
full circle magazine #168 35 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarrtt 110088

This month, we’ll conclude our
dive into the new text features

in Inkscape version 1.0 by looking
at a pair of new font formats that
are now supported (and one that
possibly isn’t). Although I’ve used
the term “font formats”, you won’t
find any new file extensions in use.
These formats are implemented
inside the standard OpenType Font
(*.otf) files that are commonly
used on modern computer
systems. As such, you can’t
immediately tell if a font supports
these new features from the file
extension alone, but we’ll look at a
solution to that problem later.

COLORED FONTS

The first font variation to
discuss is termed “SVG in
OpenType”, and it’s pretty much
what it sounds like. With these
fonts, the shapes of the glyphs are
defined using the SVG format, and
then bundled into the OTF wrapper
in order to benefit from many of
the typographical capabilities that
come with it.

Basic OTF fonts just define

shapes for each glyph, with no
concept of color. The program that
renders the fonts is responsible for
filling or outlining the shapes to
make them visible, often with a
solid tone, but it could equally be
with a gradient or pattern. The key
point is that the font provides the
path outlines, and the program
draws those outlines as coloured
objects. With an SVG in OpenType
font, this choice is usually taken
out of the application’s control,
with colors defined solely by the

font itself. Let’s look at an
example.

You’re probably familiar with
the Rainbow Flag, used as an
emblem of gay, lesbian and related
communities. The man who
originally designed it, Gilbert
Baker, passed away in 2017. In his
memory, a free color font was
created which was inspired by the
Rainbow Flag, and named Gilbert.
Due in part to the fact that there
are currently very few color fonts

in existence, and that even fewer
are free of charge, this one is
commonly used in articles about
color font support in various
browsers and other applications.
This piece is no different, so here’s
a screenshot of Gilbert Color in
action within Inkscape version 1.0:

The first thing to note is that it

doesn’t appear in color within the
font selection drop-down, nor in
the list in the Text and Font dialog.
Neither is there any marker or
indication that this is a color font,
other than its name. It appears
amongst all the other fonts in
alphabetical order, rather than
being separately grouped. This
means that you’ll need to keep
track of the names of any color
fonts you add to your system, as
they won’t always stand out
obviously for selection in the UI.

The second thing to note is that
it is, indeed, colorful. As is the case
with many color fonts currently,
the use of color is brash and
obvious, rather than being used for
subtle shadows or ornaments. But
what happens if the colors used in

full circle magazine #168 36 contents ^

HOWTO - INKSCAPE
the font aren’t quite what you
want to fit in with your own design
project? Unfortunately the answer
appears to be “tough luck”.

In the previous image I have
made four copies of the text, as
follows:
• With a black fill and no stroke
• With no fill and no stroke
• With a red fill and thick blue
stroke
• With no fill and a thick blue
stroke

As you can see, removing both
the fill and stroke causes the text
to be transparent, but if any fill or
stroke color is applied, then you
get the colored font in exactly the
colors that the designer intended,
regardless of the color you apply.

If we can’t change the colors in
the font using the normal fill and
stroke, perhaps we could convert
to paths and change the individual
parts of each letter that way, right?
Wrong.

In the image below, I’ve
converted the top text – with a
translucent red fill and blue stroke
– to paths, using Path > Object to
Path. As you can see, the result is
what you would expect from a

“normal” non-color font. I
specifically used a translucent fill
to show that the appearance of
overlapping shapes in the original
font does not result in overlapping
sub-paths after the conversion.

The bottom example has a red
stroke set, but no fill, as can be
seen at the left-hand side of the
status bar. I’ve used Path > Stroke
to Path on this version, but
Inkscape has left it untouched,
claiming in the status bar message
that there are “No stroked paths in
the selection”.

This inability to preserve the
colors – when performing an
Object to Path conversion – does
somewhat limit the usefulness of
colored fonts. Using Object to Path
is a common operation to “fix” the

style of your text when you can’t
be sure that the recipient has the
font in question – such as when
creating an SVG file for use online,
or exporting to a PDF. Obviously a
solid-fill conversion of the font will
not produce the same results at all
in these situations.

Instead of performing a
conversion, it is possible to load an
SVG file containing colored fonts
directly into a web browser, either
as a local file or by serving it online.
However, even if the end user has
the font installed on their machine,
their experience will vary
significantly depending on the
browser they use. While Firefox
displays Gilbert Color in all its
prideful hues, the latest release of
Chrome (89 at the time of writing),
will show just a solid-filled version.

Similarly, when exporting a PDF
from Inkscape, you might be
tempted to use the option for
embedding the font. My non-
exhaustive test of PDF viewers
suggests that this may result in a
file that can’t be opened at all by
some applications. Selecting the
“Convert text to paths” option in
the Save As… dialog results in a
readable file, but only because the
text is, once again, flat-filled with a
single color.

Exporting to a PNG does work
correctly. If you wish to create an
SVG file for use online, however,
the best option may be to use Edit
> Make a Bitmap Copy in order to
embed a bitmap version of your
text into the SVG content, should
you wish to ensure its colorful
appearance across different
browsers.

One final tip: if you do want to
use different colors to those
encoded in the file, you may be
able to achieve the result you’re
looking for by applying a filter. Be
aware that this approach gives you
only limited control over the choice
of colors – unless you’re a filter
expert who is prepared to spend a
long time crafting a complex filter

full circle magazine #168 37 contents ^

HOWTO - INKSCAPE
chain. In this final example, the top
image is the original text in its
natural colors, whereas the other
three were the result of randomly
using some of the filters from the
Filters > Color submenu.

BITMAP FONTS

There’s an interesting side-
effect of allowing SVG content in
OpenType files. Due to the fact
that SVG content can include
embedded bitmap graphics, this
format offers a backdoor through
which bitmap fonts can be created.
Of course, these are not the
bitmap fonts that were prevalent
in the 1980s – the OpenType
wrapper imbues them with many
modern font capabilities, if
properly constructed. And unlike
the pure bitmaps of the past, these
modern files can seamlessly
combine vector and bitmap
content as required.

Bitmap fonts tend to result in
larger files than their purely vector
counterparts. For retro-styled
fonts that hark back to video game
text from decades ago, the size
may still be modest. But many
bitmap fonts are created to
simulate brush strokes, spray paint

or photographs of physical objects,
at a high resolution, which results
in very large file sizes.

If SVGs in OpenType fonts are
relatively rare, the bitmap-based
subset is rarer still. Finding free
fonts that fit this definition is even
more of a challenge. So take my
Inkscape findings with a pinch of
salt, as they’re based on a single
sample of just one font.

I installed a brush-stroke font
called Macbeth on my system, and
tried using it in Inkscape 1.0 (and
also the recently released 1.1
beta). In the font drop-down, and in
the Text and Font dialog, the
previews showed exactly what I
had hoped for: translucent brush
strokes in a dynamic, script style
font.

On the canvas, however, it is a
completely different matter, as
shown in the image below. Either
there’s a problem with the font, or
an issue with Inkscape’s ability to
deal with bitmap-in-SVG-in-
OpenType files. I suspect the latter,
but the fact that the previews work
gives me hope that this is a
temporary issue that will be fixed
in a future update.

full circle magazine #168 38 contents ^

HOWTO - INKSCAPE
Despite Inkscape’s refusal to

render the font correctly, Firefox
does display the font as intended
within an SVG file. Oddly, despite
not supporting color fonts, Chrome
does also display the Macbeth font
correctly when included in an SVG
file, sending somewhat mixed
messages about its support for
SVG in OpenType.

VARIABLE FONTS

Typefaces typically live in
“families”, consisting of related
fonts that vary in weight or style. A
single typeface may consist of a
large number of separate *.otf or
*.ttf files, each holding a separate
variation, such as light, bold, black,
condensed, expanded, italic or
some combination of these. But as
non-bitmap fonts are usually made
up of the same basic paths which
are tweaked for each variant,
wouldn’t it make more sense to
have just a single font file, and
expose different parameters for
controlling the path shapes? That is
the premise behind “variable
fonts”.

A variable font file – once again
in a *.otf wrapper – is typically
larger in size than an individual

font, but considerably smaller than
an entire family. It exposes a
number of parameters, which are
referred to as “axes” and which can
potentially control any aspect of
the font’s design. The original
designer chooses which
parameters to expose, with each
axis being assigned a cryptic four-
character name. Those names are
also mapped to more human-
readable versions within the font
file, but we’ll come back to that
shortly.

As well as the individual axes,
the designer can also define
“named instances''. These are
specific collections of axis values
that are given a name. For example,
the designer might include a
“Weight” axis that runs from 0 to
1000, but define some named
instances for “Light” (300),
“Regular” (500), “Bold” (700), and
Black (“1000”). If the font also had
a “Slant” axis, then the named
instances might also include
options such as “Bold Italic” and
“Light Oblique”. Think of named
instances as being a shortcut to a
pre-defined set of parameters, so
you don’t have to tweak them all
yourself.

In keeping with the tradition

forged at the start of this article,
I’m going to use the same example
font as every other article to
demonstrate the use of variable
fonts. Decovar is free of charge,
and offers a wide selection of axes
which can result in combinations of
glyph shapes ranging from the
conventional through to the
bizarre. Here are a few examples
rendered in Inkscape and,
remember, these are all created
from a single font file.

Within Inkscape, the axes are
adjusted within the Text and Font
dialog. You can see them displayed
as a series of sliders just above the
font preview in this screenshot.
Note that there’s a scrollbar on the
right to access more sliders:
Decovar exposes 15 different axes
in total!

Unfortunately, Inkscape has a
few problems in both the design
and the implementation of this
feature. First is that the sliders are
labelled with the four-letter
internal names of the axes, rather
than the human-readable names
that the font supplies. The second
is that the named instances aren’t
exposed in this dialog, so you have
no choice but to set the sliders
yourself rather than using the
designer’s preferred presets.

The biggest issue, however, is
that the area that holds the sliders
is allowed to grow and shrink
according to the available space,
but the lower limit is too small. If

full circle magazine #168 39 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys', 'Monsters,
Inked' and 'Elvie', which can all be
found at http://
www.peppertop.com/

HOWTO - INKSCAPE
your font size is large, and your
dialog height is small, the sliders
can easily collapse down until only
one is visible, making it extremely
difficult to work with them. My
advice is to keep the font size set
at a small to moderate value, and
the dialog as tall as you can, while
you adjust the various axes. Once
you’re happy with the parameters
you can then increase the font size
again, should you need to.

Unlike color fonts, variable
fonts do appear to be converted
correctly when using Path > Object
to Path. Conversely, although
variable fonts have broad support
across current browsers, SVG files
created using Inkscape don’t
display correctly, falling back to the
basic font as though all axes are
set to zero. Clearly there’s a
mismatch between the CSS that
Inkscape is creating, and what is
expected by browsers. Further
investigation is required on this
front but, for now, if you wish to
use variable fonts in your SVG files
you should probably convert them
to paths before deploying the files
online.

FONT INFORMATION

Although Inkscape doesn’t tell
you the human-readable names of
the axes, doesn’t expose the
named instances, and doesn’t
indicate which fonts contain SVG
content, there’s a way to explore
the information encoded in your
fonts which can help to overcome
some of these shortcomings.

The bizarrely named “wakamai
fondue” website is an invaluable
tool. Just drag-and-drop a *.otf or
*.ttf file onto the page, and a host
of details about the font are
extracted from the file. The
processing all happens locally,
without the font itself being
uploaded to their server, so there
are no licensing issues to worry
about.

Where it’s particularly useful is
with a variable font. Here’s a
section of the output for Decovar:

Here you can experiment with
the various axes (complete with
human-readable names), or select
from the “Instances” popup. When
you’re happy with the combination
you’ve found, you can then
laboriously apply each slider’s
value to its equivalent in Inkscape,
based on its four-letter name.

This tool offers a whole lot
more information as well, and is a
great way to check out the hidden
capabilities of your fonts. In fact,
through using the beta of the next
version of the tool I was even able

to discover that Gilbert Color
actually offers five different
variations on its color scheme, via
the OpenType “alternatives”
feature. Until Inkscape offers a way
to access them, however, I guess
we’ll have to stick to tricks with
filters.

LINKS

Gilbert Color:

https://www.typewithpride.com/
Macbeth:
https://www.dafontfree.co/
macbeth-opentype-svg-script-
brush-font/
Decovar:
https://github.com/TypeNetwork/
Decovar/
Wakamai Fondue:
https://wakamaifondue.com/

http://www.peppertop.com
https://www.typewithpride.com/

https://www.dafontfree.co/macbeth-opentype-svg-script-brush-font/
https://github.com/TypeNetwork/Decovar/
https://wakamaifondue.com/

full circle magazine #169 44 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarrtt 110099

There are still a number of
changes and new features in

Inkscape version 1.0 which I haven’t
covered over the past few months.
In order to get through as many
new features as I can, this month
I’m going to take a whistle-stop
tour of some of the smaller
features which don’t necessarily
require complex examples to
demonstrate. Hold on to your hats!

Y-AXIS INVERSION

I’ve said this before, and no
doubt I’ll say it again: Inkscape is
not a CAD program, despite
offering some CAD-like features.
Nevertheless, it has historically
behaved the same way as most
CAD programs – and even
traditional paper-and-pen technical
drawing – with regard to the
position and orientation of its y-
axis. Previous versions of Inkscape
placed the origin (the 0, 0 point) at
the bottom-left of the canvas, with
the positive direction of the y-axis
going upwards.

If you come from a CAD,
drafting or graphing background,

this may seem perfectly sensible.
But Inkscape is really an SVG
editor, and SVG is a product of the
web world. Web pages grow from
the top downwards. Add some
more paragraphs to your HTML
page and the browser simply
extends the scroll bar to let you
reach them. SVG works in the same
way, with its origin at the top-left
of the drawing area (i.e. the
browser window), and the positive
direction of the y-axis going
downwards.

This mismatch between
Inkscape’s on-screen behaviour and
the requirements of the SVG
format meant that the coordinates
of points viewed in the program
would be different to the values
that were actually stored in the
file. For most users, this wasn’t a
problem, but when using Inkscape
to produce graphics that will
ultimately appear on a web page,
this mismatch could make life
unnecessarily difficult, especially
when trying to write JavaScript to
dynamically alter the file within a
web browser.

With v1.0, Inkscape now
defaults to the SVG standard for its
origin and y-axis direction. Should
this cause you any problems or
confusion, you can revert to the
previous behaviour by un-checking
the “Origin in upper left with y-axis
pointing down” setting in the
Interface panel of the Edit >
Preferences dialog.

DUPLICATING GUIDES

Version 1.0 introduces a means
of duplicating an existing guide
line. The behaviour of this differs
between v1.0.x and the release
candidate for version 1.1 (the full
version of which may have even
been released by the time this
magazine is published). Let’s look
at v1.0 first, where the change is
rather frustrating and unintuitive.

There’s a new “Duplicate”
button in the Guideline dialog
(opened by double-clicking on an
existing guide). This duplicates the
current guide, in-place, then closes
the dialog. No other changes are
made to the duplicate, regardless
of what other parameters you set

in the dialog. This can easily lead to
confusion as it’s not always obvious
that there are now two co-
positioned guidelines. Double-
clicking on the lines will open the
dialog again, where you can make
changes that will affect one of
them.

Suppose, therefore, that you
have a horizontal guideline and you
wish to create two more parallel
guidelines, with 10mm spacing
between them. Here are the steps:
• Double-click on the existing line
to bring up the Guideline dialog.
• Click the Duplicate button. The
dialog closes.
• Double-click on the newly
duplicated line (which is on top of
the existing line) to open the

full circle magazine #169 45 contents ^

HOWTO - INKSCAPE
dialog again.
• Enter 10mm into the “Y” field,
check the “Relative change” box,
and click the OK button. The dialog
closes, but you now have two
guides on the page, separated by
10mm.
• Repeat all four steps, but starting
with your newly duplicated and
moved line.

Although the “Relative change”
box remains checked between
steps, the value in the “Y” field is
cleared. This makes it frustrating to
create a series of equally spaced
guides. If you forget to click the
“Duplicate” button before you
change the value, you’ll end up
moving your original guide by
mistake. No amount of hitting Ctrl-
Z will undo that mistake: you’ll
have to reopen the dialog and
move the guide by the opposite
amount to get it back to where it
started.

Fortunately this feature has
been improved in the 1.1 release
candidate. In that version you
simply open the dialog, put in your
relative change, then press
Duplicate (rather than OK) to
create a duplicate guide with the
movement already applied. Much
simpler!

FILTER REGION SIZE

From a frustrating change to a
delightful one. In order to reduce
the amount of processing required
when a filter is applied to an
object, SVG includes the ability to
set a finite boundary outside of
which the filter is no longer
calculated. For some filters –
particularly those involving large
blurs or offsets – the default filter
region is too small, resulting in the
edges of the filtered content being
cut-off with a hard boundary. You
can see the effect quite clearly at
the sides of this heavily blurred
circle.

It’s always been possible to
adjust the size of the filter region,

via the Filter General Settings tab
of the Filter Editor dialog. But the
four fields you’ll find there are less
than obvious to anyone who hasn’t
read up on the inner details of SVG
filters. You’ll also have to guess – or
find out through trial-and-error –
what the best values need to be for
your particular image. Set the filter
area too large and you’ll slow down
the rendering of your image. Set it
too small, or in the wrong position,
and you’ll see your filter being cut-
off.

With version 1.0, guessing the
optimum values for these fields is a
thing of the past. With a filtered
object selected, switch to the Node
tool (F2) and you’ll see diamond-
shaped handles at the top-left and
bottom-right of your object which
can be dragged to directly adjust
the filter region on the canvas.

IMPORTING SVG FILES

Inkscape v1.0 brings some more
options when importing one SVG
file into another, whether via File >
Import, or by just dragging and
dropping an SVG file from your file
manager onto the Inkscape canvas.
By default, a dialog will be
presented offering three different
ways to import the image, plus a
couple of settings that have an
effect on only two of the three
choices.

The first option will probably be
the one most people use. It’s the
same way that previous versions of
Inkscape imported SVG images: by
adding all the objects from the
imported image as first-class,
editable objects inside the existing
document. Images imported in this
way are essentially
indistinguishable from any other

full circle magazine #169 46 contents ^

HOWTO - INKSCAPE
elements drawn within the
Inkscape document.

The second option embeds the
SVG content as a base64 encoded
string in an tag. If those
words are gobbledegook to you,
then you’re probably not a web
developer. In layman’s terms, it just
means that the SVG content is
stored within the file, but as a
single image that can be treated
much like a bitmap version of the
vector image. Indeed, Inkscape
actually renders it as a bitmap
version, so zooming in, or scaling
the image too large, can make it
look blocky. More on that shortly.

The third option links to the
SVG file. Unlike the prior options,
this means that the linked file can
be updated outside of Inkscape,
and the changes will be reflected in
your Inkscape document. But it
also means that moving the
Inkscape file to another machine
will also require the linked image
to be sent, and the link potentially
updated to reflect the new
location of the file on disk.
Inkscape also displays linked
images as bitmap versions, so the
same zoom and scale warning
applies as previously.

Although Inkscape displays
linked and embedded SVG images
as bitmaps, it’s important to
understand that the linked file, and
the base64 encoded embedded
content, are both still SVG
documents in all their vector glory.
For example, even the blockiest
looking embedded SVG will look
crisp and clean when the
containing file is loaded into a web
browser.

When linking or embedding an
SVG file, you do have some limited
control over the bitmap that
Inkscape displays as a proxy. The
“DPI for rendered SVG” field in the
import dialog lets you set the
quality of the rasterized content.
Higher DPI values will capture finer
details from the vector content,
which may allow you to scale or
zoom with less obvious loss of
detail. The “Image Rendering
Mode” pop-up lets you select the
trade-off Inkscape uses between
quality and speed when rasterizing.
Most of the time leaving this as
“None (auto)” will be good enough.

Because the bitmap
representation is just an artefact of
the way that Inkscape works, and
doesn’t affect the underlying
vector content, it’s even possible to

change the DPI and render trade-
off after the image has been
imported or linked. Right-click on
the image and select Object
Properties, or use Object > Object
Properties. In the dialog that
opens, you can modify the DPI
setting or change the rendering
mode – with even more options
available than in the original import
dialog. This means that any
blockiness that appears as a result
of scaling an imported SVG image
can be addressed after-the-fact, so
there’s no need to worry too much
about which values you use when
importing.

The defaults for the import
dialog are set in the Imported
Images pane of the Edit >
Preferences dialog (where you’ll
also find the defaults for importing
bitmap images). Should you check
the “Don’t ask again” box in the
dialog, then this is also where you
need to come to re-enable it once
you discover that the defaults
don’t always suit your needs.

MESH GRADIENT POLYFILL

If you save an SVG image
containing a Mesh Gradient (see
part 59 of this series), Inkscape will

now embed a JavaScript polyfill in
the file. As I’ve remonstrated
previously, browsers still don’t
support mesh gradients in their
SVG implementations. This polyfill
goes some way towards addressing
that shortcoming.

When the SVG file is loaded
directly into the browser, or is
included within a web page in a
way that allows JavaScript to run
(i.e. via an <object> tag, or by
inlining the SVG content), the
polyfill code will execute,
rendering a bitmap version of the
mesh gradient in order to
approximate the original
appearance of the file.

The idea is to break the impasse
that is preventing mesh gradients
gaining browser support. The
browser vendors won’t put time
into their implementation due to a
lack of files on the internet that
use the feature. But few people
put such files online because the
browsers don’t support them.

If you’re technically competent
enough to be able to put SVG
images online in an <object> tag,
then I urge you to create
something with mesh gradients
and share it with the world. Only by

full circle magazine #169 47 contents ^

HOWTO - INKSCAPE
increasing the number of such files
out there can we ever hope to get
native support in web browsers.

PNG EXPORT

The PNG export dialog has
gained an Advanced section which
allows you to set a number of
parameters for the exported file.
Most users will probably never
need them, so I won’t go into detail
about them here, other than to
point out that the “pHYs dpi” field
is almost certainly what you’re
looking for before opening a
thread on the forum about how
Inkscape PNG files don’t appear at
the “correct” size in some other
program. Unless you have a specific
need to modify these fields, you
can probably leave them as-is.
They’re hidden in an Advanced
section for a reason.

3-DIGIT RGB VALUES

RGB colors are often denoted as

6-digit hexadecimal values. But a
common shortcut in CSS is to
provide just three hex digits, each
of which is doubled to produce the
final 6-digit (hex) version. So, a
value of #1ca would be expanded
to #11ccaa. Inkscape now supports
entering three digits into the Fill &
Stroke dialog to set colors, though
the value that is actually stored in
the SVG file will still be the full 6-
digit version.

The alpha (opacity) will be set to
100% (a value of 255, or #ff in hex),
but if you enter a 4-digit hex value,
this will be expanded in a similar
way to produce both the 6-digit
color and a 2-digit alpha value. So,
#1cab would be expanded to
#11ccaa and #bb.

SAVE AS A TEMPLATE

It’s long been possible to add to
Inkscape’s set of templates by
creating your own SVG file and
putting it in the right place on disk.
With version 1.0, the process has
been made a whole lot simpler
with the addition of a “Save
Template…” entry in the File menu.
Simply create the template you
need, setting the page size and
units, adding guides, and including

some boilerplate SVG content if
you wish, then choose the menu
entry and enter a few basic details.
Your template will appear in the
“New from Template” dialog
immediately – you don’t even need
to restart the program.

It’s not all perfect, however.
Although the creation dialog has a
field for Keywords, there’s no
indication as to how these should
be delimited. From looking at the
internals of existing templates, I
believe that you need to use spaces
between the words. Even doing
this won’t make them searchable in
the “New from Template” dialog,
though. It appears that there’s a bit
of a mismatch between the
template files that Inkscape
creates using this feature, and the
code that displays them in the
dialog.

Existing templates store the
metadata you provide in some XML
elements whose names are
prefixed with an underscore. Using
the “Save Template…” feature
stores them in un-prefixed
elements. It’s possible to modify
the XML content in a text editor,
adding the underscores to make
the template keywords searchable,
but that really shouldn’t be

necessary. I’ll be filing a bug report
about this one.

Even with this glitch, the ability
to more easily create templates is a
very welcome addition.

REMOVED FEATURES

A few features have been
removed from version 1.0 for
various reasons. These are the
main ones that you might notice:
File > Import Clip Art: This feature
used to allow direct downloading
of files from the OpenClipart.org
website, however the API that
Inkscape used is no longer
operational. The website does
indicate that V2 of the API is in
beta, so perhaps this feature will
return in the future.
Save As Cairo PNG: This option
has been removed from the Save
As dialog as it had limited
functionality, and was often
confused with the File > Export
PNG Image option, which is much
more capable.
UniConvertor: Inkscape is no
longer built with the UniConvertor
library. This means that a number
of third party file formats can no
longer be opened or saved from
Inkscape directly. If you do need to
work with any of these file types a

full circle magazine #169 48 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys', 'Monsters,
Inked' and 'Elvie', which can all be
found at http://
www.peppertop.com/

HOWTO - INKSCAPE
possible workaround would be to
install the UniConvertor command-
line tool and convert the files to
the SVG format prior to loading
them into Inkscape, or back the
other way after saving.
Selection Sets: Despite being
added in only version 0.91, the
Selection Sets dialog has been
removed. I described this feature in
part 62 of this series, and I would
rather have seen it polished and
improved than dropped entirely.
Performing some types of complex
selections in Inkscape can still be
tricky, and selection sets offer a
way to combine several simpler
selections to achieve the same
result. Nevertheless, I doubt this
dialog will be much missed by most
users.

When even the list of small
changes fills a whole article, it’s
clear that Inkscape development is
continuing at a pace. The imminent
release of version 1.1 will no doubt
add to my list of topics to cover,
but next month I’ll be continuing to
describe some of the more
significant changes in 1.0.x.

http://www.peppertop.com

full circle magazine #170 26 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarrtt 111100

I’m starting to think that the
Inkscape developers have

deliberately synchronised their
calendar with the Full Circle
Magazine article deadlines to
ensure that they announce new
releases just a few days after I’ve
submitted this column, leaving the
News pages to break the story. As
you may have noticed in last
month’s issue, Inkscape 1.1 has
been released, and is now available
for download from the Inkscape
website. For Linux users there are
versions in AppImage and snap
format, as well as an official PPA
repository, which may be
preferable to Ubuntu users in
particular.

The 1.1 release does bring a few
welcome additions; however, I’m
still working my way through the
changes introduced with 1.0.x in
this column, so the very latest
changes will have to wait. This
month will be all about the
improved UI in the Trace Bitmap
dialog.

TRACE BITMAP DIALOG

This dialog has seen some
substantial changes in the layout of
its options, partly to avoid some
confusion that could easily happen
with the previous UI, and partly to
integrate some tracing modes, one
of which I’ll describe later in this
article, with the others being held
over until next month. Let’s deal
with the placement of the long-
standing features first of all, by
taking a look at how the dialog
appeared when I first introduced
this feature, back in part 19 of this
series:

Here we can see the mis-titled
“Move” tab (later versions
corrected this to “Mode”), showing
the two main operating modes,
“Single scan” and “Multiple
scana” (which was probably
intended to be “Multiple scans”).

Each mode then offers different
approaches to tracing, as a set of
radio buttons that actually
encompasses both parts of the
dialog. The result is that only a
single tracing method can be
selected at a time, even if the
design of the dialog makes it
initially appear as though each
mode can have a different method
selected.

Within each mode area there
are also various other parameters
that affect the tracing algorithm.
The layout makes it somewhat
unclear whether these parameters
all apply to every tracing method,
or whether some are tied to
particular algorithms (answer: it’s
the latter). Finally there are options
that affect all methods and modes,
in the “Options” tab, plus a lone
“SIOX foreground selection” option
that I described in part 20 of this
series, but which I summarised with
“you would be better off
separating out the foreground
using The GIMP (which has its own,
more interactive, implementation
of the SIOX algorithm) and then
tracing the result.”, here’s what I

had to say about this dialog in part
19: “This is one dialog in Inkscape
that could really do with a little UI
love. It's cramped, unintuitive,
contains typos, and the spinboxes
don't have the nice context pop-ups
of most similar controls in
Inkscape.” Although the spinboxes
still don’t have any context-
sensitive pop-ups, I’m pleased to
say that all my other concerns have
finally been addressed, with this
much cleaner dialog in 1.0.

I will start with a small
complaint. It’s a general Inkscape
issue, but is particularly obvious in
this dialog. As I prefer floating
dialogs in windows over docked
dialogs at the side of the canvas, I

full circle magazine #170 27 contents ^

HOWTO - INKSCAPE
often have several windows, each
of which contains only a single
dialog inside it – as in this image. In
that situation, I think it would be
nicer for Inkscape to collapse the
tab bar down to a smaller “grab
handle” that could be used to re-
dock the dialog, rather than
showing a lone tab in a bar that
stretches across the whole dialog,
wasting quite a bit of space. The
window title already tells me this is
the Trace Bitmap dialog; I don’t
think I need that information on a
tab as well. And with this particular
dialog, the first tab within the
dialog also bears the same name,
making the dialog tab seem doubly
redundant, and potentially
confusing.

Moving on to the real content of
the dialog, you can see that the
tabs along the top have been
completely replaced. The old
“Mode” tab is now “Trace bitmap”,
and within that section are two
large buttons for switching
between the Single scan and
Multiple scans modes. Gone are the
radio buttons for selecting the
tracing method, replaced instead
with a single pop-up which greatly
reduces the visual clutter. The
parameters below change
according to the selection in this

pop-up, avoiding any confusion
about which fields apply to which
methods.

Finally, the global parameters
that formerly lived in the “Options”
tab have been moved to a common
section at the bottom of this dialog,
making them far more obvious. This
move also makes it clear that these
options apply to the “Trace bitmap”
modes, but not to the “Pixel art”
mode, which has its own tab
entirely.

Aside from the UI changes, the
operation of this part of the dialog
remains unchanged from previous
versions – apart from the addition
of some new tracing modes that I
will look at next month. For details
on how to use the older modes,
therefore, parts 19 and 20 of this
series still apply.

TRACE PIXEL ART

The “Pixel art” mode isn’t
actually a new thing – it first
appeared in version 0.91 – but I
haven’t covered it in this series
before. Back in the 0.9x days, it had
its own dialog, opened via an entry
in the Path menu.

In 1.0, the UI is essentially
unchanged, save for an additional
checkbox labelled “Optimise”. But
it’s now accessed via the “Pixel art”
tab of the Trace Bitmap dialog,
rather than being a wholly separate
dialog of its own. This means it also
shares the image preview pane of
the Trace Bitmap dialog, although
it’s largely useless here, showing
only a black-and-white picture
which bears little resemblance to
the traced image you’ll probably
end up with.

As the name suggests, this
mode is intended for tracing pixel-
based graphics, such as icons,
emojis, or other small bitmap
images. When scaling up a small
image, you will often find that the
interpolation algorithms that are
commonly used can result in a

blurry appearance, as intermediate
colors are used for the new pixels
that need to be created, losing any
crisp transitions that are an
essential part of the design. The
Pixel Art tracer attempts to
produce vector elements that will
reproduce the original image, but
which can be scaled without
introducing a blurred or softened
result. How effective it is at this will
depend largely on the source
image, and the result you’re looking
for.

As an example, I decided to
trace the 16px × 16px image used
as a “favicon” on the Full Circle
Magazine website. It’s a tiny
representation of the orange circle
with white swirls that forms the
logo of this magazine. Let’s see
what the preview pane in the dialog
makes of it.

full circle magazine #170 28 contents ^

HOWTO - INKSCAPE

The various spinboxes in the
Heuristics section are a mystery to
me. They each have tooltips…
which do nothing to clarify their
purpose. They refer to parameters
in the tracing algorithm, but the
original research paper that is
linked from the Inkscape 0.91
release notes is no longer available,
nor have I been able to find it
elsewhere. When faced with this
situation, I resort to a tried-and-
trusted technique to try to work
out what effect they have: I first
traced images using the defaults,
then I cranked the values up to
their maximum levels (10, 20, 8 and
10), and traced the same images.
The results, in every case that I
tried, were so close as to be
irrelevant.

The “optimize” checkbox at least
has an understandable tooltip. It
claims that enabling it will try to
optimize paths by joining adjacent
Bézier curve segments. With my
test images, however, it served to
only cut off the corners of some
paths, resulting in holes within the
design.

In the Output section, you can
decide between producing shapes
that have entirely straight edges

(Voronoi), or which may include
curves (B-splines). When tracing
very small images, this is a matter
of personal taste. With larger
images – even those of only a few
hundred pixels – the Voronoi
output can take a lot longer, and
may not produce the result you
expect.

Let’s look at the result of playing
with some of these options. In this
screenshot, the original 16px

square favicon is at the top-left. To
the right of it you can see how it
looks when scaled directly in
Inkscape – first using the “optimize
for quality” mode, and secondly
with the “optimize for speed” mode
(remember, the selected mode can
be changed in the Object
Properties dialog). In both cases,
however, the end result is still a
bitmap image, so its individual parts
can’t be manipulated as vectors.

The lower part of the image
shows the result of the tracing
algorithm, with the B-spline
versions on the left, and the
Voronoi versions on the right. In
each case, there’s a column
showing the results when the
parameters are left at their
defaults, and one showing the
results when all the parameters are
set to their maximum values. The
bottom row shows the result of
enabling the Optimize checkbox. In
most cases I suspect that creating
an un-optimized B-spline using the
default values will be good enough.

The close similarity between all
the results may simply be because
my choice of test images doesn’t
really do justice to the algorithm,
but it was actually rather difficult to
find genuinely small pixel images.
Many examples of “pixel art” that
you might find online have the
appearance of being pixellated,
while actually being made up of a
much larger collection of pixels. For
example, here’s one I tried from
Wikimedia Commons:

full circle magazine #170 29 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys', 'Monsters,
Inked' and 'Elvie', which can all be
found at http://www.peppertop.com/

HOWTO - INKSCAPE

A count of the obvious “pixels”
in the computer image on the left
suggests that part is only 31px
wide. Except that it’s actually 248
pixels, with each apparent pixel in
the image actually consisting of an
8×8 square of pixels. Nevertheless,
we should be able to trace that
with Inkscape, right? Here’s the
original image on the left, followed
by B-spline and Voronoi versions
after tracing.

In both cases, the tracing took a
lot longer than with the favicon,
with the Voronoi version taking the
longest by a clear margin. And why
does it look so faint? A close-up
view of the result, with some paths
selected, shows us a bit more of
what’s happening.

The top-left shows shapes from
the B-spline tracing. The black
pixels that form a diagonal edge in
the original image have been
turned into a single path, with far
more nodes than necessary, as a
result of the 8×8 pixel blocks. The
resultant trace consists of a group
of 69 individual objects, each of
them an overly defined path.

The Voronoi mode fares even
worse. Here the individual pixels of
the 8×8 blocks have been converted
into separate paths, resulting in a
group of 63,000 objects! That’s
quite a result from what was clearly
designed as a 32px × 32px icon
(1,024 pixels in total). It also
explains why it looks faint: the large
number of closely spaced objects
plays havoc with Inkscape’s anti-
aliasing algorithm, as it tries to
resolve the individual edges of the
shapes.

Trying to convert something as
small as an icon into a vector
graphic will always be a trade-off
that will work better for some
images than others. The lesson
from this is that the pixel art mode
is not really designed for “pixel-
style art”, but specifically for very
low resolution pixel images. If your

source material is more than about
48px in either dimension, you
probably need to consider scaling it
down in a bitmap editor before
throwing it at this algorithm.

As great as it is to have
advanced algorithms in Inkscape,
what I would really like to see in
terms of tracing pixel art is a mode
that simply takes each individual
pixel and converts it to an Inkscape
square, with an option to merge
adjacent squares of the same color
into a path. You can kind-of achieve
this with the Tiled Clones dialog, if
you know what you’re doing, but
adding that as an option to the
Trace Bitmap dialog would likely
cover most people’s pixel tracing
requirements, without the need for
opaque parameters and complex
results.

http://www.peppertop.com

full circle magazine #171 32 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarrtt 111111

This month, I’ll be concluding my
look at the Trace Bitmap dialog

by examining the new tracing
modes that have been introduced
with Inkscape v1.0, including one
that has been much requested on
the forum over the years.

AUTOTRACE

Inkscape has long offered
tracing of bitmaps using the
Potrace library. While this does a
fine job of vectorising raster
graphics, it’s not the only open
source tool that performs this trick.
Autotrace is a command-line tool of
similar vintage, which has now been

integrated into the Trace Bitmap
dialog. It’s available in the mode
selection pop-up, in both single-
scan and multiple-scan varieties.
The latter is labelled as “Autotrace
(slower)”, suggesting that it
probably shouldn’t be your first
choice for a multiple-scan
conversion – a suggestion that I’ll
come back to later. For now,
however, we’ll start by looking at
the single-scan variant.

Once selected, it offers two
spinboxes and an “Invert image”
checkbox. The latter, as the name
suggests, inverts the image colors
before tracing, making it easier to
trace a light-on-dark design without
having to manually process it first.
The effect of the two spinboxes is
somewhat harder to guess at.

The scant documentation for
Autotrace – basically an online copy
of the man page for the command-
line tool – describes the “Filter
iterations” option thus: Smooth the
curve the specified number of
times prior to fitting. Without
knowing what is meant by “fitting”
in this algorithm, it’s hard to infer

what this actually does. Trial-and-
error suggests that it reduces the
fidelity of the trace somewhat,
smoothing out the generated
vectors and tending to result in a
trace with fewer nodes. Here’s
what the most extreme values look
like when applied to dear old
Frankie. The original bitmap is on
the left, with clipped versions of
the traced head to the right. For
the top trace, the filter iterations
was set to 1; for the bottom it was
set to 20.

Note that the higher iterations
have reduced or wiped out the
whites of the eyes, while the veins
on the brain are a mere shadow of
the original. The shape of the ear
and of the brain’s outline are also

significantly smoother. The total
node count for the traced head is
485 for the top image and 410 for
the bottom one.

The second spinbox, for setting
the “Error threshold”, is described
like this in the man page: Subdivide
fitted curves that are offset by a
number of pixels exceeding the
specified real number. This one I
can at least have a guess at. The
process of tracing a bitmap consists
of generating paths that
approximate the shape of the
original pixels. The paths will most
likely be a close match in some
areas, but not as accurate in others.
This parameter allows you to set
the threshold before which a path
segment will be considered too far
away, and will be subdivided into
two paths to
make it easier to
adjust them to
fit. Setting a
small value here
allows only
slight deviation
from the pixel
positions, at the
expense of a lot

full circle magazine #171 33 contents ^

HOWTO - INKSCAPE
more subdivisions and, therefore,
more nodes in the result. Let’s take
a look at how Frankie fares with
values of 1.0 (top) and 10.0
(bottom).

It’s pretty clear that the higher
value results in a trace that is so
smoothed out as to lose many of
the original shapes completely. The
top image, where the paths were
much more heavily subdivided,
consists of 587 nodes; the bottom
one has only 327.

As is often my advice in this
column, I suggest most users
should at least start with the
default values for both spinboxes,
and start tweaking them only if you
need to improve the fidelity of the
trace, or want to take the counter-
approach of reducing the number
of nodes. Even in the latter case, I
would probably be more inclined to
trace with the defaults and then
use Path > Simplify afterwards.

Perhaps the biggest question is
how the Autotrace results compare
with the Potrace equivalents.
Here’s another pair of traced
Frankies created using the default
settings: The Potrace-based
“Brightness cutoff” at the top; the

Autotrace version at the bottom.
Again, the full head on the left is
the original raster image.

The first thing to note is that the
Autotrace version has maintained
the grey color of the original image
– though that’s such a trivial thing
to change that it shouldn’t be used
as a reason to select one over the
other. The Potrace result is a lot
crisper, with the paths more
accurately maintaining the sharp
corners of the head, and thinner
lines of the eyebrows. This accuracy
is reflected in the node count: 1090
for Potrace but only 440 for
Autotrace.

But it’s not that clearcut. The
extremely thin lines on the brain
are actually better preserved by the
Autotrace algorithm. On the whole,
I think the old Potrace code works
best, at least in this case. But I also
wouldn’t rule out creating a hybrid
result by using node editing or

Boolean operations to paste
together the best parts from each
result.

AUTOTRACE (MULTIPLE
SCANS)

What about using the
“Autotrace (slower)” mode for
scanning color images? My advice is
to avoid it completely and stick to
the Potrace-based modes. I tried
scanning the same images that I
used for part 19 of this series: the
Full Circle Magazine logo, and a
Wikimedia Commons copy of “La
Giaconda” (The Mona Lisa). In both
cases I used the default settings.
The logo, which takes less than a
second to trace with Potrace, took
several minutes to complete. With
such an amount of effort involved
you might expect something
impressive, but this is what the
result looks like (original bitmap on
the left, Autotrace in the middle,
Potrace on the right):

To you and I it may appear as
though Autotrace spent several
minutes producing a salmon-
colored circle. But no: what you’re
actually looking at is a group of
4180 objects! For comparison the
Potrace version contains 8 objects –
one for each color set via the
“Scans” spinbox.

Switching to the outline view
does suggest that the shapes have
been traced, and are hidden
somewhere in the salmon fillet
before us, but the thicker outlines
definitely hint at complex paths
compared with the simplicity of the
Potrace version.

full circle magazine #171 34 contents ^

HOWTO - INKSCAPE

And what of La Giaconda? After
many minutes of processing my
memory, swap and CPU were all
maxed out, then Inkscape
disappeared off my screen entirely.
There was no appearance of the
usual crash dialog I see when it
dies, leading me to suspect that its
demise was perhaps the fault of
the Linux kernel killing it due to
lack of available resources.

Even with a “successful” trace,
the sheer number of objects
created is practically
unmanageable. There may,
perhaps, be some image types for
which this mode offers an
advantage, but I would try it only if
the Potrace methods aren’t yielding
acceptable results – and make sure
to save your file first!

CENTER LINE TRACE

If Autotrace offers little or no
improvement over Potrace, and in
some cases is far too resource
hungry, why bother adding it to
Inkscape at all? The reason is that it
offers one type of frequently
requested tracing mode that
Potrace does not – center line
tracing. In fact the menu entries

described previously are there only
as a side-effect of including this
mode. After all, if you’re adding the
library anyway, why not also expose
the standard tracing mode as well,
to give your users more options.

Center line tracing is really
applicable to only line art in which
the shapes are made up of
individual pen or pencil strokes.
Using other tracing modes, each
stroke is converted into a closed,
filled path that reflects the
thickness and shape of the original
artwork. With this new mode,
however, the tracing algorithm
attempts to determine a single
path that traces out a line following
the middle of the original stroke.

For the most simple real-world
example, consider a single pen
stroke on paper, scanned and
imported into Inkscape. The top line
in this image is the original scanned
raster graphic. The second shows
the result of a normal trace – note
that the bulbous ends of the line
are reproduced in this mode. The

third line is the result of a center
line trace – no thickening of the line
at the ends of this version.

The real difference becomes
clear when we take a closer look at
the nodes used to make up the two
traced paths. The first is a closed,
filled path, so you can see that the
nodes make up the outer shape of
the stroke. The center line trace, on
the other hand, results in an open
path made up of a simple line of
nodes: any suggestion of line
thickness is purely down to the
value set for the stroke width.

What happens when you try this
mode with a more complex
example? How about a few
handwritten letters?

As you can see, the trace doesn’t
really reflect the shapes and
writing style of the original scanned
image. The fairly straight left leg of
the A becomes kinked in the
middle, as the algorithm struggles
to work out where the center line
actually is. The sharply angled line
where the top and bottom bowls of
the B meet is lost entirely, and
replaced with a horizontal crossbar.

You may also have realised that
such shapes can’t be made up of a
single path segment. In this
instance we’ve ended up with a
single complex path consisting of
all the different segments that
make up the letters combined into
one object. Path > Break Apart
allows us to reduce the complex
path down to its constituent parts,
which we can then give different
colors to demonstrate the paths
that the algorithm settled on.

full circle magazine #171 35 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys', 'Monsters,
Inked' and 'Elvie', which can all be
found at http://www.peppertop.com/

HOWTO - INKSCAPE

The A, not unreasonably, is
made up of three separate paths.
But the complexity of the B is
captured in only two paths: one
complex curving line that
encompasses most of the shape of
the letter, and a small straight
segment to fill in the remaining
gap. Wrangling such shapes into
something more befitting the
original outlines could quickly
become tedious on larger projects.

You may think I’m being unfair
on the algorithm here. My scanned
text was from a thick Sharpie,
rather than the thin strokes of a
pencil or ballpoint pen. But based
on my testing, you’ll likely face
similar issues, even when starting
with thinner lines in the source
material.

That’s not to say that the new
mode is useless or unwelcome. For
many images it will prove to be far
more effective than the existing
tracing methods, especially if
you’re interested in only the core
shapes of the elements rather than
the exact details of the stroke
outlines. Just remember that it’s
working only with pixels, and has no
concept of the order in which lines
were laid down, or the difference

between two lines that meet at an
angle compared with a single line
that has a sharp corner in it.

As is so often the case with the
Trace Bitmap dialog, I can only
recommend that you give it a try on
your image, but don’t expect
miracles. Even if the results aren’t
perfect, it may save you some
manual tracing time on part of your
design, or at least give you a
starting framework to build upon.

Next month, we’ll take a look at
the new “Selectors and CSS” dialog,
which promises to make Inkscape a
little more useful as a web
development tool.

LINKS

Potrace: http://
potrace.sourceforge.net

Autotrace: http://
autotrace.sourceforge.net/
https://github.com/autotrace/
autotrace

Autotrace man page: https://
linux.die.net/man/1/autotrace

“Frankie” and other images: http://
www.peppertop.com/fc/

http://www.peppertop.com
http://potrace.sourceforge.net
http://autotrace.sourceforge.net/
https://github.com/autotrace/autotrace
https://linux.die.net/man/1/autotrace
http://www.peppertop.com/fc/

full circle magazine #172 30 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarrtt 111122

I’m going to start this month with
yet another complaint about the

state of font support in web
browsers. Once again, a single
browser vendor has effectively
scuppered a format that is
supported by their peers, leaving us
users and developers without a
practical alternative.

I’ve written in the past about
how Firefox’s lack of support for
SVG fonts effectively killed the
format. This was a real blow: the
ability for a web developer to
dynamically modify fonts on-the-fly
using JavaScript could have been
truly revolutionary. More recently,
it looked like SVG in OpenType
would provide some new
capabilities in terms of color fonts
and bitmap support, but Google
has closed the relevant issue on the
Chromium bug tracker (#306078)
with a status of WONTFIX,
indicating that they won’t be
adding support for this format to
the browser. Given Chrome’s
dominant market share, this
effectively neuters some of the
new font support in Inkscape 1.0
that I covered in part 108 of this

series.

Variable fonts, as described in
that article, already work and will
continue to do so. It’s the SVG in
OpenType format that is now
effectively dead, despite being
supported in Firefox, Safari and
even older versions of Edge. My
own experiments suggested some
level of support for the fonts I was
using (e.g. the Gilbert Color font
was rendered in Chrome, but only
as a monochrome font). I now
suspect that was due to the fonts
themselves providing non-SVG
fallback content, rather than
Chrome providing any support at all
for this format.

What’s most disheartening
about this development is that
Google’s primary reason for not
supporting SVG in OpenType
appears to be that they are
developing their own format for
color fonts (again, embedded into
OpenType). If you were in any
doubt that Google might use their
market dominance to force the
direction of web standards,
perhaps this will make you realise

that a single vendor having so much
control is not really in the best
interest of the users. The need for
multiple, independent rendering
engines is the reason I continue to
use Firefox as my daily driver. The
battle against IE may have been
won, but the war for a truly open
and independent web still wages.

Time will tell whether or not
Google’s new format will win out,
or font foundries will just embed
both the Google and the SVG
versions of color glyphs into ever-
more-bloated font files. For now,
however, despite Inkscape’s
support for color fonts – and its
partial support for bitmap fonts –
you might want to think twice
about using these in your projects.

CSS IN SVG

The main topic for this month
was supposed to be the Selectors
and CSS dialog that was added
experimentally in Inkscape v1.0,
and then promoted to non-
experimental in v1.0.1. But in order
to understand what this dialog
does, it’s essential to first have a

decent grounding in how CSS works
in a stand-alone SVG file. This
month’s article will put in that
ground work – if you’re already a
CSS aficionado, then you may want
to skip this one and come back next
month for the details of the dialog.

Let’s begin with some history.
The SVG format has always been a
little confused about its identity. It
was created during the great XML
uprising of the late 1990s, when
the World Wide Web Consortium
(W3C) were pushing for a world in
which XML formed a common basis
for many file formats, allowing for
tools and workflows that could
easily combine and convert
different types of data. SVG was a
stand-alone vector format, not yet
directly integrated into any web
browsers, but the intention was
clear that it should conform to, and
work with, existing web standards.
This left it with something of a
dichotomy: on the one hand, it
needed a way to directly define
fonts, colors and dimensions in
order to be used as a generic vector
format with no dependency on a
browser engine; on the other hand,

full circle magazine #172 31 contents ^

HOWTO - INKSCAPE
it had to work well with the
growing power of CSS to define
styles for those users who did want
to work in a more web-focused way.

And so we have ended up with a
profusion, and confusion, of ways
to style SVG content. First there are
the classic “presentation
attributes” from the SVG format.
These are attributes that can be
applied directly to SVG elements in
order to style them individually. For
example, a red rectangle with a
thick black border might be defined
like this:

<rect x="20" y="20"
 width="100" height="100"
 fill="red"
 stroke="black"
 stroke-width="10"
/>

This approach requires only the
consuming program to understand
XML and SVG, and doesn’t impose
the need for a complete CSS parser
(though things like color values and
most units are still taken from the
CSS spec).

In the early days of HTML,
presentation attributes were
common there, too. Veteran web
developers might remember the
“border”, “color” and “bgcolor”

attributes, amongst others, but
those capabilities were rapidly
subsumed by the growing scope of
CSS. In order to override CSS styles
on a per-element basis, the relevant
CSS rules had to be combined into a
single “style” attribute. This
method also works with SVG,
meaning that our thick-stroked red
rectangle could also be written like
this:

<rect x="20" y="20"
 width="100" height="100"
 style="fill: red; stroke:
black; stroke-width: 10;"
/>

If CSS only offered a way to put
all the style information into a
single attribute, it wouldn’t be
terribly useful. But as well as
setting styles on each element
individually, CSS also offers a
mechanism for applying styles
across an entire document (or even
across multiple documents, but
that doesn’t work with Inkscape). It
makes it trivial to give all your
rectangles the same fill color; or to
divide your objects into common
classes that share similar styles; or
to add override rules that make, for
example, the third rectangle in a
group have a different stroke width
to the others.

These tricks are achieved by

moving the style information out of
the style attributes, and into a
common stylesheet in a <style>
element. The style attribute still
applies, and will override the
stylesheet, as shown in this
abridged example where both the
<rect> elements share the same fill
color, stroke width, and their width
and height, but have a different
stroke color:

<style>
 rect {
 fill: red;
 stroke-width: 10;
 width: 100;
 height: 100;
 }
</style>

<rect x="20" y="20"
 style="stroke: black;"
/>
<rect x="60" y="60"
 style="stroke: darkred;"
/>

Notice that the syntax of the
stylesheet is quite different to that
of the SVG content. I won’t go into
details about how to write CSS
here, but suffice to say that it’s
made up of multiple rules
(delimited by curly braces: { and }),
with each rule starting with a
“selector” that determines what
elements the rule will apply to. In
this case, the selector is just the
string “rect” which will make this
rule apply to all the <rect>
elements in the document.

We can target a specific element
by ensuring it has an “id” attribute
in the SVG content (which Inkscape
does by default), then using that ID,
prefixed with a hash character (#),
as our selector. In this next
example, we have three rectangles
which all share a common base
style, but one of them has its fill
color overridden in this way.

<style>
 rect {
 fill: red;
 stroke: black;
 stroke-width: 10;
 width: 100;
 height: 100;
 }

full circle magazine #172 32 contents ^

HOWTO - INKSCAPE
 #r2 {
 fill: blue;
 }
</style>

<rect
 id="r1"
 x="20" y="20"
/>
<rect
 id="r2"
 x="60" y="60"
/>
<rect
 id="r3"
 x="100" y="100"
/>

We can also target multiple
items by giving them the same
value in a “class” attribute and
using it preceded by a dot (.) as the
CSS selector. This example has four
rectangles, split into two different
classes. Note that an element can
have more than one class,
separated by spaces, which allows
for a huge amount of flexibility in
combining objects into overlapping
sets.

<style>
 rect {
 stroke: black;
 stroke-width: 10;
 width: 100;
 height: 100;
 }

 .important {
 fill: red;
 }

 .warning {
 fill: orange;
 }
</style>

<rect
 class="important"
 x="20" y="20"
/>
<rect
 class="warning"
 x="60" y="60"
/>
<rect
 class="important high"
 x="100" y="100"
/>
<rect
 class="p3 warning low"
 x="140" y="140"
/>

CSS in web browsers also
provides attribute selectors. These
give the ability to select elements
based on the presence, and
optionally the value, of specific
attributes on the elements. This
would be particularly useful when
dealing with some of Inkscape’s
native objects, some of which are
implemented as <path> elements,
with a custom attribute to tell
Inkscape which sort of native
objects they are. Similarly, groups
and layers are both implemented as
SVG <g> elements, with an
Inkscape-specific attribute
indicating which ones are layers, so
this would offer a means to
distinguish between them in CSS
selectors. Unfortunately it appears
that the Selectors and CSS dialog
doesn’t recognise the syntax for
attribute selectors, so I shan’t
consider it further here.

These basic selectors can be
combined to further refine the
elements that will match. Using
“rect.important”, for example,
would only match <rect> elements
with a class of “important”. It would
not match <rect class="warning">
or <path class="important">. In a
similar manner,
“#r1.high.important” would only

match the element with an id of
“r1” if it also had both the
“important” and “high” classes
assigned.

The browser provides some
classes for free, in the form of
“pseudo-classes” which allow you to
create selectors that target things
that the browser calculates at
runtime. These may change
dynamically, especially if your page
uses JavaScript to manipulate the
document. Most of them aren’t
applicable to the non-dynamic
world of Inkscape, but some relate
to the order in which elements
appear in the document model, and
do work in a limited manner in the
Selectors and CSS dialog. For
example, a selector of “rect:first-
child” would select any <rect>
element that is the first child of its
parent (e.g. the first element inside
a group). Inkscape doesn’t quite
allow this syntax, though, but there
is a workaround. I’ll take a deeper
dive into pseudo-elements and how
to work with them in Inkscape as
we progress with the Selectors and
CSS dialog.

Selectors can be combined in
different ways to match more
elements, or to further refine the
match based on the hierarchical

full circle magazine #172 33 contents ^

Mark uses Inkscape to create three
webcomics, 'The Greys', 'Monsters,
Inked' and 'Elvie', which can all be
found at http://www.peppertop.com/

HOWTO - INKSCAPE
structure of the SVG document.
“#id1, #id2, .important” would
match the two elements with the
specified IDs, but also any element
with the “important” class. “text +
path”, meanwhile, would match any
<path> element that is an
immediate sibling of a <text>
element. That one can be useful for
styling any underlines you’ve drawn
with your text elements, for
example.

A simple space character creates
a rule that matches if the second
element is a descendent (possibly
even a deeply nested descendent)
of the first. E.g. “g.primary rect”
matches a <rect> that is
somewhere inside a group with a
class of “primary”. On the other
hand, “g.primary > rect” would only
match the <rect> if it’s an
immediate child of the primary
group, not if it’s nested further
inside other groups.

With the information from the
last few paragraphs, see if you can
make sense of this example file:

<style>
 rect {
 stroke: black;
 stroke-width: 10;
 width: 100;
 height: 100;
 }

 g.primary rect {
 fill: yellow;
 }

 g.primary > rect {
 fill: green;
 }

 g > rect:first-child {
 fill: purple;
 }
</style>

<g class="primary">
 <rect x="20" y="20" />
 <rect x="60" y="60" />

 <g
transform="translate(200)">
 <rect x="20" y="20" />
 <rect x="60" y="60" />
 </g>
</g>

There’s even more to CSS than
the rules I’ve laid out here, but
these are the ones that are most
useful or relevant when working

with the Selectors and CSS dialog.
Even so, it’s a lot to take on board if
you’re not already familiar with
CSS. Next month, it will hopefully
start to make a bit more sense as
we begin our look at the new
dialog.

http://www.peppertop.com

full circle magazine #173 28 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarrtt 111122

Last time, I indulged in a whistle-
stop tour of CSS support in SVG

files, in preparation for this month’s
topic: the Selectors and CSS dialog.
As I noted previously, this dialog
first appeared as a hidden option in
Inkscape version 1.0, and was then
officially exposed in version 1.0.1. It
can be opened using the Ctrl-Shift-
Q keyboard shortcut (even on v1.0),
with later releases also exposing it
via the Object menu. In my
experience, it’s still a little buggy,
even in version 1.1, and can lead to
full application crashes, so please
make sure to save regularly if you
decide to use it.

To describe the operation of this
dialog requires a sample document

on which to work – preferably one
with a mixture of elements to
target via CSS selectors. For the
purposes of this article, therefore,
I’ve created a collection of sixteen
elements (four squares, four circles,
four stars, and four Bézier paths),
arranged as four rows, with the
content of each row being grouped.

The style of each object is the
same, and that information is
stored in the element’s “style”
property, as Inkscape does by
default. Looking at the first row,
therefore, the structure of the SVG
content boils down to something
like that shown top right.

As usual, I’ve omitted a lot of
the SVG content for clarity,
including additional style
properties and the namespaces of
most of the elements and
attributes. Note the first path,
however, where I have specifically
included the sodipodi:type
attribute which tells Inkscape that
this is a star primitive. The Bézier
path, on the other hand, does not
have such an attribute, as that is
just a standard SVG path element

and doesn’t require additional hints
for Inkscape to understand how to
work with it. The IDs are just the
arbitrary values assigned by
Inkscape – in a real file you might
want to edit them to be more
descriptive or user-friendly.

Now it’s time to open the
Selectors and CSS dialog (hereafter
referred to as the Selectors dialog,
for brevity), via the Object >
Selectors and CSS… menu entry.

With nothing selected on the page,
be prepared for something of a
disappointment, as it hardly
screams functionality at this point.

The buttons in the bottom-right
corner can be used to switch
between horizontal and vertical
orientation – though in both cases,
in my opinion, the panels are
presented in the wrong order. The
only other interactive elements at
this stage are the plus and minus
buttons in the bottom-right corner.

The latter does nothing right now
(and should probably be disabled),
leaving us with little to do but press

<svg>
 <g>
 <rect id="rect31"
 style="fill:#ff0000;stroke:#000000;…" />
 <circle id="circle1145"
 style="fill:#ff0000;stroke:#000000;…" />
 <path id="path1243" sodipodi:type="star"
 style="fill:#ff0000;stroke:#000000;…" />
 <path id="path1253"
 style="fill:#ff0000;stroke:#000000;…" />
 </g>
 …

full circle magazine #173 29 contents ^

HOWTO - INKSCAPE
the plus (+) button. This will open a
small “CSS Selector” dialog, pre-
filled with a class name (including
the preceding dot, as required in
CSS syntax).

Let’s just run with this for now,
accepting the default selector
value by clicking the Add button.
Brace yourself for the
overwhelming complexity of the
change it makes to the main dialog.

When you’ve fully recovered
from the excitement, you might
want to take a moment to really
appreciate what has happened:
there’s now an entry in the right-
hand panel labelled “.Class1”, and
with another plus button next to it!
You can select the new row, but
double-clicking won’t let you
change the value – there’s no way
to edit a selector once it’s been
added, so if you make a mistake
your only recourse is to delete it
and start again. Speaking of
deleting it, our minus button now
has a purpose: with the new entry
selected, clicking the button will
delete the entire entry. And what
of our new entry-specific plus

button? Clicking on it at this stage
does absolutely nothing. There’s
not even a tooltip to suggest what
it is meant to do.

The purpose of this button is to
add the class name to any selected
SVG elements, causing them to
match the CSS selector and appear
in the dialog. Let’s look at a
practical example by selecting the
first element from each row.
Remember that each row is a
separate group, so we have to hold
Ctrl+Shift to select an object within
the group (Ctrl) and add to the
existing selection (Shift). With
those keys held, it’s a simple task to
click on the first object in each row,
giving us a selection of four items.
Clicking on the plus button now will
add the “Class1” class to each of the
elements, and the Selectors dialog
updates to show us the IDs of the
elements that match the selector.

In the XML code those elements

now look something like this:

<rect class="Class1" … />

Note that Inkscape gives
<circle> elements an ID that begins
with “path”, so the three path and
one rect IDs listed actually
represent two paths (the star and
the Bézier path), a circle and a
square. It’s a little confusing at first,
but just remember that an ID is just
a unique label, and doesn’t have to
relate to the type of object. Clicking
on a single ID in the dialog will
select the associated object on the
canvas, so it’s pretty easy to keep
track of which elements have which
IDs. For now, we’ll assume the CSS
selector itself (“.Class1”) is selected,
per the previous image. You’ll
notice that the left-hand pane has
now gained a little content – and a
plus button of its own.

The left pane shows the CSS
properties that apply to the
currently selected elements, in this
case reflecting the stylesheet that
Inkscape has created in the head of
the document. The plus button lets
us add more properties. The UI is a
little clunky, but when you click the
button, a new blank entry will be
created with the property name
field focused, ready for you to type

into. Put in the property name, then
press Enter or Tab to move to the
value field, where you can type a
suitable value for your property.
Here, for example, is what happens
to our selection when I set a couple
of CSS colors, one for the stroke
and another for the fill.

Each property has a button,
which can be used to remove it
completely, and a checkbox that
can be used to toggle it on and off.
But these don’t necessarily work
the way you might expect. In this
example, you might think that
turning off (or deleting) the fill
property would revert the objects
back to their previous red fill, but
that’s not the case at all. Instead
the fill changes to black.

What’s going on here?
Remember from last month that
CSS properties in a “style” attribute
override those from the stylesheet.

full circle magazine #173 30 contents ^

HOWTO - INKSCAPE

But our elements all had their fill
and stroke set via style attributes
when we created them, so how did
the yellow fill (which comes from
the stylesheet) ever work in the
first place? The answer is that
Inkscape automatically deletes
conflicting properties from the
style attribute when you start
adding them via the Selectors
dialog.

In this case, it means that the
red fill from the style attribute was
removed as soon as the yellow fill
was added to the stylesheet. Turn
that entry off, however, and
Inkscape no longer has any idea
what fill color to use. In that case
the SVG spec is quite clear: the
initial value for fill – the one that
Inkscape falls back to – is black. The
spec also defines the initial value
for stroke to be “none” - so
disabling or deleting the stroke
property actually results in the

whole stroke being removed, rather
than a thick black stroke remaining.

Side effects like this mean that
working with the Selectors dialog
can be a little tricky if you’re not
careful, or don’t have a thorough
understanding of the SVG and CSS
rules. It’s easy to assume that you
can add a fill color, then just delete
it to revert your change if you want,
but, as this example demonstrates,
the act of adding a rule can make a
change to your XML content in a
way that won’t be reverted when
you remove the rule.

With both rules re-enabled, let’s
take a look at the left-hand pane
when only a single ID entry is
selected in the right pane.

The left pane now shows not
only the rules that are applied due
to the new class that was added,
but also those that are defined in

the style attribute on the object
itself in a section labelled
“element”. You can edit existing
values, or add new ones via this
part of the dialog. If we set the fill
color on the element itself, you’ll
also note that the value supplied by
the class – the one from the
stylesheet – acquires a strike-
through to indicate that the
property has been overridden by
another one.

Hopefully you can now see why I
think these panes are in the wrong
order: you first have to select an
item in the right-hand pane in order
to populate the content in the left
one, whereas conventional left-to-
right UI design (for an LTR based
language) would suggest the pane
in which you perform the action
should be to the left of the one
which reacts to that action.

As well as buttons to delete

individual properties, you’ve no-
doubt noticed that there are delete
buttons next to the IDs in the right
hand pane. Clicking one of these
will remove the class name from
that element’s “class” property,
removing it from the dialog, and
removing any class rules that apply
to it. Once again, however, any
conflicting rules that were
previously in the “style” attribute
are long since gone, so you’re likely
to end up with a black fill and no
stroke once more.

Next time, we’ll add a few more
items to our selection, look at how
best to use this dialog as a
replacement for the old “Selection
Sets” feature, and begin to explore
some of the more varied CSS
selectors that can be used in this
dialog – albeit with some pretty big
caveats!

Mark uses Inkscape to create three
webcomics, 'The Greys', 'Monsters,
Inked' and 'Elvie', which can all be
found at http://www.peppertop.com/

http://www.peppertop.com

full circle magazine #174 18 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarrtt 111144

This month, we’ll continue
looking at the Selectors and

CSS dialog (or just “Selectors
dialog” for short). Now would be a
good time to review the previous
couple of instalments if you need
to, before we dive in deeper. As
with last month, we’ll be working
with this collection of shapes
arranged as four groups of objects,
one for each row.

Starting with a blank Selectors
dialog, last month I showed you
how to select the first item in each
row (Ctrl-Shift-Click each one), and
add a new class to them all, so that
they appear in the dialog. Let’s do
the same thing this time:

Previously, we used this
capability to add some override
styling for those objects. But what
if we don’t do that? What if we just
leave the styles alone? In that case,
what we’ve created is a convenient
way to re-select all those objects
any time we need to: clicking on the
“.Class1” entry in the right-hand
pane is all that is required.

This, essentially, returns the
capability of the Selection Sets
dialog, which was introduced with
version 0.92, but removed with
version 1.0.

The Selection Sets dialog
allowed you to name (and re-name)
your sets, change the label for each
object, and add or remove items
from sets. The new Selectors dialog
is slightly more limited. Double-
clicking on the CSS selector won’t
let you edit it – so you’re stuck with
the class name you initially created.
The listed items are now shown as
IDs rather than labels (they include
the “#” prefix that CSS uses for IDs,
making this difference a little
clearer). Double-clicking on an ID
just selects it, it doesn’t allow you
to edit the label or the ID of the
object in question.

The Selectors dialog updates in
real-time to changes in the SVG
content, however, so if you really
want to change your class name,
you can edit it in the Edit > XML
Editor dialog. Just be aware,
however, that editing the selector
name in the stylesheet won’t

automatically apply that change to
the class attributes in the individual
elements – you will need to
manually change all of those to
suit, as well. In most cases,
therefore, it’s easier to delete the
class entry from the Selectors
dialog and re-create it.

You can still, however, add and
remove things from the “set” –
though in reality what you’re
actually doing is adding and
removing the class from the object.
We looked at removing items last
time – you just need to click on the
delete button to the left of each
thing you want to remove. Doing
this will also remove any style
overrides, most likely returning you
to a black fill with no stroke, but if
you’re using this dialog just for
managing selection sets and
haven’t modified any styles, then
this won’t be a concern.

Adding new items to the set is
also pretty straightforward. You
simply have to select them on the
canvas, then click the “+” button
next to the CSS selector. In this
example, I’ve selected the items

full circle magazine #174 19 contents ^

HOWTO - INKSCAPE
from the second column and clicked
the button, and you can clearly now
see that the set contains eight
items.

Clicking CSS selector (the
“.Class1” entry on the right) will
select all eight items on the canvas.

Using this technique, you can
create new classes (i.e. selection
sets) for any combination of items
you want. Let’s go through the
steps to create a set that contains
all the squares:
• De-select everything – by using
Edit > Deselect, by pressing the
Escape key, or simply by clicking on
the canvas background.
• Click the “+” button at the
bottom of the Selectors dialog.
Unfortunately, you’ll be presented
with the same default class name
(“.Class1”) every time you do this. It
doesn’t auto-increment, so you
need to make sure you change it by
hand to something unique. In this

case, I’m going to create a class
called “squares” by just typing the
name into the prompt, preceded by
a dot. You don’t need to supply the
leading dot to indicate a class –
Inkscape will add that for you – but I
recommend always including it, for
reasons I’ll go into later in this
article.
• Select all the squares, by Ctrl-
Shift-Clicking each of them.
• Click the “+” next to the
“.squares” CSS selector line in order
to add the “squares” class to each
item, thus making them appear in
the set.

If done correctly, the dialog
should now be showing both the
“.squares” class (with four items)
and the “.Class1” class (with the
eight items we added previously).

The sections can be collapsed and
expanded using the toggle
triangles next to the class name,
and selecting either of them will
select the corresponding set of
items on the page.

At any time you can select more
items on the page and add them to
the existing class using the plus
button next to the relevant CSS
class selector in the second pane.
Or you can create another class
entirely, using the plus button at
the bottom of the dialog.

As mentioned, clicking on a class
selector in the second pane will not
only show you the relevant CSS
properties on the left, but it will
also select all the objects with that
class on the page – a replacement
for the Selection Sets dialog. You
should use this capability carefully,
however. I recommend treating
“Selection Set” classes and “Styling”
classes as two different things.

What do I mean by that? Last
time, I demonstrated how you could
use classes to change the style of
the selected elements. But if you
do that, it’s very easy to end up
with elements that have no styling
applied at all, if you subsequently
remove the class name from them.

So if you want to use this dialog to
manage classes as though they
were selection sets, it’s best not to
also apply any styles as part of
those classes. I recommend using
one class (or set of classes) for
selections, with no style changes in
the left-hand pane, and different
classes for styling changes, even if
it means you have two classes that
actually select the same objects.

Here’s that method in practice:
the “.squares” class is as it was
before, it just selects all the
squares, but doesn’t change their
style. The “.yellow-fill” class
contains exactly the same objects,
but changes their fill color. Now if I
want to also change the stars to
have a yellow fill, I can add them to
the latter class, without disrupting
the “selection set” formed by the
“.squares” class.

full circle magazine #174 20 contents ^

HOWTO - INKSCAPE

Up to now, I’ve looked at
creating just class-based selectors
in this dialog, but you can also use it
to create other types of rules in
your stylesheet. So far, we’ve
added the “squares” and “yellow-
fill” classes to all of the squares in
the image, but because these are
all the same type of SVG primitive,
there’s an easier way to select or
style them all: the element selector.
The squares are all <rect> elements
in the SVG, which means they can
be targeted with a selector that
literally just contains the word
“rect”. Just create a new entry
using the “+” button at the bottom
of the dialog, but enter “rect” into
the prompt, with no preceding dot.
In this way, I’ve changed the stroke
to a thick blue line on all of the
squares, while still leaving them
with the yellow fill from the
previous class-based rule.

Inkscape did not automatically
prefix the word “rect” with a dot, as
it would have done when creating a
class selector. This implies that the
program must maintain a whitelist
of element names which are
allowed to pass through untouched.
To avoid accidentally creating an
element selector when you meant
to create a class selector, therefore,
I recommend always including the
leading dot when entering a new
class name. In this case, for
example, typing “.rect” into the
prompt does create a class selector
as expected, whereas omitting the
dot creates an element selector.

One advantage of element
selectors is that they are dynamic in
nature. Add another rectangle to
the page and it will automatically
be included in your “rect” selector.
But be aware that inclusion in the
selector may not be enough for it to
behave the way you expect. In the
example above, the “rect” selector
defines a thick blue stroke, yet
drawing a new rectangle doesn’t
produce that result.

The reason for this is that the
new elements you draw will have
their style properties set via their
“style” attribute, as usual. As we
found out previously, these will

override those in the stylesheet,
preventing the element rules from
working. The solution is to remove
the override rules from the “style”
attribute – which can be done by
selecting the element and then
deleting the rules from the
“element” section of the left pane
in the Selectors dialog.
Nevertheless, it’s an additional few
steps that may get overlooked, and
can become tedious when dealing
with many elements. Unless you’ve
got a good reason to do otherwise,
it’s probably best to stick with class-
based selectors for styling – at least
you can then select all your new
elements and add them to the class
with a single click in the dialog.

Element selectors also exhibit
some odd behaviour within the
dialog. Each matching element has
its ID shown below the selector, as
you would expect, but they still
have delete buttons next to them.
Clicking one of those buttons does
nothing: it doesn’t delete the
element itself (which would be the
only practical way to remove them
from the selector), so they appear
to be completely redundant. Worse
than that, clicking the selector
itself ,then the “-” button at the
bottom of the dialog, does not
delete the selector. Removing an

accidentally created element
selector, or one that is no longer
needed, requires a trip to the XML
editor.

Element and class-based aren’t
the only types of CSS selectors
supported by this dialog, however.
The other types also come with a
few potential inconsistencies and
problems, but that’s the subject of
next month’s instalment…

Mark uses Inkscape to create comics
for the web (www.peppertop.com/)
as well as for print. You can follow
him on Twitter for more comic and
Inkscape content:
@PeppertopComics

http://www.peppertop.com

