
full circle magazine #1 47 33 contents ^

HHOOWW--TTOO
Written by Mark Crutch II nnkkssccaappee -- PPaarrtt 8877

Last time, we used a linked

JavaScript file to create an SVG

file containing a circle that changes

color when a button is pressed,

when loaded into a web browser.

This time, we’ll extend that simple

example to show how the

combination of SVG and JavaScript

is ideal for animated

demonstrations, by implementing

a set of traffic lights. Our lights are

the sort of thing that might appear

on an educational site, or in a

museum: they’ll cycle through the

sequence of colors (red, red and

amber, green, amber, red) once

when the button is clicked. But

first, we need some traffic lights:

For simplicity, I ’ve based this on

the file I created for the previous

instalment. That means the red

light already has an ID

(“redCircle”) , and the JS file is

already linked. I ’ve duplicated the

red circle to create the amber and

green ones, giving them

corresponding IDs of

“amberCircle” and “greenCircle”.

Because the JS is linked, and the

red circle has the same ID as last

time, loading the file into a web

browser draws the lights okay, and

clicking the button toggles the red

light to green and back. Clearly

there’s more work to be done, but

at least the fundamentals are in

place.

For this demo, we want the dull

colored lights to turn bright at the

correct times. Let’s forget about

the timing for now, and deal with

the colors first. With a variation on

our existing code, we could easily

set each light to a specific color by

targeting it using its ID, then

setting the “style.fill” property

directly. A better approach, in this

case, is to use classes. We can set a

class for each light onto some

ancestor object, and use CSS to

apply the right fill. Since classes

can be combined, we don’t need a

“red-and-amber” class; we can just

set the “red” and “amber” classes

at the same time.

But before we get too far

ahead of ourselves, we need to set

some default colors in CSS, so that

we can override them later using

classes. Open the file in a text

editor, and find the <style> section

(or add one, as a child of the <svg>

element, if there isn’t one already).

Put in some ID selectors, with the

base colors you want to use –

something like this:

<style>
#redCircle {

fill: #800000;
}

#amberCircle {
fill: #aa4400;

}

#greenCircle {
fill: #008000;

}
</style>

Don’t worry if there’s already

content in your <style> block, such

as the rules used to style the

button – just add the new code to

the end. Don’t forget that you also

have to remove the “fill”

properties from the style

attributes on the <circle>

elements, otherwise they’ll just

override anything set in the

<style> block. A good test is to

change all the colors in the CSS to

“blue” and reload your page – if

you still see red, amber or green

then you have an override entry on

the elements themselves.

Now, we need to add the colors

that we want to use when each

light is turned on. It’s just another

set of three styles added to the

end of the <style> block, before

the closing tag:

...

.red #redCircle {
fill: ff0000;

}

.amber #amberCircle {
fill: #ff6600;

}

.green #greenCircle {
fill: #00dd00;

}
</style>

full circle magazine #1 47 34 contents ^

HOWTO - INKSCAPE
Each of these rules is similarly

structured, and can be read as “set

this fill color for the element with

a specific ID, but only if one of its

ancestors has a specific class”.

With this method we can set

classes of “red”, “amber” and

“green” on some ancestor element

of the lights, such as the parent

layer, or even on the root <svg>

element, in order to activate the

lights. So let’s do that…

We’ve already seen how to use

document.querySelector() with an

ID to retrieve a particular element.

To add our classes to the Inkscape

layer would simply be a case of

finding the right ID for the

relevant <g> element. But to

demonstrate a different approach,

we’ll get a reference to the root

<svg> element instead, then add a

class to that. If you followed along

last time you should already have a

JavaScript file with a

buttonPressed() function. Let’s

replace the content of that

function with this:

function buttonPressed() {
const svg =

document.documentElement;

svg.classList.toggle("red");
}

The

document.documentElement

property returns the root element

of an XML or XML-alike document.

In the case of an SVG file, it returns

the <svg> element; for an HTML

document, it returns the <html>

element, and so on. So you can see

that this simple two-line function

will toggle the “red” class on the

<svg> element, and our CSS is

written such that this should alter

the color of the red circle. Save the

code, reload the image in your

browser, and check that clicking

the button does, indeed, toggle

the shade of red for the first circle.

Replace the word “red” with

“amber”, save the file, reload the

web page, and click the button

again. Then do the same with

“green” as the class name. Make

sure that each light works as

expected before moving on.

Our traffic light sequence

includes one step in which two

lights must be illuminated at once

– requiring us to set two classes. In

an ideal world, the

classList.toggle() method would be

flexible enough to take a

parameter of “red amber”, and

toggle both classes. But we’re

stuck in a less than ideal world –

one in which the classList methods

all work with a single class at a

time – so to toggle both classes

requires the method to be called

twice:

function buttonPressed() {
const svg =

document.documentElement;

svg.classList.toggle("red");

svg.classList.toggle("amber")
;
}

In our demo we don’t actually

want to toggle lights on and off –

we just want to set a fixed

selection of lights for each step,

without having to also turn off

lights from the previous step, or

call the same method multiple

times. Using the classList interface

actually makes life more difficult

for us, when all we want to do is

set the “class” attribute to a

specific value. Luckily for us,

browsers provide a function for

setting the value of an attribute.

It’s got the sensible name of

setAttribute() and its arguments

are the name of the attribute to

set, and the value to set it to. Let’s

use it to turn on both the red and

amber lights:

svg.setAttribute("class",
"red amber");

I f you try this in your code you’ll

find that you can turn the lights on,

but as we’re no longer using a

toggling function you can’t turn

them off again without reloading

the page. But we’re not really

interested in toggling – we want a

sequence of particular lights. For

that, however, we need a little

foray into the history of

JavaScript…

Back in the early days of the

web, JavaScript was executed as

part of the same “thread” as the

browser code itself. This meant

that the browser would effectively

hand over control to the script, and

couldn’t update its UI , or respond

to input, until the JS code

relinquished that control. You

might remember the bad old days

when a rogue web page could hang

the browser, preventing you from

doing anything else with either the

page itself or the browser UI . So,

JavaScript doesn’t contain any

instructions to pause execution of

the script, as doing so would block

the browser entirely. That means

we can’t sequence our lights with

something as simple as this

pseudo-code:

full circle magazine #1 47 35 contents ^

HOWTO - INKSCAPE
svg.setAttribute("class",
"red");
pause(3000);
svg.setAttribute("class",
"red amber");
pause(3000);
svg.setAttribute("class",
"green");
...

Instead JavaScript has a

function called setTimeout() . This

is a mechanism for queuing up a

function call for later on. It doesn’t

pause execution of the current

function, but asks the browser to

run another function after at least

a certain amount of time has

passed. It takes two parameters: a

function or reference to a

function, and the minimum

timeout in milliseconds. With this,

we can write a series of functions

that call each other in sequence, to

create our demo:

function buttonPressed() {
const svg =

document.documentElement;
svg.setAttribute("class",

"red");
setTimeout(redAmber, 3000);

}

function redAmber() {
const svg =

document.documentElement;
svg.setAttribute("class",

"red amber");
setTimeout(green, 3000);

}

function green() {
const svg =

document.documentElement;
svg.setAttribute("class",

"green");
}

That covers the first three steps

of the sequence. I ’ll leave it as an

exercise for the reader to extend it

to the full five steps described at

the start of the article.

With that, our

traffic lights

demo is almost

complete. Clicking

the button will

begin the

sequence, which

will stop

automatically at

the end. All that’s

left is a little

more work in

Inkscape to make

the lights look

better. Provided

you don’t change the CSS we

added, or remove the link to the JS

file, you’re free to tweak the

design as much as you like without

fear of the interactivity being

broken. Here’s my result, partway

through its cycle, after a little work

in Inkscape with a few gradients

and some lines.

Comparing this to the first

image in this article shows just how

much impact a little extra design

work can achieve. But if I ’d done all

that design work first and only

then started adding JavaScript, I

would have had to deal with a

much more complex SVG file for

the few manual edits required. If

you possibly can, it’s usually better

to focus on the core aspects of

your animations or interactions,

and get those working on a simple

version of your file first.

If you’re careful, editing your

file in Inkscape shouldn’t break

your code and interactions. But

because work like this requires

flitting back and forth between

Inkscape and a text editor, both

working on the same file and

therefore able to interfere with

each other’s contributions, I

strongly advise taking very

frequent backups as you work.

Next time, we’ll have a quick

look at some other options for

manipulating SVG using JavaScript,

moving beyond a few changes of

fill and stroke color into altering

other aspects of your images.

Mark uses Inkscape to create three
webcomics, 'The Greys' , 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

http://www.peppertop.com

full circle magazine #1 48 20 contents ^

HHOOWW--TTOO
Written by Mark Crutch II nnkkssccaappee -- PPaarrtt 8888

So far in this series, we’ve used

some JavaScript to change the

fill or stroke color of an object in

an SVG file when loaded in a web

browser. But JavaScript in SVG is

the same language, powered by

the same engine, as JavaScript in

HTML. That makes it a powerful

tool for doing far more than just

tweaking some colors.

First, a quick reminder of the

structure of an XML tag, of the

sort you might find in an SVG file:
<tagName id="uniqueID"
attributeName="attributeValue
">textContent</tagName>

Let’s look at each part of this

individually:

• tagName – The name of the tag

or element. In SVG, this might be a

‘g’ for a group, or ‘rect’ for a

rectangle or square, for example.

• id – This is just an attribute that

happens to be named ‘id’, but the

rules of XML dictate that IDs must

be unique within a document. That

makes them handy for targeting

with the querySelector() function.

• attributeName – Each tag may

have zero or more attributes which

contain additional data associated

with the element. In XML

languages, these always take the

form of

attributeName="attributeValue",

whereas HTML (confusingly) allows

for some attributes that have no

value associated with them. Each

attributeName must be unique

within the element, but may

appear many times across

different elements. The

attributeValue will vary depending

on what the attribute is actually

used for.

• textContent – This is not so

common in XML. Usually, an

element will contain zero or more

child elements before the closing

tag (the </tagName> in this

example), but a few elements

allow for plain text to be included.

In SVG, the most common cases

are <text> and <tspan> elements,

where the plain text holds the text

string that will be rendered.

There are also a couple of

variations to be aware of. Self-

closing tags take the form

<tagName … />. By definition

these can have no children or text

content. XML documents also

make use of namespaces, which

are defined in the main tag for the

document (e.g. the <svg> tag), and

may then crop up appended to

tags and attributes with a colon.

You won’t see these often: usually

a default namespace is declared, in

which case namespaces need to be

added only to tags and attributes

that are from ‘foreign’ XML

languages.

The theory is fine, but let’s see

how these parts manifest

themselves with yet another

super-simplified SVG file:

<svg
xmlns="http://www.w3.org/2000
/svg" viewBox="0 0 100 100">

<text id="text" x="50"
y="50" text-anchor="middle">

This is <tspan
id="ts1">some</tspan> <tspan
id="ts2">SVG text</tspan>

</text>
</svg>

Breaking this down, we have an

<svg> tag containing a <text> tag

with some further content. The

<svg> tag has a couple of

attributes. The first defines the

default namespace, and is required

so that the browser knows this is a

document conforming to the

W3C’s SVG spec, and not some

other type of file that happens to

have a tag name called ‘svg’. The

second attribute sets up the

coordinate space we’ll be using in

this file – I usually stick with "0 0

1 00 1 00" for my hand-created files,

as I can then treat my values as

percentages within the image.

The <text> tag also has some

attributes. The ID is self-

explanatory. The others set the

‘anchor point’ for the text to the

middle of the image (50, 50), and

indicate that the anchor point

should be in the middle of the text

(i.e. the text is centered, not left-

or right-aligned).

Finally the <text> tag contains a

mixture of text content and a

couple of <tspan> elements with

IDs, which will allow us to

specifically target those parts of

the text via JavaScript.

Save the file and load it into a

web browser – preferably Firefox

or Chrome, as they have better

developer tools than most others.

full circle magazine #1 48 21 contents ^

HOWTO - INKSCAPE
From the previous articles, you

already know how to add

JavaScript to your SVG file, either

directly in Inkscape or by linking to

an external JS file, but we won’t be

doing that today. For the rest of

this article, we’re going to rattle

through a few ways you can affect

your SVG, but we’ll do so within

the browser’s developer tools. Any

of these commands or techniques

can be added to your own

JavaScript if you want to create

something less ephemeral.

Press F1 2 or use the menu to

open your browser’s developer

tools. Somewhere along the top

should be a row of tabs (though

they’re not always clearly styled as

such). Make sure you have the

“Console” tab selected. If the panel

is already filled with text, find the

button in the console’s toolbar to

clear it, for clarity. Click inside the

console area to give it the focus,

and type the following (followed

by the Enter key):

var t =
document.querySelector("#text
");

The console will display the

string “undefined” at this point.

That’s nothing to worry about, it

just indicates that the line you

entered didn’t return a value. But

what it has done is find the

element with an ID of “text” and

assign it to the variable “t”. You can

confirm that by typing the letter

“t” on its own, then pressing Enter.

The console should show a

representation of the <text>

element, looking something like

that shown above.

Let’s use some JavaScript we

already know to reduce the size of

the font a little. Type this into the

console:

t.style.fontSize = "10px";

The SVG content should react as

soon as you press the Enter key.

Type the letter “t” again and you’ll

see that the element now has a

“style” attribute with the font-size

property set. Notice that we set

“fontSize” in JS, but the CSS in the

attribute shows “font-size”. If you

tried to use the latter in JavaScript,

it would be interpreted as trying to

subtract the “size” variable from

the “font” variable, and would

throw an error. As a general rule,

any CSS property containing

embedded hyphens is available as

a JavaScript property by removing

the hyphens and capitalising the

first letter of all but the first word.

Breaking down the line above,

you know that “t” is a JavaScript

representation of our XML node.

The browser exposes various

properties and methods (functions

tied to a specific object) on that

node, including the “style”

property. This property, in turn,

has a “fontSize” property, which

we’ve set to a value of “1 0px”. But

the browser treats the “style”

property a little differently to

most JavaScript properties, and

instead also applies any changes to

the “style” attribute in the XML. In

this instance, it doesn’t matter

whether you change the attribute

or the property – but that’s not

usually the case.

To change most attributes,

therefore, you can’t just set a

correspondingly named JavaScript

property. Instead, you have to use

the setAttribute() method that

we’ve looked at previously. Here’s

how we might move the text up a

little:

t.setAttribute("y", 20);

Type “t” again to see the XML,

and you’ll notice the “y” attribute

now has a value of “20”. We can

also retrieve that value using the

getAttribute() method:

t.getAttribute("y");
// Returns "20"

Remembering that the y-axis in

SVG runs from the top of the

screen to the bottom, you might

be inclined to try some code like

full circle magazine #1 48 22 contents ^

HOWTO - INKSCAPE
this to move the text down by 1 0

units:

var yPos =
t.getAttribute("y");
t.setAttribute("y", yPos +
10);

Gah! Where did the text go!?

Actually it’s still there, but it’s

been positioned so far down in the

image that it’s dropped out of the

1 00x1 00 viewBox, so isn’t visible.

But why is that, when we just

wanted to adjust the value from 20

to 30?

The problem is that XML is a

text-based system, and doesn’t

really have a concept of different

data types. All attributes are

therefore text strings, regardless

of the value you put in, so our call

to getAttribute() returns the string

“20”, not the number 20.

JavaScript then tries to be ‘helpful’

by determining that we’re trying to

‘add’ the number 1 0 to the string

“20”. Since you can’t add a number

to a string, it automatically

converts the number into a string

(“1 0”) , then concatenates the two,

to give a result of “201 0”. That’s

the value we end up putting into

the attribute in our setAttribute()

call, so our text ends up being

moved to a y-position of 201 0

units!

We can fix this by converting

the value returned from

getAttribute() into a number. We

only want an integer value, so the

parseInt() function is the tool to

use – but there is also a

parseFloat() if you need to deal

with decimal fractions. parseInt()

has a second parameter for the

number base that you should

always provide (with a value of 1 0

for a decimal conversion) to avoid

some rare-but-odd corner case

bugs when converting certain

strings. Entering the following

lines into the console should get us

the result we were looking for:

t.setAttribute("y", 20);
var yPosNumeric = 0;
yPos = t.getAttribute("y");
yPosNumeric = parseInt(yPos,
10);
t.setAttribute("y",
yPosNumeric + 10);

You can run the last three lines

repeatedly to move your text down

by 1 0 units each time.

Now we know how to get and

set attributes, but you can also

remove them entirely. This will get

rid of the “style” attribute we

indirectly created earlier, returning

the text to its ‘natural’ size:

t.removeAttribute("style");

There’s no equivalent

createAttribute() call - setting the

value of a non-existent attribute

using setAttribute() will

automatically create it. Let’s get

our style back by manipulating the

attribute rather than the property:

t.setAttribute("style",
"font-size: 10px;");

As well as working with

attributes, you can also

dynamically change the text

content of an element. Let’s type a

few lines into the console to alter

the first <tspan>:

var ts1 =
document.querySelector("#ts1"
);
ts1.style.fill = "#ff0000";
ts1.style.fontStyle =
"italic";
ts1.textContent = "a bit of";

[relevant image shown above]

Being able to change the text

content via JavaScript opens up a

world of possibilities, including

images with descriptions that can

be switched between different

languages, or ones that populate

with data requested from a server

somewhere such as live graphs and

stock tickers. That degree of

sophistication is a little beyond

this series, but here’s a trivial

example that prompts the user to

enter their name, then updates the

text on the page accordingly:

ts1.textContent =
prompt("What is your name?")
+ "'s";

[relevant image shown below]

Modifying the properties,

attributes and text content of

existing elements is useful, but to

have complete control over a

document we also need to be able

to add and remove elements using

JavaScript. The removal part is

trivial, provided you can get a

full circle magazine #1 48 23 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys' , 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

HOWTO - INKSCAPE
reference to the element using

querySelector() or some other

mechanism. Let’s delete our first

<tspan> entirely:

ts1.remove();

Adding a new element to the

page can be trivially easy, or it can

be rather convoluted. Let’s start

with the easy method, by adding

another <tspan> to the <text>

element, which is still assigned to

our “t” variable:

t.innerHTML += '<tspan
id="ts3" style="fill:
red;">!!!</tspan>';

Even though we’re working on

an SVG file, which is a form of XML

document, we still have to use the

“innerHTML” property. This returns

all the descendants of the

specified node as a string –

basically a string of HTML (or XML

in this case) much like the ones you

type into a text editor. The “+=”

operator essentially retrieves a

value, adds or concatenates

something to it, and puts the

result back into the same place. In

our case it has the effect of

appending a new <tspan> to the

end of the existing content.

Let’s do something similar, but

with a more complex approach…
var ns =
"http://www.w3.org/2000/svg";
var newTS =
document.createElementNS(ns,
"tspan");
newTS.id = "ts4";
newTS.setAttribute("style",
"fill: blue");
newTS.textContent = "!!!";
t.appendChild(newTS);

That’s a lot more lines to

explain:

• We set up a variable, “ns”, that

will hold our SVG namespace.

Usually this is done once at the top

of the JavaScript so you can use it

in multiple places.

• We create a new <tspan>

element. If you’ve ever done this in

HTML, you might be familiar with

document.createElement() , but, in

the XML world, we need to use a

namespace-aware equivalent,

createElementNS() , and pass the

namespace as the first parameter.

• We give the element an ID to

make it easier to get hold of later.

We could have used setAttribute()

for this, but the browser has an

implicit mapping between the

property and attribute in this case,

in the same manner as we saw

earlier with the ‘style’ property.

• Now we can set an attribute on

the new element. We would need

to repeat a line like this for each

attribute we wish to set.

• We’ve created a <tspan>, so we

won’t see much unless we also give

it some text content.

• Finally, we append it as a child of

the object referred to by the “t”

variable – our <text> element.

Clearly that’s a lot more typing

than the innerHTML version, so

why would you ever want to take

this approach? Precisely because

it’s verbose, splitting the element,

attributes and text content into

separate lines, it lends itself to

some types of looping or

manipulation that can otherwise

become unwieldy when using just a

single chunk of text.

Consider trying to plot a graph

using SVG. Each point on the graph

might be represented by a <circle>

requiring several attributes: x, y, r

and fill, for example. These values

will be determined by some data

source, and may need to be

manipulated to get them into the

right format for SVG. All of that is a

little easier to arrange, and can

lead to clearer code, if you deal

with each attribute separately.

Certainly it can be done with the

“innerHTML” approach, but as the

code and SVG content become

more complex, an approach that

relies on building and manipulating

strings can become harder to

follow, and less robust.

Next time, we’ll build on the

techniques used in this instalment,

to further investigate ways to

manipulate the individual elements

in an SVG document through

JavaScript.

http://www.peppertop.com

full circle magazine #1 49 30 contents ^

HH OOWW--TTOO
Written by Mark Crutch II nn kkssccaa ppee -- PPaa rrtt 8899

Last time, we looked at some

different ways to use

JavaScript to modify your SVG file

dynamically in a web browser. We

concluded with a verbose way to

create a new SVG element, set its

attributes, and append it to an

existing element. In this

instalment, we’ll build on those

same ideas to do even more with

our elements – so go ahead and re-

read last month’s column if you

need a refresher before we plough

on.

Our test file last time was made

up primarily of an SVG <text>

element – picked because it’s one

of the few SVG elements that has

text content within it, and I wanted

to demonstrate how you might go

about getting and setting such

content. Most SVG elements,

however, have either no content or

only other elements as their

children, so that’s the sort of

structure we’ll focus on this time.

Here’s the SVG file you’ll need to

create as a starting point:

<svg

xmlns="http://www.w3.org/2000

/svg"

viewBox="0 0 100 100">

</svg>

Okay, that’s admittedly a pretty

terse SVG file, even by the

standards of this series, but that’s

because it doesn’t actually have

any content. Instead we’re going

to create all the content

dynamically, using the browser’s

developer tools as we did last

time. So save the file, load it into a

browser, open the developer tools,

switch to the Console tab, and

clear any existing messages. Phew!

Now that we’re ready to proceed,

let’s begin by creating a square

using the ‘simple’ approach from

last time:

var svg =
document.querySelector("svg")
;

svg.innerHTML = '<rect
id="s1" x="10" y="10"
width="50" height="50"
fill="red" />';

This ‘innerHTML’ approach is

simple, and can create complex

nested structures, but it doesn’t

return a ‘handle’ that we can use to

further manipulate the created

content. What if we now want our

red square to be blue? We’ll need

to do something like this, relying

on the fact that we gave the

square an ID:

var square1 =
document.querySelector("#s1")
;

square1.setAttribute("fill",
"blue");

The more long-winded

approach we took last time gives

us a JavaScript object representing

our element which we then use to

set all the attributes. But we can

hang on to that handle to use later

on, if we wish. Let’s add another

red square, this time using the

verbose method (below):

Now if we want to change the

color of the second square, we can

simply use the same ‘square2’

variable we used when creating it,

even though it’s now been added

to the page:

square2.setAttribute("fill",
"yellow");

var ns = "http://www.w3.org/2000/svg";
var square2 = document.createElementNS(ns, "rect");
square2.id = "s2";
square2.setAttribute("x", 30);
square2.setAttribute("y", 30);
square2.setAttribute("width", 50);
square2.setAttribute("height", 50);
square2.setAttribute("fill", "orange");
svg.appendChild(square2);

full circle magazine #1 49 31 contents ^

HOWTO - INKSCAPE
I ’ll spare you a screenshot – I ’m

sure you can guess what it looks

like now.

So far, we’ve mostly revised the

content from last month, but in

doing so you’ve got a nice

arrangement of two squares, a

yellow one on top of a blue one.

But why are they in that order?

Why isn’t the blue one on top? You

might think it’s because we

created the blue one first, and the

yellow one second – and to some

extent you’d be right. But there is

a little more to it than that.

The reason isn’t that we created

the squares in a particular

chronological order, but rather

that they ended up in the XML

structure in a particular document

order. When we added the second

square we used the appendChild()

method, which inserts it as the last

child of the selected parent, so our

XML structure ends up looking

roughly like this:

<svg>
<rect id="s1" />
<rect id="s2" />

</svg>

The blue <rect>, with ID “s1 ” is

first in the document, so it gets

drawn first. The yellow <rect>

(“s2”) is second in the document,

so gets drawn second. SVG uses

what’s called the “painter’s model”

in which later objects in the

document are painted on top of

earlier objects – so the yellow

square is rendered on top of the

blue square.

If you’re familiar with HTML and

CSS, you might imagine that you

could override this ordering using

the “z-index” CSS property.

Unfortunately, that approach

doesn’t work for SVG. The SVG2

spec does add z-index but, as with

many of the useful additions in

SVG2, no browser yet supports it.

Currently, if you want to put things

into a particular stacking order, you

have no choice but to rearrange

the content of your SVG document.

So how would we go about

putting the blue square on top of

the yellow one? It’s a two step

operation: first we remove the

blue square from the document,

but keep it hanging around in

memory; then we insert it back

into the document, at the end.

Given that we’ve already assigned

the blue <rect> to the “square1 ”

variable, we can use these two

lines of JavaScript to achieve our

goal:

square1.remove();

svg.appendChild(square1);

So now we know how to add an

object to the top of the image, and

how to move an object from a

lower level up to the top. What

about inserting a new object at the

top of the document, so that it

appears right at the bottom of the

stack? If appendChild() adds it to

the end of the document, surely

insertChild() will put it at the start?

Uh-oh! That’s not so good. The

problem is that there’s no XML

method called insertChild() ,

regardless of how much sense it

would make. Instead, you have to

insert your node into the

document before another

reference node – in other words,

you have to specify that you want

to insert it before the existing first

child. Given that our yellow square

is first in the document, and we

already have a handle to it in our

“square2” variable, we can run the

following JavaScript line in the

console to inject “square3” into the

“svg” parent, before “square2”:

svg.insertBefore(square3,
square2);

This is great when you’ve

already got a handle to the first

child element, but that’s not

always the case. Perhaps it was

inserted dynamically by some

other code, or you’ve just lost track

of which element is which. You can

var square3 = document.createElementNS(ns, "rect");
square3.id = "s3";
square3.setAttribute("x", 40);
square3.setAttribute("y", 40);
square3.setAttribute("width", 50);
square3.setAttribute("height", 50);
square3.setAttribute("fill", "pink");
svg.insertChild(square3);

full circle magazine #1 49 32 contents ^

HOWTO - INKSCAPE
always append a new node at the

end of the parent’s list of children,

so it would be useful to have an

equivalent bit of code to insert a

new node at the start of the list.

Every XML element has a

“firstElementChild” property that

can be used to retrieve a handle to

its first child (skipping any text

content) without needing to know

anything more about it. We can use

this to insert another element at

the bottom of the stack (top right) .

There’s still a bit of a gap

between the yellow and the blue

squares. Time to insert an element

in the middle of the list of child

nodes. As a reminder of where we

stand at the moment, switching to

the “Inspector” (Firefox) or

“Elements” (Chrome) tab in the

developer tools will show you the

current state of your XML

document:

To mix things up a little, we’re

not going to create a brand new

square this time – instead we’ll

create a copy of an existing one. In

browser terms, we’re going to

create a “clone” of the node, but

don’t confuse it with Inkscape’s

concept of clones – the two are

completely different things

(Inkscape’s “clones” are actually

implemented as SVG <use>

elements) . First, let’s clone our

purple square – which we’ve still

got assigned to the “square4”

variable – and assign the clone to a

highly-imaginatively named

variable:

var square5 =
square4.cloneNode(true);
square5.id = "s5";
square5.setAttribute("x",
20);
square5.setAttribute("y",
20);

All we needed to do was call the

cloneNode() method of the node

we wish to duplicate. The “true”

parameter ensures that we clone

not only the node itself, but any

descendants it may have – if we

had passed “false” instead, we

would get only a duplicate of the

node itself. In this case, the results

are identical, since our <rect> has

no children. But consider cloning a

<text> or <g> element, where the

content inside is just as important

as the node itself, and you can see

why passing “true” is usually the

safest option.

You’ll also note that I ’ve

changed the ID of the cloned

element. We’re about to put it

back into the same document and,

although browsers don’t enforce it,

the XML rules specifically prohibit

duplicate IDs in a single document.

For the sake of correctness,

therefore, we change the ID while

the cloned node is still just a

fragment in memory that hasn’t

yet been inserted into the SVG.

To insert the clone, we’re just

going to use the same

insertBefore() method we used

earlier. But, this time, our

reference element (the one we’re

inserting before) will be the blue

<rect>. Of course we could use the

reference we already have to it

(square1) , or get a fresh reference

using document.querySelector() ,

but instead, we’re going to do

something more generic. We’ve

already seen a generic way to

insert before the first child, now

we’re going to write some equally

generic code to insert just before

the last child:

var square4 = document.createElementNS(ns, "rect");
square4.id = "s4";
square4.setAttribute("x", 50);
square4.setAttribute("y", 50);
square4.setAttribute("width", 50);
square4.setAttribute("height", 50);
square4.setAttribute("fill", "purple");
svg.insertBefore(square4, svg.firstElementChild);

full circle magazine #1 49 33 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys' , 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

HOWTO - INKSCAPE

svg.insertBefore(square5,

svg.lastElementChild);

As a reminder, the last child is

the one that’s drawn on top (the

blue square), so inserting just

before the last child actually puts

the cloned purple square below

the blue square in the z-order.

The “firstElementChild” and

“lastElementChild” properties are

useful shortcuts, but you don’t

always want to use the first or last

child as your reference point. For

more general purpose

requirements, XML nodes have a

“children” property, which returns

a collection of all the children. A

“collection”, for what it’s worth,

can be described as an object

that’s a bit like an array except

different enough to be annoying.

So don’t expect to have access to

all the array methods, but you can

read the “length” property, and

reference individual child nodes

using a square bracket syntax:

// How many child nodes are
there?

console.log(svg.children.leng
th);

// Remove the third one

svg.children[2].remove();

// Remove the penultimate
node, regardless of how many
there are

svg.children[svg.children.len
gth - 2].remove();

Remembering that array (and

collection) indexes start at zero, it

should be clear why the third child

has an index of 2. For the same

reason the index of the last child is

always “children.length – 1 ”, so the

penultimate node will be

“children.length – 2”. Of course if

there are fewer than two child

nodes present, this call will fail – a

real program would have to check

the length first, before trying to

remove the penultimate child.

Consider all this in terms of

Inkscape: when you move things up

and down in the z-order within

Inkscape, or move entire layers up

and down, what you’re actually

doing is removing nodes from the

document and reinserting them at

a different position. If you’ve got

multiple items selected, or a group

or layer containing lots of other

items, they all have to be removed

and reinserted. If you ever find

yourself wondering why Inkscape is

taking a long time to paste

something, now you’ve got an idea

of how involved this process

actually is!

With the JS you’ve learnt so far,

you have enough knowledge to

write some code that will move

objects around the canvas, as well

as up and down in the z-order. You

can use document.querySelector()

to get a JS handle to an element in

your drawing, and setAttribute() to

dynamically change its parameters.

Next time, we’ll look at how you

might use some of these features

to animate your SVG image.

http://www.peppertop.com

full circle magazine #1 50 23 contents ^

HHOOWW--TTOO
Written by Mark Crutch II nnkkssccaappee -- PPaarrtt 9900

Over the past few months

we’ve looked at ways to

dynamically modify your SVG

content when it’s running in a web

browser, using JavaScript. By

making these changes over a

period of time, we can effectively

use JS to animate our SVG files.

We have looked at animation in

this series before: in part 75 we

looked at some simple CSS

animations, then in parts 76 and 77

we moved on to SMIL animation.

At the time I commented that SMIL

was something of a dead-end

technology, largely due to

Microsoft never implementing it in

any browser. But times have

changed, and Microsoft have

effectively given up on developing

their own browser engine: shortly

Microsoft Edge will begin using the

same engine as Chrome, so should

gain SMIL support as a side-effect.

Whether or not this is enough to

turn the tide for SMIL remains to

be seen. Personally I think it’s a

great technology for animating

SVG particularly, but the browser

vendors seem to have settled on

CSS animations as the way to go –

even though that technology still

doesn’t cover all the use-cases that

SMIL can handle.

So we’re slightly stuck in limbo.

SMIL offers huge power, but its

time may be short. CSS animation

is less powerful, but widely

supported. However with

JavaScript we can sort-of get the

best of both worlds: as much

power and flexibility as we need, in

a way that has excellent cross-

browser support.

Of course things aren’t all rosy.

When using SMIL or CSS

animations you essentially take a

pretty hands-off approach to

things. Your input is a simple

instruction: “Animate this object

from A to B, over 5 seconds”. You

don’t need to work out how the

position of the object changes

from one frame to the next, or

worry about your animation

imposing a heavy load on the

machine. Instead you simply let the

browser handle all the

intermediate calculations – and the

browser’s code is a lot faster at

handling those things than

anything you could write for

yourself in JavaScript.

So JS animation gives you

flexibility, but at the expense of

performance. Most of the time

that won’t matter: the JavaScript

engine in a modern browser is

heavily optimised, so just moving

an element or two around the

screen isn’t likely to impose much

of a burden. But if you start to

animate a large number of objects,

especially on a mobile device, you

might find that your animations

aren’t as smooth as they could be

with the other technologies.

Enough of the pros and cons, on

with the code! Once again we’ll do

all this in the browser’s developer

tools, so you’ll need a super simple

SVG file to start with the code

shown below.

If you were to load that file into

Inkscape, it should look like the

image below. The page boundary is

a square of 1 00×1 00 units, as

defined in the viewBox attribute.

The square itself is positioned with

its top left corner at 1 0 units down,

and 1 0 units across from the origin

(the top-left of the page in SVG).

Remember these units are not

pixels – the image will actually be

scaled to fit the available space in

the browser window. By using a

1 00×1 00 viewBox it can be

convenient to think of the values

as percentages, but in reality it’s

better to treat them as

proportions or ratios, as that

mental model works regardless of

the viewBox size.

We’re going to animate the “x”

attribute from its starting value of

1 0 up to a value of 90. Because the

square is 30 units wide, this will

<svg
xmlns="http://www.w3.org/2000/svg"
viewBox="0 0 100 100">
<rect id="s1" x="10" y="10" width="30" height="30"

fill="red" />
</svg>

full circle magazine #1 50 24 contents ^

HOWTO - INKSCAPE

leave it hanging off the right-hand

side of the screen when the

animation finishes. I ’ve done this

to demonstrate a key difference

between animating the content of

an SVG file, and animating a <div>

or other box in an HTML page: in

the latter case the page width will

grow and a horizontal scroll bar

will appear (unless you specifically

prevent that behaviour) . With an

SVG file, anything outside the

viewBox simply isn’t rendered,

making it easier to have

animations that start or end ‘off-

screen’. Think of it a little like a

theatre stage, with your props and

characters moving to and from the

wings.

Load that file into your browser

then in the developer console

(F1 2) we’ll get a handle to it

assigned to a variable for use later

on.

var s1 =
document.querySelector("#s1")
;

As a reminder, here’s how we

can change the x coordinate using

JS. Run it to confirm that the box

shifts over a little.

s1.setAttribute("x", 20);

Essentially our animation will

consist of running a line like this

repeatedly. JavaScript is a pretty

poor language for timing-sensitive

tasks such as this, but it does offer

a few rudimentary functions that

will be good enough for our needs.

We’ve already seen the most basic

of these a few months ago, when

we used setTimeout() to turn some

traffic lights on and off in

sequence. The following (shown

above) will shift the square over,

after a delay of 2000ms (2

seconds).

Notice what we did there?

Instead of just setting the

attribute directly I ’ve created a

global variable (“currentX”) , then

added 1 0 to it before we use the

computed result. I also have an “if”

statement to set the value back to

zero if it gets too big, ensuring the

square doesn’t keep moving to

infinity. How does this help us to

create an animation? Now we can

call that function repeatedly to

make the square move by 1 0 units

each time. Copy and paste the

following lines as a single block, to

make sure they all run before the

2s initial delay is up:

setTimeout(moveSquare, 2000);
setTimeout(moveSquare, 2100);
setTimeout(moveSquare, 2200);
setTimeout(moveSquare, 2300);
setTimeout(moveSquare, 2400);
setTimeout(moveSquare, 2500);

Well I don’t think Pixar has got

anything to worry about, but it’s

definitely animated. Creating a

long list of setTimeout() calls isn’t

great though. Fortunately

JavaScript has a related function,

setInterval() , which does the same

thing as an infinite list of

setTimeout() calls. It returns a

unique number that can be used

with the clearInterval() method to

stop the process when you’re

bored with looking at a jerkily

moving square.

var i =
setInterval(moveSquare, 100);

var endX = 90;
var currentX = 0;
var delta = 10;

function moveSquare() {
if (currentX > endX) currentX = 0;
currentX = currentX + delta;
s1.setAttribute("x", currentX);

};

setTimeout(moveSquare, 2000);

full circle magazine #1 50 25 contents ^

HOWTO - INKSCAPE
// Some time later…
clearInterval(i);

Now that we don’t have to type

a setTimeout() function for every

frame of our animation, we can

make things move a little more

smoothly by reducing the delta,

and reducing the time between

function calls accordingly:

var delta = 1;
var i =
setInterval(moveSquare, 10);

// Some time later…
clearInterval(i);

Still a bit fast for you? Increase

the delay in the setInterval() call.

Not fast enough? You can reduce

the delay further, but browsers

clamp setTimeout() and

setInterval() to a lower limit, so it

probably won’t have much effect.

Instead you can increase the delta

value so the square moves two or

three units at a time. Or 4.25 if you

want – neither JS nor SVG require

everything to be integers.

For a long time setTimeout()

and setInterval() were the only

practical way to run some

JavaScript at the sort of regular

intervals needed for animation.

Over the past few years, however,

browsers have gained more

support for technologies needed

to run games – 2D bitmap

canvases, 3D graphics and a little

thing called

requestAnimationFrame(). In case

the name didn’t give it away, this

function is intended to make

animation a little easier.

Specifically it does so by calling a

function just before the browser is

about to display the next frame on

screen (typically about 60 times

per second). It’s like a setTimeout()

where the delay is automatically

set to to an optimal value by the

browser.

In human terms 1 /60 of a

second is a pretty short delay, so to

test this in the console you will

probably want to increate the

“delta” variable again, so that it’s

more obvious that your square

moves.

var delta = 10;

requestAnimationFrame(moveSqu
are);

Now you might be expecting

me to introduce an equivalent

animation function to setInterval() ,

but I ’m afraid I ’ll have to disappoint

you. There’s no function that will

repeatedly run a function just

before each frame is redrawn. But

what we can do is to call

requestAnimationFrame() again

from inside the animation function.

We’ll create a different

animation function (shown above)

for this next example. It’s similar to

the previous one, except that it

always moves the square by 1 unit,

and stops when it reaches the

right-hand side, rather than

looping back round. This latter

change is mainly so that the code

doesn’t keep running indefinitely,

otherwise it gets a bit tricky to

proceed with the rest of this

tutorial. Notice that we call

requestAnimationFrame() to start

the function running, but we also

call this from within the “if” block,

firing off another trip to our

animation function just before the

next frame is rendered.

Now we’ve got an animation

running, but we don’t really have

any control over it. The duration of

the animation will depend on how

frequently

requestAnimationFrame() fires in

your browser, and all we can do is

change “+ 1 ” to a different value to

make the square move more or

less on each iteration. But really

that’s all we need to be able to do.

So long as we know the exact time

that the function is called, we can

calculate how far into the

animation we are, and therefore

what position the square should be

at. To achieve this, the function

that is called by

getAnimationFrame() receives a

single parameter: a high-resolution

timestamp.

Let’s work on a practical

example: suppose we want our

Var endX = 90;
var currentX = 10;
function animSquare() {

if (currentX <= endX) {
currentX = currentX + 1;
s1.setAttribute("x", currentX);
requestAnimationFrame(animSquare);

}
};

// Start the animation running
requestAnimationFrame(animSquare);

full circle magazine #1 50 26 contents ^

HOWTO - INKSCAPE
animation to take 1 0 seconds. At

60 frames per second that’s about

600 movements our square will

make, each of them a fraction of a

unit. We could divide the total

distance by 600 to calculate the

exact amount of movement, but

that will fail if we run the code on

something that refreshes at 30 or

1 20 frames per second, or if some

frames get dropped due to the

load on the machine. A better idea

is to track how long has passed

since the start of the animation,

and use that to calculate where

the object should be. We can then

set the coordinates to the new

value, before we fire off another

requestAnimationFrame() for the

next step in the animation.

The parameter that gets passed

to our function is a value in

milliseconds since the document

was loaded. We don’t really care

about that specific point in time –

we need to know how long the

animation itself has been running.

What we need to do, therefore, is

to record the timestamp the first

time our function is called. On

subsequent calls we can subtract

that value from the latest

timestamp to work out how far

along the animation timeline we

have progressed.

Let’s start by initialising a few

variables. We’ll create a variable to

hold our starting position, setting

it to 1 0. Next we have a “duration”

(in milliseconds) to hold the time

we want our animation to run for,

and “endX” for the X coordinate

we want to end up with. Putting

these into variables makes it easier

to modify the animation to run at a

different speed or cover a

different distance. Finally we’ll

include a “startTime” variable, with

an “undefined” value initially, into

which we’ll store a copy of the

timestamp we receive the first

time our animation code is called.

var startX = 10
var endX = 90;
var currentX = 0;
var duration = 10;
var startTime = undefined;

Now for our reworked

animation function. The main

animation code is fairly similar to

the previous incarnation, except

that we work with the timestamp

that is passed to the function in

order to calculate the new X value.

The first time the function is called

we don’t need to update the X

coordinate – by definition we’re at

the start of the animation – so we

just store the current timestamp,

then queue up another call before

the next frame, then exit. On

subsequent calls, the startTime is

no longer “undefined” so this part

of the function is skipped entirely.

By storing the initial timestamp

outside the function, we can

calculate how long the animation

has been running. Since the two

timestamps are in milliseconds,

we’ll divide the result by 1 000 to

convert it to seconds. Since we

know the total time for the

animation, a quick division will give

the proportion of the animation

that has passed: we can then

multiply that value by the total

distance to travel in order to

calculate the new X position for

that moment in time. Code is

shown below.

Running this should produce a

smooth animation that takes 1 0s

to complete. Re-run the previous

block of “var” lines to reset

everything, then the final

requestAnimationFrame() call to

kick it off again. Try changing the

values in the variables to alter the

distance the square moves, or the

time it takes to perform the

animation. In every case you

should find that the animation is, if

not smooth, at least a lot

smoother than you saw with

function animSquare(ts) {
if (startTime === undefined) {

startTime = ts;
requestAnimationFrame(animSquare);

return;
}

var runningTime = (ts - startTime) / 1000;
var proportion = runningTime / duration;

if (currentX <= endX) {
currentX = startX + (endX * proportion);
s1.setAttribute("x", currentX);
requestAnimationFrame(animSquare);

}
};

// Start the animation running
requestAnimationFrame(animSquare);

full circle magazine #1 50 27 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys' , 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

HOWTO - INKSCAPE
setTimeout() and setInterval() .

Creating all these variables

outside a function (so-called

“global” variables) is generally

seen as bad form in the

programming world. It also makes

it tricky to animate more than one

thing, as they’ll all potentially be

sharing the same global variables.

A better approach is to

encapsulate all the variables in a

single JavaScript object, then

attach that to the SVG element

you’re trying to manipulate. Here’s

the code above rewritten to work

in this way (shown right) .

Notice that I ’ve removed the

“X” from the end of the parameter

names, and created a new

“attribute” entry with a value of

“x”. This starts to make the code

more generic: you could change

the “x” to a “y” in order to animate

movement in the vertical direction,

or “r” to animate the radius of a

circle.

For a truly generic solution you

could turn this JS object into an

array of objects. The animation

code would loop over each entry in

the array, allowing you to animate

more than one attribute at a time –

essential if you want your images

to move at an angle, for example.

I ’ll leave it as a challenge for the

reader to implement this.

At the moment our animation is

also strictly linear: the attributes

are changed at a constant rate over

time. More “natural” animation can

be achieved with rates that vary –

accelerating and decelerating over

the course of the movement. The

maths to produce such effects,

referred to as an “easing function”,

is well outside the scope of this

series. That alone is a good reason

why CSS animation, SMIL, and

third-party animation libraries are

usually a better option than rolling

your own JS animations from

scratch. But for simple animations,

or just your own education, it’s

good to see how the same code

you might use to dynamically

modify your SVG in discrete steps,

can also be put to work to achieve

continuous effects.

s1.animProperties = {
attribute: "x",
start: 10,
end: 90,
current: 0,
duration: 10,
startTime: undefined

}

function animSquare(ts) {
props = s1.animProperties;

if (props.startTime === undefined) {
props.startTime = ts;
requestAnimationFrame(animSquare);

return;
}

var runningTime = (ts - props.startTime) / 1000;
var proportion = runningTime / props.duration;

if (props.current <= props.end) {
props.current = props.start + (props.end * proportion);
s1.setAttribute(props.attribute, props.current);
requestAnimationFrame(animSquare);

}
};

// Start the animation running
requestAnimationFrame(animSquare);

http://www.peppertop.com

full circle magazine #1 51 25 contents ^

HHOOWW--TTOO
Written by Mark Crutch II nnkkssccaappee -- PPaarrtt 9911

Over the past few months,

we’ve looked at ways to

manipulate SVG in a web browser,

using JavaScript, culminating in

some simple animation. The code

we used last time let us move an

object horizontally on screen by

manipulating its “x” attribute. By

extension, we could also do the

same with the “y” attribute to

move it vertically. This time we’ll

look at an alternative method of

moving objects up, down, left and

right, using an attribute that also

opens up the ability to rotate or

skew the element at the same

time. The attribute in question is

“transform”, and it crops up all the

time in Inkscape documents, so

let’s start by looking at how it’s

used there.

Open Inkscape, with a fresh,

blank document. Draw a simple

square or rectangle – it doesn’t

matter about the fill and stroke at

this point, though it will be useful

if you can actually see and interact

with it. Now open the XML Editor

dialog (Edit > XML Editor…).

By now, the right-hand side of

this dialog should make some

sense to you. You can see the usual

collection of attributes that you

would expect to find on a <rect>,

together with their values –

including the familiar “x” and “y”

attributes.

Leaving the XML editor open,

you should also open the Inkscape

Preferences (Edit > Preferences…).

Navigate to the Behaviour >

Transforms screen, and ensure

that the “Store transformation”

option is set to “Optimised”.

You should now have these two

dialogs open, together with your

main Inkscape window. Arrange

things so that you can easily get to

the main canvas whilst seeing what

happens in the XML editor. Select

the rectangle in your document,

then use the cursor keys to move it

around a little. Notice that your “x”

and “y” attributes in the XML

editor change as you do so.

Now return to the Inkscape

Preferences dialog and switch the

“Store transformation” option to

“Preserved”. Repeat the exercise

of moving the rectangle around

using the cursor keys, once again

keeping an eye on the XML editor.

You should notice that, this

time, the “x” and “y” attributes

remain unchanged. Instead a new

“transform” attribute is added,

with a value that takes the form

“translate(x,y)”. If you move your

rectangle only horizontally, your

“translate” will have only a single

parameter – if it’s omitted entirely,

the “y” parameter is considered to

be zero.

That’s all very interesting, but

what have we actually achieved?

One important point is that we’ve

now switched from using absolute

coordinates to relative ones.

Instead of setting absolute

coordinates (“x” and “y”

attributes) , we’re combining an

absolute starting point (the “x”

and “y” attributes) together with a

relative offset (the “x” and “y”

parameters in the translate()

function). Think back to our

animation from last time: we had

to keep track of the current “x”

full circle magazine #1 51 26 contents ^

HOWTO - INKSCAPE
value and add our offset to it each

time. By manipulating a

“transform” attribute instead, we

just have to set the offset directly,

simplifying our code. It no longer

matters what the coordinates were

previously, we need to set only the

translate() to the right values for

the amount of time that has

elapsed in our animation. It also

leaves the original coordinates

untouched, so moving the object

back to its starting position is

easier. This also makes our code

more reusable: we can apply the

same animation to various objects,

each with their own “x” and “y”

attributes, and therefore all

separately positioned, despite

sharing the same relative

movement.

Another key use for the

transform attribute is in

combination with groups. The SVG

<g> element doesn’t have its own

“x” and “y” attributes, so moving a

group of objects (as one) would

require code to update the

attributes of each and every

element in the group on each step

of the animation. By setting a

transform attribute on the group,

you can obtain the same effect

with far less work.

So the transform attribute is a

useful, if not essential, way of

moving objects around in your

drawing. But it offers more than

that. Consider how you might

incorporate rotation into your

animation. If you’re animating a

path – and you’re sufficiently

mathematically astute – you could

recalculate the coordinates of each

node and handle in the path. But

us mere mortals need an easier

way to manage such tasks and the

transform attribute offers that

capability.

To see how it works, revert your

rectangle back to a point where

there’s no transform attribute

showing in the XML editor, and

change the “Store transformation”

setting back to “Optimised”. With

the selection tool active, click the

rectangle a second time to switch

to the rotate and skew handles.

Use the corner arrows to rotate

the rectangle and you should see a

transform attribute appear, but

this time with a value of

“rotate(r)”, where “r” is the amount

of rotation in degrees. By holding

the Ctrl key, you can make the

value jump between the steps

defined in Inkscape’s preferences,

or release the key for free rotation

of your shape.

Notice that rotating the object

not only adds a transform() with

the rotation amount, but also

changes the “x” and “y” values.

Once again, set “Store

transformation” to “Preserved”.

Now the transform() function has

three parameters: the rotation

angle and the x and y coordinates

of the center of rotation.

There are four other functions

that can be used in the transform

attribute:
scale(x, y)
skewX(a)
skewY(a)
matrix(a, b, c, d, e, f)

I ’ve called these out separately

because of the way Inkscape treats

them. The scale() function simply

increases or decreases the size of

the object, stretching it if the x and

y values are not the same. As with

translate() the y parameter is

optional.

skewX() and skewY() transform

your element in the same way as

the skew handles in the Inkscape

UI . They each take a value, in

degrees, that specifies the angle of

skew.

These three functions map

fairly obviously to the select tool in

Inkscape, which can be used to

stretch, scale and skew an object.

So you might expect to see these

functions appear in the XML editor

as you manipulate your object.

Instead you’ll get the matrix()

function appearing.

Without going into too much

detail, the matrix() function lets

you supply a series of six numbers

that are used to fill the first two

rows in a 3×3 matrix. This is used

via standard mathematical matrix

multiplication to map the original

coordinates of the object to the

transformed coordinates. In non-

mathematical terms, a single

matrix can not only produce the

same output as all the other

transformation functions, but can

also produce output that is

equivalent to any combination or

mixture of them. Want to skew,

rotate, scale and translate all at

once? A matrix() transform will do

the trick.

Working out the six numbers

that need to be passed to the

matrix() function is not for the

faint-hearted. They don’t

correspond to simple values such

as x, y and rotation. So although

Inkscape likes to use the matrix()

full circle magazine #1 51 27 contents ^

HOWTO - INKSCAPE
function internally, it’s probably

not something you want to be

manipulating in JavaScript.

Fortunately there are a couple of

ways to work with the individual

functions, rather than being forced

to combine everything into a single

matrix() .

The first is simply to wrap your

objects in SVG groups (the <g>

element), and apply a separate

transformation to each one. Here’s

how an SVG file might look (top

right) if we took this approach to

both skew and rotate a square:

When loaded into Inkscape the

result looks like this:

Opening the XML editor shows

that the transform on the outer

group remains intact – it’s still a

skewX() and doesn’t get

automatically converted to a

matrix() when loading it into

Inkscape. As soon as you make a

change via the GUI , however, the

transform’s value will be replaced

with a matrix() . If you just want to

change the value in the existing

function (eg. changing the angle of

skew in this case), then you can

make the modification in the XML

editor. But remember that a <g>

doesn’t have its own x and y

attributes, so even something as

trivial as moving the object slightly

will mean Inkscape converts the

attribute to a matrix() that

combines the skew with the

translate.

This is an important thing to be

aware of. It’s easy to set up a file

for animation with some nicely

hand-coded transform attributes,

then absent-mindedly open it in

Inkscape to make a minor change,

only to find that your hand-coded

values have all been replaced with

matrix() functions instead.

There is a second way to apply

multiple transformations to an

object: you just list them all in a

single transform() element. Here’s

a version of the previous file, but

this time there’s no need for the

<g> elements, since the

transformation can be applied

directly to the square (below).

<svg
xmlns="http://www.w3.org/2000/svg"
viewBox="0 0 100 100">

<g transform="skewX(60)">
<g transform="rotate(45)">

<rect
x="10" y="10"
width="30" height="30"
fill="red"

/>
</g>

</g>
</svg>

<svg
xmlns="http://www.w3.org/2000/svg"
viewBox="0 0 100 100">

<rect
transform="

skewX(60)
rotate(45)

"
x="10" y="10"
width="30" height="30"
fill="green"

/>
</svg>

full circle magazine #1 51 28 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys' , 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

HOWTO - INKSCAPE

Note that the transform

attribute is now a list of

transformations to apply. The

white-space isn’t important: I ’ve

listed the functions one-per-line

for clarity, but you could just put

them onto a single line with a

space character between them.

When viewed in Inkscape, they

appear in the XML editor on a

single line, with every space and

tab included between them, but

none of the carriage returns:

Once again, there’s no real

surprise with the appearance of

the file when it’s loaded into

Inkscape (see above).

Yet again, with this approach

we face the same issue of

Inkscape’s desire to convert the

value into a single matrix() . This

time we do have x and y attributes

(since we’re working on the <rect>

itself) , so you might think that a

“Store transformation” setting of

“Optimised” might leave the

transform untouched and just

update the coordinates when you

move the object around.

Unfortunately, even in this case

you’ll find that a matrix() comes

along and tramples over

everything, in addition to the x and

y attributes changing.

It’s annoying that Inkscape

doesn’t offer a third option beyond

“Optimised” and “Preserved”. A

“Verbose” option that stores

transforms in a more human-

friendly form. Instead of a

composite matrix() function, you

would get a list of separate

functions in the attribute. Moving

would add or update the

translate() , rotating would add or

update the rotate() , and so on. For

anyone planning to manipulate

their SVG file with code, the

advantages of this approach would

be huge.

As it stands, for most Inkscape

users the internal details of how

objects are moved, rotated, scaled

and skewed is irrelevant.

“Preserved” or “Optimised” has no

bearing on how you work with

elements in the GUI , or how the

image is rendered in a web

browser. If you do wish to alter the

transform attribute using

JavaScript, then there’s a slight

advantage to “Preserved” – but

only if the x and y attributes are

set correctly in the first

http://www.peppertop.com

full circle magazine #1 52 25 contents ^

HHOOWW--TTOO
Written by Mark Crutch II nnkkssccaappee -- PPaarrtt 9922

Last time, we looked at the

“transform” attribute,

particularly with regard to its

frequent appearances in Inkscape

files. In this instalment, and the

next, we’re going to combine this

information with some of the

JavaScript we’ve covered in

previous months to show how you

might animate the moving,

turning, skewing and scaling of an

SVG element.

Once again we’ll start off with a

very simple SVG file (top right) .

As usual, we’ve got a viewbox

of 1 00×1 00 units, but, this time,

I ’ve added a background <rect> to

make it clearer where the extents

of the canvas are when the file is

loaded into a web browser. The

element we’re going to animate is

the red rectangle, which is inside a

group (<g>). The group has a

transform attribute on it,

containing a series of functions

that will be applied to its content.

In this case, they each have no

effect – a rotation of 0 doesn’t

turn the shape at all, whilst a scale

factor of 1 leaves it at its original

size. Strictly speaking, they’re not

necessary at all at this point, but

they are present to show you the

format of the string we’ll be

creating with our animation code.

The rectangle itself bears a

little explanation. In an SVG

document, the y-axis runs down

the page, and the x-axis runs from

left to right. So the origin – the 0,0

point in the image – is at the top-

left of the page. The position of a

<rect> is also based on its top-left

corner. Therefore, setting the “x”

and “y” attributes to 0 would

position the rectangle at the top

left of the screen. But, for this

code, I want to pretend that the

“x” and “y” coordinates correspond

to the center of the rectangle. This

means offsetting its position by

half the width to the left, and half

the height upwards. Since it’s 20

units on each side, the transform

attribute with a translate(-1 0, -1 0)

does the job nicely. Basically, we’ve

moved the rectangle’s reference

point from the top-left corner to

the center. With that manipulation

in place, using 50 for the “x” and

“y” coordinates puts it right in the

<svg
xmlns="http://www.w3.org/2000/svg"
viewBox="0 0 100 100">

<script href="transform.js" />

<rect x="0" y="0"
width="100" height="100"
fill="#ccc" />

<g id="g1"
transform="

translate(0,0)
scale(1)
rotate(0, 50, 50)
skewX(0)
skewY(0)">

<rect
transform="translate(-10,-10)"
x="50" y="50"
width="20" height="20"
fill="red" />

</g>
</svg>

full circle magazine #1 52 26 contents ^

HOWTO - INKSCAPE
middle of the image.

There’s one other line in the file

– a <script> tag that references an

external document. For the sake of

simplicity, we’re going to keep our

code in a separate JavaScript file,

avoiding problems with character

escaping, and meaning that we

don’t need to make any further

changes to the SVG file. The only

requirement is that the JS file is

kept in the same directory as the

SVG file, since I ’ve used only a

filename, not a relative path or

absolute URL. The JS file itself,

“transform.js”, contains just a

single line at this point:

alert("Hello World");

By loading the page in a web

browser we can now easily confirm

that we have a red square in the

middle of a grey square, and that a

message pops up from our

JavaScript file to indicate that it’s

being loaded correctly. Now we

can move on to some real code.

Based on the approach from

part 90 of this series, we’re going

to create a single function that

updates the transform element for

each frame that the browser

renders. The function will receive a

timestamp, and use that to

determine how long the animation

has been running, and therefore

what values should be put into the

transform element’s functions for

that particular point in time.

To begin with, we’ll just animate

one of the properties: rotation.

Replace the alert() call in the

JavaScript file with this (right) .

Much of this looks similar to

code we’ve seen previously, but

there are enough differences to

warrant a step-by-step

walkthrough.

We start by declaring a global

variable called “group”. Previously,

we’ve used the “var” keyword to do

this, but modern JS has mostly

replaced that with “let” (for

variables that will change), and

“const” (for those that won’t) .

We’ve used “var” when working in

the console as it won’t throw an

error if you try to run the same line

twice – as “const” would do. But, as

we’re creating a separate JS file

here, we’ll stick to convention. In

this case, the “group” variable will

eventually hold a reference to the

<g> element, but as that’s not

necessarily available as soon as the

page loads, we’ll declare it using

“let” and update the value later.

Later doesn’t take long to

arrive. The very next line of code

causes our initialise() function to

run just before the next frame is

drawn, giving the browser time to

render the content so that our <g>

element actually exists in the

document structure before we use

it. The initialise() function itself

does these things:

• Set our “group” global variable as

a reference to the <g> element.

• Set up some JS properties on the

element. First is the initial

timestamp, which will be used as

the basis for calculating the

let group;
requestAnimationFrame(initialise);

function initialise(ts) {
group = document.querySelector("#g1");

group.animProperties = {
startTime: ts,
rotationDuration: 5 // Time to turn 360 degrees

}

// Start the animation running
requestAnimationFrame(animate);

}

function animate(ts) {
const props = group.animProperties;

const runningTime = (ts - props.startTime) / 1000;
const anglePerSecond = 360 / props.rotationDuration;
const totalAngle = anglePerSecond * runningTime;
const angle = totalAngle % 360;

group.setAttribute("transform", `
rotate(${angle}, 50, 50)

`);

requestAnimationFrame(animate);
}

full circle magazine #1 52 27 contents ^

HOWTO - INKSCAPE
timings in the animate() function.

• The only other property we’re

creating for now is the time it

should take for the square to do

one rotation, in seconds.

• Finally, we have another call to

getAnimationFrame() which will

start the actual animation running.

Now we get to the animation

code itself, in the form of the

animate() function. We begin by

getting a reference to the

animation properties we set up

previously, and storing it with a

more convenient name. We can use

“const” instead of “let” here as the

value we assign doesn’t get

changed within this function.

The next group of lines just

calculates the value, in degrees,

that we need to rotate the square

by. We get the amount of time the

animation has been running for, by

subtracting the initial timestamp

from the current one, then divide

the value by 1 000 to convert from

milliseconds to seconds. By

dividing 360 by the desired

rotation time we find the amount

of rotation we need to perform

every second; multiplying that

value by the amount of time we’ve

been running for gives a total

value for the number of degrees to

rotate by.

After the first rotation has

completed, the calculated value

will be larger than 360. That’s not

actually a problem – the browser

will happily do the right thing for

you in this case – but I prefer to be

a little explicit about what’s

happening. That explains the last

line of this block, where we use the

modulus operator (%) to get the

value that remains after dividing

the total angle by 360. This has the

effect of normalising the rotation

angle so it never goes above 360,

which can make it easier to see

what’s happening if you need to

log the value out, or if you view it

live in the developer tools.

The penultimate line uses

setAttribute() to update our

transform attribute with a new

value. The value itself is a template

string, delimited by backticks (` ...`) .

They’re not always as easy to spot

in code as the more usual quotes

and double-quotes, so make sure

you don’t overlook them. Within a

template string any content inside

a ${} block will be evaluated as

JavaScript, and the result will be

placed into the string. For our

purposes, this means we can use

${angle} to inject the value of the

“angle” variable into the string,

without having to perform a lot of

concatenation. We’re using the

three-value form of rotate() in

order to provide coordinates for

the center of rotation (50, 50) –

without it the square will rotate

about the top-left corner of the

page.

The last line simply queues up

another call to the animate()

function, as we’ve seen previously.

Load the SVG file into a web

browser and, if everything is

correct, you should see the square

spinning around in the middle of

the page. Press F1 2 in the browser

to open the developer tools, and

select the tab labelled “Inspector”

(Firefox) or “Elements”

(Chrome/Chromium) – it’s usually

the leftmost tab on the bar. You

should see the structure of your

SVG file, with the <g> element

visible, and the value of the

transform attribute updating as

the square rotates. Notice how the

first number never goes above

360; try replacing the ${angle} tag

with ${totalAngle} and see what

difference it makes to the rotation

and to the attribute’s value.

Rotation is pretty

straightforward because we have

to deal with only an ever increasing

number. If we exceed a full

rotation then we either normalise

the number, or let the browser do

full circle magazine #1 52 28 contents ^

HOWTO - INKSCAPE
it for us. The other transform

functions are a little more tricky:

skewX and skewY expect a value

between -90 and +90 (though the

extreme ends of the range distort

the object so much that they’re

not very useful) ; translate can take

any number, but there’s only a

limited range that makes sense

within the confines of our 1 00×1 00

viewbox; scale has a similar

practical limit. For all these

transform functions, therefore, we

want to animate back and forth

between two values. This means

creating three properties for each

thing we want to animate, for the

lower limit, upper limit and

duration. Here’s how the

group.animProperties object might

be extended to also include skewX,

for example (note the addition of a

comma after the rotationDuration

property, as this is no longer the

last item in the object) . Shown top

right.

To go with the new property,

we’ll also need an extra group of

lines in the animation function, just

after the corresponding lines for

rotation, but before the call to

setAttribute() (bottom left) .

We start by assigning

props.skewDuration to a local

variable, for no other reason than

it gets used a lot, so we’ve given it

a more convenient name. The

second line subtracts the minimum

value property from the maximum,

to give us the total amount of

possible skew. We’ll use this to

work out what the current skew

amount should be at any given

timestamp.

The third line calculates the

“position” along the animation for

the current timestamp. We do this

by taking the running time

(calculated earlier, in the previous

block), dividing it by the duration

for this animation, then taking the

remainder. This gives us a value

that runs from zero to the duration

value, then jumps back to zero

before ramping up again on each

iteration. Rather than running from

zero to “duration” it’s more useful

if we adjust this value to be a

decimal from 0 to 1 , which is

achieved by dividing by the total

duration.

If we were to comment out the

next few lines and jump to the last

one, we would find that the

animation cycles repeatedly from

the minimum value to the

maximum, jumping straight back to

the minimum on each iteration.

Plotting the values over time

results in a “sawtooth” chart.

For our animation, however, we

want the value to transition

linearly both up and down, without

the sudden jump between

iterations. What we want is a

triangle wave:

group.animProperties = {
startTime: ts,
rotationDuration: 5, // Time to turn 360 degrees

skewXDuration: 10,
skewXMin: -60,
skewXMax: 60

}

const skewXDur = props.skewXDuration;
const skewXRange = props.skewXMax - props.skewXMin;
let skewXPosition = (runningTime % skewXDur) / skewXDur;
const skewXDirection = runningTime % (skewXDur * 2);
if (skewXDirection > skewXDur) {

skewXPosition = 1 - skewXPosition;
}
const skewXAmount = (skewXRange * skewXPosition) + props.skewXMin;

full circle magazine #1 52 29 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys' , 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

HOWTO - INKSCAPE

As you can see, on odd

numbered iterations we want the

animation to proceed as usual, but

on the even numbered ones we

want the position value to step

downwards rather than upwards.

In the code above this is done by

creating a “skewXDirection”

variable which holds the modulus

of the current running time when

divided by twice the duration. This

value will ramp up from zero at the

start of an odd iteration, through

the duration value at the end of

the odd iteration, continuing up to

twice the duration value at the end

of the subsequent even iteration.

We’ve created another sawtooth

wave, but this time running from

zero to duration×2 over the course

of two iterations.

The “if” statement that follows

checks to see if this direction value

is greater than the duration: if it is

then we must be on an even cycle.

In that case the “skewXPosition”

variable (which, if you recall,

ranges from 0 to 1) is subtracted

from 1 , so as the animation

progresses the final position value

first steps upwards, then steps

downwards, before the cycle

repeats in a triangle wave pattern.

The last step in calculating the

actual value is to multiply the

current position in the cycle by the

total range of the animation, then

add the minimum value to move

the final result into the right range

of numbers.

Phew! That was a lot to take in

for a few lines of code. If you find it

easier to follow, try adding some

console.log() lines amongst the

code so you can see how the values

change in the developer tools.

With our final value calculated,

the last step is to update the

transform attribute to hold both

the rotate() and the skewX()

functions. Extend the previous

template string to this:

Loading the file into the

browser, you should see the square

being skewed as it rotates. But

you’ll also notice that our simple,

constrained rotation in the middle

of the screen has turned into a

whirling dervish that swoops out

of the bounds of our image before

flying back in and then setting off

into the distance once more. Next

time we’ll discuss why this is

happening, and finish this little

animation by adding scaling and

translation. In the meantime why

not test your own understanding

of this code by adding the

necessary lines to make the shape

also skew in the Y direction, at a

different frequency to the skewX()

effect.

group.setAttribute("transform", `
rotate(${angle}, 50, 50)
skewX(${skewXAmount})

`);

http://www.peppertop.com

full circle magazine #1 53 32 contents ^

HHOOWW--TTOO
Written by Mark Crutch II nnkkssccaappee -- PPaarrtt 9933

Last time, we began work on an

SVG file which uses JavaScript

to animate the “transform”

attribute of an object when loaded

in a web browser. We’d got as far

as animating the rotate() and

skewX() functions, and you’d been

left with the challenge of adding

skewY() to the mix. Hopefully you

worked out that this was mostly a

case of copying the existing code,

and replacing “X” with “Y”.

Specifically:

• Create three new properties in

the animProperties object:

skewYDuration, skewYMin,

skewYMax.

• Insert another block of code to

calculate the current value of the

skewY() function, given the

supplied timestamp. This is literally

a copy of the skewX code with the

letter replaced throughout,

resulting in a skewYAmount

variable at the end.

• Add another line to the

setAttribute() call to include the

skewY() function in the transform

attribute, passing the value of the

skewYAmount variable via the

template string.

I also left you with something

of a puzzle: with the addition of

the skewX() function, the square

doesn’t just rotate and skew in the

middle of the screen as you might

expect; instead it moves wildly in

and out of the browser window as

it rotates. Adding the skewY()

function simply exacerbates the

problem. Why does it do that? And

how can we get the behaviour we

expected?

The reason is quite simple:

whereas the rotate() function has

an optional pair of parameters for

setting the center of rotation,

there’s no equivalent for the skew

functions. Skewing takes place

relative to a baseline, rather than a

single point, but there’s no generic

skew() function that lets you

specify this baseline via two sets of

coordinates. Instead, there are

only two possible baselines

available: the x-axis (via the

skewX() function) and the y-axis

(via the skewY() function). The

graph below shows the effect of

skewing along the x-axis for the

same size of object positioned in a

variety of places (bottom left)

The red squares along the x-axis

all skew “in-place”, resulting in the

outline shapes displayed. The

green and blue squares – colored

to avoid confusion where they

overlap – move to the left and

right as a result of the skewing

process. It doesn’t take much

thought to realise that the amount

of movement to the left and right

is actually proportional to the

distance from the x-axis, so even a

small angle of skew can quickly

move a shape by a large distance if

it’s located far from the axis. And,

of course, these rules also apply

for the skewY() function, but

rotated by 90°.

You may recall that we did

some deliberate manipulation of

our object in order to position it in

the middle of the screen (50, 50).

Unfortunately, all that work means

that skewing the shape also

full circle magazine #1 53 33 contents ^

HOWTO - INKSCAPE
pushes it around. The problem is

that we have two conflicting

requirements:

• We want the object centered at

(50, 50) for display.

• We need the object to be

centered at (0¸ 0) in order to skew

it.

There are a few ways to solve

this conundrum:

• Use a translate() function to

move the object to (0, 0) ; then

skew it; then use another

translate() function to move it

back again.

• Change the x and y attributes of

the object so that it starts at

position (0, 0) . After skewing, add a

translate() function to move it to

(50, 50).

• Use a matrix() function rather

than the skewX()/skewY()

functions, as this can combine

skewing and translating into a

single call.

I ’m going to immediately

dismiss the last option, as it

requires far too much

mathematics. But it does, perhaps,

explain why Inkscape always uses

matrix() rather than the named

skew functions. The first option is

probably the clearest in terms of

what’s happening, but it results in

the position of the object being

calculated three times: once with

the initial x and y values set to 50;

once when it’s translated back to

(0, 0) prior to the skew; then a final

time when an inverse translation is

applied to put the skewed version

back into place.

The best compromise for this

project is the second approach.

Simply changing the x and y values

in the SVG, however, means that

the source file no longer holds the

“true” values for the coordinates,

so if the JavaScript fails to load for

some reason the square will be

positioned at the top left, rather

than in the middle of the screen. A

slight modification to this

approach – and the one we’ll take

here – is to leave the SVG file

untouched, but change the x and y

values to zero at the start of the JS

file. That way, if the script fails to

load you still get a stationary

fallback image with the square in

the right place, but if everything

loads correctly, the JS immediately

changes the object’s coordinates

to make for less work in the rest of

the code. The first step is

therefore to modify the start of

the initialise() function to get a

handle to the <rect> inside the

group, and reset the attributes (

shown top right) .

We use group.querySelector()

to get the rectangle as it limits the

search to descendants of the

group object (compared with

document.querySelector() which

would search the whole

document), and it makes it easy to

replace the argument with an ID or

class selector when working with a

more complex drawing, or with a

different element selector if we

change the content of the group to

be a different type of object (e.g. a

<path> or an <image> instead of

the <rect>). Once we’ve got a

handle to the element, it’s back to

our old friend setAttribute() to set

the new values we want.

Reloading the page at this point

shows that, if anything, we’ve

made the problem worse! Now the

square is rotating over an even

wider range than before, spending

most of its time out of bounds. The

reason for this is also a simple one:

remember that we used the three

parameter version of the rotate()

transformation function, so even

though our object is centered at (0,

0) it’s still rotating around (50, 50).

Now we can pare that function

down to the single value version,

and the line where we set the

value of the transform attribute

becomes this (bottom right) .

Reload the page and we’ve got

what we expected: a square that

rotates and skews in-place at the

top-left of the screen. Our last

step is to move it back to (50, 50)

with an extra translate() step

inserted to the start of the list,

whose values are hard-coded (next

page, top right) .

Note that the transformations

function initialise(ts) {
group = document.querySelector("#g1");
const rect = group.querySelector("rect");
rect.setAttribute("x", 0);
rect.setAttribute("y", 0);

group.setAttribute("transform", `
rotate(${angle})
skewX(${skewXAmount})
skewY(${skewYAmount})

`);

full circle magazine #1 53 34 contents ^

HOWTO - INKSCAPE
are actually applied in reverse

order: first the skewY(), then

skewX(), then rotate() then finally

translate() . When all we had was

rotate and skew functions the

order made little difference, but

adding the translate() makes a

huge difference. Put it at the end

of the list, and we’re back to the

same problem with the square

zooming around as it skews. At the

start of the list, however, we’ve

got a nicely controlled square,

rotating and skewing whilst never

leaving the middle of the screen.

To complete our set of

transform functions, let’s add a

scale() , so that our square also

grows and shrinks. This function

can take one or two parameters to

indicate the scale factor: if only

one is provided then the object is

scaled equally in both the x and y

directions; if you wish to scale the

two directions differently, then

you have to provide two

parameters.

Note, however, that there’s no

parameter for the center point of

the scaling operation. As with the

skew functions, your object has to

be positioned with its center at (0,

0) if you don’t want it to move as

well as change size. Since we’ve

already handled this problem for

skewing, we just need to ensure

that our scale() function is put into

the transform attribute after the

translate() , to ensure that the scale

operation is performed before the

translation.

To make our animation more

interesting we’re going to animate

the change in x and y scale

separately, over different time

periods but within the same range

of 0.1 (one tenth of the width or

height) to 3.0 (treble the width or

height) . We’ll encompass these

parameters as two more sets of

properties in the

group.animProperties object

(middle right) .

Like the skew functions we also

want to animate from the

minimum to the maximum, then

back again – as opposed to

continuously going in one direction

as we did with rotate() . We

therefore need a couple of blocks

of code to calculate the relevant

value at any given time point,

changing direction after each

period. Below is the code for the x-

axis scaling – compare it to the

equivalent block for skewX() from

last month and you should be able

group.setAttribute("transform", `
translate(50, 50)
rotate(${angle})
skewX(${skewXAmount})
skewY(${skewYAmount})

`);

group.animProperties = {
rotationDuration: 5,
...
skewYMax: 50,

scaleXDuration: 3,
scaleXMin: 0.5,
scaleXMax: 2,

scaleYDuration: 7,
scaleYMin: 0.5,
scaleYMax: 2

}

const scaleXDur = props.scaleXDuration;
const scaleXRange = props.scaleXMax - props.scaleXMin;
let scaleXPosition = (runningTime % scaleXDur) / scaleXDur;
const scaleXDirection = runningTime % (scaleXDur * 2);
if (scaleXDirection > scaleXDur) {
scaleXPosition = 1 - scaleXPosition;

}
const scaleXAmount = (scaleXRange * scaleXPosition) + props.scaleXMin;

full circle magazine #1 53 35 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys' , 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

HOWTO - INKSCAPE
to reproduce code for the y-axis

scaling yourself.

And, of course, we need to add

our scale() function and two new

parameters to the transform

attribute (top right) .

At last we have our object

rotating, skewing and scaling, all

while centered in the browser

window – though a static

screenshot doesn’t really do it

justice.

I ’m going to finish this month

with a couple of exercises for you

to try, which build on the

animation we’ve created over

these previous few articles:

• Our final transform attribute has

a fixed translate() function to

position the square in the middle

of the screen. Why not add another

two sets of parameters to also

animate the x and y position,

causing the square to move around

the window a little as well. Setting

min and max values either side of

50 means you can replace the hard-

coded coordinates in the existing

translate() . Or you could have a

negative min and positive max,

then use the values in a second

translate() function – but be

careful of the ordering!

• Try replacing the contents of the

group with something else. It could

be a more interesting single shape,

such as a star or more faceted

polygon, but it could also be any

other Inkscape drawing – with

multiple shapes and colors. Simply

replacing the <rect> with an

<image> element makes for an

interesting effect, reminiscent of

the kind of thing that required a

Hollywood budget back in the

1 980s.

The most important thing to

remember is that this animation

code – and the JS that we used

previously in this series – are just

examples to get you going. There’s

no reason why you can’t create an

animation that messes with the

transform attribute whilst at the

same time altering the fill and

stroke, or manipulating the “d”

attribute of a <path> in order to

change the shape being drawn.

With an understanding of how to

change attributes and properties

from JS you can create interactive

or animated SVG images that go

way beyond the frame-based

limitations of an animated GIF. It’s

a bit of a cliché, but the only real

limit is your own imagination.

group.setAttribute("transform", `
translate(50, 50)
rotate(${angle})
skewX(${skewXAmount})
skewY(${skewYAmount})
scale(${scaleXAmount}, ${scaleYAmount})

`);

http://www.peppertop.com

