
full circle magazine #1 40 23 contents ^

HHOOWW--TTOO
Written by Mark Crutch II nnkkssccaappee -- PPaarrtt 8800

Last time, I showed you how you

can use a fragment identifier in

the URL that points to your SVG

file in order to make a browser

show only a small part of the

whole image. With a suitably

crafted string, you can precisely

identify a rectangular section of

the image to display by specifying

the x and y coordinates of the top

left of the rectangle, together with

its width and height. I also

demonstrated how you could

create named views so that the

coordinates are entirely contained

within the SVG file and the

enclosing web page doesn’t need

to know the gory details; all it

needs to know is the ID of the view

to display.

Through this technique, you can

effectively turn a single image into

a number of named tiles, spread

out along the x and y plane. This

month, you’ll discover that it’s

possible to perform a similar trick

in the z-axis. In other words, you

can stack several sub-images on

top of each other, and then choose

to show only one of them by

putting its ID into the fragment

identifier.

The starting point for this

technique isn’t actually SVG, but

HTML. The way this trick works

relies heavily on inheriting certain

behaviours from the HTML and CSS

world that can be manipulated into

doing something useful in SVG.

Let’s start with a simple HTML file

(shown top right) .

Allowing for the requirement to

keep magazine listings short, try to

imagine that this page has a lot of

text in each paragraph, a lot of

paragraphs in each section, and

more sections than I ’ve included in

the sample. If you’re trying out the

code yourself, make sure to include

enough content for you to have to

scroll quite a lot to get to the

bottom section.

With a lengthy page of text, it

would be nice to be able to jump

straight to a section via a list of

links at the top of the page – a

table of contents. To do that, we

use the <a> tag in two different

forms: around each section to

“name” the link target, and in the

<!DOCTYPE html>
<head>

<title>Fragment identifiers</title>
</head>
<body>

<h1>Section 1</h1>
<p>Blah, blah, blah…</p>
<p>More blah, blah, blah…</p>
<p>Even more blah, blah, blah…</p>
<hr />

<h1>Section 2</h1>
<p>Blah, blah, blah…</p>
<hr />

<h1>Section 3</h1>
<p>Blah, blah, blah…</p>

</body>

<h1>Table of contents</h1>

Section 1
Section 2
Section 3

<hr />

<h1>Section 1</h1>
<p>…</p>
<hr />

<h1>Section 2</h1>
<p>…</p>
<hr />

<h1>Section 3</h1>
<p>…</p>

full circle magazine #1 40 24 contents ^

HOWTO - INKSCAPE
table of contents to create a link

that will jump straight to the

named target. Skipping the

boilerplate code and the content

of the <p> tags we get the code

shown on the previous page

(bottom right) .

A quick trip to a “lorem ipsum”

generator to fill out the content,

and the web page looks something

like this when loaded into a

browser:

Clicking the links in the Table of

Contents will scroll the browser so

that the target of the link is visible

on screen. The “href” attribute in

those links is essentially just the

fragment identifier part of the full

URL. Indeed, if we modify the full

URL in the browser to append

“#sec3” to the end of the URL, the

browser will also jump to the third

section.

Okay, so appending the ID of an

<a> element to the URL will make

the page scroll to that target.

What’s that got to do with SVG? To

answer that we need to introduce

another part of this puzzle: the CSS

“:target” selector. Here’s a section

of CSS that should be added to our

test page:

<style>
:target {

color: red;
}

This tells the browser to run

this little algorithm:

• Does the URL have a fragment

identifier?

• If so, does it match a target ID in

the page?

• If it does, apply the “color: red”

property to the matching element

(in addition to the default

behaviour of scrolling the element

into view).

Now, as you click the entries in

the table of contents or

manipulate the URL by hand, the

target section is rendered with red

text, rather than black. We’ve got a

way to apply a style to only the

element specified in the fragment

identifier. Which means we can

instead do something like this:

<style>
a { display: none; }

:target {
display: initial;

}
</style>

This will hide all the <a>

elements, and their descendants,

then only show the one that is

being targeted by the fragment

identifier. As a side-effect, it also

hides the links in the Table of

Contents. A more fine-grained rule

could deal with that, but I just

deleted the whole table from my

document as it’s not needed any

more. Now, when manually adding,

for example, “#sec2” to the end of

the URL we will see only the

specified section on screen.

So we’ve now got a way to show

only a single element (and its

descendants) , based on a label in a

fragment identifier. All we need to

do is transplant that same logic to

the world of SVG, and the browser,

using the same CSS rules as it does

for an HTML page, will show only

the element we’ve chosen.

The first thing we’ll need,

therefore, is a type of element that

can act as a container for the

content we want to show and hide.

In SVG terms, that would be a <g>,

which in Inkscape is exposed as a

group, but is also used for layers

(as noted in previous instalments,

layers are just groups with extra

metadata). There are minor pros

full circle magazine #1 40 25 contents ^

HOWTO - INKSCAPE
and cons to each: considering that

we need each <g> to have an ID,

groups have a small advantage in

that the Object Properties dialog

(from the context menu) can be

used to set the value. Although

you can rename layers, doing so

doesn’t affect their ID, requiring a

trip to the XML editor instead.

But layers have one big

advantage: they’re much easier to

show and hide when working in

Inkscape. Given that this workflow

requires each image to be stacked

upon the others, this advantage

becomes invaluable for anything

more than a couple of groups. For

the rest of this tutorial, therefore,

I ’ll be using layers. Continuing from

last month’s instalment, I ’m going

to stack the same four objects I

used previously – a circle, a star, a

spiral and some text – putting

them into individual layers.

It’s worth reiterating at this

point that each layer could contain

more than a single element – I just

didn’t want to clutter up the

screenshots too much by

introducing more content. In

practice, each layer would typically

be an SVG image in its own right,

potentially containing multiple

elements, groups, clones and

filters. In a more complex situation,

you can clearly see how the ability

to hide and lock individual layers

makes this method generally

superior to just using Inkscape

groups.

With my layers created, the

next step is to open the XML Editor

(Edit > XML Editor) and set the IDs

for the layers. In the screenshot,

you can see that I ’ve already set

the IDs for “circle”, “star” and

“spiral”, and I ’m about to change

“layer1 ” to “text”.

While you’ve got the XML editor

open, it’s worth noting what

happens when you show and hide a

layer. Each layer has a “style”

attribute which contains “display:

inline” if it’s visible, or “display:

none” if it’s hidden. We’ll come

back to this later but, for now, just

remember that there’s a “style”

attribute that holds the “display”

property directly on each layer.

Once your stack of drawings is

complete, and your layer IDs have

all been set, you’ll need to save the

file and open it in a text editor. It’s

time to add a block of CSS that will

turn off the layers, then turn on

only the layer specified in the

fragment identifier. The placement

of the CSS in the file doesn’t

matter too much, but I usually put

it just after the opening <svg …>

tag (shown below).

The “svg > g” syntax just means

“this rule should affect only <g>

elements that are immediate

children of an <svg> element”, so it

doesn’t affect any sub-layers.

Otherwise, it’s pretty similar to the

HTML rules we used earlier, but

with the addition of “!important”

<svg xmlns…
…
…>

<style>
svg > g {

display: none !important;
}

:target {
display: initial !important;

}
</style>

full circle magazine #1 40 26 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys' , 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

HOWTO - INKSCAPE
on the properties. This tells the

browser that these rules should

take precedence over those in the

“style” attributes on the layer –

without them our new block of

code would be ignored. You could

avoid them if you manually

removed the properties from the

style attributes on each layer, but

as Inkscape will add them back in

again if you ever need to edit the

file, it quickly becomes a thankless

chore. Sprinkling a few

“!important” declarations around

isn’t particularly good coding

practice, but it’s a lot more

practical.

With our SVG stack set up, we

can reference the images with a

fragment identifier in the HTML, in

a similar manner to the named

views we used last time (shown

top right) .

The resultant web page looks

like this:

With SVG stacks, it’s also

possible to have another layer that

sits behind all the others, but

which is always visible, regardless

of the fragment identifier.

Consider a single background layer,

with its ID set to “background”.

This additional CSS selector would

ensure that it’s always visible:

#background {
display: initial

!important;
}

With named views and stacks

giving broadly similar results, you

might want to know which one is

better to use. For many cases,

either will work: named views

arguably require more work to set

up, but provide an advantage of

being able to see all the individual

images in Inkscape at once. Views

also work better if your images are

different sizes. Stacks, on the

other hand, work well if your

images require a single common

background, or if it’s easier to draw

each image by stacking it on top of

the previous ones to help with

alignment. As is so often the case,

the real answer is to try both

approaches and see which one

works best for you.

<!DOCTYPE html>

<html>
<head>
<title>SVG viewBox tutorial</title>

</head>

<body>
<div>

</div>

<div>
<p>Look!
A single SVG file used for
 four different inline icons!

</p>

</div>
</body>
</html>

http://www.peppertop.com

full circle magazine #1 41 29 contents ^

HHOOWW--TTOO
Written by Mark Crutch II nnkkssccaappee -- PPaarrtt 8811

Over the past few months,

we’ve looked at various tricks

and effects that can be achieved

when using an SVG file in a web

page via the HTML element.

But using an SVG like that is

subject to various security

restrictions imposed by the

browser, preventing you from

referencing external files (fonts,

css, linked bitmaps) or using

JavaScript. So now we’re going to

move on to alternative methods of

using SVG in a web page, which

offer a little more scope for

customisation.

This instalment will look at a

little CSS trick for inheriting a color

from your HTML page into your

SVG. Unfortunately, the laws of

CSS scoping mean that this one

works only if you inline your SVG

code right into your HTML. This

requires some care and attention,

but isn’t really that difficult, as you

can largely copy and paste the

contents of your SVG file from

within a text editor. It does bloat

the size of your HTML, but,

conversely, you make a saving in

not having a separate SVG image

to download. Let’s start with a

basic HTML page (top right) .

Now we need some SVG to put

into the file. For this

demonstration, I created a simple

rounded rectangle in Inkscape,

then saved it as in “Optimised SVG”

format to clear out a lot of the

unnecessary metadata and other

content. Even then, I was able to

manually trim the resulting file a

little further, as the namespace

declaration isn’t required, and I

was left with a single <g> wrapping

the content which serves no

purpose in this case.

One option I did select in the

save dialog was to “Convert CSS

attributes to XML attributes”. This

breaks down the otherwise

densely filled “style” attribute into

a series of individual presentation

attributes. You don’t have to do

that – this technique works just as

well with the style attribute, or

even a <style> section elsewhere

in the XML – but having the styling

split into separate attributes

makes it a little clearer to explain

what’s happening.

The result of the export,

manual trimming, and

reformatting to fit the magazine,

was the chunk of SVG shown

below.

Copying this code and pasting it

inside the <div> in the HTML file

results, as you might expect, in the

browser drawing a rounded

rectangle, with a dark red fill. No

surprises so far.

The next step is to throw away

the “color” attribute entirely: it’s

not needed in SVG, where we

already have fill and stroke colors,

but if it’s left in place it will affect

the CSS cascade and prevent the

effect we’re trying to achieve.

<!DOCTYPE html>

<html>
<head>

<title>SVG tutorial</title>
</head>

<body>
<div>
<!-- SVG goes in here -->

</div>
</body>
</html>

<svg width="250" height="250">
<rect
x="6" y="6"
width="239" height="239"
ry="44"
color="#000000"
fill="#800000"
stroke="#000000"
stroke-linejoin="bevel"
stroke-width="8"
style="paint-order:normal"

/>
</svg>

full circle magazine #1 41 30 contents ^

HOWTO - INKSCAPE
That effect is to get the SVG to

use the current font color from the

parent HTML page. We’ll use it for

the fill in this case, so that our

rectangle basically becomes a

giant color swatch displaying the

browser’s font color. To do this, we

simply have to replace the value of

the “fill” attribute with the

keyword “currentColor” (note the

spelling and capitalisation). Code is

shown top right on this page.

Reloading the page will most

likely show the rectangle filled

with black. What else were you

expecting? Black is the default

color for text in an HTML page if

you haven’t styled things

differently. But we can change that

by setting the CSS “color” property

on the <svg> element or, crucially,

one of its ancestors. For example,

let’s change the <div>:

<body>

<div style="color: red;">

<svg width="250"
height="250">

...

Now reloading the page in the

browser gives the result shown

below left.

You’d be forgiven for not

getting terribly excited by this, but

take a step back and think about

what you’ve achieved: you’ve set a

color inside your SVG content

based on a CSS value in your HTML.

Still not getting it? Let’s add an ID

to the <rect> element, then create

a couple more divs (below).

In case you hadn’t guessed, the

<use> element lets you re-use a

snippet of SVG elsewhere, by

referencing its ID in the fragment

identifier part of the URL in the

“href” attribute. In this case, we’re

referencing an element in the

same file, so we don’t need the full

URL – just the fragment identifier

(the ID preceded by a hash). So this

code just tells the browser to

render three copies of our <rect>,

<svg width="250" height="250">
<rect
x="6" y="6"
width="239" height="239"
ry="44"
fill="currentColor"
...

<div style="color: red;">
<svg width="250" height="250">
<rect id="rect1"
...

</rect>
</svg>

</div>

<div style="color: orange;">
<svg width="250" height="250">
<use href="#rect1" />

</svg>
</div>

<div style="color: green;">
<svg width="250" height="250">
<use href="#rect1" />

</svg>
</div>

full circle magazine #1 41 31 contents ^

HOWTO - INKSCAPE
but the CSS in each <div>,

combined with the use of

currentColor in the SVG, results in

some rather cubist looking traffic

lights:

Let’s put this to a more

practical use. How about icons for

a website? Here (shown right) I ’ve

created four icons, each in a

separate layer in Inkscape, and

given each layer a descriptive ID.

The details of the paths are

omitted for brevity. The “color”

attributes are removed, and the fill

or stroke color set to

“currentColor” as necessary. Then

the whole SVG block is hidden

using CSS in the <svg> element.

Now each individual icon in the

set can be displayed on the page

via a <use> element, with its size

and color set on the SVG element

that contains the <use>, or even on

a parent element above that – as

demonstrated with these couple of

sections (next page, top right) .

Of course the color could be set

at a much higher level on the page,

so it needs to be set only once for

the whole page – or you could use

CSS variables for the same effect.

Now a change to a single color will

alter all the icons used on your

page: you’ve just created a means

of applying a theme. Because the

CSS “color” property also affects

the text on the page, you can

ensure that your icons are kept in

sync with the text, whichever

theme is selected. As a

demonstration, suppose we use a

block like this several times (next

page, bottom right) .

For each copy of this block, we’ll

change the color values in the

<div>. A little extra CSS adds a

border that also has its color set to

“currentColor”, and for some of

the copies we’ll even put in a

“background” property to produce

an inverted look. Here’s the result

of a few minutes of copying,

pasting, and editing some CSS – all

with only a single copy of the SVG

icons, each referenced multiple

times:

<svg viewBox="0 0 4.23 4.23"
style="display: none;">
<g id="plus">
<path d="…"

fill="currentColor" />
</g>

<g id="cross">
<g fill="none"

stroke="currentColor"
stroke-linejoin="bevel"
stroke-width=".5">
<path d="..." />
<path d="..." />

</g>
</g>

<g id="home">
<g fill="none"

stroke="currentColor"
stroke-linejoin="bevel"
stroke-width=".5">
<path d="..." />
<rect x="1.63" y="2.42"

width=".98"
height="1.32" />

</g>
</g>

<g id="tick">
<path d="..."

fill="none"
stroke="currentColor"
stroke-linejoin="bevel"
stroke-width=".5" />

</g>
</svg>

full circle magazine #1 41 32 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys' , 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

HOWTO - INKSCAPE

I ’ll confess this trick of using

currentColor in SVG is a limited

one. The SVG has to be inlined with

your HTML, and you can change

only a single color. But, with a

cleverly designed SVG file, it’s

possible to give the impression of

something more sophisticated – by

masking the colored element with

a gradient, or using a filter to alter

the color, for example. There is

one interesting thing to note

about this technique: it will work in

Internet Explorer right the way

back to version 9! If you need to

theme some icons on a website,

but still need IE support (so no CSS

variables) , this might be just the

trick you need.
<div>

<svg viewBox="0 0 4.23 4.23"
style="color: red; width: 25px;">

<use href="#plus" />
</svg>

</div>

<div style="color: orange; width: 50px;">
<svg viewBox="0 0 4.23 4.23">
<use href="#cross" />

</svg>
</div>

<div style="color: red;">
Theme 1:
<svg viewBox="0 0 4.23 4.23">
<use href="#plus" />

</svg>

<svg viewBox="0 0 4.23 4.23">
<use href="#cross" />

</svg>

<svg viewBox="0 0 4.23 4.23">
<use href="#home" />

</svg>

<svg viewBox="0 0 4.23 4.23">
<use href="#tick" />

</svg>
</div>

http://www.peppertop.com

full circle magazine #1 41 29 contents ^

HHOOWW--TTOO
Written by Mark Crutch II nnkkssccaappee -- PPaarrtt 8822

Over the past few months,

you’d be forgiven for thinking

that this column has morphed

from an Inkscape tutorial to a more

general “SVG in HTML” series. In

practice, I ’ve been introducing a

little background knowledge

before delving into the (limited)

JavaScript features that are

already present in Inkscape. But

that requires just a little more

background information about

JavaScript itself, and its use in SVG

on the web…

JavaScript (JS) is the de facto

programming language used in

web pages. It’s an implementation

of a language called ECMAScript,

so you might occasionally see that

term mentioned. It’s nothing to do

with the Java programming

language – it just shares a similar

name thanks to someone in

marketing at Netscape many years

ago deciding that ‘brand

awareness’ was more important

than ‘avoiding decades of

confusion’.

Within a browser, JavaScript

gives you the capability to write

code that can modify the page and

respond to interactions initiated by

the user, or by external actions

such as some data being pushed

from a server. These triggers are

referred to as ‘events’, and will

form the core of the JS code we’ll

be writing in this series. The basic

approach is that we’ll use SVG to

draw something to the browser

window, then attach events to

monitor for clicks, mouse

movements, keypresses, and so on,

each of which then triggers some

JS code which can, in turn, modify

the SVG.

Because JavaScript can read

keypresses from the user, and can

talk to a server, it raises security

concerns. You could, for example,

use SVG to create a beautiful

image, but as soon as the mouse

moves over it, your JS could

redraw the image to look like a

legitimate username/password

box has opened on the screen.

Anything typed into the box could

be sent back to your server and

used for your own nefarious ends.

As a technically aware reader of

FCM, you may not be fooled by

such an obvious scam, but a huge

number of people will happily

enter their credentials into such a

dialog as an almost Pavlovian

response.

To prevent such attacks,

browsers limit the ability of SVG to

run JavaScript, depending on how

the SVG has been included in the

page. I ’ve talked about this

previously, but it’s worth

recapping:

SVG in an :

This is how images are usually

displayed in a web page, and is

used in countless bulletin boards

and social media sites. Because

anyone can upload any image,

there’s a huge potential security

hole, so JavaScript in SVG is

blocked entirely.

SVG as a CSS background-image:

Although less frequently used as a

way for users to upload images,

the code paths used in browsers

are pretty much the same for CSS

images as for elements, so

the previous rule still applies: no

JavaScript.

Inline SVG:

This requires the actual code of

the page to be edited, so it’s

assumed that the work is being

done by someone in a trusted

position, and therefore the

browser allows JavaScript.

SVG in an <object>

This is the W3C standard way to

include “foreign” content into a

web page – including Flash, Java

applets, and other potentially

dangerous code. As such, it’s

always had a more lax set of

security rules than , and no

sensible website developer allows

user-uploaded content to be

displayed in an <object>.

Therefore it’s considered to be

something that is added only by

someone in a trusted position, and

JavaScript is allowed.

SVG in an <iframe>:

Using an <iframe> has a simple

syntax, similar to an , but

still allows JavaScript like an

<object>. I tend to use <object> as

that’s the officially recommended

approach by the W3C, but there

are times when an <iframe> is a

full circle magazine #1 41 30 contents ^

HOWTO - INKSCAPE
better option.

There’s one final way to display

an SVG image in a browser which

doesn’t involve embedding it into

an HTML file in any way, and that’s

simply to load the SVG file directly.

For an SVG file on your local

machine, you can just press CTRL-O

and find it in the file selector. For

one sent by a web server, the

browser’s URL field just has to

point directly at the SVG image,

and the browser will load it in the

same manner as if you pointed

directly at a PNG or JPEG file…

…except it won’t. Not unless

the server has been configured

correctly. Which is a whole other

story of politics and pain in which

countless users and developers

suffer from an ideological

disagreement at a technical level.

Brace yourself, this is going to get

petty!

Serving an SVG file isn’t terribly

tricky. Your web server has to be

configured to send the right MIME

type (a header that tells the

browser what sort of file it’s

receiving) , but that’s usually a

small configuration change. If

you’ve got direct control over the

configuration of your server,

search online for some appropriate

terms (e.g. “Apache SVG MIME”),

and you should find suitable

instructions. If your server is

managed by someone else – such

as the typical case of a website

hosted by an ISP – first try putting

an SVG image onto your site and

accessing it, as there’s a good

chance the configuration has

already been done. If the file

appears as text, the browser tries

to save rather than display it, or

there’s a message suggesting the

browser’s treating it as an XML

document, you’ll need to raise a

support request with your host.

Where it gets more complex is

with SVGZ files – “compressed

SVG” in Inkscape’s terms. These are

literally just SVG files that have

been compressed using the Gzip

algorithm, and you can get the

same effect by using the gzip

program on your Linux box:

gzip -k image.svg

mv image.svg.gz image.svgz

The first line creates a gzipped

version of “image.svg” but doesn’t

overwrite the original file (due to

the -k switch). Gzip defaults to

simply appending “.gz” to the

filename, so the second line

renames the file to the standard

“.svgz” (this could also be done

directly with the “--suffix” switch

to gzip) . The resultant file can be

directly loaded into Inkscape for

further editing – it’s

indistinguishable from a

“compressed SVG” file saved from

Inkscape itself. On the surface,

SVGZ seems like a great format, as

it’s much smaller than an

equivalent SVG file, but you can

still open it in Inkscape, or even

convert back and forth from the

command-line if you do want to

edit the XML content by hand. The

problems come when you try to

put an SVGZ file online.

The W3C working group that

created SVG thought, quite rightly,

that defining a compressed form

of the format as part of the spec

would be a worthwhile addition,

especially back in 2001 when

storage space and bandwidth were

more expensive. Gzipping of

content on-the-fly was already a

standard feature of the web, so

browsers had decompression code

in place, making for an obvious

choice of algorithm. Unfortunately,

this is where an ideological divide

took place: rather than treat SVGZ

as a format in its own right, the

browser vendors opted to natively

support only uncompressed SVG.

But saying that is like stating

that browsers support only

uncompressed HTML or CSS. In

practice you can send any

supported format with on-the-fly

Gzip compression, provided your

web server correctly sets the

“content-encoding” header. This

also means that you can send a

pre-compressed SVGZ file if you

also provide that header – the

browser just thinks you’ve sent an

SVG file using on-the-fly

compression. Once again, search

online for the instructions for your

web server, or raise a support

request with your ISP if necessary.

The summary, therefore, is that

browsers don’t really support

SVGZ, but with the right server

configuration, you can trick them

into using those files nevertheless.

It also explains why you can’t load

an SVGZ file directly into your

browser from the local filesystem –

if the file doesn’t come from a web

server, there’s no “content-

encoding” header, and the browser

decides to play dumb. This

situation could easily be fixed if

browsers opted to treat SVGZ as a

first class file format, and

full circle magazine #1 41 31 contents ^

HOWTO - INKSCAPE
automatically unzip it even in the

absence of the header. But as the

situation is unlikely to change, I

recommend sticking with SVG files

and using on-the-fly compression

from your web server, rather than

trying to work directly with SVGZ

files.

Personally, I think the browser

vendors are wrong on this one.

JPEG images, for example, are

essentially just arrays of pixels that

are compressed using a “discrete

cosine transformation” (DCT)

algorithm. Yet browsers don’t

insist on a “content-encoding:

DCT” header to display a JPEG. The

philosophical difference between a

file that has been compressed

using Gzip by the server, and one

that has been natively stored in a

gzipped format, is a subtle one.

But the result is that users suffer

from the complexity and confusion

of not being able to directly load

an SVGZ file into the browser, even

though that format has been

explicitly sanctioned by the SVG

Working Group.

To begin our journey into the

world of Inkscape and JavaScript,

I ’ll assume that you are able to

load an Inkscape-created SVG file

into your web browser, either from

a web server or from the local

filesystem. Later on, we’ll look at

some differences that apply when

you use <object>, <iframe>, or

inline SVG, but, right now, let’s

keep things self contained in a

simple SVG file.

Remember those JavaScript

‘events’ I spoke of earlier? Let’s use

Inkscape to add some JS code that

listens for a “click” event – the

result of the user clicking on an

object in our image. Create a new

image, draw a simple object, then

right-click on it and bring up the

Object Properties dialog. At the

bottom of the dialog is a series of

fields, all with labels that start with

the word “on”. If they’re not

visible, you’ll need to click on the

“Interactivity” label to expose

them. In the “onclick” field, enter

the following JavaScript code:

alert('Clicked')

Save the file and load it into

your web browser. You should see

the object you drew in Inkscape.

Click on it to confirm that the

browser presents you with a dialog

that contains the word “Clicked”.

This type of dialog, referred to as

‘an alert’, is the simplest form of

output from JavaScript. You can

display only a single string, and you

can’t change the layout of the

dialog or the label on the button.

But writing even this most

simplistic of code is a useful first

step in any JavaScript application:

it proves that Inkscape, your

browser, and your web server (if

you have one) are all working as

expected, and it confirms that your

code can respond to mouse clicks,

which is a basic requirement for

almost any interactive site.

The single line of code you

wrote above does one thing: it

calls a function named alert() when

the user clicks the left mouse

button (or taps) on the object to

which you attached your code. The

function is given a single

parameter – a string containing the

word “Clicked” – which it displays

on the screen in a dialog. Let’s see

how that code in Inkscape

manifests itself in the SVG file.

Open the SVG file in a text edito

and, towards the bottom of the

file, you should find something

similar to the code shown on the

next page, top right.

full circle magazine #1 41 32 contents ^

HOWTO - INKSCAPE

You might have a different

element than a <rect>, depending

on what you drew – and therefore

may have other attributes (the “rx”

and “ry” attributes govern the

roundedness of a rectangle’s

corners, for example). I ’ve also

significantly abbreviated the

“style” attribute. But the thing to

note is the “onclick” attribute,

which contains the JavaScript we

typed into the dialog in Inkscape

earlier.

It’s worth getting familiar with

the way that your JS appears in the

file. Whilst the single-line text

boxes in Inkscape are okay for

typing very short amounts of code,

if you need something even

slightly more substantial, it’s often

easier to edit the SVG directly.

Here’s a modified version of my

object (with extraneous attributes

omitted), to show how you might

deal with multiple lines:

With those edits in place and

saved, reload your page, and click

on your object again. This time you

should see a series of three alerts.

Unfortunately, edits made like

this don’t reflect well back in the

Inkscape UI . Your three lines will be

present, but all put onto a single

line, and with any white space that

you used to align them included in

the line. Generally it’s easiest to

edit code in either a text editor, or

in Inkscape, but not to go back and

forth between them.

As you’ve guessed from the

Inkscape UI , there are other events

you can react to. But, in most

cases, using the alert() function

will prevent you testing correctly.

Consider trying the onmousemove

option, which is supposed to fire

events continuously as your mouse

moves over your object: as soon as

your mouse moves over the object

you’ll get an alert which you’ll need

to dismiss before you can continue;

then another, and another, each

time your mouse moves over the

object, with you having to manually

dismiss each one in turn. Hardly

the constant stream of events you

were interested in.

Back in the dim and distant

past, debugging by throwing up

alert messages was the de facto

way to develop with JavaScript,

but, thankfully, the tools have

moved on a lot since then. Modern

desktop browsers all have a

developer toolbox which you can

usually open by pressing F1 2.

There are a variety of tools in here,

but the one we’re interested in is

the console – there should be a tab

for it somewhere near the top of

the toolbox. In Inkscape try adding

a console.log('Mouse moved') call

to the onmousemove section of

the object properties:

<rect
style="fill:#ff0000;..."
id="rect12"
width="142.11905"
height="101.29762"
x="14.363094"
y="19.565475"
onclick="alert('clicked')"
ry="11.49259" />

<rect
...
onclick="alert('clicked');

alert('A second alert');
alert('Note the semicolons!');"

ry="11.49259" />

full circle magazine #1 41 33 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys' , 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

FULL CIRCLE
WEEKLY NEWS

Join our hosts Wayne and

Joe as they present you

with a short podcast

(~1 0min) with just the news.

No chit-chat. No time

wasting. Just the latest

FOSS/Linux/ Ubuntu news.

RSS:

http://fullcirclemagazine.

org/feed/podcast

HOWTO - INKSCAPE

Now, with the file saved and the

developer console open, reload

your file in the browser. Clicking

should throw up an alert, as

before, but moving the mouse

around over your object should

generate a stream of messages in

the console. Actually you’re likely

to only see one message, plus a

count to the right of the console

indicating how many times the

message has been logged. This is a

convenience in modern tools to

avoid filling your screen with

duplicate messages. If you really

want to see them streaming by,

you can add a random number to

your log entry so that each one

becomes unique:

console.log('Mouse moved',
Math.random())

This demonstrates another

huge advantage of console.log()

over alert() – you can give it

multiple parameters, and they

don’t all have to be strings.

That’s a very basic start to

adding some interactivity to an

Inkscape file. We’ll be exploring

this topic a lot more over the

coming months, so please do try

the simple exercises above so that

you’ve got a good basis to build on

as we make our events do more

interesting things than just

printing some text to the screen.

A BLATANT PLUG!

Mark and his colleague Vince

have been using Inkscape

and MyPaint to create the monthly

Elvie cartoon strip, first in Linux

Voice, then in Linux Magazine

(Linux Pro Magazine in the US), for

five years now. To celebrate this

anniversary, Mark has written an

article in issue #220 of Linux (Pro)

Magazine which describes the

process they use in some detail. If

you’re interested in reading about

the practicalities of creating a

cartoon using FOSS, this issue

should still be current by the time

FCM#1 42 comes out, but it’s also

available to buy as a digital edition

from http://www.linux-

magazine.com/

http://www.peppertop.com
http://fullcirclemagazine.org/feed/podcast
http://www.linux-magazine.com/

full circle magazine #1 43 33 contents ^

HHOOWW--TTOO
Written by Mark Crutch II nnkkssccaappee -- PPaarrtt 8833

Last time, we looked at some

very basic JavaScript to alert or

log a message when you click on an

object in your drawing, or move

the mouse over it. The one-line

boxes in the object properties are

okay for such short snippets of

code, but you wouldn’t want to

write anything too complex in

there. Instead, Inkscape has a

couple of other mechanisms for

using larger amounts of code in

your page: embedded scripts and

external scripts.

Both of these features live in

the Document Properties dialog,

so open that first (File > Document

Properties, or CTRL-SHIFT-D), then

switch to the “Scripting” tab.

Within that area are two other

tabs; in this article we’re going to

look at the second one,

“Embedded scripts”.

In my opinion, there are a few

issues with the UI in this dialog.

You might think you can just go

ahead and type some JavaScript

into the “Content” section, but

that won’t actually create anything

in your file. Instead you must first

either select an existing entry from

the “Embedded script files”

section, or create a new one using

the “+” button and then select it. I

don’t know why the Content

section isn’t disabled until

something is selected, nor why a

newly created entry isn’t selected

by default, but so long as you

remember that anything typed

into the bottom section will be lost

unless there’s an entry selected in

the top, you’ll be okay.

Let’s create a new entry by

clicking the “+” button, then select

it and enter a little JavaScript into

the bottom. We’ll just call the

alert() function a couple of times

at this point.

Note that our alert() calls finish

with semicolons, so the JavaScript

interpreter knows where one

statement ends and the next

begins. Save your file, and open it

directly in a web browser. You

should immediately see two

messages appear, even before the

content of your document is

rendered. JavaScript statements

entered like this – outside of any

function – are part of the global

scope, and are executed as soon as

the file is loaded.

Now repeat the process to

create a second embedded script

file, with similar alert() calls, but

the message changed to ‘Second

embedded script…’. Save your file,

and reload it in your web browser

(F5). You should see four messages

displayed in succession – but, if

you read the details, you’ll notice

that the ones from your second

script are displayed first! This is

something to be very careful with:

the scripts appear in the XML file,

and are therefore processed by the

browser, in the order they appear

in the list, not in the order you

created them. In another UI faux-

pas, however, it’s not possible to

re-order the scripts in this dialog.

One way around this problem is

to just use a single embedded

script, and manually reorder your

lines in the Content box. Multiple

scripts are all just concatenated

together by the browser anyway,

so whether you use a single script,

or a hundred, it doesn’t matter

from a JavaScript perspective.

Note, however, that the Content

box is a little short, and can’t be

resized (another UI fail) . If you

want to put a lot of code into your

file, then, being able to see only a

tiny sliver of it at a time will make

it rather difficult to work on.

Usually, the ordering of the

scripts isn’t too much of a problem,

as JavaScript code is typically

arranged into functions. The order

in which the code executes then

depends on the sequence in which

the functions are called, not the

order they appear in the file. This

full circle magazine #1 43 34 contents ^

HOWTO - INKSCAPE
also goes some way to explaining

why the fields in the Interactivity

section of the Object Properties

dialog allow only a single line of

code: typically they have to make

only a single call to execute a

separate multi-line function. As an

example of this, let’s use a

function in an embedded script to

change the fill color of an object

when it’s clicked on.

In a new file, create a simple

object – a square or circle – with a

visible stroke and an obvious fill

color. I ’ve stuck with the red

rounded rectangle I used last time.

Now create a new embedded

script file, with the following

content:

function change_to_blue(elem)
{
elem.style.fill = 'blue';

}

We’ve created a function

named change_to_blue() which

takes a single parameter that

we’ve chosen to call “elem” as it

represents a single XML element in

your file. This parameter will be a

reference to the object you click

on, and the body of the function

just sets the fill color on that

object to “blue” (a valid CSS color

name). By putting our fill change

inside a function we prevent it

from running as soon as the page is

loaded. Instead we have to

explicitly call it from somewhere

else in our file. That somewhere

else is the “onclick” field of the

Object Properties dialog, which I

covered last time. To call our

function, we simply have to invoke

it by name, but we also need to

pass a reference to the object you

clicked on. JavaScript has a

keyword, “this”, which means

different things in different

contexts – but in the case of a

simple event handler like this, it

gives us the reference we need.

Therefore the line to put into the

onclick field is this:

change_to_blue(this);

Save and reload your file, then

click on your red object. It should

turn to blue. See, interactive SVG

isn’t so tricky after all!

Try creating more objects, each

with a different fill color, but each

with the same line in their onclick

field. Notice that clicking each one

changes the color of only that

specific element, thanks to the

“this” keyword.

Rather than just set the color to

blue, how about creating a toggle

between two colors each time the

object is clicked. The code’s pretty

straightforward: we just test to see

if the fill color is currently ‘blue’

and, if so, set it to ‘red’. Otherwise

we explicitly set it to blue. Here’s

the code:

function change_to_blue(elem)
{
if (elem.style.fill ===

'blue') {
elem.style.fill = 'red';

} else {
elem.style.fill = 'blue';

}
}

I f you’re not familiar with

JavaScript, be particularly aware of

the ‘===’ in the ‘if’ statement: this

triple equals means “are both the

value and the type of the variable

identical?” It’s a more robust check

than double equals (“are the values

effectively the same, even if the

types are different”) , and is not the

same at all as a single equals,

which is used for assigning a value

to a variable, not for testing it.

This new code is all well and

good, but it would be better still if,

instead of simply toggling between

blue and red, we toggled between

blue and whatever color the object

previously had. To do this we need

to store the old value of the fill

color before we change it to blue,

then use that stored value when

we turn it back again. Fortunately

for us, the “elem” reference that is

passed in (“this” on the calling

element) is a JavaScript ‘Object’

(not the same as an object you

draw in Inkscape), which can hold

additional custom properties. We’ll

dynamically create a new property,

called ‘previousFill’ to hold the

value of the fill just before we

change it. Our toggling code

becomes this:

function change_to_blue(elem)
{

if (elem.style.fill ===
'blue') {

elem.style.fill =
elem.previousFill;

} else {
elem.previousFill =

elem.style.fill;
elem.style.fill = 'blue';

}
}

In the “else” section we store

the old fill in our ‘previousFill’

property; in the “if” section we use

that value instead of the string

“red”. Strictly speaking, we should

probably also rename the function

to toggle_fill() or something

similar – but that suggests we

could toggle to a color other than

blue, which the code doesn’t do at

full circle magazine #1 43 35 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys' , 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

HOWTO - INKSCAPE
the moment.

Let’s extend it a little further so

that we can toggle to a different

color. By taking an optional second

parameter we can let the calling

code determine what the toggle

color should be, but still fall back

to blue as a default. The toggling

code becomes this:

function toggle_fill(elem,
color) {
if (color === undefined)

color = 'blue';

if (elem.style.fill ===
color) {

elem.style.fill =
elem.previousFill;
} else {

elem.previousFill =
elem.style.fill;

elem.style.fill = color;
}

}

Note that we test the color

variable to see if it’s the special

value ‘undefined’. Note that this is

a primitive type in JavaScript, like

‘Number’, ‘String’ or ‘Object’, so

we’re testing to see if color is this

special type, not testing to see if

it’s a string containing the word

“undefined”. That’s why there are

no quotes around the word in the

code.

Whenever a parameter is

missing in a function call, the

corresponding value in the

receiving function is given a value

of ‘undefined’. By explicitly testing

for this, we can therefore decide

what to do if the parameter is

omitted – in this case use a default

value of ‘blue’ instead. There are

various ways to handle missing and

default parameters in JavaScript,

but this particular syntax is clear,

robust, and works even in older

browsers.

With this default value in place,

the calling code can be any one of

these examples:

toggle_fill(this);
toggle_fill(this, undefined);
toggle_fill(this, 'yellow');
toggle_fill(this, 'red');

This toggle_fill() function can

therefore work with just a single

parameter – in which case ‘color’ is

undefined and gets set to ‘blue’ –

or with two parameters. If the

second parameter is explicitly set

to ‘undefined’ then it’s the same as

using just one parameter;

otherwise the value will be used to

set the fill color. But see how

already, with only a short function

like this, we’ve exceeded the

number of lines in the Content box

in Inkscape. I hope you like coding

through a letterbox!

Although this function is a lot

more flexible than our original

creation, you should be aware that

not all valid CSS colors will work in

this type of code: rgb() values

might get returned by the browser

as hexadecimal strings, for

example, or the it might change

the case, either of which will stop

the equality test from working.

Code like this, which makes

assumptions about data without

testing those assumptions

rigorously, is fragile and easily

broken. But writing this code in a

less fragile way isn’t easy, and is

certainly outside the scope of this

tutorial series. For now you can

play around with the code just to

get a feel for embedding

JavaScript into your SVG files. Next

time, however, I ’ll show you how to

use CSS classes, in conjunction with

JavaScript, to make toggling fill

colors (and other styles) far more

robust.

http://www.peppertop.com

full circle magazine #1 44 23 contents ^

HHOOWW--TTOO
Written by Mark Crutch II nnkkssccaappee -- PPaarrtt 8844

This month, we’re going to look

at using CSS classes with your

SVG in order to simplify the

JavaScript you have to write when

you want to change the style of

your objects interactively. Note

that we’re still talking only about

changes that can be achieved using

CSS styles – fill and stroke colors,

line thickness and similar.

Changing other aspects of your

objects – such as the shape of a

path – can’t be done simply by

using CSS classes.

First of all, what is a CSS class?

In short, it’s simply a way to group

similar objects for styling

purposes, by giving them all the

same class name. Consider this

super simple SVG file, consisting of

one red rectangle (top right) .

You’ve seen previously that we

can remove the values in the ‘style’

attribute and put them into a

<style> block elsewhere in the

document (bottom right) .

The <style> block contains CSS

declarations, consisting of a ‘CSS

selector’, followed by a number of

rules that will be applied to any

elements in the file that match the

selector. In this case, the selector is

just the word ‘rect’, meaning that

the rules applied here will match

any <rect> elements in the file.

Alternatively, we could use the id

of an element, prefixed with a

hash character, to make the rule

apply to only the single element

with that id:

<style>
#rect1 {

fill: #ff0000;
...

We could also add a ‘class’

attribute to the element, then use

the class name, prefixed with a

dot, as the CSS selector (bottom

left) .

In this case, I ’ve used the class

name ‘important-thing’, since the

styling of a red fill with dark red

background suggests this might be

<svg xmlns="http://www.w3.org/2000/svg">
<rect
id="rect1"
width="150"
height="100"
x="15" y="20"
style="fill: #ff0000;

stroke:#800000;
stroke-width:10;"

/>
</svg>

<svg xmlns="http://www.w3.org/2000/svg">
<style>
rect {
fill: #ff0000;
stroke:#800000;
stroke-width:10;

}
</style>

<rect
id="rect1"
width="150"
height="100"
x="15" y="20"

/>
</svg>

<svg xmlns="http://www.w3.org/2000/svg">
<style>
.important-thing {
fill: #ff0000;
stroke:#800000;
stroke-width:10;

}
</style>

<rect
id="rect1"
class="important-thing"
width="150"
height="100"
x="15" y="20"

/>
</svg>

full circle magazine #1 44 24 contents ^

HOWTO - INKSCAPE
used to indicate important

elements. But the class can be

anything you like, provided you use

only alphanumerics, underscores

and hyphens. Note that you can’t

use spaces in class names, for

reasons that will become clear

later.

In this example file, we’ve not

really gained much by using

classes. The end result is the same

whether we use a style attribute,

or any of the three CSS selectors

we’ve looked at, because there’s

only one element in the file that

can be affected. But what if we

were to add a second element to

our file:

<circle
id="circle1"
class="important-thing"
cx="250"
cy="70"
r="50"

/>

This is a different type of

object, so styling it through a

<style> using the element selector

‘rect’ won’t work. It has a different

id (as it must, because ids have to

be unique in an XML document), so

an id selector won’t work either.

But classes don’t have to be

unique, so we’ve given this circle

the same class as our earlier

rectangle. Here’s the result, two

objects sharing a single style:

It’s important to note that any

styles you wish to set using a

<style> block must not be present

in the XML of the object itself. The

inheritance rules of CSS dictate

that styles set directly on elements

usually take precedence over those

set elsewhere. But this does give

us the ability to override styles on

individual elements. If we want a

different fill color on the circle, we

can simply set it in the style

attribute, but still inherit the

stroke width and color via the

class:

<circle
id="circle1"
class="important-thing"
style="fill: blue;"
...

You can, of course, have

multiple classes defined in the

<style> section of a file – but you

can also apply multiple classes to a

single object, by listing them all in

the ‘class’ attribute, separated by

spaces (the reason why class

names themselves can’t contain

spaces). Suppose we were to add

another class, then modify the

attribute for the rectangle:

<style>
...previous styles...

.black-dashes {
stroke: black;
stroke-dasharray: 15,10;

}
</style>

<svg ...>
<rect

id="rect1"
class="important-thing

black-dashes"
...

As you can see, the ‘important-

thing’ class has been applied,

giving the rectangle a red fill, but

the ‘black-dashes’ class has

overridden the stroke. It’s vital to

understand that the ‘black-dashes’

overrides the other style because

it’s declared later in the <style>

block, not because of the order in

which they’re put in the ‘class’

attribute. On the one hand, this is a

limitation, in that you can’t trivially

change the order in which the

classes apply by modifying the

attribute – but on the other hand it

does mean that you can

programmatically alter the content

of the class attribute more easily,

as you don’t have to worry about

preserving the existing order.

Unfortunately, Inkscape doesn’t

have any native support for

creating and modifying CSS

classes. Any edits you make to an

element will be applied directly to

its own ‘style’ attribute, or to other

attributes directly on the element.

Such changes won’t delete or

change your <style> block, and

won’t alter the ‘class’ attribute on

the element, so at least Inkscape

doesn’t completely destroy any

manual edits you’ve applied. But,

as we’ve seen, values set directly

on an element will take priority

over those applied via a class, so

you can easily end up in a situation

where your classes no longer

appear to have any effect. For this

reason, I recommend doing any

full circle magazine #1 44 25 contents ^

HOWTO - INKSCAPE
work with classes in a text editor,

rather than Inkscape, and making

those changes as late in the design

process as possible. Ideally you

won’t have to re-open your

document in Inkscape at all, but, if

you do, take care not to change

the styles of any elements that you

expect to control using classes – or

at least be prepared to re-edit the

files in your text editor afterwards.

JavaScript offers a few ways to

work with CSS classes, but by far

the easiest is the ‘classList’

property. This has add() , remove() ,

toggle() , replace() and contains()

methods that handle all the corner

cases and error handling for you.

You can add() a class without

having to check if it’s already

there. You can remove() a class and

the code won’t throw an error if

the class doesn’t exist. The

toggle() method will add the class

if it’s missing, or remove it if it’s

present, which can simplify the

code for basic on/off styling. You

can use replace() , as the name

suggests, to swap one class for

another, and contains() does a

search of the class attribute to tell

you whether or not the name you

supply is already present.

Let’s finish up by using some of

these methods in a new Inkscape

drawing. First create a few objects

whose classes you wish to alter: for

this demo I ’ll have three buttons to

demonstrate some different

approaches to the problem of

toggling between two states.

After saving, it’s safest to close

Inkscape before opening the SVG

file in a text editor to make the CSS

edits. In this case, we first want to

add a couple of classes that will

contain the styles we wish to

switch between. For this demo,

each one will contain only a fill

color, and I ’ll add a third class for

the stroke. Because the stroke

won’t be changing when we toggle,

I don’t really need to add a class for

it at all, but it helps to

demonstrate that the classList

methods work even when there’s

more than one class applied. Here’s

the code that gets added after the

opening <svg> tag:

<svg ...>
<style>

.red { fill: #ff0000; }

.blue { fill: #0000ff; }

.black-stroke {
stroke-width: 2;
stroke: #000000;

</style>
...

Now we need to find each

<rect> in the file and remove the

fill, stroke and stroke-width

properties from the ‘style’

attribute (or remove the

corresponding attributes, if

Inkscape has been configured to

use presentation attributes rather

than CSS styles) . If you save the file

at this point, and re-open it in

Inkscape, you should see that the

buttons now have an unset fill and

stroke, with a default stroke width

of 1 . Quit Inkscape without making

any changes.

Back in the text editor, add a

‘class’ attribute to each <rect> so

that they use the classes defined

above for one of the fill colors, and

the stroke. Here’s an abridged

example of how one of them might

look:

<rect
style="display:inline; ..."
id="rect10"
class="red black-stroke"
...

/>

At this point, Inkscape still

claims the rectangles have an

unset fill and stroke. But we can

preview our work by opening the

file in a web browser, which

honours the class and style work

we’ve done, and displays our

buttons with a red background and

thick black border. We could add

the script directly in the SVG file

with a text editor but, since this is

an Inkscape column, that’s where

we’re going to add our JavaScript

code. Just take care not to change

any styles when you open the file.

With the file open in Inkscape,

we’ll need to add an onclick

handler to each element. Our first

example is going to be a simple

one-liner that just toggles the

‘blue’ class on and off. Because of

the inheritance model in CSS, this

will have the effect of overriding

the ‘red’ class, so toggling will

switch from red to blue and back.

Right-click on the first button,

select ‘Object Properties’ and

expand the ‘Interactivity’ section

of the dialog. In the ‘onclick’ field,

full circle magazine #1 44 26 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys' , 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

HOWTO - INKSCAPE
type this:

this.classList.toggle('blue')
;

You can save the file, load it in a

web browser, and confirm that it

works, if you wish. For our second

and third options we want more

than just a single line of code, so

we’ll create a pair of functions as

embedded scripts. We’ll call them

‘toggle1 ’ and ‘toggle2’, and pass

‘this’ as a handle to the element

that was clicked on. Add this line to

the ‘onclick’ field in the object

properties for the second button –

and add an equivalent for ‘toggle2’

to the third button:

toggle1(this);

That’s the code to call the

functions when the buttons are

clicked, but now we need the

functions themselves. Open the

Document Properties and select

the Scripting > Embedded Scripts

tab. Click the ‘+’ button to add a

new script, select it from the list,

and put the toggle1 function in the

Content area (top right) .

Here (bottom right) is the code

for toggle2. You can either add this

function after toggle1 , or put it

into a separate script section by

clicking the ‘+’ and selecting the

new entry.

Save the file, open it in your

browser, and you should be able to

click each button to toggle it from

red to blue.

Look back over the code, and

try to understand the differences

between these three approaches.

The first is the simplest, and will

work in most cases where you just

have to turn a class on or off from

a single location in the code. The

second is more useful if there are

other bits of code that could

interfere with the content of the

class attribute, as the extra check

to confirm if it currently contains

the class or not makes it more

robust. The third method is rarely

used, but might be handy if you

need to replace an entire class to

avoid inheriting any properties

from it. Usually I ’d recommend

reorganising your classes to avoid

this problem, but the replace()

method is worth knowing about in

case that’s not an option.

You may notice that clicking on

the text, rather than the

background, of the button does

not cause the class toggle to occur.

Furthermore the text is still

selectable, which is not something

you would usually want in a button.

Next time we’ll take a look at these

issues to see how we can make a

click on one object affect a

completely different one.

function toggle1(elem) {
if (elem.classList.contains("blue")) {
elem.classList.remove("blue");

} else {
elem.classList.add("blue");

}
}

function toggle2(elem) {
if (elem.classList.contains("blue")) {
elem.classList.replace("blue", "red");

} else {
elem.classList.replace("red", "blue");

}
}

http://www.peppertop.com

full circle magazine #1 45 29 contents ^

HHOOWW--TTOO
Written by Mark Crutch II nnkkssccaappee -- PPaarrtt 8855

A quick recap on where we got

to last time: using CSS classes,

we were able to toggle the style of

a button by clicking on it. But it

worked well only for a simple

button with no content. If you

clicked on the text inside the

button, the toggle wouldn’t work.

And you were still able to select

the text, which is less than ideal

for a button. What we really want

to do is to group together several

objects, and have a click on any of

them act as a trigger for the

button. And, with a little more CSS,

we can deal with the selectable

text issue, too. So let’s begin in

Inkscape, by designing a fancier

button…

This button is made up of four

objects, each of which has a solid

fill color so there are no stroke

colors to worry about. When
toggled, we’d like to change the

background and text colors, and

give the impression of the button

being ‘pressed in’ by making the

top/left object dark and the

bottom/right one light. We can

therefore draw up a small table

showing the type of each object

and the colors it will adopt in each

state.

We’re going to put the entire

button into a single group. This

isn’t strictly necessary, as

Inkscape’s layers are already SVG

group objects, but does make it a

little easier to work with if we

want to add more than one button

(or other objects) to a single layer.

Now it’s time to set up the CSS

classes. The basic idea is that we

will give the outer group a class of

‘button’, and then toggle an

additional ‘clicked’ class on and off

using one of the techniques from

last time. Let’s start by looking at

the structure of the button, as

created by Inkscape, but with most

of the attributes removed for

clarity:

<svg>
...
<g inkscape:label="Layer

1">
<g id="g972">

<rect id="rect10" />
<path id="path31" />
<path id="path874" />
<text id="text958">

<tspan
id="tspan956">CLICK
ME</tspan>

</text>
</g>

</g>
</svg>

full circle magazine #1 45 30 contents ^

HOWTO - INKSCAPE
I t’s all pretty much as you might

expect: a <g> (the layer in

Inkscape) containing a <g> (our

button) which contains the four

objects from the table above.

There’s a slight oddity in terms of

the <text> object containing a

<tspan>, but that’s just down to

the way SVG handles text. If we

had multiple lines of text in our

button, this might make more

sense, as all the lines would then

be separate <tspan> elements

contained within a single <text>,

but, even with only one line,

Inkscape still uses a <tspan> even

though it’s not strictly necessary.

To keep the CSS a little clearer,

it’s best to change the IDs of some

objects, or give them classes to

better describe what they do.

Otherwise, trying to remember

which <path> is which at some

point in the future becomes a

problem. I tend to use classes for

these sorts of labels, so they can

be reused in other parts of the file

as well. After all, you might want a

second button to also have a ‘top-

left’ path, so using that string as an

ID would become prohibitive

(remember, IDs have to be unique

in a document, classes don’t) .

With the addition of a class for

the button group, and one each for

the paths, we’ve basically got this

structure:

<g class="button">
<rect />
<path class="top-left" />
<path class="bottom-right"

/>
<text>
<tspan>CLICK ME</tspan>

</text>
</g>

Now it’s time to add our CSS

rules. We’ll use the immediate child

selector (>) to ensure that these

rules apply only to elements inside

our button, so there’s no danger of

all the text in the document

becoming blue. Compare these

rules with the table earlier in this

document and you should be able

to see what they’re doing:

<svg>
...
<style>
.button > rect {
fill: #000080;

}

.button > .top-left {
fill: #ffffff;

}

.button > .bottom-right {
fill: #00002e;

}

.button > text {
fill: #a6a6ff;

}

</style>

<g inkscape:label="Layer 1">
...
</g>
</svg>

Don’t forget to also remove any

explicit fill and color properties in

the ‘style’ attributes of your

elements (including the <tspan>),

so that the CSS rules you’ve added

aren’t overridden. If you load the

image into a web browser, it

should look the same as the

original version in Inkscape. If

you’re not sure that your styles are

working, or that you’ve removed all

the overriding properties on the

elements themselves, try

temporarily changing the colors in

the CSS to other values and

confirm that it has an effect when

you reload the page.

Take a careful look at each CSS

rule to make sure you understand

what’s happening. Pay particular

attention to the difference

between an element selector (eg.

‘rect’) and a class selector (with a

dot – eg. ‘.button’) . So, in this case,

‘.button > rect’ (matches any

<rect> that is an immediate child

of an element with the ‘button’

class) , and ‘.button > .top-left’

(matches any element with the

‘top-left’ class that is an immediate

child of an element with the

‘button’ class) . Spotting the

difference between a class, ID, and

element can be tricky. The syntax

for CSS is excessively terse, and

less than obvious if you’re not used

to it, but it’s the language we’re

stuck with so we’ll have to make

the most of it.

If everything is working okay at

this point, it’s time to add another

set of rules that will apply when

the <g> has both the ‘button’ and

the ‘clicked’ classes set. In this

case, you just have to concatenate

the class selectors – but make sure

not to add any spaces between

them, as that signifies an ancestor-

descendent relationship. Yeah, the

syntax of CSS really is that terse.

Here’s an example of the

additional rule for the <rect>,

complete with the new color from

the table earlier in the article. I ’ll

leave it as an exercise for the

reader to create the remaining

three CSS rules.

.button.clicked > rect {
fill: #800000;

}

You can test your new CSS rules

by manually adding an extra

full circle magazine #1 45 31 contents ^

HOWTO - INKSCAPE
‘clicked’ class to the group (so that

it reads class="button clicked") ,

saving the file, and reloading the

page. Remove the extra class and

save again before proceeding.

Open the file in Inkscape and

select the group that represents

the button. In the Object

Properties dialog, expand the

‘interactivity’ section and add the

following one-liner to the ‘onclick’

field (this should be familiar from

last month’s column):

this.classList.toggle('clicke
d');

Save your file, load it into your

browser and, if everything has

gone smoothly, you should find

that clicking on your button

toggles it between the two states.

One advantage of wrapping

everything in a group, and applying

the code to that outer layer, is that

clicks on any part of the button are

passed through to the enclosing

element. This avoids our previous

problem whereby clicks on the text

didn’t toggle the button. But we

still have an issue with the text

being selectable. We can address

this with the ‘pointer-events’ CSS

rule, which lets us tell the browser

that all mouse activity over the

text – including clicks and selection

– should be ignored. Modify your

first set of rules so that the last

one looks like this:

.button > text {
fill: #a6a6ff;
pointer-events: none;

}

That deals with the selectability

problem, but we can go a step

further in making our button seem

clickable. By adding a ‘cursor’

property to the group itself, we

can make the mouse pointer

change when it moves over the

button. Add this rule to the CSS:

.button {
cursor: pointer;

}

Save, reload, and move your

mouse pointer over the button to

see the effect.

Previously, I said I would show

you how to make clicks on one

element have an effect on a

completely different one, but I ’ve

run out of space in this article, so

that will have to wait until next

time. Until then, however, you now

know how to use CSS classes to

style more complex collections of

objects, allowing for the creation

of much fancier buttons. You also

know how to respond to clicks in

such a collection simply by putting

the code onto a group that wraps

all the content.

Why not spend the next month

designing ever more impressive

buttons? There are plenty of

tutorials online for different styles

if you’re stuck for inspiration. You

don’t just have to make them

toggle when clicked: a common

effect is to apply a class in the

‘onmouseover’ field, and remove it

in the ‘onmouseout’. You could

even go the whole hog and create

a button that has both a

mouseover effect and a click

effect. And next time, I promise, I

will show you how to hook your

new buttons up to other elements

on your page.

Mark uses Inkscape to create three
webcomics, 'The Greys' , 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

http://www.peppertop.com

full circle magazine #1 46 28 contents ^

HHOOWW--TTOO
Written by Mark Crutch II nnkkssccaappee -- PPaarrtt 8866

I f you followed last month’stutorial, you should now have a

styled button that toggles

between two classes when you

click on it. This month, we’re going

to extend the code behind that

button to control other objects on

the screen, so if you didn’t play

along with the previous article,

now is the time to go back and give

it a try.

We’ve previously looked at two

ways to put JavaScript into an

Inkscape file: directly in the fields

within the “Interactivity” section of

the Object Properties dialog; and

via the “Embedded scripts” tab in

the “Scripting” section of the

Document Properties dialog. You

may recall that the latter location

also includes a second tab, labelled

“External scripts”. This month we’ll

take a look at that tab, and discuss

the pros and cons of this approach.

First, load the SVG file for the

button that you created last time

into Inkscape. Then open the File >

Document Properties dialog, and

select the “Scripting” tab. Within

that section make sure the

“External scripts” tab is active.

As with the “Embedded scripts”

tab, the UI here is sparse and

slightly misleading. At the top is an

excessively short area that lists any

external script files linked to from

your document – it should be

empty at the moment. Below that

is an unlabelled line, with Plus (+)

and Minus (-) buttons after it, the

latter being disabled at this point.

As the name of the tab suggests,

this UI is used to link external

scripts – i.e. JavaScript code stored

in a separate file – to your SVG file.

You have probably also guessed

that the Plus button adds a file to

the list above, whilst the minus

button removes it. What isn’t so

clear is that the Plus button

actually works in three different

ways, depending on the content of

the unlabelled field, and whether

or not your JS file exists yet.

Method 1 : I f you just click on

the Plus button, you’ll be

presented with a file selector

dialog. You can then navigate to

the directory of your choice and

enter a new filename into the file

selector. When you accept the

content of the file selector (e.g. by

clicking the “Open” button), the

full path and name of your file will

appear in the list at the top of the

dialog. NOTE: This does not

actually create the file on-disk, so

you’ll need to do that manually,

opening up the possibility of typos.

Method 2: This is the same as

the previous method, except this

time you use the file selector to

choose a file that already exists.

Once again, the full path to the file

is put into the list at the top. This

has the advantage over the

previous method that you can’t

make a typo with the filename.

Method 3 : Type something into

the unlabelled box, then click the

Plus button. Whatever you typed

will be added to the list of files at

the top of the dialog. Of course, it

only really makes sense to type the

name (and possibly path) of a

JavaScript file, but this field does

no error checking so typos and bad

paths are all too easy to introduce.

You might think that the third

method is to be avoided – the

possibility of making a typo is too

high. But, in practice, this is the

only method of the three that I

recommend using! In just about

every case, you will want to keep

the JavaScript file close to your

SVG file: if not in the same

directory, then usually just one

level away in a “scripts” or

“resources” folder. The third

method lets you supply just the

filename, or a relative path and

filename (eg. ‘scripts/button.js’) ,

which will still be valid if you move

your SVG and JS files to another

machine, or a different location on

your hard drive.

The first two methods, on the

other hand, produce absolute

paths which will break as soon as

the files are moved. And you can’t

edit the paths within this dialog –

you have to modify them via the

XML editor. So not only is there a

full circle magazine #1 46 29 contents ^

HOWTO - INKSCAPE
chance of introducing typos as you

edit them, but you have to be

comfortable with using the XML

editor to do so. Better, I think, to

use method 3 and just be careful

with what you type.

To keep things simple, let’s

create a new JavaScript file in the

same directory as the main SVG

file. Using a text editor, create a

new file containing the following

line:

alert("Loaded");

Save the file to the same

directory as your SVG image, with a

“.js” extension. In my case the

Inkscape file is called “button.svg”,

so I ’ll give the JavaScript file the

name of “button.js” for clarity,

though it’s not a requirement for

them to share the same name.

Back in the Document Properties

dialog, I can now type the filename

(with no path) into the unlabelled

text field, then click the Plus

button to add it to the list at the

top, so the dialog looks like this:

If everything has been done

correctly, loading the SVG file into

a browser should result in an alert

being shown containing the word

“Loaded”. That, at least, tells us

that the link from SVG to JS files is

working. It’s better to do a

lightweight test like this first,

before fleshing out your JavaScript

code, to make sure the basics are in

place.

We want our button to control

another object when it’s clicked –

which will be a lot easier if we

actually have another object to

control! In Inkscape, alter the file

to add a simple filled circle, making

sure to give it a sensible ID via the

Object Properties dialog (I called

mine “redCircle”) .

Right-click on the button, and

bring up the Object Properties

dialog. Within the “Interactivity”

section at the bottom, remove any

existing code then, in the “onclick”

field, add the following JavaScript

function call:

buttonPressed();

This function doesn’t actually

exist yet: we need to add it to our

JS file. Using a text editor, remove

the existing alert() and replace it

with this:

function buttonPressed() {
alert("Button pressed");

}

Save both files, then reload the

SVG file in a web browser,

confirming that both elements are

visible, and that a click on the

button shows the new alert()

dialog.

Now that we’ve got a function

that runs when the button is

clicked, we want to populate it

with some code to change the fill

color of the circle. Previously,

we’ve changed the fill color of the

object being clicked, either by

explicitly setting “this.style.fill”, or

by modifying the classes of the

clicked object using

“this.classList.toggle()” and similar

functions. Altering the style of a

different object is essentially the

same, except that we no longer

use “this” to identify the target for

our changes. Instead we need to

get a reference to the target

object in a different way.

Depending on exactly what you

are trying to do, there are various

approaches that could be used. But

the simplest, at least conceptually,

are a pair of methods on the

“document” object (which exists

implicitly on all XML and HTML

documents): querySelector() and

querySelectorAll() . The difference

between them is that the former

returns a single XML node,

whereas the latter returns a

collection of nodes. A collection is

similar in some respects to an array

in JS, but doesn’t have all the

standard array methods, so needs

to be treated a little differently.

For this example, however, we

want to change the style of only a

single element, so

document.querySelector() will do

the job.

Both methods take a single

parameter: a string containing a

CSS selector. If the selector

full circle magazine #1 46 30 contents ^

HOWTO - INKSCAPE
matches more than one element

then querySelector() just returns

the first one. If it matches no

elements, the method returns

“null”. In JavaScript terms, “null” is

what’s referred to as a “falsey”

value – that is, one that evaluates

to “false” when you use it in an “if”

statement. That makes it pretty

simple to write defensive code

that won’t fall over if your CSS

selector doesn’t match anything.

Let’s take a look at an example, by

replacing the alert() in your

buttonPressed() function (top

right) .

Save the JS file, then reload the

SVG in the browser. With the

developer tools open (press F1 2, if

necessary) , and the console tab

selected, click on the button in

your file. You should see the

<circle> element logged out – or

the string “No circle found!”

otherwise. If you saw the latter, it

suggests that the CSS query

doesn’t suit the structure of your

file. Here are a few things you can

look at to help troubleshoot this:

• Did you remember to put the # in

front of the ID in the CSS?

• Does the ID match the one you

put on the circle in Inkscape?

• Try changing the selector to

match an element (eg. “circle”)

instead of an ID.

• Open your SVG file in a text

editor and search for your ID. Is it

definitely present in an ID attribute

on the element you expected?

Now that we’ve got a reference

to the circle, it’s a pretty simple

task to set the style explicitly, or

modify its class list. Here’s the

buttonPressed() function (below)

rewritten to directly set the fill

color on the circle. Note that I ’ve

removed the “else”, as we just

want the code to fail silently with

no side-effects if the CSS selector

fails to match anything.

Despite what I said earlier, the

querySelector() method doesn’t

actually return the SVG node, as

such, but rather a JavaScript object

that references the element in the

browser’s internal document

structure. Usually you can ignore

this subtle distinction, but it does

mean that we have a JS object in

hand, which offers us a few

advantages when writing our code.

The object has a variety of

properties and methods attached

to it but we can also attach our

own. This can be a useful way to

keep track of data that needs to

persist outside our function.

Consider trying to toggle the

color in response to the button

presses. You could use a CSS class,

and call the circle.classList.toggle()

method to alternately add and

remove it. This is similar to the

approach we took last time, except

we’re referencing our object

variable rather than “this”. But

what if you want to set the fill

color on the circle directly, rather

than via a class? You could read the

value of circle.style.fill back, and

test to see what it’s currently set

to. But there are various ways to

define colors in CSS, so you might

not get back the format you

expect.

A better approach is to create a

property on the object that you

can refer to each time the function

is called. You can test its current

value, then set it to something else

before your function finishes. You

don’t need to do anything fancy to

create a property like this – the

browser will create it as soon as

you try to use it – so the code ends

up looking like that shown next

page, bottom left.

The first time you click the

button the “isOn” property doesn’t

exist. That means the test in the

“if” statement fails, and the code in

the “else” runs – setting the color

to green, and creating the “isOn”

property, with a value of “true”.

The next time you click the button

the “if” succeeds, the fill is set to

red and the property is set to

function buttonPressed() {
const circle = document.querySelector("#redCircle");
if (circle) {
console.log(circle);

} else {
console.log("No circle found!");

}
}

function buttonPressed() {
const circle = document.querySelector("#redCircle");
if (circle) {

circle.style.fill = "#008000";
}

}

full circle magazine #1 46 31 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys' , 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

HOWTO - INKSCAPE
“false”. Thereafter the color and

property will continue to toggle

each time you click the button.

One important thing to note as

we’ve been editing this code is

that you haven’t had to go

anywhere near Inkscape since the

initial setup. This is one big

advantage of using external, linked

scripts, as there’s less chance of

accidentally making changes to

your SVG file. You also get all the

benefits of using a proper text

editor: with any half-decent editor

you should get syntax highlighting

and other aids, which can help to

indicate problems in your code.

Plus, being able to work in a

proper sized window, rather than

the single line of the Object

Properties dialog or the letterbox

of Inkscape’s Embedded Scripts

tab, is a huge advantage.

When deploying an SVG file

with a linked script, you need to

make sure that the script is still

accessible to the SVG file once it’s

on to your web server – typically by

ensuring you use a relative path as

outlined at the top of this article.

You have to make sure you

remember to keep your JS file in

sync with any changes to your SVG

file or its location. But this

additional housekeeping is usually

more than worth it. Generally,

unless you really are writing only a

single line of code, or perhaps a

single, short function, linking is the

way to go.

function buttonPressed() {
const circle = document.querySelector("#redCircle");
if (circle) {

if (circle.isOn === true) {
circle.style.fill = "#800000";
circle.isOn = false;

} else {
circle.style.fill = "#008000";
circle.isOn = true;

}
}

}

THE FULL CIRCLE APP FOR UBUNTU TOUCH - UPDATED!

B rian Douglass has updated his

FCM app for Ubports Touch

devices that will allow you to view

current issues, and back issues, and

to download and view them on your

Ubuntu Touch phone/tablet.

INSTALL

Either search for 'full circle' in the

Open Store and click install, or view

the URL below on your device and

click install to be taken to the store

page:

https://uappexplorer.com/app/

fullcircle.bhdouglass

HUGE thanks to Brian for this.

http://www.peppertop.com
https://uappexplorer.com/app/fullcircle.bhdouglass

