
full circle magazine #1 54 31 contents ^

HHOOWW--TTOO
Written by Mark Crutch II nnkkssccaappee -- PPaarrtt 9944

After the JavaScript detour of

the past few months, it’s time

to head back into the realms of

pure Inkscape. Before we dive

headlong into the next topic,

however, I ’m going to spend this

month and next tidying up a few

loose ends and updating you on

some recent Inkscape news items.

To begin with, let’s finish up

with a little more polish on the

JavaScript-based transform

animation we’ve been building up

through the last few articles. If you

followed along, you’ll have ended

up with four blocks of code that all

look very similar, for each of

skewX, skewY, scaleX and scaleY

(top right) .

All that changes between them

are the variable names, and the

only result we use from this code is

the single value we create at the

end. This block is an excellent

candidate for splitting out into a

single function that gets called for

each of the four transform

parameters. Reorganising code to

make it simpler, clearer, or more

efficient, is referred to as

“refactoring”. To refactor this

code, therefore, the first step is to

copy it into a function of its own,

and return the value we’re

interested in. We’ll add the new

function to the very end of the JS

file (bottom right) .

We’re going to use this function

to replace blocks of code that deal

with multiple different properties,

so it makes sense to also tidy up

the variable names in the function

to make them more generic. By

passing in the relevant duration,

min, and max, from the properties

– and also passing the current

running time that was supplied to

the parent animate() function – we

can simplify it to this general

purpose function (below).

Now we can replace the original

four blocks with something much

simpler. Here’s the line to use for

const skewXDur = props.skewXDuration;
const skewXRange = props.skewXMax - props.skewXMin;
let skewXPosition = (runningTime % skewXDur) / skewXDur;
const skewXDirection = runningTime % (skewXDur * 2);
if (skewXDirection > skewXDur) {
skewXPosition = 1 - skewXPosition;

}
const skewXAmount = (skewXRange * skewXPosition) + props.skewXMin;

function getAnimAmount() {
const skewXDur = props.skewXDuration;
const skewXRange = props.skewXMax - props.skewXMin;
let skewXPosition = (runningTime % skewXDur) / skewXDur;
const skewXDirection = runningTime % (skewXDur * 2);
if (skewXDirection > skewXDur) {
skewXPosition = 1 - skewXPosition;

}
const skewXAmount = (skewXRange * skewXPosition) + props.skewXMin;

return skewXAmount;
}

function getAnimAmount(dur, min, max, runningTime) {
const range = max - min;
let position = (runningTime % dur) / dur;
const direction = runningTime % (dur * 2);
if (direction > dur) {
position = 1 - position;

}
const amount = (range * position) + min;

return amount;
}

full circle magazine #1 54 32 contents ^

HOWTO - INKSCAPE
skewX – I ’ll leave it to you to work

out what to do with the others.

Note that I ’ve split this across

multiple lines to squeeze it into a

single column in this article,

though in a real file I would

probably put all of this in a single

line of code:

const skewXAmount =
getAnimAmount(

props.skewXDuration,
props.skewXMin,
props.skewXMax,
runningTime

);

I t almost goes without saying,

but once you’ve replaced all four

blocks of code you should save and

reload your page. If everything was

correct you should see no change

in the animation.

You should, however, be able to

see at a glance how much shorter

and simpler this change makes the

animate() function. It’s gone from

being a mathematically heavy

chunk of code to a much simpler

series of lines that just set up

some constants, applies them to

the transform() attribute, then

calls itself for the next iteration. If

you dive further into coding you

should always try to keep an eye

out for repeated blocks of code

that can be refactored into a single

function.

With that, I ’m going to draw a

line under this part of the series –

at least metaphorically speaking,

although you should now have

enough understanding of SVG and

JavaScript to be able to draw a

literal line, if you wish.

FORUM NEWS

I ’m sad to announce that the

long-standing semi-official forum

for Inkscape, “inkscapeforum.com”,

is no longer around. It hasn’t been

actively supported by its

administrator for a number of

years, but had still been the go-to

place for the English-speaking

Inkscape community. Despite the

efforts of a number of users and

developers – myself included – to

transfer the forum into the

stewardship of the Inkscape

project, the admin did not provide

either a backup of the database,

nor enough access for us to obtain

it ourselves. A couple of months

ago the site simply disappeared,

and has not returned.

Fortunately the lack of

communication from the admin

acted as a warning, and an

officially-official forum was already

up and running when the old one

vanished – thanks mostly to the

sterling efforts of Martin

‘Doctormo’ Owens, a long-standing

contributor to the Inkscape

project. With its main ‘competitor’

having self-destructed, the official

forum has grown in popularity, and

should now be seen as the best

place to go if you have an Inkscape

question, or just want to show off

your Inkscape-created images. The

new forum is linked from the main

Inkscape website, or you can

access it directly at the following

address:

https://inkscape.org/forums/

But what of the many years’

worth of hints, tips, tutorials,

questions and answers that had

accrued on the old forum?

Thankfully it’s not all lost: the

Inkscape website is hosting a read-

only backup which mostly works,

though some threads don’t seem

to behave quite as they should.

https://alpha.inkscape.org/vectors/

www.inkscapeforum.com/

Alternatively the Wayback

Machine at the Internet Archive

site also has a snapshot of the old

forum though, again, it’s not

perfect.

https://web.archive.org/web/201 9

091 0200439/http://www.inkscapef

orum.com/

Hopefully between these two

resources the bulk of the useful

content from the site has been

preserved.

One very useful page from the

old forum which hasn’t been

completely captured is the index

of my Full Circle Magazine articles.

The last snapshot on the Wayback

Machine dates to 201 7 and,

although the page on the Inkscape

site is more up-to-date, I ’ve

nevertheless copied the content to

https://inkscape.org/forums/
https://alpha.inkscape.org/vectors/www.inkscapeforum.com/
https://web.archive.org/web/20190910200439/http://www.inkscapeforum.com/

full circle magazine #1 54 33 contents ^

HOWTO - INKSCAPE
my own site, where I can continue

to update it as new articles are

published. You can find it here:

http://www.peppertop.com/blog/?

p=1 563

VIDEO TUTORIALS

When I was first starting to

learn how to use Inkscape, a

valuable resource was a series of

tutorial videos created by

‘Heathenx’ and Richard Querin.

Unfortunately, their website has

long-since disappeared, but I was

able to get a current email address

for Heathenx and contacted him

about re-posting the videos online.

I ’m delighted to report that he was

extremely helpful, and happy for

them to be uploaded to Youtube.

There are over a hundred videos in

total, most of which are still

relevant to the current Inkscape

release. I uploaded them over a

number of months, adding my own

notes to clarify any tweaks or

changes that are required for

recent Inkscape versions. I urge

you to take a look at them, as they

provide a great example of the

many and varied effects that can

be produced with Inkscape if you

have a little artistic flair.

https://www.youtube.com/c/Pepp

ertopComics

A SHAMELESS PLUG

While we’re on the topic of

Inkscape resources I ’ve posted

online, I ’m going to take this

opportunity for a spot of blatant

self-promotion. Long-term readers

of this column (or those who read

the byline at the end of an article)

will know that I create comics and

cartoon strips using Inkscape (with

the help of a far more artistically

talented friend). We’ve been

working together in our spare time

for over 25 years now, but it’s the

last decade that has been the most

interesting as far as this column is

concerned. During that time, we’ve

used Inkscape in the creation of

over 250 strips which can be freely

viewed on our website. To help

encourage new Inkscape users,

we’ve made the vast majority of

our source files available for

download as well, so you can see

how we put things together or

modify the cartoons to suit your

own needs.

Given that you’re reading a

Linux magazine, I ’d like to draw

particular attention to our “Elvie”

comic strip. This appeared in every

edition of the much-missed Linux

Voice magazine, and has continued

every month in Linux Pro Magazine

(just “Linux Magazine” outside

North America) . Thanks to the kind

generosity of the editors and

publishers, we’ve been able to

release these strips under a very

liberal license (Creative Commons

BY-SA), and have a Git repository

with our Inkscape and MyPaint

source files. We’ve even gone so

far as to use fonts that are under

liberal licenses, so that every single

part of these cartoons is as free as

possible.

Aside from Elvie, our other

cartoons have appeared in

magazines and newspapers, and

even in an exhibition at the

National Media Museum in the UK.

They can all be viewed and

downloaded from our website:

http://www.peppertop.com

https://www.youtube.com/c/PeppertopComics
http://www.peppertop.com
http://www.peppertop.com/blog/?p=1563

full circle magazine #1 54 34 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys' , 'Monsters,
Inked' and 'Elvie' , which can all be
found at
http://www.peppertop.com/

HOWTO - INKSCAPE

I f you want to support us in the

work we do to promote Inkscape –

or if you want to help in our goal to

raise enough funds to relicense

some of our earlier cartoons as BY-

SA – we also have the near-

obligatory Patreon page:

https://www.patreon.com/peppert

op

INKSCAPE V1 .0 BETA

In classic ‘saving the best for

last’ tradition, the final item in this

hodgepodge of an article is the

announcement of the long awaited

release of Inkscape v1 .0. Well,

nearly.

At the time of writing, the

second beta of v1 .0 has been

released, and is available via the

download link on the Inkscape

website (https://inkscape.org).

There’s no definite date for the

final release, and I don’t know if

there will be any other beta

releases in the meantime, but

what’s there already feels pretty

stable and polished. I encourage

readers to give the beta a try, and

report any issues they find to the

Inkscape bugtracker. Note that the

project is no longer using

Launchpad to track issues, having

switched to GitLab some time ago.

If you do want to file a bug report,

or view those that have already

been filed, there’s a page on the

Inkscape site that will redirect you

to the correct location:

https://inkscape.org/report

A FOND FAREWELL… UNTIL

NEXT MONTH

I had originally intended for this

to be my last Inkscape column,

having covered just about every

feature the program has to offer

during the past 8 years. With the

imminent arrival of v1 .0, however,

I ’ve decided to stick around to

introduce the new features and

important changes. Initially this

coverage will necessarily be based

on the beta versions, but it’s

unlikely that there will be

significant UI changes before the

full release so I ’m sure anything I

write will still be relevant in a few

months’ time.

Next month, I ’ll be detailing a

couple of minor features in

Inkscape that have managed to slip

through the cracks in previous

instalments, to fully ‘clear the

decks’ before diving into the

exciting new features of v1 .0.

http://www.peppertop.com
https://www.patreon.com/peppertop
https://inkscape.org/report

full circle magazine #1 55 32 contents ^

HHOOWW--TTOO
Written by Mark Crutch II nnkkssccaappee -- PPaarrtt 9955

This month and next, I ’m going

to cover a couple of Inkscape

features that have fallen through

the gaps in my previous coverage.

The first of these, disgracefully,

dates back to the 4th instalment of

this series, way back in 201 2! In

FCM#64, when describing the

options in the Fill and Stroke

dialog, I wrote: “Also being putoff

for laterarticles are the UnsetPaint

button that looks like a question

mark, andthe two splodges on the

rightofthe Fill tab.”

The Unset Paint button was

eventually described in part 30

(FCM issue #90), when I covered its

use with clones. But what of the

“two splodges on the right of the

Fill tab”? For clarity, let’s first take

a look at a screenshot of the Fill

and Stroke dialog, in which I ’ve

circled the splodges.

To understand what effect

these splodges – which are actually

a pair of mutually exclusive radio

buttons – have on your objects,

we’ll need a path to test with. Not

just any path will do, however.

These buttons have an effect only

on paths that are either self-

intersecting, or which contain sub-

paths. Let’s deal with the former to

start with: what exactly do I mean

by ‘self-intersecting’?

Consider the paths below. The

one on the left is just a simple U-

shaped filled path. Nothing special,

no sneaky tricks. Just 1 0 nodes

forming a shape with a couple of

arms. The shape on the right is just

a duplicate of the first one, with

the end of the left arm moved to

the right, and the end of the right

arm moved to the left, so the arms

cross each other. No nodes were

added or removed, they were just

moved around a little.

The second shape is a self-

intersecting path. It’s a closed path

that is drawn such that it crosses

itself, although the word ‘crosses’

carries a misleading implication in

this case. Remember that Inkscape

is a 2D drawing program, with no

notion of the third dimension. So

when making this shape I didn’t

really move one arm ‘over’ the

other, as you would do when

making the same shape with a

piece of string. Rather I moved it

‘through’ the other, in the same 2D

plane. Neither arm is on top of the

other. Neither arm ‘crosses’ the

other. Instead the resultant shape

simply intersects with itself.

Turning on the stroke and

reducing the fill opacity makes this

a little clearer:

Notice how the stroke is visible

for both arms. If one crossed over

the other you might expect the

stroke of the arm on the bottom to

be obscured by the one that’s on

top, but that’s not how things work

in the 2D graphics world. You’d

also expect the colour of the fill to

be a little darker where the two

translucent arms cross over, but

that’s not the case either.

It’s also important to note that

the arms don’t have to completely

pass through each other in order

to be a self intersecting shape, and

that the shape could self-intersect

multiple times, as demonstrated in

these variations on the theme:

Now we’re all clear on what a

self-intersecting path actually is,

let’s look at how they’re affected

full circle magazine #1 55 33 contents ^

HOWTO - INKSCAPE
by the splodgy radio buttons. The

first thing to note is that the

images so far have all been taken

with the second button selected –

the one that’s completely filled in.

Switch to the first button, and we

get this:

The basic U-shaped path

remains unaffected. It’s not a self-

intersecting path, and it doesn’t

contain any sub-paths, so the radio

buttons have no effect. All the

others, however, have no fill

rendered in the intersecting parts.

The stroke is still drawn, but the fill

isn’t.

This behaviour is a little

confusing at first. Surely the

intersecting parts are inside the

shape, so they should still be filled,

right? Unfortunately our intuitive

idea of in-and-out doesn’t always

apply in the world of computer

graphics. Instead there are

different rules or heuristics for

determining whether a point is

inside or outside a shape – and the

splodgy buttons are used to switch

between a couple of those rules.

Let’s take a look at paths with sub-

paths to try to explain why there’s

a need for this choice.

When you look at the self-

intersecting shapes above, it’s

pretty obvious that the fully-filled

option (second button) is the right

choice most of the time. Imagine

trying to draw a figure-of-eight,

only to find that the part where

the shape crosses itself is unfilled.

Definitely better to use the second

option, so we’ll ensure that’s

selected. Now we’re going to draw

a circle with a hole in it. There are a

few ways to achieve this but, to

make a point, I ’m going to use a

very specific method:

• Draw a circle for the outside.

• Draw a smaller circle for the

inside.

• Path > Combine to create a

complex path, made up of two sub-

paths.

In this image (above) you can

see the two separate shapes on

the left, and the result of

combining them in the middle. The

‘hole’ in the shape is filled – not

really what we were after.

Switching to the first button,

however, gives the expected

result, as shown in the version on

the right.

Now we’ve got a simple rule-of-

thumb: use the left-hand button

for paths with sub-paths, and the

right-hand button for self-

intersecting paths. But what if we

have a path that is both self-

intersecting and has a sub-path

describing a cut-out? Something

like this odd piece of jewelry or

alien symbol, shown as it appears

with each of the two splodgy radio

buttons selected:

On the left we have the

problem of no fill in the self-

intersecting part, but the hole is

fine. With the right-hand button

we get a fill in the self-intersecting

part, but no hole. Is there any way

we can have the best of both

options?

The answer is obviously ‘yes’,

but to get there it helps to

understand what the two

heuristics are that we’ve been

switching between. The first

button has a tooltip that reads

“any path self-intersections or

subpaths create holes in the fill”,

and is referred to as the “even-

odd” rule. The heuristic for this is

pretty simple:

• Pick a point in the shape.

• Draw an imaginary straight line

from that point out of the shape in

any direction.

full circle magazine #1 55 34 contents ^

HOWTO - INKSCAPE
• Keep a ‘crossing’ count, which

starts at zero.

• Add one to the count each time

the line crosses a path or sub-path

boundary.

• If the final count is even, the

point was outside the shape. If the

count is odd, the point was inside

the shape.

By performing this for a point in

each region of the shape, Inkscape

can determine which areas are

inside, and therefore need to be

filled, and which are outside. But it

does result in self-intersections

being counted as outside, and left

unfilled.

The second button has a tooltip

that reads “fill is solid unless a

subpath is counterdirectional”, and

is referred to as the “non-zero” or

“winding” rule. This heuristic relies

on the fact that each sub-path has

a direction associated with it, and

works like this:

• Pick a point in the shape.

• Draw an imaginary straight line

from that point out of the shape in

any direction.

• Keep a ‘winding count’ which

starts at zero.

• Each time the line crosses a path

or sub-path, add one to the count

if the path is crossing the line from

left to right (clockwise from the

perspective of the point) or

subtract one if the path is crossing

from right to left (counter-

clockwise).

• If the final count is zero the point

is outside the shape, otherwise it is

inside.

From this algorithm and the

mention of “counterdirectional” in

the tooltip – you may have already

worked out that using the second

splodgy button (non-zero) lets us

switch sub-paths between filled

and unfilled by reversing the

direction of the nodes. Fortunately

for us, Inkscape makes this fairly

easy:

• Select the composite path and

switch to the node tool (F2).

• Select a node in the sub-path.

• Use Path > Reverse to reverse the

order of the nodes in the sub-path

without changing the shape.

You can see the effect of this

approach in the following image. In

this case I ’ve also added arrow

markers to the paths, to clarify

what’s happening. The first image

is our starting path, created by

combining an oval with a self-

intersecting shape. You can see

from the arrows that the sub-path

is running counter-clockwise. In the

second image I ’ve reversed the

direction of the sub-path, the

arrows point the opposite way, and

the shape has a hole for the sub-

path but not for the self-

intersection.

Unfortunately this simple

approach doesn’t appear to work in

the beta of Inkscape v1 .0, where

the Path > Reverse operation

reverses the entire path rather

than the selected sub-path. The

only option in this case is to use

Path > Break Apart to split the

shape down into its constituent

parts, then use Path > Reverse on

just one of those paths, then

finally use Path > Combine to re-

combine them back into your

original complex path. This is a

definite step backwards in the

workflow, so I will be filing a bug

about this on the Inkscape issue

tracker.

This path-reversing approach

works for simple shapes where the

nesting of sub-paths isn’t very

deep. For more complex

arrangements you may need to

reverse more than one path to get

the effect you want. And if there

are also intersections between

sub-paths, or self-intersections

within them, you may never be

able to get just the fill you want,

no matter what you try. In those

cases you may find it easiest to use

the first splodge (even-odd) to fill

the entire shape, then create your

complex hole arrangement by

clipping with a suitably

constructed path.

It’s worth noting that you might

never experience this problem.

Punching a hole through a shape is

more commonly done using Path >

Difference than Path > Combine,

and the former usually results in a

sub-path going in the right

direction. But it’s worth knowing

about these splodgy buttons and

how to work with them, just in case

you ever find yourself presented

with a path that contains

inexplicable holes or fills where it

shouldn’t.

full circle magazine #156 27 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarrtt 9966

In this instalment I’m going to
cover a common requirement

that I overlooked when introducing
the use of SVG files in a web
browser: turning an object in an
Inkscape file into a clickable link
that loads a different URL.

There are a couple of ways of
dealing with this: the first is to use
JavaScript to respond to the ‘click’
event that fires when an object is
clicked on. I covered various ways
to add JavaScript to an Inkscape
file across several articles. See FCM
#142, #143 and #146 for the
specifics. What I didn’t describe
was how you could use JS to
change the URL loaded in the
browser.

In the most basic form, where
you just want to move to a fixed
URL when an object is clicked, you
can use the one-line “onclick” field
in the Interactivity section of the
Object Properties dialog (FCM
#142). For example, to make a
button that goes to the Full Circle
Magazine website, you would do
the following:

• Draw your button. Use multiple
objects and text as you wish.
• Put all of the button’s content
into a single group. This is where
we’ll attach the click handler.
• Right-click on the group, and
select “Object Properties”.
• Expand the “Interactivity” section,
if necessary.
• Add the following JS code to the
“onclick” field:

window.location.href =
"https://
fullcirclemagazine.org/";

Your button and dialog should
look something like that below.

Save the SVG file then load it
into a web browser and you should
find that clicking the button takes
you to the FCM website (or
whatever URL you used).

You’ll probably have noticed
what you don’t get for free with
this approach: there’s no change of
style of the button as you hover
over it, and the mouse pointer
remains as an arrow rather than
changing to the “pointing finger”
which is usually used to denote a
clickable target. Both these
shortcomings can be addressed

with a little CSS, but that’s yet
another chunk of code to manually
add to your SVG file (FCM #145 will
help with this).

If all you want is a link to
another URL, however, there’s no
need to mess with JavaScript at all
(though you may still need some
CSS). Inkscape provides a simpler
way to turn an object into a
clickable link – and it’s this part of
the UI that I overlooked in my
previous articles. All you need to
do is to right-click on the object
and select “Create Link” to open
the generically named “Object
attributes” dialog:

That’s a lot of fields for a simple
link. The reason for this is that
Inkscape creates an SVG 1.1 version
link, which is actually implemented

full circle magazine #156 28 contents ^

HOWTO - INKSCAPE
via an XML standard called XLink. It
dates from the time when the W3C
was trying to create a wide ranging
collection of XML-based standards,
with the idea being that a single
file might use elements from
across multiple specifications,
allowing each spec to focus on
doing one thing well. XLink,
therefore, is a standard that deals
with nothing but links between
documents – but in trying to
include numerous use-cases for
links it has a whole load of optional
attributes that most people will
never need. Hence all the fields.

The only essential field is the
first one, “Href” (an abbreviation of
“hyperlink reference”). A better
title would have been “URL”,
“Address” or “Location”, but this
dialog just uses a capitalized
version of the attribute name from
the XLink standard. So the “href”
attribute used in the XML becomes
the awkwardly capitalized “Href”.
With a URL in this field, save the
file and load it into your web
browser. You should find that
clicking the button takes you to the
destination page. Furthermore,
you’ll get the right sort of pointer
as you move your mouse over the
button, so that’s one less bit of CSS
to add to your page.

Let’s take a look at the XML
editor to see what this small
change has actually done to your
SVG file (shown above).

The first thing to note is that
the new attribute hasn’t just been
added to the existing <g> element.
Instead, Inkscape has wrapped the
group in an <a> element, and the
attribute has been applied to that.
Anyone who has written some
HTML will be familiar with <a> as
the “anchor” element which is used
for links in that language. Here we
have essentially the same element,
but in the “svg” namespace (hence
it appears as <svg:a ...> in the XML
editor). The URL is added as an
attribute in the XLink namespace. If
you were to look at the XML file in
a text editor, the relevant bits of

code would look like this:

<a id="a973"
xlink:href="https://
fullcirclemagazine.org/">
 <g id="g952">
 ...
 </g>

Let’s fill out most of the
remaining fields in the Object
Attributes dialog, to try to make
our link more fully featured. Having
already created the link, you will
find that a right-click on the object
within the Inkscape window now
shows the “Create Link” option as
disabled. Instead, a little further up
on the context menu, you’ll find
that the usual “Fill and Stroke…”
menu item has been replaced with
“Link Properties…” which will open
the same dialog (below).

The first thing I’ll note here is
that you will almost certainly never
need to fill out this many fields.
“Href” is required, and “Title” is a
good idea for accessibility
purposes, and also because

full circle magazine #156 29 contents ^

HOWTO - INKSCAPE
desktop browsers will use it to
create a tooltip when you mouse
over the object. You might need to
use the “Target” field, depending
on how you want the link to
behave, but I’ll come on to that
shortly.

Let’s skip to the “Type” field.
This describes the nature of the
link, from a specific list of options
in the XLink specification. For a
normal link to another page (or
within the same page), “simple” is
all you need. This also happens to
be the default behaviour if it’s
omitted, so you should just leave it
blank. The other possible types are
all used for more complex linking
between and within XML files. If
you need to use them then you
probably already know about them
– and I doubt very much that you’d
be using this dialog to edit them
anyway.

One of those more advanced
types is “arc”, which indicates that
the link is being used to connect
two other resources, identified by
the “to” and “from” attributes. A
“resource” in these terms is
anything that can be identified
with a URL, such as a website, a
specific page or file, or a named
element on that page. As you may

have noticed, the “to” and “from”
attributes aren’t present in the
dialog, so you can’t actually create
a valid arc link through this UI even
if you knew why you might want to!
For this reason the related
“Arcrole” field is also completely
useless (if you could create an arc
link, this would hold the URL of a
resource that describes it).

Based on that description of
“Arcrole”, you may not be surprised
to find that “Role” field is also
intended to hold a URL that points
to a descriptive resource. In this
case it should hold the address of a
resource that describes the nature
or purpose of the link. Since your
web browser doesn’t natively do
anything with this attribute,

however, you may as well omit it.

The “Actuate” field is intended
to indicate when the link should be
followed. This attribute can only
take very specific values but, once
again, it’s completely ignored by
the web browser regardless of
what you enter. The easiest option
is therefore to leave this blank. The
“onRequest” option I’ve used in my
example just means “follow this
link when the object is clicked”, but
that is, once again, the default
behaviour anyway.

All that remains are the “Target”
and “Show” fields. These attributes
actually perform the same purpose,
but “target” is part of the SVG spec
for the <a> element, whereas

“show” is an XLink offering. They
affect where in the UI the browser
loads the linked resource –
whether it replaces the SVG file in
the same frame or tab, or opens in
a completely new tab or window.
The main values to be aware of are
as follows (note the underscores
before the values for “target” (see
table below).

As you might guess from the
missing values in the “show”
column, there’s rarely much need
for “_parent” or “_top”. The best
policy is usually to leave the
“target” and “show” attributes
empty, so that the behaviour of the
browser is purely defined by the
user’s settings. If you’re really sure
that you want to open a new tab or

full circle magazine #156 30 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys', 'Monsters,
Inked' and 'Elvie', which can all be
found at http://
www.peppertop.com/

HOWTO - INKSCAPE
window when the element is
clicked, then use “_blank” in the
“Target” field. But that’s pretty
much the only legitimate use of
this field for most people.

As you can see, it’s possible to
enter conflicting values for
“Target” and “Show”. Experiment
indicates that, for Firefox at least,
“Target” takes priority. All the
more reason to leave the “Show”
field blank.

So there you have it: a dialog
with eight fields, of which you only
really need one (Href), might use
two if you want to have a tooltip
(Href, Title), or stretch to three if
you also want to force links to
open in a new tab (Href, Title,
Target). The remaining fields
should always be left empty, unless
you really know what you’re doing
and are something of an XML/
XLink expert. But in that case
you’re undoubtedly either editing
the XML content by hand, or via
some other XML-based workflow.
In neither case is this dialog likely
to be of much use to you.

There’s one large elephant in
the room, however: the use of
XLink at all. As I mentioned earlier,
this dialog creates an SVG v1.1 link.

But since version 2.0 of the SVG
spec there’s been no need for
XLink. The “href” attribute has
been promoted to the SVG
standard, together with the
“target” attribute. Oddly, however,
the “title” attribute has not been
promoted, though the “xlink:title”
version has been deprecated. The
recommendation now is to use a
<title> child element instead, which
seems a little overkill for a simple
tooltip.

With this in mind, an SVG2 link
might look something like this:

<a id="a973"
 href="https://
fullcirclemagazine.org/"
 target="_blank">

 <title>Full Circle
Magazine</title>

 <g id="g952">
 ...
 </g>

For now – and for the
foreseeable future – browsers
continue to support the SVG 1.1
approach, so there’s no urgency for
Inkscape to change what it outputs.
Modern browsers will also accept
the SVG2 version, though, so
perhaps some future release of
Inkscape will replace this generic

dialog with something more
tailored to the task, and will
replace the output with an SVG2
version at the same time.

The last thing to note on this
topic is that the URL you link to
doesn’t have to be a separate file.
You can also link to a named anchor
within the current file. This is
particularly useful with the
techniques I described for creating
named views in parts 79 and 80
(FCM #139, #140). For example,
given a named view of “starView”,
simply creating a link with an href
of “#starView” would mean that
the image would switch to that
view when the object is clicked. A
similar effect can be achieved with
the full viewBox syntax, using an
href of “#svgView(viewBox(0, -250,
250, 500))” for example.

This can be an easy way to
introduce interactivity to an SVG
file. Consider a slideshow in which
each slide is a separate part of the
SVG image, and a viewBox is used
to show just the first slide by
default. By adding “Previous” and
“Next” buttons which have viewBox
links attached you can make a
simple linear slideshow – or you
could add more links to let you
jump directly to any other part of

the file.

Of course you’re also free to
mix XLink-based links with those
created via JavaScript, picking the
best tool for the job. One thing you
can do with JS which isn’t possible
with the simpler form, is to provide
additional logic to determine the
target location. You might change
to different URLs based on the
time of day, or prompt the user for
some additional information that is
then encoded into the URL.
Consider a web-based storybook,
for example, in which XLink is used
to move between the pages, but JS
provides extra interactivity when
elements are clicked on, or hovered
over.

http://www.peppertop.com

full circle magazine #156 31 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarrtt 9977

There’s some big news in the
Inkscape world this month.

Since the previous instalment, a
couple of new Inkscape versions
have become available: 0.92.5 and,
after 17 years of development,
version 1.0. The former mainly fixes
some Windows issues, but does
have a few general bug and crash
fixes that will benefit Linux users.
Perhaps the most significant
change is that Inkscape extensions
are now compatible with Python 3.
Given that Python 2 formally
reached its end-of-life at the start
of this year, this is a welcome step
forward along a path that many
projects will need to take, as Linux
distros begin to reduce their
support for the legacy Python
packages.

The full release notes for 0.92.5
can be found here:
https://inkscape.org/release/
inkscape-0.92.5/

Of more interest to this column
is version 1.0. As I’ve mentioned
previously, it’s my intention to
cover the new features and

changes in this milestone release,
starting this month. But the first
feature I’m going to mention – as
much to get it out of the way, as
anything else – might seem a little
odd for this Ubuntu-focused
magazine: I’m going to talk about
version 1.0 on MacOS, which
represents one of the biggest
changes in the history of the
Inkscape project.

Although earlier releases of
Inkscape had MacOS versions, they
were essentially just
recompilations of the Linux
version. They behaved in exactly
the same manner as the Linux
program, right down to the
keyboard shortcuts. Most
importantly, they still required an X
server for their graphical output.
Since MacOS doesn’t natively use X
for its display, this meant installing
another application, and
understanding the relationship
between operating system, X
server, and Inkscape.

For several years, Apple were
proud of the Unix underpinnings of
OSX, and shipped their own X

server, perhaps as a way to bolster
the number of applications
available for their fledgling new
OS. Over time, this became less of
a selling point, and the X server
saw little love and attention. Since
2012, Apple no longer maintains
their own X server, but does
contribute to the Open Source
XQuartz project. For the past few
years, therefore, it has been
necessary to install XQuartz in
order to use Inkscape on MacOS.
Although this works reasonably
well, this combination does have a
few idiosyncrasies, particularly
when used on a Mac with multiple
monitors. So much so, in fact, that I
ended up writing my own shell
script to rescue me from the
“disappearing dialog” issue that
plagues this setup (http://
www.peppertop.com/blog/?
p=1554).

With 1.0, however, Inkscape will
be a native MacOS application
which doesn’t require an X server.
With this change also comes better
support for the system clipboard,
and keyboard shortcuts that more
closely match the standards for the

OS. Perhaps most importantly, it’s
compiled as a 64-bit application,
whereas earlier versions were 32-
bit. Although this latter change
doesn’t really have much of a
bearing on Inkscape itself, it’s vital
to note that the latest release of
MacOS, “Catalina” (10.15), supports
only 64-bit programs, so if you
want to run Inkscape on that
version of the OS, you have no
choice but to use version 1.0. Note
that it’s currently described as a
“Preview”, which suggests that
there are probably a few issues to
iron out still, but in my testing, it’s
proven to be pretty stable.

A native implementation makes
Inkscape much easier for Mac users
to install and use – which will
hopefully boost its user base. As
MacOS has a reputation as being an
OS for “creatives”, Inkscape
perhaps faces more competition on
that platform than any other.
Compared with most other vector
graphics programs on OSX, it is
Free Software, as well as free
software. Whether that will be
enough for it to carve out its own
niche in the market remains to be

https://inkscape.org/release/inkscape-0.92.5/
http://www.peppertop.com/blog/?p=1554

full circle magazine #156 32 contents ^

HOWTO - INKSCAPE
seen, but it’s certainly a huge step
forward by the developers that
should be applauded.

If you’re on OSX or Windows,
you can download Inkscape 1.0 via
links on this page:
https://inkscape.org/release/
inkscape-1.0/

You’ll also find options for Linux
downloads there, as an AppImage
file or a Snap package. In practice,
however, if you’re using Ubuntu or
a derivative, the easiest way to get
the new version is probably using a
Snap installed via the command-
line. Just run the following
command in a terminal:

sudo snap install inkscape

One advantage of this approach
is that the Snap-based version will
be installed alongside the deb
package version from the Ubuntu
repositories, so you can try out the
new release without having to
relinquish the 0.92.x version you
might be using currently. You will
end up with two Inkscape entries in
your menu, but surely the
developers would have ensured
they’re easy to distinguish from
each other, wouldn’t they? Here’s
what the entries on my menu look

like on Ubuntu Mate, together with
a version blown up to double size
so you can more clearly see the
difference between the icons:

The first entry is the old 0.92.x
version, and has a crisper icon with
a slightly blue tinge on the right.
The second is 1.0, which has a
shadow around it, giving a softer
look, and no blue on the image. If
possible, I recommend renaming
one of the menu entries for clarity.
The exact way to do this will vary
across distributions; on Ubuntu
Mate you can run the ‘mozo’ utility
to edit your menu structure (also
available by a right-click on the top-
level menu button in the panel).

With the 1.0 release installed,
it’s time to begin playing with the
new features. As you do so, please

do consider reporting any issues
you encounter to the Inkscape bug
tracker (https://inkscape.org/
report). This is a significant
release, and there are bound to be
some issues in it. Reporting them
will help to improve the quality of
the subsequent point releases.

The new release updates the
user interface toolkit to GTK3,
which has resulted in a slightly
different look and feel, but also in
significant improvements for users
of modern “retina” or “HiDPI”
screens. It also brings greatly
enhanced theme support, to the
extent that there is a new,

dedicated “Theme” panel in the
“Interface” section of the Inkscape
preferences dialog.

The first menu in this panel lets
you select from whatever GTK3
themes are available on your
machine. On my box, this was a
reasonably extensive list which
included a number of dark themes,
if that’s your thing. Selecting an
option from this menu updates the
Inkscape UI immediately, so it’s
easy to audition the various styles
that are available. Leaving it set to
“Use system theme” does what you
might expect – although the UI
doesn’t immediately update if you

https://inkscape.org/release/inkscape-1.0/
https://inkscape.org/report

full circle magazine #156 33 contents ^

HOWTO - INKSCAPE
change the system theme via your
OS, and will only fall in line after
restarting Inkscape. Here’s a
representative sample of some of
the available themes:

The “Use dark theme” checkbox
in the dialog seems a little
redundant to me. As far as I can
tell, if you select a named entry
from the popup, and there’s a
corresponding “-dark” theme, this
checkbox lets you easily switch
between the two. However, since
all the different versions are listed
in the popup, including the dark
ones, there’s no need for this
checkbox anyway. Worse still, some
themes have three different
entries: in the case of the “Yaru”
theme, for example, there is

“Yaru”, “Yaru-light” (those two
appear to be the same), and “Yaru-
dark”. This checkbox would make
more sense if the suffixed versions
were suppressed in the menu. You
would then select a theme first
(e.g. “Yaru”) before using the
checkbox to toggle between the “-
light” and “-dark” variants.

The GTK themes only affect the
UI widgets – buttons, scrollbars,
text entry boxes and so on – not
the icons. The second section in the
preferences panel deals with those.
A popup lets you select the icon
theme you want to use. In the case
of my test installation there are
four options: “hicolor”,
“multicolor”, “Tango” and “Use
system icons”. I’m not sure why the
first two aren’t deserving of capital
letters at the start, but that’s a
minor niggle. Of those choices,
three of them result in the same
appearance, with only “Tango”
looking any different, at least in
the default configuration.

There are actually two other
icon styles available, though the UI
for selecting them is not entirely
straightforward. If you select either
the “hicolor” or “multicolor”
themes, you will then gain access
to a checkbox labelled “Use

symbolic icons”. With this checked,
each theme renders flat icons with
little or no shading, and either no
additional color (ironically, this is
the “hicolor” option), or specific
highlight colors (“multicolor”). This
screenshot shows all four options,
from left to right: hicolor/
multicolor (non-symbolic), Tango,
hicolor symbolic, multicolor
symbolic.

My personal preference is for a
light theme with colorful icons. I’m
of the view that icons with
distinctive colors as well as shapes
probably require a little less
cognitive effort to recognise,
leading to a UI that’s easier, and
therefore faster to navigate with
less conscious thought required. As
the work I do in Inkscape generally
ends up being printed on white
sheets of paper, I usually use a
white background in the drawing
window. A light theme therefore
leads to a less jarring difference
between the light color of the
canvas and the UI around it. But I
know that some people do love
their dark themes, and it’s for these
users that I think the symbolic icons
come into their own. Looking at the
top-left corner of the Inkscape
window with the default icons but
a dark theme (Yaru-dark) shows the
problem with using the default
non-symbolic themes:

full circle magazine #156 34 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys', 'Monsters,
Inked' and 'Elvie', which can all be
found at http://
www.peppertop.com/

HOWTO - INKSCAPE

Notice how jarring the colored
icons are against the darkness of
the toolbars. Conversely, there are
some symbolic icons visible even
with this icon set, which are too
dark and difficult to make out (I’ve
reported this as an issue, and the
feedback is that it appears to be a
packaging problem with the Snap).
Switching to a symbolic theme
makes the icons a lot more
consistent:

Although they’re consistent,
they’re also a bit too bright. By un-
ticking the “Use default colors for
icons” checkbox, however, you can
use the color buttons below to
select the main icon color, as well
as the highlight colors (for the
multicolor theme). This makes it
possible to knock the bright icons
back to a darker grey – or even a

color tint, should you wish.

In the case of the multicolor
theme, the three highlight colors
are used in the toolbox icons as a
means of grouping similar sets of
tools together. Once again, this
addition of color aids in reducing
the cognitive effort required to
identify an icon. What I’d really like
is the ability to set each base color
or highlight on a per-icon basis, so
that I could make the tools I
regularly use stand out more than
those that see only occasional
deployment. Perhaps in a future
version.

That’s enough for the stylistic
changes in the UI. Next month,
we’ll start a deeper dive into the
new features and additions that
have taken place in the actual
drawing tools. If you can’t wait, and

want a quick preview of some of
the highlights of this release, take a
look at the highly professional
release video the project has
posted: https://inkscape.org/
release-video-1-0/

http://www.peppertop.com
https://inkscape.org/release-video-1-0/

full circle magazine #158 30 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarrtt 9988

Last time we began looking at
the new features in Inkscape

1.0, and I suggested that you could
install the snap version of the
package in order to let it live
alongside the deb package version
of 0.92.x you may be currently
using. It turns out that this was
both good advice and bad.

The reason it’s a good option is
because, as I feared, version 1.0 is
proving to contain a number of
bugs and regressions that range
from slightly annoying to full-scale
showstoppers, depending on what
you use Inkscape for. In that
respect, the ability to still switch
back to 0.92 makes using the snap
a definite advantage.

The bad news, however, is that
there are some packaging issues
with the snap which result in
incorrect and missing icons. I noted
this problem last month, with
regard to some symbolic icons
appearing in the toolbar when
using a non-symbolic icon theme.
Since then, however, I’ve noticed
(and reported) several icons that
are completely missing from key

parts of the UI. For example, here’s
the Layers dialog – something that
you’re likely to use very frequently
– missing the icons for adding and
deleting layers, and those for
moving a layer to the top or
bottom of the stack:

These same icons are used (and
therefore absent) in various other
parts of the user interface, and
there are other missing icons too.
Fortunately, the buttons still
operate as they should, and the
tooltips work, so you can still drive
the software. Familiarity with older

versions helps, but if you’re new to
Inkscape then the 1.0 snap, as it
currently stands, may well lead to
confusion.

You might think that switching
to a different icon theme would
help, but all you get is a different
‘missing image’ icon. Switch to the
symbolic icons, however, and they
are all present – which at least
offers something of a workaround
for now, if you don’t mind that
aesthetic.

There is another option: there’s
a PPA available for the 1.0 release
which does not suffer from this
problem (https://launchpad.net/
~inkscape.dev/+archive/ubuntu/
stable). By installing this, however,
you’ll replace the deb packaged
0.92.x version if you have that
installed. This is the approach I’ll be
taking for the immediate future, so
that I can produce screenshots for
this series that use the same icons
as those in earlier instalments –
however I will be running it in a
virtual machine, as I’ll be sticking

https://launchpad.net/~inkscape.dev/+archive/ubuntu/stable

full circle magazine #158 31 contents ^

HOWTO - INKSCAPE
with 0.92 to produce my comic
strips until the 1.x series matures a
little.

There’s more to say about the
UI changes in Inkscape 1.0, but,
right now, you’re probably itching
to see what new features there are
to help you when actually drawing
something.

Let’s start with changes to the
canvas – the entire drawing area
within the Inkscape window –
beginning with rotation.

Particularly when drawing
freehand, it’s useful to be able to
rotate the canvas to better suit the
range of motion in your arm. Think
about using a graphics tablet: it’s a
lot easier to move the stylus from
left to right rather than up and
down. Of course this doesn’t mean
strictly horizontal lines, since your
arm traces out an arc. But the
general principle remains, which
can result in artists trying to
perform gymnastics to rotate their
tablets – and their heads – in order
to improve their accuracy for
awkwardly angled lines.

With 1.0, it’s now possible to
rotate the canvas itself, so you can
keep the tablet, and your body, in a

more comfortable position. If
you’re using a mouse with a wheel,
then you can hold Ctrl and Shift
while rotating the wheel.
Alternatively, hold Ctrl while you
click-and-drag with the middle
mouse button (which may also be
the wheel). The latter is especially
useful for tablet users, for whom
the middle mouse button is often
duplicated as a button on the body
of the stylus.

Some users have reported that
they find it too easy to accidentally
trigger rotation when they actually
intended to pan the canvas.
Although there’s no way to disable
rotation completely in this release,
it is possible to assign a keyboard
shortcut to reset the rotation
quickly if you accidentally trigger it.
Within the keyboard shortcuts
pane of the Inkscape Preferences
dialog you can also set shortcuts to
rotate the canvas clockwise and
counter-clockwise, though none of
these functions have default
shortcuts assigned.

If you do rotate the canvas, and
haven’t assigned a keyboard
shortcut for resetting it, you still
have a couple of options available
for returning to the normal
orientation. The obvious option is

simply to rotate in the opposite
direction but this approach may
prove difficult to do precisely.
Better is to use a new option in the
View menu: View > Canvas
Orientation > Reset Rotation.

If you want to precisely set the
rotation amount, there’s an
additional field at the right of the
status bar, alongside the previous
one for the zoom value. You can, of
course, type a value into this field
directly. But you can also scroll the
mouse wheel over the numbers to
change the values in 1° increments
– or click the +/- buttons to do the
same.

In common with most input
boxes in the Inkscape UI, there’s a
context menu that you can access
with a right-click on the field,
offering a few standard values, this
time in 45° increments. This is
another useful way to reset the
rotation back to zero.

It’s all very well being able to
rotate the canvas to whatever
amount you want, but what does
that actually get you as an artist?
Unfortunately, the answer is ‘not
much’. As I mentioned at the

outset, this is particularly useful for
freehand work, using the Bezier,
pencil or calligraphy tools. But if
you want to use Inkscape’s other
features, it has a lot less to offer.

I would have thought that the
point of being able to rotate the
canvas is that it gives you a way to
set an angled baseline against
which to create other objects. If
you need to create a few lines of
text, perfectly positioned at an
angle of 26.35° then you would
surely just punch that value into
the field at the right of the status
bar, then plough on with the text
tool. Except it doesn’t work like
that.

Rotating the canvas just rotates
your view of the canvas. Text,
rectangles and even guides are still
oriented to the page, not to the

full circle magazine #158 32 contents ^

HOWTO - INKSCAPE
new view. Here’s my rotated canvas
with a rectangle drawn, and a pair
of guides dragged out after it had
already been rotated:

It gets even odder when you
select objects. The handles for the
selection box maintain their
“normal” orientation – so the scale
handle for the top-right of the box
still points diagonally from SW to
NE, for example. But with my page
rotated somewhere near 45°, it
results in arrows that are distinctly
misleading, both in resize mode
and rotate/skew mode:

What would happen if you
dragged the vertical arrows in the
first example? You might think it
would scale the content vertically
as you look at it. But instead it
scales the objects vertically along
the axis of the page, not the axis of
the screen.

Canvas rotation feels like a
missed opportunity to me. Making

the other tools, and guides,
operate relative to the screen, not
the page, would result in some very
powerful workflows. Instead it’s a
helpful feature for freehand
drawing, but not a lot else.

Another new feature that’s
closely related to canvas rotation is
the ability to flip the canvas
vertically and horizontally – not to
be confused with flipping individual
objects via the toolbar buttons or
the H and V keys. The canvas
flipping options can be accessed
from the View > Canvas
Orientation menu, or you can add
keyboard shortcuts for them from
the Inkscape Preferences dialog
(none are assigned by default).
They behave pretty much as you
would expect, flipping the canvas
view either left-to-right, top-to-

bottom, or both (which is
equivalent to rotating through
180°). Note that the drop shadow
on the nominal bottom-right page
border will give you an indication
of the current state (if you have it
visible, of course).

Flipping the canvas is a
technique often used by digital
artists to get a different view of
their work. Sometimes issues in
layout or perspective are more
obvious in one orientation or
another. Simply by making text less
legible it can help to expose
general design problems without
those pesky words vying for your
brain’s attention at the same time.

Resetting a flipped canvas is
done by flipping it a second time in
whichever direction(s) are required.

Unless you’ve set keyboard
shortcuts, this potentially means
two trips to a nested sub-menu. I’d
prefer to see the “Reset rotation”
menu entry replaced with a more
general “Reset view” option that
would not only set the rotation
back to zero, but also turn off any
horizontal or vertical flipping.

You may be wondering what
happens if you apply both canvas
rotation and flipping at the same
time? The answer is that the
rotation is applied first, then the
whole viewport is flipped. This is
arguably the better ordering for
these transformations, as the
display switches between two
clearly distinct orientations –
probably more useful for spotting
design problems. For comparison,
here’s my test page, first rotated
and then rotated and flipped
horizontally (next page).

One problem that affects all
Inkscape users at some time, and
novices in particular, is losing your
place in a drawing. You’ve zoomed
in, then panned a little too far, and
suddenly you’re looking at a plain
white section of the window with
no idea which direction you need to
go in to return to your work. With
the addition of flipping and

full circle magazine #158 33 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys', 'Monsters,
Inked' and 'Elvie', which can all be
found at http://
www.peppertop.com/

HOWTO - INKSCAPE

rotating, there’s even more
likelihood that you may get lost in
your own drawing at some time.

Historically you could deal with
this situation by zooming out until
the canvas was visible in the
window, then zooming back in. Or
you could use the zoom shortcuts –
such as zoom to page – to get back
to a known state. But these
approaches change your zoom
level, which causes Inkscape to re-

render the content, causing a real
slowdown on some drawings.

A new addition to the zoom
buttons in the toolbar for 1.0 is
“Center page in window”. Clicking
this, or using the keyboard shortcut
(default: Ctrl-4), pans the content
of the Inkscape window in order to
position the center of the page at
the center of the window, without
changing the zoom level. This
works based on the nominal page

size set in the document
properties, regardless of whether
or not the page border is visible.

Hopefully you’ll find at least
one of these new features will be
helpful to you. But that’s not all for
the new canvas and view features
in 1.0, so next month we’ll continue
to look at a few other changes and

additions in this area.

http://www.peppertop.com

full circle magazine #159 27 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarrtt 9999

This month I’ll be continuing to
look at the new view features

in Inkscape v1.0, beginning with an
addition to the View > Display
Mode menu. If you’re a long-time
reader of this column, then not
only do you deserve some kind of
award (perhaps an Inkscape-drawn
certificate), but you’ll also be
familiar with the “Outline” display
mode.

Known informally as the
“where’s my invisible stuff” mode,
this feature renders every element
as a simple outline, regardless of
its usual fill and stroke settings. It’s
invaluable for those times when
you’ve created an otherwise
invisible object – whether by
accident or intent (there are some
good reasons why you might want
to). Typically, this is an early
mistake by new users who
inadvertently clear both the fill and
stroke, make the colors
transparent, reduce the opacity on
the whole object, or go a bit crazy
with the blur slider. In these cases,
View > Display Mode > Outline lets
you see, and select, your invisible
object, whether to delete it or try

to wrangle it back into a visible
state.

The new view mode is related,
but different. Whereas Outline
mode renders everything as
outlines, losing patterns, fills and
strokes in the process, the new
“Visible Hairlines” feature just
makes really thin strokes a bit
thicker, but otherwise displays
most other objects and properties
the same as usual. An example will
probably help to explain, so take a
look at these five stars:

“Five stars?” you say. “But I can
only see two. Maybe three or four
if I zoom right in and squint a bit.”

There are, indeed, five stars.
None of them are hidden. None
have any transparency or reduced

opacity applied. None are filtered.
Yet some are definitely easier to
see than others – and one is not
visible at all. What’s going on here?
Perhaps if I describe each star you
might realise what’s happening:
Top left: 1px black stroke.
Top right: 64px black stroke.
Bottom left: 64px light gray stroke.
Bottom middle: 0.1px black stroke.
Bottom right: Red fill.

The visible stars on the right are
easy enough to explain – one has a
thick stroke, one has a fill. The
bottom left also has a thick stroke,
but in a light color that makes it
hard to see. The top left is possibly
just about visible: these are large
stars, and the page is zoomed out,
so that a 1px stroke is just on the
edge of Inkscape’s display
capabilities. If you go much thinner
– as I have done with the 0.1px
stroke on the remaining star –
Inkscape just doesn’t render it at
all.

Let’s see how these look in
Outline mode.

Here we see the problem with
Outline view. Yes, we can now see
all the stars, which is great for
finding invisible objects. But they
all look the same, regardless of
their original styles.

Compare this with View >
Display Mode > Visible Hairlines:

Although it may not be clear in
the magazine, the top left star is
ever so slightly thicker. Our
previously invisible star is also
rendered with the same thickness.

full circle magazine #159 28 contents ^

HOWTO - INKSCAPE
The two stars on the right just
appear as they usually would – as
does the star at the bottom left,
which is still difficult to see.

This view mode is intended to
help if you are designing an image
for use with a laser cutter or similar
device. These machines often
require paths to have a purely
nominal thickness – 0.1mm is a
typical value – which can easily
result in them disappearing from
view when you zoom out. By
switching to Visible Hairlines mode,
you ensure that Inkscape will
always display strokes at a
thickness that is enough to keep
them visible. It doesn’t change the
actual widths in the SVG file, so
your laser cutter won’t complain,
but does mean that objects no
longer vanish while you work.

Any stroke that is already above
the minimal limit will be rendered
as usual. That’s why the thicker
strokes on the top right and
bottom left stars are unaffected.
As you can see with the bottom
left, however, that can still lead to
barely visible shapes, so Outline
view still has its place. As the
bottom right star shows, fills and
other properties are also rendered
as normal in this view. Filters don’t

fare very well, but as they are
purely visual effects that don’t
alter the geometric information
that a laser cutter might use,
they’re not generally used in the
sort of situations that this mode is
intended to address.

Most users won’t need this
mode. If you just want to find an
invisible object, Outline mode is
still your best bet. But if you do
have to work with exceptionally
thin strokes, and find they vanish
when you zoom out, this mode is
just the thing for you.

If you are on the hunt for
invisible objects, or those hidden
behind other items, there are a
couple of other new features
hanging around on the View menu:
View > Split View Mode and View >
XRay Mode. They’re a little like
dynamic versions of the Outline
view mode, giving you the best of
both worlds – both outline and full
display, at the same time. They
should also both be on the Display
Mode submenu, in my opinion, but
probably live on the main menu to
make them more discoverable.
Let’s look at Split View Mode first.

This image is made up of four
stars, identical except for their size.

I created the smallest one first, and
set its opacity to 25%. Then I
duplicated it and resized to create
the second one; then duplicated
and resized the second to make the
third; same for the third to the
fourth.

My question to you is this:
what’s the easiest way to select the
smallest star? Due to the order in
which I created them, it’s at the
bottom of the z-stack, so a simple
click won’t do the job. Here are
some methods that would work in
this particular case:
• Careful rubber band selection.
• Hold Alt (or Super-Alt on most
Linux boxes) and repeatedly click in
the same spot to select below the
current object.
• Reorder the stack manually
before selecting.
• Reorder the stack using
Extensions > Arrange > Restack
before selecting.
• Switch to Outline view mode,
then select.

The last option is arguably the
most practical. It doesn’t require
you to change the arrangement of
items in your drawing, and is
probably less likely than the others
to result in the wrong thing being
selected. But it’s a pain to turn
Outline mode on and off via the
menu, and you may not use it often
enough to warrant learning more
keyboard shortcuts.

What would be really handy is a
way to get a temporary outline
view of the drawing, but then
switch back to normal view simply
and intuitively. With Split View
Mode that’s almost what we’ve
got. Almost.

You can activate the new mode,
via the View > Split View Mode
menu. The default keyboard
shortcut is Ctrl-6, but this is 6 on
the main keyboard, not the
numeric keypad. I find this a little
odd, given that the default

full circle magazine #159 29 contents ^

HOWTO - INKSCAPE
shortcut for cycling through the
display modes uses Ctrl with 5 on
the numeric keypad. However you
trigger it, enabling this mode will
immediately split the workspace in
two, with the left side showing the
normal view of your document, and
the right side showing the outline
view.

A large circular handle at the
middle of the screen can be
dragged to move the split point,
allowing more or less of the view
to be displayed in outline mode.
Four triangles within the control let
you switch the orientation of the
split between horizontal and
vertical, and determine which side
of the split should show the outline
view. Both sides of the display
work as normal, so you are free to
select items in the outline view
then manipulate them in the
normal view, or vice versa. Clicks
and drags on the splitter control
are not propagated through to the
objects below so you can, for
example, make a selection in
outline view then adjust the split to
give you more of a normal view
without the objects becoming
deselected as you do so.

On the surface, this looks like a
great addition for working with

complex documents. Just enable
Split View Mode then slide the
splitter to one side to give you a
normal view most of the time,
swinging it back into play for tricky
selections, before swiping it away
to the side again, ready for
redeployment in an instant. Except
it doesn’t work like that.

If you drag the handle too close
to the edge of the workspace, this
mode gets deactivated, requiring
another trip to the View menu, or
hitting the keyboard shortcut, to
switch it on again. But there’s no
visual indication of where “too
close” begins. And it’s deactivated
even if you’re still in the process of
dragging, without the courtesy of
at least waiting for you to release
the mouse button! The result is
that it’s too tricky to leave this
mode enabled at all times, just
swiping the splitter in and out of
view as needed, because you’re
bound to swipe it too far at some
point and turn the feature off.

Worse still, moving the big
handle towards any edge has the
same effect, regardless of the
splitter orientation. With a vertical
splitter, separating the two halves
to the left and right, you might be
tempted to move the handle up or

down to get it out of the way of
your content. But even though
you’re not moving the splitter
itself, drag it a pixel too high or low
and the whole mode turns off,
requiring you to start at the menu
again.

This mode also doesn’t store the
split state between invocations.
Every time you enable it you’ll be
put directly into the same 50/50
view with the outline on the right.
It doesn’t matter if you previously
switched to 70/30 with the outline
at the bottom, or any other
combination. Once this mode is
turned off, and then back on again,

it drops you straight to the default.
And given how easy it is to
accidentally turn it off, it makes
working with this mode more of a
pain than a pleasure. It does make
for nice screenshots when
demonstrating the density of
objects in a complex drawing
though.

View > Xray Mode is a closely
related, but slightly different
feature. The keyboard shortcut for
this is Alt-6, by default, but once
again this has to be the 6 on the
top row of keys, not on the numeric
keypad. Switching this on enables
outline view in a circle immediately

full circle magazine #159 30 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys', 'Monsters,
Inked' and 'Elvie', which can all be
found at http://
www.peppertop.com/

HOWTO - INKSCAPE
surrounding the mouse pointer.
Like an X-ray, it cuts through the
body of your drawing to show you
the bones that support it. But it’s
more like a tightly controlled “X-ray
beam” from a pulp comic book than
the large format plates that are
routinely hung from wall-mounted
light boxes in medical dramas.

As with Split View Mode, you
can still make selections and
perform other tasks with this mode
activated. There’s no way to
change the size or shape of the
beam, and no way to ‘leave it’ at a
particular place while you use the
mouse elsewhere. To my mind this
mode is a fun distraction, but
ultimately not very useful for day-
to-day work.

If you struggle to select objects
in busy drawings, then it might be
worth changing the keyboard
shortcut to make it easier to toggle
on and off. What would be nice is a
‘hold-to-activate’ key, like the ‘Q’
key for the quick-zoom function,
which would allow you to press and
hold a key for long enough to make
a tricky selection, but would return
you to the normal view as soon as
you release it. It would certainly
make for a better use of the ‘X’ key
than as a shortcut for the largely

useless 3D box tool. I have, of
course, filed a feature request for
this – as well as one for
improvements to the Split View
mode.

That’s it for the new view
features in v1.0. Next month will be
the 100th article in this series, so I’ll
be celebrating this milestone by…
continuing to bring you details of
some of the other new features in
the latest Inkscape release.

http://www.peppertop.com

full circle magazine #160 29 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarrtt 110000

Amazingly, this is the centenary
article in this series! That’s not

bad given that my original plan was
for maybe half a dozen short pieces
as a brief introduction to Inkscape.
I doubt there are many people who
have read all of the articles, but
even if you just dropped into one
or two as reference material for a
specific feature, I hope you’ve
found them useful.

This month, I’ll be continuing to
look at Inkscape v1.0. Although
there are a lot of exciting new
things to cover – and I promise to
get to them in the coming months
– for now I’m going to return my
focus to some of the problems that
have found their way into the new
release. It’s not that I want to be a
pessimist, I’d just prefer to get the
issues out of the way as quickly as I
can.

The regressions that most users
are likely to stumble across are
largely related to path operations
on text objects. Manipulating text
to produce a graphical effect is a
common task for Inkscape users,
when creating a logo or just trying

to make the text on an image look
more interesting. There’s little you
can do with a pure text object,
apart from the usual rotate, scale
and skew. Filters can produce some
amazing results – whilst still
keeping the text editable – but are
difficult to work with, and are best
used to provide texture or shadows
rather than for fundamentally
changing the letter shapes. At
some point in your graphical
adventures, you’re bound to find
yourself converting text to a path
in order to manipulate it further.

CONVERTING TEXT TO A
PATH

Logos and styled text form the
basis of a huge number of Inkscape
tutorials, almost all of which
require the user to convert their
text to a path at some point, via
the Path > Object to Path menu
option. Depending on the age of
the tutorial, and the version of
Inkscape it targets, this can lead to
very different outcomes.

For most elements in Inkscape

the result of Object to Path has
always remained the same. A
rectangle becomes a path. An
ellipse becomes a path. Spirals and
polygons become paths. It may
sound obvious, but in most cases
the Object to Path feature turns
your object into a path. With older
versions of Inkscape (prior to 0.48)
the same was true of text objects:
the entire text would be converted
into a single complex path. Most
tutorials deal with applying an
effect or style to the entire text, so
creating a single path is just what is
wanted. But sometimes you need
to be able to work with the
individual letters. Splitting the
complex path into separate letters
is a fiddly task that requires some
experience to do easily. So, with
0.48, the developers changed the
Object to Path behaviour when
applied to text elements: to this
day it creates a group of paths, one
for each letter.

This change in behaviour
immediately made a lot of tutorials
slightly obsolete, and led to a
persistent trickle of new users to
Inkscape support sites posting

requests along the lines of “I’m
following this tutorial on YouTube
and I get as far as converting my
text to a path, then the next step
doesn’t work…”. In case you were
in any doubt about the longevity of
content on the internet, the trickle
of users following tutorials written
for 0.46 and earlier continues to
this day.

The ‘obvious’ solution to this
change is to ungroup the converted
text, then join the paths together
using Path > Union or Path >
Combine. But whether by accident
or design, the developers did leave
a shortcut in place that allowed for
a one-step conversion of text to a
single complex path. Rather than
use Object to Path, selecting the
text object and going straight to
Path > Union would have the
desired effect. This quickly became
the common response to new users
following older tutorials, and also
became a prominent method in
newer tutorials. It’s worth noting
that Path > Combine, when applied
to a text object, also created a
single path but it still puts it inside
a group, which is arguably a little

full circle magazine #160 30 contents ^

HOWTO - INKSCAPE
useless. Nevertheless, for 0.48 and
0.92 there are four ways to convert
text to one or more paths.

Unfortunately, Inkscape 1.0
removes the Path > Union shortcut.
To make matters worse, the status
bar shows an “error” stating that
“one of the objects is not a path,
cannot perform boolean
operation”, even though it does
convert the text to paths, albeit in
the same way as the Object to Path
option.

So now there’s a resurgent flow
of new users to support sites who
are finding that tutorials for 0.48 or
0.92 are also incorrect with the
new version. But as there’s no
longer a one-step solution to this
task, the answer is usually to use
the three-step approach.

INSET AND OUTSET

Related problems appear when

using Path > Inset and Path >
Outset. In both these cases,
Inkscape 0.92 and earlier handled
text objects as a special case: the
text would automatically be
converted to a single path for you
before the effect was applied. But
with 1.0, the results are not only
not what you might expect, but the
UI is downright misleading!

With your text object selected,
choosing one of these options
might be expected to make it
thinner (Inset) or thicker (Outset).
Earlier versions did this, via the
implicit conversion to a path, so

although there were some users
who were surprised that their text
was no longer editable as a text
object, for most the experience
was in line with expectations. Try
the same with 1.0, however, and
the status bar says “No paths to
inset/outset in the selection”. What
it doesn’t immediately make clear,
however, is that rather than failing
benignly, leaving your text object
untouched, it has also converted
your text to a group of paths! So
not only does it fail to do what you
originally wanted, but it’s changed
the nature of your object in the
process.

Initially it might seem that the
quick solution is to apply the inset
or outset effect twice: the first
converts the text to a group of
paths, and the second then applies
the desired effect to those paths.
But alas, the first operation leaves
the group itself selected, not the
paths, and applying inset/outset to
a group doesn’t work, even if that
group consists of nothing but
paths. Instead, the best solution is
to perform the three-step
conversion above to convert the
text to a single path, and only then
apply the inset/outset operation.

full circle magazine #160 31 contents ^

HOWTO - INKSCAPE

DYNAMIC OFFSET

The Path > Dynamic offset
operation seems to be particularly
misleading when applied to text in
version 1.0. In older releases, the
behaviour was similar to inset/
outset: there would be an implicit
conversion to a single path before
the real operation was applied. In
this case, the operation results in a
small diamond-shaped handle that
can be dragged to dynamically
adjust the inset or outset amount.

Not so in 1.0. Initially, there’s no
visible change, except that the
selection box has lost its handles,
and the pointer looks different.
That’s actually because Inkscape
has switched you to the Node tool.
The usually helpful status bar is
now positively misleading. “Drag to
select objects to edit”, it begins. So
you try dragging across the whole
text: no change. You drag over a
few of the letters: now the
selection box disappears
completely.

“… click to edit this object”, it
continues. So you click on a letter,
and are presented with the node
handles for the path making up

that one letter. Because, yet again,
when you first clicked the Dynamic
Offset menu entry, your text object
was converted into a group of
paths, one per letter. You can click
on other letters, and in each case
the previous one is de-selected,
and the clicked one shows its
nodes. Shift-clicking selects
multiple letters. You can drag the
nodes, add them, delete them, and
generally work with the Node tool
as usual. But there’s no handle
presented for dynamically
adjusting the inset/outset which
was, after all, what you were trying
to do in the first place.

As with inset/outset, the
dynamic offset effect doesn’t work
when applied to a group of paths.
Unlike those operations, however,
it also won’t work when applied to
a selection of several paths –
instead dropping you into the Node
tool, even on earlier Inkscape
releases. This means that there are
no shortcuts: you simply can’t avoid
converting your text to a single
path if you want to use the dynamic
offset feature on it. It’s back to
performing the three-step
conversion process first.

LINKED OFFSET

The last command in this group,
Path > Linked Offset, also fails to
work with text in 1.0, but this time
the workaround is quite different –
it’s more complex, but does at least
provide some useful functionality
in the process. Let’s have a quick
refresher on linked offsets in 0.92,
and why I think they’re usually a
better option than inset/outset or
dynamic offsets when working with
text.

If you look at the SVG output
for each of these commands, you’ll
start to understand the differences
between them. Inset and outset
simply create a new path element
that replaces your original object
entirely. There’s no trace of it left
in the file. They’re useful when you
just want to make another path
element a bit fatter or thinner, and
don’t need to retain the original
path in any way. Viewed in this way,
you can understand why text (or
any other shape) has to be
converted to a path for these
operations to work.

Dynamic offset is a little
different. Yet again a path is
created, completely replacing the
original object. Like all SVG paths, it
contains a “d” attribute which holds

the details of the path shape, so
that other programs can display it
correctly. But this path has some
additional Inkscape-specific
attributes that are not usually
present on a path. The first is
“sodipodi:type” with a value of
“inkscape:offset”, indicating to
Inkscape that this path should be
treated differently to normal
paths.

The second special attribute is
“inkscape:original” which holds a
copy of the original path that was
used to create this offset path.
Although the original path has
been removed from the drawing, it
lives on in this attribute, the
content of which can even be copy-
pasted into another path object to
reconstruct the original shape. The
third attribute, “inkscape:radius”,
holds the size of the offset – i.e.
how far you have moved the handle
from its original position.

When a path has these
attributes set, Inkscape no longer
uses the “d” attribute to draw the
path. Instead it calculates the new
shape based on the original path
and the radius (offset) value.
Change either of these and you’ll
see that Inkscape updates the “d”
attribute automatically, but this is

full circle magazine #160 32 contents ^

HOWTO - INKSCAPE
just so that the shape appears
correctly in other software.

A linked offset also creates a
path, but leaves the original object
untouched. This path is similar to
the dynamic offset case, but adds
one more special attribute into the
mix, in the form of “inkscape:href”.
This holds a reference to the
original, untouched object.

The new path still contains a “d”
attribute, for other software to
use. But it also still contains an
“inkscape:original” attribute, again
holding a path shape. This time,
however, the path data here is
created by implicitly converting the
source object (the one pointed to
by inkscape:href) into a path. If you
change the source object, Inkscape
updates the “inkscape:original”
value which, in turn, results in an
update to the “d” value.

What does that mean in
practice? It means that your
original object retains its original
type. Stars are still stars, and can
be edited with the appropriate
tool. Spirals and rectangles, again,
are left untouched and can still be
edited with their own tools. And
yes, text is also left as text,
meaning that you can change the

font, style and even the content,
with the linked offset updating
automatically. This alone makes it
the best option for offsetting text.
You can hide the original or place it
off the page if you want, but when
you later discover a typo, or need
to edit the words, you can make
those changes to the original text
and know that your offset version
will stay in sync.

But not in Inkscape version 1.0.

Yet again in this version trying
to use the command just converts
the text to a group of paths and
switches you to the node tool. You
can use the three-step conversion
to create a path before you select
the menu entry – but that
completely defeats the point of
using a linked offset rather than a
dynamic offset.

Luckily the underlying rendering
engine isn’t broken. If you present
it with a linked offset created in an
older version of Inkscape it displays
correctly, and the original object
still retains its original type and
editability. Fortunately, we can
reproduce this behaviour entirely in
1.0, but it does involve some use of
the XML editor. These are the steps
you’ll need to follow:

• Select your text object and open
the Object Properties dialog via the
context menu, or the Ctrl-Shift-O
shortcut.
• Copy the ID from the dialog to the
clipboard. Close the dialog.
• Create a temporary object. Just
about any sort will do, but I usually
use a rectangle or ellipse. Making it
a distinct color will help to keep
track of things later.
• Apply the Path > Linked Offset
function to the temporary object.
• With the linked offset selected,
open the Edit > XML Editor dialog.
• The linked offset should already
be selected in the editor. You
should see the extra attributes I
described previously.
• Change the inkscape:href
attribute: delete most of the
content, but leave the “#” in place,
then paste the ID from the
clipboard immediately after it.
• Press Enter to make the change.
You should see your text
apparently change to the color of
the temporary object. What you’re
actually seeing is the linked offset
positioned on top of your original
text.
• The Inkscape UI is a little
confused at this point, as the
temporary object will still be
showing the linked offset handle.
Switch to the Selection tool to get

things back under control.
• Delete the temporary object.
• Double-click on the linked offset
text, or select it and switch to the
Node tool and you should see the
usual offset handle. Adjust this to
change your offset amount.

It seems like a lot of steps, but
all we really did was create a linked
offset to another object, then
adjusted the link to point to our
text object instead. Most
importantly, our text remains
untouched, so can still be edited
using the normal text tools, with
the linked offset updating
automatically.

One final thing to note is that
the steps above also work for other
shapes. If you want your rectangles
to remain as rectangles, or your
stars to still be editable with the
star tool, you’ll need to follow
those steps to avoid Inkscape 1.0
automatically converting your
source objects into paths.

REVERSING SUB-PATHS

I mentioned this issue back in
part 95, when Inkscape 1.0 was still
in Beta. Unfortunately the final
release still suffers from the same

full circle magazine #160 33 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys', 'Monsters,
Inked' and 'Elvie', which can all be
found at http://
www.peppertop.com/

HOWTO - INKSCAPE
problem.

With older versions, if you have
a complex path (i.e. one with sub-
paths), you could select a single
node in the sub-path, then use Path
> Reverse to reverse just that sub-
path. This can be invaluable when
working with the nonzero fill-rule,
as described in part 95. In Inkscape
v1.0 the Path > Reverse option
reverses every sub-path, regardless
of what was selected.

There is only one way to work
around this issue, and it’s
something of a pain on more
complex designs. You have to use
Path > Break Apart, then reverse
the sub-path in question, then
select all the constituent paths
before using Path > Combine to put
them back together into a single
complex path.

FINAL THOUGHTS

I hadn’t really planned to

celebrate 100 articles with a text-
heavy trawl through bugs and a
deep dive into offsets, but these
are the sort of problems that will
affect lots of users, so warranted
spending some time on. It just goes
to show that new isn’t always
better, and makes a strong case for
sticking with 0.92 for the time
being, especially if you’re a new
user following some online
tutorials.

All these problems have been

reported, and I have added extra
comments or information on the
bug reports where necessary.
Hopefully the next release will
address some of these issues –
many of which look as though they
have a common underlying cause.

Next month I’ll move back onto
some of the good stuff in Inkscape
1.0, hopefully without bumping
into any more serious bugs along
the way.

http://www.peppertop.com

