
full circle magazine #161 25 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarrtt 110011

A recurring problem that new
users face when starting to use

Inkscape is the myriad ways of
accidentally making something
invisible. A few articles ago, I talked
about this with regard to Outline
View, and the new Visible Hairlines,
Split View and XRay modes in
version 1.0. But there’s one way of
making objects disappear even
from those tools, and which used
to cause a lot of confusion for new
users, as their objects vanished into
the ether with no obvious way to
retrieve them. Version 0.91 made
recovery easier, and, with 1.0, we
now have several new options on
the context menu that make this
feature something that might
actually be more of a help than a
hindrance.

There is an “Object Properties”
dialog in Inkscape, which is
available from the right-click
context menu, making it easy for
new users to stumble upon. It
allows you to set the ID, Label, Title
and Description of your object, but,
in practice, most of those items
only have any real value when the
SVG is loaded into a web browser

and manipulated with JavaScript.
Small JavaScript snippets can be
entered directly into this dialog, via
the Interactivity section at the
bottom (see part 82 of this series).

There are also a couple of
checkboxes in this dialog that can
easily tempt an unwary user. The
“Lock” option stops you interacting
with the object at all. Initially the
object remains selected, and can
be affected by keyboard shortcuts,
but, as soon as the selection is

removed – by clicking on the
background or selecting another
element – the object becomes
completely inert. You can’t select
it, move it, resize it, or delete it.
The “Hide” checkbox also makes
your object inert – but, in addition,
it makes it completely invisible,
even to the prying eyes of Outline
View and its friends.

Back in the days of v0.48 and
earlier, these checkboxes were a
real problem for new users. They
would naively lock a bitmap they
wished to manually trace over, only
to find that the means to unlock it
when they wanted to delete it was
less than obvious. Similarly, a right-
click on it would no longer present
the Object Properties option –
thereby concealing another unlock
possibility. A hidden object fared
even worse: the behaviour was the
same, but you couldn’t even see it
to be sure you were right-clicking in
the correct place!

The correct way to unlock or
unhide your object was actually to
unlock or unhide all the objects in
your drawing, via options in the

Object menu. There was no UI
(other than the XML editor) to let
you unlock or unhide individual
items, making these capabilities
rather useless for managing the
state of very specific parts of your
drawing.

With 0.91 came a new Objects
dialog (Object > Objects…
described in part 63). This lists
every element in the drawing –
including the hidden ones – with
handy toggle buttons to (un)lock
and (un)hide them. It’s a very
familiar interface in other graphics
software, and turns these
properties into genuinely useful
features. Personally, I think the
checkboxes should have been
removed from the Object
Properties dialog to avoid further
confusion, leaving them available
only from the Objects dialog, but
they still exist in the dialog to this
day.

Inkscape v1.0 adds more UI
niceties to work with these
capabilities, by providing four new
entries on the context menu:
Hide selected objects
Unhide objects below

full circle magazine #161 26 contents ^

HOWTO - INKSCAPE
Lock selected objects
Unlock objects below

The Hide and Lock entries are
pretty self-explanatory. The one
caveat to be aware of is that they
hide or lock the objects that are
selected, which may not include
the one you’ve right-clicked on.
Make sure to select all the target
objects before right-clicking.

The Unhide and Unlock options
refer to “below” in their titles. In
this case they mean “below the
mouse pointer”. Right-click on a
locked object and select the Unlock
option to unlock it. It doesn’t get
much simpler than that, right? But
there is a caveat: this operation will
unlock any object below the mouse
pointer, regardless of what layer
it’s on, even if the layer itself is
hidden and locked! And, as the
plural in the menu title suggests, if
you have multiple locked items

stacked on top of each other below
the position where you right-click,
they’ll all be unlocked.

Unhiding follows the same rules,
but it’s obviously a little harder to
find the correct spot to right-click
on. As mentioned, none of the
usual options for seeing invisible
objects will work, so I hope you’ve
kept track of where everything is in
your drawing. To help with this
treasure hunt just a little, the
Unhide menu option will be
enabled only if there is actually a
hidden object below the mouse
pointer, so you can be sure you’re
in the right place. If you can’t find
the object easily then a trip to the
Objects dialog is probably a better
use of your time than trying to play
a hobbled version of Battleships
against Inkscape.

The Unlock menu option also
becomes enabled and disabled
based on whether or not there’s a
locked item below the mouse
pointer, but it gets confused by
locked layers, becoming enabled
when you right-click over any
object in the locked layer,
regardless of whether or not the
object itself is locked.

Despite these minor issues,

adding the options to the context
menu is a welcome change that
surfaces these long-standing
capabilities of the program in a way
that makes them not only more
discoverable, but also more usable.
Small changes like this may not get
the fanfare of the big new
features, but, by making users’ day-
to-day workflows a little easier and
more flexible, they’re every bit as
welcome.

Another small new feature is
even more welcome, at least by
me: inverse clipping. This is an
omission from the SVG specs which
has always frustrated me, not least
because it solves common
problems trivially, but is no harder
for a browser or graphics program
to implement than the standard
clipping routines. For lack of an
extra paragraph or two in the spec,
users have been forced to spend
time reinventing inverse clipping
with their own complex paths time
and time again.

I covered clipping all the way
back in part 13 of this series. If
you’re a very long-term reader, you
may recall that this series began
with a few articles to help you get
to grips with the basics of Inkscape
by drawing a snowman. By part 13

it was time to adorn him with a
scarf.

I began by drawing a scarf in its
entirety, including the part that
would normally be hidden behind
the snowman’s head (“neck” seems
a little too generous a term in this
case). I first demonstrated how a
simple clipping path (in green)
wouldn’t do the job – it would leave
the back of the scarf visible, whilst
hiding the part you actually wanted
to see.

It’s a classic approach: first show
the audience what doesn’t work,

full circle magazine #161 27 contents ^

HOWTO - INKSCAPE

then follow up with a
demonstration of what does work.
In this case, it’s an “inverse clipping
mask”, created by using Path >
Difference to cut the desired shape
out of a larger enclosing rectangle.
The resultant complex path is then
used for clipping, giving the
desired result.

It works, but it’s not really
beginner friendly. When a new user
just wants to cut the center out of
a circle to make a donut, being
forced to confront Boolean
operations and bounding boxes
makes Inkscape seem rather
unfriendly. If the SVG Working
Group had only added an “inverse”
parameter to clipping paths all
those years ago, Inkscape probably
would have included this feature
from the earliest versions. As it is,
we’ve had to wait until now – and
it’s still included only as a user-
friendly addition by the developers,
not because of any change to the
SVG specs itself (this option was
proposed for SVG2, but didn’t make
the cut, much to my ongoing
frustration).

So how does this new feature
work in Inkscape? As with many
“extensions” to the basic SVG
capabilities, it’s implemented as a
Live Path Effect (LPE). But, like
several other LPEs, it’s available
directly from the normal Inkscape
UI, so you don’t need to deal
directly with the LPE to benefit
from it. I’ll cover the new “Power
Clip” LPE that is behind it in a
future instalment but, for now, let’s
just see how we might use it to
work with our snowman’s scarf.

There’s no real trick to it,
actually. You just create a path (or
an object that can be converted to
a path) that encloses the part of
the image you want to clip away.
Then select both the clipping path
and the object or group to be
clipped and you’re ready to
proceed. Whereas the option for a
normal clip can be found on the
context menu, it takes a trip to the
Object > Clip > Set Inverse (LPE)
option to trigger the inverse mode.
And that’s it. No complex paths or
bounding boxes. Just a simple
interface for what should be a
simple task.

Internally, of course, complex
paths and bounding boxes still
come into play. You can see this by

switching to the Node tool (F2),
where you’ll see that Inkscape has
automatically created a complex
path consisting of your clipping
path and another that hugs the
bounding box of your selected
object. As usual, you can edit the
nodes and lines of these paths for
an instant effect on the clipped
object – ideal for fine-tuning the
resultant shape to make sure your
scarf provides a nice, snug fit.

There’s also a new inverse mode
for masks, though its behaviour is
not so obvious. Masking was
covered in part 14. It’s basically
similar to clipping, but uses the
color of each pixel in the mask to
determine the opacity of that part
of the masked object. White parts
remain visible, black or transparent
parts are made transparent, and
values in-between have their
opacity set accordingly. Typically
it’s used where you want to fade
the object, rather than produce the
abrupt edge that clipping gives.
Here’s an example where I use a

full circle magazine #161 28 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys', 'Monsters,
Inked' and 'Elvie', which can all be
found at http://
www.peppertop.com/

HOWTO - INKSCAPE
blurred white object as a mask to
remove the outside of a colored
rectangle.

This particular result could
obviously be produced simply by
blurring a colored ellipse, but in a
real example you might have a far
more complex shape in your mask,
or the object you’re masking might
be a group made up of lots of
different elements.

Once again, the SVG spec offers
no inverse version of a mask. But
Inkscape provides such a feature in
v1.0, so to cut a hole in the colored
rectangle, surely just requires us to
use the Object > Mask > Set Inverse
(LPE) option, right? Of course not!
That would be far too sensible.
Instead the result is just a colored
rectangle, as though no mask even
existed.

What’s happening here is a
discussion for another article –
probably once I get round to a
further examination of the new

LPEs in version 1.0. Suffice to say
that we can get the effect we’re
after by drawing the mask in black
rather than white, then using the
Set Inverse option.

The irony here is that we’ve had
to manually invert the color of the
mask in order to use the automatic
feature for inverting the mask!
There is some logic to this, but it’s
tied up to the way the LPE
operates, and the default settings
that get applied when you select
this option. For now, I’ll be sticking
to creating inverse masks by hand,
the old fashioned way, but I can
definitely see a lot of inverse
clipping paths in my future.

There’s one final caveat to using
these new features: because
they’re implemented as Live Path
Effects, they won’t work directly on
bitmap images. Note the word
“directly” – these LPEs can also be
used on groups, even if the group
contains only a single bitmap
image. So, if you really want to

poke a hole through a treasured
family photo, just put it into its own
group, then get going with the
inverse clip or mask. I usually advise
putting a bitmap into a single-
object group anyway, as it opens up
some other creative possibilities
I’ve covered in the past, so it’s
perhaps worth getting into the
habit of always grouping a bitmap
as soon as you place it in your
drawing.

http://www.peppertop.com

full circle magazine #162 37 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarrtt 110022

As you may have noticed in the
News section of the previous

edition of FCM, a new minor
release of Inkscape is out. As is
often the case with these things,
the announcement came only a
couple of days after the deadline
for my previous article. As it turns
out, version 1.0.1 doesn’t fix any of
the issues I’ve raised in recent
months, or change any of the
features that I’ve described. Phew!
No corrections required.

So what is new in the latest
release? It’s mostly bug fixes and
stability improvements, though
there is a whole new “Selectors and
CSS” dialog that is most likely to be
of interest to web developers. I’ll
cover it in due course, but it’s not
the topic for this month’s
instalment. Instead, I’ll cover some
changes to the ‘Path > Stroke to
Path’ function. To better
understand this menu entry,
however, I’m going to start with its
sibling.

‘Path > Object to Path’ is a
mainstay of any experienced
Inkscape user. As the name

suggests, it converts your object to
a path, and is therefore commonly
used when you want to break out
of the design shackles imposed by
an object’s native type. Whilst a
rectangle can have only its width,
height and corner radius modified,
converting it into a path lets you
move individual nodes, add more,
or delete others. Since paths are so
flexible, it can open up a world of
design possibilities – albeit at the
expense of losing access to the
specialized editing tools for the
original object type.

There’s nothing controversial
about Object to Path. The end
result maintains its fill and stroke
properties, so there’s no visual
change as a result of the operation.
All that’s happened is that your
native Inkscape object becomes a
generic path of the same size,
shape and appearance.

Despite the similar name,
however, Path > Stroke to Path is
an entirely different beast. At its
core it converts any stroke that you
may have on your object into a new
filled path which matches the

stroke’s original outline. If it
sounds confusing, perhaps some
examples will help. Let’s start with
the simplest example possible: a
straight line.

The top line is our original path,
consisting of two nodes, no fill, and
a thick, red stroke. As a rule it’s
easiest to understand what
Inkscape is doing when applied to
thick strokes, but everything I
describe can also be done with
thinner strokes if that suits your
requirements.

The bottom line is the result of
the Stroke to Path operation. You
can see that what we now have is a
filled path consisting of four nodes
arranged to match the original
stroke’s outline. The fact that it’s a
filled path is a really important

point to grasp: the original shape
had a stroke but no fill, whereas
the new shape has a fill but no
stroke. The fill color of the new
shape is the same as that of the
original’s stroke color in order to
produce a result that is visually
identical.

Why would you want to perform
such a conversion? Consider trying
to make a line that looks a little
more hand-drawn. SVG has no
support for variable width strokes,
but you can fake it by converting
your stroke to a path and then
tweaking the shape.

These days Inkscape can
simulate variable width strokes
using Live Path Effects, but that
wasn’t always the case. The LPE
approach also supports varying the

full circle magazine #162 38 contents ^

HOWTO - INKSCAPE
thickness only symmetrically,
whereas this manual approach lets
you achieve effects such as
thickening the stroke on one side
of the center line whilst thinning it
on the other.

Let’s look at a more
complicated example. This time
we’ll jump straight to a multi-
segment line with a dashed stroke
applied. Once again the original
line is at the top, and the bottom
shows the effect of converting the
stroke to a path.

Our converted line is starting to
look a bit more interesting. Instead
of a simple filled path, we now
have a complex path, consisting of
a number of filled sub-paths which
match the visual appearance of the
original line.

At first, this can be a little tricky
to get your head around. Because

the resultant shape still looks the
same, it’s not obvious that it’s
actually now a filled path that has
no stroke. Like any other path, you
can actually add a stroke to it;
here’s the same result but with a
thin, dashed, black stroke added to
the converted line:

Hopefully it’s now pretty clear
what Stroke to Path does when
presented with the simple case of
an object with just a stroke applied.
But what happens when your
object is a bit more complex?
Here’s a line with a stroke applied,
but also with markers at the start,
end, and at each intermediate
node.

What do you think should
happen when Stroke to Path is
applied to this object? To my mind
there are three possible

alternatives:
• Remove the markers and convert
the stroke as before.
• Convert the stroke, but also turn
the markers into filled paths.
• Convert the stroke, but copy the
markers to the new paths, so that
each sub-path ends up with
multiple markers.

Really old versions of Inkscape
went with option 1. Stroke to Path
converted the stroke to a path, and
ignored everything else. But since
version 0.44 (released in 2006),
Inkscape uses the second option
(no version uses the third option).
This, however, is where not-so-
subtle differences in behaviour for
1.0.x start to creep in.

Consider the shape above. Up to
version 0.92 using Stroke to Path
on this would have created a group
containing five objects: the
complex path generated by
converting the stroke, and a
separate path for each marker. In
version 1.0.x the result is
somewhat different. Now the
output is a group containing two
elements: the complex path, plus a
nested group which contains four
more deeply nested groups – one
for each marker. Each of those
marker groups contains two paths,

one each for the fill and the stroke
of the marker. Yes, I said the stroke
of the marker. I know you probably
weren’t even aware of markers
having a separate stroke, but
apparently they do and they’re
now converted into a path of their
own.

If this sounds a little confusing,
perhaps an image of the structure
will help. On the left we have the
Objects dialog from 0.92, and on
the right we have one from 1.0.1
(excuse the different themes – the
1.0.1 snap is still broken with the
standard theme, so I’m using the
symbolic theme):

As you can see, the structures
are substantially different. If you
do want to convert a 1.0
arrangement to the old structure,
it’s quite simple: you just need to
use Path > Union on each pair of
marker paths (this is easier if you
select them in the Objects dialog
rather than on-canvas), then select
the group that contains the

full circle magazine #162 39 contents ^

HOWTO - INKSCAPE
markers (i.e. not the top-level
group, but the one just inside that),
then repeatedly ungroup until
you’re left with a structure that
looks like the one in the 0.92
dialog. Yes, “it’s quite simple” was
sarcasm.

For most users, this may never
present a problem. The sort of use-
case that requires you to add
markers to your path does not
generally intersect much with the
use-cases for converting the stroke
to a path. So, let’s look at a far
more common scenario: a path
with both a stroke and a fill, but no
markers. Here’s what happens in
0.92.x, again with the original
shapes at the top, and the Stroke
to Path conversions at the bottom:

The obvious take-away from this
is that 0.92 removes the fill entirely
before the stroke is converted to a
path. I’ve shown both closed and
open shapes to make it clear that
the behaviour is the same in both

cases. Structurally, you end up with
a single filled path, just the same as
you would if you’d performed the
conversion on a shape with no fill
or markers, the same as the first
example I showed in this article.

Since version 1.0, however,
performing a Stroke to Path
operation on a shape with a fill
results in a group that contains two
filled paths: one is the usual path
following the shape of the original
stroke, whilst the other is a path
representing the fill (i.e. it’s just a
copy of the original path, but
without the stroke). The end result
is visually identical to the original
object.

As I’m sure you’ve guessed by
now, performing a Stroke to Path
on a shape with the holy trinity of
stroke, fill and markers, results in a
group containing:
• A path for the stroke
• A path for the fill
• A group containing an individual
group for each marker, with each of
those groups containing a path for
the marker’s stroke and a path for
the marker’s fill.

There are a few things to unpick
from these changes. First of all, if
you have an object with just a

stroke then the behaviour is the
same as it has always been: you end
up with a single filled path, which
will have sub-paths if the stroke
was dashed.

If your path has a stroke and a
fill, however, you’ll now end up
with a group, rather than the fill
being thrown away. This is
particularly important to note if
following an older tutorial. Many of
them either rely on the fill being
removed, or instruct you to
duplicate the object before
applying Stroke to Path so that you
don’t lose the fill. To get the same
result as earlier versions, you can
do one of two things:
• Remove the fill before using
Stroke to Path.
• After using Stroke to Path,
ungroup the result and delete the
new path containing the fill (or just
keep it, if you need it for
subsequent steps).

Despite the confusion this
change has caused with some new
users, I generally think it’s an
improvement. Consider the case of
drawing a simple cartoon character,
with thick black outlines (strokes),
and colored clothes and skin (fill). If
you want to add some variety to
the stroke thickness, the new

behaviour makes it easier to do so
without having to duplicate every
object, then remove its stroke, just
to keep a copy of the filled shape.

Markers are another matter,
however. While dealing with an
unwanted fill just requires a couple
of extra steps, getting the 0.92
structure when markers are in play
requires several steps – multiplied
by the number of markers – with no
easy shortcuts. Although the new
functionality may technically be
more flexible, in practice there are
few use-cases for separating the fill
and stroke on a marker. It would
have been nice to either have the
old method available as a
preference, or to include a function
or extension that would make it
easy to union deeply nested paths
and recursively pop them out of
their groups.

The take-away from all this is
that Object to Path still behaves
the same way it always did, Stroke
to Path may need an extra step or
two if you have a fill, but if you
have markers as well then good
luck to you!

Next time, I’ll start to look at
the changes to core drawing tools
made with version 1.0.

full circle magazine #163 21 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarrtt 110033

We start this month with a
small correction. Last time, I

said that the recent minor revision
of Inkscape, version 1.0.1, hadn’t
fixed any of the issues that I’d
mentioned in recent articles. In fact
it has addressed one problem that I
described in part 100 of this series.
In version 1.0, it was no longer
possible to reverse a sub-path by
selecting a single node and using
Path > Reverse. Instead, you had to
break the path apart, reverse the
path in question, then combine all
the paths again. Inkscape 1.0.1
reinstates the previous behaviour.
In practice, this is a rarely used
feature that really comes into its
own only when dealing with fill-
rules and self-intersecting paths, as
I detailed in part 95, but it’s nice to
see it fixed nevertheless.

The remaining issues described
in part 100 – problems with
converting text to a path, and
other issues with linked offsets –
still remain in 1.0.1. As the
workarounds to these can be a
little tricky to follow, I’ve made a
YouTube video that covers this
topic in a more visual way. This is

my first Inkscape tutorial video, so
please leave a comment if you
want to see more.
http://www.youtube.com/watch?
v=lx5nRCu7AKk

Now, back to the usual
programming, with a look at some
of the changes and additions to
Inkscape’s drawing tools that were
introduced in version 1.0:

REORDERED TOOLBOX

Although no new tools have
been added in 1.0, the existing
tools have been reordered within
the toolbox on the left of the
screen, in order to group them
more logically. Thin dividers are
used between the groups, which
has the effect of providing a little
structure to what was previously
just an undifferentiated list. In
theory this should make it easier
and faster to find the icon you’re
looking for, and that has certainly
been my experience. The tools are
grouped as follows:
Edit tools – for editing existing
objects: Select tool, Node tool
Shape tools – for creating and

editing geometric shapes:
Rectangle & Squares tool, Circles &
Ellipses tool, Stars & Polygons tool,
3D Box tool, Spiral tool
Primitive tools – for creating basic
objects: Bézier Curve tool,
Freehand (Pencil) tool, Calligraphy
(Pen) tool, Text tool
Color tools – for working with
colors and gradients: Gradient tool,
Mesh Gradient tool, Color Picker
(Eye Dropper) tool, Fill tool (Bucket
Fill)
Other tools – miscellaneous tools
not included in the other sections:
Tweak tool, Spray tool, Eraser tool,
Connectors tool
Canvas tools – for manipulating the
canvas view: Zoom tool,
Measurement tool

These are my descriptions,
which vary from the terms used in
the official release notes, but
which I think are more descriptive
and consistent. It’s easy to argue
about the placement of some
items, but generally I think the
groupings mostly make sense, and
do move the less commonly used
icons towards the bottom of the
bar. If you don’t like the order,

however, Inkscape 1.0 introduces a
mechanism for changing it… albeit
one that isn’t exactly user friendly.

REORDERING TOOLS

The order of the tools is now
defined by an XML file that is read
when Inkscape starts up. You can
override this file by creating an
edited copy in your user config
directory. First you’ll need to find
the paths for the shared folder
(where the original file lives) and
your user config directory. You can
find the latter, and hints to the
location of the former, by opening
the Inkscape preferences dialog
(Edit > Preferences) and selecting
the System panel.

full circle magazine #163 22 contents ^

HOWTO - INKSCAPE

Open a file manager, then
navigate to the path shown in the
“Inkscape data” field. That may
well be a directory that’s shared
with multiple programs, as is the
case with the /usr/share value in
my screenshot. Use the search
facility in your file manager to find
a file named “toolbar-tool.ui”,
starting from this root directory. In
practice that will probably search
through far more files than you
need to, so you can make the
search more efficient by being
slightly more targeted in your
choice of starting directory. That’s
why I’ve also highlighted the
“Inkscape extensions” field in my
screenshot: that’s not the directory
you want, as it’s a little too specific,
but it should give you a good hint
as to where the common Inkscape
files are stored. In my example, /usr/
share/inkscape is a better starting
point.

On my machine I found the
“toolbar-tool.ui” file in /usr/share/
inkscape/ui.

Once you’ve found the file,
open a second file manager with
the path from the “User config”
field as its location. This should be
pretty easy, as the Inkscape

developers have provided a handy
“Open” button right next to the
field.

Create a “ui” folder in your user
config location, if one doesn’t
already exist. Copy the “toolbar-
tool.ui” file into it, making sure that
you definitely copy rather than
move the file.

Quit Inkscape if it’s still running,
and open the newly copied file
using a text editor. It’s a fairly flat
XML file which should be pretty
self-explanatory. To move tools
between groups simply re-order
the lines in the file; to hide a tool
completely, wrap it in “<!--” and “--
>” delimiters, similar to those used
for comments in the file. Save your
changes and launch Inkscape 1.0 to
confirm that your new tool
arrangement is working. If you have
any problems and get completely
stuck, you can quit Inkscape and
delete the new file in order to
return to the default arrangement.

This new capability may be
particularly useful when using
Inkscape on a machine with a
smaller screen. If there’s
insufficient height to draw all the
tools in the toolbox, Inkscape
moves any excess tools into a pop-

up menu at the bottom of the box.
By moving the tools around in this
configuration file, you can ensure
that less useful ones end up in the
pop-up while those you use
commonly are always just one click
away.

Here’s a quick bonus tip: there’s
also a “toolbar-commands.ui” file in
the same directory which can be
used to re-order and hide entries in
the main Inkscape toolbar.

BÉZIER TOOL

The Bézier tool’s control bar
(above) has a button with the
confusing tooltip of “Create a
sequence of paraxial line
segments”.

In layman’s terms, this was the
“draw only horizontal and vertical
lines” mode. With this mode
enabled, Inkscape would allow you
to draw only an alternating
sequence of horizontal and vertical
lines. You could switch modes mid-
path – if you wanted to switch to
the “straight lines” mode to add a

single off-axis segment, for
example – but any parts drawn
under the influence of this control
could be only horizontal or vertical.

With 1.0, the layman’s term for
this button would now be the
“draw perpendicular lines” mode.
Now the segments are constrained
by the first segment you draw: the
second segment will be
perpendicular to it (i.e. at a 90°
angle to the first segment), the
third segment will be
perpendicular to the second (i.e. at
the same angle as the first), and so
on. The first path segment can be
drawn at any angle, essentially
turning this into a version of the
previous paraxial mode, but with
built-in rotation.

full circle magazine #163 23 contents ^

HOWTO - INKSCAPE

If you still require precise
horizontal and vertical segments,
make sure to hold the Ctrl key
when drawing the first segment.
That will constrain the initial line to
one of a fixed series of angles,
defined in the Behaviour > Steps
section of Inkscape’s preferences,
and defaulting to every 15°. The
previous image was drawn using
this method to fix the initial
segment at a 30° angle.

Once again, you can switch to
other modes mid-way through
drawing a sequence of path
segments, but the behaviour might
not quite be what you expect.
Consider drawing a series of
paraxial paths at, say, a 30° initial
angle. If you require a series of
horizontal and vertical paths to
continue the sequence, you might
think that you can switch to the
“straight line” mode, hold Ctrl to
create your initial horizontal or
vertical line, then switch back to
paraxial mode to continue with
further horizontal and vertical line
segments.

In practice, the paraxial mode
remembers the initial path angle
you used, not the most recent one.
So, after switching back to paraxial

mode, you would end up with
further lines at 30° and 120°, not at
the 0° and 90° you wanted. You can
see this effect in the following
example where the fourth segment
was drawn vertically, but the fifth
and subsequent segments are still
constrained by the angle set with
the very first segment.

The workaround is to end your
path, then start a new one. If the
previous path is still selected, the
Bézier tool lets you continue by
starting your next line segment at
the end node of the existing path.
Each time you do this with paraxial
mode enabled, the first segment
you draw will be the reference
segment for the remainder of that

path. You can repeat this as many
times as required to produce
complex lines with differently
oriented paraxial sections,
interspersed with curves or lines at
arbitrary angles.

CALLIGRAPHY TOOL

There are two things that every
sentence in this article has in
common. Two basic rules of written
English. They all start with a capital
letter, and they all end with a
punctuation character – usually a
period (“full-stop” in British
English), but often a question mark,
exclamation mark, or colon. What
all these characters have in
common is that they require the
ability to draw a dot. Given this
fundamental requirement of
written communication, it’s
surprising to note that Inkscape’s
calligraphy tool previously had no
practical way to make a single dot.

You could kind of fake it by
drawing a small circular shape with
the tool, but make the circle too
small and Inkscape would ignore it,
while too big resulted in a large
misshapen splodge. With 1.0, the
developers have added the ability
to directly create a dot – but in a

rather odd way that, in my opinion,
doesn’t really address the
underlying requirement.

To draw a dot, you just have to
click with the primary mouse
button, as opposed to click-drag
when drawing a calligraphic stroke.
As that mouse button usually also
maps to pressing the tip of the
stylus on a graphics tablet, anyone
trying to write some calligraphy
using such a setup just needs to
press the stylus down and up to
draw a dot. It’s as simple and
intuitive as can be.

You can also hold down the
Shift key while performing the
same operation to create a larger
dot. Larger, in this case, means
exactly twice the diameter of a
small dot.

The fact that I can easily tell you
it’s exactly – not roughly – twice
the diameter reveals the first
problem with this new feature.
Whereas calligraphic strokes are
actually created as filled paths,
these dots are created as circles. If
you want to edit a stroke, double-
clicking on it allows you to drag the
individual nodes around. To do the
same with a calligraphic dot,
however, first requires a trip to the

full circle magazine #163 24 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys', 'Monsters,
Inked' and 'Elvie', which can all be
found at http://
www.peppertop.com/

HOWTO - INKSCAPE
Path > Object to Path function.
Without that step you’re limited to
the changes that can be performed
with the Circle tool.

By rendering a circle, your dot is
a pure shape, with no lumps,
bumps or character to it. It doesn’t
matter what your Calligraphy Tool
settings are: you could be using the
Wiggle or Splotchy preset, or have
some custom values to create a
frantically random stroke, but your
dots will always be circular. Using
the Dip Pen preset for a classic
calligraphy style, with angled lines
that would suit a diamond-shaped
dot? Nope, you still get a circle.

A far larger – or rather, smaller –
problem is the size of the dots.
They’re tiny! Even the large ones.
Here are four examples: each is
drawn using the Marker preset,
with the width set to 25, 50, 75 and
100. In each case, I’ve drawn a
single calligraphic stroke, followed
by a standard dot, then a large dot.

As you might imagine, these
don’t make for great titles with
your punctuation marks, should
you be using the Calligraphy Tool
for, you know, actual calligraphy. In
an example about as far from
classic calligraphy as you can get,
here’s some mouse-drawn text to
demonstrate just how useless
these dots would be for
terminating a sentence.

It seems obvious to me that the
dot sizes should be far closer to the
width of the line. Perhaps 75% of
the width for a small dot, and 150%
for a large one. As it stands, this
feature is mostly useless. You could
scale the dots up after drawing, but
they’ll still be pure circles with
none of the character of your
selected pen. And quite honestly, if
you have to manually scale the
circles anyway, then you may as
well just draw them using the circle
tool after completing the rest of
your lines.

CIRCLE TOOL

On the subject of the circle tool,
there’s been one small but
welcome addition. As you probably
know, you can move the round
handles on a circle or ellipse to
open the shape out, forming arcs
(when the mouse is released inside
the shape) and segments (when the
mouse is released outside the
shape). You can toggle between
these, and a completely closed
shape, from buttons in the tool
control bar.

The new addition is the ability
to create chords – arcs where the
two ends are joined with a straight
line. There doesn’t appear to be an
on-canvas method for doing this,
but if you create an arc or segment,
you can switch it to a chord using a
new button on the tool control bar.
It’s a small addition, but good to
have nevertheless.

http://www.peppertop.com

full circle magazine #164 23 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarrtt 110044

This month, we’ll be continuing
to look at the changes in

Inkscape’s drawing tools that
arrived with version 1.0.

PENCIL TOOL

Last time, I covered changes to
the Bézier and Calligraphy tools, so
let’s start this article with the third
of the line-drawing tools, the Pencil
or Freehand tool. The release notes
mention only one change to this
tool (albeit one that comes with
controls for several parameters), so
I’ll begin with that. In Inkscape 1.0,
the tool control bar has gained an
additional button in the “Mode”
section, outlined in red in this
screenshot:

Whereas the first three entries
in this section act as radio buttons,
the new addition acts as a toggle.

This seems a little odd to me,
because toggling it ‘on’
immediately disables the other
three buttons. It’s still only
possible to have one option
exclusively selected (the hallmark
of radio buttons), so I don’t really
understand why this wasn’t just
included as an extra radio button,
rather than implemented as a
toggle. What it does mean, though,
is that switching to a different
mode requires the additional step
of turning off this toggle to re-
enable the older buttons.

Minor UI gripes aside, what does
this button actually do? It enables
pressure sensitivity for the tool,
which is of no practical use to
mouse users, but may be beneficial
to tablet users. Time to dig out my
‘cheap-but-does-the-job’
Monoprice branded tablet; it’s no
Wacom, but it works out-of-the-box

on my Ubuntu Mate system and
supports pressure sensitivity.

With the toggle enabled, the
tool control bar changes to look
like the image below, providing
additional controls labelled “Min”,
“Max” and “Caps”:

Before describing what those
controls do, a brief recap of the
way that the Pencil tool works is
probably useful. Historically, it was
just a tool for freehand drawing
that would create simple paths.
Starting and ending at the same
point would create a closed path,
whereas a different ending point
would result in an open path. The
thickness and style of the resultant
path was trivially based on the fill
and stroke options, as you might
expect.

More recent releases added a
“Shape” pop-up menu. With that
set to “None”, the behaviour
remained as described above, but

by selecting a different option in
that menu, the behaviour of the
Pencil tool changes dramatically.
The shape you draw is no longer
the stroke of a path, but rather it is
a filled path in its own right. In 1.0,
the shape is the result of applying a
Live Path Effect onto the skeleton
path you’ve drawn. The triangle-in
and triangle-out shapes are
created using the Power Stroke
LPE, whereas the ellipse and
clipboard-based shapes are
produced using the Pattern Along
Path LPE. As you can see, this tool
relies heavily on LPEs for its more
advanced features.

This brings us back to the new
pressure-sensitive mode. This is
also implemented using the Power
Stroke LPE, but whereas triangle-in
and -out just have a single control
point for setting the thickness of
the triangle’s base, in pressure-
sensitive mode, Inkscape creates
multiple control points along the
length of the drawn line –
whenever there’s a significant
change in pressure. The result is a
line that moves from thin to thick
and back, based on the pressure

full circle magazine #164 24 contents ^

HOWTO - INKSCAPE
you apply, but with the ability to
tweak the thickness of each part of
the stroke by switching to the
Node tool and manipulating the
purple control points.

You can see the effect in the
image below. The top line was
created with the shape control set
to “None”: it’s a simple path with
nodes at the ends, but no way to
adjust the stroke thickness along
its length. The second line used
“Triangle-out”, and you can see
that there’s a single purple handle
at the left that is used to adjust the
stroke thickness set by the Power
Stroke LPE. The third line was the
result of some random pressure
adjustments using a graphics
tablet: this one has even more
handles for adjusting the skeleton
path, plus additional purple LPE
handles at each pressure change.

This makes it easy to compensate
for poor pressure control by
adjusting the line thickness after
drawing.

Knowing that this mode enables
the Power Stroke LPE makes it
easier to understand what the
various controls on the tool control
bar do. Min and Max set the
minimum and maximum values for
the purple control points. The Caps
control sets the shape of the end
caps, and mirrors the
corresponding control within the
LPE itself.

For my tablet, setting a Min of 0
and a Max of 20, with round end
caps and a small amount of
smoothing (around 10 on this
scale), gives a nice “marker-pen”
effect that responds quite nicely to
the pressure I tend to apply to the
stylus. Potentially, this can provide

a much more naturalistic feel to
cartoons and sketches – though it
still requires a more artistic hand
than my own to produce something
impressive.

ERASER TOOL

I make no secret of the fact that
the Eraser is one of my least
favourite tools in Inkscape. Not
because it has any inherent
problems or limitations, but
because it’s deceptively familiar for
users coming from bitmap editors.
Too many words have been
expended on forum threads in
which new Inkscape users bring
their bitmap preconceptions to the
vector world, and the presence of
an eraser that goes some way
towards mimicking its raster
equivalent makes it even harder to
explain why Boolean operations or
clipping paths are a usually a better
solution to their task.

Nevertheless it does exist, and it
does have its uses, so it’s nice to
see it gaining some additional
features in 1.0. The bulk of the
additions are to make it operate in
a similar way to the Calligraphy
Tool: there’s a toggle for pressure-
sensitivity, which causes the

“Width” field to become a
maximum value, but with the
actual value used depending on the
pressure applied to the stylus. It
also gains controls for Thinning,
Caps, and Tremor, mirroring those
in the Calligraphy tool.

I won’t spend any more time
discussing these: you can read my
description of the Calligraphy tool
in part 78 if you wish. I still believe
a more useful approach would
actually be to draw the erasing line
you want using the Calligraphy tool
(or some other tool, if you prefer),
then either perform a Boolean
operation or use it as the basis of a
clip or mask.

In that vein, however, the
second addition to the Eraser is
more welcome: a clipping mode.
Previously this tool could either
erase objects entirely, or cut away
parts of the shapes by effectively
performing an immediate Boolean
operation with the drawn line. The
clipping option adds a third button
to the Mode section of the tool
control bar:

full circle magazine #164 25 contents ^

HOWTO - INKSCAPE
With this enabled, the “erasing”

is actually performed by creating a
clipping path that is immediately
applied to the object. Where more
than one object is affected, each
one gets its own clipping path,
independent of the others, even if
the original objects overlapped.

A very nice touch is that only a
single clipping path is created for a
given object, even if you erase
using several separate strokes. This
makes it easier to remove large
parts of an object with a thick
eraser, then reduce the tool’s width
for subsequent passes to refine the
shape being removed, without
ending up with multiple clip paths
to manage.

It’s important to note, however,
that the results produced by
clipping will not always be the
same as those created using
Boolean erasing, particularly if the
target object has a visible stroke

applied. Consider the image below,
with a deliberately thick stroke to
make the point. On the left is the
original shape, whilst the middle
and right-hand images show the
results of the Boolean eraser and
the clipping eraser, respectively.
Notice that the Boolean eraser
results in separate path objects,
each with a complete stroke
around them. The clipped shape, on
the other hand, is still a single
object, so the cut faces are not
“closed” by the path.

The clipping mode is a great
addition to the Eraser tool, creating
a non-destructive edit that can
later be refined, or reverted
entirely, with ease. When creating
my comic strips, I often have to
apply clipping paths around very
precise shapes. Usually I block
them out with straight-line paths,
then use the Node tool to fine-tune
the corners and curves. But this
new feature promises to get me

90% of the way to a finished
clipping path in a fraction of the
time. In fact, this addition alone
may have just promoted the Eraser
tool from being one of my least
used tools, to being a clear
favourite.

MEASUREMENT TOOL

The Measurement tool is
another that I rarely use, but which
has also seen some small but
significant additions in Inkscape v1.
This month, I’ll talk about the first
of these: an extended “tooltip” that
appears when hovering over a path
(or an object that can be trivially
converted to a path, such as a
rectangle, ellipse or star). The
tooltip shows the length of the
path, as well as the X and Y
coordinates, width and height of
the object’s bounding box. In
theory, this could provide some

useful at-a-glance information
about a path… if it wasn’t for the
fact that the data displayed aren’t
always correct. Let me prove this
assertion with an example. Here’s a
square, drawn so that its top-left
corner is at (0, 0), with sides of
10mm. The document properties
are set with mm as the display
units, and I’m using the geometric
bounding box so that the stroke
width doesn’t factor into the
dimensions.

Switching to the measurement
tool and hovering over the square
produces this tooltip:

full circle magazine #164 26 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys', 'Monsters,
Inked' and 'Elvie', which can all be
found at http://
www.peppertop.com/

HOWTO - INKSCAPE

The first problem here is that
the values displayed are in pixels,
even though I specified mm as my
display units. That’s easily
explained: the Measurement tool
has its own toolbar, with a pop-up
menu to select the units it displays.
Changing that pop-up to “mm”
results in this tooltip instead:

A quick comparison with the
previous screenshot shows that
although the units are now correct,
the actual numbers are still the
pixel values! According to this tool,
my 10mm square now has sides
that are nearly four times as long.

And what of that Y value? I drew
the rectangle from top-left to
bottom-right, the selector tool
shows the Y value as zero, and even
the XML editor agrees. Yet, for
some reason, the measurement
tool wants to take its Y value from
the bottom of the shape, not the
top.

Now let’s give it a more complex

path to work on, by duplicating the
square, moving the copy, then
using Path > Union to convert the
two squares into a single path
comprising two sub-paths. Since
each sub-path’s perimeter is
151.18px, surely the Length in the
tooltip for both paths must simply
be double that value, right? Wrong.

The Length displayed for two
identical paths combined is over 7.5
times the value shown for a single
path! The Height and Width values
also have me scratching my head:
they might make sense if the
squares were arranged along a
diagonal, but they’re side-by-side.
Here’s what they look like when
using the Select tool, together with
the tool control bar’s
interpretation of these values (in
px):

Having the Select tool declaring
a width of 83.795px and height of
37.795, while the Measurement
tool claims values of 316.71px and
142.85px, leaves me thoroughly
confused as to how the values in
the tooltip are actually calculated.
This situation leaves me uneasy
about the measurement tool in
general; I wonder what it has to say
when used in the traditional click-
and-drag mode?

For clarity, I’ve copied and
enlarged the top and right values,
and put them inside the boxes. The
width and height are reported as
the expected values of 83.79px and
37.79px.

The tooltip mode has another
feature which I’ll mention for
completeness: when used on a
group of paths, it will show values
for the width, height and position
of the whole group, but you can

hold Ctrl (incorrectly described as
Shift in the release notes) to see
the data for an individual path. But
given that the values in the tooltip
clearly can’t be trusted, this
capability is somewhat moot.

http://www.peppertop.com

full circle magazine #165 29 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarrtt 110055

Last time, I described the
(unreliable) tooltip mode that

was introduced to the
Measurement Tool in version 1.0.
That wasn’t the only change to this
tool, but the other addition is,
thankfully, a little more reliable.

MEASUREMENT TOOL

For this simple example, I have
five squares – identical apart from
their colours – arranged in a line.
I’ve got the “Ignore first and last”
option selected on the
Measurement tool’s control bar
(the button outlined in red), and
have dragged a measurement line
from the top-left to the top-right
of the arrangement. As you can
see, I’m presented with a single
measurement for the length of the
line.

But what if we also wanted to
see how wide the boxes are? For
that we can enable the “Show
measures between items” button
(the one to the right of the red
outline). This shows the distances
between each line or point that the
measurement line crosses.

That’s good, but we already
know that the boxes are all the
same size, so it would be sufficient
to just label one of them. That’s
where the new button – to the left
of the red outline – comes in. The
tooltip describes it as “Measure
only selected”. With this toggle
enabled, you’ll get additional
measurements displayed for
selected objects, as well as the
overall dimension of your
measurement line. By selecting the
first box, then drawing the same
top-left to top-right measurement

line, we can get a clearer view of
the two values we’re interested in.

With a single element selected
the state of the “Show measures
between items” button has no
effect. But when you select two or
more objects within the path of the
measurement line, it changes the
result quite significantly. By
selecting just the red and green
boxes, and with the “measure

between items” toggle turned off,
this is the display that Inkscape
produces:

It’s a little hard to make out, but
there is a small red cross at the
top-right of the green square. The
displayed value of 82.77mm
represents the distance between
the start of the measurement line
(the small circle at the top-left of
the red square), and that red cross

full circle magazine #165 30 contents ^

HOWTO - INKSCAPE

– that is to say, the entire width of
the selection, irrespective of the
unselected blue box that happens
to lie in the middle.

With the “measure between
items” toggle enabled we get a
different collection of numbers.

There are now two additional
red crosses – at the top-right
corner of the red square, and the
top-left corner of the green one. In
other words, the points that
intersect with the measurement
line, but only if they’re from the
selected items. The numbers then
show the distances between each
pair of marks along the line, as well
as our 82.77mm total for the
selection, displayed further down
(appearing over the blue box in this
image). And we still have a total
length for the whole measurement
line displayed at the right.

This is a great new feature for
this tool, giving you the ability to
more precisely indicate which parts

of a complex drawing should be
measured, and which should be
ignored. It does have a slight
problem in that changing the
selection can cause all the
additional measurements to
disappear. Redrawing the
measurement line brings them
back though, so it’s a small
annoyance rather than a major bug.

You may have noticed that none
of the squares in these images give
the appearance of being selected:
you can’t see the usual dashed line
and handles that you would expect
when the Selection tool is active.
These are suppressed when using
the Measurement tool – a good
thing, too, otherwise they would
clutter and confuse the layout. But
it might leave you wondering which
objects are selected and which
aren’t. Worry not! The new tooltip
feature, although rather broken in
the numbers it displays (see last
month’s column), does reliably
state that each element is either
“Selected” or “Not selected” as you

move the mouse over them.
Although, in most cases, those red
crosses are also a bit of a give-
away.

ON-CANVAS ALIGNMENT

Another new feature in version
1.0 is the ability to align selected
objects on the canvas, rather than
via the Align & Distribute dialog.
Oddly, however, you do need to
make a visit to that dialog to
enable the feature, even though its
implementation is entirely based
around the Selection tool. Let’s
first turn the option on, using the
new toggle button which is just
hanging out on its own at one side
of the Align & Distribute dialog
(outlined in red in this image). You
can safely close the dialog once
you’ve enabled the mode though,
as the setting does persist.

With this toggled on, the
Selection tool acquires a third
mode. Even the most novice of
Inkscape users is familiar with the
first mode, indicated by double-
ended arrows that allow you to
resize selected objects. Once in
that state, clicking on a selected
object will cycle to the second
mode, where a new set of double-
ended arrows are used to rotate
and skew. With this new toggle
button activated, a third click will
cycle to the new mode, where a
radically different set of handles
will greet you.

The two thin blue lines are just
guides that I’ve added to make it

full circle magazine #165 31 contents ^

HOWTO - INKSCAPE
clearer where the top and left
edges of the selection group lie, to
help orient you in the screenshots
to follow. Their position on the
canvas doesn’t change, so, by
treating them as fixed references,
it should be clearer to see how the
items move around on the page.

The handles in question are the
eight black icons around the
outside of the selection, and the
one in the very center, but the first
thing to note is that these aren’t
really handles – not in the sense
that the term is used for the other
two modes. You can’t drag these
around. You can try, but all that
occurs is that they disappear from
the screen until you release the
mouse button. These ‘handles’ are
really just buttons that happen to
be positioned where the selection
handles usually live.

Ignoring the
central button for
now, clicking any of
the others will align
all the selected
objects to the
relevant edge or
corner. As an
example, here’s
what happens if you
click on the button

that’s halfway down on the left.

The objects are
moved so that the
left edges of their
respective
bounding boxes are
all aligned along
the left edge of the
selection. Hold
Shift while clicking
the same button,
on the other hand,

and the right edges of the
bounding boxes are aligned along
the left edge of the selection
instead.

Holding Shift+Ctrl while clicking
the handle provides one final
alignment option: the entire
selection is moved so that the right
edge of the selection aligns with its
previous left edge. In other words,
it’s shifted by the width of the
selection.

Equivalent movements take
place, with the direction changed
accordingly, for each of the four
buttons on the sides of the
selection. The four corner buttons
also behave similarly, but align two
edges at once. For example, the
three images below show what you
get when clicking on the top-left
button, clicking the same button
while holding Shift, and finally
when holding Shift+Ctrl.

Clicking the top-left corner
button is equivalent to clicking the
left edge button, followed by the
top edge button (or vice-versa).
The same goes for the Shift and
Shift-Ctrl variants. The corner
buttons are therefore just a
shortcut for aligning both
horizontally and vertically with one

click, but you can still perform this
operation as two steps if you wish.
This is especially important to note
if you wish to use different
alignments for the two axes – for
example, a click on the left edge
button, but a Shift-click on the top
edge button.

The center button will move
objects vertically so that they’re
aligned on the horizontal axis of
the original selection group, while
a Shift-click will move them
horizontally to center them on the
vertical axis. One useful trick is to
perform a click followed by a Shift-
click (or vice versa) to center the
objects along both axes (i.e. stack
them up with a common center
point). These three options are
shown in the image below. Note
that Shift-Control clicking on the

full circle magazine #165 32 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys', 'Monsters,
Inked' and 'Elvie', which can all be
found at http://
www.peppertop.com/

HOWTO - INKSCAPE

center button has no effect.

All of the alignment capabilities
offered by the new mode are also
available via the Align & Distribute
dialog, with the “Relative to” pop-
up set to “Selection Area”, but the
on-canvas buttons are probably a
bit more obvious and intuitive.

In my opinion there are three
things missing from this new
feature which would have
improved it:
• A toggle button on the Selection
tool’s control bar as well as (or
instead of) the one in the Align &
Distribute dialog. As the Selection

tool is the way in which you interact
with the new capabilities, it doesn’t
make sense to me that you need to
open the dialog every time you
want to toggle this feature on or
off.
• A keyboard shortcut for toggling
this mode on and off.
• A way to use other types of
“Relative to” alignment. I most
commonly use “First selected” or
“Page”, and it would be great to
have easy access to those modes
via the on-canvas handles. Perhaps
a duplicate pop-up in the tool
control bar, or leveraging the
unused Alt key to provide a second
set of alignment options.

Nevertheless this is a nice
addition to the standard tools
which, hopefully, will gain in
features and prominence with
future releases.

http://www.peppertop.com

full circle magazine #166 35 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarrtt 110055

Yet again, last month’s News
section of Full Circle Magazine

managed to sneak in some Inkscape
announcements that arrived after
the deadline for this column, so
apologies for parroting information
you probably already know.

First, Inkscape 1.1 alpha is
available for testing. This is the
initial alpha release, but there may
be others – not to mention betas
and release candidates – before
version 1.1 sees an official build. If
you want to help make that release
as stable as possible, then please
consider downloading the alpha
version, testing it with your typical
workflow, and reporting any issues.
Rather than provide a link directly
to this alpha, which may be
outdated by the time this magazine
hits the wires, I suggest visiting the
News section of the Inkscape
website (https://inkscape.org/
news/). and following the links in
the latest relevant article.

Alongside 1.1 alpha we also saw
the release of version 1.0.2. This is
another bugfix release, addressing
several issues that appeared in 1.0

and 1.0.1. At the time of writing,
there doesn’t appear to be a 1.0.2
snap package available, but there is
a PPA, as well as AppImage and
Flatpak versions available from the
Download section of the Inkscape
website. If you wish to use Inkscape
on a non-Linux system, there are, of
course, builds for Windows and
MacOS. Since FCM is primarily a
Ubuntu-oriented publication, I will
mention that I had problems using
the AppImage version on Ubuntu
Mate 18.04. Although it initially
appeared to work, any operation
that opens the file picker – such as
loading and saving files – caused
the application to immediately
crash. As usual, I had the best
results with the PPA.

There are only a couple of new
features in 1.0.2, but they’re ones
that a lot of users have been
clamouring for. Both are actually
new preferences, so to find them
you’ll of course have to install 1.0.2,
then open the Edit > Preferences
dialog. The first new option can be
found in the Behaviour > Steps
panel, and allows you to turn off
the default behaviour of zooming in

when the user clicks the middle
mouse button on the canvas (and
zooming out when doing the same
with Shift):

I can’t say I’ve ever triggered this
behaviour by accident, despite

being a frequent user of middle-
click-drag to pan the canvas, but if
you are plagued by this problem,\
you can now disable the feature
entirely. It may well be that this
problem occurs more for frequent
users of graphics tablets; certainly
that’s the case with the issue that
has given rise to the second new
option.

You may recall that one of the
headline features for 1.0 was the
ability to rotate the canvas. For
mouse users the best way to

trigger this is to hold Ctrl-Shift and
move the mouse wheel, however
that will rotate in steps (15° per
‘click’ of the wheel, by default). For
an unconstrained rotation you also
have the option of holding Ctrl
whilst click-dragging with the wheel
or middle mouse button. The
middle mouse button is often
exposed on the stylus of a graphics
tablet, where it’s useful for panning
the canvas, but many users of such
devices found they were
accidentally triggering the canvas
rotation by mistake, due to sloppy
timing when releasing the Ctrl key
from a previous operation. As a
result the Inkscape forum has seen
a flurry of requests for the ability
to turn off the canvas rotation
feature.

If you wish to disable this
feature, there’s a new option for it
in the Interface panel of the
Preferences dialog. This doesn’t,
however, remove the “R:” field
from the bottom right of the
Inkscape window, so you can still
force rotation by changing the
value in there, by typing, rolling the
mouse wheel over the field, or

https://inkscape.org/news/

full circle magazine #166 36 contents ^

HOWTO - INKSCAPE

right-clicking to bring up the
context menu.

That’s it for the new features in
1.0.2, with everything else being
bug fixes, mainly for issues that the
majority of users won’t ever
encounter. But there is one class of
fixes that definitely warrants a
mention: this release fixes the text-
to-path regressions that were
introduced with version 1.0. For the
full rundown on these problems,
see part 100 of this series, or the
subsequent YouTube video I
created (http://www.youtube.com/
watch?v=lx5nRCu7AKk), but here’s
a brief reminder.

Originally the behaviour of Path

> Object to Path, when applied to a
text object, was to create a single
complex path. This was
subsequently changed to create a
group of paths, one for each letter
– yet internally the ability to
convert text to a single path
remained. It was even exposed via
the UI, whether by accident or
design: using Path > Union on a text
object would convert it to a single
path.

A rewrite of the path operations
code for 1.0 broke this internal
ability. Path > Union now behaved
the same way as Object to Path.
Furthermore, other features which
required an implicit conversion to a
single path stopped working in a

variety of ways. You could no longer
trivially apply an inset, outset,
dynamic offset, or linked offset to a
text object.

With 1.0.2, normality is restored.
Path > Union once again creates a
single path, and the various offset
functions work once more. In my
opinion, this fix alone makes it
worth upgrading to 1.0.2 if you’ve
already made the leap to the 1.x
series, and removes one of the
biggest reasons for sticking with
0.92.x for any readers who have
been reticent to move on.

All this talk of text objects leads
nicely into the next topic for this
series. We’re returning to the new
and updated features that arrived
with version 1.0, of which
Inkscape’s text support received
more than its fair share of changes.
We’ll start with the most obvious of
the user-facing changes: the
revamped Text tool control bar.

There’s no doubt that the Text
tool control bar in version 0.92 was
a little unwieldy, featuring many,
many buttons. The new version
simplifies this clutter by collapsing
several sets of radio buttons into
drop-down menus. For example,
the four buttons used for text

alignment now take up less than
the width of two buttons. The old
discrete buttons and their new
combined drop-down replacements
are shown in the table below.

The tool bar has also lost a

couple of icons completely. The
confusing “Show style of outermost
text” button has been relegated to
the waste bin. The existence of this
toggle was the result of an attempt
to better represent the underlying
complexities of SVG text. In
practice very few people
understood the implications of
using this button, and most users
would either ignore it entirely, or
randomly turn it on and off while
trying to reset the other controls
on the bar. Also gone is the “?”
button which was only relevant in
the relatively rare case of the user
mixing different line spacings
within a single block of text (more
on this later). Good riddance to
them; anyone who really needs the

http://www.youtube.com/watch?v=lx5nRCu7AKk

full circle magazine #166 37 contents ^

HOWTO - INKSCAPE
control they offered probably has
the technical skills to make their
changes via the XML editor, or by
editing the raw text of the SVG file.

With two buttons removed, and
several others reduced to drop-
downs you might expect the
toolbar in 1.0 to be more compact
than its predecessor. Unfortunately
the opposite is true. Despite having
fewer controls, the new toolbar
occupies even more horizontal
space than the old one, barely
fitting onto the width of an HD
monitor. Anyone trying to run
Inkscape on a narrower screen, or
just with a reduced window size,
will find that the controls inevitably
overflow into a horrible pop-up
menu, with unnecessary
abbreviations and inconsistent
colons.

The reason that the toolbar
takes up so much additional space

is due to the general trend towards
big, chunky UI widgets that are
“touch friendly” for use on tablets
and phones. In the case of the Text
toolbar, this change is particularly
exacerbated due to the number of
spinbox widgets it holds. Here’s a
comparison of how spinboxes look
on Inkscape 0.92 compared with
1.0:

This is a definite case of “you
can’t please all the people all the
time”. As a mouse user, I never

experienced any problems with the
smaller buttons of the old widgets,
and much preferred being able to
get to the justification options with
a single click. A tablet user might
disagree, considering the extra step
of opening a drop-down to be a
small price to pay for spinboxes
with large, easy to hit buttons. I’d
love to see a future release of
Inkscape address this by offering a
preference to switch between the
two styles.

Ironically, this change of style

for the Text toolbar is presented in
the version 1.0 release notes under
the heading of “More Compact Tool
Controls Bar”. Clearly the Inkscape
developers use a different
definition of “compact” than the
one I’m familiar with!

As mentioned earlier, the
removal of the “?” button was one
of the changes implemented to
make the toolbar more “compact”.
In earlier releases, this button
would be enabled if you created a
multi-line text object, but then
changed the line spacing for a
subset of the lines in the block (e.g.
by dragging to select a single line
before changing the value in the
spinbox). Toggling the button back
to its off state would remove the
line-specific override, returning the
whole block to the same default
line spacing.

Without this button, it’s still
possible to reset all the lines back
to a single value. It’s as simple as
clicking in the text to place the
caret (without selecting anything),
and then changing the value in the
spinbox. If you just want to reset it
to the existing value, press the plus
button immediately followed by the
minus button to nudge the line
height up and then down by the

same amount.

If, rather than just clicking within
the text, you select part of a line so
that at least one character is
highlighted, changing the line
height value will affect that whole
line. This also works with a
selection that spans multiple lines.
This ability to mix your line heights
within a block is exactly the same as
in 0.92, all that’s been removed is a
one-click method to revert all the
lines back to a single value, which is
no great loss.

FLOWED TEXT

Flowed text has long been a
source of consternation for veteran
Inkscape users. Support was added
many years ago, based on a
proposed implementation for SVG
1.2 which looked like it would
become part of the official spec.
That proposal was not accepted as
part of the SVG specification,
however, leaving Inkscape with a
flowed text implementation that
was not supported by the vast
majority of other programs,
including web browsers.

With the advent of SVG 2.0,
however, flowed text has seen

full circle magazine #166 38 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys', 'Monsters,
Inked' and 'Elvie', which can all be
found at http://www.peppertop.com/

HOWTO - INKSCAPE
something of a renewal. In part this
is due to the SVG Working Group’s
decision to defer to the CSS
standard for many parts of the
language, rather than trying to re-
implement their own variations.
Inkscape 1.0 revamps the existing
flowed text support completely, in
order to produce something that is
compatible with SVG 2.0.

The downside is that it’s no
longer compatible with the

implementation in earlier versions
of Inkscape. For most users, this
isn’t something to worry about, but
if you do need to create files that
will be edited in 0.92, you can
switch back to the older approach
by turning off an option in the
Inkscape preferences. The quick
way to find it is to double-click on
the Text tool, which will open the
Preferences dialog with the correct
panel already selected. Un-check
the “Use SVG2 auto-flowed text”

option and the flowed text you
create will once again be
compatible with Inkscape 0.92…
and almost no other programs.

There’s yet more to describe
about Inkscape’s new flowed text
implementation, as well as other
text features that are new to
version 1.0, so next month’s article
will continue to explore this
subject.

http://www.peppertop.com

full circle magazine #167 31 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarrtt 110077

As promised last time, I’m going
to continue describing the

flowed text improvements in
Inkscape v1.0. Previously, I showed
you how to turn off the new SVG
2.0 flowed text implementation, in
order to produce files that are
compatible with Inkscape 0.92, but,
unless you’ve got a specific reason
for doing that, I strongly
recommend sticking with the SVG
2.0 variety for compatibility with
web browsers and future Inkscape
releases. This time I’ll dig into the
gory details of the new features,
both from an Inkscape user’s
perspective, and also with regard to
the way flowed text appears in your
SVG file.

First, some definitions: flowed
text is the sort that will
automatically wrap its lines to fill
the available area. Usually that area
is defined as a rectangle (though
Inkscape can also flow text into
arbitrary shapes), and the text will
be rendered so that each line fills
the width of the rectangle as fully
as it can. Changing the dimensions
of the rectangle causes the text to
move around – to “flow” – in order

to best fill the width. Ordinary
(non-flowed) text refers to text
objects that aren’t constrained
inside a rectangle or other shape,
and don’t flow to fill the space. Line
breaks are explicitly entered, and
have to be manually adjusted if you
want the layout of the text to
change. Whereas flowed text gives
layout control to Inkscape, ordinary
text keeps that control solely with
the creator.

In earlier versions of the
program, it was possible to create
flowed text by dragging a rectangle
with the Text tool selected, then
typing your content into it.
Ordinary text was created by just
clicking on the canvas with the Text
tool in order to position the text
entry caret, and then typing. Those
were your only two options: flowed
or ordinary. With Inkscape v1.0,
however, there are now two
different varieties of flowed text to
understand.

As with previous releases, you
can click-drag to create a
rectangular text box on the canvas
when the Text tool is selected.

Typing into this box will produce
flowed text which, in practice,
behaves the same way that flowed
text did in earlier Inkscape releases,
but with greater compatibility
outside the program.

The image below shows a single
piece of flowed text that was
duplicated twice (and the text color
changed). You can see that each
container has a small diamond-
shaped handle at the bottom-right
corner: dragging this resizes the
container and re-flows the text, as
seen in the black and red text
versions. The one with the blue text
was achieved in the same way, but
the handle was deliberately
dragged such that the container
size was too small for the text it
needs to contain. You can see that

Inkscape draws the container in red
in this situation, as a visual indicator
that the text has overflowed
outside of the allowable space.

In this example, it’s pretty
obvious that the text has
overflowed the last container, but
that’s not always the case. When
dealing with large amounts of text
in a bigger container, you may not
notice that the border turns red
when you add a word into the
middle of the prose. The second
flowed text type, referred to as
“Column mode”, goes some way to
addressing this possibility.

Column mode begins life as
ordinary, non-flowed text. Just click
on the canvas with the Text tool,
and begin typing (or paste in some
already written content). But,
instead of beginning the tedious
task of manually entering line
breaks, look at the right-hand edge
of the text box, where you’ll find a
small diamond-shaped handle. Start
dragging that handle and you’ll see
a pair of vertical blue guides appear
(representing the left and right
edges of the “column”), and your

full circle magazine #167 32 contents ^

HOWTO - INKSCAPE
text will be flowed to fit between
them.

What’s important about this
mode is that it sets the width of the
flowed text, but doesn’t constrain
the height. This has the advantage
that you’ll never accidentally clip
the end of your text with the flow
container, but it also means that
your text can flow to be taller than
you intend, possibly leading to it
interfering with other parts of your
design. Where this type of flowed
text comes into its own, therefore,
is in loose designs where you want
to tweak the column width
dynamically to see what works best
for your particular layout (think
posters and leaflets), rather than
designs which already have well
defined areas of a specific height in
which the text has to fit (such as
magazines or newsletters).

TECHNICAL DETAILS

With two different ways to
create flowed text, let’s take a look
at the technical details behind
these new features. Feel free to
skip this section if you just want to
use them as an artist, and aren’t
interested in what happens in the
XML code.

The first thing to know about

both of these approaches is that
Inkscape adds an SVG 1.1
compatible fallback
implementation when you save
your file. This can potentially mean
that Inkscape’s XML editor is a little
misleading: look at it just after
creating some flowed text, and
you’ll see a different structure than
if you’d saved it and re-loaded the
file. Let’s start by looking at the
structure that is used as soon as

you create your content.

The click-drag type of flowed
text consists of two parts: the text
itself, and the rectangle that
constrains it. The latter is created
as a hidden object in the <defs>
section of the XML, and is then
referenced via the “shape-inside”
CSS property, within the style
attribute of the svg <text>
element. In the image below, you
can see the highlighted text on the
right which references “rect98”, the
ID of the rectangle near the top of
the left-hand pane.

As you can also see on the left,
the <text> element just contains a
single <tspan> as a child, which
contains the entire text string.

Column mode is fairly similar,
but there’s no need to reference a
hidden rectangle. Instead of the
“shape-inside” CSS property,
Inkscape inserts an “inline-size”
property which defines the width
of the column. Once again the text
itself lives as a single line within a
solitary <tspan> child element.

Unfortunately, both of these
approaches are broken in web
browsers today. Whilst the “inline-
size” method is well supported in

full circle magazine #167 33 contents ^

HOWTO - INKSCAPE
modern browsers, in my testing it
appears to have an effect only on
HTML content, and does not work
for SVG files. The “shape-inside”
CSS property, on the other hand, is
not currently supported by any
browsers. It is part of the CSS
Shapes specification, but was
dropped from Level 1 of the spec
(the one the browsers have
implemented), and moved to Level
2 (the one they haven’t, yet).

On the surface, therefore, it
might seem that flowed text hasn’t
really advanced much. We’ve gone
from a non-standard, unsupported
technique to a pair of nearly-
standard, but still unsupported
techniques. Yet, if you save a file
with flowed text from Inkscape
1.0.x and load it into a browser, the
text is visible – line breaks and all.
So what’s going on?

You can see the reason for this
apparent support if you examine
the file via the browser’s developer
tools, or if you load the same file
back into Inkscape and look at the
XML editor. At first all seems to be
as expected: the <text> elements
are present, with their
corresponding “shape-inside” or
“inline-size” properties, but when
drilling further down to the text

itself, we’re faced with a structure
like this.

The single <tspan> element,
containing the entire text, has been
replaced with a separate <tspan>
for each line in the resultant output
– the same sort of structure you
would expect to see if you had
manually entered the line breaks.
These elements are used for
positioning each line, but then a
second level of <tspans> is used to
style the text. We’ve gone from a

single child, one-level deep, to a
collection of two-level children. This
is the SVG 1.1 fallback content that
allows the current batch of
browsers to display the content as
it appears in Inkscape.

This change of structure has
repercussions. Because it produces
the expected visible result in a
browser, it will probably serve the
needs of 99% of users. But it also
changes the nature of the text.
What was previously a single string
is now broken into separate blocks:
this could potentially have an effect
on screen readers and search
engines, depending on how they
treat <tspan> elements. It would
definitely have an effect on
JavaScript programmers who want
to dynamically find or change the
text on the page, or had hoped to
use code to alter the column width
or rectangle size with the content
flowing automatically to suit.

This does raise some questions
about how these files will fare in
the future. If browsers do start
supporting “inline-size” on SVG
text, or add support for CSS Shapes
Level 2, how will they behave when
faced with text that already has
line-breaks? It’s possible that this
could result in additional automatic

line breaks being inserted which
conflict with those that Inkscape
has already provided, breaking the
intended layout.

But these concerns are purely
hypothetical at this point, whereas
the problems with flowed text in
v0.92 are very real. The changes in
version 1.0 are a definite
improvement, and make it an
obvious choice if you wish to use
flowed text in your designs. The
details above really matter to only a
minority of web developers, so
shouldn’t prevent you making the
switch.

If you really don’t want the SVG
1.1 fallback text included in your
file, it can be turned off in the
Preferences dialog (Input/Output >
SVG Export pane). Note, however,
that this will affect only newly
created flowed text – any
previously saved file that already
contains multiple <tspan> elements
will still maintain that structure.

OTHER CHANGES

There are a couple of other
changes to mention regarding
flowed text, though they’re
relatively minor points.

full circle magazine #167 34 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys', 'Monsters,
Inked' and 'Elvie', which can all be
found at http://www.peppertop.com/

HOWTO - INKSCAPE

One feature of 0.92 was the
ability to convert flowed text into
ordinary text via the Text > Convert
to Text. This would “apply” the line-
breaks by converting the content to
a SVG 1.1 compatible <text>
element with multiple <tspan>
children. This no longer works in
version 1.0, and has no effect on
the structure of the XML. Saving
the file will insert an SVG 1.1
compatible version of the text
however (as discussed in the
previous section), but it also inserts
some CSS which will cause Inkscape
to still treat such content as flowed.

Essentially if you actually want
to convert from flowed text to
fixed line breaks in a way that
Inkscape will recognise, you have
little choice but to manually insert
the breaks, or to remove the new
CSS from a saved file. As far as I can
tell, this now makes the Convert to
Text menu option completely
redundant, as any attempt to use it
simply puts a “No flowed text(s)”
message in the status bar, and has
no effect on the text or SVG
structure.

Rather than fix the line breaks,
what if you want to un-flow your
words, to revert them to a single

line of ordinary SVG text? In this
case, the program is oddly
contradictory as to the method you
use. Version 0.92 offered the Text >
Unflow menu option, which still
works for click-drag style flowed
text in version 1.0. It’s always had a
nasty habit of moving the un-
flowed text quite a distance from
the original flowed version for
some reason, so if you do use this,
and your text seems to disappear
entirely, try zooming out and
panning around.

For reasons best known to the
Inkscape developers, this approach
doesn’t work for text that has been
flowed via column mode. To revert
this to a single line, you need to
Ctrl-click on the diamond handle
used for adjusting the column
width. To further add to the
confusion, this same technique
does not work with the diamond
handle at the bottom right of the
rectangle used for click-drag style
flowed text. Come on devs, how
about a little consistency!?

The final change to mention is a
small but important usability
improvement. If you use the Text >
Flow Into Frame option to flow text
into multiple shapes on your
canvas, the order in which the

shapes are filled is now based on
the order in which you select them.
Previously it used the selection
order in reverse, which is less than
intuitive, so it’s good to see this
change make its way into the
program. It makes the behaviour
more familiar to anyone who has
ever used a desktop publishing
program, such as Scribus – though I
still maintain that Inkscape is a poor
substitute for a real DTP application
for anything but the most basic of
page layouts.

Next time, we’ll conclude this
part of the series by looking at the
support that has been added for
new font types in Inkscape v1.0.

http://www.peppertop.com

