
full circle magazine #1 33 28 contents ^

HHOOWW--TTOO
Written by Mark Crutch II nnkkssccaappee -- PPaarrtt 7733

Over the past six years, this

series has detailed just about

every part of Inkscape, from basic

shapes through to more complex

features such as filters and path

effects. With nothing more to

cover, it’s time for this column to

take a sharp turn from its previous

tack: I ’m going to look at how you

can use graphics you’ve created in

Inkscape on the world wide web.

On the surface, this might seem

like a simple task – worthy of an

instalment or two at most. But SVG

is unlike any other graphics format;

its XML heritage lends it to the

same kind of manipulation with

CSS and JavaScript as HTML,

allowing for graphical tricks that

go way beyond simply displaying a

static image on a page. At the

same time, you still have the

option to treat SVG as a dumb

image format, if that’s a better fit

for your requirements.

Broadly speaking, there are

four ways to include an Inkscape-

created image in a web page. Each

has its own pros and cons, which

are outlined in the table shown

above.

The first method is to simply

avoid the whole SVG question

entirely and export your image to a

PNG file – possibly even converting

it to a JPEG afterwards to reduce

the file size, if the image doesn’t

require transparency. The

resultant raster image can be

included in a web page via an

 tag, used on social media

sites or blogs, and generally be

treated the same way as a photo

from a phone or digital camera.

Because you’re effectively creating

a snapshot of the image as it

appears in Inkscape, you also don’t

have to worry about missing fonts,

flowed text, or mismatches in

browsers’ rendering engines. The

downside is that the exported

raster image is no longer infinitely

scalable in the same way as a

vector image. You also lose any

concept of the individual objects

that made up the image, so it’s not

possible to manipulate them

individually using CSS animations

or JavaScript.

The second approach relies on

the fact that most modern

browsers do a pretty decent job of

rendering SVG – so why not just

use the SVG file directly, rather

than converting to a raster format

first? This is as simple as

referencing an SVG file in your

 tag, rather than a PNG or

JPEG. Because the internal

structure of your SVG is preserved,

the browser knows about

individual objects, so can animate

them using CSS. In theory it could

also allow JavaScript, but that’s

prevented when using images like

this, for security reasons.

What does security have to do

with an SVG image, you may

wonder. Consider that many social

media platforms, forums, and

other websites, will let you upload

your own SVG file, then expose it

to other people on the site by

using an tag. This would

effectively give a malicious user a

means to run their own JavaScript

under the guise of the hosting

website. The code could capture

user’s keypresses, spoof a login

dialog to record passwords, or

redirect the user to another site

entirely. Given that being able to

upload an SVG file to a site and

full circle magazine #1 33 29 contents ^

HOWTO - INKSCAPE
have it rendered as an image is

generally a good thing, but that

unfettered permission to run

JavaScript in such a file could

easily be abused, browsers take

the sensible approach of allowing

CSS animations to run (giving SVG

an edge over raster images) , but

disallowing any JavaScript.

Unfortunately this method does

come with one big drawback –

though it’s a problem that

diminishes every year. Because you

are relying on your browser’s

rendering engine to draw each

object in your image, you no longer

have complete control over the

appearance of your image. For

simple drawings, this isn’t

generally a problem. But add in

more advanced features, such as

filters, and the output of the

browsers begins to diverge.

Text rendering is a particularly

significant problem. If the person

viewing the image doesn’t have

the same font installed on their

machine that you used to create

the document in the first place, it

will be replaced with a different

font. In HTML, this can be

annoying, but usually the browser

adjusts the page layout a little and

no real harm is done. In an image

format, however, it can be much

more of a problem. Consider

something like a comic strip: if the

text is rendered at the wrong size

it might not fit the speech bubbles;

if it’s rendered in a different font it

could change the feel of the

narrative entirely. For this reason, I

post all my comic strips as PNG or

JPEG images, and link to the SVG

files separately where I want to

make the source files available for

people to download.

The third approach is essentially

another way of linking to an SVG

file, but this time it uses the

<object> element rather than an

. Whereas forums and social

media sites are happy to expose a

user’s file via an link, they

tend not to do the same via

<object> – so, if you want to take

this approach, you need to be able

to edit the underlying HTML

directly. This usually implies that

you are creating content for your

own domain, rather than just

uploading something to a third-

party site. What you gain from this

extra requirement is an enhanced

level of trust from the browser,

allowing JavaScript in your image

to execute. With sufficient

knowledge and experience, it’s

even possible to create two-way

interactions between code on the

page and in your image. But, again,

you’re also at the whim of the

browser in terms of the final

rendering of your file.

The last approach is a relatively

recent option. For years, SVG was

neglected by the web developer

community, largely because

Microsoft refused to support it in

earlier versions of Internet

Explorer, at a time when it

commanded the majority share of

the market. But with later releases,

Microsoft softened their stance,

adding SVG support and paving the

way for SVG to be promoted to a

first-class citizen in the world of

HTML5. Now, you can put a chunk

of SVG code directly into your

HTML and it will just work. And if

you’re hand-coding your SVG, you

no longer have to concern yourself

with the complexities of

namespaces in XML – just use the

SVG tags in the same way as you

would HTML.

With this last method, the SVG

is a direct part of your web page,

so writing code to manipulate the

image is much simpler than with

the <object> approach. But it does

mean that your SVG code is right

there in the middle of your HTML.

If all you’re doing is drawing a

couple of simple objects, that

might not be so bad, but including

all the code from a complex

drawing can quickly overwhelm the

rest of your page, making it harder

to work with the surrounding

HTML. And, once more, your

browser’s rendering engine might

make poor work of your image.

Enough theory, let’s put it into

practice. Next month, I ’ll describe

how to use <object> and inline

SVG, but, this time, we’ll deal with

the methods. Begin by

loading a simple image into

Inkscape, or creating one from

scratch if necessary. I ’m going to

work with this basic circle (the

square around it is the Inkscape

canvas):

Let’s export this to a PNG image

via the File > Export PNG Image…

full circle magazine #1 33 30 contents ^

HOWTO - INKSCAPE
menu item. This opens a dialog in

which to set the details for the

export:

I covered this dialog way back in

part 1 2 of this series, but, for the

purposes of creating a PNG to use

online, you can ignore many of the

options. You do need to decide

what to export using the buttons

at the top: usually this will be the

entire page, the entirety of your

drawing (which could be larger or

smaller than the page), or a

rectangle that encompasses the

currently selected objects. I ’ve

chosen to export the whole page,

as I want to include a little bit of

blank space around my circle.

Now comes the most important

decision: how big do you want your

image to be? This is set in the

Image Size section, by adjusting

the image dimensions or dpi (dots

per inch). For web use, you can

generally ignore the dpi option and

go straight for setting the width

and height in pixels. If you’re

creating an image for a profile

picture or banner ad, you’ll usually

be told the dimensions your

graphic must be. Note, however,

that you can’t set these fields

independently, so you’ll either

have to create your design to the

right proportions, or export a

larger area that you can then crop

in a bitmap editor such as The

GIMP or Krita.

The last setting required is the

filename to export to. Click the

Export As… button and navigate to

your destination folder in the file

selector. Enter a filename in the

selector, making sure it ends in

“.png”, and then use the file

selector’s Save button to return

your selected location and name to

the export dialog. Despite the

name of the button, this won’t

have saved a PNG file anywhere;

it’s just saved the export location.

In order to actually save the file,

you have to click the Export

button.

You should now have a PNG file

on disk that can be uploaded to

just about any site that accepts

user images. If you want to use it in

your own HTML page, that’s easy

too. If you’re already familiar with

writing HTML then you almost

certainly know how to link to your

image. But if you’ve never written

a line of HTML in your life, why not

give it a try now – it’s not as tricky

as you might think. In a text editor

type the code shown below.

Modify the “circle.png” string to

suit the filename of your own PNG,

and save the document into the

same directory as the exported

image, making sure to give the

filename an extension of “.html”.

Open the web browser of your

choice, press CTRL-O to open the

file selector, and load your HTML

file. You should see a text heading

with your PNG image displayed

below it.

That wasn’t too tricky, was it?

Linking directly to an SVG file is

just as simple. If your original

Inkscape file isn’t in the same

directory as the HTML file, use File

> Save a Copy… to put a copy of it

there. When you look in the

directory you should now see your

HTML file, your exported PNG, and

an SVG file. To get the latter to

appear in your web page, just add

the following lines below the

existing image link:

<h1>IMG tag (SVG)</h1>

Save the file, switch to your

<!DOCTYPE html>

<html>

<head>
<title>SVG in HTML</title>

</head>

<body>
<h1>IMG tag (PNG)</h1>

</body>

</html>

full circle magazine #1 33 31 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys' , 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

HOWTO - INKSCAPE
browser, and press F5 to reload the

page. You should see both your

PNG image and the SVG version.

There’s a good chance that the

images aren’t the same size, but

SVG files are scalable so we can fix

that easily. Given that my PNG was

exported at 250px in width, I can

modify the tag for the SVG

file to set it to the same:

<img src="circle.svg"
width="250">

Another press of F5 in the

browser and you should find that

both images are the same size. But

what if we wanted them both to be

larger? Try setting a width

attribute on both of them, with a

value of 1 000 or more. Notice how

blocky the PNG becomes, whilst

the SVG is still rendered as

smoothly as possible. That’s the

main advantage of using an SVG

file in a web page instead of a PNG.

Linking to an image via an

 tag is a common way to

display user-submitted images on

the web. But, when coding your

own pages, images are often used

in other ways as well, typically via

CSS. You can use an SVG file

wherever you would usually use a

PNG in these cases. For example,

let’s fill the background of our web

page with copies of the SVG file

using this chunk of CSS, inserted

between the </head> and <body>

sections of the HTML code:

<style>

body {

background:
url("circle.svg");

background-size: 50px;

}

</style>

Reload the page to see the

result. As a rule, modern browsers

will let you use an SVG image

wherever a raster is allowed. But

although the browser might be

happy to do that, many websites

still only let you upload pure raster

formats such as PNG, GIF and JPEG.

If you write your own HTML you

have full control over what formats

to use, but if you’re trying to

upload an image to a third party

site you may find your options

limited. If you can use an SVG,

though, I encourage you to do so.

Only by ever more SVG content

making its way online will browser

vendors have an incentive to

provide better support for the

format, and the SVG working

group have a chance to introduce

more of the new features that

would make this useful format

even better.

http://www.peppertop.com

full circle magazine #1 34 27 contents ^

HH OOWW--TTOO
Written by Mark Crutch II nn kkssccaa ppee -- PPaa rrtt 7744

Last time I showed you the

basics of including an Inkscape

image in a web page by treating it

as an image object in an HTML

 tag or via CSS, either by

exporting as a PNG, or by linking

directly to the original SVG image.

This time I ’m going to consider the

other two methods of getting an

Inkscape image into a web page:

via the <object> tag, or through

the use of inline SVG.

At first glance the HTML

<object> tag isn’t too dissimilar to

the approach. The “src”

attribute is replaced with “data”

and, because <object> tags can

include more than just images, we

have to include a “type” attribute

that contains the SVG MIME type

so that the tag knows what format

the data will be in.

<!DOCTYPE html>

<html>

<head>
<title>SVG in HTML</title>

</head>

<body>
<h1>OBJECT tag</h1>

<object
type="image/svg+xml"
data="circle.svg"></object>
</body>

</html>

SVG as an is sandboxed

by the browser such that any

JavaScript in the file won’t run and

no external resources can be

loaded (i.e. no web fonts) . Even

code in the hosting page won’t be

able to dig into the contents of the

SVG to dynamically change the

image. In fact the SVG image

behaves largely the same as a

rasterised version of the same

picture.

With the change from to

<object> comes vastly more power.

The SVG file is treated as a

complete, self-contained,

document which is allowed to

execute JavaScript, load external

resources, and even communicate

with the host page. In future

instalments of this series we’ll

explore some of those possibilities

in more detail.

The fourth and final approach

to including SVG in your web page

is so-called “inline SVG”. Inline, in

this case, simply refers to directly

intermingling the XML code of

your SVG file with the HTML code

of your web page. For example,

here’s the code for an HTML page

with an inline SVG image of a red

circle with a thick black stroke:

<!DOCTYPE html>
<html>
<head>

<title>Inline SVG</title>
</head>

<body>
<svg>

<circle
fill="red"
stroke="black"
stroke-width="11"
cx="75"cy="80"
r="60">
</circle>

</svg>
</body>

</html>

At a glance the code looks

pretty straightforward. Most of it

is just the sort of content you

would expect of a typical web

page, except that the contents in

the <body> tag consist of an <svg>

block, with some SVG code inside

it. The SVG itself is just a single

<circle> element with a few

attributes to create the desired

result. It’s all very neat and tidy.

Perhaps too neat and tidy, in fact.

This code was hand crafted to

ensure that only the bare minimum

appears in the SVG block. A typical

SVG file from Inkscape, on the

other hand, is filled with all

manner of extra content, most of

which isn’t necessary when using it

in this way. Here’s a screenshot

from an HTML page that contains

both the hand-crafted code above,

and a copy of the XML created by

Inkscape for the same basic shape:

full circle magazine #1 34 28 contents ^

HOWTO - INKSCAPE

Can you spot the difference?

No, me neither. But the top circle

required SVG code amounting to

1 07 characters, whereas the

second used 21 1 8 – nearly twenty

times as much code for the same

result! Surely Inkscape can do

better than that?

There are two reasons for the

bloated file size. The first is simply

that a hand-coded SVG image

always has the potential to be

smaller than a computer-created

equivalent. Inkscape is a general

purpose tool used for all manner

of tasks, so it creates general

purpose files which are good

enough for most circumstances,

but which lack the targeted

optimisations that would bring the

file size down. Unless you want to

shave every last byte of flab from

your files it’s not usually worth

worrying about this first problem.

But the second issue is definitely

worth looking at, as it’s

responsible for far more of your

file’s expanded girth: XML

namespaces.

XML stands for eXtensible

Markup Language. Yes, I know. I

can only guess it’s because “.eml”

was already taken as a file

extension for email files, and “X” is

way cooler than “E”. But that X or,

more to the point, extensibility, is

at the heart of the file bloat we can

see with Inkscape. One of the more

sensible design decisions in XML

was to allow different XML-based

languages to coexist, even inside

the same document. You can see

the remnants of this decision in the

code above, where we switch from

HTML (a not-quite-but-close-to

XML language) to SVG, without the

browser kicking up a fuss. But in

this specific case HTML has been

extended to allow the inclusion of

SVG elements; XML allows such

inclusions in a more generic

manner, without the need to

extend the host language in any

way.

Let’s imagine that we wish to

combine two XML languages in a

single document. The first is our

old friend SVG. The second is a new

language I ’ve just made up for

garden designers – let’s call it

GardenML. Before you cry foul,

XML is explicitly intended to allow

you to create your own domain-

specific languages, so although my

example is a little contrived, it’s

not without precedent in the real

world. So, back to the plot: we’ve

got an SVG file, filled with <path>

elements that describe lines in an

image. But we want to include our

GardenML content, which is filled

with <path> elements that

describe… well, paths in a garden.

The sort you walk on, made up of

bricks or stone slabs, and certainly

not the same thing as a path in

SVG.

How does an XML consuming

program reconcile these different

uses of the same element. How

does it know when you’re using an

SVG <path>, and when it’s a

GardenML <path>? The answer is a

thing called a “namespace”. All

XML elements have a namespace,

but it’s usually set as a default for

the whole document, then just

implicitly used for each element.

Here’s an SVG document which

does exactly that:

<svg
xmlns="http://www.w3.org/2000
/svg">

<path d="M 130,70 A
60,60 0 1,1 130,69.9 Z"

fill="red"
stroke="black" stroke-
width="11" />

</svg>

Notice the “xmlns” (XML

NameSpace) attribute in the <svg>

tag? That defines the default

namespace for the document. The

value is a URI – a Uniform Resource

Identifier. It may look like a web

address, also known as a URL

(Uniform Resource Location), but

it’s subtly different. Whereas a URL

points to the location of a resource

such as a web page, a URI is just a

unique identifier which doesn’t

have to have a corresponding

resource at the specified address

(though they often do). In other

words, a URL is a path to a real

document, whilst a URI is a unique

string used to make sure that each

namespace is distinct from all the

others. A URI may also be a URL,

but doesn’t have to be.

When a browser sees that the

document’s default namespace is

“http://www.w3.org/2000/svg” it

knows that any <path> elements

are SVG paths, not GardenML

paths. But suppose we want to

create a file that will both display

in the browser and can be

interpreted by something that

understands GardenML. In that

case we need to define more than

one namespace in the <svg>

element, give all but the default

one a handy shortcut name, then

prefix the elements and attributes

with the shortcut as appropriate.

full circle magazine #1 34 29 contents ^

HOWTO - INKSCAPE
<svg

xmlns="http://www.w3.org/2000
/svg"

xmlns:garden="http://fullcirc
lemagazine.org/GardenML">

<path d="M 130,70 A
60,60 0 1,1 130,69.9 Z"

fill="red"
stroke="black"
stroke-width="11"
/>

<garden:path
start="back door"
end="shed"
type="gravel" />

</svg>

This time the default

namespace is still SVG, so the

<path> element still renders in a

web browser. The second <path>

element, however, has a prefix of

“garden”, identifying it as being

from the GardenML namespace

that’s defined in the <svg> tag. The

browser doesn’t try to render the

second path because it doesn’t

know what to do with elements in

that namespace – but equally it

doesn’t complain about them

either.

By default attributes are in the

same namespace as their element

– so in the previous example the

“d” attribute is in the SVG

namespace, whereas the “start”

attribute is in the GardenML

namespace. But you can prefix

individual attributes as well, should

you need to. In this example we’ve

got an SVG path to which I ’ve

added some custom attributes of

my own:

<path d="M 130,70 A 60,60 0
1,1 130,69.9 Z"

fill="red"
stroke="black" stroke-
width="11"
garden:start="gate"
garden:end="front door"
garden:type="paved"

/>

Now all of this might seem a

little esoteric, but there are two

reasons for explaining it. The first

is that namespaces are integral to

XML documents, so when we get

round to manipulating Inkscape

files using JavaScript a little later

in this series you’ll be glad of a

good grounding in the topic. The

second is that it explains why our

Inkscape generated files are so

much larger than a hand-crafted

version. Here’s the opening <svg>

element of a typical Inkscape file:

Notice all the different

namespaces being defined, and a

couple of them being used on the

last two attributes. The “svg”

namespace you now know about,

but what of the others? The

“inkscape” namespace is used to

store extra attributes that hold

Inkscape-specific data. Without

these, Inkscape would be limited to

the features defined in the SVG

spec, and wouldn’t be able to

provide extra capabilities such as

Live Path Effects. The “sodipodi”

namespace serves a similar

purpose – Inkscape was forked

from the Sodipodi program many

years ago, but its history lives on in

attributes that date from before

the split.

The remaining namespaces are

used for the metadata about your

document that you can enter into

the Document Properties dialog.

There are several of them because

they each refer to a different XML

language. Inkscape could have just

used it’s own namespace for all of

them, but by referring to other

well-known languages it improves

the ability of the metadata to be

automatically parsed and

understood by indexing programs

or other XML tools. It does bloat

<svg
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:cc="http://creativecommons.org/ns#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns="http://www.w3.org/2000/svg"
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
width="40mm"
height="40mm"
viewBox="0 0 40 40"
version="1.1"
id="svg8"
inkscape:version="0.92.2 (unknown)"
sodipodi:docname="circle.svg">

full circle magazine #1 34 30 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys' , 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

HOWTO - INKSCAPE
the size of the file quite

considerably, though.

An obvious way to reduce the

file size, therefore, is to remove

the additional namespaces,

elements and attributes. Doing

this obviously compromises the

SVG file in various ways, from

removing the editability of

Inkscape-specific features, to loss

of metadata. Inkscape does,

however, provide a couple of

options for doing this for you.

They’re both alternative formats in

the File > Save As… dialog, but in

practice I recommend still saving a

normal Inkscape SVG file, then

creating your slimline version using

File > Save A Copy…. This approach

avoids the problem of forgetting

to save in the full-fat format when

you’ve made an edit, and losing

data in the process.

Your first choice is to save as

“Plain SVG”. This strips out the

proprietary Inkscape and Sodipodi

namespaces, and their associated

elements and attributes. It still

leaves the other namespaces

intact, so the file will still contain

any metadata you entered into the

Document Properties dialog. This

option is ideal for use when linking

to an SVG file via the or

<object> tabs, as it removes the

data that the browser doesn’t

understand, but leaves any

copyright or license information

that you may have added. With my

simple example file, saving as Plain

SVG reduced the file size from

2.1 kB to 1 .3kB.

The other choice is to save as

“Optimised SVG”. This presents an

additional dialog that lets you

choose from a wide range of

optimisations that can potentially

reduce the file size. Be warned that

this option can lead to quite

extensive changes in the structure

and content of your SVG file, so

always test the resultant file to

make sure you haven’t optimised

away something important. Be

particularly wary of reducing the

number of significant digits too far,

as this will affect the fidelity of

your image.

When it comes to the additional

namespace-related data, there are

a couple of key fields to pay

attention to. On the first tab, the

“Keep editor data” checkbox

determines whether the Inkscape

and Sodipodi namespaces are

preserved.

On the second tab, the

“Remove metadata” option will

lose all the other namespaces,

together with any metadata you

may have added to the Document

Properties.

Also on the second tab, pay

attention to the Pretty-printing

options. Turning this off can

reduce the size further, but if

you’re trying to create a file to put

inline in an HTML page, a little

formatting can make it a lot easier

to work with.

So how well does Optimised

SVG stack up against hand-written

code? It doesn’t reach the 1 07

characters of my carefully crafted

version, but at 277 characters of

fairly readable SVG it doesn’t do

too bad a job. For most cases

where you want to inline your

image into an HTML page it will be

good enough, with far less scope

for errors than trying to write

everything by hand.

Phew!We’ve covered quite a lot

this month, from <object> tags to

XML namespaces. If all you want to

do is to include a static image in a

web page, stick with the methods

described last time. But as we

move on to more advanced topics,

such as incorporating code into our

files, the details of this article will

become more relevant.

http://www.peppertop.com

full circle magazine #1 35 24 contents ^

HHOOWW--TTOO
Written by Mark Crutch II nnkkssccaappee -- PPaarrtt 7755

H aving looked at the four main

ways of including an SVG file

in a web page, we’re going to start

examining what you can actually

do with SVG files that you can’t

achieve with simple raster

graphics.

Speaking of simple raster

graphics, that’s the first of our four

ways of including an image, and it’s

one that I ’m going to dismiss

immediately. Once you convert

your SVG to a raster graphic, be it a

png, jpeg, or gif, it becomes no

different in capability to a photo

from a digital camera. You can

display it in your web page, but

that’s about it. Sure, with modern

CSS and JavaScript you can make it

respond to mouse events, and can

use some SVG-style techniques

such as masking, clipping and

(basic) filtering – but none of those

abilities come from the image

itself. Your raster image is

essentially a rectangle that can

only be modified as a single entity,

losing all notion of the individual

objects in your original SVG file.

So let’s move on to the second

way of including an image: by

linking directly to the SVG file. For

this example, we’re going to use

the following simple HTML page,

which just contains a link to our

SVG file in an tag:

<!DOCTYPE html>

<html>
<head>

<title>SVG in HTML</title>
</head>

<body>
<img

src="square.svg">
</body>
</html>

As for the SVG file, it’s just a

simple square, drawn in Inkscape,

and centered in a square page.

I ’m going to wade in and add

some handwritten CSS to this file,

so, for the sake of clarity (not to

mention space), I ’ve saved the

image as an Optimized SVG.

Everything I ’m going to do would

also work on an Inkscape SVG, but

if you’re not familiar with editing

XML files, it’s probably worth using

optimized files, at least at first, so

that you don’t have a load of extra

elements and namespaces getting

in the way. My optimized file looks

like the codew shown below (with

a few line breaks added for clarity

– they won’t affect the image).

A hand-coded version of this

image could be even smaller –

there would be no need for a <g>

with a transform when the x and y

coordinates of the <rect> could be

adjusted directly. But this is, after

all, an Inkscape column, so I ’ll work

with the output it gives me.

With my SVG file created and

saved into the same directory as

the HTML document, loading the

latter into a web browser gives

exactly the result you would

expect: a web page with a square

in it. So far, we haven’t really

gained a lot over using a bitmap.

Yes, technically it retains a better

quality when scaled, and SVG files

are often (though not always)

smaller than their raster

equivalents – but in many cases

those are modest benefits at best.

<svg width="360" height="360"
version="1.1"
viewBox="0 0 95 95"
xmlns="http://www.w3.org/2000/svg">

<g transform="translate(-7.6 -5.2)">
<rect x="29" y="27"

width="53" height="53"
style="color:#000000;fill:#f00;
paint-order:stroke fill markers;
stroke-width:8;stroke:#800000"/>

</g>
</svg>

full circle magazine #1 35 25 contents ^

HOWTO - INKSCAPE
But, even when used in an

, there are some things we

can do with an SVG file that can’t

be done with a raster image. Unlike

a raster image, an SVG file can

include its own CSS code. Let’s

begin by making our red square

blue (note, I ’ve abbreviated the

<svg> element for space – in

practice the file still contains the

full element from the previous

example). Code is shown top right.

If you’re not familiar with CSS,

then here’s what we’ve done: first

there’s a pair of opening and

closing <style> elements. The CSS

code will be held within them. The

CSS code itself consists of a

selector that identifies what

element(s) in a page the rules

should apply to. In this case we’ve

used a simple element selector:

essentially if you just use the name

of an element (in this case “rect”) ,

the rules will apply to every

instance of that element. As we’ve

only got one <rect> in our file, we

know that the rule won’t

accidentally affect anything else.

After the selector come the

rules, in a block between a pair of

braces (the “{” and “}” characters) .

We’ve got only one rule at the

moment: to make the fill blue

(using hexadecimal RGB syntax for

the color) . So, let’s reload the page

and take a look at our…red square.

As you may already know, CSS

stands for “Cascading Style

Sheets”, and it’s the “cascading”

part that has interfered with our

plans. Without going into all the

gory details, it’s possible to have

more than one source of CSS rules

affecting an element, and the

details of the cascade dictate

which rule will take precedence

over the others. In almost all cases,

if there’s a rule directly placed on

an element using a “style”

attribute, that will win. So, in our

case, if we just remove the

“fill:#f00;” from within the style

attribute of the <rect>, the rule

we’ve added to the <style> block

will win instead. This time if we

reload the page… our square is

blue.

That’s all well and good, but so

far we haven’t really achieved

anything that couldn’t have been

done just by drawing a blue square

in the first place. But what we have

done is to move the rule that

governs the color of the square

from the <rect> element (where

we can’t easily override it) to a

separate block of CSS (where we

can). Our options for how to

override it, however, are rather

limited. This is just an image in our

web page, so mouse events aren’t

propagated into the file itself. That

means no color changes on clicks,

or on hovering the mouse over the

image. In fact there’s really only

one thing we can do to modify the

image in this situation: animate.

And that requires more CSS.

To begin with, we have to

expand our existing set of rules to

also include some information

about the animation we want to

use. At a minimum we have to

create a name for the animation

(so that you can have more than

one in a file) , and tell it how long

the animation should last. That

means our rect selector now looks

like this:

rect {
fill: #00f;
animation-name:

myAnimation;
animation-duration: 3s;

}

The choice of animation name is

up to you, but it has to match

whatever name you use in the next

section. This is where we define

the keyframes – specific points in

the animation when we set the

values the CSS should take. Here’s

<svg ...>
<style>
rect { fill: #00f; }
</style>

<g transform="translate(-7.6 -5.2)">
<rect x="29" y="27"

width="53" height="53"
style="color:#000000;fill:#f00;
paint-order:stroke fill markers;
stroke-width:8;stroke:#800000"/>

</g>
</svg>

full circle magazine #1 35 26 contents ^

HOWTO - INKSCAPE
a simple example for animating

the fill from red to blue:

@keyframes myAnimation {
0% { fill: #f00; }
100% { fill: #00f; }

}

The syntax is pretty

straightforward. First we start with

the string “@keyframes” to

indicate that this is a set of

keyframes, followed immediately

by the name we defined earlier.

Then, inside a block of code

between braces, we have

individual entries for each

keyframe.

A keyframe entry is just the

same as any normal block of CSS,

except that the selector is

replaced with a percentage,

representing how far through the

animation this block should apply.

You pretty much always need at

least a block for the start of the

animation (0%) and one for the

end (1 00%), but you can add more

in-between if you want. Because

animations with just two

keyframes are so common, you can

also use the words “from” and “to”

instead of 0% and 1 00%, which

arguably makes the code a little

more readable.

So, taking both of the blocks

above together, we’ve essentially

said “create a set of keyframes

called ‘myAnimation’ and run them

on the <rect> over a period of 3s.

At the start the fill color should be

#f00 (red), at the end it should be

#00f (blue).”

There’s one little caveat to

catch: notice that there’s still a fill

value on the rect CSS block. At the

end of the animation, the “normal”

CSS for the element will kick in, so

if we don’t also make it blue in

there, the fill will change to black.

Sometimes that behaviour is

desirable; you want to change the

style back to the defaults after the

animation has run. But, more

commonly, you want the style at

the end of the animation to

persist.

As an alternative to duplicating

the final rules for the element, we

can make the last style stick by

adding the “animation-fill-mode”

rule to our rect block instead. The

behaviour we’re seeing is

equivalent to setting this to

“none”, but you can also use

“forwards” to make the element

continue using the style from the

last keyframe. There’s also

“backwards” which does the same

with the first keyframe for

animations played in reverse, or

“both” which works in either

direction, and is usually the

simplest option to choose.

Animations played in reverse?

Yes, there’s another property that

will let you do that: “animation-

direction”. The default value is

“normal” (i .e. your animation plays

forwards from 0% to 1 00%), but

you can also set it to “reverse”

(1 00% to 0%), “alternate” (0% to

1 00% then back to 0%) or

“alternate-reverse” (1 00% to 0%

then back to 1 00%).

Once you’ve decided what

direction(s) your animation should

run in, you might want to also

determine how many times it will

be performed. For that we have

“animation-iteration-count” which

can take the value “infinite” to

make the animation run forever, or

a number – to specify a particular

number of cycles. Note that a

single cycle goes from 0% to 1 00%

(or vice versa) , so if you set

“animation-direction” to

“alternate” or “alternate-reverse”,

you’ll need to set the count to 2

rather than 1 to display both

halves of the animation. With

these values, any odd number will

finish at the end of the animation,

whilst an even number will return

you to the start. This is also why

it’s usually worth setting

“animation-fill-mode” to “both” –

you can then change the animation

count without having to worry

about a sudden change in style,

regardless of whether there are an

odd or even number of cycles.

Let’s put all this together, and

add another keyframe for good

measure. I ’ve also thrown in an

“animation-delay” so that there’s a

short pause between the file

loading and the animation starting.

Our <style> block now looks

something like the text shown on

the next page, top right.

So far, we’ve animated only one

property at a time. But because

each keyframe carries a block of

CSS, it’s possible to animate more

than one property on an object.

Here I ’ve also animated the stroke

color and width to substantially

change my square over the course

of the animation. The code is

shown on the next page, bottom

right.

The result, captured at 2s (the

length of the delay, just as the

animation starts) , 3.5s (halfway

full circle magazine #1 35 27 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys' , 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

HOWTO - INKSCAPE
through the animation), and 5s

(the end of the animation), looks

something like this – though,

obviously, the real thing isn’t a

series of three images, but a single

image that transitions through

these three states:

In practice, the iteration count

of 3 and direction of “alternate”

means that, after a 2s delay, the

square progresses through each of

these states (iteration 1) , then

back again in the opposite

direction (iteration 2), then finally

through them in order again

(iteration 3). At the end of the

animation the square remains blue

with a thick stroke, due to the

presence of animation-fill-mode:

both.

As you can see, animating an

SVG image allows for possibilities

that aren’t really available with

raster images – at least not in a

high quality way that works on

most browsers. Next time, we’ll

expand on these capabilities to

push our SVG animations even

further.

<style>
rect {
animation-name: myAnimation;
animation-duration: 3s;
animation-fill-mode: both;
animation-direction: alternate;
animation-iteration-count: 3;
animation-delay: 2s;

}

@keyframes myAnimation {
0% { fill: #f00; }
50% {fill: purple; }
100% { fill: #00f; }

}

</style>

@keyframes myAnimation {
0% {

fill: #f00;
stroke: #800;
stroke-width: 8;

}

50% {
fill: purple;
stroke: #f00;
stroke-width: 16;

}

100% {
fill: #00f;
stroke: #008;
stroke-width: 40;

}
}

http://www.peppertop.com

full circle magazine #1 36 33 contents ^

HH OOWW--TTOO
Written by Mark Crutch II nn kkssccaa ppee -- PPaa rrtt 7766

Last time, we looked at how it’s

possible to include animations

in an SVG file that is loaded as an

image. We introduced the general

idea by animating the fill and

stroke colors, and the stroke

width, of a square we’d drawn in

Inkscape. If we’re just working with

a square – or even a rounded

rectangle – we could equally

achieve the same effect in HTML

by animating the “background” and

“border” CSS properties, with no

need to go near SVG. But the

important point to note is that we

actually used CSS to animate

properties that only make sense

for SVG. In other words, although

CSS is most commonly used with

HTML, we can still use it to modify

many SVG-only values.

Furthermore, we can animate

those properties not only on

squares and rectangles, but also on

arbitrary paths.

By reusing the same animation

that we had in the previous article,

we can produce the same set of

three snapshots, but this time of a

more complex shape. For this

example I created a star in

Inkscape and converted it to a

path. The first CSS rule, which

previously had a selector of “rect”,

also needed to be updated to

change the selector to “path”.

But what if you want to animate

more than just the style of your

elements? Perhaps you want to

make them move around, to spin,

or to change size. You might even

want the shape of the path itself

to change. All this and more is

possible with SVG… but, as will

become clear, I don’t necessarily

recommend doing it.

As I ’ve previously discussed in

this column, there was a time when

the W3C went full tilt in favor of

XML. They defined and specified a

wide range of XML languages –

including SVG and XHTML (a pure

XML version of HTML) – as well as

working on various supporting

technologies that could work with

any XML language. One of these

technologies was the

“Synchronized Multimedia

Integration Language”, or SMIL

(pronounced “smile” apparently) .

SMIL is itself an XML language that

describes how an XML document

should change over time, or in

response to certain interactions

such as mouse movements and

clicks. In the case of SVG,

therefore, SMIL can be used to

describe the way in which arbitrary

attributes should change over

time, allowing any part of the

image to be animated.

If the W3C’s plan for XML

domination had panned out, SMIL

would probably have become a

universally implemented

technology for animation and

multimedia. In practice, however,

browsers veered away from the

XML-centric approach in favor of

the more lax requirements of

HTML, and Microsoft never

implemented SMIL in their

browsers. Faced with an animation

standard that wasn’t supported by

Internet Explorer, it’s no wonder

that so much early animation on

the web was outsourced to Flash.

The result was that SVG languished

for a long time and SMIL never

really took off. In the meantime,

CSS gained more and more

abilities that were once the remit

of SVG, and has begun to encroach

on the domain of SMIL with CSS

animations and transitions.

The penultimate nail in the

SMIL coffin came with the release

of version 45 of Google’s Chrome

browser, which officially listed the

technology as deprecated. It would

still work for the time being, but

that was notification that it’s

full circle magazine #1 36 34 contents ^

HOWTO - INKSCAPE
eventually going away. After a

backlash from the community they

revoked this announcement, so

SMIL is no longer deprecated in

Chrome – but it’s only a matter of

time before they decide that CSS

animations are capable enough for

them to try again. So that’s why I

don’t really recommend using

SMIL: with no support in Internet

Explorer or Edge, and the prospect

of being deprecated then removed

in Chrome at some indeterminate

point, it’s not a technology that

can be relied on as a viable

solution for use on the web at

large.

Given this situation I ’m not

going to discuss SMIL in any great

detail. But as it is (currently) usable

in (most) web browsers, I ’ll spend a

couple of articles giving you a brief

introduction in case you feel it is a

technology that you can use and

wish to investigate further – and as

an insight into the sort of web we

might have now, had Microsoft

played ball, and XML gained

stronger support from the browser

vendors.

There are four types of

animation that can be performed

using SMIL with SVG, in each case

by adding the relevant animation

tag (shown in brackets) inside the

element you want to animate:

• Animate the attributes of an SVG

element (<animate>).

• Animate the transformation that

can be applied to an SVG element

(<animateTransform>).

• Animate the color of the fill and

stroke (<animate> or

<animateColor>).

• Animate the position and,

optionally, rotation of an object by

making it follow another path

(<animateMotion>).

Let’s look at a simple example,

by trying to replicate the CSS

animation of the same red star I

used earlier. In this case we will

need to animate the fill and stroke

color, and the stroke width, using

the <animate> tag. So rather than

having those values stored as CSS

properties, they need to be moved

out to independent attributes. This

results in our SVG file looking

something like that shown top

right.

Note that, for simplicity, I ’ve

rounded all the coordinates down

to whole numbers. There’s also a

transform attribute that translates

the star 20 units to the right, and

20 units down: I could have done

the calculations to adjust the

coordinates for the path, removing

the need for this entirely. As

Inkscape seems rather keen to put

transforms onto its content,

however, I decided to leave it in to

better represent the sort of

(minimised) output you might see

from the program.

As with the CSS animations

from last time, I ’m going to start by

just animating the fill color. This

involves putting the <animate> tag

as a child element of the <path>. In

case you’re not very familiar with

XML, in the previous code the path

is written as a self-closing tag:

<path … />. This can legitimately

be rewritten as a non-self-closing

tag: <path …></path>. It’s this

latter approach we’ll need in order

to add a child element (note that

the rest of the SVG file and many

of the path attributes have been

omitted for clarity - shown below).

<?xml version="1.0" encoding="UTF-8"?>
<svg

xmlns="http://www.w3.org/2000/svg"
width="120mm"
height="120mm"
viewBox="0 0 120 120">
<path

fill="#f00"
stroke="#800"
stroke-width="4"
d="m 40,15 6,18 19,0 L 49,45 56,64

40,53 24,65 30,45 14,34 34,34 Z"
transform="translate(20, 20)" />

</svg>

<path
fill="#f00"
...
transform="translate(20, 20)" >

<animate attributeName="fill"
from="#f00" to="#00f"
dur="5s" fill="freeze" />

</path>

full circle magazine #1 36 35 contents ^

HOWTO - INKSCAPE
The new element is pretty self-

explanatory: attributeName

defines which attribute in the

parent element we’re animating,

from and to are the start and end

values, dur is the duration of the

animation, and fill="freeze" is used

to make sure the attribute retains

the last value, rather than flipping

back to its original value.

That’s easy enough, but our

original animation wasn’t a simple

transition from one value to

another, it also had a specific

intermediate value, giving us three

keyframes in total. That can be

achieved with SMIL as well, by

replacing our “from” and “to”

attributes with “values” and

“keyTimes” attributes which hold

the three values we want to hit,

and the proportion of the way

through the animation that each is

applied. The values in each list are

separated by a semicolon. Code is

shown top right.

I ’m using a generic <animate>

element for animating this fill

color. There is also a specific

<animateColor> element that

could be used instead, but since

<animate> can do everything that

<animateColor> can achieve, plus

more, there’s no point using the

latter these days. Even the SMIL

specification now recommends

using <animate> rather than

<animateColor>, so who am I to

argue.

Our original animation not only

changed the fill color, but also the

stroke color and width. This

obviously entails animating three

attributes – which we do just by

using three <animate> elements

(shown right) .

Notice that I ’ve had to adjust

the stroke-width values somewhat

to get a similar result to the CSS

animated version. I ’m not sure why

there’s a difference – perhaps the

CSS values are interpreted as

pixels, whilst the SMIL values are

treated as SVG user units, based on

the viewBox declared at the start

of the file. Whatever the

underlying reason, a little tweaking

was required but I was

nevertheless able to produce the

same result.

Animating attributes works well

where the attribute can hold only a

single, simple value, such as a

length or color. The “transform”

attribute is a more complex case,

as it can hold a combination of

translate() , rotate, scale() , and

skew() functions. If your element

already has a transformation

applied – as many will do if they’re

created in Inkscape – you probably

want your animation to be added

to the current transformation

rather than replacing it entirely. To

achieve this requires more than a

simple <animate> element; it

needs something that understands

the syntax and structure of the

transform attribute. It needs

<animateTransform> (next page,

top right) .

Here I ’ve used a couple of

<animateTransform> elements to

zoom and rotate the star during

the course of its animation. The

first element scales the star

<animate attributeName="fill"
values="#f00; purple; #00f"
keyTimes="0; 0.5; 1"
dur="5s" fill="freeze" />

<path

fill="#f00"
stroke="#800"
stroke-width="2"
...
>

<animate attributeName="fill"
values="#f00; purple; #00f"
keyTimes="0; 0.5; 1"
dur="5s" fill="freeze" />

<animate attributeName="stroke"
values="#f00; purple; #00f"
keyTimes="0; 0.5; 1"
dur="5s" fill="freeze" />

<animate attributeName="stroke-width"
values="4; 8; 20"
keyTimes="2; 3; 6"
dur="5s" fill="freeze" />

</path>

full circle magazine #1 36 36 contents ^

HOWTO - INKSCAPE
(type="scale") , first making it

bigger (1 > 1 .5) and then smaller

(1 .5 > 1 > 0.75), covering four

keyframes in the five second

duration. You might think that

attributeName="transform" is

redundant when the element itself

is called <animateTransform> –

and I would agree with you – but

the animation doesn’t work

without it.

The second element rotates the

star. In this case the values each

consist of three space- or comma-

separated numbers. These

represent the amount of rotation

(in degrees) , and the x and y

coordinates to be used as the

center of rotation. I ’ve selected 40

for each, to put the center roughly

in the middle of the star, so it

doesn’t spin off-screen entirely.

Thanks to the scale animation,

however, it does still move around

quite a bit. As the star is scaled in

size, so its center point moves and

the values in the rotation

animation are no longer correct.

This could be accommodated, to

some extent, by tweaking the x

and y coordinates in the rotation,

or by adding another animation to

set a translate() transform to

compensate for the moving center

point. A better approach would be

to re-draw the star centered on the

0,0 coordinates, then position it on

the page by tweaking the

transform attribute on the

element itself. That way, there’s no

need to specify a center point for

the rotation, and the values for the

“rotate” animation could be

reduced to a simple list of angles.

You’ll have noticed that both

the <animateTransform> elements

have an additive="sum" attribute.

SMIL animations can be configured

so that the animated values

completely replace any previous

value on the element, or so that

the effects of the animation are

cumulative. Without this extra

parameter, the scale animation

replaces the

transform="translate(20, 20)"

attribute that Inkscape created;

then the rotate animation replaces

the scale animation. The result is

that the star only rotates, and

doesn’t scale – and it does so in the

wrong location. The

additive="sum" attribute tells the

browser to keep any existing

transforms around, and add the

new animated value to them to

give a cumulative effect. In other

words, the star both zooms and

rotates, and does so (roughly) in

the location specified by Inkscape’s

translate() value.

Over the years, CSS has gained

ever more of SVG’s capabilities,

with the result that the SMIL

animations I ’ve shown so far can all

be implemented as CSS

animations. The fill and stroke we

covered last time, but even

<animateTransform> has a

counterpart in CSS, now that the

latter supports a “transform”

property that allows elements to

be translated, rotated, scaled, and

skewed. Unlike SVG, it also offers a

few options for transforming your

element in three dimensions.

But there are still some tricks

up the SMIL sleeve which CSS

animations can’t compete with

(yet) . One of these is the ability to

animate a path between one shape

and another. Much like animating a

color, this is just a special case of

animating an attribute – in this

case the “d” attribute that holds

the data representing the shape of

a path. As a reminder, here’s what

the path data for our star looks

like:

d="m 40,15 6,18 19,0 L 49,45
56,64

40,53 24,65 30,45 14,34
34,34 Z"

I ’m going to animate the star

turning into a large arrow, pointing

to the top right of the screen. To

do this, I just use another

<path
...
transform="translate(20, 20)">

<animate attributeName="fill" ... />
<animate attributeName="stroke" ... />
<animate attributeName="stroke-width" ... />

<animateTransform attributeName="transform"
type="scale" values="1; 1.5; 1; 0.75;"
keyTimes="0; 0.33; 0.66; 1" dur="5s" fill="freeze"
additive="sum" />

<animateTransform attributeName="transform"
type="rotate" values="0 40 40; 120 40 40; 360 40 40"
keyTimes="0; 0.5; 1" dur="5s" fill="freeze"
additive="sum" />

</path>

full circle magazine #1 36 37 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys' , 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

HOWTO - INKSCAPE
<animate> element, transforming

the “d” attribute from its default

value to a new path definition. This

will do the trick:

By commenting out the other

<animate> and

<animateTransform> elements

(using the XML/HTML method of

wrapping them in <!-- and --> tags) ,

we can see what this path

animation looks like in isolation.

Here (above) are six frames from

the transition.

Removing the comment tags to

reinstate the other animations

results in a star that smoothly

changes to an arrow whilst it’s

rotating, changing size, and it

transitions from a red fill with a

thin dark red outline to a blue fill

with a thick dark blue outline (via a

purple fill along the way). Stacking

up multiple individual transitions

to create one larger animation is

something that SMIL excels at.

It’s important to note that the

animated “d” values must all

contain the same number of

parameters for a smooth

transition. Obviously the browser

wouldn’t know how to animate

from a 5-pointed star to a 1 2-

pointed star; which lines should

the new nodes appear on? But the

same goes for the other

parameters in a “d” attribute – if

you want curved lines in your

animation, you need to start out

with them curved (even if the

curvature is visually non-existent)

to ensure that each part of the

animation contains the same line

types and number of coordinates

for all the nodes and Bézier control

points. If your paths contain

different line segments the

animation will still take place but,

rather than a smooth transition

from one shape to another, you’ll

get sudden, discontinuous jumps

from shape to shape.

To my eye, SMIL animation is

easier to follow than its CSS

counterpart. Admittedly, it’s rather

verbose which can result in having

to edit a lot of elements to make a

simple timing change. But that

verbosity also has its advantages,

as we’ll see next time – when we’ll

also send our star on a trip along a

path.

<animate attributeName="d"
to="M 92,26 88,45 82,75 73,56 33,98

33,85 20,85 62,44 42,35 71,30 Z"
dur="5s" fill="freeze" />

http://www.peppertop.com

full circle magazine #1 37 29 contents ^

HHOOWW--TTOO
Written by Mark Crutch II nnkkssccaappee -- PPaarrtt 7777

Last time, we looked at how to

animate an SVG element using

SMIL rather than CSS animations.

We’ll continue with this topic for

one more article, but my warnings

from last time need to be

repeated: although SMIL is

(currently) more capable and

flexible than the CSS option,

Microsoft have chosen not to

implement it in any of their

browsers, leading to a slow but

inexorable demise in support

across all the browser vendors. For

the time being, it still works in

most browsers but, unfortunately,

this is not a technology to bet on in

the long term.

I much prefer SMIL to CSS

animations. I find the code easier

to understand, and the fact that

the animation data tend to live

inside the elements they’re

animating avoids any confusion as

to which rules apply to which

objects as your document becomes

more complex.

With a complex document it

becomes ever more likely that your

animations won’t all have to run at

the same time, but instead might

run sequentially – or a mixture of

both. Consider trying to animate

something as sophisticated as a

cartoon: being able to finely adjust

the timing of each character’s

movements is essential. CSS

animations offer little to help you

in this case, other than the brute-

force option of adding a delay to

your animations with this the sort

of approach (shown right) .

Here we’re changing the fill

color of a pair of rectangles (with

IDs of “rect1 ” and “rect2”) . The

first changes from red to blue over

3 seconds. After a 3 second delay,

the second rectangle changes from

red to white over a 5 second

period. Due to that 3 second delay,

the animations occur sequentially.

Now what happens if you want

to change the length of the first

animation? You must also keep the

delay for the second animation

synchronised to the same value,

otherwise it will either overlap the

first, or occur some time after the

first has finished. CSS does now

support variables, so you can set

#rect1 {
fill: #f00;
animation-name: myAnimation;
animation-duration: 3s;

}

#rect2 {
fill: #f00;
animation-name: myDelayedAnimation;
animation-duration: 5s;
animation-delay: 3s;

}

@keyframes myAnimation {
0% { fill: #f00; }
100% { fill: #00f; }

}

@keyframes myDelayedAnimation {
0% { fill: #f00; }
100% { fill: #fff; }

}

:root {
--anim1_length: 3s;

}

#rect1 {
fill: #f00;
animation-name: myAnimation;
animation-duration: var(--anim1_length);

}

#rect2 {
fill: #f00;
animation-name: myDelayedAnimation;
animation-duration: 5s;
animation-delay: var(--anim1_length);

}
...

full circle magazine #1 37 30 contents ^

HOWTO - INKSCAPE
the animation length once and

reuse it as necessary, but the

syntax is ugly and unwieldy

(previous page, bottom right) .

Now imagine what your CSS

would look like when you want to

chain five animations, or ten – or a

hundred! How much better it

would be if you could just tell the

second animation that it should

start when the first one finishes.

With SMIL, that’s exactly what you

can do. The SMIL animation

elements have an optional “begin”

attribute which allows various

ways of defining when the

animation should start. At its

simplest, you can just enter a

delay, giving the same effect as

the CSS animation above (shown

top right) .

But you can also define the

beginning of an animation to be

triggered by the end of another by

using the ID of the other

animation, followed by “.end”

(bottom right) .

What happens if we want to

change the length of the first

animation now? No problem! Just

modify the “dur” attribute and the

second animation will still dutifully

follow after the end of the first

one. As well as the “.end” syntax

you can also use “.begin” to link

animations together so that they

always start at the same time. You

can optionally add an offset, such

as “anim1 .begin+2s” to make the

animation begin 2 seconds after

“anim1 ” starts, or even “anim1 .end-

0.5s” if you want your animation to

begin half a second before the end

of “anim1 ”.

SMIL allows animations to be

repeated by adding a

“repeatCount” or “repeatDur”

attribute. For example,

repeatCount="5" would cause the

animation to repeat five times,

whilst repeatDur="01 :00" would

cause it to repeat for one minute.

When a repeating animation is

used as the trigger for a second

animation, this also allows an

additional syntactic form to be

used: begin="anim1 .repeat(2)"

would cause the second animation

to begin immediately after the

second repeat of anim1 completes.

Again, changes to the duration or

start time of anim1 are

automatically handled for you.

In theory, these values can also

be used for the “end” attribute,

rather than for “begin”. That

should allow you to specify that a

second animation should finish

three seconds after the end of the

first animation, with the browser

calculating when the animation

should start in order to produce

that result. Similarly, you should be

able to specify values for “begin”

and “end” with no duration set. In

practice browsers fail to honor

anything but a simple time-based

“end” value.

Speaking of features that don’t

work in the browsers, the “begin”

(and “end”) attributes can,

theoretically, take several other

forms. You should be able to use

an ISO8601 format time or

datetime value to trigger your

animation at a particular absolute

time, but I was unable to get that

to work in a browser. Another

option is an “accessKey” - i.e. a

single key on the keyboard that,

<rect id="rect1" fill="#f00" ...>
<animate attributeName="fill"
from="#f00" to="#00f"
dur="3s" fill="freeze"
begin="0s" />

</rect>

<rect id="rect2" fill="#f00" ...>
<animate attributeName="fill"
from="#f00" to="#fff"
dur="5s" fill="freeze"
begin="3s" />

</rect>

<rect id="rect1" fill="#f00" ...>
<animate id="anim1"
attributeName="fill"
from="#f00" to="#00f"
dur="3s" fill="freeze"
begin="0s" />

</rect>

<rect id="rect2" fill="#f00" ...>
<animate attributeName="fill"
from="#f00" to="#fff"
dur="5s" fill="freeze"
begin="anim1.end" />

</rect>

full circle magazine #1 37 31 contents ^

HOWTO - INKSCAPE
when pressed, would trigger the

start of the animation. The

presence of a demo for this on the

Mozilla developer site suggests it

used to work, but neither Firefox

nor Chrome behaved as expected

in my own tests.

There’s one final option that

does sort-of work, however:

events. The following syntax, for

example, will (in principle) trigger

an animation when the rectangle is

clicked on:

<rect id="rect1" fill="#f00"
...>
<animate id="anim1"

attributeName="fill"
from="#f00" to="#00f"
dur="3s" fill="freeze"
begin="rect1.click" />

</rect>

There are various events

available, covering not only clicks

but also mouse movements,

scrolling and even changes to the

structure of the document.

Although the example above uses

the parent element to trigger the

animation, in practice you could

use the ID of another element in

the image – allowing a click on one

element (styled as a Start button,

perhaps) to trigger an animation

on another.

In practice this option does

work, but only in situations when

JavaScript would also be executed:

when the SVG image is loaded

directly, via an <object> tag, or is

included inline with the HTML. It

doesn’t work when SVG is loaded

via an element, which is a

real shame as it could theoretically

offer a safe way to produce

interactive animations without the

security risk of allowing JavaScript

code to run.

And that pretty much sums up

the failed promise of SMIL. If fully

implemented it would have

allowed the creation of complex

animations triggered by mouse

events or keypresses, with each

component synchronised to other

parts, all with a fairly simple

declarative syntax that makes it

safe to use via an tag.

Imagine a complex interactive

animation, of the sort that you

might see in a museum, but with

the ability to be shared on forums

or social media as easily as any

other image.

Before bidding farewell to SMIL

entirely, I ’m going to briefly discuss

the last of the animation elements

that are supported by SVG:

<animateMotion>. This allows you

to animate the position of an

element along a path, either

defined within the element itself

or by reference to another path in

the file. Consider this delightful

evening scene (below).

Note the orange path across

<path

fill="#f00"
stroke="#800"
stroke-width="2"
...
>

<animate attributeName="fill"
values="#f00; purple; #00f"
keyTimes="0; 0.5; 1"
dur="5s" fill="freeze" />

<animate attributeName="stroke"
values="#f00; purple; #00f"
keyTimes="0; 0.5; 1"
dur="5s" fill="freeze" />

<animate attributeName="stroke-width"
values="4; 8; 20"
keyTimes="2; 3; 6"
dur="5s" fill="freeze" />

</path>

full circle magazine #1 37 32 contents ^

HOWTO - INKSCAPE
the night sky, which I ’ve given an

ID of “animPath”. The yellow

shooting star is made up of a

group of objects, drawn so that the

center of the star is at the top left

of the document area (0,0 in SVG

coordinates) – though I ’ve moved it

into the middle of the scene for

this screenshot so that you can see

it. By adding an <animateMotion>

section inside the group, the

shooting star will follow the

orange path across the night sky

(top right) .

The <animateMotion> element

gets the usual animation attributes

of “dur” and “fill” (and could have

had “begin” and “end” if required),

but has two attributes that are

specific to this type of animation.

The first is a “d” attribute which

can contain path data of the same

form that you would find in a

<path> element. If present, this is

used as the path along which the

parent element will be animated.

An alternative to directly

including the path data in the

<animateMotion> is to reference a

separate path that is present

elsewhere in the document. This is

the approach I ’ve taken here, by

including an <mpath> (“motion

path”) child element that refers to

the ID of our animation path via

the “href” attribute. Although

modern browsers understand

“href” as a native attribute in SVG,

using the “xlink” namespace

provides better compatibility with

older software, so that’s what I ’ve

done here. The big advantage of

using a linked path like this is that

the path is an element that can be

modified in Inkscape, whereas an

embedded “d” attribute isn’t.

The second attribute that is

specific to <animateMotion> is

“rotate”, which is an SVG addition

which is not present in the base

SMIL specification. This can take a

number, in which case the object is

rotated by that number of degrees,

although a fixed rotation is

probably better achieved using a

“transform” attribute. More

usefully, this attribute can take a

value of “auto”, in which case the

rotation of the element follows

the shape of the path (there’s also

an “auto-reverse” option which

does the same, but rotates the

animated element through 1 80°

first) . Here’s the effect of each

option as the star descends on its

path; notice particularly how

rotate="auto" has turned it to suit

the descending curve of the line.

You may be wondering about

that orange path. The final step in

designing an animation like this is

typically to hide the animation

path somehow. I usually move the

path down in the z-stack behind

everything else, or change its

stroke color or opacity to make it

transparent. Even when it’s

transparent you can still get to it

using Inkscape’s View ! Display

Mode ! Outline option, if you do

need to make some later changes.

Although this simple example uses

just a single curved path segment,

the animation path can be as

complex as you like with loops,

twists, curves and sharp corners, so

being able to tweak it graphically

in Inkscape can be invaluable.

One final thing to note is that

although my test animation ran

smoothly in both Chrome and

Firefox when the SVG file was

loaded directly, referencing it via

<path id="animPath"
d="…"
style="…" />

<g id="shooting_star">
<path id="star" … />
<path id="tail1" … />
<path id="tail2" … />
<path id="tail3" … />

<animateMotion
dur="5s"
fill="freeze"
rotate="auto">

<mpath xlink:href="#animPath" />
</animateMotion>

</g>>

full circle magazine #1 37 33 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys' , 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

HOWTO - INKSCAPE
an tag in a web page

resulted in a choppy animation in

Firefox.

I ’ll leave you with a little SMIL

anecdote: back in 201 1 I made use

of SMIL for an Easter egg in one of

my webcomics, to animate a UFO

flying over the scene. The

animation path itself is seemingly

jerky and erratic, but digging into

the file in Inkscape reveals that the

path actually encodes a URL.

Visiting that address shows a small

demo of what SMIL can do: by

using some JavaScript to

dynamically add and modify SVG

and SMIL elements, I wrote a

simple Space Invaders style game

that runs in the browser. JavaScript

handles the game logic, with SMIL

responsible for ensuring that the

flying saucers move smoothly

around the sky. For the time being,

at least, it runs in all the major

browsers, except Microsoft’s…

These couple of articles have

just provided a brief introduction

to SMIL. With browser support

waning, it’s unlikely to ever fulfill

its early promise of allowing

interactive animations in a way

that can be safely used online

anywhere a simple image is

allowed. As is too often the case, it

appears that corporate politics has

killed a promising technology.

http://www.peppertop.com

full circle magazine #1 38 26 contents ^

HHOOWW--TTOO
Written by Mark Crutch II nnkkssccaappee -- PPaarrtt 7788

A quick summary: over the past

few instalments, we’ve looked

at a couple of animation

techniques for SVG files. First was

to use the animation capabilities of

CSS, which has better support

across browsers but is limited to

animating those properties that

can be exposed via CSS (i.e. the

ones that will work in the “style”

attribute). This covers a lot of

possibilities, but does not include

many of the core attributes that

are found in SVG elements, such as

their coordinates or path

definitions. For some cases – such

as transforms – enough of SVG’s

capabilities have been added to

CSS for such restrictions to be

nothing more than an annoyance

that can be worked around. For

others, however, CSS simply isn’t

up to the task.

That’s where SMIL comes in. It’s

an older specification for

animation, created around the

same time as the original SVG

specs, and does provide the ability

to animate arbitrary attributes in

SVG. It can animate the “d”

attribute that makes up the shape

of a path, for example – a task that

can only otherwise be

accomplished in the browser via

JavaScript. But although SMIL is

more powerful than CSS in this

regard, it has never been adopted

in any Microsoft browser, leading

to its inexorable decline and a

likely deprecation in the browsers

that do support it.

Given this situation, we won’t

look any further at SMIL, but there

are still a few tricks that can be

performed with CSS that are

worthy of further investigation.

This time, we’re going to look at an

increasingly popular animation

technique which is really the result

of taking a simple feature of SVG

and pushing it in ways it wasn’t

really intended for. It’s commonly

referred to as “line animation”,

although the line itself doesn’t

change shape (remember, that

can’t be done with CSS yet). It’s

also sometimes referred to as a

“self-drawing” image, which is a bit

more descriptive: this technique

results in a path that appears to be

drawn on the screen in the same

way as you would draw it with a

pen.

The first thing we’ll need is a

path to animate. It should not have

a fill, but will require a stroke. For

this demonstration I ’ve used

Inkscape’s star tool to create an

eight pointed star, then converted

it to a path and roughly moved

every second point inwards to give

more of a cartoon gunshot

appearance. I ’ve given it a stroke-

width of 2px and saved it using the

“Optimised SVG” option in order to

strip out most of the excess

baggage from the file, just so that

this tutorial isn’t filled with several

pages of code.

Opening the file in a text editor

reveals a structure like that shown

below.

As you can see, it’s a pretty

simple file. Even the <g> isn’t really

needed, but it’s easier to leave it in

place with its own transform,

rather than try to manipulate the

coordinates of the path to

compensate for its removal.

The secret to this animation

technique is in the fact that SVG

has a nice, simple, CSS-animatable

way of drawing dashed and dotted

strokes, rather than solid ones. The

next step, therefore, is to

introduce some dashes, defined in

CSS. Note that you’ll probably have

<svg xmlns="http://www.w3.org/2000/svg">
<g transform="translate(-10 -10)">
<path d="m29 13 32 …"

style="fill:none;stroke-width:2;stroke:#333; …"
/>

</g>
</svg>

full circle magazine #1 38 27 contents ^

HOWTO - INKSCAPE
to also remove the corresponding

properties from the path’s “style”

attribute if you saved as a normal

Inkscape file.

Save the file (top right) and

load it directly into a web browser,

and you should see something like

this:

The values we set in the stroke-

dasharray property are used to

determine the lengths of the

drawn segments and gaps along

the path. With our value of “1 0 2 3

5” the stroke will be drawn as a

line segment of 1 0 units, followed

by a gap of 2 units, then another

line of 3 units and a gap of 5 units.

The sequence then automatically

repeats, so the next line segment

is 1 0 units long and the next gap is

2. It runs around the path

uninterrupted by corners, so a line

segment (or gap) of 1 0 might

appear as 3 units on one side of a

corner and 7 on the other – look at

the leftmost corner of the shape

for a good example of this. If you

follow the line round, taking that

into account, you can see that the

stroke dashes do follow the

pattern we’ve set.

This automatic repeating of

values in the stroke-dasharray

property produces a couple of neat

features. The first is that any odd

number of entries is effectively the

same as writing a value that is

twice as long, with the line and gap

values swapped in the second half.

So a value of “1 0 5 1 0” is the same

as writing “1 0 5 1 0 1 0 5 1 0” – in

other words a long line, short gap,

long line then a long gap, short

line, long gap. Notice that the

length of the lines in the first half

make up the length of the gaps in

the second, and vice versa.

The other feature – and the one

we’re interested in here – is that

you can collapse the value down to

a single number to get equal line

and gap lengths. A lone value of

“1 0” expands to “1 0 1 0”, giving you

a repeating series of lines that are

1 0 units long, followed by gaps

that are 1 0 units long. In my

example file, that gives you

something like this:

Now consider what happens if

we increase the value. As the

number goes up, so the visible line

segments get longer – but so do

the gaps. Below is a sequence of

screenshots of the same image

with the stroke-dasharray value set

to 1 0, 20, 50, 1 00 and 500.

By the time we get to 500 our

first visible line segment almost

covers the entire path. If we were

to continue increasing the value

until it is the same as the path

length, it would effectively render

it the same as if we didn’t have the

stroke-dasharray at all. And that’s

exactly what we want to do!

<svg xmlns="http://www.w3.org/2000/svg">
<style>
path {

stroke-dasharray: 10 2 3 5;
}

</style>

<g transform="translate(-10 -10)">
<path … />

</g>
</svg>

full circle magazine #1 38 28 contents ^

HOWTO - INKSCAPE

You might be thinking it’s a

little pointless to add a CSS

property, then set it to a value that

appears to have no effect, but

remember that as well as the

drawn line, there’s an equivalent

length of gap that’s not visible

because it extends beyond the end

of the path. By adding another CSS

property, however, we can adjust

the start point of the drawn

dashes, bringing our gap into play.

The stroke-dashoffset property

tells the browser to adjust its

calculations to begin further into

your stroke-dasharray sequence

(note that the “px” here isn’t the

same as screen pixels; rather it’s in

the units of the SVG file, which are

likely to be different to screen

pixels due to scaling). If your

dasharray is “1 0 5” and you set the

offset to 3px then the first

segment drawn will be only 7 units

long, then a gap of 5, then a line of

1 0 and the rest continues as

normal.

In practice this means that

setting a positive value here will

“swallow” that much of the start of

the stroke array, whereas a

negative value will “push” the

stroke array further along the

path.

By adjusting the value of

stroke-dashoffset we can “slide”

the drawn portion of the stroke

along the path. Here’s what it

looks like with values of 0px,

1 00px, 200px, 300px. Notice that

progressively larger numbers

swallow more of the path, showing

more of the gap at the end.

As you know, setting the

dasharray to the same value as the

length of the path will draw the

entire path. But also setting the

dashoffset to that value will then

swallow the drawn segment,

leaving only the gap (which is also

the length of the path). In other

words, our path will disappear

completely.

With the drawn segment

completely swallowed, we’re at the

starting point for our animation:

our path is not visible on the

screen. By decreasing the

dashoffset value we can make the

drawn segment creep onto the

screen, following the shape of the

path. All we need to do, therefore,

is to animate the stroke-dashoffset

value (see part 75 if you need a

reminder of the animation syntax):

Reload the file in your browser

and you should see the effect

we’re looking for – and because it’s

all just CSS animation embedded

directly in the SVG file, it will even

work when the file is pulled into a

web page via an tag.

Just a minute! Where did that

value of 575 for the dasharray and

dashoffset come from? As you’ve

probably realised, that’s the total

length of my path. You could

theoretically get it from Inkscape

via the Extensions > Visualise Path

> Measure Path… extension, but

that throws a Python error on my

system. Alternatively you could

just use trial and error: increasing

the value of the dasharray until it

just fills the path (which is quite

<style>
path {
stroke-dasharray: 500;
stroke-dashoffset: 0px;

}
</style>

<style>
path {

stroke-dasharray: 575;
stroke-dashoffset: 575px;
animation-name: drawPath;
animation-duration: 5s;
animation-fill-mode: both;

}

@keyframes drawPath {
100% { stroke-dashoffset: 0px; }

}

</style>

full circle magazine #1 38 29 contents ^

HOWTO - INKSCAPE

easily done using the browser

developer tools, if you’re familiar

with them).

The simplest option, though, is

to ask the browser to do the hard

work for you by invoking a little

JavaScript. There is a method on

the <path> object called

getTotalLength() which will return

the calculated length of the path.

You can call it via the developer

console in the browser, or modify

your <svg> element to call the

method when the file loads and

display the value on screen. Here’s

an example that will work for a file

with a single path:

Remember that JavaScript

won’t run when the document is

loaded via the tag, so to use

the getTotalLength() method you

will have to load the SVG file

directly into the browser. You only

need to do it once, then you can

simply hard-code the value into the

<style> block and remove the

JavaScript code entirely.

There is also an alternative to

specifying the actual length of the

path. You could add a “pathLength”

attribute to the path, set it to a

value of your choosing, then treat

that value as the total length in the

CSS. This basically tells the browser

“I want to pretend this path is 1 00

units long, even though we both

know it’s not, so can you just do

the maths for me as needed”. A

good compromise is to use

JavaScript to find the actual

length, then round it to the next

whole number and set that value in

the pathLength attribute and the

CSS. That way any browser that

understands pathLength will use it

to give you a precise animation,

and those that don’t are still using

a value that’s close enough to work

in most cases.

There’s one final thing to note

with this approach. So far I ’ve used

the version of the technique you’ll

most commonly find documented

online, but, according to SVG

expert Amelia Bellamy-Royds, the

definition of stroke-dashoffset in

the specification is vague enough

that not all browsers behave

identically. She suggests an

alternative of forgetting

dashoffset entirely and just

animating stroke-dasharray

instead. In this case, you need to

include two numbers in the

property as you need both the line

and the gap to change together.

My animation code then becomes

that shown below.

If you want to play around with

this effect, but have the computer

do a little more of the hard work

for you, a discussion of this

technique over on

inkscapeforum.com led to one user

creating an Inkscape extension

that will add the CSS animation

code for you. You can find the

extension at

https://gitlab.com/Moini/ink_line_

animator/ and follow the original

thread at

http://www.inkscapeforum.com/vi

ewtopic.php?f=5&t=33721

Just animating a star being

drawn is a little dull, but does show

you the basic approach. Although

the star contains no curves, this

method works equally well with

any shape of path. An easy step on

from this, for example, would be to

replace the star with a path for

some handwritten text, to produce

a “self-writing” effect. Be aware,

however, that sharp transitions can

cause rendering artefacts

depending on the miter limit. In

the case of my star, for example,

the corner at the start/end of the

line flashes on and off as the rest

of the line is drawn. It’s often

better to use rounded corners and

<svg xmlns="http://www.w3.org/2000/svg"
onload="alert(document.querySelector('path').getTotalLength());">
<style>
…

<style>
path {
stroke-dasharray: 0 575;
animation-name: drawPath;
animation-duration: 5s;
animation-fill-mode: both;

}

@keyframes drawPath {
100% { stroke-dasharray: 575 0; }

}

</style>

https://gitlab.com/Moini/ink_line_animator/
http://www.inkscapeforum.com/viewtopic.php?f=5&t=33721

full circle magazine #1 38 30 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys' , 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

HOWTO - INKSCAPE
end caps to avoid this, which also

helps to reinforce the illusion of

the line being drawn by a pen or

pencil.

If you’re prepared to spend

more time hand-crafting your

animations there’s no reason why

you shouldn’t produce a self-

drawing SVG image consisting of

multiple paths, each animated

separately using delays to ensure

that they appear in the correct

order. Once your outline is drawn,

some more delayed animations

could fade in the fill colours, erase

some of the lines, or cross-fade to

a raster image. With time and

effort, this technique can produce

some spectacular results, and all

just by moving a dashed line

around.

http://www.peppertop.com

full circle magazine #1 39 28 contents ^

HH OOWW--TTOO
Written by Mark Crutch II nn kkssccaa ppee -- PPaa rrtt 7799

There’s a part of the Inkscape

user interface that is so

common, and so taken for granted,

that you’ve probably never given

much thought to it: the page

border. Yet this seemingly

mundane part of the display plays

a vital role when it comes to

creating SVG files for use online.

By understanding what it

represents, and how to manipulate

it, you will open up some

techniques that can make your SVG

files far more versatile, even if

they’re only being included via an

 tag.

By default, creating a new

document in Inkscape will create

an A4 page (21 0x297mm),

displaying a thin outline to

represent the page border, and a

drop shadow to make it look a

little more like a page of paper

than a simple rectangle. I can’t say

for certain if A4 is used as a default

everywhere, or if there is a locale

dependency that creates US Letter

pages in the USA, for example, but

either way, you get a default size

and visible page border. Changing

the page size is done via the File >

Document Properties (Ctrl-Alt-D)

dialog: you can either select one of

the predefined page sizes or enter

a custom width and height, with

your choice of units. The bottom of

the dialog also provides options to

show or hide the page border and

to display it without the drop

shadow, if you prefer.

I ’ve seen a few video tutorials

where the presenter heads

straight to this dialog to turn off

the page border, but I think that’s

usually a mistake. If you’re

designing for print then having an

idea of how your work fits into the

page is essential. But the border is

just as important for web work, as

anything that is drawn outside it

won’t be rendered by the browser.

If you turn the border off, there’s a

real danger that parts of your

design might inadvertently fall

outside it, preventing them from

rendering as expected.

The non-display, or non-

printing, of content outside the

page border, can be a blessing. If

your design has to bleed off the

edge of the page, it can be

essential. You can also use the area

outside the page to store rough

designs, notes, spare elements, or

the source objects for clones

(particularly those with unset fills)

– anything which you want to keep

with your image, but don’t want to

be visible in the final product. I ’ve

often used this capability to

include Easter eggs in my comic

strips – even to the extent of

holding extra panels or even entire

extra strips that can be found only

by opening the original source file

in Inkscape.

For many uses, the page size

can natively be set in the

Document Properties dialog, with

no need to concern yourself any

further. This sets the “width” and

“height” attributes on the main

<svg> which determines the

default size that your image will be

drawn in the browser. For an icon

design, for example, you might set

the dimensions to 32px by 32px,

and that’s the size it will be

rendered. But what happens when

you want to use a different scale

inside your drawing? Your drawing

might be in metres or even miles,

yet you still want it displayed at a

reasonable size in the browser. For

this, there is the viewBox attribute.

The viewBox attribute is a list

of four numbers, representing the

x and y coordinates of the origin in

the drawing, and the width and

height of the drawing in “user

units”. Let’s look at a couple of

examples:

<svg …
width="100"
height="200"
viewBox="0 0 100 200"
… >

This one’s simple. The width

and height of the image will

default to 1 00px by 200px, and the

coordinates in the drawing are

mapped to the image on a 1 :1

basis. If you draw a rectangle that’s

1 00 units wide and 200 units tall, it

will fill the available space in the

browser window (assuming you

position it at the top left of your

drawing). Let’s try another:

<svg …
width="100"
height="200"
viewBox="0 0 500 1000"
… >

full circle magazine #1 39 29 contents ^

HOWTO - INKSCAPE

Again the image will render to a

size of 1 00px by 200px in the

browser. But the viewBox defines a

different coordinate system. Now

500 units in the drawing map to

1 00px in the browser. If you draw a

rectangle that’s 1 00 units wide and

200 units tall this time, it will

occupy only one corner of the

image (actually being drawn as

20px by 40px in the browser). To

fill the image, you would need to

draw a rectangle that’s 500 units

by 1 000 units.

Changing the x and y values lets

you move the origin of your

coordinate system. It lets you say

“the origin for the browser (i.e. the

point that’s used as the top left of

the image) should actually be 1 00

units down and 50 units across in

my drawing”. Another way to think

of it is that the viewBox lets you

create a viewport into your

drawing of a specific size and

location: everything inside the

viewport will be scaled up or down

to fill the image in the browser;

everything outside the viewport

will be cropped and left un-drawn.

For use in a web page, this

capability to render only part of

the image lets us perform a rather

neat trick. By changing the

viewBox values, we can selectively

display subsections of the file,

letting us store multiple images in

one file. This reduces the number

of network requests needed by

your page, in turn speeding up

your site.

full circle magazine #1 39 30 contents ^

HOWTO - INKSCAPE
Consider this collection of four

images – a star, a circle, a spiral

path, and some text in the rather

wonderful free font, Trump

Grotesk Bold. I ’ve drawn them in

four sections of a tall, thin page

that is 250px wide by 1 000px tall

(so each element occupies 250px

by 250px). With the viewBox set to

“0 0 250 1 000”, we have a 1 :1

mapping when the image is drawn

in the browser. You can pretty

much ignore the “Scale x” and

“Scale y” values – they get set

automatically by Inkscape as you

change the viewBox fields.

As you might expect, when I

save this image and load it into the

browser, I see all four elements,

taking up a space of 250px by

1 000px. But look what happens if I

change both the page height and

the viewBox height to 250:

As you can see, the page border

only surrounds the text. If I save

the page and load it into the

browser, all I get is a 250px by

250px image showing the text

element.

If I now set the “y” value for the

viewBox to -250, thus moving the

viewport upwards, only the spiral

appears in the page. Saving the file

and loading it in a browser now

only renders the spiral, hiding the

other three elements.

I ’m sure you’ve worked out by

now that setting the “y” value to

-500 will put the page around the

circle, whilst -750 puts it around

the star. Now let’s just remind

ourselves what the HTML

tag looks like to render this image:

Well that’s pretty terse and to

the point. It just tells the browser

to show the “views.svg” file using

the width and height set in the SVG

file, and displaying the default

viewport set by the viewBox

attribute. But we can append a

little magic to the filename to tell

the browser to override the

default viewbox:

<img
src="views.svg#svgView(viewBo
x(0, -750, 250, 250))">

By changing the viewBox values

in the URL we can therefore select

a specific region of the image to

display. In this case, it allows us to

choose between one of several

sub-images, making this approach

ideal for files that contain multiple

icons or logos. An alternative is to

use viewBox values that focus on a

particular part of your design, or

cause some section to be zoomed

in. That gives you the possibility of

showing, for example, an overview

and a detail view, both taken from

the same image.

Hard-coding the viewBox

dimensions into the URLs does

have one significant problem: if

your image changes, such that

elements are swapped or moved,

you also need to update the HTML

or CSS file containing the URLs.

SVG has an answer to this problem

as well: named views.

Named views are, as you might

have guessed, a way of giving a

particular set of viewBox values a

full circle magazine #1 39 31 contents ^

HOWTO - INKSCAPE
name – that can then be

referenced from elsewhere.

Unfortunately, Inkscape has no

specific support for them, except

to expose the underlying code in

the XML editor. But the syntax is

straightforward enough that

they’re easy to add via a text

editor. They can go pretty much

anywhere in the SVG file, but as

they’re not visible objects in their

own right, I prefer to keep them in

the <defs> section where things

such as filter and gradient

definitions live. Named views can

be thought of as viewBox

definitions, so this location makes

sense to me. Here’s an example of

the top section of the SVG file

above, once I ’ve added named

views for each of the objects to my

<defs> (below).

In this example, the viewBox

attribute in the <svg> element is

set to show the text content, but I

could equally have set it to show

all four objects, just a couple of

them, a smaller part of one of the

objects, or any other rectangular

space in the image. This is the

viewBox that will be used by

default if nothing else is specified

in the document’s URL.

In the <defs> section, you can

see that I ’ve also defined four

<view> elements. Each of these

has an ID that will be used to

reference them later, together

with a viewBox attribute. The IDs

aren’t special: I ’ve called them

“textView”, “spiralView” and so on,

simply to make it clear what

they’re showing, but I could

<svg …
width="100"
height="200"
viewBox="0 0 250 250"
… >
<defs id="defs">

<view id="textView" viewBox="0 0 250 250" />
<view id="spiralView" viewBox="0 -250 250 250" />
<view id="circleView" viewBox="0 -500 250 250" />
<view id="starView" viewBox="0 -750 250 250" />

</defs>
<!-- Rest of SVG file follows… -->

<!DOCTYPE html>

<html>
<head>
<title>SVG viewBox tutorial</title>

</head>

<body>
<div>

<img src="views.svg#svgView(viewBox(0, 0, 140, 125))"

style="width: 300px;">
</div>

<div>
<p>Look!
A single SVG file <img src="views.svg#spiralView"

style="width: 1em;"> used for
<img src="views.svg#circleView"

style="width: 1em;"> four different inline icons!
<img src="views.svg#svgView(viewBox(138, 0, 140, 125))"

style="width: 1.5em; vertical-align: bottom;">
</p>

</div>
</body>
</html>

full circle magazine #1 39 32 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys' , 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

HOWTO - INKSCAPE
equally have gone for “fred”,

“wilma”, “barney” and “betty” –

had I wished to. The only

requirements are that they are

valid XML IDs, and are unique

within the document. If in doubt,

stick to plain text with no

punctuation and you should be

okay.

Using your named view in an

 tag is trivially

straightforward – you just have to

set the appropriate ID as the

fragment identifier (the bit after

the “#” character in a URL):

</
img>

Of course there’s nothing to

stop you referencing the same

image more than once in a web

page, with a different fragment

identifier each time. You can also

mix and match named views, the

“svgView()” syntax, and the default

viewBox. In this way, a single SVG

image can easily be used to

provide a whole host of icons and

other images for your page. To

finish off, here’s an example of an

HTML document that uses the SVG

image from this tutorial:

You should now be able to

understand how our single SVG

image is used multiple times to

give the final result:

http://www.peppertop.com

