


full circle magazine #89 27 contents ^

HHOOWW--TTOO
Written by Mark Crutch II nnkkssccaappee -- PPaarrtt 2299

L ast time I introduced Inkscape's

notion of clones – duplicate

objects that maintain a link to their

parent. I also demonstrated that

clones can be independently

transformed whilst still

maintaining that link, so you can

set the basic shape, fill and stroke

on a parent object, but then

additionally skew, scale and rotate

the clone. Keep that capability in

your mind, as we'll be returning to

it later in this article, but first I

need to talk to you about cloning

groups.

It's possible to clone almost any

type of object in Inkscape.

Previously I used rectangles, text

and images, but the same rules

apply to stars, spirals and paths.

The exception is 3D boxes, which

don't behave at all well when

cloned, and tend to disappear

when the parent is modified. You

can 'ungroup' a 3D box to convert

it into normal paths; if you then

group those together again, you

can clone that group, but you'll

have lost the ability to edit the

parent using the 3D Box tool.

Whether created from a 3D box,

or via any other mechanism, groups

are a prime target for cloning.

Having drawn a complex object

made up of several different parts,

it's useful to be able to clone it in

its entirety, rather than having to

clone each part separately. Let's

use this technique to create a clone

army using the snowman we last

saw in part 1 4.

The parent object here is the

snowman at the front, which has

been cloned multiple times, and

the clones scaled. The parent is a

group which contains other groups

– one for the hat, one for each arm,

and so on. It's only when you drill

down a couple of levels deep that

you finally get to real paths and

shapes, but cloning a group

automatically includes all of that

structure, no matter how deep it

goes.

Creating lots of clones like this

can be time consuming, but there

are a couple of tricks to speed up

the process. The first is to use

Inkscape's Tiled Clones feature

(Edit > Clone > Create Tiled

Clones...) which is a hugely

powerful, but extremely

complicated, tool. I ' ll be covering

some aspects of it later in this

series. The other approach – and

the one I took here – is to create

the first clone, then drag it around

the screen, 'stamping' it in place by

pressing the spacebar. Each copy

that you stamp is a duplicate of the

object you're dragging, and, as we

found out last time, a duplicate of

a clone retains a link to the original

parent object. By working from the

back to the front, pausing

occasionally to re-scale the clone

that's being dragged, it took only a

few moments to create all the

clones in the image.

One big problem with clones is

that they can appear too similar.

Our clone army loses some menace

through all being exactly identical,

right down to their arm positions.

One way to deal with this is to

break your group apart into smaller

sections, and clone them

separately. For example, if we

break the snowman apart to

separate his hat, arms, pipe, scarf

and nose from the main group, we

can create an army with a little

more individuality by simply

omitting or transforming them on

some of the characters.

This technique is one that I use

frequently when creating comic



full circle magazine #89 28 contents ^

HOWTO - INKSCAPE
strips. A character's body is often

cloned directly from one panel to

the next, but the arms or legs are

cloned separately so they can

'move' between scenes to add a

little dynamism to the strip. Often

I 'll also scale and crop the clones,

to give the impression of a camera

zooming into or out of the scene.

Don't forget that you can still draw

extra elements on top of your

clones to truly make each one

individual. That's how I deal with a

cloned character that may be

speaking in one panel and silent in

another: the original parent has no

mouth, then it's drawn on the

clones separately for each scene.

When cloning a group, it's

important to realise that the clone

is not a group itself. You can't

enter the clone to make changes.

You can, of course, still enter the

parent and make changes there.

They will propagate to the clones

as usual. When dealing with

groups, though, you not only have

the option of changing fills,

strokes, filters and

transformations, but also the

possibility to delete objects in the

group, or create new ones. Even

those changes will propagate to

the clones, offering up one rather

nice way to use clones which isn't

immediately obvious.

For this technique, we'll need a

group. Ideally it would be empty,

but Inkscape won't let you create

an empty group, so we'll have to

put something in it. A good starting

point is to draw a large square,

almost filling the canvas, with a

stroke but no fill. Then immediately

group it using the icon on the main

toolbar, the Object > Group menu,

or by pressing CTRL-G. Select the

square and check the status bar: it

should confirm that you've got a

group of one object.

With the group selected, press

ALT-D to clone it. With the clone

now selected, press the 'H' key,

select the Object > Flip Horizontal

menu, or use the toolbar button to

mirror the clone horizontally. You

shouldn't see any obvious change

as you've mirrored it directly on

top of the parent. Next, send the

clone to the back of the Z-order

using the toolbar button, Object >

Lower to Bottom, or by pressing

the END key. Finally, double-click

on the parent (remember, it's now

at the top of the Z-order, so you

can just double-click on its stroke)

to enter the original group. Now

switch to the Pencil or Calligraphy

tool and draw something.

If you've set everything up

correctly, you should find that each

time you release the mouse

button, the line you've drawn is

immediately reproduced as a

mirror image at the opposite side

of the canvas. All that's actually

happening, of course, is that the

objects you're adding to your

group are being reflected (in every

sense) in the clone of the group.

Because the square you drew has

no fill, the clone shows through as

a mirroring of your every stroke.

You're not limited to the Pencil

and Calligraphy tools, of course.

Anything you draw, regardless of

the tool (except the problematic

3D boxes, of course) will be

mirrored, making it a useful way of

making symmetric designs. It's

surprising how readily a few

random paths will become a

person, alien, insect or plant once

you introduce a little symmetry,

making it a great way to get

started when inspiration has left

you.

As soon as you have drawn

another object in the group, there's

no need for the square any more,

so delete it if you wish. I prefer to

leave it in place for reference until

I 've finished drawing, then remove

it as a final step. Either way, don't

feel constrained by it – the square

is only there to provide some initial

content for the group, so don't be

shy about drawing beyond its

limits.



full circle magazine #89 29 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys', 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

HOWTO - INKSCAPE

Once you've got the hang of the

basic technique, it shouldn't be

hard to see that extending it to

three clones lets you create

drawings that are mirrored both

horizontally and vertically.

Flipping the clones like this is a

good start, but why not try other

transformations on them? Rotating

them is a great option and holding

down CTRL to lock the rotation to

the fixed steps defined in

Inkscape's preferences can quickly

produce kaleidoscopic effects. Try

setting different opacities for each

group, or blurring some of them.

Within a few minutes, you'll be

creating works of abstract

computer art with just a couple of

squiggles of the mouse.

This example was made by

rotating the original square about

its bottom right corner. By moving

the center of rotation for the

original, it was already in the

correct place as each clone was

created. Then I simply cloned the

original group and rotated it whilst

holding CTRL. I reduced the opacity

and increased the blur a little.

Pressing CTRL-D created the next

clone, and the cycle was repeated

until I had completed a full circle of

clones. Bringing the original to the

front, double clicking on it, then

drawing a single shape with the

Pencil tool (with the Shape control

set to “Ellipse”) produced this

abstract image, spiralling away to

nothingness.

If you do try this technique and

decide to use blurring on your

clones as I have done here, you'll

soon find that Inkscape can slow

down to a crawl. It's not just

blurring that has this effect – any

of Inkscape's filter functions can

result in the rendering engine

having to perform copious

calculations, slowing it down

considerably. If you find this to be a

problem, you can try turning off

the display of filters using the View

> Display Mode > No Filters option.

Any changes you make to filtered

elements will still be stored, saved

and applied if you export a bitmap

– they just won't show up on

screen. Use View > Display Mode >

Normal to see the page in its fully

rendered glory. You can press

CTRL+5 (on the numeric keypad) to

cycle through the view modes,

including the “outline” mode which

is great for finding rogue elements

that have become invisible due to

too much blurring or too low an

opacity. This is a useful shortcut to

learn if you find yourself plagued

by slow redraws as you can press it

at any time – even in the middle of

a redraw – if you don't need to see

the fully filtered version of the

image for the particular edit you're

making at the time.

Whether you're creating swirly

patterns or armies of characters,

there will come a time when you

want to break the link between a

clone and its parent. Perhaps your

snowman needs a completely

different smile to its comrades, or

your soft, pastel spiral needs a

single bright red segment to draw

the eye. What you really want is a

copy of the parent object that you

can modify as much as you want

without being constrained by that

pesky linkage.

You could, of course, just create

a copy as normal, but if you've

already got a clone in the right

place, it seems a shame not to use

it. The Edit > Clone > Unlink Clone

menu item will do what you want,

turning any selected clone into a

plain, old fashioned copy. Use it

wisely because although it's easy

to convert a clone into a copy, you

can't go back in the opposite

direction.

http://www.peppertop.com/shop/


full circle magazine #90 22 contents ^

HHOOWW--TTOO
Written by Mark Crutch II nnkkssccaappee -- PPaarrtt 3300

U sing clones makes it easy to

create identical copies of

objects or groups in your image. As

we saw last time, breaking your

groups down into smaller chunks

to clone lets you add a little

variety, and you can always draw

extra objects on top of your clones

to further distinguish them. But

you can't make significant changes

to a clone – altering the shape of a

path, for example – without first

converting it to a normal copy.

Although you can't make

significant changes to clones,

they're not entirely inert either.

I 've already shown how they can be

rotated, flipped, scaled and

skewed independently of their

parent objects. But there's one

other little trick in the clones'

arsenal which requires a bit of

effort to set up, but can be well

worth it for some situations: clones

can change their fill and stroke

separately from their parents.

You can't just take any old clone

and give it a new fill and stroke,

though. Instead, the parent object

has to have its fill and/or stroke

“unset”. The quickest way to unset

the fill or stroke is to right-click on

the relevant swatch in the status

bar at the bottom of the Inkscape

window. Towards the bottom of

the context menu will be an option

for “Unset fill” or “Unset stroke”.

Select this item and the

corresponding color swatch will be

replaced with the word “Unset”.

You can also unset the fill or stroke

using the “?” button in the relevant

tab of the Fill and Stroke dialog.

Unfortunately, unsetting the fill

or stroke on your object has side

effects. An unset fill is rendered in

black which is often bad enough,

but an unset stroke doesn't render

at all which can be disastrous if the

object you want to clone is all

stroke and no fill – making it

effectively disappear from the

screen! Because strokes are trickier

to illustrate (an invisible object

doesn't make for a great

screenshot), we'll start by just

considering unset fills, and come

back to strokes later in the article.

As a demonstration I 've drawn

two identical circles, then unset

the fill in the bottom one. You can

easily spot it because the fill has

been drawn as solid black. It's

important to note that “black” and

“unset” are not the same thing,

though, even if they appear that

way on screen. Next, I 've cloned

each circle, then set the fill color

for each clone to yellow. As you

can see, the top clone ignores the

fill that's been set, just like all the

clones we looked at previously. The

bottom clone, on the other hand,

has replaced the black “unset” fill

with the color that's been set on

the clone itself.

The yellow clone has inherited

its shape, size and stroke from the

parent object, but carries its own

fill color. We can extend this

further by creating additional

clones from that one parent and

giving each of them their own

color.



full circle magazine #90 23 contents ^

HOWTO - INKSCAPE

When dealing with something

as simple as a circle, there's

probably no real benefit in creating

clones like this compared with

simply duplicating the parent and

changing the fill. But the parent

object is rarely as simple as a circle,

and these clones can still also be

rotated, flipped, scaled and

skewed independently.

Furthermore, the fills don't have to

be simple colors: you can use

patterns and linear or radial

gradients, too. Admittedly the

Inkscape UI struggles a little with

anything other than simple colors

as the gradient editing handles

tend to appear out of place, and

the pattern scaling handles don't

appear at all – but SVG itself allows

for all these possibilities.

Taking our previous example,

let's mix it up a little to

demonstrate some of these

capabilities. First I 've converted the

parent circle to a path, then

tweaked its nodes to give a more

interesting shape. Then I 've

squashed, skewed and rotated

some of the clones, and given

others different fills or

transparency. They're all still clones

– a change to the parent path will

affect them all – but combining

transformations with an unset fill

lets them each take on a distinctly

different appearance.

In the previous article, I was

extolling the virtues of cloning

groups rather than single objects,

so you'll be pleased to hear that

you can use unset fills in cloned

groups as well. Any objects within

your group that have their fill unset

will be given the clone's color,

whereas other objects will be

cloned as normal, inheriting their

fill from the parent. This ability to

mix normal and unset fills within

the parent can be very useful if you

require a few similar copies with

just part of the design changing

color with each clone – consider

creating some characters for a

crowd scene, each of which has a

different colored T-shirt.

In this example, I 've cloned a

group of five objects – four shapes

inside a larger rounded square. The

circle and triangle have their fills

unset, whereas the star and square

have them set to specific colors.

You can see that in each clone the

shapes with the fixed colors appear

the same as the parent, but those

with the fill unset use the color

that's set on the clone itself.

You'll notice that both the circle

and the triangle take on the same

color in each clone. One major

limitation of this approach is that

SVG considers all unset fills in a

clone to be identical. There's no

way to apply two colors to your

clone and have one affect the circle

whilst the other affects the

triangle. Or is there...?

If you really want to get extra

colors into your clones, there are

ways to do it by being

underhanded and devious. One

approach is to stack identical

clones on top of each other, each

set to a different fill color, then use

clipping paths to only show the

relevant parts of each clone.

Another technique I 've used in the

past is to create a filter in the

parent that “rotates” the color of

one of the unset objects – more on

that when we get onto filters later

in this series. For this example,

however, I kept it simple: I

managed to use two colors in the

unset objects by using a linear

gradient as the fill. By creating a

couple of extra stops in the

gradient and setting them to the

same colors as the start and end

points, I created gradients like this,

to allow me to fake the appearance



full circle magazine #90 24 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys', 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

HOWTO - INKSCAPE
of having two separate fill colors.

At the start of the article I did

promise to come back to unset

strokes. Whereas an unset fill is

rendered in black, making it easy to

see and work with, an unset fill is

also rendered in black, but with a

width of zero! If your object has a

fill – even an unset one – it will still

be visible on screen. But, if you

unset the stroke of an object with

no fill, it will disappear from view

entirely. For this reason my first

rule of working with unset strokes

is to unset them as the last step.

Work with a colored stroke while

you're creating your parent object

or group, and unset it only at the

last minute.

The second rule is not to panic if

you do lose track of your object.

Just use the View > Display Mode >

Outline menu to switch to a mode

where even the most invisible of

Inkscape objects appears as a

skeletal outline. Even in this mode

you can still select and manipulate

your objects, and they will remain

selected when you switch back to

another display mode.

With an unset stroke in your

parent object or group, you can

now set not only the stroke color

(or pattern, or gradient) on each

clone, but also its width, join style,

end caps and dashes. In fact, at a

minimum you have to set the color

and width if you want the stroke to

be visible. Unfortunately, you can't

set markers on a per-clone basis – if

you want arrows or chevrons

marking the nodes of your path,

they have to be set on the parent

object.

With unset strokes, you now

have another method of getting an

extra color into your clones. With a

little lateral thinking, you can even

usurp the stroke to provide a

second fill color, if that suits your

needs better. In this final example,

I 've used an unset fill on the left

hand shape, that's clear enough.

But where is the right hand shape

coming from?

You've probably already

guessed that there's an unset

stroke involved, but how does that

turn into a shaped fill in the clones?

The trick was to draw a single

vertical line in the parent and give

it a really large width value – 40px

in this case – effectively creating a

40px wide rectangle. Then I used a

path to clip that “rectangle” to the

shape I wanted, before finally

unsetting the stroke. On each

clone I have to only set the stroke

to the color I want, with a 40px

width, and my second “filled

shape” appears. You can also

perform a similar trick using masks,

which can be particularly useful for

faking a gradient in your clones.

The ability to use different fills

and strokes on clones can make

them extremely versatile, at the

expense of leaving you with black

areas or invisible lines in your

parent object. Being able to set

only two “parameters” on each

clone can be limiting, but hopefully

you've seen how, with a little

lateral thinking, the use of masks,

gradients, clipping and filters can

let you break that restriction to

some degree.

http://www.peppertop.com/shop/


full circle magazine #91 1 9 contents ^

HHOOWW--TTOO
Written by Mark Crutch II nnkkssccaappee -- PPaarrtt 3311

A fter the previous instalment

of this series had gone to

press, an interesting problem was

raised at www.inkscapeforum.com

that directly relates to the use of

unset fills and clones. So, before

moving on to the next topic, I think

it's worth drawing attention to this

issue, and how you can deal with it.

Let us suppose that you create a

parent object and unset both its fill

and stroke. As you know from the

previous instalment, you can now

set the fill and stroke on any clones

independently. I demonstrated

using colors, patterns and

gradients for both the fill and the

stroke, but it seems that one thing

I missed was setting a non-opaque

color – i.e. one with the alpha (A)

channel in the Fill and Stroke

dialog set to something other than

255. It turns out that doing this

with the stroke works perfectly

well, but the opacity of the fill

color is completely ignored. In this

example you can see what I mean.

Both the fill and stroke opacities

on the clone have been set to 1 77,

but only the stroke actually

appears transparent (the bottom

diamond shows how the clone

should appear).

It turns out that there's a bit of

a bug in Inkscape (issue 1 1 83400 in

Launchpad). When you unset a fill,

the program fails to remove the

“fill-opacity” attribute in the SVG.

Any clones made from that object

are then stuck with the opacity

that the parent fill had before it

was unset. As a demonstration of

this, I created a clone and filled it

with an opaque green color. Then I

set the alpha channel for the green

fill to 1 77. Next I unset the fill

altogether. Finally I cloned the

object and gave the clone a fully

opaque purple color.

What I would expect to see here

is that unsetting the fill should also

unset the opacity, making it default

to the SVG standard of fully

opaque. Clearly the parent at the

bottom is still translucent, as the

blue bar behind it shows. Even

without the blue bar, it appears as

a washed out gray color, rather

than the deep black we would

usually expect of an unset fill.

Furthermore, the clone is now

forced to adopt the transparency

of the parent, so there's no way

that any clones of this object could

be completely opaque, regardless

of their own alpha value.

For most people this bug may

never be a problem, but if you do

want to set the opacity of your

clones to be anything other than

1 00%, there is a “fix” for the issue.

It will mean using Inkscape's XML

Editor dialog, which is a topic I had

hoped to avoid until later in this

series, but as my hand has been

forced, I 've decided to introduce it

now. But to understand the XML

editor, you first need a little insight

into the structure of an Inkscape

file.

The SVG format that Inkscape

natively uses is an XML file,

meaning that it follows the rules,

conventions and structure for such

files as defined by the W3C – the

standards body of the web. XML is

a dubious abbreviation of

“eXtensible Markup Language”. In

short, it means that every Inkscape

file is made up of a hierarchical

collection of “tags” (also called

“elements” or “nodes”) , each of

which can carry “attributes” to

further define it. For example a

simple rectangle might appear in

an SVG document as a “rect” tag,

with attributes for defining its size

and location:

<rect height="300"
width="400" x="50" y="100" />



full circle magazine #91 20 contents ^

HOWTO - INKSCAPE
What about the hierarchical

aspect I mentioned? How about

this more complex example:

<svg
xmlns="http://www.w3.org/2000
/svg">

<g>

<rect id="r1"
height="300" width="400"
x="50" y="100" fill="red" />

<rect id="r2"
height="500" width="100"
x="200" y="50" fill="blue" />

</g>

</svg>

As you can see, we've got two

rectangles now, and they've gained

a couple more attributes to set the

fill color, and to give each of them

an ID so we can identify them

individually. Those are both inside

a set of <g>...</g> tags, which

defines a group in SVG terms. The

group, in turn, is inside the

outermost pair of <svg>...</svg>

tags. You can think of these as a

clue to an application that the

content inside them should be

rendered as SVG, rather than as

HTML or plain text.

Because the “r1 ” rectangle is

first in the file, it's drawn first on

the canvas. The “r2” rectangle is

drawn afterwards, so it overlaps

the first one. The result is a simple

SVG image with a blue rectangle on

top of a red one, both inside a

group. Try it for yourself: copy the

code above into a text editor and

save it with an “svg” extension,

then load the file into a web

browser or Inkscape.

What if we wanted another

rectangle, outside the group? We

could just include an additional

<rect> element but place it after

the opening <svg> tag but before

the opening <g> tag. That would

put it behind the group when the

image is rendered. Place it after

the closing </g> tag, and before

the closing </svg> tag, and it will

appear on top of the group. Give it

a try for yourself, but remember to

change the position, size and

colour of the new rectangle so that

it doesn't get obscured by the

existing ones. While you're editing

the file, how about adding “rx” and

“ry” attributes to set the size of the

corner radius. Or replace the <rect>

with a <circle>, swapping the

dimension and position attributes

for “cx”, “cy” and “r” to set the

center coordinates and the radius.

By now you should be starting

to get a feel for the structure of an

SVG document. Of course the ones

that Inkscape produces are far

more complex, generally including

many more elements and

attributes, but the basics remain

the same. If you want to take a look

at some more simple files in your

text editor then I recommend the

various flag images on Wikipedia,

which tend to be pared down and

minimised by hand, removing any

unnecessary structure or metadata.

Examining a few of these will

quickly give you some insight into

the structure of XML files.

Let's switch back to Inkscape

now, and create a very basic

drawing – just a single purple

rectangle on the canvas.

With your new found

knowledge of SVG you should

know how to hand-code this in just

three lines, yet, when I saved my

copy from Inkscape, the resultant

file had 62 lines in! Admittedly

many of these were due to it

putting every attribute onto its

own line – an option that can be set

in the SVG Output pane of the

Inkscape Preferences dialog. Yet,

even enabling the “Inline

attributes” setting still resulted in

1 9 lines. What's going on?

Look at an Inkscape SVG file in a

text editor and you'll quickly spot a

lot of attributes that have a prefix

to their names. So rather than

label="Layer 1 " you'll see

inkscape:label="Layer 1 ". This is a

feature of XML called

“namespaces”, and it's basically a

mechanism by which one XML file

can safely include elements and

attributes from other XML

languages without having to worry

about them clashing. In this case it

indicates that the “label” attribute

isn't part of the SVG spec, but is

rather an attribute from the

“inkscape” namespace. This allows

Inkscape to include application-

specific data in a file, whilst still

remaining compatible with the SVG



full circle magazine #91 21 contents ^

HOWTO - INKSCAPE
specification, and therefore with

other applications that can read

SVG files (though they'll usually

ignore the Inkscape-specific

additions).

In an Inkscape file, you'll

typically see “inkscape” and

“sodipodi” namespaces that are

used to store application-specific

data (Inkscape was created as a

fork of an older SVG editor called

Sodipodi – which was, itself, a fork

of an even older vector graphics

program). You'll also see “dc”

which stands for Dublin Core, and

represents the namespace for a set

of defined terms used to contain

metadata about the file. You can

set these using the File >

Document Metadata menu item in

Inkscape, and it's recommended to

fill out at least some of the fields if

you plan to distribute your SVG file

online. Because the metadata are

stored in a standard form using a

well known namespace, it increases

the chance that your document

could one day be indexed by online

search engines.

One final thing to note in the

file is that the rectangle itself,

although it's pure SVG with no

namespaced attributes, is a little

different to the ones we created

earlier. Whereas we used the

fill="red" syntax to provide a fill

color, Inkscape uses a more general

purpose “style” attribute to carry

numerous details about the color

and style of the rectangle. It also

uses hexadecimal RGB numbers for

the color, rather than a color name

– you can force it to use color

names where possible in the

Inkscape Preferences, but it's

usually not worth bothering with

unless you have a specific reason to

do so: most colors don't have

corresponding names so will still be

stored as hex numbers, and using

names can cause problems with

some Inkscape extensions.

With all that background in

place, it's finally time to look at the

file in Inkscape's XML editor. You

can open this by pressing CTRL-

SHIFT-X or by selecting Edit > XML

Editor from the menu bar. The

dialog is made up primarily of a

tree on the left which shows the

structure of the SVG file, and a

pane on the right to list and edit

the selected item's attributes. The

little triangles in the tree can be

toggled to show or hide that

particular part, and indentation is

used to show the hierarchy of the

elements. In this screenshot I 've

expanded all the triangles so that

the metadata elements are visible,

with their Dublin Core namespace.

Despite the closing tags not being

explicitly shown, you can

nevertheless see that the rect at

the bottom is “inside” the group (g)

just above it – actually an Inkscape

layer, as you can tell from the

Inkscape-namespaced “label”

attribute. This layer is, in turn,

inside the root svg element. One

thing to note is that the XML Editor

shows the SVG namespace on

elements (so you can see svg:svg,

svg:g, svg:rect...) even though the

exported file just uses the base

names (in XML terms the SVG

namespace is set as the default for

the document, so it doesn't then

need to be explicitly added to

every element).

When an entry in the tree is

highlighted, its attributes are

shown on the right. If a single

element or group is selected on

the canvas it will be automatically

selected in the XML Editor, so you

can simply leave the dialog open

and click on various objects in your

drawing to see their details.

Equally, selecting an entry in the

tree will also select the

corresponding object on the

canvas.

Here I have the rectangle

selected, but there's something

odd going on. If you look back at

the image of the rectangle on the

canvas you'll see that it has

dimensions of 400x300 pixels, and

is positioned at x=1 40, y=500. Now

look at the XML Editor image:

width, height and x are all correct,



full circle magazine #91 22 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys', 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

HOWTO - INKSCAPE
but y claims to be 252.3621 8 –

which is pretty far from 500!

SVG places its origin point at

the top left of the document. This

sort of makes sense, given that it

comes from the world of the web

where the height and width of a

document can change dramatically,

but the top left is always the top

left. The x-axis therefore runs from

left to right, as you might expect,

but the y-axis runs from top to

bottom, with positive values

moving further down the page.

Inkscape, on the other hand,

presents a more traditional

drawing view, with the origin in the

bottom left, and the y-axis running

up the page from top to bottom.

So the 500 value you see in the

main Inkscape window represents

the distance from the bottom of

the page to the bottom of the

rectangle, whereas the value in the

XML Editor (and the value that

appears in the SVG file) is the

distance from the top of the page

to the top of the rectangle. Usually

this incongruity has little impact,

but if you're trying to find specific

coordinates in an SVG image you

do need to be aware of the

difference.

With the rectangle still

selected, let's click on the “style”

attribute on the right. The

attribute name and value is put

into the fields at the bottom of the

dialog. In the case of the style

attribute, the value is actually a

single long string which is, itself,

made up of name:value pairs. If

you're familiar with CSS from the

web world, then you'll recognise

the format – if not all of the

property names (SVG uses a lot of

the standard CSS properties you

might know from writing HTML,

but adds a few of its own). With the

style attribute loaded for editing,

we can now address that pesky

issue with the fill-opacity and

clones.

See the “fill-opacity:1 ;” section,

right near the start? We need to

remove that. This is just a multiline

text field, so simply click to place

the cursor in there, then move

around with the arrow keys and

edit the text as you would

normally. Once your editing is

done, you need to click on the “Set”

button to make it take effect.

Assuming the fill-opacity's value

was 1 , then you shouldn't notice

any change, since 1 in here

corresponds to 255 in the Fill and

Stroke dialog, and is the default for

SVG if it's not specified.

Now clone the rectangle, and

try changing the clone's color. You

can't, of course, since the parent

rectangle's fill is still purple, not

unset – but, once you give the

clone a fill color, you gain access to

the alpha slider in the Fill and

Stroke dialog. Reduce that value

and you'll see that you can affect

the transparency of the fill, if not

its color. Select the parent again

(SHIFT-D if the clone is still

selected) and then unset the fill.

Now you can change the clone's fill

color and opacity to your heart's

content. It's as simple as that: to

work around this Inkscape bug, and

restore the ability to change a

clone's fill opacity independently

of its parent, you just have to

remove the fill-opacity property

from the parent's style attribute.

Doing this on my original test

image gives exactly the result you

would expect.

You may have noticed that I

haven't talked about the toolbars

in the XML Editor, and that's with

good reason. The buttons there

give you the ability to significantly

change the structure of your SVG

file – potentially with disastrous

effects if you're not sure what

you're doing. By all means have a

play around in the XML Editor.

Move nodes, un-indent them,

change their attributes or remove

them altogether. It offers a

fascinating insight into the

structure of an Inkscape file, and

gives you unprecedented power to

tweak things that aren't always

exposed in the Inkscape user

interface. But if you do decide to

experiment, please make sure you

do it on a temporary file, or one

you've got backed up elsewhere.

http://www.peppertop.com/shop/


full circle magazine #92 21 contents ^

HHOOWW--TTOO
Written by Mark Crutch II nnkkssccaappee -- PPaarrtt 3322

Erratum : During magazine layout,

it's common for images to be

cropped or dropped entirely.

Unfortunately, that happened to a

couple of the images in last

month's article which may have

caused confusion – some of the

cropped parts were directly

referenced in the text. I 've put the

full images online at

http://www.peppertop.com/fc/

B ack in part 29, I showed one

use for putting a single object

into a group: as the start of a

method for producing mirrored or

kaleidoscopic drawings using

clones. This time, I 'm going to use a

single object in a group, plus a bit

of cloning, to perform some sneaky

tricks with clipping and masking.

Let's start with a familiar image

to which we'll apply a clipping path.

Remember, all the parts inside the

bright green clipping line will

remain visible once the clip is

applied, whereas those outside it

will be hidden.

Having clipped our image down

to just show her head, what if we

then decide we also want the

hands? We could release the clip

and construct a more complex path

that includes the hands as well,

before re-clipping. But that still

leaves us with a single object, with

the head and hands at a fixed

distance apart. If we want to move

the hands independently of the

head – or maybe scale or rotate

them – we're out of options.

The next obvious approach

would be to import the image a

second time and clip it to show the

hands. Now we have two images,

each clipped differently, resulting

in two separate objects that can be

modified independently. With a

linked image, that might be a

reasonable approach, but if our

images are being embedded so

that the resultant SVG can be

shared more easily, we've now got

two large bitmap images bloating

our file. What we really want is a

way to include the image just once,

but create two completely

separate clips from it.

From the introduction, you've

probably already deduced that the

answer is to group our image

before clipping it. Here I 've

denoted the group with a dotted

box for illustrative purposes – it

doesn't appear in a real drawing.

The result (below right) doesn't

look altogether different from our

first attempt, but that's because

the effect is not a visual one, but

rather a structural one. Previously,

our clipping path was applied

directly to the image. If you were

to look in the XML Editor you

would see that the image has “clip-

path” attribute whose value is the

ID of a path stored in the <defs>

section of the XML file. With the

image grouped and then clipped,

however, the clip-path attribute is



full circle magazine #92 22 contents ^

HOWTO - INKSCAPE
now on the group itself and the

image either has no clip-path

attribute at all, or its value is set to

“none”.

The difference is subtle, but

useful. By clipping the group, we've

effectively created a window

through which we're viewing just a

part of the image at any time, but

the image itself is still the full size.

We can demonstrate this by

double-clicking to enter the group,

then dragging the image around.

We're moving the un-clipped image

inside the clipped group, not

moving the group itself, and the

effect is quite different. You could

also scale, rotate or skew the

image if you want, all without the

size or shape of the “window”

being affected.

It's a useful trick in its own right

– combined with performing an

“object to path” on your clipping

path before the clip is applied (see

Part 1 3) the simple expedient of

grouping your image before

clipping means that you can not

only change the clipping path itself

without releasing it, but you can

also move the focal point of the

content within it. Clearly you could

move the image like this to bring

the hands into view through the

“window”, but that still doesn't get

us two separate clips. For that we

need to get a little devious.

The steps we'll be taking aren't

difficult, but they do need to be

done in the right order. Once

you've done it a few times, it will

become second nature to you. To

make things clearer, I suggest

starting with a new file, and

opening the XML Editor so that you

can see exactly what's happening

at each step in the process.

Step 1 : Drag and drop your

image into the document. I chose

to embed the image to really prove

the point, but linking works as well.

In the XML Editor you should see

an <svg:image> tag with an

“xlink:href” attribute. If you've

embedded the image, then the

attribute will contain a Base64

encoded version of the image's

binary content (if you linked the

image it will contain the path to the

original image).

Step 2: Group the image. An

<svg:g> element will appear in the

XML Editor – expand it out to see

that your image is still inside it.

Step 3: Draw your clipping path.

You should see it appear in the

XML Editor as a sibling of the

group.

Step 4: Select both the path and

the group, then apply the clipping

path using either Object > Clip >

Set, or by selecting “Set clip” from

the right-click context menu. Note

the effect in the XML Editor: your

path is moved into the <svg:defs>

section, and the group gains a “clip-

path” attribute that references the

path by its ID.

Step 5: Double-click to enter

the group, and select the image.

Keep an eye on the status bar to

confirm what's happening, and the

XML Editor should also highlight

the image's entry.

Step 6: Clone the image using

Edit > Clone > Create Clone, or by

pressing ALT-D. Note in the XML

Editor that an <svg:use> element is

created with an “xlink:href”

attribute that references the image

by its ID. That's your clone! No

matter how complex the parent

object is, a clone is actually always

just a simple little <svg:use>

element that holds a reference to

the original.

Step 7: Currently you have an

image, and a clone of that image,

both inside a single group. Let's

put the clone somewhere more

useful. With the clone selected, use

Edit > Cut or CTRL-X to remove it

from the document (watch it vanish

from the XML Editor before your

very eyes), and put it on the

clipboard. Remember, what we've

actually put on the clipboard is just

a small <svg:use> element, not the

heavyweight binary data of the



full circle magazine #92 23 contents ^

HOWTO - INKSCAPE
original image.

Step 8: Inkscape doesn't really

care where we paste the clone, so

long as the ID it references still

exists in the document. So double-

click on the background until the

status bar tells you you're out of

the group, then use Edit > Paste or

CTRL-V to paste the clone into the

document.

Step 9: If everything went well

you should now be looking at

another, un-clipped copy of your

image. Remember, the clip was

applied to the group, but we've

taken our clone from a lower level,

before the clip has been applied,

giving us access to the original

image again but without requiring

a second copy of all that binary

data.

Step 1 0: There's nothing special

about this clone – you can treat it

as you would any other. That

means you can clip, mask, group,

rotate, skew or blur it, and much

more besides. So let's complete our

original task, and clip it to show

just the hands.

There you have it – two

different clips of the same image,

with just a single copy of the binary

data embedded into your

document. Of course you don't

have to stop at two copies, you can

add as many clones as you like.

Each one only adds a tiny amount

to the document size, but gives you

a complete copy of the original

image to work with.

Although I 've demonstrated this

technique with clipping, it works

equally well with masking, allowing

you to use all the fine control over

opacity that masking provides (see

Part 1 4 for more details) . You can

even mask some clones whilst

clipping others to produce

something like this information

sheet that uses only a single

embedded image.

As I mentioned in step 8,

Inkscape doesn't really care where

you paste the clone. In the

examples above I 've simply pasted

it outside of the original group, but

you could also paste it into a

different group entirely – even one

that is, itself, clipped or masked.

And don't forget that layers are

just groups with some extra

metadata. There's nothing to stop

you cutting a clone to the clipboard

(even one that's not in a group),

then switching to a different layer

before pasting.

Don't think that this technique

is limited to bitmaps either. As you

know, any Inkscape object or group

can be cloned, and equally any can

be put into a group. So you could

draw a complex character or scene,

group it (let's call that “Group 1 ”) ,

then group it again (“Group 2”).

Clip or mask Group 2 and you can

still enter the group, clone Group 1 ,

cut it to the clipboard, and use it

elsewhere in your drawing.

I use this technique a lot when

creating comic strips. Typically I

add some movement to a comic by

zooming or panning the scene

between frames, but rather than

copy or redraw the background and

characters I usually use clones that

are then scaled as necessary before

being clipped to fit in the frame.

With this approach, any changes to

the originals are automatically

propagated to the clones, so I don't

need to update multiple panels

each time there's a tweak to be

made. This strip, for example, really

consists of only one panel (the top

one), with the background being

cloned and clipped to create the

second two panels, and the heads

added in different poses on top to

introduce a little more variety.

Finally the text was added in a

separate layer to produce the

finished comic.



full circle magazine #93 21 contents ^

HH OOWW--TTOO
Written by Mark Crutch II nn kkssccaa ppee -- PPaa rrtt 33 22

T o conclude our foray into the

world of clones, I 'm going to

spend a few articles describing

Inkscape's “Create Tiled Clones...”

dialog (which I 'll refer to as just the

Tiled Clones dialog from here on).

This is arguably one of the most

powerful, and most confusing,

dialogs in the whole application, so

take a few moments to prepare

yourself before we dive in.

You've already seen the easy

way to create a clone: select the

parent object and press ALT-D (or

use Edit > Clone > Create Clone). If

you want a second clone from the

same parent, you can either repeat

that process, or duplicate the first

clone (using CTRL-D this time). Do

you want a handful of clones? Drag

the first one round the screen,

stamping copies by hitting the

spacebar from time to time. But

what if you want a hundred clones?

Or a thousand? And what if you

want them precisely positioned? Or

you want each clone to be rotated

or scaled a little? The Tiled Clones

dialog can do all this, plus a lot

more.

We'll start by creating an object

to use as the parent for our clones.

To keep things simple for the time

being, I ' ll use just a coloured

square with rounded corners, but

the parent can be almost any

individual object or a group. 3D

boxes, however, don't work with

the Tiled Clones dialog – though

you can convert them into a group

of simple paths first to get the

same effect, if you don't mind

losing the ability to edit the parent

as a 3D box. With a parent object

created and selected, open the

Tiled Clones dialog via the Edit >

Clone > Create Tiled Clones... menu

entry.

Initially the dialog doesn't look

too complex, but if you step

through the tabs, you'll quickly see

that there are a lot of fields and

controls hidden away. The first tab,

Symmetry, has only a single pop-up

menu, but even that contains 1 7

different options. For now, we'll

just stick with the first one: “P1 :

simple translation”. This will let us

create simple rectangular arrays of

clones, and is the easiest to

understand when first getting to

grips with this dialog.

Beneath the tab panels are

some global options to define the

number of clones you want to

create, or the area you want them

to cover. Note that I said “cover”

rather than “fill”. Think about tiling

a bathroom wall: you need enough

tiles to cover the wall, even if it

means some overhang, and the

need to cut some to size around

the edges. Similarly, Inkscape will

create enough tiles to cover the

specified area (defined in terms of

width and height) , leaving you to

optionally clip them yourself if they

overhang. The “Use saved size and

position of the tile” option should

be left unchecked for now – we'll

take a look at that in a later article.

To create some tiles, first press

the Reset button. This will put the

values in all of the tabs back to

sensible defaults, so is usually a

good starting point. Now enter

some values into the “Rows,

columns” fields. I 'm going to start

with a 3x4 array of clones. Finally,

with your parent object selected,

click the Create button.

There are a few things to

observe about the array of clones

that has been created. First, notice

that your parent object remains

selected once the clones are

created. This makes it easy to click

the Remove button in the dialog to



full circle magazine #93 22 contents ^

HOWTO - INKSCAPE
delete all of the clones at once if

you're not happy with the result.

Be aware that the first clone is

placed directly on top of the

parent object. If you change the

focus and then need to re-select

the parent, clicking in the top left

corner will actually select the

clone. The easy answer is just to

select any of the clones, then press

SHIFT-D or use Edit > Clone >

Select Original.

Take a look at the positions of

the clones. After resetting the

parameters in the dialog, the

default behaviour is to create the

clones in such a way that they all

butt up against one another. When

selecting objects in Inkscape, the

dashed line that acts as a selection

cue is referred to as the “Bounding

Box”. The dimensions of this box

form the basis for positioning the

clones. The first column is moved

to the right by 1 00% of the

bounding box width. The second

column is moved by 200%, and so

on. The rows follow identical rules

based on the bounding box height

instead. This may sound like a

slightly abstract way to describe

the positioning of the clones, but

the Shift and Scale tabs in the

dialog use “percentage of

bounding box width/height” as

their units of measurement, so it's

easiest to think in those terms.

To further confuse matters,

Inkscape has two different types of

bounding box: the visual bounding

box, which includes any stroke that

is applied to your object; and the

geometric bounding box, which is

based purely on the core object –

regardless of its stroke. You can

choose which one Inkscape uses for

selections in the Tools pane of the

File > Inkscape Preferences…

dialog. The difference between

them is clear when an object with a

very thick stroke is selected.

According to the

documentation, Inkscape always

uses the geometric bounding box

when creating tiled clones. This

doesn't tally with my own

experience of Inkscape 0.48 on

Linux Mint 1 7. I 've found that

switching the preferences between

visual and geometric bounding

boxes does have an effect on the

tiling. Even more confusingly, the

behaviour seems to be the

opposite of what you might expect.

Look at the same thick-stroked

rectangle above when it's tiled

using each of the two preferences.

From now on, I ' ll mostly stick to

using shapes with no stroke to

demonstrate tiled clones, so this

discrepancy won't be an issue. But

do bear it in mind if you're trying to

tile objects with strokes and the

clones aren't appearing in the

positions you expect.

The default arrangement of a

tightly packed array may be fine if

you just want to use this dialog as a

quick way to make a large number

of clones. But the real power

comes from the myriad ways in

which those clones can be

positioned and transformed. Let's

start by loosening up the array of

clones a little by using the Shift

tab.



full circle magazine #93 23 contents ^

HOWTO - INKSCAPE

The key to understanding this

tab is that the controls are

arranged in three columns. The

controls in the first column affect

how much each row of clones will

be shifted around. The controls in

the second column affect how

much each column of clones will be

shifted around. The third column

applies to every clone, and is used

to add a random amount of shift in

the x and y directions.

A simple example to begin with:

maintaining the rectangular array

whilst adding a little space

between the clones. The first thing

we want to do is add some space

between each column, so we'll put

a positive value in the top-middle

control. This field alters the x-

position (it's in the Shift X row of

controls) for each column of clones

(it's in the middle column of

controls) . A value of 1 0 in here will

add 1 0% of the bounding box

width before it's added to the

position of each column, so rather

than being placed at 1 00%, 200%,

300%... they'll now be placed at

1 1 0%, 220%, 330%... – each

subsequent position is increased by

1 1 0%, rather than the standard

1 00%.

I 've also put a value of 50 into

the first control on the second line.

This will add 50% of the bounding

box height to the y-position (as it's

in the Shift Y row of controls) to

every row of clones (it's in the first

column of controls) . The rows will

therefore be placed at 1 50%,

300%, 450%... The result is that

we've loosened up the array, with

more vertical space than

horizontal.

If you don't want your clones

quite so rigorously positioned,

simply put a positive number into

one (or both) of the Randomise

fields in the third column. The

value you place in here will be used

as an upper limit, so entering 20

into the Shift X control will allow

the horizontal position of each

clone to shift by up to 20% of the

bounding box width. This is applied

in addition to any other offsets, so

you can still loosen up the whole

array as before, then add a little

randomness on top. Alternatively

you could use the Tweak tool (see

part 22), or click on the Unclump

button at the bottom of the Tiled

Clones dialog, which jostles the X

and Y coordinates of each clone a

little. The latter can sometimes be

useful if you're trying to create a

more “natural” look, by cloning a

drawing of a leaf or snowflake.

As well as a simple rectangular

array, the shift tab can produce

more interesting results. Do you

need to draw a simple brick wall?

Start with one brick, but put a 50%

offset into the very first field. This

will add 50% of the bounding box

width to the x-position for each

row of clones. This has the effect

of causing each row to move to the

right by half of the parent's width.

You can make this look even

more wall-like by checking the

Alternate control for the Per Row

column. This causes the offsets in

that column of controls to be

applied first as a positive value, and

then as a negative. So the rows

first shift to the right by 50%, then

back to the left by the same

amount, then to the right again,

and so on.

Our wall is looking good, but

wouldn't a little mortar help? You

might be tempted to space the

tiles out by putting 1 0% into some

of the other fields. Whilst this will

successfully spread them

horizontally, any efforts to spread

them vertically will fail because

that Alternate setting will also



full circle magazine #93 24 contents ^

HOWTO - INKSCAPE
alter the spacing you enter in the

first column of the Shift Y row.

Rather than adding a constant 1 0%

spacing between rows, you'll

actually be adding 1 0% then

removing 1 0%, then adding it

again, and so on.

There are a few ways to solve

this problem, all of which rely on

simply adding to the size of the

parent's bounding box so that

there's no need to add extra

padding when creating the clones.

You could add a thick stroke and

ensure that the geometric

bounding box is in use. Create the

clones with just the 50% value in

the first box and the Alternate

control checked and you should get

some additional spacing based on

the thickness of the stroke. Then

just remove the stroke from the

parent object, and all the clones

will immediately be changed as

well.

A variation on this theme is to

add some blur to your parent

object. This affects the size of the

visual bounding box, so, provided

you have Inkscape's preferences

set to use the geometric bounding

box (remember, they work the

wrong way round in this dialog),

your clones will get some extra

space around them. Then remove

the blur from the parent.

The final approach is to put your

parent object in a group with

another, larger object. The second

object is there purely to set the

size of the group's bounding box.

Create your clones, then enter the

parent group and remove the

temporary object. This approach

results in clones of a group, rather

than the object itself, but avoids

the need to mess with Inkscape's

preferences.

The Cumulate checkboxes

determine how any offsets are

added to the base position for each

clone. Usually, the offset is added

to the bounding box width or

height once, and that single value

is used as the basis of every row or

column of clones. Checking this box

means that the offset is added

again for each row or column,

resulting in values that get

progressively larger.

A similar effect can be achieved

by setting the Exponent value to

something greater than 1 . The

opposite effect – reducing the

difference between each offset –

can be achieved by setting the

Exponent value to less than 1 .

The last pair of controls in this

tab, the Exclude Tile checkboxes,

can be used to remove the

bounding box dimensions from the

clones' calculated positions.

Settings that would previously

have resulted in positions of 1 1 0%,

220%, 330%... become 1 0%, 20%,

30%... when this checkbox is

enabled. This allows you to create

clones with only a small offset

from the parent – usually resulting

in them overlapping it to some

extent when creating a simple



full circle magazine #93 25 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys', 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

HOWTO - INKSCAPE
rectangular array.

One final thing to note is that

it's possible to enter a negative

shift for the x and x positions. This

results in a shift to the left (for x)

or upwards (for y), and converts

the standard 1 00%, 200%, 300%...

positions to 90%, 1 80%, 270%... if

the offset is set at 1 0%. This is

another way to create an

overlapping arrangement of

clones, but, depending on the

shape of the parent object, it may

be just what you need to make

everything fit together neatly.

Try playing with a few

combinations of values and

settings in the Shift tab. You'll

quickly find that it's easy to create

wild and unexpected clone

placements – thank goodness for

that Reset button! Try to

understand how each individual

control contributed to the clones'

placement, and how the three-

column layout relates to the rows

and columns of clones, because,

next time, we'll be building on this

knowledge to explore some of the

other tabs in the Tiled Clones

dialog.

http://www.peppertop.com/shop/


full circle magazine #94 24 contents ^

HHOOWW--TTOO
Written by Mark Crutch II nnkkssccaappee -- PPaarrtt 3322

Breaking News: Since the previous

instalment of this series, the long

awaited 0.91 version of Inkscape

has finally been released. Whilst it

has some exciting new features,

there's nothing that radically

affects any of the subjects I 've

covered so far, so all the previous

articles still apply. I ' ll delve into

some of the 0.91 additions in

future tutorials, but, for now, let's

carry on with the Tiled Clones

dialog, which hasn't really changed

with the new release…

L ast time, we quickly skipped

over the first tab of the Tiled

Clones dialog, leaving the pop-up

menu on the “P1 ” setting, then

spent the rest of the article

looking at the Shift tab. The key

thing is understanding how each

column of controls applies to the

rows and columns of clones that

you define at the bottom of the

dialog. If you're not entirely clear

about that, now's the time to go

back and revise because the next

four tabs are all based on the same

type of arrangement.

Before we move on to the Scale

tab, once again you'll need an

object or group to clone, and once

again I ' ll be using a simple rounded

rectangle. You should also click on

the Reset button in the dialog to

ensure that you haven't got any

odd values hanging around in the

Shift tab that will confuse the

results. Click the Create button at

this point and you should see the

same simple array of objects that

we started with last time, which

will confirm that all the controls

are set to sensible base values.

Now let's take a first foray into

the Scale tab (shown right) . The

layout is almost identical to the

Shift tab, so you should be able to

work out what most of the fields

are for. The Shift X and Y rows

have been replaced with Scale X

and Scale Y, allowing you to set the

amount by which the width and

height of your clones are changed

for each row and column – plus a

random amount if you choose.

Clones that have been scaled in

this way are exactly the same as if

you had manually scaled them

using the normal resize handles. As

usual, the values are percentages

that are relative to the parent's

bounding box dimensions. In this

example, I 've set the values to

reduce the width of the rectangle

by 40% and the height by 20% for

each row.

The Exponent field lets you

determine whether the amount of

X and Y scale should be the same

for each row or column, or

whether it should increase or

decrease exponentially. The Base

fields are used in conjunction with

the Rotation tab to create

logarithmic spirals, but I 've never

really had much luck with the

technique. Finally, the Alternate

and Cumulate checkboxes work

the same way as for the Shift tab.

The former allows the Scale factor

to be applied as alternating

positive and negative values for

each row or column, whereas the

latter causes the scale factor to be

repeatedly added for each row or

column, rather than just using the

same value for every one.

You can, of course, scale up as

well as down using this dialog

simply by setting positive values

for the Scale X and Scale Y fields. If



full circle magazine #94 25 contents ^

HOWTO - INKSCAPE
you do this you'll see that the

clones immediately start to

overlap each other. Here I 've set

both the X and Y scale factors to

+1 0% for both the rows and

columns (in other words, I 've put

1 0 into the four boxes at the top

left of the dialog). I 've used a

shape with stroke and no fill to

make it a little clearer what's

happening.

If you don't want your scaled

clones to overlap like this, you

simply have to give them a little

more breathing room using the

Shift tab. This is a key point of the

Tiled Clones dialog: you can

combine options from multiple

tabs in order to create the

arrangement you want – although

it's also easy to create

arrangements that quite literally

spiral out of control! If your

experiments take you too far off

the beaten track, don't forget the

Reset button.

Moving onto the Rotation tab,

I 'm not even going to describe

each field because, by now, you

should be seeing a common theme

across the dialog. Instead I 'll just

present the following screenshot,

and ask you to think about how

those values of 9° for each row and

column have accumulated into a

45° rotation of the bottom-right

rectangle.

At first the rotate tab seems

fairly plain and innocuous. It does

what it suggests, rotating each

clone according to its row and

column position, and that's about

it. But there's one vital parameter

required for rotating that doesn't

even get a mention in that dialog:

the center of rotation.

In the previous example I used

the parent's default center of

rotation, at the middle of the

bounding box. But you can move it,

as described way back in part 1 of

this series: just select an object

then click it a second time to bring

up the rotate and skew handles,

then drag the small cross that

marks the center of rotation to

some other position. If you want to

return it to the default position,

just SHIFT-click on it. With the

center of rotation moved outside

our parent object, the previous

rotations become a little more

interesting.

Notice how the arrangement as

a whole is starting to curve? We

can take advantage of this to

create circles and arcs, even

though the first tab still claims

we're performing a “simple

translation”. By changing the

parameters at the bottom of the

dialog to just produce a single row

of clones, with a center of rotation

outside the parent object, you can



full circle magazine #94 26 contents ^

HOWTO - INKSCAPE
create a circular array. Let's give it

a try: set the “Rows, columns”

fields to 1 x1 2; adjust the center of

rotation to drag it down below

your object; set the rotation per

column to 30°; finally either check

the Per column “Exclude tile” box

in the Shift tab, or set the Per

column Shift X amount to -1 00%, in

order to counteract the default

behaviour of placing each column

further along the X axis. Click the

Create button and you should have

a circular arrangement of clones.

By also putting values into the

Scale X and Scale Y fields, it's

possible to create spirals in this

way. Unfortunately the use of

these fields will, of course, alter

the size of the clones – I 've yet to

find a method for creating spirals

of identically sized objects using

this dialog. This is where the Base

fields should allow you to create

logarithmic spirals that grow (or

shrink) exponentially, but all they

seem to do for me is to distort the

clones as they progress around the

spiral, so I tend to leave them as 0.

Feel free to experiment on your

own, though, to see if you can

make them perform their magic.

Finally for this instalment, the

Blur and Opacity tab should be

fairly easy to understand. Tweaking

the values in here is the equivalent

of setting the Blur and Opacity

sliders in the Fill and Stroke dialog

for each clone. It's worth noting

that any transparency in an object

can cause Inkscape and other SVG

renderers to slow down a little, as

they have to calculate the effect

that the pixels behind the object

will have on the overall image. Blur

has an even more significant effect

on rendering speed, with larger

values requiring ever more intense

calculations. It's easy to add too

much blur via this dialog, especially

when creating a lot of clones, so

you should probably start with

very small values and work your

way up, rather than just going

straight for multi-digit numbers.

Be aware that adding blur to

clones in this way will actually

create a new Gaussian Blur filter

for each clone. Filters are a subject

for another article, but suffice to

say that it's easy to bloat your file

with numerous redundant filters,

especially when you're

experimenting with several

different values in this dialog.

Using File > Vacuum Defs (renamed

as File > Clean Up Document in

0.91 ) can often remove any

obsolete filters, but it's not always

1 00% successful.

There are no “Cumulative”

checkboxes on this tab because

these values always add up: if you

put 5.0 into the Per row Fade out

field, the first row will be

completely opaque, the second

row will have 5% transparency

applied, the third will have 1 0%,

and so on. Applying a little blur and

fade to our previous spiral gives

this result.

Next time we'll continue our

investigation of the Tiled Clones

dialog by looking at the last two

tabs: Colour and Trace.



full circle magazine #95 25 contents ^

HHOOWW--TTOO
Written by Mark Crutch II nnkkssccaappee -- PPaarrtt 3355

C ast your mind back to part 30

of this series where I

introduced the notion of an

“unset” fill, which allows each

clone to have its own color that is

independent of the parent object.

It's a handy trick for creating a

collection of similar-but-not-

identical objects, such as a crowd

of characters with differently

colored hair or clothes. You can use

this same mechanism with the

Tiled Clones dialog to produce

arrays of clones whose colors

differ from the parent object

either in subtle drifts of shade and

hue, or in big, bold steps.

As usual, we'll start by drawing

a simple parent shape – our

familiar round-cornered square.

But, rather than fill it with color,

we'll unset it either by using the

“?” button in the Fill tab of the Fill

& Stroke dialog, or by right-clicking

on the color swatch in the bottom-

left of Inkscape's status bar and

selecting “Unset fill”. We'll also use

the Reset button at the bottom of

the Tiled Clones dialog to get back

to a sensible set of defaults,

regardless of your

experimentations as a result of the

previous two articles. With all the

preparations in place, let's take a

look at the “Colour” tab (in my

British English installation) of the

Tiled Clones dialog.

The general layout of this

should be familiar by now, but the

details differ a little when

compared to the tabs we've looked

at previously. The first change is

the addition of the “Initial colour”

field at the top. Clicking the

swatch there opens a color picker

from which to choose the initial

color that your clones will take. It's

“initial” because the rest of the

fields can subsequently change the

color quite drastically. With

everything else in this tab set to

zero, clicking the Create button

will produce an array of clones, all

taking on that initial color. The

visual effect will be no different to

cloning a solid-colored parent

object, so, in this case, we end up

with an array of red squares. I 've

moved the parent out from under

the first clone a little, so you can

see that its own color remains

unset.

The remaining fields in the tab

allow us to change H (Hue), S

(Saturation) and L (Lightness) for

each row and column, with the

usual options for randomise and

alternate. If you're not very

familiar with the HSL color model,

it's perhaps best explained by

looking at the “Wheel” tab on any

of Inkscape's color pickers. Yes,

there's also a dedicated HSL tab,

but although I find it to be the

more useful for day-to-day use, the

wheel view is a better explanatory

tool.

Hue, the first of our three

values, represents a position on

the outside circle. You might

expect a value from 0° to 360° – or



full circle magazine #95 26 contents ^

HOWTO - INKSCAPE
the equivalent in radians if you're

more mathematically inclined – but

that would be too sensible. Instead

the range of values available varies

in different parts of the Inkscape

interface. Within the HSL tab, for

example, the numbers run from 0

to 255. Within the Tiled Clones

dialog, however, they run from 0%

to 1 00%. In either case, 0

represents pure red with

increasing numbers progressing

anti-clockwise through yellow,

green, blue and purple before the

end of the scale brings you back

around to red.

Having picked a base Hue, the

triangle in the center is used to

select a combination of the

Saturation and Lightness values.

With the hue set at 0 (pure red),

the triangle is oriented as shown in

the screenshot. Now imagine a pair

of axes, one running from the pure

colored corner of the triangle to its

opposite edge (a horizontal line in

this case) and another running

along this edge between the two

other corners (a vertical line).

Saturation is the position along the

first line, and defines the amount

of the pure color that's present in

the final swatch – how “washed

out” it appears. Lightness is the

position on the second line,

representing how dark or light the

color is. When Saturation is zero

there is none of the pure color

present, so the result is a shade of

gray that can run from pure black

(when Lightness is zero) to pure

white (when Lightness is at its

maximum). The ranges for

Saturation and Lightness also run

from 0 to 255 on the HSL tab, or

0% to 1 00% in the Tiled Clones

dialog.

The important thing to realize is

that the Hue can wrap round – a

value of 50% gives you exactly the

same pure cyan as 1 50% or 250%.

Saturation and Lightness don't

wrap: values above 1 00% won't

suddenly wrap round to lower

values, but neither will they result

in extra saturation or extra

lightness. Values less than 0%

behave similarly.

With all that in mind, let's put a

value of 25% in the Per Column “H”

field. We've got four columns, so

the colors will be picked from our

color wheel at positions of 0, 25%,

50% and 75%, working anti-

clockwise from your selected Initial

Color – pure red in this example. It

should be easy to see that this

gives us red, green, cyan and

purple for the columns of our

clones.

Can you work out what will

happen if we change the number

of columns to 8? Remember that

the Hue value can wrap round.

How about if we use a value of

33.3%, 50% or something else

entirely?

Now try putting a value of -50%

into the Per Row “S” field. With

each row you'll get less and less of

the pure color included. Given that

our starting color is already pure

red at 1 00% saturation, this gives

us values for our three rows of

1 00%, 50% and 0%, resulting in

rows that are pure colors, washed

out colors, and completely gray.

Given that the Saturation value

doesn't wrap, can you guess what

the result would be for more than

three rows? Also try picking an

initial color with low saturation and

then putting a positive value in the

field instead.

Finally, let's reset our initial

color to pure red, and play with the

Per Row “L” field. You might expect

that putting -50% in here would

have a similar effect to the

Saturation, giving values of 1 00%,

50% and 0% for rows that are

bright, dark, then black. Instead

you get this:

The issue is that the Lightness

scale runs from 0% (black) to 1 00%

(white) – pure red, of course, has

neither too much white nor too

much black, so its value is actually

50%. Thinking of Lightness as

running along a vertical line in the

earlier color wheel image, it's easy

to see that the red corner of the

triangle lies 50% of the way up.

Checking the HSL tab will also

show that your pure red color has a

Lightness of 1 28 (out of 255). Now

you should be able to see that a



full circle magazine #95 27 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys' , 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

HOWTO - INKSCAPE
value of -50% in the field leads to

rows of 50%, 0%, 0% (Lightness

doesn't wrap either) . -25% will give

us the expected outcome.

Try creating a larger array of

clones with small values in the

fields to get gently sweeping

changes in color or tone. Or use

bigger values – especially in the

“H” field – to get bold differences

between the clones. Finally, try

drawing a simple leaf with veins

but an unset fill. Group the parts,

then use the tiled clones dialog to

create an array of them. With a

little use of the Random fields in

each of the tabs we've discussed

so far – plus some negative offsets

in the Shift tab to pull everything

together a little – you can quickly

and easily create an autumnal

forest floor background.

You may recall that it's possible

to unset the stroke of a parent

object as well as its fill. This also

works with the Tiled Clones dialog,

but, as there is only one Colour

tab, there's no way to use different

generated colors for the fill and

stroke: you can unset the fill color,

the stroke color, or both, but

anything that's unset will be given

the same generated color. There's

also no way to set any of the other

stroke parameters through this

dialog – although you can manually

set them on each clone afterwards.

This means that the Tiled Clones

dialog isn't a great help if you want

to create hundreds of clones

whose stroke width or line style

varies. In this final example, I 've

cloned a yellow rounded square

with an unset stroke, but the

different widths and dash styles of

the strokes all had to be manually

set afterwards via the Fill and

Stroke dialog.

I had promised to cover the

Trace tab in this instalment, but

the Color tab ended up being a

more nuanced topic than I had

previously expected, so the Trace

tab has been postponed until next

time.

http://www.peppertop.com/shop/


29 contents ^

HHOOWW TTOO CCOONNTTRRIIBBUUTTEE

Ful l Circle Team

Edit or - Ronnie Tucker

ronnie@fullcirclemagazine.org

Webmaster - Lucas Westermann

admin@fullcirclemagazine.org

Edit ing & Proof reading

Mike Kennedy, Gord Campbell, Robert

Orsino, Josh Hertel, Bert Jerred, Jim

Dyer and Emily Gonyer

Our thanks go to Canonical, the many

t ranslat ion teams around the world

and Thorst en Wilms for the FCM logo.

FULL CIRCLENEEDSYOU!
A magazine isn't a magazine without art icles and Full Circle is no

except ion. We need your opinions, desktops, stories, how-to's,

reviews, and anything else you want to tell your fellow *buntu users.

Send your art icles to: art icles@fullcirclemagazine.org

We are always looking for new art icles to include in Full Circle. For help and advice

please see the Of f icial Ful l Circle St yle Guide: ht tp:/ /url.fullcirclemagazine.org/75d471

Send your comment s or Linux experiences to: let ters@fullcirclemagazine.org

Hardware/sof tware reviews should be sent to: reviews@fullcirclemagazine.org

Quest ions for Q&A should go to: quest ions@fullcirclemagazine.org

Deskt op screens should be emailed to: misc@fullcirclemagazine.org

... or you can visit our sit e via: fullcirclemagazine.org

FCM#116
Deadl ine:

Sunday 11th Dec 2016.

Release:

Friday 30th Dec 2016.

EPUB Format - Most edit ions have a link to the epub f ile

on that issues download page. If you have any problems

with the epub f ile, email: mobile@fullcirclemagazine.org

Issuu - You can read Full Circle online via Issuu:

ht tp:/ / issuu.com/fullcirclemagazine. Please share and rate

FCM as it helps to spread the word about FCM and Ubuntu.

Magzst er - You can also read Full Circle online via

Magzster: ht tp:/ /www.magzter.com/publishers/Full-Circle.

Please share and rate FCM as it helps to spread the word

about FCM and Ubuntu Linux.

Get t ing Ful l Circle Magazine:

For t he Ful l Circle Weekly News:

You can keep up to date with the Weekly News using the RSS

feed: ht tp:/ / fullcirclemagazine.org/ feed/podcast

Or, if your out and about , you can get the Weekly News via

St itcher Radio (Android/ iOS/web):

ht tp:/ /www.st itcher.com/s?f id=85347&ref id=stpr

and via TuneIn at : ht tp:/ / tunein.com/radio/Full-Circle-Weekly-

News-p855064/

Special Editions - Jonathan Hoskin


