
THE INDEPENDENT MAGAZINE FOR THE UBUNTU LINUX COMMUNITY

INKSCAPE SERIES SPECIAL EDITION Vol 7

INKSCAPEINKSCAPE
Volume Seven Parts 43 - 49

Full Circle

Full Circle Magazine is neither affiliated, with nor endorsed by, Canonical Ltd.

full circle magazine #1 03 28 contents ^

HHOOWW--TTOO
Written by Mark Crutch II nnkkssccaappee -- PPaarrtt 4433

Before we delve too much

further into Live Path Effects,

there are some implementation

details that are worth pointing out.

The first is that LPEs don't exist in

the SVG specification. They're an

Inkscape-specific thing, and no

browser or other SVG editor knows

how to render them. Go on, give it

a try. Create a nice chain of gears,

or a Spiro path, then save your SVG

file. Open it in a modern web

browser and see what you get.

Here's my file, opened in Firefox.

Well, it certainly looks like my

original Inkscape file, but how can

that be if the browser doesn't

know anything about LPEs? The

answer can be found by looking at

the XML code for the file, either

via Inkscape's XML editor (Edit >

XML Editor, or CTRL-SHIFT-X), by

viewing the page source in your

browser (CTRL-U in Firefox), or

simply by opening your SVG file in

a text editor. You'll see that the

main body of the image is made up

of an SVG <path> element. The “d”

attribute contains a series of

letters and coordinates that tells

an SVG-aware application how to

draw the final path, after any

visible LPEs have been applied. It's

like a snapshot of the result, in a

format that your browser

understands.

Notice that there are some

other attributes, in the “inkscape”

namespace. In particular you'll find

“inkscape:original-d”, which holds

the path definition of the original,

skeleton path. There's also an

“inkscape:path-effect” attribute,

which holds a semicolon-separated

list of XML IDs. These refer to

<inkscape:path-effect> elements

up in the <defs> section of the

XML, which is where all the

parameters for your effects are

stored.

So, in summary, Inkscape uses

the “original-d” attribute and

<path-effect> elements to hold all

the information it needs to draw

the LPE. Other applications use the

“d” attribute to render a snapshot

of the final path, with the LPE

applied. When you modify an LPE

within Inkscape, it automatically

updates the “d” attribute to match

the rendered output, so other

applications should always be able

to display your drawing as

intended, even though they don't

know anything about LPEs.

Inkscape doesn't always do a

great job of clearing out unused

elements in the <defs> section of a

file, and path effect definitions are

no exception. If you add and

remove a number of LPEs whilst

experimenting with your drawing,

old definitions tend to build up

there. They don't do any harm, but

do slightly increase the size of the

file. You can clear them out,

together with other unused

definitions, by using the File >

Clean Up Document menu entry

(File > Vacuum Defs on 0.48).

Because Inkscape calculates the

final path from the original path

and LPE parameters, using live

path effects places more of a

burden on the processor, resulting

in slower rendering speeds. Usually

this isn't an issue, but when

zooming into a very complex

drawing it can become noticeable.

If you're happy with the LPE

output, and don't need to change

it any further, you can “fix” the

path so that it looks the same, but

is no longer based on path effects.

Essentially this process just

removes the Inkscape-namespaced

attributes from the path element,

leaving it with just the same “d”

attribute that any other

application uses. To do this, simply

use the Path > Object to Path

menu entry (CTRL-SHIFT-C). It may

seem odd to use Object to Path on

something that's already a path,

but think of it as converting an LPE

path to a plain SVG path, and it

makes more sense. Like any other

Object to Path conversion this is a

strictly one-way affair, so make

sure you keep a backup of the file

full circle magazine #1 03 29 contents ^

HOWTO - INKSCAPE
from just before the change, in

case you subsequently find you

need to modify your LPE

parameters after all.

That's enough behind-the-

scenes detail for now, let's press

on with another path effect! As

usual we'll need a path to work on,

so let's start by drawing a simple

arrow shape.

The path effect we'll look at

this time is “Bend”, so add that to

your path following the

instructions from the previous

instalment. As before, there's no

immediate change to your image,

but the LPE dialog has gained a

few controls at the bottom. Of

particular note is this quartet of

buttons:

This arrangement of buttons

appears frequently in LPEs,

whenever an extra path is required

as part of the input parameters. In

the case of the Bend effect, two

paths are required: the original

skeleton path (the arrow shape, in

this case), and a bend path whose

shape dictates how the skeleton

path should be distorted. These

buttons are for managing the bend

path, as follows:

• The first button allows you to edit

the bend path directly on the

canvas. This is the most commonly

used of the four.

• The second button lets you copy

the bend path to the clipboard.

From there you can paste it into

another LPE, or even paste it

directly into the canvas as a new

path in its own right. These copies

maintain no connection to the

original bend path.

• The third button is for pasting a

path to use as the bend path. This

could be one that you've copied

from another LPE using button

two, or it could be a path you've

constructed elsewhere in your

canvas. Again, there's no

connection maintained to the

original path.

• The final button lets you link to

an existing path, rather than create

a new bend path. In this case there

is a live connection to the original

path, so any changes you make to

that are immediately reflected in

the LPE. I ' ll discuss this button in

more detail a little later.

If you press the first button you

should find that a straight green

path appears on the canvas,

directly over your skeleton path.

This is the bend path, and you can

manipulate it in the same way as

any other. Try dragging the path

itself, or use the node handles, to

distort its shape, noticing how the

skeleton path is morphed in real-

time to match your changes. You

can also move the nodes

themselves, in order to stretch,

compress or rotate the skeleton

path. If the bend path disappears –

usually due to a mis-click causing

the skeleton path to become

selected – just click on the first

button of the quartet in the LPE

dialog to make it reappear. With

barely any effort the Bend path

effect can turn your straight arrow

into a curved or sinuous shape that

would take a lot more time and

work to produce using normal path

editing techniques:

But there's more! Your bend

path doesn't have to be limited to

a pair of end nodes connected by a

curve. You can add extra nodes,

turn them into corners, mix

straight and curved sections, have

the path double-back on itself, or

even split it into several sub-paths.

Admittedly, getting too complex

with your bend path can lead to a

degree of contortion that's hard to

control, but the options are there

for you to explore.

Using the second and third

buttons you can copy and paste

the bend path from one LPE to

another, which can be handy if you

want several skeleton paths all

distorted in the same way. Each

bend path will be an independent

copy, though, so changes to one

won't affect the others.

full circle magazine #1 03 30 contents ^

HOWTO - INKSCAPE
Sometimes it's useful to have

multiple bend paths all linked to a

single “master” path, such that

changes to the shape of the

master are immediately reflected

in each individual LPE. The fourth

button allows you to achieve that

effect, but it's not without its

difficulties.

For this example I 'm going to

use two different kinds of arrow,

and I want to apply the Bend LPE

to both of them such that they

follow the shape of the green path

at the bottom of the image.

The first step is to select the

green path and copy it to the

clipboard. As well as copying the

path data itself, Inkscape also

stores a reference to the original

object. Next I need to select one of

the arrows, add the Bend LPE, and

click on the fourth button to use

the stored reference to define the

bend path. Clicking this button has

two immediate effects: the arrow

is distorted to match the bend

path, as expected, and the arrow is

moved to the same location as the

bend path – which is not what I

wanted! If I add a Bend LPE to the

second arrow and link that to the

bend path, that also gets moved.

I 've got all the right shapes, but

not necessarily in the right

locations.

At first this might seem like a

fairly trivial problem. Just drag the

arrows back to where you want

them, right? Unfortunately that

doesn't work – drag them away and

they'll spring right back to the

location of the bend path. Drag the

bend path away, and they both

follow along after it. Being able to

link to a common path seems a lot

less useful if it means that your

linked shapes all have to sit on top

of each other.

Fortunately there are a couple

of ways around this problem.

Inkscape has a setting hidden away

in Edit > Preferences > Behaviour >

Transforms labelled as “Store

Transformation”, with options of

Optimised or Preserved (it's in File

> Inkscape Preferences >

Transforms on 0.48). Use

Optimised and you'll see the

behaviour I 've described above –

LPE paths strongly bound to their

linked bend path. Set it to

Preserved, however, and you can

move them around with impunity.

Of course there's a trade-off:

Optimised results in slightly

smaller, more efficient files,

whereas Preserved potentially

stores additional data for any

object that's been transformed,

not just the ones that are causing

us problems.

If you want to leave the setting

as Optimised, there is a second

alternative which allows you to add

extra data to just the problem

paths. It's a little counter-intuitive,

but it does the job perfectly: just

select your path and add a second

Bend effect to it. You don't even

have to modify the bend path –

just adding the effect is enough to

let you drag your path around

independently of the linked bend

path once more.

Whichever approach you take,

you should now have two separate,

independently positioned arrows,

both of which are linked to the

shape of the master bend path.

Modify that path and you'll see the

arrows shape change accordingly.

If you don't want to see the bend

path in your final design, simply

hide it behind another object, set

its opacity to 0 (use View > Display

Mode > Outline to find it again) or

just move it onto a hidden layer.

The remaining controls for the

Bend LPE are fairly simple. The

Width spinbox lets you control the

scaling of the skeleton path,

perpendicular to the bend path.

Play with it to see the effect. The

“Width in units of length”

checkbox has a slightly misleading

title: “keep width proportional to

full circle magazine #1 03 31 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys' , 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

HOWTO - INKSCAPE
length” would be a better name.

Check this, and the width of the

path is scaled as the length of the

bend path changes; leave it

unchecked to keep the width

unchanged regardless of the shape

of the bend path or the position of

the end nodes. The final checkbox

is quite self-explanatory: if you

wish to bend a path that's more

vertical than horizontal (e.g. an

upwards facing arrow), then check

this box, otherwise you'll be

distorting along the width of the

shape, rather than its length.

The Bend LPE is one that's well

suited for use with text, to

produce the sort of “Word Art”

effects so beloved of parish

newsletters in the 1 990s. Because

LPEs won't work directly on a text

object, you first have to perform

the one-way conversion of your

text into a complex path. Using

Path > Object to Path will result in

a group of individual paths, one for

each letter. We really want a single

path encompassing the whole text,

so it's easier to use Path >

Combine, which will convert your

text into paths, and combine them

into a single complex shape, all as

one operation. The final result will

be a group of one object, so you'll

probably want to ungroup as well.

From there you're free to add a

Bend effect and distort your text

as you would with any other path.

Before you race off to convert

your text into a path, however, it's

worth considering the downside:

the shape is no longer a text

object, so you can't subsequently

edit the content if you find a

mistake. Often a similar result can

be obtained by drawing a separate

bend path, then selecting both

your text and path before using

Text > Put on Path. You may need

to manually kern some of the

characters to get the right result

(see part 1 1) , but it has the distinct

advantage of keeping your text

editable. In this image the red text

was converted to a path and bent,

the green is the same text put

onto a copy of the bend path, and

the blue is the same as the green,

but with some manual kerning

applied.

One noticeable difference

between the approaches is that

the LPE distorts the shape of the

letters, whereas text-on-a-path

maintains their original shapes.

Sometimes the distortion effect is

desirable, in which case I can only

recommend that you save a copy

of the file just prior to converting

to a path, in case you do need to

edit it later.

Next time we'll move beyond

simple path bending and into the

kind of full-on distortions that can

turn some simple text into a 1 970s

album title, as we continue to look

at Inkscape's live path effects.

http://www.peppertop.com

full circle magazine #1 04 26 contents ^

HHOOWW--TTOO
Written by Mark Crutch II nnkkssccaappee -- PPaarrtt 4444

When I'm not drawing things

in Inkscape, I like to spend

my spare time playing lead guitar

for a 1 970s style prog rock band

called “Envelope Deformation”. So

when we decided to record our

first album, it naturally fell on me

to come up with a suitable logo for

the band. My starting point, of

course, was the name of the band

in a bold font (Impact) , with a

golden gradient applied (when we

hit the big time, no doubt our

record company will pay for proper

gold embossing on all our

merchandising, so we may as well

start as we mean to go on).

That's a good start, but it's a bit

plain. I could use the Bend LPE

from last time to add a bit of a

curve to the whole logo, but 70’s

style prog-rock really calls for

something more indulgent. A quick

scan through the list of LPEs

reveals the suspiciously

coincidentally named “Envelope

Deformation” path effect, so that

seems like an obvious one to try.

After converting the text to a path

(CTRL-K, then ungroup), then

applying the LPE, I found myself

faced with this user interface in

the Path Effect Editor dialog.

Skipping the two checkboxes

for now, what will be immediately

apparent is that this looks like four

sets of the UI from the Bend LPE.

The four lines correspond to the

four sides of the path's bounding

box: by default they are straight

horizontal and vertical paths, but

by using the buttons in the same

way as we did for the Bend LPE,

you can deform each side along a

bend path. The result is as though

your skeleton path is printed on a

rubber sheet whose sides are

stretched, distorting the shape.

For example, clicking the “Edit on-

canvas” button for the Bottom

bend path allows me to quickly

change the logo to something

more suitable for an album cover.

As you can see, the path

currently being edited is displayed

in green. Notice also that the

deformation stretches across the

whole height of the skeleton path,

even though we only modified the

bottom path. For more fine-

grained control – such as keeping

the top of the text horizontal – you

have little choice but to engage in

some manual node editing

With just the Envelope

Deformation LPE and a bit of

tweaking to each of the four sides,

we get closer to a classic prog-rock

logo.

One thing I find frustrating is

that three of the four bend paths

are not displayed when you use on-

canvas editing. For tweaking the

shape of the path, that's not too

much of a problem. But, if you

decide to move the end nodes, it

can be tricky to keep things in sync

so that you don't lose the

full circle magazine #1 04 27 contents ^

HOWTO - INKSCAPE
sharpness of the corners. Like the

Bend LPE, however, our four lines

in the UI also offer the ability to

link to an existing path. It can be a

bit fiddly to draw four lines that

match the bounding box (Object >

Objects to Guides can help), and

then there's a lot of clicking to link

them all up, but it does at least

mean that you can keep an eye on

all four paths at once – and even

select nodes from more than one

path at a time in order to move

them in unison. Once your editing

is done, simply set the opacity of

the paths to 0 to make them

disappear from sight.

One thing to watch out for with

this LPE is the direction of the

paths. If your paths don't match

the directions that the effect

expects, you can easily end up with

a result like this:

If that happens to you, just use

Path > Reverse to change the

order of your path's nodes without

affecting their positions.

As to those checkboxes… as

their labels imply, they are used to

enable or disable the top/bottom

or left/right paths in the effect. Be

aware that disabling a pair of paths

is not the same as setting them to

a straight line, which can lead to

some confusing results. Where I

find these options most useful is

for creating trapezoid shapes.

Here's the logo with left and right

paths disabled, and the top path

edited to be smaller than the

bottom one:

The alternative, with left and

right paths enabled, led to

distortion around the bottom of

the shape.

Of course you can use the

Envelope Deformation LPE with

any path, not just one created from

text. You can also stack it up with

other LPEs, in case you want to

stretch some Spiro Splines or add

some fake perspective to a set of

gears – although you sometimes

get better results if you “fix” the

earlier LPEs using Path > Object to

Path, at the expense of the live

editing capability.

Like all good 70’s bands,

however, halfway through writing

this tutorial we had “artistic

differences” and split up. The

keyboard player and bassist got

custody of the name; I got the

singer and drummer. So we needed

a new name for the band. The

singer suggested “Live Path

Effects”.

“Wewouldabbreviate it to LPE,”he

said, “with the logo being something

more geometricmade up ofthe

three letters crossing overandunder

each other.”

“So something like the Emerson,

Lake andPalmerlogo?” I asked.

“Erm… no, notatall like that.

Their's is ELP, whereas ours is LPE.

See the difference?”

“Ido, but I'm not sure their lawyers

will.”

Despite my misgivings, I began

work on the logo. Starting with

letters made from simple paths

(red), I extended and arranged

them to create something more

logo-like (black).

For the “crossing over and

under” requirement, it's another

trip to the Path Effects dialog.

First, as usual, I turned my separate

paths into a single composite path

using Path > Combine (CTRL-K).

Then I added the Knot LPE, and

watched in horror as much of my

path seemed to vanish completely!

full circle magazine #1 04 28 contents ^

HOWTO - INKSCAPE

Unchecking a couple of the

checkboxes got things back on

track a little. Before explaining

what each of them does, it will

probably be more helpful to see

the final result, with the

parameters that produced it:

As you can see, this LPE

automatically introduces gaps into

a path where it crosses itself or

any other sub-path. Most of the

controls are used to simply alter

the width of the gaps. With all the

checkboxes cleared, the Fixed

Width spinbox allows you to set a

fixed size, in pixels, for the gaps.

Check the “In units of stroke

width” box, and it instead becomes

a multiplier of the stroke width.

The value of 1 .50 that I 've chosen

just means that the gap will be

50% larger than the stroke, giving

a nice 25% gap on either side.

It is possible to apply this LPE to

a group of paths, rather than a

single composite path. In that case

you could be dealing with different

stroke widths as a thick line

crosses over, or under, a thin one.

The last two checkboxes let you

add the width of the “under”

stroke (the one that gets the gap

inserted) and the “crossing path”

stroke, respectively. This can be

useful to automatically

compensate for line differences in

complex arrangements or to have

gaps that automatically adjust if

you change the stroke width,

whether explicitly or just by scaling

your design.

Which brings us to the last

control: Switcher size. In order to

understand what this does, I first

need to introduce you to the

switcher. With your path selected,

highlight the Knot LPE in the Path

Effects dialog, then switch to Node

Edit mode (F2, double-click on the

path, or choose the second icon in

the toolbox). You should now see

the nodes of your path, as normal,

but with one small addition. At one

of the path crossings there will be

a small, white, diamond-shaped

handle. That's the switcher.

It can be really hard to spot in

Inkscape 0.48 and, despite the

name of the control, changing the

Switcher Size parameter will have

no effect whatsoever. On 0.91 ,

however, the switcher is

surrounded by a blue arc or circle.

Modifying the parameter will

affect the size of the circle, making

it easier to spot the switcher on a

busy path with lots of

intersections.

But what does the switcher

actually do? Clicking on it cycles

the crossing between three states:

the first two determine which path

has the break (and therefore,

which path appears to go over the

other) , whilst the third state

removes the break entirely.

Version 0.91 indicates these three

states using a blue arc with an

arrowhead pointing clockwise or

anti-clockwise for the first two

states, and a circle with no

arrowhead to indicate the third

state (0.48 offers no such

indication). Unfortunately there's

no fourth state to break both

paths, leaving a large void. If you

want that effect you'll have to

manually break the paths yourself.

Whichever state you choose,

however, only affects that one

crossing point. You can drag the

switcher to another crossing point

in your design then change the

state of that point by clicking.

Being able to change only one

point at a time like this, with a

dragging process in-between, can

quickly become tiresome on a

complex design, but unfortunately

there's no way to select or change

multiple crossings at once.

With the basics of the design

complete, I added a couple of

finishing touches to turn it into a

proper logo. First I copied the

original path and removed the LPE

before using Path > Stroke to Path.

This resulted in an outline version

of the logo that I could then apply

an extra stroke to in order to

thicken it. I copied this version

again, leaving me with three paths,

one of which has the Knot LPE

applied. By setting the fill and

stroke to white on one of the

copies, and setting a thicker black

stroke on the third, I was then able

to stack the paths on top of each

other to produce the final effect.

full circle magazine #1 04 29 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys' , 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

HOWTO - INKSCAPE

There are a few things worth

mentioning about the Knot LPE.

Trying to edit the skeleton path

while the LPE is visible can lead to

Inkscape crashes, especially if

you're still using version 0.48.

Make sure you save regularly, and

know where any auto-save files are

stored. Simply turning off the

visibility of the LPE in the Path

Effects dialog is enough to

mitigate this problem and you can

then make it visible again

afterwards.

Depending on how your

skeleton path was produced, you

can also end up with unexpected

breaks in it when using the Knot

LPE. If this occurs, check for nodes

that are doubled up on top of each

other, perhaps as the result of a

boolean operation. These can be

fixed using the Node tool by

rubber-band selecting the two

nodes in question, then using the

“Join Selected Nodes” button on

the tool control bar to combine

them into one. Where misplaced

breaks are not due to doubled up

nodes, your only recourse is to

reshape your path a little. Try

adding a node at a nearby

intersection, then removing the

one at the break, or adding

another node close to the breaking

one.

It's also worth reiterating that a

Live Path Effect takes a path as its

input, and produces a path as its

output. Therefore your knotted

path is still just a path, so is limited

by the choice of end-caps that are

available in SVG. If your paths cross

at 90°, as in the logo example, butt

or square caps will usually produce

a good result. For anything else,

however, you might find that

rounded caps are better. This

restriction does limit the artistic

effects you can get from this LPE

when lines have to cross at shallow

angles. In the following example,

the red and blue lines are broken

using the Knot LPE with round and

square caps. To get the effect of

the purple line, however, it was

necessary to convert the stroke to

a path, then manually cut out the

gaps.

All the practice of designing our

new logo looked like it would be

particularly useful when the lead

singer declared that our album

would be called “Celtic Knot”. I

quickly designed a potential album

cover.

Thanks to the Knot LPE it didn't

take too long to produce that

design – which is a good thing, as

the following day the singer

decided that he was leaving the

band to go on a spiritual retreat to

India. Perhaps I should form an 80’s

style synth pop group instead.

“Spiro Spline” sounds like a great

band name to me…

http://www.peppertop.com

full circle magazine #1 05 24 contents ^

HHOOWW--TTOO
Written by Mark Crutch II nnkkssccaappee -- PPaarrtt 4455

I f you've read the previous fewarticles, you should now have an

idea of how to use Live Path

Effects, and just how capable they

can be. Rather than go through

every remaining effect in detail,

I 'm going to spend the next couple

of articles presenting a whistle-

stop tour of those that are present

in version 0.48. These are all also in

0.91 , and their respective

interfaces are the same between

the two versions, so these

examples should apply to either

version. In each example, I ' ll

present the original skeleton path

in red with the results of the

applied LPE in black.

CONSTRUCT GRID

A simple LPE to start with, the

Construct Grid effect does exactly

as its name suggests – it constructs

grids. It uses the first three nodes

of the skeleton path to define two

sides of a parallelogram, extending

the shape to form a grid of cells

based on the Size X and Size Y

values in the UI .

The “live-ness” of this effect

can make it useful if you want to

drag the nodes around to produce

the correct perspective by eye,

rather than by creating a grid with

numeric angles.

HATCHES (ROUGH)

This is a peculiar effect. Its main

use is to simulate hand-drawn

scribbles as a fill inside your

(usually closed) path, but given the

rough nature of the results – it

even says “rough” in the LPE name

– I don't think it really needs the

huge number of fine-grained

controls it presents. For most

people, the key to using this LPE is

to just use the on-canvas controls

and a few of the main UI elements,

without getting too bogged down

in the many other options.

When you apply this effect to a

shape, Inkscape draws one or more

sine waves that try to fill the

available area. The waves can be

modulated in both frequency and

amplitude by the parameters you

set in the UI , and their angle, base

frequency, and the amount of

bend applied to them, are set by

on-canvas handles.

To get a feel for the effect,

draw a closed path, then add the

LPE. You'll see your path replaced

by a squiggly line that

approximates the original shape.

Now switch to the Node tool (F2),

and towards the middle of your

shape you should see four handles

– two circular and two diamond-

shaped. If you see fewer than four,

then it's simply because some are

positioned on top of others. Drag

them around until all four are

visible.

The four handles represent the

end nodes of a pair of vectors

(which, confusingly, aren't actually

drawn as lines) , and are used to set

the main parameters for the

effect. In each case the circular

node is the reference point – drag

that one, and the corresponding

diamond will move in sync. This can

be used to move the nodes to a

clearer part of the canvas, or to

some specific reference point in

your drawing. Moving one of the

diamonds adjusts both the angle

and frequency of the sine waves

used to fill your shape. The other

diamond sets the amount of bend

that is applied. It has an effect only

if the Bend Hatches checkbox is

ticked in the LPE dialog, so, if you

don't want the additional

curvature applied to your sine

waves, simply uncheck that

control.

full circle magazine #1 05 25 contents ^

HOWTO - INKSCAPE
Of the remaining controls in the

dialog, it's probably the top two

that have most effect: Frequency

Randomness is used to adjust the

amount of variation that is applied

to the base frequency, whilst

Growth causes the frequency to

increase from left to right. Set

both values to zero if you want to

use just the base frequency that

you've set with the on-canvas

handles.

With these basic controls, it's

possible to produce a variety of

effects, running from the

appearance of a hand-drawn

scribble, to a simple shaped sine

wave:

Many of the settings in the

dialog have pictures of dice next to

them. Despite their appearance,

they don't actually set the fields to

random values. Rather, these are

buttons which change the seed

value in the random number

generator that's used to produce

the corresponding value in the

hatching algorithm. Their only real

use is to ensure that one copy of a

shape using this LPE has a

different hatching pattern to

another copy – if you need to

produce many similar shapes then

clicking a few of the dice will

ensure that they all look slightly

different from one another.

The final checkbox, “Generate

thick/thin path”, is worthy of a

mention too. With this enabled,

two sets of paths are created that

move in and out of sync with each

other on each half-cycle of the

underlying sine wave. The specifics

of the synchronisation between

them are set by the last few fields

in the UI . These two sets of paths

are actually joined at each end,

forming a single path that can be

filled to give a calligraphic effect to

the hatching:

INTERPOLATE SUB-PATHS

This effect requires that your

skeleton path is made up of two

sub-paths (if it has more than two,

only the first and last ones are

used by the LPE). Typically, sub-

paths are created by combining

multiple paths – through Boolean

operations such as removing one

path from another object that

completely encloses it, or by

breaking a single path into smaller

sections by hand using the Node

tool's Delete Segment or Break

Path buttons. Consider this simple

example of one star inside another,

drawn separately, then combined

using Path > Combine (CTRL-K).

When the LPE is applied, a number

of additional sub-paths are

created, interpolating between the

two sub-paths of the skeleton:

The total number of sub-paths

in the final result is set using the

Steps parameter. Increasing this,

and turning the inner sub-path a

little, demonstrates the sort of

effects that you can easily create

with this LPE:

The Trajectory control in the

LPE dialog shows the familiar

group of four controls for setting a

path. These allow you to specify a

path along which the rendered

sub-paths will be spaced, allowing

for more than simple linear

projections.

full circle magazine #1 05 26 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys' , 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

HOWTO - INKSCAPE

With the Equidistant Spacing

checkbox ticked, the sub-paths will

be placed evenly along the

trajectory path. Un-check that,

however, and their spacing will be

determined by any additional

nodes in the path. The nodes split

the path into segments, then the

total number of sub-paths is

distributed between the segments.

For example, a trajectory with

three nodes will result in two

segments, each holding half the

rendered sub-paths. Moving the

middle node, therefore, results in

the spacing of the paths being

adjusted – one half bunched

together and the other half spread

out.

By creating a trajectory with

the same number of nodes as the

Steps value for the LPE, each sub-

path is tied to a single node,

letting you accurately position

them simply by moving the nodes

around. This example uses Steps=5

together with a trajectory path

that has five nodes, to

demonstrate this possibility:

Next time we'll look at the

remaining effects that are

available in 0.48: Pattern along

path, Ruler, Stitch sub-paths, and

VonKoch.

http://www.peppertop.com

full circle magazine #1 06 21 contents ^

HHOOWW--TTOO
Written by Mark Crutch II nnkkssccaappee -- PPaarrtt 4466

This month we'll conclude our

tour of the Live Path Effects that

are available in both versions 0.48

and 0.91 of Inkscape, starting with

perhaps one of the most useful.

PATTERN ALONG PATH

This effect is often referred to

as “PAP” in forum posts and bug

reports so, for brevity, I ' ll do the

same here. Like the Spiro Spline

effect, PAP can be applied

automatically as part of the normal

drawing process. To do so, you

simply have to draw a shape for

use as your “pattern”, copy it to

the clipboard, and select the

“Shape: From Clipboard” option

when using the Pencil or Bézier

tools. See part 1 7 of this series for

more details on the technique, but

suffice to say that the result is that

your path will have the PAP effect

applied to it – albeit with some

default options selected. Whether

you initially apply the LPE like this,

or by explicitly adding it via the

dialog, you'll find more controls

available to you within the dialog's

UI , in order to tweak the effect.

“Pattern along path” is

something of a misnomer; it

should more correctly be called

“path along path” as the effect is

one of taking a source path (the

“pattern”) and stretching or

repeating it along the skeleton

path. In part 1 7, for example, I

drew a rounded bow-tie shape,

copied it to the clipboard, then

used it to provide the shape for

the Bézier tool, resulting in strokes

which appear thinner in the

middle.

It's a useful technique, but the

same visual result could also be

achieved by using the Bend LPE.

There's a philosophical difference

between the two approaches,

though: the Bend LPE uses your

“pattern” as the skeleton path,

then lets you distort it with an on-

canvas path; the PAP approach,

however, lets you copy the

“pattern” to the clipboard, then

stretches it to match the shape of

the skeleton path. On the surface,

therefore, it all boils down to

whether you want the skeleton

path to be your pattern or your

target, but there's more to the

PAP effect than that. The

difference really becomes

apparent only when you start to

change the settings.

Perhaps the most important

setting is the “Pattern Copies”

pop-up. This defaults to “Single,

stretched”, but there are three

other options available, giving the

following possibilities:

• Single, stretched – puts a single

copy of your pattern onto the

skeleton path, stretching it to the

length of the latter (or shrinking it,

if the skeleton path is shorter than

the length of your pattern).

• Single – puts a single copy of the

pattern onto the skeleton path. It's

distorted to match the shape of

the skeleton, but isn't stretched or

compressed in length.

• Repeated, stretched – puts

multiple copies of the pattern onto

the skeleton path, stretching each

of them in order to fill the length

of the latter.

• Repeated – puts multiple copies

of the pattern onto the skeleton

path, but does not stretch them,

usually resulting in a path that falls

short of the skeleton's length.

You can see these four

possibilities shown in order in this

example – the green bow-tie at the

top is the pattern that's being

used, whilst the red line is the

skeleton path.

The Pattern Source buttons are

the usual quartet used to define

the path that's used as the pattern

– by editing an on-canvas path,

using one from the clipboard, or

linking to an existing path. In this

case, it's usually easiest to draw

full circle magazine #1 06 22 contents ^

HOWTO - INKSCAPE
your pattern separately, then copy

it to the clipboard and use the

third button to apply it to your

skeleton path. The first button can

then be used to display a copy of

the pattern on the canvas, for fine-

tuning the shape.

The “thickness” of your pattern,

perpendicular to the skeleton

path, can be set with the Width

parameter, with a checkbox to

determine whether to use a fixed

pixel width, or a multiple of the

pattern's length. When using

either of the “repeated” options,

the gaps between shapes can be

set using the Spacing field.

Negative values are allowed, but

only up to -90% of the pattern

width. The Normal Offset can be

used to push the pattern to one

side or the other of your skeleton

path, whilst Tangential Offset

pushes it along the length of the

path. The latter can be used to

adjust the space at the end of the

non-stretched options, but also

works on the stretched modes to

add some space at the start of the

path, before the pattern begins.

Once again, there's a checkbox to

determine whether Spacing or

Offsets are in fixed pixel values or

proportional to the pattern length.

The penultimate control

indicates to Inkscape that the

pattern has a vertical orientation

rather than a horizontal one. This is

particularly useful to apply a

vertical pattern to a vertical

skeleton path:

Because it effectively rotates

the pattern through 90° before

applying it to the skeleton, it can

also be used to produce a different

effect, when used with a horizontal

pattern and path.

Of course, the same effect

could be produced by simply

rotating the pattern before it's

used in the LPE.

The final control is used when

your pattern is not a closed shape,

but has unconnected ends. By

setting this to a positive number,

any line ends that are separated by

less than the specified amount will

be fused together to produce a

continuous line. In this example,

I 've lopped off the ends of my bow-

tie and slightly shortened the top

section to exaggerate the effect.

The two PAP examples show the

effect of using this pattern with

Fuse Nearby Ends set to 0, then set

to a suitable positive value.

RULER

This LPE doesn't really require

much explanation – it simply draws

tick marks perpendicular to your

skeleton path to give the

appearance of the graduations on

a ruler. You can define the distance

between tick marks, the frequency

of major marks, and the length of

both the major and minor ticks.

You can also determine which side

of the skeleton the ticks will be

drawn on, or have them centered

to appear evenly on both sides.

One use for this effect is, as the

name suggests, to create a ruler.

For this example I 've used a

combined pair of parallel lines for

the skeleton path, and overlaid

them onto a rounded rectangle

and circle.

It's also possible to use this LPE

for more artistic effects, though.

When combined with other shapes

it's easy for your ruler to become a

zipper, a simple pathway, or even a

protractor. By copying the object

and applying different settings and

colors to the LPE, you can easily

full circle magazine #1 06 23 contents ^

HOWTO - INKSCAPE
get the effect of coloured rays

emanating from your shape.

One frustrating omission from

this LPE is the ability to suppress

the original skeleton path in the

output. This makes it more difficult

to chain this effect with others. A

workaround is to use Path > Object

to Path to “fix” the LPE before

manually removing the skeleton

path, then applying other effects –

but you do then lose the ability to

do live edits to the parameters. For

example, chaining the Ruler, then

PAP effects on a circle, gives a

result like the one on the left here,

whereas the example on the right

shows the “fixed” version with the

skeleton removed before the PAP

effect is added.

SKETCH

This LPE does one simple thing,

but, like the Hatches effect, the

number of controls greatly

exceeds any practical requirements

for such a deliberately un-tamed

result. In short, this effect simply

replaces each part of your path

with a number of smaller paths,

overlapping and with their ends

offset from the skeleton by a semi-

random amount. It gives the effect

of having sketched your path with

repeated strokes of a pencil – and

can even include construction lines

for extra effect.

At the top of the UI are the

controls for setting the number of

paths that will be used for

approximating each section of the

original, and for determining how

long each can be and how much

they can overlap. Usually it's

sufficient to adjust only the top

couple of controls to set the

“density” of the sketch strokes –

fewer, longer strokes for a light

sketch effect, more short strokes

for the appearance of a more

heavily scribbled line.

The Average Offset and Max

Tremble controls are useful for

determining the “thickness” of the

sketched result. There's also a

control for the number of

construction lines – set it to zero if

you don't want any. In this same

area of the UI , the Max Length

parameter is useful to sufficiently

extend your construction lines

from the original shape. As with

the Hatches LPE, the dice buttons

can be used to set a new random

seed used for some of the

parameters, which is only really of

use for making otherwise identical

copies look dissimilar.

Note that this effect can easily

produce lots of new nodes, so be

careful when using it as anything

other than the last LPE in a chain.

Here's a small showcase of the

kind of results it can produce.

STITCH SUB-PATHS

This effect can be thought of as

a perpendicular version of the

Interpolate Sub-paths LPE that I

described last month. Whereas

that creates a connection between

two sub-paths by introducing

interstitial versions that gradually

distort from the shape of one path

to the other, the Stitch effect joins

the two sub-paths directly with a

series of new paths that link evenly

spaced points on one path to

evenly spaced points on the other.

In other words, it draws some lines

from one sub-path to another.

Once again there are too many

controls to be useful. You really

only need the first parameter – for

setting the number of new paths

to draw – and the quartet of

buttons for manipulating the

“Stitch path”. Most of the other

controls are there to let you add

some randomness to your stitches,

should you wish.

full circle magazine #1 06 24 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys' , 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

HOWTO - INKSCAPE

In its simplest form, this effect

just draws straight lines from one

sub-path to another. It can work on

shapes with more than two sub-

paths, but, for anything other than

simple shapes, it can be rather

unpredictable as to what the result

will be. By using the buttons to

paste, link to, or modify a stitch

path, you can replace the straight-

line stitches with something more

complex. It can be good for adding

a little curvature to the lines, but

once again it becomes difficult to

control the result as things get

more complex.

In the example above, you can

see, in the left hand column, some

simple stitching between two basic

shapes. The middle and bottom

examples show the effect of

altering the shape of the stitch

path. The stars show a simple

stitching, the application of some

randomness via the UI , and the

result of bending the stitch path

(skeleton path omitted for clarity) .

VONKOCH

Finally we have the VonKoch

LPE. If the name sounds familiar,

then perhaps you've come across

the Koch Snowflake – a fractal

shape created by recursively

replacing the middle of each side

of an equilateral triangle with a

smaller equilateral triangle. It was

derived from a paper by Swedish

mathematician Helge von Koch,

who described the process for one

side of the snowflake shape,

creating a “Koch curve”. This image

shows the first four iterations of

the curve:

When you apply this LPE, you'll

find that a pair of new copies of

your path appear on the canvas.

Within the UI you'll also find path

buttons for a “Reference Segment”

and a “Generating Path”. The two

new paths you can see correspond

to two sub-paths within the

Generating Path. If you use the

third button to paste a different

path in, you'll see the number of

copies change to reflect the

number of sub-paths in the new

Generating Path. Somewhat

ironically, you have to paste in a

new path to create a Koch curve, as

this requires four copies, not two –

so immediately the LPE makes it

difficult for a layman to create its

eponymous fractal! The Reference

Path is used to position the copies

on their Generating Path segments

– essentially the skeleton is scaled

and positioned such that the

Reference Path lies on top of each

Generating Path segment.

If that makes it all sound rather

confusing, that's because it is! To

adequately explain the operation

of this LPE would require an article

of its own. If you do wish to

explore this one further, I

recommend reading Tavmjong

Bah's description in the official

Inkscape manual, which also

includes step-by-step instructions

for creating a Koch curve:

http://tavmjong.free.fr/INKSCAPE/

MANUAL/html/Paths-

LivePathEffects-VonKoch.html

If you do persevere with this

LPE, it can produce some

impressive results – as well as a lot

of frustration. I did manage to

create a Koch Snoflake, the

Sierpinski triangle (another

stalwart of fractal geometry) , and

a Sierpinski arrowhead curve, but it

is a far from intuitive process.

http://www.peppertop.com
http://tavmjong.free.fr/INKSCAPE/MANUAL/html/Paths-LivePathEffects-VonKoch.html

full circle magazine #1 07 31 contents ^

HH OOWW--TTOO
Written by Mark Crutch II nn kkssccaa ppee -- PPaa rrtt 4477

This month, we'll conclude our

tour of LPEs by looking at the

two new additions to Inkscape

0.91 : Power Stroke and Clone

Original Path. One limitation

artists often find with Inkscape is

its inability to produce variable

thickness strokes. There are ways

to fake it, which pretty much all

rely on the “stroke” actually being

a filled path in its own right. That

inevitably leads to the follow-up

problem of how to fill a shape

drawn using such fake strokes.

These two LPEs are Inkscape's

answer to those problems.

POWER STROKE

This effect lets you vary the

width of your path by adjusting

“stroke knots” along its length. For

cases where you might otherwise

use PAP to provide some variability

to the stroke width, Power Stroke

will often achieve a similar effect

but with more flexibility. Let's start

with the simple example of

applying this LPE to a straight line:

The top line, in red, represents

the original skeleton path. On

applying the LPE the first result

you'll see is that the skeleton is

replaced by a closed path that

encloses the original shape. The

closed path takes on the attributes

of the original skeleton path, so, in

this case, it has a red stroke and a

transparent fill, resulting in the

second shape in the image. Usually

you'll want your Power Stroke to

be filled with no outline, so in the

third image I 've changed the style

to a black fill with no stroke. You

would be forgiven for thinking that

we've just gone through a

convoluted way to produce a

slightly thicker black line with

rounded end caps, but the fourth

image shows the real secret to

Power Stroke: this is the same as

the third object, but with the Node

tool selected (F2), revealing not

only the normal start and end

nodes, but three additional pink or

purple colored handles (the

“stroke knots”) sitting on the

periphery of the shape.

The effect automatically adds

these nodes at the start and end of

the path, and somewhere towards

the middle. Using the Node tool

they can be dragged

perpendicularly to the skeleton

path to set the stroke width at that

point, but can also be dragged

along the path to change the

location at which the thickness

changes. Taking the previous

example; dragging the handles

around a little lets us easily

produce this result:

As you can see, the thickness of

the line is set by each of the nodes,

with sections in-between ramping

linearly from one node to the next.

Looking at the LPE's UI you'll

notice a pop-up menu for the

Interpolator Type. This is what is

producing the linear change; pick

another value to alter the way in

which the width of the path is

modified from one node to the

next.

You can't fail to have noticed

the rounded ends to the line. They

weren't present on the original

skeleton path, so where did they

come from? A quick scan of the

effect UI will show that several of

the controls from the Stroke Style

tab of the Fill and Stroke dialog are

replicated as part of the LPE. From

there, you can set start and end

full circle magazine #1 07 32 contents ^

HOWTO - INKSCAPE
caps (the source of the rounded

ends in this case), as well as the

join type and miter limit for paths

with angles in them. These all

operate in a similar way to the

equivalent controls in the Style

and Stroke dialog, except that the

LPE offers more options.

With three handles for

manipulating the Power Stroke,

you can already produce some

useful results, but the real power

comes when you add even more

handles. Unfortunately, this is

done via a rather clunky approach

that can sometimes be a bit

unstable, particularly on more

complex paths. The first step is to

select your path and switch to the

Node tool, so that the handles are

visible. Next you have to hold the

Control-key whilst clicking on a

handle. This will create a second

handle, directly on top of the first

one, which you can then drag to its

new location. If you do experience

problems, such as the handle

becoming detached from the path

and having no effect, undo your

changes, and then try again,

duplicating a different handle

instead. Our simple line with three

handles quickly turns into

something more bumpy once a few

more are added:

To delete a handle you have to

click on it whilst holding the

Control and Alt keys. There's no

way to select multiple handles in

order to move or delete several at

a time. You've probably noticed

that you can drag handles past one

another with ease – that's thanks

to the Sort Points checkbox in the

effect's UI . Uncheck that for a

different behaviour in which the

shape is drawn from handle to

handle based on their original

ordering rather than their final

position along the line. It's useful

for some effects, but generally it's

better to leave the box checked.

With all that background out of

the way, let's take a look at this

LPE when used on a more complex

path. It's time to return to my

efforts to manually trace “Frankie”

(see parts 1 6-21 for my previous

attempts at this) :

The parts of the path that

stretch inside the outline – the

mouth, nose and ears – were

particularly fiddly to get right. In

practice it's probably faster to just

use a simple path for the outline,

then draw those parts separately.

But you can clearly see how the

LPE allows the path to thicken and

thin to give more of a dynamic feel

to the character than a simple

fixed width line could achieve.

CLONE ORIGINAL PATH

Our final LPE follows on directly

from those efforts to manually

trace Frankie. One problem with

the Power Stroke or PAP effects is

that they draw strokes as filled

paths, so setting a fill color on

them actually changes the color of

the “stroke”, not the area inside it.

To clarify, if I were to select the

Power Stroke path in the Frankie

example and set its fill color to red,

the result would just be a red

Power Stroke, not a black Power

Stroke with a red fill inside the

face area.

Previously, I 've shown you how

to work around this limitation

using the Bucket Fill tool or by

manually drawing a second path

that you can fill and then send

below the outline. Neither of these

solutions is ideal, and both can

take a lot of manual tweaking to

get right. Wouldn't it be easier if

you could just fill the original

skeleton path with a different

color, without affecting the fill

full circle magazine #1 07 33 contents ^

HOWTO - INKSCAPE
that's used for the Power Stroke?

Effectively that's what the Clone

Original Path effect lets you do.

There are a few ways to use this

effect, but we'll start with the

long-winded method, to give you a

better understanding of what's

happening. First you'll need a

sacrificial skeleton. Don't worry,

we're not heading into Voodoo

territory, but rather you'll need a

skeleton path that will completely

disappear once you use the LPE. Its

only purpose is to serve as an

object to apply the effect to, so a

simple straight line will suffice.

Select the path and add the Clone

Original Path LPE to it, then gasp

in amazement as… nothing

happens. There are a few more

steps to go through before the

effect has any visible impact.

Having applied the effect, you

next need to select your Power

Stroked path, then copy it to the

clipboard. Re-select the sacrificial

skeleton and use the first button in

the effect's UI to paste the path

from the clipboard. Your skeleton

will disappear, and it will seem that

the Power Stroked path has been

selected instead. Appearances can

be deceptive, however – use the

arrow keys to move the selected

item and you'll realise that you've

actually got a clone of the skeleton

path used in the Power Stroke. Fill

it with a color and send it back in

the stack and you've achieved in

seconds what would have taken

several minutes to do manually.

You can fill your clone with a

gradient or pattern, if you prefer,

or change the stroke style. In

principle you can also apply other

LPEs – although they don't always

chain as well as you might hope.

And because it's a clone, you can

change the shape of the original

skeleton path (the one used for the

Power Stroke), and your filled

version will automatically update

to match it – comic creators

rejoice! No more does every tweak

to an outline have to entail a

corresponding manual update to

the fill shape!

With the cloned path selected,

the second button in the UI will

select the original – though the

classic Shift-D shortcut or Edit >

Clone > Select Original menu entry

both also work. Cloning a path in

this way isn't restricted to the

Power Stroke LPE, so if you need a

copy of the skeleton that you used

with any other effect, just follow

the same steps.

You can streamline the creation

process a little by copying the

Power Stroke path to the clipboard

before you create your sacrificial

skeleton rather than afterwards.

But the Inkscape developers are

nicer than that, and have added an

option that will automatically

create an infinitesimally small

sacrificial path that has just a

single node, add the Clone Original

Path effect to it, and connect it to

your original path, all from a single

menu entry. Just select the Power

Stroked path, then use Edit > Clone

> Clone Original Path (LPE), and

then set the fill and stroke you

want for your clone. The only way

it could be any faster is if there was

a keyboard shortcut for the menu

option.

But wait! Inkscape 0.91 does

include a keyboard shortcut editor.

Click on the Edit > Preferences

menu item, then in the dialog, drill

down to Interface > Keyboard

Shortcuts. Expand the Edit section

of the pane on the right and you

should find Clone Original Path

(LPE) in the list. Click in the

Shortcut column for that entry,

then press the new keyboard

shortcut you wish to use (I went

for CTRL-ALT-SHIFT-D to keep it in

line with the other cloning

shortcuts) .

There's one final trick up the

sleeve of this LPE. Back in part 30, I

introduced the use of “unset” fills

and strokes to allow different

clones to have different styles and

colors. This effect offers another

way to achieve a similar result. You

can either select an original object

that you wish to clone, and then

use the Edit > Clone > Clone

Original Path (LPE) menu option,

or you can select a clone that

you've already created and just

click the “+” button in the Live Path

Effects dialog. Now you can

change the color and style of your

clone with impunity, safe in the

knowledge that changes to the

original shape will still be

full circle magazine #1 07 34 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys' , 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

HOWTO - INKSCAPE
reflected. For obvious reasons this

works only where the parent

object is a path or can be trivially

converted into one – so it does

work with stars, spirals and even

text objects, but doesn't work with

groups or bitmap images.

It's worth noting that this

approach does result in a second

copy of the path data being stored

in the clone's XML (see part 43 for

details) , unlike a normal clone

which just hold a reference to the

original. This means that not only

is the file size a little larger, but

any edits made to the original

outside of Inkscape won't be

reflected in the LPE clone, whereas

they would with a “real” SVG clone.

One advantage of this approach,

however, is that you don't have to

unset the fill and stroke on the

original, so you won't be left with a

black shape that you might have to

hide under another object or by

placing it off the side of the page.

CONCLUSION

The Power Stroke and Clone

Original Path LPEs are worthy

additions to Inkscape 0.91 . For a

comic artist they could be reason

enough to upgrade from an older

version. Using little more than

these two effects produced the

best manual trace of Frankie so far:

We've now reached the end of

our tour of LPEs. There are more

being added to the development

builds all the time, so do check out

the dialog with each future version

of Inkscape. They represent

perhaps the most common way in

which the developers have broken

through the limitations of the SVG

format in order to add

functionality that far exceeds what

any normal SVG editor could offer.

It's true that the UI for some is

confusing, they're sometimes a

little unstable, and that they often

don't chain as well as they should,

but it's well worth spending some

time to play around with them as

they can open a path to drawing

possibilities that would be

impossible or, at least, impractical

to produce any other way.

http://www.peppertop.com

full circle magazine #1 08 28 contents ^

HHOOWW--TTOO
Written by Mark Crutch II nnkkssccaappee -- PPaarrtt 4488

I f there's one word that can stirup controversy amongst

experienced Inkscape users, it's

“filters”. Attitudes range from

“they're bitmaps, and therefore

bad”, through “it's easier to add

filters to your image in GIMP”,

right up to “filters are great”. I ' ll go

on record as putting myself in the

last group, but I would definitely

extend the statement to add “(if a

little slow and clunky)” to the end

of it. So what are filters, in

Inkscape terms? And why are they

so divisive?

In short, filters are part of the

core SVG specification that offer a

way to perform bitmap operations

on your vector objects. Filters

consist of a number of “filter

primitives” that can be linked

together to create a “filter chain”

that produces the desired effect.

They apply at the point that your

elements are being rendered to a

bitmap for display, export or

printing, and operate at the same

resolution as the output device.

So, although they are pixel-based,

they can be just as crisp and

scalable as the unfiltered vectors

in your drawing. It does mean,

however, that they are purely a

display feature and have no effect

on the underlying geometry of

your image – so they're of no use

to anyone trying to produce

drawings for use on a vector

output device such as a vinyl cutter

or laser engraver.

Filters are also “live”. You can

tweak and modify the parameters

used in your filter throughout the

life cycle of your drawing, whereas

filters in a bitmap editor like The

GIMP are usually fixed and

permanent once they've been

applied. This is both a blessing and

a curse: SVG filters are incredibly

flexible because you can change

them as you go along; conversely

they eat up a lot of processing

power as they need to be re-

calculated not only when you

change their parameters, but

potentially each time you pan or

zoom. The performance penalty

can be severe, especially when

zooming far into your drawing,

leading some users to avoid filters

entirely, although the worst

problems can usually be avoided

by using a few simple techniques

that I ’ll describe in a future article.

Finally, filters are rather

unintuitive – and Inkscape's UI for

editing them only makes this

problem worse. The developers

have included a great set of

predefined filters, which was

improved further in 0.91 , but it's

still useful to understand how to

use the editor in order to tweak

and extend them. So let's start by

taking a look at the editor courtesy

of the most common filter

primitive: Gaussian Blur.

Gaussian Blur (or just “Blur”

from now on) is the most

commonly used primitive –

principally because it’s exposed

directly in the Fill and Stroke

dialog. Many people happily use

the Blur slider in that dialog

without ever going anywhere near

the full Filter Editor, but it also

provides a convenient mechanism

for creating a “stub” filter chain

that you can develop further. Of

course you’ll need an object (or

group) to apply your filter to, so

begin by creating a text object,

give it a nice bright fill color, then

add a little blur using the slider in

the Fill and Stroke dialog.

Now open the Filter Editor

using the Filters > Filter Editor

menu entry. If it opens in a pane

within the main Inkscape window, I

suggest dragging it out as a

separate floating dialog. This will

let you resize it to give you more

space to work with – filter chains

can quickly become long and some

of the primitives have a lot of

parameters to tweak.

full circle magazine #1 08 29 contents ^

HOWTO - INKSCAPE

The left of the editor is given

over to a list of the filters in your

document. Assuming you started

with a blank drawing, you should

see only a single entry here, given

an automatically generated name

along the lines of “filter1 234”.

That entry will have a mark in the

checkbox, indicating that it’s the

filter that’s in effect on the

currently selected object. If you

want to apply the same filter to

another shape, just select that

object in the canvas window, then

check this box in the editor; you

can use a single filter chain on

multiple elements – which is useful

when you want multiple text

objects to share a single drop

shadow, for example. Finally, in

this section you can create a new

filter from scratch using the “New”

button at the bottom, or right-click

on a filter entry to duplicate or

remove it completely. You can also

rename it from that context menu,

but it’s usually easier to just

double-click on the filter’s name

and enter a new one. Giving

slightly descriptive names to your

filters makes it easier to keep track

of the important ones as your

drawing develops. For now, why

not rename “filter1 234” to “Blur”?

With your filter selected, you

should see a single entry in the list

on the right of the dialog: Gaussian

Blur. This is your filter primitive,

and it’s this list that’s used to stack

and combine primitives into chains.

For now, click on the Gaussian Blur

entry to select it, and then look to

the bottom of the dialog where

you’ll find its parameters. Gaussian

Blur takes two parameters, but by

default Inkscape locks them to the

same value via the “Link” button to

the right. By toggling that to un-

link the parameters, you can

provide different values for

horizontal and vertical blur,

providing the opportunity for

“motion blur” effects that make it

look like your object has moved in

one direction. Note that the scales

are labelled in units of “Standard

Deviation”, whereas the slider in

the Fill and Stroke dialog shows a

percentage value. The former is

used in the SVG spec, whereas the

latter is probably more

understandable for users who just

want to add a little blur without

going near the filter editor. Suffice

to say that the two fields are just

different representations of the

same underlying value, so the fact

that they usually hold slightly

different numbers isn’t really a

problem.

If you're still on 0.48, and drag

the sliders to the right, you may

notice that the blur on the text

starts to get cut off at around the

20% mark, and by the time you

reach 50% it’s become a ghostly

rectangle. You’ve just encountered

one of the most common problems

reported by users who take their

first steps into filters, but don’t

worry, it’s an easy one to fix. In

principle, some filters – including

Gaussian Blur – could continue off

into infinity: mathematically

speaking, a blur represents an

infinite series of calculations,

although the results quickly drop

off to the point that the calculated

values have no visible effect on the

drawing. Obviously performing an

infinite series of calculations isn’t

possible for even a high-end

machine, so the SVG spec allows

for a window or cutoff to be

defined, beyond which the

rendering engine shouldn’t bother

performing any more calculations.

By default this cutoff is set to

allow a 1 0% margin all around your

filtered object, which is fine for a

small blur, but clearly not enough

as the blur value increases.

The cutoff is adjusted via the

“Filter General Settings” tab, and,

as the name suggests, it affects

the whole filter, not just the

currently selected primitive. Within

this tab you’ll find two sets of

parameters, labelled “Coordinates”

and “Dimensions”. The former sets

the position of the top left of the

filter window, relative to the width

of the object. The default values of

-0.1 0 mean that the cut-off

rectangle starts 1 0% up and to the

left of the object’s bounding box.

The latter pair of values sets the

width and height of the filter

window, so the default value of

1 .20 results in a cut-off that’s 20%

larger than the bounding box.

Because the Coordinates fields

have offset the window by 1 0% to

the top left, the result is a cut-off

that symmetrically surrounds the

original object with a 1 0% margin.

To use a large Gaussian Blur value,

you might want to increase this

window to give you a 50% margin

all round: that would entail setting

the Coordinates to -0.50 and the

Dimensions to 2.0. Most of the

time you don’t need to adjust

these values, but when you start to

see your filtered objects being

unexpectedly cut off at the edges,

the Filter General Settings are

almost always the cause.

In the copy of 0.91 on my

machine, this problem seems to

full circle magazine #1 08 30 contents ^

HOWTO - INKSCAPE
have been addressed by

automatically modifying the

settings to sufficiently encompass

the blur. However I can find no

mention of this change in the 0.91

release notes, so it's not clear if

this only applies to blurs or simple

filter chains, or if the algorithm

being used is robust enough to

handle complex chains as well.

Therefore I recommend

familiarising yourself with this tab,

even on 0.91 – though with luck

you'll never have to use it.

Before moving on, it’s worth

having a quick recap to make sure

you’re clear about the dialog so

far. On the left is the list of filter

chains, each with a checkbox to

apply it to the currently selected

object. From here you can create

new chains (though just adding

some blur to your object has a

similar effect) , and manage

existing ones. On the right is the

list of filter primitives that

constitute your filter chain –

though so far we’ve only dealt with

a rather short chain consisting of a

single primitive. At the bottom of

the dialog is a tab for the currently

selected primitive’s parameters,

and another for setting the filter

cut-off window position and size.

Now, let’s move back to the list

of primitives that we so quickly

glossed over previously. Looking

more closely at the Gaussian Blur

entry you’ll notice that the

“Connections” section contains a

barely visible triangle, from which

is emanating a line that connects

to a column on the right with a

“Source Graphic” label running

vertically down it. The triangle

represents an input into the filter

primitive, and the column is one of

several possible sources for that

input. Unfortunately, of the six

inputs shown in the UI , two of

them require special treatment

(and will be covered in a future

article) , and another two don’t

work at all! Of the two that do

work, the “Source Graphic” column

is exactly what it sounds like – it’s

used to ‘inject’ a bitmap

representation of the selected

object into the filter chain. The

“Source Alpha” column is used to

inject a bitmap representation of

the object’s alpha channel with

solid black pixels representing

opaque parts of the object,

transparent black pixels for the

transparent parts, and translucent

black pixels for those parts that

are somewhere in-between. In

other words, it injects a blackened

silhouette of the object.

As well as having the triangular

input nodes, each primitive also

has a single output. There’s no

obvious output node, instead it’s

the bottom edge of the primitive

that acts as the output in the

Inkscape UI . It’s possible to

connect the bottom of one

primitive to the input triangles of

other primitives, thus building a

chain, but the output from the last

primitive is always used as the

output from the chain as a whole.

Let’s build on our Gaussian Blur

to create a simple drop shadow

filter. During this process, you’ll

learn how to link primitives

together to form a chain, and

hopefully begin to understand a

little more of the power of filters.

Start by renaming your existing

filter to “Drop Shadow”, re-link the

parameters if you need to, and set

the blur to a fairly small number –

enough that you can clearly see it

applied to your object, but not so

much that the it just turns into a

fuzzy cloud. A value of 2-3 should

do the trick.

Our shadow is going to be dark,

made of translucent black pixels,

so the first thing to do is to

generate a silhouetted version of

our object to pass as an input to

the Gaussian Blur primitive. But, of

course, we already know of a

source of silhouettes – the Source

Alpha column. In a slightly back-to-

front operation, we can link this

source to the Blur’s input by

clicking and holding on the

triangle, then dragging the mouse

to the Source Alpha column before

releasing (yes, you drag from input

to source, rather than the other

way around). If all went smoothly,

the line that previously ran to the

Source Graphic column has been

replaced by one to the Source

Alpha instead. Take a look at your

text object and you should find it’s

turned into a blurry black version

of the original.

full circle magazine #1 08 31 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys' , 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

HOWTO - INKSCAPE

I f we were to display the

original over the top of the blurred

alpha version, you would just see a

halo of darkness around your text.

To make it work as a drop shadow

we need to offset our blurred

image from its original position

using the imaginatively titled

“Offset” primitive. Select it from

the pop-up list just below the filter

chain, then click the adjacent “Add

Effect” button to add it to your

chain. It should automatically be

connected to the output of the

Blur, as indicated by a small line

running from the triangular input

of the Offset to the bottom of the

Gaussian Blur. Adjust the new

primitive’s Delta X and Delta Y

parameters to shift your shadow

down and to the right – a value of

6.0 in each is a good start.

The final step in creating our

filter is to add the original graphic

back on top of the blur using the

Merge primitive. Once again you

should select it from the pop-up

list and add it using the Add Effect

button, but this time it won’t be

automatically connected to the

rest of the chain. The Merge filter

combines multiple input images by

stacking them on top of each

other, honouring any transparency

they may have in the process. The

first input goes at the bottom of

the stack, the last input at the top,

so we need to add the offset blur

first and the original source

graphic second.

Begin by clicking in the Merge

filter’s sole input triangle and then,

holding the mouse button down,

drag to the triangle in the row

above (the Offset filter) . Release

the button and you should see a

connection made, running from the

base of the Offset to the input of

the Merge. You’ll also notice that

the Merge filter has gained a

second input triangle. Click and

drag from this second triangle to

the Source Graphic column. Check

the canvas, and you should now

have a glorious drop shadow. See,

filters aren’t so tricky… right?

Now tweak the Gaussian Blur

and Offset parameters to change

the softness of your shadow or its

relative position. Then edit the

text itself. Each change you make

takes place live, and you can re-

open the filter editor at any time

to make further changes. Try

creating a “hard” drop shadow by

merging an offset Source Alpha

with the Source Graphic, but

without using the Gaussian Blur. Or

try a bit of motion blur by un-

linking the horizontal and vertical

sliders; adding some horizontal

blur and a horizontal offset; then

merging with the Source Graphic

again.

Make sure you understand what

we’ve covered in this instalment,

because, next time, we’ll build on

this simple drop shadow to

introduce some more filter

primitives that will expand your

repertoire further, giving you the

capability to achieve effects that

just aren’t possible without a little

smattering of bitmap magic on

your vector objects.

http://www.peppertop.com

full circle magazine #1 09 32 contents ^

HH OOWW--TTOO
Written by Mark Crutch II nn kkssccaa ppee -- PPaa rrtt 4499

Last time, I introduced the Filter

Editor dialog and

demonstrated how to create a

simple filter chain, resulting in a

drop shadow effect. The chain

consisted of three filter primitives:

Gaussian Blur, Offset and Merge. I

also used the Source Alpha and

Source Graphic inputs. Recall that

each primitive in the chain has one

or more inputs, denoted by

triangles, and a single output

represented by the bottom of the

primitive. The output from the

chain as a whole is always the

output from the last primitive.

Therefore, in the Inkscape UI , our

drop shadow chain looks like that

shown below left

With a simple chain this is fairly

understandable but, as the

complexity of your filters grows, a

simple one-dimensional list

becomes an unwieldy tool for

looking at the complex

arrangement of primitives that

evolves. Mathematically speaking,

filters are a “directed graph”,

consisting of a series of nodes (the

primitives) and uni-directional lines

connecting them. Such graphs are

usually drawn in two dimensions,

and you may find it easier to try to

imagine your chains in that form.

For example, our simple drop

shadow could be represented like

that shown below right.

Here I 've used blue boxes for

the primitives, green for the image

sources, and teal for the final

output. The gray box just shows

the intermediate result that you

would see if you could peek into

the filter chain at that point.

Hopefully you can see how this

layout relates to the Inkscape UI ,

and I 'll use this approach again to

describe more complex filters as

the series goes on.

One problem with our drop

shadow is that it's based on the

Source Alpha of the original object,

which is essentially a black

silhouette. But what if you want

your shadow to be more

translucent – gray rather than

black – or you want it to have a

different color entirely? There is a

filter primitive that lets us

manipulate the color of the image

in the chain, but unfortunately it's

another case of a confusing UI that

could have been made a lot more

obvious.

Start by adding the Color Matrix

primitive to your filter. It will

appear at the bottom of the chain,

but you can drag it to another

full circle magazine #1 09 33 contents ^

HOWTO - INKSCAPE

location. We'll start by changing

the opacity of the shadow, so it

either needs to go after the

Gaussian Blur step (to change the

opacity of the already blurred

image), or right at the top of the

chain (to change the opacity

before the blur is applied). Either

approach will give roughly the

same result, so I 've chosen to put it

at the top of the list. You then

need to modify the connections so

that the Color Matrix gets its input

from the Source Alpha column, and

the Gaussian Blur gets its input

from the Color Matrix primitive.

With the Color Matrix primitive

selected, take a look at the

parameters at the bottom of the

dialog. First there is a Type pop-up

which lets you select between four

different varieties of color

manipulation. Three of them have

simple, easy-to-use interfaces… so

of course we need the other one!

Select the Matrix option (this is

also the default when you first add

the primitive) , and you'll be

presented with a grid of numbers

with little extra explanation (there

is a lengthy tooltip, but I 'm not

sure it helps very much).

Above is that same matrix,

presented with some headings to

help clarify things:

Remember that filters are a way

to manipulate the bitmap version

of your vector image, just at the

point it's converted to pixels. This

matrix essentially holds some rules

about how each individual pixel in

your input image should be

modified in order to produce the

corresponding pixel in your output

image.

Let's take the top row as an

example. Suppose the first pixel in

our image has an RGB value of

(1 50, 1 28, 255) and it's completely

opaque (an Alpha value of 255). To

calculate the color of the output

pixel we have to calculate its R, G,

B and A values separately – the top

row, therefore, is only concerned

with the Red component of the

pixel. The formula for calculating

the Red output pixel value is:

ROUT = (RIN × 1 .00) + (GIN ×

0.00) + (BIN × 0.00) + (AIN × 0.00) +

(255 × 0.00)

The bold numbers in the

formula are taken from the first

row of figures in the matrix. Clearly

only the first value has an effect in

this case, as all the others are zero,

so ROUT is simply the same as RIN

× 1 .00. In other words, with these

figures the red component is

passed through untouched, with a

value of 1 50. If you repeat the

process for each of the remaining

three lines, you'll see that the

default color matrix simply passes

the input color through to the

output without modifying it. It's an

“identity” matrix, in mathematical

terms. Because the same matrix is

used for every pixel in the input

image, the result is that this filter

primitive will just copy the input

image directly to the output

without changing it at all.

full circle magazine #1 09 34 contents ^

HOWTO - INKSCAPE
To make the drop-shadow more

translucent, we need to modify the

output Alpha value. On the bottom

row of the matrix, click on the 1 .00

field and change it to 0.50 then

press the Return or Enter key.

Immediately you'll see the drop

shadow change. You can choose

any value you wish (between 0.00

and 1 .00) in order to create a

lighter or darker shadow.

What about changing the color

of the shadow? There are a few

ways to go about this, but we'll

start by using the fourth column in

the Color Matrix – the one labelled

as “Fixed Offset” in my diagram.

Consider that the black pixels in

the Source Alpha image have an

RGBA value of (0, 0, 0, 1) – with all

those zeros it's clear that no

amount of multiplication will

change the output of the red,

green and blue components. But

the fourth column lets us add (or

subtract) a fixed value. If you

change the fourth column on the

third row to 0.80, the formula for

the blue component of the output

pixels becomes:

BOUT = (RIN × 0.00) + (GIN ×

0.00) + (BIN × 1 .00) + (AIN × 0.00) +

(255 × 0.80)

The multiplied R, G and B values

all come to 0, but then we add 255

× 0.8 onto the result, giving us a

final blue component of 204. Our

RGBA output value therefore

becomes (0, 0, 204, 1) , giving us a

blue drop shadow. Try changing

the values of the fixed offset for R

and G as well and you'll quickly see

that we can use this technique to

produce any color of shadow we

want, all from our black silhouette.

How about using the Color

Matrix filter to go in the opposite

direction – to generate a black

shadow from a colored one? No

problem, but first you'll need a

colored image to work with. The

easiest option is to move the input

connection from Source Alpha to

Source Graphic. You should also

change your Color Matrix values

back to the identity matrix to give

you a known state to start from.

With that done, your drop shadow

should now be the same color as

your original object (red, in my

case).

To convert our color to black,

we have to set each component to

zero. There are a couple of ways to

do this:

• Put -1 .00 into the Fixed Offset

field for the R, G and B output

values. No matter what the input

values are, this has the effect of

subtracting 255 from the output.

This has the effect of setting each

output to zero, because it's not

possible for a color component to

go any lower than that.

• Change the 1 .00 values in the first

three rows to 0.00 instead.

Regardless of the input value,

multiplying it by zero will give a

zero output.

I took the second approach, to

give me a black drop shadow once

more:

Of course this is a terribly

inefficient way to create a

silhouette compared with just

linking to the Background Alpha

source, but it helps to demonstrate

how output values are calculated

from input values. So far, however,

we've just looked at simple

mappings, where red remains red

and blue remains blue, but this

filter primitive also allows you to

map one input component to a

completely different output.

Consider a matrix like this:

full circle magazine #1 09 35 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys' , 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

HOWTO - INKSCAPE
I t's similar to the identity

matrix, except that the R, G and B

columns are shifted by one place.

The result is that the red

component of the output pixel is

taken from the value of the green

component of the input, whilst the

green output comes from the blue

input and the blue output is taken

from the red input. Let's see the

result on a multi-colored source

image:

Notice that this moves away

from having a simple fixed color

for the shadow, and instead

produces different colors based on

the corresponding pixel in the

input image. If you include the

output Alpha channel, things can

get even weirder. Here's our multi-

colored text with the RGB values

zeroed to give us a black drop

shadow again, except that the

fourth row has been changed so

that the Alpha channel is taken

from the Red input component.

Notice that colors with a high red

value have dense, solid shadows,

whilst those with no red in them

(such as the green S and blue O in

“Shadow”) have no shadows at all.

Although I 've shown only

relatively simple examples here,

it's possible to create complex

mappings between color channels.

If you really want your red output

to consist of 90% of the red input,

less 1 0% of the green, less 35% of

the blue, plus a fixed offset of 64,

you just have to put values of 0.9,

-0.1 , -0.35 and 0.25 into the top

row. Of course, predicting the

output from complex combinations

like this becomes rather difficult,

so for normal use I recommend

sticking with simpler, easy to

understand mappings.

This ability to flexibly map color

components to each other, or to

and from the Alpha value, can be

useful on some complex and

esoteric filters. Most of the time,

however, you don't need that

degree of flexibility, so the Type

pop-up provides three other

options to avoid you having to

wrestle with the full matrix:

• Saturate: Provides a slider to let

you change the saturation of your

image. In other words, remove

color from it, ultimately producing

a grayscale result at the most

extreme.

• Hue Rotate: Shift the color of

your object by a fixed amount.

• Luminance to Alpha : Set the

output alpha based on the RGB

input values. In theory this makes

dark areas more transparent and

light areas more opaque, but RGB

doesn't map neatly to the human

perception of brightness, so this

really works effectively only on

grayscale input images. This can be

used to punch holes in your filter

output, based on the images

produced in other parts of the

chain.

Notable by its absence is a

shorthand option for adjusting the

opacity – where we came in at the

start of this article. Unfortunately,

if you want to make your drop

shadow a little more transparent,

you have no choice but to deal with

the full matrix approach, even if

you are only changing a single

value in the bottom row.

http://www.peppertop.com

	INKSCAPE Vol 7
	Part 43
	Part 44
	Part 45
	Part 46
	Part 47
	Part 48
	Part 49

