the stored values for Orientation and
Position. If it is the data layout dimension, then IsDataLayoutDimension is true, and the
values default for the remaining properties. (Spreadsheet/ExampleDataPiloSource.java)
public Object getPropertyValue(String aPropertyName)
 throws com.sun.star.beans.UnknownPropertyException {
 if (aPropertyName.equals("Original"))
 return null;
 else if (aPropertyName.equals("IsDataLayoutDimension"))
 return new Boolean(nDimension == ExampleSettings.nDataDimension);
 else if (aPropertyName.equals("Orientation"))
 return eOrientation;
 else if (aPropertyName.equals("Position")) {
 int nPosition;
 if (eOrientation == com.sun.star.sheet.DataPilotFieldOrientation.COLUMN)
 nPosition = aSettings.aColDimensions.indexOf(new Integer(nDimension));
 else if (eOrientation == com.sun.star.sheet.DataPilotFieldOrientation.ROW)
 nPosition = aSettings.aRowDimensions.indexOf(new Integer(nDimension));
 else
 nPosition = nDimension;
 return new Integer(nPosition);
 }
 else if (aPropertyName.equals("Function"))
 return com.sun.star.sheet.GeneralFunction.SUM;
 else if (aPropertyName.equals("UsedHierarchy"))
 return new Integer(0);
 else if (aPropertyName.equals("Filter"))
 return new com.sun.star.sheet.TableFilterField[0];
 else
 throw new com.sun.star.beans.UnknownPropertyException();
}

The dimension's com.sun.star.util.XCloneable interface is required when a dimension is used
in multiple positions. The DataPilot dialog allows the use of a column or row dimension addition-
ally as data dimension, and it also allows multiple use of a data dimension by assigning several
functions to it. In both cases, additional dimension objects are created from the original one by
calling the createClone() method. Each clone is given a new name using the
com.sun.star.container.XNamed interface's setName() method, then the different settings are
applied to the objects. A dimension object that was created using the createClone() method must
return the original object that it was created from in the Original property.

715

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloneable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloneable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloneable.html

The example does not support multiple uses of a dimension, so it always returns null from the
createClone() method, and the Original property is also always null.

Hierarchies

A single dimension can have several hierarchies, that is, several ways of grouping the elements of
the dimension. For example, date values may be grouped:

• in a hierarchy with the levels �year�, �month� and �day of month�.

• in a hierarchy with the levels �year�, �week� and �day of week�.

The property UsedHierarchy of the com.sun.star.sheet.DataPilotSourceDimension service
selects which hierarchy of a dimension is used. The property contains an index into the sequence of
names that is returned by the dimension's getElementNames() method. OpenOffice.org API Calc
currently has no user interface to select a hierarchy, so it uses the hierarchy that the initial value of
the UsedHierarchy property selects.

The com.sun.star.sheet.DataPilotSourceHierarchy service serves as a container to access the
levels object.

In the example, each dimension has only one hierarchy, which in turn has one level.

Levels

Each level of a hierarchy that is used in a DataPilot table corresponds to a column or row showing
its members in the left or upper part of the table. The com.sun.star.sheet.DataPilot-
SourceLevel service contains a com.sun.star.beans.XPropertySet interface that is used to
apply the following settings to a level:

• The SubTotals property defines a list of functions that are used to calculate subtotals for each
member. If the sequence is empty, no subtotal columns or rows are generated. The
com.sun.star.sheet.GeneralFunction enum value AUTO is used to select �automatic� subto-
tals, determined by the type of the data.

• The ShowEmpty property controls if result columns or rows are generated for members that
have no data.

Both of these settings can be modified by the user in the �Data Field� dialog. The example does not
use them.

The com.sun.star.sheet.XDataPilotMemberResults interface is used to get the result header
column that is displayed below the level's name for a row dimension, or the header row for a
column dimension. The sequence returned from the getResults() call must have the same size as
the data result's columns or rows respectively, or be empty. If the sequence is empty, or none of the
entries contains the HASMEMBER flag, the level is not shown.

The com.sun.star.sheet.MemberResult struct contains the following members:

• Name is the name of the member that is represented by the entry, exactly as returned by the
member object's getName() method. It is used to find the member object, for example when the
user double-clicks on the cell.

• Caption is the string that will be displayed in the cell. It may or may not be the same as Name.

• Flags indicates the kind of result the entry represents. It can be a combination of the
com.sun.star.sheet.MemberResultFlags constants:

• HASMEMBER indicates there is a member that belongs to this entry.

716 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/MemberResultFlags.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/MemberResultFlags.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/MemberResultFlags.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/MemberResult.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/MemberResult.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/MemberResult.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDataPilotMemberResults.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDataPilotMemberResults.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XDataPilotMemberResults.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/GeneralFunction.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/GeneralFunction.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/GeneralFunction.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceLevel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceLevel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceLevel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceLevel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceLevel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceLevel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceHierarchy.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceHierarchy.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceHierarchy.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceDimension.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceDimension.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceDimension.html

• SUBTOTAL marks an entry that corresponds to a subtotal column or row. The HASMEMBER
should be set.

• CONTINUE marks an entry that is a continuation of the previous entry. In this case, none of
the others are set, and the Name and Caption members are both empty.

In the example table shown above, the resulting sequence for the �ones� level would consist of:

• an entry containing the name and caption �1� and the HASMEMBER flag

• two entries containing only the CONTINUE flag

• the same repeated for member names �2� and �3�.

The implementation for the example looks similar to this:
(Spreadsheet/ExampleDataPiloSource.java)
private ExampleSettings aSettings;
private int nDimension;

public com.sun.star.sheet.MemberResult[] getResults() {
 int nDimensions = 0;
 int nPosition = aSettings.aColDimensions.indexOf(new Integer(nDimension));
 if (nPosition >= 0)
 nDimensions = aSettings.aColDimensions.size();
 else {
 nPosition = aSettings.aRowDimensions.indexOf(new Integer(nDimension));
 if (nPosition >= 0)
 nDimensions = aSettings.aRowDimensions.size();
 }

 if (nPosition < 0)
 return new com.sun.star.sheet.MemberResult[0];

 int nMembers = aSettings.nMemberCount;
 int nRepeat = 1;
 int nFill = 1;
 for (int i=0; i<nDimensions; i++) {
 if (i < nPosition)
 nRepeat *= nMembers;
 else if (i > nPosition)
 nFill *= nMembers;
 }
 int nSize = nRepeat * nMembers * nFill;

 com.sun.star.sheet.MemberResult[] aResults = new com.sun.star.sheet.MemberResult[nSize];
 int nResultPos = 0;
 for (int nOuter=0; nOuter<nRepeat; nOuter++) {
 for (int nMember=0; nMember<nMembers; nMember++) {
 aResults[nResultPos] = new com.sun.star.sheet.MemberResult();
 aResults[nResultPos].Name = ExampleSettings.getMemberName(nMember);
 aResults[nResultPos].Caption = aResults[nResultPos].Name;
 aResults[nResultPos].Flags = com.sun.star.sheet.MemberResultFlags.HASMEMBER;
 ++nResultPos;

 for (int nInner=1; nInner<nFill; nInner++) {
 aResults[nResultPos] = new com.sun.star.sheet.MemberResult();
 aResults[nResultPos].Flags = com.sun.star.sheet.MemberResultFlags.CONTINUE;
 ++nResultPos;
 }
 }
 }
 return aResults;
}

Members

The com.sun.star.sheet.DataPilotSourceMember service contains two settings that are
accessed through the com.sun.star.beans.XPropertySet interface:

• If the boolean IsVisible property is false, the member and its data are hidden. There is
currently no user interface to change this property.

• The boolean ShowDetails property controls if the results for a member should be detailed in
the following level. If a member has this property set to false, only a single result column or

717

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceMember.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceMember.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/DataPilotSourceMember.html

row is generated for each data dimension. The property can be changed by the user by double-
clicking on a result header cell for the member.

These properties are not used in the example.

9.3.8 Protecting Spreadsheets
The interface com.sun.star.document.XActionLockable protects this cell from painting or
updating during changes. The interface can be used to optimize the performance of complex
changes, for instance, inserting or deleting formatted text.

The interface com.sun.star.util.XProtectable contains methods to protect and unprotect the
spreadsheet with a password. Protecting the spreadsheet protects the locked cells only.

• The methods protect() and unprotect() to switch the protection on and off. If a wrong pass-
word is used to unprotect the spreadsheet, it leads to an exception.

• The method isProtected() returns the protection state of the spreadsheet as a boolean value.

9.3.9 Sheet Outline
The spreadsheet interface com.sun.star.sheet.XSheetOutline contains all the methods to
control the row and column outlines of a spreadsheet:

 Methods of com.sun.star.sheet.XSheetOutline

group() Creates a new outline group and the method ungroup() removes the
innermost outline group for a cell range. The parameter nOrientation
(type com.sun.star.table.TableOrientation) selects the orien-
tation of the outline (columns or rows).

autoOutline() Inserts outline groups for a cell range depending on formula references.

clearOutline() Removes all outline groups from the sheet.

hideDetail() Collapses an outline group.

showDetail() Reopens an outline group.

showLevel() Shows the specified number of outline group levels and hides the
others.

9.3.10 Detective
The spreadsheet interface com.sun.star.sheet.XSheetAuditing supports the detective function-
ality of the spreadsheet.

Methods of com.sun.star.sheet.XSheetAuditing
hideDependents()
hidePrecedents()

Hides the last arrows to dependent or precedent cells of a formula cell.
Repeated calls of the methods shrink the chains of arrows.

showDependents()
showPrecedents()

Adds arrows to the next dependent or precedent cells of a formula cell.
Repeated calls of the methods extend the chains of arrows.

showErrors() Inserts arrows to all cells that cause an error in the specified cell.

718 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAuditing.html#showErrors
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAuditing.html#showErrors
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAuditing.html#showErrors
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAuditing.html#showPrecedents
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAuditing.html#showPrecedents
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAuditing.html#showPrecedents
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAuditing.html#showDependents
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAuditing.html#showDependents
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAuditing.html#showDependents
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAuditing.html#hidePrecedents
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAuditing.html#hidePrecedents
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAuditing.html#hidePrecedents
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAuditing.html#hideDependents
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAuditing.html#hideDependents
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAuditing.html#hideDependents
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAuditing.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAuditing.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAuditing.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAuditing.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAuditing.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAuditing.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetOutline.html#showLevel
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetOutline.html#showLevel
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetOutline.html#showLevel
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetOutline.html#showDetail
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetOutline.html#showDetail
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetOutline.html#showDetail
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetOutline.html#hideDetail
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetOutline.html#hideDetail
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetOutline.html#hideDetail
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetOutline.html#clearOutline
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetOutline.html#clearOutline
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetOutline.html#clearOutline
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetOutline.html#autoOutline
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetOutline.html#autoOutline
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetOutline.html#autoOutline
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetOutline.html#group
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetOutline.html#group
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetOutline.html#group
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetOutline.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetOutline.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetOutline.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetOutline.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetOutline.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetOutline.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XProtectable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XProtectable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XProtectable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XActionLockable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XActionLockable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XActionLockable.html

Methods of com.sun.star.sheet.XSheetAuditing
showInvalid() Marks all cells that contain invalid values.

clearArrows() Removes all auditing arrows from the spreadsheet.

9.3.11 Other Table Operations

Data Validation
Data validation checks if a user entered valid entries.

A cell or cell range object contains the properties Validation and ValidationLocal. They return
the interface com.sun.star.beans.XPropertySet of the validation object
com.sun.star.sheet.TableValidation. The objects of both properties are equal, except the
representation of formulas. The ValidationLocal property uses function names in the current
language).

After the validation settings are changed, the validation object is reinserted into the property set of the cell or
cell range.

• Type (type com.sun.star.sheet.ValidationType): Describes the type of data the cells
contain. In text cells, it is possible to check the length of the text.

• IgnoreBlankCells: Determines if blank cells are valid.

• ShowInputMessage, InputTitle and InputMessage: These properties describe the message
that appears if a cell of the validation area is selected.

719

Illustration 9.38: TableValidation

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/ValidationType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/ValidationType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/ValidationType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TableValidation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TableValidation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TableValidation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAuditing.html#clearArrows
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAuditing.html#clearArrows
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAuditing.html#clearArrows
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAuditing.html#showInvalid
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAuditing.html#showInvalid
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetAuditing.html#showInvalid

• ShowErrorMessage, ErrorTitle, ErrorMessage and ErrorAlertStyle (type
com.sun.star.sheet.ValidationAlertStyle): These properties describe the error message
that appear if an invalid value has been entered. If the alert style is STOP, all invalid values are
rejected. With the alerts WARNING and INFO, it is possible to keep invalid values. The alert
MACRO starts a macro on invalid values. The property ErrorTitle has to contain the name of
the macro.

The interface com.sun.star.sheet.XSheetCondition sets the conditions for valid values. The
comparison operator, the first and second formula and the base address for relative references in
formulas.

The following example enters values between 0.0 and 5.0 in a cell range. The xSheet is the interface
com.sun.star.sheet.XSpreadsheet of a spreadsheet. (Spreadsheet/SpreadsheetSample.java)
 // --- Data validation ---
 com.sun.star.table.XCellRange xCellRange = xSheet.getCellRangeByName("A7:C7");
 com.sun.star.beans.XPropertySet xCellPropSet = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, xCellRange);

 // validation properties
 com.sun.star.beans.XPropertySet xValidPropSet = (com.sun.star.beans.XPropertySet)
 xCellPropSet.getPropertyValue("Validation");
 xValidPropSet.setPropertyValue("Type", com.sun.star.sheet.ValidationType.DECIMAL);
 xValidPropSet.setPropertyValue("ShowErrorMessage", new Boolean(true));
 xValidPropSet.setPropertyValue("ErrorMessage", "This is an invalid value!");
 xValidPropSet.setPropertyValue("ErrorAlertStyle", com.sun.star.sheet.ValidationAlertStyle.STOP);

 // condition
 com.sun.star.sheet.XSheetCondition xCondition = (com.sun.star.sheet.XSheetCondition)
 UnoRuntime.queryInterface(com.sun.star.sheet.XSheetCondition.class, xValidPropSet);
 xCondition.setOperator(com.sun.star.sheet.ConditionOperator.BETWEEN);
 xCondition.setFormula1("0.0");
 xCondition.setFormula2("5.0");

 // apply on cell range
 xCellPropSet.setPropertyValue("Validation", xValidPropSet);

Data Consolidation
The data consolidation feature calculates results based on several cell ranges.

The com.sun.star.sheet.XConsolidatable's method createConsolidationDescriptor()
returns the interface com.sun.star.sheet.XConsolidationDescriptor of a consolidation
descriptor (service com.sun.star.sheet.ConsolidationDescriptor). This descriptor contains
all data needed for a consolidation. It is possible to get and set all properties:

• getFunction() and setFunction(): The function for calculation, type
com.sun.star.sheet.GeneralFunction.

720 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 9.39: ConsolidationDescriptor

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/GeneralFunction.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/GeneralFunction.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/GeneralFunction.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/ConsolidationDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/ConsolidationDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/ConsolidationDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XConsolidationDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XConsolidationDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XConsolidationDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XConsolidatable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XConsolidatable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XConsolidatable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCondition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCondition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCondition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/ValidationAlertStyle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/ValidationAlertStyle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/ValidationAlertStyle.html

• getSources() and setSources(): A sequence of com.sun.star.table.CellRangeAddress
structs with all cell ranges containing the source data.

• getStartOutputPosition() and setStartOutputPosition(): A
com.sun.star.table.CellAddress containing the first cell of the result cell range.

• getUseColumnHeaders(), setUseColumnHeaders(), getUseRowHeaders() and setUseRow-
Headers(): Determine if the first column or row of each cell range is used to find matching
data.

• getInsertLinks() and setInsertLinks(): Determine if the results are linked to the source
data (formulas are inserted) or not (only results are inserted).

The method consolidate() of the interface com.sun.star.sheet.XConsolidatable performs a
consolidation with the passed descriptor.

Charts

The service com.sun.star.table.TableChart represents a chart object. The interface
com.sun.star.table.XTableChart provides access to the cell range of the source data and
controls the existence of column and row headers.

The service com.sun.star.table.TableChart does not represent the chart document, but the object in
the table that contains the chart document. The interface com.sun.star.document.XEmbeddedObject-
Supplier provides access to that chart document. For further information, see 11 Charts.

The interface com.sun.star.container.XNamed retrieves and changes the name of the chart
object.

721

Illustration 9.40: TableCharts

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEmbeddedObjectSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEmbeddedObjectSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEmbeddedObjectSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEmbeddedObjectSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEmbeddedObjectSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEmbeddedObjectSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableChart.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableChart.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableChart.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableChart.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableChart.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableChart.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableChart.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableChart.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableChart.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XConsolidatable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XConsolidatable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XConsolidatable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellAddress.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellAddress.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellAddress.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellRangeAddress.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellRangeAddress.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellRangeAddress.html

For further information about charts, see 11 Charts.

The service com.sun.star.table.TableCharts represents the collection of all chart objects
contained in the table. It implements the interfaces:

• com.sun.star.table.XTableCharts to create new charts and accessing them by their names.

• com.sun.star.container.XIndexAccess to access the charts by the insertion index.

• com.sun.star.container.XEnumerationAccess to create an enumeration of all charts.

The following example shows how xCharts can be a com.sun.star.table.XTableCharts inter-
face of a collection of charts. (Spreadsheet/GeneralTableSample.java)
 // *** Inserting CHARTS ***
 String aName = "newChart";
 com.sun.star.awt.Rectangle aRect = new com.sun.star.awt.Rectangle();
 aRect.X = 10000;
 aRect.Y = 3000;
 aRect.Width = aRect.Height = 5000;

 com.sun.star.table.CellRangeAddress[] aRanges = new com.sun.star.table.CellRangeAddress[1];
 aRanges[0] = new com.sun.star.table.CellRangeAddress();
 aRanges[0].Sheet = aRanges[0].StartColumn = aRanges[0].EndColumn = 0;
 aRanges[0].StartRow = 0; aRanges[0].EndRow = 9;

 // Create the chart.
 xCharts.addNewByName(aName, aRect, aRanges, false, false);

 // Get the chart by name.
 Object aChartObj = xCharts.getByName(aName);
 com.sun.star.table.XTableChart xChart = (com.sun.star.table.XTableChart)
 UnoRuntime.queryInterface(com.sun.star.table.XTableChart.class, aChartObj);

 // Query the state of row and column headers.
 aText = "Chart has column headers: ";
 aText += xChart.getHasColumnHeaders() ? "yes" : "no";
 System.out.println(aText);
 aText = "Chart has row headers: ";
 aText += xChart.getHasRowHeaders() ? "yes" : "no";
 System.out.println(aText);

Scenarios
A set of scenarios contains different selectable cell contents for one or more cell ranges in a spread-
sheet. The data of each scenario in this set is stored in a hidden sheet following the scenario sheet.
To change the scenario's data, its hidden sheet has to be modified.

722 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableCharts.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableCharts.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableCharts.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableCharts.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableCharts.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableCharts.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableCharts.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableCharts.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableCharts.html

The com.sun.star.sheet.XScenariosSupplier's method getScenarios() returns the interface
com.sun.star.sheet.XScenarios of the scenario set of the spreadsheet. This scenario set is
represented by the service com.sun.star.sheet.Scenarios containing spreadsheet objects. It is
possible to access the scenarios through their names that is equal to the name of the corresponding
spreadsheet, their index, or using an enumeration (represented by the service
com.sun.star.sheet.ScenariosEnumeration).

The interface com.sun.star.sheet.XScenarios inserts and removes scenarios:

• The method addNewByName() adds a scenario with the given name that contains the specified
cell ranges.

• The method removeByName() removes the scenario (the spreadsheet) with the given name.

723

Illustration 9.41: Scenarios

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XScenarios.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XScenarios.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XScenarios.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/ScenariosEnumeration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/ScenariosEnumeration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/ScenariosEnumeration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Scenarios.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Scenarios.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Scenarios.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XScenarios.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XScenarios.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XScenarios.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XScenariosSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XScenariosSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XScenariosSupplier.html

The following method shows how to create a scenario: (Spreadsheet/SpreadsheetSample.java)
/** Inserts a scenario containing one cell range into a sheet and applies the value array.
 @param xSheet The XSpreadsheet interface of the spreadsheet.
 @param aRange The range address for the scenario.
 @param aValueArray The array of cell contents.
 @param aScenarioName The name of the new scenario.
 @param aScenarioComment The user comment for the scenario.
 */
public void insertScenario(
 com.sun.star.sheet.XSpreadsheet xSheet,
 String aRange,
 Object[][] aValueArray,
 String aScenarioName,
 String aScenarioComment) throws RuntimeException, Exception {
 // get the cell range with the given address
 com.sun.star.table.XCellRange xCellRange = xSheet.getCellRangeByName(aRange);

 // create the range address sequence
 com.sun.star.sheet.XCellRangeAddressable xAddr = (com.sun.star.sheet.XCellRangeAddressable)
 UnoRuntime.queryInterface(com.sun.star.sheet.XCellRangeAddressable.class, xCellRange);
 com.sun.star.table.CellRangeAddress[] aRangesSeq = new com.sun.star.table.CellRangeAddress[1];
 aRangesSeq[0] = xAddr.getRangeAddress();

 // create the scenario
 com.sun.star.sheet.XScenariosSupplier xScenSupp = (com.sun.star.sheet.XScenariosSupplier)
 UnoRuntime.queryInterface(com.sun.star.sheet.XScenariosSupplier.class, xSheet);
 com.sun.star.sheet.XScenarios xScenarios = xScenSupp.getScenarios();
 xScenarios.addNewByName(aScenarioName, aRangesSeq, aScenarioComment);
 // insert the values into the range
 com.sun.star.sheet.XCellRangeData xData = (com.sun.star.sheet.XCellRangeData)
 UnoRuntime.queryInterface(com.sun.star.sheet.XCellRangeData.class, xCellRange);
 xData.setDataArray(aValueArray);
}

The service com.sun.star.sheet.Spreadsheet implements the interface
com.sun.star.sheet.XScenario to modify an existing scenario:

• The method getIsScenario() tests if this spreadsheet is used to store scenario data.

• The methods getScenarioComment() and setScenarioComment() retrieves and sets the user
comment for this scenario.

• The method addRanges() adds new cell ranges to the scenario.

• The method apply() copies the data of this scenario to the spreadsheet containing the scenario
set, that is, it makes the scenario visible.

The following method shows how to activate a scenario: (Spreadsheet/SpreadsheetSample.java)
/** Activates a scenario.
 @param xSheet The XSpreadsheet interface of the spreadsheet.
 @param aScenarioName The name of the scenario.
*/
public void showScenario(com.sun.star.sheet.XSpreadsheet xSheet,
 String aScenarioName) throws RuntimeException, Exception {
 // get the scenario set
 com.sun.star.sheet.XScenariosSupplier xScenSupp = (com.sun.star.sheet.XScenariosSupplier)
 UnoRuntime.queryInterface(com.sun.star.sheet.XScenariosSupplier.class, xSheet);
 com.sun.star.sheet.XScenarios xScenarios = xScenSupp.getScenarios();

 // get the scenario and activate it
 Object aScenarioObj = xScenarios.getByName(aScenarioName);
 com.sun.star.sheet.XScenario xScenario = (com.sun.star.sheet.XScenario)
 UnoRuntime.queryInterface(com.sun.star.sheet.XScenario.class, aScenarioObj);
 xScenario.apply();
}

724 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XScenario.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XScenario.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XScenario.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheet.html

9.4 Overall Document Features

9.4.1 Styles
A style contains all formatting properties for a specific object. All styles of the same type are
contained in a collection named a style family. Each style family has a specific name to identify it in
the collection. In OpenOffice.org API Calc, there are two style families named CellStyles and Page-
Styles. A cell style can be applied to a cell, a cell range, or all cells of the spreadsheet. A page style
can be applied to a spreadsheet itself.

The collection of style families is available from the spreadsheet document with the
com.sun.star.style.XStyleFamiliesSupplier's method getStyleFamilies(). The general
handling of styles is described in 9.4.1 Spreadsheet Documents - Overall Document Features - Styles,
therefore this chapter focuses on the spreadsheet specific style properties.

A new style is inserted into the family container,then it is possible to set any properties.

725

Illustration 9.42: StyleFamilies

http://api.openoffice.org/docs/common/ref/com/sun/star/style/XStyleFamiliesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/XStyleFamiliesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/XStyleFamiliesSupplier.html

Cell Styles
Cell styles are predefined packages of format settings that are applied in a single step.

A cell style is represented by the service com.sun.star.sheet.TableCellStyle. If a formatting
property is applied directly to a cell, it covers the property of the applied cell style. This service
does not support the property CellStyle. The name of the style is set with the interface
com.sun.star.container.XNamed.

The following example creates a new cell style with gray background. The xDocument is the
com.sun.star.sheet.XSpreadsheetDocument interface of a spreadsheet document. (Spread-
sheet/SpreadsheetSample.java)
 // get the cell style container
 com.sun.star.style.XStyleFamiliesSupplier xFamiliesSupplier =
 (com.sun.star.style.XStyleFamiliesSupplier) UnoRuntime.queryInterface(
 com.sun.star.style.XStyleFamiliesSupplier.class, xDocument);
 com.sun.star.container.XNameAccess xFamiliesNA = xFamiliesSupplier.getStyleFamilies();
 Object aCellStylesObj = xFamiliesNA.getByName("CellStyles");
 com.sun.star.container.XNameContainer xCellStylesNA = (com.sun.star.container.XNameContainer)
 UnoRuntime.queryInterface(com.sun.star.container.XNameContainer.class, aCellStylesObj);

 // create a new cell style
 com.sun.star.lang.XMultiServiceFactory xServiceManager = (com.sun.star.lang.XMultiServiceFactory)
 UnoRuntime.queryInterface(com.sun.star.lang.XMultiServiceFactory.class, xDocument);
 Object aCellStyle = xServiceManager.createInstance("com.sun.star.style.CellStyle");
 xCellStylesNA.insertByName("MyNewCellStyle", aCellStyle);

 // modify properties of the new style
 com.sun.star.beans.XPropertySet xPropSet = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, aCellStyle);
 xPropSet.setPropertyValue("CellBackColor", new Integer(0x888888));
 xPropSet.setPropertyValue("IsCellBackgroundTransparent", new Boolean(false));

726 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 9.43: CellStyle

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheetDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheetDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheetDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TableCellStyle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TableCellStyle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TableCellStyle.html

Page Styles
A page style is represented by the service com.sun.star.sheet.TablePageStyle. It contains the
service com.sun.star.style.PageStyle and additional spreadsheet specific page properties.

The properties LeftPageFooterContent, LeftPageHeaderContent, RightPageFooterContent
and RightPageHeaderContent return the interface com.sun.star.sheet.XHeaderFooterCon-
tent for the headers and footers for the left and right pages. Headers and footers are represented
by the service com.sun.star.sheet.HeaderFooterContent. Each header or footer object contains
three text objects for the left, middle and right portion of a header or footer. The methods
getLeftText(), getCenterText() and getRightText() return the interface
com.sun.star.text.XText of these text portions.

After the text of a header or footer is changed, it is reinserted into the property set of the page style.

727

Illustration 9.44: TablePageStyle

http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/HeaderFooterContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/HeaderFooterContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/HeaderFooterContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XHeaderFooterContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XHeaderFooterContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XHeaderFooterContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XHeaderFooterContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XHeaderFooterContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XHeaderFooterContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/PageStyle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/PageStyle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/PageStyle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TablePageStyle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TablePageStyle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TablePageStyle.html

9.4.2 Function Handling
This section describes the services which handle spreadsheet functions.

Calculating Function Results
The com.sun.star.sheet.FunctionAccess service calls any spreadsheet function and gets its
result without having to insert a formula into a spreadsheet document.

The service can be instantiated through the service manager. The com.sun.star.sheet.XFunc-
tionAccess interface contains only one method, callFunction(). The first parameter is the name
of the function to call. The name has to be the function's programmatic name.

• For a built-in function, the English name is always used, regardless of the application's UI
language.

• For an add-in function, the complete internal name that is the add-in component's service name,
followed by a dot and the function's name as defined in the interface. For the getIncremented
function in the example from the add-in section, this would be:
�com.sun.star.sheet.addin.ExampleAddIn.getIncremented�.

The second parameter to callFunction() is a sequence containing the function arguments. The
supported types for each argument are described in the com.sun.star.sheet.XFunctionAccess
interface description, and are similar to the argument types for add-in functions. The following
example passes two arguments to the ZTEST function, an array of values and a single value.
(Spreadsheet/SpreadsheetSample.java)
 // --- Calculate a function ---
 Object aFuncInst = xServiceManager.createInstance("com.sun.star.sheet.FunctionAccess");
 com.sun.star.sheet.XFunctionAccess xFuncAcc = (com.sun.star.sheet.XFunctionAccess)
 UnoRuntime.queryInterface(com.sun.star.sheet.XFunctionAccess.class, aFuncInst);
 // put the data into a two-dimensional array
 double[][] aData = {{1.0, 2.0, 3.0}};
 // construct the array of function arguments
 Object[] aArgs = new Object[2];
 aArgs[0] = aData;
 aArgs[1] = new Double(2.0);
 Object aResult = xFuncAcc.callFunction("ZTEST", aArgs);
 System.out.println("ZTEST result for data {1,2,3} and value 2 is "
 + ((Double)aResult).doubleValue());

The implementation of com.sun.star.sheet.FunctionAccess uses the same internal structures as a
spreadsheet document, therefore it is bound by the same limitations, such as the limit of 32000 rows exist for
the function arguments.

728 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 9.45: FunctionAccess

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FunctionAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FunctionAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FunctionAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XFunctionAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XFunctionAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XFunctionAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XFunctionAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XFunctionAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XFunctionAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XFunctionAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XFunctionAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XFunctionAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FunctionAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FunctionAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FunctionAccess.html

Information about Functions
The services com.sun.star.sheet.FunctionDescriptions and com.sun.star.sheet.Func-
tionDescription provide help texts about the available spreadsheet cell functions, including
add-in functions and their arguments. This is the same information that OpenOffice.org API Calc
displays in the function AutoPilot.

The com.sun.star.sheet.FunctionDescriptions service is instantiated through the service
manager. It provides three different methods to access the information for the different functions:

• By name through the com.sun.star.container.XNameAccess interface.

• By index through the com.sun.star.container.XIndexAccess interface.

• By function identifier through the com.sun.star.sheet.XFunctionDescriptions interface's
getById() method. The function identifier is the same used in the
com.sun.star.sheet.RecentFunctions service.

The com.sun.star.sheet.FunctionDescription that is returned by any of these calls is a
sequence of com.sun.star.beans.PropertyValue structs. To access one of these properties, loop
through the sequence, looking for the desired property's name in the Name member. The Argu-
ments property contains a sequence of com.sun.star.sheet.FunctionArgument structs, one for
each argument that the function accepts. The struct contains the name and description of the argu-
ment, as well as a boolean flag showing if the argument is optional.

All of the strings contained in the com.sun.star.sheet.FunctionDescription service are to be used
in user interaction, and therefore translated to the application's UI language. They cannot be used where
programmatic function names are expected, for example, the com.sun.star.sheet.FunctionAccess
service.

729

Illustration 9.46: FunctionDescriptions

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FunctionAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FunctionAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FunctionAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FunctionDescription.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FunctionDescription.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FunctionDescription.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FunctionArgument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FunctionArgument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FunctionArgument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FunctionDescription.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FunctionDescription.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FunctionDescription.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/RecentFunctions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/RecentFunctions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/RecentFunctions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XFunctionDescriptions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XFunctionDescriptions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XFunctionDescriptions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FunctionDescriptions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FunctionDescriptions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FunctionDescriptions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FunctionDescription.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FunctionDescription.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FunctionDescription.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FunctionDescription.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FunctionDescription.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FunctionDescription.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FunctionDescriptions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FunctionDescriptions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FunctionDescriptions.html

The Recently Used Functions section below provides an example on how to use the
com.sun.star.sheet.FunctionDescriptions service.

Recently Used Functions
The com.sun.star.sheet.RecentFunctions service provides access to the list of recently used
functions of the spreadsheet application, that is displayed in the AutoPilot:Functions and the
Function List window for example.

The service can be instantiated through the service manager. The com.sun.star.sheet.XRecent-
Functions interface's getRecentFunctionIds() method returns a sequence of function identifiers
that are used with the com.sun.star.sheet.FunctionDescriptions service. The setRecent-
FunctionIds() method changes the list. If the parameter to the setRecentFunctionIds() call
contains more entries than the application handles, only the first entries are used. The maximum
size of the list of recently used functions, currently 10, can be queried with the getMaxRecent-
Functions() method.

The following example demonstrates the use of the com.sun.star.sheet.RecentFunctions and
com.sun.star.sheet.FunctionDescriptions services. (Spreadsheet/SpreadsheetSample.java)
 // --- Get the list of recently used functions ---
 Object aRecInst = xServiceManager.createInstance("com.sun.star.sheet.RecentFunctions");
 com.sun.star.sheet.XRecentFunctions xRecFunc = (com.sun.star.sheet.XRecentFunctions)
 UnoRuntime.queryInterface(com.sun.star.sheet.XRecentFunctions.class, aRecInst);
 int[] nRecentIds = xRecFunc.getRecentFunctionIds();
 // --- Get the names for these functions ---
 Object aDescInst = xServiceManager.createInstance("com.sun.star.sheet.FunctionDescriptions");
 com.sun.star.sheet.XFunctionDescriptions xFuncDesc = (com.sun.star.sheet.XFunctionDescriptions)
 UnoRuntime.queryInterface(com.sun.star.sheet.XFunctionDescriptions.class, aDescInst);
 System.out.print("Recently used functions: ");
 for (int nFunction=0; nFunction<nRecentIds.length; nFunction++) {
 com.sun.star.beans.PropertyValue[] aProperties = xFuncDesc.getById(nRecentIds[nFunction]);
 for (int nProp=0; nProp<aProperties.length; nProp++)
 if (aProperties[nProp].Name.equals("Name"))
 System.out.print(aProperties[nProp].Value + " ");
 }
 System.out.println();

9.4.3 Settings
The com.sun.star.sheet.GlobalSheetSettings service contains settings that affect the whole
spreadsheet application. It can be instantiated through the service manager. The properties are
accessed using the com.sun.star.beans.XPropertySet interface.

730 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 9.47: RecentFunctions

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/GlobalSheetSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/GlobalSheetSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/GlobalSheetSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FunctionDescriptions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FunctionDescriptions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FunctionDescriptions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/RecentFunctions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/RecentFunctions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/RecentFunctions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FunctionDescriptions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FunctionDescriptions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FunctionDescriptions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XRecentFunctions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XRecentFunctions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XRecentFunctions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XRecentFunctions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XRecentFunctions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XRecentFunctions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/RecentFunctions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/RecentFunctions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/RecentFunctions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FunctionDescriptions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FunctionDescriptions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/FunctionDescriptions.html

The following example gets the list of user-defined sort lists from the settings and displays them:
(Spreadsheet/SpreadsheetSample.java)
 // --- Get the user defined sort lists ---
 Object aSettings = xServiceManager.createInstance("com.sun.star.sheet.GlobalSheetSettings");
 com.sun.star.beans.XPropertySet xPropSet = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, aSettings);
 String[] aEntries = (String[]) xPropSet.getPropertyValue("UserLists");
 System.out.println("User defined sort lists:");
 for (int i=0; i<aEntries.length; i++)
 System.out.println(aEntries[i]);

9.5 Spreadsheet Document Controller

9.5.1 Spreadsheet View
The com.sun.star.sheet.SpreadsheetView service is the spreadsheet's extension of the
com.sun.star.frame.Controller service and represents a table editing view for a spreadsheet
document.

731

Illustration 9.48: GlobalSheetSettings

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Controller.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Controller.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Controller.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetView.html

The page preview does not have an API representation.

The view object is the spreadsheet application's controller object as described in the chapter 7.1.1
Office Development - OpenOffice.org Application Environment - Overview - Framework API - Frame-
Controller-Model Paradigm. The com.sun.star.frame.XController, com.sun.star.frame.XDis-
patchProvider and com.sun.star.ui.XContextMenuInterception interfaces work as described
in that chapter.

732 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 9.49: SpreadsheetView

http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XController.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XController.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XController.html

The com.sun.star.view.XSelectionSupplier interface queries and modifies the view's selec-
tion. The selection in a spreadsheet view can be a com.sun.star.sheet.SheetCell,
com.sun.star.sheet.SheetCellRange, com.sun.star.sheet.SheetCellRanges,
com.sun.star.drawing.Shape or com.sun.star.drawing.Shapes object.

The com.sun.star.sheet.XSpreadsheetView interface gives access to the spreadsheet that is
displayed in the view. The getActiveSheet() method returns the active sheet's object, the setAc-
tiveSheet() method switches to a different sheet. The parameter to setActiveSheet() must be a
sheet of the view's document.

The com.sun.star.sheet.XViewSplitable interface splits a view into two parts or panes, hori-
zontally and vertically. The splitAtPosition() method splits the view at the specified pixel posi-
tions. To remove the split, a position of 0 is passed. The getIsWindowSplit() method returns
true if the view is split, the getSplitHorizontal() and getSplitVertical() methods return
the pixel positions where the view is split. The getSplitColumn() and getSplitRow() methods
return the cell column or row that corresponds to the split position, and are used with frozen panes
as discussed below.

The com.sun.star.sheet.XViewFreezable interface is used to freeze a number of columns and
rows in the left and upper part of the view. The freezeAtPosition() method freezes the specified
number of columns and rows. This also sets the split positions accordingly. The
hasFrozenPanes() method returns true if the columns or rows are frozen. A view can only have
frozen columns or rows, or normal split panes at a time.

If a view is split or frozen, it has up to four view pane objects that represent the individual parts.
These are accessed using the com.sun.star.container.XIndexAccess interface. If a view is not
split, it contains only one pane object. The active pane of a spreadsheet view is also accessed using
the com.sun.star.sheet.SpreadsheetViewPane service's interfaces directly with the
com.sun.star.sheet.SpreadsheetView service that inherits them.

The com.sun.star.sheet.XRangeSelection interface is explained in the �Range Selection�
chapter below.

The following example uses the com.sun.star.sheet.XViewFreezable interface to freeze the
first column and the first two rows: (Spreadsheet/ViewSample.java)
 // freeze the first column and first two rows
 com.sun.star.sheet.XViewFreezable xFreeze = (com.sun.star.sheet.XViewFreezable)
 UnoRuntime.queryInterface(com.sun.star.sheet.XViewFreezable.class, xController);
 xFreeze.freezeAtPosition(1, 2);

9.5.2 View Panes
The com.sun.star.sheet.SpreadsheetViewPane service represents a pane in a view that shows
a rectangular area of the document. The exposed area of a view pane always starts at a cell
boundary. The com.sun.star.sheet.XViewPane interface's getFirstVisibleColumn(),
getFirstVisibleRow(), setFirstVisibleColumn() and setFirstVisibleRow() methods query
and set the start of the exposed area. The getVisibleRange() method returns a
com.sun.star.table.CellRangeAddress struct describing which cells are shown in the pane.
Columns or rows that are only partly visible at the right or lower edge of the view are not
included.

The com.sun.star.sheet.XCellRangeReferrer interface gives direct access to the same cell
range of exposed cells that are addressed by the getVisibleRange() return value.

The com.sun.star.view.XControlAccess interface's getControl() method gives access to a
control model's control for the view pane. Refer to the chapter 14.2 Forms - Models and Views for
additional information.

733

http://api.openoffice.org/docs/common/ref/com/sun/star/view/XControlAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XControlAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XControlAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeReferrer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeReferrer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangeReferrer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellRangeAddress.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellRangeAddress.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellRangeAddress.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XViewPane.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XViewPane.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XViewPane.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetViewPane.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetViewPane.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetViewPane.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XViewFreezable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XViewFreezable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XViewFreezable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XRangeSelection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XRangeSelection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XRangeSelection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetViewPane.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetViewPane.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetViewPane.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XViewFreezable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XViewFreezable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XViewFreezable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XViewSplitable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XViewSplitable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XViewSplitable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheetView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheetView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheetView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Shapes.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Shapes.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Shapes.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XSelectionSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XSelectionSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XSelectionSupplier.html

The example below retrieves the cell range that is shown in the second pane. It is the lower left one
after freezing both columns and rows, and assigns a cell background:
(Spreadsheet/ViewSample.java)
 // get the cell range shown in the second pane and assign a cell background to them
 com.sun.star.container.XIndexAccess xIndex = (com.sun.star.container.XIndexAccess)
 UnoRuntime.queryInterface(com.sun.star.container.XIndexAccess.class, xController);
 Object aPane = xIndex.getByIndex(1);
 com.sun.star.sheet.XCellRangeReferrer xRefer = (com.sun.star.sheet.XCellRangeReferrer)
 UnoRuntime.queryInterface(com.sun.star.sheet.XCellRangeReferrer.class, aPane);
 com.sun.star.table.XCellRange xRange = xRefer.getReferredCells();
 com.sun.star.beans.XPropertySet xRangeProp = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, xRange);
 xRangeProp.setPropertyValue("IsCellBackgroundTransparent", new Boolean(false));
 xRangeProp.setPropertyValue("CellBackColor", new Integer(0xFFFFCC));

9.5.3 View Settings
The properties from the com.sun.star.sheet.SpreadsheetViewSettings service are accessed
through the com.sun.star.beans.XPropertySet interface controlling the appearance of the view.
Most of the properties correspond to settings in the options dialog. The ShowObjects, ShowCharts
and ShowDrawing properties take values of 0 for �show�, 1 for �hide�, and 2 for �placeholder
display�.

The following example changes the view to display green grid lines:
(Spreadsheet/ViewSample.java)
 // change the view to display green grid lines
 com.sun.star.beans.XPropertySet xProp = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, xController);
 xProp.setPropertyValue("ShowGrid", new Boolean(true));
 xProp.setPropertyValue("GridColor", new Integer(0x00CC00));

9.5.4 Range Selection
The view's com.sun.star.sheet.XRangeSelection interface is used to let a user interactively
select a cell range in the view, independently of the view's selection. This is used for dialogs that
require a cell reference as input. While the range selection is active, a small dialog is shown, similar
to the minimized state of OpenOffice.org API's own dialogs that allow cell reference input.

Before the range selection mode is started, a listener is registered using the addRangeSelection-
Listener() method. The listener implements the com.sun.star.sheet.XRangeSelectionLis-

734 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 9.50: XRangeSelection interface

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XRangeSelectionListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XRangeSelectionListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XRangeSelectionListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XRangeSelection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XRangeSelection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XRangeSelection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetViewSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetViewSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetViewSettings.html

tener interface. Its done() or aborted() method is called when the selection is finished or
aborted. The com.sun.star.sheet.RangeSelectionEvent struct that is passed to the calls
contains the selected range in the RangeDescriptor member. It is a string because the user can
type into the minimized dialog during range selection.

In the following example, the listener implementation stores the result in a member in the done()
method, and notifies the main thread about the completion of the selection in the done() and
aborted() methods: (Spreadsheet/ViewSample.java)
private class ExampleRangeListener implements com.sun.star.sheet.XRangeSelectionListener {
 public String aResult;

 public void done(com.sun.star.sheet.RangeSelectionEvent aEvent) {
 aResult = aEvent.RangeDescriptor;
 synchronized (this) {
 notify();
 }
 }

 public void aborted(com.sun.star.sheet.RangeSelectionEvent aEvent) {
 synchronized (this) {
 notify();
 }
 }

 public void disposing(com.sun.star.lang.EventObject aObj) {
 }
}

It is also possible to add another listener using the addRangeSelectionChangeListener()
method. This listener implements the com.sun.star.sheet.XRangeSelectionChangeListener
interface, and its descriptorChanged() method is called during the selection when the selection
changes. Using this listener normally is not necessary.

After registering the listeners, the range selection mode is started using the startRangeSelec-
tion() method. The parameter to that method is a sequence of property values with properties
from the com.sun.star.sheet.RangeSelectionArguments service:

• InitialValue specifies an existing selection value that is shown in the dialog and highlighted
in the view when the selection mode is started.

• Title is the title for the range selection dialog.

• CloseOnMouseRelease specifies when the selection mode is ended. If the value is true, selec-
tion is ended when the mouse button is released after selecting a cell range. If it is false or not
specified, the user presses the Shrink button in the dialog to end selection mode.

The startRangeSelection() method returns immediately after starting the range selection mode.
This allows it to be called from a dialog's event handler. The abortRangeSelection() method is
used to cancel the range selection mode programmatically.

The following example lets the user pick a range, and then selects that range in the view. Note that
the use of wait to wait for the end of the selection is not how a GUI application normally handles
the events. (Spreadsheet/ViewSample.java)

735

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/RangeSelectionArguments.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/RangeSelectionArguments.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/RangeSelectionArguments.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XRangeSelectionChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XRangeSelectionChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XRangeSelectionChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/RangeSelectionEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/RangeSelectionEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/RangeSelectionEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XRangeSelectionListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XRangeSelectionListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XRangeSelectionListener.html

 // let the user select a range and use it as the view's selection
 com.sun.star.sheet.XRangeSelection xRngSel = (com.sun.star.sheet.XRangeSelection)
 UnoRuntime.queryInterface(com.sun.star.sheet.XRangeSelection.class, xController);
 ExampleRangeListener aListener = new ExampleRangeListener();
 xRngSel.addRangeSelectionListener(aListener);
 com.sun.star.beans.PropertyValue[] aArguments = new com.sun.star.beans.PropertyValue[2];
 aArguments[0] = new com.sun.star.beans.PropertyValue();
 aArguments[0].Name = "Title";
 aArguments[0].Value = "Please select a range";
 aArguments[1] = new com.sun.star.beans.PropertyValue();
 aArguments[1].Name = "CloseOnMouseRelease";
 aArguments[1].Value = new Boolean(true);
 xRngSel.startRangeSelection(aArguments);
 synchronized (aListener) {
 aListener.wait(); // wait until the selection is done
 }
 xRngSel.removeRangeSelectionListener(aListener);
 if (aListener.aResult != null && aListener.aResult.length() != 0)
 {
 com.sun.star.view.XSelectionSupplier xSel = (com.sun.star.view.XSelectionSupplier)
 UnoRuntime.queryInterface(com.sun.star.view.XSelectionSupplier.class, xController);
 com.sun.star.sheet.XSpreadsheetView xView = (com.sun.star.sheet.XSpreadsheetView)
 UnoRuntime.queryInterface(com.sun.star.sheet.XSpreadsheetView.class, xController);
 com.sun.star.sheet.XSpreadsheet xSheet = xView.getActiveSheet();
 com.sun.star.table.XCellRange xResultRange = xSheet.getCellRangeByName(aListener.aResult);
 xSel.select(xResultRange);
 }

9.6 Spreadsheet Add-Ins
An add-in component is used to add new functions to the spreadsheet application that can be used
in cell formulas, such as the built-in functions. A spreadsheet add-in is a UNO component. The
chapter 4 Writing UNO Components describes how to write and deploy a UNO component.

The functions that the add-in component exports to the spreadsheet application have to be defined
in a new interface. The function names in the interface, together with the component's service
name, are used internally to identify an add-in function. For a list of the supported types for func-
tion arguments and return values, see the com.sun.star.sheet.AddIn service description. An
example interface that defines two functions is similar to the following code: (Spreadsheet/XExam-
pleAddIn.idl)

736 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 9.51: AddIn

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/AddIn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/AddIn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/AddIn.html

#include <com/sun/star/uno/XInterface.idl>
#include <com/sun/star/sheet/XVolatileResult.idl>

module com { module sun { module star { module sheet { module addin {

 interface XExampleAddIn : com::sun::star::uno::XInterface
 {
 /// Sample function that just increments a value.
 long getIncremented([in] long nValue);

 /// Sample function that returns a volatile result.
 com::sun::star::sheet::XVolatileResult getCounter([in] string aName);
 };

}; }; }; }; };

In addition to this interface, the add-in has to implement the interfaces from the
com.sun.star.sheet.AddIn service and the usual interfaces every component has to support.

9.6.1 Function Descriptions
The methods from the com.sun.star.sheet.XAddIn interface are used to provide descriptions of
the user-visible functions.

The getDisplayFunctionName() and getProgrammaticFuntionName() methods are used to map
between the internal function name, as defined in the interface and the function name as shown to
the user of the spreadsheet application. The user-visible name, as well as the function and argu-
ment descriptions, can be translated strings for the language which is set using setLocale().

The getProgrammaticCategoryName() method sorts each add-in functions into one of the spread-
sheet application's function categories. It returns the category's internal (non-translated) name. In
addition, the getDisplayCategoryName() method provides a translated name for the category.

The getFunctionDescription(), getDisplayArgumentName() and getArgumentDescription()
methods provide descriptions of the function and its arguments that are shown to the user, for
example in the function AutoPilot.

The getProgrammaticFuntionName() method name is misspelled, but the wrong spelling has to be
retained for compatibility reasons.

9.6.2 Service Names
The add-in component has to support two services, the com.sun.star.sheet.AddIn service, and
an additional service that is used to identify the set of functions that the add-in supplies. There
may be several implementations of the same set of functions. In that case, they all use the same
service name, but different implementation names. Therefore, a spreadsheet document that uses
the functions can make use of the implementation that is present.

The com.sun.star.lang.XServiceInfo methods supportsService() and getSupportedServi-
ceNames() handle both service names, and the component also has to be registered for both
services. In addition, the component has to implement the com.sun.star.lang.XServiceName
interface, and in its getServiceName() method return the name of the function-specific service.

9.6.3 Compatibility Names
Optionally, the component can implement the com.sun.star.sheet.XCompatibilityNames inter-
face, and in the getCompatibilityNames() method return a sequence of locale-dependent

737

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCompatibilityNames.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCompatibilityNames.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCompatibilityNames.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceName.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceName.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceName.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/AddIn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/AddIn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/AddIn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XAddIn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XAddIn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XAddIn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/AddIn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/AddIn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/AddIn.html

compatibility names for a function. These names are used by the spreadsheet application when
loading or saving Excel files. They should only be present for a function if it is known to be an
Excel add-in function with equivalent functionality.

The sequence of compatibility names for a function may contain several names for a single locale.
In that case, all of these names are considered when importing a file. When exporting, the first
name is used. If a file is exported in a locale for which no entry is present, the first entry is used. If
there is a default locale, the entries for that locale are first in the sequence.

9.6.4 Custom Functions
The user-visible functions have to be implemented as defined in the interface. The spreadsheet
application does the necessary conversions to pass the arguments. For example, floating point
numbers are rounded if a function has integer arguments. To enable the application to find the
functions, it is important that the component implements the com.sun.star.lang.XTypeProvider
interface.

The getIncremented() function from the example interface above can be implemented like this:
(Spreadsheet/ExampleAddIn.java)
 public int getIncremented(int nValue) {
 return nValue + 1;
 }

9.6.5 Variable Results
It is also possible to implement functions with results that change over time. Whenever such a
result changes, the formulas that use the result are recalculated and the new values are shown in
the spreadsheet. This can be used to display data from a real-time data feed in a spreadsheet.

In its interface, a function with a variable result must be defined with a return type of
com.sun.star.sheet.XVolatileResult, such as the getCounter() function from the example
interface above. The function's implementation must return an object that implements the
com.sun.star.sheet.VolatileResult service. Subsequent calls to the same function with the
same arguments return the same object. An implementation that returns a different result object for
every name looks like this: (Spreadsheet/ExampleAddIn.java)
private java.util.Hashtable aResults = new java.util.Hashtable();

public com.sun.star.sheet.XVolatileResult getCounter(String aName) {
 ExampleAddInResult aResult = (ExampleAddInResult) aResults.get(aName);
 if (aResult == null) {
 aResult = new ExampleAddInResult(aName);
 aResults.put(aName, aResult);
 }
 return aResult;
}

The result object has to implement the addResultListener() and removeResultListener()
methods from the com.sun.star.sheet.XVolatileResult interface to maintain a list of listeners,
and notify each of these listeners by calling the com.sun.star.sheet.XResultListener inter-
face's modified() method whenever a new result is available. The com.sun.star.sheet.Result-
Event object that is passed to the modified() call must contain the new result in the Value
member. The possible types for the result are the same as for a function's return value if no volatile
results are involved.

If a result is already available when addResultListener() is called, it can be publicized by imme-
diately calling modified() for the new listener. Otherwise, the spreadsheet application displays a
�#N/A� error value until a result is available.

738 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/ResultEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/ResultEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/ResultEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/ResultEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/ResultEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/ResultEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XResultListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XResultListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XResultListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XVolatileResult.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XVolatileResult.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XVolatileResult.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/VolatileResult.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/VolatileResult.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/VolatileResult.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XVolatileResult.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XVolatileResult.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XVolatileResult.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html

The following example shows a simple implementation of a result object. Every time the incre-
mentValue method is called, for example, from a background thread, the result value is incre-
mented and the listeners are notified. (Spreadsheet/ExampleAddIn.java)
class ExampleAddInResult implements com.sun.star.sheet.XVolatileResult {
 private String aName;
 private int nValue;
 private java.util.Vector aListeners = new java.util.Vector();

 public ExampleAddInResult(String aNewName) {
 aName = aNewName;
 }

 private com.sun.star.sheet.ResultEvent getResult() {
 com.sun.star.sheet.ResultEvent aEvent = new com.sun.star.sheet.ResultEvent();
 aEvent.Value = aName + " " + String.valueOf(nValue);
 aEvent.Source = this;
 return aEvent;
 }

 public void addResultListener(com.sun.star.sheet.XResultListener aListener) {
 aListeners.addElement(aListener);

 // immediately notify of initial value
 aListener.modified(getResult());
 }

 public void removeResultListener(com.sun.star.sheet.XResultListener aListener) {
 aListeners.removeElement(aListener);
 }

 public void incrementValue() {
 ++nValue;
 com.sun.star.sheet.ResultEvent aEvent = getResult();

 java.util.Enumeration aEnum = aListeners.elements();
 while (aEnum.hasMoreElements())
 ((com.sun.star.sheet.XResultListener)aEnum.nextElement()).modified(aEvent);
 }
}

739

10 Drawing Documents
and Presentation Documents

10.1 Overview
Draw and Impress are vector-oriented applications with the ability to create drawings and presen-
tations. The drawing capabilities of Draw and Impress are identical. Both programs support a
number of different shape types, such as rectangle, text, curve, or graphic shapes, that can be
edited and arranged in various ways. Impress offers a presentation functionality where Draw does
not. Impress is the ideal application to create and show presentations. It supports special presenta-
tion features, such as an enhanced page structure, presentation objects, and many slide transition
and object effects. Draw is especially adapted for printed or standalone graphics, whereas Impress
is optimized to fit screen dimensions and offers effects for business presentations.

The following diagrams show the document structure of Draw and Impress Documents.

In contrast to text documents and spreadsheet documents, the main content of drawing and
presentation documents are their draw pages. Therefore the illustrations show the draw page
container as integral part of the drawing and presentation document model. The drawing elements
on the draw pages have to be created by the document service manager and are added to the draw
pages afterwards.

Note the master pages and the layer manager, which are specific to drawings and presentations.
Like for texts and spreadsheets, a controller is used to present the drawing in the GUI and services
for styles and layout are available to handle overall document features such as styles.

741

In addition to drawing documents, a presentation document has special presentation aspects,
which are shown on the lower left of Illustration 10.4 GraphicExportFilter. There is a presentation
supplier to obtain a presentation object, which is used to start and stop presentations, it is possible
to edit and run custom presentations and the page layout for presentation handouts is accessible
through a handout master supplier.

742 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 10.1: Drawing Document Overview

10.1.1 Example: Creating a Simple Organizational Chart
The following example creates a simple organizational chart with two levels. It consists of five rect-
angle shapes and four connectors that connect the boxes on the second level with the root box on
the first level.

743

Illustration 10.2: Presentation Document Overview

The method getRemoteServiceManager()that is used in the example connects to the office. The 2
First Steps discussed this method. First an empty drawing document is loaded and retrieves the
draw page object of slide number 1 to find the page dimensions. Then the organigram data is
prepared and the shape sizes are calculated. The shapes are added in a for loop that iterates over
the organigram data, and connectors are added for all shapes on the second level of the organi-
gram. (Drawing/Organigram.java).
public void drawOrganigram() throws java.lang.Exception {

 xRemoteServiceManager = this.getRemoteServiceManager(
 "uno:socket,host=localhost,port=2083;urp;StarOffice.ServiceManager");
 Object desktop = xRemoteServiceManager.createInstanceWithContext(
 "com.sun.star.frame.Desktop", xRemoteContext);
 XComponentLoader xComponentLoader = (XComponentLoader)UnoRuntime.queryInterface(
 XComponentLoader.class, desktop);
 PropertyValue[] loadProps = new PropertyValue[0];
 XComponent xDrawComponent = xComponentLoader.loadComponentFromURL(
 "private:factory/sdraw", "_blank", 0, loadProps);

 // get draw page by index
 com.sun.star.drawing.XDrawPagesSupplier xDrawPagesSupplier =
 (com.sun.star.drawing.XDrawPagesSupplier)
 UnoRuntime.queryInterface(
 com.sun.star.drawing.XDrawPagesSupplier.class, xDrawComponent);
 com.sun.star.drawing.XDrawPages xDrawPages = xDrawPagesSupplier.getDrawPages();
 Object drawPage = xDrawPages.getByIndex(0);
 com.sun.star.drawing.XDrawPage xDrawPage = (com.sun.star.drawing.XDrawPage)
 UnoRuntime.queryInterface(
 com.sun.star.drawing.XDrawPage.class, drawPage);

 // find out page dimensions
 com.sun.star.beans.XPropertySet xPageProps = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(
 com.sun.star.beans.XPropertySet.class, xDrawPage);
 int pageWidth = AnyConverter.toInt(xPageProps.getPropertyValue("Width"));
 int pageHeight = AnyConverter.toInt(xPageProps.getPropertyValue("Height"));
 int pageBorderTop = AnyConverter.toInt(xPageProps.getPropertyValue("BorderTop"));
 int pageBorderLeft = AnyConverter.toInt(xPageProps.getPropertyValue("BorderLeft"));
 int pageBorderRight = AnyConverter.toInt(xPageProps.getPropertyValue("BorderRight"));
 int drawWidth = pageWidth - pageBorderLeft - pageBorderRight;
 int horCenter = pageBorderLeft + drawWidth / 2;

 // data for organigram
 String[][] orgUnits = new String[2][4];
 orgUnits[0][0] = "Management"; // level 0
 orgUnits[1][0] = "Production"; // level 1
 orgUnits[1][1] = "Purchasing"; // level 1
 orgUnits[1][2] = "IT Services"; // level 1
 orgUnits[1][3] = "Sales"; // level 1
 int[] levelCount = {1, 4};

 // calculate shape sizes and positions
 int horSpace = 300;
 int verSpace = 3000;
 int shapeWidth = (drawWidth - (levelCount[1] - 1) * horSpace) / levelCount[1];
 int shapeHeight = pageHeight / 20;
 int shapeX = pageWidth / 2 - shapeWidth / 2;
 int levelY = 0;

 com.sun.star.drawing.XShape xStartShape = null;

 // get document factory
 com.sun.star.lang.XMultiServiceFactory xDocumentFactory = (com.sun.star.lang.XMultiServiceFactory)

744 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 10.3: Sample Organigram

 UnoRuntime.queryInterface(
 com.sun.star.lang.XMultiServiceFactory.class, xDrawComponent);
 // creating and adding RectangleShapes and Connectors
 for (int level = 0; level <= 1; level++) {
 levelY = pageBorderTop + 2000 + level * (shapeHeight + verSpace);
 for (int i = levelCount[level] - 1; i > -1; i--) {
 shapeX = horCenter -
 (levelCount[level] * shapeWidth + (levelCount[level] - 1) * horSpace) / 2 +
 i * shapeWidth + i * horSpace;
 Object shape = xDocumentFactory.createInstance("com.sun.star.drawing.RectangleShape");
 com.sun.star.drawing.XShape xShape = (com.sun.star.drawing.XShape)
 UnoRuntime.queryInterface(
 com.sun.star.drawing.XShape.class, shape);
 xShape.setPosition(new com.sun.star.awt.Point(shapeX, levelY));
 xShape.setSize(new com.sun.star.awt.Size(shapeWidth, shapeHeight));
 xDrawPage.add(xShape);

 // set the text
 com.sun.star.text.XText xText = (com.sun.star.text.XText)
 UnoRuntime.queryInterface(
 com.sun.star.text.XText.class, xShape);
 xText.setString(orgUnits[level][i]);
 // memorize the root shape, for connectors
 if (level == 0 && i == 0)
 xStartShape = xShape;

 // add connectors for level 1
 if (level == 1) {
 Object connector = xDocumentFactory.createInstance(
 "com.sun.star.drawing.ConnectorShape");
 com.sun.star.drawing.XShape xConnector = (com.sun.star.drawing.XShape)
 UnoRuntime.queryInterface(
 com.sun.star.drawing.XShape.class, connector);
 xDrawPage.add(xConnector);
 com.sun.star.beans.XPropertySet xConnectorProps = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(
 com.sun.star.beans.XPropertySet.class, connector);
 xConnectorProps.setPropertyValue("StartShape", xStartShape);
 xConnectorProps.setPropertyValue("EndShape", xShape);
 // glue point positions: 0=top 1=left 2=bottom 3=right
 xConnectorProps.setPropertyValue("StartGluePointIndex", new Integer(2));
 xConnectorProps.setPropertyValue("EndGluePointIndex", new Integer(0));
 }

 }
 }
}

10.2 Handling Drawing Document Files

10.2.1 Creating and Loading Drawing Documents
If a document in OpenOffice.org is required, begin by getting the com.sun.star.frame.Desktop
service from the service manager. The desktop handles all document components in
OpenOffice.org among other things. It is discussed thoroughly in the chapter 7 Office Development.
Office documents are often called components because they support the
com.sun.star.lang.XComponent interface. An XComponent is a UNO object that can be disposed
explicitly and broadcast an event to other UNO objects when this happens.

The Desktop loads new and existing components from a URL. The desktop has a
com.sun.star.frame.XComponentLoader interface that has one single method to load and instan-
tiate components from a URL into a frame:

com::sun::star::lang::XComponent loadComponentFromURL([in] string aURL,
 [in] string aTargetFrameName,
 [in] long nSearchFlags,
 [in] sequence< com::sun::star::beans::PropertyValue > aArgs)

745

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html

The parameters in our context are the URL that describes the resource to be loaded, and the load
arguments. For the target frame pass in "_blank" and set the search flags to 0. In most cases, you
will not want to reuse an existing frame.

The URL can be a file: URL, an http: URL, an ftp: URL or a private: URL. The correct URL
format is located in the load URL box at the function bar of OpenOffice.org. For new Draw docu-
ments, a special URL scheme is used. The scheme is "private:", followed by "factory" as the host-
name and the resource is "sdraw" for OpenOffice.org Draw documents. Thus, for a new Draw
document, use "private:factory/sdraw".
The load arguments are described in com.sun.star.document.MediaDescriptor. The properties
AsTemplate and Hidden are boolean values and used for programming. If AsTemplate is true,
the loader creates a new untitled document from the given URL. If it is false, template files are
loaded for editing. If Hidden is true, the document is loaded in the background. This is useful to
generate a document in the background without letting the user observe what is happening. For
instance, use it to generate a document and print it out without previewing. Refer to 7 Office Devel-
opment or other available options.

The introductory example shows how to load a drawing document. This snippet loads a new
drawing document in hidden mode:
 // the method getRemoteServiceManager is described in the chapter First Steps
 mxRemoteServiceManager = this.getRemoteServiceManager();

 // retrieve the Desktop object, we need its XComponentLoader
 Object desktop = mxRemoteServiceManager.createInstanceWithContext(
 "com.sun.star.frame.Desktop", mxRemoteContext);

 // query the XComponentLoader interface from the Desktop service
 XComponentLoader xComponentLoader = (XComponentLoader)UnoRuntime.queryInterface(
 XComponentLoader.class, desktop);

 // define load properties according to com.sun.star.document.MediaDescriptor
 // the boolean property Hidden tells the office to open a file in hidden mode
 PropertyValue[] loadProps = new PropertyValue[1];
 loadProps[0] = new PropertyValue();
 loadProps[0].Name = "Hidden";
 loadProps[0].Value = new Boolean(true);

 /* or simply create an empty array of com.sun.star.beans.PropertyValue structs:
 PropertyValue[] loadProps = new PropertyValue[0]
 */

 // load
 com.sun.star.lang.XComponent xComponentLoader.loadComponentFromURL(
 "private:factory/sdraw", "_blank", 0, loadProps);

10.2.2 Saving Drawing Documents
The normal File � Save command for drawing documents can only store the current document in
the native OpenOffice.org Draw format and its predecessors. There are other formats that can be
stored through the File � Export option. This is mirrored in the API. Exporting in the current
version of OpenOffice.org Draw and Impress is a different procedure than storing.

Storing
Documents are storable through their interface com.sun.star.frame.XStorable. The 7 Office
Development discusses this in detail. An XStorable implements these operations:

boolean hasLocation()
string getLocation()
boolean isReadonly()
void store()
void storeAsURL([in] string aURL, [in] sequence < com::sun::star::beans::PropertyValue > aArgs)
void storeToURL([in] string aURL, [in] sequence < com::sun::star::beans::PropertyValue > aArgs)

746 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html

The method names should be evident. The method storeAsUrl() is the exact representation of
File � Save As, that is, it changes the current document location. In contrast, storeToUrl() stores
a copy to a new location, but leaves the current document URL untouched. There are also store
arguments. A filter name can be passed that tells OpenOffice.org to use older StarOffice Draw file
formats. Exporting is a different matter as shown below. The property needed is FilterName
which is a string argument that takes filter names defined in the configuration file:

<OfficePath>\share\config\registry\instance\org\openoffice\Office\TypeDetection.xml

In TypeDetection.xml, find <Filter/> elements, their cfg:name attribute contains the required
strings for FilterName. The correct filter name for StarDraw 5.x files is "StarDraw 5.0". The
following is the element in TypeDetection.xml that describes the StarDraw 5.0 document filter:
<Filter cfg:name="StarDraw 5.0">
 <Installed cfg:type="boolean">true</Installed>
 <UIName cfg:type="string" cfg:localized="true">
 <cfg:value xml:lang="en-US">StarDraw 5.0</cfg:value>
 </UIName>
 <Data cfg:type="string">
 10,draw_StarDraw_50,com.sun.star.drawing.DrawingDocument,,268435559,,5050,,
 </Data>
</Filter>

The following method stores a document using this filter:
/** Store a document, using the StarDraw 5.0 Filter */
protected void storeDocComponent(XComponent xDoc, String storeUrl) throws java.lang.Exception {
 XStorable xStorable = (XStorable)UnoRuntime.queryInterface(XStorable.class, xDoc);
 PropertyValue[] storeProps = new PropertyValue[1];
 storeProps[0] = new PropertyValue();
 storeProps[0].Name = "FilterName";
 storeProps[0].Value = "StarDraw 5.0";
 xStorable.storeAsURL(storeUrl, storeProps);
}

If an empty array of PropertyValue structs is passed, the native .odg format of OpenOffice.org is
used.

Exporting
Exporting is not a feature of drawing documents. There is a separate service available from the
global service manager for exporting, com.sun.star.drawing.GraphicExportFilter. It supports
three interfaces: com.sun.star.document.XFilter, com.sun.star.document.XExporter and
com.sun.star.document.XMimeTypeInfo.

Exporting is a simple process. After getting a GraphicExportFilter from the ServiceManager,
use its XExporter interface to inform the filter which draw page, shape or shape collection to
export.

Method of com.sun.star.document.XExporter:
void setSourceDocument ([in] com::sun::star::lang::XComponent xDoc)

747

Illustration 10.4: GraphicExportFilter

http://api.openoffice.org/docs/common/ref/com/sun/star/document/XMimeTypeInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XMimeTypeInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XMimeTypeInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XExporter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XExporter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XExporter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/GraphicExportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/GraphicExportFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/GraphicExportFilter.html

The method name setSourceDocument() may be confusing. Actually, the method would allow
exporting entire documents, however, it is only possible to export draw pages, single shapes or
shape collections from a drawing document. Since these objects support the XComponent interface,
the method specification allows maximum flexibility.

Next, run the method filter() at the XFilter interface. To interrupt the exporting process, call
cancel() on the same interface.

Methods of com.sun.star.document.XFilter:
boolean filter([in] sequence< com::sun::star::beans::PropertyValue > aDescriptor)
void cancel()

Filter Options
The method filter() takes a sequence of PropertyValue structs describing the filter parameters.
The following properties from the com.sun.star.document.MediaDescriptor are supported:

Properties of com.sun.star.document.MediaDescriptor supported by GraphicExportFilter

MediaType Depending on the export filters supported by this component, this is the
mime type of the target graphic file. The mime types currently supported
are:

image/x-MS-bmp
application/dxf
application/postscript
image/gif
image/jpeg
image/png
image/x-pict
image/x-pcx
image/x-portable-bitmap
image/x-portable-graymap
image/x-portable-pixmap
image/x-cmu-raster
image/targa
image/tiff
image/x-xbitmap
image/x-xpixmap
image/svg+xml

FilterName This property can been used if no MediaType exists with "Windows
Metafile" or "Enhanced Metafile". FilterName has to be set to the extension
of these graphic formats (WMF, EMF, BMP).

URL The target URL of the file that is created during export.

If necessary, use the interface XMimeTypeInfo to get all mime types supported by the GraphicExport-
Filter. It offers the following methods:

boolean supportsMimeType([in] string MimeTypeName)

sequence< string > getSupportedMimeTypeNames()

XMimeTypeInfo is currently not supported by the GraphicExportFilter

The following example exports a draw page xPage from a given document xDrawDoc:
(Drawing/GraphicExportDemo.java)

748 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#URL
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#FilterName
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html#MediaType
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html

 //get draw pages
 com.sun.star.drawing.XDrawPagesSupplier xPageSupplier = (com.sun.star.drawing.XDrawPagesSupplier)
 UnoRuntime.queryInterface(com.sun.star.drawing.XDrawPagesSupplier.class, xDrawDoc);
 com.sun.star.drawing.XDrawPages xDrawPages = xPageSupplier.getDrawPages();

 // first page
 Object page = xDrawPages.getByIndex(0);
 com.sun.star.drawing.XDrawPage xPage = (com.sun.star.drawing.XDrawPage)UnoRuntime.queryInterface(
 com.sun.star.drawing.XDrawPage.class, page);

 Object GraphicExportFilter = xServiceFactory.createInstance(
 "com.sun.star.drawing.GraphicExportFilter");

 // use the XExporter interface to set xPage as source component
 // for the GraphicExportFilter
 XExporter xExporter = (XExporter)UnoRuntime.queryInterface(
 XExporter.class, GraphicExportFilter);

 XComponent xComp = (XComponent)UnoRuntime.queryInterface(XComponent.class, xPage);
 xExporter.setSourceDocument(xComp);

 // prepare the media descriptor for the filter() method in XFilter
 PropertyValue aProps[] = new PropertyValue[2];

 aProps[0] = new PropertyValue();
 aProps[0].Name = "MediaType";
 aProps[0].Value = "image/gif";

 // for some graphic formats, e.g. Windows Metafile, there is no Mime type,
 // therefore it is also possible to use the property FilterName with
 // Filter names as defined in the file TypeDetection.xml (see "Storing")
 /* aProps[0].Name = "FilterName";
 aProps[0].Value = "WMF - MS Windows Metafile";
 */

 aProps[1] = new PropertyValue();
 aProps[1].Name = "URL";
 aProps[1].Value = "file:///home/images/page1.gif";

 // get XFilter interface and launch the export
 XFilter xFilter = (XFilter) UnoRuntime.queryInterface(
 XFilter.class, GraphicExportFilter);
 xFilter.filter(aProps);

10.2.3 Printing Drawing Documents

Printer and Print Job Settings
Printing is a common office functionality. Refer to Chapter 7 Office Development for additional
information. The Draw document implements the com.sun.star.view.XPrintable interface for
printing. It consists of three methods:

sequence< com::sun::star::beans::PropertyValue > getPrinter()
void setPrinter([in] sequence< com::sun::star::beans::PropertyValue > aPrinter)
void print([in] sequence< com::sun::star::beans::PropertyValue > xOptions)

To print to the standard printer without settings, use the snippet below with a given document
xDoc:
 // query the XPrintable interface from your document
 XPrintable xPrintable = (XPrintable)UnoRuntime.queryInterface(XPrintable.class, xDoc);

 // create an empty printOptions array
 PropertyValue[] printOpts = new PropertyValue[0];

 // kick off printing
 xPrintable.print(printOpts);

There are two groups of properties involved in general printing. The first one is used with
setPrinter() and getPrinter(),and controls the printer, the second one is passed to print()
and controls the print job.

749

http://api.openoffice.org/docs/common/ref/com/sun/star/view/XPrintable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XPrintable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XPrintable.html

The method getPrinter() returns a sequence of PropertyValue structs describing the printer
containing the properties specified in the service com.sun.star.view.PrinterDescriptor. It
comprises the following properties:

Properties of com.sun.star.view.PrinterDescriptor
Name string � Specifies the name of the printer queue to be used.

PaperOrientation com.sun.star.view.PaperOrientation. Specifies the orientation of
the paper.

PaperFormat com.sun.star.view.PaperFormat. Specifies a predefined paper size
or if the paper size is a user-defined size.

PaperSize com.sun.star.awt.Size. Specifies the size of the paper in 1/100 mm.

IsBusy boolean � Indicates if the printer is busy.

CanSetPaperOrientation boolean � Indicates if the printer allows changes to PaperOrienta-
tion.

CanSetPaperFormat boolean � Indicates if the printer allows changes to PaperFormat.

CanSetPaperSize boolean � Indicates if the printer allows changes to PaperSize.

The PrintOptions offer the following choices for a print job:

Properties of com.sun.star.view.PrintOptions
CopyCount short � Specifies the number of copies to print.

FileName string � If set, specifies the name of a file to print to.

Collate boolean � Advises the printer to collate the pages of the copies. If true, a
whole document is printed prior to the next copy, otherwise copies for
each page are completed together.

Pages string � Specifies the pages to print. It has the same format as in the
print dialog of the GUI, for example, 1, 3, 4-7, 9.

The following method uses PrinterDescriptor and PrintOptions to print to a specific printer,
and preselect the pages to print:

The following method uses both, PrinterDescriptor and PrintOptions, to print to a specific
printer and preselect the pages to print:
protected void printDocComponent(XComponent xDoc) throws java.lang.Exception {
 XPrintable xPrintable = (XPrintable)UnoRuntime.queryInterface(XPrintable.class, xDoc);
 PropertyValue[] printerDesc = new PropertyValue[1];
 printerDesc[0] = new PropertyValue();
 printerDesc[0].Name = "Name";
 printerDesc[0].Value = "5D PDF Creator";

 xPrintable.setPrinter(printerDesc);

 PropertyValue[] printOpts = new PropertyValue[1];
 printOpts[0] = new PropertyValue();
 printOpts[0].Name = "Pages";
 printOpts[0].Value = "1-4,7";

 xPrintable.print(printOpts);
}

In Draw documents, one slide is printed as one page on the printer by default. In the example
above, slide one through four and slide seven are printed.

750 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrintOptions.html#Pages
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrintOptions.html#Collate
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrintOptions.html#FileName
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrintOptions.html#CopyCount
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrintOptions.html#CopyCount
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrintOptions.html#CopyCount
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrintOptions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrintOptions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrintOptions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html#CanSetPaperSize
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html#CanSetPaperFormat
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html#CanSetPaperOrientation
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html#IsBusy
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Size.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Size.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Size.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html#PaperSize
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PaperFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PaperFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PaperFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html#PaperFormat
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PaperOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PaperOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PaperOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html#PaperOrientation
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html#Name
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrinterDescriptor.html

Special Print Settings
The printed drawing view (drawings, notes, handout pages, outline), the print quality (color, gray-
scale), the page options (tile, fit to page, brochure, paper tray) and additional options (page name,
date, time, hidden pages) can all be controlled. 10.6.2 Drawing - Overall Document Features - Settings
describes how these settings are used.

10.3 Working with Drawing Documents

10.3.1 Drawing Document

Document Structure

751

Illustration 10.5: DrawingDocument Structure

Draw documents maintain their drawing content on draw pages, master pages and layers. If a new
draw document is opened, it contains one slide that corresponds to a
com.sun.star.drawing.DrawPage service. Switching to Master View brings up the master page
handled by the service com.sun.star.drawing.MasterPage. The Layer View allows access to
layers to structure your drawings. These layers can be controlled through
com.sun.star.drawing.Layer and com.sun.star.drawing.LayerManager.

Page Handling
Draw and Impress documents supply their pages (slides) through the interface
com.sun.star.drawing.XDrawPagesSupplier. The method
com.sun.star.drawing.XDrawPagesSupplier:getDrawPages() returns a container of draw
pages with a com.sun.star.drawing.XDrawPages interface that is derived from
com.sun.star.container.XIndexAccess. That is, XDrawPages allows accessing, inserting and
removing pages of a drawing document:

type getElementType()
boolean hasElements()
long getCount()
any getByIndex(long Index)
com::sun::star::drawing::XDrawPage insertNewByIndex(long nIndex)
void remove(com::sun::star::drawing::XDrawPage xPage)

The example below demonstrates how to access and create draw and master pages. Layers will be
described later.
 XDrawPagesSupplier xDrawPagesSupplier = (XDrawPagesSupplier)UnoRuntime.queryInterface(
 XDrawPagesSupplier.class, xComponent);

 // XDrawPages inherits from com.sun.star.container.XIndexAccess
 XDrawPages xDrawPages = xDrawPagesSupplier.getDrawPages();

 // get the page count for standard pages
 int nPageCount = xDrawPages.getCount();

 // get draw page by index
 XDrawPage xDrawPage = (XDrawPage)UnoRuntime.queryInterface(XDrawPage .class,

xDrawPages.getByIndex(nIndex));

 /* create and insert a draw page into the given position,
 the method returns the newly created page
 */
 XDrawPage xNewDrawPage = xDrawPages.insertNewByIndex(0);

 // remove the given page
 xDrawPages.remove(xDrawPage);

 /* now repeat the same procedure as described above for the master pages,
 the main difference is to get the XDrawPages from the XMasterPagesSupplier
 interface
 */
 XMasterPagesSupplier xMasterPagesSupplier = (XMasterPagesSupplier)UnoRuntime.queryInterface(
 XMasterPagesSupplier.class, xComponent);

 XDrawPages xMasterPages = xMasterPagesSupplier.getMasterPages();

 // xMasterPages can now be used in the same manner as xDrawPages is used above

Each draw page always has one master page. The interface
com.sun.star.drawing.XMasterPageTarget offers methods to get and set the master page that is
correlated to a draw page.
 // query for MasterPageTarget
 XMasterPageTarget xMasterPageTarget = (XMasterPageTarget)UnoRuntime.queryInterface(
 XMasterPageTarget.class, xDrawPage);

 // now we can get the corresponding master page
 XDrawPage xMasterPage = xMasterPageTarget.getMasterPage();

 /* this method now sets a new master page,
 it is important to mention that the applied page must be part of the MasterPages
 */
 xMasterPageTarget.setMasterPage(xMasterPage);

752 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XMasterPageTarget.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XMasterPageTarget.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XMasterPageTarget.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPages.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPages.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPages.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPagesSupplier.html#getDrawPages
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPagesSupplier.html#getDrawPages
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPagesSupplier.html#getDrawPages
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPagesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPagesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPagesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LayerManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LayerManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LayerManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Layer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Layer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Layer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/MasterPage.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/MasterPage.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/MasterPage.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawPage.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawPage.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawPage.html

It is possible to copy pages using the interface com.sun.star.drawing.XDrawPageDuplicator of
drawing or presentation documents.

Methods of com.sun.star.drawing.XDrawPageDuplicator:
com::sun::star::drawing::XDrawPage duplicate([in] com::sun::star::drawing::XDrawPage xPage)

Pass a draw page reference to the method duplicate(). It appends a new draw page at the end
of the page list, using the default naming scheme for pages, �slide n�.

Page Partitioning
All units and dimensions are measured in 1/100th of a millimeter. The coordinates are increasing
from left to right, and from top to bottom. The upper-left position of a page is (0, 0).

The page size, margins and orientation can be determined using the following properties of a draw
page (generic draw page):

Properties of com.sun.star.drawing.GenericDrawPage
Height long � Height of the page.

Width long � Width of the page.

BorderBottom long � Bottom margin of the page.

BorderLeft long � Left margin of the page.

BorderRight long � Right margin of the page.

BorderTop long � Top margin of the page.

Orientation com.sun.star.view.PaperOrientation. Determines if the
printer output should be turned by 90°. Possible values are:
PORTRAIT and LANDSCAPE.

10.3.2 Shapes
Drawings consist of shapes on draw pages. Shapes are drawing elements, such as rectangles,
circles, polygons, and lines. To create a drawing, get a shape by its service name at the Service-
Factory of a drawing document and add it to the appropriate DrawPage.

The code below demonstrates how to create shapes. It consists of a static helper method located in
the class ShapeHelper and will be used throughout this chapter to create shapes. The parameter
xComponent must be a reference to a loaded drawing document. The x, y, height and width are
the desired position and size, and sShapeType expects a service name for the shape, such as
"com.sun.star.drawing.RectangleShape". The method does not actually insert the shape into a page.
It instantiates it and returns the instance to the caller.

753

http://api.openoffice.org/docs/common/ref/com/sun/star/view/PaperOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PaperOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PaperOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/GenericDrawPage.html#Orientation
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/GenericDrawPage.html#BorderTop
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/GenericDrawPage.html#BorderRight
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/GenericDrawPage.html#BorderLeft
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/GenericDrawPage.html#BorderBottom
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/GenericDrawPage.html#Width
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/GenericDrawPage.html#Height
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/GenericDrawPage.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/GenericDrawPage.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/GenericDrawPage.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPageDuplicator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPageDuplicator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPageDuplicator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPageDuplicator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPageDuplicator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPageDuplicator.html

The size and position of a shape can be set before adding a shape to a page. After adding the
shape, change the shape properties through com.sun.star.beans.XPropertySet.
(Drawing/Helper.java)
public static XShape createShape(XComponent xComponent,
 int x, int y, int width, int height, String sShapeType) throws java.lang.Exception {
 // query the document for the document-internal service factory
 XMultiServiceFactory xFactory = (XMultiServiceFactory)UnoRuntime.queryInterface(
 XMultiServiceFactory.class, xComponent);

 // get the given Shape service from the factory
 Object xObj = xFactory.createInstance(sShapeType);
 Point aPos = new Point(x, y);
 Size aSize = new Size(width, height);

 // use its XShape interface to determine position and size before insertion
 xShape = (XShape)UnoRuntime.queryInterface(XShape.class, xObj);
 xShape.setPosition(aPos);
 xShape.setSize(aSize);
 return xShape;
}

Notice, the following restrictions: A shape cannot be inserted into multiple pages, and most methods do not
work before the shape is inserted into a draw page.

The previously declared method will be used to create a simple rectangle shape with a size of 10
cm x 5 cm that is positioned in the upper-left, and inserted into a drawing page.

754 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 10.6: Shape

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html

 // query DrawPage for XShapes interface
 XShapes xShapes = (XShapes)UnoRuntime.queryInterface(XShapes.class, xDrawPage);

 // create the shape
 XShape xShape = createShape(xComponent, 0, 0, 10000, 5000, “com.sun.star.drawing.RectangleShape”);

 // add shape to DrawPage
 xShapes.add(xShape);

 // set text
 XText xText = (XText)UnoRuntime.queryInterface(XText.class, xShape);
 xText.setString("My new RectangleShape");

 // to be able to set Properties a XPropertySet interface is needed
 XPropertySet xPropSet = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, xShape);

 xPropSet.setPropertyValue("CornerRadius", new Integer(1000));

 xPropSet.setPropertyValue("Shadow", new Boolean(true));
 xPropSet.setPropertyValue("ShadowXDistance", new Integer(250));
 xPropSet.setPropertyValue("ShadowYDistance", new Integer(250));

 // blue fill color
 xPropSet.setPropertyValue("FillColor", new Integer(0xC0C0C0));
 // black line color
 xPropSet.setPropertyValue("LineColor", new Integer(0x000000));

 xPropSet.setPropertyValue("Name", "Rounded Gray Rectangle");

The UML diagram in Illustration 10.3 describes all services that are included by the
com.sun.star.drawing.RectangleShape service and provides an overview of properties that can
be used with such a simple shape.

755

http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/RectangleShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/RectangleShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/RectangleShape.html

756 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 10.7: RectangleShape

Shape Types

The following table lists all shapes supported in Draw and Impress documents. They come from
the com.sun.star.drawing. Each shape is based on com.sun.star.drawing.Shape. Additionally,
there are five services in the module com.sun.star.drawing that most of the shapes have in
common:

com.sun.star.drawing.Text, com.sun.star.drawing.LineProperties,
com.sun.star.drawing.FillProperties and com.sun.star.drawing.ShadowProperties
handle shape formatting, whereas com.sun.star.drawing.RotationDescriptor controls rota-
tion and shearing. The section 10.3.2 Drawing - Working with Drawing Documents - Shapes - Shape
Operations - General Drawing Properties below discusses shape formatting in more detail. Refer to
the section 10.3.2 Drawing - Working with Drawing Documents - Shapes - Shape Operations for infor-
mation on rotation and shearing.

The service com.sun.star.drawing.Text is different from other Text services. It consists of the service
com.sun.star.drawing.TextProperties and the interface com.sun.star.text.XText that was
introduced in the chapter 2 First Steps. Drawing text does not supports text contents other than paragraphs
consisting of character strings.

An x denotes which of these services are supported by each shape. The rightmost column shows
the services, interfaces and properties that are specific for the various shapes.

757

Illustration 10.8 ShapeTypes

http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/RotationDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/RotationDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/RotationDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ShadowProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ShadowProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ShadowProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/module-ix.html

ShapeType

Te
xt

Li
ne

Pr
op

er
tie

s

Fi
llP

ro
pe

rt
ie

s

Sh
ad

ow
Pr

op
er

tie
s

Ro
ta

tio
nD

es
cr

ip
to

r supported services,

exported interfaces,

properties

ClosedBezierShape x x x x x included service:
com.sun.star.drawing.PolyPolygo
nBezierDescriptor

ConnectorShape x x x x included service:
com.sun.star.drawing.ConnectorP
roperties
properties:
com.sun.star.drawing.XShape
StartShape
com.sun.star.drawing.XShape
EndShape
com.sun.star.awt.Point StartPosition
com.sun.star.awt.Point EndPosition
long StartGluePointIndex
long EndGluePointIndex
long EdgeLine1Delta
long EdgeLine2Delta
long EdgeLine3Delta

ControlShape exported interface:
com.sun.star.drawing.XControlShape

EllipseShape x x x x x properties:
com.sun.star.drawing.CircleKind
CircleKind
long CircleStartAngle
long CircleEndAngle

GraphicObjectShape x x x properties:
string GraphicURL
string GraphicStreamURL
short AdjustLuminance
short AdjustContrast
short AdjustRed
short AdjustGreen
short AdjustBlue
double Gamma
short Transparency
com.sun.star.drawing.ColorMode
GraphicColorMode
optional properties:
com.sun.star.awt.XBitmap
GraphicObjectFillBitmap
com.sun.star.container.XIndexCo
ntainer ImageMap

GroupShape exported interfaces:
com.sun.star.drawing.XShapeGrou
p
com.sun.star.drawing.XShapes

LineShape x x x x included service:
com.sun.star.drawing.PolyPolygo
nDescriptor

MeasureShape x x x x included service:
com.sun.star.drawing.MeasureProperties

properties:
com.sun.star.awt.Point StartingPosition
com.sun.star.awt.Point EndPosition

758 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Point.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Point.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Point.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Point.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Point.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Point.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/MeasureProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/MeasureProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/MeasureProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/MeasureShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapes.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapes.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapes.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeGroup.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeGroup.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeGroup.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeGroup.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeGroup.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeGroup.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/GroupShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XBitmap.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XBitmap.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XBitmap.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ColorMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ColorMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ColorMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/GraphicObjectShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/CircleKind.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/CircleKind.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/CircleKind.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/EllipseShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XControlShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XControlShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XControlShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ControlShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Point.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Point.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Point.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Point.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Point.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Point.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ConnectorProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ConnectorProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ConnectorProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ConnectorProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ConnectorProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ConnectorProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ConnectorShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ClosedBezierShape.html

ShapeType

Te
xt

Li
ne

Pr
op

er
tie

s

F
ill

Pr
op

er
tie

s

Sh
ad

ow
Pr

op
er

tie
s

R
ot

at
io

nD
es

cr
ip

to
r supported services,

exported interfaces,

properties

OLE2Shape properties:
string CLSID

readonly properties:
com.sun.star.frame.XModel Model
boolean IsInternal

OpenBezierShape x x x x included service:
com.sun.star.drawing.PolyPolygo
nBezierDescriptor

PageShape

PolyLineShape x x x x included service:
com.sun.star.drawing.PolyPolygo
nDescriptor

PolyPolygonBezierShape x x x x x included service:
com.sun.star.drawing.PolyPolygo
nBezierDescriptor

PolyPolygonShape x x x x x included service:
com.sun.star.drawing.PolyPolygo
nDescriptor

RectangleShape x x x x x properties:
long CornerRadius

TextShape x x x x x properties:
long CornerRadius

PluginShape properties:
string PluginMimeType
string PluginURL
sequence<
com.sun.star.beans.PropertyValu
e > PluginCommands

Bezier Shapes
Draw supports three different kinds of Bezier curves: OpenBezierShape, ClosedBezierShape and
PolyPolygonBezierShape. They are all controlled by com.sun.star.drawing.PolyPolygon-
BezierDescriptor which is made up of the following properties:

759

http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PluginShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/RectangleShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyLineShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PageShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/OpenBezierShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/OLE2Shape.html

Properties of com.sun.star.drawing.PolyPolygonBezierDescriptor
PolygonKind [readonly] com.sun.star.drawing.PolygonKind. Type of the

polygon. Possible values are:

LINE for a LineShape.

POLY for a PolyPolygonShape.

PLIN for a PolyLineShape.

PATHLINE for an OpenBezierShape.

PATHFILL for a ClosedBezierShape.

PolyPolygonBezier struct com.sun.star.drawing.PolyPolygonBezierCoords.
These are the bezier points of the polygon. The struct members are
Coordinates and Flags, which are both sequences of sequences.
The Coordinates sequence contains com.sun.star.awt.Point
structs and the Flags sequence contains
com::com.sun.star.drawing.PolygonFlags enums. Point
members are X and Y. Possible PolygonFlags values are:

• NORMAL the point is normal, from the curve discussion view.

• SMOOTH the point is smooth, the first derivation from the curve
discussion view.

• CONTROL the point is a control point, to control the curve from
the user interface.

• SYMMETRIC the point is symmetric, the second derivation from
the curve discussion view.

Geometry com.sun.star.drawing.PolyPolygonBezierCoords. These
are the untransformed bezier coordinates of the polygon. The
property has the same type as PolyPolygonBezier.

The next Java example will demonstrate how to create a ClosedBezierShape that looks like the
following picture. (Drawing/DrawingDemo.java)

760 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierCoords.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierCoords.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierCoords.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierDescriptor.html#Geometry
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolygonFlags.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolygonFlags.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolygonFlags.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Point.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Point.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Point.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierCoords.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierCoords.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierCoords.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierDescriptor.html#PolyPolygonBezier
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolygonKind.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolygonKind.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolygonKind.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierDescriptor.html#PolygonKind
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierDescriptor.html

 XShape xPolyPolygonBezier = createShape(xComponent, 0, 0, 0, 0,
 "com.sun.star.drawing.ClosedBezierShape");

 // take care of the fact that the shape must have been added
 // to the page before it is possible to apply changes
 XShapes xShapes = (XShapes)UnoRuntime.queryInterface(XShapes.class, xDrawPage);
 xShapes.add(xPolyPolygonBezier);

 // now it is possible to edit the PropertySet
 XPropertySet xShapeProperties = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xPolyPolygonBezier);

 // The following values are exemplary and provokes that a PolyPolygon of
 // sixteen single polygons containing four points each is created. The
 // PolyPolygon total point count will be 64.
 // If control points are used they are allowed to appear as pair only,
 // before and after such pair has to be a normal point.

 // A bezier point sequence may look like
 // this (n=normal, c=control) : n c c n c c n n c c n

 int nPolygonCount = 16;
 int nPointCount = 4;
 int nWidth = 10000;
 int nHeight = 10000;

 PolyPolygonBezierCoords aCoords = new PolyPolygonBezierCoords();

 // allocating the outer sequence
 aCoords.Coordinates = new Point[nPolygonCount][];
 aCoords.Flags = new PolygonFlags[nPolygonCount][];
 int i, n, nY;

 // fill the inner point sequence now
 for (nY = 0, i = 0; i < nPolygonCount; i++, nY += nHeight / nPolygonCount) {
 // create a polygon using two normal and two control points
 // allocating the inner sequence

 Point[] pPolyPoints = new Point[nPointCount];
 PolygonFlags[] pPolyFlags = new PolygonFlags[nPointCount];

 for (n = 0; n < nPointCount; n++)
 pPolyPoints[n] = new Point();

 pPolyPoints[0].X = 0;
 pPolyPoints[0].Y = nY;
 pPolyFlags [0] = PolygonFlags.NORMAL;

 pPolyPoints[1].X = nWidth / 2;
 pPolyPoints[1].Y = nHeight;
 pPolyFlags[1] = PolygonFlags.CONTROL;

 pPolyPoints[2].X = nWidth / 2;

761

 pPolyPoints[2].Y = nHeight;
 pPolyFlags [2] = PolygonFlags.CONTROL;

 pPolyPoints[3].X = nWidth;
 pPolyPoints[3].Y = nY;
 pPolyFlags [3] = PolygonFlags.NORMAL;

 aCoords.Coordinates[i] = pPolyPoints;
 aCoords.Flags[i] = pPolyFlags;
 }
 try {
 xShapeProperties.setPropertyValue("PolyPolygonBezier", aCoords);
 } catch (Exception ex)
 {
 }

Shape Operations

Moving and Scaling

Moving and scaling of a shape can be done by using the corresponding methods getPosition(),
setPosition(), getSize() and setSize() of the com.sun.star.drawing.XShape interface:

string getShapeType()
com::sun::star::awt::Point getPosition()
void setPosition([in] com::sun::star::awt::Point aPosition)
com::sun::star::awt::Size getSize()
void setSize([in] com::sun::star::awt::Size aSize)

Point and Size are IDL structs. In Java, these structs are mapped to classes with constructors that
take values for the struct members. Therefore, when new is used to instantiate these classes, the
coordinates and dimensions are passed to initialize the class members X, Y, Width and Height.

Rotating and Shearing

Most shapes, except OLE and group objects, can be rotated and sheared. All of these objects include
the com.sun.star.drawing.RotationDescriptor service that has the properties RotateAngle
and ShearAngle.

Setting the com.sun.star.drawing.RotationDescriptor rotates or shears a shape:

Properties of com.sun.star.drawing.RotationDescriptor
RotateAngle long � This is the angle for rotation of this shape in 1/100th of a degree.

The shape is rotated counter-clockwise around the center of the
bounding box.

ShearAngle long � This is the amount of shearing for this shape in 1/100th of a
degree. The shape is sheared clockwise around the center of the
bounding box.

Notice that the rotation works counter-clockwise, while shearing works clockwise.

762 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/RotationDescriptor.html#ShearAngle
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/RotationDescriptor.html#RotateAngle
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/RotationDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/RotationDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/RotationDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/RotationDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/RotationDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/RotationDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/RotationDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/RotationDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/RotationDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShape.html

The following example shows how a shape can be rotated by 25 degrees counterclockwise:

// xShape will be rotated by 25 degrees
 XPropertySet xPropSet = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xShape);
 xPropSet.setPropertyValue("RotateAngle", new Integer(2500));

Transforming

Changing the size, rotation and shearing of an object can be done by using the transformation
mechanism provided by OpenOffice.org. The matrix of our API is a standard homogenous 3x3
matrix that may be used together with the java.awt.geom.AffineTransform class from Java. The
transformation received describes the actual values of the transformations as a linear combination
of the single matrices. The basic object without transformation has a size of (1, 1) and a position of
(0, 0), and is not rotated or sheared. Thus, to transform an object get its matrix and multiply from
the left side to influence the current appearance. To set the whole transformation directly, build a
combined matrix of the single values mentioned above and apply it to the object.
(Drawing/ObjectTransformationDemo.java)
 XPropertySet xPropSet = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, xShape);

 // take the current tranformation matrix
 HomogenMatrix3 aHomogenMatrix3 = (HomogenMatrix3)xPropSet.getPropertyValue("Transformation");

 java.awt.geom.AffineTransform aOriginalMatrix = new java.awt.geom.AffineTransform(
 aHomogenMatrix3.Line1.Column1, aHomogenMatrix3.Line2.Column1,
 aHomogenMatrix3.Line1.Column2, aHomogenMatrix3.Line2.Column2,
 aHomogenMatrix3.Line1.Column3, aHomogenMatrix3.Line2.Column3);

 // rotate the object by 15 degrees
 AffineTransform aNewMatrix1 = new AffineTransform();
 aNewMatrix1.setToRotation(Math.PI /180 * 15);
 aNewMatrix1.concatenate(aOriginalMatrix);

 // and translate the object by 2cm on the x-axis
 AffineTransform aNewMatrix2 = new AffineTransform();
 aNewMatrix2.setToTranslation(2000, 0);
 aNewMatrix2.concatenate(aNewMatrix1);

 double aFlatMatrix[] = new double[6];
 aNewMatrix2.getMatrix(aFlatMatrix);

 // convert the flatMatrix to our HomogenMatrix3 structure
 aHomogenMatrix3.Line1.Column1 = aFlatMatrix[0];
 aHomogenMatrix3.Line2.Column1 = aFlatMatrix[1];
 aHomogenMatrix3.Line1.Column2 = aFlatMatrix[2];
 aHomogenMatrix3.Line2.Column2 = aFlatMatrix[3];
 aHomogenMatrix3.Line1.Column3 = aFlatMatrix[4];
 aHomogenMatrix3.Line2.Column3 = aFlatMatrix[5];

 xPropSet.setPropertyValue("Transformation", aHomogenMatrix3);

763

Illustration 10.9 Rotation and Shearing by 25 degrees

Ordering

The property ZOrder of the com.sun.star.drawing.Shape service defines the order a shape is
drawn. That is, if there are many shapes on a page, the shape that has the lowest ZOrder value is
drawn first, and the shape that has the highest ZOrder is drawn last. By using this property it is
possible to bring an object to the back or front of a page. It is also possible to switch the order of
two shapes as demonstrated in the following example: (Drawing/ChangeOrderDemo.java)
 XPropertySet xPropSet1 = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, xShape1);
 XPropertySet xPropSet2 = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, xShape2);

 // get current positions
 int nOrderOfShape1 = ((Integer)xPropSet1.getPropertyValue("ZOrder")).intValue();
 int nOrderOfShape2 = ((Integer)xPropSet2.getPropertyValue("ZOrder")).intValue();

 // set new positions
 xPropSet1.setPropertyValue("ZOrder", new Integer(nOrderOfShape2));
 xPropSet2.setPropertyValue("ZOrder", new Integer(nOrderOfShape1));

Grouping, Combining and Binding

The DrawPage plays an important role for the handling of multiple shapes. It has three interfaces
for this purpose. Its interface com.sun.star.drawing.XShapeGrouper is used to create a group
shape from a ShapeCollection and ungroup existing groups.

 Methods of com.sun.star.drawing.XShapeGrouper
group() Parameter:

com.sun.star.drawing.XShapes xShapes

Groups the shapes inside a collection. They must all
be inserted into the same GenericDrawPage .

Returns a recently created GroupShape that
contains all shapes from xShapes, and is also
added to the GenericDrawPage of the Shapes in
xShapes.

ungroup() Parameter:
com.sun.star.drawing.XShapeGroup

Ungroups a given GroupShape. Moves all Shapes
from this GroupShape to the parent XShapes of the
GroupShape. The GroupShape is then removed
from the GenericDrawPage and disposed.

The example below creates a group using the com.sun.star.drawing.XShapeGrouper interface.
For this purpose, the shapes that are to be grouped have to be added to a
com.sun.star.drawing.ShapeCollection that is created by the com.sun.star.lang.XMulti-
ServiceFactory of the global service manager. It is a container of shapes that is accessed using the
interface com.sun.star.drawing.XShapes. The following example accesses the XShapes interface
of the DrawPage to locate two shapes on the DrawPage, and uses the XShapes interface of the
ShapeCollection to add these shapes to the ShapeCollection. Finally, it employs the XShape-
Grouper interface of the DrawPage to move the shapes from the ShapeCollection into a new
GroupShape. (Drawing/ControlAndSelectDemo)
 /* try to group the first two objects of the drawpage */

 // create a container that will receive the
 // shapes that are to be grouped
 Object xObj = xMultiServiceFactory.createInstance("com.sun.star.drawing.ShapeCollection");
 XShapes xToGroup = (XShapes)UnoRuntime.queryInterface(XShapes.class, xObj);

 // query for the shape collection of xDrawPage
 XShapes xShapes = (XShapes)UnoRuntime.queryInterface(XShapes.class, xDrawPage);

 // test if the shape collection of the page has at least two shapes

764 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapes.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapes.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapes.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ShapeCollection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ShapeCollection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ShapeCollection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeGrouper.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeGrouper.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeGrouper.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeGroup.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeGroup.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeGroup.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeGrouper.html#ungroup
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeGrouper.html#ungroup
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeGrouper.html#ungroup
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapes.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapes.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapes.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeGrouper.html#group
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeGrouper.html#group
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeGrouper.html#group
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeGrouper.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeGrouper.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeGrouper.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeGrouper.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeGrouper.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeGrouper.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Shape.html

 if (xShapes.getCount() >= 2) {
 // collect shapes we want to group
 xToGroup.add((XShape)UnoRuntime.queryInterface(XShape.class, xShapes.getByIndex(0)));
 xToGroup.add((XShape)UnoRuntime.queryInterface(XShape.class, xShapes.getByIndex(1)));

 // now group the shapes we have collected by using the XShapeGrouper
 XShapeGrouper xShapeGrouper = (XShapeGrouper)UnoRuntime.queryInterface(
 XShapeGrouper.class, xDrawPage);
 xShapeGrouper.group(xToGroup);
 }

The service com.sun.star.drawing.GroupShape includes com.sun.star.drawing.Shape and
supports two additional interfaces:

• com.sun.star.drawing.XShapes is used to access the shapes in the group.

• com.sun.star.drawing.XShapeGroup handles access to the group.

The interface XShapes inherits from com.sun.star.container.XIndexAccess, and introduces
add() and remove(). It contains the following methods:

type getElementType()
boolean hasElements()
long getCount()
any getByIndex([in] long Index)
void add([in] com::sun::star::drawing::XShape xShape)
void remove([in] com::sun::star::drawing::XShape xShape)

Methods of com.sun.star.drawing.XShapeGroup:
string getShapeType()
com::sun::star::awt::Point getPosition()
void setPosition([in] com::sun::star::awt::Point aPosition)
com::sun::star::awt::Size getSize()
void setSize([in] com::sun::star::awt::Size aSize)

It is also possible to create GroupShapes directly without using the XShapeGrouper interface. The
following code demonstrates the creation of a com.sun.star.drawing.GroupShape that takes up
three other shapes. (Drawing/DrawingDemo.java)
 // create a group shape first. The size and position does not matter, because
 // it depends to the position and size of objects that will be inserted later
 XShape xGroup = createShape(xComponent, 0, 0, 0, 0, "com.sun.star.drawing.GroupShape");

 // before it is possible to insert shapes,
 // the group shape must have been added to the page
 XShapes xShapes = (XShapes)UnoRuntime.queryInterface(XShapes.class, xDrawPage);
 xShapes.add(xGroup);

 // query for the XShapes interface, which will take our new shapes
 XShapes xShapesGroup = (XShapes)UnoRuntime.queryInterface(XShapes.class, xGroup);

 // new shapes can be inserted into the shape collection directly
 xShapesGroup.add(createShape(xComponent, 1000, 1000, 2000, 4000,
 "com.sun.star.drawing.EllipseShape"));
 xShapesGroup.add(createShape(xComponent, 8000, 8000, 2000, 2000,
 "com.sun.star.drawing.EllipseShape"));
 xShapesGroup.add(createShape(xComponent, 2000, 3000, 7000, 6000,
 "com.sun.star.drawing.LineShape"));

The interface com.sun.star.drawing.XShapeCombiner combines shapes and is equivalent to
Modify � Combine in the user interface.

765

http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeCombiner.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeCombiner.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeCombiner.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/GroupShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/GroupShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/GroupShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeGroup.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeGroup.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeGroup.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeGroup.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeGroup.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeGroup.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapes.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapes.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapes.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/GroupShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/GroupShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/GroupShape.html

 Methods of com.sun.star.drawing.XShapeCombiner
combine() Parameter:

com.sun.star.drawing.XShapes

Combines shapes. The shapes inside this container
are converted to PolyPolygonBezierShapes and
are than combined into one PolyPolygonBezier-
Shape. The shapes in xShape are removed from the
GenericDrawPage and disposed.

Returns a recently created PolyPolygonBezier-
Shape that contains all the converted Poly-
PolygonBezierShapes combined. It is also added
to the GenericDrawPage of the source Shapes.

split() Parameter:
com.sun.star.drawing.XShape

Splits shapes. The Shape is converted to a Poly-
PolygonBezierShape and then split into several
PolyPolygonBezierShapes. The shape s in
xShapeare removed from the GenericDrawPage
and disposed.

The draw page interface com.sun.star.drawing.XShapeBinder draws a connection line between
the ending point of a line shape (or curve) to the starting point of another line shape (or curve),
merging the connected lines into a single shape object. This function corresponds to Modify �
Connect in the user interface. It works for area shapes as well, but the connection line usually can
not resolve them.

Methods of com.sun.star.drawing.XShapeBinder
bind() Parameter:

com.sun.star.drawing.XShapes

binds shapes together. A container with shapes that
will be bound together. All shapes are converted to a
PolyPolygonBezierShape and the lines are
connected. The Shapes in xShape are removed from
the GenericDrawPage and disposed.

Returns a recently created PolyPolygonBezier-
Shape that contains all line segments from the
supplied Shapes. It is also added to the Gener-
icDrawPage of the source Shapes.

unbind() Parameter:
com.sun.star.drawing.XShape

breaks a shape into its line segments. The given
shape will be converted to a PolyPolygonBezier-
Shape and the line segments of this shape are used
to create new PolyPolygonBezierShape shapes.
The original shape is removed from its Gener-
icDrawPage and disposed.

General Drawing Properties

This chapter introduces the relevant drawing attributes provided by services, such as
com.sun.star.drawing.LineProperties, com.sun.star.drawing.FillProperties and

766 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeBinder.html#unbind
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeBinder.html#unbind
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeBinder.html#unbind
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapes.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapes.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapes.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeBinder.html#bind
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeBinder.html#bind
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeBinder.html#bind
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeBinder.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeBinder.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeBinder.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeBinder.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeBinder.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeBinder.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeCombiner.html#split
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeCombiner.html#split
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeCombiner.html#split
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapes.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapes.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapes.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeCombiner.html#combine
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeCombiner.html#combine
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeCombiner.html#combine
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeCombiner.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeCombiner.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShapeCombiner.html

com.sun.star.drawing.TextProperties. The service is described by listing all its properties,
followed by an example that uses and explains some of the properties. Each of the following Java
examples assumes an already existing valid shape xShape that has already been inserted into the
page.

Colors are given in Hex ARGB format, a four-byte value containing the alpha, red, green and blue
components of a color in the format 0xAARRGGBB. The leading component can be omitted if it is
zero. The hex format 0xFF0000 is light red, 0xFF00 is green, and 0xFF is blue.

Angles must be given in steps of 1/100th of a degree.

Measures, such as line widths and lengths are given in 100th of a millimeter.

Properties provided by the service :

Properties of com.sun.star.drawing.LineProperties
LineStyle com.sun.star.drawing.LineStyle. This enumeration selects the style of

the line.

LineDash com.sun.star.drawing.LineDash. This enumeration selects the dash of
the line

LineColor long � Color of the line.

LineTransparence short � Degree of transparency.

LineWidth long � Width of the line in 1/100th of a millimeter.

LineJoint com.sun.star.drawing.LineJoint. Rendering of joints between thick
lines.

LineStartName [optional] string � Name of the line that starts poly polygon bezier.

LineStart [optional] com.sun.star.drawing.PolyPolygonBezierCoords.
Line starts in the form of a poly polygon bezier.

LineEnd [optional] com.sun.star.drawing.PolyPolygonBezierCoords.
Line ends in the form of a poly polygon bezier.

LineStartCenter [optional] boolean � If true, the line starts from the center of the
polygon.

LineStartWidth [optional] long � Width of the line start polygon.

LineEndCenter [optional] boolean � If true, the line ends in the center of the polygon.

LineEndWidth [optional] long � Width of the line end polygon.

(Drawing/FillAndLineStyleDemo.java)
 /* create a blue line with dashes and dots */
 XPropertySet xPropSet = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xShape);
 xPropSet.setPropertyValue("LineStyle", LineStyle.DASH);
 LineDash aLineDash = new LineDash();
 aLineDash.Dots = 3;
 aLineDash.DotLen = 150;
 aLineDash.Dashes = 3;
 aLineDash.DashLen = 300;
 aLineDash.Distance = 150;
 xPropSet.setPropertyValue("LineDash", aLineDash);
 xPropSet.setPropertyValue("LineColor", new Integer(0x0000ff));
 xPropSet.setPropertyValue("LineWidth", new Integer(200));

Properties of com.sun.star.drawing.FillProperties
FillStyle com.sun.star.drawing.FillStyle. This enumeration selects the style

that the area is filled with.

767

http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillStyle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillStyle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillStyle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html#FillStyle
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineProperties.html#LineEndWidth
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineProperties.html#LineEndCenter
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineProperties.html#LineStartWidth
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineProperties.html#LineStartCenter
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierCoords.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierCoords.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierCoords.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineProperties.html#LineEnd
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierCoords.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierCoords.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierCoords.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineProperties.html#LineStart
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineProperties.html#LineStartName
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineJoint.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineJoint.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineJoint.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineProperties.html#LineJoint
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineProperties.html#LineWidth
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineProperties.html#LineTransparence
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineProperties.html#LineColor
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineDash.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineDash.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineDash.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineProperties.html#LineDash
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineStyle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineStyle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineStyle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineProperties.html#LineStyle
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html

Properties of com.sun.star.drawing.FillProperties
FillColor long � If the FillStyle is set to SOLID, this is the color used.

FillTransparence short � The transparency of the filled area in percent.

FillTransparenceGradi-
entName

string � This is the name of the transparent gradient style used if a
gradient is used for transparency, or it is empty. This style is used to set the
name of a transparent gradient style contained in the document.

FillTransparenceGra-
dient

[optional]com.sun.star.awt.Gradient. Transparency of the fill area as
a gradient.

FillGradientName string � If the FillStyle is set to GRADIENT, this is the name of the fill
gradient style used.

FillGradient [optional]com.sun.star.awt.Gradient. If the FillStyle is set to
GRADIENT, this describes the gradient used.

FillHatchName string � If the FillStyle is set to GRADIENT, this is the name of the fill
hatch style used.

FillHatch [optional]com.sun.star.drawing.Hatch. If the FillStyle is set to
HATCH, this describes the hatch used.

FillBitmapName string � If the FillStyle is set to BITMAP, this is the name of the fill
bitmap style used.

FillBitmap [optional]com.sun.star.awt.XBitmap. If the FillStyle is set to
BITMAP, this is the bitmap used.

FillBitmapURL [optional] string. If the FillStyle is set to BITMAP, this is a URL to
the bitmap used.

FillBitmapOffsetX short � Horizontal offset where the tile starts.

FillBitmapOffsetY short � Vertical offset where the tile starts. It is given in percent in rela-
tion to the width of the bitmap.

FillBitmapPositionOff-
setX

short � Every second line of tiles is moved the given percent of the width
of the bitmap.

FillBitmapPositionOff-
setY

short � Every second row of tiles is moved the given percent of the width
of the bitmap.

FillBitmapRectangle-
Point

com.sun.star.drawing.RectanglePoint. The RectanglePoint
specifies the position inside of the bitmap to use as the top-left position for
rendering.

FillBitmapLogicalSize boolean � Specifies if the size is given in percentage or as an absolute
value.

FillBitmapSizeX long � Width of the tile for filling.

FillBitmapSizeY long � Height of the tile for filling.

FillBitmapMode com.sun.star.drawing.BitmapMode. Enumeration selects how an area
is filled with a single bitmap.

FillBackground boolean � If true , the transparent background of a hatch filled area is
drawn in the current background color.

(Drawing/FillAndLineStyleDemo.java)
 /* apply a gradient fill style that goes from top left to bottom
 right and is changing its color from green to yellow */

 XPropertySet xPropSet = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xShape);

 xPropSet.setPropertyValue("FillStyle", FillStyle.GRADIENT);
 Gradient aGradient = new Gradient();
 aGradient.Style = GradientStyle.LINEAR;

768 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html#FillBackground
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/BitmapMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/BitmapMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/BitmapMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html#FillBitmapMode
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html#FillBitmapSizeY
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html#FillBitmapSizeX
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html#FillBitmapLogicalSize
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/RectanglePoint.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/RectanglePoint.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/RectanglePoint.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html#FillBitmapRectanglePoint
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html#FillBitmapRectanglePoint
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html#FillBitmapPositionOffsetY
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html#FillBitmapPositionOffsetY
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html#FillBitmapPositionOffsetX
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html#FillBitmapPositionOffsetX
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html#FillBitmapOffsetY
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html#FillBitmapOffsetX
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html#FillBitmapURL
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XBitmap.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XBitmap.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XBitmap.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html#FillBitmap
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html#FillBitmapName
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Hatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Hatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Hatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html#FillHatch
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html#FillHatchName
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Gradient.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Gradient.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Gradient.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html#FillGradient
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html#FillGradientName
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Gradient.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Gradient.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Gradient.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html#FillTransparenceGradient
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html#FillTransparenceGradient
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html#FillTransparenceGradientName
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html#FillTransparenceGradientName
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html#FillTransparence
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html#FillColor

 aGradient.StartColor = 0x00ff00;
 aGradient.EndColor = 0xffff00;
 aGradient.Angle = 450;
 aGradient.Border = 0;
 aGradient.XOffset = 0;
 aGradient.YOffset = 0;
 aGradient.StartIntensity = 100;
 aGradient.EndIntensity = 100;
 aGradient.StepCount = 10;
 xPropSet.setPropertyValue("FillGradient", aGradient);

Properties of com.sun.star.drawing.TextProperties
IsNumbering [optional] boolean � If true, numbering is on for the text of this

shape.

NumberingRules [optional] com.sun.star.container.XIndexReplace. Describes
the numbering levels.

TextAutoGrowHeight boolean � If true, the height of the shape is automatically expanded
or shrunk when text is added or removed from the shape.

TextAutoGrowWidth boolean � If true, the width of the shape is automatically expanded
or shrunk when text is added or removed from the shape.

TextContourFrame boolean � If true, the left edge of every line of text is aligned with the
left edge of this shape.

TextFitToSize
com.sun.star.drawing.TextFitToSizeType. Determines how the
text inside of the Shape is stretched to fit in the Shape. Possible values
are NONE, PROPORTIONAL, ALLLINES, and RESIZEATTR.

TextHorizontalAdjust com.sun.star.drawing.TextHorizontalAdjust. Adjusts the
horizontal position of the text inside of the shape.

TextVerticalAdjust com.sun.star.drawing.TextVerticalAdjust. Adjusts the
vertical position of the text inside of the shape.

TextLeftDistance long � Distance from the left edge of the shape to the left edge of the
text.

TextRightDistance long � Distance from the right edge of the shape to the right edge of
the text.

TextUpperDistance long � Distance from the upper edge of the shape to the upper edge of
the text.

TextLowerDistance long � Distance from the lower edge of the shape to the lower edge of
the text.

TextMaximumFrameHeight long � Maximum height of the surrounding frame.

TextMaximumFrameWidth long � Maximum width of the surrounding frame.

TextMinimumFrameHeight long � Minimum height of the surrounding frame.

TextMinimumFrameWidth long � Minimum width of the surrounding frame.

TextAnimationAmount short � Number of pixels that the text is moved in each animation
step.

TextAnimationCount short � Defines how many times the text animation is repeated.

TextAnimationDelay short � Delay between the animation steps in thousandths of a second.

TextAnimationDirection com.sun.star.drawing.TextAnimationDirection. This enumer-
ation defines the direction that the text moves.

TextAnimationKind com.sun.star.drawing.TextAnimationKind. Defines the type of
animation.

TextAnimationStartInside boolean. If true, the text is visible at the start of the animation.

769

http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html#TextAnimationStartInside
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextAnimationKind.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextAnimationKind.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextAnimationKind.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html#TextAnimationKind
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextAnimationDirection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextAnimationDirection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextAnimationDirection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html#TextAnimationDirection
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html#TextAnimationDelay
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html#TextAnimationCount
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html#TextAnimationAmount
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html#TextMinimumFrameWidth
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html#TextMinimumFrameHeight
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html#TextMaximumFrameWidth
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html#TextMaximumFrameHeight
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html#TextLowerDistance
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html#TextUpperDistance
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html#TextRightDistance
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html#TextLeftDistance
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextVerticalAdjust.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextVerticalAdjust.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextVerticalAdjust.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html#TextVerticalAdjust
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextHorizontalAdjust.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextHorizontalAdjust.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextHorizontalAdjust.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html#TextHorizontalAdjust
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextFitToSizeType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextFitToSizeType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextFitToSizeType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html#TextFitToSize
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html#TextContourFrame
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html#TextAutoGrowWidth
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html#TextAutoGrowHeight
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html#NumberingRules
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html#IsNumbering
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html

Properties of com.sun.star.drawing.TextProperties
TextAnimationStopInside boolean. If true, the text is visible at the end of the animation.

TextWritingMode com.sun.star.text.WritingMode. This value selects the writing
mode for the text.

The service com.sun.star.drawing.TextProperties includes com.sun.star.style.Para-
graphProperties and com.sun.star.style.CharacterProperties. Since these services contain
optional properties, the properties actually supported by drawing shapes are listed. Refer to the
API reference or explanations or 8.3.2 Text Documents - Working with Text Documents - Formatting.

The service com.sun.star.drawing.TextProperties includes com.sun.star.style.Para-
graphProperties and com.sun.star.style.CharacterProperties. Since these services contain
many optional properties, we list the properties actually supported by drawing shapes. Please look
up the explanations in the API reference or in 8.3.2 Text Documents - Working with Text Documents -
Formatting.

com.sun.star.style.CharacterProperties of drawing text

CharAutoKerning boolean
CharColor long
CharContoured boolean
CharCrossedOut boolean
CharEmphasis short
CharEscapement short
CharEscapementHeight byte
CharFontCharSet] short
CharFontFamily short
CharFontName string
CharFontPitch short
CharFontStyleName string
CharHeight float
CharKerning short
CharLocale com.sun.star.lang.Locale
CharPosture com.sun.star.awt.FontSlant
CharRelief short
CharScaleWidth short
CharShadowed boolean
CharStrikeout short
CharUnderline short
CharUnderlineColor long
CharUnderlineHasColor boolean
CharWeight float
CharWordMode boolean

There are Asian counterparts for a number of character properties.

com.sun.star.style.CharacterPropertiesAsian of drawing shapes

CharFontPitchAsian short

770 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html#CharFontPitchAsian
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharWordMode
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharWeight
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharUnderlineHasColor
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharUnderlineColor
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharUnderline
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharStrikeout
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharShadowed
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharScaleWidth
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharRelief
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontSlant.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharPosture
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/Locale.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharLocale
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharKerning
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharHeight
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharFontStyleName
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharFontPitch
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharFontName
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharFontFamily
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharEscapementHeight
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharEscapement
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharEmphasis
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharCrossedOut
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharContoured
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharColor
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html#CharAutoKerning
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/WritingMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/WritingMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/WritingMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html#TextWritingMode
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html#TextAnimationStopInside

com.sun.star.style.CharacterPropertiesAsian of drawing shapes

CharFontStyleNameAsian string
CharHeightAsian float
CharPostureAsian com.sun.star.awt.FontSlant
CharLocaleAsian com.sun.star.lang.Locale
CharWeightAsian float

There is also a Complex flavor of the same properties:

com.sun.star.style.CharacterPropertiesComplex of drawing text

CharFontPitchComplex short
CharFontStyleNameComplex string
CharHeightComplex float
CharLocaleComplex com.sun.star.lang.Locale
CharPostureComplex com.sun.star.awt.FontSlant
CharWeightComplex float

Paragraphs in drawing text support a selection of com.sun.star.style.ParagraphProperties:

Properties of com.sun.star.style.ParagraphProperties
ParaAdjust short
ParaBottomMargin long
ParaFirstLineIndent long
ParaIsHyphenation boolean
ParaLastLineAdjust short
ParaLeftMargin long
ParaLineSpacing com.sun.star.style.LineSpacing
ParaRightMargin long
ParaTabStops sequence <com.sun.star.style.TabStop >
ParaTopMargin long
ParaUserDefinedAttributes com.sun.star.uno.XInterface

And of com.sun.star.style.ParagraphPropertiesAsian:

Properties of com.sun.star.style.ParagraphPropertiesAsian
ParaIsCharacterDistance boolean
ParaIsForbiddenRules boolean
ParaIsHangingPunctuation boolean

The next example introduces a method that appends single text portions to a shape. It returns the
XPropertySet interface of the text range that has been added. (Drawing/ShapeHelper.java)
/** add text to a shape.
 the return value is the PropertySet of the text range that has been added
 */
public static XPropertySet addPortion(XShape xShape, String sText, boolean bNewParagraph)
 throws com.sun.star.lang.IllegalArgumentException {
 XText xText = (XText)UnoRuntime.queryInterface(XText.class, xShape);

 XTextCursor xTextCursor = xText.createTextCursor();
 xTextCursor.gotoEnd(false);
 if (bNewParagraph) {
 xText.insertControlCharacter(xTextCursor, ControlCharacter.PARAGRAPH_BREAK, false);
 xTextCursor.gotoEnd(false);

771

http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html#ParaIsHangingPunctuation
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html#ParaIsForbiddenRules
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html#ParaIsCharacterDistance
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphPropertiesAsian.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphPropertiesAsian.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphPropertiesAsian.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphPropertiesAsian.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphPropertiesAsian.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphPropertiesAsian.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#ParaUserDefinedAttributes
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#ParaTopMargin
http://api.openoffice.org/docs/common/ref/com/sun/star/style/TabStop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/TabStop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/TabStop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#ParaTabStops
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#ParaRightMargin
http://api.openoffice.org/docs/common/ref/com/sun/star/style/LineSpacing.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#ParaLineSpacing
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#ParaLeftMargin
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#ParaLastLineAdjust
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#ParaIsHyphenation
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#ParaFirstLineIndent
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#ParaBottomMargin
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html#ParaAdjust
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesComplex.html#CharWeightComplex
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontSlant.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesComplex.html#CharPostureComplex
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/Locale.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesComplex.html#CharLocaleComplex
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesComplex.html#CharHeightComplex
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesComplex.html#CharFontStyleNameComplex
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesComplex.html#CharFontPitchComplex
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesComplex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesComplex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesComplex.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html#CharWeightAsian
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/Locale.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html#CharLocaleAsian
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontSlant.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html#CharPostureAsian
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html#CharHeightAsian
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterPropertiesAsian.html#CharFontStyleNameAsian

 }
 XTextRange xTextRange = (XTextRange)UnoRuntime.queryInterface(XTextRange.class, xTextCursor);
 xTextRange.setString(sText);
 xTextCursor.gotoEnd(true);
 XPropertySet xPropSet = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, xTextRange);
 return xPropSet;
}

Using the previous method, the next example creates a rectangle shape that has a border of 2.5 cm
with the text of two paragraphs is stretched by using the com.sun.star.drawing.TextFitTo-
SizeType property. The text of the first paragraph is then colored green, and the second red. The
8.3.1 Text Documents - Working with Text Documents - Word Processing - Editing Text provides further
details of handling text. (Drawing/TextDemo.java)
 createShape(xComponent, new Point(0,0),
 new Size(21000, 12500), "com.sun.star.drawing.RectangleShape");
 xShapes.add(xRectangle);
 xShapePropSet = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, xRectangle);

 // TextFitToSize
 xShapePropSet.setPropertyValue("TextFitToSize", TextFitToSizeType.PROPORTIONAL);

 // border size
 xShapePropSet.setPropertyValue("TextLeftDistance", new Integer(2500));
 xShapePropSet.setPropertyValue("TextRightDistance", new Integer(2500));
 xShapePropSet.setPropertyValue("TextUpperDistance", new Integer(2500));
 xShapePropSet.setPropertyValue("TextLowerDistance", new Integer(2500));

 xTextPropSet = ShapeHelper.addPortion(xRectangle, "using TextFitToSize", false);
 xTextPropSet.setPropertyValue("ParaAdjust", ParagraphAdjust.CENTER);
 xTextPropSet.setPropertyValue("CharColor", new Integer(0xff00));
 xTextPropSet = ShapeHelper.addPortion(xRectangle, "and a Border distance of 2,5 cm", true);
 xTextPropSet.setPropertyValue("CharColor", new Integer(0xff0000));

Many shapes cast shadows. The ShadowProperties controls how this shadow looks:

Properties of com.sun.star.drawing.ShadowProperties
Shadow boolean � Enables or disables the shadow of a shape.

ShadowColor long � Color of the shadow of the shape.

ShadowTransparence short � Defines the degree of transparency of the shadow in percent.

ShadowXDistance long � Horizontal distance between the left edge of the shape and the shadow.

ShadowYDistance long � Vertical distance between the top edge of the shape and the shadow.

Glue Points and Connectors

By default, there are four glue points available that are used within the properties StartGlue-
PointIndex and EndGluePointIndex. If a connector connects to the top, bottom, left or right of a
shape, a new glue point is not created. The four directions are declared in the following example.

The first example demonstrates how to create a com.sun.star.drawing.ConnectorShape and
connect it to two other shapes using the glue point index property.
(Drawing/GluePointDemo.java)
 XDrawPagesSupplier xDrawPagesSupplier = (XDrawPagesSupplier)UnoRuntime.queryInterface(
 XDrawPagesSupplier.class, xComponent);
 XDrawPages xDrawPages = xDrawPagesSupplier.getDrawPages();
 XPage xPage = (XdrawPage)UnoRuntime.queryInterface(XDrawPage.class, xDrawPages.getByIndex(0));

 XShapes xShapes = (XShapes) UnoRuntime.queryInterface(XShapes.class, xPage);

 // create two rectangles
 XShape xShape1 = ShapeHelper.createShape(xDrawDoc, new Point(15000, 1000), new Size(5000, 5000),
 "com.sun.star.drawing.RectangleShape");

 XShape xShape2 = ShapeHelper.createShape(xDrawDoc, new Point(2000, 15000), new Size(5000, 5000),
 "com.sun.star.drawing.EllipseShape");

 // and a connector
 XShape xConnector = ShapeHelper.createShape(xDrawDoc,
 new Point(0, 0), new Size(0, 0), "com.sun.star.drawing.ConnectorShape");

772 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ConnectorShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ConnectorShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ConnectorShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ShadowProperties.html#ShadowYDistance
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ShadowProperties.html#ShadowXDistance
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ShadowProperties.html#ShadowTransparence
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ShadowProperties.html#ShadowColor
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ShadowProperties.html#Shadow
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ShadowProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ShadowProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ShadowProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextFitToSizeType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextFitToSizeType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextFitToSizeType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextFitToSizeType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextFitToSizeType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextFitToSizeType.html

 xShapes.add(xShape1);
 xShapes.add(xShape2);
 xShapes.add(xConnector);

 XPropertySet xConnectorPropSet = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xConnector);

 // Index value of 0 : the shape is connected at the top
 // Index value of 1 : the shape is connected at the left
 // Index value of 2 : the shape is connected at the bottom
 // Index value of 3 : the shape is connected at the right

 int nStartIndex = 3;
 int nEndIndex = 1;

 // the "StartPosition" or "EndPosition" property needs not to be set
 // if there is a shape to connect
 xConnectorPropSet.setPropertyValue("StartShape", xShape1);
 xConnectorPropSet.setPropertyValue("StartGluePointIndex", new Integer(nStartIndex));

 xConnectorPropSet.setPropertyValue("EndShape", xShape2);
 xConnectorPropSet.setPropertyValue("EndGluePointIndex", new Integer(nEndIndex));

The next example demonstrates the usage of user defined glue points.
(Drawing/GluePointDemo.java)
 XGluePointsSupplier xGluePointsSupplier;
 XIndexContainer xIndexContainer;
 XIdentifierContainer xIdentifierContainer;

 /* take care to use the structure GluePoint2 and not
 GluePoint, because otherwise the XIdentifierContainer
 won't accept it
 */
 GluePoint2 aGluePoint = new GluePoint2();
 aGluePoint.IsRelative = false;
 aGluePoint.PositionAlignment = Alignment.CENTER;
 aGluePoint.Escape = EscapeDirection.SMART;
 aGluePoint.IsUserDefined = true;
 aGluePoint.Position.X = 0;
 aGluePoint.Position.Y = 0;

 // create and insert a glue point at shape1
 xGluePointsSupplier = (XGluePointsSupplier)UnoRuntime.queryInterface(
 XGluePointsSupplier.class, xShape1);
 xIndexContainer = xGluePointsSupplier.getGluePoints();
 xIdentifierContainer = (XIdentifierContainer)UnoRuntime.queryInterface(
 XIdentifierContainer.class, xIndexContainer);
 int nIndexOfGluePoint1 = xIdentifierContainer.insert(aGluePoint);

 // create and insert a glue point at shape2
 xGluePointsSupplier = (XGluePointsSupplier)
 UnoRuntime.queryInterface(XGluePointsSupplier.class, xShape2);
 xIndexContainer = xGluePointsSupplier.getGluePoints();
 xIdentifierContainer = (XIdentifierContainer)UnoRuntime.queryInterface(
 XIdentifierContainer.class, xIndexContainer);
 int nIndexOfGluePoint2 = xIdentifierContainer.insert(aGluePoint);

 // create and add a connector
 XShape xConnector2 = ShapeHelper.createShape(xDrawDoc,
 new Point(0, 0), new Size(0, 0), "com.sun.star.drawing.ConnectorShape");
 xShapes.add(xConnector2);

 XPropertySet xConnector2PropSet = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xConnector2);

 xConnector2PropSet.setPropertyValue("StartShape", xShape1);
 xConnector2PropSet.setPropertyValue("StartGluePointIndex", new Integer(nIndexOfGluePoint1));

 xConnector2PropSet.setPropertyValue("EndShape", xShape2);
 xConnector2PropSet.setPropertyValue("EndGluePointIndex", new Integer(nIndexOfGluePoint2));

Layer Handling

In Draw and Impress, each shape is associated to exactly one layer. The layer has properties that
specify if connected shapes are visible, printable or editable.

The service com.sun.star.drawing.DrawingDocument implements the interface
com.sun.star.drawing.XLayerSupplier that gives access to the com.sun.star.drawing.XLay-
erManager interface. The com.sun.star.drawing.XLayerManager interface is used to create and
edit a layer, and is used to attach a layer to a shape. (Drawing/LayerDemo.java)

773

http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XLayerManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XLayerManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XLayerManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XLayerManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XLayerManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XLayerManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XLayerManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XLayerManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XLayerManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XLayerSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XLayerSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XLayerSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocument.html

 XShapes xShapes = (XShapes)UnoRuntime.queryInterface(XShapes.class, xPage);

 XShape xRect1 = ShapeHelper.createShape(xComponent, new Point(1000, 1000), new Size(5000, 5000),
 "com.sun.star.drawing.RectangleShape");

 XShape xRect2 = ShapeHelper.createShape(xComponent, new Point(1000, 7000), new Size(5000, 5000),
 "com.sun.star.drawing.RectangleShape");

 xShapes.add(xRect1);
 xShapes.add(xRect2);
 XPropertySet xTextProp = ShapeHelper.addPortion(xRect2, "this shape is locked", false);
 xTextProp.setPropertyValue("ParaAdjust", ParagraphAdjust.CENTER);
 ShapeHelper.addPortion(xRect2, "and the shape above is not visible", true);
 ShapeHelper.addPortion(xRect2, "(switch to the layer view to gain access)", true);

 // query for the XLayerManager
 XLayerSupplier xLayerSupplier = (XLayerSupplier)UnoRuntime.queryInterface(
 XLayerSupplier.class, xComponent);
 XNameAccess xNameAccess = xLayerSupplier.getLayerManager();
 XLayerManager xLayerManager = (XLayerManager)UnoRuntime.queryInterface(
 XLayerManager.class, xNameAccess);

 // create a layer and set its properties
 XPropertySet xLayerPropSet;
 XLayer xNotVisibleAndEditable = xLayerManager.insertNewByIndex(xLayerManager.getCount());
 xLayerPropSet = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xNotVisibleAndEditable);
 xLayerPropSet.setPropertyValue("Name", "NotVisibleAndEditable");
 xLayerPropSet.setPropertyValue("IsVisible", new Boolean(false));
 xLayerPropSet.setPropertyValue("IsLocked", new Boolean(true));

 // create a second layer
 XLayer xNotEditable = xLayerManager.insertNewByIndex(xLayerManager.getCount());
 xLayerPropSet = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, xNotEditable);
 xLayerPropSet.setPropertyValue("Name", "NotEditable");
 xLayerPropSet.setPropertyValue("IsVisible", new Boolean(true));
 xLayerPropSet.setPropertyValue("IsLocked", new Boolean(true));

 // attach the layer to the rectangles
 xLayerManager.attachShapeToLayer(xRect1, xNotVisibleAndEditable);
 xLayerManager.attachShapeToLayer(xRect2, xNotEditable);

10.3.3 Inserting Files
Currently it is not possible to insert slides from a drawing or presentation into a drawing docu-
ment through API. To accomplish this, use the Insert � File command from the menu.

10.3.4 Navigating
Initially, shapes in a document can only be accessed by their index. The only method to get more
information about a shape on the page is to test for the shape type, so it is impossible to identify a
particular shape. However, after a shape is inserted, you can name it in the user interface or
through the shape interface com.sun.star.container.XNamed, and identify the shape by its name
after retrieving it by index. Shapes cannot be accessed by their names.

Searching and replacing text in Drawing documents retrieves the shapes that contain the text that
is searched for. For more information, refer to 7.2.9 Office Development - Common Application
Features - Search and Replace.

774 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html

10.4 Handling Presentation Document Files

10.4.1 Creating and Loading Presentation Documents
The URL that must be used with loadComponentFromURL() for new presentation documents is
"private:factory/simpress".

To avoid the initial dialog in new presentation documents, set the property Silent defined in
com.sun.star.document.MediaDescriptor to true. This property has to be used with the
sequence of PropertyValue structs that is passed to loadComponentFromURL().

The snippet below loads a new presentation document in silent mode:
 // the method getRemoteServiceManager is described in the chapter First Steps
 mxRemoteServiceManager = this.getRemoteServiceManager();

 // retrieve the Desktop object, we need its XComponentLoader
 Object desktop = mxRemoteServiceManager.createInstanceWithContext(
 "com.sun.star.frame.Desktop", mxRemoteContext);

 // query the XComponentLoader interface from the Desktop service
 XComponentLoader xComponentLoader = (XComponentLoader)UnoRuntime.queryInterface(
 XComponentLoader.class, desktop);

 // define load properties according to com.sun.star.document.MediaDescriptor
 // the boolean property Silent tells the office to suppress the impress startup wizard
 PropertyValue[] loadProps = new PropertyValue[1];
 loadProps[0] = new PropertyValue();
 loadProps[0].Name = "Silent";
 loadProps[0].Value = new Boolean(true);

 // load
 com.sun.star.uno.XComponent xComponentLoader.loadComponentFromURL(
 "private:factory/simpress", "_blank", 0, loadProps);

10.4.2 Printing Presentation Documents
Presentation documents have the following specific properties to define if the notes and outline
view should be printed:

Properties of com.sun.star.presentation.DocumentSettings
IsPrintNotes boolean � Specifies if the notes are also printed.

IsPrintOutline boolean � Specifies if the outline is also printed.

10.6.2 Drawing - Overall Document Features - Settings describes how these settings are used.

10.5 Working with Presentation Documents

10.5.1 Presentation Document
The structure of Impress documents is enhanced by a handout page per document, one notes page
per draw page, and one notes master page for each master page. This means that the creation of
normal draw and draw master pages automatically create corresponding notes and notes master
pages. Due to this fact there are no interfaces for creation or deletion of notes or notes master
pages.

775

http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/DocumentSettings.html#IsPrintOutline
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/DocumentSettings.html#IsPrintNotes
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/DocumentSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/DocumentSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/DocumentSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html

The following UML diagram describes the whole page structure of Impress. The horizontal dotted
line illustrates the general page structure lying beneath the dotted line, and the enhanced page
structure of Impress lying above.

776 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 10.10: PresentationDocument

Calling getDrawPages() at the com.sun.star.drawing.XDrawPagesSupplier interface of a
presentation document retrieves a collection of com.sun.star.presentation.DrawPage instances
with presentation specific properties.

The following two examples demonstrate how to access the notes pages and the handout page of
an Impress document: (Drawing/PageHelper.java)
/** in Impress documents each draw page as also each draw master page has
 a corresponding notes page
*/
static public XDrawPage getNotesPage(XDrawPage xDrawPage) {
 XDrawPage xNotesPage;

 XPresentationPage xPresentationPage = (XPresentationPage)UnoRuntime.queryInterface(
 XPresentationPage.class, xDrawPage);

 /* only Impress pages support the XPresentationPage interface,
 for all other pages the interface will be zero, so a test
 won't hurt
 */
 if (xPresentationPage != null)
 xNotesPage = xPresentationPage.getNotesPage();

 return xNotesPage;
}

The notes master page that corresponds to a notes page can be accessed by the
com.sun.star.presentation.XPresentation interface of the master page. (Drawing/Page-
Helper.java)
/** in impress each document has one handout page */
static public XDrawPage getHandoutMasterPage(XComponent xComponent) {
 XHandoutMasterSupplier aHandoutMasterSupplier =
 (XHandoutMasterSupplier)UnoRuntime.queryInterface(
 XHandoutMasterSupplier.class, xComponent);

 return aHandoutMasterSupplier.getHandoutMasterPage();
}

10.5.2 Presentation Settings
Impress documents contain a Presentation service that controls a running presentation. This
com.sun.star.presentation.Presentation service can be accessed through the
com.sun.star.presentation.XPresentationSupplier interface through the method:

com::sun::star::presentation::XPresentation getPresentation()

The method getPresentation() returns a com.sun.star.presentation.Presentation service.
It contains properties for presentation settings and the interface
com.sun.star.presentation.XPresentation.

The presentation settings define the slide range, which custom show is used, and how the presen-
tation is executed. These settings are provided as properties of the service com.sun.star.presen-
tation.Presentation. This service also exports the com.sun.star.presentation.XPresentation
interface that starts and ends a presentation.

Methods of com.sun.star.presentation.XPresentation
start() Starts the presentation in full-screen mode.

end() Stops the presentation.

rehearseTimings() Starts the presentation from the beginning and shows the actual running
time to the user.

Properties of com.sun.star.presentation.Presentation
AllowAnimations boolean � Enables/disables the shape animations.

777

http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Presentation.html#AllowAnimations
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Presentation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Presentation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Presentation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/XPresentation.html#rehearseTimings
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/XPresentation.html#rehearseTimings
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/XPresentation.html#rehearseTimings
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/XPresentation.html#end
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/XPresentation.html#end
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/XPresentation.html#end
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/XPresentation.html#start
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/XPresentation.html#start
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/XPresentation.html#start
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/XPresentation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/XPresentation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/XPresentation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/XPresentation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/XPresentation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/XPresentation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Presentation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Presentation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Presentation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Presentation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Presentation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Presentation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/XPresentation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/XPresentation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/XPresentation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Presentation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Presentation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Presentation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/XPresentationSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/XPresentationSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/XPresentationSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Presentation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Presentation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Presentation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/XPresentation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/XPresentation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/XPresentation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/DrawPage.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/DrawPage.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/DrawPage.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPagesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPagesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPagesSupplier.html

Properties of com.sun.star.presentation.Presentation
CustomShow string � Contains the name of a customized show that is used for the presenta-

tion.

FirstPage string � Contains the name of the page where the presentation is started.

IsAlwaysOnTop boolean � If true, the window of the presentation is always on top of all the
other windows.

IsAutomatic boolean � If true, all pages are changed automatically.

IsEndless boolean � If true, the presentation is repeated endlessly.

IsFullScreen boolean � If true, the presentation runs in full-screen mode.

IsLivePresentation boolean � With this property, the presentation is set to live mode.

IsMouseVisible boolean � If true, the mouse is visible during the presentation.

Pause long � Duration of the black screen after the presentation has finished.

StartWithNavigator boolean � If true, the Navigator is opened at the start of the presentation.

UsePen boolean � If true, a pen is shown during presentation.

 IsShowAll boolean � Show all slides.

IsShowLogo boolean � Show OpenOffice.org logo on pause page in automatic mode.

IsTransitionOn-
Click

boolean � Slide change on mouse click, in addition to pressing cursor right.

The properties IsShowAll, IsShowLogo and IsTransitionOnClick are currently not documented
in the API reference.

The next example demonstrates how to start a presentation that is automatically repeated and
plays in full-screen mode by modifying the presentation settings.
(Drawing/PresentationDemo.java)
 XPresentationSupplier xPresSupplier = (XPresentationSupplier)UnoRuntime.queryInterface(
 XPresentationSupplier.class, xComponent);
 XPresentation xPresentation = xPresSupplier.getPresentation();
 XPropertySet xPresPropSet = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xPresentation);
 xPresPropSet.setPropertyValue("IsEndless", new Boolean(true));
 xPresPropSet.setPropertyValue("IsFullScreen", new Boolean(true));
 xPresPropSet.setPropertyValue("Pause", new Integer(0));
 xPresentation.start();

Custom Slide Show
Custom presentations are available at the com.sun.star.presentation.XCustomPresentation-
Supplier interface of the presentation document. It contains the method:

com::sun::star::container::XNameContainer getCustomPresentations()

The method getCustomPresentations() returns a com.sun.star.presentation.CustomPre-
sentationAccess service that consists of the interfaces com.sun.star.container.XNameCon-
tainer and com.sun.star.lang.XSingleServiceFactory. The standard API interface
com.sun.star.container.XNameContainer derived from com.sun.star.container.XNameRe-
place obtains existing Custom Presentations and to add new custom presentations by name. It
introduces the methods:

void replaceByName([in] string aName, [in] any aElement)
void insertByName([in] string aName, [in] any aElement)
void removeByName([in] string Name)

778 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/CustomPresentationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/CustomPresentationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/CustomPresentationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/CustomPresentationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/CustomPresentationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/CustomPresentationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/XCustomPresentationSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/XCustomPresentationSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/XCustomPresentationSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/XCustomPresentationSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/XCustomPresentationSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/XCustomPresentationSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Presentation.html#IsTransitionOnClick
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Presentation.html#IsTransitionOnClick
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Presentation.html#IsShowLogo
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Presentation.html#IsShowAll
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Presentation.html#IsShowAll
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Presentation.html#IsShowAll
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Presentation.html#UsePen
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Presentation.html#StartWithNavigator
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Presentation.html#Pause
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Presentation.html#IsMouseVisible
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Presentation.html#IsLivePresentation
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Presentation.html#IsFullScreen
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Presentation.html#IsEndless
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Presentation.html#IsAutomatic
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Presentation.html#IsAlwaysOnTop
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Presentation.html#FirstPage
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Presentation.html#CustomShow

To add a new CustomPresentation, create it using createInstance() at the XSingleSer-
viceFactory interface of the CustomPresentationAccess.
Methods of com.sun.star.lang.XSingleServiceFactory:

com::sun::star::uno::XInterface createInstance()
com::sun::star::uno::XInterface createInstanceWithArguments([in] sequence< any aArguments >)

The CustomPresentation is now created. Its content consists of a com.sun.star.presenta-
tion.CustomPresentation. From the API, it is a named container of selected presentation draw
pages. Draw pages can be added to a custom presentation or removed using its interface
com.sun.star.container.XIndexContainer. In addition to the methods of an XIndexAccess,
this standard API interface supports the following operations:

Methods introduced by com.sun.star.container.XIndexContainer:
void replaceByIndex([in] long Index, [in] any Element)
void insertByIndex([in] long Index, [in] any Element)
void removeByIndex([in] long Index)

The name of a CustomPresentation is read and written using the interface
com.sun.star.container.XNamed:

Methods of XNamed:
string getName()
void setName([in] string aName)

A custom show is a collection of slides in a user-defined order that can be executed as a presenta-
tion. It is also possible to use a slide twice or skip slides. For instance, it is possible to create a short
version of a presentation and a long version within the same document. The number of custom
shows is unlimited.

The next example demonstrates how to create two custom shows and set one of them as an active
presentation. (Drawing/CustomShowDemo.java)
 XDrawPagesSupplier xDrawPagesSupplier = (XDrawPagesSupplier)UnoRuntime.queryInterface(
 XDrawPagesSupplier.class, xComponent);
 XDrawPages xDrawPages = xDrawPagesSupplier.getDrawPages();

 // take care that this document has ten pages
 while (xDrawPages.getCount() < 10)
 xDrawPages.insertNewByIndex(0);

 // assign a name to each page
 String aNameArray[] = {"Introduction", "page one", "page two", "page three", "page four",
 "page five", "page six", "page seven", "page eight", "page nine"};
 int i;
 for (i = 0; i < 10; i++) {
 XNamed xPageName = (XNamed)UnoRuntime.queryInterface(XNamed.class, xDrawPages.getByIndex(i));
 xPageName.setName(aNameArray[i]);
 }

 /* create two custom shows, one will play slide 6 to 10 and is named "ShortVersion"
 the other one will play slide 2 til 10 and is named "LongVersion"
 */
 XCustomPresentationSupplier xCustPresSupplier = (XCustomPresentationSupplier)
 UnoRuntime.queryInterface(XCustomPresentationSupplier.class, xComponent);

 /* the following container is a container for further container
 which concludes the list of pages that are to play within a custom show
 */
 XNameContainer xNameContainer = xCustPresSupplier.getCustomPresentations();
 XSingleServiceFactory xFactory = (XSingleServiceFactory)UnoRuntime.queryInterface(
 XSingleServiceFactory.class, xNameContainer);

 Object xObj;
 XIndexContainer xContainer;

 /* instanciate an IndexContainer that will take
 a list of draw pages for the first custom show
 */
 xObj = xFactory.createInstance();
 xContainer = (XIndexContainer)
 UnoRuntime.queryInterface(XIndexContainer.class, xObj);
 for (i = 5; i < 10; i++)
 xContainer.insertByIndex(xContainer.getCount(), xDrawPages.getByIndex(i));
 xNameContainer.insertByName("ShortVersion", xContainer);

779

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/CustomPresentation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/CustomPresentation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/CustomPresentation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/CustomPresentation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/CustomPresentation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/CustomPresentation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html

 /* instanciate an IndexContainer that will take
 a list of draw page for a second custom show
 */
 xObj = xFactory.createInstance();
 xContainer = (XindexContainer)UnoRuntime.queryInterface(XIndexContainer.class, xObj);
 for (i = 1; i < 10; i++)
 xContainer.insertByIndex(xContainer.getCount(), xDrawPages.getByIndex(i));
 xNameContainer.insertByName("LongVersion", xContainer);

 /* which custom show is to use
 can been set in the presentation settings
 */

 XPresentationSupplier xPresSupplier = (XPresentationSupplier)UnoRuntime.queryInterface(
 XPresentationSupplier.class, xComponent);
 XPresentation xPresentation = xPresSupplier.getPresentation();
 XPropertySet xPresPropSet = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xPresentation);
 xPresPropSet.setPropertyValue("CustomShow", "ShortVersion");

Presentation Effects
There are two kinds of presentation effects, the fading of one page to another, and the animation of
objects and texts within a slideshow.

Slide Transition
In Impress, each page has its own slide transition that can be composed by the properties of the
service com.sun.star.presentation.DrawPage.

Setting the following properties enables slide transition:

Properties of com.sun.star.presentation.DrawPage

Change
long � Specifies how the page change is triggered. If this is 0, the user must click
to start each object animation and to change the page. If set to 1, the page is auto-
matically switched. If it is set to 2, all object effects run automatically, but the user
has to click on the page to change it.

Duration long � If the property Change is set to 1, this property is the time in seconds the
page is shown, before switching to the next page.

Effect com.sun.star.presentation.FadeEffect. This is the effect that is used to
fade in the page.

Speed

com.sun.star.presentation.AnimationSpeed. Defines the speed of the
fade-in effect of the page. Possible values are:

• SLOW sets the speed from the animation or fade to slow.

• MEDIUM sets the speed from the animation or fade to medium.

• FAST sets the speed from the animation or fade to fast.

Layout short � This number specifies a presentation layout for this page, if this prop-
erty is not ZERO.

The next table contains all available com.sun.star.presentation.FadeEffect enum values:

NONE RANDOM DISSOLVE

780 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/FadeEffect.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/FadeEffect.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/FadeEffect.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/DrawPage.html#Layout
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/AnimationSpeed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/AnimationSpeed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/AnimationSpeed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/DrawPage.html#Speed
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/FadeEffect.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/FadeEffect.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/FadeEffect.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/DrawPage.html#Effect
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/DrawPage.html#Duration
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/DrawPage.html#Change
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/DrawPage.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/DrawPage.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/DrawPage.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/DrawPage.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/DrawPage.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/DrawPage.html

FADE_FROM_LEFT
FADE_FROM_RIGHT
FADE_FROM_TOP
FADE_FROM_BOTTOM
FADE_FROM_UPPERLEFT
FADE_FROM_UPPERRIGHT
FADE_FROM_LOWERLEFT
FADE_FROM_LOWERRIGHT

MOVE_FROM_LEFT
MOVE_FROM_RIGHT
MOVE_FROM_TOP
MOVE_FROM_BOTTOM
MOVE_FROM_UPPERLEFT
MOVE_FROM_UPPERRIGHT
MOVE_FROM_LOWERRIGHT
MOVE_FROM_LOWERLEFT

UNCOVER_TO_LEFT
UNCOVER_TO_RIGHT
UNCOVER_TO_TOP
UNCOVER_TO_BOTTOM
UNCOVER_TO_UPPERLEFT
UNCOVER_TO_UPPERRIGHT
UNCOVER_TO_LOWERRIGHT
UNCOVER_TO_LOWERLEFT

FADE_TO_CENTER
FADE_FROM_CENTER

VERTICAL_STRIPES
HORIZONTAL_STRIPES

CLOCKWISE
COUNTERCLOCKWISE

ROLL_FROM_LEFT
ROLL_FROM_RIGHT
ROLL_FROM_TOP
ROLL_FROM_BOTTOM

CLOSE_VERTICAL
CLOSE_HORIZONTAL
OPEN_VERTICAL
OPEN_HORIZONTAL

SPIRALIN_LEFT
SPIRALIN_RIGHT
SPIRALOUT_LEFT
SPIRALOUT_RIGHT

WAVYLINE_FROM_LEFT
WAVYLINE_FROM_RIGHT
WAVYLINE_FROM_TOP
WAVYLINE_FROM_BOTTOM

STRETCH_FROM_LEFT
STRETCH_FROM_RIGHT
STRETCH_FROM_TOP
STRETCH_FROM_BOTTOM

VERTICAL_LINES
HORIZONTAL_LINES

VERTICAL_CHECKERBOARD
HORIZONTAL_CHECKERBOARD

The following Java example shows how to set slide transition effects that are applied to the first
page. (Drawing/PresentationDemo.java)
 // set the slide transition effect of the first page
 XDrawPagesSupplier xDrawPagesSupplier =(XDrawPagesSupplier)UnoRuntime.queryInterface(
 XDrawPagesSupplier.class, xComponent);

 XDrawPages xDrawPages = xDrawPagesSupplier.getDrawPages();
 XDrawPage xDrawPage = (XdrawPage)UnoRuntime.queryInterface(XDrawPage.class,

xDrawPages.getByIndex(0));

 xShapes = (XShapes)UnoRuntime.queryInterface(XShapes.class, xDrawPage);

 XPropertySet xPropSet = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, xDrawPage);

 // set the slide transition effect properties
 xPropSet.setPropertyValue("Effect", com.sun.star.presentation.FadeEffect.RANDOM);
 xPropSet.setPropertyValue("Speed", com.sun.star.presentation.AnimationSpeed.MEDIUM);

 /* Change specifies how the page change is triggered. If this
 is 0, the user must click to start each object animation
 and to change the page. If set to 1, the page is
 automatically switched. If it is set to 2, all object
 effects run automatically, but the user has to click on the
 page to change it.
 */
 xPropSet.setPropertyValue("Change", new Integer(1));

 /* If the property DrawPage::Change is set to 1, Duration specifies the
 time in seconds the page is shown before switching to the next page.
 */
 xPropSet.setPropertyValue("Duration", new Integer(5));

Animations and Interactions
In a Presentation, each shape of the draw and master page provides thecom.sun.star.presenta-
tion.Shape service with a number of properties that describe the manner the shape is displayed
or acting in a presentation.

There are two kinds of shape effects. The first kind of effects are visual changes, such as animations
and dimming effects. The second kind of effects are OnClick actions. All of these effects are
controlled by the properties of a presentation shape:

781

http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Shape.html

Properties of com.sun.star.presentation.Shape
OnClick com.sun.star.presentation.ClickAction. Selects an action

performed after the user clicks on this shape. Possible values are:

• NONE - no action is performed on click

• PREVPAGE - the presentation jumps to the previous page

• NEXTPAGE - the presentation jumps to the next page

• FIRSTPAGE - the presentation continues with the first page

• LASTPAGE - the presentation continues with the last page

• BOOKMARK - the presentation jumps to the bookmark URL defined in
the shape property Bookmark

• DOCUMENT - the presentation jumps to the document given in Book-
mark. It selects the object whose name is given after a # in the Book-
mark URL.

• INVISIBLE - the object renders itself invisible after a click

• SOUND - the sound specified in Sound is played after a click

• VERB - the OLE verb specified in the shape property Verb is
performed on this object

• VANISH - the object vanishes with the effect specified in the property
Effect

• PROGRAM - the program specified in Bookmark is executed after a
click

• MACRO - the OpenOffice.org Basic macro specified in Bookmark is
executed after the click. For the syntax of Basic macro URLs, refer to
the chapter 12 OpenOffice.org Basic and Dialogs.

• STOPPRESENTATION - the presentation is stopped after the click

Bookmark string � A generic URL for the property OnClick.
Verb long � Valid only for OLE shapes. Specifies an "OLE2" verb for the

ClickAction VERB in the property OnClick. For possible verbs, select
the OLE shape, and point the cursor to Edit � Object. The order of
appearance corresponds to the value needed for Verb.

DimPrevious boolean � Only valid when Effect contains an AnimationEffect. If
true, this shape is painted using DimColor on the next click after
finishing the AnimationEffect.

DimHide boolean � Only valid when Effect contains an AnimationEffect. If
this property and the property DimPrevious are both true, the shape is
hidden on the next click after the AnimationEffect has finished.

DimColor long � Only valid when Effect contains an AnimationEffect. This
color is used to paint the shape on the next click after the animation effect
has finished. The property DimPrevious must be true and DimHide
must be false for this property to work.

Effect com.sun.star.presentation.AnimationEffect. Selects the
animation effect of this shape. For possible values see the table below.

782 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/AnimationEffect.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/AnimationEffect.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/AnimationEffect.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Shape.html#Effect
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Shape.html#DimColor
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Shape.html#DimHide
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Shape.html#DimPrevious
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Shape.html#Verb
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Shape.html#Bookmark
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/ClickAction.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/ClickAction.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/ClickAction.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Shape.html#OnClick
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Shape.html

Properties of com.sun.star.presentation.Shape
PresentationOrder long � This is the position of this shape in the order of the shapes that

can be animated on its page. The animations are executed in the order
given in PresentationOrder, starting at the shape with the Presen-
tationOrder 1. You can change the order by changing this number.
Setting it to 1 makes this shape the first shape in the execution order for
the animation effects.

SoundOn boolean � If true, the sound file specified in Sound is played while the
animation effect is executed.

Sound string � This is the URL to a sound file that is played while the anima-
tion effect of this shape is running.

PlayFull boolean. � If true, the sound specified in the Sound property of this
shape is played completely. If false, the sound stops after completing the
AnimationEffect specified in Effect.

Speed com.sun.star.presentation.AnimationSpeed. This is the speed
of the animation effect. Possible values: SLOW, MEDIUM, and FAST.

TextEffect com.sun.star.presentation.AnimationEffect. This is the
animation effect for the text inside this shape. For possible values, see the
table below.

IsEmptyPresentationOb-
ject

[readonly] boolean � If this is a default presentation object and if it is
empty, this property is true.

IsPresentationObject [readonly] boolean � If true, a shape is part of the current AutoLayout
and is considered a presentation object. AutoLayouts are predefined page
layouts consisting of shapes, such as a title box and an outline box.

The next table contains all available com.sun.star.presentation.AnimationEffect enums.

NONE RANDOM DISSOLVE
APPEAR HIDE PATH
FADE_FROM_LEFT
FADE_FROM_RIGHT
FADE_FROM_TOP
FADE_FROM_BOTTOM
FADE_FROM_UPPERLEFT
FADE_FROM_UPPERRIGHT
FADE_FROM_LOWERLEFT
FADE_FROM_LOWERRIGHT

MOVE_FROM_LEFT
MOVE_FROM_RIGHT
MOVE_FROM_TOP
MOVE_FROM_BOTTOM
MOVE_FROM_UPPERLEFT
MOVE_FROM_UPPERRIGHT
MOVE_FROM_LOWERRIGHT
MOVE_FROM_LOWERLEFT

ZOOM_IN_FROM_LEFT
ZOOM_IN_FROM_RIGHT
ZOOM_IN_FROM_TOP
ZOOM_IN_FROM_BOTTOM
ZOOM_IN_FROM_UPPERLEFT
ZOOM_IN_FROM_UPPERRIGHT
ZOOM_IN_FROM_LOWERRIGHT
ZOOM_IN_FROM_LOWERLEFT

CLOCKWISE
COUNTERCLOCKWISE

CLOSE_VERTICAL
CLOSE_HORIZONTAL

OPEN_VERTICAL
OPEN_HORIZONTAL

LASER_FROM_LEFT
LASER_FROM_RIGHT
LASER_FROM_TOP
LASER_FROM_BOTTOM
LASER_FROM_UPPERLEFT
LASER_FROM_UPPERRIGHT
LASER_FROM_LOWERLEFT
LASER_FROM_LOWERRIGHT

MOVE_TO_LEFT
MOVE_TO_RIGHT
MOVE_TO_TOP
MOVE_TO_BOTTOM
MOVE_TO_UPPERLEFT
MOVE_TO_UPPERRIGHT
MOVE_TO_LOWERRIGHT
MOVE_TO_LOWERLEFT

MOVE_SHORT_TO_LEFT
MOVE_SHORT_TO_RIGHT
MOVE_SHORT_TO_TOP
MOVE_SHORT_TO_BOTTOM
MOVE_SHORT_TO_UPPERLEFT
MOVE_SHORT_TO_UPPERRIGHT
MOVE_SHORT_TO_LOWERRIGHT
MOVE_SHORT_TO_LOWERLEFT

783

http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/AnimationEffect.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/AnimationEffect.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/AnimationEffect.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Shape.html#IsPresentationObject
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Shape.html#IsEmptyPresentationObject
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Shape.html#IsEmptyPresentationObject
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/AnimationEffect.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/AnimationEffect.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/AnimationEffect.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Shape.html#TextEffect
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/AnimationSpeed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/AnimationSpeed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/AnimationSpeed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Shape.html#Speed
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Shape.html#PlayFull
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Shape.html#Sound
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Shape.html#SoundOn
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Shape.html#PresentationOrder

ZOOM_OUT_FROM_LEFT
ZOOM_OUT_FROM_RIGHT
ZOOM_OUT_FROM_TOP
ZOOM_OUT_FROM_BOTTOM
ZOOM_OUT_FROM_UPPERLEFT
ZOOM_OUT_FROM_UPPERRIGHT
ZOOM_OUT_FROM_LOWERRIGHT
ZOOM_OUT_FROM_LOWERLEFT

STRETCH_FROM_LEFT
STRETCH_FROM_RIGHT
STRETCH_FROM_TOP
STRETCH_FROM_BOTTOM
STRETCH_FROM_UPPERLEFT
STRETCH_FROM_UPPERRIGHT
STRETCH_FROM_LOWERRIGHT
STRETCH_FROM_LOWERLEFT

MOVE_SHORT_FROM_LEFT
MOVE_SHORT_FROM_RIGHT
MOVE_SHORT_FROM_TOP
MOVE_SHORT_FROM_BOTTOM
MOVE_SHORT_FROM_UPPERLEFT
MOVE_SHORT_FROM_UPPERRIGH
T
MOVE_SHORT_FROM_LOWERRIGH
T
MOVE_SHORT_FROM_LOWERLEFT

WAVYLINE_FROM_LEFT
WAVYLINE_FROM_RIGHT
WAVYLINE_FROM_TOP
WAVYLINE_FROM_BOTTOM

SPIRALIN_LEFT
SPIRALIN_RIGHT
SPIRALOUT_LEFT
SPIRALOUT_RIGHT

FADE_FROM_CENTER
FADE_TO_CENTER
VERTICAL_STRIPES
HORIZONTAL_STRIPES

ZOOM_IN
ZOOM_IN_SMALL
ZOOM_IN_SPIRAL

ZOOM_OUT
ZOOM_OUT_SMALL
ZOOM_OUT_SPIRAL

VERTICAL_LINES
HORIZONTAL_LINES

ZOOM_IN_FROM_CENTER
ZOOM_OUT_FROM_CENTER

VERTICAL_CHECKERBOARD
HORIZONTAL_CHECKERBOARD

VERTICAL_ROTATE
HORIZONTAL_ROTATE

HORIZONTAL_STRETCH
VERTICAL_STRETCH

The next example demonstrates how to set object effects and object interaction.

The example use a method createAndInsertShape() from the ShapeHelper class. It takes the
drawing document, the XShapes interface of the DrawPage the shape is to be inserted in, the posi-
tion and size of the new shape, and the service name of the required shape. It delegates shape
creation to the helper method createShape() and inserts the new shape into the given XShapes
container. Finally, it retrieves the XPropertySet interface of the inserted shape and returns it to the
caller. (Drawing/ShapeHelper.java)
public static XPropertySet createAndInsertShape(XComponent xDrawDoc,
 XShapes xShapes, Point aPos, Size aSize, String sShapeType) throws java.lang.Exception {
 XShape xShape = createShape(xDrawDoc, aPos, aSize, sShapeType);
 xShapes.add(xShape);
 XPropertySet xPropSet = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, xShape);
 return xPropSet;
}

The following example shows animations and OnClick actions for four shapes. On click, the first
shape builds up in a wavy line from the bottom and is dimmed (painted) red afterwards. The
second shape is hidden on click. Clicking the third shape makes the presentation jump to the first
page, whereas clicking the fourth shape jumps to a bookmark. The bookmark contains the name of
the second slide "page � two". (Drawing/PresentationDemo.java)
 XShapes xShapes;
 XPropertySet xShapePropSet;

 XDrawPagesSupplier xDrawPagesSupplier = (XDrawPagesSupplier)UnoRuntime.queryInterface(
 XDrawPagesSupplier.class, xComponent);
 XDrawPages xDrawPages = xDrawPagesSupplier.getDrawPages();

 // create pages, so that three are available
 while (xDrawPages.getCount() < 3)

xDrawPages.insertNewByIndex(0);

 // get the shape container for page one
 xShapes = (XShapes)UnoRuntime.queryInterface(
 XShapes.class, xDrawPages.getByIndex(0));

 // create a rectangle that is placed on the top left of the page
 xShapePropSet = ShapeHelper.createAndInsertShape(xComponent,
 xShapes, new Point(1000, 1000), new Size(5000, 5000),
 "com.sun.star.drawing.RectangleShape");

 // and now set an object animation
 xShapePropSet.setPropertyValue("Effect",
 com.sun.star.presentation.AnimationEffect.WAVYLINE_FROM_BOTTOM);

 /* the following three properties provoke that the shape is dimmed to red
 after the animation has been finished

784 OpenOffice.org 2.3 Developer's Guide • June 2007

 */
 xShapePropSet.setPropertyValue("DimHide", new Boolean(false));
 xShapePropSet.setPropertyValue("DimPrevious", new Boolean(true));
 xShapePropSet.setPropertyValue("DimColor", new Integer(0xff0000));

 // get the shape container for the second page
 xShapes = (XShapes)UnoRuntime.queryInterface(XShapes.class, xDrawPages.getByIndex(1));

 // create an ellipse that is placed on the bottom right of second page
 xShapePropSet = ShapeHelper.createAndInsertShape(xComponent, xShapes,
 new Point(21000, 15000), new Size(5000, 5000), "com.sun.star.drawing.EllipseShape");
 xShapePropSet.setPropertyValue("Effect", com.sun.star.presentation.AnimationEffect.HIDE);

 /* create two objects for the third page.
 clicking the first object lets the presentation jump
 to page one by using ClickAction.FIRSTPAGE,
 the second object lets the presentation jump to page two
 by using a ClickAction.BOOKMARK
 */
 xShapes = (XShapes)UnoRuntime.queryInterface(XShapes.class, xDrawPages.getByIndex(2));
 xShapePropSet = ShapeHelper.createAndInsertShape(xComponent, xShapes,
 new Point(1000, 8000), new Size(5000, 5000),
 "com.sun.star.drawing.EllipseShape");
 xShapePropSet.setPropertyValue("Effect",
com.sun.star.presentation.AnimationEffect.FADE_FROM_BOTTOM);
 xShapePropSet.setPropertyValue("OnClick", com.sun.star.presentation.ClickAction.FIRSTPAGE);

 xShapePropSet = ShapeHelper.createAndInsertShape(xComponent, xShapes,
 new Point(22000, 8000), new Size(5000, 5000),
 "com.sun.star.drawing.RectangleShape");
 xShapePropSet.setPropertyValue("Effect",
com.sun.star.presentation.AnimationEffect.FADE_FROM_BOTTOM);
 xShapePropSet.setPropertyValue("OnClick", com.sun.star.presentation.ClickAction.BOOKMARK);

 // set the name of page two, and use it with the bookmark action
 XNamed xPageName = (Xnamed)UnoRuntime.queryInterface(XNamed.class, xDrawPages.getByIndex(1));
 xPageName.setName("page - two");
 xShapePropSet.setPropertyValue("Bookmark", xPageName.getName());

10.6 Overall Document Features

10.6.1 Styles

Graphics Styles
Graphics Styles are available in drawing and presentation documents, and they control the format-
ting of the drawing shapes in drawing or presentation slides. In contrast to styles in text docu-
ments, the style property of a shape is not a string, but a com.sun.star.style.XStyle. To work
with an existing graphics style, get the styles container from the com.sun.star.style.XStyle-
FamiliesSupplier and use its com.sun.star.container.XNameAccess to retrieve the style
family named "graphics". The programmatic names of the style families in graphics are:

GUI name Programmatic
name

Remark

Default standard The style Default (standard) is used for newly inserted
filled rectangles, filled ellipses, lines, connectors, text boxes,
and 3D objects.

Dimension Line measure Used for newly inserted dimension lines.

First line indent textbodyindent Apply manually.

Heading headline Apply manually.

Heading1 headline1 Apply manually.

785

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/XStyleFamiliesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/XStyleFamiliesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/XStyleFamiliesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/XStyleFamiliesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/XStyleFamiliesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/XStyleFamiliesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/XStyle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/XStyle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/XStyle.html

GUI name Programmatic
name

Remark

Heading2 headline2 Apply manually.

Object with Arrow objectwitharrow Apply manually.

Object with shadow objectwithshadow Apply manually.

Object without fill objectwithoutfill Used for newly inserted rectangles and ellipses without
filling.

Text text Newly inserted text boxes do not use this style. They use
Default and remove the fill settings for Default.

Text body textbody Apply manually.

Text body justified textbodyjustfied Apply manually.

Title title Apply manually.

Title1 title1 Apply manually.

Title2 title2 Apply manually.

There are two methods to change an applied shape style:

• Retrieve the style from the style family �graphics� by its programmatic name, change the prop-
erties, and put back into the style family using replaceByName() at the style family's
com.sun.star.container.XNameContainer interface.

• Apply an existing style object that is not applied to a shape by setting the shape's style prop-
erty.

New styles can be created, as well. For this purpose, use createInstance() at the document
factory of a drawing document and ask for a "com.sun.star.style.Style" service. Set the properties of
the new style, as required. Append the new style to the style family "graphics" using insert-
ByName() at its XNameContainer interface. Now use the Style property of existing shapes to put
the new style to work.

You can either change a currently applied shape style by retrieving it from the style family
"graphics" by its programmatic name, changing its properties and putting it back into the style
family using replaceByName() at the style family's com.sun.star.container.XNameContainer
interface. Or you can apply an existing, but currently unapplied style object to a shape by setting
the shape's Style property accordingly.

You can create new styles as well. For this purpose, use createInstance() at the document
factory of a drawing document and ask for a "com.sun.star.style.Style" service. Set the properties of
the new style as needed. Afterwards append the new style to the style family "graphics" using
insertByName() at its XNameContainer interface. Now you can use the Style property of existing
shapes in order to put your new style to work.

Styles created by the document factory support the properties of the following services:

• com.sun.star.drawing.FillProperties
• com.sun.star.drawing.LineProperties
• com.sun.star.drawing.ShadowProperties
• com.sun.star.drawing.ConnectorProperties
• com.sun.star.drawing.MeasureProperties
• com.sun.star.style.ParagraphProperties
• com.sun.star.style.CharacterProperties
• com.sun.star.drawing.TextProperties

786 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/MeasureProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ConnectorProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ShadowProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html

Presentation Styles
Presentation styles are only available in presentation documents and control the formatting of the
following parts of a presentation:

• title text

• subtitle text

• outline text

• background

• background shapes

• notes text

The corresponding style family has the programmatic name "Default" and is available at the
XStyleFamiliesSupplier of a presentation document.

GUI Name Programmatic Name Remark

Title title Style for text of new title presentation
objects.

Subtitle subtitle Style that is used for the presentation
object on pages with a �Title Slide�
layout.

Background background Style for the page background.

Background objects backgroundobjects Style for shapes on the background.

notes Notes Style for notes text.

outline1 Outline 1 Style for outline level 1.

outline2 Outline 2 Style for outline level 2.

outline3 Outline 3 Style for outline level 3.

outline4 Outline 4 Style for outline level 4.

outline5 Outline 5 Style for outline level 5.

outline6 Outline 6 Style for outline level 6.

outline7 Outline 7 Style for outline level 7.

outline8 Outline 8 Style for outline level 8.

outline9 Outline 9 Style for outline level 9.

Existing presentation styles can only be altered. New styles can not be created and a different
presentation style cannot be applied other than the current one. The following example works with
presentation styles: (Drawing/StyleDemo.java).

You can only alter existing presentation styles. You cannot create new styles and you cannot apply
a different presentation style other than the current one. The following example works with
presentation styles: (Drawing/StyleDemo.java).
// The first part of this demo will set each "CharColor" Property
// that is available within the styles of the document to red. It
// will also print each family and style name to the standard output

XModel xModel = (XModel)UnoRuntime.queryInterface(XModel.class, xComponent);
com.sun.star.style.XStyleFamiliesSupplier xSFS = (com.sun.star.style.XStyleFamiliesSupplier)

UnoRuntime.queryInterface(com.sun.star.style.XStyleFamiliesSupplier.class, xModel);
com.sun.star.container.XNameAccess xFamilies = xSFS.getStyleFamilies();

// the element should now contain at least two Styles. The first is
// "graphics" and the other one is the name of the Master page

787

String[] Families = xFamilies.getElementNames();
for (int i = 0; i < Families.length; i++) {
 // this is the family
 System.out.println("\n" + Families[i]);

 // and now all available styles
 Object aFamilyObj = xFamilies.getByName(Families[i]);
 com.sun.star.container.XNameAccess xStyles = (com.sun.star.container.XNameAccess)

UnoRuntime.queryInterface(com.sun.star.container.XNameAccess.class, aFamilyObj);
 String[] Styles = xStyles.getElementNames();
 for (int j = 0; j < Styles.length; j++) {
 System.out.println(" " + Styles[j]);
 Object aStyleObj = xStyles.getByName(Styles[j]);
 com.sun.star.style.XStyle xStyle = (com.sun.star.style.XStyle)
 UnoRuntime.queryInterface(com.sun.star.style.XStyle.class, aStyleObj);
 // now we have the XStyle Interface and the CharColor for all styles
 // is exemplary be set to red.
 XPropertySet xStylePropSet = (XPropertySet)
 UnoRuntime.queryInterface(XPropertySet.class, xStyle);
 XPropertySetInfo xStylePropSetInfo = xStylePropSet.getPropertySetInfo();
 if (xStylePropSetInfo.hasPropertyByName("CharColor")) {
 xStylePropSet.setPropertyValue("CharColor", new Integer(0xff0000));
 }
 }
}

/* now create a rectangle and apply the "title1" style of
 the "graphics" family
*/
Object obj = xFamilies.getByName("graphics");
com.sun.star.container.XNameAccess xStyles = (XNameAccess)
 UnoRuntime.queryInterface(com.sun.star.container.XNameAccess.class, obj);
obj = xStyles.getByName("title1");
com.sun.star.style.XStyle xTitle1Style = (com.sun.star.style.XStyle)UnoRuntime.queryInterface(
 com.sun.star.style.XStyle.class, obj);

XDrawPagesSupplier xDrawPagesSupplier = (XDrawPagesSupplier)UnoRuntime.queryInterface(
 XDrawPagesSupplier.class, xComponent);
XDrawPages xDrawPages = xDrawPagesSupplier.getDrawPages();
XDrawPage xDrawPage = (XdrawPage)UnoRuntime.queryInterface(XDrawPage.class, xDrawPages.getByIndex(0));
XShapes xShapes = (XShapes)UnoRuntime.queryInterface(XShapes.class, xDrawPage);
XShape xShape = ShapeHelper.createShape(xComponent, new Point(0, 0),
 new Size(5000, 5000), "com.sun.star.drawing.RectangleShape");
xShapes.add(xShape);
XPropertySet xPropSet = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, xShape);
xPropSet.setPropertyValue("Style", xTitle1Style);

10.6.2 Settings
To use the global document settings, the document service factory must be asked for a
com.sun.star.document.Settings service using the method createInstance() at its
com.sun.star.lang.XMultiServiceFactory interface. This service supports
com.sun.star.beans.PropertySet and acts upon the current document by setting its properties.

The services com.sun.star.drawing.DocumentSettings and
com.sun.star.presentation.DocumentSettings provide the following properties additionally
to the global document settings.

Properties of com.sun.star.drawing.DocumentSettings
MeasureUnit short � this is the default logical measure unit that is used for string formatings

inside the document.

ScaleNumerator long � is the numerator for the logical scale of the document.

ScaleDenominator long � is the denominator for the logical scale of the document.

IsPrintFitPage
boolean � this property enables or disables the fitting of the page to the print-
able area during print, true enable and false disable.

788 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DocumentSettings.html#IsPrintFitPage
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DocumentSettings.html#ScaleDenominator
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DocumentSettings.html#ScaleNumerator
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DocumentSettings.html#MeasureUnit
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DocumentSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DocumentSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DocumentSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/DocumentSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/DocumentSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/DocumentSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DocumentSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DocumentSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DocumentSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/Settings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/Settings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/Settings.html

Properties of com.sun.star.drawing.DocumentSettings

IsPrintTilePage

boolean � If the property IsPrintTilePage is set to 1 and the paper size for
printing is larger than the paper size of the printer than the content is tiled over
multiple pages.

PageNumberFormat long � is the number format used for page number fields.

ParagraphSumma-
tion

boolean � If the property ParagraphSummation is set to 1, the distance
between two paragraphs is the sum of ParaTopMargin of the previous and
ParaBottomMargin of the next paragraph. If 0, only the greater of the two is
choosen.

Properties of com.sun.star.presentation.DocumentSettings
IsPrintDrawing boolean � this property enables or disables the printing of the drawing pages,

true enable and false disable.

IsPrintNotes boolean � this property enables or disables the printing of the notes pages, true
enable and false disable.

IsPrintHandout boolean � this property enables or disables the printing of the handout pages,
true enable and false disable.

IsPrintOutline
boolean � this property enables or disables the printing of the outline pages,
true enable and false disable.

IsPrintHidden-
Pages

boolean � this property enables or disables the printing of draw pages that are
marked hidden, true enable and false disable.

IsPrintFitPage boolean � this property enables or disables the fitting of the page to the print-
able area during print, true enable and false disable.

IsPrintTilePage

boolean � If this property IsPrintTilePage is set to 1 and the paper size for
printing is larger than the paper size of the printer than the content is tiled over
multiple pages.

PageNumberFormat long � is the number format used for page number fields.

ParagraphSumma-
tion

boolean � If the property ParagraphSummation is set to 1, the distance
between two paragraphs is the sum of ParaTopMargin of the previous and
ParaBottomMargin of the next paragraph. If 0, only the greater of the two is
choosen.

10.6.3 Page Formatting
As opposed to text and spreadsheet documents, page formatting in drawings and presentations is
not done through styles. Rather, hard format the following properties:

Properties of com.sun.star.drawing.GenericDrawPage
BorderBottom long
BorderLeft long

789

http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/GenericDrawPage.html#BorderLeft
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/GenericDrawPage.html#BorderBottom
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/GenericDrawPage.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/GenericDrawPage.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/GenericDrawPage.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/DocumentSettings.html#ParagraphSummation
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/DocumentSettings.html#ParagraphSummation
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/DocumentSettings.html#PageNumberFormat
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/DocumentSettings.html#IsPrintTilePage
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/DocumentSettings.html#IsPrintFitPage
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/DocumentSettings.html#IsPrintHiddenPages
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/DocumentSettings.html#IsPrintHiddenPages
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/DocumentSettings.html#IsPrintOutline
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/DocumentSettings.html#IsPrintHandout
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/DocumentSettings.html#IsPrintNotes
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/DocumentSettings.html#IsPrintDrawing
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/DocumentSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/DocumentSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/DocumentSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DocumentSettings.html#ParagraphSummation
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DocumentSettings.html#ParagraphSummation
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DocumentSettings.html#PageNumberFormat
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DocumentSettings.html#IsPrintTilePage

Properties of com.sun.star.drawing.GenericDrawPage
BorderRight long
BorderTop long
Height long
Number short
Orientation com.sun.star.view.PaperOrientation
Width long

10.7 Drawing and Presentation Document Controller
The controller is available at the XModel interface of the document model:

com::sun::star::frame::XController getCurrentController()

10.7.1 Setting the Current Page, Using the Selection
The controller is a com.sun.star.drawing.DrawingDocumentDrawView that supports the
following interfaces:

• com.sun.star.drawing.XDrawView
• com.sun.star.beans.XPropertySet
• com.sun.star.frame.XController
• com.sun.star.view.XSelectionSupplier
The following methods of com.sun.star.view.XSelectionSupplier control the current selection
in the GUI:

boolean select([in] any anObject)
any getSelection()
void addSelectionChangeListener ([in] com::sun::star::view::XSelectionChangeListener aListen
void removeSelectionChangeListener ([in] com::sun::star::view::XSelectionChangeListener aListener)

With these methods of com.sun.star.drawing.XDrawView, the visible page is set in the GUI:
void setCurrentPage(com::sun::star::drawing::XDrawPage aPage)
com::sun::star::drawing::XDrawPage getCurrentPage()

In addition to DrawingDocumentDrawView, it supports the following interfaces. For details about
these interfaces, refer to 7 Office Development.

• com.sun.star.task.XStatusIndicatorSupplier
• com.sun.star.ui.XContextMenuInterception
• com.sun.star.frame.XDispatchProvider

10.7.2 Zooming
Zooming can be set by certain drawing-specific controller properties of the
com.sun.star.drawing.DrawingDocumentDrawViewservice:

790 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocumentDrawView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocumentDrawView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocumentDrawView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XStatusIndicatorSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XSelectionSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XSelectionSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XSelectionSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XSelectionSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XController.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocumentDrawView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocumentDrawView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocumentDrawView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/GenericDrawPage.html#Width
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PaperOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/GenericDrawPage.html#Orientation
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/GenericDrawPage.html#Number
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/GenericDrawPage.html#Height
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/GenericDrawPage.html#BorderTop
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/GenericDrawPage.html#BorderRight

Properties of com.sun.star.drawing.DrawingDocumentDrawView
VisibleArea [readonly]com.sun.star.awt.Rectangle �

This is the area that is currently
visible.

ZoomType [optional] short � This property defines
the zoom type for the document. The values
of com.sun.star.view.DocumentZoomType
are used.

ZoomValue [optional] short � Defines the zoom value
to use. Valid only if the ZoomType is set
to BY_VALUE.

ViewOffset [optional]com.sun.star.awt.Point � Defines the
offset from the top left position of the displayed page to
the top left position of the view area in 100th/mm.

10.7.3 Other Drawing-Specific View Settings
Drawings and presentations can be switched to certain view modes. This is done by the following
drawing-specific controller properties of com.sun.star.drawing.DrawingDocumentDrawView:

Properties of com.sun.star.drawing.DrawingDocumentDrawView
IsLayerMode boolean � Switch to layer mode.

IsMasterPageMode boolean � Switch to master page mode.

CurrentPage com.sun.star.drawing.XDrawPage � This is the
drawing page that is currently visible.

Furthermore, there are many properties that can be changed through the XViewDataSupplier
interface of the document:

Methods of com.sun.star.document.XViewDataSupplier:
com::sun::star::container::XIndexAccess getViewData()
void setViewData([in] com::sun::star::container::XIndexAccess aData)

To use ViewData properties, call getViewData() and receive a com.sun.star.container.XIndexCon-
tainer:

Methods of XIndexContainer:
type getElementType()
boolean hasElements()
long getCount()
any getByIndex([in] long Index)
void replaceByIndex([in] long Index, any Element)
void insertByIndex([in] long Index, any Element)
void removeByIndex([in] long Index)

Use getByIndex() to iterate over the view data properties, find the required
com.sun.star.beans.PropertyValue by checking the property names. If found, set the Value
Member of the property value and put it back into the container using replaceByIndex(). Finally,
apply the whole ViewData container to the document using setViewData().

The method setViewData() is currently not working. It can only be used with loadComponent-
FromURL().

791

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XViewDataSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XViewDataSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XViewDataSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPage.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPage.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPage.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocumentDrawView.html#CurrentPage
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocumentDrawView.html#IsMasterPageMode
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocumentDrawView.html#IsLayerMode
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocumentDrawView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocumentDrawView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocumentDrawView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocumentDrawView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocumentDrawView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocumentDrawView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Point.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Point.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Point.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocumentDrawView.html#ViewOffset
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocumentDrawView.html#ZoomValue
http://api.openoffice.org/docs/common/ref/com/sun/star/view/DocumentZoomType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/DocumentZoomType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/DocumentZoomType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocumentDrawView.html#ZoomType
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Rectangle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Rectangle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Rectangle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocumentDrawView.html#VisibleArea
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocumentDrawView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocumentDrawView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocumentDrawView.html

11 Charts

11.1 Overview
Chart documents produce graphical representations of numeric data. They are always embedded
objects inside other OpenOffice.org documents. The chart document is a document model similar
to Writer, Calc and Draw document models, and it can be edited using this document model.

11.2 Handling Chart Documents

11.2.1 Creating Charts
The com.sun.star.table.XTableChartsSupplier interface of the
com.sun.star.sheet.Spreadsheet service is used to create and insert a new chart into a Calc
document. This creates a chart that uses data from the com.sun.star.chart.XChartDataArray
interface of the underlying cell range. A generic way to create charts is to insert an OLE-Shape into
a draw page and transform it into a chart setting a class-id.

Creating and Adding a Chart to a Spreadsheet
Charts are used in spreadsheet documents to visualize the data that they contain. A spreadsheet is
one single sheet in a spreadsheet document and offers a com.sun.star.table.XTableChartsSup-
plier interface, that is required by the service com.sun.star.sheet.Spreadsheet. With this
interface, a collection of table charts that are a container for the actual charts can be accessed. To
retrieve the chart document model from a table chart object, use the method
getEmbeddedObject().

The following example shows how to insert a chart into a spreadsheet document and retrieve its
chart document model. The example assumes that there is a com.sun.star.sheet.XSpreadsheet
to insert the chart and an array of cell range addresses that contain the regions in which the data
for the chart can be found. Refer to 9 Spreadsheet Documents for more information about how to get
or create these objects. The following snippet shows how to insert a chart into a Calc document.
import com.sun.star.chart.*;
import com.sun.star.uno.UnoRuntime;
import com.sun.star.container.XNameAccess;
import com.sun.star.document.XEmbeddedObjectSupplier;

793

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableChartsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableChartsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableChartsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableChartsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableChartsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableChartsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDataArray.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDataArray.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDataArray.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableChartsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableChartsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableChartsSupplier.html

final String sChartName = "MyChart";

com.sun.star.table.XTableChartsSupplier aSheet;
com.sun.star.table.CellRangeAddress[] aAddresses;

// get the sheet in which you want to insert a chart
// and query it for XTableChartsSupplier and store it in aSheet
//
// also get an array of CellRangeAddresses containing
// the data you want to visualize and store them in aAddresses
//
// for details see documentation of Spreadsheets

// ...

XChartDocument aChartDocument = null;

com.sun.star.table.XTableCharts aChartCollection = aSheet.getCharts();
XNameAccess aChartCollectionNA = (XNameAccess) UnoRuntime.queryInterface(
 XNameAccess.class, aChartCollection);

// only insert the chart if it does not already exist
if (aChartCollectionNA != null && !aChartCollectionNA.hasByName(sChartName)) {
 // following rectangle parameters are measured in 1/100 mm
 com.sun.star.awt.Rectangle aRect = new com.sun.star.awt.Rectangle(1000, 1000, 15000, 9271);

 // first bool: ColumnHeaders
 // second bool: RowHeaders
 aChartCollection.addNewByName(sChartName, aRect, aAddresses, true, false);
 try {
 com.sun.star.table.XTableChart aTableChart = (com.sun.star.table.XTableChart)
 UnoRuntime.queryInterface(
 com.sun.star.table.XTableChart.class,
 aChartCollectionNA.getByName(sChartName));

 // the table chart is an embedded object which contains the chart document
 aChartDocument = (XChartDocument) UnoRuntime.queryInterface(
 XChartDocument.class,
 ((XEmbeddedObjectSupplier) UnoRuntime.queryInterface(
 XEmbeddedObjectSupplier.class,
 aTableChart)).getEmbeddedObject());
 } catch (com.sun.star.container.NoSuchElementException ex) {
 System.out.println("Couldn't find chart with name " + sChartName + ": " + ex);
 }
}

// now aChartDocument should contain an XChartDocument representing the newly inserted chart

Creating a Chart OLE Object in Draw and Impress
The alternative is to create an OLE shape and insert it into a draw page. Writer, Spreadsheet docu-
ments and Draw/Impress documents have access to a draw page. The shape is told to be a chart
by setting the unique class-id.

The unique Class-Id string for charts is �12dcae26-281f-416f-a234-c3086127382e�.

A draw page collection is obtained from the com.sun.star.drawing.XDrawPagesSupplier of a
draw or presentation document. To retrieve a single draw page, use
com.sun.star.container.XIndexAccess.

A spreadsheet document is also a com.sun.star.drawing.XDrawPagesSupplier that provides
draw pages for all sheets, that is, the draw page for the third sheet is obtained by calling getBy-
Index(2) on the interface com.sun.star.container.XIndexAccess of the container, returned by
com.sun.star.drawing.XDrawPagesSupplier:getDrawPages().

A spreadsheet draw page can be acquired directly at the corresponding sheet object. A single sheet
supports the service com.sun.star.sheet.Spreadsheet that supplies a single page,
com.sun.star.drawing.XDrawPageSupplier, where the page is acquired using the method
getDrawPage().

794 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPageSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPageSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPageSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPagesSupplier.html#getDrawPages
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPagesSupplier.html#getDrawPages
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPagesSupplier.html#getDrawPages
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPagesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPagesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPagesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPagesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPagesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPagesSupplier.html

The OpenOffice.org Writer currently does not support the creation of OLE Charts or Charts based
on a text table in a Writer document using the API.

The document model is required once a chart is inserted. In charts inserted as OLE2Shape, the
document model is available at the property Model of the OLE2Shape after setting the CLSID.

Note, that the mechanism described for OLE objects seems to work in Writer, that is, you can see the OLE-
Chart inside the Text document after executing the API calls described, but it is not treated as a real OLE
object by the Writer. Thus, you can not activate it by double-clicking, because it puts the document into an
inconsistent state.

The following example assumes a valid drawing document in the variable aDrawDoc and creates a
chart in a Draw document. See 10 Drawing for an example of how to create a drawing document.
(Charts/ChartHelper.java)
...
final String msChartClassID = "12dcae26-281f-416f-a234-c3086127382e";
com.sun.star.frame.XModel aDrawDoc;

// get a draw document into aDrawDoc
// ...

// this will become the resulting chart
XChartDocument aChartDoc;

com.sun.star.drawing.XDrawPagesSupplier aSupplier = (com.sun.star.drawing.XDrawPagesSupplier)
 UnoRuntime.queryInterface(com.sun.star.drawing.XDrawPagesSupplier.class, aDrawDoc);

com.sun.star.drawing.XShapes aPage = null;
try {
 // get first page
 aPage = (com.sun.star.drawing.XShapes) aSupplier.getDrawPages().getByIndex(0);
} catch (com.sun.star.lang.IndexOutOfBoundsException ex) {
 System.out.println("Document has no pages: " + ex);
}

if (aPage != null) {
 // the document should be a factory that can create shapes
 XMultiServiceFactory aFact = (XMultiServiceFactory) UnoRuntime.queryInterface(
 XMultiServiceFactory.class, aDrawDoc);

 if (aFact != null) {
 try {
 // create an OLE 2 shape
 com.sun.star.drawing.XShape aShape = (com.sun.star.drawing.XShape)
 UnoRuntime.queryInterface(
 com.sun.star.drawing.XShape.class,
 aFact.createInstance("com.sun.star.drawing.OLE2Shape"));

 // insert the shape into the page
 aPage.add(aShape);
 aShape.setPosition(new com.sun.star.awt.Point(1000, 1000));
 aShape.setSize(new com.sun.star.awt.Size(15000, 9271));

 // make the OLE shape a chart
 XPropertySet aShapeProp = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, aShape);

 // set the class id for charts
 aShapeProp.setPropertyValue("CLSID", msChartClassID);

 // retrieve the chart document as model of the OLE shape
 aChartDoc = (XChartDocument) UnoRuntime.queryInterface(
 XChartDocument.class,
 aShapeProp.getPropertyValue("Model"));
 } catch(com.sun.star.uno.Exception ex) {
 System.out.println("Couldn't change the OLE shape into a chart: " + ex);
 }
 }
}

Setting the Chart Type
The default when creating a chart is a bar diagram with vertical bars. If a different chart type is
required, apply a different diagram type to this initial chart. For example, to create a pie chart,
insert the default bar chart and change it to a pie chart.

795

To change the type of a chart, create an instance of the required diagram service by its service
name using the service factory provided by the com.sun.star.chart.XChartDocument. This
interface is available at the chart document model. After this service instance is created, set it using
the setDiagram() method of the chart document.

In the following example, we change the chart type to a com.sun.star.chart.XYDiagram, also
known as a scatter chart. We have assumed that there is a chart document in the variable aCha-
rtDoc already. The previous sections described how to create a document.
 // let aChartDoc be a valid XChartDocument

 // get the factory that can create diagrams
 XMultiServiceFactory aFact = (XMultiServiceFactory) UnoRuntime.queryInterface(
 XMultiServiceFactory.class, aChartDoc);

 XDiagram aDiagram = (XDiagram) UnoRuntime.queryInterface(
 XDiagram.class, aFact.createInstance("com.sun.star.chart.XYDiagram"));

 aChartDoc.setDiagram(aDiagram);

 // now we have an xy-chart

Diagram Service Names

com.sun.star.chart.BarDiagram
com.sun.star.chart.AreaDiagram
com.sun.star.chart.LineDiagram
com.sun.star.chart.PieDiagram
com.sun.star.chart.DonutDiagram
com.sun.star.chart.NetDiagram
com.sun.star.chart.XYDiagram
com.sun.star.chart.StockDiagram

11.2.2 Accessing Existing Chart Documents
To get a container of all charts contained in a spreadsheet document, use the
com.sun.star.table.XTableChartsSupplier of the service com.sun.star.sheet.Spread-
sheet, which is available at single spreadsheets.

To get all OLE-shapes of a draw page, use the interface com.sun.star.drawing.XDrawPage, that
is based on com.sun.star.container.XIndexAccess. You can iterate over all shapes on the draw
page and check their CLSID property to find out, whether the found object is a chart.

11.3 Working with Charts

11.3.1 Document Structure
The important service for charts is com.sun.star.chart.ChartDocument. The chart document
contains all the top-level graphic objects, such as a legend, up to two titles called Title and
Subtitle,an axis title object for each primary axis if the chart supports axis. The
com.sun.star.chart.ChartArea always exists. This is the rectangular region covering the
complete chart documents background. The important graphical object is the diagram that actually
contains the visualized data.

796 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartArea.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartArea.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartArea.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPage.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPage.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XDrawPage.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableChartsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableChartsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XTableChartsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XYDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XYDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XYDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDocument.html

Apart from the graphical objects, the chart document is linked to some data. The required service
for the data component is com.sun.star.chart.ChartData. It is used for attaching a data change
listener and querying general properties of the data source, such as the number to be interpreted as
NaN (�not a number�), that is, a missing value. The derived class com.sun.star.chart.Chart-
DataArray allows access to the actual values. Every component providing the ChartData service
should also support ChartDataArray.

The following diagram shows the services contained in a chart and their relationships.

The name spaces in the diagram have been omitted to improve readability. The services are all in
the name space com.sun.star.chart. The interfaces in this diagram are
com.sun.star.chart.XChartDocument, com.sun.star.drawing.XShape,
com.sun.star.lang.XComponent, and com.sun.star.beans.XPropertySet.

The chart document model passes its elements through the interface
com.sun.star.chart.XChartDocument. This interface consists of the following methods:

com::sun::star::chart::XChartData getData()
void attachData([in] com::sun::star::chart::XChartData xData)
com::sun::star::drawing::XShape getTitle()
com::sun::star::drawing::XShape getSubTitle()
com::sun::star::drawing::XShape getLegend()
com::sun::star::beans::XPropertySet getArea()
com::sun::star::chart::XDiagram getDiagram()
void setDiagram([in] com::sun::star::chart::XDiagram xDiagram)

void dispose()
void addEventListener([in] com::sun::star::lang::XEventListener xListener)
void removeEventListener([in] com::sun::star::lang::XEventListener aListener)
boolean attachResource([in] string aURL,
 [in] sequence <com::sun::star::beans::PropertyValue aArgs)
string getURL()
sequence <com::sun::star::beans::PropertyValue > getArgs()
void connectController([in] com::sun::star::frame::XController xController)
void disconnectController([in] com::sun::star::frame::XController xController)
void lockControllers()
void unlockControllers()
boolean hasControllersLocked()
com::sun::star::frame::XController getCurrentController()

797

Illustration 11.1: ChartDocument

http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartDataArray.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartDataArray.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartDataArray.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartDataArray.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartDataArray.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartDataArray.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartData.html

void setCurrentController([in] com::sun::star::frame::XController xController)
com::sun::star::uno::XInterface getCurrentSelection()

11.3.2 Data Access

Data can only be accessed for reading when a chart resides inside a spreadsheet document and
was inserted as a table chart, that is, the table chart obtains its data from cell ranges of spread-
sheets. To change the underlying data, modify the content of the spreadsheet cells. For OLE charts,
that is, charts that were inserted as OLE2Shape objects, modify the data.

The data of a chart is acquired from the com.sun.star.chart.XChartDocument interface of the
chart document model using the method com.sun.star.chart.XChartDocument:getData(). The
current implementation of OpenOffice.org charts provides a com.sun.star.chart.XChart-
DataArray interface, derived from com.sun.star.chart.XChartData and supports the service
com.sun.star.chart.ChartDataArray.

Note that the interface definition of com.sun.star.chart.XChartDocument does not require XChart-
Document.getData() to return an XChartDataArray, but XChartData, so there may be implementa-
tions that do not offer access to the values.

The methods of XChartDataArray are:
sequence <sequence < double > > getData()
void setData([in] sequence <sequence < double > > aData)
sequence < string > getRowDescriptions ()
void setRowDescriptions(sequence < string aRowDescriptions >)
sequence < string > getColumnDescriptions()
void setColumnDescriptions(sequence < string aColumnDescriptions >)

Included are the following methods from XChartData:
void addChartDataChangeEventListener(
 [in] com::sun::star::chart::XChartDataChangeEventListener aListener)
void removeChartDataChangeEventListener (
 [in] com::sun::star::chart::XChartDataChangeEventListener aListener)

double getNotANumber()
boolean isNotANumber([in] double nNumber)

The com.sun.star.chart.XChartDataArray interface offers several methods to access data. A
sequence of sequences is obtained containing double values by calling getData(). With
setData(), such an array of values can be applied to the XChartDataArray.

The arrays are a nested array, not two-dimensional. Java has only nested arrays, but in Basic a
nested array must be used instead of a multidimensional array. The following example shows how
to apply values to a chart in Basic:
' create data with dimensions 2 x 3
' 2 is called outer dimension and 3 inner dimension

' assume that oChartDocument contains a valid
' com.sun.star.chart.XChartDocument

Dim oData As Object
Dim oDataArray(0 To 1) As Object
Dim oSeries1(0 To 2) As Double
Dim oSeries2(0 To 2) As Double

oSeries1(0) = 3.141
oSeries1(1) = 2.718
oSeries1(2) = 1.0

oSeries2(0) = 17.0
oSeries2(1) = 23.0
oSeries2(2) = 42.0

oDataArray(0) = oSeries1()

798 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDataArray.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDataArray.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDataArray.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartDataArray.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartDataArray.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartDataArray.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDataArray.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDataArray.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDataArray.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDataArray.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDataArray.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDataArray.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDocument.html#getData
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDocument.html#getData
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDocument.html#getData
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDocument.html

oDataArray(1) = oSeries2()

' call getData() method of XChartDocument to get the XChartDataArray
oData = oChartDocument.Data

' call setData() method of XChartDataArray to apply the data
oData.Data = oDataArray()

' Note: to use the series arrays here as values for the series in the chart
' you have to set the DataRowSource of the XDiagram object to
' com.sun.star.chart.ChartDataRowSource.ROWS (default is COLUMNS)

The Data obtianed is a sequence that contains one sequence for each row. If you want to interpret the inner
sequences as data for the series, set the DataRowSource of your XDiagram to
com.sun.star.chart.ChartDataRowSource.ROWS, otherwise, the data for the nth series is in the nth

element of each inner series.

With the methods of the XChartData interface, check if a number from the chart has to be inter-
preted as non-existent, that is, the number is not a number (NaN).

In the current implementation of OpenOffice.org Chart, the value of NaN is not the standard ISO value for
NaN of the C++ double type, but instead DBL_MIN which is 2.2250738585072014-308.

Additionally, the XChartData interface is used to connect a component as a listener on data
changes. For example, to use a spreadsheet as the source of the data of a chart that resides inside a
presentation. It can also be used in the opposite direction: the spreadsheet could display the data
from a chart that resides in a presentation document. To achieve this, the
com.sun.star.table.CellRange service also points to the XChartData interface, so that a listener
can be attached to update the chart OLE object.

The following class ListenAtCalcRangeInDraw demonstrates how to synchronize the data of a
spreadsheet range with a chart residing in another document. Here the chart is placed into a
drawing document.

The class ListenAtCalcRangeInDraw in the example below implements a
com.sun.star.lang.XEventListener to get notified when the spreadsheet document or drawing
document are closed.

It also implements a com.sun.star.chart.XChartDataChangeEventListener that listens for
changes in the underlying XchartData. In this case, it is the range in the spreadsheet.
import com.sun.star.uno.UnoRuntime;
import com.sun.star.lang.XEventListener;
import com.sun.star.beans.XPropertySet;
import com.sun.star.lang.XComponent;

import com.sun.star.chart.*;
import com.sun.star.sheet.XSpreadsheetDocument;

// implement an XEventListener for listening to the disposing
// of documents. Also implement XChartDataChangeEventListener
// to get informed about changes of data in a chart

public class ListenAtCalcRangeInDraw implements XChartDataChangeEventListener {
 public ListenAtCalcRangeInDraw(String args[]) {
 // create a spreadsheet document in maSheetDoc
 // create a drawing document in maDrawDoc
 // put a chart into the drawing document
 // and store it in maChartDocument
 // ...

 com.sun.star.table.XCellRange aRange;
 // assign a range from the spreadsheet to aRange
 // ...

 // attach the data coming from the cell range to the chart
 maChartData = (XChartData) UnoRuntime.queryInterface(XChartData.class, aRange);
 maChartDocument.attachData(maChartData);
 }

 public void run() {
 try {
 // show a sub title to inform about last update
 ((XPropertySet) UnoRuntime.queryInterface(

799

http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDataChangeEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDataChangeEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XChartDataChangeEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartDataRowSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartDataRowSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartDataRowSource.html

 XPropertySet.class, maChartDocument)).setPropertyValue(
 "HasSubTitle", new Boolean(true));

 // start listening for death of spreadsheet
 ((XComponent) UnoRuntime.queryInterface(XComponent.class,
 maSheetDoc)).addEventListener(this);

 // start listening for death of chart
 ((XComponent) UnoRuntime.queryInterface(XComponent.class,
 maChartDocument)).addEventListener(this);

 //start listening for change of data
 maChartData.addChartDataChangeEventListener(this);
 } catch (com.sun.star.uno.Exception ex) {
 System.out.println("Oops: " + ex);
 }

 // call listener once for initialization
 ChartDataChangeEvent aEvent = new ChartDataChangeEvent();
 aEvent.Type = ChartDataChangeType.ALL;
 chartDataChanged(aEvent);
 }

 // XEventListener (base interface of XChartDataChangeEventListener)
 public void disposing(com.sun.star.lang.EventObject aSourceObj)
 {
 // test if the Source object is a chart document
 if(UnoRuntime.queryInterface(XChartDocument.class, aSourceObj.Source) != null)
 System.out.println("Disconnecting Listener because Chart was shut down");

 // test if the Source object is a spreadsheet document
 if (UnoRuntime.queryInterface(XSpreadsheetDocument.class, aSourceObj.Source) != null)
 System.out.println("Disconnecting Listener because Spreadsheet was shut down");

 // remove data change listener
 maChartData.removeChartDataChangeEventListener(this);

 // remove dispose listeners
 ((XComponent) UnoRuntime.queryInterface(XComponent.class,
 maSheetDoc)).removeEventListener(this);
 ((XComponent) UnoRuntime.queryInterface(XComponent.class,
 maChartDocument)).removeEventListener(this);
 // this program cannot do anything any more
 System.exit(0);
 }

 // XChartDataChangeEventListener
 public void chartDataChanged(ChartDataChangeEvent aEvent)
 {
 // update subtitle with current date
 String aTitle = new String("Last Update: " + new java.util.Date(System.currentTimeMillis()));

 try {
 ((XPropertySet) UnoRuntime.queryInterface(XPropertySet.class,
 maChartDocument.getSubTitle())).setPropertyValue(
 "String", aTitle);

 maChartDocument.attachData(maChartData);
 } catch(Exception ex) {
 System.out.println("Oops: " + ex);
 }

 System.out.println("Data has changed");
 }

 // private
 private com.sun.star.sheet.XSpreadsheetDocument maSheetDoc;
 private com.sun.star.frame.XModel maDrawDoc;
 private com.sun.star.chart.XChartDocument maChartDocument;
 private com.sun.star.chart.XChartData maChartData;
}

11.3.3 Chart Document Parts
In this section, the parts that most diagram types have in common are discussed. Specific chart
types are discussed later.

800 OpenOffice.org 2.3 Developer's Guide • June 2007

Common Parts of all Chart Types

Diagram

The diagram object is an important object of a chart document. The diagram represents the visual-
ization of the underlying data. The diagram object is a graphic object group that lies on the same
level as the titles and the legend. From the diagram, data rows and data points are obtain that are
also graphic objects that represent the respective data. Several properties can be set at a diagram to
influence its appearance. Note that the term data series is used instead of data rows.

Some diagrams support the service com.sun.star.chart.Dim3DDiagram that contains the prop-
erty Dim3D. If this is set to true, you get a three-dimensional view of the chart, which in
OpenOffice.org is usually rendered in OpenGL. In 3-D charts, you can access the z-axis, which is
not available in 2-D.

The service com.sun.star.chart.StackableDiagram offers the properties Percent and Stacked.
With these properties, accumulated values can be stacked for viewing. When setting Percent to
true, all slices through the series are summed up to 100 percent, so that for an AreaDiagram the
whole diagram space would be filled with the series. Note that setting the Percent property also
sets the Stacked property, because Percent is an addition to Stacked.

There is a third service that extends a base diagram type for displaying statistical elements called
com.sun.star.chart.ChartStatistics. With this service, error indicators or a mean value line
are added. The mean value line represents the mean of all values of a series. The regression curve
is only available for the XYDiagram, because a numeric x-axis, is required.

801

http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartStatistics.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartStatistics.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartStatistics.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/StackableDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/StackableDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/StackableDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/Dim3DDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/Dim3DDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/Dim3DDiagram.html

The illustration above shows that there are eight base types of diagrams. The three services,
StackableDiagram, Dim3DDiagram and ChartStatistics are also supported for several diagram
types and allows extensions of the base types as discussed. For instance, a three-dimensional pie
chart can be created, because the com.sun.star.chart.PieDiagram service points to the
com.sun.star.chart.Dim3DDiagram service.

The services com.sun.star.chart.AreaDiagram, com.sun.star.chart.LineDiagram, and
com.sun.star.chart.BarDiagram support all three feature services.

Axis

All charts can have one or more axis, except for pie charts. A typical two-dimensional chart has
two axis, an x- and y-axis. Secondary x- or y-axis can be added to have up to four axis. In a three-
dimensional chart, there are typically three axis, x-, y- and z-axis. There are no secondary axis in
3-dimensional charts.

An axis combines two types of properties:

802 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 11.2: Diagram

http://api.openoffice.org/docs/common/ref/com/sun/star/chart/BarDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/BarDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/BarDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/LineDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/LineDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/LineDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/AreaDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/AreaDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/AreaDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/Dim3DDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/Dim3DDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/Dim3DDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/PieDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/PieDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/PieDiagram.html

• Scaling properties that affect other objects in the chart. A minimum and maximum values are
set that spans the visible area for the displayed data. A step value can also be set that deter-
mines the distance between two tick-marks, and the distance between two grid-lines if grids are
switched on for the corresponding axis.

• Graphical properties that influence the visual impression. These are character properties (see
com.sun.star.style.CharacterProperties) affecting the labels and line properties (see
com.sun.star.drawing.LineProperties) that are applied to the axis line and the tick-marks.

Different diagram types support a different number of axis. In the above illustration, a
com.sun.star.chart.XYDiagram, also known as a scatter diagram, is shown. The scatter diagram
supports x- and y-axis, but not a z-axis as there is no 3-dimensional mode. The
com.sun.star.chart.PieDiagram supports no axis at all. The com.sun.star.chart.BarDiagram
supports all kinds of axis. Note that the z-Axis is only supported in a three-dimensional chart. Note
that there is a com.sun.star.chart.ChartTwoAxisXSupplier that includes the
com.sun.star.chart.ChartAxisXSupplier and is supported by all diagrams in OpenOffice.org
required to support the service ChartAxisXSupplier.

The following example shows how to obtain an axis and how to change the number format.

803

Illustration 11.3: Axis

http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartAxisXSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartAxisXSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartAxisXSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartTwoAxisXSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartTwoAxisXSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartTwoAxisXSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/BarDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/BarDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/BarDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/PieDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/PieDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/PieDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XYDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XYDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XYDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html

import com.sun.star.chart.*;
import com.sun.star.beans.XPropertySet;
import com.sun.star.util.XNumberFormatsSupplier;

...

// class members
XChartDocument aChartDocument;
XDiagram aDiagram;

...

// get an XChartDocument and assign it to aChartDocument
// get the diagram from the document and assign it to aDiagram
// ...

// check whether the current chart supports a y-axis
XAxisYSupplier aYAxisSupplier = (XAxisYSupplier) UnoRuntime.queryInterface(
 XAxisYSupplier.class, aDiagram);

if (aYAxisSupplier != null) {
 XPropertySet aAxisProp = aYAxisSupplier.getYAxis();

 // initialize new format with value for standard
 int nNewNumberFormat = 0;

 XNumberFormatsSupplier aNumFmtSupp = (XNumberFormatsSupplier)
 UnoRuntime.queryInterface(XNumberFormatsSupplier.class,
 aChartDocument);

 if (aNumFmtSupp != null) {
 com.sun.star.util.XNumberFormats aFormats = aNumFmtSupp.getNumberFormats();

 Locale aLocale = new Locale("de", "DE", "de");

 String aFormatStr = aFormats.generateFormat(
 0, // base key
 aLocale, // locale
 true, // thousands separator on
 true, // negative values in red
 (short)3, // number of decimal places
 (short)1 // number of leading ciphers
);

 nNewNumberFormat = aFormats.addNew(aFormatStr, aLocale);
 }

 aAxisProp.setPropertyValue("NumberFormat", new Integer(nNewNumberFormat));
}

Data Series and Data Points

The objects that visualize the actual data are data series. The API calls them data rows that are not
rows in a two-dimensional spreadsheet table, but as sets of data, because the data for a data row can
reside in a column of a spreadsheet table.

The data rows contain data points. The following two methods at the com.sun.star.chart.XDia-
gram interface allow changes to the properties of a whole series or single data point:

com::sun::star::beans::XPropertySet getDataRowProperties([in] long nRow)
com::sun::star::beans::XPropertySet getDataPointProperties([in] long nCol,
 [in] long nRow)

The index provided in these methods is 0-based, that is, 0 is the first series. In XYDiagrams, the first
series has an index 1, because the first array of values contains the x-values of the diagram that is
not visualized. This behavior exists for historical reasons.

In a spreadsheet context, the indexes for getDataPointProperties() are called nCol and nRow
and are misleading. The nRow parameter gives the data row, that is, the series index. The nCol
gives the index of the data point inside the series, regardless if the series is taken from rows or
columns in the underlying table. To get the sixth point of the third series, write getDataPoint-
Properties(5, 2).

Data rows and data points have com.sun.star.drawing.LineProperties and
com.sun.star.drawing.FillProperties. They also support com.sun.star.style.Character-
Properties for text descriptions that can be displayed next to data points.

804 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XDiagram.html

Properties can be set for symbols and the type of descriptive text desired. With the SymbolType
property, one of several predefined symbols can be set. With SymbolBitmapURL, a URL that points
to a graphic in a format known by OpenOffice.org can be set that is then used as a symbol in a
com.sun.star.chart.LineDiagram or com.sun.star.chart.XYDiagram.

The following example demonstrates how to set properties of a data point. Before implementing
this example, create a chart document and diagram of the type XYDiagram.
com.sun.star.chart.XChartDocument aChartDocument;
com.sun.star.chart.XDiagram aXYDiagram;

// get a chart document and assign it to aChartDocument
// set an "XYDiagram" and remember the diagram in aXYDiagram
// ...

// get the properties of the fifth data point of the first series
// note that index 1 is the first series only in XYDiagrams
try {
 com.sun.star.beans.XPropertySet aPointProp = maDiagram.getDataPointProperties(4, 1);
} catch (com.sun.star.lang.IndexOutOfBoundsException ex) {
 System.out.println("Index is out of bounds: " + ex);
 System.exit(0);
}

try {
 // set a bitmap via URL as symbol for the first series
 aPointProp.setPropertyValue("SymbolType", new Integer(ChartSymbolType.BITMAPURL));
 aPointProp.setPropertyValue("SymbolBitmapURL",
 "http://graphics.openoffice.org/chart/bullet1.gif");

 // add a label text with bold font, bordeaux red 14pt
 aPointProp.setPropertyValue("DataCaption", new Integer(ChartDataCaption.VALUE));
 aPointProp.setPropertyValue("CharHeight", new Float(14.0));
 aPointProp.setPropertyValue("CharColor", new Integer(0x993366));
 aPointProp.setPropertyValue("CharWeight", new Float(FontWeight.BOLD));
} catch (com.sun.star.uno.Exception ex) {
 System.out.println("Exception caught: " + ex);
}

Features of Special Chart Types
Examples of some of the services that are not available for all chart types are discussed in this
section. Only examples that can be changed in specific chart types only are discussed.

Statistics

Statistical properties like error indicators or regression curves can be applied. The regression
curves can only be used for xy-diagrams that have tuples of values for each data point. The
following example shows how to add a linear regression curve to an xy-diagram.

Additionally, the mean value line is displayed and error indicators for the standard deviation are
applied.
 // get the diagram
 // ...

 // get the properties of a single series
 XPropertySet aProp = maDiagram.getDataRowProperties(1)

 // set a linear regression
 aProp.setPropertyValue("RegressionCurves", ChartRegressionCurveType.LINEAR);

 // show a line at y = mean of the series' values
 aProp.setPropertyValue("MeanValue", new Boolean(true));

 // add error indicators in both directions
 // with the length of the standard deviation
 aProp.setPropertyValue("ErrorCategory", ChartErrorCategory.STANDARD_DEVIATION);
 aProp.setPropertyValue("ErrorIndicator", ChartErrorIndicatorType.TOP_AND_BOTTOM);

805

http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XYDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XYDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/XYDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/LineDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/LineDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/LineDiagram.html

3-D Charts

Some chart types can display a 3-dimensional representation. To switch a chart to 3-dimensional,
set the boolean property Dim3D of the service com.sun.star.chart.Dim3DDiagram.

In addition to this property, bar charts support a property called Deep (see service
com.sun.star.chart.BarDiagram) that arranges the series of a bar chart along the z-axis, which
in a chart, points away from the spectator. The service
com.sun.star.chart.Chart3DBarProperties offers a property SolidType to set the style of the
data point solids. The solid styles can be selected from cuboids, cylinders, cones, and pyramids
with a square base (see constants in com.sun.star.chart.ChartSolidType).

The XDiagram of a 3-dimensional chart is also a scene object that supports modification of the rota-
tion and light sources. The example below shows how to rotate the scene object and add another
light source.
// prerequisite: maDiagram contains a valid bar diagram
// ...

import com.sun.star.drawing.HomogenMatrix;
import com.sun.star.drawing.HomogenMatrixLine;
import com.sun.star.chart.X3DDisplay;
import com.sun.star.beans.XPropertySet;

XPropertySet aDiaProp = (XPropertySet) UnoRuntime.queryInterface(XPropertySet.class, maDiagram);
Boolean aTrue = new Boolean(true);

aDiaProp.setPropertyValue("Dim3D", aTrue);
aDiaProp.setPropertyValue("Deep", aTrue);

// from service Chart3DBarProperties:
aDiaProp.setPropertyValue("SolidType", new Integer(
 com.sun.star.chart.ChartSolidType.CYLINDER));

// change floor color to Magenta6
XPropertySet aFloor = ((X3DDisplay) UnoRuntime.queryInterface(
 X3DDisplay.class, maDiagram)).getFloor();
aFloor.setPropertyValue("FillColor", new Integer(0x6b2394));

// rotate the scene using a homogen 4x4 matrix
// ---
HomogenMatrix aMatrix = new HomogenMatrix();
// initialize matrix with identity
HomogenMatrixLine aLines[] = new HomogenMatrixLine[] {
 new HomogenMatrixLine(1.0, 0.0, 0.0, 0.0),
 new HomogenMatrixLine(0.0, 1.0, 0.0, 0.0),
 new HomogenMatrixLine(0.0, 0.0, 1.0, 0.0),
 new HomogenMatrixLine(0.0, 0.0, 0.0, 1.0)
 };

aMatrix.Line1 = aLines[0];
aMatrix.Line2 = aLines[1];
aMatrix.Line3 = aLines[2];
aMatrix.Line4 = aLines[3];

// rotate 10 degrees along the x axis
double fAngle = 10.0;
double fCosX = java.lang.Math.cos(java.lang.Math.PI / 180.0 * fAngle);
double fSinX = java.lang.Math.sin(java.lang.Math.PI / 180.0 * fAngle);

// rotate -20 degrees along the y axis
fAngle = -20.0;
double fCosY = java.lang.Math.cos(java.lang.Math.PI / 180.0 * fAngle);
double fSinY = java.lang.Math.sin(java.lang.Math.PI / 180.0 * fAngle);

// rotate -5 degrees along the z axis
fAngle = -5.0;
double fCosZ = java.lang.Math.cos(java.lang.Math.PI / 180.0 * fAngle);
double fSinZ = java.lang.Math.sin(java.lang.Math.PI / 180.0 * fAngle);

// set the matrix such that it represents all three rotations in the order
// rotate around x axis then around y axis and finally around the z axis
aMatrix.Line1.Column1 = fCosY * fCosZ;
aMatrix.Line1.Column2 = fCosY * -fSinZ;
aMatrix.Line1.Column3 = fSinY;

aMatrix.Line2.Column1 = fSinX * fSinY * fCosZ + fCosX * fSinZ;
aMatrix.Line2.Column2 = -fSinX * fSinY * fSinZ + fCosX * fCosZ;
aMatrix.Line2.Column3 = -fSinX * fCosY;

806 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartSolidType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartSolidType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartSolidType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/Chart3DBarProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/Chart3DBarProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/Chart3DBarProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/BarDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/BarDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/BarDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/Dim3DDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/Dim3DDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/Dim3DDiagram.html

aMatrix.Line3.Column1 = -fCosX * fSinY * fCosZ + fSinX * fSinZ;
aMatrix.Line3.Column2 = fCosX * fSinY * fSinZ + fSinX * fCosZ;
aMatrix.Line3.Column3 = fCosX * fCosY;

aDiaProp.setPropertyValue("D3DTransformMatrix", aMatrix);

// add a red light source
// ----------------------

// in a chart by default only the second (non-specular) light source is switched on
// light source 1 is the only specular light source that is used here

// set direction
com.sun.star.drawing.Direction3D aDirection = new com.sun.star.drawing.Direction3D();

aDirection.DirectionX = -0.75;
aDirection.DirectionY = 0.5;
aDirection.DirectionZ = 0.5;

aDiaProp.setPropertyValue("D3DSceneLightDirection1", aDirection);
aDiaProp.setPropertyValue("D3DSceneLightColor1", new Integer(0xff3333));
aDiaProp.setPropertyValue("D3DSceneLightOn1", new Boolean(true));

Refer to 10 Drawing for additional details about three-dimensional properties.

Pie Charts

Pie charts support the offset of pie segments with the service com.sun.star.chart.ChartPieSeg-
mentProperties that has a property SegmentOffset to drag pie slices radially from the center up
to an amount equal to the radius of the pie. This property reflects a percentage, that is, values can
go from 0 to 100.
 // ...

 // drag the fourth segment 50% out
 aPointProp = maDiagram.getDataPointProperties(3, 0)
 aPointProp.setPropertyValue("SegmentOffset", 50)

Note that the SegmentOffset property is not available for donut charts and three-dimensional pie
charts.

Stock Charts

A special data structure must be provided when creating stock charts. When
acom.sun.star.chart.StockDiagram is set as the current chart type, the data is interpreted in a
specific manner depending on the properties Volume and UpDown. The following table shows what
semantics are used for the data series.

Volume UpDown Series 1 Series 2 Series 3 Series 4 Series 5

false false Low High Close - -
true false Volume Low High Close -
false true Open Low High Close -
true true Volume Open Low High Close

For example, if the property Volume is set to false and UpDown to true, the first series is inter-
preted as the value of the stock when the stock exchange opened, and the fourth series represents
the value when the stock exchange closed. The lowest and highest value during the day is repre-
sented in series two and three, respectively.

807

http://api.openoffice.org/docs/common/ref/com/sun/star/chart/StockDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/StockDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/StockDiagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartPieSegmentProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartPieSegmentProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartPieSegmentProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartPieSegmentProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartPieSegmentProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartPieSegmentProperties.html

11.4 Chart Document Controller
Although chart document models have a method getCurrentController(), this method
currently returns null, therefore the chart controller can not be used.

11.5 Chart Add-Ins
Chart types can also be created by developing components that serve as chart types. Existing chart
types can be extended by adding additional shapes or modifying the existing shapes. Alterna-
tively, a chart can be created from scratch. If drawing from scratch, it is an empty canvas and all
shapes would have to be drawn from scratch.

Chart Add-Ins are actually UNO components, thus, you should be familiar with the chapter 4
Writing UNO Components.

11.5.1 Prerequisites
The following interfaces must be supported for a component to serve as a chart add-in:

• com.sun.star.lang.XInitialization
• com.sun.star.util.XRefreshable
• com.sun.star.lang.XServiceName
• com.sun.star.lang.XServiceInfo
• com.sun.star.lang.XTypeProvider to access the add-in interfaces from OpenOffice.org Basic

and other interpreted programming languages (optional).

In addition to these interfaces, the following services must be supported and returned in the
getSupportedServiceNames() method of com.sun.star.lang.XServiceInfo):

• com.sun.star.chart.Diagram
• A unique service name that identifies the component. This service name has to be returned in

the getServiceName() method of com.sun.star.lang.XServiceName.

11.5.2 How Add-Ins work
The method initialize() from the com.sun.star.lang.XInitialization interface is the first
method that is called for an add-in. It is called directly after it is created by the
com.sun.star.lang.XMultiServiceFactory provided by the chart document. This method gets
the XChartDocument object.

When initialize() is called, the argument returned is the chart document. Store this as a
member to that it can be called later in the refresh() call to access all elements of the chart. The
following is an example for the initialize() method of an add-in written in Java:
// XInitialization
public void initialize(Object[] aArguments) throws Exception, RuntimeException {
 if (aArguments.length > 0) {
 // maChartDocument is a member
 // which is set to the parent chart document
 // that is given as first argument
 maChartDocument = (XChartDocument) UnoRuntime.queryInterface(
 XChartDocument.class, aArguments[0]);

808 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceName.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceName.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceName.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/Diagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceName.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XRefreshable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html

 XPropertySet aDocProp = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, maChartDocument);
 if (aDocProp != null) {
 // set base diagram which will be extended in refresh()
 aDocProp.setPropertyValue("BaseDiagram", "com.sun.star.chart.XYDiagram");
 }

 // remember the draw page, as it is frequently used by refresh()
 // (this is not necessary but convenient)
 XDrawPageSupplier aPageSupp = (XDrawPageSupplier) UnoRuntime.queryInterface(
 XDrawPageSupplier.class, maChartDocument);
 if(aPageSupp != null)
 maDrawPage = (XDrawPage) UnoRuntime.queryInterface(
 XDrawPage.class, aPageSupp.getDrawPage());
 }
}

An important method of an add-in component is refresh() from the
com.sun.star.util.XRefreshable. This method is called every time the chart is rebuilt. A
change of data results in a refresh, but also a resizing or changing of a property that affects the
layout calls the refresh() method. For example, the property HasLegend that switches the legend
on and off.

To add shapes to the chart, create them once and modify them later during the refresh calls. In the
following example, a line is created in initialize() and modified during refresh():
// XInitialization
public void initialize(Object[] aArguments) throws Exception, RuntimeException {
 // get document and page -- see above
 // ...

// get a shape factory
maShapeFactory = ...;

 // create top line
 maTopLine = (XShape) UnoRuntime.queryInterface(
 XShape.class, maShapeFactory.createInstance("com.sun.star.drawing.LineShape"));
 maDrawPage.add(maTopLine);

 // make line red and thicker
 XPropertySet aShapeProp = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, maTopLine);
 aShapeProp.setPropertyValue("LineColor", new Integer(0xe01010));
 aShapeProp.setPropertyValue("LineWidth", new Integer(50));

 // create bottom line
 maBottomLine = (XShape) UnoRuntime.queryInterface(
 XShape.class, maShapeFactory.createInstance("com.sun.star.drawing.LineShape"));
 maDrawPage.add(maBottomLine);

 // make line green and thicker
 aShapeProp = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, maBottomLine);
 aShapeProp.setPropertyValue("LineColor", new Integer(0x10e010));
 aShapeProp.setPropertyValue("LineWidth", new Integer(50));
 }

}

// XRefreshable
public void refresh() throws RuntimeException {
 // position lines
 // --------------

 // get data
 XChartDataArray aDataArray = (XChartDataArray) UnoRuntime.queryInterface(
 XChartDataArray.class, maChartDocument.getData());
 double aData[][] = aDataArray.getData();

 // get axes
 XDiagram aDiagram = maChartDocument.getDiagram();
 XShape aXAxis = (XShape) UnoRuntime.queryInterface(
 XShape.class, ((XAxisXSupplier) UnoRuntime.queryInterface(
 XAxisXSupplier.class, aDiagram)).getXAxis());
 XShape aYAxis = (XShape) UnoRuntime.queryInterface(
 XShape.class, ((XAxisYSupplier) UnoRuntime.queryInterface(
 XAxisYSupplier.class, aDiagram)).getYAxis());

 // calculate points for hull
 final int nLength = aData.length;
 int i, j;

809

http://api.openoffice.org/docs/common/ref/com/sun/star/util/XRefreshable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XRefreshable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XRefreshable.html

 double fMax, fMin;

 Point aMaxPtSeq[][] = new Point[1][];
 aMaxPtSeq[0] = new Point[nLength];
 Point aMinPtSeq[][] = new Point[1][];
 aMinPtSeq[0] = new Point[nLength];

 for (i = 0; i < nLength; i++) {
 fMin = fMax = aData[i][1];
 for (j = 1; j < aData[i].length; j++) {
 if (aData[i][j] > fMax)
 fMax = aData[i][j];
 else if (aData[i][j] < fMin)
 fMin = aData[i][j];
 }
 aMaxPtSeq[0][i] = new Point(getAxisPosition(aXAxis, aData[i][0], false),
 getAxisPosition(aYAxis, fMax, true));
 aMinPtSeq[0][i] = new Point(getAxisPosition(aXAxis, aData[i][0], false),
 getAxisPosition(aYAxis, fMin, true));
 }

 // apply point sequences to lines
 try {
 XPropertySet aShapeProp = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, maTopLine);
 aShapeProp.setPropertyValue("PolyPolygon", aMaxPtSeq);

 aShapeProp = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, maBottomLine);
 aShapeProp.setPropertyValue("PolyPolygon", aMinPtSeq);
 } catch (Exception ex) {
 }
}

// determine the position of a value along an axis
// bVertical is true for the y-axis and false for the x-axis
private int getAxisPosition(XShape aAxis, double fValue, boolean bVertical) {
 int nResult = 0;

 if (aAxis != null) {
 XPropertySet aAxisProp = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, aAxis);

 try {
 double fMin, fMax;
 fMin = ((Double) aAxisProp.getPropertyValue("Min")).doubleValue();
 fMax = ((Double) aAxisProp.getPropertyValue("Max")).doubleValue();
 double fRange = fMax - fMin;

 if (fMin <= fValue && fValue <= fMax && fRange != 0) {
 if (bVertical) {
 // y==0 is at the top, thus take 1.0 - ...
 nResult = aAxis.getPosition().Y +
 (int)((double)(aAxis.getSize().Height) * (1.0 - ((fValue - fMin) / fRange)));
 } else {
 nResult = aAxis.getPosition().X +
 (int)((double)(aAxis.getSize().Width) * ((fValue - fMin) / fRange));
 }
 }
 } catch (Exception ex) {
 }
 }
 return nResult;
}

The subroutine getAxisPosition() is a helper to determine the position of a point inside the
diagram coordinates. This add-in calculates the maximum and minimum values for each slice of
data points, and creates two polygons based on these points.

For an add-in example written in C++, look at the sample addin of the graphics/sch project on
www.openoffice.org.

11.5.3 How to Apply an Add-In to a Chart Document
There is no method to set an add-in as a chart type for an existing chart in the graphical user inter-
face. To set the chart type, use an API script, for instance, in OpenOffice.org Basic. The following
example sets the add-in with service name �com.sun.star.comp.Chart.JavaSampleChartAddIn� at

810 OpenOffice.org 2.3 Developer's Guide • June 2007

http://graphics.openoffice.org/source/browse/graphics/sch/source/addin/
http://graphics.openoffice.org/source/browse/graphics/sch/source/addin/
http://graphics.openoffice.org/source/browse/graphics/sch/source/addin/

the current document. To avoid problems, it is advisable to create a chart that has the same type as
the one that the add-in sets as BaseDiagram type.
Sub SetAddIn
Dim oDoc As Object
Dim oSheet As Object
Dim oTableChart As Object
Dim oChart As Object
Dim oAddIn As Object

 ' assume that the current document is a spreadsheet
 oDoc = ThisComponent
 oSheet = oDoc.Sheets(0)

 ' assume also that you already added a chart
 ' named "MyChart" on the first sheet
 oTableChart = oSheet.Charts.getByName("MyChart")

 If Not IsNull(oTableChart) Then
 oChart = oTableChart.EmbeddedObject
 If Not IsNull(oChart) Then
 oAddIn = oChart.createInstance("com.sun.star.comp.Chart.JavaSampleChartAddIn")
 If Not IsNull(oAddIn) Then
 oChart.setDiagram(oAddIn)
 End If
 End If
 End If
End Sub

If you want to create an XML-File on your own and want to activate your add-in for a chart; set the attribute
chart:class of the chart:chart element to �add-in� and the attribute chart:add-in-name to the
service name that uniquely identifies your component.

811

12 OpenOffice.org Basic and Dialogs

OpenOffice.org provides functionality to create and manage Basic macros and dialogs. The
following sections examine the usage of the OpenOffice.org Basic programming environment.

• Section 12.1 OpenOffice.org Basic and Dialogs - First Steps with OpenOffice.org Basic guides you
through the necessary steps to write OpenOffice.org Basic UNO Programs.

• Section 12.2 OpenOffice.org Basic and Dialogs - OpenOffice.org Basic IDE provides a reference to
the functionality of the OpenOffice.org Integrated Development Environment (IDE). It
describes:

– The dialogs to manage Basic and dialog libraries.

– The functionality of the Basic IDE window: the Basic macro editor and debugger, and the
Dialog editor.

– The assignment of macros to events

• Section 12.3 OpenOffice.org Basic and Dialogs - Features of OpenOffice.org Basic describes the Basic
programming language integrated in OpenOffice.org, including

– Provides an overview about the general language features built into OpenOffice.org Basic.

– Extends the UNO language binding chapter 3.4.3 Professional UNO - UNO Language Bindings
- OpenOffice.org Basic by information on how to access the application specific UNO API.

– Points out threading and rescheduling characteristics of OpenOffice.org Basic that differ
from other languages, such as, from Java, which can be important under certain circum-
stances.

• Section 12.4 OpenOffice.org Basic and Dialogs - Advanced Library Organization describes how the
Basic library system stores and manages Basic macros and dialogs in OpenOffice.org, and how
the user can access libraries and library elements using the appropriate interfaces.

• Section 12.5 OpenOffice.org Basic and Dialogs - Programming Dialogs and Dialog Controls describes
the toolkit controls used to create dialogs in the dialog editor. In this section the different types
of controls and their specific properties are explained in detail.

• Section 12.6 OpenOffice.org Basic and Dialogs - Creating Dialogs at Runtime describes how UNO
dialogs can be created at runtime without using the dialog editor. This is useful to show dialogs
from UNO components. As this is an advanced way to create dialogs, this section goes deeply
into the Toolkit interfaces and extends the section 12.5 OpenOffice.org Basic and Dialogs -
Programming Dialogs and Dialog Controls.

• Section 12.7 OpenOffice.org Basic and Dialogs - Library File Structure discusses the various files
used by the Basic IDE.

• Section 12.8 OpenOffice.org Basic and Dialogs - Library Deployment discusses the automatic
deployment of Basic libraries into a local or a shared OpenOffice.org installation.

813

12.1 First Steps with OpenOffice.org Basic

Step By Step Tutorial
This section provides a tutorial to enable developers to use the Basic IDE. It describes the necessary
steps to write and debug a program in the Basic IDE, and to design a Basic dialog. A comprehen-
sive reference of all tools and options can be found at 12.2 OpenOffice.org Basic and Dialogs -
OpenOffice.org Basic IDE.

Creating a Module in a Standard Library

1. Create a new Writer document and save the document, for example, FirstStepsBasic.odt.

2. Click Tools � Macros � Organize Macros � OpenOffice.org Basic.

The OpenOffice.org Basic Macros dialog appears. The Macro from list shows macro containers
where Basic source code (macros) can come from. There is always a My Macros and a
OpenOffice.org Macros container for Basic libraries. Additionally each loaded document can
contain Basic libraries.

The illustration above shows that the document FirstStepsBasic.odt is the only document loaded.
Therefore, the My Macros, OpenOffice.org Macros and FirstStepsBasic.odt containers are
displayed in the illustration above. Both containers, My Macros and FirstStepsBasic.odt, contain a
library named Standard. The OpenOffice.org Macros container contains the libraries that come
with a default OpenOffice.org installation � most of them are AutoPilots. The Standard libraries of
the application and for all open documents are always loaded. They appear enabled in the dialog.
Other libraries have to be loaded before they can be used.

The libraries contain modules with the actual Basic source code. Our next step will create a new
module for source code in the Standard library of our FirstStepsBasic.odt document.

1. Scroll to the document node FirstStepsBasic.odt in the Macro from list.

2. Select the Standard entry below the document node and click New.

OpenOffice.org shows a small dialog that suggests to create a new module named Module1.

1. Click OK to confirm.

814 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 12.1: Macro dialog

The Basic source editor window (Illustration 12.1) appears containing a Sub (subroutine) Main.

The status bar of the Basic editor window shows that the Sub Main is part of FirstStepsBasic.Stan-
dard.Module1. If you click Tools � Macros � OpenOffice.org Basic in the Basic editor, you will see
that OpenOffice.org created a module Module1 below the Standard library in FirstStepsBasic.odt.

When a module is selected, the Macro name list box on the left shows the Subs and Functions in
that module. In this case, Sub Main. If you click Edit while a Sub or Function is selected, the Basic
editor opens and scrolls to the selected Sub or Function.

815

Illustration 12.2: Basic source editor window

Illustration 12.3

Writing and Debugging a Basic UNO program

Enter the following source code in the Basic editor window. The example asks the user for the loca-
tion of a graphics file and inserts it at the current cursor position of our document. Later, the
example will be extended by a small insert graphics autopilot.
(BasicAndDialogs/FirstStepsBasic.odt)
Sub Main
 ' ask the user for a graphics file
 sGraphicUrl = InputBox("Please enter the URL of a graphic file", _
 "Import Graphics", _
 "file:///"
 if sGraphicURL = "" then ' User clicked Cancel
 exit sub
 endif

 ' access the document model
 oDoc = ThisComponent
 ' get the Text service of the document
 oText = oDoc.getText()
 ' create an instance of a graphic object using the document service factory
 oGraphicObject = oDoc.createInstance("com.sun.star.text.GraphicObject")
 ' set the URL of the graphic
 oGraphicObject.GraphicURL = sGraphicURL
 ' get the current cursor position in the GUI and create a text cursor from it
 oViewCursor = oDoc.getCurrentController().getViewCursor()
 oCursor = oText.createTextCursorByRange(oViewCursor.getStart())
 ' insert the graphical object at the cursor position
 oText.insertTextContent(oCursor.getStart(), oGraphicObject, false)
End Sub

If help is required on Basic keywords, press F1 while the text cursor is on a keyword. The
OpenOffice.org online help contains descriptions of the Basic language as supported by
OpenOffice.org.

Starting with the line oDoc = ThisComponent, where the document model is accessed, we use the
UNO integration of OpenOffice.org Basic. ThisComponent is a shortcut to access a document
model from the Basic code contained in it. Earlier, you created Module1 in FirstStepsBasic.odt, that
is, your Basic code is embedded in the document FirstStepsBasic.odt, not in a global library below
the My Macros container. The property ThisComponent therefore contains the document model of
FirstStepsBasic.odt.

Outside document libraries use ThisComponent or StarDesktop.CurrentComponent to retrieve the
current document. If access to an open document is required, even if it is not the current document, you have
to iterate over the components in StarDesktop.Components, checking their URL property with code
similar to the following:

oComps = StarDesktop.Components
oCompsEnum = oComps.createEnumeration()

while oCompsEnum.hasMoreElements()
 oComp = oCompsEnum.nextElement()
 ' not all desktop components are necessarily models with a URL
 if HasUnoInterfaces(oComp, "com.sun.star.frame.XModel") then
 print oComp.getURL()
 endif
wend

To debug the program, put the cursor into the line oDoc = ThisComponent and click the
Breakpoint icon in the macro bar.

The Run icon launches the first Sub in the current module. Execution stops with the first
breakpoint.

Now step through the program by clicking the Single Step icon.

816 OpenOffice.org 2.3 Developer's Guide • June 2007

Click the Macros icon if you need to run a Sub other than the first Sub in the module.. In the
OpenOffice.org Basic Macros dialog, navigate to the appropriate module, select the Sub to
run and press the Run button.

To observe the values of Basic variables during debugging, enter a variable name in the Watch
field of the Basic editor and press the Enter key to add the watch, or point at a variable name with
the mouse cursor without clicking it. In the example below, we can observe the variables sGraphi-
cUrl and oGraphicObject:

Since OpenOffice.org 2.0 it is also possible to inspect the values of UNO objects in the Basic
debugger during runtime.

Calling a Sub from the User Interface

A Sub can be called from customized icons, menu entries, upon keyboard shortcuts and on certain
application or document events. The entry point for all these settings is the Customize dialog
accessible through the Assign button in the Macro dialog or the Tools � Customize command.

To assign the Sub Main to a toolbar icon, select Tools � Customize and click the Toolbars tab The
Toolbars tab looks like this:

817

Illustration 12.4

Click the Add button in the Toolbars tab. In the Add Commands dialog that pops up, scroll down
the Category list until you see the OpenOffice.org Macros node.Expand it and the
FirstStepsBasic.odt node. Navigate to the Module FirstStepsBasic.Standard.Module1 and select it.
When Module1 is selected, the Commands list shows an entry "Main" for the Sub Main in
Module1.Clicking Add will add it to a toolbar.

You can now click the new toolbar item to launch the example macros.

The section 12.2.3 OpenOffice.org Basic and Dialogs - OpenOffice.org Basic IDE - Assigning Macros To
GUI Events describes other options to make your Sub accessible from the user interface.

A Simple Dialog

Creating Dialogs

To create a dialog in the Basic IDE, right-click the Module1 tab at the bottom of the Basic source
editor and select Insert � Basic Dialog. The IDE creates a new page named Dialog1:

818 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 12.5

To add controls to the dialog, we require the dialog design tools. Click the Controls icon to
pop up the design tools window. The title bar of the tools window can be used to drag the
window away from the toolbar to keep it open permanently.

Our dialog shall offer a more convenient way to select a file than the simple input box of our first
example. Furthermore, the user shall be able to control how the picture is anchored in the text after
inserting it. For this, we will create a wizard dialog with two steps.

In the design tools window, select File Selection and define the size of the Browse control
by dragging a rectangle in the dialog using the left-mouse button.

The Properties icon displays the Properties Dialog that is used to edit controls and hook up
event handling code to events occurring at dialog controls.

Next, add << Back and Next >> Buttons to move between the dialog steps, and a Finish and
Cancel button. Select the Button icon and define the button size using the left-mouse
button. Buttons are labeled with a default text, such as CommandButton1. If the Properties
Dialog is not open, double click the newly inserted button controls to display it. Enter new
labels in the Label field as suggested, and name the dialog step buttons Back and Next. Set
the property Enabled for the << Back button to false.

Use the Label tool to create a label "Select Graphics File:" in the same manner.

Now the dialog looks similar to the illustration below:

819

Illustration 12.6

Test the dialog using the Activate Test Mode icon from the design tool window. After you
have finished the test, click the Close button of the test dialog window.

To edit the dialog, such as setting the title and changing the size, select it by clicking the outer
border of the dialog. Green handles appear around the dialog. The green handles can be used to
alter the dialog size.The Properties Dialog is used to define a dialog title and other dialog proper-
ties.

Adding Event Handlers

Now we will write code to open the dialog and add functionality to the buttons. To show a dialog,
create a dialog object using createUnoDialog() and call its execute() method. A dialog can be
closed while it is shown by calling endExecute().

It is possible to configure the Finish button and the Cancel button to close the dialog by setting the button
property PushButtonType to OK and Cancel respectively. The method execute() returns 0 for Cancel
and 1 for OK.

To add functionality to GUI elements, develop Subs to handle GUI events, then hook them to the
GUI elements. To add functionality to the buttons of our dialog, click the Module1 tab in the lower
part of the Basic IDE and enter the following Subs above the previous Sub Main to open, close and
process the dialog. Note that a Private variable oDialog is defined outside of the Subs. After
loading the dialog, this variable is visible from all Subs and Functions of Module1. (BasicAndDia-
logs/FirstStepsBasic.odt)
Private oDialog as Variant ' private, module-wide variable

820 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 12.7

Sub RunGraphicsWizard
 oDialog = createUnoDialog(DialogLibraries.Standard.Dialog1)
 oDialog.execute
End Sub

Sub CancelGraphicsDialog
 oDialog.endExecute()
End Sub

Sub FinishGraphicsDialog
 Dim sFile as String, sGraphicURL as String

 oDialog.endExecute()
 sFile = oDialog.Model.FileControl1.Text
 ' the FileControl contains a system path, we have to transform it to a file URL
 ' We use the built-in Basic runtime function ConvertToURL for this purpose
 sGraphicURL = ConvertToURL(sFile)
 ' insert the graphics
 ' access the document model
 oDoc = ThisComponent
 ' get the Text service of the document
 oText = oDoc.getText()
 ' create an instance of a graphic object using the document service factory
 oGraphicObject = oDoc.createInstance("com.sun.star.text.GraphicObject")
 ' set the URL of the graphic
 oGraphicObject.GraphicURL = sGraphicURL
 ' get the current cursor position in the GUI and create a text cursor from it
 oViewCursor = oDoc.getCurrentController().getViewCursor()
 oCursor = oText.createTextCursorByRange(oViewCursor.getStart())
 ' insert the graphical object at the cursor position
 oText.insertTextContent(oCursor.getStart(), oGraphicObject, false)
End Sub

Sub Main
...

End Sub

Select the Cancel button in our dialog in the dialog editor, and click the Events tab of the Proper-
ties Dialog, then click the ellipsis button on the right-hand side of the Event When Initiating. As
shown in the next illustration the Assign Action dialog appears.

821

In the Assign Action dialog press the Macro ... button to open the Macro Selector dialog shown in
the illustration below. Navigate to FirstStepsBasic.Standard.Module1, select the Sub CancelGraph-
icsDialog and press the OK button to link this sub to the wizard dialog's Cancel button.

822 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 12.8Assign Action dialog

The next illustration shows how the new assignment is shown in the Assign Action dialog.

Pressing the OK button in the Assign Action dialog finishes the assignment process.

823

Illustration 12.9

Illustration 12.10

In the Assign Action dialog there's also a Component ... button. This button is only needed in the context of
dialogs used by UNO components, see 4.11 Writing UNO Components - Accessing Dialogs. In the Basic context
this button is not relevant.

Using the same method, hook the Finish button to FinishGraphicsDialog.

If the Run icon is selected now, the dialog is displayed, and the Finish and Cancel buttons
are functional.

AutoPilot Dialogs

The final step is to create a small AutoPilot with two pages. The OpenOffice.org Dialogs have a
simple concept for AutoPilot pages. Each dialog and each control in a dialog has a property Page
(Step) to control the pages of a dialog. Normally, dialogs are on page 0, but they can be set to a
different page, for example, to page 1. All controls having 1 in their Page property are visible as
long as the dialog is on page 1. All controls having 2 in their page property are only displayed on
page 2 and so forth. If the dialog is on Page 0, all controls are visible at once. If a control has its
Page property set to 0, it is visible on all dialog pages.

This feature is used to create a second page in our dialog. Hold down the Control key, and click
the label and file control in the dialog to select them. In the Properties Dialog, fill in 1 for the Page
property and press Enter to apply the change. Next, select the dialog by clicking the outer rim of
the dialog in the dialog editor, enter 2 for the Page property and press the Enter key. The label and
file control disappear, because we are on page 2 now. Only the buttons are visible since they are on
page 0.

On page 2, add a label "Anchor" and two option buttons "at Paragraph" and "as Character". Name
the option buttons AtParagraph and AsCharacter, and toggle the State property of the AtPara-
graph button, so that it is selected by default. The new controls automatically receive 2 in their
Page property. When page 2 is finished, set the dialog to page 1 again, because we want it to be on
page 1 on startup.

The Subs below handle the << Back and Next >> buttons, and the Sub FinishGraphicsDialog
has been extended to anchor the new graphics selected by the user. Note that the property that is
called Page (Step) in the GUI, is called Step in the API. (BasicAndDialogs/FirstStepsBasic.odt)
Sub BackGraphicsDialog
 oDialog.Model.Step = 1
 oDialog.Model.Back.Enabled = false
 oDialog.Model.Next.Enabled = true
End Sub

Sub NextGraphicsDialog
 oDialog.Model.Step = 2
 oDialog.Model.Back.Enabled = true
 oDialog.Model.Next.Enabled = false
End Sub

Sub FinishGraphicsDialog
 Dim sGraphicURL as String, iAnchor as Long
 oDialog.endExecute()
 sFile = oDialog.Model.FileControl1.Text

824 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 12.11

 ' State = Selected corresponds to 1 in the API
 if oDialog.Model.AsCharacter.State = 1 then
 iAnchor = com.sun.star.text.TextContentAnchorType.AS_CHARACTER
 elseif oDialog.Model.AtParagraph.State = 1 then
 iAnchor = com.sun.star.text.TextContentAnchorType.AT_PARAGRAPH
 endif
 ' the File Selection control returns a system path, we have to transform it to a File URL
 ' We use a small helper function MakeFileURL for this purpose (see below)
 sGraphicURL = MakeFileURL(sFile)
 ' access the document model
 oDoc = ThisComponent
 ' get the Text service of the document
 oText = oDoc.getText()
 ' create an instance of a graphic object using the document service factory
 oGraphicObject = oDoc.createInstance("com.sun.star.text.GraphicObject")
 ' set the URL of the graphic
 oGraphicObject.GraphicURL = sGraphicURL
 oGraphicObject.AnchorType = iAnchor
 ' get the current cursor position in the GUI and create a text cursor from it
 oViewCursor = oDoc.getCurrentController().getViewCursor()
 oCursor = oText.createTextCursorByRange(oViewCursor.getStart())
 ' insert the graphical object at the beginning of the text
 oText.insertTextContent(oCursor.getStart(), oGraphicObject, false)
End Sub

12.2 OpenOffice.org Basic IDE
This section discusses all features of the Integrated Development Environment (IDE) for
OpenOffice.org Basic. It shows how to manage Basic and dialog libraries, discusses the tools of the
Basic IDE used to create Basic macros and dialogs, and it treats the various possibilities to assign
Basic macros to events.

12.2.1 Managing Basic and Dialog Libraries
The main entry point to the library management UI is the Tools � Macros � Organize Macros �
OpenOffice.org Basic menu item. This item activates the OpenOffice.org Basic Macros dialog
where the user can manage all operations related to Basic and dialog libraries.

OpenOffice.org Basic Macros Dialog
The following picture shows an example macro dialog. From here you can run, create, edit and
delete macros, assign macros to UI events, and administer Basic libraries and modules.

825

Displayed Information

The tree titled with Macro from shows the complete library hierarchy that is available the moment
the dialog is opened. See 12.4 OpenOffice.org Basic and Dialogs - Advanced Library Organization for
details about the library organization in OpenOffice.org..

Unlike the library organization API, this dialog does not distinguish between Basic and dialog
libraries. Usually the libraries displayed in the tree are both Basic and dialog libraries.

Although it is possible to create Basic-only or dialog-only libraries using the API this is not the normal case,
because the graphical user interface (see 12.2.1 OpenOffice.org Basic and Dialogs - OpenOffice.org Basic IDE -
Managing Basic and Dialog Libraries - Macro Organizer Dialog below) only allows the creation of Basic and
dialog libraries simultaneously. Nevertheless, the dialog can also deal with Basic-only or dialog-only
libraries, but they are not marked in any way.

The tree titled Macro from represents a structure consisting of three levels:

Library container -> library -> library element

• The top-level nodes represent the application Basic and dialog library container (nodes My
Macros and OpenOffice.org Macros). Foreach opened document, the document's Basic and
dialog library container (see 12.4 OpenOffice.org Basic and Dialogs - Advanced Library Organiza-
tion). In the example two documents are open, a text document called Description.odt and a
spreadsheet document named Calculation.ods.

• In the second level, each node represents a library. Initially all libraries, except the default
libraries named Standard, are not loaded and grayed out. To load a library, the user double-
clicks the library. In the example above, the My Macros root element contains the Standard
library, already loaded by default.

• The third level in the tree is visible in loaded libraries. Each node represents a library element
that can be modules or dialogs. In the OpenOffice.org Basic Macros dialog, only Basic modules
are displayed as library elements, whereas dialogs are not shown. By double-clicking a library
the user can expand and condense a library to show or hide its modules. In the example, the My
Macros/Standard library is displayed expanded. It contains two modules, Module1 and

826 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 12.12

Module2. The document Description.odt contains a Standard library with one Basic module
Module1. Calculation.ods contains a Standard library without Basic modules. All libraries,
respectively their dialog library part, may also contain dialogs that cannot be seen in this view.

If a library is password-protected and a user double-clicks it to load it, a dialog is displayed
requesting a password. The library is only loaded and expanded if the user enters the correct pass-
word. If a password-protected library is loaded using the API, for example, through a call to Basi-
cLibraries.loadLibrary("Library1"), it is displayed as loaded, not grayed out, but it remains
condensed until the correct password is entered (see 12.4 OpenOffice.org Basic and Dialogs -
Advanced Library Organization).

The middle column contains information about the macros, that is, the Subs and Functions, in the
libraries. In the list box at the bottom, all Subs and Functions belonging to the module selected in
the tree are listed. In the edit field titled Macro name, the Sub or Function currently selected in the
list box is displayed. If there is no module selected in the tree, the edit field and list are empty. You
can type in a desired name in the edit field.

Buttons

On the right-hand side of the OpenOffice.org Basic Macros dialog, there are several buttons. The
following list describes the buttons:

• Run
Executes the Sub or Function currently displayed in the Macro name edit field. The
OpenOffice.org Basic Macros dialog is closed, before the macro is executed.

• Close
Closes the OpenOffice.org Basic Macros dialog without any further action.

• Assign
Opens the Customize dialog that can also be opened using Tools - Customize. This dialog can
be used to assign Basic macros to events. For details see 12.2.3 OpenOffice.org Basic and Dialogs -
OpenOffice.org Basic IDE - Assigning Macros To GUI Events below.

• Edit
Loads the module selected in the tree into the Basic macro editor. The cursor is placed on the
first line of the Sub or Function displayed in the Macro name edit field. See chapter 12.2.2
OpenOffice.org Basic and Dialogs - OpenOffice.org Basic IDE - Basic IDE Window below for details
about the Basic macro editor. This button is disabled if there is no module selected in the tree or
no existing Sub or Function displayed in the Macro name edit field.

• Delete
This button is only available if an existing Sub or Function is displayed in the Macro name edit
field. The Delete button removes the Sub or Function displayed in the Macro name edit field
from the module selected in the module selected in the tree.

• New
This button is only available if no existing Sub or Function is displayed in the Macro name edit
field. The New button inserts a new Sub into the module selected in the tree. The new Sub is
named according to the text in the Macro name edit field. If Macro name is empty, the Sub is
automatically named Macro1, Macro2, and so forth.

• Organizer
This button opens the OpenOffice.org Basic Macro Organizer dialog box that is explained in
the next section.

827

• Help
Starts the OpenOffice.org help system with the Macros topic.

OpenOffice.org Basic Macro Organizer Dialog
This dialog is opened by clicking the Button Organizer in the OpenOffice.org Basic Macros dialog.
The dialog contains the tab pages Modules, Dialogs and Libraries. While the OpenOffice.org
Basic Macros dialog refers to Subs and Functions inside Basic modules, such as run Subs, delete
Subs, and insert new Subs, this dialog accesses the library system on module (tab page Modules) ,
dialog (tab page Dialogs) and library (tab page Libraries) level.

Modules

Illustration 12.8 shows the OpenOffice.org Basic Macro Organizer dialog with the Modules tab
page activated. The list titled Module is similar to the Macro from list in the Macro dialog, but it
contains the complete library hierarchy for the OpenOffice.org application libraries and the docu-
ment libraries. The libraries are loaded, and condensed or expaned by double-clicking the library.
The illustration shows the application library Standard containing two modules, Module1 and
Module2.

The illustration above shows that two documents are loaded. The illustration shows a library
Standard in document Description.odt containing a module named Module1, and another library
Standard in document Calculation.ods containing no Basic module.

The following list describes the buttons on the right side of the dialog:

• Edit
Loads the module selected in the tree into the Basic macro editor. If a module is not selected,
this button is disabled.

• Close
Closes the OpenOffice.org Basic Macro organizer dialog without any further action.

828 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 12.13

• New Module
Opens a dialog that allows the user to type in the desired name for a new module. The name
edit field initially contains a name like Module<Number>, Such as Module1 and Module2.
depending on the modules already existing. Clicking the OK button add the new module as a
new item in the Module list. The New Module button is disabled if the selected library has
read-only status.

• Delete
Deletes the selected module. This button is disabled if no module is selected, or if the selected
module belongs to a library with read-only status.

Dialogs

Illustration 12.7 shows the OpenOffice.org Basic Macro Organizer dialog with the Dialogs tab
page activated. The illustration shows the application library Standard containing two dialogs,
Dialog1 and Dialog2.

The illustration shows a library Standard in document Calculation.ods containing a dialog named
Dialog1, and another library Standard in document Description.odt containing no dialog.

The following list describes the buttons on the right side of the dialog:

• Edit
Loads the dialog selected in the tree into the Dialog editor. The section 12.2.2 OpenOffice.org
Basic and Dialogs - OpenOffice.org Basic IDE - Basic IDE Window - Dialog Editor below describes
the Dialog Editor in more detail. If a dialog is not selected, this button is disabled.

• Close
Closes the OpenOffice.org Basic Macro organizer dialog without any further action.

• New Dialog
Opens a dialog that allows the user to enter the desired name for a new dialog. The name edit
field initially contains the name Dialog<Number>, such as Dialog1 and Dialog2, depending on
the dialogs already existing. Clicking the OK button creates the dialog in the Dialog list. This
button is disabled if the selection contains a library with read-only status.

829

Illustration 12.14

• Delete
Deletes the selected dialog. This button is disabled if no dialog is selected, or if the selected
dialog belongs to a library with read-only status.

Libraries

The following illustrations show the OpenOffice.org Basic Macro Organizer dialog with the
Libraries tab page activated. In this dialog, the application and document libraries are listed sepa-
rately. The Library list only contains the libraries of the library container currently selected in the
Location list box. The second illustration is dropped down showing the My Macros & Dialogs and
OpenOffice.org Macros & Dialogs entries and the two open documents.

830 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 12.15

Illustration 12.16

The libraries are displayed in the following manner:

• Regular libraries are displayed in black.

• Libraries with read-only status are grayed out.

• Library links are followed by an URL indicating the location where the library is stored. In the
example above, all libraries except for Standard and Library1 are library links and all library
links have read-only status.

• Password protected libraries are indicated with a key symbol before the name. In the example,
only Library1 is password protected.

Clicking a library twice (notdouble-click) allows the user to rename it.

The following list describes the buttons on the right side of the dialog:

• Edit
Loads the first module of the library selected in the Library list box into the Basic macro editor
(see 12.2.2 OpenOffice.org Basic and Dialogs - OpenOffice.org Basic IDE - Basic IDE Window - Basic
Source Editor and Debugger below). If the library only contains dialogs, the first dialog of the
corresponding dialog library is displayed in the Dialog editor (see 12.2.2 OpenOffice.org Basic
and Dialogs - OpenOffice.org Basic IDE - Basic IDE Window - Dialog Editor below). If the
Basic/Dialog editor window does not exist, it is opened.

• Close
Closes the OpenOffice.org Basic Macro Organizer dialog without any further action.

• Password
Opens the Change Password dialog displayed in the next illustration for the library currently
selected in the Library list box.

This dialog is used to change the password if the library is already password protected. Enter
the old password first, then the new password twice.

If the library is not password protected, the Old password edit field is disabled. The new pass-
word is entered twice in the New password section. Clicking OK activates the password
protection if both passwords match.

• New
Opens a dialog allowing the user to enter the name for a new library. The name edit field
initially contains the name Library<Number>, such as Library1 and Library2, depending on the
libraries already existing. Clicking the OK button creates the library and adds it to the Library
list. A new library is always created as a Basic and dialog library.

• Import
This button is used to import additional libraries into the library container that is selected in the

831

Illustration 12.17

Location list box. The button opens a file dialog where the user selects the location where the
libraryis imported from. The following types of files can be selected:

– Library container index files (script.xlc or dialog.xlc)

– Library index files (script.xlb or dialog.xlb)

– OpenOffice.org documents (e.g. *.odt, *.ods,*.sxw, *.sxc, *.sdw, *.sdc)

– Star Office 5.x and previous Basic library files (*.sbl)

After selecting a file, an Import library dialog is displayed. The next illustration shows the
dialog after selecting a library index file script.xlb. The dialog displays all libraries that are
found in the chosen file. In this example, only the library Euro appears, because the file
script.xlb only represented this library.

The checkboxes in the Options section, when selected, indicates if a library is inserted as a
read-only link and if existing libraries with the same name are replaced by the new library.

The next illustration shows the dialog after selecting the writer document LibraryImportExample.
This document contains the four libraries Standard, Library1, Library2 and Library3. The illus-
tration shows that the libraries Library1 and Library2 are selected for import. The Insert as
reference (read-only) option is disabled, because the libraries inside documents cannot be refer-
enced as a link. As well, StarOffice 5.x Basic libaray files can not be linked.

832 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 12.18

Clicking the OK button imports the selected libraries into the library container that was previ-
ously selected in the Location list box, including the Basic and dialog libraries.

– Export

This button is used to export a library. The Standard library cannot be exported. Clicking the
button displays the Export Basic library dialog.

This dialog allows to chose between two export formats. Choosing Export as package and
clicking OK opens the Export library as package file dialog allowing to save the library in the
UNO package bundle format that can be easily imported from other OpenOffice.org installa-
tions using the Package Manager available in the Tools menu. So this format should be used for
deploying Basic libraries.

833

Illustration 12.19

Illustration 12.20

Choosing Export as BASIC library in the Export Basic library dialog opens the Export as
BASIC library dialog allowing to choose a location where the library will be stored as folder
named like the library. This format can be accessed with the Import functionality described
above.

The exported libraries always contain both Basic Modules and Dialogs.Delete
Deletes the item selected in the Library list box. If the item represents a library link, only the
link is removed, not the library itself. The Delete button appears disabled whenever a Standard
library is selected, because Standard libraries cannot be deleted.

834 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 12.21

Illustration 12.22

12.2.2 Basic IDE Window
The OpenOffice.org IDE is mainly represented by the Basic IDE window. The IDE window has two
different modes:

• The Basic editor mode displays and modifies Basic source code modules to control the debug-
ging process and display the debugger output

• The dialog editor mode displays and modifies dialogs.

Basic source code and dialogs are never displayed at the same time. The IDE window is in Basic
editor or debugger, or in dialog editor mode. The following illustration shows the Basic IDE
window in the Basic editor mode displaying Module2 of the application Standard library.

The IDE window control elements common to the Basic editor and dialog editor mode are
described below. The mode specific control elements are described in the corresponding subchap-
ters 12.2.2 OpenOffice.org Basic and Dialogs - OpenOffice.org Basic IDE - Basic IDE Window - Basic
Source Editor and Debugger and 12.2.2 OpenOffice.org Basic and Dialogs - OpenOffice.org Basic IDE -
Basic IDE Window - Dialog Editor:

• Clicking the Printer button in the main toolbar prints the displayed Basic module or dialog
directly without displaying a printer dialog.

835

Illustration 12.23

• The Save button in the main toolbar behaves in two different ways depending on the library
currently displayed in the IDE window.

• If the library belongs to the application library container, the Save button saves all
modified application libraries.

• If the library belongs to a document, the Save button saves the document.

• On the left-hand side of the toolbar, a Library list box shows the currently displayed library.
The user can also modify the displayed library. In the example above, the Standard library of the
application Basic ([My Macros & Dialogs].Standard) is displayed. The list box contains all the
application and document libraries that are currently accessible. The user can select one to
display it in the IDE window.

• The tabs at the bottom of the IDE window indicate all the modules and dialogs of the active
library. Clicking one of these tabs activates the corresponding module or dialog. If necessary,
the IDE window switches from Basic editor to dialog editor mode or conversely. Right-clicking
a tab opens a context menu:

– Insert opens a sub menu to insert a new module or dialog.

– Delete deletes the active module or dialog after confirmation by the user.

– Rename changes the name of the active module or dialog.

– Hide makes the active module or dialog invisible. It no longer appears as a tab flag, thus it
cannot be activated. To activate, access it directly using the OpenOffice.org Basic Macros or
OpenOffice.org Basic Macro Organizer dialog and clicking the Edit button.

– Modules opens the OpenOffice.org Basic Macro Organizer dialog.

• The status bar displays the following information:

– The first cell on the left displays the fully qualified name of the active module or dialog in
the notation LibraryContainer.LibraryName.<ModuleName | DialogName>.

– The second cell displays an asterisk "*" indicating that at least one of the libraries of the
active library container has been modified and requires saving.

– The third cell displays the current position of the cursor in the Basic editor window.

– The fourth cell displays "INSRT" if the Basic editor is in insertion mode and "OVER" if the
Basic editor is in overwrite mode. The modes are toggled with the Insert key.

Basic Source Editor and Debugger
The Basic editor and debugger of the IDE window is shown when the user edits a Sub or Function
from the Tools-Macros-Organize Macros-OpenOffice.org Basic dialog (see Illustration 12.6). In this
mode, the window contains the actual editor main window, debugger Watch window to display
variable values and the debugger Calls window to display the Basic call stack. The Watch and
Calls windows are only used when a Basic program is running and halted by the debugger.

The editor supports common editor features. Since the editor is only used for the OpenOffice.org
Basic programming language, it supports a Basic syntax specific highlighting and F1 help for Basic
keywords.

836 OpenOffice.org 2.3 Developer's Guide • June 2007

The following list explains the functionality of the macro toolbar buttons.

Compile: Compiles the active module and displays an error message, if necessary. This
button is disabled if a Basic program is running. Always compile libraries before distributing
them.

Run: Executes the active module, starting with the first Sub in the module, before all modi-
fied modules of the active library are compiled. Clicking this button can also result in
compiler errors before the program is started. This button resumes the execution if the
program is halted by the debugger.

Stop: Stops the Basic program execution. This button is disabled if a program is not running.

Procedure Step: Executes one Basic statement without stepping into Subs or Functions called
in the statement. The execution is halted after the statement has been executed. If the Basic
program not is running the execution is started and halted at the first statement of the first
Sub in the current module.

Single Step: Executes one Basic statement. If the statement contains another Sub, execution
is halted at the first statement of the called Sub. If no Subs or Functions are called in the
statement, this button has the same functionality as the Step over button (key command F8).

837

Illustration 12.24: Basic Editor and Debugger

Step back: Steps out of the current executed Sub or Function and halts at the next statement
of the caller Sub or Function. If the currently executed Sub or Function was not called by
another Sub or Function or if the Basic program is not running, this button has the same
effect as the Run button.

Breakpoint: Toggles a breakpoint at the current cursor line in the Basic editor. If a break-
point can not be set at this line a beep warns the user and the action is ignored (key
command F9). A breakpoint is displayed as a red dot in the left column of the editor
window.

Add watch: Adds the identifier currently touched by the cursor in the Basic editor to the
watch window (key command F7).

Object Catalog: Opens the Objects dialog. This dialog displays the complete library hier-
archy including dialogs, modules and the Subs inside the modules.

Macros: Opens the OpenOffice.org Basic Macros Dialog.

Modules: Opens the OpenOffice.org Basic Macro Organizer dialog

Find Parentheses: If the cursor in the Basic editor is placed before a parenthesis, the
matching parenthesis is searched. If a matching parenthesis is found, the code between the
two parentheses is selected, otherwise the user is warned by a beep.

Controls: Opens the dialog editing tools in the dialog editor. In Basic editor mode this button
is disabled.

Insert Source File: Displays a file open dialog and inserts the selected text file (*.bas is the
standard extension) at the current cursor position into the active module.

Save Source As: Displays a file Save As dialog to save the active module as a text file (*.bas is
the standard extension).

Illustration 12.6 shows how the IDE window looks while a Basic program is executed in debugging
mode.

• The Stop button is enabled.

• A breakpoint is set in line 11.

• The execution is halted in line 12. The current position is marked by a yellow arrow.

• The Watch window contains the entries Value and Hello, and displays the current values of
these variables. Values of variables can also be evaluated by touching a corresponding identifier
in the source code with the cursor.

• The Calls window shows the stack. The currently executed Sub doIt is displayed at the top and
the Sub Main at the second position.

Dialog Editor
This section provides an overview of the Dialog editor functionality. The controls that are used to
design a dialog are not explained. See 12.5 OpenOffice.org Basic and Dialogs - Programming Dialogs
and Dialog Controls for details on programming these controls. The dialog editor is activated by
creating a new dialog, clicking a dialog tab at the bottom of the IDE window, or selecting a dialog
in the OpenOffice.org Basic Macro Organizer dialog and clicking the Edit button.

Initially, a new dialog consists of an empty dialog frame. The next illustration shows Dialog2 of the
application Standard library in this state.

838 OpenOffice.org 2.3 Developer's Guide • June 2007

In the dialog editor mode, the Controls button is enabled and the illustration shows the result by
clicking this button. A small toolbar with dialog specific tools is displayed. The buttons in this
toolbar represent the types of controls that can be inserted into the dialog. The user clicks the
desired button, then draws a frame with the mouse at the position to insert the corresponding
control type.

The following three buttons in the dialog tools window do not represent controls:

The Select button at the lower right of the dialog tools window switches the mouse cursor
to selection mode. In this mode, controls are selected by clicking the control with the cursor.
If the Shift key is held down simultaneously, the selection is extended by each control the
user clicks. Controls can also be selected by drawing a rubberband frame with the mouse.
All controls that are completely inside the frame will be selected. To select the dialog frame
the user clicks its border or includes it in a selection frame completely.

The Activate Test Mode button switches on the test mode for dialogs. In this mode, the
dialog is displayed as if it was a Basic script (see 12.5 OpenOffice.org Basic and Dialogs -
Programming Dialogs and Dialog Controls). However, the macros assigned to the controls do
not work in this mode. They are thereto help the user design the look and feel of the dialog.

The Properties button at the lower left of the dialog tools window opens and closes the
Properties dialog. This dialog is used to edit all properties of the selected control(s). The
next illustration shows the Properties dialog for a selected button control.

839

Illustration 12.25

The Manage Language button (available since OpenOffice.org 2.2) opens the Manage User
Interface Languages dialog allowing to manage the localization of dialogs. All details
concerning Dialog localization are described in 12.2.4 OpenOffice.org Basic and Dialogs -
OpenOffice.org Basic IDE - Dialog Localization.

The illustration above shows that the dialog tool window can be pulled from the main toolbar by
dragging the window at its caption bar after opening it.

The Properties dialog has two tabs. The General tab, visible in Illustration 12.5, contains a list of
properties. Their values are represented by a control. For most properties this is a list box, such as
color and enum types, or an edit field, such as numeric or text properties. For more complex prop-
erties, such as fonts or colors, an additional ellipsis button opens another type of dialog, for
example, to select a font. When the user changes a property value in an edit field this value is not
applied to the control until the edit field has lost the focus. This is forced with the tab key. Alterna-
tively, the user can commit a change by pressing the Enter key.

The Events tab page displays the macros assigned to the events supported by the selected control:

840 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 12.26

In the example above, a macro is assigned to the Key pressed event: When this event occurs, the
displayed Sub doNothing in Module2 of the application Basic library Standard is called. The
events that are available depend on the type of control selected.

To change the event assignment the user has to click one of the ellipsis buttons to open the Assign
Action dialog displayed in Illustration 12.4.

841

Illustration 12.28: Assign Action Dialog

Illustration 12.27

The list box titled Event displays the same information as the Events tab of the Properties dialog.
The Assign Action dialog is always the same, that is only the selected event in its Event list
changes according to the ellipsis button the user selected on the Events tab of the Properties
dialog.

To assign a macro to an event, the user needs to click on the Macro ... button. This opens the Macro
Selector dialog which allows the user to select a macro from the library hierarchy. Clicking OK in
the Macro Selector assigns the selected macro to the event. If another macro is already assigned to
an event, this macro is replaced. If no Sub is selected, the OK button is disabled.

If the dialog is stored in a document, the library hierarchy displayed in the Macro Selector dialog
contains the application library containers and the library container of the document. If the dialog
belongs to an application dialog library, document macros are not displayed since they cannot be
assigned to the controls of application dialogs. This is because it cannot be guaranteed that the
document will be loaded when the application dialog event is fired.

The Remove button is enabled if an event with an assigned macro is selected. Clicking this button
removes the macro from the event, therefore the event will have no macro binding.

The list box below the Remove button is used to select different macro languages. Currently, only
OpenOffice.org Basic is available.

The OK button closes the Assign Action dialog, and applies all event assignments and removals to
the control. The changes are reflected on the Events tab of the Properties dialog.

The Cancel button also closes the Assign Action, but all assignment and removal operations are
discarded.

As previously explained, it is also possible to select several controls simultaneously. The next
picture shows the situation if the user selects both CommandButton1 and CheckBox1.For the Prop-
erties dialog such a multi selection has some important effects.

842 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 12.29: Properties dialog for multi selection

Here the caption of the Properties contains the string Multiselection to point out the special situa-
tion. The two important differences compared to the single selection situation are:

• The displayed properties are an intersection of the properties of all the selected controls, that is,
the property is only displayed if all the selected controls support that property. A property
value is only displayed if the value is the same for all selected controls. All selected controls are
effected when a value is changed by the user. Values that are not the same for all controls can
be set with the effect that the specified value applies to all controls in the selection.

• A multi-selection Properties dialog does not have an Events tab. Events can only be specified
for single controls.

12.2.3 Assigning Macros to GUI Events
The functionality to assign macros to control events in the dialog editor was discussed earlier.
There is also a general functionality to assign macros or other actions to events. This functionality
can be accessed through the Customize dialog that is opened using Tools � Customize or by
clicking the Assign button in the Macro dialog. In this section, only the assignment of macros is
discussed. For more information about this dialog, refer to the OpenOffice.org documentation.

The next illustration shows the Menu tab of the Customize dialog

The illustration above shows how a macro is assigned to a new menu item. The Menu and Menu
Content list boxes can be used to navigate the OpenOffice.org menu hierarchy. Clicking the Add...

843

Illustration 12.30: Configuration dialog for Menu

button opens the Add Commands dialog. The Category list box in the Add Commands dialog
contains entries for built-in OpenOffice.org functions, and a OpenOffice.org Macros entry that
represents the hierarchy of OpenOffice.org macros. When an entry is selected in the Categories
list box, any commands or macros it contains are displayed in the Commands list box on the right.

Clicking the Add button in the Add Commands dialog adds the selected command or macro to a
menu.

The other buttons in the Menus tab of the Customize dialog are as follows:

• The New button creates a new top level menu

• The Menu button has commands for moving, renaming and deleting top level menus

• The Modify button has commands for adding submenus and separators, and renaming and
deleting menu items.

• The arrow buttons change the position of a menu item.

• The Reset button restores the default menu configuration.

The next illustration shows the Events tab of the Customize dialog:

On this tab, macros can be assigned to general events in OpenOffice.org. The events are listed in
the list box titled Event. The Assign button opens the Macro Selector from which the user can

844 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 12.31: Configuration dialog for Events

select macros to assign to events. The Remove button removes the assigned macro from the
selected event.

In the Keyboard tab macros are accessed in Category and Function list boxes, then assigned to a
shortcut key that can be specified in the Shortcut keys list box. There are also Load, Save and
Reset buttons for loading, storing and resetting keyboard configurations.

The Keyboard tab contains a OpenOffice.org and a Document radio button which controls the
scope for which keyboard assignments are made.

12.2.4 Dialog Localization
Beginning with OpenOffice.org 2.2 it's possible to localize dialogs created in the Dialog Editor. The
localization always refers to complete Dialog Libraries, not to single dialogs. A Dialog Library's
default state is �Not localized�. In this state dialogs behave and are stored in the same way as
before the localization feature was available.

The entry point for localizing a Dialog Library is the Manage User Interface Languages dialog that
can be openend by clicking the Manage Language button in the dialog tool window (placed at the
right in the second line in Illustration 12.3). The next illustrations shows the dialog editor with an
opened Manage User Interface Languages dialog.

845

Illustration 12.32: Dialog Editor with Manage User Interface Languages dialog

Initially no language is defined, so the Present Languages list has no entry. The dialog captions
shows that the localization refers to the complete library Standard. To enable localization for this
library the Add... button has to be used. It opens another dialog allowing to chose the first
language to be supported (see next illustration). The currently active UI language is preselected.

The comment on this dialog is important. By choosing the first language all localizable dialog/control
strings are replaced by Resource IDs (see 12.2.4 OpenOffice.org Basic and Dialogs - OpenOffice.org Basic IDE -
Dialog Localization - Technical Background) referencing the strings in a String Resource component managing
strings for different languages. The strings are not copied but moved into the String Resource. After local-
izing a dialog the strings only exist there and not as dialog/control properties any more.

After choosing a language and clicking the OK button this language becomes the only entry in the
Present Languages list of the Manage User Interface Languages dialog:

846 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 12.33: Set Default User Interface Language dialog

The first language also becomes the first default language. As stated in the comment on the dialog
itself the Default language is relevant in two situations.

• If a dialog does not support the language that is required the strings for the default language
will be displayed. Example: A dialog supports English and French with English beeing the
Default Language. If this dialog is used with German beeing the Office's user interface
language, English strings will be displayed.

• When a new language is added, all strings are taken from the default language. Example: A
button label is �Thanks� for English and �Merci� for French with English beeing the default
language. When adding German as another language the label initially will also be �Thanks�.
The idea behind this behaviour is that a user creating a localized dialog usually will like to take
his own mother language or a common language like English as reference for translating to any
other language.

Now - or any time later - other languages can be added by again clicking the Add... button. This
time a slightly different dialog is used:

847

Illustration 12.34: Manage User Interface Languages dialog with one language

It allows to choose more than one language. As also described in the comment on the dialog the
strings for the new languages will be copied from the current default language. After checking one
or more languages and clicking the OK button these languages also become entries in the Present
Languages list of the Manage User Interface Languages dialog:

The default language can be changed by selecting another language and clicking the Default
button. One ore more languages can be deleted by selecting them and clicking the Delete button.
As deleting a language also deletes all strings associated with this language this action will only be
completed after a corresponding warning message has been acknowledged by the user. If the
Default Language is deleted the first of the remaining languages will become Default Language.

If all languages are deleted the Library will return to the �not localized� state. The Resource IDs
(see 12.2.4 OpenOffice.org Basic and Dialogs - OpenOffice.org Basic IDE - Dialog Localization - Technical

848 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 12.35: Add User Interface Languages dialog

Illustration 12.36: Manage User Interface Languages dialog with three languages

Background) stored in the localizable dialog/control properties will be replaced by the corre-
sponding strings assigned to the last Default Language.

If a Dialog Library is localized an additional Language toolbar is visible. It allows to select the
current language as shown in the next illustration. Besides the List Box containing the Languages
another Manage Language button is placed allowing to open the Manage User Interface
Languages dialog also from the Language toolbar.

All localizable dialog/control strings are displayed for this current language. So the button label in
the illustration is �English� if English is selected as current language but it can be different for the
other languages. If a localized property is changed using the Properties Dialog this change also is
only related to the current language. The next illustration shows how the dialog could look after
switching the current language to French.

849

Illustration 12.37: Dialog Editor with Locale Toolbar

The following list shows which dialog/control properties are localizable at all:

• Label (Button, Check Box, Option Button)

• Text (Text Box, Combo Box)

• StringItemList (List Box, Combo Box)

• Title (Dialog)

• CurrencySymbol (Currency Field)

• HelpText (all controls)

Currently the localization is limited to strings that are visible in the dialog or that could become
visible in another context like the help text.

Technical Background
This section provides an overview of how the Dialog Localization feature works internally and
how the resources are stored. In case of a localized Dialog Library the localized properties do not
contain strings but Resource IDs refering to a String Resource table. Example:

Dialog XML snippet, not localized:

850 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 12.38: Dialog Editor with French as current locale

<dlg:window ... dlg:title="My Dialog">
...
<dlg:button ... dlg:value="My Label"/>

Dialog XML snippet, localized:
<dlg:window ... dlg:title="&1.Dialog1.Title">
...
<dlg:button ... dlg:value="&3.Dialog1.CommandButton1.Label"/>

�&� is the XML encoding for the & character. This character is used as escape character
marking the string as localized. The pure Resource ID is 1.Dialog1.Title respectively
3.Dialog1.CommandButton1.Label.

The strings referenced by the Resource IDs are stored in files meeting the format of Java properties
files, e.g. described in http://java.sun.com/j2se/1.4.2/docs/api/java/util/Properties.html. In the
Library's folder one of these files is stored for each language following a special naming sceme. For
the languages used in the example above the following files are stored in the Dialog Library's
folder (both for Application based libraries stored in the file system and for Document based
libraries stored in a document's package file):
Dialog1.xdl // Dialog XML description
DialogStrings_en_US.properties // English (USA) properties file
DialogStrings_et_EE.properties // Estonian properties file
DialogStrings_fr_FR.properties // French properties file
DialogStrings_en_US.default // Empty file marking English (USA) as default language

Each of these files contain all strings for the corresponding language using the Resource IDs as
keys. The French properties file for the dialog shown in the last illustration looks like this:
Strings for Dialog Library Standard
0.Dialog1.HelpText=
1.Dialog1.Title=French Dialog
2.Dialog1.CommandButton1.HelpText=
3.Dialog1.CommandButton1.Label=French
4.Dialog1.CheckBox1.HelpText=
5.Dialog1.CheckBox1.Label=French Box1
6.Dialog1.CheckBox2.HelpText=
7.Dialog1.CheckBox2.Label=French Box2
8.Dialog1.ListBox1.HelpText=
9.ListBox1.StringItemList=French List Entry1
10.ListBox1.StringItemList=French List Entry2
11.ListBox1.StringItemList=French List Entry3

The IDs start with a numeric part that is unique for the complete library. The textual part following
then contains the Dialog, Control and Property name the Resource ID refers to. The numeric ID
alone would be unique but the textual part makes it easier to associate Resource IDs and controls
when resource properties files should be edited manually. When the dialog or controls are
renamed the Resource IDs are renamed accordingly.

The UNO API used for managing the String Resource is placed in com.sun.star.resource. Each
Dialog Library supports com.sun.star.resource.XStringResourceSupplier, giving access to a
com.sun.star.resource.StringResource component. This component supports
com.sun.star.resource.XStringResourceResolver, allowing to resolve strings using Resource
IDs as keys and com.sun.star.resource.XStringResourceManager, allowing to add and
remove strings and languages.

In case of an Application Dialog Library the StringResource supports
com.sun.star.resource.StringResourceWithLocation allowing to read/write the properties
files from/to the file system. In case of a Document Dialog Library the StringResource supports
com.sun.star.resource.StringResourceWithStorage allowing to read/write the properties
files from/to the document's package file.

Further details are described in the IDL documentation.

851

http://api.openoffice.org/docs/common/ref/com/sun/star/resource/StringResourceWithStorage.html
http://api.openoffice.org/docs/common/ref/com/sun/star/resource/StringResourceWithStorage.html
http://api.openoffice.org/docs/common/ref/com/sun/star/resource/StringResourceWithStorage.html
http://api.openoffice.org/docs/common/ref/com/sun/star/resource/StringResourceWithLocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/resource/StringResourceWithLocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/resource/StringResourceWithLocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/resource/XStringResourceManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/resource/XStringResourceManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/resource/XStringResourceManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/resource/XStringResourceResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/resource/XStringResourceResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/resource/XStringResourceResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/resource/StringResource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/resource/StringResource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/resource/StringResource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/resource/XStringResourceSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/resource/XStringResourceSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/resource/XStringResourceSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/resource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/resource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/resource.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/Properties.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/Properties.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/Properties.html

12.3 Features of OpenOffice.org Basic
This section provides a general description of the Basic programming language integrated in
OpenOffice.org.

12.3.1 Functional Range Overview
This section outlines the functionality provided by OpenOffice.org Basic. The available runtime
library functions are also described. The functionality is based upon the Basic online help inte-
grated in OpenOffice.org, but limited to particular functions. Use the Basic online help to obtain
further information about the complete Basic functionality.

Apart from the OpenOffice.org API, OpenOffice.org Basic is compatible to Visual Basic.

Screen I/O Functions
Basic provides statements and functions to display information on the screen or to get information
from the user:

• The Print statement displays strings or numeric expressions in a dialog. Multiple expressions
are separated by commas that result in a tab distance between the expressions, or semicolons
that result in a space between the expressions. For example:

e = 2.718
Print e ' displays "2.718"
Print "e =" ; e ' displays "e = 2.718"
Print "e =" , e ' displays "e = 2.718"

• The MsgBox function displays a dialog box containing a message. Additionally, the caption of
the dialog, buttons, such as OK, Cancel, Yes and No, and icons, such as question mark and
exclamation mark, that are to be displayed are specified. The result then can be evaluated. For
example:

' display a message box with an exclamation mark and OK and Cancel buttons
ret& = Msgbox ("Changes will be lost. Proceed?", 48 + 1, "Warning")

' show user's selection. 1 = OK, 2 = Cancel
Print ret&

• The InputBox function displays a prompt in a dialog where the user can input text. The input is
assigned to a variable. For example:

' display a dialog with "Please enter a phrase:" and "Dear User" as caption
' the dialog contains an edit control and the text entered by the user
' is stored in UserText$ when the dialog is closed with OK. Cancel returns ""
UserText$ = InputBox("Please enter a phrase:", "Dear User")

File I/O
OpenOffice.org Basic has a complete set of statements and runtime functions to access the oper-
ating system's file system that are compatible to Visual Basic. For platform independence, the ability
to handle file names in file:// URL notation has been added.

It is not recommended to use this classic Basic file interface in the UNO context, because many
interfaces in the OpenOffice.org API expect file I/O specific parameters whose types, for example,
com.sun.star.io.XInputStream are not compatible to the classic Basic file API.

For programming, the file I/O in OpenOffice.org API context with the service
com.sun.star.ucb.SimpleFileAccess should be used. This service supports the interface

852 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/SimpleFileAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/SimpleFileAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/SimpleFileAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XInputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XInputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XInputStream.html

com.sun.star.ucb.XSimpleFileAccess2, including the main interface
com.sun.star.ucb.XSimpleFileAccess that provides fundamental methods to access the file
system. The methods are explained in detail in the corresponding interface documentation. The
following list provides an overview about the operations supported by this service:

• copy, move and remove files and folders (methods copy(), move(), kill())

• prompt for information about files and folders (methods isFolder(), isReadOnly(),
getSize(), getContentType(), getDateTimeModified(), exists())

• open or create files (openFileRead(), openFileWrite(), openFileReadWrite()). These func-
tions return objects that support the corresponding stream interfaces
com.sun.star.io.XInputStream, com.sun.star.io.XOutputStream and
com.sun.star.io.XStream. These interfaces are used to read and write files. The
XSimpleFileAccess2 does not have methods of its own for these operations. Additionally,
these interfaces are often necessary as parameters to access methods of several other interfaces.
The opened files have to be closed by calling the appropriate methods
com.sun.star.io.XInputStream:closeInput() or
com.sun.star.io.XOutputStream:closeOutput().

The XSimpleFileAccess2 also does not have methods to ask for or set the position within a file
stream. This is done by calling methods of the com.sun.star.io.XSeekable interface that is
supported by the objects returned by the openXXX() methods.

Two more services are instantiated at the global service manager that extends the service
com.sun.star.ucb.SimpleFileAccess by functionality specific to text files:

• The service com.sun.star.io.TextInputStream supporting com.sun.star.io.XTextInput-
Stream and com.sun.star.io.XActiveDataSink:

The service is initialized by passing an object supporting XInputStream to the
com.sun.star.io.XActiveDataSink:setInputStream() method, for example, an object
returned by com.sun.star.ucb.XSimpleFileAccess:openFileRead().

Then the method com.sun.star.io.XTextInputStream:readLine() and
com.sun.star.io.XTextInputStream:readString() are used to read text from the input
stream/file. The method com.sun.star.io.XTextInputStream:isEOF() is used to check for if
the end of the file is reached. The com.sun.star.io.XTextInputStream:setEncoding() sets a
text encoding where UTF-8 is the default.

• The service com.sun.star.io.TextOutputStream supporting com.sun.star.io.XTextOut-
putStream and com.sun.star.io.XActiveDataSource:

The service is initialized by passing an object supporting XOutputStream to the
com.sun.star.io.XActiveDataSource:setOutputStream() method, for example, an object
returned by com.sun.star.ucb.XSimpleFileAccess:openFileWrite().

Then the method com.sun.star.io.XTextOutputStream:writeString() is used to write text
to the output stream.

Date and Time Functions
OpenOffice.org Basic supports several Visual Basic compatible statements and functions to
perform date and time calculations. The functions are DateSerial, DateValue, Day, Month,
WeekDay, Year, Hour, Now, Second, TimeSerial, TimeValue, Date, Time, and Timer.
The function Date returns the current system date as a string and the function Time returns the
current system time as a string. The other functions are not explained.

853

http://api.openoffice.org/docs/common/ref/com/sun/star/io/XTextOutputStream.html#writeString
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XTextOutputStream.html#writeString
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XTextOutputStream.html#writeString
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XSimpleFileAccess.html#openFileWrite
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XSimpleFileAccess.html#openFileWrite
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XSimpleFileAccess.html#openFileWrite
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XActiveDataSource.html#setOutputStream
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XActiveDataSource.html#setOutputStream
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XActiveDataSource.html#setOutputStream
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XActiveDataSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XActiveDataSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XActiveDataSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XTextOutputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XTextOutputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XTextOutputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XTextOutputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XTextOutputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XTextOutputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/TextOutputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/TextOutputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/TextOutputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XTextInputStream.html#setEncoding
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XTextInputStream.html#setEncoding
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XTextInputStream.html#setEncoding
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XTextInputStream.html#isEOF
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XTextInputStream.html#isEOF
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XTextInputStream.html#isEOF
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XTextInputStream.html#readString
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XTextInputStream.html#readString
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XTextInputStream.html#readString
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XTextInputStream.html#readLine
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XTextInputStream.html#readLine
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XTextInputStream.html#readLine
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XSimpleFileAccess.html#openFileRead
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XSimpleFileAccess.html#openFileRead
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XSimpleFileAccess.html#openFileRead
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XActiveDataSink.html#setInputStream
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XActiveDataSink.html#setInputStream
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XActiveDataSink.html#setInputStream
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XActiveDataSink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XActiveDataSink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XActiveDataSink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XTextInputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XTextInputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XTextInputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XTextInputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XTextInputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XTextInputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/TextInputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/TextInputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/TextInputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/SimpleFileAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/SimpleFileAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/SimpleFileAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XSeekable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XSeekable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XSeekable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XOutputStream.html#closeOutput
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XOutputStream.html#closeOutput
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XOutputStream.html#closeOutput
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XInputStream.html#closeInput
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XInputStream.html#closeInput
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XInputStream.html#closeInput
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XOutputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XOutputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XOutputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XInputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XInputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XInputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XSimpleFileAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XSimpleFileAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XSimpleFileAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XSimpleFileAccess2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XSimpleFileAccess2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XSimpleFileAccess2.html

In the UNO/toolkit controls context there are two other functions. The date field control method
com.sun.star.awt.XDateField:setDate() expects the date to be passed as a long value in a
special ISO format and the com.sun.star.awt.XDateField:getDate() returns the date in this
format.

The Basic runtime function CDateToIso converts a date from the internal Basic date format to the
required ISO date format. Since the string date format returned by the Date function is converted
to the internal Basic date format automatically, Date can be used directly as an input parameter for
CDateToIso:
 IsoDate = CDateToIso(Date)
 oTextField.setDate(IsoDate)

The runtime function CDateFromIso represents the reverse operation and converts a date from the
ISO date format to the internal Basic date format.

Dim aDate as date
aDate = CDateFromIso(IsoDate)

Please see also 12.5 OpenOffice.org Basic and Dialogs - Programming Dialogs and Dialog Controls in this
context.

Numeric Functions
OpenOffice.org Basic supports standard numeric functions, such as:

• Cos calculating the cosine of an angle

• Sin calculating the sine of an angle

• Tan calculating the tangent of an angle

• Atn calculating the arctangent of a numeric value

• Exp calculating the base of the natural logarithm (e = 2.718282) raised to a power

• Log calculating the natural logarithm of a number

• Sqr calculating the square root of a numeric value

• Abs calculating the absolute value of a numeric value

• Sgn returning -1 if the passed numeric value is negative, 1 if it is positive, 0 if it is zero.

String Functions
OpenOffice.org Basic supports several runtime functions for string manipulation. Some of the
functions are explained briefly in the following:

• Asc returns the the Unicode value.

• Chr returns a string containing the character that is specified by the ASCII or Unicode value
passed to the function. This function is used to represent characters, such as '"' or the carriage
return code (chr(13)) that can not be written in the "" notation.

• Str converts a numeric expression to a string.

• Val converts a string to a numeric value.

• LCase converts all letters in a string to lowercase. Only uppercase letters within the string are
converted. All lowercase letters and nonletter characters remain unchanged.

854 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDateField.html#getDate
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDateField.html#getDate
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDateField.html#getDate
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDateField.html#setDate
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDateField.html#setDate
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDateField.html#setDate

• UCase converts characters in a string to uppercase. Only lowercase letters in a string are
affected. Uppercase letters and all other characters remain unchanged.

• Left returns the leftmost �n� characters of a string expression.

• Mid returns the specified portion of a string expression.

• Right returns the rightmost "n" characters of a string expression.

• Trim removes all leading and trailing spaces of a string expression.

Specific UNO Functions
The UNO specific runtime functions CreateUnoListener, CreateUnoService, GetProcessSer-
viceManager, HasUnoInterfaces, IsUnoStruct, EqualUnoObjects are described in 3.4.3 Profes-
sional UNO - UNO Language Bindings - OpenOffice.org Basic.

12.3.2 Accessing the UNO API
In 3.4.3 Professional UNO - UNO Language Bindings - OpenOffice.org Basic, the interaction between
Basic and UNO is described on an elementary level. This section describes the interface between
Basic and the UNO API at the level of the OpenOffice.org application.

This is realized by two predefined Basic properties:

• StarDesktop
• ThisComponent
The property StarDesktop gives access to the global OpenOffice.org application API while the
property ThisComponent accesses the document related API.

StarDesktop
The property StarDesktop is a shortcut for the service com.sun.star.frame.Desktop.

Example:
MsgBox StarDesktop.Dbg_SupportedInterfaces

' is the same as

Dim oDesktop
oDesktop = CreateUnoService("com.sun.star.frame.Desktop")
MsgBox oDesktop.Dbg_SupportedInterfaces

The displayed message box differs slightly because Dbg_SupportedInterfaces displays
"StarDesktop" as an object type of the desktop object in the first case and
"com.sun.star.frame.Desktop" in the second. But the two objects are the same.

ThisComponent
The property ThisComponent is used from document Basic, where it represents the document the
Basic belongs to. The type of object accessed by ThisComponent depends on the document type.
The following example shows the differences.

Basic module in a OpenOffice.org document:
 Sub Main

855

 MsgBox ThisComponent.Dbg_SupportedInterfaces
 End Sub

The execution of this Basic routine shows different results for a Text, Spreadsheet and Presentation
document. Depending on the document type, a different set of interfaces are supported by the
object. A portion of the interfaces are common to all these document types representing the general
functionality that documents of any type offer. In particular, all OpenOffice.org documents
support the com.sun.star.document.OfficeDocument service, including the interfaces
com.sun.star.frame.XStorable and com.sun.star.view.XPrintable. Another interface is
com.sun.star.frame.XModel.

The following list shows the interfaces supported by all document types:

com.sun.star.beans.XPropertySet
com.sun.star.container.XChild
com.sun.star.document.XDocumentInfoSupplier
com.sun.star.document.XEventBroadcaster
com.sun.star.document.XViewDataSupplier
com.sun.star.document.XEventsSupplier
com.sun.star.document.XLinkTargetSupplier
com.sun.star.frame.XModel
com.sun.star.frame.XStorable
com.sun.star.lang.XServiceInfo
com.sun.star.lang.XMultiServiceFactory
com.sun.star.lang.XEventListener
com.sun.star.style.XStyleFamiliesSupplier
com.sun.star.util.XModifiable
com.sun.star.view.XPrintable

For more information about the functionality of these interfaces, see 7.1.1 Office Development -
OpenOffice.org Application Environment - Overview - Framework API - Frame-Controller-Model Para-
digm. This section alsogoes into detail about the general document API.

In addition to the common services or interfaces, each document type supports specific services or
interfaces. The following list outlines the supported services and important interfaces:

A Text document supports:

• The service com.sun.star.text.TextDocument supports the interface
com.sun.star.text.XTextDocument.

• Several interfaces, especially from the com.sun.star.text package.

A Spreadsheet document supports:

• The service com.sun.star.sheet.SpreadsheetDocument,

• The service com.sun.star.sheet.SpreadsheetDocumentSettings.

• Several other interfaces, especially from the com.sun.star.sheet package.

Presentation and Drawing documents support:

• The service com.sun.star.drawing.DrawingDocument.

• Several other interfaces, especially from the com.sun.star.drawing package.

The usage of these services and interfaces is explained in the document type specific chapters 8
Text Documents, 9 Spreadsheet Documents and 10 Drawing.

As previously mentioned, ThisComponent is used from document Basic, but it is also possible to
use it from application Basic. In an application wide Bais module, ThisComponent is identical to
the current component that can also be accessed through StarDesktop.CurrentComponent. The
only difference between the two is that if the BasicIDE is active, StarDesktop.CurrentComponent
refers to the BasicIDE itself while ThisComponent always refers to the component that was active
before the BasicIDE became the top window.

856 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetDocumentSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetDocumentSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetDocumentSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XPrintable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XPrintable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XPrintable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XModifiable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XModifiable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XModifiable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/XStyleFamiliesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/XStyleFamiliesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/XStyleFamiliesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XLinkTargetSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XLinkTargetSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XLinkTargetSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XViewDataSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XViewDataSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XViewDataSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XDocumentInfoSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XDocumentInfoSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XDocumentInfoSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XPrintable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XPrintable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XPrintable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html

12.3.3 Special Behavior of OpenOffice.org Basic
Threading and rescheduling of OpenOffice.org Basic differs from other languages which must be
taken into consideration.

Threads
OpenOffice.org Basic does not support threads:

• In situations it may be necessary to create new threads to access UNO components in a
special way. This is not possible in OpenOffice.org Basic.

• OpenOffice.org Basic is unable to control threads. If two threads use the Basic runtime
system simultaneously, the result will be undefined results or even a crash. Please take
precautions.

Rescheduling
The OpenOffice.org Basic runtime system reschedules regularly. It allows system messages to be
dispatched continuously that have been sent to the OpenOffice.org process during the runtime of a
Basic module. This is necessary to allow repainting operations, and access to controls and menus
during the runtime of a Basic script as Basic runs in the OpenOffice.org main thread. Otherwise, it
would not be possible to stop a running Basic script by clicking the corresponding button on the
toolbar.

This behavior has an important consequence. Any system message, for example, clicking a push
button control, can result in a callback into Basic if an corresponding event is specified. The Basic
programmer must be aware of the fact that this can take place at any point of time when a script is
running.

The following example shows how this effects the state of the Basic runtime system:
 Dim EndLoop As Boolean
 Dim AllowBreak As Boolean

 ' Main sub, the execution starts here
 Sub Main
 ' Initialize flags
 EndLoop = FALSE
 AllowBreak = FALSE

 Macro1 ' calls sub Macro1
 End Sub

 ' Sub called by main
 Sub Macro1
 Dim a
 While Not EndLoop
 ' Toggle flags permanently
 AllowBreak = TRUE
 AllowBreak = FALSE
 Wend
 Print "Ready!"
 End Sub

 ' Sub assigned to a bush button in a writer document
 Sub Break
 If AllowBreak = TRUE Then
 EndLoop = TRUE
 EndIf
 End Sub

When Sub Main in this Basic module is executed, the two Boolean variables EndLoop and Allow-
Break are initialized. Then Sub Macro1 is called where the execution runs into a loop. The loop is
executed until the EndLoop flag is set to TRUE. This is done in Sub Break that is assigned to a push

857

button in a writer document, but the EndLoop flag can only be set to TRUE if the AllowBreak flag is
also TRUE. This flag is permanently toggled in the loop in Sub Macro1.

The program execution may or may not be stopped if the push button is clicked. It depends on the
point of time the push button is clicked. If the Basic runtime system has just executed the Allow-
Break = TRUE statement, the execution is stopped because the If condition in Sub Break is TRUE
and the EndLoop flag can be set to TRUE. If the push button is clicked when the AllowBreak vari-
able is FALSE, the execution is not stopped. The Basic runtime system reschedules permanently,
therefore it is unpredictable. This is an example to show what problems may result from the Basic
rescheduling mechanism.

Callbacks to Basic that result from rescheduling have the same effect as if the Sub specified in the
event had been called directly from the position in the Basic code that is executed in the moment
the rescheduling action leading to the callback takes place. In this example, the Basic call stack
looks like this if a breakpoint is placed in the Sub Break:
 Basic Native code

 0: Break <--- Callback due to push button event
 1: Macro1 ---> Reschedule()
 2: Main

With the call to the native Reschedule method, the Basic runtime system is left and reentered
when the push button events in a Callback to Basic. On the Basic stack this looks like a direct call
from Sub Macro1 to Sub Break.

A similar situation occurs when a program raises a dialog using the execute method of the dialog
object returned by CreateUnoDialog(). See 12.5 OpenOffice.org Basic and Dialogs - Programming
Dialogs and Dialog Controls. In this case, the Basic runtime system does not reschedule, but
messages are processed by the dialog's message loop that also result in callbacks to Basic. When
the Basic runtime system is called back due to an event at a dialog control, the resulting Basic stack
looks analogous. For example:
 Sub Main
 Dim oDialog
 oDialog = CreateUnoDialog(...)
 oDialog.execute()
 End Sub

 Sub DoIt
 ...

 End Sub

If Sub Doit is specified to be executed if an event occurs for one of the dialog controls, the Basic
call stack looks like this if a breakpoint is placed in Sub DoIt:
 Basic Native code

 0: DoIt <--- Callback due to control event
 1: Main ---> execute() ---> Reschedule()

There is also a difference to the rescheduling done directly by the Basic runtime system. The
rescheduling done by the dialog's message loop can not result in unpredictable behavior, because
the Basic runtime system has called the dialog's execute method and waits for its return. It is in a
well-defined state.

12.4 Advanced Library Organization
Basic source code and Dialogs are organized in libraries. This section describes the structure and
usage of the library system.

858 OpenOffice.org 2.3 Developer's Guide • June 2007

12.4.1 General Structure
The library system that is used to store Basic source code modules and Dialogs has three levels:

Library container
The library container represents the top level of the library hierarchy containing libraries.
The libraries inside a library container are accessed by name.

Library
A library contains elements that logically belong together, for example, several Basic
modules that form a program or a set of related dialogs together.

Library elements
Library elements are Basic source code modules or dialogs. The elements represent the
lowest level in the library hierarchy. For Basic source code modules, the element type is
string. Dialogs are represented by the interface com.sun.star.io.XInputStreamProvider
that provides access to the XML data describing the dialog.

The hierarchy is separated for Basic source code and dialogs, that is, a Basic library container only
contains Basic libraries containing Basic source code modules and a dialog library container only
contains dialog libraries containing dialogs.

Basic source code and dialogs are stored globally for the whole office application and locally in
documents. For the application, there is one Basic library container and one dialog library
container. Every document has one Basic library container and one dialog library container as well.
By including the application or document level, the library system actually has four levels. Illustra-
tion 12.2: Basic source editor window depicts this structure.

As shown in the library hierarchy for Document 1, the Basic and dialog library containers do not
have the same structure. The Basic library container has a library named Library1 and the dialog
library container has a library named Library2. The library containers are separated for Basic and
dialogs in the API.

It is not recommended to create a structure as described above because the library and dialog
containers are not separated in the GUI, for example, in the OpenOffice.org Basic Macros dialog.
When a user creates or deletes a new library in the OpenOffice.org Basic Macro Organizer dialog
, the library is created or deleted in the Basic and the dialog library containers.

859

http://api.openoffice.org/docs/common/ref/com/sun/star/io/XInputStreamProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XInputStreamProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XInputStreamProvider.html

860 OpenOffice.org 2.3 Developer's Guide • June 2007

12.4.2 Accessing Libraries from Basic

Library Container Properties in Basic
Currently, the library system is implemented using UNO interfaces, not as a UNO service. There-
fore, the library system cannot be accessed by instantiating an UNO service. The library system has
to be accessed directly from Basic using the built-in properties BasicLibraries and DialogLib-
raries.

The BasicLibraries property refers to the Basic library container that belongs to the library
container that the BasicLibraries property is accessed. In an application-wide Basic module, the
property BasicLibraries accesses the application Basic library containerand in a document Basic
module, the property BasicLibraries contains the document Basic library container. The same
applies to the DialogLibraries property.

Loading Libraries
Initially, most Basic libraries are not loaded. All the libraries in the application library container are
known after starting OpenOffice.org, and all the library elements in a document are known when it
is loaded, most of them are disabled until they are loaded explicitly. This mechanism saves time
during the Basic initialization. When a Basic library is initialized, the source code modules are
inserted into the Basic engine and compiled. If there are many libraries with big modules, it is tim
consuming, especially if the libraries are not required.

The exception to this is that every library container contains a library named "Standard" that is
always loaded. This library is used as a standard location for Basic programs and dialogs that do
not need a complex structure. All other libraries have to be loaded explicitly. For example:

When Library1, Module1 looks like
 Sub doSomething
 MsgBox "doSomething"
 End Sub

the following code in library Standard, Module1
 Sub Main
 doSomething()
 End Sub

fails, unless the user loaded Library1 before using the Tools - Macro dialog. A runtime error
"Property or method not found" occurs. To avoid this, load library Library1 before calling doSome-
thing():
 Sub Main
 BasicLibraries.loadLibrary("Library1")
 doSomething()
 End Sub

Accordingly in the dialog container, all the libraries besides the Standard library have to be loaded
before the dialogs inside the library can be accessed. For example:
 Sub Main
 ' If this line was missing the following code would fail
 DialogLibraries.loadLibrary("Library1")
 ' Code to instantiate and display a dialog
 ' Details will be explained in a later chapter
 oDlg = createUnoDialog(DialogLibraries.Library1.Dialog1)
 oDlg.execute()
 End Sub

861

The code to instantiate and display the dialog is described in 12.5 OpenOffice.org Basic and Dialogs -
Programming Dialogs and Dialog Controls. The library representing
DialogLibraries.Library1.Dialog1 is only valid once Library1 has been loaded.

The properties BasicLibraries and DialogLibraries refer to the container that includes the
Basic source accessing these properties. Therefore in a document module Basic the properties
BasicLibraries and DialogLibraries refer to the Basic and Dialog library container of the docu-
ment. In most cases, libraries in the document have to be loaded. In other cases it might be neces-
sary to access application-wide libraries from document Basic. This can be done using the Global-
Scope property. The GlobalScope property represents the root scope of the application Basic,
therefore the application library containers can be accessed as properties of GlobalScope.

Example module in a Document Basic in library Standard:
 Sub Main
 ' This code loads Library1 of the
 ...' Document Basic library container
 BasicLibraries.loadLibrary("Library1")

 ' This code loads Library1 of the
 ...' Document dialog library container
 DialogLibraries.loadLibrary("Library1")

 ' This code loads Library1 of the
 ...' Application Basic library container
 GlobalScope.BasicLibraries.loadLibrary("Library1")
 ' This code loads Library1 of the
 ...' Application dialog library container
 GlobalScope.DialogLibraries.loadLibrary("Library1")
 ' This code displays the source code of the
 ...' Application Basic module Library1/Module1
 MsgBox GlobalScope.BasicLibraries.Library1.Module1
 End Sub

Application library containers can be accessed from document-embedded Basic libraries using the Global-
Scope property, for example, GlobalScope.BasicLibraries.Library1.

Library Container API
The BasicLibraries and DialogLibraries support
com.sun.star.script.XLibraryContainer2 that inherits from
com.sun.star.script.XLibraryContainer, which is a com.sun.star.container.XNameCon-
tainer. Basic developers do not require the location of the interface to use a method, but a basic
understanding is helpful when looking up the methods in the API reference.

The XLibraryContainer2 handles existing library links and the write protection for libraries. It is
also used to rename libraries:

boolean isLibraryLink([in] string Name)
string getLibraryLinkURL([in] string Name)
boolean isLibraryReadOnly([in] string Name)
void setLibraryReadOnly([in] string Name,
 [in] boolean bReadOnly)
void renameLibrary([in] string Name, [in] string NewName)

The XLibraryContainer creates and removes libraries and library links. Furthermore, it can test if
a library has been loaded or, if necessary, load it.

com::sun::star::script::XNameContainer createLibrary([in] string Name)
com::sun::star::script::XNameAccess createLibraryLink([in] string Name,
 [in] string StorageURL, [in] boolean ReadOnly)
void removeLibrary([in] string Name)
boolean isLibraryLoaded([in] string Name)
void loadLibrary([in] string Name)

The methods of XNameContainer access and manage the libraries in the container:
void insertByName([in] string name, [in] any element)

862 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XLibraryContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XLibraryContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XLibraryContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XLibraryContainer2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XLibraryContainer2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XLibraryContainer2.html

void removeByName([in] string name)
any getByName([in] string name)
void replaceByName([in] string name, [in] any element)
sequence < string > getElementNames()
boolean hasByName([in] string name)
type getElementType()
boolean hasElements()

These methods are accessed using the UNO API as described in 3.4.3 Professional UNO - UNO
Language Bindings - OpenOffice.org Basic. Note however, these interfaces can only be used from
OpenOffice.org Basic, not from other environments.

Libraries can be added to library containers in two different ways:

Creating a New Library
Creating a new library is done using the createLibrary() method. A library created with this
method belongs to the library container where createLibrary() has been called. The imple-
mentation of the library container is responsible for saving and loading this library. This func-
tionality is not currently covered by the interfaces, therefore the implementation determines
how and where this is done. The method createLibrary() returns a standard
com.sun.star.container.XNameContainer interface to access the library elements and
modify the library.

Initially, such a library is empty and new library elements are inserted. It is also possible to
protect a library from changes using the setLibraryReadOnly() method. In a read-only
library, no elements can be inserted or removed, and the modules or dialogs inside cannot be
modified in the BasicIDE. For additional information, see 12.2 OpenOffice.org Basic and Dialogs -
OpenOffice.org Basic IDE. Currently, the read-only status can only be changed through API.

Creating a Link to an Existing Library
Creating a link to an existing library is accomplished using the method createLibraryLink().
Its StorageURL parameter describes the location where the library .xlb file is stored. For addi-
tional information about this topic, see the section on 12.7 OpenOffice.org Basic and Dialogs -
Library File Structure). A library link is only referenced by the library container and is not
owned, therefore the library container is not responsible for the location to store the library.
This is only described by the StorageURL parameter.

The ReadOnly parameter sets the read-only status of the library link. This status is independent
of the read-only status of the linked library. A linked library is only modified when the library
and link to the library are not read only. For example, this mechanism provides read-only
access to a library located on a network drive without forcing the library to be read-only, thus
the library can be modified easily by an authorized person without changing its read-only
status.

The following tables provides a brief overview about other methods supported by the library
containers:

 Selected Methods of com.sun.star.script.XLibraryContainer2
isLibraryLink() boolean. Can be used to ask if a library was added to the library container as

a link.

getLibraryLinkURL() string. Returns the StorageURL for a linked library. This corresponds to the
StorageURL parameter of the createLibraryLink(...) method and is
primarily meant to be displayed to the users through the graphical user inter-
face.

isLibraryReadOnly() boolean. Retrieves the read-only status of a library. In case of a library link,
the method returns only false, that is, the library can be modified,
when the link or the linked library are not read only.

863

http://api.openoffice.org/docs/common/ref/com/sun/star/script/XLibraryContainer2.html#isLibraryReadOnly
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XLibraryContainer2.html#isLibraryReadOnly
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XLibraryContainer2.html#isLibraryReadOnly
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XLibraryContainer2.html#getLibraryLinkURL
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XLibraryContainer2.html#getLibraryLinkURL
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XLibraryContainer2.html#getLibraryLinkURL
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XLibraryContainer2.html#isLibraryLink
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XLibraryContainer2.html#isLibraryLink
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XLibraryContainer2.html#isLibraryLink
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XLibraryContainer2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XLibraryContainer2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XLibraryContainer2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html

 Selected Methods of com.sun.star.script.XLibraryContainer2
renameLibrary() Assigns a new name to a library. If the library was added to the library

container as a link, only the link is renamed.

 Selected Methods of com.sun.star.script.XLibraryContainer
loadLibrary() void. Loads a library. This is explained in detail in section 12.4 OpenOffice.org

Basic and Dialogs - Advanced Library Organization

isLibraryLoaded() boolean. Allows the user to find out if a library has already been loaded.

removeLibrary() void. Removes the library from the library container. If the library was added
to the library container as a link, only the link is removed, because the library
addressed by the link is not considered to be owned by the library container.

12.4.3 Variable Scopes
Some aspects of scoping in Basic depend on the library structure. This section describes which vari-
ables declared in a Basic source code module are seen from what libraries or modules. Generally,
only variables declared outside Subs are affected by this issue. Variables declared inside Subs are
local to the Sub and not accessible from outside of the Sub. For example:
 Option Explicit ' Forces declaration of variables

 Sub Main
 Dim a%
 a% = 42 ' Ok
 NotMain()
 End Sub

 Sub NotMain
 a% = 42 ' Runtime Error "Variable not defined"

 End Sub

Variables can also be declared outside of Subs. Then their scope includes at least the module they
are declared in. To declare variables outside of the Subs, the commands Private, Public/Dim and
Global are used.

The Private command is used to declare variables that can only be used locally in a module. If the
same variable is declared as Private in two different modules, they are used independently in
each module. For example:

Library Standard, Module1:
 Private x As Double

 Sub Main
 x = 47.11 ' Initialize x of Module1
 Module2_InitX ' Initialize x of Module2

 MsgBox x ' Displays the x of Module1
 Module2_ShowX ' Displays the x of Module2
 End Sub

Library Standard, Module2:
 Private x As Double

 Sub Module2_InitX
 x = 47.12 ' Initialize x of Module2
 End Sub

 Sub Module2_ShowX
 MsgBox x ' Displays the x of Module2
 End Sub

864 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/script/XLibraryContainer.html#removeLibrary
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XLibraryContainer.html#removeLibrary
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XLibraryContainer.html#removeLibrary
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XLibraryContainer.html#isLibraryLoaded
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XLibraryContainer.html#isLibraryLoaded
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XLibraryContainer.html#isLibraryLoaded
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XLibraryContainer.html#loadLibrary
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XLibraryContainer.html#loadLibrary
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XLibraryContainer.html#loadLibrary
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XLibraryContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XLibraryContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XLibraryContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XLibraryContainer2.html#renameLibrary
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XLibraryContainer2.html#renameLibrary
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XLibraryContainer2.html#renameLibrary

When Main in Module1 is executed, 47.11 is displayed (x of Module1) and then 47.12 (x of
Module2).

The Public and Dim commands declare variables that can also be accessed from outside the
module. They are identical in this context. Variables declared with Public and Dim can be accessed
from all modules that belong to the same library container. For example, based on the library struc-
ture shown in Illustration 12.2: Basic source editor window, any variable declared with Public and
Dim in the Application Basic Modules Standard/Module1, Standard/Module2, Library1/Module1,
Library1/Module2 can also be accessed from all of these modules, therefore the library container
represents the logical root scope.

12.5 Programming Dialogs and Dialog Controls
The dialogs and dialog controls are UNO components that provide a graphical user interface
belonging to the module [MOUDLE:com.sun.star.awt]. The Toolkit controls follow the Model-
View-Controller (MVC) paradigm, which separates the component into three logical units, the
model, view, and controller. The model represents the data and the low-level behavior of the compo-
nent. It has no specific knowledge of its controllers or its views. The view manages the visual
display of the state represented by the model. The controller manages the user interaction with the
model.

Note, that the Toolkit controls combine the view and the controller into one logical unit, which forms the
user interface for the component.

The following example of a text field illustrates the separation into model, view and controller. The
model contains the data which describes the text field, for example, the text to be displayed, text
color and maximum text length. The text field model is implemented by the
com.sun.star.awt.UnoControlEditModel service that extends the com.sun.star.awt.UnoCon-
trolModel service. All aspects of the model are described as a set of properties which are acces-
sible through the com.sun.star.beans.XPropertySet interface. The view is responsible for the
display of the text field and its content. It is possible to have multiple views for the same model,
but not for Toolkit dialogs. The view is notified about model changes, for example, changes to the
text color property causes the text field to be repainted. The controller handles the user input
provided through thekeyboard and mouse. If the user changes the text in the text field, the
controller updates the corresponding model property. In addition, the controller updates the view,
for example, if the user presses the delete button on the keyboard, the marked text in the text field
is deleted. A more detailed description of the MVC paradigm can be found in the chapter about
forms 14 Forms.

The base for all the Toolkit controls is the com.sun.star.awt.UnoControl service that exports the
following interfaces:

• The com.sun.star.awt.XControl interface specifies control basics.For example, it gives access
to the model, view and context of a control.

• The com.sun.star.awt.XWindow interface specifies operations for a window component.

• The com.sun.star.awt.XView interface provides methods for attaching an output device and
drawing an object.

865

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XControl.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XControl.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XControl.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControl.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControl.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControl.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlEditModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlEditModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlEditModel.html

12.5.1 Dialog Handling

Showing a Dialog
After a dialog has been designed using the dialog editor, a developer wants to show the dialog
from within the program code. The necessary steps are shown in the following example: (BasicAn-
dDialogs/ToolkitControls)
Sub ShowDialog()

 Dim oLibContainer As Object, oLib As Object
 Dim oInputStreamProvider As Object
 Dim oDialog As Object

 Const sLibName = "Library1"
 Const sDialogName = "Dialog1"

 REM library container
 oLibContainer = DialogLibraries

 REM load the library
 oLibContainer.loadLibrary(sLibName)

 REM get library
 oLib = oLibContainer.getByName(sLibName)

 REM get input stream provider
 oInputStreamProvider = oLib.getByName(sDialogName)

 REM create dialog control
 oDialog = CreateUnoDialog(oInputStreamProvider)

 REM show the dialog
 oDialog.execute()

End Sub

The dialog control is created by calling the runtime function CreateUnoDialog() which takes an
object as parameter that supports the com.sun.star.io.XInputStreamProvider interface. This
object provides an input stream that represents an XML description of the dialog. The section 12.4
OpenOffice.org Basic and Dialogs - Advanced Library Organization explains the accessing to the object
inside the library hierarchy. The dialog control is shown by calling the execute() method of the
com.sun.star.awt.XDialog interface. It can be closed by calling endExecute(), or by offering a
Cancel or OK Button on the dialog. For additional information, see 12.5 OpenOffice.org Basic and
Dialogs - Programming Dialogs and Dialog Controls.

Getting the Dialog Model
If a developer wants to modify any properties of a dialog or a control, it is necessary to have access
to the dialog model. From a dialog, the model can be obtained by the getModel method of the
com.sun.star.awt.XControl interface
oDialogModel = oDialog.getModel()

or shorter
oDialogModel = oDialog.Model

Dialog as Control Container
All controls belonging to a dialog are grouped together logically. This hierarchy concept is
reflected by the fact that a dialog control is a container for other controls. The corresponding
service com.sun.star.awt.UnoControlDialog therefore supports the com.sun.star.awt.XCon-
trolContainer interface thatoffers container functionality, namely access to its elements by name.

866 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XControlContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XControlContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XControlContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XControlContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XControlContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XControlContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDialog.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDialog.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDialog.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XControl.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XControl.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XControl.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialog.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialog.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialog.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XInputStreamProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XInputStreamProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XInputStreamProvider.html

Since in OpenOffice.org Basic, every method of every supported interface is called directly at the
object without querying for the appropriate interface, a control with the name TextField1 can be
obtained from a dialog object oDialog simply by:
oControl = oDialog.getControl("TextField1")

See 3.4.3 Professional UNO - UNO Language Bindings - OpenOffice.org Basic for additional informa-
tion. The hierarchy between a dialog and its controls can be seen in the dialog model
com.sun.star.awt.UnoControlDialogModel, which is a container for control models and there-
fore supports the com.sun.star.container.XNameContainer interface. A control model is
obtained from a dialog model by:
oDialogModel = oDialog.getModel()
oControlModel = oDialogModel.getByName("TextField1")

or shorter
oControlModel = oDialog.Model.TextField1

Dialog Properties
It is possible to make some modifications before a dialog is shown. An example is to set the dialog
title that is shown in the title bar of a dialog window. This can be achieved by setting the Title
property at the dialog model vthrough the com.sun.star.beans.XPropertySet interface:
oDialogModel = oDialog.getModel()
oDialogModel.setPropertyValue("Title", "My Title")

or shorter
oDialog.Model.Title = "My Title"

Another approach is to use the setTitle method of the com.sun.star.awt.XDialog interface:
oDialog.setTitle("My Title")

or
oDialog.Title = "My Title"

Another property is the BackgroundColor property that sets a different background color for the
dialog.

Common Properties
All Toolkit control models have a set of identical properties referred as the common properties. These
are the properties PositionX, PositionY, Width, Height, Name, TabIndex, Step and Tag.

Note that a Toolkit control model has those common properties only if it belongs to a dialog model. This has
also some consequences for the creation of dialogs and controls at runtime. See 12.6 OpenOffice.org Basic and
Dialogs - Creating Dialogs at Runtime.

The PositionX, PositionY, Width and Height properties change the position and size of a dialog,
and control at runtime. When designing a dialog in the dialog editor, these properties are set auto-
matically.

The Name property is required, because all dialogs and controls are referenced by their name. In
the dialog editor this name is created from the object name and a number, for example, TextField1.

The TabIndex property defines the order of focussing a control in a dialog when pressing the tabu-
lator key. The index of the first element has the value 0. In the dialog editor the TabIndex property
is set automatically when inserting a control. The order can also be changed through the property
browser. Take care when setting this property at runtime.

867

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialog.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialog.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialog.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDialogModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDialogModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDialogModel.html

The Tag property adds additional information to a control, such as a remark or number.

The Step property is described in detail in the next section.

Multi-Page Dialogs
A dialog may have several pages that can be traversed by the user step by step. This feature is
used in the OpenOffice.org autopilots. The dialog property Step defines which page of the dialog is
active. At runtime the next page of a dialog is displayed by increasing the step value by 1.

The Step property of a control defines the page of the dialog the control is visible. For example, if a
control has a step value of 1, it is only visible on page 1 of the dialog. If the step value of the dialog
is increased from 1 to 2, then all controls with a step value of 1 are faded out and all controls with a
step value of 2 are visible.

A special role has the step value 0. For a control a step value of 0, the control is displayed on all
dialog pages. If a dialog has a step value of 0, all controls of the dialog are displayed, independent
of the step value of the single controls.

12.5.2 Dialog Controls

Command Button
The command button com.sun.star.awt.UnoControlButton allows the user to perform an action
by clicking the button. Usually a button carries a label that is set through the Label property of the
control model:
oDialogModel = oDialog.getModel()
oButtonModel = oDialogModel.getByName("CommandButton1")
oButtonModel.setPropertyValue("Label", "My Label")

or in short:
oDialog.Model.CommandButton1.Label = "My Label"

The label can also be set using the setLabel method of the com.sun.star.awt.XButton interface:
oButton = oDialog.getControl("CommandButton1")
oButton.setLabel("My Label")

During runtime, you may want to enable or disable a button. This is achieved by setting the
Enabled property to True or False. The PushButtonType property defines the default action of a
button where 0 is the Default, 1 is OK, 2 is Cancel, and 3 is Help. If a button has a PushButtonType
value of 2, it behaves like a cancel button, that is, pressing the button closes the dialog. In this case,
the method execute() of the dialog returns with a value of 0. An OK button of PushButtonType 1
returns 1 on execute(). The property DefaultButton specifies that the command button is the
default button on the dialog, that is, pressing the ENTER key chooses the button even if another
control has the focus. The Tabstop property defines if a control can be reached with the TAB key.

The command button has the feature, to display an image by setting the ImageURL property,
which contains the path to the graphics file.
oButtonModel = oDialog.Model.CommandButton1
oButtonModel.ImageURL = "file:///D:/Office60/share/gallery/bullets/bluball.gif"
oButtonModel.ImageAlign = 2

868 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XButton.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XButton.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XButton.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlButton.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlButton.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlButton.html

All standard graphics formats are supported, such as .gif, .jpg, .tif, .wmf and .bmp. The property
ImageAlign defines the alignment of the image inside the button where 0 is Left, 1 is Top, 2 is
Right, and 3 is the Bottom. If the size of the image exceeds the size of the button, the image is not
scaled automatically, but cut off. In this respect, the image control offers more functionality.

Image Control
If the user wants to display an image without the button functionality, the image control
com.sun.star.awt.UnoControlImageControl is selected. The location of the graphic for the
command button is set by the ImageURL property. Usually, the size of the image does not match
the size of the control, therefore the image control automatically scales the image to the size of the
control by setting the ScaleImage property to True.
oImageControlModel = oDialog.Model.ImageControl1
oImageControlModel.ImageURL = "file:///D:/Office60/share/gallery/photos/beach.jpg"
oImageControlModel.ScaleImage = True

Check Box
The check box control com.sun.star.awt.UnoControlCheckBox is used in groups to display
multiple choices so that the user can select one or more choices. When a check box is selected it
displays a check mark. Check boxes work independently of each other, thus different from option
buttons. A user can select any number of check boxes at the same time.

The property State, where 0 is not checked, 1 is checked, 2 is don't know, accessesand changes the
state of a checkbox. The tri-state mode of a check box is enabled by setting the TriState property to
True. A tri-state check box provides the additional state "don't know", that is used to give the user
the option of setting or unsetting an option.
oCheckBoxModel = oDialog.Model.CheckBox3
oCheckBoxModel.TriState = True
oCheckBoxModel.State = 2

The same result is achieved by using the com.sun.star.awt.XCheckBox interface:
oCheckBox = oDialog.getControl("CheckBox3")
oCheckBox.enableTriState(True)
oCheckBox.setState(2)

Option Button
An option button control com.sun.star.awt.UnoControlRadioButton is a simple switch with
two states, that is selected by the user. Usually option buttons are used in groups to display several
options, that the user may select. While option buttons and check boxes seem to be similar,
selecting one option button deselects all the other option buttons in the same group.

Note, that option buttons that belong to the same group must have consecutive tab indices. Two groups of
option buttons can be separated by any control with a tab index that is between the tab indices of the two
groups.

Usually a group box, or horizontal and vertical lines are used, because those controls visually
group the option buttons together, but in principal this can be any control. There is no functional
relationship between an option button and a group box. Option buttons are grouped through
consecutive tab indices only.

The state of an option button is accessed by the State property, where 0 is not checked and 1 is
checked.
Function IsChecked(oOptionButtonModel As Object) As Boolean

869

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlRadioButton.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlRadioButton.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlRadioButton.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XCheckBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XCheckBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XCheckBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlCheckBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlCheckBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlCheckBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlImageControl.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlImageControl.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlImageControl.html

 Dim bChecked As Boolean

 If oOptionButtonModel.State = 1 Then
 bChecked = True
 Else
 bChecked = False
 End If

 IsChecked = bChecked

End Function

Label Field
A label field control com.sun.star.awt.UnoControlFixedText displays text that the user can no
edit on the screen. For example, the label field is used to add descriptive labels to text fields, list
boxes, and combo boxes. The actual text displayed in the label field is controlled by the Label
property. The Align property allows the user to set the alignment of the text in the control to the
left (0), center (1) or right (2). By default, the label field displays the text from the Label property
in a single line. If the text exceeds the width of the control, the text is truncated. This behavior is
changed by setting the MultiLine property to True, so that the text is displayed on more than one
line, if necessary. By default, the label field control is drawn without any border. However, the
label field appears with a border if the Border property is set, where 0 is no border, 1 is a 3D
border, and 2 is a simple border. The font attributes of the text in the label field are specified by the
FontDescriptor property. It is recommended to set this property with the property browser in the
dialog editor.

Label fields are used to define shortcut keys for controls without labels. A shortcut key can be
defined for any control with a label by adding a tilde (~) before the character that will be used as a
shortcut. When the user presses the character key simultaneously with the ALT key, the control
automatically gets the focus. To assign a shortcut key to a control without a label, for example, a
text field, the label field is used. The tilde prefixes the corresponding character in the Label prop-
erty of the label field. As the label field cannot receive focus, the focus automatically moves to the
next control in the tab order. Therefore, it is important that the label field and the text field have
consecutive tab indices.
oLabelModel = oDialog.Model.Label1
oLabelModel.Label = "Enter ~Text"

Text Field
The text field control com.sun.star.awt.UnoControlEdit is used to get input from the user at
runtime. In general, the text field is used for editable text, but it can also be made read-only by
setting the ReadOnly property to True. The actual text displayed in a text field is controlled by the
Text property. The maximum number of characters that can be entered by the user is specified
with the MaxTextLen property. A value of 0 means that there is no limitation. By default, a text
field displays a single line of text. This behavior is changed by setting the property MultiLine to
True. The properties HScroll and VScroll displays a horizontal and vertical scroll bar.

When a text field receives the focus by pressing the TAB key the displayed text is selected and
highlighted by default. The default cursor position within the text field is to the right of the
existing text. If the user starts typing while a block of text is selected, the selected text is replaced.
In some cases, the user may change the default selection behavior and set the selection manually.
This is done using the com.sun.star.awt.XTextComponent interface:
Dim sText As String
Dim oSelection As New com.sun.star.awt.Selection

REM get control
oTextField = oDialog.getControl("TextField1")

870 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTextComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTextComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTextComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlEdit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlEdit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlEdit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFixedText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFixedText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFixedText.html

REM set displayed text
sText = "Displayed Text"
oTextField.setText(sText)

REM set selection
oSelection.Min = 0
oSelection.Max = Len(sText)
oTextField.setSelection(oSelection)

The text field control is also used for entering passwords. The property EchoChar specifies the
character that is displayed in the text field while the user enters the password. In this context, the
MaxTextLen property is used to limit the number of characters that are typed in:
oTextFieldModel = oDialog.Model.TextField1
oTextFieldModel.EchoChar = Asc("*")
oTextFieldModel.MaxTextLen = 8

A user can enter any kind of data into a text field, such as numerical values and dates. These
values are always stored as a string in the Text property, thus leading to problems when evalu-
ating the user input. Therefore, consider using a date field, time field, numeric field, currency field
or formatted field instead.

List Box
The list box control com.sun.star.awt.UnoControlListBox displays a list of items that the user
can select one or more of. If the number of items exceeds what can be displayed in the list box,
scroll bars automatically appear on the control. If the Dropdown property is set to True, the list of
items is displayed in a drop-down box. In this case, the maximum number of line counts in the
drop-down box are specified with the LineCount property. The actual list of items is controlled by
the StringItemList property. All selected items are controlled by the SelectedItems property. If
the MultiSelection property is set to True, more than one entry can be selected.

It may be easier to use the com.sun.star.awt.XListBox interface when working with list boxes,
because an item can be added to a list at a specific position with the addItem method. For example,
an item is added at the end of the list by:
Dim nCount As Integer

olist box = oDialog.getControl("list box1")
nCount = olist box.getItemCount()
olist box.addItem("New Item", nCount)

Multiple items are added with the help of the addItems method. The removeItems method is used
to remove items from a list. For example, the first entry in a list is removed by:
Dim nPos As Integer, nCount As Integer

nPos = 0
nCount = 1
olist box.removeItems(nPos, nCount)

A list box item can be preselected with the selectItemPos, selectItemsPos and selectItem
methods. For example, the first entry in a list box can be selected by:
olist box.selectItemPos(0, True)

The currently selected item is obtained with the getSelectedItem method:
Dim sSelectedItem As String
sSelectedItem = olist box.getSelectedItem()

Combo Box
The combo box control com.sun.star.awt.UnoControlComboBox presents a list of choices to the
user. Additionally, it contains a text field allowing the user to input a selection that is not on the

871

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlComboBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlComboBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlComboBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XListBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XListBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XListBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlListBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlListBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlListBox.html

list. A combo box is used when there is only a list of suggested choices, whereas a list box is used
when the user input is limited only to the list.

The features and properties of a combo box and a list box are similar. Also in a combo box the list
of items can be displayed in a drop-down box by setting the Dropdown property to True. The
actual list of items is accessible through the StringItemList property. The text displayed in the
text field of the combo box is controlled by the Text property. For example, if a user selects an item
from the list, the selected item is displayed in the text field and is obtained from the Text property:
Function GetSelectedItem(oComboBoxModel As Object) As String
 GetSelectedItem = oComboBoxModel.Text
End Function

When a user types text into the text field of the combo box, the automatic word completion is a
useful feature and is enabled by setting the Autocomplete property to True. It is recommended to
use the com.sun.star.awt.XComboBox interface when accessing the items of a combo box:
Dim nCount As Integer
Dim sItems As Variant

REM get control
oComboBox = oDialog.getControl("ComboBox1")

REM first remove all old items from the list
nCount = oComboBox.getItemCount()
oComboBox.removeItems(0, nCount)

REM add new items to the list
sItems = Array("Item1", "Item2", "Item3", "Item4", "Item5")
oComboBox.addItems(sItems, 0)

Horizontal/Vertical Scroll Bar
If the visible area in a dialog is smaller than the displayable content, the scroll bar control
com.sun.star.awt.UnoControlScrollBar provides navigation through the content by scrolling
horizontally or vertically. In addition, the scroll bar control is used to provide scrolling to controls
that do not have a built-in scroll bar.

The orientation of a scroll bar is specified by the Orientation property and can be horizontal or
vertical. A scroll bar has a thumb (scroll box) that the user can drag with the mouse to any position
along the scroll bar. The position of the thumb is controlled by the ScrollValue property. For a
horizontal scroll bar, the left-most position corresponds to the minimum scroll value of 0 and the
right-most position to the maximum scroll value defined by the ScrollValueMax property. A
scroll bar also has arrows at its end that when clicked or held, incrementally moves the thumb
along the scroll bar to increase or decrease the scroll value. The change of the scroll value per
mouse click on an arrow is specified by the LineIncrement property. When clicking in a scroll bar
in the region between the thumb and the arrows, the scroll value increases or decreases by the
value set for the BlockIncrement property. The thumb position represents the portion of the
displayable content that is currently visible in a dialog. The visible size of the thumb is set by the
VisibleSize property and represents the percentage of the currently visible content and the total
displayable content.
oScrollBarModel = oDialog.Model.ScrollBar1
oScrollBarModel.ScrollValueMax = 100
oScrollBarModel.BlockIncrement = 20
oScrollBarModel.LineIncrement = 5
oScrollBarModel.VisibleSize = 20

The scroll bar control uses the adjustment event com.sun.star.awt.AdjustmentEvent to monitor
the movement of the thumb along the scroll bar. In an event handler for adjustment events the
developer may change the position of the visible content on the dialog as a function of the Scroll-
Value property. In the following example, the size of a label field exceeds the size of the dialog.
Each time the user clicks on the scrollbar, the macro AdjustmentHandler() is called and the posi-

872 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/AdjustmentEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/AdjustmentEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/AdjustmentEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlScrollBar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlScrollBar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlScrollBar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XComboBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XComboBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XComboBox.html

tion of the label field in the dialog is changed according to the scroll value.
(BasicAndDialogs/ToolkitControls/ScrollBar.xba)
Sub AdjustmentHandler()

 Dim oLabelModel As Object
 Dim oScrollBarModel As Object
 Dim ScrollValue As Long, ScrollValueMax As Long
 Dim VisibleSize As Long
 Dim Factor As Double

 Static bInit As Boolean
 Static PositionX0 As Long
 Static Offset As Long

 REM get the model of the label control
 oLabelModel = oDialog.Model.Label1

 REM on initialization remember the position of the label control and calculate offset
 If bInit = False Then
 bInit = True
 PositionX0 = oLabelModel.PositionX
 OffSet = PositionX0 + oLabelModel.Width - (oDialog.Model.Width - Border)
 End If

 REM get the model of the scroll bar control
 oScrollBarModel = oDialog.Model.ScrollBar1

 REM get the actual scroll value
 ScrollValue = oScrollBarModel.ScrollValue

 REM calculate and set new position of the label control
 ScrollValueMax = oScrollBarModel.ScrollValueMax
 VisibleSize = oScrollBarModel.VisibleSize
 Factor = Offset / (ScrollValueMax - VisibleSize)
 oLabelModel.PositionX = PositionX0 - Factor * ScrollValue

End Sub

Group Box
The group box control com.sun.star.awt.UnoControlGroupBox creates a frame to visually group
other controls together, such as option buttons and check boxes. Note that the group box control
does not provide any container functionality for other controls, it only has visual functionality. For
more details, see 12.5.2 OpenOffice.org Basic and Dialogs - Programming Dialogs and Dialog Controls -
Dialog Controls - Option Button.

The group box contains a label embedded within the border and is set by the Label property. In
most cases, the group box control is only used passively.

Progress Bar
The progress bar control com.sun.star.awt.UnoControlProgressBar displays a growing or
shrinking bar to give the user feedback during an operation, for example, the completion of a
lengthy task. The minimum and the maximum progress value of the control is set by the
ProgressValueMin and the ProgressValueMax properties. The progress value is controlled by the
ProgressValue property. By default, the progress bar is blue, but the fill color can be changed by
setting the FillColor property. The functionality of a progress bar is demonstrated in the
following example: (BasicAndDialogs/ToolkitControls/ProgressBar.xba)
Sub ProgressBarDemo()

 Dim oProgressBar As Object, oProgressBarModel As Object
 Dim oCancelButtonModel As Object
 Dim oStartButtonModel As Object
 Dim ProgressValue As Long

 REM progress bar settings
 Const ProgressValueMin = 0
 Const ProgressValueMax = 40
 Const ProgressStep = 4

873

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlProgressBar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlProgressBar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlProgressBar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlGroupBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlGroupBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlGroupBox.html

 REM set minimum and maximum progress value
 oProgressBarModel = oDialog.Model.ProgressBar1
 oProgressBarModel.ProgressValueMin = ProgressValueMin
 oProgressBarModel.ProgressValueMax = ProgressValueMax

 REM disable cancel and start button
 oCancelButtonModel = oDialog.Model.CommandButton1
 oCancelButtonModel.Enabled = False
 oStartButtonModel = oDialog.Model.CommandButton2
 oStartButtonModel.Enabled = False

 REM show progress bar
 oProgressBar = oDialog.getControl("ProgressBar1")
 oProgressBar.setVisible(True)

 REM increase progress value every second
 For ProgressValue = ProgressValueMin To ProgressValueMax Step ProgressStep
 oProgressBarModel.ProgressValue = ProgressValue
 Wait 1000
 Next ProgressValue

 REM hide progress bar
 oProgressBar.setVisible(False)

 REM enable cancel and start button
 oCancelButtonModel.Enabled = True
 oStartButtonModel.Enabled = True

End Sub

Horizontal/Vertical Line
The line control com.sun.star.awt.UnoControlFixedLine creates simple lines in a dialog. In
most cases, the line control is used to visually subdivide a dialog. The line control can have hori-
zontal or vertical orientation that is specified by the Orientation property. The label of a line
control is set by the Label property. Note that the label is only displayed if the control has a hori-
zontal orientation.

Date Field
The date field control com.sun.star.awt.UnoControlDateField extends the text field control
and is used for displaying and entering dates. The date displayed in the date field is controlled by
the Date property. The date value is of type Long and must be specified in the format
YYYYMMDD, for example, the date September 30th, 2002 is set in the following format:
oDateFieldModel = oDialog.Model.DateField1
oDateFieldModel.Date = 20020930

The current date is set by using the Date and CDateToIso runtime functions:
oDateFieldModel.Date = CDateToIso(Date())

The minimum and the maximum date that the user can enter is defined by the DateMin and the
DateMax property. The format of the displayed date is specified by the DateFormat and the Date-
ShowCentury property, but the usage of DateShowCentury is deprecated. Some formats are depen-
dent on the system settings. If the StrictFormat property is set to True, the date entered by the
user is checked during input. The Dropdown property enables a calendar that the user can drop
down to select a date.

Dropdown is currently not working.

Time Field
The time field control com.sun.star.awt.UnoControlDateField displays and enters time values.
The time value are set and retrieved by the Time property. The time value is of type Long and is

874 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDateField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDateField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDateField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDateField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDateField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDateField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFixedLine.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFixedLine.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFixedLine.html

specified in the format HHMMSShh, where HH are hours, MM are minutes, SS are seconds and hh
are hundredth seconds. For example, the time 15:18:23 is set by:
oTimeFieldModel = oDialog.Model.TimeField1
oTimeFieldModel.Time = 15182300

The minimum and maximum time value that can be entered is given by the TimeMin and TimeMax
property. The format of the displayed time is specified by the TimeFormat property.

The time value is checked during input by setting the StrictFormat property to True.

Short time format is currently not working.

Numeric Field
It is recommended to use the numeric field control com.sun.star.awt.UnoControlNumericField
if the user input is limited to numeric values. The numeric value is controlled by the Value prop-
erty, which is of type Double. A minimum and maximum value for user input is defined by the
ValueMin and the ValueMax property. The decimal accuracy of the numeric value is specified by
the DecimalAccuracy property, for example, a value of 6 corresponds to 6 decimal places. If the
ShowThousandsSeparator property is set to True, a thousands separator is displayed. The
numeric field also has a built-in spin button, enabled by the Spin property. The spin button is used
to increment and decrement the displayed numeric value by clicking with the mouse, whereas the
step is set by the ValueStep property.
oNumericFieldModel = oDialog.Model.NumericField1
oNumericFieldModel.Value = 25.40
oNumericFieldModel.DecimalAccuracy = 2

Currency Field
The currency field control com.sun.star.awt.UnoControlCurrencyField is used for entering
and displaying currency values. In addition to the currency value, a currency symbol is displayed,
that is set by the CurrencySymbol property. If the PrependCurrencySymbol property is set to
True, the currency symbol is displayed in front of the currency value.
oCurrencyFieldModel = oDialog.Model.CurrencyField1
oCurrencyFieldModel.Value = 500.00
oCurrencyFieldModel.CurrencySymbol = "€"
oCurrencyFieldModel.PrependCurrencySymbol = True

Formatted Field
The formatted field control com.sun.star.awt.UnoControlFormattedField specifies a format
that is used for formatting the entered and displayed data. A number formats supplier must be set
in the FormatsSupplier property and a format key for the used format must be specified in the
FormatKey property. It is recommended to use the property browser in the dialog editor for setting
these properties. Supported number formats are number, percent, currency, date, time, scientific,
fraction and boolean values. Therefore, the formatted field can be used instead of a date field, time
field, numeric field or currency field. The NumberFormatsSupplier is described in 7 Office Develop-
ment.

Pattern Field
The pattern field control com.sun.star.awt.UnoControlPatternField displays and enters a
string according to a specified pattern. The entries that the user enters in the pattern field are

875

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlPatternField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlPatternField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlPatternField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFormattedField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFormattedField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFormattedField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlCurrencyField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlCurrencyField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlCurrencyField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlNumericField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlNumericField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlNumericField.html

defined in the EditMask property as a special character code. The length of the edit mask deter-
mines the number of the possible input positions. If a character is entered that does not correspond
to the edit mask, the input is rejected. For example, in the edit mask "NNLNNLLLLL" the character
L has the meaning of a text constant and the character N means that only the digits 0 to 9 can be
entered. A complete list of valid characters can be found in the OpenOffice.org online help. The
LiteralMask property contains the initial values that are displayed in the pattern field. The length
of the literal mask should always correspond to the length of the edit mask. An example of a literal
mask which fits to the above mentioned edit mask would be "__.__.2002". In this case, the user
enters only 4 digits when entering a date.
oPatternFieldModel = oDialog.Model.PatternField1
oPatternFieldModel.EditMask = "NNLNNLLLLL"
oPatternFieldModel.LiteralMask = "__.__.2002"

File Control
The file control com.sun.star.awt.UnoControlFileControl has all the properties of a text field
control, with the additional feature of a built-in command button. When the button is clicked, the
file dialog shows up. The directory that the file dialog initially displays is set by the Text property.

The directory must be given as a system path, file URLs do not work at the moment. In Basic you
can use the runtime function ConvertToURL() to convert system paths to URLs.
oFileControl = oDialog.Model.FileControl1
oFileControl.Text = "D:\Programme\Office60"

Filters for the file dialog can not be set or appended for the file control. An alternative way is to use
a text field and a command button instead of a file control and assign a macro to the button which
instantiates the file dialog com.sun.star.ui.dialogs.FilePicker at runtime. An example is
provided below. (BasicAndDialogs/ToolkitControls/FileDialog.xba)
Sub OpenFileDialog()

 Dim oFilePicker As Object, oSimpleFileAccess As Object
 Dim oSettings As Object, oPathSettings As Object
 Dim oTextField As Object, oTextFieldModel As Object
 Dim sFileURL As String
 Dim sFiles As Variant

 REM file dialog
 oFilePicker = CreateUnoService("com.sun.star.ui.dialogs.FilePicker")

 REM set filter
 oFilePicker.AppendFilter("All files (*.*)", "*.*")
 oFilePicker.AppendFilter("StarOffice 6.0 Text Text Document", "*.sxw")
 oFilePicker.AppendFilter("StarOffice 6.0 Spreadsheet", "*.sxc")
 oFilePicker.SetCurrentFilter("All files (*.*)")

 REM if no file URL is set, get path settings from configuration
 oTextFieldModel = oDialog.Model.TextField1
 sFileURL = ConvertToURL(oTextFieldModel.Text)
 If sFileURL = "" Then
 oSettings = CreateUnoService("com.sun.star.frame.Settings")
 oPathSettings = oSettings.getByName("PathSettings")
 sFileURL = oPathSettings.getPropertyValue("Work")
 End If

 REM set display directory
 oSimpleFileAccess = CreateUnoService("com.sun.star.ucb.SimpleFileAccess")
 If oSimpleFileAccess.exists(sFileURL) And oSimpleFileAccess.isFolder(sFileURL) Then
 oFilePicker.setDisplayDirectory(sFileURL)
 End If

 REM execute file dialog
 If oFilePicker.execute() Then
 sFiles = oFilePicker.getFiles()
 sFileURL = sFiles(0)
 If oSimpleFileAccess.exists(sFileURL) Then
 REM set file path in text field
 oTextField = oDialog.GetControl("TextField1")
 oTextField.SetText(ConvertFromURL(sFileURL))
 End If
 End If

876 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/ui/dialogs/FilePicker.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/dialogs/FilePicker.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/dialogs/FilePicker.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFileControl.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFileControl.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFileControl.html

End Sub

12.6 Creating Dialogs at Runtime
When using OpenOffice.org Basic, the dialog editor is a tool for designing dialogs. Refer to 12.2
OpenOffice.org Basic and Dialogs - OpenOffice.org Basic IDE for additional information. Since
OpenOffice.org 2.0, dialogs that have been built with the dialog editor can be loaded by a macro
written in any of the supported scripting framework languages (BeanShell, JavaScript, Java,
OpenOffice.org Basic) by using the com.sun.star.awt.XDialogProviderAPI. See section 19.2
Scripting Framework - Using the Scripting Framework for more details.

In addition, it is also possible to create dialogs at runtime in a similar way as Java Swing compo-
nents are created. Also, the event listeners are registered at runtime at the appropriate controls.

In the Java example described in this section, a simple modal dialog is created at runtime
containing a command button and label field. Each time the user clicks on the button, the label
field is updated and the total number of button clicks is displayed.

The dialog is implemented as a UNO component in Java that is instantiated with the service name
com.sun.star.examples.SampleDialog. For details about writing a Java component and the
implementation of the UNO core interfaces, refer to 4.5.6 Writing UNO Components - Simple Compo-
nent in Java - Storing the Service Manager for Further Use. The method that creates and executes the
dialog is shown below.
/** method for creating a dialog at runtime
 */
private void createDialog() throws com.sun.star.uno.Exception {

 // get the service manager from the component context
 XMultiComponentFactory xMultiComponentFactory = _xComponentContext.getServiceManager();

 // create the dialog model and set the properties
 Object dialogModel = xMultiComponentFactory.createInstanceWithContext(
 "com.sun.star.awt.UnoControlDialogModel", _xComponentContext);
 XPropertySet xPSetDialog = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, dialogModel);
 xPSetDialog.setPropertyValue("PositionX", new Integer(100));
 xPSetDialog.setPropertyValue("PositionY", new Integer(100));
 xPSetDialog.setPropertyValue("Width", new Integer(150));
 xPSetDialog.setPropertyValue("Height", new Integer(100));
 xPSetDialog.setPropertyValue("Title", new String("Runtime Dialog Demo"));
 // get the service manager from the dialog model
 XMultiServiceFactory xMultiServiceFactory = (XMultiServiceFactory)UnoRuntime.queryInterface(
 XMultiServiceFactory.class, dialogModel);
 // create the button model and set the properties
 Object buttonModel = xMultiServiceFactory.createInstance(

877

Illustration 12.40

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogProvider.html

 "com.sun.star.awt.UnoControlButtonModel");
 XPropertySet xPSetButton = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, buttonModel);
 xPSetButton.setPropertyValue("PositionX", new Integer(50));
 xPSetButton.setPropertyValue("PositionY", new Integer(30));
 xPSetButton.setPropertyValue("Width", new Integer(50));
 xPSetButton.setPropertyValue("Height", new Integer(14));
 xPSetButton.setPropertyValue("Name", _buttonName);
 xPSetButton.setPropertyValue("TabIndex", new Short((short)0));
 xPSetButton.setPropertyValue("Label", new String("Click Me"));
 // create the label model and set the properties
 Object labelModel = xMultiServiceFactory.createInstance(
 "com.sun.star.awt.UnoControlFixedTextModel");
 XPropertySet xPSetLabel = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, labelModel);
 xPSetLabel.setPropertyValue("PositionX", new Integer(40));
 xPSetLabel.setPropertyValue("PositionY", new Integer(60));
 xPSetLabel.setPropertyValue("Width", new Integer(100));
 xPSetLabel.setPropertyValue("Height", new Integer(14));
 xPSetLabel.setPropertyValue("Name", _labelName);
 xPSetLabel.setPropertyValue("TabIndex", new Short((short)1));
 xPSetLabel.setPropertyValue("Label", _labelPrefix);
 // insert the control models into the dialog model
 XNameContainer xNameCont = (XNameContainer)UnoRuntime.queryInterface(
 XNameContainer.class, dialogModel);
 xNameCont.insertByName(_buttonName, buttonModel);
 xNameCont.insertByName(_labelName, labelModel);
 // create the dialog control and set the model
 Object dialog = xMultiComponentFactory.createInstanceWithContext(
 "com.sun.star.awt.UnoControlDialog", _xComponentContext);
 XControl xControl = (XControl)UnoRuntime.queryInterface(
 XControl.class, dialog);
 XControlModel xControlModel = (XControlModel)UnoRuntime.queryInterface(
 XControlModel.class, dialogModel);
 xControl.setModel(xControlModel);
 // add an action listener to the button control
 XControlContainer xControlCont = (XControlContainer)UnoRuntime.queryInterface(
 XControlContainer.class, dialog);
 Object objectButton = xControlCont.getControl("Button1");
 XButton xButton = (XButton)UnoRuntime.queryInterface(XButton.class, objectButton);
 xButton.addActionListener(new ActionListenerImpl(xControlCont));
 // create a peer
 Object toolkit = xMultiComponentFactory.createInstanceWithContext(
 "com.sun.star.awt.Toolkit", _xComponentContext);
 XToolkit xToolkit = (XToolkit)UnoRuntime.queryInterface(XToolkit.class, toolkit);
 XWindow xWindow = (XWindow)UnoRuntime.queryInterface(XWindow.class, xControl);
 xWindow.setVisible(false);
 xControl.createPeer(xToolkit, null);
 // execute the dialog
 XDialog xDialog = (XDialog)UnoRuntime.queryInterface(XDialog.class, dialog);
 xDialog.execute();
 // dispose the dialog
 XComponent xComponent = (XComponent)UnoRuntime.queryInterface(XComponent.class, dialog);
 xComponent.dispose();
}

First, a dialog model is created by prompting the ServiceManager for the
com.sun.star.awt.UnoControlDialogModel service. Then, the position, size and title of the
dialog are set using the com.sun.star.beans.XPropertySet interface. In performance critical
applications, the use of the com.sun.star.beans.XMultiPropertySet interface is recommended.
At this point, the dialog model describes an empty dialog, which does not contain any control
models.

All control models in a dialog container have the common properties �PositionX�, �PositionY�,
�Width�, �Height�, �Name�, �TabIndex�, �Step� and �Tag�. These properties are optional and
only added if the control model is created by a special object factory, namely the dialog model.
Therefore, a dialog model also supports the com.sun.star.lang.XMultiServiceFactory inter-
face. If the control model is created by the ServiceManager, these common properties are missing.

Note that control models have the common properties �PositionX�, �PositionY�, �Width�, �Height�,
�Name�, �TabIndex�, �Step� and �Tag� only if they were created by the dialog model that they belong to.

878 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDialogModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDialogModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDialogModel.html

After the control models for the command button and label field are created, their position, size,
name, tab index and label are set. Then, the control models are inserted into the dialog model using
the com.sun.star.container.XNameContainer interface. The model of the dialog has been fully
described.

To display the dialog on the screen, a dialog control com.sun.star.awt.UnoControlDialog is
created and the corresponding model is set. An action listener is added to the button control,
because the label field is updated whenever the user clicks on the command button. The listener is
explained below. Before the dialog is shown, a window or a peer is created on the screen. Finally,
the dialog is displayed on the screen using the execute method of the
com.sun.star.awt.XDialog interface.

The implementation of the action listener is shown in the following example.
/** action listener
 */
public class ActionListenerImpl implements com.sun.star.awt.XActionListener {
 private int _nCounts = 0;
 private XControlContainer _xControlCont;

 public ActionListenerImpl(XControlContainer xControlCont) {
 _xControlCont = xControlCont;
 }

 // XEventListener
 public void disposing(EventObject eventObject) {
 _xControlCont = null;
 }

 // XActionListener
 public void actionPerformed(ActionEvent actionEvent) {
 // increase click counter
 _nCounts++;

 // set label text
 Object label = _xControlCont.getControl("Label1");
 XFixedText xLabel = (XFixedText)UnoRuntime.queryInterface(XFixedText.class, label);
 xLabel.setText(_labelPrefix + _nCounts);
 }
}

The action listener is fired each time the user clicks on the command button. In the actionPer-
formed method of the com.sun.star.awt.XActionListener interface, an internal counter for the
number of button clicks is increased. Then, this number is updated in the label field. In addition,
the disposing method of the parent interface com.sun.star.lang.XEventListener is imple-
mented.

Our sample component executes the dialog from within the office by implementing the trigger
method of the com.sun.star.task.XJobExecutor interface:
public void trigger(String sEvent) {
 if (sEvent.compareTo("execute") == 0) {
 try {
 createDialog();
 }
 catch (Exception e) {
 throw new com.sun.star.lang.WrappedTargetRuntimeException(e.getMessage(), this, e);
 }
 }
}

A simple OpenOffice.org Basic macro that instantiates the service of our sample component and
executes the dialog is shown below.
Sub Main
 Dim oJobExecutor
 oJobExecutor = CreateUnoService("com.sun.star.examples.SampleDialog")
 oJobExecutor.trigger("execute")
End Sub

In future versions of OpenOffice.org, a method for executing dialogs created at runtime will be
provided.

879

http://api.openoffice.org/docs/common/ref/com/sun/star/task/XJobExecutor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XJobExecutor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XJobExecutor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XActionListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XActionListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XActionListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialog.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialog.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialog.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDialog.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDialog.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDialog.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html

12.7 Library File Structure
This section describes how libraries are stored. Generally all data is stored in XML format. Four
different XML document types that arespecified in the DTD files installed in
<OfficePath>/share/dtd/officedocument are used:

• A library container is described by a library container index file following the specification
given in libraries.dtd. In this file, each library in the library container is described by its name, a
flag if the library is a link, the StorageURL (describing where the library is stored) and, only in
case of a link, the link read-only status.

• A library is described by a library index file following the specification given in library.dtd. This
file contains the library name, a flag for the read-only status, a flag if the library is password
protected (see below) and the name of each library element.

• A Basic source code module is described in a file following the specification given in module.dtd.
This file contains the module name, the language (at the moment only OpenOffice.org Basic is
supported) and the source code.

• A dialog is described in a file following the specification given in dialog.dtd. The file contains all
data to describe a dialog. As this format is extensive, it is not possible to describe it in this docu-
ment.

Additionally, a binary format is used to store compiled Basic code for password protected Basic
libraries. This is described in more detail in 12.7 OpenOffice.org Basic and Dialogs - Library File Struc-
ture.

In a password protected Basic library, the password is used to scramble the source code using the Blowfish
algorithm. The password itself is not stored, so when the password for a Basic library is lost, the corre-
sponding Basic source code is lost also. There is no retrieval method if this happens.

Besides the XML format of the library description files, it is necessary to understand the structure
in which these files are stored. This is different for application and document libraries. Application
libraries are stored directly in the system file system and document libraries are stored inside the
document's package file. For information abuot package files, see 7.2.10 Office Development -
Common Application Features - Package File Formats. The following sections describe the structure
and combination of library container and library structures.

12.7.1 Application Library Container
In an OpenOffice.org installation the application library containers for Basic and dialogs are
located in the directory <OfficePath>/share/basic or <OfficeUserPath>/user/basic. The library container
index files are named script.xlc for the Basic and dialog.xlc for the Dialog library container. The "lc"
in .xlc stands for library container.

The same directory contains the libraries created by the user. Initially only the library Standard
exists for Basic and dialogs using the same directory. The structure of the library inside the direc-
tory is explained in the next section.

The user/basic directory is not the only place in the OpenOffice.org installation where libraries are
stored. Most of the autopilots integrated in OpenOffice.org are realized in Basic, and the corre-
sponding Basic and dialog libraries are installed in the directory <OfficePath>/share/basic. These
libraries are listed in the library container index file as read-only links.

It is necessary to distinguish between libraries created by the user and the autopilot libraries. The
autopilot libraries are installed in a directory that is shared between different users. In a network

880 OpenOffice.org 2.3 Developer's Guide • June 2007

installation, the share directory is located somewhere on a server, so that the autopilot libraries
cannot be owned directly by the user-specific library containers.

In the file system, a library is represented by a directory. The directory's name is the same as the
library name. The directory contains all files that are necessary for the library.

Basic libraries can be protected with a password, so that the source code cannot be read by unau-
thorized persons. Dialog libraries cannot be protected with a password. This can be handled using
the OpenOffice.org Basic Macro Organizer dialog that is explained in 12.2.1 OpenOffice.org Basic
and Dialogs - OpenOffice.org Basic IDE - Managing Basic and Dialog Libraries. The password protection
of a Basic library also affects the file format.

Libraries without Password Protection

Every library element is represented by an XML file named like the element in the directory repre-
senting the library. For Basic modules these files, following the specification in module.dtd, have the
extension .xba. For dialogs these files, following the specification in dialog.dtd, have the
extension .xdl. Additionally, the directory contains a library index file (library.dtd). These index files
are named script.xlb for Basic and dialog.xlb for dialog libraries.

In the following example, an Application Basic library Standard containing two modules Module1
and Module2 is represented by the following directory:

<DIR> Standard
|
|--script.xlb
|--Module1.xba
|--Module2.xba

An application dialog library Standard containing two dialogs SmallDialog and BigDialog is repre-
sented by the following directory:
 <DIR> Standard
 |
 |--dialog.xlb
 |--SmallDialog.xba
 |--BigDialog.xba

It is also possible that the same directory represents a Basic and a Dialog library. This is the stan-
dard case in the OpenOffice.org, See the chapter Library organization in OpenOffice.org. When the
two example libraries above are stored in the same directory, the files from both libraries are
together in the same directory:
 <DIR> Standard
 |
 |--dialog.xlb
 |--script.xlb
 |--Module1.xba
 |--Module2.xba
 |--SmallDialog.xba
 |--BigDialog.xba

The two libraries do not affect each other, because all file names are different. This is also the case
if a Basic module and a dialog are named equally, due the different file extensions.

Libraries with Password Protection

Only Basic libraries can be password protected. The password protection of a Basic library affects
the file format, because binary data has to be stored. In plain XML format, the source code would
be readable in the file even if it was not displayed in the Basic IDE. Also, the compiled Basic code
has to be stored for each module together with the encrypted sources. This is necessary because,
Basic could not access the source code and compile it as long as the password is unknown in
contrast to libraries without password protection. Without storing the compiled code, Basic could
only execute password-protected libraries once the user supplied the correct password. The whole

881

purpose of the password feature is to distribute programs without giving away the password and
source code, therefore this would not be feasible.

The followig example shows a password-protected application Basic library Library1, containing
three modules Module1, Module1 and Module3, is represented by the following directory:
 <DIR> Library1
 |
 |--script.xlb
 |--Module1.pba
 |--Module2.pba
 |--Module3.pba

The file script.xlb does not differ from the case without a password, except for the fact that the pass-
word protected status of the library is reflected by the corresponding flag.

Each module is represented by a .pba file. Like OpenOffice.org documents, these files are package
files ("pba" stands for package basic) and contain a sub structure that can be viewed with any zip
tool. For detailed information about package files, see 7.2.10 Office Development - Common Applica-
tion Features - Package File Formats).

A module package file has the following content:
 <PACKAGE> Module1.pba
 |
 |--<DIR> Meta-Inf ' Content is not displayed here
 |--code.bin
 |--source.xml

The Meta-Inf directory is part of every package file and will not be explained in this document. The
file code.bin contains the compiled Basic code and the file source.xml contains the Basic source code
encrypted with the password.

12.7.2 Document Library Container
While application libraries are stored directly in the file system, document libraries are stored
inside the document's package file. For more informatin about package files, see 7.2.10 Office Devel-
opment - Common Application Features - Package File Formats. In documents, the Basic library
container and dialog library container are stored separately:

• The root of the Basic library container hierarchy is a folder inside the package file named Basic.
This folder is not created when the Basic library container contains an empty Standard library
in the case of a new document.

• The root of the dialog library container hierarchy is a folder inside the package file named
Dialogs. This folder is not created when the dialog library container contains an empty Standard
library in the case of a new document.

The libraries are stored as sub folders in these library container folders. The structure inside the
libraries is basically the same as in an application. One difference relates to the stream - "files"
inside the package or package folders � names. In documents, all XML stream or file names have
the extension .xml. Special extensions like .xba, .xdl are not used. Instead of different extensions, the
names are extended for the library and library container index files. In documents they are named
script-lc.xml (Basic library container index file), script-lb.xml (Basic library index file), dialog-lc.xml
(dialog library container index file) and dialog-lb.xml (dialog library index file).

In example 1, the package structure for a document with one Basic Standard library containing
three modules:
 <Package> ExampleDocument1
 |
 |--<DIR> Basic
 | |
 | |--<DIR> Standard ' Folder: Contains library "Standard"

882 OpenOffice.org 2.3 Developer's Guide • June 2007

 | | |
 | | |--Module1.xml ' Stream: Basic module file
 | | |--Module2.xml ' Stream: Basic module file
 | | |--Module3.xml ' Stream: Basic module file
 | | |--script-lb.xml ' Stream: Basic library index file
 | |
 | |--script-lc.xml ' Stream: Basic library container index file
 |
 | ' From here the folders and streams have nothing to do with libraries
 |--<DIR> Meta-Inf
 |--content.xml
 |--settings.xml
 |--styles.xml

In example 2, package structure for a document with two Basic and one dialog libraries:
 <Package> ExampleDocument2
 |
 |--<DIR> Basic
 | |
 | |--<DIR> Standard ' Folder: Contains library "Standard"
 | | |
 | | |--Module1.xml ' Stream: Basic module file
 | | |--Module2.xml ' Stream: Basic module file
 | | |--script-lb.xml ' Stream: Basic library index file
 | |
 | |--<DIR> Library1 ' Folder: Contains library "Library1"
 | | |
 | | |--Module1.xml ' Stream: Basic module file
 | | |--script-lb.xml ' Stream: Basic library index file
 | |
 | |--script-lc.xml ' Stream: Basic library container index file
 |
 |--<DIR> Dialogs
 | |
 | |--<DIR> Standard ' Folder: Contains library "Standard"
 | | |
 | | |--Dialog1.xml ' Stream: Dialog file
 | | |--dialog-lb.xml ' Stream: Dialog library index file
 | |
 | |--<DIR> Library1 ' Folder: Contains library "Library1"
 | | |
 | | |--Dialog1.xml ' Stream: Dialog file
 | | |--Dialog2.xml ' Stream: Dialog file
 | | |--dialog-lb.xml ' Stream: Dialog library index file
 | |
 | |--dialog-lc.xml ' Stream: Dialog library container index file
 |
 | ' From here the folders and streams have nothing to do with libraries
 |--<DIR> Meta-Inf
 |--content.xml
 |--settings.xml
 |--styles.xml

If a document Basic library is password protected, the file structure does not differ as much from
an unprotected library as in the Application Basic case. The differences are:

• The module files of a password-protected Basic library have the same name as without the
password protection, but they are scrambled with the password.

• There is an additional binary file named like the library with the extension .bin for each
module. Similar to the file code.bin in the Application Basic .pba files, this file contains the
compiled Basic code that executes the module without access to the source code.

The following example shows the package structure for a document with two Basic and one dialog
libraries where only the Basic library Library1 contains any of the modules:
 <Package> ExampleDocument3
 |
 |--<DIR> Basic
 | |
 | |--<DIR> Standard ' Folder: Contains library "Standard"
 | | |
 | | |--script-lb.xml ' Stream: Basic library index file
 | |
 | |--<DIR> Library1 ' Folder: Contains library "Library1"
 | | |
 | | |--Module1.xml ' Stream: Scrambled Basic module source file
 | | |--Module1.bin ' Stream: Basic module compiled code file
 | | |--Module2.xml ' Stream: Scrambled Basic module source file
 | | |--Module2.bin ' Stream: Basic module compiled code file
 | | |--Module3.xml ' Stream: Scrambled Basic module source file

883

 | | |--Module3.bin ' Stream: Basic module compiled code file
 | | |--script-lb.xml ' Stream: Basic library index file
 | |
 | |--script-lc.xml ' Stream: Basic library container index file
 |
 |--<DIR> Dialogs
 | |
 | |--<DIR> Standard ' Folder: Contains library "Standard"
 | | |
 | | |--dialog-lb.xml ' Stream: Dialog library index file
 | |
 | |--<DIR> Library1 ' Folder: Contains library "Library1"
 | | |
 | | |--dialog-lb.xml ' Stream: Dialog library index file
 | |
 | |--dialog-lc.xml ' Stream: Dialog library container index file
 |
 | ' From here the folders and streams have nothing to do with libraries
 |--<DIR> Meta-Inf
 |--content.xml
 |--settings.xml
 |--styles.xml

This example also shows that a Dialogs folder is created in the document package file although the
library Standard and the library Library1 do not contain dialogs. This is done because the Dialog
library Library1 would be lost after reloading the document. Only a single empty library Standard
is assumed to exist, even if it is not stored explicitly.

12.8 Library Deployment
OpenOffice.org has a simple concept to add Basic libraries to an existing installation. Bringing
Basic libraries into a OpenOffice.org installation involves the following steps:

• Package your libraries.

• Place the package into a specific package directory. There is a directory for shared packages in a
network installation and a directory for user packages. This is described later.

• Close all instances of OpenOffice.org, launch a comman-line shell, change to
<OfficePath>/program and run the tool pkgchk from the program directory. The tool pkgchk is part
of the StarOffice Development Kit (SDK).
[<OfficePath>/program] $ pkgchk my_package.zip

The tool analyzes the packages in the package directories and matches them with a cache direc-
tory for user-defined extensions used by OpenOffice.org. Additionally, you can specify pack-
ages as command-line arguments that are copied into the package directory in advance.

The opposite steps are necessary to remove a package from your OpenOffice.org installation:

• Remove the package from the packages directory.

• Close all instances of OpenOffice.org and run pkgchk.

You can run pkgchk with the option '--help' or '-h' to get a comprehensive overview of all the
switches.

Be careful not to run the pkgchk deployment tool while there are running instances of OpenOffice.org. For
ordinary users, this case is recognized by the pkgchk process and leads to abortion, b is not reognized for
shared network installationsusing option '--shared' or '-s'. If any user of a network installation has open
processes, data inconsistencies may occur and OpenOffice.org processes may crash.

884 OpenOffice.org 2.3 Developer's Guide • June 2007

Package Structure
A UNO package is a zip file containing Basic libraries, or UNO components and type libraries. The
pkgchk tool unzips all the packages found in the package directory into the cache directory,
preserving the file structure of the zip file.

After the cache directory is ready, pkgchk traverses the cache directory recursively. Depending on
the extension of the files it detects, it carries out the necessary registration steps. Unknown file
types are ignored.

Basic libraries
The pkgchk tool links Basic library files (.xlb) into OpenOffice.org by adding them to the Basic
library container files (.xlc) that reside in the following paths:

Library File User Installation Shared Installation

script.xlb <OfficeUserPath>/user/basic/script.xlc <OfficePath>/share/basic/script.xlc

dialog.xlb <OfficeUserPath>/user/basic/dialog.xlc <OfficePath>/share/basic/dialog.xlc

The files share/basic/*.xlc are created when new libraries are shared among all users using the
pkgchk option -s (--shared) in a network installation.

The name of a Basic library is determined by the name of its parent directory. Therefore,
package complete library folders, including the parent folders into the UNO Basic package. For
example, if your library is named MyLib, there has to be a corresponding folder /MyLib in your
development environment. This folder must be packaged completely into the UNO package, so
that the zip file contains a structure similar to the following:

my_package.zip:
 MyLib/
 script.xlb
 dialog.xlb
 Module1.xba
 Dialog1.xba

Other package components
Pkgchk automatically registers shared libraries, Java archives and type libraries found in a
UNO package. For details, see 4.9.1 Writing UNO Components - Deployment Options for Compo-
nents - UNO Package Installation

The autopilot .xlb libraries are registered in the user/basic/*.xlc files, but located in share/basic. This makes it is
possible to delete and disable the autopilots for certain users even in a network installation. This is impos-
sible for libraries deployed with the pkgchk tool and libraries deployed with the share option are always
shared among all users.

Path Settings
The package directories are called uno-packages by default. There can be one in <OfficePath>/share
for shared installations and another one in <OfficePath>/user for single users. The cache directories
are created automatically within the respective uno-packages directory. OpenOffice.org has to be
configured to look for these paths in the uno.ini file (on Windows, unorc on Unix) in
<OfficePath>/program. When pkgchk is launched, it checks this file for package entries. If they do not
exist, the following default values are added to uno(.ini|rc).
[Bootstrap]
UNO_SHARED_PACKAGES=${$SYSBINDIR/bootstrap.ini::BaseInstallation}/share/uno_packages
UNO_SHARED_PACKAGES_CACHE=$UNO_SHARED_PACKAGES/cache
UNO_USER_PACKAGES=${$SYSBINDIR/bootstrap.ini::UserInstallation}/user/uno_packages
UNO_USER_PACKAGES_CACHE=$UNO_USER_PACKAGES/cache

885

The settings reflect the default values for the shared package and cache directory, and the user
package and cache directory as described above.

In a network installation, all users start the office from a common directory on a file server. The
administrator puts the packages for all the users of the network installation into the
<OfficePath>/share/uno_packages folder of the shared installation. If a user wants to install packages
locally so that only a single installation is affected, the user must copy the packages to
<OfficePath>/user/uno_packages.

Pkgchk has to be run differently for a shared and a user installation. To install shared packages, run
pkgchk with the -s (-shared) option which causes pkgchk to process only the shared packages. If
pkgchk is run without command-line parameters, the user packages will be registered.

Additional Options
By default, the tool logs all actions into the <cache-dir>/log.txt file. You can switch to another log file
through the -l (�log) <file name> option. Option -v (�verbose) logs to stdout, in addition to the log
file.

The tool handles errors loosely. It continues after errors even if a package cannot be inflated or a
shared library cannot be registered. The tool logs these errors and proceeds silently. If you want
the tool to stop on every error, switch on the �strict_error handling.

If there is some inconsistency with the cache and you want to renew it from the ground up,
repeating the installation using the option -r (�renewal).

886 OpenOffice.org 2.3 Developer's Guide • June 2007

13 Database Access

13.1 Overview

13.1.1 Capabilities

Platform Independence
The goal of the OpenOffice.org API database integration is to provide platform independent data-
base connectivity for OpenOffice.org API. Well it is necessary to access database abstraction layers,
such as JDBC and ODBC, it is also desirable to have direct access to arbitrary data sources, if
required.

The OpenOffice.org API database integration reaches this goal through an abstraction above the
abstractions with the Star Database Connectivity (SDBC). SDBC accesses data through SDBC
drivers. Each SDBC driver knows how to get data from a particular source. Some drivers handle
files themselves, others use a standard driver model, or existing drivers to retrieve data. The
concept makes it possible to integrate database connectivity for MAPI address books, LDAP direc-
tories and OpenOffice.org Calc into the current version of OpenOffice.org API.

Since SDBC drivers are UNO components, it is possible to write drivers for data sources and thus
extend the database connectivity of OpenOffice.org API.

Functioning of the OpenOffice.org API Database Integration
The OpenOffice.org API database integration is based on SQL. This section discusses how the
OpenOffice.org API handles various SQL dialects and how it integrates with data sources that do
not understand SQL.

OpenOffice.org API has a built-in parser that tests and adjusts the syntax to be standard SQL. With
the parser, differences between SQL dialects, such as case sensitivity, can be handled if the query
composer is used. Data sources that do not understand SQL can be treated by an SDBC driver that
is a database engine of its own, which translates from standard SQL to the mechanisms needed to
read and write data using a non-SQL data source.

887

Integration with OpenOffice.org API
OpenOffice.org API employs SDBC data sources in Writer, Calc and Database Forms. In Writer,
use form letter fields to access database tables, create email form letters, and drag tables and
queries into a document to create tables or lists.

If a table is dragged into a Calc spreadsheet, the database range that can be updated from the data-
base, and data pilots can be created from database connections. Conversely, drag a spreadsheet
range onto a database to import the spreadsheet data into a database.

Another area of database connectivity are database forms. Form controls can be inserted into
Writer or Calc documents, or just created in the database file with Base, to connect them to data-
base tables to get data aware forms.

While there is no API coverage for direct database integration in Writer, the database connectivity
in Calc and Database Forms can be controlled through the API. Refer to the corresponding chap-
ters 9.3.5 Spreadsheet Documents - Working with Spreadsheets - Database Operations and 14 Forms for
more information. In Writer, database connectivity can be implemented by application program-
mers, for example, by accessing text field context. No API exists for merging complete selections
into text.

Using the OpenOffice.org API database integration enhances or automates the out-of-box database
integration, creates customized office documents from databases, or provides simple, platform-
independent database clients in the OpenOffice.org API environment.

13.1.2 Architecture
The OpenOffice.org API database integration is divided into three layers: SDBC, SDBCX, and SDB.
Each layer extends the functionality of the layer below.

• Star Database (SDB) is the highest layer. This layer provides an application-centered view of the
databases. Services, such as the database context, data sources, advanced connections, persis-
tent query definitions and command definitions, as well as authentication and row sets are in
this layer.

• Star Database Connectivity Extension (SDBCX) is the middle layer which introduces abstrac-
tions, such as catalogs, tables, views, groups, users, columns, indexes, and keys, as well as the
corresponding containers for these objects.

• Star Database Connectivity (SDBC) is the lowest layer. This layer contains the basic database
functionality used by the higher layers, such as drivers, simple connections, statements and
result sets.

13.1.3 Example: Querying the Bibliography Database
The following example queries the bibliography database that is delivered with the OpenOffice.org
distribution. The basic steps are:

1. Create a com.sun.star.sdb.RowSet.

2. Configure com.sun.star.sdb.RowSet to select from the table "biblio" in the data source "Bibli-
ography".

3. Execute it.

4. Iterate over its rows.

888 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html

5. Insert a new row.

If the database requires login, set additional properties for user and password, or connect using
interactive login. There are other options as well. For details, refer to the section 13.3.1 Database
Access - Manipulating Data - The RowSet Service. (Database/OpenQuery.java)
protected void openQuery() throws com.sun.star.uno.Exception, java.lang.Exception {
 xRemoteServiceManager = this.getRemoteServiceManager(
 "uno:socket,host=localhost,port=2083;urp;StarOffice.ServiceManager");

 // first we create our RowSet object and get its XRowSet interface
 Object rowSet = xRemoteServiceManager.createInstanceWithContext(
 "com.sun.star.sdb.RowSet", xRemoteContext);
 com.sun.star.sdbc.XRowSet xRowSet = (com.sun.star.sdbc.XRowSet)
 UnoRuntime.queryInterface(com.sun.star.sdbc.XRowSet.class, rowSet);

 // set the properties needed to connect to a database
 XPropertySet xProp = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, xRowSet);

 // the DataSourceName can be a data source registered with OpenOffice.org, among other possibilities
 xProp.setPropertyValue("DataSourceName", "Bibliography");
 // the CommandType must be TABLE, QUERY or COMMAND – here we use COMMAND
 xProp.setPropertyValue("CommandType", new Integer(com.sun.star.sdb.CommandType.COMMAND));
 // the Command could be a table or query name or a SQL command, depending on the CommandType
 xProp.setPropertyValue("Command", "SELECT IDENTIFIER, AUTHOR FROM biblio");
 // if your database requires logon, you can use the properties User and Password
 // xProp.setPropertyValue("User", "JohnDoe");
 // xProp.setPropertyValue("Password", "mysecret");

 xRowSet.execute();

 // prepare the XRow and XColumnLocate interface for column access
 // XRow gets column values
 com.sun.star.sdbc.XRow xRow = (com.sun.star.sdbc.XRow)UnoRuntime.queryInterface(
 com.sun.star.sdbc.XRow.class, xRowSet);
 // XColumnLocate finds columns by name
 com.sun.star.sdbc.XColumnLocate xLoc = (com.sun.star.sdbc.XColumnLocate)UnoRuntime.queryInterface(
 com.sun.star.sdbc.XColumnLocate.class, xRowSet);

 // print output header
 System.out.println("Identifier\tAuthor");
 System.out.println("----------\t------");

 // output result rows
 while (xRowSet.next()) {
 String ident = xRow.getString(xLoc.findColumn("IDENTIFIER"));
 String author = xRow.getString(xLoc.findColumn("AUTHOR"));
 System.out.println(ident + "\t\t" + author);
 }

 // insert a new row
 // XResultSetUpdate for insertRow handling
 com.sun.star.sdbc.XResultSetUpdate xResultSetUpdate = (com.sun.star.sdbc.XResultSetUpdate)
 UnoRuntime.queryInterface(
 com.sun.star.sdbc.XResultSetUpdate.class, xRowSet);

 // XRowUpdate for row updates
 com.sun.star.sdbc.XRowUpdate xRowUpdate = (com.sun.star.sdbc.XRowUpdate)
 UnoRuntime.queryInterface(
 com.sun.star.sdbc.XRowUpdate.class, xRowSet);

 // move to insertRow buffer
 xResultSetUpdate.moveToInsertRow();

 // edit insertRow buffer
 xRowUpdate.updateString(xLoc.findColumn("IDENTIFIER"), "GOF95");
 xRowUpdate.updateString(xLoc.findColumn("AUTHOR"), "Gamma, Helm, Johnson, Vlissides");

 // write buffer to database
 xResultSetUpdate.insertRow();

 // throw away the row set
 com.sun.star.lang.XComponent xComp = (com.sun.star.lang.XComponent)UnoRuntime.queryInterface(
 com.sun.star.lang.XComponent.class, xRowSet);
 xComp.dispose();
}

889

13.2 Data Sources in OpenOffice.org API

13.2.1 DatabaseContext
In the OpenOffice.org graphical user interface (GUI), define Open Office database files using the
database application OpenOffice.org Base, and register them in the Tools � Options �
OpenOffice.org Database � Databasesdialog in order to access them in the database browser. A
data source has five main aspects. It contains the following:

• The general information necessary to connect to a data source.

• Settings to control the presentation of tables, and queries.

• SQL query definitions.

• Database forms.

• Database reports.

From the API perspective, these functions are mirrored in the com.sun.star.sdb.DatabaseCon-
text service. The database context is a container for data sources. It is a singleton, that is, it may
exist only once in a running OpenOffice.org API instance and can be accessed by creating it at the
global service manager of the office.

The database context is the entry point for applications that need to connect to a data source
already defined in the OpenOffice.org API. Additionally, it is used to create new data sources and
add them to OpenOffice.org API. The following figure shows the relationship between the data-
base context, the data sources and the connection over a data source.

890 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 13.1: The Dialog "Database Registration"

http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DatabaseContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DatabaseContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DatabaseContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DatabaseContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DatabaseContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DatabaseContext.html

The database context is used to get a data source that provides a com.sun.star.sdb.Connection
through its com.sun.star.sdb.XCompletedConnection interface.

Existing data sources are obtained from the database context at its interfaces
com.sun.star.container.XNameAccess and com.sun.star.container.XEnumeration. Their
methods getByName() and createEnumeration() deliver the com.sun.star.sdb.DataSource
services defined in the OpenOffice.org GUI.

891

Illustration 13.2: com.sun.star.sdb.DatabaseContext

http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumeration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumeration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumeration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XCompletedConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XCompletedConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XCompletedConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Connection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Connection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Connection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DatabaseContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DatabaseContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DatabaseContext.html

Since OpenOffice.org 2.0, getByName() can also be used to obtain data sources that are not regis-
tered. You only need to pass a URL pointing to a valid database file, which is then automatically
loaded by the context.

The code below shows how to print all available registered data sources:
(Database/CodeSamples.java)
// prints all data sources
public static void printDataSources(XMultiServiceFactory _rMSF) throws com.sun.star.uno.Exception {
 // retrieve the DatabaseContext and get its com.sun.star.container.XNameAccess interface
 XNameAccess xNameAccess = (XNameAccess)UnoRuntime.queryInterface(
 XNameAccess.class, _rMSF.createInstance("com.sun.star.sdb.DatabaseContext"));
 // print all DataSource names
 String aNames [] = xNameAccess.getElementNames();
 for (int i=0;i<aNames.length;++i)
 System.out.println(aNames[i]);
}

13.2.2 DataSources

The DataSource Service
The com.sun.star.sdb.DataSource service includes all the features of a database defined in
OpenOffice.org API. DataSource provides the following properties for its knowledge about how
to connect to a database and which tables to display:

Properties of com.sun.star.sdb.DataSource
Name [readonly] string ? The name of the data source.

URL string ? Indicates a database URL. Valid URL formats are:
jdbc: subprotocol : subname
sdbc: subprotocol : subname

Info sequence< com.sun.star.beans.PropertyValue >. A list of arbi-
trary string tag or value pairs as connection arguments.

User String ? The login name of the current user.

Password string ? The password of the current user. It is not stored with the data
source.

IsPasswordRequired boolean ? Indicates that a password is always necessary and might be
interactively requested from the user by an interaction handler.

IsReadOnly [readonly] boolean ? Determines if database contents may be modi-
fied.

NumberFormatsSupplier [readonly] com.sun.star.util.XNumberFormatsSupplier. Provides an
object for number formatting.

TableFilter sequence< string >. A list of tables the data source should display. If
empty, all tables are hidden. Valid placeholders are % and ?.

TableTypeFilter sequence< string >. A list of table types the DataSource should
display. If empty, all table types are rejected. Possible type strings are
TABLE, VIEW, and SYSTEM TABLE.

SuppressVersionColumns boolean ? Indicates that components displaying data obtained from this
data source should suppress columns used for versioning.

All other capabilities of a DataSource,such as query definitions, forms, reports, and the actual
process of establishing connections are available over its interfaces.

892 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSource.html#SuppressVersionColumns
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSource.html#TableTypeFilter
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSource.html#TableFilter
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSource.html#NumberFormatsSupplier
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSource.html#IsReadOnly
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSource.html#IsPasswordRequired
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSource.html#Password
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSource.html#User
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSource.html#Info
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSource.html#URL
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSource.html#Name
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSource.html

• com.sun.star.sdb.XQueryDefinitionsSupplier provides access to SQL query definitions
for a database. The definition of queries is discussed in the next section, 13.2.2 Database Access -
Data Sources in OpenOffice.org API - DataSources - Queries.

• com.sun.star.sdb.XCompletedConnection connects to a database. It asks the user to supply
necessary information before it connects. The section 13.2.3 Database Access - Data Sources in
OpenOffice.org API - Connections - Connecting Through a DataSource shows how to establish a
connection.

• com.sun.star.sdb.XBookmarksSupplier provides access to bookmarks pointing at docu-
ments associated with the DataSource, primarily OpenOffice.org API documents containing
form components. Although it is optional, it is implemented for all data sources in
OpenOffice.org API. The section 13.2.2 Database Access - Data Sources in OpenOffice.org API -
DataSources - Forms and Other Links explains database bookmarks.

• com.sun.star.util.XFlushable forces the data source to flush all information including the
properties above to the Open Office database file. However, changes work immediately and are
stored in the Open Office database file format.com.sun.star.sdb.XFormDocumentsSupplier
provides access to forms stored inside the Open Office database file.

• com.sun.star.sdb.XReportDocumentsSupplier provides access to reports stored inside the
Open Office database file.

• com.sun.star.sdb.OfficeDatabaseDocument provides all interfaces which the
com.sun.star.document.OfficeDocument service supports.

Adding and Editing Datasources

New data sources have to be created by the com.sun.star.lang.XSingleServiceFactory inter-
face of the database context. A new data source can be registered with the database context at its
com.sun.star.uno.XNamingService interface and the necessary properties set.

The lifetime of data sources is controlled through the interfaces com.sun.star.lang.XSingleSer-
viceFactory, com.sun.star.uno.XNamingService and com.sun.star.container.XContainer
of the database context.

The method createInstance() of XSingleServiceFactory creates new generic data sources. They
are added to the database context using registerObject() at the interface
com.sun.star.uno.XNamingService. The XNamingService allows registering data sources, as
well as revoking the registration. The following are the methods defined for XNamingService:

void registerObject([in] string Name, [in] com::sun::star::uno::XInterface Object)
void revokeObject([in] string Name)
com::sun::star::uno::XInterface getRegisteredObject([in] string Name)

Before data sources can be registered at the database context, they have to be stored with the
com.sun.star.frame.XStorable interface. The method storeAsURL should be used for that purpose.

In the following example, a data source is created for a previously generated Adabas D database
named MYDB1 on the local machine. The URL property has to be present, and for Adabas D the
property IsPasswordRequired should be true, otherwise no interactive connection can be estab-
lished. The password dialog requests a user name by setting the User property. (Database/Code-
Samples.java)
// creates a new DataSource
public static void createNewDataSource(XMultiServiceFactory _rMSF) throws com.sun.star.uno.Exception {
 // the XSingleServiceFactory of the database context creates new generic
 // com.sun.star.sdb.DataSources (!)
 // retrieve the database context at the global service manager and get its
 // XSingleServiceFactory interface
 XSingleServiceFactory xFac = (XSingleServiceFactory)UnoRuntime.queryInterface(
 XSingleServiceFactory.class, _rMSF.createInstance("com.sun.star.sdb.DatabaseContext"));

 // instantiate an empty data source at the XSingleServiceFactory

893

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XNamingService.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XNamingService.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XNamingService.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XNamingService.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XNamingService.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XNamingService.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XNamingService.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XNamingService.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XNamingService.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/OfficeDatabaseDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/OfficeDatabaseDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/OfficeDatabaseDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XReportDocumentsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XReportDocumentsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XReportDocumentsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XFormDocumentsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XFormDocumentsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XFormDocumentsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XFlushable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XFlushable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XFlushable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XBookmarksSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XBookmarksSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XBookmarksSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XCompletedConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XCompletedConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XCompletedConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XQueryDefinitionsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XQueryDefinitionsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XQueryDefinitionsSupplier.html

 // interface of the DatabaseContext
 Object xDs = xFac.createInstance();
 // register it with the database context
 XNamingService xServ = (XNamingService)UnoRuntime.queryInterface(XNamingService.class, xFac);
 XStorable store = (XStorable)UnoRuntime.queryInterface(XStorable.class, xDs);
 XModel model = (XModel)UnoRuntime.queryInterface(XModel.class, xDs);
 store.storeAsURL(“file:///c:/test.odb”,model.getArgs());
 xServ.registerObject("NewDataSourceName", xDs);
 // setting the necessary data source properties
 XPropertySet xDsProps = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, xDs);
 // Adabas D URL
 xDsProps.setPropertyValue("URL", "sdbc:adabas::MYDB1");
 // force password dialog
 xDsProps.setPropertyValue("IsPasswordRequired", new Boolean(true));
 // suggest dsadmin as user name
 xDsProps.setPropertyValue("User", "dsadmin");
 store.store();
}

The various possible database URLs are discussed in the section 13.2.3 Database Access - Data
Sources in OpenOffice.org API - Connections - Driver Specifics.

To edit an existing data source, retrieve it by name or by file URL from the
com.sun.star.container.XNameAccess interface of the database context and use its
com.sun.star.beans.XPropertySet interface to configure it, as required. To store the newly
edited data source, you must use the com.sun.star.frame.XStorable interface.

Queries
A com.sun.star.sdb.QueryDefinition encapsulates a definition of an SQL statement stored in
OpenOffice.org API. It is similar to a view or a stored procedure, because it can be reused, and
executed and altered by the user in the GUI. It is possible to run a QueryDefinition against a
different database by changing the underlying DataSource properties. It can also be created
without being connected to a database.

The purpose of the query services available at a DataSource is to define and edit queries. The
query services by themselves do not offer methods to execute queries. To open a query, use a
com.sun.star.sdb.RowSet service or the com.sun.star.sdb.XCommandPreparation interface of
a connection. See the sections 13.3.1 Database Access - Manipulating Data - The RowSet Service and
13.3.6 Database Access - Manipulating Data - PreparedStatement From DataSource Queries for addi-
tional details.

Adding and Editing Predefined Queries

The query definitions container com.sun.star.sdb.DefinitionContainer is used to work with
the query definitions of a data source. It is returned by the com.sun.star.sdb.XQueryDefini-
tionsSupplier interface of the data source, which has a single method for this purpose:

com::sun::star::container::XNameAccess getQueryDefinitions()

The DefinitionContainer is not only an XNameAccess, but a com.sun.star.container.XName-
Container, that is, add new query definitions by name (see 2 First Steps). Besides the name access,
obtain query definitions through com.sun.star.container.XIndexAccess and
com.sun.star.container.XEnumerationAccess.

894 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XQueryDefinitionsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XQueryDefinitionsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XQueryDefinitionsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XQueryDefinitionsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XQueryDefinitionsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XQueryDefinitionsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DefinitionContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DefinitionContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DefinitionContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XCommandPreparation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XCommandPreparation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XCommandPreparation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/QueryDefinition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/QueryDefinition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/QueryDefinition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html

New query definitions are created by the com.sun.star.lang.XSingleServiceFactory interface
of the query definitions container. Its method createInstance() provides an empty QueryDefi-
nition to configure, as required. Then, the new query definition is added to the DefinitionCon-
tainer using insertByName()at the XNameContainer interface.

The optional interface com.sun.star.util.XRefreshable is not supported by the DefinitionContainer
implementation.

A QueryDefinition is configured through the following properties:

895

Illustration 13.3: DefinitionContainer And QueryDefinition

http://api.openoffice.org/docs/common/ref/com/sun/star/util/XRefreshable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XRefreshable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XRefreshable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html

Properties of com.sun.star.sdb.QueryDefinition

Name string ? The name of the queryDefinition.

Command string ? The SQL SELECT command.

EscapeProcessing boolean ? If true, determines that the query must not be touched by the built-in
SQL parser of OpenOffice.org API.

UpdateCatalo-
gName

string ? The name of the update table catalog used to identify tables, supported
by some databases.

UpdateSchemaName string ? The name of the update table schema used to identify tables, supported
by some databases.

UpdateTableName string The name of the update table catalog used to identify tables, supported by
some databases The name of the table which should be updated. This is usually
used for queries based on more than one table and makes such queries partially
editable. The property UpdateTableName must contain the name of the table with
unique rows in the result set. In a 1:n join this is usually the table on the n side of
the join.

The following example adds a new query definition Query1 to the data source Bibliography that is
provided with OpenOffice.org API. (Database/CodeSamples.java)
// creates a new query definition named Query1
public static void createQuerydefinition(XMultiServiceFactory _rMSF) throws com.sun.star.uno.Exception {
 XNameAccess xNameAccess = (XNameAccess) UnoRuntime.queryInterface(
 XNameAccess.class, _rMSF.createInstance("com.sun.star.sdb.DatabaseContext"));

 // we use the datasource Bibliography
 XQueryDefinitionsSupplier xQuerySup = (XQueryDefinitionsSupplier) UnoRuntime.queryInterface(
 XQueryDefinitionsSupplier.class, xNameAccess.getByName("Bibliography"));

 // get the container for query definitions
 XNameAccess xQDefs = xQuerySup.getQueryDefinitions();
 // for new query definitions we need the com.sun.star.lang.XSingleServiceFactory interface
 // of the query definitions container
 XSingleServiceFactory xSingleFac = (XSingleServiceFactory)UnoRuntime.queryInterface(
 XSingleServiceFactory.class, xQDefs);

 // order a new query and get its com.sun.star.beans.XPropertySet interface
 XPropertySet xProp = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, xSingleFac.createInstance());
 // configure the query
 xProp.setPropertyValue("Command","SELECT * FROM biblio");
 xProp.setPropertyValue("EscapeProcessing", new Boolean(true));

 // insert it into the query definitions container
 XNameContainer xCont = (XNameContainer) UnoRuntime.queryInterface(
 XNameContainer.class, xQDefs);

 try{
 if (xCont.hasByName("Query1"))
 xCont.removeByName("Query1");
 }catch(com.sun.star.uno.Exception e){}

 xCont.insertByName("Query1", xProp);
 XStorable store = (XStorable)UnoRuntime.queryInterface(XStorable.class, xQuerySup);
 store.store();
}

Runtime Settings For Predefined Queries

The queries in the user interface have a number of advanced settings concerning the formatting
and filtering of the query and its columns. For the API, these settings are available as long as the
data source is connected with the underlying database. The section 13.2.3 Database Access - Data
Sources in OpenOffice.org API - Connections - Connecting Through a DataSource discusses how to get a
connection from a data source. When the connection is made, its interface
com.sun.star.sdb.XQueriesSupplier returns query objects with the advanced settings above.

896 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XQueriesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XQueriesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XQueriesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/QueryDefinition.html#UpdateTableName
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/QueryDefinition.html#UpdateSchemaName
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/QueryDefinition.html#UpdateCatalogName
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/QueryDefinition.html#UpdateCatalogName
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/QueryDefinition.html#EscapeProcessing
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/QueryDefinition.html#Command
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/QueryDefinition.html#Name
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/QueryDefinition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/QueryDefinition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/QueryDefinition.html

The Connection gives you a com.sun.star.sdbcx.Container of com.sun.star.sdb.Query
services. These Query objects are different from QueryDefinitions.

The com.sun.star.sdb.Query service inherits both the properties from
com.sun.star.sdb.QueryDefinition service described previously, and the properties defined in
the service com.sun.star.sdb.DataSettings. Use DataSettings to customize the appearance of
the query when used in the OpenOffice.org API GUI or together with a
com.sun.star.sdb.RowSet.

897

Illustration 13.4: Connection, QueryComposer And Query in the sdb Module

http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/QueryDefinition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/QueryDefinition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/QueryDefinition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Query.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Query.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Query.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Query.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Query.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Query.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Container.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Container.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Container.html

Properties of com.sun.star.sdb.DataSettings
Filter string ? An additional filter for the data object, WHERE clause syntax.

ApplyFilter boolean ? Indicates if the filter should be applied, default is FALSE.

Order string ? Is an additional sort order definition.

FontDescriptor struct com.sun.star.awt.FontDescriptor. Specifies the font attributes for
displayed data.

RowHeight long ? Specifies the height of a data row.

TextColor long ? Specifies the text color for displayed text in 0xAARRGGBB notation

In addition to these properties, the com.sun.star.sdb.Query service offers a
com.sun.star.sdbcx.XDataDescriptorFactory to create new query descriptors based on the
current query information. Use this query descriptor to append new queries to the
com.sun.star.sdbcx.Container using its com.sun.star.sdbcx.XAppend interface. This is an
alternative to the connection-independent method to create new queries as discussed above. The
section 13.4.3 Database Access - Database Design - Using SDBCX to Access the Database Design - The
Descriptor Pattern explains how to use descriptors to append new elements to database objects.

The com.sun.star.sdbcx.XRename interface is used to rename a query. It has one method:
void rename([in] string newName)

The interface com.sun.star.sdbcx.XColumnsSupplier grants access to the column settings of the
query through its single method getColumns():

com::sun::star::container::XNameAccess getColumns()

The columns returned by getColumns() are com.sun.star.sdb.Column services that provide
column information and the ability to improve the appearance of columns. This service is
explained in the section 13.2.2 Database Access - Data Sources in OpenOffice.org API - DataSources -
Tables and Columns.

The following code sample connects to Bibliography, and prints the column names and types of
the previously defined query Query1. (Database/CodeSamples.java)
public static void printQueryColumnNames(XMultiServiceFactory _rMSF) throws com.sun.star.uno.Exception {
 XNameAccess xNameAccess = (XNameAccess)UnoRuntime.queryInterface(
 XNameAccess.class,_rMSF.createInstance("com.sun.star.sdb.DatabaseContext"));

 // we use Bibliography
 XDataSource xDS = (XDataSource)UnoRuntime.queryInterface(
 XDataSource.class, xNameAccess.getByName("Bibliography"));

 // simple way to connect
 XConnection con = xDS.getConnection("", "");
 // we need the XQueriesSupplier interface of the connection
 XQueriesSupplier xQuerySup = (XQueriesSupplier)UnoRuntime.queryInterface(
 XQueriesSupplier.class, con);

 // get container with com.sun.star.sdb.Query services
 XNameAccess xQDefs = xQuerySup.getQueries();
 // retrieve XColumnsSupplier of Query1
 XColumnsSupplier xColsSup = (XColumnsSupplier) UnoRuntime.queryInterface(
 XColumnsSupplier.class,xQDefs.getByName("Query1"));
 XNameAccess xCols = xColsSup.getColumns();
 // Access column property TypeName
 String aNames [] = xCols.getElementNames();
 for (int i=0;i<aNames.length;++i) {
 Object col = xCols.getByName(aNames[i]);
 XPropertySet xColumnProps = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, col);
 System.out.println(aNames[i] + " " + xColumnProps.getPropertyValue("TypeName"));
 }
}

898 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Column.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Column.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Column.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XColumnsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XColumnsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XColumnsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XRename.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XRename.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XRename.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XAppend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XAppend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XAppend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Container.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Container.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Container.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XDataDescriptorFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XDataDescriptorFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XDataDescriptorFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Query.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Query.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Query.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSettings.html#TextColor
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSettings.html#RowHeight
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSettings.html#FontDescriptor
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSettings.html#Order
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSettings.html#ApplyFilter
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSettings.html#Filter
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSettings.html

The SingleSelectQueryComposer

The service com.sun.star.sdb.SingleSelectQueryComposer is a tool that analyzes and
composes single select statement strings. It is a replacement for the service
com.sun.star.sdb.SQLQueryComposer. The query composer is divided into two parts. The first
part defines the analyzing of the single select statement. The service com.sun.star.sdb.Single-
SelectQueryAnalyzer hides the complexity of parsing and evaluating a single select statement,
and provides methods for accessing a statements filter, group by, having and order criteria, as well
as the corresponding select columns and tables. If supported, the service gives access to the param-
eters contained in the single select statement.

The second part of the query composer modifies the single select statement. The service
com.sun.star.sdb.SingleSelectQueryComposer extends the service
com.sun.star.sdb.SingleSelectQueryAnalyzer and provides methods for expanding a state-
ment with filter, group by, having and order criteria. To get the new, extended statement, the
methods from com.sun.star.sdb.SingleSelectQueryAnalyzer have to be used.

A query composer com.sun.star.sdb.SingleSelectQueryComposer is retrieved over the
com.sun.star.lang.XMultiServiceFactory interface of a com.sun.star.sdb.Connection:

com::sun::star::uno::XInterface createInstance([in] string aServiceSpecifier)

The interface com.sun.star.sdb.XSingleSelectQueryAnalyzer is used to supply the SingleSe-
lectQueryComposer with the necessary information. It has the following methods:

// provide SQL string
void setQuery([in] string command)
string getQuery()
// filter
string getFilter()
sequence< sequence< com::sun::star::beans::PropertyValue > > getStructuredFilter()
// GROUP BY
string getGroup();
com::sun::star::container::XIndexAccess getGroupColumns();

// HAVING
string getHavingClause();
sequence< sequence<com::sun::star::beans::PropertyValue> > getStructuredHavingFilter();

// control the ORDER BY clause
string getOrder()
com::sun::star::container::XIndexAccess getOrderColumns();

The example below shows a simple test case for the com.sun.star.sdb.SingleSelectQueryCom-
poser:
public void testSingleSelectQueryComposer() {
 log.println("testing SingleSelectQueryComposer");

try
{

 XNameAccess xNameAccess = (XNameAccess)UnoRuntime.queryInterface(XNameAccess.class,

((XMultiServiceFactory)param.getMSF()).createInstance("com.sun.star.sdb.DatabaseContext"));
// we use the first datasource
XDataSource xDS = (XDataSource)UnoRuntime.queryInterface(XDataSource.class,

xNameAccess.getByName("Bibliography"));

 log.println("check XMultiServiceFactory");
XMultiServiceFactory xConn =

(XMultiServiceFactory)UnoRuntime.queryInterface(XMultiServiceFactory.class, xDS.getConnection(new
String(),new String()));

 log.println("check getAvailableServiceNames");
String[] sServiceNames = xConn.getAvailableServiceNames();

 assure("Service 'SingleSelectQueryComposer' not
supported" ,sServiceNames[0].equals("com.sun.star.sdb.SingleSelectQueryComposer"));
 XSingleSelectQueryAnalyzer xQueryAna = (XSingleSelectQueryAnalyzer)
 UnoRuntime.queryInterface(XSingleSelectQueryAnalyzer.class,x
Conn.createInstance(sServiceNames[0]));

 log.println("check setQuery");
 xQueryAna.setQuery("SELECT * FROM \"biblio\"");

899

http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SingleSelectQueryComposer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SingleSelectQueryComposer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SingleSelectQueryComposer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SingleSelectQueryComposer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SingleSelectQueryComposer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SingleSelectQueryComposer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XSingleSelectQueryAnalyzer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XSingleSelectQueryAnalyzer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XSingleSelectQueryAnalyzer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Connection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Connection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Connection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SingleSelectQueryComposer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SingleSelectQueryComposer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SingleSelectQueryComposer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SingleSelectQueryAnalyzer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SingleSelectQueryAnalyzer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SingleSelectQueryAnalyzer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SingleSelectQueryAnalyzer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SingleSelectQueryAnalyzer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SingleSelectQueryAnalyzer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SingleSelectQueryComposer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SingleSelectQueryComposer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SingleSelectQueryComposer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SingleSelectQueryAnalyzer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SingleSelectQueryAnalyzer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SingleSelectQueryAnalyzer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SingleSelectQueryAnalyzer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SingleSelectQueryAnalyzer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SingleSelectQueryAnalyzer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SQLQueryComposer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SQLQueryComposer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SQLQueryComposer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SingleSelectQueryComposer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SingleSelectQueryComposer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SingleSelectQueryComposer.html

 assure("Query not identical", xQueryAna.getQuery().equals("SELECT * FROM \"biblio\""));

 // XSingleSelectQueryComposer
 XSingleSelectQueryComposer xComposer = (XSingleSelectQueryComposer)
 UnoRuntime.queryInterface(XSingleSelectQueryComposer.class,xQueryAna);

 log.println("check setFilter");
 // filter
 xComposer.setFilter("\"Identifier\" = 'BOR02b'");
 assure("Query not identical:" + xQueryAna.getFilter() + " -> \"Identifier\" = 'BOR02b'",
xQueryAna.getFilter().equals("\"Identifier\" = 'BOR02b'"));

 log.println("check setGroup");
 // group by
 xComposer.setGroup("\"Identifier\"");
 assure("Query not identical:" + xQueryAna.getGroup() + " -> \"Identifier\"",
xQueryAna.getGroup().equals("\"Identifier\""));

 log.println("check setOrder");
 // order by
 xComposer.setOrder("\"Identifier\"");
 assure("Query not identical:" + xQueryAna.getOrder() + " -> \"Identifier\"",
xQueryAna.getOrder().equals("\"Identifier\""));

 log.println("check setHavingClause");
 // having
 xComposer.setHavingClause("\"Identifier\" = 'BOR02b'");
 assure("Query not identical:" + xQueryAna.getHavingClause() + " -> \"Identifier\" =
'BOR02b'", xQueryAna.getHavingClause().equals("\"Identifier\" = 'BOR02b'"));

 log.println("check getOrderColumns");
 // order by columns
 XIndexAccess xOrderColumns = xQueryAna.getOrderColumns();
 assure("Order columns doesn't exist -> \"Identifier\"", xOrderColumns != null &&
xOrderColumns.getCount() == 1 && xOrderColumns.getByIndex(0) != null);

 log.println("check getGroupColumns");
 // group by columns
 XIndexAccess xGroupColumns = xQueryAna.getGroupColumns();
 assure("Group columns doesn't exist -> \"Identifier\"", xGroupColumns != null &&
xGroupColumns.getCount() == 1 && xGroupColumns.getByIndex(0) != null);

 log.println("check getColumns");
 // XColumnsSupplier
 XColumnsSupplier xSelectColumns = (XColumnsSupplier)
 UnoRuntime.queryInterface(XColumnsSupplier.class,xQueryAna);
 assure("Select columns doesn't exist", xSelectColumns != null &&
xSelectColumns.getColumns() != null && xSelectColumns.getColumns().getElementNames().length != 0);

 log.println("check structured filter");
 // structured filter
 xQueryAna.setQuery("SELECT \"Identifier\", \"Type\", \"Address\" FROM \"biblio\"
\"biblio\"");
 xComposer.setFilter(complexFilter);
 PropertyValue[][] aStructuredFilter = xQueryAna.getStructuredFilter();
 xComposer.setFilter("");
 xComposer.setStructuredFilter(aStructuredFilter);
 assure("Structured Filter not identical" , xQueryAna.getFilter().equals(complexFilter));

 log.println("check structured having");
 // structured having clause
 xComposer.setHavingClause(complexFilter);
 PropertyValue[][] aStructuredHaving = xQueryAna.getStructuredHavingFilter();
 xComposer.setHavingClause("");
 xComposer.setStructuredHavingFilter(aStructuredHaving);
 assure("Structured Having Clause not identical" ,
xQueryAna.getHavingClause().equals(complexFilter));

}
catch(Exception e)
{

 assure("Exception catched: " + e,false);
}

 }

In the previous code example, a query command is passed to setQuery(), then the criteria for
WHERE, and GROUP BY, and HAVING, and ORDER BY is added. The WHERE expressions are passed
without the WHERE keyword to setFilter(), and the method setOrder(), with comma-separated
ORDER BY columns or column numbers, is provided.

As an alternative, add WHERE conditions using appendFilterByColumn(). This method expects a
com.sun.star.sdb.DataColumn service providing the name and the value for the filter. Similarly,
the method appendOrderByColumn() adds columns that are used for ordering. The same applies

900 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataColumn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataColumn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataColumn.html

to appendGroupByColumn() and appendHavingFilterByColumn(). These columns can come from
the RowSet.

The Orignal property at the service com.sun.star.sdb.SingleSelectQueryAnalyzer holds the
original single select statement.

The methods getQuery(), getFilter() and getOrder() return the complete SELECT, WHERE and
ORDER BY part of the single select statement as a string.

The method getStructuredFilter() returns the filter split into OR levels. Within each OR level,
filters are provided as AND criteria, with the name of the column and the filter condition string.

The interface com.sun.star.sdbcx.XTablesSupplier provides access to the tables that are used
in the FROM part of the SQL-Statement:

com::sun::star::container::XNameAccess getTables()

The interface com.sun.star.sdbcx.XColumnsSupplier provides the selected columns, which are
listed after the SELECT keyword:

com::sun::star::container::XNameAccess getColumns()

The interface com.sun.star.sdb.XParametersSupplier provides the parameters, which are used
in the where clause:

com::sun::star::container::XIndexAccess getParameters()

The SQLQueryComposer

The service com.sun.star.sdb.SQLQueryComposer is a tool that composes SQL SELECT strings. It
hides the complexity of parsing and evaluating SQL statements, and provides methods to
configure an SQL statement with filtering and ordering criteria.

The com.sun.star.sdb.SQLQueryComposer service is deprecated. Though you can still use it in your
programs, you are encouraged to replace it with the SingleSelectQueryComposer service.

A query composer is retrieved over the com.sun.star.sdb.XSQLQueryComposerFactory interface
of a com.sun.star.sdb.Connection:

com::sun::star::sdb::XSQLQueryComposer createQueryComposer()

Its interface com.sun.star.sdb.XSQLQueryComposer is used to supply the SQLQueryComposer
with the necessary information. It has the following methods:

// provide SQL string
void setQuery([in] string command)
string getQuery()
string getComposedQuery()
// control the WHERE clause
void setFilter([in] string filter)
void appendFilterByColumn([in] com::sun::star::beans::XPropertySet column)
string getFilter()
sequence< sequence< com::sun::star::beans::PropertyValue > > getStructuredFilter()
// control the ORDER BY clause
void setOrder([in] string order)
void appendOrderByColumn([in] com::sun::star::beans::XPropertySet column, [in] boolean ascending)
string getOrder()

In the above method, a query command, such as "SELECT Identifier, Address, Author FROM
biblio" is passed to setQuery(), then the criteria for WHERE and ORDER BY is added. The WHERE
expressions are passed without the WHERE keyword to setFilter(), and the method setOrder()
with comma-separated ORDER BY columns or column numbers is provided.

As an alternative, add WHERE conditions using appendFilterByColumn(). This method expects a
com.sun.star.sdb.DataColumn service providing the name and the value for the filter. Similarly,

901

http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataColumn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataColumn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataColumn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XSQLQueryComposer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XSQLQueryComposer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XSQLQueryComposer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Connection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Connection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Connection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XSQLQueryComposerFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XSQLQueryComposerFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XSQLQueryComposerFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SingleSelectQueryComposer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SingleSelectQueryComposer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SingleSelectQueryComposer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SQLQueryComposer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SQLQueryComposer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SQLQueryComposer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SQLQueryComposer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SQLQueryComposer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SQLQueryComposer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XParametersSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XParametersSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XParametersSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XColumnsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XColumnsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XColumnsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XTablesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XTablesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XTablesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SingleSelectQueryAnalyzer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SingleSelectQueryAnalyzer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/SingleSelectQueryAnalyzer.html

the method appendOrderByColumn() adds columns that are used for ordering. These columns
could come from the RowSet.

Retrieve the resulting SQL string from getComposedQuery().

The methods getQuery(), getFilter() and getOrder() return the SELECT, WHERE and ORDER BY
part of the SQL command as a string.

The method getStructuredFilter() returns the filter split into OR levels. Within each OR level,
filters are provided as AND criteria with the name of the column and the filter condition string.

The following example prints the structured filter.
// prints the structured filter
public static void printStructeredFilter(XMultiServiceFactory _rMSF) throws com.sun.star.uno.Exception {
 XNameAccess xNameAccess = (XNameAccess)UnoRuntime.queryInterface(
 XNameAccess.class, _rMSF.createInstance("com.sun.star.sdb.DatabaseContext"));
 // we use the first datasource
 XDataSource xDS = (XDataSource)UnoRuntime.queryInterface(
 XDataSource.class, xNameAccess.getByName("Bibliography"));
 XConnection con = xDS.getConnection("", "");
 XQueriesSupplier xQuerySup = (XQueriesSupplier)UnoRuntime.queryInterface(
 XQueriesSupplier.class, con);

 XNameAccess xQDefs = xQuerySup.getQueries();

 XPropertySet xQuery = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class,xQDefs.getByName("Query1"));
 String sCommand = (String)xQuery.getPropertyValue("Command");

 XSQLQueryComposerFactory xQueryFac = (XSQLQueryComposerFactory) UnoRuntime.queryInterface(
 XSQLQueryComposerFactory.class, con);

 XSQLQueryComposer xQComposer = xQueryFac.createQueryComposer();
 xQComposer.setQuery(sCommand);

 PropertyValue aFilter [][] = xQComposer.getStructuredFilter();
 for (int i=0; i<aFilter.length;) {
 System.out.println("(");
 for (int j=0; j<aFilter[i].length; ++j)
 System.out.println("Name: " + aFilter[i][j].Name + " Value: " + aFilter[i][j].Value);
 System.out.println(")");
 ++i;
 if (i<aFilter.length)
 System.out.println(" OR ");
 }
 }
}

The interface com.sun.star.sdbcx.XTablesSupplier provides access to the tables that are used
in the �FROM� part of the SQL-Statement:

com::sun::star::container::XNameAccess getTables()

The interface com.sun.star.sdbcx.XColumnsSupplier provides the selected columns, which are
listed after the SELECT keyword:

com::sun::star::container::XNameAccess getColumns()

Forms and Reports
Since OpenOffice.org 2.0, you can not only link to documents that belong to a data source, but you
can store your forms and reports within the Open Office database file.

The interface com.sun.star.sdb.XFormDocumentsSupplier, supplied by the DataSource,
provides access to the forms stored in the database file of the data source. It has one method:

com::sun::star::container::XNameAccess getFormDocuments()

The interface com.sun.star.sdb.XReportDocumentsSupplier provides access to the reports
stored in the database file of the data source. It has one method:

com::sun::star::container::XNameAccess getReportDocuments()

902 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XReportDocumentsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XReportDocumentsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XReportDocumentsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XFormDocumentsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XFormDocumentsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XFormDocumentsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XColumnsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XColumnsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XColumnsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XTablesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XTablesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XTablesSupplier.html

The returned service is a com.sun.star.sdb.DocumentContainer. The DocumentContainer is not
only an XNameAccess, but a com.sun.star.container.XNameContainer, which means that new
forms or reports are added using insertByName() as described in the 2 First Steps chapter. To
support the creation of hierarchies, the service com.sun.star.sdb.DocumentContainer addition-
ally supplies the interfaces com.sun.star.container.XHierarchicalNameContainer and
com.sun.star.container.XHierarchicalNameAccess. The interfaces
com.sun.star.container.XHierarchicalNameContainer and
com.sun.star.container.XHierarchicalNameAccess can be used to create folder hierarchies
and to organize forms or reports in different sub folders.

Along with the name access, forms and reports are obtained through
com.sun.star.container.XIndexAccess, and com.sun.star.container.XEnumerationAc-
cess.

The interface com.sun.star.lang.XMultiServiceFactory is used to create new forms or reports.
The method createInstanceWithArguments() of XMultiServiceFactory creates a new document
definition. Whether the document is a form or a report depends on the container where this object
is inserted.

903

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XHierarchicalNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XHierarchicalNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XHierarchicalNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XHierarchicalNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XHierarchicalNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XHierarchicalNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XHierarchicalNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XHierarchicalNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XHierarchicalNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XHierarchicalNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XHierarchicalNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XHierarchicalNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DocumentContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DocumentContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DocumentContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DocumentContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DocumentContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DocumentContainer.html

The following are the allowed properties for the document definition:

904 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 13.5: Relation design of Reports and Forms

Arguments of createInstanceWithArguments method with com.sun.star.sdb.Document-
Definition as service name
PropertyValue Name: Name

Value: string ? Defines the name of the document.

PropertyValue Name: URL

Value: string ? Points to a extern document.

PropertyValue Name: ActiveConnection

Value: com.sun.star.sdbc.XConnection ? The connection to be used by the
document.

PropertyValue Name: EmbeddedObject

Value: com.sun.star.sdb.DocumentDefinition ? The document definition
that is to be copied.

To create a new document definition, only the Name and the ActiveConnection must be set. If an
existing document from the file system is to be included, the URL property must be filled with the
file URL. To copy document definitions, the EmbeddedObject must be filled with the document
definition to be copied.

The following are the allowed properties for the document container:

Arguments of createInstanceWithArguments method with com.sun.star.sdb.Forms or
com.sun.star.sdb.Reports as service name

PropertyValue Name: Name

Value: string ? Defines the name of the document.

PropertyValue Name: EmbeddedObject

Value: com.sun.star.sdb.DocumentDefinition or
com.sun.star.sdb.DocumentContainer ? The document definition (form or
report object) or a document container (form container or report container) which is
to be copied.

When creating a sub folder inside the forms or reports hierarchy, it is enough to set the Name
property. If the EmbeddedObject property is set, then it is copied. If the EmbeddedObject supports
the XHierarchicalNameAccess, the children are also copied. The EmbeddedObject can be a docu-
ment definition or a document container.

The service com.sun.star.sdb.DocumentContainer additionally defines the interface
com.sun.star.frame.XComponentLoader that is used to get access to the contained document
inside the DocumentDefinition and it has one method:

com::sun::star::lang::XComponent loadComponentFromURL(
 [in] string URL,
 [in] string TargetFrameName,
 [in] long SearchFlags,
 [in] sequence<com::sun::star::beans::PropertyValue> Arguments)
 raises(com::sun::star::io::IOException,
 com::sun::star::lang::IllegalArgumentException);

• URL: describes the name of the document definition to load,

• TargetFrameName: is not used.

• SearchFlags: is not used.

• Arguments:

• 1. PropertyValue

905

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DocumentContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DocumentContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DocumentContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XHierarchicalNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XHierarchicalNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XHierarchicalNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DocumentContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DocumentContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DocumentContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DocumentDefinition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DocumentDefinition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DocumentDefinition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Reports.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Reports.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Reports.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Forms.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Forms.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Forms.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DocumentDefinition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DocumentDefinition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DocumentDefinition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DocumentDefinition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DocumentDefinition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DocumentDefinition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DocumentDefinition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DocumentDefinition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DocumentDefinition.html

• Name = ActiveConnection

• Value = com.sun.star.sdbc.XConnection The connection that is used when
opening the text document.

• 2. PropertyValue

• Name = OpenMode

• Value = string, �open� if the document is to be opened in live mode (editing is
not possible), �openDesign� if the document is to be opened in design mode
(editing is possible)

 // opens a form in design mode
public static void openFormInDesignMode(XMultiServiceFactory _rMSF) throws

com.sun.star.uno.Exception
{

XNameAccess xNameAccess = (XNameAccess)UnoRuntime.queryInterface(XNameAccess.class,

_rMSF.createInstance("com.sun.star.sdb.DatabaseContext"));
// we use the first datasource
XDataSource xDS = (XDataSource)UnoRuntime.queryInterface(

 XDataSource.class, xNameAccess.getByName("Bibliography"));
XConnection con = xDS.getConnection("","");
XFormsSupplier xSup = (XFormsSupplier)UnoRuntime.queryInterface(XFormsSupplier.class,

xDS);

XNameAccess xForms = xSup.getFormDocuments();
if (xForms.hasByName("Form1")){

Object form = xForms.getByName("Form1"); // to hold ref
{

XComponentLoader loader =
(XComponentLoader)UnoRuntime.queryInterface(XComponentLoader.class, xForms);

PropertyValue[] args = new PropertyValue[]{PropertyValue("OpenMode",
0,"openDesign")

 ,PropertyValue("ActiveConnection",0,con)};
XComponent formdocument = loader.loadComponentFromURL("Form1","",

0,args);
}

}
}

The returned object is a com.sun.star.text.TextDocument service. For forms, see 14 Forms

The document definition object is the owner of the accessed com.sun.star.text.TextDocument. When
the document definition is released (last reference gone), the text document is also closed.

The returned form or report documents are com.sun.star.sdb.DocumentDefinition services.
These are the properties of the com.sun.star.sdb.DocumentDefinition service.

Properties of com.sun.star.sdb.DocumentDefinition
Name string ? Defines the name of the document.

AsTemplate boolean ? Indicates if the document is to be used as template, for example, if a
report is to be filled with data.

In addition to these properties, the com.sun.star.sdb.DocumentDefinition service offers a
com.sun.star.sdbcx.XRename to rename a DocumentDefinition.

Document Links
Each data source can maintain an arbitrary number of document links. The primary purpose of
this function is to provide a collection of database forms used with a database.

This feature is highly deprecated and should not be used anymore. Since OpenOffice.org 2.0, documents are
stored within a database file, and not only linked from a data source.

906 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XRename.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XRename.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XRename.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DocumentDefinition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DocumentDefinition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DocumentDefinition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DocumentDefinition.html#AsTemplate
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DocumentDefinition.html#Name
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DocumentDefinition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DocumentDefinition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DocumentDefinition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DocumentDefinition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DocumentDefinition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DocumentDefinition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DocumentDefinition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DocumentDefinition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DocumentDefinition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html

The links are available at the com.sun.star.sdb.XBookmarksSupplier interface of a data source
that has one method:

com::sun::star::container::XNameAccess getBookmarks()

The returned service is a com.sun.star.sdb.DefinitionContainer. The DefinitionContainer
is not only an XNameAccess, but a com.sun.star.container.XNameContainer, that is, new links
are added using insertByName() as described in the chapter 2 First Steps. Besides the name access,
links are obtained through com.sun.star.container.XIndexAccess and
com.sun.star.container.XEnumerationAccess.

The returned bookmarks are simple strings containing URLs. Usually forms are are stored at file:///
URLs. The following example adds a new document to the data source Bibliography:
public static void addDocumentLink(XMultiServiceFactory _rMSF) throws com.sun.star.uno.Exception {
 XNameAccess xNameAccess = (XNameAccess)UnoRuntime.queryInterface(
 XNameAccess.class,_rMSF.createInstance("com.sun.star.sdb.DatabaseContext"));

 // we use the predefined Bibliography data source
 XDataSource xDS = (XDataSource)UnoRuntime.queryInterface(
 XDataSource.class, xNameAccess.getByName("Bibliography"));

 // we need the XBookmarksSupplier interface of the data source
 XBookmarksSupplier xBookmarksSupplier = (XBookmarksSupplier)UnoRuntime.queryInterface(
 XBookmarksSupplier.class, xDS);

 // get container with bookmark URLs
 XNameAccess xBookmarks = xBookmarksSupplier.getBookmarks();
 XNameContainer xBookmarksContainer = (XNameContainer)UnoRuntime.queryInterface(
 XNameContainer.class, xBookmarks);

 // insert new link
 xBookmarksContainer.insertByName("MyLink", "file:///home/ada01/Form_Ada01_DSADMIN.Table1.odt");
}

To load a linked document, use the bookmark URL with the method loadComponentFromUrl() at
the com.sun.star.frame.XComponentLoader interface of the com.sun.star.frame.Desktop
singleton that is available at the global service manager. For details about the Desktop, see 7 Office
Development.

Tables and Columns
A com.sun.star.sdb.Table encapsulates tables in a OpenOffice.org API data source. The
com.sun.star.sdb.Table service changes the appearance of a table and its columns in the GUI,
and it contains read-only information about the table definition, such as the table name and type,
the schema and catalog name, and access privileges.

It is also possible to alter the table definition at the com.sun.star.sdb.Table service. This is
discussed in the section 13.4 Database Access - Database Design below.

The table related services in the database context are unable to access the data in a database table.
Use the com.sun.star.sdb.RowSet service, or to establish a connection to a database and use its
com.sun.star.sdb.XCommandPreparation interface to manipulate table data. For details, see the
sections 13.3.1 Database Access - Manipulating Data - The RowSet Service and 13.3.6 Database Access -
Manipulating Data - PreparedStatement From DataSource Queries.

The following illustration shows the relationship between the com.sun.star.sdb.Connection
and the Table objects it provides, and the services included in com.sun.star.sdb.Table.

907

http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Table.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Table.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Table.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Connection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Connection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Connection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XCommandPreparation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XCommandPreparation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XCommandPreparation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Table.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Table.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Table.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Table.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Table.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Table.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Table.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Table.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Table.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DefinitionContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DefinitionContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DefinitionContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XBookmarksSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XBookmarksSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XBookmarksSupplier.html

The com.sun.star.sdbcx.XTablesSupplier interface of a Connection supplies a
com.sun.star.sdbcx.Container of com.sun.star.sdb.Table services through its method
getTables(). The container administers Table services by name, index or as enumeration.

Just like queries, tables include the display properties specified in com.sun.star.sdb.DataSet-
tings:

908 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 13.6: Connection and Tables

http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Table.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Table.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Table.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Container.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Container.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Container.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XTablesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XTablesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XTablesSupplier.html

Properties of com.sun.star.sdb.DataSettings
Filter string ? An additional filter for the data object, WHERE clause syntax.

ApplyFilter boolean ? Indicates if the filter should be applied. The default is FALSE.

Order string ? Is an additional sort order definition.

FontDescriptor Struct com.sun.star.awt.FontDescriptor. Specifies the font attributes for
displayed data.

RowHeight long ? Specifies the height of a data row.

TextColor long ? Specifies the text color for displayed text in 0xAARRGGBB notation

Basic table information is included in the properties included with com.sun.star.sdbcx.Table:

Properties of com.sun.star.sdbcx.Table
Name [readonly] string ? Table name.

CatalogName [readonly] string ? Catalog name.

SchemaName [readonly] string ? Schema name.

Description [readonly] string ? Table Description, if supported by the driver.

Type [readonly] string ? Table type, possible values are TABLE, VIEW, SYSTEM
TABLE or an empty string if the driver does not support different table types.

The service com.sun.star.sdb.Table is an extension of the service com.sun.star.sdbcx.Table.
It introduces an additional property called Privileges. The Privileges property indicates the
actions the current user may carry out on the table.

Properties of com.sun.star.sdb.Table
Privileges [readonly] long, constants group com.sun.star.sdbcx.Privilege. The prop-

erty contains a bitwise AND combination of the following privileges:

• SELECT user can read the data.

• INSERT user can insert new data.

• UPDATE user can update data.

• DELETE user can delete data.

• READ user can read the structure of a definition object.

• CREATE user can create a definition object.

• ALTER user can alter an existing object.

• REFERENCE user can set foreign keys for a table.

• DROP user can drop a definition object.

The appearance of single columns in a table can be changed. The following illustration depicts the
service com.sun.star.sdb.Column and its relationship with the com.sun.star.sdb.Table
service.

909

http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Table.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Table.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Table.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Column.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Column.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Column.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Privilege.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Privilege.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Privilege.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Table.html#Privileges
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Table.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Table.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Table.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Table.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Table.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Table.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Table.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Table.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Table.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Table.html#Type
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Table.html#Description
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Table.html#SchemaName
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Table.html#CatalogName
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Table.html#Name
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Table.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Table.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Table.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Table.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Table.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Table.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSettings.html#TextColor
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSettings.html#RowHeight
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSettings.html#FontDescriptor
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSettings.html#Order
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSettings.html#ApplyFilter
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSettings.html#Filter
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSettings.html

For this purpose, com.sun.star.sdb.Table supports the interface com.sun.star.sdbcx.XCol-
umnsSupplier. Its method getColumns() returns a com.sun.star.sdbcx.Container with the
additional column-related interface com.sun.star.sdbc.XColumnLocate that is useful to get the
column number for a certain column in a table:

long findColumn([in] string columnName)

The service com.sun.star.sdb.Column combines com.sun.star.sdbcx.Column and the
com.sun.star.sdb.ColumnSettings to form a column service with the opportunity to alter the
visual appearance of a column.

910 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 13.7: Table and Table Column

http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ColumnSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ColumnSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ColumnSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Column.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Column.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Column.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XColumnLocate.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XColumnLocate.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XColumnLocate.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Container.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Container.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Container.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XColumnsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XColumnsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XColumnsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XColumnsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XColumnsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XColumnsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Table.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Table.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Table.html

Properties of com.sun.star.sdb.ColumnSettings
FormatKey long ? Contains the index of the number format that is used for the column.

The proper value can be determined using the com.sun.star.util.XNumber-
Formatter interface. If the value is void, a default number format is used
according to the data type of the column.

Align long ? Specifies the alignment of column text. Possible values are:

0: left
1: center
2: right

If the value is void, a default alignment is used according to the data type of the
column.

Width long ? Specifies the width of the column displayed in a grid. The unit is 10th mm.
If the value is void, a default width should be used according to the label of the
column.

Position long ? The ordinal position of the column within a grid. If the value is void, the
default position should be used according to their order of appearance in
com.sun.star.sdbc.XResultSetMetaData.

Hidden boolean ? Determines if the column should be displayed.

ControlModel com.sun.star.beans.XPropertySet. May contain a control model that
defines the settings for layout. The default is NULL.

HelpText string ? Describes an optional help text that can be used by UI components when
representing this column.

ControlDefault string ? Contains the default value that should be displayed by a control when
moving to a new row.

The Properties of com.sun.star.sdbcx.Column are readonly and can be used for information
purposes:

Properties of com.sun.star.sdbcx.Column
Name [readonly] string ? The name of the column.

Type [readonly] long ? The com.sun.star.sdbc.DataType of the column.

TypeName [readonly] string ? The type name used by the database. If the column type is
a user-defined type, then a fully-qualified type name is returned. May be empty.

Precision [readonly] long ? The number of decimal digits or chars.

Scale [readonly] long ? Number of digits after the decimal point.

IsNullable [readonly] long, constants group com.sun.star.sdbc.ColumnValue. Indi-
cates if values may be NULL in the designated column. Possible values are:

NULLABLE: column allows NULL values.
NO_NULLS: column does not allow NULL values.
NULLABLE_UNKNOWN : it is unknown whether or not NULL is allowed

IsAutoIncrement [readonly] boolean ? Indicates if the column is automatically numbered.

IsCurrency [readonly] boolean ? Indicates if the column is a cash value.

IsRowVersion [readonly] boolean ? Indicates whether the column contains a type of time or
date stamp used to track updates.

Description [readonly] string ? Keeps a description of the object.

DefaultValue [readonly] string ? Keeps a default value for a column, and is provided as a
string.

911

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html#DefaultValue
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html#Description
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html#IsRowVersion
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html#IsCurrency
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html#IsAutoIncrement
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ColumnValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ColumnValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ColumnValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html#IsNullable
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html#Scale
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html#Precision
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html#TypeName
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/DataType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/DataType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/DataType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html#Type
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html#Name
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html#Name
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html#Name
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ColumnSettings.html#ControlDefault
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ColumnSettings.html#HelpText
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ColumnSettings.html#ControlModel
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ColumnSettings.html#Hidden
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XResultSetMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XResultSetMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XResultSetMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ColumnSettings.html#Position
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ColumnSettings.html#Width
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ColumnSettings.html#Align
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ColumnSettings.html#FormatKey
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ColumnSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ColumnSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ColumnSettings.html

13.2.3 Connections

Understanding Connections
A connection is an open communication channel to a database. A connection is required to work
with data in a database or with a database definition. Connections are encapsulated in Connection
objects in the OpenOffice.org API. There are several possibilities to get a Connection:

• Connect to a data source that has already been set up in the database context of OpenOffice.org
API.

• Use the driver manager or a specific driver to connect to a database without using an existing
data source from the database context.

• Get a connection from the connection pool maintained by OpenOffice.org API.

• Reuse the connection of a database form which is currently open in the GUI.

With the above possibilities, a com.sun.star.sdb.Connection is made or at least a
com.sun.star.sdbc.Connection:

The service com.sun.star.sdb.Connection has three main functions: communication, data defi-
nition and operation on the OpenOffice.org API application level. The service:

912 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 13.8: com.sun.star.sdb.Connection

http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Connection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Connection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Connection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Connection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Connection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Connection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/Connection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/Connection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/Connection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Connection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Connection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Connection.html

• Handles the communication with a database including statement execution, transactions, data-
base metadata and warnings through the simple connection service of the SDBC layer
com.sun.star.sdbc.Connection.

• Handles database definition tasks, primarily table definitions, through the service
com.sun.star.sdbcx.DatabaseDefinition. Optionally, it manages views, users and groups.

• Organizes query definitions on the application level and provides a method to open queries
and tables defined in OpenOffice.org API. Query definitions are organized by the interfaces
com.sun.star.sdb.XQueriesSupplier and com.sun.star.sdb.XSQLQueryComposerFac-
tory. Queries and tables can be opened using com.sun.star.sdb.XCommandPreparation. In
case the underlying data source is needed, com.sun.star.container.XChild provides the
parent data source. This is useful when using an existing connection, for instance, of a database
form, to act upon its data source.

Connections are central to all database activities. The connection interfaces are discussed later.

Communication

The main interface of com.sun.star.sdbc.Connection is com.sun.star.sdbc.XConnection. Its
methods control almost every aspect of communication with a database management system:

// general connection control
void close()
boolean isClosed()
void setReadOnly([in] boolean readOnly)
boolean isReadOnly()
// commands and statements
// - generic SQL statement
// - prepared statement
// - stored procedure call
com::sun::star::sdbc::XStatement createStatement()
com::sun::star::sdbc::XPreparedStatement prepareStatement([in] string sql)
com::sun::star::sdbc::XPreparedStatement prepareCall([in] string sql)
string nativeSQL([in] string sql)
// transactions
void setTransactionIsolation([in] long level)
long getTransactionIsolation()
void setAutoCommit([in] boolean autoCommit)
boolean getAutoCommit()
void commit()
void rollback()
// database metadata
com::sun::star::sdbc::XDatabaseMetaData getMetaData()
// data type mapping (driver dependent)
com::sun::star::container::XNameAccess getTypeMap()
void setTypeMap([in] com::sun::star::container::XNameAccess typeMap)
// catalog (subspace in a database)
void setCatalog([in] string catalog)
string getCatalog()

The use of commands and statements are explained in the sections 13.3 Database Access - Manipu-
lating Data and 13.4.2 Database Access - Database Design - Using DDL to change the Database Design.
Transactions are discussed in 13.5.1 Database Access - Using DBMS Features - Transaction Handling.
Database metadata are covered in 13.4.1 Database Access - Database Design - Retrieving Information
about a Database.

The com.sun.star.sdbc.XWarningsSupplier is a simple interface to handle SQL warnings:
any getWarnings()
void clearWarnings()

The exception com.sun.star.sdbc.SQLWarning is usually not thrown, rather it is transported
silently to objects supporting com.sun.star.sdbc.XWarningsSupplier. Refer to the API reference
for more information about SQL warnings.

913

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XWarningsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XWarningsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XWarningsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/SQLWarning.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/SQLWarning.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/SQLWarning.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XWarningsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XWarningsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XWarningsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/Connection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/Connection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/Connection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XCommandPreparation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XCommandPreparation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XCommandPreparation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XSQLQueryComposerFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XSQLQueryComposerFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XSQLQueryComposerFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XSQLQueryComposerFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XSQLQueryComposerFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XSQLQueryComposerFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XQueriesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XQueriesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XQueriesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/DatabaseDefinition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/DatabaseDefinition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/DatabaseDefinition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/Connection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/Connection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/Connection.html

Data Definition

The interfaces of com.sun.star.sdbcx.DatabaseDefinition are explained in the section 13.4.3
Database Access - Database Design - Using SDBCX to Access the Database Design.

Operation on Application Level

Handling of query definitions through com.sun.star.sdb.XQueriesSupplier and
com.sun.star.sdb.XSQLQueryComposerFactory is discussed in the section 13.2.2 Database Access
- Data Sources in OpenOffice.org API - DataSources - Queries .

Through com.sun.star.sdb.XCommandPreparation get the necessary statement objects to open
predefined queries and tables in a data source, and execute arbitrary SQL statements.

com::sun::star::sdbc::XPreparedStatement prepareCommand([in] string command, [in] long commandType)

If the value of the parameter com.sun.star.sdb.CommandType is TABLE or QUERY, pass a table
name or query name that exists in the com.sun.star.sdb.DataSource of the connection. The
value COMMAND makes prepareCommand() expect an SQL string. The result is a prepared statement
object that can be parameterized and executed. For details and an example, refer to section 13.3.6
Database Access - Manipulating Data - PreparedStatement From DataSource Queries.

The interface com.sun.star.container.XChild accesses the parent com.sun.star.sdb.Data-
Source of the connection, if available.

com::sun::star::uno::XInterface getParent()
void setParent([in] com::sun::star::uno::XInterface Parent)

Connecting Through A DataSource

Data sources in the database context of OpenOffice.org API offer two methods to establish a
connection, a non-interactive and an interactive procedure. Use the com.sun.star.sdbc.XData-
Source interface to connect. It consists of:

// establish connection
com::sun::star::sdbc::XConnection getConnection([in] string user, [in] string password)
// timeout for connection failure
void setLoginTimeout([in] long seconds)
long getLoginTimeout()

If a database does not support logins, pass empty strings to getConnection(). For instance, use
getConnection() against dBase data sources like Bibliography:
 XNameAccess xNameAccess = (XNameAccess)UnoRuntime.queryInterface(
 XNameAccess.class, _rMSF.createInstance("com.sun.star.sdb.DatabaseContext"));

 // we use the Bibliography data source
 XDataSource xDS = (XDataSource)UnoRuntime.queryInterface(
 XDataSource.class, xNameAccess.getByName("Bibliography"));

 // simple way to connect
 XConnection xConnection = xDS.getConnection("", "");

However if the database expects a login procedure, hard code the user and password, although
this is not advisable. Data sources support an advanced login concept. Their interface
com.sun.star.sdb.XCompletedConnection starts an interactive login, if necessary:

com::sun::star::sdbc::XConnection connectWithCompletion(
[in] com::sun::star::task::XInteractionHandler handler)

When you call connectWithCompletion(), OpenOffice.org API shows the common login dialog to
the user if the data source property IsPasswordRequired is true. The login dialog is part of the
com.sun.star.sdb.InteractionHandler provided by the global service factory.
// logs into a database and returns a connection
// expects a reference to the global service manager
com.sun.star.sdbc.XConnection logon(XMultiServiceFactory _rMSF) throws com.sun.star.uno.Exception {

 // retrieve the DatabaseContext and get its com.sun.star.container.XNameAccess interface

914 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/InteractionHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/InteractionHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/InteractionHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XCompletedConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XCompletedConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XCompletedConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDataSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDataSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDataSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDataSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDataSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDataSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/CommandType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/CommandType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/CommandType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XCommandPreparation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XCommandPreparation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XCommandPreparation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XSQLQueryComposerFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XSQLQueryComposerFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XSQLQueryComposerFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XQueriesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XQueriesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XQueriesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/DatabaseDefinition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/DatabaseDefinition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/DatabaseDefinition.html

 XNameAccess xNameAccess = (XNameAccess)UnoRuntime.queryInterface(
 XNameAccess.class, _rMSF.createInstance("com.sun.star.sdb.DatabaseContext"));

 // get an Adabas D data source Ada01 generated in the GUI
 Object dataSource = xNameAccess.getByName("Ada01");

 // create a com.sun.star.sdb.InteractionHandler and get its XInteractionHandler interface
 Object interactionHandler = _rMSF.createInstance("com.sun.star.sdb.InteractionHandler");
 XInteractionHandler xInteractionHandler = (XInteractionHandler)UnoRuntime.queryInterface(
 XInteractionHandler.class, interactionHandler);

 // query for the XCompletedConnection interface of the data source
 XCompletedConnection xCompletedConnection = (XCompletedConnection)UnoRuntime.queryInterface(
 XCompletedConnection.class, dataSource);

 // connect with interactive login
 XConnection xConnection = xCompletedConnection.connectWithCompletion(xInteractionHandler);
 return XConnection;
}

Connecting Using the DriverManager and a Database URL
The database context and establishing connections to a database even if there is no data source for
it in OpenOffice.org API can be avoided.

To create a connection ask the driver manager for it. The com.sun.star.sdbc.DriverManager
manages database drivers. The methods of its interface com.sun.star.sdbc.XDriverManager are
used to connect to a database using a database URL:

// establish connection
com::sun::star::sdbc::XConnection getConnection([in] string url)
com::sun::star::sdbc::XConnection getConnectionWithInfo([in] string url,

 [in] sequence < com::sun::star::beans::PropertyValue > info)

// timeout for connection failure
void setLoginTimeout([in] long seconds)
long getLoginTimeout()

Additionally, the driver manager enumerates all available drivers, and is used to register and
deregister drivers. A URL that identifies a driver and contains information about the database to
connect to must be known. The DriverManager chooses the first registered driver that accepts this
URL. The following line of code illustrates it generally:
Connection xConnection = DriverManager.getConnection(url);

The structure of the URL consists of a protocol name, followed by the driver specific sub-protocol.
The data source administration dialog shows the latest supported protocols. Some protocols are
platform dependent. For example, ADO is only supported on Windows.

The URLs and conditions for the various drivers are explained in section 13.2.3 Database Access -
Data Sources in OpenOffice.org API - Connections - Driver Specifics below.

Frequently a connection needs additional information, such as a user name, password or character
set. Use the method getConnectionWithInfo() to provide this information. The method getCon-
nectionWithInfo() takes a sequence of com.sun.star.beans.PropertyValue structs. Usually
user and password are supported. For other connection info properties, refer to the section 13.2.3
Database Access - Data Sources in OpenOffice.org API - Connections - Driver Specifics. (Database/Code-
Samples.java)
 // create the DriverManager
 Object driverManager = xMultiServiceFactory.createInstance("com.sun.star.sdbc.DriverManager");

 // query for the interface XDriverManager
 com.sun.star.sdbc.XDriverManager xDriverManager;

 xDriverManager = (XDriverManager)UnoRuntime.queryInterface(
 XDriverManager.class, driverManager);

 if (xDriverManager != null) {
 // first create the database URL
 String adabasURL = "sdbc:adabas::MYDB0";

915

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDriverManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDriverManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDriverManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/DriverManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/DriverManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/DriverManager.html

 // create the necessary sequence of PropertyValue structs for user and password
 com.sun.star.beans.PropertyValue [] adabasProps = new com.sun.star.beans.PropertyValue[] {
 new com.sun.star.beans.PropertyValue("user", 0, "Scott",
 com.sun.star.beans.PropertyState.DIRECT_VALUE),
 new com.sun.star.beans.PropertyValue("password", 0, "huutsch",
 com.sun.star.beans.PropertyState.DIRECT_VALUE)
 };

 // now create a connection to Adabas
 XConnection xConnection = xDriverManager.getConnectionWithInfo(adabasURL, adabasProps);
 if (adabasConnection != null) {
 System.out.println("Connection was created!");

 // now we dispose the connection to close it
 XComponent xComponent = (XComponent)UnoRuntime.queryInterface(
 XComponent.class, xConnection);

 if (xComponent != null) {
 // connection must be disposed to avoid memory leaks
 xComponent.dispose();
 System.out.println("Connection disposed!");
 }
 } else {
 System.out.println("Connection could not be created!");
 }
 }

Connecting Through a Specific Driver
The second method to create an independent, data-source connection is to use a particular driver
implementation, such as writing a driver. There are also several implementations. Create an
instance of the driver and ask it for a connection to decide what driver is used: (Database/CodeSa-
mples.java)
 // create the Driver using the implementation name
 Object aDriver = xMultiServiceFactory.createInstance("com.sun.star.comp.sdbcx.adabas.ODriver");
 // query for the XDriver interface
 com.sun.star.sdbc.XDriver xDriver;
 xDriver = (XDriver)UnoRuntime.queryInterface(XDriver.class, aDriver);

 if (xDriver != null) {
 // first create the needed url
 String adabasURL = "sdbc:adabas::MYDB0";

 // second create the necessary properties
 com.sun.star.beans.PropertyValue [] adabasProps = new com.sun.star.beans.PropertyValue[] {

 new com.sun.star.beans.PropertyValue("user", 0, "test1",
com.sun.star.beans.PropertyState.DIRECT_VALUE),

 new com.sun.star.beans.PropertyValue("password", 0, "test1",
com.sun.star.beans.PropertyState.DIRECT_VALUE)

 };

 // now create a connection to adabas
 XConnection adabasConnection = xDriver.connect(adabasURL,adabasProps);

 if (xConnection != null) {
 System.out.println("Connection was created!");
 // now we dispose the connection to close it
 XComponent xComponent = (XComponent)UnoRuntime.queryInterface(XComponent.class,
xConnection);
 if (xComponent != null) {
 xComponent.dispose();
 System.out.println("Connection disposed!");
 }
 } else {
 System.out.println("Connection could not be created!");
 }
 }

Driver Specifics
Currently, there are nine driver implementations. Some support only the simple
com.sun.star.sdbc.Driver service, some additionally the more extended service from

916 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/Driver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/Driver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/Driver.html

com.sun.star.sdbcx.Driver that includes the support for tables, columns, keys, indexes, groups
and users. This section describes the capabilities and the missing functionality in some database
drivers. Below is a list of all available drivers.

Driver URL Solaris Linux Windows

JDBC jdbc:subprotocol: ● ● ●

ODBC 3.5 sdbc:odbc:datasource name ● ● ●

Adabas D sdbc:adabas:database name ● ● ●

ADO sdbc:ado:ADO specific ●

dBase sdbc:dbase:Location of
folder or file

● ● ●

Flat file format (csv) sdbc:flat:Location of folder
or file

● ● ●

OpenOffice.org Calc sdbc:calc:Location of
OpenOffice.org Calc file

● ● ●

Mozilla addressbook
(Mozilla, Outlook, Outlook
Express and LDAP)

sdbc:address:Kind of
addressbook

● ● ●

Embedded HSQLDB sdbc:embedded:hsqldb ● ● ●

The SDBC Driver for JDBC

The SDBC driver for JDBC is a mapping from SDBC API calls to the JDBC API, and vice versa.
Basically, this driver is a direct bridge to JDBC. The SDBC driver for JDBC requires a special prop-
erty called JavaDriverClass to know which JDBC driver should be used. The expected value of
this property should be the complete class name of the JDBC driver. The following code snippet
uses a MySQL JDBC driver to connect.
 // first create the needed url
 String url = "jdbc:mysql://localhost:3306/TestTables";

 // second create the necessary properties
 com.sun.star.beans.PropertyValue [] props = new com.sun.star.beans.PropertyValue[] {
 new com.sun.star.beans.PropertyValue("user", 0, "test1",
 com.sun.star.beans.PropertyState.DIRECT_VALUE),
 new com.sun.star.beans.PropertyValue("password", 0, "test1",
 com.sun.star.beans.PropertyState.DIRECT_VALUE),
 new com.sun.star.beans.PropertyValue("JavaDriverClass", 0, "org.gjt.mm.mysql.Driver",
 com.sun.star.beans.PropertyState.DIRECT_VALUE)
 };

 // now create a connection to adabas
 xConnection = xDriverManager.getConnectionWithInfo(url, props);

Other properties that require setting during the connect process depend on the JDBC driver that is
used.

The SDBC Driver for ODBC

This driver is comparable to the SDBC driver for JDBC described above. It maps the ODBC func-
tionality to the SDBC API, but not completely. However, some functionality the SDBC API
supports may not work with ODBC, because an ODBC driver may not support this feature and
throws an SQL Exception to indicate this. To create a new connection, the driver uses the following
URL format:

sdbc:odbc: Name of a datasource defined in the system

917

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Driver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Driver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Driver.html

Additionally, this driver supports several properties through the service
com.sun.star.sdbc.ODBCConnectionProperties. These properties are set while creating a
connection:

Properties of com.sun.star.sdbc.ODBCConnectionProperties
Silent boolean ? If True,the ODBC driver will not be asked for completion. This

may happen if the user name and password are already known. Otherwise
False.

Timeout int ? A value corresponding to the number of seconds to wait for any request
on the connection to complete before returning to the application.

UseCatalog boolean ? If false,the SDBC driver should not use catalogs. Otherwise
True.

SystemDriverSettings string ? Settings that are submitted to the ODBC driver directly.

Charset string ? Converts data from the ODBC driver into the corresponding text
encoding. The value must be a value of the list from www.iana.org/assign-
ments/character-sets. Only a few character sets are supported

ParameterNameSubsti-
tution

boolean ? If True,all occurrences of �?� as a parameter name will be replaced
by a valid parameter name. This is for some drivers that mix the order of the
parameters.

The SDBC Driver for Adabas D

This driver was the first driver to support the extended service com.sun.star.sdbcx.Driver, that
offers access to the structure of a database. The Adabas D driver implementation extends the
Adabas ODBC driver through knowledge about database structure. The URL should look like this:

sdbc:adabas::DATABASENAME

or
sdbc:adabas:HOST:DATABASENAME

To find the correct database name of an Adabas D database in the OpenOffice.org API, create a
new database file and select Adabas D as type. On the next page you can browse for valid local
database names. Find the database folders in sql/wrk in the Adabas installation folder.

The SDBC Driver for ADO

The SDBC driver for ADO supports the service com.sun.star.sdbcx.Driver. ADO does not
allow modification on the database structure unless the database is a Jet Engine. Information about
the limitations for ADO are available on the Internet. The URL for SDBC driver for ADO looks like
this:

sdbc:ado:<ADO specific connection string>

Possible connection strings are:

– sdbc:ado:PROVIDER=Microsoft.Jet.OLEDB.4.0;DATA SOURCE=c:\northwind.mdb
– sdbc:ado:Provider=msdaora;data source=testdb

The SDBC Driver for dBase

The dBase driver is one of the basic driver implementations and supports the service
com.sun.star.sdbcx.Driver. This driver has a number of limitations concerning its abilities to
modify the database structure and the extent of its SQL support. The URL for this driver is:

sdbc:dbase:<folder or file url>

918 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Driver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Driver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Driver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Driver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Driver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Driver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Driver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Driver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Driver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ODBCConnectionProperties.html#ParameterNameSubstitution
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ODBCConnectionProperties.html#ParameterNameSubstitution
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ODBCConnectionProperties.html#Charset
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ODBCConnectionProperties.html#SystemDriverSettings
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ODBCConnectionProperties.html#UseCatalog
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ODBCConnectionProperties.html#Timeout
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ODBCConnectionProperties.html#Silent
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ODBCConnectionProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ODBCConnectionProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ODBCConnectionProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ODBCConnectionProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ODBCConnectionProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ODBCConnectionProperties.html

For instance:
sdbc:dbase:file:///d:/user/database/biblio

Similar to the SDBC driver for ODBC, this driver supports the connection info property CharSet to
set different text encodings. The second possible property is ShowDeleted. When it is set to true,
deleted rows in a table are still visible. In this state, it is not allowed to delete rows.

The following table shows the shortcomings of the SDBCX part of the dBase driver.

Object create alter

table ● ●

column ● ●

key

index ● ●

group

user

The driver has the following conditions in its support for SQL statements:

– The SELECT statement can not contain more than one table in the FROM clause.

– For comparisons the following operators are valid: =, <, >, <>, >=, <=, LIKE, NOT LIKE, IS NULL,
IS NOT NULL.

– Parameters are allowed, but must be denoted with a leading colon (SELECT * FROM biblio
WHERE Author LIKE :MyParam) or with a single question mark (SELECT * FROM biblio
WHERE Author LIKE ?).

– The driver provides a ResultSet that supports bookmarks to records.

– The first instance of OpenOffice.org API that accesses a dbase database locks the files for exclu-
sive writing. The lock is never released until the OpenOffice.org API instance, which has
obtained the exclusive write access, is closed. This severely limits the access to a dBase database
in a network.

The SDBC Driver for Flat File Formats

This driver is another basic driver available in OpenOffice.org API. It can only be used to fetch
data from existing text files, and no modifications are allowed, that is, the whole connection is
read-only. The URL for this driver is:

sdbc:flat:<folder or file url >

For instance:
sdbc:file:file:///d:/user/database/textbase1

Properties that can be set while creating a new connection.

919

Properties of com.sun.star.sdbc.FLATConnectionProperties
Extension string ? Flat file formats are formats such as:

• comma separated values format (*.csv)

• sdf format (*.sdf)

• text file format (*.txt)

Charset string ? Converts data from the ODBC driver into the corresponding text encoding.
The value must be a value of the list from www.iana.org/assignments/character-sets.
Only some are supported, but a new one can be added.

FixedLength boolean ? If true, all occurrences of "?" as a parameter name will be replaced by a
valid parameter name. This is necessary, because some drivers mix the order of the
parameters.

HeaderLine boolean ? If true, the first line is used for column generation.

FieldDelimiter string ? Defines a character which should be used to separate fields and columns.

StringDelimiter string ? Character to identify strings.

DecimalDelim-
iter

string ? Character to identify decimal values.

ThousandDelim-
iter

string ? Character to identify the thousand separator. Must be different from Deci-
malDelimiter.

The SDBC Driver for OpenOffice.org Calc Files

This driver is a basic driver for OpenOffice.org Calc files. It can only be used to fetch data from
existing tables and no modifications are allowed. The connection is read-only. The URL for this
driver is:

sdbc:calc:<file url to a OpenOffice.org Calc file or any other extension known by this application>

For instance:
sdbc:calc:file:///d:/calcfile.odt

The SDBC driver for address books

This driver allows OpenOffice.org API to connect to a system addressbook available on the local
machine. It supports four different kinds of addressbooks.

Addressbook Windows Unix URL

Mozilla ● ● sdbc:address:mozilla

LDAP ● ● sdbc:address:ldap

Outlook Express ● sdbc:address:outlookexp

Outlook ● sdbc:address:outlook

All address book variants support read-only access. The driver itself is a wrapper for the Mozilla
API.

The SDBC driver for embedded HSQL databases

This driver allows to connect to a database document which contains an embedded HSQL data-
base. Since HSQLDB is a Java database, it requires a Java Runtime Environment to operate.

920 OpenOffice.org 2.3 Developer's Guide • June 2007

http://www.hsqldb.org/
http://www.hsqldb.org/
http://www.hsqldb.org/
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/FLATConnectionProperties.html#ThousandDelimiter
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/FLATConnectionProperties.html#ThousandDelimiter
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/FLATConnectionProperties.html#DecimalDelimiter
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/FLATConnectionProperties.html#DecimalDelimiter
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/FLATConnectionProperties.html#StringDelimiter
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/FLATConnectionProperties.html#FieldDelimiter
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/FLATConnectionProperties.html#HeaderLine
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/FLATConnectionProperties.html#FixedLength
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/FILEConnectionProperties.html#Charset
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/FLATConnectionProperties.html#Extension
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/FLATConnectionProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/FLATConnectionProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/FLATConnectionProperties.html

Connection Pooling
In a basic implementation, there is a 1:1 relationship between the com.sun.star.sdb.Connection
object used by the client and physical database connection. When the Connection object is closed,
the physical connection is dropped, thus the overhead of opening, initializing, and closing the
physical connection is incurred for each client session. A connection pool solves this problem by
maintaining a cache of physical database connections that can be reused across client sessions.
Connection pooling improves performance and scalability, particularly in a three-tier environment
where multiple clients can share a smaller number of physical database connections. In
OpenOffice.org API, the connection pooling is part of a special service called the ConnectionPool.
This service manages newly created connections and reuses old ones when they are currently
unused.

The algorithm used to manage the connection pool is implementation-specific and varies between
application servers. The application server provides its clients with an implementation of the
com.sun.star.sdbc.XPooledConnection interface that makes connection pooling transparent to
the client. As a result, the client gets better performance and scalability. When an application is
finished using a connection, it closes the logical connection using close()at the connection inter-
face com.sun.star.sdbc.XConnection. This closes the logical connection, but not the physical
connection. Instead, the physical connection is returned to the pool so that it can be reused.
Connection pooling is completely transparent to the client: A client obtains a pooled connection
from the com.sun.star.sdbc.ConnectionPool service calling getConnectionWithInfo() at its
interface com.sun.star.sdbc.XDriverManager and uses it just the same way it obtains and uses a
non-pooled connection.

The following sequence of steps outlines what happens when an SDBC client requests a connection
from a ConnectionPool object:

1. The client obtains an instance of the com.sun.star.sdbc.ConnectionPool from the global
service manager and calls the same methods on the ConnectionPool object as on the Driver-
Manager.

2. The application server providing the ConnectionPool implementation checks its connection
pool for a suitable PooledConnection object, a physical database connection, that is available.
Determining the suitability of a given PooledConnection object includes matching the client�s
user authentication information or application type, as well as using other implementation-
specific criteria. The lookup method and other methods associated with managing the connec-
tion pool are specific to the application server.

3. If there are no suitable PooledConnection objects available, the application server creates a
new physical connection and returns the PooledConnection. The ConnectionPool is not
driver specific. It is implemented in a service called com.sun.star.sdbc.ConnectionPool.

4. Regardless if the PooledConnection has been retrieved from the pool or created, the applica-
tion server does internal recording to indicate that the physical connection is now in use.

5. The application server calls the method PooledConnection.getConnection() to get a logical
Connection object. This logical Connection object is a handle to a physical PooledConnection
object. This handle is returned by the XDriverManager method
getConnectionWithInfo()when connection pooling is in effect.

6. The logical Connection object is returned to the SDBC client that uses the same Connection API
as in the standard situation without a ConnectionPool. Note that the underlying physical
connection cannot be reused until the client calls the XConnection method close().

In OpenOffice.org API, connection pooling is enabled by default and can be controlled through
Tools � Options � OpenOffice.org Database . If a connection from a data source defined in
OpenOffice.org API is returned, this setting applies to your connection, as well. To take advantage

921

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ConnectionPool.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ConnectionPool.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ConnectionPool.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ConnectionPool.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ConnectionPool.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ConnectionPool.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDriverManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDriverManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDriverManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ConnectionPool.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ConnectionPool.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ConnectionPool.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XPooledConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XPooledConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XPooledConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Connection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Connection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/Connection.html

of the pool independently of OpenOffice.org API data sources, use the
com.sun.star.sdbc.ConnectionPool instead of the DriverManager.

Piggyback Connections
Occasionally, there may already be a connected database row set and you want to use its connec-
tion. For instance, if a user has opened a database form. To access the same database as the row set
of the form, use the connection the form is working with, not opening a second connection. For this
purpose, the com.sun.star.sdb.RowSet has a property ActiveConnection that returns a connec-
tion.

Be aware of the fact that the row set owns the connection it uses. That means, once the row set is deleted, the
connection is no longer valid.

13.3 Manipulating Data
There are two possibilities to manipulate data in a database with the OpenOffice.org database
connectivity.

• Use the com.sun.star.sdb.RowSet service that allows using data sources defined in
OpenOffice.org through their tables or queries, or through SQL commands.

• Communicate with a database directly using a Statement object.

This section describes both possibilities.

13.3.1 The RowSet Service
The service com.sun.star.sdb.RowSet is a high-level client side row set that retrieves its data
from a database table, a query, an SQL command or a row set reader, which does not have to
support SQLl. It is a com.sun.star.sdb.ResultSet.

The connection of the row set is a named DataSource, the URL of a data access component, or a
previously instantiated connection. Depending on the property ResultSetConcurrency, the row
set caches all data or uses an optimized method to retrieve data, such as refreshing rows by their
keys or their bookmarks. In addition, it provides events for row set navigation and row set modifi-
cations to approve the actions, and to react upon them.

The row set can be in two different states, before and after execution. Before execution, set all the
properties the row set needs for its work. After calling execute() on the RowSet, move through
the result set, or update and delete rows.

Usage
To use a row set, create a RowSet instance at the global service manager through the service name
com.sun.star.sdb.RowSet. Next, the RowSet needs a connection and a command before it can be
executed. These have to be configured through RowSet properties.

Connection
There are three different ways to establish a connection:

922 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ConnectionPool.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ConnectionPool.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ConnectionPool.html

• Setting DataSourceName to a data source from the database context. If the DataSourceName
is not a URL, then the RowSet uses the name to get the DataSource from the DatabaseCon-
text to create a connection to that data source.

• Setting DataSourceName to a database URL. The row set tries to use this URL to establish a
connection. Database URLs are described in 13.2.3 Database Access - Data Sources in
OpenOffice.org API - Connections - Connecting Using the DriverManager and a Database URL.

• Setting ActiveConnection makes a row set ready for immediate use. The row set uses this
connection.

The difference between the two properties is that in the first case the RowSet owns the connec-
tion. The RowSet disposes the connection when it is disposed. In the second case, the RowSet
only uses the connection. The user of a RowSet is responsible for the disposition of the connec-
tion. For a simple RowSet, use DataSourceName, but when sharing the connection between
different row sets, then use ActiveConnection.

If there is already a connection, for example, the user opened a database form, open another
row set based upon the property ActiveConnection of the form. Put the ActiveConnection of
the form into the ActiveConnection property of the new row set.

Command
With a connection and a command, the row set is ready to be executed calling execute() on
the com.sun.star.sdbc.XRowSet interface of the row set. For interactive logon, use execute-
WithCompletion(), see 13.2.3 Database Access - Data Sources in OpenOffice.org API - Connections
- Connecting Through a DataSource. If interactive logon is not feasible for your application, the
properties User and Password can be used to connect to a database that requires logon.

Once the method for how RowSet creates it connections has been determined, the properties
Command and CommandType have to be set. The CommandType can be TABLE, QUERY or
COMMAND where the Command can be a table or query name, or an SQL command.

The following table shows the properties supported by com.sun.star.sdb.RowSet.

923

http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#CommandType
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#CommandType
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#CommandType
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#Command
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#Command
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#Command
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#ActiveConnection
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#ActiveConnection
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#ActiveConnection
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#ActiveConnection
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#ActiveConnection
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#ActiveConnection
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#DataSourceName
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#DataSourceName
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#DataSourceName
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#ActiveConnection
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#ActiveConnection
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#ActiveConnection
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#DataSourceName
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#DataSourceName
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#DataSourceName
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#DataSourceName
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#DataSourceName
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#DataSourceName

Properties of com.sun.star.sdb.RowSet
ActiveConnection com.sun.star.sdbc.XConnection. The active connection is generated by a

DataSource or by a URL. It could also be set from the outside. If set from outside,
the RowSet is not responsible for disposition of the connection.

DataSourceName string ? The name of the DataSource to use. This could be a named Data-
Source or the URL of a data access component.

Command string ? The Command is the command that should be executed. The type of
command depends on the com.sun.star.sdb.CommandType.

CommandType com.sun.star.sdb.CommandType Command type:

TABLE: indicates the command contains a table name that results in a command
like "select * from tablename".

QUERY: indicates the command contains a name of a query component that contains
a certain statement.

COMMAND: indicates the command is an SQL-Statement.

ActiveCommand [readonly] string ? he command which is currently used.
com.sun.star.sdb.CommandType

IgnoreResult boolean ? Indicates if all results should be discarded.

Filter string ? Contains a additional filter for a RowSet.

ApplyFilter boolean ? Indicates if the filter should be applied. The default is false.

Order An additional sort order definition for a RowSet.

Privileges [readonly] long, constants group com.sun.star.sdbcx.Privilege. Indi-
cates the privileges for insert, update, and delete.

IsModified [readonly] boolean ? Indicates if the current row is modified.

IsNew [readonly] boolean ? Indicates if the current row is the InsertRow and can be
inserted into the database.

RowCount [readonly] boolean ? Contains the number of rows accessed in a the data
source.

IsRowCountFinal [readonly] boolean ? Indicates if all rows of the RowSet have been counted.

UpdateTableName string ? The name of the table that should be updated. This is used for queries
that relate to more than one table.

UpdateSchemaName string ? The name of the table schema.

UpdateCatalo-
gName

string ? The name of the table catalog.

The com.sun.star.sdb.RowSet includes the service com.sun.star.sdbc.RowSet and its proper-
ties. Important settings such as User and Password come from this service:

Properties of com.sun.star.sdbc.RowSet
DataSourceName string ? Is the name of a named datasource to use.

URL string ? The connection URL. Can be used instead of the DataSourceName.

Command string ? The command that should be executed.

TransactionIso-
lation

long ? Indicates the transaction isolation level that should be used for the connec-
tion, according to com.sun.star.sdbc.TransactionIsolation

TypeMap com::sun::star::container::XNameAccess. The type map that is used for
the custom mapping of SQL structured types and distinct types.

924 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/RowSet.html#TypeMap
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/TransactionIsolation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/TransactionIsolation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/TransactionIsolation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/RowSet.html#TransactionIsolation
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/RowSet.html#TransactionIsolation
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/RowSet.html#Command
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/RowSet.html#URL
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/RowSet.html#DataSourceName
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#UpdateCatalogName
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#UpdateCatalogName
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#UpdateSchemaName
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#UpdateTableName
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#IsRowCountFinal
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#RowCount
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#IsNew
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#IsModified
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Privilege.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Privilege.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Privilege.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#Privileges
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#Order
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#ApplyFilter
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#Filter
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#IgnoreResult
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/CommandType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/CommandType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/CommandType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#ActiveCommand
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/CommandType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/CommandType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/CommandType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#CommandType
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/CommandType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/CommandType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/CommandType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#Command
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#DataSourceName
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#ActiveConnection
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html

Properties of com.sun.star.sdbc.RowSet
EscapeProcessing boolean ? Determines if escape processing is on or off. If escape scanning is on

(the default), the driver does the escape substitution before sending the SQL to the
database. This is only evaluated if the CommandType is COMMAND.

QueryTimeOut long ? Retrieves the number of seconds the driver waits for a Statement to execute.
If the limit is exceeded, a SQLException is thrown. There is no limitation if set to
zero.

MaxFieldSize long ? Returns the maximum number of bytes allowed for any column value. This
limit is the maximum number of bytes that can be returned for any column value.
The limit applies only to DataType::BINARY , DataType::VARBINARY , Data-
Type::LONGVARBINARY , DataType::CHAR , DataType::VARCHAR , and
DataType::LONGVARCHAR columns. If the limit is exceeded, the excess data is
silently discarded. There is no limitation if set to zero.

MaxRows long ? Retrieves the maximum number of rows that a ResultSet can contain. If the
limit is exceeded, the excess rows are silently dropped. There is no limitation if set
to zero.

User string ? Determines the user to open the connection for.

Password string ? Determines the user to open the connection for.

ResultSetType long ? Determine the result set type according to
com.sun.star.sdbc.ResultSetType

If the command returns results, that is, it selects data, use XRowSet to manipulate the data, because
XRowSet is derived from XResultSet. For details on manipulating a
com.sun.star.sdb.ResultSet, see 13.3.3 Database Access - Manipulating Data - Result Sets.

The code fragment below shows how to create a RowSet. (Database/RowSet.java)
public static void useRowSet(XMultiServiceFactory _rMSF) throws com.sun.star.uno.Exception {
 // first we create our RowSet object
 XRowSet xRowRes = (XRowSet)UnoRuntime.queryInterface(XRowSet.class,
 _rMSF.createInstance("com.sun.star.sdb.RowSet"));
 System.out.println("RowSet created!");

 // set the properties needed to connect to a database
 XPropertySet xProp = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, xRowRes);
 xProp.setPropertyValue("DataSourceName", "Bibliography");
 xProp.setPropertyValue("Command", "biblio");
 xProp.setPropertyValue("CommandType", new Integer(com.sun.star.sdb.CommandType.TABLE));
 xRowRes.execute();
 System.out.println("RowSet executed!");
 XComponent xComp = (XComponent)UnoRuntime.queryInterface(XComponent.class, xRowRes);
 xComp.dispose();
 System.out.println("RowSet destroyed!");
}

The value of the read-only RowSet properties is only valid after the first call to execute() on the
RowSet. This snippet shows how to read the privileges out of the RowSet: (Database/RowSet.java)
public static void showRowSetReadOnlyProps(XMultiServiceFactory _rMSF) throws com.sun.star.uno.Exception
{
 // first we create our RowSet object
 XRowSet xRowRes =
 (XRowSet)UnoRuntime.queryInterface(XRowSet.class_rMSF.createInstance(
 "com.sun.star.sdb.RowSet"));
 System.out.println("RowSet created!");

 // set the properties needed to connect to a database
 XPropertySet xProp = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, xRowRes);
 xProp.setPropertyValue("DataSourceName", "Bibliography");
 xProp.setPropertyValue("Command", "biblio");
 xProp.setPropertyValue("CommandType", new Integer(com.sun.star.sdb.CommandType.TABLE));
 xRowRes.execute();
 System.out.println("RowSet executed!");
 Integer aPriv = (Integer)xProp.getPropertyValue("Privileges");
 int nPriv = aPriv.intValue();

 if ((nPriv & Privilege.SELECT) == Privilege.SELECT) System.out.println("SELECT");
 if ((nPriv & Privilege.INSERT) == Privilege.INSERT) System.out.println("INSERT");
 if ((nPriv & Privilege.UPDATE) == Privilege.UPDATE) System.out.println("UPDATE");

925

http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ResultSetType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ResultSetType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ResultSetType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/RowSet.html#ResultSetType
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/RowSet.html#Password
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/RowSet.html#User
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/RowSet.html#MaxRows
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/RowSet.html#MaxFieldSize
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/RowSet.html#QueryTimeOut
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/RowSet.html#EscapeProcessing

 if ((nPriv & Privilege.DELETE) == Privilege.DELETE) System.out.println("DELETE");

 XComponent xComp = (XComponent)UnoRuntime.queryInterface(XComponent.class, xRowRes);
 xComp.dispose();
 System.out.println("RowSet destroyed!");
}

The next example reads the properties IsRowCountFinal and RowCount. (Database/RowSet.java)
public static void showRowSetRowCount(XMultiServiceFactory _rMSF) throws com.sun.star.uno.Exception {
 // first we create our RowSet object
 XRowSet xRowRes = (XRowSet)UnoRuntime.queryInterface(XRowSet.class,
 _rMSF.createInstance("com.sun.star.sdb.RowSet"));
 System.out.println("RowSet created!");

 // set the properties needed to connect to a database
 XPropertySet xProp = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class,xRowRes);
 xProp.setPropertyValue("DataSourceName","Bibliography");
 xProp.setPropertyValue("Command","biblio");
 xProp.setPropertyValue("CommandType",new Integer(com.sun.star.sdb.CommandType.TABLE));
 xRowRes.execute();
 System.out.println("RowSet executed!");

 // now look if the RowCount is already final
 System.out.println("The RowCount is final: " + xProp.getPropertyValue("IsRowCountFinal"));
 XResultSet xRes = (XResultSet)UnoRuntime.queryInterface(XResultSet.class,xRowRes);
 xRes.last();

 System.out.println("The RowCount is final: " + xProp.getPropertyValue("IsRowCountFinal"));
 System.out.println("There are " + xProp.getPropertyValue("RowCount") + " rows!");

 // now destroy the RowSet
 XComponent xComp = (XComponent)UnoRuntime.queryInterface(XComponent.class,xRowRes);
 xComp.dispose();
 System.out.println("RowSet destroyed!");
}

Occasionally, it is useful for the user to be notified when the RowCount is final. That is accom-
plished by adding a com.sun.star.beans.XPropertyChangeListener for the property IsRow-
CountFinal.

Events and Other Notifications
The RowSet supports a number of events and notifications. First, there is the
com.sun.star.sdb.XRowSetApproveBroadcaster interface of the RowSet that allows the user to
add or remove objects derived from the interface com.sun.star.sdb.XRowSetApproveListener.
The interface com.sun.star.sdb.XRowSetApproveListener defines the following methods:

Methods of com.sun.star.sdb.XRowSetApproveListener

approveCursorMove() Called before a RowSet's cursor is moved.

approveRowChange() Called before a row is inserted, updated, or deleted.

approveRowSetChange
()

Called before a RowSet is changed or before a RowSet is re-executed.

All three methods return a boolean value that allows the RowSet to continue when it is true,
otherwise the current action is stopped.

Additionally, the RowSet supports com.sun.star.sdbc.XRowSet that allows the user to add
objects which are notified when the RowSet has changed. This has to be a
com.sun.star.sdbc.XRowSetListener. The methods are:

Methods of com.sun.star.sdbc.XRowSetListener
cursorMoved Called when a RowSet's cursor has been moved.

rowChanged Called when a row has been inserted, updated, or deleted.

rowSetChanged Called when the entire row set has changed, or when the row set has been re-
executed.

926 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRowSetListener.html#rowSetChanged
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRowSetListener.html#rowChanged
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRowSetListener.html#cursorMoved
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRowSetListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRowSetListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRowSetListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRowSetListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRowSetListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRowSetListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XRowSetApproveListener.html#approveRowSetChange
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XRowSetApproveListener.html#approveRowSetChange
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XRowSetApproveListener.html#approveRowSetChange
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XRowSetApproveListener.html#approveRowChange
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XRowSetApproveListener.html#approveRowChange
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XRowSetApproveListener.html#approveRowChange
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XRowSetApproveListener.html#approveCursorMove
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XRowSetApproveListener.html#approveCursorMove
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XRowSetApproveListener.html#approveCursorMove
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XRowSetApproveListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XRowSetApproveListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XRowSetApproveListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XRowSetApproveListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XRowSetApproveListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XRowSetApproveListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XRowSetApproveListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XRowSetApproveListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XRowSetApproveListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XRowSetApproveBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XRowSetApproveBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XRowSetApproveBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html

When an event occurs, the appropriate listener method is called to notify the registered listener(s).
If a listener is not interested in a particular kind of event, it implements the method for that event
as no-op. All listener methods take a com.sun.star.lang.EventObject struct that ontains the
RowSet object which is the source of the event.

The following table lists the order of events after a specific method call on the RowSet. First the
movements.

Method Call Event Call (before) Event Call (after)

beforeFirst()
first()
next()
previous()
last()
afterLast()
absolute()
relative()
moveToBookmark()
moveRelativeToBookmark()

approveCursorMove() cursorMoved(), only when the move-
ment was successful

modified() event from
com.sun.star.beans.XPropertySet
of property RowCount, only when
changed

modified() event from
com.sun.star.beans.XPropertySet
of property RowCountFinal, only when
changed

updateRow()
deleteRow()
insertRow()

approveRowChange() rowChanged()

execute() approveRowSetChange() rowSetChanged()

Consider a simple class which implements the two listener interfaces described above.
(Database/RowSetEventListener.java)
import com.sun.star.sdb.XRowSetApproveListener;
import com.sun.star.sdbc.XRowSetListener;
import com.sun.star.sdb.RowChangeEvent;
import com.sun.star.lang.EventObject;

public class RowSetEventListener implements XRowSetApproveListener,XRowSetListener {
 // XEventListener
 public void disposing(com.sun.star.lang.EventObject event) {
 System.out.println("RowSet will be destroyed!");
 }

 // XRowSetApproveBroadcaster
 public boolean approveCursorMove(EventObject event) {
 System.out.println("Before CursorMove!");
 return true;
 }
 public boolean approveRowChange(RowChangeEvent event) {
 System.out.println("Before row change!");
 return true;
 }
 public boolean approveRowSetChange(EventObject event) {
 System.out.println("Before RowSet change!");
 return true;
 }

 // XRowSetListener
 public void cursorMoved(com.sun.star.lang.EventObject event) {
 System.out.println("Cursor moved!");
 }
 public void rowChanged(com.sun.star.lang.EventObject event) {
 System.out.println("Row changed!");
 }
 public void rowSetChanged(com.sun.star.lang.EventObject event) {
 System.out.println("RowSet changed!");
 }
}

The following method uses the listener implementation above. (Database/RowSet.java)
public static void showRowSetEvents(XMultiServiceFactory _rMSF) throws com.sun.star.uno.Exception {
 // first we create our RowSet object
 XRowSet xRowRes = (XRowSet)UnoRuntime.queryInterface(
 XRowSet.class, _rMSF.createInstance("com.sun.star.sdb.RowSet"));

927

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html

 System.out.println("RowSet created!");
 // add our Listener
 System.out.println("Append our Listener!");
 RowSetEventListener pRow = new RowSetEventListener();
 XRowSetApproveBroadcaster xApBroad = (XRowSetApproveBroadcaster)UnoRuntime.queryInterface(
 XRowSetApproveBroadcaster.class, xRowRes);
 xApBroad.addRowSetApproveListener(pRow);
 xRowRes.addRowSetListener(pRow);

 // set the properties needed to connect to a database
 XPropertySet xProp = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class,xRowRes);
 xProp.setPropertyValue("DataSourceName", "Bibliography");
 xProp.setPropertyValue("Command", "biblio");
 xProp.setPropertyValue("CommandType", new Integer(com.sun.star.sdb.CommandType.TABLE));

 xRowRes.execute();
 System.out.println("RowSet executed!");

 // do some movements to check if we got all notifications
 XResultSet xRes = (XResultSet)UnoRuntime.queryInterface(XResultSet.class, xRowRes);
 System.out.println("beforeFirst");
 xRes.beforeFirst();
 // this should lead to no notifications because
 // we should stand before the first row at the beginning
 System.out.println("We stand before the first row: " + xRes.isBeforeFirst());

 System.out.println("next");
 xRes.next();
 System.out.println("next");
 xRes.next();
 System.out.println("last");
 xRes.last();
 System.out.println("next");
 xRes.next();
 System.out.println("We stand after the last row: " + xRes.isAfterLast());
 System.out.println("first");
 xRes.first();
 System.out.println("previous");
 xRes.previous();
 System.out.println("We stand before the first row: " + xRes.isBeforeFirst());
 System.out.println("afterLast");
 xRes.afterLast();
 System.out.println("We stand after the last row: " + xRes.isAfterLast());

 // now destroy the RowSet
 XComponent xComp = (XComponent)UnoRuntime.queryInterface(XComponent.class, xRowRes);
 xComp.dispose();
 System.out.println("RowSet destroyed!");
}

Clones of the RowSet Service
Occasionally, a second or third RowSet that operates on the same data as the original RowSet, is
required. This is useful when the rows should be displayed in a graphical representation. For the
graphical part a clone can be used which only moves through the rows and displays the data.
When a modification occurs on one specific row, the original RowSet can be used to do this task.

The new clone is an object that supports the service com.sun.star.sdb.ResultSet if it was
created using the interface com.sun.star.sdb.XResultSetAccess of the original RowSet. It is
interoperable with the RowSet that created it, for example, bookmarks can be exchanged between
both sets. If the original RowSet has not been executed before, null is returned.

928 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XResultSetAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XResultSetAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XResultSetAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ResultSet.html

13.3.2 Statements
The basic procedure to communicate with a database using an SQL statement is always the same:

1. Get a connection object.

2. Ask the connection for a statement.

3. The statement executes a query or an update command. Use the appropriate method to execute
the command.

4. If the statement returns a result set, process the result set.

Creating Statements
A Statement object is required to send SQL statements to the Database Management System
(DBMS). A Statement object is created using createStatement() at the
com.sun.star.sdbc.XConnection interface of the connection. It returns a
com.sun.star.sdbc.Statement service. This Statement is generic, that is, it does not contain any
SQL command. It can be used for all kinds of SQL commands. Its main interface is
com.sun.star.sdbc.XStatement:

com::sun::star::sdbc::XResultSet executeQuery([in] string sql)
long executeUpdate([in] string sql)
boolean execute([in] string sql)
com::sun::star::sdbc::XConnection getConnection()

Once a Statement is obtained, choose the appropriate execution method for the SQL command.
For a SELECT statement, use the method executeQuery(). For UPDATE, DELETE and INSERT state-
ments, the proper method is executeUpdate(). To have multiple result sets returned, use
execute() together with the interface com.sun.star.sdbc.XMultipleResults of the statement.

929

Illustration 13.9: Data access of RowSet and clone

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XMultipleResults.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XMultipleResults.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XMultipleResults.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XStatement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XStatement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XStatement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/Statement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/Statement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/Statement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html

Data definition commands, such as CREATE, DROP, ALTER, and GRANT, can be issued with executeUp-
date().

Consider how an XConnection is used to create an XStatement in the following example:
public static void executeSelect(XMultiServiceFactory _rMSF) throws com.sun.star.uno.Exception {
 // retrieve the DatabaseContext and get its com.sun.star.container.XNameAccess interface
 XNameAccess xNameAccess = (XNameAccess)UnoRuntime.queryInterface(
 XNameAccess.class, _rMSF.createInstance("com.sun.star.sdb.DatabaseContext"));

 // connect
 Object dataSource = xNameAccess.getByName("Ada01");
 XDataSource xDataSource = (XDataSource)UnoRuntime.queryInterface(XDataSource.class, dataSource);
 Object interactionHandler = _rMSF.createInstance("com.sun.star.sdb.InteractionHandler");
 XInteractionHandler xInteractionHandler = (XInteractionHandler)UnoRuntime.queryInterface(
 XInteractionHandler.class, interactionHandler);
 XCompletedConnection xCompletedConnection = (XCompletedConnection)UnoRuntime.queryInterface(
 XCompletedConnection.class, dataSource);
 XConnection xConnection = xCompletedConnection.connectWithCompletion(xInteractionHandler);

 // the connection creates a statement
 XStatement xStatement = xConnection.createStatement();
 // The XStatement interface is used to execute a SELECT command
 // Double quotes for identifiers in the SELECT string must be escaped in Java
 XResultSet xResult = xStatement.executeQuery("Select * from \"Table1\"");
 // process the result ...
 XRow xRow = (XRow)UnoRuntime.queryInterface(XRow.class, xResult);
 while (xResult != null && xResult.next()) {
 System.out.println(xRow.getString(1));
 }
}

The remainder of this section discusses how to enter data into a table and retrieving the data later,
using INSERT and SELECT commands with a com.sun.star.sdbc.Statement.

Inserting and Updating Data
The following examples use a sample Adabas D database. Generate an Adabas D database in the
OpenOffice.org API installation and define a new table named SALESMAN.

930 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/Statement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/Statement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/Statement.html

Illustration 13.7 shows the definition of the SALESMAN table in the OpenOffice.org API data
source administrator. The description column shows the lengths defined for the text fields of the
table. After all the fields are defined, right-click the row header of the column SNR and choose
Primary Key to make SNR the primary key. Afterwards a small key icon in the row header shows
that SNR is the primary key of the table SALESMAN. When completed, save the table as
SALESMAN. It is important to use uppercase letters for the table name, otherwise the example
SQL code will not work.

The table does not contain any data. Use the following INSERT command to insert data into the
table one row at a time:
INSERT INTO SALESMAN (
 SNR,
 FIRSTNAME,
 LASTNAME,
 STREET,
 STATE,
 ZIP,
 BIRTHDATE
)
VALUES (
 1,
 'Joseph',
 'Smith',
 'Bond Street',
 'CA',
 '95460',
 '1946-07-02'
)

Note the single quotes around the values for the text fields. Single quotes denote character strings in SQL,
while double quotes are used for case-sensitive identifiers,such as table and column names.

The following code sample inserts one row of data with the value 1 in the column SNR, 'Joseph'
in FIRSTNAME, 'Smith' in LASTNAME,with other information in the following columns of the table
SALESMAN. To issue the command against the database, create a Statement object and then
execute it using the method executeUpdate():

931

Illustration 13.10: SALESMAN Table Design

 XStatement xStatement = xConnection.createStatement();

 xStatement.executeUpdate("INSERT INTO SALESMAN (" +
 "SNR, FIRSTNAME, LASTNAME, STREET, STATE, ZIP, BIRTHDATE) " +
 "VALUES (1, 'Joseph', 'Smith','Bond Street','CA','95460','1946-07-02')");

The next call to executeUpdate() inserts more rows into the table SALESMAN. Note the State-
ment object stmt is reused, rather than creating a new one for each update.
 xStatement.executeUpdate("INSERT INTO SALESMAN (" +
 "SNR, FIRSTNAME, LASTNAME, STREET, STATE, ZIP, BIRTHDATE) " +
 "VALUES (2, 'Frank', 'Jones', 'Lake Silver', 'CA', '95460', '1963-12-24')");

 xStatement.executeUpdate("INSERT INTO SALESMAN (" +
 "SNR, FIRSTNAME, LASTNAME, STREET, STATE, ZIP, BIRTHDATE) " +
 "VALUES (3, 'Jane', 'Esperanza', '23 Hollywood drive', 'CA', '95460', '1972-01-04')");

 xStatement.executeUpdate("INSERT INTO SALESMAN (" +
 "SNR, FIRSTNAME, LASTNAME, STREET, STATE, ZIP, BIRTHDATE) " +
 "VALUES (4, 'George', 'Flint', '12 Washington street', 'CA', '95460', '1953-02-13')");

 xStatement.executeUpdate("INSERT INTO SALESMAN (" +
 "SNR, FIRSTNAME, LASTNAME, STREET, STATE, ZIP, BIRTHDATE) " +
 "VALUES (5, 'Bob', 'Meyers', '2 Moon way', 'CA', '95460', '1949-09-07')");

Updating tables is basically the same process. The SQL command:
UPDATE SALESMAN
SET STREET='Grant Street', STATE='FL'
WHERE SNR=2

writes a new street and state entry for Frank Jones who has SNR=2. The corresponding execute-
Update() call looks like this:
 int n = xStatement.executeUpdate("UPDATE SALESMAN " +
 "SET STREET='Grant Street', STATE='FL' " +
 "WHERE SNR=2");

The return value of executeUpdate() is an int that indicates how many rows of a table were
updated. Our update command affected one row, so n is equal to 1.

Note that it depends on the database and the driver,if the return value of executeUpdate() reflects the
actual changes.

Getting Data from a Table
Now that the table SALESMAN has values in it, write a SELECT statement to access those values. The
asterisk * in the following SQL statement indicates that all columns should be selected. Since there
is no WHERE clause to select less rows, the following SQL statement selects the whole table:
SELECT * FROM SALESMAN

The result contains the following data:

SNR FIRSTNAME LASTNAME STREET STATE ZIP BIRTHDATE

1 Joseph Smith Bond Street CA 95460 07.02.46

2 Frank Jones Lake silver CA 95460 24.12.63

3 Jane Esperanza 23 Hollywood drive CA 95460 01.04.72

4 George Flint 12 Washington street CA 95460 13.02.53

5 Bob Meyers 2 Moon way CA 95460 07.09.49

The following is another example of a SELECT statement. This statement gets a list with the names
and addresses of all the salespersons. Only the columns FIRSTNAME, LASTNAME and STREET
were selected.
SELECT FIRSTNAME, LASTNAME, STREET FROM SALESMAN

932 OpenOffice.org 2.3 Developer's Guide • June 2007

The result of this query only contains three columns:

FIRSTNAME LASTNAME STREET

Joseph Smith Bond Street

Frank Jones Lake silver

Jane Esperansa 23 Hollywood drive

George Flint 12 Washington street

Bob Meyers 2 Moon way

The SELECT statement above extracts all salespersons in the table. The following SQL statement
limits the SALESMAN SELECT to salespersons who were born before 01/01/1950:
SELECT FIRSTNAME, LASTNAME, BIRTHDATE
FROM SALESMAN
WHERE BIRTHDATE < '1950-01-01'

The resulting data is:

FIRSTNAME LASTNAME BIRTHDATE

Joseph Smith 02/07/46

Bob Meyers 09/07/49

When a database is accessed through the OpenOffice.org API database integration, the results are
retrieved through ResultSet objects. The next section discusses how to use result sets. The
following executeQuery() call executes the SQL command above. Note that the Statement is
used again: (Database/Sales.java)
com.sun.star.sdbc.XResultSet xResult = xStatement.executeQuery("SELECT FIRSTNAME, LASTNAME, BIRTHDATE "
+
 "FROM SALESMAN " +
 "WHERE BIRTHDATE < '1950-01-01'");

13.3.3 Result Sets
The ResultSet objects represent the output of an SQL SELECT command in data rows and
columns to retrieve the data using a row cursor that points to one data row at a time. The
following illustration shows the inheritance of com.sun.star.sdb.ResultSet. Each layer of the
OpenOffice.org API database integration adds capabilities to OpenOffice.org API result sets.

The fundamental com.sun.star.sdbc.ResultSet is the most powerful of the three result set
services. Basically this result set is sufficient to process SELECT results. It is used to navigate
through the resulting rows, and to retrieve and update data rows and the column values in a row.

933

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ResultSet.html

The com.sun.star.sdbcx.ResultSet can add bookmarks through com.sun.star.sdbcx.XRow-
Locate and allows row deletion by bookmarks through com.sun.star.sdbcx.XDeleteRows.

The com.sun.star.sdb.ResultSet service extends the com.sun.star.sdbcx.ResultSet service
by the additional interface com.sun.star.sdbcx.XColumnsSupplier that allows the user to access
information about the appearance of the selected columns in the application. The interface XCol-
umnsSupplier returns a com.sun.star.sdbcx.Container of ResultColumns.

934 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 13.11: ResultSet

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Container.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Container.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Container.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XColumnsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XColumnsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XColumnsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/ResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/ResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/ResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XDeleteRows.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XDeleteRows.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XDeleteRows.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XRowLocate.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XRowLocate.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XRowLocate.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XRowLocate.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XRowLocate.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XRowLocate.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/ResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/ResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/ResultSet.html

The com.sun.star.sdb.ResultColumn service inherits the properties of the services
com.sun.star.sdbcx.Column and com.sun.star.sdb.ColumnSettings.

The following table explains the properties introduced with com.sun.star.sdb.ResultColumn.
For the inherited properties, refer to the section 13.2.2 Database Access - Data Sources in
OpenOffice.org API - DataSources - Tables and Columns.

Properties of com.sun.star.sdb.ResultColumn
IsSearchable boolean ? Indicates if the column can be used in a �WHERE� clause.

IsSigned boolean ? Indicates if values in the column are signed numbers.

IsCaseSensitive boolean ? Indicates if a column is case sensitive.

DisplaySize long ? Indicates the column's normal, maximum width in chars.

Label string ? Gets the suggested column title for use with GUI controls and printouts.

IsReadOnly boolean ? If True, cannot write to the column.

IsWritable boolean ? If True, an attempt to write to the column may succeed.

IsDefinitely-
Writable

boolean ? If True, the column is writable.

ServiceName string ? Returns the fully-qualified name of the service that is returned when the
com.sun.star.sdbc.XRow method getObject() is called to retrieve a value
from the column.

935

Illustration 13.12: ResultColumn

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ResultColumn.html#ServiceName
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ResultColumn.html#IsDefinitelyWritable
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ResultColumn.html#IsDefinitelyWritable
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ResultColumn.html#IsWritable
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ResultColumn.html#IsReadOnly
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ResultColumn.html#Label
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ResultColumn.html#DisplaySize
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ResultColumn.html#IsCaseSensitive
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ResultColumn.html#IsSigned
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ResultColumn.html#IsSearchable
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ResultColumn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ResultColumn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ResultColumn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ResultColumn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ResultColumn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ResultColumn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ColumnSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ColumnSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ColumnSettings.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ResultColumn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ResultColumn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ResultColumn.html

Properties of com.sun.star.sdb.ResultColumn
TableName string ? Gets the database table name where the column comes from.

SchemaName string ? Gets the schema name of the column.

CatalogName string ? Gets the catalog name of the column.

Retrieving Values from Result Sets
A call to execute() on a com.sun.star.sdb.RowSet or a call to executeQuery() on a Statement
produces a com.sun.star.sdb.ResultSet. (Database/Sales.java)
com.sun.star.sdbc.XResultSet xResult = xStatement.executeQuery("SELECT FIRSTNAME, LASTNAME, STREET " +
 "FROM SALESMAN " +
 "VWHERE BIRTHDATE < '1950-01-01'");

Moving the Result Set Cursor
The ResultSet stored in the variable xResult contains the following data after the call above:

FIRSTNAME LASTNAME BIRTHDATE

Joseph Smith 02/07/46

Bob Meyers 09/07/49

To access the data, go to each row and retrieve the values according to their types. The method
next() is used to move the row cursor from row to row. Since the cursor is initially positioned just
above the first row of a ResultSet object, the first call to next() moves the cursor to the first row
and makes it the current row. For the same reason, use the method next() to access the first row
even if there is only one row in a result set. Subsequent invocations of next() move the cursor
down one row at a time.

The interface com.sun.star.sdbc.XResultSet offers methods to move to specific row numbers,
and to positions relative to the current row, in addition to moving the cursor back and forth one
row at a time:

// move one row at a time
boolean next()
boolean previous()
// move a number of rows
boolean absolute([in] long row)
boolean relative([in] long rows)
// move to result set borders and beyond
boolean first()
boolean last()
void beforeFirst()
void afterLast()
//detect position
boolean isBeforeFirst()
boolean isAfterLast()
boolean isFirst()
boolean isLast()
long getRow()
// refetch row from the database
void refreshRow()
// row has been updated, inserted or deleted
boolean rowUpdated()
boolean rowInserted()
boolean rowDeleted()
// get the statement which created the result set
com::sun::star::uno::XInterface getStatement()

936 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ResultColumn.html#CatalogName
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ResultColumn.html#SchemaName
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/ResultColumn.html#TableName

Note that you can only move the cursor backwards if you set the statement property ResultSetType to
SCROLL_INSENSITIVE or SCROLL_SENSITIVE. For details, refer to chapter 13.3.3 Database Access - Manip-
ulating Data - Result Sets - Scrollable Result Sets.

Using the getXXX Methods
To get column values from the current row, use the interface com.sun.star.sdbc.XRow. It offers a
large number of get methods for all SDBC data types, or rather getXXX methods. The XXX stands
for the type retrieved by the method.

Usually, the getXXX method is used for the appropriate type to retrieve the value in each column.
For example, the first column in each row of xResult is FIRSTNAME. It is the first column and
contains a value of SQL type VARCHAR. The appropriate method to retrieve a VARCHAR value is
getString(). It should be used for the second column, as well. The third column BIRTHDATE
stores DATE values, the method for date types is getDate(). SDBC is flexible and allows a number
of type conversions through getXXX. See the table below for details.

The following code accesses the values stored in the current row of xResult and prints a line with
the column values separated by tabs. Each time next() is invoked, the next row becomes the
current row, and the loop continues until there are no more rows in xResult.
(Database/SalesMan.java)
public static void selectSalespersons(XMultiServiceFactory _rMSF) throws com.sun.star.uno.Exception {
 // retrieve the DatabaseContext and get its com.sun.star.container.XNameAccess interface
 XNameAccess xNameAccess = (XNameAccess)UnoRuntime.queryInterface(
 XNameAccess.class, _rMSF.createInstance("com.sun.star.sdb.DatabaseContext"));

 //connect
 Object dataSource = xNameAccess.getByName("Ada01");
 XDataSource xDataSource = (XDataSource)UnoRuntime.queryInterface(XDataSource.class, dataSource);
 Object interactionHandler = _rMSF.createInstance("com.sun.star.sdb.InteractionHandler");
 XInteractionHandler xInteractionHandler = (XInteractionHandler)UnoRuntime.queryInterface(
 XInteractionHandler.class, interactionHandler);
 XCompletedConnection xCompletedConnection = (XCompletedConnection)UnoRuntime.queryInterface(
 XCompletedConnection.class, dataSource);
 XConnection xConnection = xCompletedConnection.connectWithCompletion(xInteractionHandler);

 // create statement and execute query
 XStatement xStatement = xConnection.createStatement();
 XResultSet xResult = xStatement.executeQuery("SELECT FIRSTNAME, LASTNAME, BIRTHDATE FROM SALESMAN");

 // process result
 XRow xRow = (XRow)UnoRuntime.queryInterface(XRow.class, xResult);
 while (xResult != null && xResult.next()) {
 String firstName = xRow.getString(1);
 String lastName = xRow.getString(2);
 com.sun.star.util.Date birthDate = xRow.getDate(3);
 System.out.println(firstName + "\t" + lastName + "\t\t" +
 birthDate.Month + "/" + birthDate.Day + "/" + birthDate.Year);
 }
}

The output looks like this:

Joseph Smith 7/2/1946
Frank Jones 12/24/1963
Jane Esperanza 4/1/1972
George Flint 2/13/1953
Bob Meyers 9/7/1949

In this code, how the getXXX methods work are shown and the two getXXX calls are examined.
String firstName = xRow.getString(1);

The method getString() is invoked on xRow , that is, getString() gets the value stored in
column no. 1 in the current row of xResult, which is FIRSTNAME. The value retrieved by
getString() has been converted from a VARCHAR to a String in the Java programming
language, and assigned to the String object firstname.

937

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRow.html

The situation is similar with the method getDate(). It retrieves the value stored in column no. 3
(BIRTHDATE), which is an SQL DATE , and converts it to a com.sun.star.util.Date before
assigning it to the variable birthDate.

Note that the column number refers to the column number in the result set, not in the original
table.

SDBC is flexible as to which getXXX methods can be used to retrieve the various SQL types. For
example, the method getInt() can be used to retrieve any of the numeric or character types. The
data it retrieves is converted to an int; that is, if the SQL type is VARCHAR, SDBC attempts to parse
an integer out of the VARCHAR. To be sure that no information is lost, the method getInt() is only
recommended for SQL INTEGER types, and it cannot be used for the SQL types BINARY, VARBI-
NARY , LONGVARBINARY, DATE, TIME, or TIMESTAMP.

Although getString() is recommended for the SQL types CHAR and VARCHAR, it is possible to
retrieve any of the basic SQL types with it. The new SQL3 data types can not be retrieved with it.
Getting values with getString() can be useful, but has its limitations. For instance, if it is used to
retrieve a numeric type, getString() converts the numeric value to a Java String object, and the
value has to be converted back to a numeric type before it can be used for numeric operations.

The value will be treated as a string, so if an application is to retrieve and display arbitrary column
values of any standard SQL type other than SQL3 types, use getString().

 shows all getXXX() methods and the corresponding SDBC data types defined in
com.sun.star.sdbc.DataType. The illustration above shows which methods can legally be used
to retrieve SQL types, and which methods are recommended for retrieving the various SQL types.

• x with grey background indicates that the getXXX() method is the recommended method to
retrieve an SDBC data type. No data will be lost due to type conversion.

• x indicates that the getXXX() method may legally be used to retrieve the given SDBC type.
However, type conversion will take place and affect the values you obtain.

938 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 13.13: Methods to Retrieve SQL Types

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/DataType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/DataType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/DataType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/Date.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/Date.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/Date.html

Scrollable Result Sets
The interface com.sun.star.sdbc.XResultSet offers methods to move the cursor back and forth
to an arbitrary row, and get the current position of the cursor. Scrollable result sets are necessary to
create GUI tools that can browse result sets. It also may be required to move a specific row to work
with it. Before taking advantage of these features, create a scrollable ResultSet object. The
following lines of code illustrate one way to create a scrollable ResultSet object:
 XStatement xStatement = xConnection.createStatement();
 XPropertySet xProp = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, xStatement);

 xProp.setPropertyValue("ResultSetType",new java.lang.Integer(ResultSetType.SCROLL_INSENSITIVE));
 xProp.setPropertyValue("ResultSetConcurrency", new
java.lang.Integer(ResultSetConcurrency.UPDATABLE));

 XResultSet xResult = xStatement.executeQuery("SELECT FIRSTNAME, LASTNAME FROM SALES");

This code is similar to what was used earlier, except that it sets two property values at the State-
ment object. These properties have to be set before the statement is executed.

The value of the property ResultSetType must be one of three constants defined in
com.sun.star.sdbc.ResultSetType: FORWARD_ONLY, SCROLL_INSENSITIVE and
SCROLL_SENSITIVE.

The property ResultSetConcurrency must be one out of the two
com.sun.star.sdbc.ResultSetConcurrency constants READ_ONLY and UPDATABLE. When a
ResultSetType is specified, it must be specified if it is read-only or modifiable.

If any constants for the type and modifiability of a ResultSet object are not specified,
FORWARD_ONLY and READ_ONLY will automatically be created.

Specifying the constant FORWARD_ONLY creates a non-scrollable result set, that is, the cursor moves
forward only. A scrollable ResultSet is obtained by specifying SCROLL_INSENSITIVE or
SCROLL_SENSITIVE. Sensitive or insensitive refers to changes made to the underlying data after the
result set has been opened. A SCROLL_INSENSITIVE result set does not reflect changes to the
underlying data, while a SCROLL_SENSITIVE result set shows changes. However, not all drivers
and databases support change sensitivity.

In scrollable result sets, the counterpart to next() is the method previous(), which moves the
cursor backward. Both methods return false when the cursor goes to the position after the last
row or before the first row. This allows them to be used in a while loop.

The following two examples show the usage of next() and previous() together with while:
(Database/Sales.java)
 XStatement stmt = con.createStatement();

 XPropertySet xProp = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, stmt);
 xProp.setPropertyValue("ResultSetType",new java.lang.Integer(ResultSetType.SCROLL_INSENSITIVE));
 xProp.setPropertyValue("ResultSetConcurrency", new
java.lang.Integer(ResultSetConcurrency.READ_ONLY));

 XResultSet srs = stmt.executeQuery("SELECT NAME, PRICE FROM SALES");

 XRow row = (XRow)UnoRuntime.queryInterface(XRow.class, srs);

 while (srs.next()) {
 String name = row.getString(1);
 float price = row.getFloat(2);
 System.out.println(name + " " + price);
}

The printout will look similar to this:

Linux 32
Beef 15.78
Orange juice 1.50

To process the rows going backward, the cursor must start out after the last row. The cursor is
moved to the position after the last row with the method afterLast(). Then previous() moves

939

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ResultSetConcurrency.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ResultSetConcurrency.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ResultSetConcurrency.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ResultSetType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ResultSetType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ResultSetType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XResultSet.html

the cursor from the position after the last row to the last row, and then up to the first row with each
iteration through the while loop. The loop ends when the cursor reaches the position before the
first row, where previous() returns false. (Database/Sales.java)
 XStatement stmt = con.createStatement();

 XPropertySet xProp = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class,stmt);
 xProp.setPropertyValue("ResultSetType", new java.lang.Integer(ResultSetType.SCROLL_INSENSITIVE));
 xProp.setPropertyValue("ResultSetConcurrency", new
java.lang.Integer(ResultSetConcurrency.READ_ONLY));

 XResultSet srs = stmt.executeQuery("SELECT NAME, PRICE FROM SALES");

 XRow row = (XRow)UnoRuntime.queryInterface(XRow.class, srs);

 srs.afterLast();
 while (srs.previous()) {
 String name = row.getString(1);
 float price = row.getFloat(2);
 System.out.println(name + " " + price);
}

The printout will look similar to this:

Orange juice 1.50
Beef 15.78
Linux 32

The column values are the same, but the rows are in the reverse order.

The cursor can be moved to a specific row in a ResultSet object. The methods first(), last(),
beforeFirst(), and afterLast() move the cursor to the row indicated by the method names.

The method absolute() moves the cursor to the row number indicated in the argument passed. If
the number is positive, the cursor moves the given number from the beginning. Calling abso-
lute(1) moves the cursor to the first row. If the number is negative, the cursor moves the given
number of rows from the end. Calling absolute(-1) sets the cursor to the last row. The following
line of code moves the cursor to the fourth row of srs:
srs.absolute(4);

If srs has 500 rows, the following line of code moves the cursor to row 497:
srs.absolute(-4);

The method relative() moves the cursor by an arbitrary number of rows from the current row.
A positive number moves the cursor forward, and a negative number moves the cursor back-
wards. For example, in the following code fragment, the cursor moves to the fourth row, then to
the first row, and finally to the third row:
 srs.absolute(4); // cursor is on the fourth row
 ...
 srs.relative(-3); // cursor is on the first row
 ...
 srs.relative(2); // cursor is on the third row

The method getRow() returns the number of the current row. For example, use getRow() to verify
the current position of the cursor in the previous example using the following code:
 srs.absolute(4);
 int rowNum = srs.getRow(); // rowNum should be 4
 srs.relative(-3);
 rowNum = srs.getRow(); // rowNum should be 1
 srs.relative(2);
 rowNum = srs.getRow(); // rowNum should be 3

Note that some drivers do not support the getRow method. They always return 0.

There are four methods to verify if the cursor is at a particular position. The position is stated in
their names: isFirst(), isLast(), isBeforeFirst(), and isAfterLast(). These methods return
a boolean that can be used in a conditional statement. For example, the following code fragment
tests if the cursor is after the last row before invoking the method previous() in a while loop. If
the method isAfterLast() returns false, the cursor is not after the last row, so the method

940 OpenOffice.org 2.3 Developer's Guide • June 2007

afterLast can be invoked. This guarantees that the cursor is after the last row and that using the
method previous() in the while loop stop at every row in srs.
 if (srs.isAfterLast() == false) {
 srs.afterLast();
 }
 while (srs.previous()) {
 String name = row.getString(1);
 float price = row.getFloat(2);
 System.out.println(name + " " + price);
 }

How to use the two methods from the XResultSetUpdate interface to move the cursor: moveToIn-
sertRow() and moveToCurrentRow() are discussed in the next section. There are examples illus-
trating why moving the cursor to certain positions may be required.

Modifiable Result Sets
Another feature of SDBC is the ability to update rows in a result set using methods in the
programming language, rather than sending an SQL command. Before doing this, a modifiable
result set must be created. To create a modifiable result set, supply the ResultSetConcurrency
constant UPDATABLE to the Statement property ResultSetConcurrency, so that the Statement
object creates an modifiable ResultSet object each time it executes a query.

The following code fragment creates a modifiable XResultSet object rs . Note that the code also
makes rs scrollable. A modifiable ResultSet object does not have to be scrollable, but when
changes are made to a result set, the user may want to move around in it. With a scrollable result
set, there is the ability to move to particular rows that you can work with. If the type is
SCROLL_SENSITIVE, the new value in a row can be obtained after it has changed without
refreshing the whole result set.
 XStatement stmt = con.createStatement();

 XPropertySet xProp = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, stmt);
 xProp.setPropertyValue("ResultSetType", new java.lang.Integer(ResultSetType.SCROLL_INSENSITIVE));
 xProp.setPropertyValue("ResultSetConcurrency", new
java.lang.Integer(ResultSetConcurrency.UPDATABLE));

 XResultSet rs = stmt.executeQuery("SELECT NAME, PRICE FROM SALES");

 XRow row = (XRow)UnoRuntime.queryInterface(XRow.class, rs);

The ResultSet object rs may look similar to this:

NAME PRICE

Linux $30.00

Beef $15.78

Orange juice $1.50

The methods can now be used in the com.sun.star.sdbc.XRowUpdate interface of the result set to
insert a new row into rs, delete an existing row from rs, or modify a column value in rs.

Update
An update is the modification of a column value in the current row. Suppose the price of orange
juice is lowered to 0.99. Using the example above, the update would look like this:
 stmt.executeUpdate("UPDATE SALES SET PRICE = 0.99" +
 "WHERE SALENR = 4");

The following code fragment shows another way to accomplish the same update, this time using
SDBC:

941

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRowUpdate.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRowUpdate.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRowUpdate.html

 rs.last();
 XRowUpdate updateRow = (XRowUpdate)UnoRuntime.queryInterface(XRowUpdate.class, rs);
 updateRow.updateFloat(2, (float)0.99);

Update operations in the SDBC API affect column values in the row where the cursor is positioned.
In the first line, the ResultSet rs calls last() to move the cursor to the last row where the column
NAME has the value Orange juice. Once the cursor is on the last row, all of the update methods
that are called operate on that row until the cursor is moved to another row.

The second line changes the value of the PRICE column to 0.99 by calling updateFloat(). This
method is used because the column value we want to update is a float in Java programming
language.

The updateXXX() methods in com.sun.star.sdbc.XRowUpdate take two parameters: the number
of the column to update and the new column value. There are specialized updateXXX() methods
for each data type, such as updateString()and updateInt(), just like the getXXX methods
discussed above.

At this point, the price in rs for Orange juice is 0.99, but the price in the table SALES in the data-
base is still 1.50. To ensure the update takes effect in the database and not just the result set, the
com.sun.star.sdbc.XResultSetUpdate method updateRow()is called. Here is what the code
should look like to update rs and SALES:
 rs.last();

 XRowUpdate updateRow = (XRowUpdate)UnoRuntime.queryInterface(XRowUpdate.class, rs);
 updateRow.updateFloat(2, (float)0.99);
 XResultSetUpdate updateRs = (XResultSetUpdate)UnoRuntime.queryInterface(XResultSetUpdate.class, rs);

 // update the data in DBMS
 updateRs.updateRow();

If the cursor is moved to a different row before calling updateRow(), the update is lost. The update
can be cancelled by calling cancelRowUpdates(), for instance, the price should have been 0.79
instead of 0.99. The cancelRowUpdates() has to be invoked before invoking updateRow(). The
cancelRowUpdates()does nothing when updateRow() has been called. Note that cancelRowUp-
dates cancels all the updates in a row, that is, if there were more than one updateXXX method in
the row, they are all cancelled.. The following code fragment cancels the update to the price
column to 0.99, and then updates it to 0.79:
 rs.last();

 updateRow.updateFloat(2, (float)0.99);
 updateRs.cancelRowUpdates();
 updateRow.updateFloat(2, (float)0.79);
 updateRs.updateRow();

In the above example, only one column value is updated, but an appropriate updateXXX() method
can be called for any or all of the column values in a single row. Updates and related operations
apply to the row where the cursor is positioned. Even if there are many calls to updateXXX
methods, it takes only one call to the method updateRow() to update the database with all changes
made in the current row.

To update the price for beef as well, move the cursor to the row containing that product. The row
for beef immediately precedes the row for orange juice, so the method previous() can be called
to position the cursor on the row for Beef. The following code fragment changes the price in that
row to 10.79 in the result set and underlying table in the database:
 rs.previous();

 updateRow.updateFloat(2, (float)10.79);
 updateRs.updateRow();

All cursor movements refer to rows in a ResultSet object, not to rows in the underlying data-
base. If a query selects five rows from a database table, there are five rows in the result set with the
first row being row 1, the second row being row 2, and so on. Row 1 can also be identified as the
first row, and in a result set with five rows, row 5 is the last.

942 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XResultSetUpdate.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XResultSetUpdate.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XResultSetUpdate.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRowUpdate.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRowUpdate.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRowUpdate.html

The order of the rows in the result set has nothing to do with the physical order of the rows in the
underlying table. In fact, the order of the rows in a database table is indeterminate. The DBMS
keeps track of which rows were selected, and it makes updates to the proper rows, but they may be
located anywhere in the table physically. When a row is inserted, there is no way to know where in
the table it was inserted.

Insert
The previous section described how to modify a column value using methods in the SDBC API,
rather than SQL commands. With the SDBC API, a new row can also be inserted into a table or an
existing row deleted programmatically.

Suppose our salesman Bob sold a new product to one of our customers, FTOP Darjeeling tea, and
we need to add the new sale to the database. Using the previous example, write code that passes
an SQL insert statement to the DBMS. The following code fragment, in which stmt is a State-
ment object, shows this approach: (Database/Sales.java)
 stmt.executeUpdate("INSERT INTO SALES " +
 "VALUES (4, 102, 5, 'FTOP Darjeeling tea', '2002-01-02',150)");

The same thing can be done, without using any SQL commands, by using ResultSet methods in
the SDBC API. After a ResultSet object is obtained with the results from the table SALES, build the
new row and then insert it into the result set and the table SALES in one step. First, build a new row
in the insert row, a special row associated with every ResultSet object. This row is not part of the
result set. It can be considered as a separate buffer in which a new row is composed prior to inser-
tion.

The next step is to move the cursor to the insert row by invoking the method moveToInsertRow.().
Then set a value for each column in the row that should not be null by calling the appropriate
updateXXX() method for each value. Note that these are the same updateXXX() methods used to
change a column value in the previous section.

Finally, call insertRow() to insert the row that was populated with values into the result set. This
method simultaneously inserts the row into the ResultSet object, as well as the database table
from where the result set was selected.

The following code fragment creates a scrollable and modifiable ResultSet object rs that contains
all of the rows and columns in the table SALES: (Database/Sales.java)
 XConnection con = XDriverManager.getConnection("jdbc:mySubprotocol:mySubName");
 XStatement stmt = con.createStatement();

 XPropertySet xProp = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, stmt);
 xProp.setPropertyValue("ResultSetType", new java.lang.Integer(ResultSetType.SCROLL_INSENSITIVE));
 xProp.setPropertyValue("ResultSetConcurrency", new
java.lang.Integer(ResultSetConcurrency.UPDATABLE));

 XResultSet rs = stmt.executeQuery("SELECT * FROM SALES");
 XRow row = (XRow)UnoRuntime.queryInterface(XRow.class, rs);

The next code fragment uses the XResultSetUpdate interface of rs to insert the row for FTOP
Darjeeling tea, shown in the SQL code example. It moves the cursor to the insert row, sets the six
column values, and inserts the new row into rs and SALES: (Database/Sales.java)
 XRowUpdate updateRow = (XRowUpdate)UnoRuntime.queryInterface(XRowUpdate.class, rs);
 XResultSetUpdate updateRs = (XResultSetUpdate)UnoRuntime.queryInterface(XResultSetUpdate.class, rs);

 updateRs.moveToInsertRow();

 updateRow.updateInt(1, 4);
 updateRow.updateInt(2, 102);
 updateRow.updateInt(3, 5);
 updateRow.updateString(4, "FTOP Darjeeling tea");
 updateRow.updateDate(5, new Date((short)1, (short)2, (short)2002));
 updateRow.updateFloat(6, 150);

 updateRs.insertRow();

943

The updateXXX() methods behave differently from the way they behaved in the update examples.
In those examples, the value set with an updateXXX() method immediately replaced the column
value in the result set, because the cursor was on a row in the result set. When the cursor is on the
insert row, the value set with an updateXXX() method is immediately set, but it is set in the insert
row rather than in the result set itself.

In updates and insertions, calling an updateXXX() method does not affect the underlying database
table. The method updateRow() must be called to have updates occur in the database. For inser-
tions, the method insertRow() inserts the new row into the result set and the database at the same
time.

If a value is not supplied for a column that was defined to accept SQL NULL values, then the value
assigned to that column is NULL . If a column does not accept null values, an SQLException is
returned when an updateXXX() method is not called to set a value for it. This is also true if a table
column is missing in the ResultSet object. In the example above, the query was SELECT *
FROM SALES, which produced a result set with all the columns of all the rows. To insert one or
more rows, the query does not have to select all rows, but it is advisable to select all columns.
Additionally if the table has many rows, use a WHERE clause to limit the number of rows returned
by the SELECT statement.

After the method insertRow()is called, start building another insert row, or move the cursor back
to a result set row. Any of the methods can be executed that move the cursor to a specific row, such
as first(), last(), beforeFirst(), afterLast(), and absolute(). The methods previous(),
relative(), and moveToCurrentRow()can also be used. Note that only moveToCurrentRow() can
be invoked as long as the cursor is on the insert row.

When the method moveToInsertRow()is called, the result set records which row the cursor is in,
that is by definition the current row. As a consequence, the method moveToCurrentRow() can
move the cursor from the insert row back to the row that was the current row previously. This also
explains why the methods previous() and relative()can be used, because require movement
relative to the current row.

Delete
In the previous sections, how to update a column and insert a new row was explained. This section
discusses how to modify the ResultSet object by deleting a row. The method deleteRow()is
called to delete the row where the cursor is placed. For example, to delete the fourth row in the
ResultSet rs, the code look like this: (Database/Sales.java)
 rs.absolute(4);

 XResultSetUpdate updateRs = (XResultSetUpdate)UnoRuntime.queryInterface(XResultSetUpdate.class, rs);
 updateRs.deleteRow();

The fourth row is removed from rs and also from the database.

The only issue about deletions is what the ResultSet object does when it deletes a row. With some
SDBC drivers, a deleted row is removed and no longer visible in a result set. Other SDBC drivers
use a blank row as a placeholder (a "hole") where the deleted row used to be. If there is a blank
row in place of the deleted row, the method absolute() can be used with the original row posi-
tions to move the cursor, because the row numbers in the result set are not changed by the dele-
tion.

Remember that different SDBC drivers handle deletions differently. For example, if an application
is meant to run with different databases, the code should not depends on holes in a result set.

944 OpenOffice.org 2.3 Developer's Guide • June 2007

Seeing Changes in Result Sets
When data is modified in a ResultSet object, the change is always visible immediately. That is, if
the same query is re-executed, a new result set is produced based on the data currently in a table.
This result set reflects the earlier changes.

If the changes made by you or others are visible while the ResultSet object is open, is dependent
on the DBMS, the driver, and the type of ResultSet object.

With a SCROLL_SENSITIVE ResultSetType object, the updates to column values are visible. As
well, insertions and deletions are visible, but to ensure this information is returned, use the
com.sun.star.sdbc.XDatabaseMetaData methods.

The amount of visibility for changes can be regulated by raising or lowering the transaction isola-
tion level for the connection with the database. For example, the following line of code, where con
is an active Connection object, sets the connection's isolation level to READ_COMMITTED:
 con.setTransactionIsolation(TransactionIsolation.READ_COMMITTED);

With this isolation level, the ResultSet object does not show changes before they are committed,
but it shows changes that may have other consistency problems. To allow fewer data inconsisten-
cies, raise the transaction isolation level to REPEATABLE_READ. Note that the higher the isolation
level, the poorer the performance. The database and driver also limited what is actually provided.
Many programmers use their database's default transaction isolation level. Consult the DBMS
manual for more information about transaction isolation levels.

In a ResultSet object that is SCROLL_INSENSITIVE, changes are not visible while it is still open.
Some programmers only use this type of ResultSet object to get a consistent view of the data
without seeing changes made by others.

The method refreshRow() is used to get the latest values for a row straight from the database.
This method is time consuming, especially if the DBMS returns multiple rows refreshRow()is
called. The method refreshRow()can be valuable if it is critical to have the latest data. Even when
a result set is sensitive and changes are visible, an application may not always see the latest
changes that have been made to a row if the driver retrieves several rows at a time and caches
them. Thus, using the method refreshRow()ensures that only up-to-date data is visible.

The following code sample illustrates how an application might use the method refreshRow()
when it is critical to see the latest changes. Note that the result set should be sensitive. If the
method refreshRow() with a SCROLL_INSENSITIVE ResultSet is used, refreshRow() does
nothing. Getting the latest data for the table SALES is not realistic with these methods. A more
realistic scenario is when an airline reservation clerk needs to ensure that the seat he is about to
reserve is still available. (Database/Sales.java)
 XStatement stmt = con.createStatement();

 XPropertySet xProp = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, stmt);
 xProp.setPropertyValue("ResultSetType",new java.lang.Integer(ResultSetType.SCROLL_SENSITIVE));
 xProp.setPropertyValue("ResultSetConcurrency", new
java.lang.Integer(ResultSetConcurrency.READ_ONLY));

 XResultSet rs = stmt.executeQuery("SELECT NAME, PRICE FROM SALES");

 XRow row = (XRow)UnoRuntime.queryInterface(XRow.class, rs);

 rs.absolute(4);

 float price1 = row.getFloat(2);
 // do something ...
 rs.absolute(4);
 rs.refreshRow();
 float price2 = row.getFloat(2);
 if (price2 != price1) {
 // do something ...
 }

945

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html

13.3.4 ResultSetMetaData
When you develop applications that allow users to create their own SQL statements, for example,
through a user interface, information about the result set to be displayed is required. For this
reason, the result set supports a method to examine the meta data, that is, information about the
columns in the result set. This information could cover items, such as the name of the column, if it
is null, if it is an auto increment column, or a currency column. For detailed information, see the
interface com.sun.star.sdbc.XResultSetMetaData. The following code fragment shows the use
of the XResultSetMetaData interface: (Database/Sales.java)
 XStatement stmt = con.createStatement();

 XPropertySet xProp = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, stmt);
 xProp.setPropertyValue("ResultSetType",new java.lang.Integer(ResultSetType.SCROLL_INSENSITIVE));
 xProp.setPropertyValue("ResultSetConcurrency", new
java.lang.Integer(ResultSetConcurrency.READ_ONLY));

 XResultSet rs = stmt.executeQuery("SELECT NAME, PRICE FROM SALES");
 XResultSetMetaDataSupplier xRsMetaSup = (XResultSetMetaDataSupplier)UnoRuntime.queryInterface(
 XResultSetMetaDataSupplier.class, rs);
 XResultSetMetaData xRsMetaData = xRsMetaSup.getMetaData();

 int nColumnCount = xRsMetaData.getColumnCount();

 for (int i=1 ;i <= nColumnCount; ++i) {
 System.out.println(“Name: “ + xRsMetaData.getColumnName(i) + " Type: " +
 xRsMetaData.getColumnType(i));
}

The printout looks similar to this:

Name: NAME Type: 12
Name: PRICE Type: 3

Notice that the Type returned is the number for the corresponding SQL data type. In this case,
VARCHAR has the value 12 and the type 3 is the SQL data type DECIMAL. The whole list of data
types can be found at com.sun.star.sdbc.DataType.

Note that the com.sun.star.sdbc.XResultSetMetaData can be requested before you move to the
first row.

13.3.5 Using Prepared Statements
Sometimes it is convenient or efficient to use a PreparedStatement object to send SQL statements
to the database. This special type of statement includes the more general service
com.sun.star.sdbc.Statement already discussed.

When to Use a PreparedStatement Object
Using a PreparedStatement object reduces execution time, if executing a Statement object many
times as in the example above.

The main feature of a PreparedStatement object is that it is given an SQL statement when it is
created, unlike a Statement object. This SQL statement is sent to the DBMS right away where it is
compiled. As a result, the PreparedStatement object contains not just an SQL statement, but an
SQL statement that has been precompiled. This means that when the PreparedStatement is
executed, the DBMS can run the PreparedStatement's SQL statement without having to analyze
and optimize it again.

The PreparedStatement objects can be used for SQL statements without or without parameters.
The advantage of using SQL statements with parameters is that the same statement can be used

946 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/Statement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/Statement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/Statement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XResultSetMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XResultSetMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XResultSetMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/DataType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/DataType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/DataType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XResultSetMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XResultSetMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XResultSetMetaData.html

with different values supplied each time it is executed. This is shown in an example in the
following sections.

Creating a PreparedStatement Object
Similar to Statement objects, PreparedStatement objects are created using
prepareStatement() on a Connection object. Using our open connection con from the previous
examples, code could be written like the following to create a PreparedStatement object that takes
two input parameters:
 XPreparedStatement updateStreet = con.prepareStatement(
 "UPDATE SALESMAN SET STREET = ? WHERE SNR = ?");

The variable updateStreet now contains the SQL update statement that has also been sent to the
DBMS and precompiled.

Supplying Values for PreparedStatement Parameters
Before executing a PreparedStatement object, values to replace the question mark place-
holders or named parameters, such as param1 or param2 have to be supplied. This is accom-
plished by calling one of the setXXX() methods defined in the interface
com.sun.star.sdbc.XParameters of the prepared statement. For instance, to substitute a ques-
tion mark with a value that is a Java int, call setInt(). If the value is a Java String, call the
method setString(). There is a setXXX() method for each type in the Java programming
language.

Using the PreparedStatement object updateStreet() from the previous example, the following
line of code sets the first question mark placeholder to a Java String with a value of '34 Main
Road':
 XParameters setPara = (XParameters)UnoRuntime.queryInterface(XParameters.class, updateStreet);
 setPara.setString(1, "34 Main Road");

The example shows that the first argument given to a setXXX() method indicates which question
mark placeholder should be set, and the second argument contains the value for the placeholder.
The next example sets the second placeholder parameter to the Java int 1:
 setPara.setInt(2, 1);

After these values have been set for its two input parameters, the SQL statement in updateStreet
is equivalent to the SQL statement in the String object updateString() used in the previous
update example. Therefore, the following two code fragments accomplish the same thing:

Code Fragment 1: (Database/Sales.java)
 String updateString = "UPDATE SALESMAN SET STREET = '34 Main Road' WHERE SNR = 1";
 stmt.executeUpdate(updateString);

Code Fragment 2: (Database/Sales.java)
 XPreparedStatement updateStreet = con.prepareStatement(
 "UPDATE SALESMAN SET STREET = ? WHERE SNR = ? ");
 XParameters setPara = (XParameters)UnoRuntime.queryInterface(XParameters.class,updateStreet);
 setPara.setString(1, "34 Main Road");
 setPara.setInt(2, 1);
 updateStreet.executeUpdate();

The method executeUpdate() was used to execute the Statement stmt and the PreparedState-
ment updateStreet. Notice that no argument is supplied to executeUpdate() when it is used to
execute updateStreet . This is true because updateStreet already contains the SQL statement to
be executed.

947

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XParameters.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XParameters.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XParameters.html

Looking at the above examples, a PreparedStatement object with parameters was used instead of
a statement that involves fewer steps. If a table is going to be updated once or twice, a statement is
sufficient, but if the table is going to be updated often, it is efficient to use a PreparedStatement
object. This is especially true in situation where a for loop or while loop can be used to set a
parameter to a succession of values. This is shown later in this section.

Once a parameter has been set with a value, it retains that value until it is reset to another value or
the method clearParameters() is called. Using the PreparedStatement object updateStreet,
the following code fragment illustrates reusing a prepared statement after resetting the value of
one of its parameters and leaving the other one as is:
 // set the 1st parameter (the STREET column) to Maryland
 setPara.setString(1, "Maryland");

 // use the 2nd parameter to select George Flint, his unique identifier SNR is 4
 setPara.setInt(2, 4);

 // write changes to database
 updateStreet.executeUpdate();

 // changes STREET column back to Michigan road
 // the 2nd parameter for SNR still is 4, only the first parameter is adjusted
 updateStreet.executeUpdate();
 setPara.setString(1, "Michigan road");

 // write changes to database
 updateStreet.executeUpdate();

13.3.6 PreparedStatement From DataSource Queries
Use the com.sun.star.sdb.XCommandPreparation to get the necessary statement objects to open
predefined queries and tables in a data source, and to execute arbitrary SQL statements:

com::sun::star::sdbc::XPreparedStatement prepareCommand([in] string command, [in] long commandType)

If the value of the parameter com.sun.star.sdb.CommandType is TABLE or QUERY, pass a table
name or query name that exists in the com.sun.star.sdb.DataSource of the connection. The
value COMMAND makes prepareCommand() expect an SQL string. The result is a prepared statement
object that can be parameterized and executed.

The following fragment opens a predefined query in a database Ada01:
 // retrieve the DatabaseContext and get its com.sun.star.container.XNameAccess interface

XNameAccess xNameAccess = (XNameAccess)UnoRuntime.queryInterface(
 XNameAccess.class, _rMSF.createInstance("com.sun.star.sdb.DatabaseContext"));

 Object dataSource = xNameAccess.getByName("Ada01");
 XDataSource xDataSource = (XDataSource)UnoRuntime.queryInterface(XDataSource.class, dataSource);
 Object interactionHandler = _rMSF.createInstance("com.sun.star.sdb.InteractionHandler");
 XInteractionHandler xInteractionHandler = (XInteractionHandler)UnoRuntime.queryInterface(

 XInteractionHandler.class, interactionHandler);

 XCompletedConnection xCompletedConnection = (XCompletedConnection)UnoRuntime.queryInterface(
 XCompletedConnection.class, dataSource);

 XConnection xConnection = xCompletedConnection.connectWithCompletion(xInteractionHandler);

 XCommandPreparation xCommandPreparation = (XCommandPreparation)UnoRuntime.queryInterface(
 XCommandPreparation.class, xConnection);
 XPreparedStatement xPreparedStatement = xCommandPreparation.prepareCommand(

 "Query1", CommandType.QUERY);

 XResultSet xResult = xPreparedStatement.executeQuery();
 XRow xRow = (XRow)UnoRuntime.queryInterface(XRow.class, xResult);
 while (xResult != null && xResult.next()) {
 System.out.println(xRow.getString(1));
 }

948 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DataSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/CommandType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/CommandType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/CommandType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XCommandPreparation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XCommandPreparation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XCommandPreparation.html

13.4 Database Design

13.4.1 Retrieving Information about a Database
The com.sun.star.sdbc.XDatabaseMetaData interface is implemented by SDBC drivers to
provide information about their underlying database. It is used primarily by application servers
and tools to determine how to interact with a given data source. Applications may also use XData-
baseMetaData methods to get information about a database. The com.sun.star.sdbc.XData-
baseMetaData interface includes over 150 methods, that are categorized according to the types of
information they provide:

• General information about the database.

• If the database supports a given feature or capability.

• Database limits.

• What SQL objects the database contains and attributes of those objects.

• Transaction support offered by the data source.

Additionally, the com.sun.star.sdbc.XDatabaseMetaData interface uses a resultset with more
than 40 possible columns as return values in many com.sun.star.sdbc.XDatabaseMetaData
methods. This section presents an overview of the com.sun.star.sdbc.XDatabaseMetaData
interface, and provides examples illustrating the categories of metadata methods. For a compre-
hensive listing, consult the SDBC API specification.

• Creating the XDatabaseMetaData objects

A com.sun.star.sdbc.XDatabaseMetaData object is created using the Connection method
getMetaData(). Once created, it can be used to dynamically discover information about the
underlying data source. The following code example creates a com.sun.star.sdbc.XDatabase-
MetaData object and uses it to determine the maximum number of characters allowed for a table
name.
 // xConnection is a Connection object
 XDatabaseMetaData dbmd = xConnection.getMetaData();
 int maxLen = dbmd.getMaxTableNameLength();

Retrieving General Information
Some com.sun.star.sdbc.XDatabaseMetaData methods are used to dynamically discover
general information about a database, as well as details about its implementation. Some of the
methods in this category are:

• getURL()
• getUserName()
• getDatabaseProductVersion(), getDriverMajorVersion() and getDriverMinorVersion()
• getSchemaTerm(), getCatalogTerm() and getProcedureTerm()
• nullsAreSortedHigh() and nullsAreSortedLow()
• usesLocalFiles() and usesLocalFilePerTable()
• getSQLKeywords()

949

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html

Determining Feature Support
A large group of com.sun.star.sdbc.XDatabaseMetaData methods can be used to determine
whether a given feature or set of features is supported by the driver or underlying database.
Beyond this, some of the methods describe what level of support is provided. Some of the methods
that describe support for individual features are:

• supportsAlterTableWithDropColumn()
• supportsBatchUpdates()
• supportsTableCorrelationNames()
• supportsPositionedDelete()
• supportsFullOuterJoins()
• supportsStoredProcedures()
• supportsMixedCaseQuotedIdentifiers()
Methods to describe the level of feature support include:

• supportsANSI92EntryLevelSQL()
• supportsCoreSQLGrammar()

Database Limits
Another group of methods provides the limits imposed by a given database. Some of the methods
in this category are:

• getMaxRowSize()
• getMaxStatementLength()
• getMaxTablesInSelect()
• getMaxConnections()
• getMaxCharLiteralLength()
• getMaxColumnsInTable()
Methods in this group return the limit as an int. A return value of zero means there is no limit or
the limit is unknown.

SQL Objects and their Attributes
Some methods provide information about the SQL objects that populate a given database. This
group also includes methods to determine the attributes of those objects. Methods in this group
return ResultSet objects in which each row describes a particular object. For example, the method
getUDTs() returns a ResultSet object in which there is a row for each user defined type (UDT)
that has been defined in the database. Examples of this category are:

• getSchemas() and getCatalogs()
• getTables()
• getPrimaryKeys()
• getColumns()
• getProcedures() and getProcedureColumns()
• getUDTs()

950 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html

For example, to display the structure of a table that consists of columns and keys (primary keys,
foreign keys), and also indexes defined on the table, the com.sun.star.sdbc.XDatabaseMetaData
interface is required: (Database/CodeSamples.java)
 XDatabaseMetaData dm = con.getMetaData();
 XResultSet rsTables = dm.getTables(null, "%", "SALES", null);
 XRow rowTB = (XRow)UnoRuntime.queryInterface(XRow.class, rsTables);

 while (rsTables.next()) {
 String catalog = rowTB.getString(1);
 if (rowTB.wasNull())
 catalog = null;

 String schema = rowTB.getString(2);
 if (rowTB.wasNull())
 schema = null;

 String table = rowTB.getString(3);
 String type = rowTB.getString(4);
 System.out.println("Catalog: " + catalog +
 " Schema: " + schema + " Table: " + table + "Type: " + type);
 System.out.println("------------------ Columns ------------------");
 XResultSet rsColumns = dm.getColumns(catalog, schema, table, "%");
 XRow rowCL = (XRow)UnoRuntime.queryInterface(XRow.class, rsColumns);
 while (rsColumns.next()) {
 System.out.println("Column: " + rowCL.getString(4) +
 " Type: " + rowCL.getInt(5) + " TypeName: " + rowCL.getString(6));

}
 }

Another method often used when creating SQL statements is the method getIdentifier-
QuoteString(). This method is always used when table or column names need to be quoted in the
SQL statement. For example:
 SELECT "Name", "Price" FROM "Sales"

In this case, the identifier quotation is the character ". The combination of XDatabaseMetaData
methods in the following code fragment may be useful to know if the database supports catalogs
and/or schemata. (Database/CodeSamples.java)
public static String quoteTableName(XConnection con, String sCatalog, String sSchema,
 String sTable) throws com.sun.star.uno.Exception {
 XDatabaseMetaData dbmd = con.getMetaData();
 String sQuoteString = dbmd.getIdentifierQuoteString();
 String sSeparator = ".";
 String sComposedName = "";
 String sCatalogSep = dbmd.getCatalogSeparator();
 if (0 != sCatalog.length() && dbmd.isCatalogAtStart() && 0 != sCatalogSep.length()) {
 sComposedName += sCatalog;
 sComposedName += dbmd.getCatalogSeparator();
 }
 if (0 != sSchema.length()) {
 sComposedName += sSchema;
 sComposedName += sSeparator;
 sComposedName += sTable;
 } else {
 sComposedName += sTable;
 }
 if (0 != sCatalog.length() && !dbmd.isCatalogAtStart() && 0 != sCatalogSep.length()) {
 sComposedName += dbmd.getCatalogSeparator();
 sComposedName += sCatalog;
 }
 return sComposedName;
}

13.4.2 Using DDL to Change the Database Design
To show the usage of statements for data definition purposes, we will show how to create the
tables in our example database using CREATE statements. The first table, SALESMAN, contains
essential information about the salespersons, including the first name, last name, street address,
city, and birth date. The table SALESMAN that is described in more detail later, is shown here:

951

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html

SNR FIRSTNAME LASTNAME STREET STATE ZIP BIRTH DATE

1 0 0 0 0 95460 02/07/46

2 0 0 0 0 95460 12/24/63

3 0 0 0 0 95460 04/01/72

4 0 0 0 0 95460 02/13/53

5 0 0 0 0 95460 09/07/49

The first column is the column SNR of SQL type INTEGER. This column contains a unique number
for each salesperson. Since there is a different SNR for each person, the SNR column can be used to
uniquely identify a particular salesman,the is, the primary key. If this were not the case, an addi-
tional column that is unique would have to be introduced, such as the social security number. The
column for the first name is FIRSTNAME that holds values of the SQL type VARCHAR with a
maximum length of 50 characters. The third column, LASTNAME, is also a VARCHAR with a maximum
length of 100 characters. The STREET and STATE columns are VARCHARs with 50 characters. The
column ZIP uses INTEGER and the column BIRTHDATE uses the type DATE. By using the type DATE
instead of VARCHAR,the dates of birth can be compared with the current date.

The second table, CUSTOMER, in our database, contains information about customers:

COS_NR LASTNAME STREET CITY STATE ZIP

100 0 0 0 0 95199

101 0 0 0 0 95460

102 0 0 0 0 93966

The first column is the personal number COS_NR of our customer. This column is used to uniquely
identify the customers, and declare this column to be the primary key. The types of the other
columns are identical to the first table, SALESMAN.

Another table to show joins is required. For this purpose, the table SALES is used. This table
contains all sales that our salespersons could enter into an agreement with the customers. This table
needs a column SALENR to identify each sale, a column for COS_NR to identify the customer and a
column SNR for the sales person who made the sale, and the columns that defines the article sold.

SALENR COS_NR SNR NAME DATE PRICE

1 100 1 0 02/12/01 $39.99

2 101 2 0 10/18/01 $15.78

3 102 4 Orange juice 08/09/01 $1.50

To show the relationship between the three tables, consider the diagram below.

The table SALES contains the column COS_NR and the column SNR. These two columns can be
used in SELECT statements to get data based on the information in this table, for example, all sales
made by the salesperson Jane. The column COS_NR is the primary key in the table CUSTOMER and
it uniquely identifies each of the customers. The same is true for the column SNR in the table
SALESMAN. In the table SALES, the fields COS_NR and SNR are foreign keys. Note that each
COS_NR and SNR number may appear more than once in the SALES table, because a third
column SALENR was introduced. This is required for a primary key. An example of how to use
primary and foreign keys in a SELECT statement is provided later.

The following CREATE TABLE statement creates the table SALESMAN. The entries within the
outer pair of parentheses consist of the name of a column followed by a space and the SQL type to
be stored in that column. A comma separates the column entries where each entry consists of a
column name and SQL type. The type VARCHAR is created with a maximum length, so it takes a

952 OpenOffice.org 2.3 Developer's Guide • June 2007

parameter indicating the maximum length. The parameter must be in parentheses following the
type. The SQL statement shown here specifies that the name in column FIRSTNAME may be up to
50 characters long:
CREATE TABLE SALESMAN
(SNR INTEGER NOT NULL,
 FIRSTNAME VARCHAR(50),
 LASTNAME VARCHAR(100),
 STREET VARCHAR(50),
 STATE VARCHAR(50),
 ZIP VARCHAR(10),
 BIRTHDATE DATE,
 PRIMARY KEY(SNR)
)

This code does not end with a DBMS statement terminator that can vary from DBMS to DBMS. For example,
Oracle uses a semicolon (;) to indicate the end of a statement, and Sybase uses the word go. The driver you
are using automatically supplies the appropriate statement terminator, so that you will not need to include it
in your SDBC code.

In the CREATE TABLE statement above, key words are printed in capital letters, and each item is on
a separate line. SQL does not require the use of these conventions, it makes the statements easier to
read. The standard in SQL is that keywords are not case sensitive, therefore, the following SELECT
statement can be written in various ways:
SELECT "FirstName", "LastName"
FROM "Employees"
WHERE "LastName" LIKE 'Washington'

is equivalent to
select "FirstName", LastName" from "Employees" where
"LastName" like 'Washington'

Single quotes '...' denote a string literal, double quotes mark case sensitive identifiers in many SQL
databases.

Requirements can vary from one DBMS to another for identifier names. For example, some DBMSs
require that column and table names must be given exactly as they were created in the CREATE
TABLE statement, while others do not. We use uppercase letters for identifiers such as SALESMAN,
CUSTOMERS and SALES. Another way would be to ask the XDatabaseMetaData interface if the
method storesMixedCaseQuotedIdentifiers() returns true, and to use the string that the
method getIdentifierQuoteString() returns.

The data types used in our CREATE TABLE statement are the generic SQL types (also called SDBC
types) that are defined in the com.sun.star.sdbc.DataType. DBMSs generally uses these stan-
dard types.

To issue the commands above against our database, use the connection con to create a statement
and the method executeUpdate() at its interface com.sun.star.sdbc.XStatement. In the
following code fragment, executeUpdate() is supplied with the SQL statement from the
SALESMAN example above: (Database/SalesMan.java)
 XStatement xStatement = con.createStatement();
 int n = xStatement.executeUpdate("CREATE TABLE SALESMAN " +
 "(SNR INTEGER NOT NULL, " +
 "FIRSTNAME VARCHAR(50), " +
 "LASTNAME VARCHAR(100), " +
 "STREET VARCHAR(50), " +
 "STATE VARCHAR(50), " +
 "ZIP INTEGER, " +
 "BIRTHDATE DATE, " +
 "PRIMARY KEY(SNR) " +
 ")");

The method executeUpdate() is used because the SQL statement contained in createTable-
Salesman is a DDL (data definition language) statement. Statements that create a table, alter a
table, or drop a table are all examples of DDL statements, and are executed using the method
executeUpdate().

953

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XStatement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XStatement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XStatement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/DataType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/DataType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/DataType.html

When the method executeUpdate() is used to execute a DDL statement, such as CREATE TABLE,
it returns zero. Consequently, in the code fragment above that executes the DDL statement used to
create the table SALESMAN , n is assigned a value of 0.

13.4.3 Using SDBCX to Access the Database Design

The Extension Layer SDBCX

The SDBCX layer introduces several abstractions built upon the SDBC layer that define general
database objects, such as catalog, table, view, group, user, key, index, and column, as well as
support for schema and security tasks. These objects are used to manage database design tasks.
The ability of the SDBCX layer to define new data structures makes it an alternative to SQL DDL.
The above Illustration 13.3 gives an overview to the SDBCX objects an their containers.

All objects mentioned previously have matching containers, except for the catalog. Each container
implements the service com.sun.star.sdbcx.Container. The interfaces that the container
supports depend on the objects that reside in it. For instance, the container for keys does not

954 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 13.14: SDBCX Object design

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Container.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Container.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Container.html

support an com.sun.star.container.XNameAccess interface. These containers are used to add
and manage new objects in a catalog. The users and groups container manage the control permis-
sions for other SDBCX objects, such as tables and views.

Illustration 13.2 shows the container specification for SDBCX DatabaseDefinition services.

Catalog Service
The Catalog object is the highest-level container in the SDBCX layer. It contains structural features
of databases, like the schema and security model for the database. The connection, for instance,
represents the database, and the Catalog is the database container for the tables, views, groups,
and users within a connection or database. To create a catalog object, the database driver must
support the interface com.sun.star.sdbcx.XDataDefinitionSupplier and an existing connec-
tion object. The following code fragment lists tables in a database. (Database/sdbcx.java)
 // create the Driver with the implementation name
 Object aDriver = xORB.createInstance("com.sun.star.comp.sdbcx.adabas.ODriver");
 // query for the interface

955

Illustration 13.15: Database definition

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XDataDefinitionSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XDataDefinitionSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XDataDefinitionSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html

 com.sun.star.sdbc.XDriver xDriver;
 xDriver = (XDriver)UnoRuntime.queryInterface(XDriver.class, aDriver);
 if (xDriver != null) {
 // first create the needed url
 String adabasURL = "sdbc:adabas::MYDB0";
 // second create the necessary properties
 com.sun.star.beans.PropertyValue [] adabasProps = new com.sun.star.beans.PropertyValue[] {
 new com.sun.star.beans.PropertyValue("user", 0, "test1",
 com.sun.star.beans.PropertyState.DIRECT_VALUE),
 new com.sun.star.beans.PropertyValue("password", 0, "test1",
 com.sun.star.beans.PropertyState.DIRECT_VALUE)
 };

 // now create a connection to adabas
 XConnection adabasConnection = xDriver.connect(adabasURL, a dabasProps);
 if(adabasConnection != null) {
 System.out.println("Connection could be created!");
 // we need the XDatabaseDefinitionSupplier interface
 // from the driver to get the XTablesSupplier
 XDataDefinitionSupplier xDDSup = (XDataDefinitionSupplier)UnoRuntime.queryInterface(
 XDataDefinitionSupplier.class, xDriver);
 if (xDDSup != null) {
 XTablesSupplier xTabSup = xDDSup.getDataDefinitionByConnection(adabasConnection);
 if (xTabSup != null) {
 XNameAccess xTables = xTabSup.getTables();
 // now print all table names
 System.out.println("Tables available:");
 String [] aTableNames = xTables.getElementNames();
 for (int i =0; i<= aTableNames.length-1; i++)
 System.out.println(aTableNames[i]);
 }
 }
 else {
 System.out.println("The driver is not SDBCX capable!");
 }

 // now we dispose the connection to close it
 XComponent xComponent = (XComponent)UnoRuntime.queryInterface(
 XComponent.class, adabasConnection);
 if (xComponent != null) {
 xComponent.dispose();
 System.out.println("Connection disposed!");
 }
 }
 else {
 System.out.println("Connection could not be created!");
 }
 }

Table Service
The Table object is a member of the tables container that is a member of the Catalog object. Each
Table object supports the same properties, such as Name, CatalogName, SchemaName, Description,
and an optional Type. The properties CatalogName and SchemaName can be empty when the data-
base does not support these features. The Description property contains any comments that were
added to the table object at creation time. The optional property Type is a string property may
contain a database specific table type when supported, . Common table types are "TABLE",
"VIEW", "SYSTEM TABLE", and "TEMPORARY TABLE". All these properties are read-only as long
as this is not a descriptor. The descriptor pattern is described later.

956 OpenOffice.org 2.3 Developer's Guide • June 2007

The Table object also supports the com.sun.star.sdbcx.XColumnsSupplier interface, because a
table can not exist without columns. The other interfaces are optional, that is, they do not have to
be supported by the actual table object:

• com.sun.star.sdbcx.XDataDescriptorFactory interface that is used to copy a table object.

• com.sun.star.sdbcx.XIndexesSupplier interface that returns the container for indexes.

• com.sun.star.sdbcx.XKeysSupplier interface that returns the keys container.

• com.sun.star.sdbcx.XRename interface that allows renaming a table object.

957

Illustration 13.16: Table

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XRename.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XRename.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XRename.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XKeysSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XKeysSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XKeysSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XIndexesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XIndexesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XIndexesSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XDataDescriptorFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XDataDescriptorFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XDataDescriptorFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XColumnsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XColumnsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XColumnsSupplier.html

• com.sun.star.sdbcx.XAlterTable interface that allows the altering of columns of a table
object.

The code example below shows the use of the table container and prints the table properties of the
first table in the container. (Database/sdbcx.java)

 ...
 XNameAccess xTables = xTabSup.getTables();
 if (0 != aTableNames.length) {
 Object table = xTables.getByName(aTableNames[0]);
 XPropertySet xProp = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, table);
 System.out.println("Name: " + xProp.getPropertyValue("Name"));
 System.out.println("CatalogName: " + xProp.getPropertyValue("CatalogName"));
 System.out.println("SchemaName: " + xProp.getPropertyValue("SchemaName"));
 System.out.println("Description: " + xProp.getPropertyValue("Description"));
 // the following property is optional so we first must check if it exists
 if(xProp.getPropertySetInfo().hasPropertyByName("Type"))
 System.out.println("Type: " + xProp.getPropertyValue("Type"));
 }

The Table object contains access to the columns, keys, and indexes when the above mentioned
interfaces are supported. (Database/sdbcx.java)
// print all columns of a XColumnsSupplier
// later on used for keys and indexes as well
public static void printColumns(XColumnsSupplier xColumnsSup)
 throws com.sun.star.uno.Exception,SQLException {
 System.out.println("Example printColumns");
 // the table must at least support a XColumnsSupplier interface
 System.out.println("--- Columns ---");
 XNameAccess xColumns = xColumnsSup.getColumns();
 String [] aColumnNames = xColumns.getElementNames();
 for (int i =0; i<= aColumnNames.length-1; i++)
 System.out.println(" " + aColumnNames[i]);
}

// print all keys including the columns of a key
public static void printKeys(XColumnsSupplier xColumnsSup)
 throws com.sun.star.uno.Exception,SQLException {
 System.out.println("Example printKeys");
 XKeysSupplier xKeysSup = (XKeysSupplier)UnoRuntime.queryInterface(
 XKeysSupplier.class, xColumnsSup);
 if (xKeysSup != null) {
 System.out.println("--- Keys ---");
 XIndexAccess xKeys = xKeysSup.getKeys();
 for (int i =0; i < xKeys.getCount(); i++) {
 Object key = xKeys.getByIndex(i);
 XPropertySet xProp = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class,key);
 System.out.println(" " + xProp.getPropertyValue("Name"));
 XColumnsSupplier xKeyColumnsSup = (XColumnsSupplier)UnoRuntime.queryInterface(
 XColumnsSupplier.class, xProp);
 printColumns(xKeyColumnsSup);
 }
 }
}

// print all indexes including the columns of an index
public static void printIndexes(XColumnsSupplier xColumnsSup)
 throws com.sun.star.uno.Exception,SQLException {
 System.out.println("Example printIndexes");
 XIndexesSupplier xIndexesSup = (XIndexesSupplier)UnoRuntime.queryInterface(
 XIndexesSupplier.class, xColumnsSup);
 if (xIndexesSup != null) {
 System.out.println("--- Indexes ---");
 XNameAccess xIndexs = xIndexesSup.getIndexes();
 String [] aIndexNames = xIndexs.getElementNames();
 for (int i =0; i<= aIndexNames.length-1; i++) {
 System.out.println(" " + aIndexNames[i]);
 Object index = xIndexs.getByName(aIndexNames[i]);
 XColumnsSupplier xIndexColumnsSup = (XColumnsSupplier)UnoRuntime.queryInterface(
 XColumnsSupplier.class, index);
 printColumns(xIndexColumnsSup);
 }
 }
}

958 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XAlterTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XAlterTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XAlterTable.html

Column Service
The Column object is the simplest object structure in the SDBCX layer. It is a collection of proper-
ties that define the Column object. The columns container exists for table, key, and index objects.
The Column object is a different for these objects:

– The normal Column service is used for the table object.

– com.sun.star.sdbcx.KeyColumn extends the �normal� com.sun.star.sdbcx.Column service
with an extra property named RelatedColumn. This property is the name of a referenced
column out of the referenced table.

– com.sun.star.sdbcx.IndexColumn extends the com.sun.star.sdbcx.Column service with
an extra boolean property named IsAscending. This property is true when the index is
ascending, otherwise it is false.

The Column object is defined by the following properties:

959

Illustration 13.17: Column

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/IndexColumn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/IndexColumn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/IndexColumn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/KeyColumn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/KeyColumn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/KeyColumn.html

Properties of com.sun.star.sdbcx.Column
Name string ? The name of the column.

Type com.sun.star.sdbc.DataType, long ? The SDBC data type.

TypeName string ? The database name for this type.

Precision long ? The column's number of decimal digits.

Scale long ? The column's number of digits to the left of the decimal point.

IsNullable long ? Indicates the nullification of values in the designated column.
com.sun.star.sdbc.ColumnValue

IsAutoIncrement boolean ? Indicates if the column is automatically numbered.

IsCurrency boolean ? Indicates if the column is a cash value.

IsRowVersion boolean ? Indicates that the column contains some kind of time or date stamp used
to track updates (optional).

Description string ? Keeps a description of the object (optional).

DefaultValue string ? Keeps a default value for a column (optional).

The Column object also supports the com.sun.star.sdbcx.XDataDescriptorFactory interface
that creates a copy of this object. (Database/sdbcx.java)
// column properties
public static void printColumnProperties(Object column) throws com.sun.star.uno.Exception,SQLException {

System.out.println("Example printColumnProperties");
XPropertySet xProp = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class,column);
System.out.println("Name: " + xProp.getPropertyValue("Name"));
System.out.println("Type: " + xProp.getPropertyValue("Type"));
System.out.println("TypeName: " + xProp.getPropertyValue("TypeName"));
System.out.println("Precision: " + xProp.getPropertyValue("Precision"));
System.out.println("Scale: " + xProp.getPropertyValue("Scale"));
System.out.println("IsNullable: " + xProp.getPropertyValue("IsNullable"));
System.out.println("IsAutoIncrement: " + xProp.getPropertyValue("IsAutoIncrement"));
System.out.println("IsCurrency: " + xProp.getPropertyValue("IsCurrency"));
// the following property is optional so we first must check if it exists
if(xProp.getPropertySetInfo().hasPropertyByName("IsRowVersion"))

System.out.println("IsRowVersion: " + xProp.getPropertyValue("IsRowVersion"));
if(xProp.getPropertySetInfo().hasPropertyByName("Description"))

System.out.println("Description: " + xProp.getPropertyValue("Description"));
if(xProp.getPropertySetInfo().hasPropertyByName("DefaultValue"))

System.out.println("DefaultValue: " + xProp.getPropertyValue("DefaultValue"));
}

Index Service
The Index service encapsulates indexes at a table object. An index is described through the proper-
ties Name, Catalog, IsUnique, IsPrimaryKeyIndex, and IsClustered. All properties are read-
only if an index has not been added to a tables index container. The last three properties are
boolean values that indicate an index object only allows unique values, is used for the primary key,
and if it is clustered. The property IsPrimaryKeyIndex is only available after the index has been
created because it defines a special index that is created by the database while creating a primary
key for a table object. Not all databases currently available in OpenOffice.org API support primary
keys.

960 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XDataDescriptorFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XDataDescriptorFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XDataDescriptorFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html#DefaultValue
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html#Description
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html#IsRowVersion
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html#IsCurrency
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html#IsAutoIncrement
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ColumnValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ColumnValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/ColumnValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html#IsNullable
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html#Scale
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html#Precision
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html#TypeName
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/DataType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/DataType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/DataType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html#Type
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html#Name
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Column.html

The following code fragment displays the properties of a given index object: (Database/sdbcx.java)
// index properties
public static void printIndexProperties(Object index) throws Exception, SQLException {
 System.out.println("Example printIndexProperties");
 XPropertySet xProp = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, index);
 System.out.println("Name: " + xProp.getPropertyValue("Name"));
 System.out.println("Catalog: " + xProp.getPropertyValue("Catalog"));
 System.out.println("IsUnique: " + xProp.getPropertyValue("IsUnique"));
 System.out.println("IsPrimaryKeyIndex: " + xProp.getPropertyValue("IsPrimaryKeyIndex"));

961

Illustration 13.18: Index

 System.out.println("IsClustered: " + xProp.getPropertyValue("IsClustered"));
}

Key Service
The Key service provides the foreign and primary keys behavior through the following properties.
The Name property is the name of the key. It could happen that the primary key does not have a
name. The property Type contains the kind of the key, that could be PRIMARY, UNIQUE, or
FOREIGN, as specified by the constant group com.sun.star.sdbcx.KeyType. The property
ReferencedTable contains a value when the key is a foreign key and it designates the table to
which a foreign key points. The DeleteRule and UpdateRule properties determine what happens
when a primary key is deleted or updated. The possibilities are defined in
com.sun.star.sdbc.KeyRule: CASCADE, RESTRICT, SET_NULL, NO_ACTION and
SET_DEFAULT.

962 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/KeyRule.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/KeyRule.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/KeyRule.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/KeyType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/KeyType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/KeyType.html

The following code fragment displays the properties of a given key object: (Database/sdbcx.java)

// key properties
public static void printKeyProperties(Object key) throws Exception, SQLException {
 System.out.println("Example printKeyProperties");
 XPropertySet xProp = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, key);
 System.out.println("Name: " + xProp.getPropertyValue("Name"));
 System.out.println("Type: " + xProp.getPropertyValue("Type"));

963

Illustration 13.19: Key

 System.out.println("ReferencedTable: " + xProp.getPropertyValue("ReferencedTable"));
 System.out.println("UpdateRule: " + xProp.getPropertyValue("UpdateRule"));
 System.out.println("DeleteRule: " + xProp.getPropertyValue("DeleteRule"));
}

View Service
A view is a virtual table created from a SELECT on other database tables or views. This service
creates a database view programmatically. It is not necessary to know the SQL syntax for the
CREATE VIEW statement, but a few properties have to be set. When creating a view, supply the
value for the property Name, the SELECT statement to the property Command and if the database
driver supports a check option, set it in the property CheckOption. Possible values of
com.sun.star.sdbcx.CheckOption are NONE, CASCADE and LOCAL. A schema or catalog
name can be provided (optional).

Group Service
The service com.sun.star.sdbcx.Group is the first of the two security services, Group and User.
The Group service represents the group account that has access permissions to a secured database
and it has a Name property to identify it. It supports the interface com.sun.star.sdbcx.XAuthori-
zable that allows current privilege settings to be obtained, and to grant or revoke privileges. The
second interface is the com.sun.star.sdbcx.XUsersSupplier. The word 'Supplier' in the inter-
face name identifies the group object as a container for users. The container returned here is a
collection of all users that belong to this group.

964 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 13.20: View

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XUsersSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XUsersSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XUsersSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XAuthorizable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XAuthorizable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XAuthorizable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XAuthorizable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XAuthorizable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XAuthorizable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Group.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Group.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/Group.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/CheckOption.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/CheckOption.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/CheckOption.html

(Database/sdbcx.java)
// print all groups and the users with their privileges who belong to this group
public static void printGroups(XTablesSupplier xTabSup) throws com.sun.star.uno.Exception, SQLException
{
 System.out.println("Example printGroups");
 XGroupsSupplier xGroupsSup = (XGroupsSupplier)UnoRuntime.queryInterface(
 XGroupsSupplier.class, xTabSup);
 if (xGroupsSup != null) {
 // the table must be at least support a XColumnsSupplier interface
 System.out.println("--- Groups ---");
 XNameAccess xGroups = xGroupsSup.getGroups();
 String [] aGroupNames = xGroups.getElementNames();
 for (int i =0; i < aGroupNames.length; i++) {
 System.out.println(" " + aGroupNames[i]);
 XUsersSupplier xUsersSup = (XUsersSupplier)UnoRuntime.queryInterface(

XUsersSupplier.class, xGroups.getByName(aGroupNames[i]));
 if (xUsersSup != null) {
 XAuthorizable xAuth = (XAuthorizable)UnoRuntime.queryInterface(
 XAuthorizable.class, xUsersSup);
 // the table must be at least support a XColumnsSupplier interface
 System.out.println("\t--- Users ---");
 XNameAccess xUsers = xUsersSup.getUsers();
 String [] aUserNames = xUsers.getElementNames();
 for (int j = 0; j < aUserNames.length; j++) {
 System.out.println("\t " + aUserNames[j] +
 " Privileges: " + xAuth.getPrivileges(aUserNames[j], PrivilegeObject.TABLE));
 }
 }
 }
 }
}

965

Illustration 13.21: Group

User Service
The com.sun.star.sdbcx.User service is the second security service, representing a user in the
catalog. This object has the property Name that is the user name. Similar to the Group service, the
User service supports the interface com.sun.star.sdbcx.XAuthorizable. This is achieved
through the interface com.sun.star.sdbcx.XUser derived from XAuthorizable. In addition to
this interface, the XUser interface supports changing the password of a specific user. Similar to the
Group service above, the User service is a container for the groups the user belongs to.

The Descriptor Pattern
The descriptor is a special kind of object that mirrors the structure of the object which should be
appended to a container object. This means that a descriptor, once created, can be appended more
than once with only small changes to the structure. For example, when appending columns to the
columns container, we:

– Create one descriptor with com.sun.star.sdbcx.XDataDescriptorFactory.

– Set the needed properties.

– Add the descriptor to the container.

– Adjust some properties, such as the name.

– Add the modified descriptor to the container.

966 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 13.22: User

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XDataDescriptorFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XDataDescriptorFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XDataDescriptorFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XUser.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XUser.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XUser.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XAuthorizable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XAuthorizable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XAuthorizable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/User.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/User.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/User.html

– Repeat the steps, as necessary.

therefore, only create one descriptor to append more than one column.

– Creating a Table

967

Illustration 13.23: Descriptor Pattern

An important use of the SDBCX layer is that it is possible to programmatically create tables, along
with their columns, indexes, and keys.

The method of creating a table is the same as creating a table with a graphical table design. To
create it programmatically is easy. First, create a table object by asking the tables container for its
com.sun.star.sdbcx.XDataDescriptorFactory interface. When the createDataDescriptor
method is called, the com.sun.star.beans.XPropertySet interface of an object that implements
the service com.sun.star.sdbcx.TableDescriptor is returned. As described above, use this
descriptor to create a new table in the database, by adding the descriptor to the Tables container.
Before appending the descriptor, append the columns to the table descriptor. Use the same method
as with the containers used in the SDBCX layer. On the column object, some properties need to be
set, such as Name, and Type. The properties to be set depend on the SDBC data type of the column.

The column name must be unique in the columns container.

After the columns are appended, add the TableDescriptor object to its container or define some
key objects, such as a primary key. (Database/sdbcx.java)
// create the table salesmen
public static void createTableSalesMen(XNameAccess xTables) throws Exception, SQLException {
 XDataDescriptorFactory xTabFac = (XDataDescriptorFactory)UnoRuntime.queryInterface(
 XDataDescriptorFactory.class, xTables);

 if (xTabFac != null) {
 // create the new table
 XPropertySet xTable = xTabFac.createDataDescriptor();
 // set the name of the new table
 xTable.setPropertyValue("Name", "SALESMAN");

 // append the columns
 XColumnsSupplier xColumSup = (XColumnsSupplier)UnoRuntime.queryInterface(
 XColumnsSupplier.class,xTable);
 XDataDescriptorFactory xColFac = (XDataDescriptorFactory)UnoRuntime.queryInterface(
 XDataDescriptorFactory.class, xColumSup.getColumns());
 XAppend xAppend = (XAppend)UnoRuntime.queryInterface(XAppend.class, xColFac);

 // we only need one descriptor
 XPropertySet xCol = xColFac.createDataDescriptor();
 // create first column and append
 xCol.setPropertyValue("Name", "SNR");
 xCol.setPropertyValue("Type", new Integer(DataType.INTEGER));
 xCol.setPropertyValue("IsNullable", new Integer(ColumnValue.NO_NULLS));
 xAppend.appendByDescriptor(xCol);
 // 2nd only set the properties which differ
 xCol.setPropertyValue("Name", "FIRSTNAME");
 xCol.setPropertyValue("Type", new Integer(DataType.VARCHAR));
 xCol.setPropertyValue("IsNullable", new Integer(ColumnValue.NULLABLE));
 xCol.setPropertyValue("Precision", new Integer(50));
 xAppend.appendByDescriptor(xCol);
 // 3rd only set the properties which differ
 xCol.setPropertyValue("Name", "LASTNAME");
 xCol.setPropertyValue("Precision", new Integer(100));
 xAppend.appendByDescriptor(xCol);
 // 4th only set the properties which differ
 xCol.setPropertyValue("Name", "STREET");
 xCol.setPropertyValue("Precision",n ew Integer(50));
 xAppend.appendByDescriptor(xCol);
 // 5th only set the properties which differ
 xCol.setPropertyValue("Name", "STATE");
 xAppend.appendByDescriptor(xCol);
 // 6th only set the properties which differ
 xCol.setPropertyValue("Name", "ZIP");
 xCol.setPropertyValue("Type", new Integer(DataType.INTEGER));
 xCol.setPropertyValue("Precision", new Integer(10)); // default value integer
 xAppend.appendByDescriptor(xCol);
 // 7th only set the properties which differs
 xCol.setPropertyValue("Name", "BIRTHDATE");
 xCol.setPropertyValue("Type", new Integer(DataType.DATE));
 xCol.setPropertyValue("Precision", new Integer(10)); // default value integer
 xAppend.appendByDescriptor(xCol);
 // now we create the primary key
 XKeysSupplier xKeySup = (XKeysSupplier)UnoRuntime.queryInterface(XKeysSupplier.class, xTable);
 XDataDescriptorFactory xKeyFac = (XDataDescriptorFactory)UnoRuntime.queryInterface(
 XDataDescriptorFactory.class,xKeySup.getKeys());
 XAppend xKeyAppend = (XAppend)UnoRuntime.queryInterface(XAppend.class, xKeyFac);

 XPropertySet xKey = xKeyFac.createDataDescriptor();

968 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/TableDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/TableDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/TableDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XDataDescriptorFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XDataDescriptorFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XDataDescriptorFactory.html

 xKey.setPropertyValue("Type", new Integer(KeyType.PRIMARY));
 // now append the columns to key
 XColumnsSupplier xKeyColumSup = (XColumnsSupplier)UnoRuntime.queryInterface(
 XColumnsSupplier.class, xKey);
 XDataDescriptorFactory xKeyColFac = (XDataDescriptorFactory)UnoRuntime.queryInterface(
 XDataDescriptorFactory.class,xKeyColumSup.getColumns());
 XAppend xKeyColAppend = (XAppend)UnoRuntime.queryInterface(XAppend.class, xKeyColFac);

 // we only need one descriptor
 XPropertySet xKeyCol = xKeyColFac.createDataDescriptor();
 xKeyCol.setPropertyValue("Name", "SNR");
 // append the key column
 xKeyColAppend.appendByDescriptor(xKeyCol);
 // append the key
 xKeyAppend.appendByDescriptor(xKey);
 // the last step is to append the new table to the tables collection
 XAppend xTableAppend = (XAppend)UnoRuntime.queryInterface(XAppend.class, xTabFac);
 xTableAppend.appendByDescriptor(xTable);
 }
}

Adding an Index
To add an index, the same programmatic logic is followed. Create an IndexDescriptor with the
com.sun.star.sdbcx.XDataDescriptorFactory interface from the index container. Then follow
the same steps as for the table. Next, append the columns to be indexed.

Note that only an index can be added to an existing table. It is not possible to add an index to a
TableDescriptor.

The task is completed when the index object is added to the index container, unless the append()
method throws an com.sun.star.sdbc.SQLException. This may happen when adding a unique
index on a column that already contains values that are not unique.+

Creating a User
The procedure to create a user is the same. The com.sun.star.sdbcx.XDataDescriptorFactory
interface is used from the users container. Create a user with the UserDescriptor. The
com.sun.star.sdbcx.UserDescriptor has an additional property than the User service
supports. This additional property is the Password property which should be set. Then the
UserDescriptor object can be appended to the user container. (Database/sdbcx.java)
// create a user
public static void createUser(XNameAccess xUsers) throws Exception,SQLException {
 System.out.println("Example createUser");
 XDataDescriptorFactory xUserFac = (XDataDescriptorFactory)UnoRuntime.queryInterface(
 XDataDescriptorFactory.class, xUsers);
 if (xUserFac != null) {
 // create the new table
 XPropertySet xUser = xUserFac.createDataDescriptor();
 // set the name of the new table
 xUser.setPropertyValue("Name", "BOSS");
 xUser.setPropertyValue("Password","BOSSWIFENAME");
 XAppend xAppend = (XAppend)UnoRuntime.queryInterface(XAppend.class, xUserFac);
 xAppend.appendByDescriptor(xUser);
 }
}

Adding a Group
Creating a com.sun.star.sdbcx.GroupDescriptor object is the same as the methods described
above. Follow the same steps:

1. Set a name for the group in the Name property.

2. Append all the users to the user container of the group.

969

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/GroupDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/GroupDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/GroupDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/UserDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/UserDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/UserDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XDataDescriptorFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XDataDescriptorFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XDataDescriptorFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/SQLException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/SQLException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/SQLException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XDataDescriptorFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XDataDescriptorFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/XDataDescriptorFactory.html

3. Append the GroupDescriptor object to the group container of the catalog.

13.5 Using DBMS Features

13.5.1 Transaction Handling
Transactions combine several separate SQL executions, so that they can be seen as a single event
that is executed completely (commit) or not at all (rollback). A typical example for a transaction is a
money transfer. It consists of two steps: withdrawing an amount of money from one bank account
and crediting another account with it. Both steps must be successful or they must be canceled.
Transactions in SDBC are handled by the com.sun.star.sdbc.XConnection interface of connec-
tions. The transaction related methods of this interface are:

// transactions
void setTransactionIsolation([in] long level)
long getTransactionIsolation()
void setAutoCommit([in] boolean autoCommit)
boolean getAutoCommit()
void commit()
void rollback()

Usually all transactions are in auto commit mode, that means, a commit takes place after each
single SQL command. Therefore to control a transaction manually, switch auto commit off using
setAutoCommit(false). The first SQL command without auto commit starts a transaction that is
active until the corresponding methods have been committed or rolled back.

Afterwards, the auto commit mode can be reinstated using setAutoCommit(true).
Transactions bring about a synchronization problem. If data is read from a table, it is possible that
the data has just been changed by a command of a transaction started by another process. If the
other transaction is rolled back, there may be inconsistencies between the results and contents of
the database.

Transaction isolation controls the behavior of the database in case of parallel transactions. There
are several isolation levels:

Values of constants com.sun.star.sdbc.TransactionIsolation
NONE Indicates that transactions are not supported.

READ_UNCOMMITTED Dirty reads, non-repeatable reads and phantom reads can
occur. This level allows a row changed by one transaction to
be read by another transaction before any changes in that row
have been committed (a "dirty read"). If any of the changes
are rolled back, the second transaction retrieves an invalid
row.

READ_COMMITTED Dirty reads are prevented; non-repeatable reads and phantom
reads can occur. This level only prohibits a transaction from
reading a row with uncommitted changes in it.

REPEATABLE_READ Dirty reads and non-repeatable reads are prevented; phantom
reads can occur. This level prohibits a transaction from
reading a row with uncommitted changes in it, and it also
prohibits the situation where one transaction reads a row, a
second transaction alters the row, and the first transaction
rereads the row, getting different values the second time (a
"non-repeatable read").

970 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/TransactionIsolation.html#REPEATABLE_READ
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/TransactionIsolation.html#READ_COMMITTED
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/TransactionIsolation.html#READ_UNCOMMITTED
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/TransactionIsolation.html#NONE
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/TransactionIsolation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/TransactionIsolation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/TransactionIsolation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html

Values of constants com.sun.star.sdbc.TransactionIsolation
SERIALIZABLE Dirty reads, non-repeatable reads and phantom reads are

prevented. This level includes the prohibitions in
REPEATABLE_READ and further prohibits the situation
where one transaction reads all rows that satisfy a WHERE
condition, a second transaction inserts a row that satisfies that
WHERE condition, and the first transaction rereads for the
same condition, retrieving the additional "phantom" row in
the second read.

13.5.2 Stored Procedures
Stored procedures are server-side processes execute several SQL commands in a single step, and
can be embedded in a server language for stored procedures with enhanced control capabilities. A
procedure call usually has to be parameterized, and the results are result sets and additional out
parameters. Stored procedures are handled by the method prepareCall()of the interface
com.sun.star.sdbc.XConnection.

com::sun::star::sdbc::XPreparedStatement prepareCall([in] string sql)

The method prepareCall()takes a an SQL statement that may contain one or more '?' in param-
eter placeholders. It returns a com.sun.star.sdbc.CallableStatement. A CallableStatement is
a com.sun.star.sdbcx.PreparedStatement with two additional interfaces for out parameters:

com.sun.star.sdbc.XOutParameters is used to declare parameters as out parameters. All out
parameters must be registered before a stored procedure is executed.

Methods of com.sun.star.sdbc.XOutParameters
registerOutParameter() Takes the arguments long parameterIndex, long sqlType, string type-

Name. Registers an output parameter and should be used for a user-
named or REF output parameter. Examples of user-named types
include: STRUCT, DISTINCT, OBJECT, and named array types.

registerNumericOutParameter
()

Takes the arguments long parameterIndex, long sqlType, long scale.
Registers an out parameter in the ordinal position parameterIndex
with the com.sun.star.sdbc.DataType sqlType; scale is the
number of digits on the right-hand side of the decimal point.

The com.sun.star.sdbc.XRow is used to retrieve the values of out parameters. It consists of
getXXX() methods and should be well-known from the common result sets.

13.6 Writing Database Drivers
In the following sections, implementing an SDBC driver is described. The user should have some
experience in the use of the SDBC API, or be familiar with the previous chapter about SDBC and
SDBCX.

This section is divided into two parts. The first part describes the simple driver that includes only
the SDBC layer with the PreparedStatements, Statements and ResultSets. The second part extends
the simple driver from part one to a more sophisticated one. This driver provides access to Tables,
Views, Groups, Users and others.

971

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/DataType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/DataType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/DataType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XOutParameters.html#registerNumericOutParameter
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XOutParameters.html#registerNumericOutParameter
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XOutParameters.html#registerNumericOutParameter
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XOutParameters.html#registerOutParameter
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XOutParameters.html#registerOutParameter
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XOutParameters.html#registerOutParameter
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XOutParameters.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XOutParameters.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XOutParameters.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XOutParameters.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XOutParameters.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XOutParameters.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/PreparedStatement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/PreparedStatement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbcx/PreparedStatement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/CallableStatement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/CallableStatement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/CallableStatement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/TransactionIsolation.html#SERIALIZABLE

A skeleton for a C++ SDBC driver is provided in the samples folder. Some changes are necessary
to create a working driver. Adjust the namespace and replace the word "skeleton" by a suitable
driver name, and implement the necessary functions for the database.

An SDBC driver is simply the implementation of some SDBC services previously discussed.

13.6.1 SDBC Driver
The SDBC driver consists of seven services. Each service needs to be defined and are described in
the next sections. Below is a list of all the services that define the driver:

• Driver, a singleton which creates the connection object.

• Connection, creates Statement, PreparedStatement and gives access to the DatabaseMeta-
Data.

• DatabaseMetaData, returns information about the used database.

• Statement, creates ResultSets.

• PreparedStatement, creates ResultSets in conjunction with parameters.

• ResultSet, fetches the data returned by an SQL statement.

• ResultSetMetaData, describes the columns of a ResultSet.
The relationship between these services is depicted in Illustration 13.1.

972 OpenOffice.org 2.3 Developer's Guide • June 2007

13.6.2 Driver Service
The Driver service is the entry point to create the first contact with any database. As shown in the
illustration above, the class that implements the service Driver is responsible for creating a
connection object that represents the database on the client side.

The class must be derived from the interface com.sun.star.sdbc.XDriver that defines the
methods needed to create a connection object. The code in the following lines shows a snippet of a
driver class. (Database/DriverSkeleton/SDriver.cxx)
// --
Reference< XConnection > SAL_CALL SkeletonDriver::connect(const ::rtl::OUString& url,

const Sequence< PropertyValue >& info) throw(SQLException, RuntimeException)
{

// create a new connection with the given properties and append it to our vector
OConnection* pCon = new OConnection(this);
Reference< XConnection > xCon = pCon; // important here because otherwise the connection

// could be deleted inside (refcount goes -> 0)
pCon->construct(url,info); // late constructor call which can throw exception

973

Illustration 13.24: Dependency between driver classes

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDriver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDriver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDriver.html

// and allows a correct dtor call when so
m_xConnections.push_back(WeakReferenceHelper(*pCon));

return xCon;
}
// --
sal_Bool SAL_CALL SkeletonDriver::acceptsURL(const ::rtl::OUString& url)

throw(SQLException, RuntimeException)
{

// here we have to look if we support this url format
// change the URL format to your needs, but please be aware that
//the first who accepts the URL wins.
return (!url.compareTo(::rtl::OUString::createFromAscii("sdbc:skeleton:"),14));

}
// --
Sequence< DriverPropertyInfo > SAL_CALL SkeletonDriver::getPropertyInfo(const ::rtl::OUString& url,

const Sequence< PropertyValue >& info) throw(SQLException, RuntimeException)
{

// if you have something special to say, return it here :-)
return Sequence< DriverPropertyInfo >();

}
// --
sal_Int32 SAL_CALL SkeletonDriver::getMajorVersion() throw(RuntimeException)
{

return 0; // depends on you
}
// --
sal_Int32 SAL_CALL SkeletonDriver::getMinorVersion() throw(RuntimeException)
{

return 1; // depends on you
}
// --

The main methods of this class are acceptsURL and connect:

• The method acceptsURL() is called every time a user wants to create a connection through the
DriverManager, because the DriverManager decides the Driver it should ask to connect to the
given URL. Therefore this method should be small and run very fast.

• The method connect() is called after the method acceptsURL() is invoked and returned true.
The connect() could be seen as a factory method that creates Connection services specific for
a driver implementation. To accomplish this, the Driver class must be singleton. Singleton
means that only one instance of the Driver class may exist at the same time.

If more information is required about the other methods, refer to com.sun.star.sdbc.Driver for
a complete description.

13.6.3 Connection Service
The com.sun.star.sdbc.Connection is the database client side. It is responsible for the creation
of the Statements and the information about the database itself. The service consists of three inter-
faces that have to be supported:

• The interface com.sun.star.lang.XComponent that is responsible to close the connection when
it is disposed.

• The interface com.sun.star.sdbc.XWarningsSupplier that controls the chaining of warnings
which may occur on every call.

• The interface com.sun.star.sdbc.XConnection that is the main interface to the database.

The first two interfaces introduce some access and closing mechanisms that can be best described
inside the code fragment of the Connection class. To understand the interface
com.sun.star.sdbc.XConnection, we must have a closer look at some methods. The others not
described are simple enough to handle them in the code fragment.

First there is the method getMetaData() that returns an object which implements the interface
com.sun.star.sdbc.XDatabaseMetaData. This object has many methods and depends on the
capabilities of the database. Most return values are found in the database documentation or in the

974 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XWarningsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XWarningsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XWarningsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/Connection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/Connection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/Connection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/Driver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/Driver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/Driver.html

first step, assuming some values match. The methods, such as getTables(), getColumns()and
getTypeInfo()are described in the next chapter.

The following methods are used to create statements. Each of them is a factory method that creates
the three different kinds of statements.

Important Methods of com.sun.star.sdbc.XConnection
createStatement() Creates a new com.sun.star.sdbc.Statement object for sending

SQL statements to the database. SQL statements without parameters are
executed using Statement objects.

prepareStatement(sql) Creates a com.sun.star.sdbc.PreparedStatement object for
sending parameterized SQL statements to the database.

prepareCall(sql) Creates a com.sun.star.sdbc.CallableStatement object for
calling database stored procedures.

 (Database/DriverSkeleton/SDriver.cxx)

Reference< XStatement > SAL_CALL OConnection::createStatement() throw(SQLException, RuntimeException)
{

::osl::MutexGuard aGuard(m_aMutex);
checkDisposed(OConnection_BASE::rBHelper.bDisposed);

// create a statement
// the statement can only be executed once
Reference< XStatement > xReturn = new OStatement(this);
m_aStatements.push_back(WeakReferenceHelper(xReturn));
return xReturn;

}
// --
Reference< XPreparedStatement > SAL_CALL OConnection::prepareStatement(const ::rtl::OUString& _sSql)

throw(SQLException, RuntimeException)
{

::osl::MutexGuard aGuard(m_aMutex);
checkDisposed(OConnection_BASE::rBHelper.bDisposed);

// the pre
if(m_aTypeInfo.empty())

buildTypeInfo();

// create a statement
// the statement can only be executed more than once
Reference< XPreparedStatement > xReturn = new OPreparedStatement(this,m_aTypeInfo,_sSql);
m_aStatements.push_back(WeakReferenceHelper(xReturn));
return xReturn;

}
// --
Reference< XPreparedStatement > SAL_CALL OConnection::prepareCall(const ::rtl::OUString& _sSql)

throw(SQLException, RuntimeException)
{

::osl::MutexGuard aGuard(m_aMutex);
checkDisposed(OConnection_BASE::rBHelper.bDisposed);

// not implemented yet :-) a task to do
return NULL;

}

All other methods can be omitted at this stage. For detailed descriptions, refer to the API Reference
Manual.

13.6.4 XDatabaseMetaData Interface
The com.sun.star.sdbc.XDatabaseMetaData interface is the largest interface existing in the
SDBC API. This interface knows everything about the used database. It provides information, such
as the available tables with their columns, keys and indexes, and information about identifiers that
should be used. This chapter explains some of the methods that are frequently used and how they
are used to achieve a robust Driver.

975

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/CallableStatement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/CallableStatement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/CallableStatement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html#prepareCall
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html#prepareCall
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html#prepareCall
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/PreparedStatement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/PreparedStatement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/PreparedStatement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html#prepareStatement
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html#prepareStatement
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html#prepareStatement
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/Statement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/Statement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/Statement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html#createStatement
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html#createStatement
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html#createStatement
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XConnection.html

Important Methods of com.sun.star.sdbc.XDatabaseMetaData
isReadOnly() Returns the state of the database. When true, the database is

not editable later in OpenOffice.org API.

usesLocalFiles() Returns true when the catalog name of the database should
not appear in the DatasourceBrowser of OpenOffice.org API,
otherwise false is returned.

supportsMixedCaseQuotedIdenti-
fiers()

When this method returns true,the quoted identifiers are case
sensitive. For example, in a driver that supports mixed case
quoted identifiers, SELECT * FROM "MyTable" retrieves data
from a table with the case-sensitive name MyTable.

getTables() Returns a ResultSet object that returns a single row for
each table that fits the search criteria, such as the catalog
name, schema pattern, table name pattern and sequence of
table types. The correct column count and names of the
columns are found at
com.sun.star.sdbc.XDatabaseMetaData:getTables
(). If this method does not return any rows, this driver does
not work with OpenOffice.org API.

Any other getXXX() method can be implemented step by step. For the the first step they return an
empty ResultSet object that contains no rows. It is not allowed to return NULL here.

The skeleton driver defines empty ResultSets for these get methods.
(Database/DriverSkeleton/SDriver.cxx)
Reference< XResultSet > SAL_CALL ODatabaseMetaData::getTables(

const Any& catalog, const ::rtl::OUString& schemaPattern,
const ::rtl::OUString& tableNamePattern, const Sequence< ::rtl::OUString >& types)
throw(SQLException, RuntimeException)

{
// this returns an empty resultset where the column-names are already set
// in special the metadata of the resultset already returns the right columns
ODatabaseMetaDataResultSet* pResultSet = new ODatabaseMetaDataResultSet();
Reference< XResultSet > xResultSet = pResultSet;
pResultSet->setTablesMap();
return xResultSet;

}

13.6.5 Statements
Statements are used to create ResultSets or to update the database. The executeQuery() method
creates new ResultSets . The following code snippet shows how the new ResultSet is created.
There can be only one ResultSet at a time. (Database/DriverSkeleton/SDriver.cxx)
Reference< XResultSet > SAL_CALL OStatement_Base::executeQuery(const ::rtl::OUString& sql)

throw(SQLException, RuntimeException)
{

::osl::MutexGuard aGuard(m_aMutex);
checkDisposed(OStatement_BASE::rBHelper.bDisposed);

Reference< XResultSet > xRS = NULL;
// create a resultset as result of executing the sql statement
// something needs to be done here :-)
m_xResultSet = xRS; // we nedd a reference to it for later use
return xRS;

}

The executeUpdate() methods only return the rows that were affected by the given SQL state-
ment. The last method execute returns true when a ResultSet object is returned when calling the
method getResultSet(), otherwise it returns false. All other methods have to be implemented.

976 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html#getTables
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html#getTables
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html#getTables
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html#getTables
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html#getTables
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html#getTables
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html#supportsMixedCaseQuotedIdentifiers
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html#supportsMixedCaseQuotedIdentifiers
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html#supportsMixedCaseQuotedIdentifiers
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html#supportsMixedCaseQuotedIdentifiers
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html#supportsMixedCaseQuotedIdentifiers
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html#supportsMixedCaseQuotedIdentifiers
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html#usesLocalFiles
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html#usesLocalFiles
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html#usesLocalFiles
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html#isReadOnly
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html#isReadOnly
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html#isReadOnly
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html

PreparedStatement
The PreparedStatement is used when an SQL statement should be executed more than once. In
addition to the statement class, it must support the ability to provide information about the param-
eters when they exist. For this reason, this class must support the
com.sun.star.sdbc.XResultSetMetaDataSupplier interface and also the
com.sun.star.sdbc.XParameters interface to set values for their parameters.

Result Set
The ResultSet needs to be implemented. For the first step, only forward ResultSets could be
implemented, but it is recommended to support all ResultSet methods.

13.6.6 Support Scalar Functions
SDBC supports numeric, string, time, date, system, and conversion functions on scalar values. The
Open Group CLI specification provides additional information on the semantics of the scalar func-
tions. The functions supported are listed below for reference.

If a DBMS supports a scalar function, the driver should also. Scalar functions are supported by
different DBMSs with different syntax, it is the driver's job to map the functions into the appro-
priate syntax or to implement the functions directly in the driver.

By calling metadata methods, a user can find out which functions are supported. For example, the
method XdatabaseMetaData.getNumericFunctions() returns a comma separated list of the
Open Group CLI names of the numeric functions supported. Similarly, the method XDatabase-
MetaData.getStringFunctions() returns a list of string functions supported.

In the following table, the scalar functions are listed by category.

Open Group CLI Numeric Functions

Numeric Function Function Returns

ABS(number) Absolute value of number

ACOS(float) Arccosine, in radians, of float

ASIN(float) Arcsine, in radians, of float

ATAN(float) Arctangent, in radians, of float

ATAN2(float1, float2) Arctangent, in radians, of float2 / float1

CEILING(number) Smallest integer >= number

COS(float) Cosine of float radians

COT(float) Cotangent of float radians

DEGREES(number) Degrees in number radians

EXP(float) Exponential function of float

FLOOR(number) Largest integer <= number

LOG(float) Base e logarithm of float

LOG10(float) Base 10 logarithm of float

977

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XParameters.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XParameters.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XParameters.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XResultSetMetaDataSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XResultSetMetaDataSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XResultSetMetaDataSupplier.html

Numeric Function Function Returns

MOD(integer1, integer2) Remainder for integer1 / integer2

PI() The constant pi

POWER(number, power) number raised to (integer) power

RADIANS(number) Radians in number degrees

RAND(integer) Random floating point for seed integer

ROUND(number, places) number rounded to places places

SIGN(number) -1 to indicate number is < 0; 0 to indicate number is = 0; 1 to indi-
cate number is > 0

SIN(float) Sine of float radians

SQRT(float) Square root of float

TAN(float) Tangent of float radians

TRUNCATE(number, places) number truncated to places places

Open Group CLI String Functions

String Functions Function Returns
ASCII(string) Integer representing the ASCII code value of the leftmost character in string.

CHAR(code) Character with ASCII code value code, where the code is between 0 and 255.

CONCAT(string1,
string2)

Character string formed by appending string2 to string1. If a string is null,
the result is DBMS-dependent.

DIFFERENCE(string1,
string2) Integer indicating the difference between the values returned by the function

SOUNDEX for string1 and string2.

INSERT(string1, start,
length, string2)

A character string formed by deleting length characters from string1 begin-
ning at the start, and inserting string2 into string1 at the start.

LCASE(string) Converts all uppercase characters in string to lowercase.

LEFT(string, count) The count leftmost characters from string.

LENGTH(string) Number of characters in string, excluding trailing blanks.

LOCATE(string1,
string2[, start])

Position in string2 of the first occurrence of string1, searching from the begin-
ning of string2. If start is specified, the search begins from position start. A 0
is returned if string2 does not contain string1. Position 1 is the first character
in string2.

LTRIM(string) Characters of string with leading blank spaces removed.

REPEAT(string, count) A character string formed by repeating string count times.

REPLACE(string1,
string2, string3) Replaces all occurrences of string2 in string1 with string3.

RIGHT(string, count) The count rightmost characters in string.

RTRIM(string) The characters of string with no trailing blanks.

SOUNDEX(string) A character string that is data source-dependent, representing the sound of
the words in string, such as a four-digit SOUNDEX code, or a phonetic repre-
sentation of each word.

SPACE(count) A character string consisting of count spaces.

978 OpenOffice.org 2.3 Developer's Guide • June 2007

String Functions Function Returns
SUBSTRING(string,
start, length)

A character string formed by extracting length characters from string begin-
ning at start.

UCASE(string) Converts all lowercase characters in string to uppercase.

Open Group CLI Time and Date Functions

Time and Date Functions Function Returns
CURDATE() The current date as a date value.

CURTIME() The current local time as a time value.

DAYNAME(date) A character string representing the day component of the date. The name for
the day is specific to the data source.

DAYOFMONTH(date) An integer from 1 to 31 representing the day of the month in date.

DAYOFWEEK(date) An integer from 1 to 7 representing the day of the week in date, where 1
represents Sunday.

DAYOFYEAR(date) An integer from 1 to 366 representing the day of the year in date.

HOUR(time) An integer from 0 to 23 representing the hour component of time.

MINUTE(time) An integer from 0 to 59 representing the minute component of time.

MONTH(date) An integer from 1 to 12 representing the month component of date.

MONTHNAME(date) A character string representing the month component of date. The name for
the month is specific to the data source.

NOW() A timestamp value representing the current date and time.

QUARTER(date) An integer from 1 to 4 representing the quarter in date, where 1 represents
January 1 through March 31.

SECOND(time) An integer from 0 to 59 representing the second component of time.

TIMESTAMPADD(interval,
 count,
 timestamp)

A timestamp calculated by adding count interval(s) to timestamp. Interval
may be one of the following: SQL_TSI_FRAC_SECOND, SQL_TSI_SECOND,
SQL_TSI_MINUTE, SQL_TSI_HOUR, SQL_TSI_DAY, SQL_TSI_WEEK,
SQL_TSI_MONTH, SQL_TSI_QUARTER, or SQL_TSI_YEAR.

TIMESTAMPDIFF(interval,
 timestamp1,
 timestamp2)

An integer representing the number of interval(s) by which timestamp2 is
greater than timestamp1. Interval may be one of the
following:SQL_TSI_FRAC_SECOND, SQL_TSI_SECOND,
SQL_TSI_MINUTE, SQL_TSI_HOUR, SQL_TSI_DAY, SQL_TSI_WEEK,
SQL_TSI_MONTH, SQL_TSI_QUARTER, or SQL_TSI_YEAR

WEEK(date) An integer from 1 to 53 representing the week of the year in date.

YEAR(date) An integer representing the year component of date.

Open Group CLI System Functions

System Functions Function Returns
DATABASE() Name of the database.

IFNULL(expression,
value)

Value if the expression is null; expression if expression is not null.

USER() User name in the DBMS.

979

Open Group CLI Conversion Functions

Conversion Function Function Returns
CONVERT(value, SQLtype) Value converted to SQLtype where SQLtype may be one of the following

SQL types: BIGINT, BINARY, BIT, CHAR, DATE, DECIMAL, DOUBLE,
FLOAT, INTEGER, LONGVARBINARY, LONGVARCHAR, REAL,
SMALLINT, TIME, TIMESTAMP, TINYINT, VARBINARY, or VARCHAR.

Handling Unsupported Functionality
Some variation is allowed for drivers written for databases that do not support certain function-
ality. For example, some databases do not support out parameters with stored procedures. In this
case, the CallableStatement methods that deal with out parameters (registerOutParameter
and the various XCallableStatement.getXXX() methods) do not apply, and they should be
implemented in such a way that they throw a com.sun.star.sdbc.SQLException.

The following features are optional in drivers for DBMSs that do not support them. When a DBMS
does not support a feature, the methods that support the feature may throw a SQLException. The
following list of optional features indicate if the com.sun.star.sdbc.XDatabaseMetaData
methods are supported by the DBMS and driver.

• scrollable result sets: supportsResultSetType()
• modifiable result sets: supportsResultSetConcurrency()
• batch updates: supportsBatchUpdates()
• SQL3 data types: getTypeInfo()
• storage and retrieval of Java objects:

- getUDTs() returns descriptions of the user defined types in a given schema
- getTypeInfo() returns descriptions of the data types available in the DBMS.

980 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDatabaseMetaData.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/SQLException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/SQLException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/SQLException.html

14 Forms

14.1 Introduction
Forms offer a method of control-based data input. A form or form document consists of a set of
controls, where each one enters a single piece of data. In a simple case, this could be a plain text
field allowing you to insert some text without any word breaks. When we speak of forms, we mean
forms and controls, because these cannot be divided.

If an internet site asks you for information, for example, for a product registration you are
presented with fields to enter your name, your address and other information. These are HTML
forms.

Basically, this is what OpenOffice.org forms do. They enhance nearly every document with
controls for data input. This additional functionality put into a document is called the form layer
within the scope of this chapter.

The most basic functionality provides the controls for HTML form documents mentioned above: If
you open an HTML document with form elements in OpenOffice.org Writer, these elements are
represented by components from com.sun.star.form.

The more enhanced functionality provides support for data-aware forms. These are forms and
controls that are bound to a data source registered in OpenOffice.org to enter data into tables of a
database. For more information about data sources and data access in general, refer to the 13 Data-
base Access.

Since OpenOffice.org 2.0, form controls also feature a generalization of this concept. They can be
bound to external components, which supply an own value. Both values � the one of the external
component, and the current value of the control � are synchronized, so that a change in one of
them is immediately propagated to the other. This allows new features, where the most notable is
that you can bind form controls to spreadsheet cells.

When discussing forms, the difference between form documents and logical forms have to be distin-
guished. The form document refers to a document as a whole, while logical forms are basically a
set of controls with additional properties. Within the scope of this chapter, when a "form" is
referred to, the logical form is meant.

981

http://api.openoffice.org/docs/common/ref/com/sun/star/form/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/module-ix.html

14.2 Models and Views

14.2.1 The Model-View Paradigm
A basic concept to understand about forms and controls in OpenOffice.org is the model-view para-
digm. For a given element in your document,for example, a text field in your HTML form, it says
that you have exactly one model and an arbitrary number of views.

The model is what is part of your document in that it describes how this element looks , and how it
behaves. The model even exists when you do not have an open instance of your document. If it is
stored in a file, the file contains a description of the model of your element.

In UNO, the simplest conceivable model is a component implementing com.sun.star.beans.XProper-
tySet only. Every aspect of the view could then be described by a single property. In fact, as you will see
later, models for form controls are basically property sets.

The view is a visual representation of your model. It is the component which looks and behaves
according to the requirements of the model. You can have multiple views for one model, and they
would all look alike as the model describes it. The view is visible to the user. It is for visualizing
the model and handles interactions with the user. The model, however, is merely a "dumb"
container of data.

A good example to illustrate this is available in OpenOffice.org. Open an arbitrary document and
choose the menu item Window - New Window. A second window is opened showing the same
document displayed in the first window. This does not mean that the document was opened twice,
it means you opened a second view of the same document, which is a difference. In particular, if
you type some text in one of the windows, this change is visible in both windows. That is what the
model-view paradigm is about: Keep your document data once in the model, and when you need
to visualize the data to the user, or need interaction from the user that modifies the document,
create views to the model as needed.

Between model and view a 1:n relationship exists:

Note that the relation is directed. Usually, a view knows its model, but the model itself does not know about
the views which visualize it.

14.2.2 Models and Views for Form Controls
Form controls follow the model-view paradigm. This means if you have a form document that
contains a control, there is a model describing the control's behavior and appearance, and a view
that is the component the user is sees.

982 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 14.1

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html

Note that the term "control" is ambiguous here. Usually, from the user's perspective, it is what is seen in the
document. As the model-view paradigm may not be obvious to the user, the user tends to consider the
visible representation and the underlying model of the control as one thing, that is, a user who refers to the
control usually means the combination of the view and the model.
As opposed to the user's perspective, when the UNO API for the form layer refers to a control, this means
the view of a form element, if not stated otherwise.

The base for the controls and models used in the form layer are found in the module
com.sun.star.awt, the com.sun.star.awt.UnoControl and com.sun.star.awt.UnoControlM-
odel services. As discussed later, the model hierarchy in com.sun.star.form.component extends
the hierarchy of com.sun.star.awt, whereas the control hierarchy in
com.sun.star.form.control is small.

Everything from the model-view interaction for form controls is true for other UNO controls and
UNO control models, as well. Another example for components that use the model-view paradigm
are the controls and control models in OpenOffice.org Basic dialogs (12.5.2 OpenOffice.org Basic and
Dialogs - Programming Dialogs and Dialog Controls - Dialog Controls).

14.2.3 Model-View Interaction
When a model and a view interoperate, a data transfer in both directions is required, from the
model to the view and conversely.

Consider a simple text field. The model for a control implements a com.sun.star.form.compo-
nent.TextField service. This means it has a property Text, containing the current content of the
field, and a property BackgroundColor specifying the color that should be used as background
when drawing the text of the control.

First, if f the value of the BackgroundColor property is changed, the control is notified of the
change. This is done by UNO listener mechanisms, such as the com.sun.star.beans.XProperty-
ChangeListener allowing the control to listen for changes to model properties and react accord-
ingly. Here the control would have to redraw itself using the new background color.

In fact this is a common mechanism for the communication between model and view: The view
adds itself as listener for any aspect of the model which could affect it, and when it is notified of
changes, it adjusts itself to the new model state. This means that the model is always the passive
part. The model does not know its views, or at least not as views, but only their role as listeners,
while the views know their model.

On the other hand, if the view is used for interaction with the user, of the data needs to be propa-
gated from the view to the model. The user enters data in a text field, and the change is reflected in
the model. Remember that the user sees the control only, and everything affects the control in the
first step. If the user interacts with the view with the intention of modifying the model, the view
propagates changes to the model.

In our example, the user enters text into the control, the control automatically updates the respective
property at the model (Text), thus modifying the document containing the model.

983

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/TextField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/TextField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/TextField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/TextField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/TextField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/TextField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/control.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/control.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/control.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControl.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControl.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControl.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt.html

14.2.4 Form Layer Views

View Modes
An important aspect to know when dealing with forms is that the view for a form layer is in
different modes. More precise, there is a design mode available, opposite to a live mode. In design
mode, you design your form. interactively with OpenOffice.org by inserting new controls, resizing
them, and modifying their properties,together with control models and shapes. although
OpenOffice.org hides this. In live mode, the controls interact with the user for data input.

The live mode is the natural mode for forms views, because usually a form is designed once and
used again.

The following example switches a given document view between the two modes: (Forms/Docu-
mentViewHelper.java)
/** toggles the design mode of the form layer of active view of our sample document
*/
protected void toggleFormDesignMode() throws java.lang.Exception {
 // get a dispatcher for the toggle URL
 URL[] aToggleURL = new URL[] {new URL()};
 aToggleURL[0].Complete = new String(".uno:SwitchControlDesignMode");
 XDispatch xDispatcher = getDispatcher(aToggleURL);

 // dispatch the URL - this will result in toggling the mode
 PropertyValue[] aDummyArgs = new PropertyValue[] {};
 xDispatcher.dispatch(aToggleURL[0], aDummyArgs);
}

The basic idea is to dispatch the URL ".uno:SwitchControlDesignMode" into the current view.
This triggers the same functionality as if the button Design Mode On/Off was pressed in
OpenOffice.org.In fact, SwitchControlDesignMode is the UNO name for the slot triggered by this
button.

Locating Controls
A common task when working with form documents using the OpenOffice.org API is to obtain
controls. Given that there is a control model, and a view to the document it belongs to, you may
want to know the control that is used to represent the model in that view. This is what the interface
com.sun.star.view.XControlAccess at the controller of a document view is made for.
(Forms/DocumentViewHelper.java)
/** retrieves a control within the current view of a document
 @param xModel
 specifies the control model which's control should be located
 @return
 the control tied to the model
*/
public XControl getControl(XControlModel xModel) throws com.sun.star.uno.Exception {
 XControlAccess xCtrlAcc = (XControlAccess)UnoRuntime.queryInterface(
 XControlAccess.class , m_xController);
 // delegate the task of looking for the control
 return xCtrlAcc.getControl(xModel);
}

Focussing Controls
To focus a specific control in your document, or more precisely, in one of the views of your docu-
ment: (Forms/DocumentViewHelper.java)
/** sets the focus to a specific control
 @param xModel
 a control model. The focus is set to that control which is part of our view
 and associated with the given model.

984 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/view/XControlAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XControlAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XControlAccess.html

*/
public void grabControlFocus(Object xModel) throws com.sun.star.uno.Exception {
 // look for the control from the current view which belongs to the model
 XControl xControl = getControl(xModel);

 // the focus can be set to an XWindow only
 XWindow xControlWindow = (XWindow)UnoRuntime.queryInterface(Xwindow.class, xControl);

 // grab the focus
 xControlWindow.setFocus();
}

As you can see, focussing controls is reduced to locating controls. Once you have located the
control, the com.sun.star.awt.XWindow interface provides everything needed for focussing.

14.3 Form Elements in the Document Model
The model of a document is the data that is made persistent, so that all form elements are a part of
it. Refer to chapter 7.1.1 Office Development - OpenOffice.org Application Environment - Overview -
Framework API - Frame-Controller-Model Paradigm for additional information. This is true for logical
forms, as well as for control models. Controls , that is, the view part of form elements, are not
made persistent, thus are not accessible in the document model.

14.3.1 A Hierarchy of Models
The components in the form layer are organized hierarchically in an object tree. Their relationship
is organized using the standard interfaces, such as com.sun.star.container.XChild and
com.sun.star.container.XIndexAccess.

As in every tree, there is a root with inner nodes and leaves. There are different components
described below that take on one or several of these roles.

FormComponent Service
The basis for all form related models is the com.sun.star.form.FormComponent service. Its basic
characteristics are:

 it exports the com.sun.star.container.XChild interface

 it has a property Name
 it exports the com.sun.star.lang.XComponent interface

Form components have a parent and a name, and support lifetime control that the common
denominator for form elements and logical forms, as well as for control models.

FormComponents Service
In the level above, a single form component is a container for components. Stepping away from the
document model, you are looking for a specific form component, such as the model of a control,
you pass where all the control models are attached. This is the com.sun.star.form.FormCompo-
nents component. The service offers basic container functionality, namely an access to its elements
by index or by name), and a possibility to enumerate its elements.

Provided that you have a container at hand, the access to its elements is straightforward. For
example, assume you want to enumerate all the elements in the container, and apply a specific

985

http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponents.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponents.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponents.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponents.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponents.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponents.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html

action for every element. The enumFormComponents() method below does this by recursively
enumerating the elements in a com.sun.star.form.FormComponents container. (Forms/Form-
Layer.java)
/** enumerates and prints all the elements in the given container
*/
public static void enumFormComponents(XNameAccess xContainer, String sPrefix)
 throws java.lang.Exception {
 // loop through all the element names
 String aNames[] = xContainer.getElementNames();
 for (int i=0; i<aNames.length; ++i) {
 // print the child name
 System.out.println(sPrefix + aNames[i]);

 // check if it is a FormComponents component itself
 XServiceInfo xSI = (XServiceInfo)UnoRuntime.queryInterface(XServiceInfo.class,
 xContainer.getByName(aNames[i]));

 if (xSI.supportsService("com.sun.star.form.FormComponents")) {
 // yep, it is
 // -> step down
 XNameAccess xChildContainer = (XnameAccess)UnoRuntime.queryInterface(
 XNameAccess.class, xSI);
 enumFormComponents(xChildContainer, new String(" ") + sPrefix);
 }
 }
}

/** enumerates and prints all the elements in the given container, together with the container itself
*/
public static void enumFormComponents(XNameAccess xContainer) throws java.lang.Exception {
 XNamed xNameAcc = (XNamed)UnoRuntime.queryInterface(XNamed.class, xContainer);
 String sObjectName = xNameAcc.getName();
 System.out.println(new String("enumerating the container named \"") + sObjectName +
 new String("\"\n"));

 System.out.println(sObjectName);
 enumFormComponents(xContainer, " ");
}

Logical Forms
Forms as technical objects are also part of the document model. In contrast to control models,
forms do not have a view representation. For every control model, there is a control the user inter-
acts with, and presents the data back to the user. For the form, there is no view component.

The basic service for logical forms is com.sun.star.form.component.Form. See below for details
regarding this service. For now, we are interested in that it exposes the
com.sun.star.form.FormComponent service, as well as the com.sun.star.form.FormCompo-
nents service. This means it is part of a form component container, and it is a container. Thus, in
our hierarchy of models, it can be any node, such as an inner node having children, that is, other
form components,, as well as a leaf node having no children, but a parent container. Of course
both of these roles are not exclusive. This is how data aware forms implement master-detail rela-
tionships. Refer to the 14.5 Forms - Data Awareness.

Forms Container
In our model hierarchy, we have inner nodes called the logical forms, and the basic element called
the form component. As in every tree, our hierarchy has a root, that is, an instance of the
com.sun.star.form.Forms service. This is nothing more than an instance of
com.sun.star.form.FormComponents. In fact, the differentiation exists for a non-ambiguous
runtime instantiation of a root.

986 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponents.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponents.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponents.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/Forms.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/Forms.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/Forms.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponents.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponents.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponents.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponents.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponents.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponents.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/Form.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/Form.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/Form.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponents.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponents.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponents.html

Note that the com.sun.star.form.Forms service does not state that components implementing it are a
com.sun.star.form.FormComponent. This means this service acts as a tree root only, opposite to a
com.sun.star.form.Forms that is a container, as well as an element, thus it can be placed anywhere in
the tree.

Actually, it is not necessary for external components to instantiate a service directly. Every docu-
ment has at least one instance of it. A root forms container is tied to a draw page, which is an
element of the document model, as well. Refer to com.sun.star.drawing.DrawPage. A page
optionally supports the interface com.sun.star.form.XFormsSupplier giving access to the
collection. In the current OpenOffice.org implementation, Writer and Calc documents fully
support draw pages supplying forms.

The following example shows how to obtain a root forms collection, if the document model is
known which is denoted with s_aDocument. (Forms/DocumentHelper.java)
/** gets the <type scope="com.sun.star.drawing">DrawPage</type> of our sample document
*/
public static XDrawPage getDocumentDrawPage() throws java.lang.Exception {
 XDrawPage xReturn;

 // in case of a Writer document, this is rather easy: simply ask the XDrawPageSupplier
 XDrawPageSupplier xSuppPage = (XDrawPageSupplier)UnoRuntime.queryInterface(
 XDrawPageSupplier.class, s_aDocument);
 xReturn = xSuppPage.getDrawPage();
 if (null == xReturn) {
 // the model itself is no draw page supplier - then it may be an Impress or Calc
 // (or any other multi-page) document
 XDrawPagesSupplier xSuppPages = (XDrawPagesSupplier)UnoRuntime.queryInterface(
 XDrawPagesSupplier.class, s_aDocument);
 XDrawPages xPages = xSuppPages.getDrawPages();

 xReturn = (XdrawPage)UnoRuntime.queryInterface(XDrawPage.class, xPages.getByIndex(0));

 // Note that this is not really error-proof code: If the document model does not support the
 // XDrawPagesSupplier interface, or if the pages collection returned is empty, this will break.
 }

 return xReturn;
}

/** retrieves the root of the hierarchy of form components
*/
public static XNameContainer getFormComponentTreeRoot() throws java.lang.Exception {
 XFormsSupplier xSuppForms = (XFormsSupplier)UnoRuntime.queryInterface(
 XFormsSupplier.class, getDocumentDrawPage());

 XNameContainer xFormsCollection = null;
 if (null != xSuppForms) {
 xFormsCollection = xSuppForms.getForms();
 }
 return xFormsCollection;
}

Form Control Models
The control models are discussed in these sections. The basic service for a form layer control model
is com.sun.star.form.FormControlModel that is discussedin more detail below. A form control
model promises to support the com.sun.star.form.FormComponent service, meaning that it can
act as a child in our model hierarchy.

In addition, it does not claim that the com.sun.star.form.FormComponents service (plural s) is
supported meaning that form control models are leaves in our object tree. The only exception from
this is the grid control model. It is allowed to have children representing the models of the
columns.

An overview of the whole model tree has been provided. With the code fragments introduced
above, the following code dumps a model tree to the console:
 // dump the form component tree
 enumFormComponents(getFormComponentTreeRoot());

987

http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponents.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponents.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponents.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XFormsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XFormsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XFormsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawPage.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawPage.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawPage.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/Forms.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/Forms.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/Forms.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/Forms.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/Forms.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/Forms.html

14.3.2 Control Models and Shapes
There is more to know about form components in a document.

From 10.3.2 Drawing - Working with Drawing Documents - Shapes, you already know about shapes.
They are also part of a document model. The control shapes,
com.sun.star.drawing.ControlShape are made to be tied to control models. They are special-
ized to fully integrate form control models into a document.

In theory, there can be a control shape without a model tied to it, or a control model which is part
of the form component hierarchy, but not associated with any shape. In the first case, an empty
shape is displayed in the document view. In the second case, you see nothing. It is possible to have
a shape which is properly tied to a control model, but the control model is not part of the form
component hierarchy. The model can not interact with the rest of the form layer. For example, it is
unable to take advantage of its data awareness capabilities.

The user interface of OpenOffice.org does not allow the creation of orphaned objects, but you can create
them using the API. When dealing with controls through the API, ensure that there is always a valid rela-
tionship between forms, control models, and shapes.

A complete object structure in a document model with respect to the components relevant for our
form layer looks the following:

988 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 14.2

http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ControlShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ControlShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ControlShape.html

Programmatic Creation of Controls
As a consequence from the previous paragraph, we now know that to insert a form control, we
need to insert a control shape and control model into the document's model.

The following code fragment accomplishes that: (Forms/FormLayer.java)
/** creates a control in the document

 <p>Note that control here is an incorrect terminology. What the method really does is
 it creates a control shape, together with a control model, and inserts them into the document model.
 This will result in every view to this document creating a control described by the model-shape
 pair.</p>

 @param sFormComponentService
 the service name of the form component to create, e.g. "TextField"
 @param nXPos
 the abscissa of the position of the newly inserted shape
 @param nXPos
 the ordinate of the position of the newly inserted shape
 @param nWidth
 the width of the newly inserted shape
 @param nHeight
 the height of the newly inserted shape
 @return
 the property access to the control's model
*/
public static XPropertySet createControlAndShape(String sFormComponentService, int nXPos,
 int nYPos, int nWidth, int nHeight) throws java.lang.Exception {
 // let the document create a shape
 XMultiServiceFactory xDocAsFactory = (XMultiServiceFactory)UnoRuntime.queryInterface(
 XMultiServiceFactory.class, s_aDocument);
 XControlShape xShape = (XControlShape)UnoRuntime.queryInterface(XControlShape.class,
 xDocAsFactory.createInstance("com.sun.star.drawing.ControlShape"));

 // position and size of the shape
 xShape.setSize(new Size(nWidth * 100, nHeight * 100));
 xShape.setPosition(new Point(nXPos * 100, nYPos * 100));

 // and in a OOo Writer doc, the anchor can be adjusted
 XPropertySet xShapeProps = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, xShape);
 TextContentAnchorType eAnchorType = TextContentAnchorType.AT_PAGE;
 if (classifyDocument(s_aDocument) == DocumentType.WRITER) {
 eAnchorType = TextContentAnchorType.AT_PARAGRAPH;
 }
 xShapeProps.setPropertyValue("AnchorType", eAnchorType);

 // create the form component (the model of a form control)
 String sQualifiedComponentName = "com.sun.star.form.component." + sFormComponentService;
 XControlModel xModel = (XControlModel)UnoRuntime.queryInterface(XControlModel.class,
 s_aMSF.createInstance(sQualifiedComponentName));

 // knitt them
 xShape.setControl(xModel);

 // add the shape to the shapes collection of the document
 XShapes xDocShapes = (XShapes)UnoRuntime.queryInterface(XShapes.class, getDocumentDrawPage());
 xDocShapes.add(xShape);

 // and outta here with the XPropertySet interface of the model
 XPropertySet xModelProps = (XpropertySet)UnoRuntime.queryInterface(
 XpropertySet.class, xModel);
 return xModelProps;
}

Looking at the example above, the basic procedure is:

• create and initialize a shape

• create a control model

• announce the control model to the shape

• insert the shape into the shapes collection of a draw page

The above does not mention about inserting the control model into the form component hierarchy,
which is a contradiction of our previous discussion. We have previously said that every control
model must be part of this hierarchy to prevent corrupted documents, but it is not harmful.

989

In every document, when a new control shape is inserted into the document, through the API or an
interaction with a document's view, the control model is checked if it is a member of the model
hierarchy. If it is not, it is automatically inserted. Moreover, if the hierarchy does not exist or is
incomplete, for example, if the draw page does not have a forms collection, or this collection does
not contain a form, this is also corrected automatically.

With the code fragment above applied to a new document, a logical form is created automatically,
inserted into the forms hierarchy, and the control model is inserted into this form.

Note that this is an implementation detail. Internally, there is an instance listening at the page's shapes, that
reacts upon insertions. In theory, there could be other implementations of OpenOffice.org API that do not
contain this mechanism. In practice, the only known implementation is OpenOffice.org.

Note that the order of operations is important. If you insert the shape into the page's shape collection, and tie
it to its control model after, the document would be corrupted: Nobody would know about this new model
then, and it would not be inserted properly into the form component hierarchy, unless you do this.

You may have noticed that there is nothing about the view. We only created a control model. As
you can see in the complete example for this chapter, when you have an open document, and
insert a model and a shape, a control (the visual representation) is also created or else you would
not see anything that looks like a control.

The control and model have a model-view relationship. If the document window is open, this
window is the document view. If the document or the model is modified by inserting a control
model, the view for every open view for this document reacts appropriately and creates a control
as described by the model. The com.sun.star.awt.UnoControlModel:DefaultControl property
describes the service to be instantiated when automatically creating a control for a model.

14.4 Form Components

14.4.1 Basics
According to the different form document types, there are different components in the
com.sun.star.form module serving different purposes. Basically, we distinguish between HTML
form functionality and data awareness functionality that are covered by the form layer API.

Control Models
As you know from 14.3.1 Forms - Form Elements in the Document Model - Hierarchy - Form Control
Models, the base for all our control models is the com.sun.star.form.FormControlModel service.
Let us look at the most relevant elements of the declaration of this service and what a component
must do to support it:

com.sun.star.awt.UnoControlModel
This service specifies that a form control model complies to everything required for a control
model by the UNO windowing toolkit as described in module com.sun.star.awt. This means
support for the com.sun.star.awt.XControlModel interface, for property access and persis-
tence.

990 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlModel.html#DefaultControl
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlModel.html#DefaultControl
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlModel.html#DefaultControl

com.sun.star.form.FormComponent
This service requires a form control model is part of a form component hierarchy. Refer to
chapter 14.3.1 Forms - Form Elements in the Document Model - Hierarchy.

com.sun.star.beans.XPropertyState
This optional interface allows the control model properties to have a default value. All known
implementations of the FormControlModel service support this interface.

com.sun.star.form.FormControlModel:ClassId
This property determines the class of a control model you have , and it assumes a value from
the com.sun.star.form.FormComponentType enumeration. The same is done using the
com.sun.star.lang.XServiceInfo interface that is supported by every component, and as
shown below it can be indispensable. Using the
com.sun.star.form.FormControlModel:ClassId property is faster.

Note that the com.sun.star.form.FormControlModel service does not state anything about data
awareness. It describes the requirements for a control model which can be part of a form layer.

See chapter 14.5 Forms - Data Awareness for additional information about the controls which are data aware.

The following example shows how to determine the type of a control model using the ClassId
property introduced above: (Forms/FLTools.java)
/** retrieves the type of a form component.
 <p>Speaking strictly, the function recognizes more than form components. Especially,
 it survives a null argument. which means it can be safely applied to the a top-level
 forms container; and it is able to classify grid columns (which are no form components)
 as well.</p>
*/
static public String classifyFormComponentType(XPropertySet xComponent)
 throws com.sun.star.uno.Exception {
 String sType = "<unknown component>";

 XServiceInfo xSI = (XserviceInfo)UnoRuntime.queryInterface(XServiceInfo.class, xComponent);

 XPropertySetInfo xPSI = null;
 if (null != xComponent)
 xPSI = xComponent.getPropertySetInfo();

 if ((null != xPSI) && xPSI.hasPropertyByName("ClassId")) {
 // get the ClassId property
 XPropertySet xCompProps = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xComponent);

 Short nClassId = (Short)xCompProps.getPropertyValue("ClassId");
 switch (nClassId.intValue())
 {
 case FormComponentType.COMMANDBUTTON: sType = "Command button"; break;
 case FormComponentType.RADIOBUTTON : sType = "Radio button"; break;
 case FormComponentType.IMAGEBUTTON : sType = "Image button"; break;
 case FormComponentType.CHECKBOX : sType = "Check Box"; break;
 case FormComponentType.LISTBOX : sType = "List Box"; break;
 case FormComponentType.COMBOBOX : sType = "Combo Box"; break;
 case FormComponentType.GROUPBOX : sType = "Group Box"; break;
 case FormComponentType.FIXEDTEXT : sType = "Fixed Text"; break;
 case FormComponentType.GRIDCONTROL : sType = "Grid Control"; break;
 case FormComponentType.FILECONTROL : sType = "File Control"; break;
 case FormComponentType.HIDDENCONTROL: sType = "Hidden Control"; break;
 case FormComponentType.IMAGECONTROL : sType = "Image Control"; break;
 case FormComponentType.DATEFIELD : sType = "Date Field"; break;
 case FormComponentType.TIMEFIELD : sType = "Time Field"; break;
 case FormComponentType.NUMERICFIELD : sType = "Numeric Field"; break;
 case FormComponentType.CURRENCYFIELD: sType = "Currency Field"; break;
 case FormComponentType.PATTERNFIELD : sType = "Pattern Field"; break;

 case FormComponentType.TEXTFIELD :
 // there are two known services with this class id: the usual text field,
 // and the formatted field
 sType = "Text Field";
 if ((null != xSI) && xSI.supportsService(
 "com.sun.star.form.component.FormattedField")) {
 sType = "Formatted Field";
 }
 break;

 default:
 break;

991

http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormControlModel.html#ClassId
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormControlModel.html#ClassId
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormControlModel.html#ClassId
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponentType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponentType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponentType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormControlModel.html#ClassId
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyState.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponent.html

 }
 }
 else {
 if ((null != xSI) && xSI.supportsService("com.sun.star.form.component.DataForm")) {
 sType = "Form";
 }
 }

 return sType;
}

Note the special handling for the value com.sun.star.form.FormComponentType:TEXTFIELD.
There are two different services where a component implementing them is required to act as text
field, the com.sun.star.form.component.TextField and
com.sun.star.form.component.FormattedField. Both services describe a text component, thus
both have a class id of com.sun.star.form.FormComponentType:TEXTFIELD. To distinguish
between them, ask the components for more details using the com.sun.star.lang.XServiceInfo
interface.

Forms
The OpenOffice.org API features different kinds of forms, namely the
com.sun.star.form.component.Form, com.sun.star.form.component.HTMLForm, and
com.sun.star.form.component.DataForm. The two different aspects described with these
services are HTML forms used in HTML documents, and data aware forms used to access data-
bases. Data awareness is discussed thoroughly in 14.5 Forms - Data Awareness.

Though different services exist for HTML and data aware forms, there is only one form implementation in
OpenOffice.org htat implements both services simultaneously.

The common denominator of HTML forms and data aware forms is described in the
com.sun.star.form.component.Form service. It includes the FormComponent and FormCompo-
nents service, in addition to the following elements:

com.sun.star.form.XForm
This interface identifies the component as a form that can be done with other methods, such as
the com.sun.star.lang.XServiceInfo interface. The com.sun.star.form.XForm interface
distinguishes a form component as a form. The XForm interface inherits from
com.sun.star.form.XFormComponent to indicate the difference, and does not add any further
operations.

com.sun.star.awt.XTabControllerModel
This is used for controlling tab ordering and control grouping. As a logical form is a container
for control models, it is a natural place to administer information about the relationship of its
control children. The tab order, that is, the order in which the focus travels through the controls
associated with the control models when the user presses the Tab key, is a relationship, and
thus is maintained on the form.

Note that changing the tab order through this interface also affects the models. The
com.sun.star.form.FormControlModel service has an optional property TabIndexthat
contains the relative position of the control in the tabbing order. For example, a straightforward
implementation of com.sun.star.awt.XTabControllerModel:setControlModels() would
be simply to adjust all the TabIndex properties of the models passed to this method.

992 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTabControllerModel.html#setControlModels
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTabControllerModel.html#setControlModels
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTabControllerModel.html#setControlModels
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTabControllerModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XFormComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XFormComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XFormComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XForm.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XForm.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XForm.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XForm.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/Form.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/Form.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/Form.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/DataForm.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/DataForm.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/DataForm.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/HTMLForm.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/HTMLForm.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/HTMLForm.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/Form.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/Form.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/Form.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponentType.html#TEXTFIELD
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponentType.html#TEXTFIELD
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponentType.html#TEXTFIELD
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/FormattedField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/FormattedField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/FormattedField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/TextField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/TextField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/TextField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponentType.html#TEXTFIELD
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponentType.html#TEXTFIELD
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponentType.html#TEXTFIELD

14.4.2 HTML Forms
The com.sun.star.form.component.HTMLForm service reflects the requirements for HTML form
documents. Looking at HTML specifications, you can submit forms using different encodings and
submit methods, and reset forms. The HTMLForm service description reflects this by supporting the
interfaces com.sun.star.form.XReset and com.sun.star.form.XSubmit, as well as some addi-
tional properties related to the submit functionality.

The semantics of these interfaces and properties are straightforward.For additional details, refer to
the service description, as well as the HTML specification.

14.5 Data Awareness
A major feature of forms in OpenOffice.org is that they can be data aware. You create form docu-
ments where the user manipulates data from a database that is accessible in OpenOffice.org. For
more details about data sources, refer to chapter 13 Database Access. This includes data from any
table of a database, or data from a query based on one or more tables.

The basic idea is that a logical form cis associated with a database result set. A form control model,
which is a child of that form, is bound to a field of this result set, exchanging the data entered by
the user with the result set field.

14.5.1 Forms

Forms as Row Sets
Besides forms, there is already a component that supports a result set, the
com.sun.star.sdb.RowSet.If you look at the com.sun.star.form.component.DataForm, a Data-
Form also implements the com.sun.star.sdb.RowSet service, and extends it with additional
functionality. Row sets are described in 13.3.1 Database Access - Manipulating Data - The RowSet
Service.

Loadable Forms
A major difference of data forms compared to the underlying row set is the that forms are loaded,
and t provide an interface to manipulate this state.
 XLoadable xLoad = (XLoadable)FLTools.getParent(aControlModel, XLoadable.class);
 xLoad.reload();

Loading is the same as executing the underlying row set, that is, invoking the
com.sun.star.sdbc.XRowSet:execute() method. The com.sun.star.form.XLoadable is
designed to fit the needs of a form document, for example, it a unloads an already loaded form.

The example above shows how to reload a form. Reloading is executing the row set again. Using
reload instead of execute has the advantage of advanced listener mechanisms:

Look at the com.sun.star.form.XLoadable interface. You can add a
com.sun.star.form.XLoadListener. This listener not only tells you when load-related events
have occurred that is achieved by the com.sun.star.sdbc.XRowSetListener, but also when they
are about to happen. In a complex scenario where different listeners are added to different aspects

993

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRowSetListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRowSetListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRowSetListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XLoadListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XLoadListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XLoadListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XLoadable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XLoadable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XLoadable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XLoadable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XLoadable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XLoadable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRowSet.html#execute
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRowSet.html#execute
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRowSet.html#execute
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/DataForm.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/DataForm.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/DataForm.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XSubmit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XSubmit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XSubmit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XReset.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XReset.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XReset.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/HTMLForm.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/HTMLForm.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/HTMLForm.html

of a form, you use the com.sun.star.form.XLoadable:reload() call to disable all other listeners
temporarily. Re-executing a row set is a complex process, thus it triggers a lot of events that are
only an after effect of the re-execution.

Though all the functionality provided by com.sun.star.form.XLoadable can be simulated using the
com.sun.star.sdbc.XRowSet interface, you should always use the former. Due to the above-mentioned,
more sophisticated listener mechanisms, implementations have a chance to do loading, reloading and
unloading much smoother then.

An additional difference between loading and executing is the positioning of the row set: When
using com.sun.star.sdbc.XRowSet:execute(), the set is positioned before the first record. When
you use com.sun.star.form.XLoadable:load(), the set is positioned on the first record, as you
would expect from a form.

Sub Forms
A powerful feature of OpenOffice.org are sub forms. This does not mean that complete form docu-
ments are embedded into other form documents, instead sub form relationships are realized by
nesting logical forms in the form component hierarchy.

When a form notices that its parent is not the forms container when it is loaded and in live mode,
but is dependent on another form, it no longer acts as a top-level form. Whenever the parent or
master form moves to another record, the content of the sub or detail form is re-fetched. This way,
the content of the sub form is made dependent on the actual value of one or more fields of the
parent form.

Typical use for a relationship are tables that are linked through key columns, usually in a 1:n rela-
tionship. You use a master form to travel trough all records of the table on the 1 side of the rela-
tionship, and a detail form that shows the records of the table on the n side of the relationship
where the foreign key matches the primary key of the master table.

To create nested forms at runtime, use the following example: (Forms/FormLayer.java)
 // retrieve or create the master form
 m_xMasterForm =

 // bind it to the salesman table
 m_xMasterForm.setPropertyValue("DataSourceName", m_aParameters.sDataSourceName);
 m_xMasterForm.setPropertyValue("CommandType", new Integer(CommandType.TABLE));
 m_xMasterForm.setPropertyValue("Command", "SALESMAN");

 // create the details form
 XIndexContainer xSalesForm = m_aDocument.createSubForm(m_xMasterForm, "Sales");
 XPropertySet xSalesFormProps = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xSalesForm);

 // bind it to the all those sales belonging to a variable salesmen
 xSalesFormProps.setPropertyValue("DataSourceName", m_aParameters.sDataSourceName);
 xSalesFormProps.setPropertyValue("CommandType", new Integer(CommandType.COMMAND));
 xSalesFormProps.setPropertyValue("Command",
 "SELECT * FROM SALES AS SALES WHERE SALES.SNR = :salesman");

 // the master-details connection
 String[] aMasterFields = new String[] {"SNR"}; // the field in the master form
 String[] aDetailFields = new String[] {"salesman"}; // the name in the detail form
 xSalesFormProps.setPropertyValue("MasterFields", aMasterFields);
 xSalesFormProps.setPropertyValue("DetailFields", aDetailFields);

The code snippet works on the following table structure:

994 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/form/XLoadable.html#load
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XLoadable.html#load
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XLoadable.html#load
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRowSet.html#execute
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRowSet.html#execute
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRowSet.html#execute
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XLoadable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XLoadable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XLoadable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XLoadable.html#reload
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XLoadable.html#reload
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XLoadable.html#reload

The code is straightforward, except for setting up the connection between the two forms. The
master form is bound to SALESMEN, and the detail form is bound to a statement that selects all
fields from SALES, filtered for records where the foreign key, SALES.SNR, equals a parameter
named salesman.

As soon as the MasterFields and DetailFields properties are set, the two forms are connected.
Every time the cursor in the master form moves, the detail form reloads after filling the salesman
parameter with the actual value of the master forms SNR column.

Filtering and Sorting
Forms support quick and easy filtering and sorting like the underlying row sets. For this, the prop-
erties com.sun.star.sdb.RowSet:Filter, com.sun.star.sdb.RowSet:ApplyFilter and
com.sun.star.sdb.RowSet:Order area used. (Forms/SalesFilter.java)
 // set this as filter on the form
 String sCompleteFilter = "";
 if ((null != sOdbcDate) && (0 != sOdbcDate.length())) {
 sCompleteFilter = "SALEDATE >= ";
 sCompleteFilter += sOdbcDate;
 }
 m_xSalesForm.setPropertyValue("Filter", sCompleteFilter);
 m_xSalesForm.setPropertyValue("ApplyFilter", new Boolean(true));

 // and reload the form
 XLoadable xLoad = (XLoadable)UnoRuntime.queryInterface(XLoadable.class, m_xSalesForm);
 xLoad.reload();

In this fragment, a filter string is built first. The "SALEDATE >= {D '2002-12-02'}" is an example
for a filter string. In general, everything that appears after the WHERE clause of an SQL statement is
set as a Filter property value. The same holds true for the Order property value and an ORDER BY
clause.

995

Illustration 14.3

http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#Order
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#Order
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#Order
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#ApplyFilter
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#ApplyFilter
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#ApplyFilter
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#Filter
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#Filter
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html#Filter

The notation for the date in braces: This is the standard ODBC notation for date values, and it is the safest
method to supply OpenOffice.org with date values. It also works if you are using non-ODBC data sources,
as long as you do not switch on the Native SQL option. Refer
tocom.sun.star.sdbc.Statement:EscapeProcessing. OpenOffice.org understands and sometimes
returns other notations, for instance, in the user interface where that makes sense, but these are locale-
dependent, which means you have to know the current locale if you use them.

Then the ApplyFilter property is set to true. This is for safety, because the value of this property
is unknown when creating a new form. Everytime you have a form or row set, and you want to
change the filter, remember to set the ApplyFilter property at least once. Afterwards, reload() is
called.

In general, ApplyFilter allows the user of a row set to enable or disable the current filter quickly
without remembering it. To see what the effects of the current filter are, set ApplyFilter to false
and reload the form.

Parameters
Data Aware Forms are based on statements. As with other topics in this chapter, this is not form
specific, instead it is a functionality inherited from the underlying com.sun.star.sdb.RowSet.
Statements contain parameters where some values are not specified, and are not dependent on
actual values in the underlying tables. Instead they have to be filled each time the row set is
executed, that is, the form is loaded or reloaded.

A typical example for a statement containing a parameter is
SELECT * FROM SALES WHERE SALES.SNR = :salesman

There is a named parameter salesman, which is filled before a row set based on a statement is
executed. The orthodox method to use is the com.sun.star.sdbc.XParameters interface,
exported by the row set.

However, forms allow another way. They export the com.sun.star.form.XDatabaseParameter-
Broadcaster interface that allows your component to add itself as a listener for an event which is
triggered whenever the form needs parameter values.

In a form, filling parameters is a three-step procedure. Consider a form that needs three parame-
ters for execution.

1. The master-detail relationship is evaluated. If the form's parent is a
com.sun.star.form.component.DataForm, then the MasterFields and DetailFields prop-
erties are evaluated to fill in parameter values. For an example of how this relationship is evalu-
ated, refer to chapter 14.5.1 Forms - Data Awareness - Forms - Sub Forms.

2. If there are parameter values left, that is, not filled in, the calls to the
com.sun.star.sdbc.XParameters interface are examined. All values previously set through
this interface are filled in.

3. If there are still parameter values left, the com.sun.star.form.XDatabaseParameterLis-
teners are invoked. Any component can add itself as a listener using the
com.sun.star.form.XDatabaseParameterBroadcaster interface implemented by the form.
The listeners then have the chance to fill in anything still missing.

Unfortunately, OpenOffice.org Basic scripts currently cannot follow the last step of this procedure
� there is a known implementation issue which prevents this.

996 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/form/XDatabaseParameterBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XDatabaseParameterBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XDatabaseParameterBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XDatabaseParameterListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XDatabaseParameterListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XDatabaseParameterListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XDatabaseParameterListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XDatabaseParameterListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XDatabaseParameterListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XParameters.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XParameters.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XParameters.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/DataForm.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/DataForm.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/DataForm.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XDatabaseParameterBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XDatabaseParameterBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XDatabaseParameterBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XDatabaseParameterBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XDatabaseParameterBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XDatabaseParameterBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XParameters.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XParameters.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XParameters.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/Statement.html#EscapeProcessing
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/Statement.html#EscapeProcessing
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/Statement.html#EscapeProcessing

14.5.2 Data Aware Controls
The second part of the Data Awareness capabilities of OpenOffice.org are data aware controls.
While a form is always associated with a complete result set, it represents this result set, a single
control is bound to one data column that is part of the form which is the control's parent.

As always, the relevant information is stored in the control model. The basic service for control
models which are data-aware is com.sun.star.form.DataAwareControlModel.

There are two connections between a control model and the column it is bound to:

DataField
This is the property that determines the name of the field to bind to. Upon loading the form, a
control model searches the data columns of the form for this name, and connects to it. An expla-
nation for "connects" is provided below.
Note that this property isa suggestion only. It tells the control model to connect to the data
column, but this connection may fail for various reasons, for example, no such column may
exist in the row set.
Even if this property is set to a non-empty string, this does not mean anything about the control
being connected.

BoundField
Once a control model has connected itself to a data column, the respective column object is also
remembered. This saves clients of a control model the effort to examine and handle the Data-
Field , they simply rely on BoundField.
Opposite to the DataField property, BoundField is reliable in that it is a valid column object if and
only if the control is properly connected.

The overall relationship for data awareness is as follows:

997

http://api.openoffice.org/docs/common/ref/com/sun/star/form/DataAwareControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/DataAwareControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/DataAwareControlModel.html

Control Models as Bound Components
You expect that the control displays the current data of the column it is tied to. Current data means
the data in the row that the com.sun.star.form.component.DataForm is currently located on.
Now, the control does not know about data-awareness, only the control model does, but we already
have a connection between the model and control: As described in the chapter about model-view
interaction, 14.2.3 Forms - Models and Views - Model-View Interaction, the control listens for changes
to the model properties, as well as updates them when a user interacts with the control directly.

For instance, you know the Text property of a simple text input field,
com.sun.star.form.component.TextFieldthat is updated by the control when the user enters
text. When the property is updated through any other means, the control reacts appropriately and
adjusts the text it displays.

This mechanism is found in all controls. The only difference is the property used to determine the
contents to be displayed. For instance, numeric controls com.sun.star.form.component.Numer-
icField have a property Value representing the current numerical value to be displayed.
Although the name differs, all control models have a dedicated content property.

This is where the data-awareness comes in. A data-aware control model bound to a data column
uses its content property to exchange data with this column. As soon as the column value changes,

998 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 14.4

http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/NumericField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/NumericField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/NumericField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/NumericField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/NumericField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/NumericField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/TextField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/TextField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/TextField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/DataForm.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/DataForm.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/DataForm.html

the model forwards the new value to its content property, and notifies its listeners. One of these
listeners is the control that updates its display:

Committing Controls
The second direction of the data transfer is back from what the user enters into the control. The text
entered by a user is immediately forwarded to the value property of the control model. This way,
both the control and the control model are always consistent.

Next, the content property is transferred into the data column the control is bound to. As opposed
to the first step, this is not done automatically. Instead, this control is committed actively.

Committing is the process of transferring the current value of the control to the database column.
The interface used for this is com.sun.star.form.XBoundComponent that provides the method
commit. Note that the XBoundComponent is derived from com.sun.star.form.XUpdateBroad-
caster. This means that listeners are added to a component to monitor and veto the committing of
data.

The following diagram shows what happens when the user decides to save the current record after
changing a control:

999

Illustration 14.5

http://api.openoffice.org/docs/common/ref/com/sun/star/form/XUpdateBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XUpdateBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XUpdateBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XUpdateBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XUpdateBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XUpdateBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XBoundComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XBoundComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XBoundComponent.html

Note that in the diagram, there is a controller instance involved. In general, this is any instance
capable of controlling the user-form interaction. In OpenOffice.org, for every document view and
form, there is an instance of the com.sun.star.form.FormController service, together with some
not-yet UNO-based code that takes on the role of a controller.

14.6 External value suppliers
Chapter 14.5.2 Forms - Data Awareness - Data Aware Controls discussed form controls that exchange
their value, as entered by the user, with database columns. At certain times, this type of form
control initializes itself from the column, or writes its current value into the column.

In addition, list and combo box controls are able to retrieve, in various ways, their list content from
a database.

Since OpenOffice.org 2.0, it is possible for form controls to exchange data with external compo-
nents. This is a generalization of the data awareness concept: form controls are now able to bind
their value to any external value supplier, without knowing anything about the value supplier
except an abstract UNO interface.

Similarly, list and combo boxes can obtain their list content from an external component, as long as
they support a certain interface.

The com.sun.star.form.binding module collects all interfaces and services related to this new
functionality.

1000 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 14.6

http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormController.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormController.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormController.html

14.6.1 Value Bindings
Unlike the functionality for binding form controls to database columns, value bindings are external
to the form control/model. A control that can be bound (note that not all existing controls actually
can) supports a certain interface, and a binding supports another one. That is all both parties need
to know.

Illustration 14.7 shows the most important interfaces and services collaborating here.

Illustration 14.7 Basic class diagram for value components and value bindings

1001

Note that there is yet no notion about form controls at all. Those interfaces are only concerned with
components representing a value, and components implementing a binding for this value. In fact,
the generic mechanism for binding values is described with a complete disregard of form controls.
The components supporting the XBindableValue interface are called value components.

The central interface is XValueBinding, which is to be supported by components that want to
impose their value on a value component. The following table describes its methods:

Methods of com.sun.star.form.binding.XValueBinding
getSupportedValueTypes(
)

Allows negotiation of a type in which values are exchanged. Usually, both
a binding and a value component only support a certain set of types, in
which the values can be exchanged. If the sets of a given binding and a
given value component do not intersect, both can not be knit together.

supportsType() Allows a value component to explicitly ask whether a given binding
supports a given type.

This method can be used as shortcut: components do not need to examine
the complete type sequence of a binding.

Additionally, this method is usually used to implement a precedence of
types. A value component can ask a potential binding for certain supported
types, in a certain order. The first type that is accepted by the binding (if
any) can then be used for exchanging the value.

getValue() Retrieves the current value as represented by the binding. Callers specify a
type of the value, and the binding must provide the value in exactly this
type, or throw an com.sun.star.form.binding.Incompatible-
TypesException if this is not possible.

setValue() Propagates a new value to the binding.

The ValueBinding service extends the XValueBinding interface with two aspects:

com.sun.star.util.XModifyBroadcaster
This allows a value binding to actively notify changes in its value. A value component can
register itself as XModifyListener at the binding. In fact, that is the only way that the relation-
ship between the binding and the value component can become bidirectional. Without the
support of the XModifyBroadcaster interface, value components can only actively propagate
their value to the binding, but not the reverse.

support for read-only bindings
The ReadOnly property can be used to specify that the value represented by a binding currently
cannot be modified. If the read-only state of a binding's value can change during its lifetime, it
should allow registering XPropertyChangeListeners for the ReadOnly property, so value
components using the binding can act on the current state.

Form Controls accepting Value Bindings
How do form controls and value bindings relate to each other? When looking at all the form
control functionality that has so far been discussed, the following questions come need to be
answered:

 Which control types do support value bindings?

 For a given control type, which aspect actually is its value, which is exchanged with an external
binding?

 How do external value bindings interact with data awareness, for example, controls that
exchange their value with a database column?

1002 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/ValueBinding.html#ReadOnly
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/ValueBinding.html#ReadOnly
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/ValueBinding.html#ReadOnly
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/ValueBinding.html#ReadOnly
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/ValueBinding.html#ReadOnly
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/ValueBinding.html#ReadOnly
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XModifyBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XModifyBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XModifyBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XModifyListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XModifyListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XModifyListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XModifyBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XValueBinding.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XValueBinding.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XValueBinding.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/ValueBinding.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/ValueBinding.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/ValueBinding.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XValueBinding.html#setValue
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XValueBinding.html#setValue
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XValueBinding.html#setValue
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/IncompatibleTypesException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/IncompatibleTypesException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/IncompatibleTypesException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/IncompatibleTypesException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/IncompatibleTypesException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/IncompatibleTypesException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XValueBinding.html#getValue
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XValueBinding.html#getValue
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XValueBinding.html#getValue
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XValueBinding.html#supportsType
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XValueBinding.html#supportsType
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XValueBinding.html#supportsType
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XValueBinding.html#getSupportedValueTypes
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XValueBinding.html#getSupportedValueTypes
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XValueBinding.html#getSupportedValueTypes
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XValueBinding.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XValueBinding.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XValueBinding.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XValueBinding.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XValueBinding.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XValueBinding.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XBindableValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XBindableValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XBindableValue.html

 What can you do with all this?

The first two questions are easy: Every control that allows user input also supports value bindings.
The data that the user entered (this may be, for instance, plain text, or an image, or a check state) is
considered the value of the control, and thus exchanged with the external binding.

The basic service is the com.sun.star.form.binding.BindableControlModel, which specifies a
control model supporting external value bindings. For a concrete control type, for instance, a check
box, a service such as BindableCheckBox would be expected, which specifies how a check box
control model exchanges its value with an external binding.

However, all controls that potentially could support a binding also are data aware (see 14.5.2
Forms - Data Awareness - Data Aware Controls). Thus, the first step is to answer the third question
from above. The service com.sun.star.form.binding.BindableDataAwareControlModel is
about data aware control models with value binding capabilities. You are referred to the documen-
tation of the BindableDataAwareControlModel service for all the details, but the two most inter-
esting details are as follows:

Priority
External value bindings overrule any active SQL-column binding. If an external component is
bound to a control model that currently has an active SQL binding, this SQL binding is
suspended until the external binding is revoked.

Immediacy
When a BindableDataAwareControlModel is bound to an external value, then every change in
the control model's value is immediately reflected in the external binding. This is a difference to
SQL bindings of most DataAwareControlModels, where changes in the model's value are only
propagated to the bound column upon explicit request via commit.

See Illustration 14.9 to see the service hierarchy for control models that are also value components.
It also shows how concrete control types fit in, for example by using check boxes.

1003

http://api.openoffice.org/docs/common/ref/com/sun/star/form/XBoundComponent.html#commit
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XBoundComponent.html#commit
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XBoundComponent.html#commit
http://api.openoffice.org/docs/common/ref/com/sun/star/form/DataAwareControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/DataAwareControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/DataAwareControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/BindableDataAwareControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/BindableDataAwareControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/BindableDataAwareControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/BindableDataAwareControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/BindableDataAwareControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/BindableDataAwareControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/BindableDataAwareControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/BindableDataAwareControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/BindableDataAwareControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/BindableControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/BindableControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/BindableControlModel.html

Illustration 14.8form control models supporting value bindings

The following covers the last question from the above list: What is this good for?

OpenOffice.org 2.0 already contains two practical applications:

Spreadsheet cell bindings
In a OpenOffice.org spreadsheet document, you always could insert form controls. From
version 2.0, you can, in their properties, bind form controls to arbitrary cells within the docu-
ment. That is, every change made in this cell is propagated to the control, and vice versa. This is
implemented using the value binding mechanism described in this chapter. See
com.sun.star.table.CellValueBinding for more details.

The following piece of code creates a cell value binding in a spreadsheet document, for cell A1
on the first sheet, and knits it to a numeric control model:

 // insert our sample control
 XPropertySet numericControl = m_formLayer.insertControlLine("DatabaseFormattedField",
 "enter a value", "", 10);

 // a value binding for cell A1 on the first
 CellAddress address = new CellAddress((short)0, (short)0, (short)0);
 Object[] initParam = new Object[] { new NamedValue("BoundCell", address) };
 XValueBinding cellBinding = (XValueBinding)UnoRuntime.queryInterface(
 XValueBinding.class,

1004 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellValueBinding.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellValueBinding.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellValueBinding.html

 m_document.createInstanceWithArguments(
 "com.sun.star.table.CellValueBinding", initParam));

 // bind it to the control model
 XBindableValue bindable = (XBindableValue)UnoRuntime.queryInterface(
 XBindableValue.class, numericControl
);
 bindable.setValueBinding(cellBinding);

XML form bindings
OpenOffice.org 2.0 features XML forms. These are form documents whose data model is a
DOM tree. They are realized with the usual form controls and logical forms, and this time the
controls are bound to DOM nodes using the value binding mechanism.

14.6.2 External List Sources
The previous chapter introduced an abstraction of the data aware mechanism for form controls:
They can not exchange their value with database columns or with arbitrary value bindings,
without recognizing anything except UNO interfaces.

When you look at what controls can do with database content, you may find list and combo boxes
useful. They are able to retrieve the content of their lists from a database.

Similar to the value binding mechanism, there is also an abstraction available for components
supplying list entries to form controls: com.sun.star.form.binding.ListEntrySource and
com.sun.star.form.binding.XListEntrySink.

The relationship between XListEntrySources and XListEntrySinks is shown in Illustration 14.8.

1005

http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XListEntrySink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XListEntrySink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XListEntrySink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XListEntrySource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XListEntrySource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XListEntrySource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XListEntrySink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XListEntrySink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XListEntrySink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/ListEntrySource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/ListEntrySource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/ListEntrySource.html

Illustration 14.9 Interfaces and services involved with external list sources

As with value bindings, OpenOffice.org already makes use of this concept in spreadsheet docu-
ments. The following piece of code, for instance, creates a CellRangeListSource, and binds it to a
list box. After that, the list boxes content will always be synchronized with the content in the
chosen cell range.
 CellRangeAddress rangeAddress = new CellRangeAddress(sheet, column,
 topRow, column, bottomRow);
 Object[] initParam = new Object[] { new NamedValue("CellRange", rangeAddress) };
 XListEntrySource entrySource = (XListEntrySource)UnoRuntime.queryInterface(
 XListEntrySource.class, m_document.createInstanceWithArguments(
 "com.sun.star.table.CellRangeListSource", initParam));

 XListEntrySink consumer = (XListEntrySink)UnoRuntime.queryInterface(
 XListEntrySink.class, listBox);
 consumer.setListEntrySource(entrySource);

1006 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellRangeListSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellRangeListSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellRangeListSource.html

Note that a CellRangeListSource can not be obtained at a global service manager. Instead, you
have to retrieve it from the document to whose cells you want to bind the list box.

14.7 Validation
Form controls in OpenOffice.org always featured a simple type of validation for their value. For
instance, for a numeric field you can specify minimum an maximum values (ValueMin and
ValueMax). However, those validity constraints have some disadvantages:

 They are enforced as soon as the control loses the focus. That is, if you enter a number into a
numeric field that is greater than the allowed maximum, then it is automatically corrected to be
the maximum.

 They are enforced silently. There is no warning to the user, and no visual feedback at the
moment the value is invalid, and not yet corrected. In particular, there is no explanation about
why a certain input was (or will be) automatically corrected.

OpenOffice.org 2.0 features an new mechanism for validating the content of form controls, at the
time of user input.

The basic interface for this mechanism is XValidator:

Methods of com.sun.star.form.validation.XValidator
isValid This is the central method of a validator. It is able to decide, for a given

value, whether it is valid or not. Note that there is no notion about the
semantics of valid. This is in the responsibility of the concrete service imple-
menting this interface.

explainInvalid Explains, for a given value, why it is considered invalid. The explanation
should be human-readable because other components are expected to
present it to the user.

addValidityCon-
straintListener

Registers a new validity listener. As a basic idea, a validator can not be
stateless: Depending on its current internal state, the validator can consider
the very same value as valid or invalid. Such validator components should
notify a change in their state, and thus a potential change in the validity of
associated XValidatable instances, to all listeners registered with this
method. The listeners are encouraged to re-validate whatever data is
guarded by the validator.

removeValidityCon-
straintListener

Revokes a previously registered validity listener.

A validator is to be used with a component that can be validated: XValidatable. This interface
allows to set and to get a validator instance.

Until now, nothing has been said about form components. You may also note that nothing has
been said about the data that is being validated. Though a value is passed to the isValid method,
there is no explaination about where it originates from. In particular, the XValidatable does not
specify a means to obtain its value.

This is where com.sun.star.form.validation.XValidatableFormComponent comes in. Note
that it derives from XValidatable.

Methods of com.sun.star.form.validation.XValidatableFormComponent
isValid Determines whether the current value, as represented by the component, is

valid. This is a shortcut to calling the validator's isValid method, with
the current value of the component.

1007

http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidator.html#isValid
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidator.html#isValid
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidator.html#isValid
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidatableFormComponent.html#isValid
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidatableFormComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidatableFormComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidatableFormComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidatable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidatable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidatable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidatableFormComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidatableFormComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidatableFormComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidatable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidatable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidatable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidator.html#isValid
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidator.html#isValid
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidator.html#isValid
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidatable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidatable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidatable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidator.html#removeValidityConstraintListener
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidator.html#removeValidityConstraintListener
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidatable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidatable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidatable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidator.html#addValidityConstraintListener
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidator.html#addValidityConstraintListener
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidator.html#explainInvalid
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidator.html#isValid
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlNumericFieldModel.html#ValueMax
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlNumericFieldModel.html#ValueMax
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlNumericFieldModel.html#ValueMax
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlNumericFieldModel.html#ValueMin
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlNumericFieldModel.html#ValueMin
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlNumericFieldModel.html#ValueMin
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellRangeListSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellRangeListSource.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellRangeListSource.html

Methods of com.sun.star.form.validation.XValidatableFormComponent
getCurrentValue Specifies the current value, as represented by the component.

As an example, a TextField would return its text, while a DateField
would return its date value.

addFormComponentValidi-
tyListener

Adds a listener to observe the validity of the component. This validity is
determined by two aspects: The current value of the component, and the
validator's opinion about this value (and thus implicitly by the current vali-
dator of the component, which may also change). To be notified of changes
in this composed validity, you need to register a XFormComponentVa-
lidityListener at the form component.

removeFormComponentVa-
lidityListener

Revokes a previously registered validity listener.

Now, the overall picture for services and interfaces concerned with form control validation can be
seen in the following figure:

1008 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidatableFormComponent.html#removeFormComponentValidityListener
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidatableFormComponent.html#removeFormComponentValidityListener
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XFormComponentValidityListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XFormComponentValidityListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XFormComponentValidityListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XFormComponentValidityListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XFormComponentValidityListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XFormComponentValidityListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidatableFormComponent.html#addFormComponentValidityListener
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidatableFormComponent.html#addFormComponentValidityListener
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/DateField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/DateField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/DateField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/TextField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/TextField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/TextField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidatableFormComponent.html#getCurrentValue

Illustration 14.10Validation of form controls

Notice the ValidatableControlModel service: It specifies the basic functionality of form control
models, which allow their current value to be validated against an external validator.

In OpenOffice.org, there is one feature that uses the functionality introduced in this chapter: XML
form documents. They are implemented using the interfaces and services from
com.sun.star.xforms. In particular, an XForms binding (Binding) is a validator. This way,
OpenOffice.org form controls can be used to enter values for XForms DOM trees, respecting the
restrictions imposed on those value as part of the XForms model.

1009

http://www.w3.org/MarkUp/Forms/
http://www.w3.org/MarkUp/Forms/
http://www.w3.org/MarkUp/Forms/
http://api.openoffice.org/docs/common/ref/com/sun/star/xforms/Binding.html
http://api.openoffice.org/docs/common/ref/com/sun/star/xforms/Binding.html
http://api.openoffice.org/docs/common/ref/com/sun/star/xforms/Binding.html
http://api.openoffice.org/docs/common/ref/com/sun/star/xforms/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/xforms/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/xforms/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/ValidatableControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/ValidatableControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/ValidatableControlModel.html

14.7.1 Validation in OpenOffice.org
The OpenOffice.org Software Development Kit shows the power of form control validation with an
example program. This program creates a form document with various types of controls, most of
which are bound to external validators. Those validator objects impose (exemplary and rather arbi-
trary) restrictions on the control values.

As shown in the example program, the form runtime environment of OpenOffice.org makes use of
several features of the validation API, illustrating the advantage over the old, property-based,
built-in validation mentioned in chapter 14.7 Forms - Validation.

For instance, invalid values in form controls, where invalid is defined by the external validator
object, are not enforcing a valid value automatically. Instead, the invalidity is shown with a red
border around the control. If the control does not allow for a red border, its text is underlined with
red waves. Additionally, the explanation why a certain value is invalid appears as tool tip at the
respective control.

This way, the user who fills in a form receives immediate feedback about which values and
controls need attention, without destroying whatever information has already been entered.

14.7.2 Validations and Bindings
Chapter 14.6.1 Forms - External value suppliers - Value Bindings introduced form components that
can exchange the value with external components, as long as those support the XValueBinding
interface. Also, chapter 14.7 Forms - Validation introduced form components whose value can be
validated by external components.

These concepts can be combined. This way, it is possible to build highly customized form docu-
ments.

In fact, this is what the com.sun.star.form.validation.ValidatableBindableControlModel
service does: it combines the services BindableControlModel with the ValidatableControlM-
odel.

As soon as you establish a validator at the model (setValidator), which is also an XBind-
ableValue, then it is used both as value binding and as validator. Every attempt to establish
another binding will be denied, as long as the combined validator/binding is in place.

In OpenOffice.org, every form control model that can be validated and is also bindable, also supports the
ValidatableBindableControlModel service. That is, the validator and the binding are coupled, if
possible.

14.8 Scripting and Events
To create form documents that are able to do more than just reading and writing plain data, it is
often necessary to enhance the form with scripting functionality. That is, for a given form compo-
nent, you want to declare that a certain script should be called, when a certain event occurs.

For example, you may need a check box control, which calls a certain macro when its check state
changes. Within this macro, you can, for instance, enable or disable other controls that depend on
the check box being checked.

1010 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/ValidatableBindableControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/ValidatableBindableControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/ValidatableBindableControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XBindableValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XBindableValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XBindableValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XBindableValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XBindableValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XBindableValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidatable.html#setValidator
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidatable.html#setValidator
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidatable.html#setValidator
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/ValidatableControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/ValidatableControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/ValidatableControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/ValidatableControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/ValidatableControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/ValidatableControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/BindableControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/BindableControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/BindableControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/ValidatableBindableControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/ValidatableBindableControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/ValidatableBindableControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XValueBinding.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XValueBinding.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/binding/XValueBinding.html

One possible solution is to use a completely programmatic approach: just bind a script to the
OnLoad event of the whole document, create an XItemListener, and register it at the check box
control in question, using the XCheckBox interface.

However, this method is inefficient, because the whole scripting engine starts when the document
is loaded. The scripting engine should start at the latest possible point, which is the moment the
user clicks the check box for the first time.

Form components feature a mechanism that is more efficient. For every form component part of a
hierarchy of form components, you can specify a script to be called upon a certain event. You only
specify this once, at the time the form component is created and placed in the document.,

Look at the com.sun.star.form.FormComponents service, which was encountered previously.
The service includes the interface com.sun.star.script.XEventAttacherManager. This inter-
face allows you to manage the events that are associated with the elements in the FormComponents
container.

Note that an event together with an associated script is described by the ScriptEventDescriptor,
with the following elements:

Properties of com.sun.star.script.ScriptEventDescriptor

ListenerType Specifies the completely qualified name of a listener interface. This implies
that you can only register scripts for events that are notified using UNO.

EventMethod Specifies a method of the ListenerType interface.

Together with the ListenerType member, this completely describes the
event for which a script is to be registered.

AddListenerParam Specifies a parameter that is to be used when adding listeners, as described by
the ListenerType element) For most listener types, this is not necessary.

ScriptType Specifies which type of script is to be associated with the event.
com.sun.star.form.FormComponents currently only support StarBasic here.

ScriptCode Specifies which script code to call. In case of ScriptType being StarBasic,
this must specify a Basic procedure or function, either within the
application-wide code repository, or within the document which the form
component belongs to. In the first case, the script code starts with "applica-
tion:", else with "document:".

The following example registers a certain Basic procedure for the event which is triggered when
the state of a radio button control changes, for example, when a radio button has been selected or
deselected:

Dim oEvent as new com.sun.star.script.ScriptEventDescriptor
oEvent.ListenerType = "com.sun.star.awt.XItemListener"
oEvent.EventMethod = "itemStateChanged"
oEvent.ScriptType = "StarBasic"
oEvent.ScriptCode = "application:Standard.macro_assignment.onColorChange"
oSampleForm.registerScriptEvent(i, oEvent)

For the ith sub component of oSampleForm, this associates the macro onColorChange, located in
the module macro_assignment of the application-wide library Standard, with the itemState-
Changed event. You can use this with every form component which supports notification of
XItemListeners, in particular with radio buttons (XRadioButton) and check boxes (XCheckBox).

Note that simply registering script events at a FormComponents instance does not do anything. In
particular, registering script events does not yet mean that the script will be called automatically.
In fact, the XEventAttacherManager interface merely acts as a container to remember the associ-
ated events. In a living form document, there are controller instances involved, which take care of
the scripts that are really being called, by adding themselves as XScriptListener to the event
attacher manager.

1011

http://api.openoffice.org/docs/common/ref/com/sun/star/script/XScriptListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XScriptListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XScriptListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XEventAttacherManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XEventAttacherManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XEventAttacherManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponents.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponents.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponents.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XCheckBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XCheckBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XCheckBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XRadioButton.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XRadioButton.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XRadioButton.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XItemListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XItemListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XItemListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XItemListener.html#itemStateChanged
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XItemListener.html#itemStateChanged
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XItemListener.html#itemStateChanged
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XItemListener.html#itemStateChanged
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XItemListener.html#itemStateChanged
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XItemListener.html#itemStateChanged
http://api.openoffice.org/docs/common/ref/com/sun/star/script/ScriptEventDescriptor.html#ScriptCode
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponents.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponents.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponents.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/ScriptEventDescriptor.html#ScriptType
http://api.openoffice.org/docs/common/ref/com/sun/star/script/ScriptEventDescriptor.html#AddListenerParam
http://api.openoffice.org/docs/common/ref/com/sun/star/script/ScriptEventDescriptor.html#EventMethod
http://api.openoffice.org/docs/common/ref/com/sun/star/script/ScriptEventDescriptor.html#ListenerType
http://api.openoffice.org/docs/common/ref/com/sun/star/script/ScriptEventDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/ScriptEventDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/ScriptEventDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/ScriptEventDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/ScriptEventDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/ScriptEventDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponents.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponents.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponents.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XEventAttacherManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XEventAttacherManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XEventAttacherManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponents.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponents.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/FormComponents.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XCheckBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XCheckBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XCheckBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XItemListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XItemListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XItemListener.html

14.9 Common Tasks
This chapter is dedicated to problems that may arise when you are working with (or script) form
documents, and cannot be solved by OpenOffice.org's built-in methods, but have a solution in the
OpenOffice.org UNO API.

14.9.1 Initializing Bound Controls
All form controls specify a default value that is used when initially displaying the control, and
when it is reset. For instance, resetting (com.sun.star.form.XReset) happens when a form is
moved to the insert row, that allows data to be inserted as a new row into the underlying row set.

Now, you do not want a fixed default value for new records, but a dynamically generated one that
is dependent on the actual context at the moment the new record is entered.

Or, you want to have real null values for date fields. This is currently not possible, because the
com.sun.star.form.component.DateField service interprets a null default as an instruction to
use the current system date. Effectively, you cannot have date fields in forms which default to null
on new records, but you can get this by programming the API. (Forms/FormLayer.java)
public void handleReset(EventObject aEvent) throws com.sun.star.uno.RuntimeException {
 if (((Boolean)xFormProps.getPropertyValue("IsNew")).booleanValue()) {
 // the form is positioned on the insert row

 Object aModifiedFlag = xFormProps.getPropertyValue("IsModified");

 // get the columns of the form
 XColumnsSupplier xSuppCols = (XColumnsSupplier)UnoRuntime.queryInterface(
 XColumnsSupplier.class, xFormProps);
 XNameAccess xCols = xSuppCols.getColumns();

 // and update the date column with a NULL value
 XColumnUpdate xDateColumn = (XColumnUpdate)UnoRuntime.queryInterface(
 XColumnUpdate.class, xCols.getByName("SALEDATE"));
 xDateColumn.updateNull();

 // then restore the flag
 xFormProps.setPropertyValue("IsModified", aModifiedFlag);
 }
}

The first decision is where to step in. We chose to add a reset-listener to the form, so that the form
is reset as soon as it has been positioned on the new record. The
com.sun.star.form.XResetListener:resetted() method is called after the positioning is done.

However, resets also occur for various reasons therefore check if the form is really positioned on
the insert row, indicated by the IsNew property being true.

Now besides retrieving and updating the data column with the desired value, null, there is
another obstacle. When the form is moved to the insert row, and some values are initialized, the
row should not be modified. This is because a modified row is saved in the database, and we only
initialized the new row with the defaults, the user did not enter data., We do not want to store the
row, therefore we save and restore the IsModified flag on the form while doing the update.

14.9.2 Automatic Key Generation
Another problem frequently encountered is the automatic generation of unique keys. There are
reasons for doing this on the client side, and missing support, for example, auto-increment fields in
your database backend, or you need this value before inserting the row. OpenOffice.org is
currently limited in re-fetching the server-side generated value after a record has been inserted.

1012 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/form/XResetListener.html#resetted
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XResetListener.html#resetted
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XResetListener.html#resetted
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/DateField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/DateField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/component/DateField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XReset.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XReset.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XReset.html

Assume that you have a method called generateUniqueKey() to generate a unique key that could
be queried from a key generator on a database server, or in a single-user-environment by selecting
the maximum of the existing keys and incrementing it by 1. This fragment inserts the generated
value into the given column of a given form: (Forms/KeyGenerator.java)
public void insertUniqueKey(XPropertySet xForm, String sFieldName) throws com.sun.star.uno.Exception {
 // get the column object
 XColumnsSupplier xSuppCols = (XColumnsSupplier)UnoRuntime.queryInterface(
 XColumnsSupplier.class, xForm);
 XNameAccess xCols = xSuppCols.getColumns();
 XColumnUpdate xCol = (XColumnUpdate)UnoRuntime.queryInterface(
 XColumnUpdate.class, xCols.getByName(sFieldName));

 xCol.updateInt(generateUniqueKey(xForm, sFieldName));
}

A solution to determine when the insertion is to happen has been introduced in a previous chapter,
that is, we could fill in the value as soon as the form is positioned on the insert row, wait for the
user's input in the other fields, and save the record.

Another approach is to step in immediately before the record is inserted. For this, the
com.sun.star.sdb.XRowSetApproveBroadcaster is used. It notifies listeners when rows are
inserted, the listeners can veto this, and final changes can be made to the new record:
(Forms/KeyGenerator.java)
public boolean approveRowChange(RowChangeEvent aEvent) throws com.sun.star.uno.RuntimeException {
 if (RowChangeAction.INSERT == aEvent.Action) {
 // the affected form
 XPropertySet xFormProps = (XpropertySet)UnoRuntime.queryInterface(
 XpropertySet.class, aEvent.Source);
 // insert a new unique value
 insertUniqueKey(xFormProps, m_sFieldName);
 }
 return true;
}

14.9.3 Data Validation
If you happen to have a scripting language that is not capable of creating own components, such as
StarBasic, then the validation mechanisms described in chapter 14.7 Forms - Validation can not be
used: They rely on a component being created that implements the XValidator interface.

If, despite this, you want to validate data in controls bound to a database, then you have two alter-
native possibilities:

• From the chapter 14.5.2 Forms - Data Awareness - Data Aware Controls - Committing Controls, you
can approve updates, and veto the changes a control wants to write into the data column it is
bound to.

• Additionally, you can step in later. You know how to use a com.sun.star.sdb.XRowSetAp-
proveListener for doing last-minute changes to a record that is about to be inserted.

Besides this, you can use the listener to approve changes to the row set data. When the
com.sun.star.sdb.RowChangeAction is sent to the listeners, it distinguishes between different
kinds of data modification. You can implement listeners that act differently for insertions and
simple updates.

Note the important differences between both solutions. Using an com.sun.star.form.XUpdate-
Listener implies that the data operations are vetoed for a given control. Your listener is invoked
as soon as the respective control is committed, for instance, when it loses the focus. This implies
that changes done to the data column by other means than through this control are not monitored.

The second alternative is using an com.sun.star.sdb.XRowSetApproveListener meaning you
veto changes immediately before they are sent to the database. Thus, it is irrelevant where they
have been made previously. In addition, error messages that are raised when the user actively tries

1013

http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XRowSetApproveListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XRowSetApproveListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XRowSetApproveListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XUpdateListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XUpdateListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XUpdateListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XUpdateListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XUpdateListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/XUpdateListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowChangeAction.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowChangeAction.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/RowChangeAction.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XRowSetApproveListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XRowSetApproveListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XRowSetApproveListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XRowSetApproveListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XRowSetApproveListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XRowSetApproveListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/form/validation/XValidator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XRowSetApproveBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XRowSetApproveBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/XRowSetApproveBroadcaster.html

to save the record are considered less disturbing than error messages raised when the user simply
leaves a control.

The example below shows the handling for denying empty values for a given control:
(Forms/GridFieldValidator.java)
public boolean approveUpdate(EventObject aEvent) throws com.sun.star.uno.RuntimeException {
 boolean bApproved = true;

 // the control model which fired the event
 XPropertySet xSourceProps = UNO.queryPropertySet(aEvent.Source);

 String sNewText = (String)xSourceProps.getPropertyValue("Text");
 if (0 == sNewText.length()) {
 // say that the value is invalid
 showInvalidValueMessage();
 bApproved = false;

 // reset the control value
 // for this, we take the current value from the row set field the control
 // is bound to, and forward it to the control model
 XColumn xBoundColumn = UNO.queryColumn(xSourceProps.getPropertyValue("BoundField"));
 if (null != xBoundColumn) {
 xSourceProps.setPropertyValue("Text", xBoundColumn.getString());
 }
 }

 return bApproved;
}

14.9.4 Programmatic Assignment of Scripts to Events
Sometimes, you want to create a document programmatically, including form controls, and
assigning certain scripts to certain events for those controls. In the user interface, this is done by
using the property browser. Programmatically, this is somewhat more difficult.

As an example, if you want to programmatically create a document containing radio buttons.
When those radio buttons change their state (i.e. are selected), a certain StarBasic script should be
called.

One possibility is to make use of the OnLoad event of the document as a whole. Using this event,
you can create a listener of the desired type (in our sample case: com.sun.star.awt.XItemListener),
and register it at the control in question.

In StarBasic, you can create an UNO listener using the procedure CreateUnoListener.

This approach has three disadvantages: First, it is expensive. The scripting environment is loaded
every time the document is loaded, which is too early. It should be loaded as late as possible,
which is when the radio buttons really change their state.

Second, it is error prone. There are certain circumstances where StarBasic listeners are automati-
cally revoked, without the document being closed. In those cases, you need to manually reload the
document, or re-run your OnLoad script for re-creating the listener.

Third, it is complex. You would, in your OnLoad initialization script, need to manually obtain the
control in questions, which can involve a large amount of code.

A better solution is to use the event attacher manager mechanism described in 14.8 Forms -
Scripting and Events.

The following example creates a text document with three radio buttons, all three calling the same
script when being selected.

1014 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XItemListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XItemListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XItemListener.html

When you try the following code, you may need to adjust the location of the script being called. At the
moment, it assumes a module name macro_assignment in the application-wide library named Standard.

REM ***** BASIC *****

Option Explicit

Sub Main
' create a new writer document
Dim oDocument as Object
Dim oEmptyArgs() as new com.sun.star.beans.PropertyValue
oDocument = StarDesktop.LoadComponentFromURL("private:factory/swriter", "_blank", 0,

 oEmptyArgs)
Erase oEmptyArgs

' create a new logical form
Dim oFormsCollection as Object
oFormsCollection = oDocument.DrawPage.Forms
Dim oSampleForm as Object
oSampleForm = createUnoService("com.sun.star.form.component.DataForm")
oFormsCollection.insertByName("sample form", oSampleForm)

' create three radio buttons associated with three colors
Dim oControlShape as Object
Dim oControlModel as Object

' we want to add the equivalent of an com.sun.star.awt.XItemListener
Dim sListenerInterfaceName as String
sListenerInterfaceName = "com.sun.star.awt.XItemListener"
Dim sListenerMethodName as String
sListenerMethodName = "itemStateChanged"

' we want the onColorChange function in this module to be called
Dim sMacroLocation as String
sMacroLocation = "application:Standard.macro_assignment.onColorChange"

' note that this assumes that the module is called macro_assignment, and
' resides in the "Standard" library of the application-wide Basic macros

Dim sColors(2) as String
sColors(0) = "red"
sColors(1) = "green"
sColors(2) = "blue"
Dim i as Integer
For i = 0 To 2

' a shape
oControlShape = oDocument.createInstance("com.sun.star.drawing.ControlShape")
positionShape(oControlShape, 1000, 1000 + i * 800, 5000, 600)

' a control model
oControlModel = createUnoService("com.sun.star.form.component.RadioButton")
oControlModel.Name = "colors"
oControlModel.Label = "make it " & UCase(sColors(i))
oControlModel.Tag = sColors(i)
oSampleForm.insertByIndex(i, oControlModel)

' knit both
oControlShape.Control = oControlModel

' yes, unfortunately the terminology is inconsistent here ...

' add the shape to the DrawPage
oDocument.DrawPage.add(oControlShape)

' bind a macro to the "stateChanged" event
Dim oEvent as new com.sun.star.script.ScriptEventDescriptor
oEvent.ListenerType = sListenerInterfaceName
oEvent.EventMethod = sListenerMethodName
oEvent.ScriptType = "StarBasic"
oEvent.ScriptCode = sMacroLocation
oSampleForm.registerScriptEvent(i, oEvent)

Next i

' switch the document (view) to alive mode
Dim oURL as new com.sun.star.util.URL
oURL.Complete = ".uno:SwitchControlDesignMode"
createUnoService("com.sun.star.util.URLTransformer").parseStrict(oURL)
Dim oDispatcher as Object
oDispatcher = oDocument.CurrentController.Frame.queryDispatch(oURL, "", 63)
oDispatcher.dispatch(oURL, oEmptyArgs())
Erase oURL

' set the focus to the first control
oDocument.CurrentController.getControl(oSampleForm.getByIndex(0)).setFocus

End Sub

1015

' this sets the size and position of a given shape
' Additionally, it anchors this shape at a paragraph
Sub positionShape(oShape as Object, X as Integer, Y as Integer, Width as Integer, Height as Integer)

oShape.AnchorType = com.sun.star.text.TextContentAnchorType.AT_PARAGRAPH
' Not that this implies that you can use it for text documents only.
' The rest of the function also works for shapes in other documents

Dim oPos as new com.sun.star.awt.Point
oPos.X = X
oPos.Y = Y
oShape.setPosition(oPos)
Erase oPos

Dim oSize as new com.sun.star.awt.Size
oSize.Width = Width
oSize.Height = Height
oShape.setSize(oSize)
Erase oSize

End Sub

' This will be bound to the radio button's state changes
' At the moment, it simply changes their text color, but of course
' you could do more than this here ...
Sub onColorChange(oClickEvent as Object)

If (oClickEvent.Selected > 0) Then
Dim nColor as Long
Select Case oClickEvent.Source.Model.Tag

Case "red"
nColor = CLng("&HFF0000")

case "green"
nColor = CLng("&H00FF00")

case "blue"
nColor = CLng("&H0000FF")

End Select

Dim oControlParent as Object
oControlParent = oClickEvent.Source.Model.Parent
Dim i as Integer
For i = 0 to oControlParent.getCount() - 1

oControlParent.getByIndex(i).TextColor = nColor
Next i

End If
End Sub

1016 OpenOffice.org 2.3 Developer's Guide • June 2007

15 Universal Content Broker

15.1 Overview

15.1.1 Capabilities
The Universal Content Broker (UCB) is a key part of the OpenOffice.org architecture. In general, the
UCB provides a standard interface for generalized access to different data sources andfunctions for
querying, modifying, and creating data contents. The OpenOffice.org document types are all
handled by the UCB. In addition, it is used for help files, directory trees and resource links.

The advantage of delegating resource access to the UCB is, that document, folder and link
handling can always be the same from the developer's perspective.It does not matter if you are
storing in a file system, on an FTPWebDAV server, or in a document management system.

However, the UCB does not have to be used directly if you want to load and save OpenOffice.org
documents.The com.sun.star.frame.Desktop serviceprovides the necessary functions, hiding
the comparably low-level UCB calls . See 7.1.5 Office Development - OpenOffice.org Application Envi-
ronment - Handling Documents. The UCB allows you to administer files in a directory tree or read
your own document stream, regardless of where the directory tree or the stream is located.

15.1.2 Architecture
Conceptually, the UCB can be pictured as an object system that consists of a core and a set of
Universal Content Providers (UCPs). The UCPs are designed to mask the differences between
access protocols, enabling developers to focus on the essentials of integrating resources through the
UCB interface, instead of the complexities of an underlying protocol. To this end, each UCP imple-
ments an interface that facilitates access to a particular data source through a Uniform Resource
Identifier (URI). When a client requests a particular resource, it addresses the UCB that calls a
qualified UCP, based on the URI that is associated with the content.

As a rule, all data content is encapsulated in content objects. Each content object implements a
standard set of interfaces, that includes functions for querying the content type and a select set of
commands that can be run on the respective content, such as "open", "delete", and "move".

Whenever we refer to UCB commands, we put them in double quotes as in "getPropertyValues" to
make a distinction between UCB commands and methods in general, which are written as getProperty-
Values(). UCB commands are explained in the section 15.4.3 Universal Content Broker - Using the UCB API -
Executing Content Commands below.

1017

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html

Each content object also has a set of attributes that can be read and set by an application, that
include the title, the media type (MIME type), and different flags. The UCB API defines a set of
standard commands and properties. There is a set of mandatory properties and commands that
must be supported by any content implementation, as well as optional commands and properties
with predefined semantics. Illustration 15.1 shows the relationship between the UCB, UCPs and
UCB content objects.

When a client requests a particular content, it addresses the UCB and passes on the corresponding
URI. The UCB analyzes the URI and then calls the corresponding UCP which creates an object for
the requested resource.

For example, when an application requests a particular document, the URI of the document is
passed to the Universal Content Broker. The UCB analyzes the URI and delegates it to the appro-
priate UCP. The UCP creates a content object for the requested resource and returns it to the UCB,
which returns it to the application. The application now opens the content object or query, or set
property values by executing the appropriate command.

15.2 Services and Interfaces
Each UCB content implements the service com.sun.star.ucb.Content. The UCB content service
interfaces include:

• com.sun.star.ucb.XContent
• com.sun.star.beans.XPropertyContainer
• com.sun.star.container.XChild (optional)

1018 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 15.1

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/Content.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/Content.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/Content.html

• com.sun.star.ucb.XCommandProcessor
• com.sun.star.ucb.XCommandProcessor2 (optional)
• com.sun.star.ucb.XContentCreator (optional)

The interface com.sun.star.ucb.XContent provides access to a content's type and identifier. The
com.sun.star.ucb.XCommandProcessor executes commands at the content object, such as
opening a contentthat provides access to the content's data stream or its children, andsetting and
getting property values. The interface com.sun.star.beans.XPropertyContainer adds new
properties to a content or removes properties that were previously added using this interface. The
properties added are always made persistent.

If you change the set of properties by adding or removing properties, the cache of scripting languages, such
as OpenOffice.org Basic might not reflect these changes. Thus, use the get/set methods to access the proper-
ties in scripting langugages rather than relying on their automatic recognition of properties.

The com.sun.star.ucb.XContentCreator interface is for creating new resources, such as a new
folder in the local file system. Not all content implementation can create new resources, therefore
this interface is optional. The optional interface com.sun.star.container.XChild provides access
to the content object's parent content object. Not all data sources represented by content implemen-
tations are organized hierarchically, therefore a parent cannot always be specified.

The interface com.sun.star.ucb.XCommandProcessor2 is the improved version of
com.sun.star.ucb.XCommandProcessor. It has been introduced to release command identifiers
retrieved through createCommandIdentifier() at the XCommandProcessor interface. To avoid
resource leaks, use XCommandProcessor2.

Some content commands defined by the UCB API are listed in the following table:

Selected Command Names for com.sun.star.ucb.XCommandProcessor
"getCommandInfo" Obtains an interface that queries information on commands supported by a

content.

"getPropertySetInfo" Obtains an interface that queries information on properties supported by a
content.

"getPropertyValues" Obtains property values from the content.

"setPropertyValues" Sets property values of the content.

"open" Gives access to the data stream of a document or to the children of a folder.

"delete" Destroys a resource.

"insert" Commits newly-created resources. Writes new data stream of existing docu-
ment resources.

"transfer" Copies or moves a content object.

Some interesting content properties defined by the UCB API:

Selected Properties of UCB Contents

ContentType Contains a unique(!), read-only type string for the content, for example,
"application/vnd.sun.star.hierarchy-link". This is not the Media-Type!

IsFolder Indicates whether a content can contain other contents.

IsDocument Indicates whether a content is a document.

Title Contains the title of an object, for example, the name of a file.

DateCreated Contains the date and time the object was created.

DateModified Contains the date and time the object was last modified.

MediaType Contains the media type (MIME type) of a content.

1019

http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandProcessor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandProcessor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandProcessor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandProcessor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandProcessor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandProcessor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandProcessor2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandProcessor2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandProcessor2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandProcessor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandProcessor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandProcessor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandProcessor2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandProcessor2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandProcessor2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandProcessor.html

Selected Properties of UCB Contents

Size Contains the size, usually in bytes, of an object.

Every UCP implements the service com.sun.star.ucb.ContentProvider. The UCP core interface
is com.sun.star.ucb.XContentProvider. This interface facilitates the creation of content objects
based on a given content identifier.

A UCB implements the service com.sun.star.ucb.UniversalContentBroker. The UCB core
interfaces are com.sun.star.ucb.XContentProvider and com.sun.star.ucb.XContentProvi-
derManager. The com.sun.star.ucb.XContentProvider interface implementation delegates
requests to create content objects to the content provider registered for the supplied content identi-
fier. The com.sun.star.ucb.XContentProviderManager interface is used to query the UCPs
registered with a given UCB, and to register and remove UCPs.

A specification for the implementation for each of the UCPs, including URL schemes, content types,
supported commands and properties is located in C Appendix - Universal Content Providers.

15.3 Content Providers
The current implementation of the Universal Content Broker in a OpenOffice.org installation
supplies UCPs for the following data sources:

Data source Description URL Schema Service name

FILE Provides access to the
file system

"file" com.sun.star.ucb.FileContentProvider

WebDAV
and HTTP

 Provides access to
web-based file systems
and includes HTTP

"vnd.sun.star.webdav"
or "http"

com.sun.star.ucb.WebDAVContentProvider

FTP Provides access to file
transfer protocol
servers

"ftp" com.sun.star.ucb.fpx.ContentProvider

Hierarchy Virtual hierarchy of
folders and links

"vnd.sun.star.hier" com.sun.star.ucb.HierarchyContentPro-
vider

ZIP and JAR
files

Packaged files "vnd.sun.star.pkg" com.sun.star.ucb.PackageContentProvider

Help files OpenOffice.org help
system

"vnd.sun.star.help" com.sun.star.help.XMLHelp

Appendix C Appendix - Universal Content Providers describes all theabove content providers in more
detail. The reference documentation for the commands and other features of these UCPs are
located in the SDK or the ucb project on ucb.openoffice.org. Additionally, the ucb project offers infor-
mation about other UCPs for OpenOffice.org, for example, a UCP for document management
systems.

15.4 Using the UCB API
This section explains how to use the API of the Universal Content Broker.

1020 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentProviderManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentProviderManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentProviderManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentProviderManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentProviderManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentProviderManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentProviderManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentProviderManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentProviderManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/UniversalContentBroker.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/UniversalContentBroker.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/UniversalContentBroker.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/ContentProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/ContentProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/ContentProvider.html

15.4.1 Instantiating the UCB
The following steps have to be performed before a process can use the UCB:

• Create and set the UNO service manager.

• Create an instance of the UNO service com.sun.star.ucb.UniversalContentBroker, passing
the keys identifying a predefined UCB configuration to createInstanceWithArguments().

There are several predefined UCB configurations. Each configuration contains data that describes a
set of UCPs. All UCPs contained in a configuration are registered at the UCB that is created using
this configuration. A UCB configuration is identified by two keys that are strings. The standard
configuration is "Local" and "Office", which generally allows access to all UCPs available in a
local installation.
import com.sun.star.lang.XMultiServiceFactory;
import com.sun.star.uno.Exception;
import com.sun.star.uno.XInterface;

boolean initUCB() {

 ///
 // Obtain Process Service Manager.
 ///

 XMultiServiceFactory xServiceFactory = ...

 ///
 // Create UCB. This needs to be done only once per process.
 ///

 XInterface xUCB;
 try {
 // Supply configuration to use for this UCB instance...
 String[] keys = new String[2];
 keys[0] = "Local";
 keys[0] = "Office";
 xUCB = xServiceFactory.createInstanceWithArguments(
 "com.sun.star.ucb.UniversalContentBroker", keys);
 }
 catch (com.sun.star.uno.Exception e) {
 }

 if (xUCB == null)
 return false;

 return true;
}

For information about other configurations, refer to 15.5 Universal Content Broker - UCB Configura-
tion.

15.4.2 Accessing a UCB Content
Each UCB content can be identified using a URL that points to a folder or a document content in
the data source you want to work with. To create a content object for a given URL:

1. Obtain access to the UCB.

2. Let the UCB create a content identifier object for the requested URL using createContentI-
dentifier() at the com.sun.star.ucb.XContentIdentifierFactory of the UCB.

3. Let the UCB create a content object for the content identifier using queryContent() at the
com.sun.star.ucb.XContentProvider interface of the UCB.

The UCB selects a UCP according to the URL contained in the identifier object and dispatches the
queryContent() call to it. The UCP creates the content implementation object and returns it to the
UCB, which passes it on to the caller.

1021

http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentIdentifierFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentIdentifierFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentIdentifierFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/UniversalContentBroker.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/UniversalContentBroker.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/UniversalContentBroker.html

Creating a UCB content from a given URL: (UCB/Helper.java)
import com.sun.star.uno.UnoRuntime;
import com.sun.star.uno.Xinterface;
import com.sun.star.ucb.*;

{
 String aURL = ...

 ///
 // Obtain access to UCB...
 ///

 XInterface xUCB = ...

 // Obtain required UCB interfaces XContentIdentifierFactory and XContentProvider
 XContentIdentifierFactory xIdFactory = (XContentIdentifierFactory)UnoRuntime.queryInterface(
 XContentIdentifierFactory.class, xUCB);
 XContentProvider xProvider = (XContentProvider)UnoRuntime.queryInterface(
 XContentProvider.class, xUCB);
 ///
 // Obtain content object from UCB...
 ///

 // Create identifier object for given URL.
 XContentIdentifier xId = xIdFactory.createContentIdentifier(aURL);
 XContent xContent = xProvider.queryContent(xId);
}

15.4.3 Executing Content Commands
Each UCB content is able to execute commands. When the content object is created, commands are
executed using its com.sun.star.ucb.XCommandProcessor interface. The execute() method at
this interface expects a com.sun.star.ucb.Command, which is a struct containing the command
name, command arguments and a handle:

Members of struct com.sun.star.ucb.Command
Name string, contains the name of the command

Handle long, contains an implementation-specific handle for the command

Argument any, contains the argument of the command

Refer to appendix C Appendix - Universal Content Providers for a complete list of predefined
commands, , the description of the UNO service com.sun.star.ucb.Content and the UCP refer-
ence that comes with the SDK. For the latest information, visit ucb.openoffice.org.

Whenever we refer to UCB commands, we put them in double quotes as in "getPropertyValues" to
make a distinction between UCB commands and methods in general that are written getProperty-
Values().

If executing a command cannot proceed because of an error condition, the following occurs. If the
execute call was supplied with a com.sun.star.ucb.XCommandEnvironment that contains a
com.sun.star.task.XInteractionHandler, this interaction handler is used to resolve the
problem. If no interaction handler is supplied by passing null to the execute() method, or it
cannot resolve the problem, an exception describing the error condition is thrown.

The following method executeCommand() executes a command at a UCB content:
(UCB/Helper.java)
import com.sun.star.uno.UnoRuntime;
import com.sun.star.ucb.*;

Object executeCommand(XContent xContent, String aCommandName, Object aArgument)
 throws com.sun.star.ucb.CommandAbortedException, com.sun.star.uno.Exception {

 ///

1022 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/task/XInteractionHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XInteractionHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XInteractionHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandEnvironment.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandEnvironment.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandEnvironment.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/Content.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/Content.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/Content.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/Command.html#Argument
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/Command.html#Handle
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/Command.html#Name
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/Command.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/Command.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/Command.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/Command.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/Command.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/Command.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandProcessor.html#execute
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandProcessor.html#execute
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandProcessor.html#execute
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandProcessor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandProcessor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandProcessor.html

 // Obtain command processor interface from given content.
 ///

 XCommandProcessor xCmdProcessor = (XCommandProcessor)UnoRuntime.queryInterface(
 XCommandProcessor.class, xContent);

 ///
 // Assemble command to execute.
 ///

 Command aCommand = new Command();
 aCommand.Name = aCommandName;
 aCommand.Handle = -1; // not available
 aCommand.Argument = aArgument;
 // Note: throws CommandAbortedException and Exception since
 // we pass null for the XCommandEnvironment parameter
 return xCmdProcessor.execute(aCommand, 0, null);
}

The method executeCommand() from the example above is used in the following examples whenever a
command is to be executed at a UCB content.

15.4.4 Obtaining Content Properties
A UCB content maintains a set of properties. It supports the command "getPropertyValues", that
obtains one or more property values from a content. This command takes a sequence of
com.sun.star.beans.Property and returns an implementation of the interface
com.sun.star.sdbc.XRowthat is similar to a row of a JDBC resultset. To obtain property values
from a UCB content:

1. Define a sequence of properties you want to obtain the values for.

2. Let the UCB content execute the command "getPropertyValues".

3. Obtain the property values from the returned row object.

The following example demonstrates the use of content properties. Note that the method execute-
Command() is used from the example above to execute the "getPropertyValues" command that
takes a command name and creates a com.sun.star.ucb.Command struct from it: (UCB/Proper-
tiesRetriever.java)
import com.sun.star.ucb.*;
import com.sun.star.sdbc.XRow;
import com.sun.star.beans.Property;

{
 XContent xContent = ...

 ///
 // Obtain value of the string property Title and the boolean property
 // IsFolder from xContent...
 ///

 // Define property sequence.

 Property[] aProps = new Property[2];
 Property prop1 = new Property();
 prop1.Name = "Title";
 prop1.Handle = -1; // n/a
 aProps[0] = prop1;
 Property prop2 = new Property();
 prop2.Name = "IsFolder";
 prop2.Handle = -1; // n/a
 aProps[1] = prop2;

 XRow xValues;
 try {
 // Execute command "getPropertyValues"
 // using helper method executeCommand (see 15.4.3 Universal Content Broker - Using the UCB API -
Executing Content Commands)
 xValues = executeCommand(xContent, "getPropertyValues", aProps);
 }
 catch (com.sun.star.ucb.CommandAbortedException e) {

1023

http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/Command.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/Command.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/Command.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Property.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Property.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Property.html

 ... error ...
 }
 catch (com.sun.star.uno.Exception e) {
 ... error ...
 }

 // Extract values from row object. Note that the
 // first column is 1, not 0.

 // Title: Obtain value of column 1 as string.
 String aTitle = xValues.getString(1));
 if (aTitle.length() == 0 && xValues.wasNull())
 ... error ...

 // IsFolder: Obtain value of column 2 as boolean.
 boolean bFolder = xValues.getBoolean(2);
 if (!bFolder && xValues.wasNull())
 ... error ...
}

The returned row for the content above has two columns Title and IsFolder, and could contain the
following data. The column values are retrieved using the getXXX methods of the
com.sun.star.sdbc.XRow interface. The command "getPropertyValues" always returns a single
row for contents.

Title IsFolder

"MyFolder" TRUE

15.4.5 Setting Content Properties
A UCB content maintains a set of properties. It supports the command "setPropertyValues", that
is used to set one or more property values of a content. This command takes a sequence of
com.sun.star.beans.PropertyValue and returns void. To set property values of a UCB content:

• Define a sequence of property values you want to set.

• Let the UCB content execute the command "setPropertyValues".

Note that the command is not aborted if one or more of the property values cannot be set, because
the requested property is not supported by the content or because it is read-only. Currently, there
is no other methodto check if a property value was set successfully other than to obtain the prop-
erty value after a set-operation. This may change when status information could be returned by the
command "setPropertyValues".

Setting property values of a UCB content: (UCB/PropertiesComposer.java)
import com.sun.star.ucb.*;
import com.sun.star.beans.PropertyValue;

{
 XContent xContent = ...
 String aNewTitle = "NewTitle";

 ///
 // Set value of the string property Title...
 ///

 // Define property value sequence.

 PropertyValue[] aProps = new PropertyValue[1];
 PropertyValue aProp = new PropertyValue();
 aProp.Name = "Title";
 aProp.Handle = -1; // n/a
 aProp.Value = aNewTitle;
 aProps[0] = aProp;

 try {
 // Execute command "setPropertyValues".

1024 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRow.html

 // using helper method executeCommand (see 15.4.3 Universal Content Broker - Using the UCB API -
Executing Content Commands).
 executeCommand(xContent, "setPropertyValues", aProps);
 }
 catch (com.sun.star.ucb.CommandAbortedException e) {
 ... error ...
 }
 catch (com.sun.star.uno.Exception e) {
 ... error ...
 }
}

15.4.6 Folders

Accessing the Children of a Folder
A UCB content that is a folder, that is, the value of the required property IsFolder is true,
supports the command "open". This command takes an argument of type
com.sun.star.ucb.OpenCommandArgument2. The value returned is an implementation of the
service com.sun.star.ucb.DynamicResultSet. This DynamicResultSet holds the children of the
folder and is a result set that can notify registered listeners about changes. To retrieve data from it,
call getStaticResultSet() at its com.sun.star.ucb.XDynamicResultSet interface. The static
result set is a com.sun.star.sdbc.XResultSet that can be seen as a table, where each row
contains a child content of the folder. Use the appropriate methods of
com.sun.star.sdbc.XResultSet to navigate through the rows:

boolean first()
boolean last()
boolean next()
boolean previous()
boolean absolute([in] long row)
boolean relative([in] long rows)
void afterLast()
void beforeFirst()
boolean isBeforeFirst()
boolean isAfterLast()
boolean isFirst()
boolean isLast()
long getRow()

The child contents are accessed by travelling to the appropriate row and using the interface
com.sun.star.ucb.XContentAccess, which is implemented by the returned result set:

com::sun::star::ucb::XContent queryContent()
string queryContentIdentifierString()
com::sun::star::ucb::XContentIdentifier queryContentIdentifier()

You may supply a sequence of com.sun.star.beans.Property as part of the argument of the
"open" command. In this case, the resultset contains one column for each property value that is
requested. The property values are accessed by travelling to the appropriate row and calling
methods of the interface com.sun.star.sdbc.XRow. Refer to the documentation of
com.sun.star.ucb.OpenCommandArgument2 for more information about other parameters that
can be passed to the �open� command.

To access the children of a UCB content:

1. Fill the com.sun.star.ucb.OpenCommandArgument2 structure according to your requirements.

2. Let the UCB content execute the "open" command.

3. Access the children and the requested property values using the returned dynamic result set.

Accessing the children of a UCB folder content: (UCB/ChildrenRetriever.java)
import com.sun.star.uno.UnoRuntime;
import com.sun.star.ucb.*;
import com.sun.star.sdbc.XResultSet;

1025

http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/OpenCommandArgument2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/OpenCommandArgument2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/OpenCommandArgument2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/OpenCommandArgument2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/OpenCommandArgument2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/OpenCommandArgument2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XRow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Property.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Property.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Property.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XDynamicResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XDynamicResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XDynamicResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/DynamicResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/DynamicResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/DynamicResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/OpenCommandArgument2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/OpenCommandArgument2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/OpenCommandArgument2.html

import com.sun.star.sdbc.XRow;

{
 XContent xContent = ...

 ///
 // Open a folder content, request property values for the string
 // property Title and the boolean property IsFolder...
 ///
 // Fill argument structure...

 OpenCommandArgument2 aArg = new OpenCommandArgument2();
 aArg.Mode = OpenMode.ALL; // FOLDER, DOCUMENTS -> simple filter
 aArg.Priority = 32768; // Ignored by most implementations

 // Fill info for the properties wanted.
 Property[] aProps = new Property[2];
 Property prop1 = new Property();
 prop1.Name = "Title";
 prop1.Handle = -1; // n/a
 aProps[0] = prop1;
 Property prop2 = new Property();
 prop2.Name = "IsFolder";
 prop2.Handle = -1; // n/a
 aProps[1] = prop2;

 aArg.Properties = aProps;
 XDynamicResultSet xSet;
 try {
 // Execute command "open".
 // using helper method executeCommand (see 15.4.3 Universal Content Broker - Using the UCB API -
Executing Content Commands.
 xSet = executeCommand(xContent, "open", aArg);
 }
 catch (com.sun.star.ucb.CommandAbortedException e) {
 ... error ...
 }
 catch (com.sun.star.uno.Exception e) {
 ... error ...
 }

 XResultSet xResultSet = xSet.getStaticResultSet();
 ///
 // Iterate over children, access children and property values...
 ///

 try {
 // Move to begin.
 if (xResultSet.first()) {
 // obtain XContentAccess interface for child content access and XRow for properties
 XContentAccess xContentAccess = (XContentAccess)UnoRuntime.queryInterface(
 XContentAccess.class, xResultSet);
 XRow xRow = (XRow)UnoRuntime.queryInterface(XRow.class, xResultSet);
 do {
 // Obtain URL of child.
 String aId = xContentAccess.queryContentIdentifierString();
 // First column: Title (column numbers are 1-based!)
 String aTitle = xRow.getString(1);
 if (aTitle.length() == 0 && xRow.wasNull())
 ... error ...

 // Second column: IsFolder
 boolean bFolder = xRow.getBoolean(2);
 if (!bFolder && xRow.wasNull())
 ... error ...
 } while (xResultSet.next()) // next child
 }
 }
 catch (com.sun.star.ucb.ResultSetException e) {
 ... error ...
 }
}

1026 OpenOffice.org 2.3 Developer's Guide • June 2007

15.4.7 Documents

Reading a Document Content
A UCB content that is a document, that is, the value of the required property IsDocument is true,
supportsthe command "open". The command takes an argument of type
com.sun.star.ucb.OpenCommandArgument2. Note that this command with the same argument
type is also used to access the children of a folder. As seen in the examples, the argument's Mode
member controls access to the children or the data stream, or both for contents that support both. If
you are interested in the data stream, ignore the command's return value, which will presumably
be a null value.

The caller must implement a data sink and supply this implementation as "open" command argu-
ments to get access to the data stream of a document. These data sinks are called back by the
implementation when the "open" command is executed. There are two different interfaces for data
sinks to choose from, com.sun.star.io.XActiveDataSink and com.sun.star.io.XOutput-
Stream.

• XActiveDataSink: If this type of data sink is supplied, the caller of the command is active. It
consists of the following methods:
void setInputStream([in] com::sun::star::io::XInputStream aStream)
com::sun::star::io::XInputStream getInputStream()

The implementation of the command supplies an implementation of the interface
com.sun.star.io.XInputStream to the given data sink using setInputStream() and return.
Once the execute-call has returned, the caller accesses the input stream calling getInputStream()
and read the data using that stream, through readBytes() or readSomeBytes().

• XOutputStream: If this type of data sink is supplied, the caller of the command is passive. The
data sink is called back through the following methods of XOutputStream:
void writeBytes([in] sequence< byte > aData)
void closeOutput()
void flush()

The implementation of the command writes all data to the output stream calling writeBytes()
and closes it through closeOutput() after all data was successfully written. Only then will the
open command return.

The type to use depends on the logic of the client application. If the application is designed so that
it passively processes the data supplied by an com.sun.star.io.XOutputStream using an output
stream as sink is advantageous, because many content providers implement this case efficiently
without buffering any data. If the application is designed so that it actively reads the data, use an
com.sun.star.io.XActiveDataSink, then any necessary buffering takes place in the implementa-
tion of the open command.

The following example shows a possible implementation of an com.sun.star.io.XActiveData-
Sink and its usage with the "open" command: (UCB/MyActiveDataSink.java)
import com.sun.star.io.XActiveDataSink;
import com.sun.star.io.XInputStream;

///
// XActiveDataSink interface implementation.
///

public class MyActiveDataSink implements XActiveDataSink {
 XInputStream m_aStream = null;

 public MyActiveDataSink() {
 super();
 }

1027

http://api.openoffice.org/docs/common/ref/com/sun/star/io/XActiveDataSink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XActiveDataSink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XActiveDataSink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XActiveDataSink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XActiveDataSink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XActiveDataSink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XActiveDataSink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XActiveDataSink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XActiveDataSink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XOutputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XOutputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XOutputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XInputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XInputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XInputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XOutputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XOutputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XOutputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XOutputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XOutputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XOutputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XActiveDataSink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XActiveDataSink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XActiveDataSink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/OpenCommandArgument2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/OpenCommandArgument2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/OpenCommandArgument2.html

 public void setInputStream(XInputStream aStream) {
 m_aStream = aStream;
 }

 public XInputStream getInputStream() {
 return m_aStream;
 }
};

Now this data sink implementation can be used with the "open" command. After opening the
document content, getInputStream() returns the input stream containing the document data. The
actual byte content is read using readSomeBytes() in the following fragment: (UCB/DataStream-
Retriever.java)
import com.sun.star.ucb.*;
import ...MyActiveDataSink;

{
 XContent xContent = ...

 ///
 // Read the document data stream of a document content using a
 // XActiveDataSink implementation as data sink....
 ///
 // Fill argument structure...

 OpenCommandArgument2 aArg = new OpenCommandArgument2;
 aArg.Mode = OpenMode.DOCUMENT;
 aArg.Priority = 32768; // Ignored by most implementations

 // Create data sink implementation object.
 XActiveDataSink xDataSink = new MyActiveDataSink;
 aArg.Sink = xDataSink;
 try {
 // Execute command "open". The implementation of the command will
 // supply an XInputStream implementation to the data sink,
 // using helper method executeCommand (see 15.4.3 Universal Content Broker - Using the UCB API -
Executing Content Commands)
 executeCommand(xContent, "open", aArg);
 }
 catch (com.sun.star.ucb.CommandAbortedException e) {
 ... error ...
 }
 catch (com.sun.star.uno.Exception e) {
 ... error ...
 }

 // Get input stream supplied by the open command implementation.
 XInputStream xData = xDataSink.getInputStream();
 if (xData == null)
 ... error ...

 ///
 // Read data from input stream...
 ///
 try {
 // Data buffer. Will be allocated by input stream implementation!
 byte[][] aBuffer = new byte[1][1];

 int nRead = xData.readSomeBytes(aBuffer, 65536);
 while (nRead > 0) {
 // Process data contained in buffer.
 ...

 nRead = xData.readSomeBytes(aBuffer, 65536);
 }

 // EOF.
 }
 catch (com.sun.star.io.NotConnectedException e) {
 ... error ...
 }
 catch (com.sun.star.io.BufferSizeExceededException e) {
 ... error ...
 }
 catch (com.sun.star.io.IOException e) {
 ... error ...
 }
}

1028 OpenOffice.org 2.3 Developer's Guide • June 2007

Storing a Document Content
A UCB content that is a document, that is, the value of the required property IsDocument is true,
supports the command "insert". This command is used to overwrite the document's data stream.
The command requires an argument of type com.sun.star.ucb.InsertCommandArgument and
returns void. The caller supplies the implementation of an com.sun.star.io.XInputStream with
the command argument. This stream contains the data to be written. An additional flag indicating
if an existing content and its data should be overwritten is supplied with the command argument.
Implementations that are not able to detect if there are previous data may ignore this parameter
and will always write the new data.

Setting or storing the content data stream of a UCB document content is shown below:
(UCB/DataStreamComposer.java)
import com.sun.star.ucb.*;
import com.sun.star.io.XInputStream;

{
 XContent xContent = ...
 XInputStream xData = ... // The data to write.

 ///
 // Write the document data stream of a document content...
 ///

 // Fill argument structure...

 InsertCommandArgument aArg = new InsertCommandArgument();
 aArg.Data = xData;
 aArg.ReplaceExisting = true;
 try {
 // Execute command "insert".
 // using helper method executeCommand (see 15.4.3 Universal Content Broker - Using the UCB API -
Executing Content Commands).
 executeCommand(xContent, "insert", aArg);
 }
 catch (com.sun.star.ucb.CommandAbortedException e) {
 ... error ...
 }
 catch (com.sun.star.uno.Exception e) {
 ... error ...
 }
}

15.4.8 Managing Contents

Creating
A UCB content that implements the interface com.sun.star.ucb.XContentCreator acts as a
factory for new resources. For example, a file system folder can be a creator for other file system
folders and files.

A new content object created by the com.sun.star.ucb.XContentCreator implementation can be
considered as an empty hull for a content object of a special type. This new content object has to be
filled with some property values to become fully functional. For example, a file system folder could
require a name, represented by the property Title in the UCB. The interface
com.sun.star.ucb.XContentCreator offers ways to determine what contents can be created and
what properties need to be set. Information can be obtained on the general type, such as FOLDER,
DOCUMENT, or LINK, of the objects. After the required property values are set, the creation process
needs to be committed by using the command "insert". Note that this command is always
executed by the new content, not by the content creator, because the creator is not necessarily the
parent of the new content. The flag ReplaceExisting in the "insert" argument
com.sun.star.ucb.InsertCommandArgument usually is false, because the caller does not want

1029

http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/InsertCommandArgument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/InsertCommandArgument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/InsertCommandArgument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XInputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XInputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XInputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/InsertCommandArgument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/InsertCommandArgument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/InsertCommandArgument.html

to destroy an already existing resource. The "insert" command implementation makes the new
content persistent in the appropriate storage medium.

To create a new resource:

1. Obtain the interface com.sun.star.ucb.XContentCreator from a suitable UCB content.

2. Call createNewContent() at the content creator. Supply information on the type of content to
create with the arguments. The argument expected is a com.sun.star.ucb.ContentInfo
struct.

3. Obtain and set the property values that are mandatory for the content just created.

4. Let the new content execute the command "insert" to complete the creation process.

Creating a new resource: (UCB/ResourceCreator.java)
import com.sun.star.uno.UnoRuntime;
import com.sun.star.ucb.*;
import com.sun.star.beans.PropertyValue;
import com.sun.star.io.XInputStream;

{
 XContent xContent = ...

 ///
 // Create a new file system file object...
 ///

 // Obtain content creator interface.
 XContentCreator xCreator = (XContentCreator)UnoRuntime.queryInterface(
 XContentCreator.class, xContent);

 // Note: The data for aInfo may have been obtained using
 // XContentCreator::queryCreatableContentsInfo().
 // A number of possible types is listed below

 ContentInfo aInfo = new ContentInfo();
 aInfo.Type = "application/vnd.sun.staroffice.fsys-file";
 aInfo.Attributes = 0;
 // Create new, empty content.
 XContent xNewContent = xCreator.createNewContent(aInfo);
 if (xNewContent == null)
 ... error ...

 ///
 // Set mandatory properties...
 ///

 // Obtain a name for the new file.
 String aFilename = ...

 // Define property value sequence.
 PropertyValue[] aProps = new PropertyValue[1];
 PropertyValue aProp = new PropertyValue;
 aProp.Name = "Title";
 aProp.Handle = -1; // n/a
 aProp.Value = aFilename;
 aProps[0] = aProp;
 try {
 // Execute command "setPropertyValues".
 // using helper method executeCommand (see 15.4.3 Universal Content Broker - Using the UCB API -
Executing Content Commands)
 executeCommand(xNewContent, "setPropertyValues",aProps);
 }
 catch (com.sun.star.ucb.CommandAbortedException e) {
 ... error ...
 }
 catch (com.sun.star.uno.Exception e) {
 ... error ...
 }

 ///
 // Write the new file to disk...
 ///

 // Obtain document data for the new file.
 XInputStream xData = ...

 // Fill argument structure...

1030 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/ContentInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/ContentInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/ContentInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html

 InsertCommandArgument aArg = new InsertCommandArgument();
 aArg.Data = xData;
 aArg.ReplaceExisting = false;
 try {
 // Execute command "insert".
 executeCommand(xNewContent, "insert", aArg);
 }
 catch (com.sun.star.ucb.CommandAbortedException e) {
 ... error ...
 }
 catch (com.sun.star.uno.Exception e) {
 ... error ...
 }
}

The appendix C Appendix - Universal Content Providers discusses the creation of contents for all
available UCPs. The table below shows a number of com.sun.star.ucb.ContentInfo types for
creatable contents. Additionally, you can ask the content creator for its creatable contents using
com.sun.star.ucb.XContentCreator:queryCreatableContentsInfo(). The UCB reference in
the SDK and on ucb.openoffice.org offers comprehensive information about creatable contents.

Data
source

Content Info Type Content Content Service that Creates the
Contents

FILE "application/vnd.sun.staroffice.fsys-
folder"

"application/vnd.sun.staroffice.fsys-file"

folder

document

com.sun.star.ucb.FileContent

WebDAV
and
HTTP

"application/vnd.sun.star.webdav-
collection"

"application/http-content"

folder

document

com.sun.star.ucb.WebDAVFolderCon-
tent

FTP "application/vnd.sun.staroffice.ftp-
folder"

"application/vnd.sun.staroffice.ftp-file"

folder

document

com.sun.star.ucb.ChaosContent

Hier-
archy

"application/vnd.sun.star.hier-folder"

"application/vnd.sun.star.hier-link"

folder

Link

com.sun.star.ucb.HierarchyFolderCon-
tent

ZIP and
JAR files

"application/vnd.sun.star.pkg-folder"

"application/vnd.sun.star.pkg-stream"

folder

document

com.sun.star.ucb.PackageFolderContent

Deleting
Executing the command "delete" on a UCB content destroys the resource it represents. This
command takes a boolean parameter. If it is set to true, the resource is immediately, destroyed
physically.

The command also destroys all existing sub-resources of the resource to be destroyed!

If false is passed to this command, the caller wants to delete the resource "logically". This means
that the resource is restored or physically destroyed later. A soft-deleted content needs to support
the command "undelete". This command brings it back to life. The implementation of the delete
command can ignore the parameter and may opt to always destroy the resource physically.

Currently we do not have a trash service that could be used by UCB clients to manage soft-deleted contents.

Deleting a resource: (UCB/ResourceRemover.java)

1031

http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html#queryCreatableContentsInfo
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html#queryCreatableContentsInfo
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html#queryCreatableContentsInfo
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/ContentInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/ContentInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/ContentInfo.html

import com.sun.star.ucb.*;

{
 XContent xContent = ...

 ///
 // Destroy a resource physically...
 ///

 try {
 Boolean bDeletePhysically = new Boolean(true);
 // Execute command "delete".
 // using helper method executeCommand (see 15.4.3 Universal Content Broker - Using the UCB API -
Executing Content Commands)
 executeCommand(xContent, "delete", bDeletePhysically);
 }
 catch (com.sun.star.ucb.CommandAbortedException e) {
 ... error ...
 }
 catch (com.sun.star.uno.Exception e) {
 ... error ...
 }
}

Copying, Moving and Linking
Copying, moving and creating links to a resource works differently from the other operations
available for UCB Contents. There are three UCB Contents involved in these operations, the source
object, target folder, and target object. There may even be two content Providers, for example, when
moving a file located on an FTP server to the local file system of a workstation. Each implementa-
tion of the com.sun.star.ucb.UniversalContentBroker service supports the
com.sun.star.ucb.XCommandProcessor interface. This command processor implements the
command "globalTransfer" that can be used to copy and move UCB Contents, and create links
to UCB Contents. The command takes an argument of type com.sun.star.ucb.GlobalTransfer-
CommandArgument. To copy, move or create a link to a resource, execute the "globalTransfer"
command at the UCB.

The reasons for the different handling are mainly technical. We did not want to force every single imple-
mentation of the transfer command of a UCB content to accept nearly all types of contents. Instead, we
wanted to have one single implementation that would be able to handle all types of contents.

Copying, moving and creating links to a resource are shown in the following example:
(UCB/ResourceManager.java)
import com.sun.star.ucb.*;
import com.sun.star.uno.UnoRuntime;
import com.sun.star.uno.XInterface;

{
 String aSourceURL = ... // URL of the source object
 String aTargetFolderURL = ... // URL of the target folder

 ///
 // Obtain access to UCB...
 ///
 XInterface xUCB = ...

 // Obtain XCommandProcessor interface from UCB...
 XCommandProcessor xProcessor = (XCommandProcessor)UnoRuntime.queryInterface(
 XCommandProcessor.class, xUCB);

 if (xProcessor == null)
 ... error ...
 ///
 // Copy a resource to another location...
 ///
 try {
 GlobalTransferCommandArgument aArg = new GlobalTransferCommandArgument();
 aArg.TransferCommandOperation = TransferCommandOperation_COPY;
 aArg.SourceURL = aSourceURL;
 aArg.TargetURL = aTargetFolderURL;
 // object keeps it current name

1032 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/GlobalTransferCommandArgument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/GlobalTransferCommandArgument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/GlobalTransferCommandArgument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/GlobalTransferCommandArgument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/GlobalTransferCommandArgument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/GlobalTransferCommandArgument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandProcessor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandProcessor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandProcessor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/UniversalContentBroker.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/UniversalContentBroker.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/UniversalContentBroker.html

 aArg.NewTitle = "";
 // fail, if object with same name exists in target folder
 aArg.NameClash = NameClash.ERROR;

 // Let UCB execute the command "globalTransfer",
 // using helper method executeCommand (see 15.4.3 Universal Content Broker - Using the UCB API -
Executing Content Commands)
 executeCommand(xProcessor, "globalTransfer", aArg);
 }
 catch (com.sun.star.ucb.CommandAbortedException e) {
 ... error ...
 }
 catch (com.sun.star.uno.Exception e) {
 ... error ...
 }
}

15.5 UCB Configuration
This section describes how to configure the Universal Content Broker (UCB). Before a process uses
the UCB, it needs to configure the UCB. Configuring the UCB means registering a set of Universal
Content Providers (UCPs) at a content broker instance. Only UCPs known to the UCB are used to
provide content. Generally we provide two ways to configure a UCB:

• Create a default UCB with no UCPs registered and register all required UCPs manually.

• Define a UCB configuration and create a UCB that is automatically configured with the UCPs
given in that configuration.

15.5.1 UCP Registration Information
Before registering a content provider, the following information that is provided by the imple-
menter of the UCP is required. The Appendix C Appendix - Universal Content Providers provides
these for the currently available UCPs.

• The UNO service name to instantiate the UCP, for example, "com.sun.star.ucb.FileContentPro-
vider". Each UCP must be implemented and registered as a UNO component. Refer to chapter
4 Writing UNO Components for more information on writing and registering UNO components.

• An URL template used by the UCB to select the registered UCPs that best fit an incoming URL.
See com.sun.star.ucb.XContentIdentifier. This can be the name of an URL scheme, for
example, the file that selects the given UCP for all file URLs, or a limited regular expression,
such as "http://"[^/?#]*".com"([/?#].*)? That will select the given UCP for all http URLs
in the com domain. See the documentation of
com.sun.star.ucb.XContentProviderManager:registerContentProvider() for details
about these regular expressions.

• Additional arguments that may be needed by the UCP.

15.5.2 Unconfigured UCBs
A UCB is called unconfigured if it has no content providers, thus it is not able to provide any
contents. Each UCB implements the interface com.sun.star.ucb.XContentProviderManager.
This interface offers the functionality to register UCPs at runtime.

To create an unconfigured UCB and configure it manually:

1033

http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentProviderManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentProviderManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentProviderManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentProviderManager.html#registerContentProvider
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentProviderManager.html#registerContentProvider
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentProviderManager.html#registerContentProvider
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentIdentifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentIdentifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentIdentifier.html

1. Create an instance of the UNO service com.sun.star.ucb.UniversalContentBroker.

2. Register the appropriate UCPs using the com.sun.star.ucb.XContentProviderManager inter-
face of the UCB.

XContentProviderManager contains the following methods:
com::sun::star::ucb::XContentProvider registerContentProvider(

[in] com::sun::star::ucb::XContentProvider Provider,
[in] string Scheme,
[in] boolean ReplaceExisting)

oneway void deregisterContentProvider(
[in] com::sun::star::ucb::XContentProvider Provider,
[in] string Scheme)

sequence< com::sun::star::ucb::ContentProviderInfo > queryContentProviders()
com::sun::star::ucb::XContentProvider queryContentProvider([in] string URL)

The XContentProvider configures a UCB for content providers, obtains
com.sun.star.ucb.ContentProviderInfo structs describing the available providers, and the
provider that is currently registered for a specific URL schema. The following example uses
registerContentProvider() to configure an unconfigured UCB for a file content provider.

Unconfigured UCB:

import com.sun.star.lang.XMultiServiceFactory;
import com.sun.star.ucb.DuplicateProviderException;
import com.sun.star.ucb.XContentProvider;
import com.sun.star.ucb.XContentProviderManager;
import com.sun.star.uno.Exception;
import com.sun.star.uno.UnoRuntime;

boolean initUCB() {

 ///
 // Obtain Process Service Manager.
 ///

 XMultiServiceFactory xServiceFactory = ...

 ///
 // Create UCB. This needs to be done only once per process.
 ///

 XContentProviderManager xUCB;
 try {
 xUCB = (XContentProviderManager)UnoRuntime.queryInterface(
 XContentProviderManager.class, xServiceFactory.createInstance(
 "com.sun.star.ucb.UniversalContentBroker"));
 }
 catch (com.sun.star.uno.Exception e) {
 }

 if (xUCB == null)
 return false;

 ///
 // Instanciate UCPs and register at UCB.
 ///

 XContentProvider xFileProvider;
 try {
 xFileProvider = (XContentProvider)UnoRuntime.queryInterface(
 XContentProvider.class, xServiceFactory.createInstance(
 "com.sun.star.ucb.FileContentProvider"));
 }
 catch (com.sun.star.uno.Exception e) {
 }

 if (xFileProvider == null)
 return false;

 try {
 // Parameters: provider, URL scheme, boolean flag replaceExisting
 xUCB.registerContentProvider(xFileProvider, "file", new Boolean(false));
 }
 catch (DuplicateProviderException ex) {
 }

 // Create/register other UCPs...

 return true;
}

1034 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/ContentProviderInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/ContentProviderInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/ContentProviderInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentProviderManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentProviderManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentProviderManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/UniversalContentBroker.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/UniversalContentBroker.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/UniversalContentBroker.html

15.5.3 Preconfigured UCBs
A UCB is called preconfigured if it was given a UCB configuration at the time it was instantiated. A
UCB configuration contains a set of UCP registration information.

To create a preconfigured UCB:

1. Create an instance of the UNO service com.sun.star.ucb.UniversalContentBroker.

2. Pass the configuration as a parameters to the creation function. The UCB instance returned
offers all UCPs defined in the given configuration.

Preconfigured UCB:
import com.sun.star.lang.XMultiServiceFactory;
import com.sun.star.uno.Exception;
import com.sun.star.uno.XInterface;

boolean initUCB() {
 ///
 // Obtain Process Service Manager.
 ///

 XMultiServiceFactory xServiceFactory = ...

 ///
 // Create UCB. This needs to be done only once per process.
 ///

 XInterface xUCB;
 try {
 // Supply configuration to use for this UCB instance...
 String[] keys = new String[2];
 keys[0] = "Local";
 keys[0] = "Office";
 xUCB = xServiceFactory.createInstanceWithArguments(
 "com.sun.star.ucb.UniversalContentBroker", keys);
 }
 catch (com.sun.star.uno.Exception e) {
 }

 if (xUCB == null)
 return false;

 return true;
}

A UCB configuration used by a preconfigured UCB describes a set of UCPs available in a configu-
ration. All UCPs contained in a configuration are registered at the UCB that is created using this
configuration. A UCB configuration is identified by two keys that are strings. The keys allow some
structuring in the configuration files), but they do not have a purpose. See the example file below.
The standard configuration is "Local" and "Office", that allows access to all UCPs. The XML sample
below shows how these keys are used to organize UCB configurations.

The predefined configurations for OpenOffice.org are defined in the file
<OfficePath>/share/config/data/org/openoffice/ucb/Configuration.xcd. This file must be adapted to add
configurations or edit existing configurations. The XCD file is used during the OpenOffice.org
build process to generate the appropriate XML file. This XML file is part of a OpenOffice.org
installation and is located in <OfficePath>share/config/registry/instance/org/openoffice/ucb/Configura-
tion.xml. The UCB tries to get configuration data from this XML file.

UCB Configuration (org/openoffice/ucb/Configuration.xcd):
<!DOCTYPE schema:package SYSTEM "../schema/schema.description.dtd">
<schema:package package-id="org.openoffice.ucb.Configuration" xml:lang="en-US"
xmlns:schema="http://openoffice.org/2000/registry/schema/description"
xmlns:default="http://openoffice.org/2000/registry/schema/default"
xmlns:cfg="http://openoffice.org/2000/registry/instance">

<schema:templates template-id="org.openoffice.ucb.Configuration">

<!-- ContentProvider -->
<schema:group cfg:name="ContentProviderData">
<schema:value cfg:name="ServiceName" cfg:type="string">

1035

http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/UniversalContentBroker.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/UniversalContentBroker.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/UniversalContentBroker.html

</schema:value>
<schema:value cfg:name="URLTemplate" cfg:type="string">
</schema:value>
<schema:value cfg:name="Arguments" cfg:type="string">
</schema:value>
</schema:group>

<!-- ContentProvidersDataSecondaryKeys -->
<schema:group cfg:name="ContentProvidersDataSecondaryKeys">
<schema:set cfg:name="ProviderData"
 cfg:element-type="ContentProviderData"/>
</schema:group>

<!-- ContentProvidersDataPrimaryKeys -->
<schema:group cfg:name="ContentProvidersDataPrimaryKeys">
<schema:set cfg:name="SecondaryKeys"
 cfg:element-type="ContentProvidersDataSecondaryKeys"/>
</schema:group>
</schema:templates>

<schema:component cfg:writable="true"
component-id="org.openoffice.ucb.Configuration"
cfg:notified="true" cfg:localized="false">
<schema:set cfg:name="ContentProviders"
 cfg:element-type="ContentProvidersDataPrimaryKeys">
<default:group cfg:name="Local">
 <default:set cfg:name="SecondaryKeys"
 cfg:element-type="ContentProvidersDataSecondaryKeys">
 <default:group cfg:name="Office">
 <default:set cfg:name="ProviderData"
 cfg:element-type="ContentProviderData">

 <!-- Hierarchy UCP -->
 <default:group cfg:name="Provider1">
 <default:value cfg:name="ServiceName" cfg:type="string">
 <default:data>com.sun.star.ucb.HierarchyContentProvider</default:data>
 </default:value>
 <default:value cfg:name="URLTemplate" cfg:type="string">
 <default:data>vnd.sun.star.hier</default:data>
 </default:value>
 <default:value cfg:name="Arguments" cfg:type="string">
 <default:data/>
 </default:value>
 </default:group>

 <!-- File UCP -->
 <default:group cfg:name="Provider2">
 <default:value cfg:name="ServiceName" cfg:type="string">
 <default:data>com.sun.star.ucb.FileContentProvider</default:data>
 </default:value>
 <default:value cfg:name="URLTemplate" cfg:type="string">
 <default:data>file</default:data>
 </default:value>
 <default:value cfg:name="Arguments" cfg:type="string">
 <default:data/>
 </default:value>
 </default:group>

 <!-- Other UCPs go here -->

 </default:set>
 </default:group>
 </default:set>
</default:group>
</schema:set>
</schema:component>
</schema:package>

15.5.4 Content Provider Proxies
The UNO service implementing a UCP must be instantiated at the time the content provider is
registered at the UCB. This is done using com.sun.star.ucb.XContentProviderManager's
registerContentProvider() method. In some cases, this can consume resources, because instan-
tiating a UNO service means loading the libraries containing its code. As a convention, each UNO
component should reside in its own library.

1036 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentProviderManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentProviderManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentProviderManager.html

Therefore, a special UNO service is offered that provides a generic proxy for a UCP. Its purpose is
to delay the loading of the real UCP code until it is needed. Generally, this does not happen before
the first createContentIdentifier()/queryContent() calls are done at the proxy.

Instead of registering the real instantiated UCP at the UCB, a proxy is created for the UCP. The
UCP registration information is passed to the proxy. The proxy only uses this information to
instantiate the real UCP on demand. There is almost no performance overhead with this mecha-
nism.

When using preconfigured UCBs, the UCB implementation uses proxies instead of the real UCPs to avoid
wasting resources.

1037

16 Configuration Management

16.1 Overview

16.1.1 Capabilities
The OpenOffice.org configuration management component provides a uniform interface to get and
set OpenOffice.org configuration data in an organized manner, independent of the physical data
store used for the data.

The configuration API can be used to get and set existing configuration options. Additionally you
can extend the configuration with new settings for your own purposes. For details, see 16.5 Config-
uration Management - Customizing Configuration Data.

16.1.2 Architecture
OpenOffice.org configuration data describes the state or environment of a UNO component or the
OpenOffice.org application. There are different kinds of configuration data:

• Static configuration: This is data that describes the configuration of the software and hardware
environment. This data is set by a setup tool and does not change at runtime. An example of
static configuration data is information about installed filters.

• Explicit settings: This is preference data that can be controlled by the user explicitly. There is a
dedicated UI to change these settings. An example explicit settings are the settings controlled
through the Tools � Options dialogs in OpenOffice.org.

• Implicit settings: This is status information that is also controlled by the user, but the user does
not change explicitly. The application tracks this state in the background, making it persistent
across application sessions. An example implicit settings are window positions and states, or a
list of the recently used documents.

This list is not comprehensive, but indicates the range of data characteristically stored by configu-
ration management.

The configuration management component organizes the configuration data in a hierarchical struc-
ture. The hierarchical structure and the names and data types of entries in this database are
described by a schema. Only data that conforms to one of the installed schemas is stored in the
database.

1039

The hierarchical database stores any hierarchical information that can be described as a configura-
tion schema, but it is optimized to work with the data needed for application configuration and
preferences. Small data items having a well-defined data type are supported efficiently, whereas
large, unspecific binary objects should not be stored in the configuration database. These objects
should be stored in separate files so that the configuration keeps the URLs of these files only.

Configuration schemas are provided by the authors of applications and components that use the
data. When a component is installed, the corresponding configuration schemas are installed into
the configuration management system.

Configuration data is stored in a backend data store. In OpenOffice.org, the standard backend
consists of XML files stored in a directory hierarchy. You can add another backend component to
be used instead. Support for combining data from multiple backends is planned for a future
release.

For a given schema, multiple layers of data may exist that are merged together at runtime. One or
more of these layers define default settings, possibly shared by several users. Additionally, there is
a layer specific to a single user that contains personal preferences overriding the shared settings. In
normal operations all changes to data affect only this user-specific layer.

1040 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 16.1: Configuration layers

Access to the merged configuration data for a user is managed by a com.sun.star.configura-
tion.ConfigurationProvider object to connect to a data source, fetch and store data, and merge
layers.

This provider provides views on the configuration data. A view is a subset of the entire configura-
tion that can be navigated as an object hierarchy. The objects in this hierarchy represent nodes of
the configuration hierarchy to navigate to other nodes and access values of data items.

All configuration items have a fixed type and a name.

The type is prescribed by the schema. The following kinds of items are available:

• 'Properties' are data items that contain a single data value or an array of values from a limited
set of basic types.

• 'Groups' are structural nodes that contain a collection of child items of various types. The
number and names of children, as well as their types, are fixed by the schema. Structural and
data items can be mixed within one group.

• 'Sets' are structural nodes that serve as dynamic containers for a variable number of elements.
These elements must be all data or all structural items, and they must all be uniform. In the first
case, all values have the same basic type, and in the latter case, all the sub-trees have the same
structure. The schema contains templates for container elements, which are prototypes of the
element structure.

Properties hold the actual data. Group nodes form the structural skeleton defined in the schema.
Set nodes are used to dynamically add and remove configuration data within the confines of the
schema. Taken together, they can be used to build hierarchical structures of arbitrary complexity.

Each configuration item has a name that uniquely identifies the item within its parent, that is, the
node in the hierarchical tree that immediately contains the item under consideration. Paths span-
ning multiple levels of the hierarchy are built similarly to UNIX file system paths. The separator
for individual name components in paths is a forward slash ('/'). Paths that begin with a slash are
considered 'absolute paths' and must completely specify the location of an item within the hier-
archy. Paths that start directly with a name are relative paths and describe the location of an item
within one of its ancestors in the hierarchy.

The top-level subdivisions of the configuration hierarchy are called configuration modules. Each
configuration module has a schema that describes the data items available within that module.
Modules are the unit of schema installation. The name of a configuration module must be globally
unique. The names of configuration modules have an internal hierarchical structure using a dot ('.')
as a separator, similar to Java package names. The predefined configuration modules of
OpenOffice.org use package names from the super-package "org.openoffice.*".

The names of container elements are specified when data items are added to a container. Data item
names in the schema are limited to ASCII letters, digits and a few punctuation marks, but there are
no restrictions applied to the names of container elements. This requires special handling when
referring to a container element in a path. A path component addressing a container element takes
the form <template-pattern>['<escaped-name>']. Here <template-pattern> can be the
name of the template describing the element or an asterisk "*" to match any template. The
<escaped-name> is a representation of the name of the element where a few forbidden characters
are represented in an escaped form borrowed from XML. The quotes delimiting the <escaped-
name> may alternatively be double quote characters "". The following character escapes are used:

Character Escape

& &
" "
' '

1041

http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html

In the table below, are some escaped forms for invented entries in the Set node
/org.openoffice.Office.TypeDetection/Filters for (fictitious) filters:

Filter Name Path Component

Plain Text Filter['Plain Text']
Q & A Book *["Q & A Book"]
Bob's Filter *['Bob's Filter']

The UIName value of the last example filter would have an absolute path of
/org.openoffice.Office.TypeDetection/Filters/Filter['Bob's Filter']/UIName.
In several places in the configuration management, API arguments are passed to a newly created
object instance as Sequence, for example, in the argument to
com.sun.star.lang.XMultiServiceFactory:createInstanceWithArguments. Such arguments
are type com.sun.star.beans.NamedValue.

For compatibility with older versions, arguments of type com.sun.star.beans.PropertyValue are
accepted as well. Only the Name and Value fields need to be filled.

16.2 Object Model
The centralized entry point for configuration access is a com.sun.star.configuration.Configu-
rationProvider object. This object represents a connection to a single configuration data source
providing access to configuration data for a single user.

The com.sun.star.configuration.AdministrationProvider service is an extended version of
this service that enables administrative access to shared configuration data.

The com.sun.star.configuration.ConfigurationProvider serves as a factory for configura-
tion views. A configuration view provides access to the structure and data of a subset of the config-
uration database. This subset is accessible as a hierarchical object tree. When creating a configura-
tion view, parameters are provided that describe the subset of the data to retrieve. In the simplest
case, the only argument is an absolute configuration path that identifies a structural configuration
item. This parameter is given as an argument named "nodepath". The configuration view then
encompasses the sub-tree which is rooted in the indicated item.

A configuration view is not represented by a single object, but as an object hierarchy formed by all
the items that are part of the selected sub-tree. The object that comes closest to representing the
view as a whole is the root element of that tree. This object is the one returned by the factory
method of the com.sun.star.configuration.ConfigurationProvider. In addition to the simple
node-oriented interfaces, it also supports interfaces that apply to the view as a whole.

1042 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html#Value
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html#Value
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html#Value
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html#Name
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html#Name
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html#Name
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html#createInstanceWithArguments
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html#createInstanceWithArguments
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html#createInstanceWithArguments

Within a configuration view, UNO objects with access interfaces are used to represent all structural
items. Value items are not represented as objects, but retrieved as types, usually wrapped inside an
any.

The following types are supported for data items:

string Plain Text (Sequence of [printable] Unicode characters)
boolean Boolean value (true/false)
short 16-bit integer number
int 32-bit integer number
long 64-bit integer number
double Floating point number
binary Sequence of uninterpreted octets

Value items contain a single value, or a sequence or array of one of the basic types. The arrays
must be homogeneous, that is, mixed arrays are not supported. The configuration API treats array
types as atomic items, there is no built-in support for accessing or modifying individual array
elements.

Binary values should be used only for small chunks of data that cannot easily be stored elsewhere. For large
BLOBs it is recommended to store links, for example, as URLs, in the configuration.

For example, bitmaps for small icons might be stored in the configuration, whereas large images are stored
externally.

All of the structural objects implement the service com.sun.star.configuration.Configura-
tionAccess that specifies interfaces to navigate the hierarchy and access values within the view.
Different instances of this service support different sets of interfaces. The interfaces that an object
supports depends on its structural type, that is, is it a group or a set, and context, that is, is it a
group member, an element of a set or the root of the view.

1043

Illustration 16.2: Configuration object model overview

http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationAccess.html

A configuration view can be read-only or updatable. This is determined by the access requested
when creating the view, but updatability may also be restricted by access rights specified in the
schema or data. The basic com.sun.star.configuration.ConfigurationAccess service specifies
read-only operations. If an object is part of an updatable view and is not marked read-only in the
schema or the data, it implements the extended service com.sun.star.configuration.Configu-
rationUpdateAccess. This service adds interfaces to change values and modify set nodes.

These service names are also used to create the configuration views. To create a view for read
access, call com.sun.star.lang.XMultiServiceFactory:createInstanceWithArguments at the
com.sun.star.configuration.ConfigurationProvider to request a com.sun.star.configu-
ration.ConfigurationAccess. To obtain an updatable view, the service com.sun.star.config-
uration.ConfigurationUpdateAccess must be requested.

The com.sun.star.configuration.AdministrationProvider supports the same service speci-
fiers, but creates views on shared layers of configuration data.

The object initially returned when creating a configuration view represents the root node of the
view. The choice of services and interfaces it supports depends on the type of configuration item it
represents. The root object has additional interfaces pertaining to the view as a whole. For
example, updates of configuration data within a view are combined into batches of related
changes, which exhibit transaction-like behavior. This functionality is controlled by the root object
of the view.

16.3 Configuration Data Sources
Creating a view to configuration data is a two-step process.

1. Connect to a data source by creating an instance of a com.sun.star.configuration.Configu-
rationProvider for user preferences or a com.sun.star.configuration.Administra-
tionProvider for shared preferences.

2. Ask the provider to create an access object for a specific nodepath in the configuration database
using com.sun.star.lang.XMultiServiceFactory:createInstanceWithArguments(). The
access object can be a com.sun.star.configuration.ConfigurationAccess or a
com.sun.star.configuration.ConfigurationUpdateAccess.

16.3.1 Connecting to a Data Source
The first step to access the configuration database is to connect to a configuration data source.

To obtain a provider instance ask the global com.sun.star.lang.ServiceManager for a
com.sun.star.configuration.ConfigurationProvider. Typically the first lines of code to get
access to configuration data look similar to the following: (Config/ConfigExamples.java)
// get my global service manager
XMultiServiceFactory xServiceManager = (XMultiServiceFactory)UnoRuntime.queryInterface(
 XMultiServiceFactory.class, this.getRemoteServiceManager(
 "uno:socket,host=localhost,port=2083;urp;StarOffice.ServiceManager"));

final String sProviderService = "com.sun.star.configuration.ConfigurationProvider";
// create the provider and remember it as a XMultiServiceFactory
XMultiServiceFactory xProvider = (XMultiServiceFactory)
 UnoRuntime.queryInterface(XMultiServiceFactory.class,
 xServiceManager.createInstance(sProviderService));

1044 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/ServiceManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/ServiceManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/ServiceManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationUpdateAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationUpdateAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationUpdateAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html#createInstanceWithArguments
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html#createInstanceWithArguments
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html#createInstanceWithArguments
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationUpdateAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationUpdateAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationUpdateAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationUpdateAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationUpdateAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationUpdateAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html#createInstanceWithArguments
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html#createInstanceWithArguments
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html#createInstanceWithArguments
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationUpdateAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationUpdateAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationUpdateAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationUpdateAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationUpdateAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationUpdateAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationAccess.html

This code creates a default com.sun.star.configuration.ConfigurationProvider. The most
important interface a com.sun.star.configuration.ConfigurationProvider implements is
com.sun.star.lang.XMultiServiceFactory that is used to create further configuration objects.

The com.sun.star.configuration.ConfigurationProvider always operates in the user mode,
accessing data on behalf of the current user and directing updates to the user's personal layer.

For administrative access to manipulate the default layers the
com.sun.star.configuration.AdministrationProvider is used. When creating this service,
additional parameters can be used that select the layer for updates or that contain credentials used
to authorize administrative access. The backend that is used determines which default layers exist,
how they are addressed and how administrative access is authorized.

The standard file-based backend has several shared layers. One of these layers is used to store
shared default data. The files for this layer are located in the share directory of the OpenOffice.org
installation. To gain administrative access to this layer, no additional parameters are needed. An
com.sun.star.configuration.AdministrationProvider for this backend automatically tries to
read and write this shared layer. Additionally there are special layers that are used by the Exten-
sion Manager for deploying configuration data associated with extensions. For details, see 5 Exten-
sions.

Authorization for the file-based backend is done by the operating system based upon file access
privileges. The current user requires write privileges in the shared configuration directory if an
AdministrationProvider is suppose to update configuration data.

A com.sun.star.configuration.AdministrationProvider is created in the same way as a
com.sun.star.configuration.ConfigurationProvider.
// get my global service manager
XMultiServiceFactory xServiceManager = getServiceManager();

// get the arguments to use
com.sun.star.beans.PropertyValue aReinitialize = new com.sun.star.beans.PropertyValue()
aReinitialize.Name = "reinitialize"
aReinitialize.Value = new Boolean(true);

Object[] aProviderArguments = new Object[1];
aProviderArguments[0] = aReinitialize;

final String sAdminService = "com.sun.star.configuration.AdministrationProvider";
// create the provider and remember it as a XMultiServiceFactory
XMultiServiceFactory xAdminProvider = (XMultiServiceFactory)
 UnoRuntime.queryInterface(XMultiServiceFactory.class,
 xServiceManager.createInstanceWithArguments(sAdminService,aProviderArguments));

As you see in the example above, the default com.sun.star.configuration.Administra-
tionProvider supports a special parameter for reinitialization:

Parameter Name Type Default Comments

reinitialize boolean false Discard any cached informa-
tion from previous runs and
regenerate from scratch.

Some backend implementations use cached data to speed up access. If the reinitialize param-
eter is true, this cache will be recreated from the XML data when the AdministrationProvider is
created. With the current implementation, the parameter has no effect.

When establishing the connection, specify the parameters that select the backend to use and addi-
tional backend-specific parameters to select the data source. When there are no parameters given,
the standard configuration backend and data source of the OpenOffice.org installation is used.

The standard values for these parameters may be found in the configuration file configmgr(.ini|rc)
(.ini on Windows, rc on Unix) in the program directory of the OpenOffice.org installation. The INI
entries have a prefix �CFG_� before the parameter name.

1045

http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html

The list of available backends and the parameters they support may change in a future release. Using these
parameters is normally not necessary and therefore is not recommended.

The following parameters are supported to select the backend component to use:

Parameter Name Type Default Comments

BackendService string "com.sun.star.c
onfiguration.ba
ckend.LocalSin-
gleBackend"

This must be a UNO service or implementa-
tion name that can be used to create a service
instance. The instance created must support
either service com.sun.star.configura-
tion.backend.Backend or service
com.sun.star.configuration.backend
.SingleBackend

BackendWrapper string "com.sun.star.c
onfiguration.ba
ckend.Single-
BackendAdapter"

This parameter is used only, if the service
specified by parameter �BackendService�
only implements service Backend. It must be
a UNO service or implementation name that
can be used to create a service instance. The
instance created must support service
com.sun.star.configuration.backend
.BackendAdapter.

The following parameter was formerly supported to select the type of backend to use:

Parameter Name Type Default Comments

servertype string "uno" Other values are not supported any more in
OpenOffice.org. This setting formerly was
used to select between several internal
backend implementations.

For the "com.sun.star.configuration.backend.LocalSingleBackend" backend, the following
parameters are used to select the location of data:

Parameter Name Type Default Comments

SchemaDataUrl string or
string[]

$(installurl)/share/registry/schema

+ locations used for extensions

This must be a file URL
pointing to a directory, a
whitespace-separated list of
such URLs or a sequence of
such URLs.

The locations are searched
in the given order until a
schema is found.

DefaultLayerUrls string or
string[]

$(installurl)/share/registry

+ locations used for extensions

This must be a file URL
pointing to a directory, a
whitespace-separated list of
such URLs or a sequence of
such URLs.

The layers are merged in the
given order.

The data is located in subdi-
rectory data of each location.
Additionally locale-specific
data can be placed in subdi-
rectory res.

1046 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/LocalSingleBackend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/LocalSingleBackend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/LocalSingleBackend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/BackendAdapter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/BackendAdapter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/BackendAdapter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/BackendAdapter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/BackendAdapter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/BackendAdapter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/Backend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/Backend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/Backend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/SingleBackendAdapter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/SingleBackendAdapter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/SingleBackendAdapter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/SingleBackendAdapter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/SingleBackendAdapter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/SingleBackendAdapter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/SingleBackendAdapter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/SingleBackendAdapter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/SingleBackendAdapter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/SingleBackend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/SingleBackend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/SingleBackend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/SingleBackend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/SingleBackend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/SingleBackend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/Backend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/Backend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/Backend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/Backend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/Backend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/Backend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/LocalSingleBackend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/LocalSingleBackend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/LocalSingleBackend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/LocalSingleBackend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/LocalSingleBackend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/LocalSingleBackend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/LocalSingleBackend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/LocalSingleBackend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/LocalSingleBackend.html

Parameter Name Type Default Comments

UserLayerUrl string $(userurl)/user/registry This must be a file URL
pointing to a directory.

If this is one of the entries of
parameter �Default-
LayerUrls�, then only the
entries before it will be used
as default layers.

The data is located in the
subdirectory data of the
given location.

Arguments can be provided that determine the default behavior of views created through this
com.sun.star.configuration.ConfigurationProvider. The following parameters may be used
for this purpose:

Parameter Name Type Default Comments

Locale string The user's locale. This parameter was called
�locale� in a former
version. The old name is still
supported for compatibility.

EnableAsync boolean true This parameter was called
�lazywrite� in a former
version. The old name is still
supported for compatibility.

The default configuration provider obtained when no arguments are given will always be the same object.
Be careful not to call com.sun.star.lang.XComponent:dispose() on this shared
com.sun.star.configuration.ConfigurationProvider.

If you provide any arguments, then a new instance is created. You must then call
com.sun.star.lang.XComponent:dispose() on this com.sun.star.configuration.Configu-
rationProvider.

16.3.2 Using a Data Source
After a configuration provider is obtained, call
com.sun.star.lang.XMultiServiceFactory:createInstanceWithArguments() to create a
view on the configuration data.

The following arguments can be specified when creating a view:

Parameter Name Type Default Comments

nodepath string - This parameter is required. It contains an abso-
lute path to the root node of the view.

Locale string The user's locale

(or "*")

Using this parameter, specify the locale to be
used for selecting locale-dependent values. Use
the ISO code for a locale, for example, en-US for
U.S. English.

EnableAsync boolean true This parameter was called �lazywrite� in a
former version. The old name is still supported
for compatibility.

1047

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html#createInstanceWithArguments
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html#createInstanceWithArguments
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html#createInstanceWithArguments
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html#dispose
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html#dispose
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html#dispose
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html#dispose
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html#dispose
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html#dispose
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html

Parameter Name Type Default Comments

depth integer (unlimited) This parameter causes the view to be truncated
to a specified nesting depth.

nocache boolean false This parameter is deprecated.

If the special value "*" is used for the locale parameter, values for all locales are retrieved.
In this case, a locale-dependent property appears as a set item. The items of the set are the values for the
different locales. They will have the ISO identifiers of the locales as names.

This mode is the default if you are using an com.sun.star.configuration.AdministrationPro-
vider.

It can be used if you want to assign values for different locales in a targeted manner. Usually this is logical in
an administration or installation context only.

To create a read-only view on the data, the service com.sun.star.configuration.Configura-
tionAccess is requested:
// Create a specified read-only configuration view
public Object createConfigurationView(String sPath) throws com.sun.star.uno.Exception {
 // get the provider to use
 XMultiServiceFactory xProvider = getProvider();

 // The service name: Need only read access:
 final String sReadOnlyView = "com.sun.star.configuration.ConfigurationAccess";
 // creation arguments: nodepath
 com.sun.star.beans.PropertyValue aPathArgument = new com.sun.star.beans.PropertyValue();
 aPathArgument.Name = "nodepath";
 aPathArgument.Value = sPath;

 Object[] aArguments = new Object[1];
 aArguments[0] = aPathArgument;

 // create the view
 Object xViewRoot = xProvider.createInstanceWithArguments(sReadOnlyView, aArguments);
 return xViewRoot;
}

To obtain updatable access, the service com.sun.star.configuration.ConfigurationUpdate-
Access is requested. In this case, there are additional parameters available that control the caching
behavior of the configuration management component:
// Create a specified updatable configuration view
Object createUpdatableView(String sPath, boolean bAsync) throws com.sun.star.uno.Exception {
 // get the provider to use
 XMultiServiceFactory xProvider = getProvider();

 // The service name: Need update access:
 final String cUpdatableView = "com.sun.star.configuration.ConfigurationUpdateAccess";
 // creation arguments: nodepath
 com.sun.star.beans.PropertyValue aPathArgument = new com.sun.star.beans.PropertyValue();
 aPathArgument.Name = "nodepath";
 aPathArgument.Value = sPath;

 // creation arguments: commit mode - write-through or write-back
 com.sun.star.beans.PropertyValue aModeArgument = new com.sun.star.beans.PropertyValue();
 aModeArgument.Name = "EnableAsync";
 aModeArgument.Value = new Boolean(bAsync);

 Object[] aArguments = new Object[2];
 aArguments[0] = aPathArgument;
 aArguments[1] = aModeArgument;

 // create the view
 Object xViewRoot = xProvider.createInstanceWithArguments(cUpdatableView, aArguments);
 return xViewRoot;
}

A com.sun.star.configuration.AdministrationProvider supports the same service speci-
fiers, but creates views on shared layers of configuration data. It supports additional parameters to

1048 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationUpdateAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationUpdateAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationUpdateAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationUpdateAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationUpdateAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationUpdateAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html

select the exact layer to work on or to specify authorization credentials. Independent of the
backend, the following parameter is supportedly the com.sun.star.configuration.Adminis-
trationProvider :

Parameter Name Type Default Comments

Entity string - Identifies an entity that the
backend can map to a
sequence of layers to merge
and a target layer for
updates.

If no Entity is provided, the com.sun.star.configuration.AdministrationProvideruses the
entity the backend provides through
com.sun.star.configuration.backend.XBackendEntities:getAdminEntity(). The supported
entities and their meaning depend on the backend. For the default file-based backend an entity is a
file URL that points to the base directory of a layer.

For a com.sun.star.configuration.AdministrationProvider, the default value for the locale
parameter is "*".

16.4 Accessing Configuration Data

16.4.1 Reading Configuration Data

1049

Illustration 16.3: ConfigurationAccess services

http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/XBackendEntities.html#getAdminEntity
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/XBackendEntities.html#getAdminEntity
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/XBackendEntities.html#getAdminEntity
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/AdministrationProvider.html

The com.sun.star.configuration.ConfigurationAccess service is used to navigate through
the configuration hierarchy and reading values. It also provides information about a node and its
context.

The following example shows how to collect or display information about a part of the hierarchy.
For processing elements and values, our example uses its own callback Java interface IConfigura-
tionProcessor:
// Interface to process information when browsing the configuration tree
public interface IConfigurationProcessor {
 // process a value item
 public abstract void processValueElement(String sPath_, Object aValue_);
 // process a structural item
 public abstract void processStructuralElement(String sPath_, XInterface xElement_);
};

Then, we define a recursive browser function:
// Internal method to browse a structural element recursively in preorder
public void browseElementRecursively(XInterface xElement, IConfigurationProcessor aProcessor)

throws com.sun.star.uno.Exception {
 // First process this as an element (preorder traversal)
 XHierarchicalName xElementPath = (XHierarchicalName) UnoRuntime.queryInterface(
 XHierarchicalName.class, xElement);

 String sPath = xElementPath.getHierarchicalName();
 //call configuration processor object
 aProcessor.processStructuralElement(sPath, xElement);

 // now process this as a container of named elements
 XNameAccess xChildAccess =
 (XNameAccess) UnoRuntime.queryInterface(XNameAccess.class, xElement);

 // get a list of child elements
 String[] aElementNames = xChildAccess.getElementNames();

 // and process them one by one
 for (int i=0; i< aElementNames.length; ++i) {
 Object aChild = xChildAccess.getByName(aElementNames[i]);

 // is it a structural element (object) ...
 if (aChild instanceof XInterface) {
 // then get an interface
 XInterface xChildElement = (XInterface)aChild;

 // and continue processing child elements recursively
 browseElementRecursively(xChildElement, aProcessor);
 }
 // ... or is it a simple value
 else {
 // Build the path to it from the path of
 // the element and the name of the child
 String sChildPath;
 sChildPath = xElementPath.composeHierarchicalName(aElementNames[i]);

 // and process the value
 aProcessor.processValueElement(sChildPath, aChild);
 }
 }
}

Now a driver procedure is defined which uses our previously defined routine createConfigura-
tionView() to create a view, and then starts processing:
/** Method to browse the part rooted at sRootPath
 of the configuration that the Provider provides.

 All nodes will be processed by the IConfigurationProcessor passed.
*/
public void browseConfiguration(String sRootPath, IConfigurationProcessor aProcessor)

throws com.sun.star.uno.Exception {

 // create the root element
 XInterface xViewRoot = (XInterface)createConfigurationView(sRootPath);
 // now do the processing
 browseElementRecursively(xViewRoot, aProcessor);
 // we are done with the view - dispose it
 // This assumes that the processor
 // does not keep a reference to the elements in processStructuralElement

1050 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationAccess.html

 ((XComponent) UnoRuntime.queryInterface(XComponent.class,xViewRoot)).dispose();
 xViewRoot = null;
}

Finally, as an example of how to put the code to use, the following is code to print the currently
registered file filters:
/** Method to browse the filter configuration.

 Information about installed filters will be printed.
*/
public void printRegisteredFilters() throws com.sun.star.uno.Exception {
 final String sProviderService = "com.sun.star.configuration.ConfigurationProvider";
 final String sFilterKey = "/org.openoffice.Office.TypeDetection/Filters";
 // browse the configuration, dumping filter information
 browseConfiguration(sFilterKey,
 new IConfigurationProcessor () { // anonymous implementation of our custom interface
 // prints Path and Value of properties
 public void processValueElement(String sPath_, Object aValue_) {
 System.out.println("\tValue: " + sPath_ + " = " + aValue_);
 }
 // prints the Filter entries
 public void processStructuralElement(String sPath_, XInterface xElement_) {
 // get template information, to detect instances of the 'Filter' template
 XTemplateInstance xInstance =
 (XTemplateInstance)UnoRuntime.queryInterface(XTemplateInstance .class,xElement_);

 // only select the Filter entries
 if (xInstance != null && xInstance.getTemplateName().endsWith("Filter")) {
 XNamed xNamed = (XNamed)UnoRuntime.queryInterface(XNamed.class,xElement_);
 System.out.println("Filter " + xNamed.getName() + " (" + sPath_ + ")");
 }
 }
 });
}

For access to sub-nodes, a com.sun.star.configuration.ConfigurationAccess supports
container interfaces com.sun.star.container.XNameAccess and
com.sun.star.container.XChild. These interfaces access the immediate child nodes in the hier-
archy , as well as com.sun.star.container.XHierarchicalNameAccess for direct access to items
that are nested deeply.

These interfaces are uniformly supported by all structural configuration items. Therefore, they are
utilized by code that browses a sub-tree of the configuration in a generic manner.

Parts of the hierarchy where the structure is known statically can also be viewed as representing a
complex object composed of properties, that are composed of sub-properties themselves. This
model is supported by the interface com.sun.star.beans.XPropertySet for child access and
com.sun.star.beans.XHierarchicalPropertySet for access to deeply nested properties within
such parts of the hierarchy. Due to the static nature of property sets, this model does not carry over
to set nodes that are dynamic in nature and do not support the associated interfaces.

For effective access to multiple properties, the corresponding com.sun.star.beans.XMultiProp-
ertySet and com.sun.star.beans.XMultiHierarchicalPropertySet interfaces are supported.

In a read-only view, all properties are marked as
com.sun.star.beans.PropertyAttribute:READONLY in com.sun.star.beans.XPropertySet-
Info. Attempts to use com.sun.star.beans.XPropertySet:setPropertyValue() to change the
value of a property fail accordingly.

Typically, these interfaces are used to access a known set of preferences. The following example
reads grid option settings from the OpenOffice.org Calc configuration into this structure:
class GridOptions
{
 public boolean visible;
 public int resolution_x;
 public int resolution_y;
 public int subdivision_x;
 public int subdivision_y;
};

1051

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html#setPropertyValue
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html#setPropertyValue
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html#setPropertyValue
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyAttribute.html#READONLY
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyAttribute.html#READONLY
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyAttribute.html#READONLY
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiHierarchicalPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiHierarchicalPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiHierarchicalPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XHierarchicalPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XHierarchicalPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XHierarchicalPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XHierarchicalNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XHierarchicalNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XHierarchicalNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationAccess.html

These data may be read by a procedure such as the following. It demonstrates different approaches
to read data:
// This method reads information about grid settings
protected GridOptions readGridConfiguration() throws com.sun.star.uno.Exception {
 // The path to the root element
 final String cGridOptionsPath = "/org.openoffice.Office.Calc/Grid";
 // create the view
 Object xViewRoot = createConfigurationView(cGridOptionsPath);
 // the result structure
 GridOptions options = new GridOptions();

 // accessing a single nested value
 // the item /org.openoffice.Office.Calc/Grid/Option/VisibleGrid is a boolean data item
 XHierarchicalPropertySet xProperties =
 (XHierarchicalPropertySet)UnoRuntime.queryInterface(XHierarchicalPropertySet.class, xViewRoot);

 Object aVisible = xProperties.getHierarchicalPropertyValue("Option/VisibleGrid");
 options.visible = ((Boolean) aVisible).booleanValue();

 // accessing a nested object and its subproperties
 // the item /org.openoffice.Office.Calc/Grid/Subdivision has sub-properties XAxis and YAxis
 Object xSubdivision = xProperties.getHierarchicalPropertyValue("Subdivision");
 XMultiPropertySet xSubdivProperties = (XMultiPropertySet)UnoRuntime.queryInterface(
 XMultiPropertySet.class, xSubdivision);

 // String array containing property names of sub-properties
 String[] aElementNames = new String[2];

 aElementNames[0] = "XAxis";
 aElementNames[1] = "YAxis";

 // getPropertyVAlues() returns an array of any objects according to the input array aElementNames
 Object[] aElementValues = xSubdivProperties.getPropertyValues(aElementNames);

 options.subdivision_x = ((Integer) aElementValues[0]).intValue();
 options.subdivision_y = ((Integer) aElementValues[1]).intValue();

 // accessing deeply nested subproperties
 // the item /org.openoffice.Office.Calc/Grid/Resolution has sub-properties
 // XAxis/Metric and YAxis/Metric
 Object xResolution = xProperties.getHierarchicalPropertyValue("Resolution");

 XMultiHierarchicalPropertySet xResolutionProperties = (XMultiHierarchicalPropertySet)
 UnoRuntime.queryInterface(XMultiHierarchicalPropertySet.class, xResolution);

 aElementNames[0] = "XAxis/Metric";
 aElementNames[1] = "YAxis/Metric";

 aElementValues = xResolutionProperties.getHierarchicalPropertyValues(aElementNames);

 options.resolution_x = ((Integer) aElementValues[0]).intValue();
 options.resolution_y = ((Integer) aElementValues[1]).intValue();

 // all options have been retrieved - clean up and return
 // we are done with the view - dispose it

 ((XComponent)UnoRuntime.queryInterface(XComponent.class, xViewRoot)).dispose();

 return options;
}

A com.sun.star.configuration.ConfigurationAccess also supports the interfaces
com.sun.star.container.XNamed, com.sun.star.container.XHierarchicalName and
com.sun.star.beans.XPropertySetInfo to retrieve information about the node, as well as inter-
face com.sun.star.container.XChild to get the parent within the hierarchy. To monitor changes
to specific items, register listeners at the interfaces com.sun.star.container.XContainer and
com.sun.star.beans.XPropertySet.

The exact set of interfaces supported depends on the role of the node in the hierarchy. For
example, a set node does not support com.sun.star.beans.XPropertySet and related interfaces,
but it supports com.sun.star.configuration.XTemplateContainer to get information about the
template that specifies the schema of elements. The root object of a configuration view does not
support com.sun.star.container.XChild, but it supports com.sun.star.util.XChangesNoti-
fier to monitor all changes in the whole view.

1052 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/util/XChangesNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XChangesNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XChangesNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XChangesNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XChangesNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XChangesNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/XTemplateContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/XTemplateContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/XTemplateContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XHierarchicalName.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XHierarchicalName.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XHierarchicalName.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationAccess.html

16.4.2 Updating Configuration Data
A com.sun.star.configuration.ConfigurationUpdateAccess provides operations for
updating configuration data, by extendingthe interfaces supported by a com.sun.star.configu-
ration.ConfigurationAccess.

For com.sun.star.beans.XPropertySet and related interfaces, the semantics are extended to set
property values. Support for container interfaces is extended to set properties in group nodes, and
insert or remove elements in set nodes. Thus, a com.sun.star.configuration.GroupUpdate
supports interface com.sun.star.container.XNameReplace and a com.sun.star.configura-
tion.SetUpdate supports com.sun.star.container.XNameContainer. Only complete trees
having the appropriate structure are inserted for sets whose elements are complete structures as
described by a template,. To support this, the set object is used as a factory that can create struc-
tures of the appropriate type. For this purpose, the set supports com.sun.star.lang.XSin-
gleServiceFactory.

Updates done through a configuration view are only visible within that view, providing transac-
tional isolation. When a set of updates is ready, it must be committed explicitly to become visible
beyond this view. All pending updates are then sent to the configuration provider in one batch.

1053

Illustration 16.4: ConfigurationUpdateAccess services

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/SetUpdate.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/SetUpdate.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/SetUpdate.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/SetUpdate.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/SetUpdate.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/SetUpdate.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/GroupUpdate.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/GroupUpdate.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/GroupUpdate.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationUpdateAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationUpdateAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationUpdateAccess.html

This batch update behavior is controlled through interfacecom.sun.star.util.XChangesBatch
that is implemented by the root element of an updatable configuration view.

When a set of changes is committed to the provider it becomes visible to other views obtained from the same
provider as an atomic and consistent set of changes. Thus, in the local scope of a single
com.sun.star.configuration.ConfigurationProvider a high degree of transactional behavior is
achieved.

The configuration management component does not guarantee true transactional behavior. Committing the
changes to the com.sun.star.configuration.ConfigurationProvider does not ensure persistence
or durability of the changes. When the provider writes back the changes to the persistent data store, they
become durable. Generally, the com.sun.star.configuration.ConfigurationProvider may cache
and combine requests, so that updates are propagated to the data store at a later time.

If several sets of changes are combined before being saved, isolation and consistency may be weakened in
case of failure. As long as the backend does not fully support transactions, only parts of an update request
might be stored successfully, thus violating atomicity and consistency.

If failures occur while writing configuration data into the backend data store, the com.sun.star.config-
uration.ConfigurationProvider resynchronizes with the data stored in the backend. The listeners are
notified of any differences as if they had been stored through another view. If an application has more strin-
gent error handling needs, the caching behavior can be adjusted by providing arguments when creating the
view.

In summary, , there are few overall guarantees regarding transactional integrity for the configuration data-
base, but locally, the configuration behaves as if the support is in place. Depending on the backend capabili-
ties, the com.sun.star.configuration.ConfigurationProvider tries to provide the best approxi-
mation to transactional integrity that can be achieved considering the capabilities of the backend without
compromising performance.

The following example demonstrates how the configuration interfaces are used to feed a user-
interface for preference changes. This shows the framework needed to update configuration
values, and demonstrates how listeners are used with configuration views. This example concen-
trates on properties in group nodes with a fixed structure. It uses the same OpenOffice.org Calc
grid settings as the previous example. It assumes that there is a class GridOptionsEditor that
drives a dialog to display and edit the configuration data:
// This method simulates editing configuration data using a GridEditor dialog class
public void editGridOptions() throws com.sun.star.uno.Exception {
 // The path to the root element
 final String cGridOptionsPath = "/org.openoffice.Office.Calc/Grid";

 // create a synchronous view for better error handling (lazywrite = false)
 Object xViewRoot = createUpdatableView(cGridOptionsPath, false);
 // the 'editor'
 GridOptionsEditor dialog = new GridOptionsEditor();

 // set up the initial values and register listeners
 // get a data access interface, to supply the view with a model
 XMultiHierarchicalPropertySet xProperties = (XMultiHierarchicalPropertySet)
 UnoRuntime.queryInterface(XMultiHierarchicalPropertySet.class, xViewRoot);
 dialog.setModel(xProperties);
 // get a listener object (probably an adapter) that notifies
 // the dialog of external changes to its model
 XChangesListener xListener = dialog.createChangesListener();
 XChangesNotifier xNotifier =
 (XChangesNotifier)UnoRuntime.queryInterface(XChangesNotifier.class, xViewRoot);
 xNotifier.addChangesListener(xListener);
 if (dialog.execute() == GridOptionsEditor.SAVE_SETTINGS) {
 // changes have been applied to the view here
 XChangesBatch xUpdateControl =
 (XChangesBatch) UnoRuntime.queryInterface(XChangesBatch.class,xViewRoot);

 try {
 xUpdateControl.commitChanges();

1054 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XChangesBatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XChangesBatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XChangesBatch.html

 }
 catch (Exception e) {
 dialog.informUserOfError(e);
 }
 }

 // all changes have been handled - clean up and return
 // listener is done now
 xNotifier.removeChangesListener(xListener);

 // we are done with the view - dispose it
 ((XComponent)UnoRuntime.queryInterface(XComponent.class, xViewRoot)).dispose();
}

In this example, the dialog controller uses the com.sun.star.beans.XMultiHierarchicalProp-
ertySet interface to read and change configuration values. If the grid options are changed and
committed in another view, com.sun.star.util.XChangesListener:changesOccurred() is sent
to the listener supplied by the dialog which can then update its display accordingly.

Note that a synchronous com.sun.star.configuration.ConfigurationUpdateAccess was
created for this example (argument lazywrite==false). As the action here is driven by user inter-
action, synchronous committing is used to detect errors immediately.

Besides the values for the current user, there are also default values that are determined by
merging the schema with any default layers. It is possible to retrieve the default values for indi-
vidual properties, and to reset a property or a set node to their default states, thus backing out any
changes done for the current user. For this purpose, group nodes support the interfaces
com.sun.star.beans.XPropertyState and com.sun.star.beans.XMultiPropertyStates,
offering operations to query if a property assumes its default state or the default value, and to reset
an updatable property to its default state. The com.sun.star.beans.Property structs available
through com.sun.star.beans.XPropertySetInfo:getPropertyByName() or
com.sun.star.beans.XPropertySetInfo:getProperties() are used to determine if a particular
item or node supports this operation.

Individual set elements can not be reset because set nodes do not support
com.sun.star.beans.XPropertyState. Instead a com.sun.star.configuration.SetAccess
supports com.sun.star.beans.XPropertyWithStatethat resets the set as a whole.

The following is an example code using this feature to reset the OpenOffice.org Calc grid settings
used in the preceding examples to their default state:
/// This method resets the grid settings to their default values
protected void resetGridConfiguration() throws com.sun.star.uno.Exception {
 // The path to the root element
 final String cGridOptionsPath = "/org.openoffice.Office.Calc/Grid";

 // create the view
 Object xViewRoot = createUpdatableView(cGridOptionsPath);

 // ### resetting a single nested value ###
 XHierarchicalNameAccess xHierarchicalAccess =
 (XHierarchicalNameAccess)UnoRuntime.queryInterface(XHierarchicalNameAccess.class, xViewRoot);

 // get using absolute name
 Object xOptions = xHierarchicalAccess.getByHierarchicalName(cGridOptionsPath + "/Option");

 XPropertyState xOptionState =
 (XPropertyState)UnoRuntime.queryInterface(XPropertyState.class, xOptions);

 xOptionState.setPropertyToDefault("VisibleGrid");
 // ### resetting more deeply nested values ###
 Object xResolutionX = xHierarchicalAccess.getByHierarchicalName("Resolution/XAxis");
 Object xResolutionY = xHierarchicalAccess.getByHierarchicalName("Resolution/YAxis");

 XPropertyState xResolutionStateX =
 (XPropertyState)UnoRuntime.queryInterface(XPropertyState.class, xResolutionX);
 XPropertyState xResolutionStateY =
 (XPropertyState)UnoRuntime.queryInterface(XPropertyState.class, xResolutionY);

 xResolutionStateX.setPropertyToDefault("Metric");
 xResolutionStateY.setPropertyToDefault("Metric");
 // ### resetting multiple sibling values ###
 Object xSubdivision = xHierarchicalAccess.getByHierarchicalName("Subdivision");

1055

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyWithState.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyWithState.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyWithState.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/SetAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/SetAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/SetAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyState.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyState.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyState.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html#getProperties
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html#getProperties
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html#getProperties
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html#getPropertyByName
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html#getPropertyByName
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html#getPropertyByName
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Property.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Property.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Property.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertyStates.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertyStates.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertyStates.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyState.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyState.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyState.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationUpdateAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationUpdateAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationUpdateAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XChangesListener.html#changesOccurred
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XChangesListener.html#changesOccurred
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XChangesListener.html#changesOccurred
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiHierarchicalPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiHierarchicalPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiHierarchicalPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiHierarchicalPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiHierarchicalPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiHierarchicalPropertySet.html

 XMultiPropertyStates xSubdivisionStates =
 (XMultiPropertyStates)UnoRuntime.queryInterface(XMultiPropertyStates.class, xSubdivision);

 xSubdivisionStates.setAllPropertiesToDefault();
 // commit the changes
 XChangesBatch xUpdateControl =
 (XChangesBatch) UnoRuntime.queryInterface(XChangesBatch.class, xViewRoot);

 xUpdateControl.commitChanges();

 // we are done with the view - dispose it
 ((XComponent)UnoRuntime.queryInterface(XComponent.class, xViewRoot)).dispose();
}

Currently, group nodes do not support the attribute
com.sun.star.beans.PropertyAttribute:MAYBEDEFAULT set in the
com.sun.star.beans.Property structure available from com.sun.star.beans.XPropertySet-
Info. Attempts to use com.sun.star.beans.XPropertyState:setPropertyToDefault to reset an
entire group node fail.

Also, because the group nodes can not be reset, the
com.sun.star.beans.XPropertyState:setPropertyToDefault or
com.sun.star.beans.XMultiPropertyStates:setAllPropertiesToDefault cannot be used to
reset all descendents of a node.

It is intended to lift this restriction in a future release. To avoid unexpected changes in behavior when this
change is introduced, you should apply
com.sun.star.beans.XPropertyState:setPropertyToDefault only to actual properties, such as
value items, or set nodes. In particular, you should avoid
com.sun.star.beans.XMultiPropertyStates:setAllPropertiesToDefault() on group nodes.

A more comprehensive example is provided that shows how set elements are created and added,
and how it employs advanced techniques for reducing the amount of data that needs to be loaded.

This example uses the OpenOffice.org configuration module org.openoffice.Office.DataAc-
cess. This component has a set item DataSources that contains group items described by the
template DataSourceDescription. A data source description holds information about the settings
required to connect to a data source.

The template org.openoffice.Office.DataAccess/DataSourceDescription has the following
properties that describe the data source connection:

Name Type Comment

URL String Data source URL.

IsPasswordRequired Boolean Is a password needed to connect.

TableFilter String [] Filters tables for display.

TableTypeFilter String [] Filters tables for display.

User String User name to be used for connecting.

LoginTimeout int Default time-out for connection attempt.

SuppressVersionColumns Boolean Controls display of certain data.

DataSourceSettings set node Contains DataSourceSetting entriesthat
contain driver-specific settings.

Bookmarks set node Contains Bookmark entries that link to related
documents, for example, Forms.

It also contains the binary properties NumberFormatSettings and LayoutInformation that store
information for layout and display of the data source contents. It also contains the set items Tables
and Queries containing the layout information for the data access views.

1056 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertyStates.html#setAllPropertiesToDefault
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertyStates.html#setAllPropertiesToDefault
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertyStates.html#setAllPropertiesToDefault
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyState.html#setPropertyToDefault
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyState.html#setPropertyToDefault
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyState.html#setPropertyToDefault
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertyStates.html#setAllPropertiesToDefault
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertyStates.html#setAllPropertiesToDefault
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertyStates.html#setAllPropertiesToDefault
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyState.html#setPropertyToDefault
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyState.html#setPropertyToDefault
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyState.html#setPropertyToDefault
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyState.html#setPropertyToDefault
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyState.html#setPropertyToDefault
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyState.html#setPropertyToDefault
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Property.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Property.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Property.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyAttribute.html#MAYBEDEFAULT
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyAttribute.html#MAYBEDEFAULT
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyAttribute.html#MAYBEDEFAULT

The example shows a procedure that creates and saves basic settings for connecting to a new data
source. It uses an asynchronous com.sun.star.configuration.ConfigurationUpdateAccess.
Thus, when com.sun.star.util.XChangesBatch:commitChanges is called, the data becomes
visible at the com.sun.star.configuration.ConfigurationProvider, but is only stored in the
provider's cache. It is written to the data store at later when the cache is automatically flushed by
the com.sun.star.configuration.ConfigurationProvider. As this is done in the background
there is no exception when the write-back fails.

The recommended method to configure a new data source is to use the com.sun.star.sdb.DatabaseC-
ontext service as described in 13.2.1 Database Access - Data Sources in OpenOffice.org API - DatabaseContext.
This is a high-level service that ensures that all the settings required to establish a connection are properly
set.

Among the parameters of the routine is the name of the data source that must be chosen to
uniquely identify the data source from other parameters directly related to the above properties.
There also is a parameter to pass a list of entries for the DataSourceSettings set.

The resulting routine is: (Config/ConfigExamples.java)
// This method stores a data source for given connection data
void storeDataSource(
 String sDataSourceName,
 String sDataSourceURL,
 String sUser,
 boolean bNeedsPassword,
 int nTimeout,
 com.sun.star.beans.NamedValue [] aDriverSettings,
 String [] aTableFilter) throws com.sun.star.uno.Exception {

 // create the view and get the data source element in a
 // helper method createDataSourceDescription() (see below)
 Object xDataSource = createDataSourceDescription(getProvider(), sDataSourceName);
 // set the values
 XPropertySet xDataSourceProperties = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xDataSource);
 xDataSourceProperties.setPropertyValue("URL", sDataSourceURL);
 xDataSourceProperties.setPropertyValue("User", sUser);
 xDataSourceProperties.setPropertyValue("IsPasswordRequired", new Boolean(bNeedsPassword));
 xDataSourceProperties.setPropertyValue("LoginTimeout", new Integer(nTimeout));
 if (aTableFilter != null)
 xDataSourceProperties.setPropertyValue("TableFilter", aTableFilter);

 // ### store the driver-specific settings ###
 if (aDriverSettings != null) {
 Object xSettingsSet = xDataSourceProperties.getPropertyValue("DataSourceSettings");
 // helper for storing (see below)
 storeSettings(xSettingsSet, aDriverSettings);
 }

 // ### save the data and dispose the view ###
 // recover the view root (helper method)
 Object xViewRoot = getViewRoot(xDataSource);
 // commit the changes
 XChangesBatch xUpdateControl = (XChangesBatch) UnoRuntime.queryInterface(
 XChangesBatch.class, xViewRoot);

 xUpdateControl.commitChanges();

 // now clean up
 ((XComponent) UnoRuntime.queryInterface(XComponent.class, xViewRoot)).dispose();
}

Notice the function createDataSourceDescription in our example. It is called to get a Data-
SourceDescription instance to access a pre-existing item, or create and insert a new item using
the passed name.

The function is optimized to reduce the view to as little data as necessary. To this end it employs
the depth parameter when creating the view.

1057

http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DatabaseContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DatabaseContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DatabaseContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DatabaseContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DatabaseContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdb/DatabaseContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XChangesBatch.html#commitChanges
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XChangesBatch.html#commitChanges
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XChangesBatch.html#commitChanges
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationUpdateAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationUpdateAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationUpdateAccess.html

The "depth" parameter for optimization purposes is used here for demonstration purposes only. Use of the
"depth" flag does not have a noticeable effect on performance with the current implementation of the
OpenOffice.org configuration management components. Actually, there are few cases where the use of this
parameter has any value.

This results in a view where descendents of the root are only included in the view up to the given
nesting depth. In this case, where depth = 1, only the immediate children are loaded. If the
requested item is found, the function gets a deeper view for only that item, otherwise it creates a
new instance. In the latter case, the item returned is not the root of the view. (Config/ConfigExam-
ples.java)
/** This method gets the DataSourceDescription for a data source.
 It either gets the existing entry or creates a new instance.

 The method attempts to keep the view used as small as possible. In particular there
 is no view created, that contains data for all data source that are registered.
*/
Object createDataSourceDescription(XMultiServiceFactory xProvider, String sDataSourceName)

throws com.sun.star.uno.Exception {
 // The service name: Need an update access:
 final String cUpdatableView = "com.sun.star.configuration.ConfigurationUpdateAccess";
 // The path to the DataSources set node
 final String cDataSourcesPath = "/org.openoffice.Office.DataAccess/DataSources";
 // creation arguments: nodepath
 com.sun.star.beans.PropertyValue aPathArgument = new com.sun.star.beans.PropertyValue();
 aPathArgument.Name = "nodepath";
 aPathArgument.Value = cDataSourcesPath ;

 // creation arguments: commit mode
 com.sun.star.beans.PropertyValue aModeArgument = new com.sun.star.beans.PropertyValue();
 aModeArgument.Name = "lazywrite";
 aModeArgument.Value = new Boolean(true);

 // creation arguments: depth
 com.sun.star.beans.PropertyValue aDepthArgument = new com.sun.star.beans.PropertyValue();
 aDepthArgument.Name = "depth";
 aDepthArgument.Value = new Integer(1);

 Object[] aArguments = new Object[3];
 aArguments[0] = aPathArgument;
 aArguments[1] = aModeArgument;
 aArguments[2] = aDepthArgument;

 // create the view: asynchronously updatable, with depth 1
 Object xViewRoot =
 xProvider.createInstanceWithArguments(cUpdatableView, aArguments);
 XNameAccess xSetOfDataSources = (XNameAccess) UnoRuntime.queryInterface(
 XNameAccess.class,xViewRoot);
 Object xDataSourceDescriptor = null; // the result
 if (xSetOfDataSources .hasByName(sDataSourceName)) {
 // the element is there, but it is loaded only with depth zero !
 try {
 // the view should point to the element directly, so we need to extend the path
 XHierarchicalName xComposePath = (XHierarchicalName) UnoRuntime.queryInterface(
 XHierarchicalName.class, xSetOfDataSources);

 String sElementPath = xComposePath.composeHierarchicalName(sDataSourceName);
 // use the name of the element now
 aPathArgument.Value = sElementPath;
 // create another view now (without depth limit)
 Object[] aDeepArguments = new Object[2];
 aDeepArguments[0] = aPathArgument;
 aDeepArguments[1] = aModeArgument;

 // create the view: asynchronously updatable, with unlimited depth
 xDataSourceDescriptor =
 xProvider.createInstanceWithArguments(cUpdatableView, aDeepArguments);
 if (xDataSourceDescriptor != null) // all went fine
 {
 // dispose the other view
 ((XComponent)UnoRuntime.queryInterface(XComponent.class, xViewRoot)).dispose();
 xViewRoot = null;
 }
 }

1058 OpenOffice.org 2.3 Developer's Guide • June 2007

 catch (Exception e) {
 // something went wrong, we retry with a new element
 System.out.println("WARNING: An exception occurred while creating a view" +
 " for an existing data source: " + e);
 xDataSourceDescriptor = null;
 }
 }

 // do we have a result element yet ?
 if (xDataSourceDescriptor == null) {
 // get the container
 XNameContainer xSetUpdate = (XNameContainer)UnoRuntime.queryInterface(
 XNameContainer.class, xViewRoot);

 // create a new detached set element (instance of DataSourceDescription)
 XSingleServiceFactory xElementFactory = (XSingleServiceFactory)UnoRuntime.queryInterface(
 XSingleServiceFactory.class, xSetUpdate);

 // the new element is the result !
 xDataSourceDescriptor = xElementFactory.createInstance();
 // insert it - this also names the element
 xSetUpdate.insertByName(sDataSourceName , xDataSourceDescriptor);
 }

 return xDataSourceDescriptor ;
}

A method is required to recover the view root from an element object, because it is unknown if the
item is the root of the view or a descendant : (Config/ConfigExamples.java)
// This method get the view root node given an interface to any node in the view
public static Object getViewRoot(Object xElement) {
 Object xResult = xElement;

 // set the result to its parent until that would be null
 Object xParent;
 do {
 XChild xParentAccess =
 (XChild) UnoRuntime.queryInterface(XChild.class,xResult);

 if (xParentAccess != null)
 xParent = xParentAccess.getParent();
 else
 xParent = null;

 if (xParent != null)
 xResult = xParent;
 }
 while (xParent != null);

 return xResult;
}

Another function used is storeDataSource is storeSettings to store an array of
com.sun.star.beans.NamedValues in a set of DataSourceSetting items. A DataSourceSetting
contains a single property named Value that is set to any of the basic types supported for configu-
ration values. This example demonstrates the two steps required to add a new item to a set node:
(Config/ConfigExamples.java)
/// this method stores a number of settings in a set node containing DataSourceSetting objects
void storeSettings(Object xSettingsSet, com.sun.star.beans.NamedValue [] aSettings)

throws com.sun.star.uno.Exception {

 if (aSettings == null)
 return;

 // get the settings set as a container
 XNameContainer xSettingsContainer =
 (XNameContainer) UnoRuntime.queryInterface(XNameContainer.class, xSettingsSet);
 // and get a factory interface for creating the entries
 XSingleServiceFactory xSettingsFactory =
 (XSingleServiceFactory) UnoRuntime.queryInterface(XSingleServiceFactory.class, xSettingsSet);
 // now insert the individual settings
 for (int i = 0; i < aSettings.length; ++i) {
 // create a DataSourceSetting object
 XPropertySet xSetting = (XPropertySet)
 UnoRuntime.queryInterface(XPropertySet.class, xSettingsFactory.createInstance());
 // can set the value before inserting
 xSetting.setPropertyValue("Value", aSettings[i].Value);

1059

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html

 // and now insert or replace as appropriate
 if (xSettingsContainer.hasByName(aSettings[i].Name))
 xSettingsContainer.replaceByName(aSettings[i].Name, xSetting);
 else
 xSettingsContainer.insertByName(aSettings[i].Name, xSetting);
 }
}

Besides adding a freshly created instance of a template, a set item can be removed from a set and
added to any other set supporting the same template for its elements, provided both sets are part
of the same view. You cannot move a set item between views, as this contradicts the transactional
isolation of views. The set item you removed in one view will still be in its old place in the other. If
a set item is moved between sets in one view and the changes are committed, the change appears
in another overlapping view as removal of the original item and insertion of a new element in the
target location, not as relocation of an identical element.

The methods com.sun.star.container.XNamed:setName() and
com.sun.star.container.XChild:setParent() are supported by a com.sun.star.configura-
tion.ConfigurationUpdateAccess only if it is a com.sun.star.configuration.SetElement.
They offer another way to move an item within a set or from one set to another set.

In the current release of OpenOffice.org, these methods are not supported correctly. You can achieve the
same effect by using a sequence of remove item - insert item.

In some cases you need to commit the changes in the current view between these two steps.

To rename an item: (Config/ConfigExamples.java)

/// Does the same as xNamedItem.setName(sNewName) should do
void renameSetItem(XNamed xNamedItem, String sNewName) throws com.sun.star.uno.Exception {
 XChild xChildItem = (XChild)
 UnoRuntime.queryInterface(XChild.class, xNamedItem);

 XNameContainer xParentSet = (XNameContainer)
 UnoRuntime.queryInterface(XNameContainer.class, xChildItem.getParent());

 String sOldName = xNamedItem.getName();
 // now rename the item
 xParentSet.removeByName(sOldName);
 // commit needed to work around known bug
 getViewRoot(xParentSet).commitChanges();
 xParentSet.insertByName(sNewName,xNamedItem);
}

To move an item to a different parent: (Config/ConfigExamples.java)

/// Does the same as xChildItem.setParent(xNewParent) should do
void moveSetItem(XChild xChildItem, XNameContainer xNewParent) throws com.sun.star.uno.Exception {
 XNamed xNamedItem = (XNamed)
 UnoRuntime.queryInterface(XNamed.class, xChildItem);

 XNameContainer xOldParent = (XNameContainer)
 UnoRuntime.queryInterface(XNameContainer.class, xChildItem.getParent());

 String sItemName = xNamedItem.getName();
 // now rename the item
 xOldParent.removeByName(sItemName);
 // commit needed to work around known bug
 getViewRoot(xOldParent).commitChanges();
 xNewParent.insertByName(sItemName,xChildItem);
}

16.5 Customizing Configuration Data
The configuration management API is a data manipulation API. There is no support for data defi-
nition functionality. You cannot programmatically inspect, modify or create a configuration
schema.

1060 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/SetElement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/SetElement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/SetElement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationUpdateAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationUpdateAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationUpdateAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationUpdateAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationUpdateAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationUpdateAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html#setParent
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html#setParent
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html#setParent
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html#setName
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html#setName
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNamed.html#setName

You can add configuration data for your own components by creating a new configuration schema
file and installing it into the configuration backend. You can also create a configuration data file for
either your own schema or an existing schema and import it into the configuration database. The
file format used for both kinds of configuration documents is documented at
http://util.openoffice.org/common/configuration/oor-document-format.html.

The standard file-based backend uses these file formats internally as well. Some information about
the internal organization of this backend is available at http://util.openoffice.org/common/configura-
tion/oor-registry.html.

16.5.1 Creating a Custom Configuration Schema
A configuration schema file is an XML file that conforms to the OOR Registry Component Schema
Format defined in http://util.openoffice.org/common/configuration/oor-document-format.html .
Normally, configuration schema files carry the extension .xcs.

Not all schemas that can be described using the OOR Registry Component Schema Format are accepted by
the current version of OpenOffice.org. In particular support for extensible nodes is limited: Only group
nodes that otherwise contain no child elements may be marked as extensible. Such nodes are represented as
set nodes having property elements in the API.

As an example, consider the schema of the rg.openoffice.Office.Addons component. For details about
configuration for Addon components, see 4.7.3 Writing UNO Components - Integrating Components
into OpenOffice.org - User Interface Add-Ons - Configuration.
<?xml version='1.0' encoding='UTF-8'?>
<oor:component-schema oor:name="Addons" oor:package="org.openoffice.Office" xml:lang="en-US"
xmlns:oor="http://openoffice.org/2001/registry" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <templates>
 <group oor:name="MenuItem">
 <prop oor:name="URL" oor:type="xs:string"/>
 <prop oor:name="Title" oor:type="xs:string" oor:localized="true"/>
 <prop oor:name="ImageIdentifier" oor:type="xs:string"/>
 <prop oor:name="Target" oor:type="xs:string"/>
 <prop oor:name="Context" oor:type="xs:string"/>
 <set oor:name="Submenu" oor:node-type="MenuItem"/>
 </group>
 <group oor:name="PopupMenu">
 <prop oor:name="Title" oor:type="xs:string" oor:localized="true"/>
 <prop oor:name="Context" oor:type="xs:string"/>
 <set oor:name="Submenu" oor:node-type="MenuItem"/>
 </group>
 <group oor:name="ToolBarItem">
 <prop oor:name="URL" oor:type="xs:string"/>
 <prop oor:name="Title" oor:type="xs:string" oor:localized="true"/>
 <prop oor:name="ImageIdentifier" oor:type="xs:string"/>
 <prop oor:name="Target" oor:type="xs:string"/>
 <prop oor:name="Context" oor:type="xs:string"/>
 </group>
 <group oor:name="UserDefinedImages">
 <prop oor:name="ImageSmall" oor:type="xs:hexBinary"/>
 <prop oor:name="ImageBig" oor:type="xs:hexBinary"/>
 <prop oor:name="ImageSmallHC" oor:type="xs:hexBinary"/>
 <prop oor:name="ImageBigHC" oor:type="xs:hexBinary"/>
 <prop oor:name=”ImageSmallURL” oor:type=”xs:string”/>
 <prop oor:name=”ImageBigURL” oor:type=”xs:string”/>
 <prop oor:name=”ImageSmallHCURL” oor:type=”xs:string”/>
 <prop oor:name=”ImageBigHCURL” oor:type=”xs:string”/>
 </group>
 <group oor:name="Images">
 <prop oor:name="URL" oor:type="xs:string"/>
 <node-ref oor:name="UserDefinedImages" oor:node-type="UserDefinedImages"/>
 </group>
 <set oor:name="ToolBarItems" oor:node-type="ToolBarItem"/>
 </templates>
 <component>
 <group oor:name="AddonUI">
 <set oor:name="AddonMenu" oor:node-type="MenuItem"/>
 <set oor:name="Images" oor:node-type="Images"/>
 <set oor:name="OfficeMenuBar" oor:node-type="PopupMenu"/>
 <set oor:name="OfficeToolBar" oor:node-type="ToolBarItems"/>

1061

 <set oor:name="OfficeHelp" oor:node-type="MenuItem"/>
 </group>
 </component>
</oor:component-schema>

The schema has an XML root node that contains two parts, a list of template definitions and a defi-
nition of the component tree. The root node also declares XML namespaces that are used within
the schema. Template definitions describe configuration tree fragments, which can be reused
within the schema by reference or as element type of set nodes. In the case of set elements they
serve as blueprints from which new instances of set items are built by the configuration manage-
ment API components. Templates can either be group nodes or set nodes. The component part
describes the actual data tree of the component. The component node is a special group node that
represents the root of the component tree. Both parts are optional in the schema definition. A
schema may provide only templates for reuse by other components or it may describe only a
component tree without defining any templates of its own.

The tree structure is built from group nodes, set nodes. Properties are represented as prop nodes.
The XML elements contain the information necessary to identify the node and its type as attributes.
They may further contain extra child elements that contain human-readable descriptions of the
node or that specify constraints on the permissible or meaningful values of properties. Property
elements may also contain a default value.

Currently the OpenOffice.org configuration management components do not handle XML namespaces
correctly. Namespace prefixes must be named and used exactly as in the example. Nevertheless, all
namespaces used should be declared correctly, to enable processing configuration files by namespace-aware
tools.

A schema must be installed into the backend to be usable. Once a schema is installed the compo-
nent it describes can be accessed through the configuration management API. An installed schema
is assumed to not change any more.

16.5.2 Preparing Custom Configuration Data
A configuration data file is an XML file that conforms to the OOR Registry Update Format defined
in http://util.openoffice.org/common/configuration/oor-document-format.html . Normally, configuration
data files carry the extension .xcu.

A configuration data file contains changes to a configuration tree. When configuration data is read,
an initial configuration tree is constructed from the component data described in the component
schema. Then the configuration data files from all applicable layers are successively applied to this
configuration tree. A layer is applied by applying the changes to the tree described by the data file
while respecting any access control attributes and ensuring that the changes conform to the
schema. Simple schema violations, like trying to update a node that does not exist in the configura-
tion tree, are simply ignored. Outright schema violations, like updates that specify a data type that
disagrees with the type specified in the schema, are considered errors and result in complete
failure to read the component.

As an example, consider data for a sample Addon component. For details about configuration for
Addon components, see 4.7.3 Writing UNO Components - Integrating Components into OpenOffice.org
- User Interface Add-Ons - Configuration.
<?xml version='1.0' encoding='UTF-8'?>
<oor:component-data xmlns:oor="http://openoffice.org/2001/registry"
xmlns:xs="http://www.w3.org/2001/XMLSchema" oor:name="Addons" oor:package="org.openoffice.Office">
 <node oor:name="AddonUI">
 <node oor:name="OfficeMenuBar">
 <node oor:name="org.openoffice.example.addon" oor:op="replace">
 <prop oor:name="Title" oor:type="xs:string">
 <value xml:lang="en-US">Add-On example</value>
 <value xml:lang=”de”>Add-On Beispiel</value>
 </prop>

1062 OpenOffice.org 2.3 Developer's Guide • June 2007

 <prop oor:name="Context" oor:type="xs:string">
 <value>com.sun.star.text.TextDocument</value>
 </prop>
 <node oor:name="Submenu">
 <node oor:name="m1" oor:op="replace">
 <prop oor:name="URL">
 <value>org.openoffice.Office.addon.example:Function1</value>
 </prop>
 <prop oor:name="Title">
 <value xml:lang=”en-US”>Add-On Function 1</value>
 <value xml:lang="de">Add-On Funktion 1</value>
 </prop>
 <prop oor:name="Target">
 <value>_self</value>
 </prop>
 </node>
 </node>
 </node>
 </node>
 </node>
</oor:component-data>

The component-data root element of the configuration data XML corresponds to the component
element of the associated schema. The elements of the update format do not reflect the distinction
between set nodes and group nodes. All changes to structural nodes are expressed in the same way
as simple node elements. Changes to property nodes use their own element tag. If a property has
been declared as localized in the schema, the data file may contain different values for different
locales. Changes may contain an operation attribute, which describes how the data is to be
combined with preexisting data from the configuration tree, in order to obtain the result configura-
tion data tree.

Changes also may contain access control attributes that restrict how the data can be overwritten by
data in subsequent data layers. These access control attributes are not currently available directly
through the configuration management API. But if a node in a default layer is protected from being
overwritten by the user layer, the protection is reflected in the API by marking the corresponding
node as read-only or non-removable.

Currently the OpenOffice.org configuration management components do not handle XML namespaces
correctly. Namespace prefixes must be named and used exactly as in the example. Nevertheless, all
namespaces used should be declared correctly, to enable processing configuration files by namespace-aware
tools.

Configuration data must be imported or installed into the backend to be effective.

16.5.3 Installing Custom Configuration Data
The easiest way to install configuration schema or data files is by using the Extension Manager to
deploy configuration data as part of an extension. For details, see 5 Extensions.

To manually install configuration data for an existing schema, use the API to import the data into
the backend. You can use service com.sun.star.configuration.backend.LocalDataImporter
to import configuration data from a file. If you need more control or want to import data that is not
stored in a local file, then you can directly use the services
com.sun.star.configuration.backend.MergeImporter and
com.sun.star.configuration.backend.CopyImporter, which the LocalDataImporter itself
uses internally.

Using these services, the configuration data is imported directly into the backend, bypassing any
existing com.sun.star.configuration.ConfigurationProvider instances.

After importing configuration data, a running OpenOffice.org instance should be terminated and restarted
to make sure that the new data becomes visible despite internal caching.

1063

http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/LocalDataImporter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/LocalDataImporter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/LocalDataImporter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/CopyImporter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/CopyImporter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/CopyImporter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/MergeImporter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/MergeImporter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/MergeImporter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/LocalDataImporter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/LocalDataImporter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/LocalDataImporter.html

If you can not use extensions, you can manually install schemas and associated data files into the
standard, local file-based backend. The internal organization of that backend is described at
http://util.openoffice.org/common/configuration/oor-registry.html.

To manually install a schema into the local file-based based backend, copy it to the schema subdi-
rectory corresponding to the package the schema belongs to and make sure it has the proper name.
For example, a schema for component org.myorg.MySettings, has the name “MySettings” and
package “org.myorg”. To install it, you have to create directory
<OfficeInstallation>/share/registry/schema/org/myorg and copy the schema file there as
MySettings.xcs.

To manually install the associated default configuration data, create the the corresponding configu-
ration data directory <OfficeInstallation>/share/registry/data/org/myorg and place the
file there as MySettings.xcu.

16.6 Adding a Backend Data Store
The configuration management components select and access a data store according to parameters
passed at runtime or specified in file configmgr(.ini|rc).

The parameter BackendService (ini-file entry: CFG_BackendService) specifies an UNO service or
implementation name. This name is used to create a service instance that is used as backend. It
must implement either service com.sun.star.configuration.backend.Backend or service
com.sun.star.configuration.backend.SingleBackend. If service SingleBackend is discov-
ered, a com.sun.star.configuration.backend.BackendAdapter is created, which implements
service Backend on top of a SingleBackend. By default, a
com.sun.star.configuration.backend.SingleBackendAdapter is used; a different implemen-
tation can be specified by the BackendWrapper (ini-file entry: CFG_BackendWrapper) parameter.

You can provide your own implementation of services
com.sun.star.configuration.backend.Backend,
com.sun.star.configuration.backend.SingleBackend
orcom.sun.star.configuration.backend.BackendAdapter to access a different data store.

You can use your own backend as the default backend within OpenOffice.org by changing
configmg(.ini|rc) to name your implementations instead of the default backends. You can use your
own backend for selected data only by creating a custom com.sun.star.configuration.Config-
urationProvider with arguments that override the default parameters.

We are working on providing an implementation of
com.sun.star.configuration.backend.Backend that allows combining layers from different
different data stores in a flexible manner. This feature will become available in a future version of
OpenOffice.org. For more information, visit http://util.openoffice.org.

1064 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/Backend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/Backend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/Backend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/ConfigurationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/BackendAdapter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/BackendAdapter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/BackendAdapter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/SingleBackend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/SingleBackend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/SingleBackend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/Backend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/Backend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/Backend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/SingleBackendAdapter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/SingleBackendAdapter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/SingleBackendAdapter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/SingleBackend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/SingleBackend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/SingleBackend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/Backend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/Backend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/Backend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/BackendAdapter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/BackendAdapter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/BackendAdapter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/SingleBackend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/SingleBackend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/SingleBackend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/SingleBackend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/SingleBackend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/SingleBackend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/Backend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/Backend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/configuration/backend/Backend.html

17 JavaBean for office components

17.1 Introduction
This chapter describes the OOoBean component, a generic Java Bean wrapper for OpenOffice.org
components. It is assumed that the reader is familiar with the Java Beans technology. Additional
information about Java Beans can be found at http://java.sun.com/beans.

With the OOoBean, a developer can easily write Java applications, harnessing the power of
OpenOffice.org. It encapsulates a connection to a locally running OpenOffice.org process, and
hides the complexity of establishing and maintaining that connection from the developer.

It also allows embedding of OpenOffice.org documents within the Java environment. It provides a
Java AWT window into which the backend OpenOffice.org process draws its visual representation.
This window can then be plugged into the UI hierarchy of the hosting Java application. The
embedded document is controlled from the Java environment, since the OOoBean allows devel-
opers to access the complete OpenOffice.org API from their Java environment giving them full
control over the embedded document, its appearance and behavior.

17.2 Using the OOoBean
The Java class OOoBean can be instantiated directly, or application classes can be derived from this
class. If a real Java Bean is to be created, which for example can be used in Java Bean UI builders,
it has to be subclassed. The application class then might use the UNO bootstrapping mechanism to
find the OOoBean, OpenOffice.org and its API classes. This mechanism is not build into OOoBean
itself because it can not be used to find itself. And once the OOoBean class has been found, you
intrinsically also find the OpenOffice.org installation and the API classes.

A standard OpenOffice.org is a prerequisite. The OpenOffice.org executable, as well as the UNO
libraries and runtime, is found using the Java Class Loader. Moving or copying the needed class
files will not result in a working OOoBean.

Since the Office Bean uses a native peer to render OpenOffice.org documents, Swing components, such as
drop-down menus or list boxes appear behind it, or they are not displayed at all. One way to avoid this is by
exclusively employing AWT components when using the Office Bean. Another, but only partial, solution is
to tell Java Swing to create heavy weight windows for popup menus: JPopupMenu.setDefaultLight-
WeightPopupEnabled.

1065

17.3 The OOoBean by Example
The OOoBeanViewer is a Java application that displays OpenOffice.org documents in a Java AWT
applet, which allows for the control of some toolboxes, the menu bar and the status bar, as well as
storing and loading the document content to/from an internal buffer.

The OOoBeanViewer (see (OfficeBean/OOoBeanViewer.java)) utilizes the class OOoBean directly
without subclassing it:
public class OOoBeanViewer extends java.applet.Applet
{

...
private OOoBean aBean;
...

public void init()
{

aBean = new OOoBean();
}

...
{

add(aBean);
}

}

Initially, the OOoBean component does not contain a document. A document can be created with
the loadFromURL method:
 private void createBlankDoc(String url, String desc)
 {
 //Create a blank document
 try
 {
 aBean.loadFromURL(url, null);

 }
 catch (com.sun.star.comp.beans.SystemWindowException aExc)
 {

 // this exception will be thrown when no system window parent can be found
 ...

 }
 catch (com.sun.star.comp.beans.NoConnectionException aExc)

1066 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 17.1

 {
 // this exception is thrown
 // when no connection to a OpenOffice.org instance can be established

 ...
 }
 catch (Exception aExc)
 {
 ...
 }
 }

Some tool windows of the document window within the Java Bean can be controlled directly by
the OOoBean API. For example, to toggle visibility of the menu bar:

aBean.setMenuBarVisible(!aBean.isMenuBarVisible());

The examples above provide an overview of how the OOoBean API is used to create Java Beans that
can be used in Java applications and applets. For concrete Java Beans, you usually subclass
OOoBean and create appropriate BeanInfo classes for integrating within an IDE (Integrated Devel-
opment Environment), such as the Bean Development Kit or Forte for Java. Developers can use the
examples as a guideline when using the OOoBean API to write new beans, or use or extend the
example beans.

17.4 API Overview
The OOoBean offers methods that can be applied to all OpenOffice.org document types.

Methods of com.sun.star.comp.beans.OOoBean
OOoBean() constructor � creates an OOoBean with an implicit connection

OOoBean(
 OfficeConnection)

constructor � creates an OOoBean with an explicit connection

setOOoStartTimeOut(...
)

void � sets the timeout for methods which start OpenOffice.org

setOOoCallTimeOut(...) void � sets the timeout for other methods

SetOOoCheckCycle(...) void -- sets repeat period for cyclic OpenOffice.org alive check

setOOoConnection(...) void -- sets an explicit connection to a OpenOffice.org instance

startOOoConnection(...
)

void -- starts a connection with an explicit connection URL

isOOoConnected() boolean -- returns whether the OOoBean is connected to a OpenOffice.org

stopOOoConnection() void -- stops the current connection to OpenOffice.org

getOOoConnection() OfficeConnection � returns the current connection to OpenOffice.org

getMultiServiceFac-
tory()

XMultiServiceFactory -- returns the service factgory of the connected
OpenOffice.org

getOOoDesktop() XDesktop � returns the desktop object of the connected OpenOffice.org

clearDocument() void -- resets the Bean to an empty document

clear() void � removes the document from the Bean

aquireSystemWindow() void � has to be called when the Bean has a parent component which has a
valid system window

1067

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDesktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDesktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDesktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html

Methods of com.sun.star.comp.beans.OOoBean
releaseSystemWindow() void -- has to be called before the parent component loses its system

window, e.g. before it is removed from its parent omponent

loadFromURL() void -- loads a document into the Bean

loadFromStream() void -- loads a document from a Java stream int o the Bean

loadFromByteArray() void -- loads a document from a byte array into the Bean

storeToURL() void � stores the document in the Bean to an URL

storeToStream() void � stores the document in the Bean to a stream

storeToByteArray() void � stores the document in the Bean to a byte array

getFrame() Frame -- returns a wrapper for Frame

getController() Controller -- returns a wrapper for Controller
getDocument() Document -- returns a wrapper for OfficeDocument
setAllBarsVisible() void � sets visibility of all tool bars, known by this Bean

set...BarVisible() void � sets visibility of a specific tool bar

is...BarVisible() boolean � returns visibility of a specific tool bar

17.5 Configuring the Office Bean

1068 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 17.2

http://api.openoffice.org/docs/common/ref/com/sun/star/model/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/model/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/model/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Controller.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Controller.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Controller.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html

The fundamental framework of the Office Bean is contained in the officebean.jar archive file that
depends on a local library officebean.dll or libofficebean.so, depending on the platform. The interac-
tion between the backend OpenOffice.org process, officebean local library, Office Bean and the
Java environment is shown in the illustration below.

The Office Bean allows the developer to connect to and communicate with the OpenOffice.org
process through a named pipe. It also starts up a OpenOffice.org instance if it cannot connect to a
running office. This is implemented in the Office Bean local library. The Office Bean depends on
three configuration settings to make this work. It has to find the local library, needs the location of
the OpenOffice.org executable, and the bean and office must know the pipe name to use.

17.5.1 Default Configuration
The Office Bean uses default values for all the configuration settings, if none are provided:

• Since OpenOffice.org 1.1.0 the officebean.jar is located in the <OfficePath>/program/classes direc-
tory.

• It looks for the local library (Windows: officebean.dll, Unix: libofficebean.so) relative to the office-
bean.jar in the <OfficePath>/program directory. The local library depends on the following shared
libraries:

a) The library sal3 (Windows: sal3.dll, Unix: libsal3.so) is located in the <OfficePath>/program
folder. It maybe necessary to add the <OfficePath>/program folder to the PATH environment
variable if the bean cannot find sal3.

b) The library jawt.dll is needed in Windows. If the bean cannot find it, check the Java Runtime
Environment binaries (<JRE>/bin) in your PATH environment variable.

• It expects the OpenOffice.org installation in the default install location for the current platform.
The soffice executable is in the program folder of a standard installation.

• The pipe name is created using the value of the user.name Java property. The name of the pipe
is created by appending "_office" to the name of the currently logged on user, for example, if
the user.name is "JohnDoe", the name of the pipe is "JohnDoe_office".

Based on these default values, the Office Bean tries to connect to an office. The office must run in
in listening mode. That is, it must have been started with the -accept command line option. If there
is no running office, then it attempts to start one. The exact parameters used by the bean are:

WINDOWS
soffice.exe -bean -accept=pipe,name=<user.name>_Office;urp;StarOffice.NamingService
UNIX
soffice -bean "-accept=pipe,name=<user.name>_Office;urp;StarOffice.NamingService"

There is a limitation in the communication process with the Office Bean and older versions of
OpenOffice.org. If a OpenOffice.org process is already running that was not started with the proper -
accept=pipe option, the Office Bean does not connect to it. Since OpenOffice.org 1.1.0 this limitation is
obsolete.

In case an office document is displayed outside of the Java frame, then the office has probably been
started with wrong or no arguments. Providing the proper command-line arguments is necessary,
so that theOpenOffice.org process can open a correctly named pipe, through which it communi-
cates with the Java application. Only if this pipe can be established, the office will display the
document in the Java window.

1069

You can avoid providing the command-line options by editing the file <OfficePath>\user\config
\registry\instance\org\openoffice\Setup.xml. Within the <Office/> element, the developer adds an
<ooSetupConnectionURL/> element with settings for a named pipe. The following example shows
a user-specific Setup.xml that configures a named pipe for a user named JohnDoe:
<?xml version="1.0" encoding="UTF-8"?>
<Setup state="modified" cfg:package="org.openoffice"
 xmlns="http://openoffice.org/2000/registry/components/Setup"
 xmlns:cfg="http://openoffice.org/2000/registry/instance"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance">
 <Office>
 <ooSetupConnectionURL cfg:type="string">
 pipe,name=JohnDoe_Office;urp;StarOffice.NamingService
 </ooSetupConnectionURL>
 <Factories cfg:element-type="Factory">
 <Factory cfg:name="com.sun.star.text.TextDocument">
 <ooSetupFactoryWindowAttributes cfg:type="string">
 193,17,1231,1076;1;
 </ooSetupFactoryWindowAttributes>
 </Factory>
 </Factories>
 </Office>
</Setup>

With this user-specific Setup.xml file, the office opens a named pipe JohnDoe_Office whenever it
starts up. It does not matter if the user double clicks a document, runs the Quickstarter, or starts a
new, empty document from a OpenOffice.org template.

17.5.2 Customized Configuration
Besides these default values, the Office Bean is configured to use other parameters. There are tree
possibilities, starting the connection with an explicit UNO URL including path and pipe name
parameters, creating the connection manually and handing this object to the OOoBean or creating
the OOoBean with such a manually created connection object.

The first method that a developer uses to configure the Office Bean is through the UNO URL
passed in the setUnoUrl() call. The syntax of the UNO URL is as follows:
 url := 'uno:localoffice'[','<params>]';urp;StarOffice.NamingService'
 params := <path>[','<pipe>]
 path := 'path='<pathv>
 pipe := 'pipe='<pipev>
 pathv := platform_specific_path_to_the_local_office_distribution
 pipev := local_office_connection_pipe_name

Here is an example of how to use setUnoUrl() in code:
 OfficeConnection officeConnection = new LocalOfficeConnection();
 officeConnection.setUnoUrl(
 “uno:localoffice,path=/home/user/staroffice6.0/program;urp;StarOffice.NamingService”);
 aBean = new OOoBean(officeConnection);

In OpenOffice.org 1.1.0 the properties mechanism was removed and cannot be used any longer. The
following section about the Office Bean properties and the officebean.properties file are only valid for older
OpenOffice.org versions. Since OpenOffice.org 1.1.0 the Office Bean uses an implicit find mechanism over
the classpath for the office and the local Office Bean library so that no properties file is necessary.

1070 OpenOffice.org 2.3 Developer's Guide • June 2007

17.6 Internal Architecture
These details are not needed for developers utilizing the OOoBean class. This information is
directed to developers who want to adapt the OOoBean mechanisms to other technologies, e.g. to
implement access to a remote OpenOffice.org instance.

Internally, the OOoBean consists of three major parts which are all included in the officebean.jar file.
The classes LocalOfficeWindow and LocalOfficeConnection implement a fundamental frame-
work that makes it possible to connect to the office and display the document window of a local
OpenOffice.org installation in an AWT or Swing frame.

17.6.1 The Internal Office Bean API
The Office Bean API is exported in two Java interfaces, com.sun.star.comp.beans.OfficeCon-
nection and com.sun.star.comp.beans.OfficeWindow.

These interfaces are Java interfaces in the com.sun.star.comp.beans package, they are not UNO inter-
faces.

Prior to OpenOffice.org2.0 all Office Bean classes were in the com.sun.star.bean package. As of
OpenOffice.org2.0 the classes are contained in the com.sun.star.comp.bean package. The classes of the
com.sun.star.bean package are still contained in the officebean.jar but they are deprecated. Further develop-
ment and bug fixing will occur only in the com.sun.star.comp.bean package.

An implementation of com.sun.star.comp.beans.OfficeConnection is provided in the class
com.sun.star.comp.beans.LocalOfficeConnection. The class com.sun.star.comp.beans.Local-
OfficeWindow implements com.sun.star.comp.beans.OfficeWindow. The relationship between
the Office Bean interfaces and their implementation classes is shown in the illustration below.

1071

The following sections describe the Office Bean interfaces OfficeConnection and Office-
Window.Refer to the section "Using the Office Bean" for an explanation of how the implementation
classes are used.

17.6.2 OfficeConnection Interface
The com.sun.star.comp.beans.OfficeConnection interface contains the methods used to
configure, initiate,and manage the connection to OpenOffice.org. These methods are:

public void setUnoUrl(String URL) throws java.net.MalformedURLException
public com.sun.star.uno.XComponentContext getComponentContext()
public OfficeWindow createOfficeWindow(Container container)
public void setContainerFactory(ContainerFactory containerFactory)

The client uses setUnoUrl() to specify to the Office Bean how it connects to the OpenOffice.org
process. See the section �Configuring the Office Bean� for a description of the syntax of the URL. A
java.net.MalformedURLException is thrown by the concrete implementation if the client passes
a badly formed URL as an argument.

The method getComponentContext() gets an object that implements the
com.sun.star.uno.XComponentContext interface from the Office Bean. This object is then used to
obtain objects implementing the full OpenOffice.org API from the backend OpenOffice.org
process.

A call to createOfficeWindow() requests a new OfficeWindow from the OfficeConnection. The
client obtains the java.awt.Component from the OfficeWindow to plug into its UI. See the getAW-

1072 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 17.3

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html

TComponent() method below on how to obtain the Component from the OfficeWindow. The client
provides java.awt.Container that indicates to the implementation what kind of OfficeWindow it
is to create.

The method setContainerFactory() specifies to the Office Bean the factory object it uses to
create Java AWT windows to display popup windows in the Java environment. This factory object
implements the com.sun.star.comp.beans.ContainerFactory interface. See below for a defini-
tion of the ContainerFactory interface.

If the client does not implement its own ContainerFactory interface, the Office Bean uses its own
default ContainerFactory creating instances of java.awt.Canvas.

17.6.3 OfficeWindow Interface
The com.sun.star.comp.beans.OfficeWindow interface encapsulates the relationship between
the AWT window that the client plugs into its UI, and the com.sun.star.awt.XWindowPeer
object, which the OpenOffice.org process uses to draw into the window. It provides two public
methods:

public java.awt.Component getAWTComponent()
public com.sun.star.awt.XWindowPeer getUNOWindowPeer()

The client uses getAWTComponent() to obtain the Component window associated with an Office-
Window. This Component is then added to the clients UI hierarchy.

The method getUNOWindowPeer() obtains the UNO com.sun.star.awt.XWindowPeer object asso-
ciated with an OfficeWindow.

17.6.4 ContainerFactory Interface
The interface com.sun.star.comp.beans.ContainerFactory defines a factory class that the client
implements if it needs to control how popup windows generated by the backend OpenOffice.org
process are presented within the Java environment. The factory has only one method:

public java.awt.Container createContainer()

It returns a java.awt.Container.

For more background on handling popup windows generated by OpenOffice.org, and possible threading
issues to consider, see 7.1.7 Office Development - OpenOffice.org Application Environment - Java Window Integra-
tion.

17.6.5 LocalOfficeConnection and LocalOfficeWindow
The class LocalOfficeConnection implements a connection to a locally running OpenOffice.org
process that is an implementation of the interface OfficeConnection. Its method createOffice-
Window() creates an instance of the class LocalOfficeWindow, that is an implementation of the
interface OfficeWindow.

Where LocalOfficeConnection keeps a single connection to the OpenOffice.org process, there are
multiple, shared LocalOfficeWindow instances for multiple beans. The LocalOfficeWindow
implements the embedding of the local OpenOffice.org document window into a
java.awt.Container.

1073

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindowPeer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindowPeer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindowPeer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindowPeer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindowPeer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindowPeer.html

18 Accessibility

There are certain circumstances where OpenOffice.org applications can not be used with the usual
input and output devices, such as a mouse, keyboard, monitor and printer. This may be because
the user is sitting in a car and can only occasionally look at the screen and has no keyboard at all.
Maybe the user is disabled and can not see or hear or use traditional keyboards. Alternative input
and output devices are called assistive technology, or AT. Examples of AT are Braille terminals,
which are used mainly for display of single text lines where each character is represented by raised
or lowered dots and can be read by touching them with the finger tips, screen magnifiers, which
magnify the screen contents and optionally change color, and screen readers, which use speech
synthesis to read displayed text or descriptions of objects out loud in a human language.

To make OpenOffice.org applications accessible to the disabled or to people in mobile environ-
ments, alternative input and output devices have to be supported. In order to support a wide
variety of ATs, the approach taken by Java and Gnome has been adopted: an API tailored to the
specific needs of AT and modeled closely after its Java counterpart is used as an interface between
the available data of the elements visible on screen and the AT, which transforms that data and
presents an alternative view of the screen contents.

18.1 Overview
As previously stated, the UNO Accessibility API, or UAA, is closely modeled after the Java Acces-
sibility API, and to some extent the Gnome Accessibility API. This section describes some differ-
ences with common UNO styles and standards.

The purpose of the accessibility API is to represent what is currently visible on screen. To be kept
up-to-date, users of the accessibility API are informed of any relevant changes of the screen content
by events. This focus on visual appearance is another point in which the accessibility API differs
from other parts of UNO, which are strictly model centered. The accessibility API provides a tree
structure or, to be more specific, a forest of accessibility objects that, as a whole, represent the on-
screen data.

The transition point from the UNO API to the accessibility API is windows, which both support the
com.sun.star.awt.XWindow and com.sun.star.accessibility.XAccessible interfaces. A list
of all top-level windows, from which you can get the roots of the associated accessibility trees, can
be retrieved from the toolkit through the com.sun.star.awt.XExtendedToolkit interface.

The com.sun.star.accessibility.XAccessible interface can be queried for the actual accessi-
bility object with its only function
com.sun.star.accessibility.XAccessible:getAccessibleContext(). With this technique,
the implementations of the accessibility interfaces can be kept apart from that of the other UNO
interfaces. The getAccessibleContext() function returns a reference to an object that implements
the com.sun.star.accessibility.XAccessibleContext interface. This interface is the center of
the accessibility API. On the one hand it provides the functionality to traverse the accessibility tree

1075

http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html#getAccessibleContext
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html#getAccessibleContext
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html#getAccessibleContext
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html#getAccessibleContext
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html#getAccessibleContext
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html#getAccessibleContext
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XExtendedToolkit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XExtendedToolkit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XExtendedToolkit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html

and on the other hand gives access to basic information that represents the object that is being
made accessible. These two aspects are described in more detail in the following sections
[ref:Accessibility Tree] and [ref:Content Information].

The accessibility API is as self-contained as possible. You should not need to use the UNO API
outside its accessibility API subset. However, there are some exceptions to this. The most impor-
tant one is the initial access to the root nodes of the accessibility tree over the toolkit.

18.2 Bridges
There are several ways that ATs can be realized. They differ in two important points. The first one
is how the AT represents the information it obtains from OpenOffice.org and presents it to the
user. The second difference is how ATs obtain this information in the first place.

In its simplest form, the communication between AT and OpenOffice.org involves only the accessi-
bility API and, where necessary, some additional features from other parts of the UNO API.
Existing ATs, however, do not know anything yet about the accessibility API. They use one of
several ways to access OpenOffice.org by using one or more bridges that translate between
different APIs:

• The UNO access bridge translates between the accessibility API and the Java Accessibility API.
Note that this is not the same as the Java version of the accessibility API.

• The Windows/Java access bridge translates between the Java and the C versions of the Java Acces-
sibility API.

• The Gnome access bridge translates between the accessibility API and the Gnome Accessibility
API.

In order to make OpenOffice.org accessible, it is necessary to support the accessibility API. The
characteristics of the bridges have to be taken into account as well.

Under Windows, OpenOffice.org itself has a switch that can turn on or off the accessibility
support. This switch can be reached through Tools � Options � Accessibility. Under Linux and
Solaris, an equivalent setting can be made in the Gnome environment. When accessibility is acti-
vated, on every launch OpenOffice.org will start its own Java VM, which in turn starts all regis-
tered AT tools. This will be explained in the next section.

18.3 Accessibility Tree
The screen content is presented to AT as a tree� or a forest, to be more specific� of accessibility
objects. Each displayed object that wants to be accessible has to support the com.sun.star.acces-
sibility.XAccessible interface. From this interface, you obtain the actual accessibility object by
calling the getAccessibleContext() function. The returned object has to at least support the
com.sun.star.accessibility.XAccessibleContext interface.

Accessibility objects are organized in one or more hierarchies, one for each top-level window. So
there is a tree for a single top-level window, and a forest when there is more than one top-level
window. Internal nodes of a tree are containers of other accessibility objects. A container can repre-
sent window frames, toolbars, menus, group shapes, or shapes that contain text. Leaves represent
objects like menu entries without sub-menus, buttons, icons, shapes without text, or text para-
graphs.

1076 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html#getAccessibleContext
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html#getAccessibleContext
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html#getAccessibleContext
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html

You can move up and down within the tree of a given accessibility object. All functions for
obtaining an object's parent and children are part of the com.sun.star.accessibility.XAcces-
sibleContext interface. The ability to move up towards the tree root is provided by the getAc-
cessibleParent() function. Like all other accessibility functions that return a reference to another
accessibility object, it returns a reference to a com.sun.star.accessibility.XAccessible object.
Moving down the tree towards the leaves requires two functions. The getAccessibleChild-
Count() function returns the number of children. The getAccessibleChild() function allows
you to access any child by specifying the appropriate index.

Between the call to getAccessibleChildCount() and the final getAccessibleChild() call (when accessing all
children one after the other) the number of children may have changed. You can keep track of the number of
children by registering as listener and waiting for com.sun.star.accessibility.AccessibleEventId:CHILD
events. Additionally, you have to cope with com.sun.star.lang.IndexOutOfBoundsException exceptions that
denote bad indices.

When children are added or removed from an accessibility object, the indices of the new and
remaining children may change. You can use the getAccessibleIndexInParent() function to get
the current indices.

18.4 Content Information
Content information of accessibility objects establishes the connection to the objects that are visible
on the screen. This information gives a detailed description of what is visible on the screen, the size
of the object, and its location on the screen. Access to the content information is provided by
several interfaces of the UNO accessibility API, which are described in the following sections.

The accessibility API allows you to divide the implementation of an accessible object into an acces-
sibility related and an accessibility unrelated part. This is done with the com.sun.star.accessi-
bility.XAccessible interface. The getAccessibleContext() method returns an object that
implements the other interfaces related to accessibility. This object may be the same as the object
that is made accessible, but it can be a different object as well. Once you have the accessibility
object, you can use the usual UNO type cast mechanisms to change from one interface to another.

18.5 Listeners and Broadcasters
The com.sun.star.accessibility.XAccessibleEventBroadcaster and com.sun.star.acces-
sibility.XAccessibleEventListener interface combo lets you register and unregister listeners.
Events are represented by com.sun.star.accessibility.AccessibleEventObject structure.
The different event types are listed and explained in the com.sun.star.accessibility.Acces-
sibleEventId constants group.

Again, event types can be divided into two classes depending on whether they describe changes in
the structure of the accessibility tree or changes in the internal state or the visual appearance of an
accessible object. The first group consists of CHILD and INVALIDATE_ALL_CHILDREN. The first
denotes a newly inserted or a removed child. The second is used in cases where more than one
child has been inserted or removed and tells the listener to re-fetch a complete list of children.

The second group comprises all other event types. Typical members are VISIBLE_DATA_CHANGED
and STATE_CHANGED, which inform listeners that the visual appearance of an object has changed
(for example, to a different text color) or that one of its states has been switched on or off (for
example, when an object becomes focused or selected).

1077

http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#STATE_CHANGED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#STATE_CHANGED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#STATE_CHANGED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#VISIBLE_DATA_CHANGED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#VISIBLE_DATA_CHANGED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#VISIBLE_DATA_CHANGED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#INVALIDATE_ALL_CHILDREN
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#INVALIDATE_ALL_CHILDREN
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#INVALIDATE_ALL_CHILDREN
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#CHILD
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#CHILD
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#CHILD
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html#getAccessibleContext
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html#getAccessibleContext
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html#getAccessibleContext
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleIndexInParent
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleIndexInParent
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleIndexInParent
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/IndexOutOfBoundsException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/IndexOutOfBoundsException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/IndexOutOfBoundsException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#CHILD
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#CHILD
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#CHILD
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleChild
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleChild
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleChild
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleChildCount
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleChildCount
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleChildCount
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleChild
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleChild
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleChild
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleChildCount
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleChildCount
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleChildCount
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleChildCount
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleChildCount
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleChildCount
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleParent
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleParent
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleParent
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleParent
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleParent
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleParent
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html

The event types CONTROLLED_BY_RELATION_CHANGED, CONTROLLER_FOR_RELATION_CHANGED,
LABEL_FOR_RELATION_CHANGED, LABELED_BY_RELATION_CHANGED,
MEMBER_OF_RELATION_CHANGED, CONTENT_FLOWS_FROM_RELATION_CHANGED and
CONTENT_FLOWS_TO_RELATION_CHANGED may be thought of as constituting a third group. They
describe changes of the more virtual structure formed by relations between accessible objects in
different parts of an accessibility tree.

Events are sent after the respective change of an accessible object took place. This enables the
listener to retrieve up-to-date values that are sent with the event.

A problem arises when the number of children becomes very large, as with Calc tables where the number of
cells is 256·32000=8192000. Registering at every cell certainly is not an option. The solution to this problem is
the introduction of the com.sun.star.accessibility.AccessibleStateType:TRANSIENT state,
which tells an AT not to register but to expect
com.sun.star.accessibility.AccessibleEventId:ACTIVE_DESCENDANT_CHANGED events sent
from their parent. To prevent the AT from having to ask every child whether it is transient, the parent must
set the com.sun.star.accessibility.AccessibleStateType:MANAGES_DESCENDANTS state.

18.6 Implementing Accessible Objects

18.6.1 Implementation Rules
There are some rules to observe when implementing the UNO accessibility API that go beyond
simply following the specifications in the IDL files of the accessibility API's interfaces. These rules
have to do with what kind of data ATs expect from an application.

One such rule is that only objects that are visible on the screen are included into the accessibility
tree. If, for example, you have a text document with a large number of pages, usually only parts of
one or two pages are visible, and only accessibility objects for these parts should be part of the
accessibility hierarchy. Another closely related rule is that the bounding boxes of objects are
clipped to the visible area.

However, there are exceptions to these rules. For reasons of consistency with the behavior of Java
tables represented through the com.sun.star.accessibility.XAccessibleTable interface,
access is granted to all of their cells regardless of whether they are visible or not. Menus are
another example. The whole menu structure is represented, even when only the menu bar is
visible.

Another rule is that bounding boxes of accessibility objects as returned by com.sun.star.acces-
sibility.XAccessibleComponent:getBounds() must not overlap the bounding boxes of their
parents. This is crucial to enable ATs to find the accessibility object that lies under a given screen
coordinate, such as the mouse position. With properly nesting bounding boxes, ATs can prune
whole sub-trees from the search when the bounding box of the root object does not contain the
point.

18.6.2 Services
There are only two services in the accessibility API, which have to be supported by any accessible
object.

1078 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getBounds
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getBounds
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getBounds
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getBounds
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getBounds
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getBounds
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleStateType.html#MANAGES_DESCENDANTS
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleStateType.html#MANAGES_DESCENDANTS
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleStateType.html#MANAGES_DESCENDANTS
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#ACTIVE_DESCENDANT_CHANGED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#ACTIVE_DESCENDANT_CHANGED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#ACTIVE_DESCENDANT_CHANGED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleStateType.html#TRANSIENT
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleStateType.html#TRANSIENT
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleStateType.html#TRANSIENT
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#CONTENT_FLOWS_TO_RELATION_CHANGED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#CONTENT_FLOWS_TO_RELATION_CHANGED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#CONTENT_FLOWS_TO_RELATION_CHANGED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#CONTENT_FLOWS_FROM_RELATION_CHANGED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#CONTENT_FLOWS_FROM_RELATION_CHANGED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#CONTENT_FLOWS_FROM_RELATION_CHANGED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#MEMBER_OF_RELATION_CHANGED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#MEMBER_OF_RELATION_CHANGED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#MEMBER_OF_RELATION_CHANGED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#LABELED_BY_RELATION_CHANGED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#LABELED_BY_RELATION_CHANGED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#LABELED_BY_RELATION_CHANGED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#LABEL_FOR_RELATION_CHANGED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#LABEL_FOR_RELATION_CHANGED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#LABEL_FOR_RELATION_CHANGED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#CONTROLLER_FOR_RELATION_CHANGED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#CONTROLLER_FOR_RELATION_CHANGED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#CONTROLLER_FOR_RELATION_CHANGED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#CONTROLLED_BY_RELATION_CHANGED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#CONTROLLED_BY_RELATION_CHANGED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#CONTROLLED_BY_RELATION_CHANGED

The com.sun.star.accessibility.Accessible service contains the com.sun.star.accessi-
bility.XAccessible interface and must be supported by every UNO object that is accessible.

The com.sun.star.accessibility.AccessibleContext service contains the
com.sun.star.accessibility.XAccessibleContext interface and, optionally, the
com.sun.star.accessibility.XAccessibleEventBroadcaster interface. This service must be
supported by every accessible object that is returned by the
com.sun.star.accessibility.XAccessible:getAccessibleContext() function.

18.7 Using the Accessibility API
When you are writing your own ATs and want to use the UNO accessibility API directly, you must
first connect to OpenOffice.org. Connecting to OpenOffice.org is explained elsewhere in this docu-
ment. Once a connection is established, the toolkit with its com.sun.star.awt.XExtendedToolkit
interface can be used to retrieve a list of all currently open top-level windows. From these, you can
then get the accessible root nodes of the accessibility object trees associated with the windows.
When you register an com.sun.star.awt.XTopWindowListener you will then be informed about
new top-level windows, as well as top-level windows that have disappeared.

With the top-level accessible objects at hand, you can use the Java version of the accessibility API
as it is described in detail in the following sections. To be informed about focus changes� so that,
for example, a screen reader can track the currently focused object and read it to the user� an AT
has to register all non-transient objects of an accessibility tree.

The general operation of a simple AT consists of the following steps:

1. Connect to OpenOffice.org.

2. Retrieve the currently visible top-level windows and register as top window listener to keep the
list up-to-date.

3. Traverse the trees by getting their root elements from each window. See the description of the
com.sun.star.accessibility.XAccessibleContext for a code example for this.

4. Register each accessible object as com.sun.star.accessibility.XAccessibleEventLis-
tener.

5. If called back with an com.sun.star.accessibility.AccessibleEventObject object, then
process two kinds of events:

• Events that denote a state change with either OldValue or NewValue containing the FOCUSED
constant indicate that the source object of this event got either focused or unfocused.

• When receiving events of type CHILD, register as listener at the object that is specified by the
event, as well as all of the object's children.

18.7.1 A Simple Screen Reader
To illustrate the use of the UNO accessibility API, we will describe how to implement a simple AT.
The simple screen reader, or SSR, will display some information about the currently focused object.
As you can see in Illustration 18.1, the SSR consists of three windows. The bottom window logs all
events that the SSR receives from any of the accessibility objects to which it is registered.

The two upper windows display information about the currently focused object, which in this
screen shot is a shape in a presentation document. The left window displays the names of all the

1079

http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#CHILD
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#CHILD
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#CHILD
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleStateType.html#FOCUSED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleStateType.html#FOCUSED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleStateType.html#FOCUSED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventObject.html#NewValue
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventObject.html#NewValue
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventObject.html#NewValue
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventObject.html#OldValue
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventObject.html#OldValue
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventObject.html#OldValue
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTopWindowListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTopWindowListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTopWindowListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XExtendedToolkit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XExtendedToolkit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XExtendedToolkit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html#getAccessibleContext
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html#getAccessibleContext
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html#getAccessibleContext
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/Accessible.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/Accessible.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/Accessible.html

ancestors of the focused object and the path from that object to the root object of the accessibility
tree. The left window also displays the focused object's description, its state, its location, and its
size on the screen. In this example, the focused object is named �Rectangle2�, which corresponds to
the red rectangular shape. Its parent is called �Drawing View� and the root of the tree has the
name of the document, which is �Untitled1�, followed by the product name and some debug infor-
mation.

The upper right window displays similar information graphically. The focused object is shown as a
green rectangle, while its ancestors are drawn as gray rectangles. You can see how the objects are
nested. This corresponds to the requirement that the bounding of child objects must not overlap
that of their parents. Note that the blue rectangular shape is not visible in this window, because it
is a sibling of the focused red rectangle, but does not lie on that object's path to the root of the root
object. Also note that some of the rectangles are off-center and smaller than they should be. This is
because the rectangles that represent accessible objects, which in turn represent part of the GUI, are
drawn with their screen location and size relative to the whole screen; the outermost rectangle that
is enclosed by the gray background represents the screen of which the screen shot shows only a
part.

The bottom window logs all the events that the SSR receives from the accessible objects it has
register as event listener at.

Features
The SSR was designed to be a simple program that illustrates how to use the UNO accessibility
API. However, we have not always chosen the most simple way to do something. There are there-
fore some features that may be useful in the �real� AT:

1080 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 18.1: The simple screen reader shows information on the currently focused object in two
different views. A textual display on the top left shows its description, states and bounding box as well as the
names of its ancestors. The graphical view on the top right shows the bounding boxes of the object itself
(green) and its ancestors (gray). The bottom window logs all events sent by any of the accessibility objects.

• The SSR has a background connection timer task that waits for a OpenOffice.org application to
start and then connects automatically to that application.

• It uses independent threads to register as listener at a whole accessibility (sub-) tree of new top-
level application windows or newly created accessible objects. The same is true for removing
the listener from windows not visible anymore or accessible objects that are removed from their
tree.

• There are two different views that display information about the currently focused object. This
illustrates how information of a certain accessibility object is retrieved by using different inter-
faces of the accessibility API.

• A message area shows all received events regardless of whether they are necessary to keep
track of the currently focused object. With this, the SSR serves as simple event monitor as well.

Class Overview
The SSR is implemented with the following classes and interfaces:

SSR
This is the main class of the tool. It is responsible for setting up and managing the GUI

ConnectionTask
The connection task is a thread that waits in the background for a OpenOffice.org application to
start. As soon as there is one, it connects to it and initiates the registration at all of its accessible
objects.

RegistrationThread
Each object of this class creates one thread that adds or removes the event listener at all acces-
sible objects in one tree, with one tree per application window. This is done in separate threads
so that the normal operation of the tool is not blocked while registering to complex applications
with many objects.

EventListenerProxy
This is a singleton class. Its only instance is registered as listener at all accessible objects. It runs
in its own thread and delivers the received events eventually to the actual event handler. This
de-coupling between event reception and event handling is necessary to avoid deadlocks. Soon
this will become obsolete.

EventHandler
There is usually only one object of this class. It prints log messages for all the events it receives
and provides special handling some of events:

• Top window events denoting new or removed application windows are not accessibility
events in a strict sense. They have to be listened to, however, to add or remove the event
listener to the accessibility objects that correspond to these windows.

• State events that inform the listener of a set or reset FOCUSED state. This is the most impor-
tant event for the SSR in order to keep track of the currently focused object.

• Events that signal a change of the geometric property of the currently focused object trigger
a redisplay of the two windows that display that object. This ensures that you always see the
current position of the object.

TextualDisplay
This widget displays textual information about the focused object as described previously.

GraphicalDisplay
This widget displays graphical information about the focused object as described previously.

1081

http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleStateType.html#FOCUSED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleStateType.html#FOCUSED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleStateType.html#FOCUSED

IaccessibleObjectDisplay
This is the interface supported by the two display widgets. It defines how the event handler
tells the displays about focus and geometry changes. You can add other displays as well by
adding a widget that implements this interface to the event handler and to the GUI.

MessageArea
The message area at the bottom is a simple text widget that scrolls its content so that the last
line that contains the most recent message is always visible.

NameProvider
This is a useful helper class that converts numerical IDs into names, roles, events, or states.

Parts of some of these classes will be explained at later points in this text. Others, like the Connec-
tionTask class, are a mere technicality with respect to the accessibility API and will not be detailed
any further.

Putting the Accessibility Interfaces to Work
Once an accessible object has been obtained by a call to
com.sun.star.accessibility.XAccessible:getAccessibleContext(), you can switch
between the interfaces belonging to the accessibility API by using the usual UNO cast mechanisms.
There is, however, no way back to the object from which the accessible object has been obtained
through procedures provided by the accessibility API.

XAccessibleContext

com.sun.star.accessibility.XAccessibleContext is the central interface of the accessibility
API. In addition to the hierarchy information described previously, it provides access to some
important information. The functions getAccessibleRole(), getAccessibleName() and getAc-
cessibleDescription() return descriptions of the object in increasing detail:

Role
The role classifies all accessibility objects into a handful of different classes. Most roles are taken
from the Java accessibility API, such as PUSH_BUTTON, RADIO_BUTTON, SCROLL_BAR or TEXT.
Some have been defined for the accessibility API so that, in addition to GUI elements, docu-
ments can be made accessible. These roles are DOCUMENT for document windows or views,
PARAGRAPH for text sections, or SHAPE for graphical objects. Roles are described in the
com.sun.star.accessibility.AccessibleRole constants group.

Name
Names allow you to distinguish between objects with the same role. For example, the buttons at
the bottom of a dialog all have the role PUSH_BUTTON. Their names may be �OK�, �Cancel� or
�Help�. Where necessary, names are made unique with respect to the object's siblings. Names
for shapes can be �Rectangle 0�, �Ellipse 1�, �Rectangle 2�, or �Curve 3�.

Description
To further describe the purpose of accessibility objects, description strings are provided.
Descriptions of shapes can contain their style and some properties whose values differ from
that style. If you have changed the color of a rectangle to red, its description may look like
�Rectangle with style=default and color=red�.

Names and descriptions are strings localized according to the locale returned by getLocale().

Two functions of the interface have not been mentioned so far. The function getAccessibleRela-
tionSet() returns the set of relations defined for an accessibility object. Likewise getAccessi-
bleStateSet() returns a set of states that are active for an object.

1082 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleStateSet
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleStateSet
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleStateSet
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleStateSet
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleStateSet
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleStateSet
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleRelationSet
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleRelationSet
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleRelationSet
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleRelationSet
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleRelationSet
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleRelationSet
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getLocale
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getLocale
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getLocale
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRole.html#PUSH_BUTTON
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRole.html#PUSH_BUTTON
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRole.html#PUSH_BUTTON
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRole.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRole.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRole.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRole.html#SHAPE
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRole.html#SHAPE
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRole.html#SHAPE
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRole.html#PARAGRAPH
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRole.html#PARAGRAPH
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRole.html#PARAGRAPH
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRole.html#DOCUMENT
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRole.html#DOCUMENT
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRole.html#DOCUMENT
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRole.html#TEXT
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRole.html#TEXT
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRole.html#TEXT
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRole.html#SCROLL_BAR
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRole.html#SCROLL_BAR
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRole.html#SCROLL_BAR
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRole.html#RADIO_BUTTON
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRole.html#RADIO_BUTTON
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRole.html#RADIO_BUTTON
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRole.html#PUSH_BUTTON
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRole.html#PUSH_BUTTON
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRole.html#PUSH_BUTTON
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleDescription
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleDescription
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleDescription
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleDescription
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleDescription
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleDescription
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleName
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleName
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleName
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleRole
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleRole
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleRole
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html#getAccessibleContext
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html#getAccessibleContext
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html#getAccessibleContext

The showParents() method from the TextualDisplay class of the SSR displays the path from a
given object to the root of the accessibility tree by printing each object's accessible name indented
relative to its father.
private String showParents (XAccessibleContext xContext) {

The method first obtains references to all the objects that belong to this path.
 Vector aPathToRoot = new Vector();
 while (xContext != null) {
 aPathToRoot.add (xContext);
 // Go up the hierarchy one level to the object's parent.
 try {
 XAccessible xParent = xContext.getAccessibleParent();
 if (xParent != null)
 xContext = xParent.getAccessibleContext();
 else
 xContext = null;
 }
 catch (Exception e) {
 System.err.println ("caught exception " + e + " while getting path to root");
 }
 }

This is done in two steps. First, a call to the getAccessibleParent() method to get the parent of
the object and thereby moving to the previous level in the accessibility tree. Second, from the
returned XAccessible reference, the accessible context is retrieved by calling getAccessibleCon-
text(). This is repeated until an object is reached that has no parent and getAccessibleParent()
returns null.

The path of the accessibility tree is now printed by appending text to the msTextContext member
variable, which later is displayed in a JtextArea widget. To cope with accessibility objects that
return an empty name, the role of these objects is used to represent them. Note how the indenta-
tion string is updated after every object by appending the msIndentation member.
 String sIndentation = new String ();
 for (int i=aPathToRoot.size()-1; i>=0; i--) {
 XAccessibleContext xParentContext = (XAccessibleContext)aPathToRoot.get(i);
 String sParentName = xParentContext.getAccessibleName();
 if (sParentName.length() == 0)
 sParentName = "<unnamed> / Role "
 + NameProvider.getRoleName(xParentContext.getAccessibleRole());
 msTextContent += sIndentation + sParentName + "\n";
 sIndentation += msIndentation;
 }

The indentation is returned so that further output can be properly aligned.
 return sIndentation;

1083

Illustration 18.2: Path in the SSR

http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleParent
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleParent
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleParent
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html#getAccessibleContext
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html#getAccessibleContext
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html#getAccessibleContext
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html#getAccessibleContext
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html#getAccessibleContext
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html#getAccessibleContext
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleParent
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleParent
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleParent

}

XAccessibleComponent

The XAccessibleComponent interface gives access to geometric properties, such as size and posi-
tion on the screen. This interface should be implemented by every object that has a visible repre-
sentation, that is, by all objects that are not simple containers.

The coordinates used by the functions of this interface are returned and and are expected in pixel
values and not, as is elsewhere in the UDK, in internal coordinates (100th of mm). There are three
different origins to which coordinates may be specified:

• Relative to an object's bounding box. This is relative to the object itself. Used by the contain-
sPoint() and getAccessibleAtPoint() functions.

• Relative to an object's parent. Used by the getBounds() and getLocation() functions.

• Absolute or relative to the screen origin. Used by the getLocationOnScreen().

Because all three coordinate systems are based on pixel values, the getSize() function is indepen-
dent of the coordinate system.

The bounding rectangle that encloses the visual presentation of an object can be retrieved by
calling getBounds(). If you only need the location or the size, then call getLocation() or
getSize(). The function getLocationOnScreen() returns the absolute screen coordinates.

There or two functions that determine whether the bounding boxes of the object or one of its chil-
dren contain a given test point. The function containsPoint() checks whether the test point lies
within the bounding box of the object. Children can be tested with getAccessibleAtPoint().
When one of the direct children contains the test point, a reference to this object is returned.

In addition to the geometrical functions, there are the two getForeground() and getBack-
ground() functions that describe an object's appearance. Keep in mind that an object does not
necessarily have a monochrome background color. There can be a hatching, gradient, or bitmap as
well. The returned background color in this case is an approximation.

The showComponentInfo() method of the TextualDisplay class takes as argument a reference to
the accessible object for which geometrical information is shown, as well as the indentation string
computed in the showParents() method.

1084 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 18.3: Geometrical information in the SSR

http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getBackground
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getBackground
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getBackground
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getBackground
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getBackground
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getBackground
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getForeground
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getForeground
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getForeground
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getAccessibleAtPoint
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getAccessibleAtPoint
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getAccessibleAtPoint
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#containsPoint
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#containsPoint
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#containsPoint
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getLocationOnScreen
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getLocationOnScreen
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getLocationOnScreen
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getSize
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getSize
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getSize
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getLocation
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getLocation
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getLocation
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getBounds
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getBounds
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getBounds
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getSize
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getSize
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getSize
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getLocationOnScreen
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getLocationOnScreen
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getLocationOnScreen
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getLocation
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getLocation
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getLocation
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getBounds
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getBounds
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getBounds
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getAccessibleAtPoint
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getAccessibleAtPoint
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getAccessibleAtPoint
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#containsPoint
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#containsPoint
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#containsPoint
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#containsPoint
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#containsPoint
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#containsPoint
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html

private void showComponentInfo (XAccessibleContext xContext, String sIndentation) {

When given an XAccessibleContext reference, you must cast it to a XAccessibleComponent
reference in order to access geometrical information about an accessible object.
 XAccessibleComponent xComponent = (XAccessibleComponent)UnoRuntime.queryInterface(
 XAccessibleComponent.class, xContext);
 if (xComponent != null) {

If the cast was successful, then simply call the getLocationOnScreen() and getSize() methods
to obtain the object's bounding box in screen coordinates. IfgetBounds() is called instead, the
parent's screen coordinates must be added to obtain an absolute position.
 Point aLocation = xComponent.getLocationOnScreen();
 msTextContent += sIndentation + "Position : "
 + aLocation.X + ", " + aLocation.Y + "\n";

 Size aSize = xComponent.getSize();
 msTextContent += sIndentation + "Size : "
 + aSize.Width + ", " + aSize.Height + "\n";
 }
}

XAccessibleExtendedComponent

While the com.sun.star.accessibility.XAccessibleComponent interface should be imple-
mented by almost every accessible object, the support of the XAccessibleExtendedComponent
interface is optional. Its most important function, getFont() returns the font used to display text.

The getTitledBorderText() function returns the text that is displayed on an object's window
borders, which in the case of OpenOffice.org is only relevant for top-level windows.

The getToolTipText() function returns the tool tip text that is displayed when the mouse pointer
rests long enough over one point of the object.

XAccessibleText

The interface XAccessibleText handles read-only text. It serves three purposes: to obtain certain
parts of a text, to obtain the text's size and location on the screen, and to handle the caret position.
An accessibility object that implements this interface usually represents only a part of a larger text.
Typically, this is a single or a small number of paragraphs. You can use the relation types
com.sun.star.accessibility.AccessibleRelationType:CONTENT_FLOWS_FROM and
com.sun.star.accessibility.AccessibleRelationType:CONTENT_FLOWS_TO to explicitly
represent the text flow from one text part to another. Without these relations, the text flow has to
be determined from the structure of the accessibility tree alone.

Selection

Represented text may contain a selected text portion, which is typically displayed highlighted
(inverse). There are four functions to access and modify the selection. The selected text, as well as
its start and end index, can be accessed with the
com.sun.star.accessibility.XAccessibleText:getSelectedText(), com.sun.star.acces-
sibility.XAccessibleText:getSelectionStart() and
com.sun.star.accessibility.XAccessibleText:getSelectionEnd() functions respectively.
To modify the selection, call com.sun.star.accessibility.XAccessibleText:setSelection()
with the new start and end indices.

Text type

The functions com.sun.star.accessibility.XAccessibleText:getTextAtIndex(),
com.sun.star.accessibility.XAccessibleText:getTextBeforeIndex() and
com.sun.star.accessibility.XAccessibleText:getTextBehindIndex() return parts of the

1085

http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getTextBehindIndex
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getTextBehindIndex
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getTextBehindIndex
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getTextBeforeIndex
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getTextBeforeIndex
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getTextBeforeIndex
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getTextAtIndex
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getTextAtIndex
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getTextAtIndex
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#setSelection
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#setSelection
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#setSelection
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getSelectionEnd
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getSelectionEnd
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getSelectionEnd
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getSelectionStart
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getSelectionStart
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getSelectionStart
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getSelectionStart
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getSelectionStart
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getSelectionStart
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getSelectedText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getSelectedText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getSelectedText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRelationType.html#CONTENT_FLOWS_TO
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRelationType.html#CONTENT_FLOWS_TO
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRelationType.html#CONTENT_FLOWS_TO
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRelationType.html#CONTENT_FLOWS_FROM
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRelationType.html#CONTENT_FLOWS_FROM
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRelationType.html#CONTENT_FLOWS_FROM
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleExtendedComponent.html#getToolTipText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleExtendedComponent.html#getToolTipText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleExtendedComponent.html#getToolTipText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleExtendedComponent.html#getTitledBorderText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleExtendedComponent.html#getTitledBorderText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleExtendedComponent.html#getTitledBorderText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleExtendedComponent.html#getFont
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleExtendedComponent.html#getFont
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleExtendedComponent.html#getFont
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleExtendedComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleExtendedComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleExtendedComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getBounds
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getBounds
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getBounds
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getSize
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getSize
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getSize
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getLocationOnScreen
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getLocationOnScreen
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html#getLocationOnScreen
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html

text where the part or length of text returned is specified by the text type. Defined in the
com.sun.star.accessibility.AccessibleTextType constants collection, some of these text
types further explanation:

LINE
The type LINE indicates all text on a single line as it is displayed on the screen. This may
include a hyphen at the line end. The hyphen is not actually part of the text, but is visible on the
screen. They are only included in text parts of type LINE.

CHARACTER, GLYPH
Glyph is used in this context to mean that everything between two adjacent cursor positions is
considered to be a glyph. In Thai, for example, you can stack up to four (Unicode) characters
upon each other. When moving with the cursor keys, those character groups are interpreted as
single glyphs, and the cursor can only be set in front or after such glyphs, but not inside.

WORD, SENTENCE, PARAGRAPH
The definition of words, sentences and paragraphs are implementation and locale dependent.

ATTRIBUTE_RUN
An attribute run is a sequence of characters of maximal length, where all characters have the
same attributes. For example the text �This is an example� consists of three attribute runs: �This
�, �is an� and � example�. The first and last one each have only a single attribute, italic respec-
tively bold. The second run has both attributes at the same time. Note that all three spaces
belong to one of the attribute runs.

There are other functions to access text. To retrieve the whole text represented by an object, use
getText(). Call getTextRange() to get only a part of text between and including two given
indices. A single character can be accessed with the getCharacter() function.

To copy a text range to the clipboard, call the copyText() function. See also the related cutText()
and pasteText() functions of the com.sun.star.accessibility.XAccessibleEditableText
interface.

Caret and Text Indices

The caret is often referred to as the cursor and is typically displayed as a vertical line. On the
screen, it is always placed between two adjacent glyphs, or at the beginning or the end of a text
line. When specifying its position in terms of character positions, the position of the character to its
right is used. Thus, the index 0 says that the caret is at the very beginning of the text. When the
caret is located behind the last character, then its position equals the text length, that is, the number
of characters of the text as returned by getCharacterCount().

When the caret changes its position, an event must be sent to all listeners so that the old and new
position can be indicated.

The caret position is returned by the getCaretPosition() function, and can be set by calling
setCaretPosition().

Other index-related functions are getCharacterAttributes(), which returns the attributes at the
specified index, getCharacterBounds(), which returns the bounding box of the character at the
specified index, and getIndexAtPoint(), which returns the index of the character at the specified
position.

XAccessibleEditableText

The XAccessibleEditableText interface extends the XAccessibleText interface by adding func-
tions that let you modify the text. The interface is therefore only implemented when the text repre-
sented by the implementing object is readable and writeable.

1086 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getIndexAtPoint
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getIndexAtPoint
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getIndexAtPoint
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getCharacterBounds
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getCharacterBounds
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getCharacterBounds
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getCharacterAttributes
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getCharacterAttributes
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getCharacterAttributes
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#setCaretPosition
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#setCaretPosition
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#setCaretPosition
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getCaretPosition
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getCaretPosition
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getCaretPosition
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getCharacterCount
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getCharacterCount
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getCharacterCount
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html#pasteText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html#pasteText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html#pasteText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html#cutText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html#cutText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html#cutText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#copyText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#copyText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#copyText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getCharacter
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getCharacter
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getCharacter
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getTextRange
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getTextRange
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getTextRange
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleTextType.html#ATTRIBUTE_RUN
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleTextType.html#PARAGRAPH
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleTextType.html#PARAGRAPH
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleTextType.html#PARAGRAPH
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleTextType.html#SENTENCE
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleTextType.html#SENTENCE
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleTextType.html#SENTENCE
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleTextType.html#WORD
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleTextType.html#WORD
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleTextType.html#WORD
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleTextType.html#GLYPH
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleTextType.html#GLYPH
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleTextType.html#GLYPH
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleTextType.html#CHARACTER
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleTextType.html#CHARACTER
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleTextType.html#CHARACTER
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleTextType.html#LINE
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleTextType.html#LINE
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleTextType.html#LINE
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleTextType.html#LINE
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleTextType.html#LINE
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleTextType.html#LINE
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleTextType.html#LINE
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleTextType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleTextType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleTextType.html

With the functions deleteText(), insertText() and replaceText(), you can delete, insert, and
replace text. The setText() function is a special case of replaceText() and replaces the whole
text at once.

The cutText() and pasteText() functions, together with copyText(), from the
com.sun.star.accessibility.XAccessibleText interface provide access to the clipboard.

Finally, the setAttributes() function is the counterpart of getCharacterAttributes() in the
com.sun.star.accessibility.XAccessibleText interface. With this function, you can replace
the existing attributes with the given set. To add one attribute, first use getCharacterAttrib-
utes() to get the current set of attributes, add the attribute to that set, and finally call setAttrib-
utes() to set the new set of attributes.

XAccessibleTable

The com.sun.star.accessibility.XAccessibleTable interface represents two-dimensional
tables of data. The Calc application is one example of its implementation. It grants access to indi-
vidual cells or groups of cells.

Global information about a table can be accessed with two functions: getAccessibleCaption()
returns the caption and getAccessibleSummary() returns a summary describing the content of a
table.

A table is organized in horizontal rows and vertical columns. The number of rows and columns�
and indirectly the number of cells� can be determined by calling the functions getAccessible-
RowCount() and getAccessibleColumnCount(). Here, in contrast to the general rule of only
giving access to visible objects, all cells are represented by a table. This exception is necessary to
stay consistent with Java tables.

information on rows and columns is returned by the getAccessibleRowDescription() and
getAccessibleColumnDescription() functions. Note that both functions return objects imple-
menting the com.sun.star.accessibility.XAccessibleTable interface themselves. The
headers of rows and columns can be retrieved by calling getAccessibleRowHeaders() and
getAccessibleColumnHeaders().

To obtain a reference to a certain cell specified by its row and column indices, use getAccessible-
CellAt(). A table cell may span multiple rows and columns. You can determine the number of
rows and columns that a cell spans with the getAccessibleRowExtentAt() and getAccessible-
ColumnExtentAt() functions.

Selections in tables can have two different forms. You can have a multi-selection of rectangular
areas of single or multiple cells, or you can select whole rows and columns. The function isAcces-
sibleSelected() determines whether a single cell that spans a position specified by a row and a
column index is selected. To determine whether certain rows or columns are selected, use the
isAccessibleRowSelected() and isAccessibleColumnSelected() functions. Finally, the func-
tions getSelectedAccessibleRows() and getSelectedAccessibleColumns() each return a
sequence of indices of the currently selected row and columns.

There are three functions that can be used to switch between cell indices and row and column
indices. Cell indices are the same as the child indices used by the getAccessibleChildCount()
and getAccessibleChild() functions of the com.sun.star.accessibility.XAccessibleCon-
text interface. Row and column indices have been used previously, and specify each cell by
stating its row and column. The getAccessibleIndex() function returns the corresponding cell
index for a given row and column index. The getAccessibleRow() and getAccessibleColumn()
functions return the corresponding row and column index, respectively, for a given cell index.

1087

http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleColumn
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleColumn
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleColumn
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleRow
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleRow
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleRow
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleIndex
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleIndex
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleIndex
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleChild
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleChild
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleChild
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleChildCount
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleChildCount
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleChildCount
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getSelectedAccessibleColumns
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getSelectedAccessibleColumns
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getSelectedAccessibleColumns
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getSelectedAccessibleRows
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getSelectedAccessibleRows
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getSelectedAccessibleRows
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#isAccessibleColumnSelected
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#isAccessibleColumnSelected
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#isAccessibleColumnSelected
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#isAccessibleRowSelected
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#isAccessibleRowSelected
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#isAccessibleRowSelected
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#isAccessibleSelected
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#isAccessibleSelected
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#isAccessibleSelected
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#isAccessibleSelected
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#isAccessibleSelected
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#isAccessibleSelected
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleColumnExtentAt
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleColumnExtentAt
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleColumnExtentAt
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleColumnExtentAt
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleColumnExtentAt
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleColumnExtentAt
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleRowExtentAt
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleRowExtentAt
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleRowExtentAt
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleCellAt
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleCellAt
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleCellAt
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleCellAt
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleCellAt
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleCellAt
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleColumnHeaders
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleColumnHeaders
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleColumnHeaders
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleRowHeaders
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleRowHeaders
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleRowHeaders
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleColumnDescription
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleColumnDescription
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleColumnDescription
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleRowDescription
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleRowDescription
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleRowDescription
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleColumnCount
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleColumnCount
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleColumnCount
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleRowCount
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleRowCount
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleRowCount
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleRowCount
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleRowCount
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleRowCount
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleSummary
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleSummary
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleSummary
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleCaption
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleCaption
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html#getAccessibleCaption
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html#setAttributes
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html#setAttributes
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html#setAttributes
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html#setAttributes
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html#setAttributes
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html#setAttributes
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getCharacterAttributes
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getCharacterAttributes
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getCharacterAttributes
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getCharacterAttributes
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getCharacterAttributes
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getCharacterAttributes
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getCharacterAttributes
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getCharacterAttributes
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#getCharacterAttributes
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html#setAttributes
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html#setAttributes
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html#setAttributes
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#copyText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#copyText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html#copyText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html#pasteText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html#pasteText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html#pasteText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html#cutText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html#cutText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html#cutText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html#replaceText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html#replaceText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html#replaceText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html#setText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html#setText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html#setText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html#replaceText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html#replaceText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html#replaceText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html#insertText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html#insertText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html#insertText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html#deleteText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html#deleteText
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEditableText.html#deleteText

XAccessibleEventBroadcaster

Most accessible objects need to broadcast events that describe changes of its internal state or visual
appearance� this can be done with the com.sun.star.accessibility.XAccessibleEvent-
Broadcasterinterface. If you want to be informed of such changes, you can register a listener with
the addEventListener() function, or remove it with removeEventListener().

Be sure to cast an object reference to the XAccessibleEventBroadcaster interface before calling these
functions, because there are other broadcaster interfaces with functions of the same name.

The SSR registers the event listener in separate threads. The major work is done by a method called
traverseTree()that takes an accessible context and traverses the whole tree rooted in this object.
public long traverseTree (XAccessibleContext xRoot) {

After casting the context reference to a reference of the XAccessibleEventBroadcaster interface,
it either adds or removes the listener maListener at the accessibility object.
 long nNodeCount = 0;
 if (xRoot != null) {
 // Register the root node.
 XAccessibleEventBroadcaster xBroadcaster =
 (XAccessibleEventBroadcaster) UnoRuntime.queryInterface (
 XAccessibleEventBroadcaster.class,
 xRoot);
 if (xBroadcaster != null) {
 if (mbRegister)
 xBroadcaster.addEventListener (maListener);
 else
 xBroadcaster.removeEventListener (maListener);
 nNodeCount += 1;
 }

Once the given object is handled, the traversing of the tree continues by calling this method recur-
sively for every child.
 try {
 int nChildCount = xRoot.getAccessibleChildCount();
 for (int i=0; i<nChildCount; i++) {
 XAccessible xChild = xRoot.getAccessibleChild (i);
 if (xChild != null)
 nNodeCount += traverseTree (xChild.getAccessibleContext());
 }
 }

Because the iteration over the direct children of the given accessible context may take a while, there
is the possibility that some of the children do not exist anymore. It is therefore important to catch
IndexOutOfBoundsException and DisposedException exceptions. Note that this is not a perfect
solution, because children that are added to the given object are not handled properly. A better
algorithm would listen to events of the new and removed children of the object to which it was
recently registered:
 catch (com.sun.star.lang.IndexOutOfBoundsException aException) {
 // The set of children has changed since our last call to
 // getAccesibleChildCount(). Don't try any further on this
 // sub-tree.
 }
 catch (com.sun.star.lang.DisposedException aException) {
 // The child has been destroyed since our last call to
 // getAccesibleChildCount(). That is OK. Don't try any
 // further on this sub-tree.
 }
 }
 return nNodeCount;
}

This method keeps track of how many objects it has added to the listener. This number is used in
the run() method to write an informative message.
public void run () {
 System.out.println ("starting registration");
 long nNodeCount = traverseTree (mxRoot);
 System.out.println ("ending registration");
 if (mbShowMessages) {
 if (!mbRegister)

1088 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/IndexOutOfBoundsException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/IndexOutOfBoundsException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/IndexOutOfBoundsException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventBroadcaster.html#removeEventListener
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventBroadcaster.html#removeEventListener
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventBroadcaster.html#removeEventListener
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventBroadcaster.html#addEventListener
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventBroadcaster.html#addEventListener
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventBroadcaster.html#addEventListener
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventBroadcaster.html

 MessageArea.print ("un");
 MessageArea.println ("registered at " + nNodeCount
 + " objects in accessibility tree of " + mxRoot.getAccessibleName());
 }
}

XAccessibleEventListener

The interface com.sun.star.accessibility.XAccessibleEventListener is the counterpart to
the accessible event broadcaster, and is called for every change of any accessible object at which it
has been registered. The notifyEvent() function is called with an com.sun.star.accessi-
bility.AccessibleEventObject structure. That structure comprises four fields: the EventId
field, which is one of the com.sun.star.accessibility.AccessibleEventId constants,
describes the type of the event. The object that sent the event is referenced from the Source field.
The OldValue and NewValue fields contain event type specific values that contain the changed
value before and after the modification took place. The type of content that is expected in the
OldValue and NewValue fields is explained together with the AccessibleEventId event types.

The notifyEvent() method of the EventHandler class is not called directly from the accessibility
objects. There is an instance of the EventListenerProxy class in between. That class simply
forwards the events at the right time and is therefore not explained in more detail here.
public void notifyEvent (com.sun.star.accessibility.AccessibleEventObject aEvent) {

The one event type that is covered here is the CHILD event, which is sent when a new accessibility
object has been created, or an existing one has been removed.
 // Guard against disposed objects.
 try {
 switch (aEvent.EventId) {
 case AccessibleEventId.CHILD:
 handleChildEvent (
 objectToContext (aEvent.OldValue),
 objectToContext (aEvent.NewValue));
 break;

The handling of the rest of the event types is omitted here to keep this explanation simple.

Again, it is important to guard against the possibility of events arriving after the object they were
sent for has been destroyed. For this simple tool, it is sufficient to silently ignore the resulting
exception.
 }
 }
 catch (com.sun.star.lang.DisposedException e) {
 }
}

Before showing you the actual handling of child events, you can look at the objectToContext()
method that is used to convert the OldValue and NewValue fields of the event structure from UNO
Anys to XAccessibleContext references. It takes a weakness of the accessibility API IDL specifica-
tion into account: the type of the content of the Source field is not explicitly stated. As a result, it
contains references to both the XAccessible and the XAccessibleContext interfaces. To cope
with this, the conversion method first uses the com.sun.star.uno.AnyConverter class to retrieve
an XAccessible reference from the event source.
private XAccessibleContext objectToContext (Object aObject) {
 XAccessibleContext xContext = null;
 XAccessible xAccessible = null;
 try {
 xAccessible = (XAccessible)AnyConverter.toObject(
 new Type(XAccessible.class), aObject);
 }
 catch (com.sun.star.lang.IllegalArgumentException e) {
 }

If that was successful, the accessible context from the object is returned.
 if (xAccessible != null)
 xContext = xAccessible.getAccessibleContext();

1089

http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html#Source
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html#Source
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html#Source
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventObject.html#NewValue
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventObject.html#NewValue
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventObject.html#NewValue
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventObject.html#OldValue
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventObject.html#OldValue
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventObject.html#OldValue
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#CHILD
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#CHILD
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html#CHILD
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventObject.html#NewValue
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventObject.html#NewValue
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventObject.html#NewValue
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventObject.html#OldValue
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventObject.html#OldValue
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventObject.html#OldValue
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventObject.html#NewValue
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventObject.html#NewValue
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventObject.html#NewValue
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventObject.html#OldValue
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventObject.html#OldValue
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventObject.html#OldValue
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventId.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventObject.html#EventId
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventObject.html#EventId
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventObject.html#EventId
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleEventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventListener.html#notifyEvent
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventListener.html#notifyEvent
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventListener.html#notifyEvent
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleEventListener.html

If retrieving an XAccessible reference from the event's source field failed, this is repeated directly
with the XAccessibleContext interface.
 else
 try {
 xContext = (XAccessibleContext)AnyConverter.toObject(
 new Type(XAccessibleContext.class), aObject);
 }
 catch (com.sun.star.lang.IllegalArgumentException e) {
 }
 return xContext;
}

Handling the child event itself is comparably simple: create a new RegistrationThread object
that adds (or removes) the listener to the object and all of its children.
private void handleChildEvent (XAccessibleContext aOldChild, XAccessibleContext aNewChild) {
 if (aOldChild != null)
 // Remove event listener from the child and all of its descendants.
 new RegistrationThread (maListenerProxy, aOldChild, false, false);
 else if (aNewChild != null)
 // Add event listener to the new child and all of its descendants.
 new RegistrationThread (maListenerProxy, aNewChild, true, false);
}

XAccessibleSelection

While the com.sun.star.accessibility.XAccessibleText and com.sun.star.accessi-
bility.XAccessibleTable interfaces already support selection of text and table cells, respec-
tively, there is a special interface for the general case. The XAccessibleSelection interface
manages a sub-set of an object's children that form the selection. The number of selected children is
returned by getSelectedAccessibleChildCount(), which, of course, is smaller than or equal to
the total number of children as returned by getAccessibleChildCount() of the
com.sun.star.accessibility.XAccessibleContext interface. The selected children can be
retrieved by calling the getSelectedAccessibleChild() function. Note that the same index
passed to getSelectedAccessibleChild() and to
com.sun.star.accessibility.XAccessibleContext:getAccessibleChild() will generally
return different objects.

The selection can be modified with various functions. The functions selectAllAccessibleChil-
dren() and clearAccessibleSelection() select or deselect, respectively, all of the children. To
select or deselect a single child, use selectAccessibleChild() or deselectAccessibleChild().
Whether a child belongs to the selection can be determined by calling the isAccessibleChildSe-
lected() function.

Each child that belongs to the selection is expected to have the
com.sun.star.accessibility.AccessibleStateType:SELECTED state set. When the selection
changes, two kinds of events are expected to be broadcast. One for each child that is selected or
deselected that tells the listeners about the toggled SELECTED state, and one event from their parent
that informs the listeners of the modified selection as represented by the com.sun.star.accessi-
bility.XAccessibleSelection interface.

XAccessibleRelationSet

In addition to the parent-child relationship that defines the accessibility object tree, each accessible
object may have one or more relations to other accessible objects, independent of that hierarchy.
The types of possible relations are defined and explained in the
com.sun.star.accessibility.AccessibleRelationType set of constants.

One example is the com.sun.star.accessibility.AccessibleRelationType:LABEL_FOR and
com.sun.star.accessibility.AccessibleRelationType:LABELED_BY pair of relations that is
used to express the case where one object is the label for a one or more controls of the GUI. The
label and its controls may be spatially adjacent to make their relationship clear to the sighted user.

1090 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRelationType.html#LABELED_BY
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRelationType.html#LABELED_BY
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRelationType.html#LABELED_BY
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRelationType.html#LABEL_FOR
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRelationType.html#LABEL_FOR
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRelationType.html#LABEL_FOR
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRelationType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRelationType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRelationType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleSelection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleSelection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleSelection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleSelection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleSelection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleSelection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleStateType.html#SELECTED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleStateType.html#SELECTED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleStateType.html#SELECTED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleStateType.html#SELECTED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleStateType.html#SELECTED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleStateType.html#SELECTED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleSelection.html#isAccessibleChildSelected
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleSelection.html#isAccessibleChildSelected
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleSelection.html#isAccessibleChildSelected
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleSelection.html#isAccessibleChildSelected
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleSelection.html#isAccessibleChildSelected
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleSelection.html#isAccessibleChildSelected
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleSelection.html#deselectAccessibleChild
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleSelection.html#deselectAccessibleChild
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleSelection.html#deselectAccessibleChild
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleSelection.html#selectAccessibleChild
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleSelection.html#selectAccessibleChild
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleSelection.html#selectAccessibleChild
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleSelection.html#clearAccessibleSelection
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleSelection.html#clearAccessibleSelection
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleSelection.html#clearAccessibleSelection
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleSelection.html#selectAllAccessibleChildren
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleSelection.html#selectAllAccessibleChildren
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleSelection.html#selectAllAccessibleChildren
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleSelection.html#selectAllAccessibleChildren
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleSelection.html#selectAllAccessibleChildren
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleSelection.html#selectAllAccessibleChildren
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleChild
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleChild
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleChild
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleSelection.html#getSelectedAccessibleChild
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleSelection.html#getSelectedAccessibleChild
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleSelection.html#getSelectedAccessibleChild
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleSelection.html#getSelectedAccessibleChild
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleSelection.html#getSelectedAccessibleChild
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleSelection.html#getSelectedAccessibleChild
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleChildCount
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleChildCount
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleChildCount
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleSelection.html#getSelectedAccessibleChildCount
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleSelection.html#getSelectedAccessibleChildCount
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleSelection.html#getSelectedAccessibleChildCount
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleSelection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleSelection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleSelection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessible.html

But in the accessibility object tree, they may belong to different sub-trees. With a set of relations,
these objects can be linked together.

Each relation is an com.sun.star.accessibility.AccessibleRelation structure that contains
the relation type and a set of references to its target objects. In the previous example, there would
be one com.sun.star.accessibility.AccessibleRelationType:LABEL_FOR relation for the
label with all its controls in the target set and one
com.sun.star.accessibility.AccessibleRelationType:LABELED_BY relation from each
control to the label.

For each relation type there may be one relation belonging to a relation set as represented by the
com.sun.star.accessibility.XAccessibleRelationSet interface. Therefore, the number of
relations that is returned by getRelationCount() can not be greater than the number of relation
types. Relations can be accessed either by calling the
com.sun.star.accessibility.XAccessibleRelationSet:getRelation() function with an
index, or by calling the com.sun.star.accessibility.AccessibleRelation:RelationType()
function with a relation type. Note that there are no fixed mappings from relation types to indices.
You can test whether a relation set contains a relation of a given type by using the
com.sun.star.accessibility.XAccessibleRelationSet:containsRelation() function.

The relation set returned by com.sun.star.accessibility.XAccessibleContext:getAccessibleRelationSet() returns
a copy of the relation set of an accessible object. Modifying that copy does not change the relation set of the
object.

XAccessibleStateSet

An accessible object can be in one or more states, which are available through the interface
com.sun.star.accessibility.XAccessibleStateSet. An object that is currently focused will
have the FOCUSED state set. One that belongs to the selection of its parent has the SELECTED state
set. Independent of the current focus and selection, such an object would also have the states
FOCUSABLE and SELECTABLE set to indicate that it may be focused and may be selected. All states
are described in the com.sun.star.accessibility.AccessibleStateType constants collection.

Call the com.sun.star.accessibility.XAccessibleStateSet:isEmpty() function to query
whether a state set has no state set at all. To query a state set for one or more states, use the
com.sun.star.accessibility.XAccessibleStateSet:contains() and com.sun.star.acces-
sibility.XAccessibleStateSet:containsAll() functions respectively. A sequence containing
all the set states is returned by the
com.sun.star.accessibility.XAccessibleStateSet:getStates() function.

The state set returned by
com.sun.star.accessibility.XAccessibleContext:getAccessibleStateSet() returns a copy
of the state set of an accessible object. Modifying that copy does not change the states of the object. There-
fore, modifying a state set is not useful and consequently no modifying functions are supported by the
com.sun.star.accessibility.XAccessibleStateSet interface. States are set or reset indirectly by
using the standard UNO interfaces or the GUI.

1091

http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleStateSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleStateSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleStateSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleStateSet
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleStateSet
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleStateSet
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleStateSet.html#getStates
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleStateSet.html#getStates
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleStateSet.html#getStates
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleStateSet.html#containsAll
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleStateSet.html#containsAll
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleStateSet.html#containsAll
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleStateSet.html#containsAll
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleStateSet.html#containsAll
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleStateSet.html#containsAll
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleStateSet.html#contains
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleStateSet.html#contains
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleStateSet.html#contains
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleStateSet.html#isEmpty
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleStateSet.html#isEmpty
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleStateSet.html#isEmpty
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleStateType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleStateType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleStateType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleStateType.html#SELECTABLE
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleStateType.html#SELECTABLE
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleStateType.html#SELECTABLE
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleStateType.html#FOCUSABLE
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleStateType.html#FOCUSABLE
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleStateType.html#FOCUSABLE
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleStateType.html#SELECTED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleStateType.html#SELECTED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleStateType.html#SELECTED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleStateType.html#FOCUSED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleStateType.html#FOCUSED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleStateType.html#FOCUSED
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleStateSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleStateSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleStateSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleRelationSet
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleRelationSet
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html#getAccessibleRelationSet
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleRelationSet.html#containsRelation
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleRelationSet.html#containsRelation
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleRelationSet.html#containsRelation
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRelation.html#RelationType
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRelation.html#RelationType
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRelation.html#RelationType
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleRelationSet.html#getRelation
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleRelationSet.html#getRelation
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleRelationSet.html#getRelation
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleRelationSet.html#getRelationCount
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleRelationSet.html#getRelationCount
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleRelationSet.html#getRelationCount
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleRelationSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleRelationSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleRelationSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRelationType.html#LABELED_BY
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRelationType.html#LABELED_BY
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRelationType.html#LABELED_BY
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRelationType.html#LABEL_FOR
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRelationType.html#LABEL_FOR
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRelationType.html#LABEL_FOR
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRelation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRelation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/AccessibleRelation.html

The showStates() method of the TextualDisplay class of the SSR first obtains a state set object
from the given accessible context and prints a list of all the states contained therein by using the
getStates() method to convert the state set into an array of state IDs. It then iterates over all IDs
and uses the NameProvider class to convert the numerical IDs into human readable strings.
private void showStates (XAccessibleContext xContext, String sIndentation) {
 // Get the state set object...
 XAccessibleStateSet xStateSet = xContext.getAccessibleStateSet();
 // ...and retrieve an array of numerical IDs.
 short aStates[] = xStateSet.getStates();

 // Iterate over the array and print the names of the states.
 msTextContent += sIndentation + "States : ";
 for (int i=0; i<aStates.length; i++) {
 if (i > 0)
 msTextContent += ", ";
 msTextContent += NameProvider.getStateName(aStates[i]);
 }
 msTextContent += "\n";
}

XAccessibleValue

In a typical GUI, there are many controls whose characteristic feature can be represented by a
single numerical value. Examples are spin boxes, scales and sliders, or combo boxes that contain
only numbers, such as the font size. These objects should support the XAccessibleValue interface.

The current value can be read and set with the getCurrentValue() and setCurrentValue()
functions. The valid range of values is returned by the getMaximumValue() and getMinimum-
Value() functions.

XAccessibleImage

The main purpose of the XAccessibleImage interface is to be an indicator that an object represents
an image or a bitmap. The functions of this interface do not add functionality that is not already
present in the com.sun.star.accessibility.XAccessibleContext interface.

The getAccessibleImageDescription() function returns a localized description of the image.
The functions getAccessibleImageHeight() and getAccessibleImageWidth() return the size of
the image in pixels.

1092 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 18.4: List of states in the SSR

http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleImage.html#getAccessibleImageWidth
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleImage.html#getAccessibleImageWidth
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleImage.html#getAccessibleImageWidth
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleImage.html#getAccessibleImageHeight
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleImage.html#getAccessibleImageHeight
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleImage.html#getAccessibleImageHeight
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleImage.html#getAccessibleImageDescription
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleImage.html#getAccessibleImageDescription
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleImage.html#getAccessibleImageDescription
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleImage.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleImage.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleImage.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleValue.html#getMinimumValue
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleValue.html#getMinimumValue
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleValue.html#getMinimumValue
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleValue.html#getMinimumValue
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleValue.html#getMinimumValue
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleValue.html#getMinimumValue
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleValue.html#getMaximumValue
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleValue.html#getMaximumValue
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleValue.html#getMaximumValue
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleValue.html#setCurrentValue
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleValue.html#setCurrentValue
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleValue.html#setCurrentValue
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleValue.html#getCurrentValue
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleValue.html#getCurrentValue
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleValue.html#getCurrentValue
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleStateSet.html#getStates
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleStateSet.html#getStates
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleStateSet.html#getStates

XAccessibleAction

With the XAccessibleAction interface, an accessible object can provide access to actions that can
be performed on the object. These actions may or may not correspond to actions that are already
available over the GUI.

The number of available actions is returned by getAccessibleActionCount(). To execute an
action call doAccessibleAction() with the index of the desired action. The description of an
action is returned by the getAccessibleActionDescription().

The getAccessibleActionKeyBinding() function tells you what key bindings exist for a certain
action. See the description of the com.sun.star.accessibility.XAccessibleKeyBinding inter-
face below.

XAccessibleKeyBinding

The purpose of the XAccessibleKeyBinding interface is to represent an arbitrary set of key
strokes. When a key binding is associated with an action (see the description of the interface
above) then each of its key strokes executes that action. A key stroke itself consists of one or more
keys to be pressed. See com.sun.star.awt.KeyStroke for details.

XAccessibleHypertext

The interface com.sun.star.accessibility.XAccessibleHypertext is derived from
com.sun.star.accessibility.XAccessibleText. This interface represents text that contains
hyperlinks. Those hyperlinks are represented by com.sun.star.accessibility.XAccessibleHy-
perlink objects, which are described next.

To iterate over all hyperlinks in a text, use getHyperLinkCount() to determine the number of
links. The getHyperLink() function returns the com.sun.star.accessibility.XAccessibleHy-
perlink object for a specific index. If you want to know whether there is a link at a certain text
position, use the getHyperLinkIndex() function to obtain the corresponding object. When the
returned reference is empty then there is no hyperlink at that position.

XAccessibleHyperlink

Hyperlinks contained in a hypertext document are modeled by the XAccessibleHyperlink inter-
face. In its simplest form, a hyperlink corresponds to an HTML link. However, there may be more
complex hyperlinks where there is more than one action assigned to a single hyperlink. An
example of this is HTML image maps. To give access to the actions, the interface is derived from
the com.sun.star.accessibility.XAccessibleAction interface. In addition to the information
provided by the com.sun.star.accessibility.XAccessibleAction interface, you can request
an action's anchor and object. A typical return value of the getAccessibleActionAnchor() func-
tion for HTML links would be the text between the <a href...> and tags. Likewise, the
com.sun.star.accessibility.XAccessibleHyperlink:getAccessibleActionObject() func-
tion returns a HTML link's URL.

A hyperlink specifies its text relative to the enclosing hypertext by providing a start- and end index
through the getStartIndex() and getEndIndex() functions. You can ask a link about the validity
of the referenced target by calling its isValid() function. Note that this state is volatile and may
change without notice.

1093

http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHyperlink.html#isValid
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHyperlink.html#isValid
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHyperlink.html#isValid
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHyperlink.html#getEndIndex
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHyperlink.html#getEndIndex
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHyperlink.html#getEndIndex
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHyperlink.html#getStartIndex
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHyperlink.html#getStartIndex
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHyperlink.html#getStartIndex
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHyperlink.html#getAccessibleActionObject
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHyperlink.html#getAccessibleActionObject
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHyperlink.html#getAccessibleActionObject
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHyperlink.html#getAccessibleActionAnchor
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHyperlink.html#getAccessibleActionAnchor
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHyperlink.html#getAccessibleActionAnchor
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleAction.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleAction.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleAction.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleAction.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleAction.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleAction.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHyperlink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHyperlink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHyperlink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHypertext.html#getHyperLinkIndex
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHypertext.html#getHyperLinkIndex
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHypertext.html#getHyperLinkIndex
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHyperlink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHyperlink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHyperlink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHyperlink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHyperlink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHyperlink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHypertext.html#getHyperLink
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHypertext.html#getHyperLink
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHypertext.html#getHyperLink
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHypertext.html#getHyperLinkCount
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHypertext.html#getHyperLinkCount
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHypertext.html#getHyperLinkCount
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHyperlink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHyperlink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHyperlink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHyperlink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHyperlink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHyperlink.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHypertext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHypertext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleHypertext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/KeyStroke.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/KeyStroke.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/KeyStroke.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleKeyBinding.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleKeyBinding.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleKeyBinding.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleKeyBinding.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleKeyBinding.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleKeyBinding.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleAction.html#getAccessibleActionKeyBinding
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleAction.html#getAccessibleActionKeyBinding
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleAction.html#getAccessibleActionKeyBinding
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleAction.html#getAccessibleActionDescription
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleAction.html#getAccessibleActionDescription
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleAction.html#getAccessibleActionDescription
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleAction.html#doAccessibleAction
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleAction.html#doAccessibleAction
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleAction.html#doAccessibleAction
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleAction.html#getAccessibleActionCount
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleAction.html#getAccessibleActionCount
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleAction.html#getAccessibleActionCount
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleAction.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleAction.html
http://api.openoffice.org/docs/common/ref/com/sun/star/accessibility/XAccessibleAction.html

19 Scripting Framework

19.1 Introduction
A OpenOffice.org macro is a short program used to automate a number of steps. The Scripting
Framework is a new feature in OpenOffice.org [VERSION]. It allows users to write and run macros
for OpenOffice.org in a number of programming and scripting languages including:

• BeanShell (http://www.beanshell.org/)

• JavaScript (http://www.mozilla.org/rhino/)

• Java (http://www.java.com)

• OpenOffice.org Basic 12 OpenOffice.org Basic and Dialogs

The framework is designed so that developers can add support for new languages.

In this chapter, the terms macro and script are interchangeable.

19.1.1 Structure of this Chapter
This chapter is organized into the following sections:

• Section 19.2 Scripting Framework - Using the Scripting Framework describes the user interface
features of the Scripting Framework

• Describes how to run a macro using the Run Macro dialog.

• Describes how to use the Organizer dialogs to create, edit and manage macros.

• Section 19.3 Scripting Framework - Writing Macros provides a guide on how to get started with
writing Scripting Framework macros

• Describes how to write a simple HelloWorld macro.

• Describes how Scripting Framework macros interact with OpenOffice.org and the
OpenOffice.org API.

• Describes how to create a dialog from a Scripting Framework macro.

• Describes how to compile and deploy a Java macro.

1095

http://www.java.com/
http://www.java.com/
http://www.java.com/
http://www.mozilla.org/rhino/
http://www.mozilla.org/rhino/
http://www.mozilla.org/rhino/
http://www.beanshell.org/
http://www.beanshell.org/
http://www.beanshell.org/

• Section 19.4 Scripting Framework - How the Scripting Framework works describes how the plug-
able architecture of the Scripting Framework allows support for new scripting languages to be
added easily.

• Section 19.5 Scripting Framework - Writing a LanguageScriptProvider UNO component Using the
Java Helper Classes describes how to use the Scripting Framework Java helper classes to add
support for a new scripting language

• Describes how to use the ScriptProvider abstract base class.

• Describes how to add editor and management support.

• Describes how to build and register a ScriptProvider.

• Section 19.6 Scripting Framework - Writing a LanguageScriptProvider UNO component from scratch
describes how to write a LanguageScriptProvider UNO component.

19.1.2 Who Should Read this Chapter
If you are interested in automating OpenOffice.org using BeanShell, JavaScript, Java or
OpenOffice.org Basic then you should read sections 19.2 Scripting Framework - Using the Scripting
Framework and 19.3 Scripting Framework - Writing Macros.

If you are interested in adding support to run and write macros in a language with a Java based
interpreter then you should read section 19.5 Scripting Framework - Writing a LanguageScriptProvider
UNO component Using the Java Helper Classes.

If you are interested in adding support for a scripting language from scratch then you should read
section 19.6 Scripting Framework - Writing a LanguageScriptProvider UNO component from scratch.

19.2 Using the Scripting Framework
This section describes how to run and organize macros using the Tools-Macros submenu:

19.2.1 Running macros
To run a macro use the menu item Tools � Macros - Run Macro... This opens the Macro Selector
dialog:

1096 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 19.1Tools-Macros submenu

The Library list box contains a tree representation of all macro libraries. At the top level, there are
three entries:

• My Macros (macros belonging to the current user)

• OpenOffice.org Macros (macros available to all users of the installation)

• DocumentName Macros (macros contained in the currently active document)

Each of these entries can be expanded to show any macro libraries they contain. When a library has
been selected, the macros contained in that library are displayed in the Macro name list box. When
a macro is selected its description, if one exists, is displayed at the bottom of the dialog. Selecting a
macro and clicking Run will close the dialog and run the macro. Clicking Cancel will close the
dialog without running a macro.

Macros can also be run directly from the Macro Organizer 19.2.2 Scripting Framework - Using the
Scripting Framework - Editing, Creating and Managing Macros and from some of the macro editors.

19.2.2 Editing, Creating and Managing Macros
The Scripting Framework provides support for editing, creating and managing macros via the
Tools � Macro � Organize Macros menu. From there you can open a macro management dialog
for BeanShell, JavaScript or OpenOffice.org Basic macros.

1097

Illustration 19.2Macro Selector dialog

The Organizer dialogs for BeanShell and JavaScript
The Organizer dialogs for BeanShell and JavaScript dialogs work in the same way. The dialog
allows you to run macros and edit macros, and create, delete and rename macros and macro
libraries.

The dialog displays the complete hierarchy of macro libraries and macros that are available for the
language. The buttons in the dialog are enabled or disabled depending on which item is selected,
so for example, if a read only library is selected the Create button is disabled. The buttons in the
dialog are used as follows:

• Run
Closes the dialog and runs the selected macro.

• Create
Pops up a dialog prompting the user for a name for the new library (if a top-level entry is
selected) or macro (if a library is selected). The dialog will suggest a name which the user
can change if they wish. When the OK button is clicked, the new library or macro should
appear in the Organizer.

• Edit
Opens an Editor window for the selected macro.

• Rename
Opens a dialog prompting the user for a new name for the selected library or macro. By
default the dialog will contain the current name, which the user can then change. If the
user presses OK the library or macro is renamed in the Organizer.

• Delete
Deletes the currently selected entry.

1098 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 19.3BeanShell Organizer

BeanShell Editor

The macro source is listed in the main window with line numbers in the left-hand sidebar. The
editor supports simple editing functions (Ctrl-X to cut, Ctrl-C to copy, Ctrl-V to paste, double click
to select a word, triple click to select a line). The Run button executes the source code as displayed
in the Editor window.

JavaScript Editor
Clicking the Edit button in the JavaScript Organizer will open the Rhino JavaScript Debugger:

1099

Illustration 19.4BeanShell Editor

The source of the JavaScript macro is displayed in the main window. The line numbers are shown
in the left-hand sidebar. Clicking in the sidebar will set and remove breakpoints in the macro.
There is currently a bug in the debugger which is not clearing the symbol in the sidebar when
breakpoints are removed.

The contents of the text window can be saved by selecting the File � Save menu item. The macro
can be run by selecting the File � Run menu item. This activates the four buttons above the main
text window:

• Break
Sets a breakpoint at the line where the cursor is.

• Go
Runs the macro, stopping at the next breakpoint (if one is set).

• Step Into
Runs a single line of code, stepping into functions if they exist and then stop.

• Step Over
Runs a single line of code, without stepping into functions and then stop.

• Step Out
Continues the execution of the macro until it exits the current function.

There are two other panes in the debugger which are hidden by default. These allow the developer
to view the stack and watch variables:

1100 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 19.5JavaScript Debugger

For more information on the Rhino JavaScript Debugger see
http://www.mozilla.org/rhino/debugger.html

Basic and Dialogs
The OpenOffice.org Basic and Dialog Organizers are described in the 12 OpenOffice.org Basic and
Dialogs chapter.

Macro Recording
Macro Recording is only supported for OpenOffice.org Basic and is accessible via the Tools-
Macro-Record Macro menu item.

19.3 Writing Macros

19.3.1 The HelloWorld macro
When the user creates a new macro in BeanShell or JavaScript, the default content of the macro is
the HelloWorld. Here is what the code looks like for BeanShell:

1101

Illustration 19.6JavaScript Debugger with Stack and Watch tabs displayed

http://www.mozilla.org/rhino/debugger.html
http://www.mozilla.org/rhino/debugger.html
http://www.mozilla.org/rhino/debugger.html

import com.sun.star.uno.UnoRuntime;

import com.sun.star.text.XTextDocument;
import com.sun.star.text.XText;
import com.sun.star.text.XTextRange;

oDoc = context.getDocument();
xTextDoc = (XTextDocument) UnoRuntime.queryInterface(XTextDocument.class,oDoc);
xText = xTextDoc.getText();
xTextRange = xText.getEnd();
xTextRange.setString("Hello World (in BeanShell)");

// BeanShell OpenOffice.org scripts should always return 0
return 0;

Here is the same code in JavaScript:
importClass(Packages.com.sun.star.uno.UnoRuntime);
importClass(Packages.com.sun.star.text.XTextDocument);
importClass(Packages.com.sun.star.text.XText);
importClass(Packages.com.sun.star.text.XTextRange);

oDoc = XSCRIPTCONTEXT.getDocument();
xTextDoc = UnoRuntime.queryInterface(XTextDocument,oDoc);
xText = xTextDoc.getText();
xTextRange = xText.getEnd();
xTextRange.setString("Hello World (in JavaScript)");

Here is the code for HelloWorld in Java:
import com.sun.star.uno.UnoRuntime;
import com.sun.star.frame.XModel;
import com.sun.star.text.XTextDocument;
import com.sun.star.text.XTextRange;
import com.sun.star.text.XText;
import com.sun.star.script.provider.XScriptContext;

public class HelloWorld {
 public static void printHW(XScriptContext xScriptContext)
 {
 Xmodel xDocModel = xScriptContext.getDocument()

 // getting the text document object
 XTextDocument xtextdocument = (XTextDocument) UnoRuntime.queryInterface(
 XTextDocument.class, xDocModel);

 XText xText = xtextdocument.getText();
 XTextRange xTextRange = xText.getEnd();
 xTextRange.setString("Hello World (in Java)");
 }
}

The table below outlines some of the features of macro development in the different languages:

Language Interpreted Typeless Editor Debugger

BeanShell Yes Yes Yes No

JavaScript Yes Yes Yes Yes

Java No No No No

Instructions on compiling and deploying Java macros can be found later in this chapter.

19.3.2 Using the OpenOffice.org API from macros
All BeanShell, JavaScript and Java macros are supplied with a variable of type
com.sun.star.script.provider.XScriptContext which can be used to access the
OpenOffice.org API. This type has three methods:

• com.sun.star.frame.XModel getDocument()
Returns the XModel interface of the document for which the macro was invoked (see 7.1.3

1102 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/provider/XScriptContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/provider/XScriptContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/provider/XScriptContext.html

Office Development - OpenOffice.org Application Environment - Using the Component Frame-
work)

• com.sun.star.frame.XDesktop getDesktop()
Returns the XDesktop interface for the application which can be used to access open docu-
ment, and load documents (see 7.1.2 Office Development - OpenOffice.org Application Envi-
ronment - Using the Desktop)

• com.sun.star.uno.XComponentContext getComponentContext()
Returns the XComponentContext interface which is used to create instances of services
(see 3.3.2 Professional UNO - UNO Concepts - Service Manager and Component Context)

Depending on the language the macro accesses the XScriptContext type in different ways:

• BeanShell: Using the global variable XSCRIPTCONTEXT
oDoc = XSCRIPTCONTEXT.getDocument();

• JavaScript: Using the global variable XSCRIPTCONTEXT
oDoc = XSCRIPTCONTEXT.getDocument();

• Java: The first parameter passed to the macro method is always of type
XScriptContext
Xmodel xDocModel = xScriptContext.getDocument();

19.3.3 Handling arguments passed to macros
In certain cases arguments may be passed to macros, for example, when a macro is assigned to a
button in a document. In this case the arguments are passed to the macro as follows:

• BeanShell: In the global Object[] variable ARGUMENTS
event = (ActionEvent) ARGUMENTS[0];

• JavaScript: In the global Object[] variable ARGUMENTS
event = ARGUMENTS[0];

• Java: The arguments are passed as an Object[] in the second parameter to
the macro method
public void handleButtonPress(
 XScriptContext xScriptContext, Object[] args)

Each of the arguments in the Object[] are of the UNO type Any. For more information on how the
Any type is used in Java see 3.4.1 Professional UNO - UNO Language Bindings - Java Language
Binding - Type Mappings.

The ButtonPressHandler macros in the Highlight library of a OpenOffice.org installation show
how a macro can handle arguments.

19.3.4 Creating dialogs from macros
Dialogs which have been built in the Dialog Editor can be loaded by macros using the
com.sun.star.awt.XDialogProvider API. The XDialogProvider interface has one method createDi-
alog() which takes a string as a parameter. This string is the URL to the dialog. The URL is formed as follows:

vnd.sun.star.script:DIALOGREF?location=[application|document]

where DIALOGREF is the name of the dialog that you want to create, and location is either application or
document depending on where the dialog is stored.

1103

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDesktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDesktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDesktop.html

For example if you wanted to load dialog called MyDialog, which is in a Dialog Library called MyDialogLib-
rary in the OpenOffice.org dialogs area of your installation then the URL would be:

vnd.sun.star.script:MyDialogLibrary.MyDialog?location=application

If you wanted to load a dialog called MyDocumentDialog which in a library called MyDocumentLibrary
which is located in a document then the URL would be:

vnd.sun.star.script:MyDocumentLibrary.MyDocumentDialog?location=document

The following code shows how to create a dialog from a Java macro:
public XDialog getDialog(XScriptContext context)
{
 XDialog theDialog;

 // We must pass the XModel of the current document when creating a DialogProvider object
 Object[] args = new Object[1];
 args[0] = context.getDocument();

 Object obj;
 try {
 obj = xmcf.createInstanceWithArgumentsAndContext(
 "com.sun.star.awt.DialogProvider", args, context.getComponentContext());
 }
 catch (com.sun.star.uno.Exception e) {
 System.err.println("Error getting DialogProvider object");
 return null;
 }

 XDialogProvider xDialogProvider = (XDialogProvider)
 UnoRuntime.queryInterface(XDialogProvider.class, obj);

 // Got DialogProvider, now get dialog
 try {
 theDialog = xDialogProvider.createDialog(
 "vnd.sun.star.script:MyDialogLibrary.MyDialog?location=application");
 }
 catch (java.lang.Exception e) {
 System.err.println("Got exception on first creating dialog: " + e.getMessage());
 }
 return theDialog;
}

19.3.5 Compiling and Deploying Java macros
Because Java is a compiled language it is not possible to execute Java source code as a macro
directly from within OpenOffice.org. The code must first be compiled and then deployed within a
OpenOffice.org installation or document. The following steps show how to create a Java macro
using the HelloWorld example code:

• Create a HelloWorld directory for your macro

• Create a HelloWorld.java file using the HelloWorld source code

• Compile the HelloWorld.java file. The following jar files from the program/classes directory of a
OpenOffice.org installation must be in the classpath: ridl.jar, unoil.jar, jurt.jar

• Create a HelloWorld.jar file containing the HelloWorld.class file

• Create a parcel-descriptor.xml file for your macro
<?xml version="1.0" encoding="UTF-8"?>

<parcel language="Java" xmlns:parcel="scripting.dtd">
 <script language="Java">
 <locale lang="en">
 <displayname value="HelloWorld"/>
 <description>
 Prints "Hello World".
 </description>
 </locale>

1104 OpenOffice.org 2.3 Developer's Guide • June 2007

 <functionname value="HelloWorld.printHW"/>
 <languagedepprops>
 <prop name="classpath" value="HelloWorld.jar"/>
 </languagedepprops>
 </script>
</parcel>

The parcel-descriptor.xml file is used by the Scripting Framework to find macros. The function-
name element indicates the name of the Java method which should be executed as a macro. The
classpath element can be used to indicate any jar or class files which are used by the macro. If the
classpath element is not included, then the directory in which the parcel-desciptor.xml file is found
and any jar files in that directory will be used as the classpath. All of the jar files in the
program/classes directory are automatically placed in the classpath.

• Copy the HelloWorld directory into the share/Scripts/java directory of a OpenOffice.org installa-
tion or into the user/Scripts/java directory of a user installation. If you want to deploy the macro
to a document you need to place it in a Scripts/java directory within the document zip file.

• If OpenOffice.org is running, you will need to restart it in order for the macro to appear in the
Macro Selector dialog.

The parcel-descriptor.xml file is also used to detect BeanShell and JavaScript macros. It is created automati-
cally when creating macros using the Organizer dialogs for BeanShell and JavaScript.

19.4 How the Scripting Framework works
The goals of the ScriptingFramework are to provide plug-able support for new scripting languages
and allow macros written in supported languages to be:

• Executed

• Displayed

• Organized

• Assigned to OpenOffice.org events, key combinations, menu and toolbar items

This is achieved by enabling new language support to be added by deploying an UNO component
that satisfies the service definition specified by com.sun.star.script.provider.Language-
ScriptProvider. The ScriptingFramework detects supported languages by discovering the avail-
able components that satisfy the service specification and obey the naming convention
�com.sun.star.script.provider.ScriptProviderFor[Language]”

OpenOffice.org comes with a number of reference LanguageScriptProviders installed by default.

LanguageScriptProviders

Language Service name

Java com.sun.star.script.provider.ScriptProviderForJava

JavaScript com.sun.star.script.provider.ScriptProviderForJavaScript

BeanShell com.sun.star.script.provider.ScriptProviderForBeanShell

Basic com.sun.star.script.provider.ScriptProviderForBasic

1105

http://api.openoffice.org/docs/common/ref/com/sun/star/script/provider/LanguageScriptProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/provider/LanguageScriptProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/provider/LanguageScriptProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/provider/LanguageScriptProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/provider/LanguageScriptProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/provider/LanguageScriptProvider.html

For more details on naming conventions, interfaces and implementation of a LanguageScriptPro-
vider please see 19.6 Scripting Framework - Writing a LanguageScriptProvider UNO component from
scratch and 19.5 Scripting Framework - Writing a LanguageScriptProvider UNO component Using the
Java Helper Classes.

1106 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 19.7: LanguageScriptProvider

The illustration 19.7 above shows the simplified interaction between the Office Process and the
ScriptingFramework when invoking a macro. Macros are identified by a URI < add ref to section
on URI > and are represented by objects implementing the
com.sun.star.script.provider.XScript interface. When the getScript() method is called
the ScriptingFramework uses the URI to determine the correct LangaugeScriptProvider to call
getScript()on. The LanguageScriptProvider translates a URI into a object that implements
Xscript. Office can then invoke the macro by calling invoke on that object.

19.5 Writing a LanguageScriptProvider UNO
Component Using the Java Helper Classes
The Scripting Framework provides a set of Java Helper classes which make it easier to add support
for scripting languages for which a Java interpreter exists. This set of classes will handle all of the
UNO plumbing required to implement a LanguageScriptProvider, leaving the developer to focus
on writing the code to execute their scripting language macros. The steps to add a new Language-
ScriptProvider using Java are:

1. Create a new ScriptProviderForYourLanguage by inheriting from the abstract ScriptProvider
Java base class

2. Implement the com.sun.star.script.provider.XScript UNO interface with code to run
your scripting language interpreter from Java

3. Optionally, add support for editing your scripting language macros by implementing the
ScriptEditor Java interface

4. Build and register your ScriptProvider

19.5.1 The ScriptProvider abstract base class
The ScriptProvider class is an abstract Java class with three abstract methods:
// this method is used to get a script for a script URI
public abstract XScript getScript(String scriptURI)
 throws com.sun.star.uno.RuntimeException,
 com.sun.star.script.provider.ScriptFrameworkErrorException;

// This method is used to determine whether the ScriptProvider has a ScriptEditor
public abstract boolean hasScriptEditor();

// This method is used to get the ScriptEditor for this ScriptProvider
public abstract ScriptEditor getScriptEditor();

The most important method is the getScript() method which must be implemented in order for
OpenOffice.org to execute macros in your scripting language. Fortunately this is made easy by a
set of helper methods in the ScriptProvider class, and by a set of helper classes which implement
the BrowseNode API described in 19.6 Scripting Framework - Writing a LanguageScriptProvider UNO
component from scratch.

Here is an example of a ScriptProvider implementation for a new ScriptProviderForYourLan-
guage:
import com.sun.star.uno.XComponentContext;
import com.sun.star.lang.XMultiServiceFactory;
import com.sun.star.lang.XSingleServiceFactory;
import com.sun.star.registry.XRegistryKey;
import com.sun.star.comp.loader.FactoryHelper;
import com.sun.star.lang.XServiceInfo;
import com.sun.star.lang.XInitialization;

1107

http://api.openoffice.org/docs/common/ref/com/sun/star/script/provider/XScript.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/provider/XScript.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/provider/XScript.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/provider/XScript.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/provider/XScript.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/provider/XScript.html

import com.sun.star.script.provider.XScriptContext;
import com.sun.star.script.provider.XScript;
import com.sun.star.script.framework.provider.ScriptProvider;
import com.sun.star.script.framework.provider.ScriptEditor;
import com.sun.star.script.framework.container.ScriptMetaData;

public class ScriptProviderForYourLanguage
{
 public static class _ScriptProviderForYourLanguage extends ScriptProvider
 {
 public _ScriptProviderForYourLanguage(XComponentContext ctx)
 {
 super (ctx, "YourLanguage");
 }

 public XScript getScript(String scriptURI)
 throws com.sun.star.uno.RuntimeException,
 com.sun.star.script.provider.ScriptFrameworkErrorException
 {
 YourLanguageScript script = null;

 try
 {
 ScriptMetaData scriptMetaData = getScriptData(scriptURI);
 XScriptContext xScriptContext = getScriptingContext();
 script = new YourLanguageScript(xScriptContext, scriptMetaData);
 }
 catch (com.sun.star.uno.Exception e)
 {
 System.err.println("Failed to get script: " + scriptURI);
 }
 return script;
 }

 public boolean hasScriptEditor()
 {
 return true;
 }

 public ScriptEditor getScriptEditor()
 {
 return new ScriptEditorForYourLanguage();
 }
 }

 // code to register and create a service factory for ScriptProviderForYourLanguage
 // this code is the standard code for registering classes which implement UNO services
 public static XSingleServiceFactory __getServiceFactory(String implName,
 XMultiServiceFactory multiFactory,
 XRegistryKey regKey)
 {
 XSingleServiceFactory xSingleServiceFactory = null;

 if
(implName.equals(ScriptProviderForYourLanguage._ScriptProviderForYourLanguage.class.getName()))
 {
 xSingleServiceFactory = FactoryHelper.getServiceFactory(
 ScriptProviderForYourLanguage._ScriptProviderForYourLanguage.class,
 "com.sun.star.script.provider.ScriptProviderForYourLanguage",
 multiFactory,
 regKey);
 }

 return xSingleServiceFactory;
 }

 public static boolean __writeRegistryServiceInfo(XRegistryKey regKey)
 {
 String impl =
 "ScriptProviderForYourLanguage$_ScriptProviderForYourLanguage";

 String service1 =
 "com.sun.star.script.provider.ScriptProvider";

 String service2 =
 "com.sun.star.script.provider.LanguageScriptProvider";

 String service3 =
 "com.sun.star.script.provider.ScriptProviderForYourLanguage";

 FactoryHelper.writeRegistryServiceInfo(impl, service1, regKey);
 FactoryHelper.writeRegistryServiceInfo(impl, service2, regKey);
 FactoryHelper.writeRegistryServiceInfo(impl, service3, regKey);

 return true;
 }

1108 OpenOffice.org 2.3 Developer's Guide • June 2007

}

The getScriptData() and getScriptingContext() methods, make the implementation of the
getScript() method easy.

The __getServiceFactory() and __writeRegistryServiceInfo() methods are standard OpenOffice.org
methods for registering UNO components. The only thing you need to change in them is the name
of your ScriptProvider.

19.5.2 Implementing the XScript interface
The next step is to provide the YourLanguageScript implementation which will execute the macro
code. The following example shows the code for the YourLanguageScript class:
import com.sun.star.uno.Type;
import com.sun.star.uno.Any;
import com.sun.star.lang.IllegalArgumentException;
import com.sun.star.lang.WrappedTargetException;
import com.sun.star.reflection.InvocationTargetException;
import com.sun.star.script.CannotConvertException;

import com.sun.star.script.provider.XScriptContext;
import com.sun.star.script.provider.XScript;
import com.sun.star.script.provider.ScriptFrameworkErrorException;
import com.sun.star.script.provider.ScriptFrameworkErrorType;

import com.sun.star.script.framework.provider.ClassLoaderFactory;
import com.sun.star.script.framework.container.ScriptMetaData;

public class YourLanguageScript implements XScript
{
 private XScriptContext xScriptContext;
 private ScriptMetaData scriptMetaData;

 public YourLanguageScript(XScriptContext xsc, ScriptMetaData smd)
 {
 this.xScriptContext = xsc;
 this.scriptMetaData = smd;
 }

 public Object invoke(Object[] aParams,
 short[][] aOutParamIndex,
 Object[][] aOutParam)
 throws com.sun.star.script.provider.ScriptFrameworkErrorException,
 com.sun.star.reflection.InvocationTargetException
 {
 // Initialise the out paramters - not used at the moment
 aOutParamIndex[0] = new short[0];
 aOutParam[0] = new Object[0];

 // Use the following code to set up a ClassLoader if you need one
 ClassLoader cl = null;
 try {
 cl = ClassLoaderFactory.getURLClassLoader(scriptMetaData);
 }
 catch (java.lang.Exception e)
 {
 // Framework error
 throw new ScriptFrameworkErrorException(
 e.getMessage(), null,
 scriptMetaData.getLanguageName(), scriptMetaData.getLanguage(),
 ScriptFrameworkErrorType.UNKNOWN);
 }

 // Load the source of your script using the scriptMetaData object
 scriptMetaData.loadSource();
 String source = scriptMetaData.getSource();
 Any result = null;

 // This is where you add the code to execute your script
 // You should pass the xScriptContext variable to the script
 // so that it can access the application API

 result = yourlanguageinterpreter.run(source);

 // The invoke method should return a com.sun.star.uno.Any object
 // containing the result of the script. This can be created using
 // the com.sun.star.uno.AnyConverter helper class
 if (result == null)

1109

 {
 return new Any(new Type(), null);
 }
 return result;
 }
}

If the interpreter for YourLanguage supports Java class loading, then the ClassLoaderFactory
helper class can be used to load any class or jar files associated with a macro. The ClassLoaderFac-
tory uses the parcel-descriptor.xml file (see 19.3.5 Scripting Framework - Writing Macros - Compiling
and Deploying Java Macros) to discover what class and jar files need to be loaded by the script.

The ScriptMetaData class will load the source code of the macro which can then be passed to the
YourLanguage interpreter.

19.5.3 Implementing the ScriptEditor interface
If you want to add support for editing scripts you need to implement the ScriptEditor interface:
package com.sun.star.script.framework.provider;

import com.sun.star.script.provider.XScriptContext;
import com.sun.star.script.framework.container.ScriptMetaData;

public interface ScriptEditor
{
 public Object execute() throws Exception;
 public void indicateErrorLine(int lineNum);
 public void edit(XScriptContext context, ScriptMetaData entry);
 public String getTemplate();
 public String getExtension();
}

The edit() method is called when a user presses the Edit button in the Macro Organizer. The
ScriptEditor implementation can use the ScriptMetaData object to obtain the source code for the
macro and display it.

The getTemplate() method should return a template of a macro in your language, for example the
code to write HelloWorld into a document. The getExtension() method should return the filename
extension used for macros written in your language. These methods are called when the Create
button is pressed in the Macro Organizer.

The execute() and indicateErrorLine() methods are not called by the Macro Organizer and so they
do not have to do anything. They are used by the implementation of the ScriptProviderForBean-
Shell to execute the source code that is displayed in the ScriptEditorForBeanShell, and to open the
ScriptEditorForBeanShell at the line for which an error has occurred. The developer may wish to
do the same when writing their ScriptProviderForYourLanguage and ScriptEditorForYourLan-
guage.

The following code shows an example ScriptEditorForYourLanguage.java file:
import com.sun.star.script.framework.provider.ScriptEditor;
import com.sun.star.script.provider.XScriptContext;
import com.sun.star.script.framework.container.ScriptMetaData;

import javax.swing.*;

public class ScriptEditorForYourLanguage implements ScriptEditor
{
 public Object execute() throws Exception
 {
 return null;
 }

 public void indicateErrorLine(int lineNum)
 {
 return;
 }

 public void edit(XScriptContext context, ScriptMetaData entry)
 {

1110 OpenOffice.org 2.3 Developer's Guide • June 2007

 JFrame frame = new JFrame();
 frame.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);

 JTextArea ta = new JTextArea();
 entry.loadSource();
 ta.setText(entry.getSource());

 frame.getContentPane().add(ta);
 frame.setSize(400, 400);
 frame.show();
 }

 public String getTemplate()
 {
 return "the code for a YourLanguage script";
 }

 public String getExtension()
 {
 return "yl";
 }
}

19.5.4 Building and registering your ScriptProvider
In order to compile these classes you need to include the UNO and Scripting Framework jar files in
your classpath. You can find these in the program/classes directory of your OpenOffice.org installa-
tion. The jar files that you need to include are: ridl.jar, sandbox.jar, unoil.jar, jurt.jar and Script-
Framework.jar.

To compile ScriptProviderForYourLanuage:

1. Compile the ScriptProviderForYourLanguage.java, ScriptEditorForYourLanguage.java and
YourLanguageScript.java files

2. Create a jar file for ScriptProviderForYourLanguage with the following in the manifest file. (Use
the -m switch to the jar command to add the manifest data)
Built-By: Yours Truly
RegistrationClassName: ScriptProviderForYourLanguage

3. Register the ScriptProviderForYourLanguage jar file using the Extension Manager. 5 Extensions

Now you should see an entry for YourLanguage in the Tools-Macros-Organize Macros... menu.

19.6 Writing a LanguageScriptProvider UNO
Component from scratch
To provide support for a new scripting language a new LanguageScriptProvider for that language
needs to be created. The new LanguageScriptProvider, an UNO component, must be written in a
language from which there is an existing UNO bridge. Details about UNO bridges can be found at
6.2.2 Advanced UNO - Language Bindings - UNO C++ Bridges.

The LanguageScriptProvider is an UNO component that provides the environment to execute a
macro for a specific language. For example when OpenOffice.org encounters a Scripting Frame-
work URI (see 19.6.1 Scripting Framework - Writing a LanguageScriptProvider UNO component from
scratch - ScriptingFramework URI Specification) the ScriptingFramework finds the appropriate
LanguageScriptProvider to execute the script. A LanguageScriptProvider has the following respon-
sibilities:

• It must support the com.sun.star.script.provider.LanguageScriptProvider service.

1111

http://api.openoffice.org/docs/common/ref/com/sun/star/script/provider/LanguageScriptProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/provider/LanguageScriptProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/provider/LanguageScriptProvider.html

• It is responsible for creating the environment necessary to run a script.

• It is responsible for implementing the com.sun.star.script.browse.BrowseNode service
to allow macros to be organized and browsed.

• Given a script URI it is responsible for returning a command like object that implements
the com.sun.star.script.provider.XScript interface that can execute the macro indi-
cated by the URI.

• The name of the any LanguageScriptProvider service must be of the form
�com.sun.star.script.provider.ScriptProviderFor[Language]”, where Language is
the language name as it appears in a script URI.

The name of the LanguageScriptProvider MUST be as above otherwise it will not operate correctly.

19.6.1 Scripting Framework URI Specification
vnd.sun.star.script:MACROREF?language=Language&location=[user|share|document]

where:

• MACROREF is a name that identifies the macro and the naming convention for
MACROREF identifiers is LanguageScriptProvider specific. It allows the LanguageScript-
Provider to associate MACROREF with a macro. In the case of the LanguageScriptPro-
viders for the Java based languages supported by OpenOffice.org e.g. (Java, JavaScript &
Beanshell) the convention is Library.functionname where Library is the subdirectory
under the language specific directory and functionname the functionname from the
parcel-descriptor.xml in the Library directory. See 19.6.1 Scripting Framework - Writing a
LanguageScriptProvider UNO component from scratch - ScriptingFramework URI Specification.

• Language specifies the LanguageScriptProvider needed to execute the macro as described.

Example 1 � URI for a JavaScript macro Library1.myMacro.js located in the share directory of a
OpenOffice.org installation.

vnd.sun.star.script:Library1.myMacro.js?language=JavaScript&location=share
In general macros contained in extensions have the format

vnd.sun.star.script:MACROREF?
language=TheLanguage&location=[user:uno_packages/packageName|
share:uno_packages/packageName]
Example 2 - URI for a JavaScript macro Library1.myMacro.js located in an extension called
myUnoPkg.oxt located in share directory of a OpenOffice.org installation.

vnd.sun.star.script:Library1.myMacro.js?
language=JavaScript&location=share:uno_packages/myUnoPkg.oxt

In the case of the OpenOffice.org Basic language, no distinction is made internally between macros deployed
in extensions and those not deployed extensions. Therefore in the case of a OpenOffice.org Basic macro
located in an extension the location attribute in the URI contains just �user� or �share�.

1112 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/script/provider/XScript.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/provider/XScript.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/provider/XScript.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/browse/BrowseNode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/browse/BrowseNode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/browse/BrowseNode.html

19.6.2 Storage of Scripts
A LanguageScriptProvider is responsible for knowing about how its own macros are stored:
where, what format and what kind of directory structure is used. The Scripting Framework
attempts to standardize how to store and discover macros by defining:

• A default directory structure.
Macros can only be stored under a directory with the language name (as it appears in the
script URI) in lowercase under a directory called Scripts, which is located in either the user
or share directories of a OpenOffice.org installation or a OpenOffice.org document.
Example for a LanguageScriptProvider for the �JavaScript� macro library. It is located in

<OfficePath>/share/Scripts/JavaScript/Highlight

• A generic mechanism for enabling discovery of macros in macro libraries and associating
meta-data with scripts located in this libraries. See parcel-descriptor.xml in 19.3.5 Scripting
Framework - Writing Macros - Compiling and Deploying Java Macros. Example the parcel-
descriptor for the JavaScript Highlight macro library is located in

<OfficePath>/share/Scripts/JavaScript/Highlight/parcel-descriptor.xml

19.6.3 Implementation
A LanguageScriptProvider implementation must follow the service definition
com.sun.star.script.provider.LanguageScriptProvider
Since a LanguageScriptProvider is an UNO component, it must additionally contain the compo-
nent operations needed by a UNO service manager. These operations are certain static methods in
Java or export functions in C++. It also has to implement the core interfaces used to enable commu-
nication with UNO and the application environment. For more information on the component
operations and core interfaces, please see 4.3 Writing UNO Components - Component Architecture
and 4.4 Writing UNO Components - Core Interfaces to Implement.

1113

http://api.openoffice.org/docs/common/ref/com/sun/star/script/provider/LanguageScriptProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/provider/LanguageScriptProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/provider/LanguageScriptProvider.html

The interface Initialization supports method:
void initialize([in] sequence<any> arguments)

The LanguageScriptProvider is responsible for organizing and execution of macros written in a
specific language for a certain location. The possible locations for macros are within a document or
either the user or share directories in a OpenOffice.org installation. The LanguageScriptProvider is
initialized for given location context which is passed as the first argument to the initialize()
method. The location context is a string with the following possible values

Location context
“user” String. Denotes the user directory in a OpenOffice.org installation

“share” String. Denotes the share directory in a OpenOffice.org installation

url String. For user or share directory, the url has scheme vnd.sun.star.expand

example:

user directory "vnd.sun.star.expand:${$SYSBINDIR/bootstraprc/::UserInstallation}/user"

share directory "vnd.sun.star.expand:${$SYSBINDIR/bootstraprc/::BaseInstallation}/share"

Where for a currently open document the url has scheme vnd.sun.star.tdoc

example:

vnd.sun.star.tdoc:/1

1114 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 19.8: LanguageScriptProvider

The com.sun.star.script.browse.XBrowseNode interface supported by a LanguageScriptPro-
vider service is the initial point of contact for the OpenOffice.org application. In order for the
%PRODUCNAME to process and display macros it needs to be able to list those macros. Addition-
ally the MacroOrganizer dialogs use the com.sun.star.script.browse.BrowseNode service to
create/delete new macros and macro libraries.

The interface com.sun.star.script.browse.XBrowseNode supports the following methods:
string getName()
sequence < ::com::sun::star::script::browse::XBrowseNode > getChildNodes()
boolean hasChildNodes()
short getType()

The method getName() returns the name of the node.

For the root node of a LanguageScriptProvider, the name returned from getName() is expected be the
language name as it would appear in a script URI e.g. Basic

The method getChildNodes()method should return the nodes which represent the next level in
the hierarchy of macros and macro Libraries the LanguageScriptProvider is managing.

The method getType() returns the type of the node.

Nodes can be of three types represented by the constants com.sun.star.script.browse.Browse-
NodeTypes

Constants of com.sun.star.script.browse.BrowseNodeTypes

Value Description

SCRIPT Indicates that the node is a script.

com.sun.star.script.
browse.BrowseNodeTyp
es:CONTAINER

Indicates that the node is a container of other nodes e.g. Library

com.sun.star.script.
browse.BrowseNodeTyp
es:ROOT

Reserved for use by the ScriptingFramework.

The objects implementing XBrowseNodes can must also implement
[com.sun.star.beans.XPropertySet].

Properties of object implementing com.sun.star.script.browse.BrowseNode

Uri string. Found on script nodes only, is the script URI for the macro associated
with this node.

Description string. Found on script nodes only, is a description of the macro associated
with this node.

Creatable boolean. True if the implementation can create a new container or macro as
a child of this node.

Creatable boolean. True if the implementation can delete this node.

Editable boolean. True if the implementation is able to open the macro in an editor.

Renamable boolean. True if the implementation can rename this node.

Note that a node that has the Creatable, Deletable, Editable or Renamable properties set to
true is expected to implement the com.sun.star.script.XInvocation interface.

1115

http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/browse/BrowseNode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/browse/BrowseNode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/browse/BrowseNode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/browse/BrowseNodeTypes.html#SCRIPT
http://api.openoffice.org/docs/common/ref/com/sun/star/script/browse/BrowseNodeTypes.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/browse/BrowseNodeTypes.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/browse/BrowseNodeTypes.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/browse/BrowseNodeTypes.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/browse/BrowseNodeTypes.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/browse/BrowseNodeTypes.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/browse/BrowseNodeTypes.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/browse/BrowseNodeTypes.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/browse/BrowseNodeTypes.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/browse/XBrowseNode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/browse/XBrowseNode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/browse/XBrowseNode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/browse/BrowseNode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/browse/BrowseNode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/browse/BrowseNode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/browse/XBrowseNode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/browse/XBrowseNode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/browse/XBrowseNode.html

The interface com.sun.star.script.XInvocation supports the following methods:
com::sun::star::beans::XIntrospectionAccess getIntrospection();
any invoke([in] string aFunctionName,
 [in] sequence<any> aParams,
 [out] sequence<short> aOutParamIndex,
 [out] sequence<any> aOutParam)

void setValue([in] string aPropertyName,
 [in] any aValue)

any getValue([in] string aPropertyName)

boolean hasMethod([in] string aName)

boolean hasProperty([in] string aName)

The invoke() function is passed as an argument the property keys of the
com.sun.star.script.browse.BrowseNode service

Elements of aParam sequence in invoke call

aFunctionName aParams

Editable None required.

Creatable aParam[0] should contain the name of the new child node to be created.

Deletable None required.

Renamable aParam[0] should contain the new name for the node.

Uri None required.

Description None required.

Access to a macro if provided for by the com.sun.star.script.provider.XScriptProvider-
interface which supports the following method:

::com::sun::star::script::provider::XScript getScript([in] string sScriptURI)

The getScript() method is passed a script URI sScriptURI and the LanguageScriptProvider
implementation needs to parse this URI so it can interpret the details and validate them. As the
LanguageScriptProvider is responsible for exporting and generating the URI associated with a
macro it is also responsible for performing the reverse translation for a give n URI and returning
an object implementing com.sun.star.script.provider.XScript interface which will allow the
macro to be invoked.

com.sun.star.script.provider.XScript which supports the following methods:
 any invoke([in] sequence<any> aParams,
 [out] sequence<short> aOutParamIndex,
 [out] sequence<any> aOutParam)

In addition to the parameters that may be passed to an object implementing
com.sun.star.script.provider.XScript it is up to the that object to decide what extra infor-
mation to pass to a running macro. It makes sense to pass information to the macro which makes
the macro writer's job easier. Information such as a reference to the document (context), a refer-
ence to the service manager (available from the component context passed into the Language-
ScriptProvider component's constructor by UNO), and a reference to the desktop (available from
UNO using this service manager).

All of the Java based reference LanguagesScriptProvider provided with OpenOffice.org make this
information available to the running macro in the form of an object implementing the interface
com.sun.star.script.provider.XScriptContext. This provides accessor methods to get the
current document, the desktop and the component context. Depending on the constraints of the
language this information is passed to the macros in different ways, for example in Beanshell and

1116 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/script/provider/XScriptContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/provider/XScriptContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/provider/XScriptContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/provider/XScript.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/provider/XScript.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/provider/XScript.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/provider/XScript.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/provider/XScript.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/provider/XScript.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/provider/XScript.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/provider/XScript.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/provider/XScript.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/provider/XScriptProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/provider/XScriptProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/provider/XScriptProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/browse/BrowseNode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/browse/BrowseNode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/browse/BrowseNode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html

JavaScript this is available as an environment variable and in the case of Java it is passed as the
first argument to the macro.

19.6.4 Integration with Extension Manager
The Extension Manager is a tool for deploying components, configuration data and macro libraries
(see chapter 5 Extensions). It provides a convenient mechanism for macro developers to distribute
their macros.

The scripting framework supports deployment of macros in extensions. Currently only extensions
for the media type ”application/vnd.sun.star.framework-script” are supported. Macros
deployed in extensions of this media type must use the ScriptingFramework storage scheme and
parcel-descriptor.xml to function correctly. An implementation of the
com.sun.star.deployment.PackageRegistryBackend service is provided which supports
deployment of macro libraries of media type ”application/vnd.sun.star.framework-script”
with the Extension Manager.

OpenOffice.org Basic macros are handled via a separate media type
”application/vnd.sun.star.basic-script” and hence handled by a different mechanism.

1117

http://api.openoffice.org/docs/common/ref/com/sun/star/deployment/PackageRegistryBackend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/deployment/PackageRegistryBackend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/deployment/PackageRegistryBackend.html

Overview of how ScriptingFramework integrates with the Extension
Manager API

Registration

Macro libraries contained in extensions are registered by the Extensions Manager. It informs the
LanguageScriptProvider by calling its insertByName() method. The LanguageScriptProvider

1118 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 19.9: Registration of macro library using Package Manager

persists the registration of the macro library in order to be aware of registered libraries when
OpenOffice.org is restarted at a future time.

Deregistration

Deregistration of a macro library contained in an extension is similar to the registration process
described above, the Extension Manager informs the LanguageScriptProvider that a macro library
has been removed by calling its removeByName() method. The LanguageScriptProvider removes
the macro library from its persisted store of registered macro libraries.

Implementation of LanguageScriptProvider with support for Package Manager

In order for the LanguageScriptProvider to handle macro libraries contained in UNO packages
with media type ”application/vnd.sun.star.framework-script” it's initialize() method
must be able to accept a special location context that indicates to the LanguageScriptProvider that
it is dealing with extensions.

Location context
“user:uno_packages” String. Denotes the user installation deployment context.

“share:uno_packages” String. Denotes the share installation deployment context.

 On initialization the LanguageScriptProvider needs to determine what macro libraries are already
deployed by examining its persistent store.

1119

Illustration 19.10: LanguageScriptProvider

LanguageScriptProviders created by implementing the abstract Java helper class
com.sun.star.script.framework.provider.ScriptProvider do not need to concern themselves
with storing details of registered macro libraries in extensions. This support is provided automatically. An
XML file called unopkg-desc.xml contains the details of deployed UNO script packages . This file located in
either <OfficePath>/user/Scripts or <OfficePath>/share/Scripts depending on the installation deployment
context. The DTD for unopkg-desc.xml follows

<?xml version="1.0" encoding="UTF-8"?>
<!-- DTD for unopkg-desc for OpenOffice.org Scripting Framework Project -->

<!ELEMENT package EMPTY>
<!ELEMENT language (package+)>
<!ELEMENT unopackages (language+)>
<!ATTLIST language

value CDATA #REQUIRED
>
<!ATTLIST package

value CDATA #REQUIRED
>

An example of a sample an uno-desc.xml file is shown below.

<unopackages xmlns:unopackages="unopackages.dtd">
 <language value="BeanShell">
 <package value="vnd.sun.star.pkg://vnd.sun.star.expand:
 $UNO_USER_PACKAGES_CACHE%2Funo_packages%2Flatest.uno.pkg/WordCount" />
 </language>
 <language value="JavaScript">
 <package value="vnd.sun.star.pkg://vnd.sun.star.expand:
 $UNO_USER_PACKAGES_CACHE%2Funo_packages%2Flatest.uno.pkg/ExportSheetsToHTML" />
 <package value="vnd.sun.star.pkg://vnd.sun.star.expand:
 $UNO_USER_PACKAGES_CACHE%2Funo_packages%2Flatest.uno.pkg/JSUtils" />
 </language>
</unopackages

A LanguageScriptProvider that does not use the Java abstract helper class
com.sun.star.script.framework.provider.ScriptProvider will need to persist the extensions
deployed for the supported language themselves.

The LanguageScriptProvider additionally needs to support the
com.sun.star.container.XNameContainer interface which supports the following methods.

void insertByName([in] string aName,
 [in] any aElement)
void removeByName([in] string Name)

On registration of an extension containing scripts the LanguageScriptProvider's insertByName()
method is called with aName containing the URI to a macro library contained in the extension and
aElement contains an object implementing com.sun.star.deployment.XPackage Note that the
URI contains the full path to the macro library contained in the extension. For example, if the
library is named my macros then the path includes the mymacros directory.

On deregistration of an extension containing scripts the LanguageScriptProvider's
removeByName() method is called with aName containing the URL to a macro library to be de-
registered.

com.sun.star.container.XNameContainer interface itself inherits from
com.sun.star.container.XNameAccess which supports the following method

boolean hasByName([in] string aName)

To determine whether the macro library in an extension is already registered the LanguageScript-
Provider's hasByName() is called with aName containing the URL to the script library. The other
methods of the interfaces inherited by com.sun.star.container.XNameContainer are omitted
for brevity and because they are not used in the interaction between the Extension Manager and
the LanguageScriptProvider. A Developer however still must implement these methods.

1120 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/deployment/XPackage.html
http://api.openoffice.org/docs/common/ref/com/sun/star/deployment/XPackage.html
http://api.openoffice.org/docs/common/ref/com/sun/star/deployment/XPackage.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html

Implementation of the BrowseNode service

The LanguageScriptProvider created for an installation deployment context needs to expose the
macro and macro libraries that it is managing. How this is achieved is up to the developer. A
LanguageScriptProviders created by extending the Java abstract helper class
com.sun.star.script.framework.provider.ScriptProvider creates nodes for each extension
that contain macro libraries for the supported language . Each extension node contains the macro
library nodes for the supported language and those nodes in turn contain macro nodes.

An alternative implementation could merge the macro libraries into the existing tree for macro
libraries and not distinguish whether the macros are located in an extension or not. This is loosely
the approach taken for OpenOffice.org Basic.

Example of creating a extension containing a macro library suitable for deploying with
Extension Manager.

The following example shows how to create an UNO package from the Beanshell macro library
Capitalize. This macro library is located in the <OfficeDir>/share/beanshell/Capitalize directory of a
OpenOffice.org installation . The extension created will be deployable using the Extension
Manager .

First create a scratch directory for example called temp. Copy the macro library directory and its
contents into temp. In temp create a sub-directory called META-INF and within this directory create
a file called manifest.xml.
<Dir> Temp
|
|-<Dir> Capitalise
| |
| |--parcel-desc.xml
| |--capitalise.bsh
|
|-<Dir> META-INF
 |
 |--manifest.xml

The contents of the manifest.xml file for the Capitalize macro library are as follows
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE manifest:manifest PUBLIC "-//OpenOffice.org//DTD Manifest 1.0//EN" "Manifest.dtd">
<manifest:manifest xmlns:manifest="http://openoffice.org/2001/manifest">
 <manifest:file-entry manifest:media-type="application/vnd.sun.star.framework-script" manifest:full-
path="Capitalise/"/>

</manifest:manifest>

Next create a zip file containing the contents (but not including) the temp directory. The name of
the file should have the extension �.oxt� e.g. Capitalise.oxt.

Deploying a macro library contained in an extension.

To deploy the extension you need to use the Extension Manager (see chapter 5 Extensions). Once
the extension has been deployed successfully the macro will be available for assignment or execu-
tion.

20 Graphical User Interfaces

1121

20.1 Overview
The com.sun.star.awt API-module is used to access and design user interface features. The concepts
that this module are based on are similar to java.awt. This module provides services and interfaces
to create and handle the large set of GUI elements that are demanded by today's modern
components. This chapter is directed to extension developers who want to add functionality to
their OpenOffice.org application and want to create a consistent user interface.

20.1.1 Implementation Details
You can use the UNO module Abstract Window Toolkit (UNO-AWT) to create a graphical user
interface. The concept of UNO-AWT is based on Java/AWT. Java provides the AWT and Swing
user interface design packages within its Java Foundation Classes class library. The implementation
of java.awt components is based on the implementation of the peer components of the operating
system. This is known as a �heavyweight� implementation. com.sun.star.awt components are
lightweight controls because their implementation is based solely on OpenOffice.org. This gives you
platform independence. The functionality of heavyweight controls may only be as high as the
lowest common denominator of all involved operating systems, however, OpenOffice UI
components are meant to emulate the design of the corresponding components of the operating
system. The layer responsible for this is called VCL or Visual Class Library. The layer on top of the
VCL is the Toolkit layer. This layer maps all interfaces of com.sun.star.awt to VCL.

20.1.2 Basic Concepts
The basic concepts that are used in com.sun.star.awt are described in previous chapters:

● 3.3.6 Professional UNO - UNO Concepts - Event Model describes how to use event listeners at
controls. With Event-Listeners at controls you can determine how a window reacts to
mouse or keyboard driven events.

● 3.3.7 Professional UNO - UNO Concepts - Exception Handling explains how to handle errors
as Exceptions.

● 3.1 Professional UNO - Introduction describes factories.

● 3.2.1 Professional UNO - API Concepts - Data Types describes the basic UNO types, and
provides information about how to convert these types to and from various target
languages.

● 12 OpenOffice.org Basic and Dialogs provides information for developers who want to
implement Basic macros.

● 4.11 Writing UNO Components - Accessing Dialogs explains how dialogs created with the
dialog engine can be embedded within OpenOffice.org extensions.

20.2 Exception Handling
In theory, robust exception handling reacts to all unpredictable situations. In practise, many of
these situations can be avoided by preventive runtime behavior or by making sure that the
methods defined to raise exceptions are only used in a defined context. In these cases empty
exception handling as done in the example code is justifiable.

1122 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html

20.3 Dialogs and Controls
The com.sun.star.awt module provides a set of services specifying UNO components that can be
used within dialogs. The controls as well as the dialog itself, follow the Model-View-Controller
(MVC) paradigm, which separates the component into three logical units, the model, view, and
controller. The model represents the data and the low-level behavior of the component and has no
specific knowledge of its controllers or its views. In practise this separation is not always strictly
followed. The UNO control models can contain information about the visual display of the
controls.

The view manages the visual display of the state represented by the model. The controller manages
the user interaction with the model. Toolkit controls combine the view and the controller into one
logical unit that forms the user interface for the component. For example, the text field model is
implemented by the com.sun.star.awt.UnoControlEditModel service that extends the
com.sun.star.awt.UnoControlModel service. All aspects of the model are described as a set of
properties which are accessible through the com.sun.star.beans.XPropertySet interface. The view is
responsible for the display of the text field and its content.

The controller handles the user input provided through the keyboard and mouse. If the user
changes the text in a text field, the controller updates the corresponding model property. The
controller also updates the view. For example, when the user selects some text in a text field and
presses the delete key on the keyboard, the marked text in the text field is deleted.

A more detailed description of the MVC paradigm can be found in 14.2 Forms - Models and Views.

The base for all the Toolkit controls is the com.sun.star.awt.UnoControl service that exports the
following interfaces:

● The com.sun.star.awt.XControl interface specifies control basics. For example, it gives access
to the model, view and context of a control.

● The interfaces com.sun.star.awt.XWindow, com.sun.star.awt.XWindow2,
com.sun.star.awt.XWindowPeer specify operations for a window component. They are all
based on an equal footing and are a available on arbitrary UNO-objects representing
windows.

● The com.sun.star.awt.XView interface provides methods for attaching an output device and
drawing an object.

20.4 Dialog Creation
To create a dialog you can design the dialog within the dialog engine (as explained in 12
OpenOffice.org Basic and Dialogs) and add it to an extension project (as described in 4.11 Writing
UNO Components - Accessing Dialogs). A programmatic approach to create a dialog is illustrated in
the following process sequence:

20.4.1 Instantiation of a Dialog
The first step to create a dialog is to instantiate the dialog and its corresponding model . As can be
seen in the following code example, the dialog as well as its model are created by the global
MultiComponentFactory. The model is assigned to the dialog using setModel(). The dialog model
is a com.sun.star.container.XNameContainer that keeps all control models and accesses them by their
name. Similarly the dialog implements the interface com.sun.star.awt.XControlContainer that

1123

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XControlContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XControlContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XControlContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XView.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindowPeer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindowPeer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindowPeer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XControl.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XControl.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XControl.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControl.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControl.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControl.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlEditModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlEditModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlEditModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html

accesses the controls via the method getControl(). In a later step, each control model must be
added to the Name-Container of the dialog model, which is why these object variables are defined
with a public scope in the code example. Alternatively you can also retrieve the dialog model using
the method getModel()at the dialog interface com.sun.star.awt.XControl.
public XNameContainer m_xDlgModelNameContainer = null;
public XControlContainer m_xDlgContainer = null;
...

private void createDialog(XMultiComponentFactory _xMCF) {
try {
 Object oDialogModel = _xMCF.createInstanceWithContext("com.sun.star.awt.UnoControlDialogModel",
m_xContext);

 // The XMultiServiceFactory of the dialogmodel is needed to instantiate the controls...
 m_xMSFDialogModel = (XMultiServiceFactory) UnoRuntime.queryInterface(XMultiServiceFactory.class,
oDialogModel);

 // The named container is used to insert the created controls into...
 m_xDlgModelNameContainer = (XNameContainer) UnoRuntime.queryInterface(XNameContainer.class,
oDialogModel);

 // create the dialog...
 Object oUnoDialog = _xMCF.createInstanceWithContext("com.sun.star.awt.UnoControlDialog",
m_xContext);
 m_xDialogControl = (XControl) UnoRuntime.queryInterface(XControl.class, oUnoDialog);

 // The scope of the control container is public...
 m_xDlgContainer = (XControlContainer) UnoRuntime.queryInterface(XControlContainer.class,
oUnoDialog);

 m_xTopWindow = (XTopWindow) UnoRuntime.queryInterface(XTopWindow.class, m_xDlgContainer);

 // link the dialog and its model...
 XControlModel xControlModel = (XControlModel) UnoRuntime.queryInterface(XControlModel.class,
oDialogModel);
 m_xDialogControl.setModel(xControlModel);
} catch (com.sun.star.uno.Exception exception) {
 exception.printStackTrace(System.out);
}}

20.4.2 Setting Dialog Properties
When the dialog has been instantiated as described in the coding example, the dialog is ready to be
configured.

The dialog model supports the service com.sun.star.awt.UnoControlDialogModel that includes the
service com.sun.star.awt.UnoControlModel, and this includes
com.sun.star.awt.UnoControlDialogElement. This service specifies the following properties:

Properties of com.sun.star.awt.UnoControlDialogElement

Height

PositionX

PositionY

Width

long. Attributes denoting the position and size of controls are also
available at the control, but the these properties should be set at
the model because they use the Map AppFont unit. Map AppFont
units are device and resolution independent. One Map AppFont
unit is equal to one eighth of the average character (Systemfont)
height and one quarter of the average character width. The dialog
editor also uses Map AppFont units, and sets their values
automatically.

Step long. The Step property is described in detail in the next section.

Name string. The Name property is required, because all dialogs and
controls are referenced by their name. In the dialog editor this
name is initially created from the object name and a number that
makes the name unique, for example, �TextField1�.

1124 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDialogElement.html#Name
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDialogElement.html#Step
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDialogElement.html#Width
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDialogElement.html#PositionY
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDialogElement.html#PositionX
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDialogElement.html#Height
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDialogElement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDialogElement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDialogElement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDialogElement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDialogElement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDialogElement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDialogModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDialogModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDialogModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XControl.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XControl.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XControl.html

TabIndex short. The TabIndex property determines the tabulator index of
the control within the tabulator order of all controls of the dialog.
The tabulator order denotes the order in which the controls are
focused in the dialog when you press the Tab key. In a dialog that
contains more than one control, the focus moves to the next
control in the tabulator order when you press the Tab key. The
default tab order is derived from the insertion order of the controls
in the dialog. The index of the first element has the value 0.

The TabIndex must not be directly sequential to the predecessor
control. If the program logic requires you to insert an uncertain
number of controls between two controls during runtime, a
number of tab indices can be kept free in between the two controls.

Tag string. The Tag property can be used to store and evaluate
additional information at a control. This information may then be
used in the program source code.

A dialog model exports the interfaces com.sun.star.beans.XPropertySet and
com.sun.star.beans.XMultiPropertySet. When you set multiple properties at the same time you
should use com.sun.star.beans.XMultiPropertySet because then multiple properties can be set with a
single API call. When you use com.sun.star.beans.XMultiPropertySet you must remember to pass the
properties in alphabetical order (see the examples in the following chapters).

Note: Toolkit control models are generally configured by attributes that are defined in the service
descriptions, whereas controls usually implement interfaces. This same principle applies to dialogs.

The following code snippet demonstrates the assignment of the most important dialog properties:
// Define the dialog at the model - keep in mind to pass the property names in alphabetical order!
String[] sPropertyNames = new String[] {"Height", "Moveable", "Name","PositionX","PositionY", "Step",
"TabIndex","Title","Width"};

Object[] oObjectValues = new Object[] { new Integer(380), Boolean.TRUE, "MyTestDialog", new
Integer(102),new Integer(41), new Integer(0), new Short((short) 0), "OpenOffice", new Integer(250)};
setPropertyValues(sPropertyNames, oObjectValues);

...

public void setPropertyValues(String[] PropertyNames, Object[] PropertyValues){
try{
 XMultiPropertySet xMultiPropertySet = (XMultiPropertySet)
UnoRuntime.queryInterface(XMultiPropertySet.class, m_xDlgModelNameContainer);
 xMultiPropertySet.setPropertyValues(PropertyNames, PropertyValues);
} catch (com.sun.star.uno.Exception ex) {
 ex.printStackTrace(System.out);
}}

Multi-Page Dialogs
A dialog may have several pages that can be traversed step-by-step. This feature is used in the
OpenOffice.org wizards. The dialog-model property Step defines which page of the dialog is
active. At runtime, the next page of a dialog is displayed by increasing the Step value by 1. The
Step property of a control defines the page of the dialog that the control is visible on. For example,
if a control has a Step value of 1, it is only visible on page 1 of the dialog. If the Step value of the
dialog is increased from 1 to 2, then all controls with a Step value of 1 are removed and all controls
with a Step value of 2 become visible. A special role has the Step value 0. If the control's Step is
assigned to a value of 0, the control is displayed on all dialog pages. If the dialog's Step property is
assigned to 0, all controls regardless their Step value are displayed. The property Visible,
specified in the service com.sun.star.awt.UnoControlModel determines if a control should appear on
a certain step or not. However, the effective visibility of a control also depends on the value of the
Step property. A control is visible only when the Visible property is set to true and when the
value of the control Step property is equal to the dialog Step property.

1125

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDialogElement.html#Tag
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDialogElement.html#TabIndex

20.4.3 Adding Controls to a Dialog
After the dialog and its model have been instantiated and configured, the dialog controls can be
added as described in 20.5.2 Graphical User Interfaces - Dialog Handling - Dialog Controls.

20.4.4 Displaying Dialogs
After you have inserted the controls, you can create a WindowPeer, a low level object that makes
sure the window is displayed correctly, and the dialog can be executed. A dialog implements
com.sun.star.awt.XWindow. To access the window toolkit implementation, a
com.sun.star.awt.XWindowPeer must be created. The dialog control is shown by calling the
execute() method of the com.sun.star.awt.XDialog interface. It can be closed by calling
endExecute(), or by offering a Cancel or OK Button on the dialog 20.5.2 Graphical User Interfaces -
Dialog Handling - Dialog Controls - Command Button. Dialogs such as this one are described as modal
because they do not permit any other program action until they are closed. While the dialog is
open, the program remains in the execute() call. The dispose() method at the end of the code
frees the resources used by the dialog. It is important to note that dispose()- the method to free
the memory - must be positioned directly after the execute() call and not behind endExecute();
public short executeDialog() throws com.sun.star.script.BasicErrorException{
 XWindow xWindow = (XWindow) UnoRuntime.queryInterface(XWindow.class, m_xDlgContainer);
 // set the dialog invisible until it is executed
 xWindow.setVisible(false);
 Object oToolkit = m_xMCF.createInstanceWithContext("com.sun.star.awt.Toolkit", m_xContext);
 XWindowPeer xWindowParentPeer = ((XToolkit) UnoRuntime.queryInterface(XToolkit.class,
oToolkit)).getDesktopWindow();
 XToolkit xToolkit = (XToolkit) UnoRuntime.queryInterface(XToolkit.class, oToolkit);
 m_xDialogControl.createPeer(xToolkit, xWindowParentPeer);
 m_xWindowPeer = m_xDialogControl.getPeer();
 XDialog xDialog = (XDialog) UnoRuntime.queryInterface(XDialog.class, m_xDialogControl);
 XComponent xDialogComponent = (XComponent) UnoRuntime.queryInterface(XDialog.class,
m_xDialogControl);

 // the return value contains information about how the dialog has been closed...
 short nReturnValue = xDialog.execute();
 // free the resources...
 xDialogComponent.dispose();
 return nReturnValue;
}

The method createPeer()creates an internal or low level peer-object, that makes sure that the
window is displayed correctly.

20.5 Dialog Handling
When a designed dialog has been executed either after it has been created via a dialog editor or
programmatically, there usually is a demand to interact with the dialog, or query its state or the
states of its contained controls during runtime. This topic will help you become familiar with how
to handle UNO dialogs during runtime, and it will provide you with an overview of all of the
supported dialog controls. It does not provide a complete description of all involved facets. It is
meant to provide you with the information you need to solve individual problems on your own.
Additional information can be found in the respective interface and service descriptions.

Tip: You will most probably want your extension to integrate into OpenOffice.org. The OpenOffice.org style
guide under http://ui.openoffice.org/knowledge/DialogSpecificationandGuidelines.odt defines the rules that user
interface elements must follow in order to give the application a consistent look and feel.

1126 OpenOffice.org 2.3 Developer's Guide • June 2007

http://ui.openoffice.org/knowledge/DialogSpecificationandGuidelines.odt
http://ui.openoffice.org/knowledge/DialogSpecificationandGuidelines.odt
http://ui.openoffice.org/knowledge/DialogSpecificationandGuidelines.odt
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialog.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialog.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialog.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindowPeer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindowPeer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindowPeer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html

Tip: A specification guide that defines the general behavior of OpenOffice.org assistance is
http://specs.openoffice.org/installation/wizards/Wizards_NewConcept.sxw.

20.5.1 Events
OpenOffice.org dialogs are based on an event-oriented programming model where you can assign
event handlers to the control elements. An event handler runs a predefined procedure when a
particular action occurs. Event handlers are always added directly to the control (not to the control
models). All dialog controls implement the interface com.sun.star.awt.XControl which extends the
interface com.sun.star.awt.XWindow. Listeners are added to a control with a specific
add<ListenerName>Listener() method like addMouseListener([in] XMouseListener xListener
). Listeners are removed with a specific remove<ListenerName>Listener() method like
removeMouseListener([in] XMouseListener xListener).

The methods of all listener interfaces have a parameter of a type derived from
com.sun.star.lang.EventObject, for example com.sun.star.awt.MouseEvent, com.sun.star.awt.FocusEvent
etc. This event object always carries a property Source by which it is possible to query the control
an event has been triggered at.

The following code example shows how to implement an XActionListener. You must remember to
implement the disposing() method as dictated by com.sun.star.lang.XEventListener. disposing()
is supposed to be triggered when a dispose() command at the control has been invoked.
public void actionPerformed(ActionEvent rEvent){
try{
 // get the control that has fired the event,
 XControl xControl = (XControl) UnoRuntime.queryInterface(XControl.class, rEvent.Source);
 XControlModel xControlModel = xControl.getModel();
 XPropertySet xPSet = (XPropertySet) UnoRuntime.queryInterface(XPropertySet.class, xControlModel);
 String sName = (String) xPSet.getPropertyValue("Name");
 // just in case the listener has been added to several controls,
 // we make sure we refer to the right one
 if (sName.equals("CommandButton1")){
//...
 }
}catch (com.sun.star.uno.Exception ex){
 /* perform individual exception handling here.
 * Possible exception types are:
 * com.sun.star.lang.WrappedTargetException,
 * com.sun.star.beans.UnknownPropertyException,
 * com.sun.star.uno.Exception
 */
 ex.printStackTrace(System.out);
}}

Mouse Listeners
Events that correspond to mouse actions are triggered by a com.sun.star.awt.XMouseListener that
react to mouse movements over a control. Popular use-cases for a mouse listener are changing the
mouse pointer when the mouse moves over the window or querying the click count of the event
mousePressed([in] com.sun.star.awt.MouseEvent e)when you want to differentiate between
a single-click and a double-click. For this purpose all methods carry a parameter
com.sun.star.awt.MouseEvent, a structure that contains amongst other things, the member
ClickCount. Other members (PositionX and PositionY) are to query the mouse position during
the event invocation and Buttons that refers to the pressed mouse buttons.

A MouseMotionListener that implements com.sun.star.awt.XMouseMotionListener can be used when
a movement of the mouse pointer must be observed. The following example code shows a part of
an implementation of a mouse motion listener that is executed when the mouse is entering a

1127

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XMouseMotionListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XMouseMotionListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XMouseMotionListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/MouseEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/MouseEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/MouseEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XMouseListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XMouseListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XMouseListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FocusEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FocusEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FocusEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/MouseEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/MouseEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/MouseEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XControl.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XControl.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XControl.html
http://specs.openoffice.org/installation/wizards/Wizards_NewConcept.sxw
http://specs.openoffice.org/installation/wizards/Wizards_NewConcept.sxw
http://specs.openoffice.org/installation/wizards/Wizards_NewConcept.sxw

control. For further information about WindowPeers, see 20.4.4 Graphical User Interfaces - Dialog
Creation - Displaying Dialogs.
public void mouseEntered(MouseEvent _mouseEvent) {
 try {
 // retrieve the control that the event has been invoked at...
 XControl xControl = (XControl) UnoRuntime.queryInterface(XControl.class, _mouseEvent.Source);
 Object tk = m_xMCF.createInstanceWithContext("com.sun.star.awt.Toolkit", m_xContext);
 XToolkit xToolkit = (XToolkit) UnoRuntime.queryInterface(XToolkit.class, tk);
 // create the peer of the control by passing the windowpeer of the parent
 // in this case the windowpeer of the control
 xControl.createPeer(xToolkit, m_xWindowPeer);
 // create a pointer object "in the open countryside" and set the type accordingly...
 Object oPointer = this.m_xMCF.createInstanceWithContext("com.sun.star.awt.Pointer",
this.m_xContext);
 XPointer xPointer = (XPointer) UnoRuntime.queryInterface(XPointer.class, oPointer);
 xPointer.setType(com.sun.star.awt.SystemPointer.REFHAND);
 // finally set the created pointer at the windowpeer of the control
 xControl.getPeer().setPointer(xPointer);
 } catch (com.sun.star.uno.Exception ex) {
 throw new java.lang.RuntimeException("cannot happen...");
 }}

Keyboard Listener
Keyboard events can be captured by a KeyListener that implements com.sun.star.awt.XKeyListener.
This allows you to verify each keyboard stroke. This listener is very useful for edit controls. The
interface dictates the implementation of the two methods keyPressed() and keyReleased().
 public void keyReleased(KeyEvent keyEvent) {
 int i = keyEvent.KeyChar;
 int n = keyEvent.KeyCode;
 int m = keyEvent.KeyFunc;
 }

Focus Listener
A focus listener implementing com.sun.star.awt.XFocusListener is notified when the focus is entering
(focusGained()) or leaving (focusLost()) a control.

The FocusListener is usually used to verify the user input when the control loses the focus.

This example demonstrates how to use the focusEvent:
public void focusLost(FocusEvent _focusEvent) {
 short nFocusFlags = _focusEvent.FocusFlags;
 int nFocusChangeReason = nFocusFlags & FocusChangeReason.TAB;
 if (nFocusChangeReason == FocusChangeReason.TAB){
 // get the window of the Window that has gained the Focus...
 // Note that the xWindow is just a representation of the controlwindow
 // but not of the control itself
 XWindow xWindow = (XWindow) UnoRuntime.queryInterface(XWindow.class, _focusEvent.NextFocus);
 }
}

Paint Listener
Paint Listeners implementing com.sun.star.awt.XPaintListener are used to repaint areas that have
become invalid.

Control element-specific events
Control element-specific events are events that only occur in relation to certain control elements.

1128 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XPaintListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XPaintListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XPaintListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XFocusListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XFocusListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XFocusListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XKeyListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XKeyListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XKeyListener.html

20.5.2 Dialog Controls
Dialog controls follow the MVC paradigm 14.2 Forms - Models and Views. Many attributes are
offered by the control model that you would normally expect to find in the control itself.
Properties like Visible or Printable are examples of typical view attributes that are available in
the model.

All control models within a UNO dialog support the service com.sun.star.awt.UnoControlModel, that
includes com.sun.star.awt.UnoControlDialogElement, as described in 20.4.2 Graphical User Interfaces -
Dialog Creation - Setting Dialog Properties. It exports the interfaces com.sun.star.beans.XPropertySet
and com.sun.star.beans.XMultiPropertySet. When you set multiple properties at the same time you
should use com.sun.star.beans.XMultiPropertySet because then multiple properties can be set with a
single API call. When you use [IDL:com.sun.star.beans.XMultiPropertySet] make sure you pass the
properties in alphabetical order. All relevant properties may be set directly in the control model.
Some controls offer similar functionality, but by default you should always work in the control
model.

The coding examples in the following sections concentrate on control models as the default.

Controls are required to:

● Attach listeners.

● Get Window or device dependent information.

● Use the �convenience� functionality offered by list boxes.

● Adjust the size according to the content. The interface com.sun.star.awt.XLayoutConstrains
offers methods like getPreferredSize()that can be helpful when the size of the control is
to be adjusted to its content. You must remember that the Unit of the returned size is
according to the specification in com.sun.star.awt.Size in 1/100th mm. This size may be
applied with setSize() at the control.

Common Properties
The common set of properties that are used by all controls are:

Common Properties of all control models

Enabled The Enabled property can be set to true or false to enable or disable a
button during runtime.

HelpText Help text is displayed as a tip on the control when the mouse moves over the
control.

HelpURL The HelpURL is the URL of a help document. When the control has the focus,
you can press F1 to open the help document. This feature is not yet available
for embedded custom help documents. See issue
http://www.openoffice.org/issues/show_bug.cgi?id=20164 for more information.

Currently the only supported �Help URL scheme� follows the pattern
�HID:<HELPID>�.

Printable If Printable set to false, the control is not visible on printer outputs.

Tabstop The Tabstop property defines if a control can be reached with the TAB key.

1129

http://www.openoffice.org/issues/show_bug.cgi?id=20164
http://www.openoffice.org/issues/show_bug.cgi?id=20164
http://www.openoffice.org/issues/show_bug.cgi?id=20164
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Size.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Size.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Size.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XLayoutConstrains.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XLayoutConstrains.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XLayoutConstrains.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDialogElement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDialogElement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDialogElement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlModel.html

Visible The property Visible defines whether a dialog control is shown on its assigned
dialog-step or not. The effective Visibility of a control is thus derived from the
values of both properties Step and Visible. For example if the Step property of
the control model is not equal to the Step property of the dialog model (that
denotes the actual visible dialog step) the control will not be visible. In
contrast, the method setVisible([in] boolean Visible) at the interface
com.sun.star.awt.XWindow can be applied to the control and will set the
Visibility of the control regardless the value of the Step property.[ISSUE-
REFERENCE]

Font-specific Properties
The following properties are available on all controls with descriptive texts such as text fields,
command buttons, radio buttons and check boxes. They are in all respective service specifications
of these controls (it is the model's service description). When you are working with font properties,
http://www.openoffice.org/issues/show_bug.cgi?id=71482 must be considered.

Properties referring to Font Attributes

FontDescriptor The property FontDescriptor applies to the structure
com.sun.star.awt.FontDescriptor, where all available
characteristics of the font may be set.

FontEmphasisMark Determines the type and position of an emphasis mark in
Asian texts. It can accept any of the values in
com.sun.star.awt.FontEmphasis.

FontRelief The FontRelief property accepts three values:
(com.sun.star.text.FontRelief.) NONE (default),
EMBOSSED or ENGRAVED. The embossed relief makes
the characters appear as if they are raised above the page.
The engraved relief makes the characters appear as if they
are pressed into the page.

CharacterWidth) float. Specifies the character width.

CharSet short. Specifies the character set which is supported by
the font. It can be any of the constants defined in
com.sun.star.awt.CharSet.

Name string. Specifies the exact name of the font.

Family Specifies the family style of a font and can accept values
from the constants group com.sun.star.awt.FontFamily.
This defines the group of typefaces with similar
characteristics. Recognized families are Roman, Swiss,
Modern, Script, and Decorative. For example, �Arial�,
�Arial Bold�, �Arial Bold Italic�, �Arial Italic�, Small
Fonts, and MS Sans Serif are all part of the sans serif
Swiss font family.

Height short. Specifies the height of the font in the measure of
the destination.

Width short. Specifies the width of the font in the measure of
the destination.

Kerning boolean. Font kerning defines the process of adjusting
letter spacing in a proportional font. The value of the
property indicates if there is a kerning table available for
the font. The kerning table contains the values that control
the intercharacter spacing for the glyphs in a font.

1130 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontDescriptor/Kerning.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontDescriptor/Width.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontDescriptor/Height.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontFamily.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontFamily.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontFamily.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontDescriptor/Family.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontDescriptor/Name.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/CharSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/CharSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/CharSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontDescriptor/CharSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontDescriptor/CharacterWidth.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontDescriptor/CharacterWidth.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontDescriptor/CharacterWidth.html
http://api.openoffice.org/docs/common/ref/FontRelief.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontEmphasis.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontEmphasis.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontEmphasis.html
http://api.openoffice.org/docs/common/ref/FontEmphasisMark.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontDescriptor.html
http://api.openoffice.org/docs/common/ref/FontDescriptor.html
http://www.openoffice.org/issues/show_bug.cgi?id=71482
http://www.openoffice.org/issues/show_bug.cgi?id=71482
http://www.openoffice.org/issues/show_bug.cgi?id=71482
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html

Orientation short. Specifies the rotation of the font in degrees where
0 is the baseline.

Pitch short. The font pitch defines whether the width of a
character of a font is fixed (as in monospaced fonts) or
variable. It may accept one of the values defined in the
constants group com.sun.star.awt.FontPitch .

Slant Specifies how slanted the characters should be. It can be
any value of the enumeration com.sun.star.awt.FontSlant,
denoting (reverse) italic or (reverse) oblique or none
slants.

Strikeout Specifies the strikeout style of the text as defined by the
constants group com.sun.star.awt.FontStrikeout.

StyleName string. Indicates the individual style of a font. For
example �Bold�, �Bold Italic� and �Italic� are defined
styles of the font �Arial�.

Type short. Specifies the technology of the font representation
as defined by the constants group
com.sun.star.awt.FontType. These constants either
indicate if a font is a raster font.

A scalable font (or �vector font� or �outline font�) is one
defined as vector graphics, i.e. as a set of lines and curves
to define the border of glyphs, as opposed to a bitmap
font, which defines each glyph as an array of pixels.

A device font is a font that is only presentable on a special
device like a printer. OpenOffice may use device
independent metrics to display these fonts.

Underline Specifies the underlining style of the text as defined by the
constants group com.sun.star.awt.FontUnderline.

Weight float. Specifies the thickness of the font lines as a
percentage relative to the inherited font weight.

WordLineMode boolean. Specifies if only words get underlined. True
means that only non-space characters get underlined,
false means that the spacing also gets underlined. This
property is only valid if the property
com.sun.star.awt.FontDescriptor.UnderLine is not
FontUnderline.NONE.

Font properties may either be set as single properties or as a whole by means of the font descriptor
which is useful when you want to assign the same properties to multiple objects.

Other common Properties
The following properties are used by most controls:

Properties

BackgroundColor long. Sets the background color of the control. Its value is an integer type
representing an RGB value as described in Color.

TextColor long. Refers to the color of the text. When no specific text color is applied, it
returns void..

1131

http://api.openoffice.org/docs/common/ref/com/sun/star/util/Color.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/Color.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/Color.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontDescriptor/UnderLine.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontDescriptor/UnderLine.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontDescriptor/UnderLine.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontDescriptor/WordLineMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontDescriptor/Weight.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontUnderline.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontUnderline.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontUnderline.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontDescriptor/Underline.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontDescriptor/Type.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontDescriptor/StyleName.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontStrikeout.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontStrikeout.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontStrikeout.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontDescriptor/Strikeout.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontSlant.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontSlant.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontSlant.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontDescriptor/Slant.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontPitch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontPitch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontPitch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontDescriptor/Pitch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontDescriptor/Orientation.html

TextLineColor long. Refers to the underlining style color of the text. If Underlining is not
applied it is void. See also 20.5.2 Graphical User Interfaces - Dialog Handling -
Dialog Controls - Font-specific Properties

BorderColor long. Refers to the color of the border (see Border-property). When no
specific text color is applied, it returns void. Not every border style may
support coloring. For example, a border with 3D effect will usually ignore
the BorderColor setting.

Label string. The actual text displayed in a control is set by the Label property
of the model. A shortcut key can be defined for any control with a label by
adding a tilde (~) before the character that will be used as a shortcut. When
the user presses the character key simultaneously with the ALT key, the
control automatically gets the focus.

MultiLine boolean. By default, the label displays the text from the Label property in
a single line. If the text exceeds the width of the control, the text is truncated
(but not the data of the text). This behavior is changed by setting the
MultiLine property to true, so that the text is displayed on more than one
line if needed.

Align short. Specifies the horizontal alignment of the text in the control.

VerticalAlign short. Specifies the vertical alignment of the text in the control. Available
options are (com.sun.star.style.VerticalAlignment).TOP, BOTTOM and
MIDDLE.

Border short. Many controls support this property which accepts three values from
the enumeration com.sun.star.awt.VisualEffect that defines if no Border, a
flat border or a 3D border is to be applied.

As OpenOffice.org emulates the look and feel of the operating system, changing some of these
properties may not have any effect. There is no strict rule to be followed when property changes
are ignored or not.

Property propagation between model and control
One particularity in the relationship of UNO controls and their models must be considered.
Following the principles of the MVC paradigm all changes applied to the control model are
directly propagated to the control and (its peer object). However, conversely not all changes
applied to the control will notify the model. The general rule is that whenever an attribute of a
control is modifiable by the user, a change of this attribute is also propagated to the model. The
following table sums up all methods which invocation at UNO controls is propagated to the
respective control model. The controls and interfaces are described in detail in the following
sections.

Control Service
Name in
com.sun.star.aw
t

Interface in
com.sun.star.awt

Method
Name

Model Service in
com.sun.star.awt

Affected
Property at the
model

UnoControlCheck
Box

XCheckBox [set|get]State UnoControlCheckBo
xModel

State

UnoControlRadio
Button

XRadioButton [set|get]State UnoControlRadioBut
tonModel

State

UnoControlScroll
Bar

XScrollBar [set|get]Value UnoControlScrollBar
Model

ScrollValue

1132 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlScrollBarModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlScrollBarModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XScrollBar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlScrollBar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlScrollBar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlRadioButtonModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlRadioButtonModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XRadioButton.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlRadioButton.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlRadioButton.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlCheckBoxModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlCheckBoxModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XCheckBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlCheckBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlCheckBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/VisualEffect.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/VisualEffect.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/VisualEffect.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/VerticalAlignment.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/VerticalAlignment.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/VerticalAlignment.html

UnoControlComb
oBox

XComboBox [set|
get]Item[s],
add/removeIte
m

UnoControlComboB
oxModel

Text, StringItemList

UnoControlListBo
x

XListBox [set|
get]Item[s],
[add|
remove]Item,

selectItem,
selectItemPos()

UnoControlListBox
Model

StringItemList*,

SelectedItems

UnoControlEdit XTextComponent [set|get]Text; UnoControlEditMod
el

Text

UnoControlCurre
ncyField

XCurrencyField

XTextComponent

[set|get]Value,

[set|get]Text

UnoControlCurrency
Model

Value

UnoControlDateFi
eld

XDateField

XTextComponent

[set|get]Date,

[set|get]Text

UnoControlDateMod
el

Date

UnoControlTimeF
ield

XTimeField

XTextComponent

[set|get]Time,

[set|get]Text

UnoControlTimeMo
del

Time

UnoControlNume
ricField

XNumericField

XTextComponent

[set|get]Value

[set|get]Text

UnoControlNumeric
FieldModel

Value

UnoControlPatter
nField

XPatternField

XTextComponent

[set|get]String,

[set|get]Text

UnoControlPatternFi
eldModel

Text

Common Workflow to add Controls
For any existing dialog controls there is a common workflow to follow to insert a control into a
dialog:

1. Instantiate the control model at the MultiServiceFactory of the dialog.

2. Set the Properties at the control model (for performance reasons, use the interface
com.sun.star.beans.XMultiPropertySet).

3. Insert the control model at the control model container of the dialog model. In our coding
examples we refer to this container by the public object variable
m_xDlgModelNameContainer created in the code example of 20.4.1 Graphical User
Interfaces - Dialog Creation - Instantiation of Dialogs

4. Query the control from the dialog control container by referencing the name (that you
have previously assigned to the control model). Note: According to the MVC paradigm
there is no way to retrieve the control from the model.

The Example Listings
As is generally known, an example is worth a thousand words. This is especially true for UNO.
Sourcecode written in UNO is very often self-explanatory and for this reason the following sections

1133

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlPatternFieldModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlPatternFieldModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTextComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XPatternField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlPatternField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlPatternField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlNumericFieldModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlNumericFieldModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTextComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XNumericField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlNumericField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlNumericField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlTimeModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlTimeModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTextComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTimeField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlTimeField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlTimeField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDateModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDateModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTextComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDateField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDateField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDateField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlCurrencyModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlCurrencyModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTextComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XCurrencyField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlCurrencyField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlCurrencyField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlEditModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlEditModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTextComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlEdit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlListBoxModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlListBoxModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XListBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlListBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlListBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlComboBoxModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlComboBoxModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XComboBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlComboBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlComboBox.html

provide a large set of example listings. Some of them are ready-to-use, whereas the focus of other
examples is on demonstrating concepts.

All coding examples that demonstrate how to insert controls into a dialog make use of the
following method:
/** makes a String unique by appending a numerical suffix
 * @param _xElementContainer the com.sun.star.container.XNameAccess container
 * that the new Element is going to be inserted to
 * @param _sElementName the StemName of the Element
 */
public static String createUniqueName(XNameAccess _xElementContainer, String _sElementName) {
 boolean bElementexists = true;
 int i = 1;
 String sIncSuffix = "";
 String BaseName = _sElementName;
 while (bElementexists) {
 bElementexists = _xElementContainer.hasByName(_sElementName);
 if (bElementexists) {
 i += 1;
 _sElementName = BaseName + Integer.toString(i);
 }
 }
 return _sElementName;
}

As already explained, the dialog keeps the controls in a NamedContainer that implements
com.sun.star.container.XNameAccess. It is absolutely necessary for the controls to have a unique
name before they are added to the dialog to prevent a com.sun.star.container.ElementExistException .
This method appends a suffix to the scheduled name of the control to make sure that the name is
unique.

Label Field
A label field control supports the service com.sun.star.awt.UnoControlFixedText and the model
com.sun.star.awt.UnoControlFixedTextModel. It displays descriptive texts that are not meant to be
edited by the user, such as labels for list boxes and text fields. By default, the label field control is
drawn without a border. The format of the text can be set by the properties as described in 20.5.2
Graphical User Interfaces - Dialog Handling - Dialog Controls - Font-specific Properties. Label controls
can be used to assign shortcut keys for controls without labels that succeed the label field control.
To assign a shortcut key to a control without a label such as a text field, the label field is used. The
tilde (~) prefixes the corresponding character in the Label property of the label field. A fixed text
control cannot receive the focus, so the focus automatically moves to the next control in the tab
order. It is important that the label field and the text field have consecutive tab indices.

The following example demonstrates how to create a UnoControlFixedText control. You can
create all types of dialog controls in the same way as is shown in this example. This example
assumes that a dialog has already been created as described in 20.4.1 Graphical User Interfaces -
Dialog Creation - Instantiation of Dialogs. This example also shows how to add a mouse listener.
public XFixedText insertFixedText(XMouseListener _xMouseListener, int _nPosX, int _nPosY, int _nWidth,
int _nStep, String _sLabel){
XFixedText xFixedText = null;
try{
 // create a unique name by means of an own implementation...
 String sName = createUniqueName(m_xDlgModelNameContainer, "Label");

 // create a controlmodel at the multiservicefactory of the dialog model...
 Object oFTModel = m_xMSFDialogModel.createInstance("com.sun.star.awt.UnoControlFixedTextModel");
 XMultiPropertySet xFTModelMPSet = (XMultiPropertySet)
UnoRuntime.queryInterface(XMultiPropertySet.class, oFTModel);
 // Set the properties at the model - keep in mind to pass the property names in alphabetical order!

 xFTModelMPSet.setPropertyValues(
 new String[] {"Height", "Name", "PositionX", "PositionY", "Step", "Width"},
 new Object[] { new Integer(8), sName, new Integer(_nPosX), new Integer(_nPosY), new Integer(_nStep),
new Integer(_nWidth)});
 // add the model to the NameContainer of the dialog model
 m_xDlgModelNameContainer.insertByName(sName, oFTModel);

1134 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFixedTextModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFixedTextModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFixedTextModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFixedText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFixedText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFixedText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/ElementExistException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/ElementExistException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/ElementExistException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html

 // The following property may also be set with XMultiPropertySet but we
 // use the XPropertySet interface merely for reasons of demonstration
 XPropertySet xFTPSet = (XPropertySet) UnoRuntime.queryInterface(XPropertySet.class, oFTModel);
 xFTPSet.setPropertyValue("Label", _sLabel);

 // reference the control by the Name
 XControl xFTControl = m_xDlgContainer.getControl(sName);
 xFixedText = (XFixedText) UnoRuntime.queryInterface(XFixedText.class, xFTControl);
 XWindow xWindow = (XWindow) UnoRuntime.queryInterface(XWindow.class, xFTControl);
 xWindow.addMouseListener(_xMouseListener);
}catch (com.sun.star.uno.Exception ex){
 /* perform individual exception handling here.
 * Possible exception types are:
 * com.sun.star.lang.IllegalArgumentException,
 * com.sun.star.lang.WrappedTargetException,
 * com.sun.star.container.ElementExistException,
 * com.sun.star.beans.PropertyVetoException,
 * com.sun.star.beans.UnknownPropertyException,
 * com.sun.star.uno.Exception
 */
 ex.printStackTrace(System.out);
}
 return xFixedText;
}

Command Button
The command button com.sun.star.awt.UnoControlButton allows the user to perform an action by
clicking on it. Usually a command button displays a label that is set by the Label property of the
control model that supports the service com.sun.star.awt.UnoControlButtonModel.

A command button supports the display of images as explained in 20.5.2 Graphical User Interfaces -
Dialog Handling - Dialog Controls - Image Control.

Properties of com.sun.star.awt.UnoControlButtonModel

DefaultButton boolean. The DefaultButton property specifies that the
command button is the default button on the dialog. Pressing
the ENTER key chooses the button even if another control has
the focus.

ImagePosition short. The position of an image may be set. This is useful
because the ImagePosition property is defined as relative
to the Label of the control. It accepts one of the values defined
in the constants group ImagePosition

ImageURL string. The ImageURL property contains the path to a
graphics file. The image can be shown on the command
button.

Graphic com.sun.star.

ImageAlign short. All standard graphics formats are supported, such
as .gif, .jpg, .tif, .wmf and .bmp. The ImageAlign property
defines the alignment and accepts one of the values defined in
com.sun.star.awt.ImageAlign. The image is not automatically
scaled, and can be cut off.

PushButtonType short. The default action of the command button is defined
by the PushButtonType property. It accepts the values
defined in the enumeration com.sun.star.awt.PushButtonType.
An OK button returns 1 on execute(). The default action of
a Cancel button is to close the dialog, and execute() will
return 0.

1135

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/PushButtonType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/PushButtonType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/PushButtonType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlButtonModel.html#PushButtonType
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/ImageAlign.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/ImageAlign.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/ImageAlign.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlButtonModel.html#ImageAlign
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlButtonModel.html#Graphic
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlButtonModel.html#ImageURL
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/ImagePosition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/ImagePosition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/ImagePosition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlButtonModel.html#ImagePosition
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlButtonModel.html#DefaultButton
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlButtonModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlButtonModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlButtonModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlButtonModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlButtonModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlButtonModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlButton.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlButton.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlButton.html

Toggle boolean. If this property is set to true, a single operation of
the command button control (pressing space while it is
focused, or clicking onto it) toggles it between a pressed and a
not-pressed state.

The default for this property is false, which means the
button behaves like a usual push button.

public XButton insertButton(XActionListener _xActionListener, int _nPosX, int _nPosY, int _nWidth,
String _sLabel, short _nPushButtonType){
XButton xButton = null;
try{
 // create a unique name by means of an own implementation...
 String sName = createUniqueName(m_xDlgModelNameContainer, "CommandButton");

 // create a controlmodel at the multiservicefactory of the dialog model...
 Object oButtonModel = m_xMSFDialogModel.createInstance("com.sun.star.awt.UnoControlButtonModel");
 XMultiPropertySet xButtonMPSet = (XMultiPropertySet)
UnoRuntime.queryInterface(XMultiPropertySet.class, oButtonModel);
 // Set the properties at the model - keep in mind to pass the property names in alphabetical order!
 xButtonMPSet.setPropertyValues(
 new String[] {"Height", "Label", "Name", "PositionX", "PositionY", "PushButtonType", "Width" } ,
 new Object[] {new Integer(14), _sLabel, sName, new Integer(_nPosX), new Integer(_nPosY), new
Short(_nPushButtonType), new Integer(_nWidth)});

 // add the model to the NameContainer of the dialog model
 m_xDlgModelNameContainer.insertByName(sName, oButtonModel);
 XControl xButtonControl = m_xDlgContainer.getControl(sName);
 xButton = (XButton) UnoRuntime.queryInterface(XButton.class, xButtonControl);
 // An ActionListener will be notified on the activation of the button...
 xButton.addActionListener(_xActionListener);
}catch (com.sun.star.uno.Exception ex){
 /* perform individual exception handling here.
 * Possible exception types are:
 * com.sun.star.lang.IllegalArgumentException,
 * com.sun.star.lang.WrappedTargetException,
 * com.sun.star.container.ElementExistException,
 * com.sun.star.beans.PropertyVetoException,
 * com.sun.star.beans.UnknownPropertyException,
 * com.sun.star.uno.Exception
 */
 ex.printStackTrace(System.out);
}
 return xButton;
}

In the example, an action listener is attached to the command button. An action listener
implements the interface com.sun.star.awt.XActionListener and its method actionPerformed() is
invoked when the user clicks on the button. (see also 20.5.1 Graphical User Interfaces - Dialog
Handling - Events).

The following code snippet shows an example of how to use the action listener.
public void actionPerformed(ActionEvent rEvent){
try{
 // get the control that has fired the event,
 XControl xControl = (XControl) UnoRuntime.queryInterface(XControl.class, rEvent.Source);
 XControlModel xControlModel = xControl.getModel();
 XPropertySet xPSet = (XPropertySet) UnoRuntime.queryInterface(XPropertySet.class, xControlModel);
 String sName = (String) xPSet.getPropertyValue("Name");
 // just in case the listener has been added to several controls,
 // we make sure we refer to the right one
 if (sName.equals("CommandButton1")){
//...
 }
}catch (com.sun.star.uno.Exception ex){
 /* perform individual exception handling here.
 * Possible exception types are:
 * com.sun.star.lang.WrappedTargetException,
 * com.sun.star.beans.UnknownPropertyException,
 * com.sun.star.uno.Exception
 */
 ex.printStackTrace(System.out);
}}}

1136 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XActionListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XActionListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XActionListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlButtonModel.html#Toggle

Graphics

When an image source is used several times it may be better to keep the image in its own object
variable. The following code snippet shows how you can create such a variable:
// creates a UNO graphic object that can be used to be assigned
// to the property "Graphic" of a controlmodel
public XGraphic getGraphic(String _sImageUrl){
XGraphic xGraphic = null;
try{
 // create a GraphicProvider at the global service manager...
 Object oGraphicProvider = m_xMCF.createInstanceWithContext("com.sun.star.graphic.GraphicProvider",
m_xContext);
 XGraphicProvider xGraphicProvider = (XGraphicProvider)
UnoRuntime.queryInterface(XGraphicProvider.class, oGraphicProvider);
 // create the graphic object
 PropertyValue[] aPropertyValues = new PropertyValue[1];
 PropertyValue aPropertyValue = new PropertyValue();
 aPropertyValue.Name = "URL";
 aPropertyValue.Value = _sImageUrl;
 aPropertyValues[0] = aPropertyValue;
 xGraphic = xGraphicProvider.queryGraphic(aPropertyValues);
 return xGraphic;
}catch (com.sun.star.uno.Exception ex){
 throw new java.lang.RuntimeException("cannot happen...");
}}

This object variable may be assigned to the property Graphic that is also supported by image
controls 20.5.2 Graphical User Interfaces - Dialog Handling - Dialog Controls - Image Control, check
boxes 20.5.2 Graphical User Interfaces - Dialog Handling - Dialog Controls - Check Box, radio buttons
20.5.2 Graphical User Interfaces - Dialog Handling - Dialog Controls - Radio Button and command
buttons. Note: Issue http://www.openoffice.org/issues/show_bug.cgi?id=76718 has not yet been
resolved. The graphic may only be assigned to the control after the peer of the dialog has been
created (see 20.4.4 Graphical User Interfaces - Dialog Creation - Displaying Dialogs).

Image Control
If you want to display an image without the command button functionality, the image control
com.sun.star.awt.UnoControlImageControl and its model
com.sun.star.awt.UnoControlImageControlModel is the control of choice. The location of the graphic
for the command button is set by the ImageURL property. Usually, the size of the image does not
match the size of the control, therefore the image control automatically scales the image to the size
of the control by setting the ScaleImage property to true.

One problem with URLs in OpenOffice.org is that the developer, in certain contexts, may only
know the system dependent path to his or her image file. A system path is not accepted by
ImageURL. The following example shows how you can convert this path to a URL that can then be
passed to the property ImageURL.
public void insertImageControl(XMultiComponentFactory _xMCF, String _sImageSystemPath, int _nPosX, int
_nPosY, int _nHeight, int _nWidth){
try{
 // create a unique name by means of an own implementation...
 String sName = createUniqueName(m_xDlgModelNameContainer, "ImageControl");
 // convert the system path to the image to a FileUrl
 java.io.File oFile = new java.io.File(_sImageSystemPath);
 Object oFCProvider = _xMCF.createInstanceWithContext("com.sun.star.ucb.FileContentProvider",
this.m_xContext);
 XFileIdentifierConverter xFileIdentifierConverter = (XFileIdentifierConverter)
UnoRuntime.queryInterface(XFileIdentifierConverter.class, oFCProvider);
 String sImageUrl = xFileIdentifierConverter.getFileURLFromSystemPath(_sImageSystemPath,
oFile.getAbsolutePath());
 XGraphic xGraphic = getGraphic(sImageUrl);

// create a controlmodel at the multiservicefactory of the dialog model...
 Object oICModel = m_xMSFDialogModel.createInstance("com.sun.star.awt.UnoControlImageControlModel");
 XMultiPropertySet xICModelMPSet = (XMultiPropertySet)
UnoRuntime.queryInterface(XMultiPropertySet.class, oICModel);

 // Set the properties at the model - keep in mind to pass the property names in alphabetical order!
 // The image is not scaled
 xICModelMPSet.setPropertyValues(

1137

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlImageControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlImageControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlImageControlModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlImageControl.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlImageControl.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlImageControl.html
http://www.openoffice.org/issues/show_bug.cgi?id=76718
http://www.openoffice.org/issues/show_bug.cgi?id=76718
http://www.openoffice.org/issues/show_bug.cgi?id=76718

 new String[] {"Border", "Graphic", "Height", "Name", "PositionX", "PositionY", "ScaleImage",
"Width"},
 new Object[] { new Short((short) 1), xGraphic, new Integer(_nHeight), sName, new
Integer(_nPosX), new Integer(_nPosY), Boolean.FALSE, new Integer(_nWidth)});

 // The controlmodel is not really available until inserted to the Dialog container
 m_xDlgModelNameContainer.insertByName(sName, oICModel);
}catch (com.sun.star.uno.Exception ex){
 /* perform individual exception handling here.
 * Possible exception types are:
 * com.sun.star.lang.IllegalArgumentException,
 * com.sun.star.lang.WrappedTargetException,
 * com.sun.star.container.ElementExistException,
 * com.sun.star.beans.PropertyVetoException,
 * com.sun.star.beans.UnknownPropertyException,
 * com.sun.star.uno.Exception
 */
 ex.printStackTrace(System.out);
}}

Extension developers will be confronted with the problem that the graphic to be displayed by the
image is located within the extension file. Currently there is no direct way to query the path to the
extension. This problem has been identified and addressed by
http://www.openoffice.org/issues/show_bug.cgi?id=74195. Until this bug is resolved, there is a manual
workaround that can be used.

The path to the images of the extension should be set in a configuration file of the component For
example:
..
<prop oor:name="Images" oor:type="xs:string">

<value>%origin%/images</value>
</prop>

The variable %origin% will be automatically assigned the value of the URL of the component file
when this entry is queried during runtime:
/**
 * @param _sRegistryPath the path a registryNode
 * @param _sImageName the name of the image
 */
public String getImageUrl(String _sRegistryPath, String _sImageName){
String sImageUrl = "";
try {
 // retrive the configuration node of the extension
 XNameAccess xNameAccess = getRegistryKeyContent(_sRegistryPath);
 if (xNameAccess != null){
 if (xNameAccess.hasByName(_sImageName)){
 // get the Image Url and process the Url by the macroexpander...
 sImageUrl = (String) xNameAccess.getByName(_sImageName);
 Object oMacroExpander =
this.m_xContext.getValueByName("/singletons/com.sun.star.util.theMacroExpander");
 XMacroExpander xMacroExpander = (XMacroExpander)
UnoRuntime.queryInterface(XMacroExpander.class, oMacroExpander);
 sImageUrl = xMacroExpander.expandMacros(sImageUrl);
 sImageUrl = sImageUrl.substring(new String("vnd.sun.star.expand:").length(),
sImageUrl.length());
 sImageUrl = sImageUrl.trim();
 sImageUrl += "/" + _sImageName;
 }
 }
} catch (Exception ex) {
 /* perform individual exception handling here.
 * Possible exception types are:
 * com.sun.star.lang.IllegalArgumentException,
 * com.sun.star.lang.WrappedTargetException,
 */
 ex.printStackTrace(System.out);
}
 return sImageUrl;
}

/**
* @param _sKeyName
* @return
*/
public XNameAccess getRegistryKeyContent(String _sKeyName){
try {
 Object oConfigProvider;
 PropertyValue[] aNodePath = new PropertyValue[1];
 oConfigProvider =
m_xMCF.createInstanceWithContext("com.sun.star.configuration.ConfigurationProvider", this.m_xContext);

1138 OpenOffice.org 2.3 Developer's Guide • June 2007

http://www.openoffice.org/issues/show_bug.cgi?id=74195
http://www.openoffice.org/issues/show_bug.cgi?id=74195
http://www.openoffice.org/issues/show_bug.cgi?id=74195

 aNodePath[0] = new PropertyValue();
 aNodePath[0].Name = "nodepath";
 aNodePath[0].Value = _sKeyName;
 XMultiServiceFactory xMSFConfig = (XMultiServiceFactory)
UnoRuntime.queryInterface(XMultiServiceFactory.class, oConfigProvider);
 Object oNode =
xMSFConfig.createInstanceWithArguments("com.sun.star.configuration.ConfigurationAccess", aNodePath);
 XNameAccess xNameAccess = (XNameAccess) UnoRuntime.queryInterface(XNameAccess.class, oNode);
 return xNameAccess;
} catch (Exception exception) {
 exception.printStackTrace(System.out);
 return null;
}}

For further information about the development of extensions and configuration file handling,
please see 4.7 Writing UNO Components - Integrating Components into OpenOffice.org.

Check Box
The check box control model com.sun.star.awt.UnoControlCheckBoxModel is used in groups to
display multiple choices. When a check box is selected it displays a check mark. Check boxes work
independently of each other. A user can select any number or combination of check boxes. The
State property of the model service com.sun.star.awt.UnoControlCheckBoxModel defines three
values, where 0 is not checked, 1 is checked, and 2 is undetermined. You can enable the tri-state
mode of a check box by setting the TriState property to True. A tri-state check box used to give
the user the option of setting or unsetting an option.
public XCheckBox insertCheckBox(XItemListener _xItemListener, int _nPosX, int _nPosY, int _nWidth){
XCheckBox xCheckBox = null;
try{
 // create a unique name by means of an own implementation...
 String sName = createUniqueName(m_xDlgModelNameContainer, "CheckBox");

 // create a controlmodel at the multiservicefactory of the dialog model...
 Object oCBModel = m_xMSFDialogModel.createInstance("com.sun.star.awt.UnoControlCheckBoxModel");

 // Set the properties at the model - keep in mind to pass the property names in alphabetical order!
 XMultiPropertySet xCBMPSet = (XMultiPropertySet) UnoRuntime.queryInterface(XMultiPropertySet.class,
oCBModel);
 xCBMPSet.setPropertyValues(
 new String[] {"Height", "Label", "Name", "PositionX", "PositionY", "Width" } ,
 new Object[] {new Integer(8), "~Include page number", sName, new Integer(_nPosX), new
Integer(_nPosY), new Integer(_nWidth)});

 // The following property may also be set with XMultiPropertySet but we
 // use the XPropertySet interface merely for reasons of demonstration
 XPropertySet xCBModelPSet = (XPropertySet) UnoRuntime.queryInterface(XPropertySet.class, xCBMPSet);
 xCBModelPSet.setPropertyValue("TriState", Boolean.TRUE);
 xCBModelPSet.setPropertyValue("State", new Short((short) 1));

 // add the model to the NameContainer of the dialog model
 m_xDlgModelNameContainer.insertByName(sName, oCBModel);
 XControl xCBControl = m_xDlgContainer.getControl(sName);
 xCheckBox = (XCheckBox) UnoRuntime.queryInterface(XCheckBox.class, xCBControl);
 // An ActionListener will be notified on the activation of the button...
 xCheckBox.addItemListener(_xItemListener);
}catch (com.sun.star.uno.Exception ex){
 /* perform individual exception handling here.
 * Possible exception types are:
 * com.sun.star.lang.IllegalArgumentException,
 * com.sun.star.lang.WrappedTargetException,
 * com.sun.star.container.ElementExistException,
 * com.sun.star.beans.PropertyVetoException,
 * com.sun.star.beans.UnknownPropertyException,
 * com.sun.star.uno.Exception
 */
 ex.printStackTrace(System.out);
}
 return xCheckBox;
}

In this example, a com.sun.star.awt.XItemListener is attached to the check box control. This listener is
notified on each change of the State property in the control model. Listeners on check boxes are
often used to enable or disable controls whose functionality is dependent on the state of a check
box:

1139

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XItemListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XItemListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XItemListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlCheckBoxModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlCheckBoxModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlCheckBoxModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlCheckBoxModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlCheckBoxModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlCheckBoxModel.html

public void itemStateChanged(ItemEvent itemEvent) {
try{
 // retrieve the control that the event has been invoked at...
 XCheckBox xCheckBox = (XCheckBox) UnoRuntime.queryInterface(XCheckBox.class, itemEvent.Source);
 // retrieve the control that we want to disable or enable
 XControl xControl = (XControl) UnoRuntime.queryInterface(XControl.class,
m_xDlgContainer.getControl("CommandButton1"));
 XPropertySet xModelPropertySet = (XPropertySet) UnoRuntime.queryInterface(XPropertySet.class,
xControl.getModel());
 short nState = xCheckBox.getState();
 boolean bdoEnable = true;
 switch (nState){
 case 1: // checked
 bdoEnable = true;
 break;
 case 0: // not checked
 case 2: // don't know
 bdoEnable = false;
 break;
 }
 // Alternatively we could have done it also this way:
 // bdoEnable = (nState == 1);
 xModelPropertySet.setPropertyValue("Enabled", new Boolean(bdoEnable));
}catch (com.sun.star.uno.Exception ex){
 /* perform individual exception handling here.
 * Possible exception types are:
 * com.sun.star.lang.IllegalArgumentException
 * com.sun.star.lang.WrappedTargetException,
 * com.sun.star.beans.UnknownPropertyException,
 * com.sun.star.beans.PropertyVetoException
 * com.sun.star.uno.Exception
 */
 ex.printStackTrace(System.out);
}}

A check box may also display images similar to a button as described in 20.5.2 Graphical User
Interfaces - Dialog Handling - Dialog Controls - Command Button.

Radio Button
A radio button control model com.sun.star.awt.UnoControlRadioButtonModel is a simple switch with
two states selected by the user. Usually these controls are used in groups to display several options
that the user may select. While they are very similar to check boxes, selecting one radio button
deselects all the radio buttons in the same group. To assemble several radio buttons to a control
group it is important to know that there may not be any control TabIndex between the tab indices
of the radio buttons although it is not necessary for the tab indices to be directly consecutive. Two
groups of radio buttons can be separated by any control with a tab index that is between the tab
indices of the two groups. Usually a group box, or horizontal and vertical lines are used because
those controls visually group the radio buttons together. In principal, any control can be used to
separate groups of radio buttons. There is no functional relationship between a radio button and a
group box 20.5.2 Graphical User Interfaces - Dialog Handling - Dialog Controls - Group Box. The state of
an radio button is accessed by the State property in the service
com.sun.star.awt.UnoControlRadioButtonModel, where 0 is not checked and 1 is checked.

A radio button may also display images similar to a button as described in 20.5.2 Graphical User
Interfaces - Dialog Handling - Dialog Controls - Command Button.

The following example demonstrates the way a group of two radio buttons may be created. Note
the assignment of the tab indices to each radio button.
public void insertRadioButtonGroup(short _nTabIndex, int _nPosX, int _nPosY, int _nWidth){
try{
 // create a unique name by means of an own implementation...
 String sName = createUniqueName(m_xDlgModelNameContainer, "OptionButton");

 // create a controlmodel at the multiservicefactory of the dialog model...
 Object oRBModel = m_xMSFDialogModel.createInstance("com.sun.star.awt.UnoControlRadioButtonModel");
 XMultiPropertySet xRBMPSet = (XMultiPropertySet) UnoRuntime.queryInterface(XMultiPropertySet.class,
oRBModel);
 // Set the properties at the model - keep in mind to pass the property names in alphabetical order!
 xRBMPSet.setPropertyValues(
 new String[] {"Height", "Label", "Name", "PositionX", "PositionY", "State", "TabIndex", "Width" } ,

1140 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlRadioButtonModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlRadioButtonModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlRadioButtonModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlRadioButtonModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlRadioButtonModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlRadioButtonModel.html

 new Object[] {new Integer(8), "~First Option", sName, new Integer(_nPosX), new Integer(_nPosY), new
Short((short) 1), new Short(_nTabIndex++),new Integer(_nWidth)});
 // add the model to the NameContainer of the dialog model
 m_xDlgModelNameContainer.insertByName(sName, oRBModel);

 // create a unique name by means of an own implementation...
 sName = createUniqueName(m_xDlgModelNameContainer, "OptionButton");

 oRBModel = m_xMSFDialogModel.createInstance("com.sun.star.awt.UnoControlRadioButtonModel");
 xRBMPSet = (XMultiPropertySet) UnoRuntime.queryInterface(XMultiPropertySet.class, oRBModel);
 // Set the properties at the model - keep in mind to pass the property names in alphabetical order!
 xRBMPSet.setPropertyValues(
 new String[] {"Height", "Label", "Name", "PositionX", "PositionY", "TabIndex", "Width" } ,
 new Object[] {new Integer(8), "~Second Option", sName, new Integer(130), new Integer(214), new
Short(_nTabIndex), new Integer(150)});
 // add the model to the NameContainer of the dialog model
 m_xDlgModelNameContainer.insertByName(sName, oRBModel);
}catch (com.sun.star.uno.Exception ex){
 /* perform individual exception handling here.
 * Possible exception types are:
 * com.sun.star.lang.IllegalArgumentException,
 * com.sun.star.lang.WrappedTargetException,
 * com.sun.star.container.ElementExistException,
 * com.sun.star.beans.PropertyVetoException,
 * com.sun.star.beans.UnknownPropertyException,
 * com.sun.star.uno.Exception
 */
 ex.printStackTrace(System.out);
}}

Scroll Bar
A com.sun.star.awt.UnoControlScrollBar can be used to display arbitrary content. This can be content
that is too large in size to fit into a dialog or any other measurable content. It offers assistance to
the user for the navigation through a container, like a group of controls. The user positions the
thumb in the scroll bar to determine which part of the content is to be displayed in the viewing
area of the dialog. The component that uses the scroll bar then typically adjusts the display so that
the end of the scroll bar represents the end of the contents that can be displayed, or 100%. The start
of the scroll bar is the beginning of the content that can be displayed, or 0%. The position of the
thumb within those bounds then translates to the corresponding percentage representing the
position within the total content.

Typically a com.sun.star.awt.XAdjustmentListener is added to the control by means of the method
addAdjustmentListener() of the interface com.sun.star.awt.XScrollBar . The method
adjustmentValueChanged is called each time the position of the thumb in the scroll bar changes.
The model com.sun.star.awt.UnoControlScrollBarModel offers the following properties:

Properties of com.sun.star.awt.UnoControlScrollBarModel

ScrollValue long. The ScrollValue property represents the position of
the thumb.

LineIncrement Long. The LineIncrement property specifies the change of
the scroll value per mouse click on an arrow.

BlockIncrement long. The BlockIncrement property specifies the change of
the Scrollvalue property when clicking in a scroll bar in
the region between the thumb and and the arrows.

Orientation long. Specifies the orientation of the scroll bar. Accepts either
com.sun.star.awt.ScrollBarOrientation.VERTICAL
or
com.sun.star.awt.ScrollBarOrientation.HORIZONT
AL

RepeatDelay long. Specifies the delay in milliseconds between repeating
events. A repeating event occurs when clicking on a button or
the background of a scroll bar while keeping the mouse button
pressed for some time.

1141

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlScrollBarModel.html#RepeatDelay
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlScrollBarModel.html#Orientation
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlScrollBarModel.html#BlockIncrement
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlScrollBarModel.html#LineIncrement
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlScrollBarModel.html#ScrollValue
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlScrollBarModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlScrollBarModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlScrollBarModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlScrollBarModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlScrollBarModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlScrollBarModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XScrollBar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XScrollBar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XScrollBar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XAdjustmentListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XAdjustmentListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XAdjustmentListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlScrollBar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlScrollBar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlScrollBar.html

ScrollValueMin long. The ScrollValueMin property defines the minimum
value of the Scrollvalue property.

ScrollValueMax long. The ScrollValueMax property defines the maximum
value of the Scrollvalue property.

VisibleSize long. The property VisibleSize defines the visible size of
the thumb and represents the percentage of the currently
visible content and the total content that can be displayed.

You can also set these attributes com.sun.star.awt.XScrollBar interface.

This example demonstrates how you can set up a scroll bar:
public XPropertySet insertVerticalScrollBar(XAdjustmentListener _xAdjustmentListener, int _nPosX, int
_nPosY, int _nHeight){
XPropertySet xSBModelPSet = null;
try{
 // create a unique name by means of an own implementation...
 String sName = createUniqueName(m_xDlgModelNameContainer, "ScrollBar");

 Integer NOrientation = new Integer(com.sun.star.awt.ScrollBarOrientation.VERTICAL);

 // create a controlmodel at the multiservicefactory of the dialog model...
 Object oSBModel = m_xMSFDialogModel.createInstance("com.sun.star.awt.UnoControlScrollBarModel");
 XMultiPropertySet xSBModelMPSet = (XMultiPropertySet)
UnoRuntime.queryInterface(XMultiPropertySet.class, oSBModel);
 // Set the properties at the model - keep in mind to pass the property names in alphabetical order!
 xSBModelMPSet.setPropertyValues(
 new String[] {"Height", "Name", "Orientation", "PositionX", "PositionY", "Width"},
 new Object[] { new Integer(_nHeight), sName, NOrientation, new Integer(_nPosX), new Integer(_nPosY),
new Integer(8)});

 // The controlmodel is not really available until inserted to the Dialog container
 m_xDlgModelNameContainer.insertByName(sName, oSBModel);

 xSBModelPSet = (XPropertySet) UnoRuntime.queryInterface(XPropertySet.class, oSBModel);
 // The following properties may also be set with XMultiPropertySet but we
 // use the XPropertySet interface merely for reasons of demonstration
 xSBModelPSet.setPropertyValue("ScrollValueMin", new Integer(0));
 xSBModelPSet.setPropertyValue("ScrollValueMax", new Integer(100));
 xSBModelPSet.setPropertyValue("ScrollValue", new Integer(5));
 xSBModelPSet.setPropertyValue("LineIncrement", new Integer(2));
 xSBModelPSet.setPropertyValue("BlockIncrement", new Integer(10));

 // Add an Adjustment that will listen to changes of the scrollbar...
 XControl xSBControl = m_xDlgContainer.getControl(sName);
 XScrollBar xScrollBar = (XScrollBar) UnoRuntime.queryInterface(XScrollBar.class, xSBControl);
 xScrollBar.addAdjustmentListener(_xAdjustmentListener);
}catch (com.sun.star.uno.Exception ex){
 /* perform individual exception handling here.
 * Possible exception types are:
 * com.sun.star.lang.IllegalArgumentException,
 * com.sun.star.lang.WrappedTargetException,
 * com.sun.star.container.ElementExistException,
 * com.sun.star.beans.PropertyVetoException,
 * com.sun.star.beans.UnknownPropertyException,
 * com.sun.star.uno.Exception
 */
 ex.printStackTrace(System.out);
}
return xSBModelPSet;
}

The adjustmentListener, that has been added to the example scroll bar must implement the method
adjustmentValueChanged():
public void adjustmentValueChanged(AdjustmentEvent _adjustmentEvent) {
 switch (_adjustmentEvent.Type.getValue()){
 case AdjustmentType.ADJUST_ABS_value:
 System.out.println("The event has been triggered by dragging the thumb...");
 break;
 case AdjustmentType.ADJUST_LINE_value:
 System.out.println("The event has been triggered by a single line move..");
 break;
 case AdjustmentType.ADJUST_PAGE_value:
 System.out.println("The event has been triggered by a block move...");
 break;
 }
 System.out.println("The value of the scrollbar is: " + _adjustmentEvent.Value);
}

1142 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XScrollBar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XScrollBar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XScrollBar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlScrollBarModel.html#VisibleSize
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlScrollBarModel.html#ScrollValueMax
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlScrollBarModel.html#ScrollValueMin

List Box
The list box control com.sun.star.awt.UnoControlListBox displays a list of items that the user can
select one or more of. If the number of items exceeds what can be displayed in the list box, scroll
bars automatically appear on the control. The model of a list box supports the service
com.sun.star.awt.UnoControlListBoxModel :

Properties of com.sun.star.awt.UnoControlListBoxModel

Dropdown boolean. If the Dropdown property is set to true, the list of
items is displayed in a drop-down box.

LineCount short. If the Dropdown property is set to true, the maximum
number of line counts in the drop- down box are specified with
the LineCount property.

MultiSelection boolean. If the MultiSelection property is set to true ,
more than one entry can be selected. This property is ignored if
Dropdown is set to true.

StringItemList string[]. A sequence of strings containing the actual list of
items within the list box.

SelectedItems short[]. A sequence of strings containing the actual list of
indices of all selected items.

The list box allows you to register a com.sun.star.awt.XItemListener as well as a
com.sun.star.awt.XActionListener. Double-clicking a list box item will invoke the method
actionPerformed()of the action listener. If items are selected with a single click or even
programmatically, the method itemStateChanged() is called when an item listener is registered
at the list box control.

The list box control that supports the interface com.sun.star.awt.XListBox offers more convenient
functions than the list box model. For example, it offers the method selectItemPos([in] short
nPos,[in] boolean bSelect) to select or deselect a single item in the list box. As can be seen in
the following example, to achieve the same result with the model, a sequence of all selected list box
item indices must be assigned.
public XListBox insertListBox(int _nPosX, int _nPosY, int _nWidth, int _nStep, String[]
_sStringItemList){
XListBox xListBox = null;
try{
 // create a unique name by means of an own implementation...
 String sName = createUniqueName(m_xDlgModelNameContainer, "ListBox");

 // create a controlmodel at the multiservicefactory of the dialog model...
 Object oListBoxModel = m_xMSFDialogModel.createInstance("com.sun.star.awt.UnoControlListBoxModel");
 XMultiPropertySet xLBModelMPSet = (XMultiPropertySet)
UnoRuntime.queryInterface(XMultiPropertySet.class, oListBoxModel);
 // Set the properties at the model - keep in mind to pass the property names in alphabetical order!
 xLBModelMPSet.setPropertyValues(
 new String[] {"Dropdown", "Height", "Name", "PositionX", "PositionY", "Step", "StringItemList",
"Width" } ,
 new Object[] {Boolean.TRUE, new Integer(12), sName, new Integer(_nPosX), new Integer(_nPosY), new
Integer(_nStep), _sStringItemList, new Integer(_nWidth)});
 // The following property may also be set with XMultiPropertySet but we
 // use the XPropertySet interface merely for reasons of demonstration
 XPropertySet xLBModelPSet = (XPropertySet) UnoRuntime.queryInterface(XPropertySet.class,
xLBModelMPSet);
 xLBModelPSet.setPropertyValue("MultiSelection", Boolean.TRUE);
 short[] nSelItems = new short[] {(short) 1, (short) 3};
 xLBModelPSet.setPropertyValue("SelectedItems", nSelItems);
 // add the model to the NameContainer of the dialog model
 m_xDlgModelNameContainer.insertByName(sName, xLBModelMPSet);
 XControl xControl = m_xDlgContainer.getControl(sName);
 // retrieve a ListBox that is more convenient to work with than the Model of the ListBox...
 xListBox = (XListBox) UnoRuntime.queryInterface(XListBox.class, xControl);
}catch (com.sun.star.uno.Exception ex){
 /* perform individual exception handling here.
 * Possible exception types are:
 * com.sun.star.lang.IllegalArgumentException,
 * com.sun.star.lang.WrappedTargetException,
 * com.sun.star.container.ElementExistException,

1143

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XListBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XListBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XListBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XActionListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XActionListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XActionListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XItemListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XItemListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XItemListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlListBoxModel.html#SelectedItems
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlListBoxModel.html#StringItemList
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlListBoxModel.html#MultiSelection
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlListBoxModel.html#LineCount
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlListBoxModel.html#Dropdown
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlListBoxModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlListBoxModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlListBoxModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlListBoxModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlListBoxModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlListBoxModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlListBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlListBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlListBox.html

 * com.sun.star.beans.PropertyVetoException,
 * com.sun.star.beans.UnknownPropertyException,
 * com.sun.star.uno.Exception
 */
 ex.printStackTrace(System.out);
}
 return xListBox;
}

Combo Box
A combo box control presents a list of items to the user. It also contains a text field allowing the
user to input text that is not in the list. A combo box is used when there is a list of suggested
choices, whereas a list box is used when the user's input is limited only to the list. The features and
properties of a combo box and a list box are similar. As can be seen in
com.sun.star.awt.UnoControlComboBox the combo box includes the functionality of a
com.sun.star.awt.UnoControlEdit, which also allows you to add an com.sun.star.awt.XTextListener to
the combo box. The text displayed in the field of the combo box can be controlled by the Text
property of the combo box model that supports the service
com.sun.star.awt.UnoControlComboBoxModel. Just like in the list box, the actual list of items is
accessible through the StringItemList property. A useful feature of the model is the automatic
word completion that can be activated by setting the property Autocomplete to true.

You can control the items in a combo box via the interface com.sun.star.awt.XComboBox at the
control, which offers a more convenient access to the control's functionality.
public XComboBox insertComboBox(int _nPosX, int _nPosY, int _nWidth){
XComboBox xComboBox = null;
try{
 // create a unique name by means of an own implementation...
 String sName = createUniqueName(m_xDlgModelNameContainer, "ComboBox");

 String[] sStringItemList = new String[]{"First Entry", "Second Entry", "Third Entry", "Fourth
Entry"};

 // create a controlmodel at the multiservicefactory of the dialog model...
 Object oComboBoxModel =
m_xMSFDialogModel.createInstance("com.sun.star.awt.UnoControlComboBoxModel");
 XMultiPropertySet xCbBModelMPSet = (XMultiPropertySet)
UnoRuntime.queryInterface(XMultiPropertySet.class, oComboBoxModel);
 // Set the properties at the model - keep in mind to pass the property names in alphabetical order!
 xCbBModelMPSet.setPropertyValues(
 new String[] {"Dropdown", "Height", "Name", "PositionX", "PositionY", "StringItemList", "Width" } ,
 new Object[] {Boolean.TRUE, new Integer(12), sName, new Integer(_nPosX), new Integer(_nPosY),
sStringItemList, new Integer(_nWidth)});

 // The following property may also be set with XMultiPropertySet but we
 // use the XPropertySet interface merely for reasons of demonstration
 XPropertySet xCbBModelPSet = (XPropertySet) UnoRuntime.queryInterface(XPropertySet.class,
xCbBModelMPSet);
 xCbBModelPSet.setPropertyValue("MaxTextLen", new Short((short) 10));
 xCbBModelPSet.setPropertyValue("ReadOnly", Boolean.FALSE);

 // add the model to the NameContainer of the dialog model
 m_xDlgModelNameContainer.insertByName(sName, xCbBModelMPSet);
 XControl xControl = m_xDlgContainer.getControl(sName);

 // retrieve a ListBox that is more convenient to work with than the Model of the ListBox...
 xComboBox = (XComboBox) UnoRuntime.queryInterface(XComboBox.class, xControl);
}catch (com.sun.star.uno.Exception ex){
 /* perform individual exception handling here.
 * Possible exception types are:
 * com.sun.star.lang.IllegalArgumentException,
 * com.sun.star.lang.WrappedTargetException,
 * com.sun.star.container.ElementExistException,
 * com.sun.star.beans.PropertyVetoException,
 * com.sun.star.beans.UnknownPropertyException,
 * com.sun.star.uno.Exception
 */
 ex.printStackTrace(System.out);
}
 return xComboBox;
}

1144 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XComboBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XComboBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XComboBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlComboBoxModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlComboBoxModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlComboBoxModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTextListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTextListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTextListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlEdit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlEdit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlEdit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlComboBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlComboBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlComboBox.html

Progress Bar
The progress bar control com.sun.star.awt.UnoControlProgressBar displays a growing or shrinking
bar to give the user feedback during a persisting task. The minimum and the maximum progress
value of the control is set by the ProgressValueMin and the ProgressValueMax properties of the
control model that supports the service com.sun.star.awt.UnoControlProgressBarModel . The progress
value is controlled by the ProgressValue property. The fill color can be changed by setting the
property FillColor. The control implements the interface com.sun.star.awt.XProgressBar which
allows you to control the progress bar. The progress bar interface com.sun.star.awt.XReschedule
helps to update and repaint the progress bar while a concurrent task is running, but this interface
interrupts the main thread of the office. Issue http://www.openoffice.org/issues/show_bug.cgi?
id=i71425 is assigned to find an appropriate solution for this problem.
public XPropertySet insertProgressBar(int _nPosX, int _nPosY, int _nWidth, int _nProgressMax){
XPropertySet xPBModelPSet = null;
try{
 // create a unique name by means of an own implementation...
 String sName = createUniqueName(m_xDlgModelNameContainer, "ProgressBar");

 // create a controlmodel at the multiservicefactory of the dialog model...
 Object oPBModel = m_xMSFDialogModel.createInstance("com.sun.star.awt.UnoControlProgressBarModel");

 XMultiPropertySet xPBModelMPSet = (XMultiPropertySet)
UnoRuntime.queryInterface(XMultiPropertySet.class, oPBModel);
 // Set the properties at the model - keep in mind to pass the property names in alphabetical order!
 xPBModelMPSet.setPropertyValues(
 new String[] {"Height", "Name", "PositionX", "PositionY", "Width"},
 new Object[] { new Integer(8), sName, new Integer(_nPosX), new Integer(_nPosY), new
Integer(_nWidth)});

 // The controlmodel is not really available until inserted to the Dialog container
 m_xDlgModelNameContainer.insertByName(sName, oPBModel);
 xPBModelPSet = (XPropertySet) UnoRuntime.queryInterface(XPropertySet.class, oPBModel);

 // The following properties may also be set with XMultiPropertySet but we
 // use the XPropertySet interface merely for reasons of demonstration
 xPBModelPSet.setPropertyValue("ProgressValueMin", new Integer(0));
 xPBModelPSet.setPropertyValue("ProgressValueMax", new Integer(_nProgressMax));
}catch (com.sun.star.uno.Exception ex){
 /* perform individual exception handling here.
 * Possible exception types are:
 * com.sun.star.lang.IllegalArgumentException,
 * com.sun.star.lang.WrappedTargetException,
 * com.sun.star.container.ElementExistException,
 * com.sun.star.beans.PropertyVetoException,
 * com.sun.star.beans.UnknownPropertyException,
 * com.sun.star.uno.Exception
 */
 ex.printStackTrace(System.out);
}
 return xPBModelPSet;
}

Horizontal /Vertical Line Control
The line control service com.sun.star.awt.UnoControlFixedLine describes the behavior of simple lines
in a dialog. In most cases, the line control is used to visually subdivide a dialog. The line control
may provide horizontal or vertical orientation which is determined by the Orientation property
of the model as specified in com.sun.star.awt.UnoControlFixedLineModel. The label of a line control is
set by the Label property. The label is only displayed if the control has a horizontal orientation.

This example inserts a line with a horizontal orientation (Orientation == 0) in a dialog:
public void insertHorizontalFixedLine(int _nPosX, int _nPosY, int _nWidth, String _sLabel){
try{
 // create a unique name by means of an own implementation...
 String sName = createUniqueName(m_xDlgModelNameContainer, "FixedLine");

 // create a controlmodel at the multiservicefactory of the dialog model...
 Object oFLModel = m_xMSFDialogModel.createInstance("com.sun.star.awt.UnoControlFixedLineModel");
 XMultiPropertySet xFLModelMPSet = (XMultiPropertySet)
UnoRuntime.queryInterface(XMultiPropertySet.class, oFLModel);

1145

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFixedLineModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFixedLineModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFixedLineModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFixedLine.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFixedLine.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFixedLine.html
http://www.openoffice.org/issues/show_bug.cgi?id=i71425
http://www.openoffice.org/issues/show_bug.cgi?id=i71425
http://www.openoffice.org/issues/show_bug.cgi?id=i71425
http://www.openoffice.org/issues/show_bug.cgi?id=i71425
http://www.openoffice.org/issues/show_bug.cgi?id=i71425
http://www.openoffice.org/issues/show_bug.cgi?id=i71425
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XReschedule.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XReschedule.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XReschedule.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XProgressBar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XProgressBar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XProgressBar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlProgressBarModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlProgressBarModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlProgressBarModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlProgressBar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlProgressBar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlProgressBar.html

 // Set the properties at the model - keep in mind to pass the property names in alphabetical order!
 xFLModelMPSet.setPropertyValues(
 new String[] {"Height", "Name", "Orientation", "PositionX", "PositionY", "Width"},
 new Object[] { new Integer(2), sName, new Integer(0), new Integer(_nPosX), new Integer(_nPosY), new
Integer(_nWidth)});

 // The controlmodel is not really available until inserted to the Dialog container
 m_xDlgModelNameContainer.insertByName(sName, oFLModel);

 // The following property may also be set with XMultiPropertySet but we
 // use the XPropertySet interface merely for reasons of demonstration
 XPropertySet xFLPSet = (XPropertySet) UnoRuntime.queryInterface(XPropertySet.class, oFLModel);
 xFLPSet.setPropertyValue("Label", _sLabel);
}catch (com.sun.star.uno.Exception ex){
 /* perform individual exception handling here.
 * Possible exception types are:
 * com.sun.star.lang.IllegalArgumentException,
 * com.sun.star.lang.WrappedTargetException,
 * com.sun.star.container.ElementExistException,
 * com.sun.star.beans.PropertyVetoException,
 * com.sun.star.beans.UnknownPropertyException,
 * com.sun.star.uno.Exception
 */
 ex.printStackTrace(System.out);
}}

Group Box
The group box control com.sun.star.awt.UnoControlGroupBox creates a frame to visually group other
controls together, such as option buttons and check boxes. Controls can be added to the group box
at any time. The group box control does not provide any container functionality for other controls,
it is merely a visual control, and is always transparent. The group box contains a label embedded
within the border and is set by the Label property. OpenOffice.org uses fixed lines 20.5.2
Graphical User Interfaces - Dialog Handling - Dialog Controls - Horizontal/Vertical Control to visually
subdivide a dialog into logical control groups.
public void insertGroupBox(int _nPosX, int _nPosY, int _nHeight, int _nWidth){
try{
 // create a unique name by means of an own implementation...
 String sName = createUniqueName(m_xDlgModelNameContainer, "FrameControl");

 // create a controlmodel at the multiservicefactory of the dialog model...
 Object oGBModel = m_xMSFDialogModel.createInstance("com.sun.star.awt.UnoControlGroupBoxModel");
 XMultiPropertySet xGBModelMPSet = (XMultiPropertySet)
UnoRuntime.queryInterface(XMultiPropertySet.class, oGBModel);

 // Set the properties at the model - keep in mind to pass the property names in alphabetical order!
 xGBModelMPSet.setPropertyValues(
 new String[] {"Height", "Name", "PositionX", "PositionY", "Width"},
 new Object[] { new Integer(80), sName, new Integer(106), new Integer(114), new Integer(100)});

 // The controlmodel is not really available until inserted to the Dialog container
 m_xDlgModelNameContainer.insertByName(sName, oGBModel);

 // The following property may also be set with XMultiPropertySet but we
 // use the XPropertySet interface merely for reasons of demonstration
 XPropertySet xGBPSet = (XPropertySet) UnoRuntime.queryInterface(XPropertySet.class, oGBModel);
 xGBPSet.setPropertyValue("Label", "~My GroupBox");
}catch (com.sun.star.uno.Exception ex){
 /* perform individual exception handling here.
 * Possible exception types are:
 * com.sun.star.lang.IllegalArgumentException,
 * com.sun.star.lang.WrappedTargetException,
 * com.sun.star.container.ElementExistException,
 * com.sun.star.beans.PropertyVetoException,
 * com.sun.star.beans.UnknownPropertyException,
 * com.sun.star.uno.Exception
 */
 ex.printStackTrace(System.out);
}}

Text Field
The text field, described by the service com.sun.star.awt.UnoControlEdit and its respective model -
specified in com.sun.star.awt.UnoControlEditModel - is used to receive input from the user during

1146 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlEditModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlEditModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlEditModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlEdit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlEdit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlEdit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlGroupBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlGroupBox.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlGroupBox.html

runtime. As can be seen in the following table, most of the control settings can also be applied to
the model. When a text field receives the focus by pressing the TAB key, the displayed text is
selected and highlighted by default. The default cursor position within the text field is to the right
of the existing text. If the user starts typing while a block of text is selected, the selected text is
replaced. In some cases, the user may change the default selection behavior and set the selection
manually. This is done using the com.sun.star.awt.XTextComponent interface.

Properties of com.sun.star.awt.UnoControlEditModel

EchoChar short. The UnoControlEditModel control is also commonly
used for entering passwords. The property EchoChar
specifies the Unicode index of the character that is displayed
in the text field while the user enters the password. In this
context, the MaxTextLen property is used to limit the
number of characters that are typed in.

HardLineBreaks boolean. Specifies if hard line breaks are included in the text
returned by the Text property.

HideInactiveSelection boolean. Specifies whether selected text within the control
remains selected when the focus is not on the control. The
default is true and hides the selection.

MaxTextLen short. The maximum number of characters that can be
entered by the user is specified with the MaxTextLen
property. A value of 0 means that there is no limitation.

MultiLine boolean. By default, a UnoControlEdit displays a single
line of text. This behavior is changed by setting the property
MultiLine to true.

LineEndFormat short. A value of the constant group
com.sun.star.awt.LineEndFormat that defines the character
denoting the line end if MultiLine is set to true.

ReadOnly boolean. In general, the text field is used for text that can be
edited. It can be set read-only by setting the ReadOnly
property to true.

Text The actual text displayed in a text field is controlled by the
Text property.

VScroll

HScroll

boolean. The HScroll and VScroll properties are used to
display a horizontal or vertical scroll bar to scroll the content
in either direction. The properties are ignored if MultiLine
is set to false.

This example demonstrates how you can use a UnoControlEditControl:
public XTextComponent insertEditField(XTextListener _xTextListener, XFocusListener _xFocusListener, int
_nPosX, int _nPosY, int _nWidth){
XTextComponent xTextComponent = null;
try{
 // create a unique name by means of an own implementation...
 String sName = createUniqueName(m_xDlgModelNameContainer, "TextField");

 // create a controlmodel at the multiservicefactory of the dialog model...
 Object oTFModel = m_xMSFDialogModel.createInstance("com.sun.star.awt.UnoControlEditModel");
 XMultiPropertySet xTFModelMPSet = (XMultiPropertySet)
UnoRuntime.queryInterface(XMultiPropertySet.class, oTFModel);

 // Set the properties at the model - keep in mind to pass the property names in alphabetical order!
 xTFModelMPSet.setPropertyValues(
 new String[] {"Height", "Name", "PositionX", "PositionY", "Text", "Width"},
 new Object[] { new Integer(12), sName, new Integer(_nPosX), new Integer(_nPosY), "MyText", new
Integer(_nWidth)});

 // The controlmodel is not really available until inserted to the Dialog container
 m_xDlgModelNameContainer.insertByName(sName, oTFModel);
 XPropertySet xTFModelPSet = (XPropertySet) UnoRuntime.queryInterface(XPropertySet.class, oTFModel);

1147

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlEditModel.html#HScroll
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlEditModel.html#VScroll
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlEditModel.html#Text
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlEditModel.html#ReadOnly
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/LineEndFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/LineEndFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/LineEndFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlEditModel.html#LineEndFormat
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlEditModel.html#MultiLine
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlEditModel.html#MaxTextLen
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlEditModel.html#HideInactiveSelection
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlEditModel.html#HardLineBreaks
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlEditModel.html#EchoChar
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlEditModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlEditModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlEditModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTextComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTextComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTextComponent.html

 // The following property may also be set with XMultiPropertySet but we
 // use the XPropertySet interface merely for reasons of demonstration
 xTFModelPSet.setPropertyValue("EchoChar", new Short((short) '*'));
 XControl xTFControl = m_xDlgContainer.getControl(sName);

 // add a textlistener that is notified on each change of the controlvalue...
 xTextComponent = (XTextComponent) UnoRuntime.queryInterface(XTextComponent.class, xTFControl);
 XWindow xTFWindow = (XWindow) UnoRuntime.queryInterface(XWindow.class, xTFControl);
 xTFWindow.addFocusListener(_xFocusListener);
 xTextComponent.addTextListener(_xTextListener);
 xTFWindow.addKeyListener(this);
}catch (com.sun.star.uno.Exception ex){
 /* perform individual exception handling here.
 * Possible exception types are:
 * com.sun.star.lang.IllegalArgumentException,
 * com.sun.star.lang.WrappedTargetException,
 * com.sun.star.container.ElementExistException,
 * com.sun.star.beans.PropertyVetoException,
 * com.sun.star.beans.UnknownPropertyException,
 * com.sun.star.uno.Exception
 */
 ex.printStackTrace(System.out);
}
 return xTextComponent;
}

The text listener must implement the method textChanged:
public void textChanged(TextEvent textEvent) {
try{
 // get the control that has fired the event,
 XControl xControl = (XControl) UnoRuntime.queryInterface(XControl.class, textEvent.Source);
 XControlModel xControlModel = xControl.getModel();
 XPropertySet xPSet = (XPropertySet) UnoRuntime.queryInterface(XPropertySet.class, xControlModel);
 String sName = (String) xPSet.getPropertyValue("Name");
 // just in case the listener has been added to several controls,
 // we make sure we refer to the right one
 if (sName.equals("TextField1")){
 String sText = (String) xPSet.getPropertyValue("Text");
 System.out.println(sText);
 // insert your code here to validate the text of the control...
 }
}catch (com.sun.star.uno.Exception ex){
 /* perform individual exception handling here.
 * Possible exception types are:
 * com.sun.star.lang.WrappedTargetException,
 * com.sun.star.beans.UnknownPropertyException,
 * com.sun.star.uno.Exception
 */
 ex.printStackTrace(System.out);
}}

The control that supports the interface com.sun.star.awt.XTextComponent offers additional methods
to query and set selections and insert parttexts in the control.

Text Field Extensions
A user can enter any kind of data into a text field. These values are always stored as a string in the
Text property. This can cause some problems when you are evaluating the user input. These
controls offer specific solutions to this issue:

● Formatted field.

● Date field.

● Time field.

● Currency field.

● Numeric field.

● Pattern field.

Common Properties of Extensions of a UnoEditControl (text field)

1148 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTextComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTextComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTextComponent.html

StrictFormat boolean. If set to true, only the allowed characters as defined by
the format of the control are accepted. All other entries typed with
the keyboard are ignored.

EnforceFormat boolean. If set to true, the allowed characters are checked when
leaving the focus.

Spin boolean. The Spin property defines whether the control displays a
spin button.

Formatted Field
The formatted field control com.sun.star.awt.UnoControlFormattedField specifies a format that is used
for formatting the entered and displayed data.

Properties of com.sun.star.awt.UnoControlFormattedFieldModel

TreatAsNumber boolean. If the TreatAsNumber property is set to true, the
text of the control is interpreted as a number.

FormatsSupplier The FormatsSupplier property returns a
com.sun.star.util.XNumberFormatsSupplier. that offers access
to the number format of the control. Initially, when no
number formats supplier is assigned, a default number
formatter is set. Further information about the management of
number formats can be found in 7.2.5 Office Development -
Common Application Features - Number Formats.

FormatKey long. The unique key that represents the number format of
the control may be set an queried by the property
FormatKey.

EffectiveDefault any. Specifies the default value of the control. Depending on
the value of TreatAsNumber, this may be a string or a
numeric (double) value.

EffectiveMax double. Specifies the maximum value that the user may
enter.

EffectiveMin double. Specifies the minimum value that the user may
enter.

EffectiveValue any. Specifies the current value of the control. In dependence
on the value of TreatAsNumber this may be a string or a
numeric (double) value.

As any kind of number format at the model of the formatted field may be set, this control can be
universally used instead of the date field, time field, numeric field or currency field controls that
are designed for special purposes as described in the following sections.

The following example demonstrates the creation of a formatted field. One critical point is to
assign the NumberFormatsSupplier to the property FormatsSupplier. In the example, this is
created directly at the global ServiceManager (m_xMCF). It is also possible to assign an existing
NumberFormatsSupplier, like a spreadsheet document or a text document.
public XPropertySet insertFormattedField(XSpinListener _xSpinListener, int _nPosX, int _nPosY, int
_nWidth){
XPropertySet xFFModelPSet = null;
try{
 // create a unique name by means of an own implementation...
 String sName = createUniqueName(m_xDlgModelNameContainer, "FormattedField");

 // create a controlmodel at the multiservicefactory of the dialog model...
 Object oFFModel =
m_xMSFDialogModel.createInstance("com.sun.star.awt.UnoControlFormattedFieldModel");

1149

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFormattedFieldModel.html#EffectiveValue
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFormattedFieldModel.html#EffectiveMin
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFormattedFieldModel.html#EffectiveMax
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFormattedFieldModel.html#EffectiveDefault
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFormattedFieldModel.html#FormatKey
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XNumberFormatsSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFormattedFieldModel.html#FormatsSupplier
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFormattedFieldModel.html#TreatAsNumber
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFormattedFieldModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFormattedFieldModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFormattedFieldModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFormattedField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFormattedField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFormattedField.html
http://api.openoffice.org/docs/common/ref/Spin.html
http://api.openoffice.org/docs/common/ref/StrictFormat.html

 XMultiPropertySet xFFModelMPSet = (XMultiPropertySet)
UnoRuntime.queryInterface(XMultiPropertySet.class, oFFModel);
 // Set the properties at the model - keep in mind to pass the property names in alphabetical order!
 xFFModelMPSet.setPropertyValues(
 new String[] {"EffectiveValue", "Height", "Name", "PositionX", "PositionY", "StrictFormat",
"Spin", "Width"},
 new Object[] { new Double(12348), new Integer(12), sName, new Integer(_nPosX), new
Integer(_nPosY), Boolean.TRUE, Boolean.TRUE, new Integer(_nWidth)});

 xFFModelPSet = (XPropertySet) UnoRuntime.queryInterface(XPropertySet.class, oFFModel);
 // to define a numberformat you always need a locale...
 com.sun.star.lang.Locale aLocale = new com.sun.star.lang.Locale();
 aLocale.Country = "US";
 aLocale.Language = "en";
 // this Format is only compliant to the english locale!
 String sFormatString = "NNNNMMMM DD, YYYY";

 // a NumberFormatsSupplier has to be created first "in the open countryside"...
 Object oNumberFormatsSupplier =
m_xMCF.createInstanceWithContext("com.sun.star.util.NumberFormatsSupplier", m_xContext);
 XNumberFormatsSupplier xNumberFormatsSupplier = (XNumberFormatsSupplier)
UnoRuntime.queryInterface(XNumberFormatsSupplier.class, oNumberFormatsSupplier);
 XNumberFormats xNumberFormats = xNumberFormatsSupplier.getNumberFormats();
 // is the numberformat already defined?
 int nFormatKey = xNumberFormats.queryKey(sFormatString, aLocale, true);
 if (nFormatKey == -1){
 // if not then add it to the NumberFormatsSupplier
 nFormatKey = xNumberFormats.addNew(sFormatString, aLocale);
 }

 // The following property may also be set with XMultiPropertySet but we
 // use the XPropertySet interface merely for reasons of demonstration
 xFFModelPSet.setPropertyValue("FormatsSupplier", xNumberFormatsSupplier);
 xFFModelPSet.setPropertyValue("FormatKey", new Integer(nFormatKey));

 // The controlmodel is not really available until inserted to the Dialog container
 m_xDlgModelNameContainer.insertByName(sName, oFFModel);

 // finally we add a Spin-Listener to the control
 XControl xFFControl = m_xDlgContainer.getControl(sName);
 // add a SpinListener that is notified on each change of the controlvalue...
 XSpinField xSpinField = (XSpinField) UnoRuntime.queryInterface(XSpinField.class, xFFControl);
 xSpinField.addSpinListener(_xSpinListener);

}catch (com.sun.star.uno.Exception ex){
 /* perform individual exception handling here.
 * Possible exception types are:
 * com.sun.star.lang.IllegalArgumentException,
 * com.sun.star.lang.WrappedTargetException,
 * com.sun.star.container.ElementExistException,
 * com.sun.star.beans.PropertyVetoException,
 * com.sun.star.beans.UnknownPropertyException,
 * com.sun.star.uno.Exception
 */
 ex.printStackTrace(System.out);
}
 return xFFModelPSet;
}

The attached spin listener in this code example must implement com.sun.star.awt.XSpinListener
which, among other things, includes up()
public void up(SpinEvent spinEvent) {
try{
 // get the control that has fired the event,
 XControl xControl = (XControl) UnoRuntime.queryInterface(XControl.class, spinEvent.Source);
 XControlModel xControlModel = xControl.getModel();
 XPropertySet xPSet = (XPropertySet) UnoRuntime.queryInterface(XPropertySet.class, xControlModel);
 String sName = (String) xPSet.getPropertyValue("Name");
 // just in case the listener has been added to several controls,
 // we make sure we refer to the right one
 if (sName.equals("FormattedField1")){
 double fvalue = AnyConverter.toDouble(xPSet.getPropertyValue("EffectiveValue"));
 System.out.println("Controlvalue: " + fvalue);
 // insert your code here to validate the value of the control...
 }
}catch (com.sun.star.uno.Exception ex){
 /* perform individual exception handling here.
 * Possible exception types are:
 * com.sun.star.lang.WrappedTargetException,
 * com.sun.star.beans.UnknownPropertyException,
 * com.sun.star.uno.Exception
 */
 ex.printStackTrace(System.out);
}}

1150 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XSpinListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XSpinListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XSpinListener.html

public void down(SpinEvent spinEvent) {
}

public void last(SpinEvent spinEvent) {
}

public void first(SpinEvent spinEvent) {
}

public void disposing(EventObject rEventObject){
}

Numeric Field
For developers who want to use a simple numeric field control and find the number formatter too
difficult to handle, they can use the numeric field control com.sun.star.awt.UnoControlNumericField.
The control model, specified in com.sun.star.awt.UnoControlNumericFieldModel is simple to set up as
the following table illustrates:

Properties of com.sun.star.awt.UnoControlNumericFieldModel

DecimalAccuracy short. The DecimalAccuracy property specifies the number
of digits displayed to the right of the decimal point.

ShowThousandsSeparator boolean. Determines whether thousands separators are used.

Value double. Specifies the current value of the control.

ValueMax double. Specifies the maximum value that the user can enter.

ValueMin double. Specifies the minimum value that the user can enter.

ValueStep double. Specifies the interval steps when using the spin button.

The code example sets up a numeric field with a defined number format and defines the numerical
range within which the Value may be modified.
public XPropertySet insertNumericField(int _nPosX, int _nPosY, int _nWidth,
 double _fValueMin, double _fValueMax, double _fValue,
 double _fValueStep, short _nDecimalAccuracy){
XPropertySet xNFModelPSet = null;
try{
 // create a unique name by means of an own implementation...
 String sName = createUniqueName(m_xDlgModelNameContainer, "NumericField");

 // create a controlmodel at the multiservicefactory of the dialog model...
 Object oNFModel = m_xMSFDialogModel.createInstance("com.sun.star.awt.UnoControlNumericFieldModel");
 XMultiPropertySet xNFModelMPSet = (XMultiPropertySet)
UnoRuntime.queryInterface(XMultiPropertySet.class, oNFModel);
 // Set the properties at the model - keep in mind to pass the property names in alphabetical order!
 xNFModelMPSet.setPropertyValues(
 new String[] {"Height", "Name", "PositionX", "PositionY", "Spin", "StrictFormat", "Width"},
 new Object[] { new Integer(12), sName, new Integer(_nPosX), new Integer(_nPosY), Boolean.TRUE,
Boolean.TRUE, new Integer(_nWidth)});

 // The controlmodel is not really available until inserted to the Dialog container
 m_xDlgModelNameContainer.insertByName(sName, oNFModel);
 xNFModelPSet = (XPropertySet) UnoRuntime.queryInterface(XPropertySet.class, oNFModel);
 // The following properties may also be set with XMultiPropertySet but we
 // use the XPropertySet interface merely for reasons of demonstration
 xNFModelPSet.setPropertyValue("ValueMin", new Double(_fValueMin));
 xNFModelPSet.setPropertyValue("ValueMax", new Double(_fValueMax));
 xNFModelPSet.setPropertyValue("Value", new Double(_fValue));
 xNFModelPSet.setPropertyValue("ValueStep", new Double(_fValueStep));
 xNFModelPSet.setPropertyValue("ShowThousandsSeparator", Boolean.TRUE);
 xNFModelPSet.setPropertyValue("DecimalAccuracy", new Short(_nDecimalAccuracy));
}catch (com.sun.star.uno.Exception ex){
 /* perform individual exception handling here.
 * Possible exception types are:
 * com.sun.star.lang.IllegalArgumentException,
 * com.sun.star.lang.WrappedTargetException,
 * com.sun.star.container.ElementExistException,
 * com.sun.star.beans.PropertyVetoException,
 * com.sun.star.beans.UnknownPropertyException,
 * com.sun.star.uno.Exception

1151

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlNumericFieldModel.html#ValueStep
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlNumericFieldModel.html#ValueMin
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlNumericFieldModel.html#ValueMax
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlNumericFieldModel.html#Value
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlNumericFieldModel.html#ShowThousandsSeparator
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlNumericFieldModel.html#DecimalAccuracy
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlNumericFieldModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlNumericFieldModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlNumericFieldModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlNumericFieldModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlNumericFieldModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlNumericFieldModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlNumericField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlNumericField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlNumericField.html

 */
 ex.printStackTrace(System.out);
}
return xNFModelPSet;
}

Currency Field
The currency field control com.sun.star.awt.UnoControlCurrencyField can be considered a
specialization of the com.sun.star.awt.UnoControlNumericalField. It is used for entering and
displaying currency values. In addition to the currency value, reflected by the property Value, a
currency symbol, set by the CurrencySymbol property, is displayed. If the
PrependCurrencySymbol property is set to true, the currency symbol is displayed in front of the
currency value.
public XTextComponent insertCurrencyField(XTextListener _xTextListener, int _nPositionX, int
_nPositionY, int _nWidth){
XTextComponent xTextComponent = null;
try{
 // create a unique name by means of an own implementation...
 String sName = createUniqueName(m_xDlgModelNameContainer, "CurrencyField");

 // create a controlmodel at the multiservicefactory of the dialog model...
 Object oCFModel = m_xMSFDialogModel.createInstance("com.sun.star.awt.UnoControlCurrencyFieldModel");
 XMultiPropertySet xCFModelMPSet = (XMultiPropertySet)
UnoRuntime.queryInterface(XMultiPropertySet.class, oCFModel);

 // Set the properties at the model - keep in mind to pass the property names in alphabetical order!
 xCFModelMPSet.setPropertyValues(
 new String[] {"Height", "Name", "PositionX", "PositionY", "Width"},
 new Object[] { new Integer(12), sName, new Integer(_nPositionX), new Integer(_nPositionY), new
Integer(_nWidth)});

 // The controlmodel is not really available until inserted to the Dialog container
 m_xDlgModelNameContainer.insertByName(sName, oCFModel);
 XPropertySet xCFModelPSet = (XPropertySet) UnoRuntime.queryInterface(XPropertySet.class, oCFModel);

 // The following properties may also be set with XMultiPropertySet but we
 // use the XPropertySet interface merely for reasons of demonstration
 xCFModelPSet.setPropertyValue("PrependCurrencySymbol", Boolean.TRUE);
 xCFModelPSet.setPropertyValue("CurrencySymbol", "$");
 xCFModelPSet.setPropertyValue("Value", new Double(2.93));

 // add a textlistener that is notified on each change of the controlvalue...
 Object oCFControl = m_xDlgContainer.getControl(sName);
 xTextComponent = (XTextComponent) UnoRuntime.queryInterface(XTextComponent.class, oCFControl);
 xTextComponent.addTextListener(_xTextListener);
}catch (com.sun.star.uno.Exception ex){
 /* perform individual exception handling here.
 * Possible exception types are:
 * com.sun.star.lang.IllegalArgumentException,
 * com.sun.star.lang.WrappedTargetException,
 * com.sun.star.container.ElementExistException,
 * com.sun.star.beans.PropertyVetoException,
 * com.sun.star.beans.UnknownPropertyException,
 * com.sun.star.uno.Exception
 */
 ex.printStackTrace(System.out);
}
 return xTextComponent;
}

Date Field
The date field control com.sun.star.awt.UnoControlDateField extends the text field control and is
used for displaying and entering dates. The model is described in
com.sun.star.awt.UnoControlDateFieldModel:

Properties of com.sun.star.awt.UnoControlDateFieldModel

1152 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDateFieldModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDateFieldModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDateFieldModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDateFieldModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDateFieldModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDateFieldModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDateField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDateField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDateField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlNumericalField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlNumericalField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlNumericalField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlCurrencyField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlCurrencyField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlCurrencyField.html

Date long. The date value displayed in the control. The type of the
property is long and specified by the number format
YYYYMMDD, where YYYY denotes fully qualified years, MM
months, and DD days.

DateFormat short. The DateFormat is a key that determines the number
format of the displayed date.

DateMax long. The maximum date that the user can enter

DateMin long. The minimum date that the user can enter

DateShowCentury This property is deprecated and should not be used.

Dropdown boolean. The Dropdown property enables a calendar that the
user can drop down to select a date.

Spin boolean. The Spin property defines whether the control
displays a spin button. This method reduces scrolling and
selecting, to a one-step process.

StrictFormat boolean. If set to true, only the allowed characters as specified
by the DateFormat property are accepted. All other entries
typed with the keyboard are ignored.

public XPropertySet insertDateField(XSpinListener _xSpinListener, int _nPosX, int _nPosY, int _nWidth){
XPropertySet xDFModelPSet = null;
try{
 // create a unique name by means of an own implementation...
 String sName = createUniqueName(m_xDlgModelNameContainer, "DateField");

 // create a controlmodel at the multiservicefactory of the dialog model...
 Object oDFModel = m_xMSFDialogModel.createInstance("com.sun.star.awt.UnoControlDateFieldModel");
 XMultiPropertySet xDFModelMPSet = (XMultiPropertySet)
UnoRuntime.queryInterface(XMultiPropertySet.class, oDFModel);

 // Set the properties at the model - keep in mind to pass the property names in alphabetical order!
 xDFModelMPSet.setPropertyValues(
 new String[] {"Dropdown", "Height", "Name", "PositionX", "PositionY", "Width"},
 new Object[] {Boolean.TRUE, new Integer(12), sName, new Integer(_nPosX), new Integer(_nPosY), new
Integer(_nWidth)});

 // The controlmodel is not really available until inserted to the Dialog container
 m_xDlgModelNameContainer.insertByName(sName, oDFModel);
 xDFModelPSet = (XPropertySet) UnoRuntime.queryInterface(XPropertySet.class, oDFModel);

 // The following properties may also be set with XMultiPropertySet but we
 // use the XPropertySet interface merely for reasons of demonstration
 xDFModelPSet.setPropertyValue("DateFormat", new Short((short) 7));
 xDFModelPSet.setPropertyValue("DateMin", new Integer(20070401));
 xDFModelPSet.setPropertyValue("DateMax", new Integer(20070501));
 xDFModelPSet.setPropertyValue("Date", new Integer(20000415));
 Object oDFControl = m_xDlgContainer.getControl(sName);

 // add a SpinListener that is notified on each change of the controlvalue...
 XSpinField xSpinField = (XSpinField) UnoRuntime.queryInterface(XSpinField.class, oDFControl);
 xSpinField.addSpinListener(_xSpinListener);
}catch (com.sun.star.uno.Exception ex){
 /* perform individual exception handling here.
 * Possible exception types are:
 * com.sun.star.lang.IllegalArgumentException,
 * com.sun.star.lang.WrappedTargetException,
 * com.sun.star.container.ElementExistException,
 * com.sun.star.beans.PropertyVetoException,
 * com.sun.star.beans.UnknownPropertyException,
 * com.sun.star.uno.Exception
 */
 ex.printStackTrace(System.out);
}
 return xDFModelPSet;
}

1153

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDateFieldModel.html#StrictFormat
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDateFieldModel.html#Spin
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDateFieldModel.html#Dropdown
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDateFieldModel.html#DateShowCentury
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDateFieldModel.html#DateMin
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDateFieldModel.html#DateMax
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDateFieldModel.html#DateFormat
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlDateFieldModel.html#Date

Note: OpenOffice.org Basic developers can use the runtime functions CDateToIso() or CDateFromIso()
to convert the date in ISO format from or to a serial date number that is generated by the DateSerial() or
the DateValue() function.

Although the date field control provides a spin button, there is no Step property. In this control,
the interval steps of the spin button are set automatically and depend on the position of the cursor
within the date display. This means that if, for example, the cursor is within the month section of
the date display, only the months are controlled by the spin button.

Timefield
The time field control com.sun.star.awt.UnoControlTimeField and its model
com.sun.star.awt.UnoControlTimeFieldModel displays and enters time values.

Properties of com.sun.star.awt.UnoControlTimeFieldModel

Time long. The time value is set and retrieved by the Time
property. The time value is of type long and is specified in
the ISO format HHMMSShh, where HH are hours, MM are
minutes, SS are seconds and hh are hundredth seconds. See
the example below.

TimeFormat short. The format of the displayed time is specified by the
TimeFormat key that denotes defined formats as specified
below where a Time value of 15182300 is assumed:

TimeMax

TimeMin

long. Similar to to the UnoControlDateField, the
minimum and maximum time value that can be entered is
given by the TimeMin and TimeMax properties. If the value
of Time exceeds one of these two limits the value is
automatically reset to the according maximum or minimum
value.

Although the time field provides a spin button, there is no Step property. In this control the
interval steps are set automatically and depend on the position of the cursor within the time
display. For example, if the cursor is within the minute section of the time display only the minutes
are controlled by the spin button.
public XPropertySet insertTimeField(int _nPosX, int _nPosY, int _nWidth, int _nTime, int _nTimeMin, int
_nTimeMax){
XPropertySet xTFModelPSet = null;
try{
 // create a unique name by means of an own implementation...
 String sName = createUniqueName(m_xDlgModelNameContainer, "TimeField");

 // create a controlmodel at the multiservicefactory of the dialog model...
 Object oTFModel = m_xMSFDialogModel.createInstance("com.sun.star.awt.UnoControlTimeFieldModel");
 XMultiPropertySet xTFModelMPSet = (XMultiPropertySet)
UnoRuntime.queryInterface(XMultiPropertySet.class, oTFModel);

 // Set the properties at the model - keep in mind to pass the property names in alphabetical order!
 xTFModelMPSet.setPropertyValues(
 new String[] {"Height", "Name", "PositionX", "PositionY", "Spin", "Width"},
 new Object[] { new Integer(12), sName, new Integer(_nPosX), new Integer(_nPosY), Boolean.TRUE, new
Integer(_nWidth)});

 // The controlmodel is not really available until inserted to the Dialog container
 m_xDlgModelNameContainer.insertByName(sName, oTFModel);
 xTFModelPSet = (XPropertySet) UnoRuntime.queryInterface(XPropertySet.class, oTFModel);

 // The following properties may also be set with XMultiPropertySet but we
 // use the XPropertySet interface merely for reasons of demonstration
 xTFModelPSet.setPropertyValue("TimeFormat", new Short((short) 5));
 xTFModelPSet.setPropertyValue("TimeMin", new Integer(_nTimeMin));
 xTFModelPSet.setPropertyValue("TimeMax", new Integer(_nTimeMax));
 xTFModelPSet.setPropertyValue("Time", new Integer(_nTime));

1154 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlTimeFieldModel.html#TimeMin
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlTimeFieldModel.html#TimeMax
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlTimeFieldModel.html#TimeFormat
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlTimeFieldModel.html#Time
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlTimeFieldModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlTimeFieldModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlTimeFieldModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlTimeFieldModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlTimeFieldModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlTimeFieldModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlTimeField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlTimeField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlTimeField.html

}catch (com.sun.star.uno.Exception ex){
 /* perform individual exception handling here.
 * Possible exception types are:
 * com.sun.star.lang.IllegalArgumentException,
 * com.sun.star.lang.WrappedTargetException,
 * com.sun.star.container.ElementExistException,
 * com.sun.star.beans.PropertyVetoException,
 * com.sun.star.beans.UnknownPropertyException,
 * com.sun.star.uno.Exception
 */
 ex.printStackTrace(System.out);
}
return xTFModelPSet;
}

Pattern Field
The pattern field control com.sun.star.awt.UnoControlPatternField defines a character code that
restricts the user input. This character code that determines what the user may enter is defined by
the EditMask property. The length of the edit is equivalent to the number of the possible input
positions. If a character is entered that does not correspond to the edit mask, the input is rejected.
For example, in the edit mask "NNLNNLLLLL" the character �L� has the meaning of a text
constant and the character �N� means that only the digits 0 to 9 can be entered. A complete list of
valid characters can be found in the table below. The LiteralMask property contains the initial
values that are displayed in the pattern field. The length of the literal mask should always
correspond to the length of the edit mask. An example of a literal mask which fits to the edit mask
would be "__.__.2002". In this case, the user enters only 4 digits when entering a date. If
StrictFormat is set to true, the text will be checked during user input. If StrictFormat is not set
to true the text is not checked until the focus is leaving the control.

Character of
property EditMask

Meaning

L A text constant. This position cannot be edited. The character is displayed at the
corresponding position of the Literal Mask.

a The characters a-z and A-Z can be entered. Capital characters are not converted to
lowercase characters.

A The characters A-Z can be entered. If a lowercase letter is entered, it is automatically
converted to a capital letter

c The characters a-z, A-Z, and 0-9 can be entered. Capital characters are not converted
to lowercase characters.

C The characters A-Z and 0-9 can be entered. If a lowercase letter is entered, it is
automatically converted to a capital letter.

N Only the characters 0-9 can be entered.

x All printable characters can be entered.

X All printable characters can be entered. If a lowercase letter is used, it is
automatically converted to a capital letter.

public XPropertySet insertPatternField(int _nPosX, int _nPosY, int _nWidth){
XPropertySet xPFModelPSet = null;
try{
 // create a unique name by means of an own implementation...
 String sName = createUniqueName(m_xDlgModelNameContainer, "PatternField");

 // create a controlmodel at the multiservicefactory of the dialog model...
 Object oPFModel = m_xMSFDialogModel.createInstance("com.sun.star.awt.UnoControlPatternFieldModel");
 XMultiPropertySet xPFModelMPSet = (XMultiPropertySet)
UnoRuntime.queryInterface(XMultiPropertySet.class, oPFModel);

 // Set the properties at the model - keep in mind to pass the property names in alphabetical order!
 xPFModelMPSet.setPropertyValues(
 new String[] {"Height", "Name", "PositionX", "PositionY", "Width"},

1155

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlPatternField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlPatternField.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlPatternField.html

 new Object[] { new Integer(12), sName, new Integer(_nPosX), new Integer(_nPosY), new
Integer(_nWidth)});

 // The controlmodel is not really available until inserted to the Dialog container
 m_xDlgModelNameContainer.insertByName(sName, oPFModel);
 xPFModelPSet = (XPropertySet) UnoRuntime.queryInterface(XPropertySet.class, oPFModel);

 // The following properties may also be set with XMultiPropertySet but we
 // use the XPropertySet interface merely for reasons of demonstration
 xPFModelPSet.setPropertyValue("LiteralMask", "__.05.2007");
 // Allow only numbers for the first two digits...
 xPFModelPSet.setPropertyValue("EditMask", "NNLLLLLLLL");
 // verify the user input immediately...
 xPFModelPSet.setPropertyValue("StrictFormat", Boolean.TRUE);
}catch (com.sun.star.uno.Exception ex){
 /* perform individual exception handling here.
 * Possible exception types are:
 * com.sun.star.lang.IllegalArgumentException,
 * com.sun.star.lang.WrappedTargetException,
 * com.sun.star.container.ElementExistException,
 * com.sun.star.beans.PropertyVetoException,
 * com.sun.star.beans.UnknownPropertyException,
 * com.sun.star.uno.Exception
 */
 ex.printStackTrace(System.out);
}
 return xPFModelPSet;
}

Roadmap Control
The roadmap control that supports the service com.sun.star.awt.UnoControlRoadmap is a container of
roadmap items supporting com.sun.star.awt.RoadmapItem. The roadmap control was designed to
give an overview about all existing steps in a dialog as done in all OpenOffice.org wizards. The
roadmap items are labels with some additional functionality as described later in the text. They are
due to give the user a clue about �what is going on� on a certain dialog step. Roadmap items can
be programmatically accessed by their respective index using the interface
com.sun.star.awt.XIndexContainer at the roadmap model that is described by
com.sun.star.awt.UnoControlRoadmapModel.

Roadmap Item

Each roadmap item delivers the following information:

Properties of com.sun.star.awt.RoadmapItem

ID short. The ID uniquely identifies the roadmap item and can
be used to refer to the value of a dialog step.

Label The label of a roadmap item is displayed similar to the label of
a fixed text control. Each label is prefixed with an index and a
�. �.

Activated boolean. Setting Activated to true will automatically
change the mouse pointer to a refhand and underline the label
for the time the mouse pointer resides over the roadmap item.
Clicking the mouse pointer will then notify the roadmap
container. The property Activated is readonly because it is
adapted from the container of the roadmap item, the roadmap
model. When the user clicks on the roadmap item of an
activated roadmap the ID of the triggered roadmap item
automatically gets selected � similarly to the selection of a list
box item. Automatically the property CurrentItemID of the
roadmap model is set to the value of the property ID of the
roadmap item element.

1156 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/RoadmapItem.html#Activated
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/RoadmapItem.html#Label
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/RoadmapItem.html#ID
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/RoadmapItem.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/RoadmapItem.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/RoadmapItem.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlRoadmapModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlRoadmapModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlRoadmapModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/RoadmapItem.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/RoadmapItem.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/RoadmapItem.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlRoadmap.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlRoadmap.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlRoadmap.html

Enabled boolean. Determines whether a roadmap item is enabled or
disabled. As roadmap items usually refer to a dialog step they
are disabled when the the actions taking place on that step
have become unnecessary for example because of user input.

Roadmap Controlmodel

Properties of com.sun.star.awt.UnoControlRoadmapModel

BackgroundColor long. Specifies the background color (RGB) of the control.
The Default value is white.

Activated boolean. Determines whether the roadmap items are set
activated or not. To �activate� a roadmap may demand some
extra implementation work because the developer will then be
responsible to check if for each roadmap item the necessary
prerequisites are fulfilled to allow the user to enter the
respective dialog step.

Complete boolean. Determines whether the control container is
complete or not. It might occur that the exact roadmap of an
assistant is not clear from the beginning because it contains
one or several branches where the input of the user impacts
the content of the roadmap. If it is unclear how the roadmap is
moving on after a branch the following step after the branch is
visualized with �...�. In this case the property Complete is
previously set to false. The steps afterwards are unavailable
as long as the state of this branch is uncertain.

ImageURL string. Refers to an image that is displayed in the bottom
right corner of the roadmap. The image is meant to contain a
metaphor that can easily be associated with the task of the
wizard or the subtask of an according step.

Text string. Specifies the bold and underlined text displayed in
the top of the control

CurrentItemID short. Refers to the ID of the currently selected roadmap
item. Initially this property is set to '-1' which is equal to
'undefined.

Roadmap

Specifies a Roadmap control. A roadmap implements the interface
com.sun.star.awt.XItemEventBroadcaster, which is helpful to add an ItemListener to the roadmap,
when the property Interactive of the roadmap model is set to true. The listener is then always
notified about changes of the property CurrentItemID and has an opportunity to adjust the
property Step of the dialog.

The following example listings are supposed to give an idea how a roadmap can be used to control
the displayed steps of a dialog:
// Globally available object variables of the roadmapmodel
XPropertySet m_xRMPSet;
XSingleServiceFactory m_xSSFRoadmap;
XIndexContainer m_xRMIndexCont;

public void addRoadmap(XItemListener _xItemListener) {
try {
 // create a unique name by means of an own implementation...
 String sRoadmapName = createUniqueName(m_xDlgModelNameContainer, "Roadmap");

1157

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XItemEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XItemEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XItemEventBroadcaster.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlRoadmapModel.html#CurrentItemID
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlRoadmapModel.html#Text
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlRoadmapModel.html#ImageURL
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlRoadmapModel.html#Complete
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlRoadmapModel.html#Activated
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlRoadmapModel.html#BackgroundColor
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlRoadmapModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlRoadmapModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlRoadmapModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/RoadmapItem.html#Enabled

 XPropertySet xDialogModelPropertySet = (XPropertySet) UnoRuntime.queryInterface(XPropertySet.class,
m_xMSFDialogModel);
 // Similar to the office assistants the roadmap is adjusted to the height of the dialog
 // where a certain space is left at the bottom for the buttons...
 int nDialogHeight = ((Integer) xDialogModelPropertySet.getPropertyValue("Height")).intValue();

 // instantiate the roadmapmodel...
 Object oRoadmapModel = m_xMSFDialogModel.createInstance("com.sun.star.awt.UnoControlRoadmapModel");

 // define the properties of the roadmapmodel
 XMultiPropertySet xRMMPSet = (XMultiPropertySet) UnoRuntime.queryInterface(XMultiPropertySet.class,
oRoadmapModel);
 xRMMPSet.setPropertyValues(new String[] {"Complete", "Height", "Name", "PositionX", "PositionY",
"Text", "Width" },
 new Object[] {Boolean.FALSE, new Integer(nDialogHeight - 26),
sRoadmapName, new Integer(0), new Integer(0), "Steps", new Integer(85)});
 m_xRMPSet = (XPropertySet) UnoRuntime.queryInterface(XPropertySet.class, oRoadmapModel);

 // add the roadmapmodel to the dialog container..
 m_xDlgModelNameContainer.insertByName(sRoadmapName, oRoadmapModel);

 // the roadmapmodel is a SingleServiceFactory to instantiate the roadmapitems...
 m_xSSFRoadmap = (XSingleServiceFactory) UnoRuntime.queryInterface(XSingleServiceFactory.class,
oRoadmapModel);
 m_xRMIndexCont = (XIndexContainer) UnoRuntime.queryInterface(XIndexContainer.class, oRoadmapModel);

 // add the itemlistener to the control...
 XControl xRMControl = this.m_xDlgContainer.getControl(sRoadmapName);
 XItemEventBroadcaster xRMBroadcaster = (XItemEventBroadcaster)
UnoRuntime.queryInterface(XItemEventBroadcaster.class, xRMControl);
 xRMBroadcaster.addItemListener(new RoadmapItemStateChangeListener()); //_xItemListener);
} catch (java.lang.Exception jexception) {
 jexception.printStackTrace(System.out);
}}

The following code snippet inserts a roadmap item into the roadmap control model.
/**
 * To fully understand the example one has to be aware that the passed “Index“ parameter
 * refers to the position of the roadmap item in the roadmapmodel container
 * whereas the variable “_ID” directly references to a certain step of dialog.
 */
public void insertRoadmapItem(int Index, boolean _bEnabled, String _sLabel, int _ID) {
try {
 // a roadmap is a SingleServiceFactory that can only create roadmapitems that are the only possible
 // element types of the container
 Object oRoadmapItem = m_xSSFRoadmap.createInstance();
 XPropertySet xRMItemPSet = (XPropertySet) UnoRuntime.queryInterface(XPropertySet.class,
oRoadmapItem);
 xRMItemPSet.setPropertyValue("Label", _sLabel);
 // sometimes steps are supposed to be set disabled depending on the program logic...
 xRMItemPSet.setPropertyValue("Enabled", new Boolean(_bEnabled));
 // in this context the "ID" is meant to refer to a step of the dialog
 xRMItemPSet.setPropertyValue("ID", new Integer(_ID));
 m_xRMIndexCont.insertByIndex(Index, oRoadmapItem);
} catch (com.sun.star.uno.Exception exception) {
 exception.printStackTrace(System.out);
}}

The following example demonstrates the way an ItemListener could evaluate the information of
the roadmap control to adjust the step of the dialog:
public void itemStateChanged(com.sun.star.awt.ItemEvent itemEvent) {
try {
 // get the new ID of the roadmap that is supposed to refer to the new step of the dialogmodel
 int nNewID = itemEvent.ItemId;
 XPropertySet xDialogModelPropertySet = (XPropertySet) UnoRuntime.queryInterface(XPropertySet.class,
m_xMSFDialogModel);
 int nOldStep = ((Integer) xDialogModelPropertySet.getPropertyValue("Step")).intValue();
 // in the following line "ID" and "Step" are mixed together.
 // In fact in this case they denot the same
 if (nNewID != nOldStep){
 xDialogModelPropertySet.setPropertyValue("Step", new Integer(nNewID));
 }
} catch (com.sun.star.uno.Exception exception) {
 exception.printStackTrace(System.out);
}}

1158 OpenOffice.org 2.3 Developer's Guide • June 2007

File Control
The file control supports the service com.sun.star.awt.UnoControlFileControl and covers a lot of the
functionality of an UnoControlEdit control and a command button that is built in the control. This
is put into practice by a control supporting the service com.sun.star.awt.UnoControlEdit. Similar to a
text field 20.5.2 Graphical User Interfaces - Dialog Handling - Dialog Controls - Text Field the content
may be retrieved by a Text property. The value of Textdenotes the path of the control. Clicking
this button brings up a file dialog in which the user may select a file that is taken over by by the file
control like a text field. The following example sets up a file control. It is initialized with the
configured Workpath of the office installation that is converted to a system path before passed to
the Text property of the control 7.2.11 Office Development - Common Application Features - Path
Organization - Path Settings.
public XTextComponent insertFileControl(XTextListener _xTextListener, int _nPosX, int _nPosY, int
_nWidth){
XTextComponent xTextComponent = null;
try{
 // create a unique name by means of an own implementation...
 String sName = createUniqueName(m_xDlgModelNameContainer, "FileControl");

 // retrieve the configured Work path...
 Object oPathSettings =
m_xMCF.createInstanceWithContext("com.sun.star.util.PathSettings",m_xContext);
 XPropertySet xPropertySet = (XPropertySet)
com.sun.star.uno.UnoRuntime.queryInterface(XPropertySet.class, oPathSettings);
 String sWorkUrl = (String) xPropertySet.getPropertyValue("Work");

 // convert the Url to a system path that is "human readable"...
 Object oFCProvider = m_xMCF.createInstanceWithContext("com.sun.star.ucb.FileContentProvider",
m_xContext);
 XFileIdentifierConverter xFileIdentifierConverter = (XFileIdentifierConverter)
UnoRuntime.queryInterface(XFileIdentifierConverter.class, oFCProvider);
 String sSystemWorkPath = xFileIdentifierConverter.getSystemPathFromFileURL(sWorkUrl);

 // create a controlmodel at the multiservicefactory of the dialog model...
 Object oFCModel = m_xMSFDialogModel.createInstance("com.sun.star.awt.UnoControlFileControlModel");

 // Set the properties at the model - keep in mind to pass the property names in alphabetical order!
 XMultiPropertySet xFCModelMPSet = (XMultiPropertySet)
UnoRuntime.queryInterface(XMultiPropertySet.class, oFCModel);
 xFCModelMPSet.setPropertyValues(
 new String[] {"Height", "Name", "PositionX", "PositionY", "Text", "Width"},
 new Object[] { new Integer(12), sName, new Integer(_nPosX), new Integer(_nPosY), sSystemWorkPath,
new Integer(_nWidth)});

 // The controlmodel is not really available until inserted to the Dialog container
 m_xDlgModelNameContainer.insertByName(sName, oFCModel);
 XPropertySet xFCModelPSet = (XPropertySet) UnoRuntime.queryInterface(XPropertySet.class, oFCModel);

 // add a textlistener that is notified on each change of the controlvalue...
 XControl xFCControl = m_xDlgContainer.getControl(sName);
 xTextComponent = (XTextComponent) UnoRuntime.queryInterface(XTextComponent.class, xFCControl);
 XWindow xFCWindow = (XWindow) UnoRuntime.queryInterface(XWindow.class, xFCControl);
 xTextComponent.addTextListener(_xTextListener);
}catch (com.sun.star.uno.Exception ex){
 /* perform individual exception handling here.
 * Possible exception types are:
 * com.sun.star.lang.IllegalArgumentException,
 * com.sun.star.lang.WrappedTargetException,
 * com.sun.star.container.ElementExistException,
 * com.sun.star.beans.PropertyVetoException,
 * com.sun.star.beans.UnknownPropertyException,
 * com.sun.star.uno.Exception
 */
 ex.printStackTrace(System.out);
}
return xTextComponent;
}

The file control also allows the configuration of the file dialog. File dialogs implementing the
service com.sun.star.ui.dialogs.FilePicker do not belong to the module com.sun.star.awt, but, as they
are frequently used by extension developers, this topic shall also be covered in this chapter.

Currently the control does not yet offer the described complete functionality which is addressed by
http://www.openoffice.org/issues/show_bug.cgi?id=71041.

1159

http://www.openoffice.org/issues/show_bug.cgi?id=71041
http://www.openoffice.org/issues/show_bug.cgi?id=71041
http://www.openoffice.org/issues/show_bug.cgi?id=71041
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/dialogs/FilePicker.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/dialogs/FilePicker.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/dialogs/FilePicker.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlEdit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlEdit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlEdit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFileControl.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFileControl.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/UnoControlFileControl.html

File Picker
A file picker supports the service com.sun.star.ui.dialogs.FilePicker and may depict a file-open or a
file-save dialog in all conceivable facets. OpenOffice.org supports a great variety of filters. These
may be applied to the file picker by means of the filter manager. Filters also affect the list of files
displayed by the dialog and enable the file picker to append the file extension automatically. The
names of the filters and their titles may be queried programmatically from the OpenOffice.org
registry or � much easier like in the coding example below - be retrieved from
http://wiki.services.openoffice.org/wiki/Framework/Article/Filter. The following listing illustrates how to
customize and raise a file-save dialog and query the result afterwards. The result is a file URL
pointing to the location where a file is to be stored.
public String raiseSaveAsDialog() {
String sStorePath = "";
XComponent xComponent = null;
try {
 // the filepicker is instantiated with the global Multicomponentfactory...
 Object oFilePicker = m_xMCF.createInstanceWithContext("com.sun.star.ui.dialogs.FilePicker",
m_xContext);
 XFilePicker xFilePicker = (XFilePicker) UnoRuntime.queryInterface(XFilePicker.class, oFilePicker);

 // the defaultname is the initially proposed filename..
 xFilePicker.setDefaultName("MyExampleDocument");

 // set the initial displaydirectory. In this example the user template directory is used
 Object oPathSettings =
m_xMCF.createInstanceWithContext("com.sun.star.util.PathSettings",m_xContext);
 XPropertySet xPropertySet = (XPropertySet)
com.sun.star.uno.UnoRuntime.queryInterface(XPropertySet.class, oPathSettings);
 String sTemplateUrl = (String) xPropertySet.getPropertyValue("Template_writable");
 xFilePicker.setDisplayDirectory(sTemplateUrl);

 // set the filters of the dialog. The filternames may be retrieved from
 // http://wiki.services.openoffice.org/wiki/Framework/Article/Filter
 XFilterManager xFilterManager = (XFilterManager) UnoRuntime.queryInterface(XFilterManager.class,
xFilePicker);
 xFilterManager.appendFilter("OpenDocument Text Template", "writer8_template");
 xFilterManager.appendFilter("OpenDocument Text", "writer8");

 // choose the template that defines the capabilities of the filepicker dialog
 XInitialization xInitialize = (XInitialization) UnoRuntime.queryInterface(XInitialization.class,
xFilePicker);
 Short[] listAny = new Short[] { new
Short(com.sun.star.ui.dialogs.TemplateDescription.FILESAVE_AUTOEXTENSION)};
 xInitialize.initialize(listAny);

 // add a control to the dialog to add the extension automatically to the filename...
 XFilePickerControlAccess xFilePickerControlAccess = (XFilePickerControlAccess)
UnoRuntime.queryInterface(XFilePickerControlAccess.class, xFilePicker);
 xFilePickerControlAccess.setValue(com.sun.star.ui.dialogs.ExtendedFilePickerElementIds.CHECKBOX_AUTO
EXTENSION, (short) 0, new Boolean(true));

 xComponent = (XComponent) UnoRuntime.queryInterface(XComponent.class, xFilePicker);

 // execute the dialog...
 XExecutableDialog xExecutable = (XExecutableDialog)
UnoRuntime.queryInterface(XExecutableDialog.class, xFilePicker);
 short nResult = xExecutable.execute();

 // query the resulting path of the dialog...
 if (nResult == com.sun.star.ui.dialogs.ExecutableDialogResults.OK){
 String[] sPathList = xFilePicker.getFiles();
 if (sPathList.length > 0){
 sStorePath = sPathList[0];
 }
 }

} catch (com.sun.star.uno.Exception exception) {
 exception.printStackTrace();
}
finally{
 //make sure always to dispose the component and free the memory!
 if (xComponent != null){
 xComponent.dispose();
 }
}

return sStorePath;
}

1160 OpenOffice.org 2.3 Developer's Guide • June 2007

http://wiki.services.openoffice.org/wiki/Framework/Article/Filter
http://wiki.services.openoffice.org/wiki/Framework/Article/Filter
http://wiki.services.openoffice.org/wiki/Framework/Article/Filter
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/dialogs/FilePicker.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/dialogs/FilePicker.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/dialogs/FilePicker.html

The directory that the file dialog initially displays is set by the setDisplayDirectory() method.
Of course it must be set as a file URL. If no directory is passed, the customized Work-directory of
the office application is shown.

Next to the file picker service it is also possible to raise a folder picker implementing the service
com.sun.star.ui.dialogs.FolderPicker. Unlike the file picker the folder picker only displays folders.
/** raises a folderpicker in which the user can browse and select a path
 * @param _sDisplayDirectory the path to the directory that is initially displayed
 * @param _sTitle the title of the folderpicker
 * @return the path to the folder that the user has selected. if the user has closed
 * the folderpicker by clicking the "Cancel" button
 * an empty string is returned
 * @see com.sun.star.ui.dialogs.FolderPicker
 */
public String raiseFolderPicker(String _sDisplayDirectory, String _sTitle) {
String sReturnFolder = "";
XComponent xComponent = null;
try {
 // instantiate the folder picker and retrieve the necessary interfaces...
 Object oFolderPicker = m_xMCF.createInstanceWithContext("com.sun.star.ui.dialogs.FolderPicker",
m_xContext);
 XFolderPicker xFolderPicker = (XFolderPicker) UnoRuntime.queryInterface(XFolderPicker.class,
oFolderPicker);
 XExecutableDialog xExecutable = (XExecutableDialog)
UnoRuntime.queryInterface(XExecutableDialog.class, oFolderPicker);
 xComponent = (XComponent) UnoRuntime.queryInterface(XComponent.class, oFolderPicker);
 xFolderPicker.setDisplayDirectory(_sDisplayDirectory);
 // set the dialog title...
 xFolderPicker.setTitle(_sTitle);
 // show the dialog...
 short nResult = xExecutable.execute();

 // User has clicked "Select" button...
 if (nResult == com.sun.star.ui.dialogs.ExecutableDialogResults.OK){
 sReturnFolder = xFolderPicker.getDirectory();
 }

}catch(Exception exception) {
 exception.printStackTrace(System.out);
}
finally{
 //make sure always to dispose the component and free the memory!
 if (xComponent != null){
 xComponent.dispose();
 }
}
 // return the selected path. If the user has clicked cancel an empty string is
 return sReturnFolder;
}

Message Box
Message boxes contain a defined message and title that may be combined with predefined icons
and buttons. Again the central instance to create a Message box is the service
com.sun.star.awt.Toolkit. It serves as a factory that exports the interface
com.sun.star.awt.XMessageBoxFactory. Its method createMessageBox() allows the creation of
message boxes in various defined facets.

● The first parameter of createMessageBox()denotes the peer of the parent window. In
analogy to all OpenOffice.org windows the peer of the window parent must be conveyed.

● The second parameter aPosSize may be empty (but not null).

● The third parameter aType describes the special usecase of the message box. The interface
description lists a bunch of defined strings like �errorbox� or �querybox�. The message
box type is than differentiated by its contained icon.

● Depending on the use case, different combinations of buttons in the message box are
possible and reflected by a value of the constants group
com.sun.star.awt.MessageBoxButtons. This is the fourth parameter aButtons.

1161

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/MessageBoxButtons.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/MessageBoxButtons.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/MessageBoxButtons.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XMessageBoxFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XMessageBoxFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XMessageBoxFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Toolkit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Toolkit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Toolkit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/dialogs/FolderPicker.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/dialogs/FolderPicker.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/dialogs/FolderPicker.html

● The last two parameters reflect the title (aTitle) and the message (aMessage) of the
message box.

This example creates and executes a message box .
/** shows an error messagebox
 * @param _xParentWindowPeer the windowpeer of the parent window
 * @param _sTitle the title of the messagebox
 * @param _sMessage the message of the messagebox
 */
public void showErrorMessageBox(XWindowPeer _xParentWindowPeer, String _sTitle, String _sMessage){
XComponent xComponent = null;
try {
 Object oToolkit = m_xMCF.createInstanceWithContext("com.sun.star.awt.Toolkit", m_xContext);
 XMessageBoxFactory xMessageBoxFactory = (XMessageBoxFactory)
UnoRuntime.queryInterface(XMessageBoxFactory.class, oToolkit);
 // rectangle may be empty if position is in the center of the parent peer
 Rectangle aRectangle = new Rectangle();
 XMessageBox xMessageBox = xMessageBoxFactory.createMessageBox(_xParentWindowPeer, aRectangle,
"errorbox", com.sun.star.awt.MessageBoxButtons.BUTTONS_OK, _sTitle, _sMessage);
 xComponent = (XComponent) UnoRuntime.queryInterface(XComponent.class, xMessageBox);
 if (xMessageBox != null){
 short nResult = xMessageBox.execute();
 }
} catch (com.sun.star.uno.Exception ex) {
 ex.printStackTrace(System.out);
}
finally{
 //make sure always to dispose the component and free the memory!
 if (xComponent != null){
 xComponent.dispose();
 }
}}

20.5.3 The Toolkit Service
The Service com.sun.star.awt.Toolkit is the central instance to create Windows. For this purpose the
interface com.sun.star.awt.XToolkit is of major interest. The two methods getDesktopWindow() and
getWorkArea() were used when OpenOffice.org offered an intregrated DesktopWindow, and are
now deprecated. An instance of the com.sun.star.awt.Toolkit is created at the global
MultiServicefactory . One way to get this peer from the frame of the document window can be
seen in the following example.

Before investigating this example, it is reasonable to briefly describe the character of a frame. A
frame exports the interface com.sun.star.frame.XFrame and serves as a container for arbitrary
content � mostly document models. To visualize this content it uses a window
(com.sun.star.awt.XWindow). It is the central coordination instance that brings together menus,
documents, LayoutManager (see com.sun.star.frame.XLayoutManager) and progress bars. For more
information see 7.1.3 Office Development - OpenOffice.org Application Environment - Using the
Component Framework. Another important responsibility is the delivery of commands � for example
commands fired from tool bar buttons - to the components. See 7.1.1 Office Development -
OpenOffice.org Application Environment - Overview - Framework API - Dispatch Framework and 7.1.6
Office Development - OpenOffice.org Application Environment - Using the Dispatch Framework for more
information on this. A frame may be embedded in a hierarchy of other frames. The following
example demonstrates the creation of a very basic window that is attached to a desktop frame.
public XTopWindow showTopWindow(Rectangle _aRectangle){
XTopWindow xTopWindow = null;
try {
 // The Toolkit is the creator of all windows...
 Object oToolkit = m_xMCF.createInstanceWithContext("com.sun.star.awt.Toolkit", m_xContext);
 XToolkit xToolkit = (XToolkit) UnoRuntime.queryInterface(XToolkit.class, oToolkit);

 // set up a window description and create the window. A parent window is always necessary for
this...
 com.sun.star.awt.WindowDescriptor aWindowDescriptor = new com.sun.star.awt.WindowDescriptor();
 // a TopWindow is contains a title bar and is able to inlude menus...
 aWindowDescriptor.Type = WindowClass.TOP;
 // specify the position and height of the window on the parent window
 aWindowDescriptor.Bounds = _aRectangle;

1162 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XLayoutManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XLayoutManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XLayoutManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Toolkit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Toolkit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Toolkit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XToolkit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XToolkit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XToolkit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Toolkit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Toolkit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Toolkit.html

 // set the window attributes...
 aWindowDescriptor.WindowAttributes = WindowAttribute.SHOW + WindowAttribute.MOVEABLE +
WindowAttribute.SIZEABLE + WindowAttribute.CLOSEABLE;

 // create the window...
 XWindowPeer xWindowPeer = xToolkit.createWindow(aWindowDescriptor);
 XWindow xWindow = (XWindow) UnoRuntime.queryInterface(XWindow.class, xWindowPeer);

 // create a frame and initialize it with the created window...
 Object oFrame = m_xMCF.createInstanceWithContext("com.sun.star.frame.Frame", m_xContext);
 m_xFrame = (XFrame) UnoRuntime.queryInterface(XFrame.class, oFrame);

 Object oDesktop = m_xMCF.createInstanceWithContext("com.sun.star.frame.Desktop", m_xContext);
 XFramesSupplier xFramesSupplier = (XFramesSupplier) UnoRuntime.queryInterface(XFramesSupplier.class,
oDesktop);
 m_xFrame.setCreator(xFramesSupplier);
 // get the XTopWindow interface..
 xTopWindow = (XTopWindow) UnoRuntime.queryInterface(XTopWindow.class, xWindow);
} catch (com.sun.star.lang.IllegalArgumentException ex) {
 ex.printStackTrace();
} catch (com.sun.star.uno.Exception ex) {
 ex.printStackTrace();
}
 return xTopWindow;
}

As can be seen, the window is described by a com.sun.star.awt.WindowDescriptor that manifests all
the facets of the window and also the window attributes as defined in
com.sun.star.awt.WindowAttribute. It is possible, but not necessary, to define a parent window. The
member Type of the windowdescriptor distinguishes between various values of the enumeration
com.sun.star.awt.WindowClass.

Values of com.sun.star.awt.WindowClass

TOP Specifies if a window is a TopWindow with the ability to
include a menubar and a titlebar.

MODALTOP Specifies if a window is a modal TopWindow that
imperatively waits for user input.

CONTAINER Specifies if a window may include child windows.

SIMPLE A simple window that may also be a container.

The following example shows how a document is loaded into a window that has been previously
inserted into a dialog. The example method expects the peer of the parent dialog to be passed over.
public void showDocumentinDialogWindow(XWindowPeer _xParentWindowPeer, Rectangle _aRectangle, String
_sUrl){
try {
 // The Toolkit is the creator of all windows...
 Object oToolkit = m_xMCF.createInstanceWithContext("com.sun.star.awt.Toolkit", m_xContext);
 XToolkit xToolkit = (XToolkit) UnoRuntime.queryInterface(XToolkit.class, oToolkit);

 // set up a window description and create the window. A parent window is always necessary for
this...
 com.sun.star.awt.WindowDescriptor aWindowDescriptor = new com.sun.star.awt.WindowDescriptor();
 // a simple window is enough for this purpose...
 aWindowDescriptor.Type = WindowClass.SIMPLE;
 aWindowDescriptor.WindowServiceName = "dockingwindow";
 // assign the parent window peer as described in the idl description...
 aWindowDescriptor.Parent = _xParentWindowPeer;
 aWindowDescriptor.ParentIndex = 1;
 aWindowDescriptor.Bounds = _aRectangle;

 // set the window attributes...
 // The attribute CLIPCHILDREN causes the parent to not repaint the areas of the children...
 aWindowDescriptor.WindowAttributes = VclWindowPeerAttribute.CLIPCHILDREN + WindowAttribute.BORDER +
WindowAttribute.SHOW;
 XWindowPeer xWindowPeer = xToolkit.createWindow(aWindowDescriptor);
 XWindow xWindow = (XWindow) UnoRuntime.queryInterface(XWindow.class, xWindowPeer);
 XView xView = (XView) UnoRuntime.queryInterface(XView.class, xWindow);

 // create a frame and initialize it with the created window...
 Object oFrame = m_xMCF.createInstanceWithContext("com.sun.star.frame.Frame", m_xContext);
 // The frame should be of global scope because it's within the responsibility to dispose it after
usage
 m_xFrame = (XFrame) UnoRuntime.queryInterface(XFrame.class, oFrame);
 m_xFrame.initialize(xWindow);

1163

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/WindowClass.html#SIMPLE
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/WindowClass.html#CONTAINER
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/WindowClass.html#MODALTOP
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/WindowClass.html#TOP
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/WindowClass.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/WindowClass.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/WindowClass.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/WindowClass.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/WindowClass.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/WindowClass.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/WindowAttribute.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/WindowAttribute.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/WindowAttribute.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/WindowDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/WindowDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/WindowDescriptor.html

 // load the document and open it in preview mode
 XComponentLoader xComponentLoader = (XComponentLoader)
UnoRuntime.queryInterface(XComponentLoader.class, m_xFrame);
 PropertyValue[] aPropertyValues = new PropertyValue[2];
 PropertyValue aPropertyValue = new PropertyValue();
 aPropertyValue.Name = "Preview";
 aPropertyValue.Value = Boolean.TRUE;
 aPropertyValues[0] = aPropertyValue;
 aPropertyValue = new PropertyValue();
 aPropertyValue.Name = "ReadOnly";
 aPropertyValue.Value = Boolean.TRUE;
 aPropertyValues[1] = aPropertyValue;
 xComponentLoader.loadComponentFromURL(_sUrl, "_self", 0, aPropertyValues);
} catch (com.sun.star.lang.IllegalArgumentException ex) {
 ex.printStackTrace();
 throw new java.lang.RuntimeException("cannot happen...");
} catch (com.sun.star.uno.Exception ex) {
 ex.printStackTrace();
 throw new java.lang.RuntimeException("cannot happen...");
}}

As can be seen, the procedure to create the window and its frame is quite straightforward. The
example clarifies the role of the frame as the central instance to bring together the window, layout
manager and the document (model). You must set the windowAttribute
VclWindowPeerAttribute.CLIPCHILDREN to make sure that the graphical operations on the
parent window do not interfere with child windows.

Of course, there are use cases where no parent windowpeer is directly available, so this must be
retrieved from a frame beforehand.

From the following example you can learn how to get the windowpeer from a frame
/** gets the WindowPeer of a frame
 * @param _xFrame the UNO Frame
 * @return the windowpeer of the frame
 */
public XWindowPeer getWindowPeer(XFrame _xFrame){
 XWindow xWindow = _xFrame.getContainerWindow();
 XWindowPeer xWindowPeer = (XWindowPeer) UnoRuntime.queryInterface(XWindowPeer.class, xWindow);
 return xWindowPeer;
}

The ComponentWindow is the window that displays just the view of a document. The
Containerwindow is the complete window including its title bar and border.

There are several ways to retrieve a frame. The easiest way to retrieve a frame is to query the frame
that has the focus:
public XFrame getCurrentFrame(){
XFrame xRetFrame = null;
try {
 Object oDesktop = m_xMCF.createInstanceWithContext("com.sun.star.frame.Desktop", m_xContext);
 XDesktop xDesktop = (XDesktop) UnoRuntime.queryInterface(XDesktop.class, oDesktop);
 xRetFrame = xDesktop.getCurrentFrame();
} catch (com.sun.star.uno.Exception ex) {
 ex.printStackTrace();
}
 return xRetFrame;
}

This should only be used for debugging purposes. The method getCurrentFrame is based on the
implementation of the window handler of the operating system and you cannot be sure that the
returned frame is always the desired one on all supported platforms, or that a valid frame is
returned at all. Usually each OpenOffice.org extension provides a frame as explained in 4.7
Writing UNO Components - Integrating Components into OpenOffice.org.

Dockable Windows
The interface com.sun.star.awt.XDockableWindow is currently unpublished and only used internally
to control layout manager based tool bars. Although the interface is exported by Windows too, its
method is not fully supported. It is planed to support dockable windows in a future version of
OpenOffice.org.

1164 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDockableWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDockableWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDockableWindow.html

20.5.4 Creating Menus
If the developer wants to add menus to the OpenOffice.org menu bar these should be added
according the detailed description of the OpenOffice.org Wiki article Popup Menu Controller.

Add-ons can use the menu bar integration of the add-on feature. More information can be found in
4.7.3 Writing UNO Components - Integrating Components into OpenOffice.org - User Interface Add-Ons.

Programmatic insertion of menus to a menu bar is possible for all windows that support the
interface com.sun.star.awt.XTopWindow.

Unlike in Java, in OpenOffice.org the term �PopupMenu� is used for all menus that can be either
be used as location independent context menus or �ordinary� menus that are added to a menu bar.

The following example shows that:

● Menus are created at the global service manager.

● Following the definition of the constants group com.sun.star.awt.MenuItemStyle menu items
may either work like radio buttons , check boxes or ordinary menu items. The constant
AUTOCHECK changes the behavior of the menu in such a way that the menu item gets
checked on its selection.

● The first parameter nItemId of the method insertItem denotes an identifier of a menu
item. This must be a unique identifier if you want to recognize a selected menu item
unambiguously. The last parameter nPos denotes the position of the menu item in the
menu. The unique identifier is ignored for non-selectable menu items. For all other menu
items the identifier must always be unique.

● �Radio-menuitems� are identified as a group by their positions within the menu, meaning
that consecutive �radio � menuitems� automatically belong to the same radio button �
group.

● There is no Object representation for the menu items . After their creation, menu items are
accessed by their ItemID within the menu.

● To assign a shortcut key to a menu item, the tilde �~�prefixes the corresponding character
of the menu text.

public XPopupMenu getPopupMenu(){
XPopupMenu xPopupMenu = null;
try{
 // create a popup menu
 Object oPopupMenu = m_xMCF.createInstanceWithContext("stardiv.Toolkit.VCLXPopupMenu", m_xContext);
 xPopupMenu = (XPopupMenu) UnoRuntime.queryInterface(XPopupMenu.class, oPopupMenu);
 XMenuExtended xMenuExtended = (XMenuExtended) UnoRuntime.queryInterface(XMenuExtended.class,
xPopupMenu);

 xPopupMenu.insertItem((short) 0, "~First Entry", MenuItemStyle.AUTOCHECK, (short) 0);
 xPopupMenu.insertItem((short) 1, "~First Radio Entry", (short) (MenuItemStyle.RADIOCHECK +
MenuItemStyle.AUTOCHECK), (short) 1);
 xPopupMenu.insertItem((short) 2, "~Second Radio Entry", (short) (MenuItemStyle.RADIOCHECK +
MenuItemStyle.AUTOCHECK), (short) 2);
 xPopupMenu.insertItem((short) 3, "~Third RadioEntry",(short) (MenuItemStyle.RADIOCHECK +
MenuItemStyle.AUTOCHECK), (short) 3);
 xPopupMenu.insertSeparator((short)4);
 xPopupMenu.insertItem((short) 4, "F~ifth Entry", (short) (MenuItemStyle.CHECKABLE +
MenuItemStyle.AUTOCHECK), (short) 5);
 xPopupMenu.insertItem((short) 5, "~Fourth Entry", (short) (MenuItemStyle.CHECKABLE +
MenuItemStyle.AUTOCHECK), (short) 6);
 xPopupMenu.enableItem((short) 1, false);
 xPopupMenu.insertItem((short) 6, "~Sixth Entry", (short) 0, (short) 7);
 xPopupMenu.insertItem((short) 7, "~EightEntry", (short) (MenuItemStyle.RADIOCHECK +
MenuItemStyle.AUTOCHECK), (short) 8);
 xPopupMenu.checkItem((short) 2, true);
 xPopupMenu.addMenuListener(this);
}catch(Exception e) {
 throw new java.lang.RuntimeException("cannot happen...");
}
 return xPopupMenu;
}

1165

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/MenuItemStyle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/MenuItemStyle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/MenuItemStyle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTopWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTopWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XTopWindow.html
http://wiki.services.openoffice.org/wiki/Framework/Tutorial/Popup_Menu_Controller#Implementing_an_extended_recent_file_popup_menu_controller
http://wiki.services.openoffice.org/wiki/Framework/Tutorial/Popup_Menu_Controller#Implementing_an_extended_recent_file_popup_menu_controller
http://wiki.services.openoffice.org/wiki/Framework/Tutorial/Popup_Menu_Controller#Implementing_an_extended_recent_file_popup_menu_controller

Issue http://qa.openoffice.org/issues/show_bug.cgi?id=76363 addressed the deprecated notation of the
service "stardiv.Toolkit.VCLXPopupMenu"

The added XMenuListener of the menu has to implement several methods such as

● select- invoked when the menu item is activated

● highlight - invoked when the menu item is highlighted, for example when the mouse
moves over it

● activate/deactivate - depending on the context, menu items may be activated
(enabled) or deactivated (disabled)

All these methods carry a com.sun.star.awt.MenuEvent parameter. The menu item at which the
method has been triggered can be identified by the MenuId of this struct.
 public void select(MenuEvent menuEvent) {
 // find out which menu item has been triggered,
 // by getting the menu-id...
 switch (menuEvent.MenuId){
 case 0:
 // add your menu-item-specific code here:
 break;
 case 1:
 // add your menu-item-specific code here:
 break;
 default:
 //..
 }
 }

 public void highlight(MenuEvent menuEvent) {
 }

 public void deactivate(MenuEvent menuEvent) {
 }

 public void activate(MenuEvent menuEvent) {
 }

As we see, we encounter the Id again that helps us to identify the triggered menu item.

At last the create menu has to be added to a menu bar: As can be seen from the idl description of
com.sun.star.awt.XMenuBar, it is a direct descendant of com.sun.star.awt.XMenu. The menus below
the menu bar items are added by means of the method setPopupMenu.
public void addMenuBar(XTopWindow _xTopWindow, XMenuListener _xMenuListener){
try{
 // create a menubar at the global MultiComponentFactory...
 Object oMenuBar = m_xMCF.createInstanceWithContext("stardiv.Toolkit.VCLXMenuBar", m_xContext);
 // add the menu items...
 XMenuBar xMenuBar = (XMenuBar) UnoRuntime.queryInterface(XMenuBar.class, oMenuBar);
 xMenuBar.insertItem((short) 0, "~First MenuBar Item", com.sun.star.awt.MenuItemStyle.AUTOCHECK,
(short) 0);
 xMenuBar.insertItem((short) 1, "~Second MenuBar Item", com.sun.star.awt.MenuItemStyle.AUTOCHECK,
(short) 1);
 xMenuBar.setPopupMenu((short) 0, getPopupMenu());
 xMenuBar.addMenuListener(_xMenuListener);
 _xTopWindow.setMenuBar(xMenuBar);
}catch(Exception e) {
 throw new java.lang.RuntimeException("cannot happen...");
}}

Accessibility
Certainly for many OpenOffice.org extension developers, accessibility is an important issue.
Luckily all UNO-AWT-elements automatically bring support for various accessibility aspects like
keyboard navigation, scheming, assistive technology (AT), and much more, so that the developer
does not even have to worry accessability. A good introduction to this topic is the Wiki article at
http://wiki.services.openoffice.org/wiki/Accessibility. Some problems may arise and shall be dealt with
in this chapter.

1166 OpenOffice.org 2.3 Developer's Guide • June 2007

http://wiki.services.openoffice.org/wiki/Accessibility
http://wiki.services.openoffice.org/wiki/Accessibility
http://wiki.services.openoffice.org/wiki/Accessibility
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XMenu.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XMenu.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XMenu.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XMenuBar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XMenuBar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XMenuBar.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/MenuEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/MenuEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/MenuEvent.html
http://qa.openoffice.org/issues/show_bug.cgi?id=76363
http://qa.openoffice.org/issues/show_bug.cgi?id=76363
http://qa.openoffice.org/issues/show_bug.cgi?id=76363

In the following scenario, a command button is inserted into a dialog. The label �>� of the button
indicates that the activation of the button shifts some data from the left side to the right. As this
label cannot be interpreted by the screenreader, an �AccessibleName� must be set at the control.
Unfortunately this is not yet possible due to the issue http://www.openoffice.org/issues/show_bug.cgi?
id=70296. At this stage, only a temporary solution can be offered that uses the deprecated interface
[IDL:com.sun.star.awt.XVclWindowPeer]
/** sets the AccessibilityName at a control
 * @param _xControl the control that the AccessibilityName is to be assigned to
 * @param _sAccessibilityName the AccessibilityName
 */
public void setAccessibleName(XControl _xControl, String _sAccessibilityName){
 XVclWindowPeer xVclWindowPeer = (XVclWindowPeer) UnoRuntime.queryInterface(XVclWindowPeer.class,
_xControl.getPeer());
 xVclWindowPeer.setProperty(""AccessibilityName"", "MyAccessibleName");
}

OpenOffice.org offers a high contrast mode, in which objects are displayed without fill colors or
text colors. This mode will automatically be used when high contrast is chosen in the system
settings. Extension developers with the demand to create accessible applications must consider this
and provide High-Contrast images for their dialog controls. Also for this usecase, only a temporary
solution based on the deprecated interface [IDL:com.sun.star.awt.XVclWindowPeer] can be offered:
/**
 * @param _xVclWindowPeer the windowpeer of a dialog control or the dialog itself
 * @return true if HighContrastMode is activated or false if HighContrastMode is deactivated
 */
 public boolean isHighContrastModeActivated(XVclWindowPeer _xVclWindowPeer){
 boolean bIsActivated = false;
 try {
 if (_xVclWindowPeer != null){
 int nUIColor = AnyConverter.toInt(_xVclWindowPeer.getProperty("DisplayBackgroundColor"));
 int nRed = getRedColorShare(nUIColor);
 int nGreen = getGreenColorShare(nUIColor);
 int nBlue = getBlueColorShare(nUIColor);
 int nLuminance = ((nBlue*28 + nGreen*151 + nRed*77) / 256);
 boolean bisactivated = (nLuminance <= 25);
 return bisactivated;
 }
 else{
 return false;
 }
 } catch (IllegalArgumentException e) {
 e.printStackTrace(System.out);
 }
 return bIsActivated;
 }

 public static int getRedColorShare(int _nColor){
 int nRed = (int) _nColor/65536;
 int nRedModulo = _nColor % 65536;
 int nGreen = (int) (nRedModulo / 256);
 int nGreenModulo = (nRedModulo % 256);
 int nBlue = nGreenModulo;
 return nRed;
 }

 public static int getGreenColorShare(int _nColor){
 int nRed = (int) _nColor/65536;
 int nRedModulo = _nColor % 65536;
 int nGreen = (int) (nRedModulo / 256);
 return nGreen;
 }

 public static int getBlueColorShare(int _nColor){
 int nRed = (int) _nColor/65536;
 int nRedModulo = _nColor % 65536;
 int nGreen = (int) (nRedModulo / 256);
 int nGreenModulo = (nRedModulo % 256);
 int nBlue = nGreenModulo;
 return nBlue;
 }

The method isHighContrastModeActivated expects a com.sun.star.awt.XVclWindowPeer reference
from any existing dialog control or of the dialog itself.

Issue http://www.openoffice.org/issues/show_bug.cgi?id=74568 addresses this problem and will
certainly lead to a more elegant solution.

1167

http://www.openoffice.org/issues/show_bug.cgi?id=74568
http://www.openoffice.org/issues/show_bug.cgi?id=74568
http://www.openoffice.org/issues/show_bug.cgi?id=74568
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XVclWindowPeer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XVclWindowPeer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XVclWindowPeer.html
http://www.openoffice.org/issues/show_bug.cgi?id=70296
http://www.openoffice.org/issues/show_bug.cgi?id=70296
http://www.openoffice.org/issues/show_bug.cgi?id=70296
http://www.openoffice.org/issues/show_bug.cgi?id=70296
http://www.openoffice.org/issues/show_bug.cgi?id=70296
http://www.openoffice.org/issues/show_bug.cgi?id=70296

Rendering
The module com.sun.star.awt. offers a set of interfaces to render graphics. These interfaces are not
deprecated as they are used internally. Developers are advised not to use these interfaces because
the future belongs to a new API called the SimpleCanvas API
(http://gsl.openoffice.org/canvas/api/rendering/XSimpleCanvas.html). For this reason these interfaces
shall only be briefly explained.

com.sun.star.awt.XDevice The pixel model is extremely device dependent because it is applicable to
printers as well as to screens with all kind of resolutions. This interface provides information about
a graphical output device. For example the method getFont()returns an object implementing
com.sun.star.awt.XFont that describes a font on the respective device. The methods
createBitmap()and createDisplayBitmap()create bitmap objects with the device depth (these
objects are primarily used for internal use of graphic operations). The method createGraphics()
returns an object providing a set of output operations by implementing the interface
com.sun.star.awt.XGraphics. It offers methods to draw geometric figures like drawLine(),
drawRect()etc. and permits the assignment of clip regions that implement
com.sun.star.awt.XRegion. By defining a clipping region the output is reduced to a certain area of a
window in order to prevent other parts like the border or the menubar from being overdrawn by
output operations . com.sun.star.awt.XRegion manages multiple rectangles which make up a region.
Its main task is to perform adding, excluding, intersecting and moving operations on regions.
A raster graphics image is defined by grid of pixels, that individually define a color. They are
distinguished from vector graphics in that vector graphics represent an image through the use of
geometric objects such as curves and polygons. The method setRasterOp() of
com.sun.star.awt.XGraphics applies values specified in the enumeration
com.sun.star.awt.RasterOperation on the pixels of a graphic.

20.6 Summarizing Example to create a UNO Dialog
Last but not least, a final example shall give an overall demonstration about how a dialog is
created. The aim of the dialog is to inspect an arbitrary UNO-object and display its supported
services, exported interfaces, methods and properties. It uses the code fragments that were
introduced in the previous chapters . These code fragments are encapsulated in the class
UnoDialogSample, that is not listed here. The creation of the dialog is implemented within the
main method. Before this takes place an UNO object � an empty writer document - is created. This
code piece can of course be exchanged and only serves as an example UNO object. The class
UnoDialogSample2 is a deduction of UnoDialogSample and incorporates all the functionality used
to create and display this specific dialog. Keep in mind that all variables prefixed with �m_� are
member variables defined in the constructor.
import com.sun.star.awt.PushButtonType;
import com.sun.star.awt.XControl;
import com.sun.star.awt.XDialog;
import com.sun.star.awt.XFixedText;
import com.sun.star.awt.XListBox;
import com.sun.star.awt.XWindow;
import com.sun.star.beans.MethodConcept;
import com.sun.star.beans.Property;
import com.sun.star.beans.PropertyValue;
import com.sun.star.beans.XIntrospection;
import com.sun.star.beans.XIntrospectionAccess;
import com.sun.star.beans.XMultiPropertySet;
import com.sun.star.beans.XPropertySet;
import com.sun.star.frame.XComponentLoader;
import com.sun.star.lang.XMultiComponentFactory;
import com.sun.star.lang.XServiceInfo;
import com.sun.star.lang.XTypeProvider;
import com.sun.star.reflection.XIdlMethod;
import com.sun.star.uno.Type;
import com.sun.star.uno.UnoRuntime;
import com.sun.star.uno.XComponentContext;

1168 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/RasterOperation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/RasterOperation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/RasterOperation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XGraphics.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XGraphics.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XGraphics.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XRegion.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XRegion.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XRegion.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XRegion.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XRegion.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XRegion.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XGraphics.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XGraphics.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XGraphics.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XFont.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XFont.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XFont.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDevice.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDevice.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDevice.html
http://gsl.openoffice.org/canvas/api/rendering/XSimpleCanvas.html
http://gsl.openoffice.org/canvas/api/rendering/XSimpleCanvas.html
http://gsl.openoffice.org/canvas/api/rendering/XSimpleCanvas.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt//module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt//module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt//module-ix.html

public class UnoDialogSample2 extends UnoDialogSample {
 XIntrospectionAccess m_xIntrospectionAccess = null;
 Object m_oUnoObject = null;
 // define some constants used to set positions and sizes
 // of controls. For further information see
 // http://ui.openoffice.org/knowledge/DialogSpecificationandGuidelines.odt
 final static int nFixedTextHeight = 8;
 final static int nControlMargin = 6;
 final static int nDialogWidth = 250;
 final static int nDialogHeight = 140;
 // the default roadmap width == 80 MAPs
 final static int nRoadmapWidth = 80;
 final static int nButtonHeight = 14;
 final static int nButtonWidth = 50;

 /**
 * Creates a new instance of UnoDialogSample2
 */
public UnoDialogSample2(XComponentContext _xContext, XMultiComponentFactory _xMCF, Object _oUnoObject) {
super(_xContext, _xMCF);
try {
 m_oUnoObject = _oUnoObject;
 Object o = m_xMCF.createInstanceWithContext("com.sun.star.beans.Introspection", m_xContext);
 XIntrospection m_xIntrospection = (XIntrospection) UnoRuntime.queryInterface(XIntrospection.class,
o);
 // the variable m_xIntrospectionAccess offers functionality to access all methods and properties
 // of a variable
 m_xIntrospectionAccess = m_xIntrospection.inspect(_oUnoObject);
} catch (com.sun.star.uno.Exception ex) {
 ex.printStackTrace();
}}

public static void main(String args[]){
 UnoDialogSample2 oUnoDialogSample2 = null;
try {
 XComponentContext xContext = com.sun.star.comp.helper.Bootstrap.bootstrap();
 if(xContext != null)
 System.out.println("Connected to a running office ...");
 XMultiComponentFactory xMCF = xContext.getServiceManager();
 PropertyValue[] aPropertyValues = new PropertyValue[]{};
 // create an arbitrary Uno-Object - in this case an empty writer document..
 Object oDesktop =xMCF.createInstanceWithContext("com.sun.star.frame.Desktop", xContext);
 XComponentLoader xComponentLoader = (XComponentLoader)
UnoRuntime.queryInterface(XComponentLoader.class, oDesktop);
 Object oUnoObject = xComponentLoader.loadComponentFromURL("private:factory/swriter", "_default", 0,
aPropertyValues);

 // define some coordinates where to position the controls
 final int nButtonPosX = (int)((nDialogWidth/2) - (nButtonWidth/2));
 final int nButtonPosY = nDialogHeight - nButtonHeight - nControlMargin;
 final int nControlPosX = nRoadmapWidth + 2*nControlMargin;
 final int nControlWidth = nDialogWidth - 3*nControlMargin - nRoadmapWidth;
 final int nListBoxHeight = nDialogHeight - 4*nControlMargin - nButtonHeight;
 oUnoDialogSample2 = new UnoDialogSample2(xContext, xMCF, oUnoObject);
 oUnoDialogSample2.initialize(new String[] {"Height", "Moveable", "Name","PositionX","PositionY",
"Step", "TabIndex","Title","Width"},
 new Object[] { new Integer(nDialogHeight), Boolean.TRUE, "Dialog1", new
Integer(102),new Integer(41), new Integer(1), new Short((short) 0), "Inspect a Uno-Object", new
Integer(nDialogWidth)});
 String sIntroLabel = "This Dialog lists information about a given Uno-Object.\nIt offers a view to
inspect all suppported servicenames, exported interfaces, methods and properties.";
 oUnoDialogSample2.insertMultiLineFixedText(nControlPosX, 27, nControlWidth, 4, 1, sIntroLabel);
 // get the data from the UNO object...
 String[] sSupportedServiceNames = oUnoDialogSample2.getSupportedServiceNames();
 String[] sInterfaceNames = oUnoDialogSample2.getExportedInterfaceNames();
 String[] sMethodNames = oUnoDialogSample2.getMethodNames();
 String[] sPropertyNames = oUnoDialogSample2.getPropertyNames();
 // add controls to the dialog...
 oUnoDialogSample2.insertListBox(nControlPosX, nControlMargin, nListBoxHeight, nControlWidth, 2,
sSupportedServiceNames);
 oUnoDialogSample2.insertListBox(nControlPosX, nControlMargin, nListBoxHeight, nControlWidth, 3,
sInterfaceNames);
 oUnoDialogSample2.insertListBox(nControlPosX, nControlMargin, nListBoxHeight, nControlWidth, 4,
sMethodNames);
 oUnoDialogSample2.insertListBox(nControlPosX, nControlMargin, nListBoxHeight, nControlWidth, 5,
sPropertyNames);
 oUnoDialogSample2.insertButton(oUnoDialogSample2, nButtonPosX, nButtonPosY, nButtonWidth, "~Close",
(short) PushButtonType.OK_value);
 oUnoDialogSample2.insertHorizontalFixedLine(0, nButtonPosY - nControlMargin, nDialogWidth, "");
 // create the windowpeer;
 // it must be kept in mind that it must be created after the insertion of the controls
 // (see http://qa.openoffice.org/issues/show_bug.cgi?id=75129)
 oUnoDialogSample2.createWindowPeer();

1169

 // add the roadmap control. Note that the roadmap may not be created before the windowpeer of the
dialog exists
 // (see http://qa.openoffice.org/issues/show_bug.cgi?id=67369)
 oUnoDialogSample2.addRoadmap(oUnoDialogSample2.getRoadmapItemStateChangeListener());
 oUnoDialogSample2.insertRoadmapItem(0, true, "Introduction", 1);
 oUnoDialogSample2.insertRoadmapItem(1, true, "Supported Services", 2);
 oUnoDialogSample2.insertRoadmapItem(2, true, "Interfaces", 3);
 oUnoDialogSample2.insertRoadmapItem(3, true, "Methods", 4);
 oUnoDialogSample2.insertRoadmapItem(4, true, "Properties", 5);
 oUnoDialogSample2.m_xRMPSet.setPropertyValue("CurrentItemID", new Short((short) 1));
 oUnoDialogSample2.m_xRMPSet.setPropertyValue("Complete", Boolean.TRUE);
 oUnoDialogSample2.xDialog = (XDialog) UnoRuntime.queryInterface(XDialog.class,
oUnoDialogSample2.m_xDialogControl);
 oUnoDialogSample2.xDialog.execute();
 }catch(Exception ex) {
 ex.printStackTrace(System.out);
 }
 finally{
 //make sure always to dispose the component and free the memory!
 if (oUnoDialogSample2 != null){
 if (oUnoDialogSample2.m_xComponent != null){
 oUnoDialogSample2.m_xComponent.dispose();
 }
 }
}}

public String[] getMethodNames(){
String[] sMethodNames = new String[]{};
try {
 XIdlMethod[] xIdlMethods = m_xIntrospectionAccess.getMethods(MethodConcept.ALL);
 sMethodNames = new String[xIdlMethods.length];
 for (int i = 0; i < xIdlMethods.length; i++){
 sMethodNames[i] = xIdlMethods[i].getName();
 }
}
catch(Exception e) {
 System.err.println(e);
}
return sMethodNames;
}

// returns the names of all supported servicenames of a UNO object
public String[] getSupportedServiceNames(){
 String[] sSupportedServiceNames = new String[]{};
 // If the Uno-Object supports "com.sun.star.lang.XServiceInfo"
 // this will give access to all supported servicenames
 XServiceInfo xServiceInfo = (XServiceInfo) UnoRuntime.queryInterface(XServiceInfo.class,
m_oUnoObject);
 if (xServiceInfo != null){
 sSupportedServiceNames = xServiceInfo.getSupportedServiceNames();
 }
 return sSupportedServiceNames;
}

// returns the names of all properties of a UNO object
protected String[] getPropertyNames(){
String[] sPropertyNames = new String[]{};
try {
 Property[] aProperties =
m_xIntrospectionAccess.getProperties(com.sun.star.beans.PropertyConcept.ATTRIBUTES +
com.sun.star.beans.PropertyConcept.PROPERTYSET);
 sPropertyNames = new String[aProperties.length];
 for (int i = 0; i < aProperties.length; i++){
 sPropertyNames[i] = aProperties[i].Name;
 }
}
catch(Exception e) {
 System.err.println(e);
}
return sPropertyNames;
}

// returns the names of all exported interfaces of a UNO object
protected String[] getExportedInterfaceNames(){
 Type[] aTypes = new Type[]{};
 String[] sTypeNames = new String[]{};
 // The XTypeProvider interfaces offers access to all exported interfaces
 XTypeProvider xTypeProvider = (XTypeProvider) UnoRuntime.queryInterface(XTypeProvider.class,
m_oUnoObject);
 if (xTypeProvider != null) {
 aTypes = xTypeProvider.getTypes();
 sTypeNames = new String[aTypes.length];
 for (int i = 0; i < aTypes.length - 1; i++){
 sTypeNames[i] = aTypes[i].getTypeName();
 }

1170 OpenOffice.org 2.3 Developer's Guide • June 2007

 }
 return sTypeNames;
}

public XListBox insertListBox(int _nPosX, int _nPosY, int _nHeight, int _nWidth, int _nStep, String[]
_sStringItemList){
XListBox xListBox = null;
try{
 // create a unique name by means of an own implementation...
 String sName = createUniqueName(m_xDlgModelNameContainer, "ListBox");
 // create a controlmodel at the multiservicefactory of the dialog model...
 Object oListBoxModel = m_xMSFDialogModel.createInstance("com.sun.star.awt.UnoControlListBoxModel");
 XMultiPropertySet xLBModelMPSet = (XMultiPropertySet)
UnoRuntime.queryInterface(XMultiPropertySet.class, oListBoxModel);
 // Set the properties at the model - keep in mind to pass the property names in alphabetical order!
 xLBModelMPSet.setPropertyValues(
 new String[] {"Dropdown", "Height", "Name", "PositionX", "PositionY", "ReadOnly", "Step",
"StringItemList", "Width" } ,
 new Object[] {Boolean.FALSE, new Integer(_nHeight), sName, new Integer(_nPosX), new Integer(_nPosY),
Boolean.TRUE, new Integer(_nStep), _sStringItemList, new Integer(_nWidth)});
 m_xDlgModelNameContainer.insertByName(sName, xLBModelMPSet);
}catch (com.sun.star.uno.Exception ex) {
 throw new java.lang.RuntimeException("cannot happen...");
}
return xListBox;
}

public void insertMultiLineFixedText(int _nPosX, int _nPosY, int _nWidth, int _nLineCount, int _nStep,
String _sLabel){
try{
 // create a unique name by means of an own implementation...
 String sName = createUniqueName(m_xDlgModelNameContainer, "Label");
 int nHeight = _nLineCount * nFixedTextHeight;
 // create a controlmodel at the multiservicefactory of the dialog model...
 Object oFTModel = m_xMSFDialogModel.createInstance("com.sun.star.awt.UnoControlFixedTextModel");
 XMultiPropertySet xFTModelMPSet = (XMultiPropertySet)
UnoRuntime.queryInterface(XMultiPropertySet.class, oFTModel);
 // Set the properties at the model - keep in mind to pass the property names in alphabetical order!
 xFTModelMPSet.setPropertyValues(
 new String[] {"Height", "Label", "MultiLine", "Name", "PositionX", "PositionY", "Step", "Width"},
 new Object[] { new Integer(nHeight), _sLabel, Boolean.TRUE, sName, new Integer(_nPosX), new
Integer(_nPosY), new Integer(_nStep), new Integer(_nWidth)});
 // add the model to the NameContainer of the dialog model
 m_xDlgModelNameContainer.insertByName(sName, oFTModel);
}catch (com.sun.star.uno.Exception ex){
 /* perform individual exception handling here.
 * Possible exception types are:
 * com.sun.star.lang.IllegalArgumentException,
 * com.sun.star.lang.WrappedTargetException,
 * com.sun.star.container.ElementExistException,
 * com.sun.star.beans.PropertyVetoException,
 * com.sun.star.beans.UnknownPropertyException,
 * com.sun.star.uno.Exception
 */
 ex.printStackTrace(System.out);
}}
// end of class
}

1171

Appendix A: OpenOffice.org API-Design-
Guidelines

The following rules apply to all external programming interface specifications for OpenOffice. The
API consists of the following stereotypes or design elements:

Structures
Structures are used to specify simple composed data elements.
(Structures only consist of data, not methods.)

Exceptions
Exceptions are used for error handling.
(Exceptions can be thrown or transported using an any.)

Interfaces
Interfaces are used to specify a single aspect in behavior.
(Interfaces only consist of methods, not data.)

Services
Services are used to specify abstract objects.
(Services specify properties and the interaction of the supported interfaces.)

Typedefs
Typedefs are used to define basic types for specific purposes.
(This stereotype should be used carefully.)

A.1 General Design Rules
These rules describe basic concepts used in OpenOffice.org API design. They are mandatory for all
OpenOffice.org contributions. They are recommended good practice for development of third-
party software.

A.1.1 Universality
It is preferable to design and use universal interfaces instead of specialized ones. Interface reuse
should prevail. Whenever a new interface is about to be created, consider the possibility of similar
requirements in other application areas and design the interface in a general manner.

1173

A.1.2 Orthogonality
The functionality of interfaces should extend each other. Avoid redundancy , but if it leads to a
major simplification for application programmers, proceed. In general, functionality that can be
acquired from basic interfaces should not be added directly. If necessary, create an extra service
which provides the functionality and works on external data.

A.1.3 Inheritance
All interfaces are derived from com.sun.star.uno.XInterface. Other superclasses are only
allowed if the following terms are true:

• the derived interface is a direct extension of the superclass

• the superclass is necessary in every case for the interface and inheritance if it is logical for the
application programmer

• the superclass is the only possible superclass due to this definition

A.1.4 Uniformity
All identifiers have to follow uniform rules for semantics, lexical names, and order of arguments.
Programmers and developers who are familiar with any portion of the API can work with any
other part intuitively.

A.1.5 Correct English
Whoever designs API elements is responsible for the correct spelling and meaning of the applied
English terms, especially for lexical names of interfaces, methods, structures and exceptions, as
well as members of structures and exceptions. If not absolutely certain, use Merriam-Webster's
Dictionary (http://www.m-w.com). We use U.S. spelling.

Mixed capitalization or underscores (the latter only for lexical constants and enumeration values)
are used to separate words within single identifiers. Apply the word separation appropriately.
English generally does not have compound words, unlike, for example, German.

A.1.6 Identifier Naming Convention
For common naming of identifiers, and to prevent potential restrictions for identifiers in UNO
language bindings, a general naming convention has been defined. This naming convention allows
a restricted set of identifiers, where no problems in any language bindings are expected. However,
this cannot be guaranteed.

See the following pseudo-grammar, which shows, in a short but precise form, the permitted set of
identifiers.
r* : zero or more r's, where r is a regular expression
r+ : one or more r's
r? : zero or one r (that is, “an optional r”)
r|s : either an r or a s
[abc] : a “character class”; in this case the pattern matches either an 'a', a 'b' or a 'c'
[a-z] : a “character class” with a range; matches any letter from 'a' through 'z'

1174 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html

“xy” : the literal string xy
(r) : match an r; parenthesis are used to override precedence

DIGIT [0-9]
CAPITAL [A-Z]
SMALL [a-z]
ALPHA CAPITAL|SMALL
IDENTIFIER (ALPHA(ALPHA|DIGIT)*)|(CAPITAL(“_”?(ALPHA|DIGIT)+)*)

The following examples of valid and invalid identifiers should make the preceding grammar clear.

Valid identifiers:

• getByName

• XText

• XText_2

• CLOSEABLE

• FATAL_ERROR

• Message

Invalid identifiers:

• _getByName

• _Name

• _name

• get_Name

• myName_2

When you define your own IDL specification ,you should take this naming convention into
account.

You will find incorrect identifiers in the current API, but this cannot be changed for compatibility reasons.
Nevertheless, you should adhere to this naming convention for your own IDL specifications.

A.2 Definition of API Elements
In this chapter, several API elements are defined, and how they are used and the rules that apply.

A.2.1 Attributes
Attributes are used to access data members of objects through an interface.

Naming
Attributes are defined in interfaces as get and optional set methods. Although UNOIDL knows
attributes for compatibility reasons, this feature is not used. The attribute identifier begins with a
capital letter. The mixed upper and lower case method is used to separate single words. Only
letters and numbers are allowed with no underscores, for example, getParent() and
setParent().

1175

Usage
Attributes are used to express structural relationships, with and without lifetime coupling. For
scripting languages, the attributes are accessed as properties.

A.2.2 Methods
Methods are functions defined within an interface. Technically, an interface only consists of
methods. There is a syntax for attributes, but these map to methods.

Naming
Method identifiers begin with a verb in lowercase, for example, close, and continue with initial
caps, that is, the first letter of each word is capitalized with no underscores. For example,
getFormat().

Method names consisting of a verb without any additional terms can only be used if they refer to
the object as a whole, and do not operate on parts of the object specified with arguments of this
method. This makes names semantically more precise, and we avoid the risk of two method names
of two different interfaces at the same object folding into each other causing problems with
scripting languages.

Special attention should be given to uniformity within semantically related interfaces. This means,
if a method is named destroyRecord(), an insert method should be called insertRecord().

If a method refers to a part of the object and an argument specifies this part, the type or role of the
part is appended to the verbal part of the method,for example, removeFrame([in] XFrame
xFrame). If the name of the part or its position is specified as an argument, ByName or ByIndex is
additionally appended, for example, removeFrameByName([in] string aName) or remove-
FrameByIndex([in] long nIndex).

The following method prefixes have special meanings:

get
To return non-boolean values or interfaces of other objects that have a lasting relationship with
the object the associated interface belongs to, similar to being an attribute. This prefix is gener-
ated automatically for readable attributes. Multiple calls to the same method at the same object
with the same arguments, without modifying the object in between, returns the same value or
interface.

set
To set values or interfaces of other objects that get into a lasting relationship with the object the
associated interface belongs to, similar to becoming attribute values. This prefix is generated
automatically for writable attributes.

query
This prefix is used to return values, including interfaces that have to be calculated at runtime or
do not have the character of being a structural part of the object which belongs to the associated
interface. Multiple calls, even without modifying the object in between, do not necessarily
return the same value and interface; but this can be specified in the specific methods.

is/has
Usage is similar to get, and is used for boolean values.

1176 OpenOffice.org 2.3 Developer's Guide • June 2007

create
This prefix is used for factory methods. Factory methods create and return new instances of
objects. In many cases, the same or a related interface has an insert or add method.

insert
This prefix inserts new sub objects into an object when the insertion position is specified.

add
This prefix inserts new sub objects into an object when the insertion position is not specified by
any argument of the method.

append
This prefix inserts new sub objects into an object when the new sub object gets appended at the
end of the collection of sub objects.

remove
This prefix removes sub objects from a container. Use destroy if the removal implies the explicit
destruction of the sub object. If the sub object is given as an argument, use it's type or role addi-
tionally, for example, removeFrame() if the argument is a Frame. If the position index or name
of the sub object to remove is given, use a name similar to removeFrameByName(). For generic
interfaces, use removeByName() without the type name or role, which are unknown in that case.

destroy
This prefix removes sub objects from a container and explicitly destroys them in this process.
Use destroy as a verbal prefix. For more details, see the description of remove.

clear
This prefix clears contents of an object as a whole, the verb itself, or certain parts of the object,
such as add a specifying name giving something like clearDelegates().

dispose
This prefix initiates a broadcast message to related objects to clear references to the object.
Normally, this verb is only used in XComponent.

approve
This prefix is used for the approval notification in listener interfaces of prohibited events.

Usage
Non-structural attributes are represented by the property concept, and not by get and set methods,
or attributes of interfaces.

Consider possible implementations if there are several possible interfaces where you could put a
method. For example, a file cannot destroy itself, but the container directory could.

Do not use const as an attribute for methods, because future versions of UNOIDL will not support
this feature.

A.2.3 Interfaces
Interfaces are collections of methods belonging to a single aspect of behavior. Methods do not have
data or implementation.

1177

Once an interface gets into an official release of the API, it may no longer be changed. This means
that no methods or attributes can be added, removed or modified, not even arguments of methods.
This rule covers syntax, as well as semantics.

Interfaces are identified by their name.

Naming
Identifiers of interfaces begin with the prefix 'X' followed by the name itself in initial caps, capital-
izing the first letter after the 'X', for example, XFrameListener. Avoid abbreviations.

We apply the prefix 'X', because interfaces have to be treated differently than pointers in C/C++
and also in normal interfaces in Java. It is also likely that the main interface of a service should get
the same name as the service that can cause confusion or ambiguity in documentation.

It is a bad design if the name or abbreviation of a specific component appears within the name of
an interface, for example, XSfxFrame or XVclComponent.

Usage
Interfaces represent stable aspects of design objects. A single interface only contains methods that
belong to one aspect of object behavior, never collections of arbitrary methods. Both aspects of
usage, client and server, should be considered in design. Keep the role of the object in mind. If
some methods of your new interface are only used in one role and others in another role, your
design is probably flawed.

A.2.4 Properties
Properties are descriptive attributes of an objects that can be queried and changed at runtime using
the XPropertySet interface.

Naming
In non-scripting languages, such as Java or C/C++, property identifiers are simply strings. These
identifiers always begin with an uppercase letter and use initial caps , for example, Background-
Color. Avoid abbreviations.

Usage
Properties are used for non-structural attributes of an object. For structural attributes (composition)
use get and set methods in an interface instead.

A.2.5 Events
Events are notifications that you can register as listeners. This concept is actually expressed by
registration or unregistration methods for the broadcaster, listener interfaces for the listener and
event structures for the event.

1178 OpenOffice.org 2.3 Developer's Guide • June 2007

Naming
If an object broadcasts a certain event, it offers a pair of methods like addEventNameListener()
and removeEventNameListener(). This scheme conforms to the naming scheme of JavaBeans and
does not mean that the implementation keeps track of a separate list for each event.

The event methods of the listener interface use the past tense form of the verb that specifies the
event, usually in combination with the subject to which it applies, for example, mouseDragged().
For events which are notified before the event actually happens, the method begins with notify, for
example, notifyTermination(). Event methods for prohibited events start with the prefix
approve, for example, approveTermination().

Usage
Use events if other, previously unknown objects have to be notified about status changes in your
object.

Normally, the methods add...Listener() and remove...Listener() have a single argument.
The type of argument is an interface derived from com.sun.star.lang.XEventListener.

The event is a struct derived from com.sun.star.lang.EventObject, therefore this struct
contains the source of the event.

A.2.6 Services
Services are collections of related interfaces and properties. They specify the behavior of imple-
mentation objects at an abstract level by specifying the relationship and interaction between these
interfaces and properties. Like interfaces, services are strictly abstract.

Naming
Service identifiers begin with an uppercase letter and are put in initial caps , for example,
com.sun.star.text.TextDocument). Avoid abbreviations.

Usage
Services are used by a factory to create objects which fulfill certain requirements. Not all services
are able to be instantiated by a factory, but they are used for documentation of properties or inter-
face compositions. In a service, you can specify in detail what methods expect as arguments or
what they return.

A.2.7 Exceptions
Exceptions are special classes which describe exceptional states.

1179

http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html

Naming
Exception identifiers begin with a capital uppercase letter, and are put in initial caps and always
end with Exception, (for example, com.sun.star.lang.IllegalArgumentException. Avoid
abbreviations.

Usage
The OpenOffice.org API uses exceptions as the general error handling concept. However, the API
should be designed that it is possible to avoid exceptions in typical error situations, such as
opening non-existent files.

A.2.8 Enums
Enums are non-arbitrary sets of identifying values. If an interface uses an enum type, all imple-
mentations have to implement all specified enum values. It is possible to specify exceptions at the
interface. Extending enums is not allowed, because this would cause incompatibilities.

Naming
Enum types begin with an uppercase letter and are put in initial caps. Avoid abbreviations. If there
is a possible name-conflict with structs using the same name, add Type or Style to the enum identi-
fier.

Enum values are completely capitalized in uppercase and words are separated by underscores. Do
not use a variant of the enum type name as a prefix for the values, because some language bind-
ings will do that automatically.
enum FooBarType
{
 NONE,
 READ,
 WRITE,
 USER_DEFINED = 255
};

struct FooBar
{
 FooBarType Type;
 string FileName
};

Three typical endings of special enum values are _NONE, _ALL and _USER_DEFINED.

Usage
If by general fact an enum represents the most common values within an open set, add a value for
USER_DEFINED and specify the actual meaning by a string in the same object or argument list
where the enum is used. In this case, offer a method that returns a sequence of all possible values
of this string.

A.2.9 Typedefs
Typedefs specify new names for existing types.

1180 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/IllegalArgumentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/IllegalArgumentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/IllegalArgumentException.html

Naming
Typedefs begin with an uppercase letter and are put in initial caps. Avoid abbreviations.

Usage
Do not use typedefs in the OpenOffice.org API.

A.2.10 Structs
Structs are static collections of multiple values that belong to a single aspect and could be consid-
ered as a single, complex value.

Naming
Structs begin with an uppercase letter and are put in initial caps. Avoid abbreviations.

If the actual name for the struct does not sound correct, do not add Attributes, Properties or
the suffixes suggested for enums. These two words refer to different concepts within the
OpenOffice.org API. Instead, use words like Format or Descriptor.

Usage
Use structs as data containers. Data other than interfaces are always copied by value. This is an
efficiency gain, especially in distributed systems.

Structs with just a single member are wrong by definition.

A.2.11 Parameter
Parameters are names for arguments of methods.

Naming
Argument identifiers begin with a special lowercase letter as a prefix and put in initial caps later,
for example, nItemCount.

Use the following prefixes:

• 'x' for interfaces

• 'b' for boolean values

• 'n' for integer numbers

• 'f' for floating point numbers

• 'a' for all other types. These are represented as classes in programming languages.

1181

Usage
The order of parameters is defined by the following rule: Where, What, How. Within these groups,
order by importance. For example, insertContent(USHORT nPos, XContent xContent,and
boolean bAllowMultiInsert.

A.3 Special Cases

Error Handling (Exceptions/Error-Codes)
Runtime errors caused by the wrong usage of interfaces or do not happen regularly, raise excep-
tions. Runtime errors that happen regularly without a programming mistake, such as the non-exis-
tence of a file for a file opening method, should be handled by using error codes as return values.

Collection Interfaces
Collection-Services usually support one or multiple X...Access-Interfaces and sometimes add
access methods specialized to the content type. For example,
XInterface XIndexAccess::getElementByIndex(unsigned short)

becomes
XField XFields::getFieldByIndex(unsigned short).

Postfix Document for Document-like Components
Components, whose instances are called a document, get the postfix Document to their name, for
example, service com.sun.star.text.TextDocument.

Postfixes Start/End vs. Begin/End
The postfixes ...Start/...End are to be preferred over ...Begin/...End.

A.4 Abbreviations
Avoid abbreviations in identifiers of interfaces, services, enums, structs, exceptions and constant
groups, as well as identifiers of constants and enum values. Use the following open list of abbrevi-
ations if your identifier is longer than 20 characters. Remain consistent in parallel constructions,
such as addSomething() or removeSomething().

• Abs: Absolute

• Back: Background

• Char: Character

• Doc: Document

• Ext: Extended, Extension

1182 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html

• Desc: Description, Descriptor

• Ref: Reference

• Hori: Horizontal

• Orient: Orientation

• Para: Paragraph

• Var: Variable

• Rel: Relative

• Vert: Vertical

A.5 Source Files and Types
For each type, create a separate IDL file with the same base name and the extension .idl.

1183

Appendix B: IDL Documentation Guidelines

B.1 Introduction
The reference manual of the OpenOffice.org API is automatically generated by the tool autodoc
from the idl files that specify all types used in the OpenOffice.org API. These files are part of the
SDK. This appendix discusses how documentation comments in the idl files are used to create
correct online documentation for the OpenOffice.org API.

B.1.1 Process
The autodoc tool evaluates the UNOIDL elements and special JavaDoc-like documentation
comments of these files, but not the C++/Java-Style comments. For each element that is docu-
mented, the preceding comment is used. Put the comment within /** */ for multiple-line docu-
mentation, or put behind /// for single-line documentation.

Do not put multiple documentation comments! Only the last will be evaluated for each element and appear
in the output.

/// This documentation will be lost.
/// And this documentation will be lost too.
/// Only this line will appear in the output!

Most XHTML tags can be used within the documentation, that is, only tags that occur between the
<body>...</body> tags. Additionally, other XML tags are supported and JavaDoc style @-tags can
be used. These are introduced later.

It is good practice and thus recommended to build a local version of newly written IDL documen-
tation and browse the files with an HTML client to check if all your layouts appear correctly.

B.1.2 File Assembly
Each individual idl file only contains a single type, that is, a single interface, service, struct, enum,
constants group or exception. Nested types are not allowed for OpenOffice.orgs local API., even
though they are supported by UNOIDL.

1185

B.1.3 Readable & Editable Structure
The idl files have to be structured for easy reading and re-editing. Indentation or line-breaks are
generated automatically in the output of autodoc , but the simple ASCII layout of the documenta-
tion comments has to be structured for readability of the idl files. Due to HTML interpretation, the
line-breaks do not appear in the output, except in <pre>...</pre> and similar areas.

The idl files should not contain any #ifdef or #if directives than those mentioned in this document
because they are read by the OpenOffice.org community and others. Do not introduce task force or
version dependent elements, use CVS branches instead.

Avoid leading asterisks within documentation blocks. Misplaced asterisks must be removed when
reformatting is necessary, thus time consuming.

Do not use leading asterisks as shown here:

/* does something special.
 *
 * This is just an example for what you must NOT do: Using leading asterisks.
 */

B.1.4 Contents
The idl files should not contain implementation specific information. Always consider idl files as
part of the SDK delivery, so that they are visible to customers.

B.2 File structure
This chapter provides information about the parts of each idl file, such as the header, body and
footer, the character set to be used and the general layout to be applied.

B.2.1 General

Length of Lines
Lines in the idl files should not be longer than 78 characters, and documentation comment lines
should not be longer than 75 characters. The preferable length of lines is upto 70 characters. This
makes it readable in any ASCII editor and allows slight changes, that is, due to English proof-
reading without the need of reformatting.

Character Set and Special Characters
Only 7-bit ASCII characters are used in UNOIDL, even in the documentation comments. If other
characters are necessary, the XHTML representation is to be used. See
http://www.w3.org/TR/xhtml1/DTD/xhtml-special.ent for a list of the encodings.

1186 OpenOffice.org 2.3 Developer's Guide • June 2007

Completeness of Sentences
In general, build grammatically complete sentences. One exception is the first sentence of an
elements documentation, it may begin with a lowercase letter, in which case the described element
itself is the implied subject.

Indentation
The indentation of sub-elements and for others is four spaces for each level of indentation.

Delimiters
Each major element has to be delimited by a 75 to 78-character long line from the other major
elements. This line consists of �//� followed by equal signs to match the regular expression "^/
=$". Place it immediately in the line above the documentation comment that it belongs to.

Major elements are typedef, exception, struct, constants, enum, interface and service.

The sub elements can be delimited by a 75 to 78-character long line matched by the regular expres-
sion
"^ \(\)*/*-*$" from the other minor elements and the major element. This is a line consisting of
a multiple of four spaces, followed by �//� and dashes. Place it immediately in the line above the
documentation comment that it belongs to. Minor elements are structure and exception fields,
methods and properties. Interfaces and services supported by services as single constants are to be
grouped by delimiters.

Examples for major and minor elements are given below.

B.2.2 File-Header
For legal reasons, the header has to be exactly as shown in the following snippet. Exceptions of this
rule are the dynamic parts within "$...$" and the list of contributors at the end.
/***
 *
 * $RCSfile: IDLDocumentationGuide.fsxw,v $
 *
 * $Revision: 1.7 $
 *
 * last change: $Author: jsc $ $Date: 2007/07/05 10:30:56 $
 *
 * The Contents of this file are made available subject to the terms of
 * either of the following licenses
 *
 * - GNU Lesser General Public License Version 2.1
 * - Sun Industry Standards Source License Version 1.1
 *
 * Sun Microsystems Inc., October, 2000
 *
 *
 * GNU Lesser General Public License Version 2.1
 * ===
 * Copyright 2000 by Sun Microsystems, Inc.
 * 901 San Antonio Road, Palo Alto, CA 94303, USA
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License version 2.1, as published by the Free Software Foundation.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * Lesser General Public License for more details.
 *

1187

 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 * MA 02111-1307 USA
 *
 *
 * Sun Industry Standards Source License Version 1.1
 * ===
 * The contents of this file are subject to the Sun Industry Standards
 * Source License Version 1.1 (the "License"); You may not use this file
 * except in compliance with the License. You may obtain a copy of the
 * License at http://www.openoffice.org/license.html.
 *
 * Software provided under this License is provided on an "AS IS" basis,
 * WITHOUT WARRUNTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING,
 * WITHOUT LIMITATION, WARRANTIES THAT THE SOFTWARE IS FREE OF DEFECTS,
 * MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE, OR NON-INFRINGING.
 * See the License for the specific provisions governing your rights and
 * obligations concerning the Software.
 *
 * The Initial Developer of the Original Code is: Sun Microsystems, Inc..
 *
 * Copyright: 2002 by Sun Microsystems, Inc.
 *
 * All Rights Reserved.
 *
 * Contributor(s): _______________________________________
 *
 *
 **/

The filename in "$RCSfile: IDLDocumentationGuide.fsxw,v $" is replaced automatically by the
version control system, as well as "$Revision: 1.7 $", "$Author: jsc $" and "$Date: 2007/07/05
10:30:56 $". Contributors add their names to the list at the end.

The copyright date has to be adapted to the actual last year of work on the file.

The #ifdef and #define identifiers consist of two underscores "__", the module specification, each
nested module separated by a single underscore "_" and the name of the file separated with a
single underscore "_" as shown above and trailing two underscores "__".

B.2.3 File-Footer
The files do not have a footer with VCS fields. The history can only be viewed from CVS directly.
This is to avoid endless expanding log lists.

B.3 Element Documentation

B.3.1 General Element Documentation
Each element consists of three parts:

1. a summary paragraph with XHTML/XML markups

2. the main description with XHTML/XML markups

3. extra parts formed by @-tags

Summary Paragraph
The first part ending with an XHTML paragraph tag, that is, <p>, <dl>, , etc.) or "@..."
tag, is used as the summary in indexes.

1188 OpenOffice.org 2.3 Developer's Guide • June 2007

In contrast to JavaDoc, the first sentence is not used for the summary, but the first paragraph.

The first sentence begins with a lowercase letter if the name of the described element is the implied
noun. In this case, the sentence must be logical when reading it with that name. Sometimes an
auxiliary verb. in the most cases "is", has to be inserted.

Main Description
Between the summary paragraph and the "@..." tag there should be a clear and complete descrip-
tion about the declared element. This part must be delimited from the summary paragraph with an
XHTML paragraph tag, including "<dl>" and "", that are starting a new paragraph.

@-Tagged Part
Put the @ tags at the end of each element's documentation. The tags are dependent on the kind of
element described. Each of the @-tag ends when the elements documentation ends or the next @-
tag begins.

The @author tag is superfluous, because the author is logged by the version control system. They
are only used for OpenOffice.org contributions if declarations are taken from other projects, such
as Java.

The @version tag, known from JavaDoc, is not valid, because there cannot be more than one
version of any UNOIDL element, due to compatibility.

On the same line behind the @-tag, only a single structural element is allowed. The parameter
name is @param without the type and any attributes, the qualified exception is @throws , the quali-
fied type is @see, and the programming language is @example. The @returns is by itself on the
same line.

Do not put normal text behind an @-tag on the same line:

/** ...

 @param nPos put nothing else but the argument name here!
 it is correct to put your documentation for the parameter here.

 @throws com::sun::star::beans::UnknownPropertyException nothing else here!
 when <var>aName</var> is not a known property.
*/

B.3.2 Example for a Major Element Documentation
Each major element gets a header similar to the example shown below for an interface:
//===
/** controls lifetime of the object. Always needs a specified object owner.

 <p>Logical "Object" in this case means that the interfaces
 actually can be supported by internal (i.e. aggregated) physical
 objects. </p>

 @see com::sun::star::uno::XInterface
 for further information.

 @since OOo 2.1.0
*/
interface XComponent: XInterface
{

1189

B.3.3 Example for a Minor Element Documentation
Each minor element gets a header similar to the example shown below for a method:
 //--
 /** adds an event listener to the object.

 <p>The broadcaster fires the disposing method of this listener if
 the <method>XComponent::dispose()</method> method is called. </p>

 @param xListener
 refers the the listener interface to be added.

 @returns
 <TRUE/> if the element is added, <FALSE/> otherwise.

 @see removeEventListener
 */
 boolean addEventListener([in]XEventListener xListener);

B.4 Markups and Tags

B.4.1 Special Markups
These markup tags are evaluated by the XSL processor that generates a layout version of the docu-
mentation, that is, into HTML or XHTML. These tags have to be well formed andin pairs with
exactly the same upper and lowercase, as well.

To accentuate identifiers in the generated documentation and generate hyperlinks automatically
when building the cross-reference table and checking consistency, all identifiers have to be marked
up. Additionally, it is important for proofreading, because a single-word method name cannot be
distinguished by a verb. Identifiers have to be excluded from re-editing by the proofreading editor.

The following markups are used:

<atom>
This markup is used for identifiers of atomar types, such as long, short, and string. If a sequence or
array of the type is referred to, add the attribute dim with the number of bracket-pairs repre-
senting the number of dimensions.

Example:
<atom>long</atom>

For an example of sequences, see <type>.

<type>
This markup is used for identifiers of interfaces, services, typedefs, structs, exceptions, enums and
constants-groups. If a sequence or array of the type is referred to, add the attribute dim with the
number of bracket-pairs representing the number of dimensions.

Example:
<type scope="com::sun::star::uno">XInterface</type>
<type dim="[][]">PropertyValue</type>

1190 OpenOffice.org 2.3 Developer's Guide • June 2007

<member>
This markup substitutes the deprecated method, field and property markups, and is used for fields
of structs and exceptions, properties in service specifications and methods of interfaces.

Example:
<member scope="com::sun::star::uno">XInterface::queryInterface()</member>

<const>
This markup is used for symbolic constant identifiers of constant groups and enums.

Example:
<const scope="...">ParagraphAdjust::LEFT</const>

<TRUE/>, <FALSE/>
These markups represent the atomic constant for the boolean values TRUE and FALSE.

Example:
@returns
<TRUE/> if the number is valid, otherwise <FALSE/>.

<NULL/>
This markup represents the atomic constant for a NULL value.

<void/>
This markup represents the atomic type void. This is identical to <atom>void</atom>.

<code>
This markup is used for inline code.

Example:

Use <code>queryInterface(NULL)</code> for:
<listing>
This markup is used for multiple line code examples.
Example:
@example StarBASIC
<listing>
aCmp = StarDesktop.loadComponentFromURL(...)
if (isnull(aCmp))
....
endif
</listing>

B.4.2 Special Documentation Tags
This group of special tags are analogous to JavaDoc. Only what has previously been mentioned in
this guideline can appear in the line behind these tags. The pertaining text is put into the line

1191

following . Each text belonging to a tag ends with the beginning of the next special tag ("@") or
with the end of the documentation comment.

@author Name of the Author
This tag is only used if an element is adapted from an externally defined element, that is, a Java
class or interface. In this case, the original author and the in-house author at Sun Microsystems is
mentioned.

Example:
@author John Doe

@since Product Version
For OpenOffice.org APIs, all new IDL elements, such as types, properties, and enum values, must
use the @since tag to identify in which version the element was introduced.

The document generator tool autodoc translates Product Version into a more human-readable
form. OpenOffice.org derivatives can translate it to their own product name and version.

Example:
@since OOo 2.1.0

@see qualifiedIdentifier
This tag is used for extra cross references to other UNOIDL-specified elements. Some are automati-
cally generated, such as all methods using this element as a parameter or return value, and services
implementing an interface or include another service. If there is no other method that should be
mentioned or an interface with a similar functionality, it should be referenced by this @see state-
ment.

An @see-line can be followed by further documentation.

Example:
@see com::sun::star::uno::XInterface::queryInterface
 For this interface you have always access to ...

Do not use markups on the identifier on the same line behind the @see-tag!

/** ...

 @see <type>these markups are wrong</type
*/

@param ParameterName
This tag describes the formal parameters of a method. It is followed by the exact name of the
parameter in the method specification. The parameter by itself may be the implicit subject of the
following sentence, if it begins with a lowercase letter.

Examples:
@param xListener
 contains the listener interface to be added.
@param aEvent
 Any combination of ... can be used in this parameter.

1192 OpenOffice.org 2.3 Developer's Guide • June 2007

@return/@returns
This tag starts the description of the return value of a method. The description is in the line
folloiwng. If it begins with a lowercase letter, the method is the implied subject and "returns" is the
implied verb. See the following example:

@returns
 an interface of an object which supports
 the <type>Foo</type> service.

@throws qualifiedException
This tag starts the description of an exception thrown by a method in a particular case. The excep-
tion type is stated behind in the same line and must be fully qualified, if it is not in the same
module. The description is in the line following. If it begins with a lowercase letter, the method is
the implied subject and "throws" is the implied verb.

Example:
@throws com::sun::star::uno::lang::InvalidArgumentException
 if the specified number is not a specified ID.

@version VersionNumber
This was originally used to set a version number for the element. This tag is deprecated and should
not be used.

B.4.3 Useful XHTML Tags
Only a few XHTML tags are required for writing the documentation in idl files. The most impor-
tant ones are listed in this section.

Paragraph: <p> ... </p>
This tag marks a normal paragraph. Consider that line breaks and empty lines in the idl file do not
cause a line break or a paragraph break in the layout version. Explicit paragraph break markups,
are necessary.

Do not use
 or CR/LF for marking paragraphs. CR and LF are ignored, except within <pre>...</pre>
and <listing>...</listing> areas. The
 tag is only for rare cases of explicit linebreaks.

/** does this and that.

 This sentence should start with a "<p>". If not,
 it still belongs to the previous paragraph!

 This still belongs to the first paragraph.

 As this sentence is as well!
*/

Consider using < for < and > for >, as shown in the example above.

1193

Line Break:

This tag marks up a line break within the same paragraph. Consider line breaks and empty lines in
the idl file do not cause a line break or a paragraph break when presented by the HTML browser.
Explicit paragraph break markups are necessary.

Unordered List:
These tags mark the beginning and end of an unordered list, as list items.

Example:

 the first item
 the second item
 the third item

results in a list similar to:

• the first item

• the second item

• the third item

Ordered List:
These tags mark the beginning and end of an ordered list, as list items.

Example:

 the first item
 the second item
 the third item

results in a list similar to:

1.the first item

2.the second item

3.the third item

Definition List: <dl><dt> ... </dt><dd> ... </dd>... </dl>
These tags mark the beginning and end of a definition list, the definition tags and the definition
data.

Example:
<dl>
 <dt>the first item</dt>
 <dd>asfd asdf asdf asdf asdf</dd>

 <dt>the second item</dt>
 <dd>asfd asdf asdf asdf asdf</dd>

 <dt>the third item</dt>
 <dd>asfd asdf asdf asdf asdf</dd>
</dl>

results in a list similar to:

1194 OpenOffice.org 2.3 Developer's Guide • June 2007

the first item

 asfd asdf asdf asdf asdf

the second item

 asfd asdf asdf asdf asdf

the third item

 asfd asdf asdf asdf asdf

Table: <table><tr><td>...</td>...</tr>...</table>
Defines a table with rows (tr) and columns (td).

Strong Emphasis: ...
These tags present a piece of text that is emphasized. In most cases this is bold, but the HTML-
client defines what it actually is.

Slight Emphasis: ...
These tags present a piece of text emphasized slightly. In most cases this is italic, but the HTML-
client defines what it actually is .

Anchor: ...
These tags specify a link to external documentation. The first "..." specifies the URL.

1195

Appendix C: Universal Content Providers

C.1 The Hierarchy Content Provider

C.1.1 Preface
The Hierarchy Content Provider (HCP) implements a content provider for the Universal Content
Broker (UCB). It provides access to a persistent, customizable hierarchy of contents.

C.1.2 HCP Contents
The HCP provides three different types of contents: link, folder and root folder.

1. An HCP link is a content that "points" to another UCB content. It is always contained in an HCP
Folder. An HCP Link has no children.

2. An HCP folder is a container for other HCP Folders and HCP Links.

3. There is at least one instance of an HCP root folder at a time. All other HCP contents are chil-
dren of this folder. The HCP root folder contains HCP folders and links. It has the URL
vnd.sun.star.hier:/.

1197

C.1.3 Creation of New HCP Content
HCP folders and the HCP root folder implement the interface com.sun.star.ucb.XContentCre-
ator. HCP links and HCP folders support the command "insert" allowing all the HCP folders, as
well as the HCP root folder to create new HCP folders and HCP links. To create a new child of an
HCP folder:

1. The parent folder creates a new content by calling its createNewContent() method. The
content type for new folders is "application/vnd.sun.star.hier-folder". To create a new link, use
the type string "application/vnd.sun.star.hier-link".

2. Set a title at the new folder or link. The new child executes the "setPropertyValues"
command that sets the property Title to a non-empty value. For a link, set the property
TargetURL to a non-empty value.

3. The new child, not the parent executes the command "insert". This commits the creation
process.

C.1.4 URL Scheme for HCP Contents
Each HCP content has an identifier corresponding to the following scheme:

vnd.sun.star.hier:/<path>

where <path> is a hierarchical path of the form

name>/<name>/.../<name>

where <name> is an encoded string according to the URL conventions.

Examples:

vnd.sun.star.hier:/ (The URL of the HCP Root Folder)

vnd.sun.star.hier:/Bookmarks/Sun%20Microssystems%20Home%20Page

1198 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 20.1

http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html

vnd.sun.star.hier:/Workplace/Printers

C.1.5 Commands and Properties
UCB Type (returned by
XContent::getContentType)

Properties Commands Interfaces

Link application/
vnd.sun.star.hier-link

[readonly] ContentType
[readonly] IsDocument
[readonly] IsFolder
Title
TargetURL

getCommandInfo
getPropertySetInfo
getPropertyValues
setPropertyValues
insert
delete

XTypeProvider
XServiceInfo
XComponent
XContent
XCommandProcessor
XProperties-
ChangeNotifier
XPropertyContainer
XPropertySetInfo-
ChangeNotifier
XCommandInfo-
ChangeNotifier
XChild

Folder application/
vnd.sun.star.hier-folder

[readonly] ContentType
[readonly] IsDocument
[readonly] IsFolder
Title

getCommandInfo
getPropertySetInfo
getPropertyValues
setPropertyValues
insert
delete
open
transfer1

same as HCP Link, plus
XContentCreator

Root
Folder

application/
vnd.sun.star.hier-folder

[readonly] ContentType
[readonly] IsDocument
[readonly] IsFolder
Title

getCommandInfo
getPropertySetInfo
getPropertyValues
setPropertyValues
open
transfer

same as HCP Link, plus
XContentCreator

1 The "transfer" command only transfers HCP-contents to HCP folders. It does not handle contents with a URL
scheme other then the HCP-URL-scheme.

C.2 The File Content Provider

C.2.1 Preface
The File Content Provider (FCP), a content provider for the Universal Content Broker (UCB),
provides access to the local file system by providing file content objects that represent a directory
or a file in the local file system. The FCP is able to restrict access to the file system to a number of
directories shown to the client under configurable aliases.

C.2.2 File Contents
The FCP provides content representing a directory or file in the local file system.

1. A directory contains other directories or files.

1199

http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandInfoChangeNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandInfoChangeNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfoChangeNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfoChangeNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertiesChangeNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertiesChangeNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandProcessor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html

2. A file is a container for document data or content. The FCP can not determine the MediaType
property of a file content.

C.2.3 Creation of New File Contents
A content representing directories implements the interface com.sun.star.ucb.XContentCre-
ator. A file content object supports the command "insert". To create a new directory or file in a
directory:

1. The parent directory creates a new content by calling its createNewContent() method. The
content type for new folders is "application/vnd.sun.staroffice.fsys-folder". To create a new file,
use the type string "application/vnd.sun.staroffice.fsys-file". A new file content object is the
retun value.

2. Set a title at the new file content object. The new child executes a "setPropertyValues"
command that sets the property Title to a non-empty value.

3. The new file content object, not the parent, executes the command "insert". This creates the
corresponding physical file or directory. For files, supply the implementation of an
com.sun.star.io.XInputStream with the command's parameters that provide access to the
stream data.

C.2.4 URL Schemes for File Contents

The file URL Scheme
Each file content has an identifier corresponding to the following scheme:

file:///<path>

where <path> is a hierarchical path of the form

<name1>/<name>/.../<name>.

The first part of <path> (<name1>) is not required to denote a physically existing directory, but
may be remapped to such a directory. If this is done, the FCP refuses file access for any URL whose
<name1>-part is not an element of a predefined list of alias names.

The vnd.sun.star.wfs URL Scheme
In the Sun ONE Webtop, the server-side file system is addressed with vnd.sun.star.wfs URLs. The
wfs stands for Webtop File System. The file URL scheme is reserved for a potential client-side file
system.

The vnd.sun.star.wfs URL scheme is completely hidden from the FCP, that is, the server side FCP
internally works with file URLs, like any other FCP: There is a Remote Access Content Provider
(RAP) between the UCB and the FCP. The RAP, among other things, can route requests to another

1200 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 20.2

http://api.openoffice.org/docs/common/ref/com/sun/star/io/XInputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XInputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XInputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html

UCP and rewrite URLs. This feature is used so that the client of the UCB works with
vnd.sun.star.wfs URLs and the FCP remains unmodified and works with file URLs, with a RAP in
between that maps between those two URL schemes.

Except for the different scheme name, the syntax of the vnd.sun.star.wfs URL scheme is exactly the
same as the file URL scheme.

C.2.5 Commands and Properties
UCB Type (returned by
XContent::getContentType)

Properties Commands Interfaces

File application/
vnd.sun.staroffice.fsys-file

[readonly] ContentType
DateCreated
DateModified
[readonly] IsDocument
[readonly] IsFolder
Size
Title
IsReadOnly

getCommandInfo
getPropertySetInfo
getPropertyValues
setPropertyValues
insert
delete
open
transfer

XServiceInfo
XComponent
XContent
XCommandProcessor
XProperties-
ChangeNotifier
XPropertyContainer
XPropertySetInfo-
ChangeNotifier
XCommandInfo-
ChangeNotifier
XChild
XContentCreator

Direc-
tory

application/
vnd.sun.staroffice.fsys-folder

[readonly] ContentType
DateCreated
DateModified
[readonly] IsDocument
[readonly] IsFolder
Size
Title
IsReadOnly

getCommandInfo
getPropertySetInfo
getPropertyValues
setPropertyValues
insert
delete
open

XServiceInfo
XComponent
XContent
XCommandProcessor
XProperties-
ChangeNotifier
XPropertyContainer
XPropertySetInfo-
ChangeNotifier
XCommandInfo-
ChangeNotifier
XChild

C.3 The FTP Content Provider

C.3.1 Preface
The FTP content provider implements a content provider for the Universal Content Broker (UCB).
It provides access to the contents, folders and documents, made available by FTP servers.

C.3.2 FTP Contents
The FTP Content Provider provides three different types of contents: accounts, folders and docu-
ments.

1. An FTP account is a content that represents an account for an FTP server. An account is
uniquely determined by a combination of a user name and the host name of the FTP server.

1201

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandInfoChangeNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandInfoChangeNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfoChangeNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfoChangeNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertiesChangeNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertiesChangeNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandProcessor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandInfoChangeNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandInfoChangeNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfoChangeNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfoChangeNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertiesChangeNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertiesChangeNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandProcessor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html

Anonymous FTP accounts have the string "anonymous" as a user name. An FTP account also
represents the base directory, that is, the directory that is selected when the user logs in to the
FTP server, and behaves like an FTP folder.

2. An FTP folder is a content that represents a directory on an FTP server. An FTP folder never has
a content stream, but it can have FTP folders and FTP documents as children.

3. An FTP document is a content that represents a single file on an FTP server. An FTP document
always has a content stream and never has children.

C.3.3 Creation of New FTP Content
FTP accounts and FTP folders implement the interface com.sun.star.ucb.XContentCreator. FTP
folders and FTP documents support the command "insert"allowing all the FTP accounts and FTP
folders to create new FTP folders and FTP documents. To create a new child of an FTP account or
FTP folder:

1. The folder creates a new content by calling its createNewContent() method. The content type
for new folders is "application/vnd.sun.staroffice.ftp-folder". To create a new document, use
the type string "application/vnd.sun.staroffice.ftp-file".

2. Set a title at the new folder or document. The new child executes a "setPropertyValues"
command that sets the property Title to a non-empty value.

3. The new child, not the parent, executes the command "insert". This commits the creation
process. For documents, supply an com.sun.star.io.XInputStream, whose contents are
transferred to the FTP server with the command's parameters.

FTP accounts cannot be created the way new FTP folders or FTP documents are created. When you
call the FTP content provider's queryContent() method with the URL of an FTP account, a
content object representing that account, user name and host combination, is automatically created.
The same as the URL of an already existing FTP folder or FTP document.

1202 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 20.3

http://api.openoffice.org/docs/common/ref/com/sun/star/io/XInputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XInputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XInputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html

C.3.4 URL Scheme for FTP Contents
Each FTP content has an identifier corresponding to the following scheme
(see also RFCs 1738, 2234, 2396, and 2732):
ftp-URL ::= "ftp://" login *("/" segment)
login ::= [user [":" password] "@"] hostport
user ::= *(escaped / unreserved / "$" / "&" / "+" / "," / ";" / "=")
password ::= *(escaped / unreserved / "$" / "&" / "+" / "," / ";" / "=")
hostport ::= host [":" port]
host ::= incomplete-hostname / hostname / IPv4address
incomplete-hostname ::= *(domainlabel ".") domainlabel
hostname ::= *(domainlabel ".") toplabel ["."]
domainlabel ::= alphanum [*(alphanum / "-") alphanum]
toplabel ::= ALPHA [*(alphanum / "-") alphanum]
IPv4address ::= 1*3DIGIT "." 1*3DIGIT "." 1*3DIGIT "." 1*3DIGIT
port ::= *DIGIT
segment ::= *pchar
pchar ::= escaped / unreserved / "$" / "&" / "+" / "," / ":" / "=" / "@"
escaped ::= "%" HEXDIG HEXDIG
unreserved ::= alphanum / mark
alphanum ::= ALPHA / DIGIT
mark ::= "!" / "'" / "(" / ")" / "*" / "-" / "." / "_" / "~"

FTP accounts have a login part, optionally followed by a single slash, and no segments. FTP folders
have a login part followed by one or more nonempty segments that must be followed by a slash. FTP
documents have a login part followed by one or more nonempty segments that must not be followed
by a slash, that is, the FTP content provider uses a potential final slash of a URL to distinguish
between folders and documents. Note that this is subject to change in future versions of the
provider.

Examples:

ftp://me@ftp.host
The account of user "me" on the FTP server "ftp.host".

ftp://ftp.host/pub/doc1.txt
A document on an anonymous FTP account.

ftp://me:secret@ftp.host/secret-documents/
A folder within the account of user "me" with the password specified directly in the URL. Not
recommended.

C.3.5 Commands and Properties
UCB Type (returned by
XContent::getContentType)

Properties Commands Interfaces

Accou
nt

application/
vnd.sun.staroffice.ftp-box

[readonly] ContentType
[readonly] IsDocument
[readonly] IsFolder
Title
UserName
Password
FTPAccount1

ServerName
ServerBase2

[readonly] DateCreated
[readonly] DateModified
[readonly] FolderCount
[readonly] DocumentCount

getCommandInfo
getPropertySetInfo
getPropertyValues
setPropertyValues
open
transfer3

XTypeProvider
XServiceInfo
XComponent
XContent
XCommandProcessor
XProperties-
ChangeNotifier
XPropertyContainer
XPropertySetInfo-
ChangeNotifier
XCommandInfo-
ChangeNotifier
XContentCreator

1203

http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandInfoChangeNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandInfoChangeNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfoChangeNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfoChangeNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertiesChangeNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertiesChangeNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandProcessor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html

UCB Type (returned by
XContent::getContentType)

Properties Commands Interfaces

Folder application/
vnd.sun.staroffice.ftp-folder

[readonly] ContentType
[readonly] IsDocument
[readonly] IsFolder
Title
[readonly] DateCreated
[readonly] DateModified
[readonly] FolderCount
[readonly] DocumentCount

getCommandInfo
getPropertySetInfo
getPropertyValues
setPropertyValues
insert
delete
open
transfer

same as FTP Account
plus
XChild

Docu-
ment

application/
vnd.sun.staroffice.ftp-file

[readonly] ContentType
[readonly] IsDocument
[readonly] IsFolder
Title
[readonly] DateCreated
[readonly] DateModified
[readonly] IsReadOnly
[readonly] Size
MediaType

getCommandInfo
getPropertySetInfo
getPropertyValues
setPropertyValues
insert
delete
open

same as FTP Folder minus
XContentCreator

1 The property FTPAccount is similar to Password. Some FTP servers not only require authentication through a pass-
word, but also through a second token called an "account".

2 The property ServerBase is used to override the default directory associated with an FTP account.
3 The "transfer" command only transfers contents within one FTP Account. It cannot transfer contents between

different FTP accounts or between the FTP content provider and another content provider.

C.4 The WebDAV Content Provider

C.4.1 Preface
The WebDAV Content Provider (DCP) implements a content provider for the Universal Content
Broker (UCB). An overview is provided at URLs http://www.webdav.org and
http://www.fileangel.org/docs/DAV_2min.html. It provides access to WebDAV and standard HTTP
servers. The DCP communicates with the server by using the WebDAV protocol that is an exten-
sion to the HTTP protocol, or by using the plain HTTP protocol if the server is not WebDAV-
enabled.

C.4.2 DCP Contents
The DCP provides two types of content: a folder or document that corresponds to a collection or
non-collection, of nodes and leafs, in WebDAV, respectively.

1. A DCP folder is a container for other DCP Folders or Documents.

2. A DCP document is a container for document data or content. The data or content can be any
type. A WebDAV server, like an HTTP server, does not mandate what type of data or content is
contained within Documents. The type of data or content is defined by the MediaType property
which is different from the content type returned from the getContentType() method. The
MediaType property is mapped to the equivalent WebDAV property and the WebDAV server
calculates the value.

1204 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html

C.4.3 Creation of New DCP Contents
DCP folders implement the interface com.sun.star.ucb.XContentCreator. DCP documents and
DCP folders support the command "insert". To create a new child of a DCP folder:

1. The parent folder creates a new content by calling its createNewContent() method. The
content type for new folders is "application/vnd.sun.star.webdav-collection". To create a new
document, use the type string "application/http-content".

2. Set a title for the new folder or document. The new child executes a "setPropertyValues"
command that sets the property Title to a non-empty value.

3. The new child, not the parent, executes the command "insert". This commits the creation
process and makes the newly-created content on the WebDAV server persistent.

C.4.4 Authentication
DAV resources that require authentication are accessed using the interaction handler mechanism
of the UCB. The DAV content calls an interaction handler supplied by the client to let it handle an
authentication request. The implementation of the interaction handler collects the user name or
password from a location, for example, a login dialog, and supplies this data as an interaction
response.

C.4.5 Property Handling
In addition to the mandatory UCB properties, the DCP supports reading and writing all DAV live
and dead properties. Some DAV live properties are mapped in addition to the UCB properties and
conversely, that is, DAV:creationdate is mapped to DateCreated. Adding and removing dead
properties is also supported by the implementation of the XPropertyContainer interface of a DCP
content.

Property Values:

1205

Illustration 20.4

http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html

The DCP cannot determine the semantics of unknown properties, thus the values of such proper-
ties will always be presented as plain text, as they were returned from the server.

Namespaces:

The following namespaces are known to the DCP:

• DAV:

• http://apache.org/dav/props/

Properties with these namespaces are addressed using a UCB property name which is the concate-
nation of namespace and name, that is, DAV:getcontentlength.

Dead properties with namespaces that are not well-known to the DCP are addressed using a
special UCB property name string, that contains both the namespace and the property name. A
special property name string must be similar to the following:
<prop:the_propname xmlns:prop="the_namespace">

The DCP internally applies the namespace http://ucb.openoffice.org/dav/props/ to all UCB property
names that:

• are not predefined by the UCB API.
• do not start with a well-known namespace.
• do not use the special property name string to encode namespace and name.

For example, a client does an addProperty(.... "MyAdditionalProperty" ...). The
resulting DAV property has the name MyAdditionalProperty, its namespace is http://ucb.openof-
fice.org/dav/props/. However, the DCP client never sees that namespace, but the client can always
use the simple name MyAdditionalProperty.

DAV / UCB Property Mapping:

DAV:creationdate DateCreated

DAV:getlastmodified DateModified

DAV:getcontenttype MediaType

DAV:getcontentlength Size

DAV:resourcetype (used to set IsFolder, IsDocument, ContentType)

C.4.6 URL Scheme for DCP Contents
Each DCP content has an identifier corresponding to the following scheme:

vnd.sun.star.webdav://host:port/<path>

where <path> is a hierarchical path of the form

<name>/<name>/.../<name>

where <name> is an encoded string according to the URL conventions.

It is also possible to use standard HTTP URLs. The implementation determines if the requested
resource is DAV enabled.

Examples:

vnd.sun.star.webdav://localhost/davhome/
vnd.sun.star.webdav://davserver.com/Documents/report.sdw
http://davserver.com/Documents/report.sdw

1206 OpenOffice.org 2.3 Developer's Guide • June 2007

Note that the WebDAV URL namespace model is the same as the HTTP URL namespace model.

C.4.7 Commands and Properties
UCB Type (returned by
XContent::getContentType)

Properties Commands Interfaces

Docu-
ment

application/
http-content

[readonly] ContentType
[readonly] DateCreated
[readonly] DateModified
[readonly] IsDocument
[readonly] IsFolder
[readonly] MediaType
[readonly] Size
'Title'

getCommandInfo
getPropertySetInfo
getPropertyValues
setPropertyValues
insert
delete
open

XTypeProvider
XServiceInfo
XComponent
XContent
XCommandProcessor
XProperties-
ChangeNotifier
XPropertyContainer
XPropertySetInfo-
ChangeNotifier
XCommandInfo-
ChangeNotifier
XChild

Folder application/
vnd.sun.star.webdav-collec-
tion

[readonly] ContentType
[readonly] DateCreated
[readonly] DateModified
[readonly] IsDocument
[readonly] IsFolder
[readonly] MediaType
[readonly] Size
Title

getCommandInfo
getPropertySetInfo
getPropertyValues
setPropertyValues
insert
delete
open
"transfer

same as DCP Folder, plus
XContentCreator

C.5 The Package Content Provider

C.5.1 Preface
The Package Content Provider (PCP) implements a content provider for the Universal Content
Broker (UCB). It provides access to the content of ZIP and JAR archive files. It maybe extended to
support other packages, such as OLE storages, in the future.

C.5.2 PCP Contents
The PCP provides two different types of contents: stream and folder.

1. A PCP stream is a content that represents a file inside a package. It is always contained in a PCP
folder. A PCP stream has no children.

2. A PCP folder is a container for other PCP folders and PCP streams.

1207

http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandInfoChangeNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandInfoChangeNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfoChangeNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfoChangeNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertiesChangeNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertiesChangeNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandProcessor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html

C.5.3 Creation of New PCP Contents
PCP folders implement the interface com.sun.star.ucb.XContentCreator. PCP streams and PCP
folders support the command "insert", therefore all PCP folders can create new PCP folders and
PCP streams. To create a new child of a PCP folder:

1. The parent folder creates a new content by calling its createNewContent() method. The
content type for new folders is "application/vnd.sun.star.pkg-folder". To create a new stream,
use the type string "application/vnd.sun.star.pkg-stream".

2. Set a title for the new folder or stream. The new child executes a "setPropertyValues"
command that sets the property Title to a non-empty value.

3. The new child, not the parent, executes the command "insert". This commits the creation
process. For streams, supply the implementation of an com.sun.star.io.XInputStream with
the command parameters that provide access to the stream data.

Another convenient method to create streams is to assemble the URL for the new content where
the last part of the path becomes the title of the new stream and obtain a Content object for that
URL from the UCB. Then, let the content execute the command "insert". The command fails if
you set the command parameter "ReplaceExisting" to false and there is already a stream with the
title given by the content's URL.

C.5.4 URL Scheme for PCP Contents
Each PCP content has an identifier corresponding to the following scheme:
package-URL ::= "vnd.sun.star.pkg://" orig-URL [abs-path]
abs-path ::= "/" path-segments
path-segments ::= segment * ("/" segment)
segment ::= pchar
pchar ::= unreserved | escaped | ":" | "@" | "&" | "=" | "+" | "$" | ","
unreserved ::= alphanum | mark
mark ::= "-" | "_" | "." | "!" | "~" | "*" | "'" | "(" | ")"
escaped ::= "%" hex hex
orig-URL 1 ::= * (unreserved | escaped | "$" | "," | ";" | ":" | "@" | "&" | "&" | "=" | "+")

Examples:

1208 OpenOffice.org 2.3 Developer's Guide • June 2007

Illustration 20.5

http://api.openoffice.org/docs/common/ref/com/sun/star/io/XInputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XInputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XInputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html

vnd.sun.star.pkg://file:%2F%2F%2Fe:%2Fmy.xsw/
The root folder of the package located at file:///e:/my.xsw.

vnd.sun.star.pkg://file:%2F%2F%2Fe:%2Fmy.xsw/Content
The folder or stream named "Content" that is contained in the root folder of the package located
at file:///e:/my.xsw.

vnd.sun.star.pkg://file:%2F%2F%2Fe:%2Fmy.xsw/Content%20A
The folder or stream named "Content A" that is contained in the root folder of the package
located at file:///e:/my.xsw.

C.5.5 Commands and Properties
UCB Type (returned by
XContent::getContentType)

Properties Commands Interfaces

Stream application/
vnd.sun.star.pkg-stream

[readonly] Content-
Type
[readonly] IsDocument
[readonly] IsFolder
MediaType
[readonly] Size
Title
Compressed1

getCommandInfo
getPropertySetInfo
getPropertyValues
setPropertyValues
insert
delete
open

XTypeProvider
XServiceInfo
XComponent
XContent
XCommandProcessor
XProperties-
ChangeNotifier
XPropertyContainer
XPropertySetInfo-
ChangeNotifier
XCommandInfo-
ChangeNotifier
XChild

Folder application/
vnd.sun.star.pkg-folder

[readonly] Content-
Type
[readonly] IsDocument
[readonly] IsFolder
MediaType
[readonly] Size
Title

getCommandInfo
getPropertySetInfo
getPropertyValues
setPropertyValues
insert
delete
open
transfer2

flush3

same as PCP Stream, plus
XContentCreator

1 The property Compressed is introduced by package streams to explicitly state if you want a stream to be compressed or
not. The default value of this property is determined according to the value suggested by the underlying packager imple-
mentation.

2 The "transfer" command only transfers PCP folders or streams to other PCP folders. It does not handle contents with
a URL scheme other then the PCP-URL scheme.

3 'flush' is a command introduced by the PCP Folder. It takes a void argument and returns void. This command is used to
write unsaved changes to the underlying package file. Note that in the current implementation, PCP contents never
flush automatically! Operations which require a flush to become persistent are: "setPropertyValues(Title |
MediaType)", "delete", "insert".

C.6 The Help Content Provider

C.6.1 Preface
Currently, the Help Content Provider has the following responsibilities:

1209

http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContentCreator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XChild.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandInfoChangeNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandInfoChangeNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfoChangeNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfoChangeNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertiesChangeNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertiesChangeNotifier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XCommandProcessor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html

1. It is the interface to a search engine that allows a full-text search, including searching specific
scopes, such as headers. The range of accessible scopes depends on the indexing process and is
currently not changeable after setup.

2. It delivers a keyword index to its clients.

3. The actual helpcontent has media type "text/html," with some images of type "image/gif"
embedded. The content is generated from packed xml files that have to be transformed
according to a xsl-transformation to produce the resulting XHTML. There is a cascading style
sheet used for formatting the XHTML files of media type "text/css".

4. (It provides its clients the modules for which help is available.

C.6.2 Help Content Provider Contents
The responsibilities mentioned above are fulfilled by providing different kinds of content objects to
the client, namely:

• a root content giving general information about the installed help files

• a module content serving as the interface to all search functionality

• picture and XHTML Contents providing the actual content of the transformed help files and
pictures

These contents are described below.

C.6.3 URL Scheme for Help Contents
Each Help content has an identifier corresponding to the following scheme:
URL ::= scheme delimiter path? query? anchor?
scheme ::= "vnd.sun.star.help"
delimiter ::= "://" | ":/"
path ::= module ("/" id)?
query ::= "?" key-value-list?
keyvaluelist ::= keyvalue ("&" keyvalue)?
keyvalue ::= key "=" value
anchor ::= "#" anchor-name

Currently, to have a fault-tolerant system, some enveloping set of this is allowed, but without
carrying more information.

Examples:

vnd.sun.star.help://?System=WIN&Language=de

vnd.sun.star.help://swriter?System=WIN&Language=de&Query=text&HitCount=120&Scope=Heading

vnd.sun.star.help://portal/4711?System=UNIX&Language=en_US&HelpPrefix=http%3A%2F%2Fportal
%2Fportal

Some information must be given in every URL, namely the value of the keys
"System"/"Language."

"System" may be one of "UNIX," "WIN," "OS2" and "MAC". This key parameterizes the XSL trans-
formation applied to the help filesand their content changes according to this parameter, and is
mandatory only for helpcontents delivering XHTML-files. This may change in the future.

1210 OpenOffice.org 2.3 Developer's Guide • June 2007

"Language" is coded as ISO639 language code, optionally followed by "-" and ISO3166 country
code. Only the language code part of "Language" is used and directly determines the directory,
which is relative to the installation path where the help files are found.

In the following, the term "help-directory" is used to determine the directory named "help" in the
office/portal installation. The term "help-installation-directory" is used to denote the particular
language-dependent subdirectory of the help-directory that contains the actual help files as a
packed jar file, the index, the config files and some other items not directly used by the help
content provider.

C.6.4 Properties and Commands
Every creatable content can execute the following commands. It isnot constrained to a particular
URL-scheme:

com::sun::star::ucb::XCommandInfo getCommandInfo()
com::sun::star::beans::XPropertySetInfo getPropertySetInfo()
com::sun::star::sdbc::XRow getPropertyValues([in] sequence< com::sun::star::beans::Property >)
void setPropertyValues([in] sequence< com::sun::star::beans::PropertyValue >)

These commands repeat the information given in the following. The available properties and
commands are explained by the following URL examples:

Root Content
vnd.sun.star.help://?System=WIN&Language=de

Properties:

Name Type value

'Title' string "root"

'IsFolder' boolean true

'IsDocument' boolean true

'ContentType' string "application/vnd.sun.star.help"

'MediaType' string "text/css"

Commands:

Return Type Name Argument Type

XDynamicResultSet open1 OpenCommandArgument2

1 Return value of this command contains the modules available in the particular installation for the requested language.
The modules are currently determined by looking for the files in the help-installation-directory matching "*.db", with the
exception of the file "picture.db".

Generally, a module corresponds to a particular application, namely, if the writer application is
installed, there should be a module "vnd.sun.star.help://swriter" and so forth.

The written XOutputStream or the set XInputStream (set at XActiveDataSink) makes the
cascading style sheet available, which is used to format the XHTML files. Physically, the stream
contains the content of the file custom.css in the help-directory of the office or portal installation.

Only the key "Language" is used. Any other key may be set, but is ignored.

1211

Module Content
vnd.sun.star.help://swriter?System=WIN&Language=de&Query=text&HitCount=120&Scope=
Heading

Properties:

Name Type value

Title string determined from config file in help-
installation-directory

IsFolder boolean true

IsDocument boolean false

ContentType string "application/vnd.sun.star.help"

KeyWordList sequence< string > (See below)

KeyWordRef sequence< sequence < string > > (See below)

KeyWordAnchorForRef sequence< sequence < string > > (See below)

KeyWordTitleForRef sequence< sequence < string > > (See below)

SearchScopes sequence< string > (See below)

The help files contain specially marked keywords. The alphabetically sorted list of keywords is
contained in the property KeywordList.

For example, you are looking for keyword KeywordList[i], where i is an integer. The help
module in which this keyword should be found is determined by the module part of the content
URL, "swriter" in our example. Now KeywordRef[i] contains a list of document ids, where the
document belonging to that id contains the keyword string "docid = KeywordRef[i][j]".

The location in the XHTML document where this particular keyword refers to is marked by an
HTML anchor element:

Here the anchor is given by the string "anchor = KeywordAnchorForRef[i][j]".

For our example, the URL of the j document in the swriter module containing the keyword
Keyword[i] is determined as vnd.sun.star.help://swriter/docid?System=WIN&Language=de#anchor.
The keys "HitCount", "Query" and "Scope" have no value with regards to the keywords.

The title of the resulting document is determined directly without having to instantiate the content
by the value of "KeywordTitleForRef[i][j]".

The module contents are also the interface to the search engine. A number of additional keys in the
URL are necessary, namely the keys:

• HitCount
• Query
• Scope

The value of Scope should be one of the strings given by the property SearchScopes, currently
"Heading" or "FullText". Leaving the key undefined defaults to a full-text search, Setting it to
"Heading" means to search in only the document titles.

There may be any number of Query key definitions in the URL. Many Query keys determine a
query search, first for documents containing all the values, then searching for those containing only
subsets of all the values. The requested number of results is determined by the value of the key
HitCount. The actual returned number may be smaller. The interface to the results returned by

1212 OpenOffice.org 2.3 Developer's Guide • June 2007

the search engine is given by an com.sun.star.ucb.XDynamicResultSet, which is the return
value of the command "open":

Return Type Name Argument Type

XDynamicResultSet open OpenCommandArgument2

XHTML Content or Picture Content
vnd.sun.star.help://portal/4711?System=UNIX&Language=en_US&HelpPrefix=http%3A%2F%2Fportal
%2Fportal%2F

Properties:

Name Type value

Title string determined from database

IsFolder boolean false

IsDocument boolean true

ContentType string "application/vnd.sun.star.help"

MediaType1 string "text/html" or "image/gif"

1 The MediaType "image/gif" corresponds to a URL which contains a module part "picture", as opposed to "portal" in the
example.

Commands:

Return
Type

Name Argument Type

void "open"1 OpenCommandArgument2

1 Returns the transformed XHTML-content, or the gif-content of a PictureContent.

There is one special document for every module, namely those named start (replace 4711 by start in
our example). It identifies the main help page for every module.
There is an additional key named HelpPrefix. If set, every link in a generated document pointing
to another help-document, either XHTML or image document, is first encoded and then prefixed
by the URL-decoded form of the value of this key. This key is only used by Sun One Webtop.

1213

http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XDynamicResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XDynamicResultSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/XDynamicResultSet.html

Appendix D: UNOIDL Syntax Specification

The following listing comprises the language specification for UNOIDL in pseudo BNF notation.
idl-specification ::= declaration+
declaration ::= enum-decl
 | plain-struct-decl
 | poly-struct-template-decl
 | exception-decl
 | interface-forward-decl
 | interface-decl
 | typedef-decl
 | constant-decl
 | constants-decl
 | module-decl
 | interface-service-decl
 | accumulated-service-decl
 | interface-singleton-decl
 | service-singleton-decl
enum-decl ::= ["published"] "enum" identifier "{" enum-member-decl ("," enum-member-decl)* "}" ";"
enum-member-decl ::= identifier ["=" expr]
plain-struct-decl ::= ["published"] "struct" identifier [single-inheritance]
 "{" struct-member-decl+ "}" ";"
single-inheritance ::= ":" name
struct-member-decl ::= type identifier ";"
poly-struct-template-decl ::= ["published"] "struct" identifier struct-params
 "{" poly-struct-member-decl+ "}" ";"
struct-params ::= "<" identifier ("," identifier)* ">"
poly-struct-member-decl ::= struct-member-decl
 | parametric-member-decl
parametric-member-decl ::= identifier identifier ";"
exception-decl ::= ["published"] "exception" identifier [single-inheritance]
 "{" struct-member-decl+ "}" ";"
interface-forward-decl ::= ["published"] "interface" identifier ";"
interface-decl ::= ["published"] "interface" identifier [single-inheritance]
 "{" interface-member-decl* "}" ";"
interface-member-decl ::= interface-inheritance-decl
 | attribute-decl
 | method-decl
interface-inheritance-decl ::= ["[" "optional" "]"] "interface" name ";"
attribute-decl ::= attribute-flags type identifier ["{" attribute-access-decl* "}"] ";"
attribute-flags ::= "[" (attribute-flag ",")* "attribute" ("," attribute-flag)* "]"
attribute-flag ::= "bound" | "readonly"
attribute-access-decl ::= attribute-get-decl
 | attribute-set-decl
attribute-get-decl ::= "get" exception-spec ";"
attribute-set-decl ::= "set" exception-spec ";"
exception-spec ::= "raises" "(" name ("," name)* ")"
method-decl ::= ["[" "oneway" "]"] type identifier "(" [method-param ("," method-param)*] ")"
 [exception-spec]

1215

http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html
http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html
http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html

method-param ::= "[" direction "]" type identifier
direction ::= "in" | "out" | "inout"
typedef-decl ::= ["published"] "typedef" type identifier ";"
constant-decl ::= ["published"] const-decl
const-decl ::= "const" type identifier "=" expr ";"
constants-decl ::= ["published"] "constants" identifier "{" const-decl+ "}" ";"
module-decl ::= "module" identifier "{" declaration+ "}" ";"
interface-service-decl ::= ["published"] "service" identifier ":" name ["{" constructor-decl* "}"] ";"
constructor-decl ::= identifier "(" [constructor-params] ")" [exception-spec]
constructor-params ::= rest-param
 | ctor-param ("," ctor-param)*
rest-param ::= "[" "in" "]" "any" "..." identifier
ctor-param ::= "[" "in" "]" type identifier
accumulated-service-decl ::= ["published"] "service" identifier ":" name
 "{" service-member-decl+ "}" ";"
service-member-decl ::= service-inheritance-decl
 | interface-inheritance-decl
 | property-decl
service-inheritance-decl ::= ["[" "optional" "]"] "service" name ";"
property-decl ::= property-flags type identifier ";"
property-flags ::= "[" (property-flag ",")* "property" ("," property-flag)* "]"
property-flag ::= "bound" | "constrained" | "maybeambiguous" | "maybedefault" | "maybevoid" | "optional"
 | "readonly" | "removable" | "transient"
interface-singleton-decl ::= ["published"] "singleton" identifier ":" name ";"
service-singleton-decl ::= ["published"] "singleton" identifier "{" "service" name ";" "}" ";"
type ::= simple-type
 | sequence-type
 | poly-struct-type
 | name
simple-type ::= "void" | "boolean" | "byte" | "short" | "unsigned" "short" | "long" | "unsigned" "long"
 | "hyper" | "unsigned" "hyper" | "float" | "double" | "char" | "string" | "type" | "any"
sequence-type ::= "sequence" "<" type ">"
poly-struct-type ::= name "<" type ("," type)* ">"
expr ::= [expr "|"] xor-expr
xor-expr ::= [xor-expr "^"] and-expr
and-expr ::= [and-expr "&"] shift-expr
shift-expr ::= [shift-expr shift-op] add-expr
shift-op ::= "<<" | ">>"
add-expr ::= [add-expr add-op] mult-expr
add-op ::= "+" | "-"
mult-expr ::= [mult-expr mult-op] unary-expr
mult-op ::= "*" | "/" | "%"
unary-expr ::= [unary-op] primary-expr
unary-op ::= "+" | "-" | "~"
primary-expr ::= name | literal | "(" expr ")"
literal ::= boolean-literal
 | <INTEGER-LITERAL>
 | <FLOATING-POINT-LITERAL>
boolean-literal ::= "False" | "FALSE" | "True" | "TRUE"
name ::= ["::"] (identifier "::")* identifier
identifier ::= <IDENTIFIER>

1216 OpenOffice.org 2.3 Developer's Guide • June 2007

Glossary

A
Abstraction

The term abstraction denotes the process or the result of a generalization. Generalization describes
objects by qualities common to all objects of a certain class of objects. The principle of the general-
ization is to disregard individual properties of the objects, consequently it is impossible that an
abstract object exists anywhere but in theory.

Accessibility

Ability of an application to provide its functionality also in situations where the usage of input and
output devices is restricted for some reason. For instance, this can be due to restrictions of the
devices, the environment or a physical disability of the user. Often assistive technology is used to
provide accessibility, for instance screen readers or braille terminals. From version 1.1.0,
OpenOffice.org has an API for accessibility, which can be used with Java and Gnome accessibility.

Add-In

An add-in is a functional extension for the OpenOffice.org application on the basis of UNO compo-
nents , which interact with parts of the application that were especially laid out to be extended.
Examples of Add-Ins are Chart and Calc Add-Ins.

Any

All purpose data type for variables in UNOIDL. An any variable contains whichever data type is
specified for UNOIDL.

API

Application Programming Interface. The entirety of published methods, properties and other
means for software developers to access an application through software they write using this
application.

Assistive Technology

Devices which can be used to improve accessibility, see Accessibility.

AT

Assistive Technology, devices which can be used to improve accessibility. See Accessibility.

Automation

1217

Communication protocol between OLE automation objects. See OLE Automation.

AWT

Abstract Window Toolkit. The OpenOffice.org API contains a module com.sun.star.awt with
abstract specifications for a window toolkit that handles graphical devices, window environments
and user interfaces. In the current implementation of this specification, the specified features are
mapped to platform-specific window systems, such as Windows, X Windows or Java AWT. The
current C++ implementation is based on the Visual Component Library, a platform independent C
++ library for GUIs, which is part of OpenOffice.org.

B
Binary UNO Interface

When method calls are transported over a UNO bridge, a single generic C method is used to
dispatch all method calls across the bridge. This method and its parameters is also known as the
binary UNO interface.

Bridge

Code that connects different language environments, such as C++, Java and indirectly
OpenOffice.org Basic, with each other. The connection is exclusively used to transport method calls
with their parameters, and return values back and forth between the language environments.

C
Calendar

Calendaring information in an internationally used application pose the problem to translate
between the various calendar systems used in the world. In the context of OpenOffice.org, local
calendars are supported through the I18N API.

Calc

OpenOffice.org spreadsheet document or components of the OpenOffice.org application
containing the functionality necessary for spreadsheet documents in OpenOffice.org. Although
there might be an scalc executable on some platforms, it does not contain the Calc functionality, it
starts up a calc document using soffice.exe and its dependables.

Chart

Embedded diagram document or components of the OpenOffice.org application containing the
functionality necessary for embedded diagrams in OpenOffice.org. These diagrams visualize
numeric and textual data, such as lines, bars, and pies.

CJK

China-Japan-Korea. A group of Asian languages that require similar treatment in user interfaces
for common principles, such as the writing direction and other features of Asian document editing.

Class

1218 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/module-ix.html

Class is the description of the common qualities of individual objects in object-oriented languages.
This description can be expressed in an object-oriented programming language. A class description
may be abstract where it does not contain sufficient implementation to create fully functional
instances of a class, or it can be fully implemented. Fully implemented classes are used to create
individual instances of objects that act according to the class description.

Client

An object using the services of a server. See server.

Clipboard

The clipboard is common storage place on a computer platform. Information is copied or cut from
one application context and transferred to this storage where users paste it into another application
context. A variety of file formats can be written to the clipboard making the information useful in
many different contexts.

Collation

In the context of OpenOffice.org, ordering of textual information according to ordering rules local
to a cultural community. The rules for alphabetical ordering in Latin writing differ from country to
country, and there are completely different ordering rules in other cultural communities.
OpenOffice.org supports localized collation through its I18N API.

Collection (UNO Collection)

UNO collections are gatherings of objects that are retrieved by enumeration, index or name
through collection interfaces. UNO collections are not necessarily UNO containers, because they do
not support the addition of new objects to the collection� though a collection can be a container
too.

COM

Component Object Model. An object communication framework created as a part of OLE by
Microsoft (R) . See OLE.

Command URL

A string containing a command in the OpenOffice.org dispatch framework. See URL.

Commit

Acknowledgment of an open transaction. See transaction.

Complex Text Layout

Complex Text Layout Languages: In CTL languages (such as Thai, Hebrew, Arabic and Indian)
multiple characters may combine to form a display cell

Component

The term component has two uses in the UNO context. There are UNO components and XCompo-
nents, that is, objects implementing the interface com.sun.star.lang.XComponent.

UNO components are shared libraries containing implementations of UNO objects that are regis-
tered with and instantiated by a UNO service manager or service factory. If the component only
uses a UNO environment, it is a well formed component.

An XComponent is a UNO object that allows its owner object to control its lifetime and a user
object to register as a listener to be informed when the owner disposes of the XComponent. Occa-
sionally, the term component is used as a shortform for XComponent. For example, since

1219

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html

OpenOffice.org documents loaded by the desktop must always support XComponent, it has
become customary to call them components or desktop components. Loaded documents are not
UNO components in the sense of a well formed component. They have no shared libraries and
cannot be registered and instantiated at a service manager. It should always be clear from the
context if the term component means well formed UNO component or XComponent.

Configuration

In the context of OpenOffice.org often used for XML based configuration files. OpenOffice.org has
an API to access this configuration, the Extension Manager can insert configuration items, and
users can edit the files manually.

Constant

A named value in a computer program that does not change during runtime. Constants are used to
handle cryptic parameters in an understandable manner as in
com.sun.star.text.HoriOrientation:LEFT. Furthermore, if constants are used. it is possible to
alter the internal value of a constant without changing every occurrence of this value in written
code. But it is not possible to change the value of UNO IDL constants.

Constants Group

A named group of constant values, for example, the group com.sun.star.text.HoriOrienta-
tion contains constant values that describe possible horizental orientations, such as LEFT,
CENTER, and RIGHT. See constant.

Container (UNO Container)

UNO collection of objects with the additional option to add new objects to the collection and to
remove objects. See collection.

Connection

An UNO Connection is an open communication channel between a UNO client and server. For
example., if a Java program uses OpenOffice.org over the Java language binding, the Java client
program connects to the OpenOffice.org application, which then acts as server for the Java client.

A Database Connection is an open communication channel between a database management
system and an authenticated user.

Controller

A controller in the frame-controller-model paradigm of OpenOffice.org is a service that controls a
visual representation of a OpenOffice.org document model. It may offer interfaces to access the
visual representation, but it is not used to change the model it presents. In the frame-controller-
model paradigm the view is a hidden implementation detail behind the controller. See frame-
controller-model paradigm.

CORBA

Common Object Request Broker Architecture. Platform independent architecture for object
communication. CORBA served as one of the examples for UNO.

CTL

see Complex Text Layout

1220 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/text/HoriOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/HoriOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/HoriOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/HoriOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/HoriOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/HoriOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/HoriOrientation.html#LEFT
http://api.openoffice.org/docs/common/ref/com/sun/star/text/HoriOrientation.html#LEFT
http://api.openoffice.org/docs/common/ref/com/sun/star/text/HoriOrientation.html#LEFT

D
DB

Abbreviation for database.

DBMS

Database Management System

DCOM

Distributed Component Object Model. It adds to COM objects the ability to communicate with
COM objects on other machines.

DDE

A Windows protocol allowing applications to exchange data automatically. The OpenOffice.org
supports DDE through the Edit � Paste Special command. OpenOffice.org Basic also uses DDE.

DDL

Data Definition Language. Parts of SQL used to create and alter tables, and modify rules for rela-
tional integrity.

Deadlock

A state where two processes wait for another so that they can continue their work. They have to
wait until the deadlock is released from outside. For example this can happen if process A locks
resource X and process B locks resource Y, and then process B tries to lock resource X and process
A tries to lock resource Y.

Desktop

Central management instance for viewable components in the OpenOffice.org application.

Dialog (UNO Dialog)

A UNO dialog shows a window for user input. A dialog contains control elements, such as text
fields, buttons, list boxes, and combo boxes. Currently, UNO dialogs are always modal, which
means that they must be closed before the process displaying the dialog can continue with its tasks.
Furthermore, UNO dialogs do not support data aware controls, rather database connectivity has to
be implemented manually. If you want to offer a non-modal window or work with data, consider
using a UNO form.

Dispatch Framework

OpenOffice.org has a mechanism that sees documents as targets for uniform command tokens,
which are handled for example by documents with methods specific to the document. This allevi-
ates writing a user interface that does not need to know about the internal structure of a document.
The user interface asks the document the command tokens it supports, and displays matching
menus and toolbars. A toolbar icon like Background Color is used for many different objects
without knowing in advance about the target object.

The command tokens have to be written in URL notation, therefore they are called command URLs,
and are sent or dispatched to a target frame. The corresponding specification is called Dispatch API.

DML

Data Manipulation Language. Part of SQL.

1221

Draw

OpenOffice.org drawing document or components of the OpenOffice.org application which
contain the functionality necessary for drawing in OpenOffice.org. Although there might be an
sdraw executable on some platforms, it does not contain the actual Draw functionality, it merely
starts up a Draw document, using soffice.exe and its dependables.

Draw Page

A layer for graphical objects in OpenOffice.org documents. Each of the document types Writer,
Calc, Draw, and Impress have one or multiple draw pages for shapes. Most graphical shapes on a
drawpage are geometrical objects, but embedded documents and forms are also located on the
draw page of a document.

Document Controller

A part of the frame-controller-model paradigm in OpenOffice.org. The controller of a document is
responsible for screen presentation, display control and the current view status of a document.

E
Enum

A named group of predefined values in the OpenOffice.org API comprising all plausible values for
a variable in a certain context. Only one enum value can apply at a time. An example for an enum
is com.sun.star.text.PageNumberType with the possible values NEXT, PREV and CURRENT.

Enumeration

A collection of UNO objects supporting the interface com.sun.star.container.XEnumeration
accessed one by one using a loop construction. An XEnumeration has to be created at a
com.sun.star.container.XEnumerationAccess interface.

Event

In the OpenOffice.org API, an event is an incident between an observable and an observer. The
observable sends a message that something has happened that the observer wanted to know about.
See listener.

Exception

The exception is a concept for error handling that separates the normal program flow from error
conditions. Instead of returning error values as function return codes, an exception interrupts the
normal program flow at anytime, transports detailed information about the error and passes it
along the chain of callers until it is handled in code. This is helpful for the user to achieve a low-
level function, therefore react appropriately, while it is still able to find out exactly what went
wrong.

Extension

An extension is a file intended for the distribution of code and / or data which is to be used by
OOo. The file has the file extension �oxt�(formerly .uno.pkg and .zip), and it acts as a container for
various items, such as libraries, JARs, configuration data, type libraries, Basic libraries, Basic
dialogs, etc. Before OOo can use any content of the extension, it needs to be installed by the Exten-
sion Manager.

Extension Manager

1222 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumeration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumeration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumeration.html

The Extension Manager is a tool for managing extensions and other deployable items, such as
separate libraries, JARs, configuration data files. This includes adding, removing, enabling and
disabling of these items.

F
FCM

Frame-Controller-Model paradigm. See frame-controller-model.

Filter

There are two kinds of filters in OpenOffice.org, data filters and import/export filters.

Data filters reduce the number of records in a list or database to those records that match the given
filter criteria. Examples of filters are those filters in a spreadsheet or database form.

The import and export filters read and write document data for specific file formats. They create
OpenOffice.org documents from the files they support in a running OpenOffice.org instance, and
create a target file in a supported format from a loaded document.

Form

A form is a OpenOffice.org document with a set of controls that allows users to enter data, and
submit the the data to a web server or store them in a database.

Data-aware forms support data-aware controls that display data from a database and write
changes to a database automatically. Furthermore, they have built-in filtering and sorting capabili-
ties. It is also possible to create subforms in forms.

Without a connection to a server, forms are only partially useful, because the integration with the
surrounding document is still incomplete. Forms cannot be printed well, because text boxes do not
shrink or grow, and list boxes and subforms are cut off in printing. It is not possible to have control
borders in the user interface and hide them in printing.

Frame

Part of the frame-controller-model paradigm in OpenOffice.org. See frame-controller-model para-
digm.

Frame-Controller-Model Paradigm (FCM)

The architectural separation of content, visual representation, and binding to the surrounding
window system in OpenOffice.org. Loaded office documents consist of:

• a model object for document data with document manipulation methods

• one or more controllers for screen presentation, display control and current view status of a
document model

• one frame per controller that links the controller with the surrounding windowing system, and
dispatches command URLs it receives. It makes the document environment exchangeable. For
instance, aside from the standard document windows there can be frames for documents in
JavaBeans, Browser Plug-ins, MDI Windows, and embedded windows.

Programming with the FCM paradigm is simple: To change the document, use the model. To
access the visual representation, ask the controller. To work with the window, obtain the frame.

1223

If you know the Smalltalk model-view-controller paradigm (MVC), it is probably best to see
frame-controller-model as a different concept with a few similarities to MVC. The main differences
are:

• The controller in FCM incorporates the visual presentation layer: Controller and visual repre-
sentation are no different objects on API level. It controls the visual representation such as the
current page or the visual cursor position, but it is generally not used to control the document
content.

• FCM has a frame, which is unknown in MVC.

G
GUI

Graphical User Interface, as opposed to a command line interface. A user interface is the point
where a user and a software application meet and interact. A graphical user interface uses graph-
ical representations of commands, status feedbacks and data of an application, and offers methods
to interact with it through graphical devices, such as a mouse or tablets.

H
Helpers

Classes or methods with ready-to-use implementations that are used to implement fully functional
UNO components. The goal is that implementers of UNO components can concentrate on the func-
tionality they want to deliver, without having to cope with the intricacies of UNO.

I
I18N

Internationalization, written I18N because of the 18 letters between the 'i' and 'n' in international-
ization. It provides the functionality to adapt a software to the needs of an international commu-
nity with their deviating standards. For example, documents should be fully interchangeable, that
is, a date should be the same date no matter where the document is edited, but the date needs to be
displayed and edited according to the conventions followed in the user's country. Also, the user
should be able to combine documents from other countries with his own documents without
having to convert date formats.

IDE

Integrated Development Environment is a tool used for software development that integrates
editing, debugging, graphical interface design and online help, and advanced features, such as
version control, object browsing and project management in a unified user interface.
OpenOffice.org contains a small IDE for OpenOffice.org Basic.

IDL

1224 OpenOffice.org 2.3 Developer's Guide • June 2007

Interface Definition Language is used in environments where interfaces are used for object
communication. An interface definition language is frequently used to describe interfaces indepen-
dently of a particular target language. For instance, CORBA and OLE have their own interface
definition languages. UNO does not stand behind these component technologies and specifies its
own IDL called UNO IDL.

Implementation

The process of writing a fully functional software according to a specification. Implementation also
means the concrete, realized thing as opposed to an abstract concept. For instance, the current
version of OpenOffice.org is one possible implementation of the OpenOffice.org API.

Impress

OpenOffice.org presentation document or components of the OpenOffice.org application that
contains the functionality necessary for presentation documents in OpenOffice.org. Although there
might be an simpress executable on some platforms, it does not contain the Impress functionality,
it starts up a presentation document using soffice.exe and its dependencies.

Initialization of UNO Services

UNO objects are initialized when they are instantiated by a service manager if they support the
interface com.sun.star.lang.XInitialization. The service manager automatically passes the
arguments given in createInstanceWithArguments() or createInstanceWithArgumentsAnd-
Context() to the method initialize() of the new UNO object. The service specification for the
object documents the arguments if XInitialize is supported.

Instance

An instance is a concrete, individual object specimen created on the basis of an implemented class.
In UNO, it is common to ask a service manager for an instance of a service. The service manager
chooses a suitable implementation and sets up an object in memory on the basis of this implemen-
tation.

Interface

In object-oriented programming environments, the term interface is used for sets of methods that
describe aspects of external object behavior in terms of method definitions. The term interface
implies that the described aspects abstract from the described functionality. Thus, an interface for a
functionality is completely independent of the inner workings of an object that is necessary to
support functionality. Interfaces lead to exchangeable implementations, that is, code that is based
on stable interfaces works across product versions, while it is relatively easy to extend or replace
existing interface implementations.

UNO interfaces have a common base interface com.sun.star.uno.XInterface that introduces
basic lifetime control by reference counting, and the ability to query an object for an interface it
supports.

I/O

Input/Output. The I/O is the physical transfer of byte stream between random access memory and
devices that provide data or process data.

J
Java Bean

1225

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html

Reusable software component that can be visually manipulated in builder tools.

Job

UNO component that is set off upon an event. A job component must support the services
com.sun.star.task.Job and/or com.sun.star.task.AsyncJob. Currently there are two ways
to activate a job: either by triggering an event at the job executor service or by dispatching a
specialized command URL of the protocol vnd.sun.star.jobs: at the dispatch framework.

Job Execution Environment

Environment in OpenOffice.org for generic jobs that are implemented as UNO components. A job
can be executed upon an event and use configuration data for arbitrary purposes. It is guarded by
the job execution environment which takes care of the job during its lifetime and writes back
configuration data after the job has finished its work.

K

L
L10N

Localization, written L10N because of the 10 letters between the 'l' and 'n' in localization. It is the
process of adapting a software to the requirements of users in a cultural community or country.
For example, this includes translation of user interfaces and the necessary adaptation to the writing
used in that community.

Language Binding

Programming language or programming environment that is used with UNO. It is possible to
access OpenOffice.org from component technologies, such as OLE, through programming
languages.

Listener

Listeners are objects that are set up to receive method calls when predefined events occur at other
objects. They follow the observer pattern, that is, an object wants to update itself whenever it
observes a change in another object registers with the object it wants to observe, and is called back
when the prearranged event occurs at the observed object. The observable maintains a list of
observers that want to be notified about certain events. This pattern avoids constant polling and
ensures that observers are always up-to-date. Listeners in OpenOffice.org are specialized for the
UNO environment. A listener implements a UNO listener interface with predefined call back
methods. This interface is passed to the corresponding event broadcaster in an addXXXListener()
method. The broadcaster calls methods on this interface on listener-specific events. The callback
methods of a listener take an object that is derived from the base event struct
com.sun.star.lang.EventObject. This object contains additional information about the event
that lead to the listener callback.

Locale

A locale is a string which uniquely identifies a specific cultural community, defined by the country
where a community lives, and by the language spoken. In the I18N API of OpenOffice.org, a locale
consists of two parts encoded as <language>_>COUNTRY>: a two-letter language code (ISO-639)

1226 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/AsyncJob.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/AsyncJob.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/AsyncJob.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/Job.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/Job.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/Job.html

and a two-letter country code (ISO-3166). Examples are en_US for American English with Amer-
ican date, time, measuring and currency conventions, en_UK for British English and British conven-
tions, de_DE for German as spoken in Germany with German conventions, es_ES for Spanish as
spoken in Spain, es_MX for Spanish as spoken in Mexico. Locales sometimes occur with a third
variant part which is used to denote further sub-divisions and variants, such as
es_ES_TRADICIONAL for Spanish with traditional collation rules, as opposed to modern collation.
The variant part is user-dependent.

M
Math

Math is the embedded formula document or components of the OpenOffice.org application that
contains the functionality necessary for embedded formulas in OpenOffice.org. Formula docu-
ments create mathematical formulas based on a meta description.

Model

The Model is an object representing document data and document manipulation methods, and is
part of the frame-controller-model paradigm. See frame-controller-model paradigm.

Module

In UNO IDL, a module is a namespace for type definitions. The OpenOffice.org API is divided in
55 modules, such as awt, uno, lang, util, lang, text, sheet, drawing, presentation, chart, and sdb.
The modules text, sheet drawing and presentation do not map directly to Writer, Calc, Draw and
Impress documents, but the interfaces in these modules are used across all document types.

MVC

The Model-View-Controller paradigm that is the separation of document data, presentation and
user interaction into independent functional areas. The frame-controller-model paradigm in
OpenOffice.org has been designed with MVC in mind.

N

O
Object

As a general term, an object in the context of this manual is an implemented class that is instanti-
ated and has methods you can call. A UNO object is an object with the ability to be instantiated in
the UNO context and to communicate with other UNO objects. For this purpose, it supports the
UNO base interface com.sun.star.uno.XInterface in addition to the interfaces for the indi-
vidual functionality it offers.

Object Identity

In UNO, a comparison of object references must be true for all references to an identical object.
This rule is called object identity.

1227

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html

OLE

Object Linking and Embedding. It is a set of various technologies offering an infrastructure for
object communication across language environments, and is indigenous on the Windows platform.
In Inside OLE (Redmond 1995), Kraig Brockschmidt defines OLE "OLE is a unified environment of
object-based services with the capability of both customizing those services and arbitrarily
extending the architecture through custom services, with the overall purpose of enabling rich inte-
gration between components."

Among others, OLE comprises compound documents, visual editing, OLE Automation, the
Component Object Model and OLE controls. Moreover, the term OLE as a collective term for a
number of technologies has been superseded by ActiveX, which comprises even more technolo-
gies.

Although there are implementations for certain aspects of OLE on other platforms, Windows is the
primary OLE platform. OpenOffice.org supports a certain aspect of OLE Automation,that is,
OpenOffice.org is an OLE Automation server that offers the complete OpenOffice.org API to Auto-
mation clients.

The term OLE is sometimes used for document embedding techniques within OpenOffice.org.
OpenOffice.org documents are embedded into each other, and appear as "OLE Objects" on draw
pages. That means, they are edited in place, and act like embedded OLE documents, but the plat-
form infrastructure for OLE is not used. Therefore, this also works on platforms other than
Windows. Real OLE objects are handled differently, the embedded object is handed to the applica-
tion which is registered for the embedded document and opened in an independent application
window.

OLE Automation

Automation is the part of the OLE technology that allows developers to call methods in applica-
tions supporting OLE automation. An OLE application publishes methods to be used from other
OLE enabled applications. The called application acts as server, and the caller as client in this rela-
tionship. Under Windows, a OpenOffice.org application object is available that offers almost the
complete OpenOffice.org API to automation clients.

P

pkgchk

Legacy command-line tool of the Extension Manager. See unopkg.

Prepared Statement

Precompiled SQL statement that are parameterized and sent to a DBMS.

Protocol Handler

UNO component that handles custom URL protocols. A URL protocol is the part of a URL that
stands before the colon, as in ftp: (file transfer protocol) or http: (hypertext transfer protocol). This
mechanism is used as of OpenOffice.org version 1.1.0 to integrate OpenOffice.org extensions into
the user interface. For example, a menu item can be configured to dispatch a command URL
vnd.company.oo.newcomponent:NewFunction. A protocol handler for the protocol
vnd.company.oo.newcomponent: could route this command to the corresponding routine newFunc-

1228 OpenOffice.org 2.3 Developer's Guide • June 2007

tion(). This technique also forms the basis for the job execution environment, where
vnd.sun.star.jobs: URLs are routed to components that support suitable job interfaces.

Q
Query

See database query, query interfaces, query adapter.

R
Redline

Text portion in a text document that reflects changes to a text document.

Reference Counting, Ref Counting

Controlling the lifetime of an object by counting the number of external references to the object. A
ref counted object is destroyed automatically when the number of external references drops to
zero.

Registry Database

Backend repository that contains information about UNO components registered with the service
manager.

Rollback

Is the rejection of an open transaction. The data are restored to the state before the transaction was
started. See transaction.

Ruby

Asian text layout feature, similar to superscript and subscript in western text. See
www.w3.org/TR/ruby/.

S
SAL

System Abstraction Layer. C++ wrappers to system-dependent functionality. UNO objects written
in C++ use the types and methods of SAL to create platform-independent code.

Sequence

Sequence is a set of UNO data types accessed directly without using any interface calls. The
sequence maps to arrays in most language bindings.

Server

A server is an object that offers services to clients. OpenOffice.org frequently acts as server when it
is accessed through UNO, but it can also be a client to UNO components, instantiating and using

1229

http://www.w3.org/TR/ruby/
http://www.w3.org/TR/ruby/
http://www.w3.org/TR/ruby/

UNO objects in another application. The simplest use for OpenOffice.org calling objects in other
processes are listener callbacks. See client.

Service (UNO Service)

A UNO service describes a UNO object by combining interfaces and properties into an abstract object
specification. This definition of the term service is specific to UNO, therefore do not confuse it with
the general meaning of the word service in "a server offers services to its clients".

Service Manager

Factory for UNO services. A service manager supports the service com.sun.star.lang.Service-
Manager, and its main task is to provide instances of UNO objects by their service name. This is
done by factory methods that take a service name and optional arguments. The service manager
looks in its registry database for UNO components that implement the requested service, chooses
an implementation and uses a component loader to instantiate the implementation. It finally
returns the interface com.sun.star.uno.XInterface of the new instance.

Singleton

Singletons specify named objects. Only one instance exists during the lifetime of a UNO component
context. A singleton references one service and specifies that the only existing instance of this
service is reached over the component context using the name of the singleton. If no instance of the
service exists, the component context instantiates a new one.

Specification

Is an abstract description of qualities required for a certain task. The realization of a specification is
its implementation.

SQL

Structured Query Language, pronounce SEE-KWEL. A standard language for defining databases,
and for editing data in a database. SQL is used with relational database management systems.

Statement

An object in the sdbc module of the OpenOffice.org API that encapsulates a static SQL statements.
See prepared statement.

Stored Procedure

The server-side process on a SQL server that executes several SQL commands in a single step, and
is embedded in a server language for stored procedures with enhanced control capabilities.

Style

A predefined package of format settings applied to objects in OpenOffice.org documents.

Subform

Database form that depends on a main form. Usually a subform is used to display selected data,
matching to the current record of the subform, for example, a main form could show a company
address, and a subform could list the contact persons in that company. When a user browses
through the companies in the main form, the subform is constantly updated to show only the
contacts in the current company. This is achieved by a parameterized query in the subform, which
takes a unique key from the main form and selects multiple records that match this key.

SVG

1230 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/ServiceManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/ServiceManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/ServiceManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/ServiceManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/ServiceManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/ServiceManager.html

Scalable Vector Format. A W3C specification for a language describing two-dimensional vector,
and mixed vector or raster graphics in XML. See www.w3.org/TR/SVG/.

T
Thread

Computer programs in single-task operating systems have a predefined course with a defined
starting and ending point. Between these points, it is clear which instruction the CPU is currently
executing, and that the next instruction in the program will be executed next by the CPU. On pre-
emptive multi-tasking systems, the ability of modern CPUs to switch their current execution
context is used to spawn sub-processes that run simultaneously with the original process. These
sub-processes are called threads. In this situation, the CPU always knows which instruction it
executes next, but the applications do not know if the CPU will execute their next instruction after
the current instruction. Other threads might alter commonly used data. This makes it necessary to
write thread-safe programs. A thread-safe program is aware that other threads might interfere
with the current thread, and take precautions to shield commonly used data from other threads.

Transaction

A batch of SQL commands that are considered a unity. All commands must be executed success-
fully, or the data must be restored to the state before the transaction was started. When using
transactions, you tell the DBMS that it should start a transaction, then issue all SQL commands you
need. After all the commands have been executed, commit the transaction. If an error occurred
during one of the commands, restore the previous state by telling the DBMS to roll back the trans-
action. Transactions can become tricky, because your process or other processes can have open
transactions in which they are altering data and locking rows. Therefore, plan carefully if you want
to see changes before they are committed, or ensure that the data does not change when you read
them again (transaction isolation).

Transliteration

Conversion of characters according to conversion rules that are valid for a cultural community,
such as case conversions, conversions between Hiragana and Katagana, and Half-width and
Full-width.

Type Mapping

The UNO interface definition language uses meta types for its type definitionsare mapped to types
of a real programming language. How the UNO IDL types are mapped is defined by the language
binding for a target language.

U
UCP

Universal Content Provider. Subystem of the UCB for one particular storage system or data source.

UCB

Universal Content Broker. Unification layer for access to storage systems or data sources, such as
file, ftp, and webDAV.

1231

http://www.w3.org/TR/SVG/
http://www.w3.org/TR/SVG/
http://www.w3.org/TR/SVG/

UI

User Interface. See GUI.

Unicode

Unicode is a standardization effort by the Unicode consortium to provide a unique number for
every character, regardless of platform, program and language. See www.unicode.org.

UNO IDL

UNO Interface Definition Language. See IDL.

UNO

Universal Network Objects. Platform-independent component technology used as a basis for
OpenOffice.org.

UNO Component

See component.

UNO Collection

See collection.

UNO Container

See container.

UNO Dialog

See dialog.

UNO Object

See object.

unopkg

The command-line tool of the Extension Manager.

UNO Proxy

A UNO proxy (proxy is used as a shortform) is created by a bridge and is a language object that
represents a UNO object in the target language. It provides the same functionality as the original
UNO object. There are two terms which further specialize a UNO proxy. The UNO interface proxy
is a UNO proxy that represents exactly one interface of a UNO object, whereas a UNO object proxy
represents an UNO object with all of its interfaces.

URL

Uniform Resource Locator. In addition to the public URL schemes defined in RFC 1738,
OpenOffice.org uses several URL schemes of its own, such as command URLs for the dispatch
API, UNO Connection URLs for the com.sun.star.bridge.UnoUrlResolver service,
private:factory URLs for the interface com.sun.star.frame.XComponentLoader and database
URLs to create database connections, com.sun.star.sdbc.XDriverManager.

1232 OpenOffice.org 2.3 Developer's Guide • June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDriverManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDriverManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sdbc/XDriverManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc1738.html
http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc1738.html
http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc1738.html

V
VCL

Visual Component Library. Platform-independent C++ library that handles GUI elements. Part of
OpenOffice.org.

View

A view is the presentation of document data in a GUI. In the OpenOffice.org frame-controller-
model paradigm, there are no view objects separate from controllers, but the controller contains
the view it controls.

W
Weak Reference

Reference to a UNO object which has to be converted to a hard reference before it can be used. A
weak reference automatically turns into a null reference when the referred object is destroyed, and
it does not keep the referred object alive.

Writer

The Writer is the OpenOffice.org word processor document or components of the OpenOffice.org
application containing the functionality necessary for word processing in OpenOffice.org.
Although there might be an swriter executable on some platforms, it does not contain the actual
Writer functionality, it starts up a Writer document using soffice.exe and its dependables.

X
X<Interface Identifier>

Prefix for UNO Interfaces.

XML

Extensible Markup Language. Multitude of standards developed by the W3C for the definition and
the processing of structured file formats. See www.w3.org/XML/

Y

Z

1233

http://www.w3.org/XML/
http://www.w3.org/XML/
http://www.w3.org/XML/

Index

A

absolute() 940
Abstract Window Toolkit (AWT) 417
Acceptor 84
acceptsURL() 974
accessibility 1075
accessibility objects 1076
accessibility tree 1076
acquire() 238, 266
actions 1093
active document model 424
active frame model 424
ActiveX 165
4.7.3 Add-Ons 297

configuration 299
installation 310

AdministrationProvider 1042, 1044f.
afterLast() 940
aggregation 242
AnimationEffect 781
any 51, 121
any 222
API reference 79
API Reference 34
appendFilterByColumn() 900f.
appendOrderByColumn() 900, 902
application environment 415
archive files 234
array 232
assistive technology 1075
asynchronous call 83
AT (assisitve technology) 1075
attribute [instruction] 222
AutoCorrect 526
autodoc 218
Automation

accessing properties 169
bridge services 196
calling functions 169
client-side conversions 185
conversion mappings 184
DCOM 194
default mappings 178
errorcodes 188
exceptions 188
interfaces 173
mapping of sequence 182
mapping of string 181
registry entries 168
service manager component 167
Service Manager Component 167
structs 173
type mappings 177
usage of types 173
value objects 186
Windows Script Components 194
Windows Scripting Host 194
WSC 194
WSH 194

automation bridge 164, 199
AutoPilot 526, 824
AutoText 526

B

backup copies 526
12.3 Basic 147, 386, 852

accessing the UNO API 855
accessing UNO services 147
adding event handlers 820
AutoPilot dialogs 824
12.2.2 Basic IDE window 835

Basic editor mode 835

1235

dialog editor mode 835
calling a sub 817
case sensitivity 161
constant groups 160
creating a module 814
creating dialogs 818
creating dialogs at runtime 877
date functions 853
debugging a Basic UNO program 816
design tools window 819
enums 160
exception handling 161
file I/O 852
information about UNO objects 150
instantiating UNO services 149
12.4 library organization 858

accessing libraries 861
Creating a Link to an Existing Library 863
creating a new library 863
library 859
library container 859
library container API 862
library container properties 861
library elements 859
loading libraries 861
variable scopes 864

listeners 162
numeric functions 854
runtime library functions 852
screen I/O functions 852
sequences and arrays 156
simple types 153
source editor window 815
special behavior 857
special behaviour

rescheduling 857
threads 857

string functions 854
structs 159
time functions 853
writing a Basic UNO program 816

Basic dialogs 813
12.2 Basic IDE 825

dialog editor 838, 850
macro dialog 825
macro organizer dialog 828

libraries tab page 830
managing Basic and dialog libraries 825
modules tab page 828f.

Basic libraries 347
Basic library container index file 882

Basic library index file 882
Basic macros 813
beforeFirst() 940
bitmap 1092
bookmarks 526
boolean 49
boolean 222
Bootstrap 81
bootstrapping 328
bound [property flag] 226
Braille terminal 1075
breakpoint 816
BridgeFactory 84
bridges 67, 1076
broadcaster 1077
byte 49
byte 222

C

C++ 164, 386
C++

establishing interprocess connections 135
exception handling 146
file access 133
mapping of any 139
mapping of sequence 142
mapping of type 139
Simple Types 137
system abstraction layer 133
thread synchronization 134
threads 134
threadsafe refcounting 133
type mappings 137
weak references 145

C++ Binding 131
Calc 887
cancelRowUpdates() 942
caret 1086
case conversion 473
ccessibility API 1075
cell

accessing 658
cell range

accessing 658
array formulas 664
data array 660
merging 659
multiple operations 663

1236 OpenOffice.org 2.3 Developer's Guide • June 2007

operations 662
properties 658

chain of responsibility. 458
changesOccurred() 1055
char 49
char 222
Chart3DBarProperties 806
ChartData 796, 798
ChartDataArray 796, 798
ChartDocument 796
charts

3-dimensional 806
Add-Ins 808
apply an Add-In 810
axis 802
chart type 795
creating charts 793
data access 798
data point 804
data series 804
default type 795
Diagram 801
document controller 808
document model 797
legend 796
pie charts 807
statistical properties 805
stock charts 807
titles 796
working with charts 796

class files 233
clearParameters() 948
7.2.1 clipboard 467

becoming a clipboard viewer 471
copying data 469
data formats 472
pasting data 468

coding styles 411
colors (user-defined) 527
Column 907, 959
columns 907
ColumnSettings 910
Command 1022
command execution 457
command tokens 457
command URL 421, 457
CommandType 948
comments 231
communication process 457
compatibly 322

compiler 220
component 75, 428
component context 90
component framework 417, 427
component operations 234
component window 418
component_getFactory() 267
component_writeInfo() 268
4 components 67, 217

architecture 234
debugging 257
deployment options 323
installing manually 327
registration 255
Registration 324
troubleshooting 259

configmgr.ini 1045
configmgr.rc 1045
configuration data files 347
configuration files 526
configuration layers 1040
configuration management 1039
configuration schema files 347
ConfigurationAccess 1042f., 1050
ConfigurationProvider 1042, 1044
ConfigurationUpdateAccess 1042, 1044, 1053
Connection 897, 912, 974
connection pooling 921
ConnectionPool 921
connections 912
Connector 84
connectWithCompletion() 914
const [UNOIDL] 229
constant groups 160
constant groups) 50
constrained [property flag] 226
container

enumeration container 55
container window 418
containers 101
controller 420
controller object 428
Controllers 434
ControlShape 988
Corba 409
CORBA 113
CORBA IDL 67
core interfaces 235
cppumaker 218, 233, 326

1237

createInstance() 240
createInstanceWithArguments() 269
createInstanceWithArguments() 241, 250
createInstanceWithArgumentsAndContext() 269
createInstanceWithArgumentsAndContext() 241, 250
createRegistryServiceFactory() 331
createStatement() 929
cursor 1086
CustomPresentationAccess 778
cyclic references 111

D

16.3 data source 1044
connecting to 1044
using 1047

Data Source Administration [dialog] 890
DataAwareControlModel 997
database 887
database design 949
Database Management System (DBMS) 929
DatabaseContext 890
DataDefinition 914
DataSource 892
DBMS features 970
DCOM 194
dcomcnfg.exe 194
DDL 951
debugging 257
defaultBootstrap_InitialComponentContext() 328
DefaultControl 989
defining

service 225
DefinitionContainer 894
DeleteRows 934
deployment options 323
descriptor pattern 966
design mode 984
design patterns 411
Desktop 423, 1017
desktop environment 415
desktop frame 416
desktop object 416, 426
Diagram 795
12.5.2 dialog controls 868

check box 869
combo box 871
command button 868

currency field 875
date field 874
file control 876
formatted field 875
group box 873
image control 869
label field 870
line 874
list box 871
numeric field 875
option button 869
pattern field 875
progress bar 873
scroll bar 872
text field 870
time field 874

12.5.1 dialog handling 866
dialog as control container 866
getting the dialog model 866
showing a dialog 866

dialog library container index file 882
dialog library index file 882
dialog properties 867
dialog-lb.xml 882
dialog-lc.xml 882
dictionaries 526
dictionaries (custom) 527
Dim3DDiagram 806
4.7.4 disable commands 311

at runtime 314
configuration 313

disabled 1075
dispatch communication 463
7.1.6 dispatch framework 419, 421, 457

dispatch process 459
processing chain 457
status information 458

dispatch framework 272, 417
dispatch interception 463
dispatch process

dispatch results 462
dispatching a command 461
getting a dispatch object 460
listening for context changes 461

dispose() 241
DisposedException 81, 114, 135
Documents

closing 450
loading 442

target frame 448

1238 OpenOffice.org 2.3 Developer's Guide • June 2007

URL Parameter 447
loading [example] 449
printing 456
storing 455

double 49
double 222
double-checked locking 411
Draw 741
10 drawing document 741

creating 745
exporting 747
loading 745
page handling 752
page partitioning 753
printing 749
shapes 753
storing 746

DrawingDocumentDrawView 790f.
DrawPage 752, 777, 780
driver

Adabas 917
ADO 917
dBase 917
Flat file format (csv) 917
JDBC 917
Mozilla addressbook 917
ODBC 3.5 917

Driver 916, 973
DriverManager 915
dynamic link libraries 234

E

enum 230
enumeration types 50
enums 122, 160
error 229
event 926
event listeners 104
event names 521
EventObject 926
events 104, 491

OnCloseApp 526
OnFocus 521
OnLoad 521
OnModifyChange 521
OnNew 521
OnPrepareUnload 521
OnPrint 521

OnSave 521
OnSaveAs 521
OnSaveAsDone 521
OnSaveDone 521
OnStartApp 526
OnUnfocus 521
OnUnload 521

exception 78, 521
Exception 104, 126, 146, 161, 188
exception [UNOIDL] 229
exception handling 104, 161
exceptions 126, 188
executeUpdate() 932, 953
exit 424
export filter 495, 510
extended type detection 500
external icons 526

F

FadeEffect 780
FillProperties 766
filter 501

configuring 504
deep detection 516
export 495
filter section 514
flat detection 516
import 495
loading 497
media descriptor 499
options 503
PocketWord 514
properties 507
storing to a URL 498
type section 514
XML filter detection 515

filter development 510
filters 526
first() 940
float 49
float 222
form

data awareness 993
External value suppliers 1000
filtering and sorting 995
Scripting and events 1010
sub forms 994
Validation 1007

1239

value bindings 1001
Form 986, 992
Form Components 990
form document

focussing controls 984
locating controls 984

FormComponent 990
FormComponents 985
FormControlModel 987, 990
Forms 981
frame loader 418, 501

number formats 517
properties 510

frame object 416
Frame-Controller-Model (FCM) 417
Frames 429

actions 431
active frame 432
assigning windows 440
creating 440
creating [example] 441
current component 432
custom name 430
Frame Hierarchies 430, 441
Frame setup 430
frames supplier 441
status indicator 433
sub-frames 433
top-level frame 431

framework API 415

G

Gallery database 527
generic communication 457
GenericDrawPage 789
getCatalogs() 950
getCatalogTerm() 949
getColumns() 910, 950
getComposedQuery() 902
getConnection() 914
getConnectionWithInfo() 915
getDatabaseProductVersion() 949
getDate() 937
getDriverMajorVersion() 949
getDriverMinorVersion() 949
getFilter() 901f.
getIdentifierQuoteString() 951, 953
getImplementationId() 267

getImplementationName() 239
getMaxCharLiteralLength() 950
getMaxColumnsInTable() 950
getMaxConnections() 950
getMaxRowSize() 950
getMaxStatementLength() 950
getMaxTablesInSelect() 950
getMetaData() 974
getNumericFunctions() 977
getOrder() 901f.
getPrimaryKeys() 950
getProcedureColumns() 950
getProcedures() 950
getProcedureTerm() 949
getQuery() 901f.
getRow() 940
getSchemas() 950
getSchemaTerm() 949
getServiceFactory() 246
getSQLKeywords() 949
getString() 937
getStringFunctions() 977
getStructuredFilter() 901f.
getSupportedServiceNames() 240
getTables() 908, 950
getTypes() 239
getTypes() 267
getUDTs() 950
getURL() 949
getUserName() 949
Gnome access bridge 1076
Gnome Accessibility API 1075f.
GNU make [command] 218
GraphicExportFilter 747
Gregorian calendar 473
Group 964
GroupDescriptor 969
GroupShape 764
GSS-API 542
GUI event 421

H

header files 233
help files 527
Hindi 475
Hiragana 474
home directory 533

1240 OpenOffice.org 2.3 Developer's Guide • June 2007

HTMLForm 992f.
hyper 49
hyper 222
hyperlink 1093
hypertext document 1093
hyphenator 489

I

idlc 218, 233, 326
idlcpp 218
image 1092
implementation name 239
import filter 495, 510
Impress 741
incompatibly 322
index 969
index entries 475
index service 960
IndexColumn 959
indirectly compatibly 322
initial object 117
initialize() 251
intercepting context menus 464
interceptor

notification 317
querying a menu structure 318
register 317
remove 317
writing an interceptor 317

changing a menu 319
finishing interception 319

interface 41, 127
core interfaces 235
defining 222
implementing own interfaces 245

interface [instruction] 225
interfaces 69
Interfaces

handling 117
internationalization 472
interprocess connection 135
isAfterLast() 940
isBeforeFirst() 940
isFirst() 940
isLast() 940
ISO-3166 476
ISO-639 476

J

jar files 217
Java 386
Java

language binding 114
mapping of any 121
mapping of enums 122
mapping of exceptions 126
mapping of interface 127
mapping of module 129
mapping of sequence 122
service manager 114
type mappings 119

Java Accessibility API, 1075
Java archive files 346
javamaker 218, 233, 326
job execution environment 272
4.7.2 jobs 285

arguments 289
asynchronous 288
configuration data 292
environment 289
execution environment 286
implementation 287
initialization 289
installation 294
lifetime control 287
returning results 291
supported events 296
synchronous 288
wrapper object 287

JScript 164

K

Kerberos 542
Key 962
key strokes 1093
keyboard 1075
KeyColumn 959
KeyRule 962
KeyType 962

L

language bindings 113
last() 940
LDAP 887

1241

libraries
application libraries 881
application library container 880
storage 880
with password protection 881
without password protection 881

library deployment 884
LineProperties 766
linguistic API 485
listener 162, 1077
listener interfaces 104
listening mode 81
live mode 984
locale dependent data 472
locking (double-checked) 411
long 49
long 222

M

Macros
Scripting Framework

API 1102
Editing, Creating and Managing 1097
Running 1096
using editors 1099
Writing 1101

make [command] 218
MAPI 887
maybeambiguous [property flag] 226
maybedefault [property flag] 226
maybevoid [property flag] 226
media descriptor 512
MIDL 67
mode

design mode 984
live mode 984

model object 428
model-view paradigm 982
Model-View-Controller (MVC) 417, 865
Models 436

active controller 437
modified status 437
module 129
module: [instruction] 220
modules 78
monitor 1075
mouse 1075
moveToCurrentRow() 941

moveToInsertRow() 941
multi paths 526
multi-threaded 411
multimedia files 527
mutex 411

N

next() 936, 939
nullsAreSortedHigh() 949
nullsAreSortedLow() 949
number formats

applying 519
managing 518

O

object 41
object identity 113
office component 428
office component 420
office components 416
OLE 165
OLE Automation Bridge 387
OLE2Shape 796
OleApplicationRegistration 198
OleBridgeSupplier2 196
OleObjectFactory 198
oneway call 83
optional [property flag] 226

P

password cache 546
path

list of paths 534
part of a path 534
single path 534

path settings service 526
path substitution service 533
path variables 533
patibly 322
patterns (user-defined) 527
pipe 512
pkgchk 884
Plugins 527
PolyPolygonBezierDescriptor 759

1242 OpenOffice.org 2.3 Developer's Guide • June 2007

predefined queries 896
prepareCommand() 948
prepareStatement() 947
preprocessing 220
presentation document

animations and interactions 781
custom slide show 778
graphics styles 785
loading 775
page formatting 789
presentation effects 780
presentation styles 787
printing 775
settings 777, 788
slide transition 780
zooming 790

previous() 939
printer 1075
PrinterDescriptor 749
printing

page breaks 640
print areas 640
print settings 639
scaling 640

PrintOptions 749
property 43
property [instruction] 225
PropertySet 788
4.7.1 protocol handler 273

C++ 278
configuration 283
installation 284
Java 277

protocol handler 272
Python components 347
PyUNO 387, 404

Q

query 894, 902
Query 897
QueryComposer 897
QueryDefinition 894
queryInterface() 238

R

rdbmaker 218, 326

readonly [property flag] 226
refreshRow() 945
regcomp 218, 268, 278, 325
regcomp (tool) 406
regcompare 326
regfilter.bas 505
regfilter.ini 505
registration 255
registry 168
registry database 233, 247, 259, 268
regmerge 218, 233, 325, 327
regview 218
relative() 940
release() 238, 266
remote calls 83
removable [property flag] 227
request 457
ResultColumn 935
ResultSet 928, 933
ResultSet cursor 936
ResultSetMetaData 946
return values 171
rfc1510 542
rfc2743 542
RotationDescriptor 762
RowSet 888, 922, 993
run() 242
Runtime Environment 113
RuntimeException 104, 126, 146, 161, 188

S

SAX 512
scalar functions 977
screen magnifier 1075
screen reader 1075
script type 473
script-lb.xml 882
script-lc.xml 882
19 Scripting Framework 1095

using the Scripting Framework 1096
writing a LanguageScriptProvider

Java Helper classes 1107
sdb module 897
SDBC 887
SDBC driver 972
SDBCX 954
selection 1085, 1090

1243

sequence 52, 78, 122
sequence [UNOIDL] 227
service 41
service [instruction] 225
service implementations 75
4.5.6 service manager 67, 90, 167, 250

bootstrapping 328
dynamically modifying 330
special configurations 329

Service Manager 38
service manager component 167
Servicemanager 81, 135, 149
ServiceManager 36, 90, 114, 167
services 71
setFilter() 900f.
setOrder() 900f.
setQuery() 900f.
Shape 757, 781
ShapeCollection 764
shapes

Bezier shapes 759
binding 764
combining 764
connectors 772
drawing properties 766
glue points 772
grouping 764
inserting files 774
layer handling 773
moving 762
navigating 774
ordering 764
rectangle shape 755
rotating 762
scaling 762
shadow 772
shape types 756
shearing 762
transforming 763

shared libraries 217, 321, 346
short 49
short 222
shutdown process 424
simple screen reader 1079
Single Factory 246
single path 526
Single Sign-On API 542
singleton [instruction] 232
singletons 79
soffice 81, 114

Software Development Kit (SDK) 218
spellcheck 527
spellchecker 488
spreadsheet

add-ins 736
spreadsheet add-ins 526
9 spreadsheet document 631

cell
annotations 667
errors 665
formulas 665
properties 665
styles 726
text content 666

cell range 647, 658
cells 665
columns 655
copying cell ranges 657
creating 634
document model 631
drawpage 633
filter options 636
inserting cells 657
loading 634
moving cell ranges 657
naming 657
page breaks 657
printing 639
properties 656
rows 655
saving 635
service manager 632
services 645
sheet cell 651
spreadsheets container 632
9.4.1 styles 725

page 727
SQL 887
SQL statement 929
SQLQueryComposer 899, 901f.
SSO (Single Sign-On) 542
SSO password cache 546
SSR 1079
Star Database (SDB) 888
Star Database Connectivity (SDBC) 887f.
Star Database Connectivity Extension (SDBCX) 888
StarOffice 5.x 416, 426
Statement 929
states 1091
StockDiagram 807

1244 OpenOffice.org 2.3 Developer's Guide • June 2007

storesMixedCaseQuotedIdentifiers() 953
string 49
string 222
struct 76
structs 123, 159
supportsAlterTableWithDropColumn() 950
supportsANSI92EntryLevelSQL() 950
supportsBatchUpdates() 950
supportsCoreSQLGrammar() 950
supportsFullOuterJoins() 950
supportsMixedCaseQuotedIdentifiers() 950
supportsPositionedDelete() 950
supportsService() 240
supportsStoredProcedures() 950
supportsTableCorrelationNames() 950
synchronous call 83
system abstraction layer 133
system pointer 421

T

Table 907
tables 907
tables

database tables 631
spreadsheets 631
text tables 631

temp-files 527
templates 527
terminate listener 424
terminate office 424
8 text document 547

auto text 563
block user interaction 627
bookmarks 594
chained text frames 606
character properties 564
columns 624
control characters 560
controller 627
cursor properties 572
document model 547
embedded objects 607
endnotes 600
footnotes 600
graphic objects 609
hyperlink properties 570
index marks 598
indexes 595

inserting text files 563
line numbering 622
link targets 626
loading 553
model cursor 551
number format 622
outline numbering 619
paragraph numbering 619
paragraph properties 564
printing 555
redline 613
reference marks 599
ruby text 613
saving 554
search and replace 572
shape objects 602
sorting 563
8.4.1 styles 614

character styles 616
frame styles 616
numbering styles 617
page styles 617
paragraph styles 616

text field 588
text frame 605
text section 622
view cursor 551
visible cursor 551, 628
visible cursor position [code sample] 551

Text Indices 1086
text tables 576

accessing existing tables 587
autoformatting 582
charting 582
inserting 583
naming 582
properties 582
sorting 582

text type 1085
TextProperties 766
Thai 475
thesaurus 490, 495
thread 411
thread identity 83
thread synchronization 134
threads 134
toolbar 526
toolkit 421
TransactionIsolation 970
transient [property flag] 227

1245

trivial component 420
trivial components 416
type detection 500

extended type detection 500
TypeClass 68
TypeDetection.xcu 511f.
TypeInfo 248
types.rdb 247

U

UAA 1075
UCB 1017
15.4 UCB API 1020

accessing content 1021
content commands 1022
content properties 1023
content provider proxies 1036
copying contents 1032
creating contents 1029
deleting contents 1031
documents 1027
folders 1025
instantiating the UCB 1021
linking contents 1032
moving contents 1032
preconfigured UCBs 1035
UCP registration information 1033
unconfigured UCBs 1033

UCP 1017
unicode type 473
Uniform Resource Identifier 1017
union 232
Universal Content Broker 1017
Universal Content Provider 1017
UniversalContentBroker 1017, 1021
3 UNO 67

Basic 147, 386
binary UNO 389
bootstrapping 390
Bridge 389
bridging language 388
C++ 131, 386
coding styles 411
collections 101
component context 90
component loader 390
components 217
containers 101

design patterns 411
event listeners 104
event model 104
events 104
3.3.7 exception handling 104

runtime exceptions 106
user-defined exceptions 105

interface bridge 389
interface proxy 388
interprocess connection

asynchronous call 83
closing a connection 87
connection aware client [example] 88
creating the bridge 86
importing an object 82
interprocess bridge 83
listening mode 81
oneway call 83
opening a connection 84
synchronous call 83
thread identity 83
UNO URL 82

interprocess connections 81
Java 386
Java language binding 114
language bindings 113, 388
language object 388
lifetime of UNO objects 107
listener interfaces 104
object bridge 389
object identity 113
object proxy 389
propagation of component contexts 93
proxy 388
Reflection API 396
runtime environment 113
service manager 90
target environment 388
target language 388
using UNO interfaces 94
weak objects 111
weak references 111

uno 218, 332
UNO access bridge 1076
UNO Accessibility API 1075
UNO Executable 332
UNO IDL 67
UNO Runtime Environment 113
UNO URL 82
UnoControl 982
UnoControlModel 982, 990

1246 OpenOffice.org 2.3 Developer's Guide • June 2007

4.2 UNOIDL 219
array 232
attributes 222
comments 231
const 77, 229
constants 77, 229
enum 77
enum 230
error 229
exception 78, 229
generating source code 233
inheritance 228
interfaces 69
modules 78
operations 224
preprocessing 220
sequence 78, 227
service

defining 225
services 71

including properties 74
referencing interfaces 72
referencing other services 75

simple types 68
singleton [instruction] 232
singletons 79
struct 76
struct 228
type any 69
union 232

UNOIDL compiler 220
unopkg 218
UnoUrlResolver 81, 114, 135
unsigned hyper 49
unsigned hyper 222
unsigned long 49
unsigned long 222
unsigned short 49
unsigned short 222
updateFloat() 942
updateRow() 942
URE (UNO runtime environment) 113
URI 1017
User 966, 969
user settings 527
user-defined colors 527
user-defined patterns 527
UserDescriptor 969
usesLocalFilePerTable() 949
usesLocalFiles() 949

V

value components 1002
VB Script 164
View 964
Visual Basic 164
void 222

W

weak objects 111
weak references 111
window 429
Window

interfaces 439
window handle 464
window peer 429
Windows Script Components 194
Windows/Java access bridge 1076
work folder 527
working directory 533
Writing a LanguageScriptProvider

Scripting Framework
from scratch 1111

X

XAcceptor 84
XAccessibleAction 1093
XAccessibleComponent 1084
XAccessibleContext 1082
XAccessibleEditableText 1086
XAccessibleEventBroadcaster 1088
XAccessibleEventListener 1089
XAccessibleExtendedComponent 1085
XAccessibleHyperlink 1093
XAccessibleHypertext 1093
XAccessibleImage 1092
XAccessibleKeyBinding 1093
XAccessibleRelationSet 1090
XAccessibleSelection 1090
XAccessibleStateSet 1091
XAccessibleTable 1087
XAccessibleText 1085
XAccessibleValue 1092
XAggregation 235, 242
XBindableValue 1001
XBookmarksSupplier 893, 907

1247

XBoundComponent 999
XBreakIterator 474, 479
XBridgeFactory 84
XCalendar 473, 478
XCharacterClassification 473, 478
XChartData 798
XChartDataArray 798
XChild 1019
XCollator 474, 480
XColumnsSupplier 901f., 910, 934
XCommandPreparation 914, 948
XCommandProcessor 1019
XCommandProcessor2 1019
XCompletedConnection 893, 914
XComponent 107, 235, 241, 249
XComponentContext 36, 81, 90, 114, 135
XConnector 84
XContent 1019
XContentCreator 1019
XContentEnumerationAccess 91
XCustomPresentationSupplier 778
XDatabaseMetaData 949, 975
XDatabaseParameterBroadcaster 996
XDatabaseParameterListener 996
XDataDescriptorFactory 898, 906
XDataSource 914
XDrawPageDuplicator 752
XDrawPages 752
XDrawPagesSupplier 794
XDriver 973
XDriverManager 915
XEnumerationAccess 101
XEventListener 104, 162, 191
XEventListener 249
XExtendedCalendar 473
XExtendedIndexEntrySupplier 475
XFastPropertySet 97
XFlushable 893
XForm 992
XIndexAccess 101
XIndexContainer 101
XIndexEntrySupplier 475, 484
XInitialization 235, 241, 251
XInputSequenceChecker 475
XInterface 45, 94, 107, 235, 237, 244, 248, 262, 266
XInterface 237
XLayerManager 773
XListEntrySink 1005

XListEntrySource 1005
XLoadListener 993
XLocaleData 473, 475
XMain 235, 242, 332
XML based filter 510
XML file format 510
XML filter adaptor 510
xml2cmp 218
XMultiComponentFactory 36, 81, 90, 114, 135
XMultiHierarchicalPropertySet 1055
XMultiPropertySet 97
XMultiServiceFactory 90
XNameAccess 101
XNameContainer 101
XNamed 774
XNativeNumberSupplier 474, 484
XNumberFormatCode 473
XOutParameters 971
XPooledConnection 921
XPresentation 777
XPrintable 749
XPropertyContainer 1019
XPropertySet 47, 97
XPropertySetInfo 97
XPropertyState 97, 990
XQueryDefinitionsSupplier 893f.
XRefreshable 808
XRename 898
XResultSet 939
XResultSetAccess 928
XResultSetMetaData 946
XRow 937
XRowLocate 934
XRowSetApproveBroadcaster 926, 1012
XRowSetApproveListener 926
XRowSetListener 926
XRowUpdate 941
XSelectionSupplier 790
XServiceInfo 235, 239, 244, 262
XServiceInfo 240
XShapeCombiner 764
XShapeGrouper 764
XSQLQueryComposer 899, 901
XSSOAcceptorContext 544
XSSOInitiatorContext 543
XSSOManager 543
XSSOManagerFactory 543
XStorable 746

1248 OpenOffice.org 2.3 Developer's Guide • June 2007

XStyle 785
XTabControllerModel 992
XTableChartsSupplier 793, 796
XTablesSupplier 901f., 908
XTextConversion 474, 481
XTransliteration 474, 480
XTypeProvider 235, 238, 244, 248, 262, 267
XUnoTunnel 235, 242
XUnoUrlResolver 81, 114, 135
XUser 966
XValueBinding 1001
XViewDataSupplier 791
XWeak 107, 145, 235, 240, 244, 262
XWeak 240
XWindowPeer 1073
XYDiagram 795

^

^ 230

_

__getServiceFactory() 243
__writeRegistryServiceInfo() 243, 247
_blank 431, 448
_default 448
_parent 431, 448
_self 431, 448
_top 431, 448

-

- 230

.

.idl 233

.pba 882

.uno 322

.urd 233

.xlb 885

.xlc 885

*

* 230

/

/ 230
/* 231
/** 231
// 231
/// 231

&

& 230

%

% 230

+

+ 230

<

<< 230

>

>> 230

|

| 230

~

~ 230

$

$(home) 534
$(inst) 534
$(instpath) 534
$(insturl) 534

1249

$(lang) 535
$(langid) 535
$(path) 535
$(prog) 535
$(progpath) 535
$(progurl) 535

$(temp) 535
$(user) 535
$(userpath) 535
$(userurl) 535
$(vlang) 535
$(work) 535

1250 OpenOffice.org 2.3 Developer's Guide • June 2007

	1 Reader's Guide
	1.1 What This Manual Covers
	1.2 How This Book is Organized
	1.3 OpenOffice.org Version History
	1.4 Related documentation
	1.5 Conventions
	1.6 Acknowledgments

	2 First Steps
	2.1 Programming with UNO
	2.2 Fields of Application for UNO
	2.3 Getting Started
	2.3.1 Required Files
	2.3.2 Installation Sets
	2.3.3 Configuration
	Enable Java in OpenOffice.org
	Use Java UNO class files
	Add the API Reference to your IDE

	2.3.4 First Contact
	Getting Started
	Service Managers
	Failed Connections

	2.4 How to get Objects in OpenOffice.org
	2.5 Working with Objects
	2.5.1 Objects, Interfaces, and Services
	Objects
	Interfaces
	Services

	2.5.2 Using Services
	Using Interfaces
	Using Properties

	2.5.3 Example: Working with a Spreadsheet Document
	2.5.4 Common Types
	Basic Types
	Strings
	Enum Types and Groups of Constants

	2.5.5 Struct
	2.5.6 Any
	2.5.7 Sequence
	2.5.8 Element Access
	Name Access
	Index Access
	Enumeration Access

	2.6 How do I know Which Type I Have?
	2.7 Example: Hello Text, Hello Table, Hello Shape
	2.7.1 Common Mechanisms for Text, Tables and Drawings
	2.7.2 Creating Text, Tables and Drawing Shapes
	Text, Tables and Drawings in Writer
	Text, Tables and Drawings in Calc
	Drawings and Text in Draw

	3 Professional UNO
	3.1 Introduction
	3.2 API Concepts
	3.2.1 Data Types
	Simple Types
	The Any Type
	Interfaces
	Services
	Structs
	Predefined Values
	Sequences
	Modules
	Exceptions
	Singletons

	3.2.2 Understanding the API Reference
	Specification, Implementation and Instances
	Object Composition

	3.3 UNO Concepts
	3.3.1 UNO Interprocess Connections
	Starting OpenOffice.org in Listening Mode
	Importing a UNO Object
	Characteristics of the Interprocess Bridge
	Opening a Connection
	Creating the Bridge
	Closing a Connection
	Example: A Connection Aware Client

	3.3.2 Service Manager and Component Context
	Service Manager
	Component Context

	3.3.3 Using UNO Interfaces
	3.3.4 Properties
	3.3.5 Collections and Containers
	3.3.6 Event Model
	3.3.7 Exception Handling
	User-Defined Exceptions
	Runtime Exceptions
	Good Exception Handling

	3.3.8 Lifetime of UNO Objects
	acquire() and release()
	The XComponent Interface
	Children of the XEventListener Interface
	Weak Objects and References
	Differences Between the Lifetime of C++ and Java Objects

	3.3.9 Object Identity

	3.4 UNO Language Bindings
	3.4.1 Java Language Binding
	Getting a Service Manager
	Transparent Use of Office UNO Components
	Handling Interfaces
	Type Mappings

	3.4.2 C++ Language Binding
	Library Overview
	System Abstraction Layer
	File Access
	Threadsafe Reference Counting
	Threads and Thread Synchronization
	Socket and Pipe
	Strings
	Establishing Interprocess Connections
	Transparent Use of Office UNO Components
	Type Mappings
	Using Weak References
	Exception Handling in C++

	3.4.3 OpenOffice.org Basic
	Handling UNO Objects
	Mapping of UNO and Basic Types
	Case Sensitivity
	Exception Handling
	Listeners

	3.4.4 Automation Bridge
	Introduction
	Requirements
	A Quick Tour
	The Service Manager Component
	Using UNO from Automation
	Using Automation Objects From UNO
	Type Mappings
	Automation Objects with UNO Interfaces
	DCOM
	The Bridge Services
	Unsupported COM Features

	3.4.5 CLI Language Binding
	About the Language Binding
	Terms
	Requirements
	The Language Binding DLLs
	Type Mapping
	Lifetime Management and Obtaining Interfaces
	Writing Client Programs

	4 Writing UNO Components
	4.1 Required Files
	4.2 Using UNOIDL to Specify New Components
	4.2.1 Writing the Specification
	Preprocessing
	Grouping Definitions in Modules
	Simple Types
	Defining an Interface
	Defining a Service
	Defining a Sequence
	Defining a Struct
	Defining an Exception
	Predefining Values
	Using Comments
	Singleton
	Reserved Types
	Published Entities

	4.2.2 Generating Source Code from UNOIDL Definitions

	4.3 Component Architecture
	4.4 Core Interfaces to Implement
	4.4.1 XInterface
	Requirements for queryInterface()
	Reference Counting

	4.4.2 XTypeProvider
	Provided Types
	ImplementationID

	4.4.3 XServiceInfo
	Implementation Name
	Supported Service Names

	4.4.4 XWeak
	4.4.5 XComponent
	Disposing of an XComponent

	4.4.6 XInitialization
	4.4.7 XMain
	4.4.8 XAggregation
	4.4.9 XUnoTunnel

	4.5 Simple Component in Java
	4.5.1 Class Definition with Helper Classes
	XInterface, XTypeProvider and XWeak
	XServiceInfo

	4.5.2 Implementing your own Interfaces
	4.5.3 Providing a Single Factory Using Helper Method
	4.5.4 Write Registration Info Using Helper Method
	4.5.5 Implementing without Helpers
	XInterface
	XTypeProvider
	XComponent

	4.5.6 Storing the Service Manager for Further Use
	4.5.7 Create Instance with Arguments
	4.5.8 Possible Structures for Java Components
	One Implementation per Component File
	Multiple Implementations per Component File

	4.5.9 Running and Debugging Java Components
	Debugging
	The Java Environment in OpenOffice.org
	Troubleshooting

	4.6 C++ Component
	4.6.1 Class Definition with Helper Template Classes
	XInterface, XTypeProvider and XWeak
	XServiceInfo

	4.6.2 Implementing your own Interfaces
	4.6.3 Providing a Single Factory Using a Helper Method
	4.6.4 Write Registration Info Using a Helper Method
	4.6.5 Provide Implementation Environment
	4.6.6 Implementing without Helpers
	XInterface Implementation
	XTypeProvider Implementation
	Providing a Single Factory
	Write Registration Info

	4.6.7 Storing the Service Manager for Further Use
	4.6.8 Create Instance with Arguments
	4.6.9 Multiple Components in One Dynamic Link Library
	4.6.10 Building and Testing C++ Components
	Build Process
	Test Registration and Use

	4.7 Integrating Components into OpenOffice.org
	4.7.1 Protocol Handler
	Overview
	Implementation
	Configuration
	Installation

	4.7.2 Jobs
	Overview
	Execution Environment
	Implementation
	Initialization
	Returning Results
	Configuration
	Installation
	Using the vnd.sun.star.jobs: URL Schema
	List of supported Events

	4.7.3 Add-Ons
	Overview
	Guidelines
	Configuration
	Installation

	4.7.4 Disable Commands
	Configuration
	Disabling Commands at Runtime

	4.7.5 Intercepting Context Menus
	Register and Remove an Interceptor
	Writing an Interceptor

	4.8 File Naming Conventions
	4.9 Deployment Options for Components
	4.9.1 Background: UNO Registries
	UNO Type Library
	Component Registration

	4.9.2 Command Line Registry Tools
	Component Registration Tool
	UNO Type Library Tools

	4.9.3 Manual Component Installation
	Manually Merging a Registry and Adding it to uno.ini or soffice.ini

	4.9.4 Bootstrapping a Service Manager
	4.9.5 Special Service Manager Configurations
	Dynamically Modifying the Service Manager
	Creating a ServiceManager from a Given Registry File

	4.10 The UNO Executable
	Standalone Use Case
	Server Use Case
	Using the uno Executable

	4.11 Accessing Dialogs
	4.11.1 Assigning Component Methods to Control Events
	4.11.2 Using Dialogs in Components
	Instantiate and display a dialog
	Accept events created by dialog controls

	5 Extensions
	5.1 Extension Manager
	5.1.1 Deployment Items
	5.1.2 Installing Extensions for All or a Single User
	5.1.3 Extension Manager in OpenOffice.org
	5.1.4 unopkg
	5.1.5 Location of installed Extensions

	5.2 File Format
	5.3 Extension Identifiers
	5.4 Extension Versions
	5.5 description.xml
	5.5.1 Description of XML Elements
	5.5.2 Example

	5.6 Simple License
	5.6.1 Determining the Locale of the License

	5.7 Dependencies
	5.8 System Integration
	5.9 Online Update of Extensions
	5.9.1 Running Online - Update
	5.9.2 Concept
	5.9.3 Example Scenario for Providing Updates
	Using an Atom Feed

	5.9.4 Migration of Update Information
	5.9.5 Description of the Update Information
	5.9.6 Description of Atom Feed
	5.9.7 Examples
	description.xml Containing Direct Reference to the Update Information
	Using the Atom Feed

	5.10 Options Dialog
	5.11 Creating the GUI of the Options Page
	5.12 Saving and Reading Data for the Options Page
	5.13 Defining the Usage of Options Pages
	5.13.1 The Options Dialog of the Extension Manager
	5.13.2 Adding a Leaf to an Existing Node
	5.13.3 Adding Several Leaves
	5.13.4 Grouping of Leaves
	5.13.5 Adding Nodes
	5.13.6 Adding Several Nodes
	5.13.7 Absolute Position of Leaves
	5.13.8 Grouping of Nodes
	5.13.9 Assigning Nodes to Modules
	5.13.10 Defining a Module
	5.13.11 Absolute Position of Nodes

	6 Advanced UNO
	6.1 Choosing an Implementation Language
	6.1.1 Supported Programming Environments
	Java
	C++
	OpenOffice.org Basic
	OLE Automation Bridge
	Python

	6.1.2 Use Cases
	Java
	C++
	OpenOffice.org Basic
	OLE Automation
	Python

	6.1.3 Recommendation

	6.2 Language Bindings
	6.2.1 Implementing UNO Language Bindings
	Overview of Language Bindings and Bridges
	Implementation Options

	6.2.2 UNO C++ bridges
	Binary UNO Interfaces
	C++ Proxy
	Binary UNO Proxy
	Additional Hints

	6.2.3 UNO Reflection API
	XTypeProvider Interface
	Converter Service
	CoreReflection Service

	6.2.4 XInvocation Bridge
	Scripting Existing UNO Objects
	Implementing UNO objects
	Example: Python Bridge PyUNO

	6.2.5 Implementation Loader
	Shared Library Loader
	Bridges

	6.2.6 Help with New Language Bindings

	6.3 Differences Between UNO and Corba
	6.4 UNO Design Patterns and Coding Styles
	6.4.1 Double-Checked Locking

	7 Office Development
	7.1 OpenOffice.org Application Environment
	7.1.1 Overview
	Desktop Environment
	Framework API

	7.1.2 Using the Desktop
	7.1.3 Using the Component Framework
	Getting Frames, Controllers and Models from Each Other
	Frames
	Controllers
	Models
	Window Interfaces

	7.1.4 Creating Frames Manually
	7.1.5 Handling Documents
	Loading Documents
	Closing Documents
	Storing Documents
	Printing Documents

	7.1.6 Using the Dispatch Framework
	Command URL
	Processing Chain
	Dispatch Process
	Dispatch Results
	Dispatch Interception

	7.1.7 Java Window Integration
	The Window Handle
	Using the Window Handle
	More Remote Problems

	7.2 Common Application Features
	7.2.1 Clipboard
	Using the Clipboard
	OpenOffice.org Clipboard Data Formats

	7.2.2 Internationalization
	Introduction
	Overview and Using the API
	Implementing a New Locale

	7.2.3 Linguistics
	Services Overview
	Using Spellchecker
	Using Hyphenator
	Using Thesaurus
	Events
	Implementing a Spell Checker
	Implementing a Hyphenator
	Implementing a Thesaurus

	7.2.4 Integrating Import and Export Filters
	Approaches
	Document API Filter Development
	XML Based Filter Development

	7.2.5 Number Formats
	Managing Number Formats
	Applying Number Formats

	7.2.6 Document Events
	7.2.7 Path Organization
	Path Settings
	Path Variables

	7.2.8 OpenOffice.org Single Sign-On API
	Overview
	Implementing the OpenOffice.org SSO API

	8 Text Documents
	8.1 Overview
	8.1.1 Example: Fields in a Template
	8.1.2 Example: Visible Cursor Position

	8.2 Handling Text Document Files
	8.2.1 Creating and Loading Text Documents
	8.2.2 Saving Text Documents
	Storing
	Exporting

	8.2.3 Printing Text Documents
	Printer and Print Job Settings
	Printing Multiple Pages on one Page

	8.3 Working with Text Documents
	8.3.1 Word Processing
	Editing Text
	Iterating over Text
	Inserting a Paragraph where no Cursor can go
	Sorting Text
	Inserting Text Files
	Auto Text

	8.3.2 Formatting
	8.3.3 Navigating
	Cursors
	Locating Text Contents
	Search and Replace

	8.3.4 Tables
	Table Architecture
	Named Table Cells in Rows, Columns and the Table Cursor
	Indexed Cells and Cell Ranges
	Table Naming, Sorting, Charting and Autoformatting
	Text Table Properties
	Inserting Tables
	Accessing Existing Tables

	8.3.5 Text Fields
	8.3.6 Bookmarks
	8.3.7 Indexes and Index Marks
	Indexes
	Index marks

	8.3.8 Reference Marks
	8.3.9 Footnotes and Endnotes
	8.3.10 Shape Objects in Text
	Base Frames vs. Drawing Shapes
	Text Frames
	Embedded Objects
	Graphic Objects
	Drawing Shapes

	8.3.11 Redline
	8.3.12 Ruby

	8.4 Overall Document Features
	8.4.1 Styles
	Character Styles
	Paragraph Styles
	Frame Styles
	Page Styles
	Numbering Styles

	8.4.2 Settings
	General Document Information
	Document Properties
	Creating Default Settings
	Creating Document Settings

	8.4.3 Line Numbering and Outline Numbering
	Paragraph and Outline Numbering
	Line Numbering
	Number Formats

	8.4.4 Text Sections
	8.4.5 Page Layout
	8.4.6 Columns
	8.4.7 Link targets

	8.5 Text Document Controller
	8.5.1 TextView
	8.5.2 TextViewCursor

	9 Spreadsheet Documents
	9.1 Overview
	9.1.1 Example: Adding a New Spreadsheet
	9.1.2 Example: Editing Spreadsheet Cells

	9.2 Handling Spreadsheet Document Files
	9.2.1 Creating and Loading Spreadsheet Documents
	9.2.2 Saving Spreadsheet Documents
	Storing
	Exporting
	Filter Options

	9.2.3 Printing Spreadsheet Documents
	Printer and Print Job Settings
	Page Breaks and Scaling for Printout
	Print Areas

	9.3 Working with Spreadsheet Documents
	9.3.1 Document Structure
	Spreadsheet Document
	Spreadsheet Services - Overview
	Spreadsheet
	Cell Ranges
	Cells
	Cell Ranges and Cells Container
	Columns and Rows

	9.3.2 Formatting
	Cell Formatting
	Character and Paragraph Format
	Indentation
	Equally Formatted Cell Ranges
	Table Auto Formats
	Conditional Formats

	9.3.3 Navigating
	Cell Cursor
	Referencing Ranges by Name
	Named Ranges
	Label Ranges
	Querying for Cells with Specific Properties
	Search and Replace

	9.3.4 Sorting
	Table Sort Descriptor

	9.3.5 Database Operations
	Filtering
	Subtotals
	Database Import
	Database Ranges

	9.3.6 Linking External Data
	Sheet Links
	Cell Area Links
	DDE Links

	9.3.7 DataPilot
	DataPilot Tables
	DataPilot Sources

	9.3.8 Protecting Spreadsheets
	9.3.9 Sheet Outline
	9.3.10 Detective
	9.3.11 Other Table Operations
	Data Validation
	Data Consolidation
	Charts
	Scenarios

	9.4 Overall Document Features
	9.4.1 Styles
	Cell Styles
	Page Styles

	9.4.2 Function Handling
	Calculating Function Results
	Information about Functions
	Recently Used Functions

	9.4.3 Settings

	9.5 Spreadsheet Document Controller
	9.5.1 Spreadsheet View
	9.5.2 View Panes
	9.5.3 View Settings
	9.5.4 Range Selection

	9.6 Spreadsheet Add-Ins
	9.6.1 Function Descriptions
	9.6.2 Service Names
	9.6.3 Compatibility Names
	9.6.4 Custom Functions
	9.6.5 Variable Results

	10 Drawing Documents and Presentation Documents
	10.1 Overview
	10.1.1 Example: Creating a Simple Organizational Chart

	10.2 Handling Drawing Document Files
	10.2.1 Creating and Loading Drawing Documents
	10.2.2 Saving Drawing Documents
	Storing
	Exporting
	Filter Options

	10.2.3 Printing Drawing Documents
	Printer and Print Job Settings
	Special Print Settings

	10.3 Working with Drawing Documents
	10.3.1 Drawing Document
	Document Structure
	Page Handling
	Page Partitioning

	10.3.2 Shapes
	Bezier Shapes
	Shape Operations

	10.3.3 Inserting Files
	10.3.4 Navigating

	10.4 Handling Presentation Document Files
	10.4.1 Creating and Loading Presentation Documents
	10.4.2 Printing Presentation Documents

	10.5 Working with Presentation Documents
	10.5.1 Presentation Document
	10.5.2 Presentation Settings
	Custom Slide Show
	Presentation Effects
	Slide Transition
	Animations and Interactions

	10.6 Overall Document Features
	10.6.1 Styles
	Graphics Styles
	Presentation Styles

	10.6.2 Settings
	10.6.3 Page Formatting

	10.7 Drawing and Presentation Document Controller
	10.7.1 Setting the Current Page, Using the Selection
	10.7.2 Zooming
	10.7.3 Other Drawing-Specific View Settings

	11 Charts
	11.1 Overview
	11.2 Handling Chart Documents
	11.2.1 Creating Charts
	Creating and Adding a Chart to a Spreadsheet
	Creating a Chart OLE Object in Draw and Impress
	Setting the Chart Type

	11.2.2 Accessing Existing Chart Documents

	11.3 Working with Charts
	11.3.1 Document Structure
	11.3.2 Data Access
	11.3.3 Chart Document Parts
	Common Parts of all Chart Types
	Features of Special Chart Types

	11.4 Chart Document Controller
	11.5 Chart Add-Ins
	11.5.1 Prerequisites
	11.5.2 How Add-Ins work
	11.5.3 How to Apply an Add-In to a Chart Document

	12 OpenOffice.org Basic and Dialogs
	12.1 First Steps with OpenOffice.org Basic
	Step By Step Tutorial
	A Simple Dialog

	12.2 OpenOffice.org Basic IDE
	12.2.1 Managing Basic and Dialog Libraries
	OpenOffice.org Basic Macros Dialog
	OpenOffice.org Basic Macro Organizer Dialog

	12.2.2 Basic IDE Window
	Basic Source Editor and Debugger
	Dialog Editor

	12.2.3 Assigning Macros to GUI Events
	12.2.4 Dialog Localization
	Technical Background

	12.3 Features of OpenOffice.org Basic
	12.3.1 Functional Range Overview
	Screen I/O Functions
	File I/O
	Date and Time Functions
	Numeric Functions
	String Functions
	Specific UNO Functions

	12.3.2 Accessing the UNO API
	StarDesktop
	ThisComponent

	12.3.3 Special Behavior of OpenOffice.org Basic
	Threads
	Rescheduling

	12.4 Advanced Library Organization
	12.4.1 General Structure
	12.4.2 Accessing Libraries from Basic
	Library Container Properties in Basic
	Loading Libraries
	Library Container API

	12.4.3 Variable Scopes

	12.5 Programming Dialogs and Dialog Controls
	12.5.1 Dialog Handling
	Showing a Dialog
	Getting the Dialog Model
	Dialog as Control Container
	Dialog Properties
	Common Properties
	Multi-Page Dialogs

	12.5.2 Dialog Controls
	Command Button
	Image Control
	Check Box
	Option Button
	Label Field
	Text Field
	List Box
	Combo Box
	Horizontal/Vertical Scroll Bar
	Group Box
	Progress Bar
	Horizontal/Vertical Line
	Date Field
	Time Field
	Numeric Field
	Currency Field
	Formatted Field
	Pattern Field
	File Control

	12.6 Creating Dialogs at Runtime
	12.7 Library File Structure
	12.7.1 Application Library Container
	12.7.2 Document Library Container

	12.8 Library Deployment
	Package Structure
	Path Settings
	Additional Options

	13 Database Access
	13.1 Overview
	13.1.1 Capabilities
	Platform Independence
	Functioning of the OpenOffice.org API Database Integration
	Integration with OpenOffice.org API

	13.1.2 Architecture
	13.1.3 Example: Querying the Bibliography Database

	13.2 Data Sources in OpenOffice.org API
	13.2.1 DatabaseContext
	13.2.2 DataSources
	The DataSource Service
	Queries
	Forms and Reports
	Document Links
	Tables and Columns

	13.2.3 Connections
	Understanding Connections
	Connecting Using the DriverManager and a Database URL
	Connecting Through a Specific Driver
	Driver Specifics
	Connection Pooling
	Piggyback Connections

	13.3 Manipulating Data
	13.3.1 The RowSet Service
	Usage
	Events and Other Notifications
	Clones of the RowSet Service

	13.3.2 Statements
	Creating Statements
	Inserting and Updating Data
	Getting Data from a Table

	13.3.3 Result Sets
	Retrieving Values from Result Sets
	Moving the Result Set Cursor
	Using the getXXX Methods
	Scrollable Result Sets
	Modifiable Result Sets
	Update
	Insert
	Delete
	Seeing Changes in Result Sets

	13.3.4 ResultSetMetaData
	13.3.5 Using Prepared Statements
	When to Use a PreparedStatement Object
	Creating a PreparedStatement Object
	Supplying Values for PreparedStatement Parameters

	13.3.6 PreparedStatement From DataSource Queries

	13.4 Database Design
	13.4.1 Retrieving Information about a Database
	Retrieving General Information
	Determining Feature Support
	Database Limits
	SQL Objects and their Attributes

	13.4.2 Using DDL to Change the Database Design
	13.4.3 Using SDBCX to Access the Database Design
	The Extension Layer SDBCX
	Catalog Service
	Table Service
	Column Service
	Index Service
	Key Service
	View Service
	Group Service
	User Service
	The Descriptor Pattern
	Adding an Index
	Creating a User
	Adding a Group

	13.5 Using DBMS Features
	13.5.1 Transaction Handling
	13.5.2 Stored Procedures

	13.6 Writing Database Drivers
	13.6.1 SDBC Driver
	13.6.2 Driver Service
	13.6.3 Connection Service
	13.6.4 XDatabaseMetaData Interface
	13.6.5 Statements
	PreparedStatement
	Result Set

	13.6.6 Support Scalar Functions
	Open Group CLI Numeric Functions
	Open Group CLI String Functions
	Open Group CLI Time and Date Functions
	Open Group CLI System Functions
	Open Group CLI Conversion Functions
	Handling Unsupported Functionality

	14 Forms
	14.1 Introduction
	14.2 Models and Views
	14.2.1 The Model-View Paradigm
	14.2.2 Models and Views for Form Controls
	14.2.3 Model-View Interaction
	14.2.4 Form Layer Views
	View Modes
	Locating Controls
	Focussing Controls

	14.3 Form Elements in the Document Model
	14.3.1 A Hierarchy of Models
	FormComponent Service
	FormComponents Service
	Logical Forms
	Forms Container
	Form Control Models

	14.3.2 Control Models and Shapes
	Programmatic Creation of Controls

	14.4 Form Components
	14.4.1 Basics
	Control Models
	Forms

	14.4.2 HTML Forms

	14.5 Data Awareness
	14.5.1 Forms
	Forms as Row Sets
	Loadable Forms
	Sub Forms
	Filtering and Sorting
	Parameters

	14.5.2 Data Aware Controls
	Control Models as Bound Components
	Committing Controls

	14.6 External value suppliers
	14.6.1 Value Bindings
	Form Controls accepting Value Bindings

	14.6.2 External List Sources

	14.7 Validation
	14.7.1 Validation in OpenOffice.org
	14.7.2 Validations and Bindings

	14.8 Scripting and Events
	14.9 Common Tasks
	14.9.1 Initializing Bound Controls
	14.9.2 Automatic Key Generation
	14.9.3 Data Validation
	14.9.4 Programmatic Assignment of Scripts to Events

	15 Universal Content Broker
	15.1 Overview
	15.1.1 Capabilities
	15.1.2 Architecture

	15.2 Services and Interfaces
	15.3 Content Providers
	15.4 Using the UCB API
	15.4.1 Instantiating the UCB
	15.4.2 Accessing a UCB Content
	15.4.3 Executing Content Commands
	15.4.4 Obtaining Content Properties
	15.4.5 Setting Content Properties
	15.4.6 Folders
	Accessing the Children of a Folder

	15.4.7 Documents
	Reading a Document Content
	Storing a Document Content

	15.4.8 Managing Contents
	Creating
	Deleting
	Copying, Moving and Linking

	15.5 UCB Configuration
	15.5.1 UCP Registration Information
	15.5.2 Unconfigured UCBs
	15.5.3 Preconfigured UCBs
	15.5.4 Content Provider Proxies

	16 Configuration Management
	16.1 Overview
	16.1.1 Capabilities
	16.1.2 Architecture

	16.2 Object Model
	16.3 Configuration Data Sources
	16.3.1 Connecting to a Data Source
	16.3.2 Using a Data Source

	16.4 Accessing Configuration Data
	16.4.1 Reading Configuration Data
	16.4.2 Updating Configuration Data

	16.5 Customizing Configuration Data
	16.5.1 Creating a Custom Configuration Schema
	16.5.2 Preparing Custom Configuration Data
	16.5.3 Installing Custom Configuration Data

	16.6 Adding a Backend Data Store

	17 JavaBean for office components
	17.1 Introduction
	17.2 Using the OOoBean
	17.3 The OOoBean by Example
	17.4 API Overview
	17.5 Configuring the Office Bean
	17.5.1 Default Configuration
	17.5.2 Customized Configuration

	17.6 Internal Architecture
	17.6.1 The Internal Office Bean API
	17.6.2 OfficeConnection Interface
	17.6.3 OfficeWindow Interface
	17.6.4 ContainerFactory Interface
	17.6.5 LocalOfficeConnection and LocalOfficeWindow

	18 Accessibility
	18.1 Overview
	18.2 Bridges
	18.3 Accessibility Tree
	18.4 Content Information
	18.5 Listeners and Broadcasters
	18.6 Implementing Accessible Objects
	18.6.1 Implementation Rules
	18.6.2 Services

	18.7 Using the Accessibility API
	18.7.1 A Simple Screen Reader
	Features
	Class Overview
	Putting the Accessibility Interfaces to Work

	19 Scripting Framework
	19.1 Introduction
	19.1.1 Structure of this Chapter
	19.1.2 Who Should Read this Chapter

	19.2 Using the Scripting Framework
	19.2.1 Running macros
	19.2.2 Editing, Creating and Managing Macros
	The Organizer dialogs for BeanShell and JavaScript
	BeanShell Editor
	JavaScript Editor
	Basic and Dialogs
	Macro Recording

	19.3 Writing Macros
	19.3.1 The HelloWorld macro
	19.3.2 Using the OpenOffice.org API from macros
	19.3.3 Handling arguments passed to macros
	19.3.4 Creating dialogs from macros
	19.3.5 Compiling and Deploying Java macros

	19.4 How the Scripting Framework works
	19.5 Writing a LanguageScriptProvider UNO Component Using the Java Helper Classes
	19.5.1 The ScriptProvider abstract base class
	19.5.2 Implementing the XScript interface
	19.5.3 Implementing the ScriptEditor interface
	19.5.4 Building and registering your ScriptProvider

	19.6 Writing a LanguageScriptProvider UNO Component from scratch
	19.6.1 Scripting Framework URI Specification
	19.6.2 Storage of Scripts
	19.6.3 Implementation
	19.6.4 Integration with Extension Manager
	Overview of how ScriptingFramework integrates with the Extension Manager API

	20 Graphical User Interfaces
	20.1 Overview
	20.1.1 Implementation Details
	20.1.2 Basic Concepts

	20.2 Exception Handling
	20.3 Dialogs and Controls
	20.4 Dialog Creation
	20.4.1 Instantiation of a Dialog
	20.4.2 Setting Dialog Properties
	Multi-Page Dialogs

	20.4.3 Adding Controls to a Dialog
	20.4.4 Displaying Dialogs

	20.5 Dialog Handling
	20.5.1 Events
	Mouse Listeners
	Keyboard Listener
	Focus Listener
	Paint Listener
	Control element-specific events

	20.5.2 Dialog Controls
	Common Properties
	Font-specific Properties
	Other common Properties
	Property propagation between model and control
	Common Workflow to add Controls
	The Example Listings
	Label Field
	Command Button
	Image Control
	Check Box
	Radio Button
	Scroll Bar
	List Box
	Combo Box
	Progress Bar
	Horizontal /Vertical Line Control
	Group Box
	Text Field
	Text Field Extensions
	Formatted Field
	Numeric Field
	Currency Field
	Date Field
	Timefield
	Pattern Field
	Roadmap Control
	File Control
	File Picker
	Message Box

	20.5.3 The Toolkit Service
	Dockable Windows

	20.5.4 Creating Menus
	Accessibility
	Rendering

	20.6 Summarizing Example to create a UNO Dialog
	Appendix A: OpenOffice.org API-Design-Guidelines
	A.1 General Design Rules
	A.1.1 Universality
	A.1.2 Orthogonality
	A.1.3 Inheritance
	A.1.4 Uniformity
	A.1.5 Correct English
	A.1.6 Identifier Naming Convention

	A.2 Definition of API Elements
	A.2.1 Attributes
	A.2.2 Methods
	A.2.3 Interfaces
	A.2.4 Properties
	A.2.5 Events
	A.2.6 Services
	A.2.7 Exceptions
	A.2.8 Enums
	A.2.9 Typedefs
	A.2.10 Structs
	A.2.11 Parameter

	A.3 Special Cases
	A.4 Abbreviations
	A.5 Source Files and Types

	Appendix B: IDL Documentation Guidelines
	B.1 Introduction
	B.1.1 Process
	B.1.2 File Assembly
	B.1.3 Readable & Editable Structure
	B.1.4 Contents

	B.2 File structure
	B.2.1 General
	B.2.2 File-Header
	B.2.3 File-Footer

	B.3 Element Documentation
	B.3.1 General Element Documentation
	B.3.2 Example for a Major Element Documentation
	B.3.3 Example for a Minor Element Documentation

	B.4 Markups and Tags
	B.4.1 Special Markups
	B.4.2 Special Documentation Tags
	B.4.3 Useful XHTML Tags

	Appendix C: Universal Content Providers
	C.1 The Hierarchy Content Provider
	C.1.1 Preface
	C.1.2 HCP Contents
	C.1.3 Creation of New HCP Content
	C.1.4 URL Scheme for HCP Contents
	C.1.5 Commands and Properties

	C.2 The File Content Provider
	C.2.1 Preface
	C.2.2 File Contents
	C.2.3 Creation of New File Contents
	C.2.4 URL Schemes for File Contents
	C.2.5 Commands and Properties

	C.3 The FTP Content Provider
	C.3.1 Preface
	C.3.2 FTP Contents
	C.3.3 Creation of New FTP Content
	C.3.4 URL Scheme for FTP Contents
	C.3.5 Commands and Properties

	C.4 The WebDAV Content Provider
	C.4.1 Preface
	C.4.2 DCP Contents
	C.4.3 Creation of New DCP Contents
	C.4.4 Authentication
	C.4.5 Property Handling
	C.4.6 URL Scheme for DCP Contents
	C.4.7 Commands and Properties

	C.5 The Package Content Provider
	C.5.1 Preface
	C.5.2 PCP Contents
	C.5.3 Creation of New PCP Contents
	C.5.4 URL Scheme for PCP Contents
	C.5.5 Commands and Properties

	C.6 The Help Content Provider
	C.6.1 Preface
	C.6.2 Help Content Provider Contents
	C.6.3 URL Scheme for Help Contents
	C.6.4 Properties and Commands

	Appendix D: UNOIDL Syntax Specification
	Glossary
	Index

