
full circle magazine #175 30 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarrtt 111155

This month is the last part of our
exploration of the new

Selectors and CSS dialog (“Selectors
dialog” for short). As with the
previous parts, we’ll be working
with this collection of shapes
arranged as four groups of objects,
one for each row.

We’ve previously looked at using
class and element selectors in the
dialog, but, as you may recall from
part 112, CSS allows for a variety of
other selectors, and different ways
to combine them. Inkscape’s CSS
parser doesn’t support all the
various possibilities, but it does
manage some of them. Whether or
not they’re actually useful to you is

another question entirely, but, in
this instalment, I’m going to take a
look at some advanced selectors
that do work, as well as some that
unfortunately don’t.

Starting with a blank Selectors
dialog, I’ve created a class called
“squares” that includes all the
squares in our sample image, and a
second class called “col-1” which
contains all the elements in the
first column of objects. As you can
see, the “#rect31” element appears
in both, as you would expect.

Deselecting everything in the
drawing, and clicking the plus
button at the bottom of the dialog,
triggers the dialog for adding a new
selector – pre-filled with “.Class1”
as usual. As we saw last time, it’s
also possible to enter an element
name here, but, this time, we’ll
create something even more
complex: a selector that targets
multiple classes. If we enter a value
of “.squares.col-1” as a single string,
with no spaces, the selector will
target only those elements that
have both the “squares” and “col-1”

classes applied. In our case the only
thing that matches that
combination is the square at the
top left.

Alternatively, we can combine
an element selector with a class
selector. Entering “rect.col-1” for
example, will only match those
<rect> elements that also have a
class of “col-1” applied. Again, the
only thing that matches in this case
is the square at the top left.

Using these selectors, I’ve added
rules to change the color of any

full circle magazine #175 31 contents ^

HOWTO - INKSCAPE
object where both classes match,
and the stroke of any <rect> with
the “col-1” class. The effect is that
the square at the top left has both
the new rules applied, but no other
elements are affected.

The ability to combine classes in
this way could potentially be useful,
especially if you want to use class
names to categorize your elements.
When producing game assets, for
example, you might have multiple
images in a single document,
covering different types of
landscape in different seasons, and
with different assets. Need to
quickly find the image for a wintery
forest tile with a mine? Add a new
selector for “.winter.forest.mine” –
assuming you’ve already set the
right classes on your images.

Combining elements and classes

is probably less useful, particularly
given how many of Inkscape’s
primitives are actually just <path>
elements in the underlying SVG,
and are therefore indistinguishable
from each other via a simple
element selector. If you can think of
a good use case for this, however,
it’s nice to know that Inkscape
already supports the format.

The fact that Inkscape piles its
own internal attributes onto <path>
elements in order to support some
of its basic shapes does lead onto
another type of CSS selector that’s
worth further examination: the
attribute selector. In the world of
CSS it’s possible to select elements
that have a particular attribute, or
which have an attribute set to a
particular value. The table below
covers the main selectors that will
work in a web browser.

There are other variations to
find substrings only at the start or
end of the value, or which force
case sensitivity when matching, for
example. If you’re a web developer
who wants to know more about
attribute selectors, I recommend
looking them up on the Mozilla
developer site (link at the end of
the article).

For our purposes, these should
allow us to distinguish between
different types of primitive in
Inkscape. Let’s look at one of our
star shapes in the XML editor
(shown bottom right).

That’s a long list of attributes,

but the one we’re most interested
in is the last one: “sodipodi:type”
with a value of “star”. As I’ve
discussed previously in this column,
the “sodipodi” part is the
namespace for this attribute, which
is required because it’s not part of
the SVG specification. In practical
terms, however, I usually just refer
to this as the “type” attribute.

Suppose we want to target just
the stars with a CSS rule. Based on
the table of attribute selectors you
might expect [type="star"] to do
the job, but it doesn’t. Not even a
more basic selector of just [type] is
accepted by Inkscape.

full circle magazine #175 32 contents ^

HOWTO - INKSCAPE
Perhaps it’s that pesky

namespace. How about
[sodipodi:type] or
[sodipodi:type="star"]? No, they
don’t work either. In fact
namespaces in CSS are a bit of a
pain, requiring you to redefine your
prefixes in the CSS in addition to
the definition in the XML itself. In
the selector rule, the namespace is
then separated from the value by a
pipe character, not a colon. So, in
theory, manually adding an
“@namespace” rule to the
stylesheet, then using [sodipodi|
type="star"] should do the job. But
not in Inkscape.

I’ve tried many, many different
combinations of attribute selector,
both with and without namespaces,
but can’t get any of them to work
within Inkscape. This is a real shame
as it makes it impossible to target
specific Inkscape primitives, or
elements with other proprietary
attributes.

If you’re a web developer, then
you may wish to know that these
selectors do work as advertised in
web browsers, provided you
include the CSS namespace
declaration and use a pipe
separator. This <style> block, for
example, will cause all the stars in

the test document to appear with
an orange fill within a web browser,
but it doesn’t work when the same
file is loaded into Inkscape.

<style id="style258">

 @namespace sodipodi
url(http://
sodipodi.sourceforge.net/DTD/
sodipodi-0.dtd);

 [sodipodi|type="star"] {
 fill: orange !important;

 }

</style>

Although Inkscape doesn’t work
with attribute selectors, there are a
few other useful CSS rules that it
does seem happy with. First, we
have the descendent selector:
simply enter two selectors with a
space between them, and the rule
will match only if the element
matching the second selector is
some descendent (in the XML
structure) of an element matching
the first selector.

For example, in our test file,
each row of objects is in a separate
group, and I’ve set the ID for each
group (using the Object Properties
dialog) to “row-1”, “row-2” and so
on. If I want to select all the <path>
elements in row 3 (i.e. the star and

Bézier path objects), then I can
create a selector with the string
“#row-3 path” to find every <path>
element, but only if it’s a
descendent of the element with
the ID “row-3”.

Note that “descendent” in this
case means any child, grandchild,
great-grandchild and so on down
the tree. If you want to select only
immediate children, then use a “>”
character between the individual
parts of the selector (with optional
white space around it for
readability).

Sometimes you might want a
single set of CSS rules to apply to

several different selectors. In that
case, you can comma-separate the
individual items. So, to create a rule
that matches three specific
elements by their IDs, use
something like “#rect31,
#rect1247, #path729”. The easiest
way to achieve that is just to select
them all before you press the “+”
button at the bottom of the dialog:
the field that opens for you to
enter a selector will be pre-
populated with a comma-separated
list of the IDs. You can use commas
to mix any types of selector, so
creating a rule to match any
immediate child of the second row
plus any circle, would result in this:
“#row-2 > *, circle”. Notice from

full circle magazine #175 33 contents ^

Mark uses Inkscape to create comics
for the web (www.peppertop.com/)
as well as for print. You can follow
him on Twitter for more comic and
Inkscape content:
@PeppertopComics

HOWTO - INKSCAPE
this example that you can also use
an asterisk (“*”) to match any
element, regardless of its type or
class.

Comma-separated lists of
selectors can easily become long
and unwieldy when you need to
match lots of different things. CSS
has a couple of features in the form
of the “:is()” and “:where()” pseudo-
classes that can simplify many such
rules. Although Inkscape does let
you enter them into the dialog,
unfortunately they don’t actually
work in the program.

Also in the list of useful CSS
rules that don’t work is the “:not()”
pseudo-class. This should allow you
to select elements that don’t match
a particular rule. E.g. “:not(path)”
for selecting all the non-path
elements. Instead, Inkscape just
swallows the new rule when you
enter it – without it then appearing
in the dialog at all. Prefixing it with
a class selector (e.g. “.row-
1:not(path)”) allows it to appear,
but it certainly doesn’t work as it
should.

There are some pseudo-classes
that do sort-of work with Inkscape,
but not well enough to be
genuinely useful. The “:first-child”,

“:last-child” and “:nth-child()”
selectors work, but only if they’re
applied to a class or ID selector. For
example, “.squares:first-child” will
select any element with the
“squares” class that is the first child
of its parent. In the example file
that will match the square in the
top left, as it is the first child of the
group element that holds the row.
In theory you should be able to use
just “:first-child” or “*:first-child” to
match the first element of any
parent but, in practice, that doesn’t
work at all. This is a real shame as it
makes it practically impossible to
use the powerful “:nth-child()”
pseudo-class to select all the odd
children of a group, or every fourth
one, for example.

A related set of selectors are
“:first-of-type”, “:nth-of-type”, plus
some other “-of-type” strings.
Trying to use these will actually
cause Inkscape to crash entirely, so
definitely steer clear of them!

To summarise my findings, the
Selectors dialog is effective when
used with simple class, ID or
element selectors, including
combining them in a comma-
separated list. But most of the
more powerful CSS rules either
don’t work at all, don’t work as

expected, or might even kill the
program. It’s probably best to see
this dialog for what it is: a
replacement for the Selection Sets
dialog that also lets you set some
CSS rules in a stylesheet, should
you wish to. If you’re enough of a
developer to specifically need a
stylesheet in your document, then
you’re probably better off
managing it outside of Inkscape for
now. If you want to manage and
store just some simple selections,
on the other hand, then this dialog
should serve you well enough.

Over time, it’s likely that
Inkscape’s CSS capabilities will
improve, and perhaps some of the
more complex rules will be
supported. But, for now, you’re
best to either keep it simple, or to
do it by hand.

LINKS

Overview of CSS resources and
tutorials on MDN:
https://developer.mozilla.org/en-US/
docs/Web/CSS

Attribute selectors on MDN:
https://developer.mozilla.org/en-US/
docs/Web/CSS/Attribute_selectors

The @namespace rule on MDN
(works in browsers, not in
Inkscape):
https://developer.mozilla.org/en-
US/docs/Web/CSS/@namespace

http://www.peppertop.com
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS/Attribute_selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/@namespace

full circle magazine #176 28 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarrtt 111166

This month, we’re moving on
from the Selectors and CSS

dialog, to the last of the big
changes that were made with the
release of the 1.0 and 1.1 series of
Inkscape versions: Live Path Effects
(LPEs).

LPEs themselves are not new, of
course. They’ve been a staple of
Inkscape since version 0.46, way
back in 2008, but have seen
considerable improvements with
every release. With 1.0, the user
interface was radically overhauled,
so, this month, I’ll be concentrating
on those changes. The following
months will then take a deeper dive
into the new effects that arrived
with 1.0 and 1.1.

If you’re new to LPEs, you may
want to take a look at parts 42 – 47
of this series for a general
introduction, and the effects that
were available in v0.48; then parts
65 – 69 for the effects that were
added with v0.91 and v0.92.

One thing that hasn’t changed
much with the new releases is the
initial LPE dialog, opened via Path >

Path Effects… (or Ctrl-Shift-7). The
content of this will remain disabled
until a path is selected, at which
point you’re presented with a
rather empty dialog. Just about all
you can do at this point is to click
the “+” button at the bottom in
order to add your first LPE to the
effects chain. On 0.92, the available
LPEs are displayed in a list, like this:

It does the job, but it is
somewhat utilitarian. As the total
number of LPEs grew, it became
clear that something more
functional was required. Version 1.0
takes that requirement and hits it
out of the ballpark, with a vastly

more powerful dialog (see above).

Immediately you can see the
biggest change is the switch from a
simple list of titles, to a grid of
icons that represent what each LPE
does. This alone is a huge
improvement, as it’s generally
much easier to find the effect
you’re looking for with the aid of

the icons rather than by title alone.
If you really prefer a list view then
you can select this using the
buttons at the top of the dialog.
These allow you to choose between
two densities of grid, or a list view
that is still more useful than the old
one, as it also includes a smaller
version of the icon plus some
descriptive text (see below).

full circle magazine #176 29 contents ^

HOWTO - INKSCAPE

You won’t be at all surprised to
hear that the search box at the top
of the dialog can be used to filter
the list of effects based on a simple
substring search that looks at both
the effect name and the
description. This applies even in the
grid view, when the descriptions
aren’t so obviously visible.

In the list view, you’ll notice that
each entry has a small star between
the icon and the effect name.
Clicking this will mark (or un-mark)
that effect as a “favorite”. The
visible list can then be restricted to
show only the favorites using the
star icon in the toolbar. It’s
important to note that, when
showing just the favorites, any text
typed into the search box will be
tested only against favorites, not
against the other hidden effects.

It’s also important to note that
the clickable areas on each row are
a little non-standard in some
respects. Hovering over the star
doesn’t change the cursor to
indicate it is clickable, and doesn’t
produce a tooltip to that effect
either. Clicking it does toggle the
state, indicated by a filled or open
star, but has no other side-effects.
The rest of the row, on the other

hand – whether that’s the icon, title
or description – changes the cursor
to indicate that it is clickable. If you
do click the mouse button, it will
add the effect to the main LPE
dialog and immediately close this
one. Take care, therefore, when
trying to (un)mark a favorite, as a
slight mis-click could easily lead to
the effect being added to the
effect chain by mistake.

Similar care needs to be taken in
the grid view. Clicking on an effect’s
icon or title will, again, immediately
add it to the effect chain and close
this dialog. Below each entry,
however, is a small downward-
facing chevron: clicking this does
not add the effect to the chain, but
rather selects it and displays three
icons, as shown in this before/after
screenshot:

The three icons all behave quite
differently. Hovering over the first
will display a pop-up showing the
icon, title and description. This is
the only way to view the
description in grid mode –
unfortunately the developers

haven’t exposed them via tooltips
on the main icons or titles. There is
no change in the cursor when
hovering over this icon, but clicking
it will add the effect to the chain
and close the dialog.

The second, star-shaped icon
toggles the favorite status of the
effect, as you might expect. As with
the list view, there’s no change of
cursor, nor a tooltip to describe this
behaviour, and clicking here will not
add the effect to the main dialog.

Finally, the third icon (a tick in a
circle) seems a little redundant. It
appears to be there as a means for
you to confirm your selection,
causing the effect to be added to
the chain and the dialog to be
closed. Given that clicking almost
every other part of this widget has
the same effect, however, it seems
unnecessary. It is worth noting,
however, that the clickable area
doesn’t cover the entire size of the
colored background: the large,
empty spaces to the left and right
are not clickable (and do not
change the mouse cursor) which I
find a little misleading, but not a
huge problem in practice. As I’m
being picky about the UI, though, I
do think the developers should
nudge the favorites toggle up a

couple of pixels. I’m sure it’s
perfectly aligned numerically, but
the difference in visual weight
between a circle and a star does
make it look like it’s sitting a little
low compared to its siblings.

The final part of the UI for this
dialog is the slide switch at the
right of the toolbar, labelled “Show
Experimental”. Clicking on the
switch itself (the label isn’t clickable
– a classic UI mistake) reveals or
hides any LPEs which are included
in your Inkscape release but still
considered experimental by the
developers. Unfortunately, these all
get the same “cherry bomb” icon,
which indicates that they are risky
to use but doesn’t provide a quick
indication of what each effect
actually does, as a normal icon
would. I would much rather see
them distinguished by having the
cherry bomb as an additional tag or
emblem attached to the main icon.

The exact list of additional
effects that are exposed by this
switch will vary depending on your
Inkscape release, but could be
substantial. On my 1.1.1 version, for
example, an additional eight
effects become available, which is
quite a percentage of the 49 that
are present in total. I’ve colored

full circle magazine #176 30 contents ^

HOWTO - INKSCAPE

them red on the screenshot above
to make them stand out a little, but
Inkscape itself presents them in the
same color as the other icons. The
effects appear in alphabetical
order, with no means to sort them; I
would prefer an option to group all
the experimental effects at the end
of the list, perhaps with a divider,
so that it becomes more practical
to leave this option enabled
without them cluttering up the list
of “safe” effects.

As you might expect, using any
of these experimental effects is
entirely at your own risk. Don’t be
surprised if doing so results in
crashes, and even if they appear to
work fine there’s no guarantee that
your files will continue to be
compatible with future versions of

Inkscape. For this reason I don’t
intend to delve into these in any
detail until they are promoted to
supported effects in future –
though I won’t rule out a quick
overview if I run out of other topics
to write about before the next
release!

One other thing to notice from
the previous screenshot is that
there are two effects which are
disabled: “Power clip” and “Power
mask”. These require that there’s
already a clip (or mask) on the path
that you’re adding the effect to.
When a suitably clipped/masked
element is selected, these will also
be enabled alongside all the other
LPEs.

The UI changes aren’t limited to

the “Add Effect” dialog. Once an
effect has been added to the chain,
the corresponding parameters
section of the main LPE dialog will
also show some additional options.
This can be seen with the Ruler LPE,
for example, as shown in this
comparison between v0.92 and
v1.1.1 (below).

The height difference between
the dialogs can be explained by the

“tab” at the top of the panel, which
can be used to dock it in v1.x,
combined with the generally larger
input fields used throughout the UI
in newer releases. The parameter
rows themselves have also changed
from right-aligned to left-aligned.
Of the two, my personal preference
is for the older style where at least
the +/- buttons are vertically
aligned. In reality, however, I don’t
really like either approach. A better

full circle magazine #176 31 contents ^

Mark uses Inkscape to create comics
for the web (www.peppertop.com/)
as well as for print. You can follow
him on Twitter for more comic and
Inkscape content:
@PeppertopComics

HOWTO - INKSCAPE
option, in my opinion, would be a
more tabular style in which the
labels fall neatly into one column
and the input fields into another, as
in the following mock-up. I am
aware, however, that this may not
be possible to achieve with the
current widget toolkit, so consider
this wishful thinking rather than a
serious proposal.

One new feature that is
common to all the LPE parameter
screens is the “Set default
parameters'' section at the bottom

of the dialog. Expanding this will
display a list of Set (or Update) and
Unset buttons, one pair for each
parameter the LPE offers. These
allow you to set the default values
that will be used when the LPE is
first added to a path, by entering
the value into the parameter field
and clicking the corresponding Set
button. The button label will then
change to Update, allowing you to
modify the stored default by
changing the value in the field
before clicking the button. The
Unset button will clear your saved
preference and revert to using the
LPE’s own default values.

For a little more information
about any parameter, hover the
mouse over the lightbulb icon at
the left of the row: a pop-up will
display the name of the field, any
tooltip associated with it, and the
default value – or the value
override, if you’ve set one. This can
be useful for confirming the value
that is currently being used, but it
would be nice if it still showed the
system default when a custom
value is set, to give the user a bit
more information about what will
happen if they click the Unset
button.

As well as this new set of
buttons, you’ll find that many of the
long-standing LPEs have gained a
few additional parameters. I don’t
intend to revisit these at this time,
as the changes are generally small
enough not to present either a
problem or a significant
opportunity. From next month,
however, I will start to take a
detailed look at the completely new
LPEs that have been added.

http://www.peppertop.com

full circle magazine #177 29 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarrtt 111177

Over the next few instalments
I’ll be looking at the new Live

Path Effects (LPEs) that have been
added with Inkscape 1.0 and 1.1.
Earlier articles in this series provide
a general introduction to LPEs and
what they are (part 42), as well as a
deeper dive into the LPEs that
arrived with earlier Inkscape
releases (parts 42 to 47, 65 to 69).
The previous instalment detailed
the more general changes to the
LPE dialog that took place with
version 1.0, but this month I’m
going to look at the first of the new
LPEs, plus an old one that has had
something of a rebirth.

DASHED STROKE

At first glance there doesn’t
appear to be an obvious need for
an LPE that renders the stroke of
an object as dashes. After all, the
Fill & Stroke dialog already offers
various dash patterns which form
part of the native SVG format
(remember, LPEs are an Inkscape-
specific extension). But although
the standard SVG dashes are often
sufficient, they do lack some
nuance in the way they’re

distributed along a path which can
give a less than aesthetically
pleasing result. This is the niche
that this new LPE aims to address.
As a quick example, look at these
stroked stars, the red one on the
left using standard SVG dashes, and
the blue one on the right using the
Dashed Stroke LPE.

Pay close attention to the way
that the corners – both concave and
convex – are rendered. The SVG
version is mirror-symmetric along
the vertical axis, but only because I
adjusted the dash offset to give
that effect. Without that manual
intervention there was no
symmetry to the dashes at all. Even
with that change, however, the
corners differ as you move around
the star: for the tips of the shape
we would probably like them all to
look like the point at the top, and
not like the remaining four. None of

the inner corners are really what
we would like in most cases. Notice
that the LPE version achieves
exactly the right look, with the
corners all appearing pleasingly
similar and symmetric.

Let’s look at another example.
Dashed outlines are commonly
used around simple rectangular
boxes in flow charts and other
diagrams. Which do you think looks
better: the red SVG version (left) or
the blue LPE version (right)? Once
again, focus on the corners.

The reason for this difference is
that the SVG stroking spec uses a
very simple algorithm to determine
how to draw the lines and spaces. It
simply starts at the beginning of
the path and draws a series of
alternating dashes and spaces,
based on the pattern described in
the stroke-dasharray attribute or
CSS property. It doesn’t care about
curves or corners, it just plods

along from start to finish rendering
a repeated series of strokes and
dashes, regardless of the
underlying shape. You can control
the position of the first dash, using
the stroke-dashoffset attribute or
property (which is exposed via the
Fill & Stroke dialog in Inkscape), but
all that does is shift the entire
pattern along. It doesn’t affect the
length of each stroke or space, so
you are still likely to end up with
unbalanced dashes as they wrap
around the corners of your shape.

The LPE, on the other hand,
works a little differently. The
biggest change is that it can work
on each segment of a path
individually, rather than treating
the entire path as a single stretch
to be dashed as one. This is the
secret of those better looking
corners – drawing half a dash at
each end of a segment results in
dashes that are pleasingly
symmetric as the path turns a
corner. Let’s look at the options
available in this LPE, and the
settings I used for the blue
rectangle.

full circle magazine #177 30 contents ^

HOWTO - INKSCAPE

I’m going to describe these
parameters out of order, as this is
the best way to explain what each
option does. I’ll start with the “Use
segments” parameter: when
unchecked this results in the other
parameters applying to the entire
path (much like the native SVG
dashes). When checked, each
segment of a path is treated
separately. In most cases you’ll
probably want this checked.

Going back to the top, the
“Number of dashes” parameter
defines the number of dashes that
will be rendered along the length
of the whole path, or along each
individual segment. But the actual
count will also depend on the
“Equalize dashes” option, as we’ll
see shortly. This parameter is at the
heart of the fundamental
difference with the LPE dashes,
though: SVG dashes don’t have a
count or limit, they’ll simply keep
rendering as long as there is any
path left to fill; the LPE dashes, on

the other hand, aim to fit a specific
number of dashes into each path or
segment, subdividing the available
length according to this parameter
and then distributing the dashes
and spaces evenly within.

The relative lengths of the
dashes and spaces can be adjusted
using the “Hole factor”. Leave it at
zero to have them the same size,
increase it (up to +0.99999) to
increase the size of the dashes and
reduce the spaces, or decrease it
(down to -0.99999) to adjust the
balance in the opposite direction.
Reducing it to its lowest value
results in each dash appearing as
nothing more than a pair of line
caps, as set in the Fill & Stroke
dialog: a circle (for round caps) or a
square (for square caps). Watch out
if you use the “Butt cap” style,
however, as that effectively causes
the dashes to disappear completely
at the lowest hole factor. Note,
however, that using a single ratio
like this means that the LPE can’t
produce the sort of dash and dot
combinations that the stroke-
dasharray allows for in normal SVG
strokes.

The “Half start/end” parameter
determines whether to only draw
half a dash as the start and end

shapes (checked), or to draw a full
dash at the start and end if possible
(unchecked). Usually this is best left
checked in order to gain the
aesthetic benefits of symmetry and
even spacing. Each half dash still
contributes to the “Number of
dashes” count, so a count of 5 with
this parameter enabled actually
means 3 whole dashes and two half
dashes, rather than the 4 whole
dashes (plus two halves) that you
might expect if you were adding
the parts up numerically.

Finally, the “Equalize dashes”
parameter has the potential to
upend the “Number of dashes”
count entirely. When this is
checked, the algorithm first creates
the desired number of dashes for
the shortest segment in the path.
The length of each dash in that
segment is then used when
rendering all the other segments,

fitting more than the actual count
in if there is space. A demonstration
might make this a little clearer.

In the image below, the two
paths are the same, but the top one
has “Equalize dashes” unchecked,
whereas the lower one has it
checked. I’ve positioned some
vertical guides to make it clearer
where the nodes of the path are –
i.e. where each segment starts and
ends. The top path honours the
“Number of dashes” count
completely: each segment has 5
dashes (3 whole, 2 half). But this
leads to different spacing between
the dashes across the segments,
and even differently sized dashes in
the middle two segments where
they’ve had to be squeezed into a
smaller space.

The lower path, on the other
hand, clearly shows that all the

full circle magazine #177 31 contents ^

HOWTO - INKSCAPE
dashes and spaces are even across
all the segments. But it does this at
the expense of the “Number of
dashes” value. That parameter is
used when calculating the smallest
segment (the third one), but then
the resultant dash and space size is
simply used for all the other
segments, regardless of the count.
As you can see, the end result looks
better, and is probably what you
are likely to want, but the first and
last segments have way more than
5 dashes each.

There’s one additional part of
the UI in the screenshot from the
LPE dialog: not another parameter,
but a note in a box, which says ‘Add
“Fill Between Many LPE” to add fill’.
What on earth does that mean, and
why is it necessary?

FILL BETWEEN MANY

Remember that the output from
an LPE is just an SVG path, so all the
clever things that LPEs can do must
ultimately be rendered using
normal SVG capabilities. As we’ve
already seen, raw SVG can’t
produce the sort of dashes that
we’re getting from the Dashed
Stroke LPE, so what actually are we
seeing in our rendered output?

The result is actually a new
complex path, made up of lots of
individual subpaths, one for each
visible dash. Trying to add a fill to
this will actually just fill the
subpaths, not the whole shape.
Because most of the subpaths only
have two nodes, even that fill isn’t
generally visible. The exception is
the corners, where three nodes are
used in a triangular configuration.
Sure enough, adding a fill to a
Dashed Stroke path does result in a
web of colour in the corners, but
not the filled shape we’re looking
for. As an example here’s our star
from earlier, but with the stroke
width reduced for clarity and an
orange fill applied.

This has long been an issue for
many LPEs, not just the Dashed
Stroke, so the Inkscape developers
addressed it head-on a long time

ago, by adding the “Fill Between
Many” LPE back in version 0.92. I
covered this LPE in some detail
back in part 67 (FCM issue #127),
though the UI has expanded a little
since then. In older versions you
only had the ability to add paths to
the LPE, flagging some of them as
needing to be reversed. The new UI,
when used with the same “Frankie”
image I used in part 67, looks like
this.

The basic functionality remains
the same: you have to create a
sacrificial path on which to apply
this LPE, then add each of your
source paths by copying each one
to the clipboard and adding it to
the list in the LPE, as described in
the earlier article. It can be a time-
consuming and difficult process
when dealing with lots of paths,
though it’s not too bad for adding a
fill to a shape with the Dashed
Stroke LPE as there’s only one path

to add in that case. These are the
steps needed to add a fill to our
rectangle, for example:
• Draw a sacrificial path (usually
just a simple two-node line)
• Add the Fill Between Many LPE to
the sacrificial path
• Select the path which has the
Dashed Stroke LPE applied (the
rectangle) and copy it to the
clipboard
• Re-select the sacrificial path in
order to bring up the UI for the Fill
Between Many LPE
• Click the “Link to path in
clipboard” button to add the
Dashed Stroke path to the list
• Adjust the fill and stroke values to
suit your needs

With luck you’ll now find that
your rectangle has a fill, but things
don’t always go so smoothly. In my
own experiments, trying those
steps with a star rather than a
rectangle results in either no fill, or
an oversized fill object that is
wrongly positioned and can’t be
moved. There are definitely some
bugs in this LPE that have yet to be
ironed out.

Compared with v0.92, the newer
version of this LPE also provides
some additional parameters to
tweak. There is a “Visible” checkbox

full circle magazine #177 32 contents ^

Mark uses Inkscape to create comics
for the web (www.peppertop.com/)
as well as for print. You can follow
him on Twitter for more comic and
Inkscape content:
@PeppertopComics

HOWTO - INKSCAPE
for each path, allowing you to
temporarily remove it from the
filled shape, perhaps to test
whether or not it is contributing
anything useful prior to completely
removing it from the list. The “Join
subpaths” checkbox lets you fill
each subpath individually
(unchecked), or use the older
behaviour of joining the subpaths
to create a single shape to fill
(checked). The latter is almost
always going to be what you want.
Another checkbox (“Close”) now
lets you leave the new path
unclosed between the first and last
paths in the list – probably more
useful if you are using this LPE to
add an extra stroke rather than a
fill and, again, usually something
you would want to leave checked.
Finally the “Autoreverse” option
overrides the individual “Reverse”
checkboxes for each path: with this
checked the algorithm will try to
join paths based on the proximity
of their endpoints, rather than
strictly following the direction of
each path. Usually this does a good
job, and is best left checked, but
you do have the option to turn this
off and manage path reversal on a
per-entry basis as before, should
you wish to.

The pop-up menu is also a new

addition, choosing how the source
paths should be interpreted.
Usually leaving this as “With Spiro
or BSpline” is a good option: this
will essentially use the shape you
originally drew, whether it was
created using simple SVG paths, or
you used the Spiro or BSpline
options that Inkscape exposes in
some drawing tools. In practice
these are implemented as LPEs, so
this option tells Inkscape to use the
output from those LPEs as the
source, if they exist, or to use the
plain path data otherwise.
Alternatively you can select
“Without LPEs” to only use the
original path data, regardless of any
LPEs applied. Conversely the “With
all LPEs” option will use the path
data that comes out of whatever
series of LPEs has been applied to
the shape. Be aware that this can
quickly lead to very complex shapes
if you’re not careful, so isn’t often
the choice you want.

Looking back at the number of
steps needed to add a fill to a path
with the Dashed Stroke LPE
applied, you may feel it’s not worth
the extra effort and confusion,
preferring to stick to SVG dashes or
to draw the fill as a separate object.
The “Fill Between Many” LPE can
certainly be a tricky feature to get

your head around, and in other use
cases where you need to add
multiple paths to the dialog it can
be a time consuming pain. Luckily
the Inkscape developers have
realised that this complexity gets in
the way of an otherwise useful
feature, so with version 1.1 they’ve
added a new menu entry, Path > Fill
between paths, which will silently
create a sacrificial path and add the
“Fill Between Many” LPE to it,
already populated with any paths
from your drawing that were
selected at the time. This makes it
trivial to use this LPE in most cases:
just select the path or paths that
need to be filled and select the
menu option. You can then select
the newly added fill in order to
access the LPE parameters if you
need to (e.g. to reverse specific
paths).

Note that the sacrificial path
added by Inkscape is of zero length:
its “inkscape:original-d” attribute
just consists of an “M 0,0”
command, which doesn’t actually
draw anything. As such, be careful
not to either hide the LPEs visibility,
or that of all its listed paths,
otherwise you won’t be able to
select it on the canvas. In that case
you’ll have to find it in the XML
editor (look for a path with that “M

0,0” value) in order to select it for
further editing or deletion.

This new menu entry is a great
addition for working with LPEs, as it
helps to get around one of the
most fundamental problems most
users will come across as they begin
to use them. For this reason alone it
may be worth upgrading to version
1.1.x if you haven’t already done so.
It’s a shame, however, that the “Fill
Between Many” LPE, even when
added using this menu entry, can
still be rather buggy, even for
simple examples. Hopefully future
releases will make it more robust,
which will help to make LPEs in
general a far more useful tool than
they already are.

http://www.peppertop.com

full circle magazine #178 27 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarrtt 111188

This month, I’ll be continuing to
look at the new Live Path

Effects (LPEs) that were added in
Inkscape 1.0.x and 1.1.x.

ELLIPSE FROM POINTS

If you’re a frequent user of LPEs,
you may already be familiar with
the “Ellipse by 5 points” effect
(covered in part 69 of this series).
As the name suggests, this draws
an ellipse that passes through the
first five nodes of a path. This new
LPE does the same thing, and much,
much more. In fact, the name really
doesn’t do justice to the

capabilities it offers, as it not only
allows for the creation of ellipses,
but also circles, arcs, and segments.
Whereas the old LPE provides no
parameters to control its output,
this new one comes with quite a
few, not all of which are enabled at
the same time.

Despite all these extra controls,
however, the basic functionality is
still pretty intuitive, and benefits
hugely from applying any changes
to the parameters or path shape
interactively, making it fun to play
around with all the different
options. Your starting point will
always be a path to which the LPE is
applied, although this effect cares
about only the positions of the
nodes, not the shape of the path
segments. For demonstration
purposes, however, all my examples
will use straight line segments, and
I’ll show the original path as a red
line with diamonds marking the
nodes (courtesy of the “Clone
original” and “Show handles” LPEs).
The black lines are the output from
the LPE. Let’s start with the
simplest case: a two-node line using
the “Auto ellipse” method.

In this case, the effect draws a
circle using the two nodes in the
path as points at either end of the
circle’s diameter. Drag one of the
nodes around, and the circle will
scale and rotate accordingly. Let’s
see what happens if our source
path has three nodes, rather than
two.

Again we have a circle, but this
time it circumscribes the triangle
created by the three nodes. Once
more, dragging the nodes around
the page will give you a good idea
of how the size and position of the

circle relates to the node positions.

With three nodes, some of the
LPE parameters start to become
useful to us. When enabled, the
“Arc” checkbox draws an arc
connecting the three nodes, rather
than closing the whole circle.
Enabling the “Other arc side”
checkbox instead draws the “other”
arc which forms the remainder of
the original circle. “Slice arc” can be
used with either type of arc to
render it as a segment (i.e. a pie-
chart “slice”) rather than an arc, by
adding straight path segments that
join the end nodes to the center of
the circle.

With three nodes, more of the
options in the “Method” pop-up
menu will also work. The first two
(“Auto ellipse” and “Force circle”)
just produce the result we’ve
already seen. “Isometric circle”
treats the path as having straight
line segments, even if it hasn’t, and
uses the first two segments to
define the edges of an isometric
rectangle into which it fits an
ellipse that appears as if a circle is
rendered in that isometric

full circle magazine #178 28 contents ^

HOWTO - INKSCAPE
projection. That sounds complex,
but if you do much work with
isometric or oblique projections,
you’ll know exactly what this is for:
in short, draw your path with
suitable angles (e.g. 120° for
isometric, 135° for oblique), and it
will render “circles” that are
appropriately distorted for the
projection.

The last two options in the pop-
up are thankfully easier to describe:
“Steiner ellipse” draws an ellipse
that circumscribes the triangle
created by the three nodes, while
“Steiner inellipse” draws one that
inscribes it. The image below shows
the “Isometric circle” output,
followed by the two ellipses, for
the same path that I used earlier.

Adding a fourth node to our
path is required for the remaining
entry in the pop-up: “Perspective
circle”. This treats your four nodes
as defining a square in a

perspective view, and renders a
“circle” that fits within that square.
This is perhaps most clearly
demonstrated using a closed path
arranged to give a classic
perspective view.

With the red lines removed, we
can now also see what the
remaining checkboxes do. The
“Frame (isometric rectangle)”
option will draw a bounding box
around your circle or ellipse. By
default this will be a rectangle,
defined by the size of the major and
minor axes of the ellipse, but you
can use the “Axes rotation” spinbox
to rotate the box around the
ellipse, resulting in it becoming a

parallelogram if the ellipse’s axes
aren’t perfectly aligned with the
global x and y axes. The “Axes”
checkbox simply adds two lines,
joining the mid-points of opposite
sides of that bounding box in order
to divide it into four equal areas.

When the “Perspective circle”
method is used, however, two
alternative options become
available. The “Perspective square”
checkbox draws lines marking the
“square” in perspective space that
the “circle” is inscribing: essentially
this draws a shape connecting all of
the four nodes, even if the original
path wasn’t a closed shape. The
“Perspective axes” renders a pair of
axes as they would appear in
perspective, leading to a rather

different outcome compared with
the plain “Axes” option, especially if
you rotate them using the spinbox.

The image below compares the
two types of bounding box and
axes when used on the same
perspective circle. The left shows
the result of the “Frame” and
“Axes” checkboxes, while the
images on the right show the
corresponding “Perspective”
versions. In both cases, the top
image shows a rotation of 0°
whereas the bottom image shows
the result of increasing that value
to 15°.

To complete our tour of the
checkboxes, the “Source path”
option does what you might

full circle magazine #178 29 contents ^

HOWTO - INKSCAPE
expect: it renders a copy of the
original source path as part of the
output. Due to the nature of LPEs,
the source path is drawn in the
same style as the ellipse (and axes
and bounding box, if used), so if you
want it to appear differently – as I
did in my examples – you’ll need to
use a “Clone original” or “Fill
between many” LPE on a sacrificial
path in order to render it as a
different object for styling
purposes. For general use, however,
enabling this option can make it a
lot easier to see what’s going on
with your ellipse as you
interactively tweak it, even if you
then turn it off again once things
are positioned correctly.

Lastly, if we add a fifth node to
our path (with Method set to “Auto
ellipse”) we end up with the same
result as the old LPE: an ellipse that
circumscribes the five nodes. If you
want full control over your ellipse,
this is probably a better option
than either of the Steiner methods.

There’s one final thing to
mention regarding this LPE: the
developers should be commended
for putting the effort in to produce
really useful tooltips. For example,
if you can’t remember how many
nodes your path needs for each
different method, just hover your
mouse over the pop-up for a useful
reminder.

OFFSET

The Offset LPE is pretty
straightforward, and does what its
name suggests. You may be familiar
with the Path > Dynamic Offset
feature which puts a handle on your
path that you can drag to adjust the
amount of offset, letting you create

a shape that insets or outsets the
original path. In doing so, it
modifies the original, unlike the
Path > Linked Offset feature that
creates a second path which

maintains a live linkage to the
original. The LPE falls somewhere
between these two: there is a live
link to the original path shape, but
that path is not included in the final
output, so, despite this link, the
result still leaves you with only one
path rather than two. In practice,
therefore, this LPE is closer to the
Dynamic Offset feature, only with
more options.

Let’s look at an example. Here
I’ve created a crescent shape by
performing a Boolean difference
operation between two circles. I’ve
also adjusted the nodes of the
bottom point very slightly in order
to demonstrate some aspects of
the LPE later on. In both these
cases I’ve made a copy of the
original shape in blue, but applied
an offset to generate the red
version. The left-hand image shows
the result of the Path > Dynamic
Offset feature, while the right-hand

version shows the LPE equivalent.
As you can see, they look identical.

If that was all there was to this
LPE, it might still be useful as part
of an effect chain, but not so much
as an effect in its own right. But
once we consider the various
settings that it offers, it quickly
becomes clear that the LPE offset is
a far more powerful beast than
what went before it. Let’s look at
the available parameters.

Dealing with these out of order,
the “Unit” pop-up should be pretty
self-explanatory, setting the type

full circle magazine #178 30 contents ^

Mark uses Inkscape to create comics
for the web (www.peppertop.com/)
as well as for print. You can follow
him on Twitter for more comic and
Inkscape content:
@PeppertopComics

HOWTO - INKSCAPE
of units used for the “Offset”
parameter which, in turn, is used to
set the amount of offset that is
applied to the path. It can be a
positive value for an outset, or a
negative value for an inset – but, in
practice, it’s usually more effective
to switch to the Node tool (F2) and
drag the small, red, circular handle
on the canvas, to adjust the offset
by eye. The “Force update”
checkbox determines whether or
not the path updates live as you
drag the handle, or updates only
when you release the mouse
button. Usually you should leave

this enabled, unless you have a slow
machine or a complex path which
makes the updates jerk and stutter.

The “Join” pop-up has the most
effect on the shape of the path. In
the previous image it was
deliberately set to “Rounded” to
reproduce the effect of the
Dynamic Offset feature, but here’s
a demonstration of how each entry
appears with this particular shape.

It’s worth noting that the result
you’ll see is extremely dependent
on the shape of your source path. In

particular, look at the difference
between the two pointed corners in
the extrapolated joins, after making
only minor tweaks to the nodes of
the bottom point. As this shows,
tight corners are a particular issue
and increasing the “Mitre limit”
value will allow some corners to
appear that would otherwise be cut
off. In the previous examples,
increasing this value to 10, for
example, allows most of the shapes
to extend to give far more pointed
ends. The main exceptions to this
rule are the Beveled and Rounded
types, which don’t take the mitre
limit into account. The best option
is usually to try each join type, and
adjust the mitre limit and/or the
individual nodes to get the result
you want.

The Extrapolated Arc join types
are particularly interesting. These
try to follow the curves of your
path to form a more natural join,
rather than just projecting straight
lines as a mitre does. When working
with curved paths, these are well
worth trying. If, however, you really
want to project the pointiest of
mitred corners regardless of the
mitre limit, choose any join type
other than Beveled or Rounded,
and check the “Force mitre” option.

Finally, it’s worth noting that
this LPE also works with open
paths, whereas the Dynamic Offset
feature automatically closes them
when you try to use it.

These two LPEs both offer
features that are head-and-
shoulders above the options that
Inkscape provided previously, and
the developers should be
applauded for continuing to push
the boundaries of what path
effects are capable of.

http://www.peppertop.com

full circle magazine #179 26 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarrtt 111199

They did it again! Literally the
day after the deadline for last

month’s article, the Inkscape
developers released a new version.
It’s only a maintenance and bugfix
release (version 1.1.2) with no new
features, so I won’t be covering it in
any more detail, but if you’ve
already upgraded to the 1.1 series,
it’s probably worth installing this
latest version for improved
stability. Alongside this release was
an alpha version of Inkscape 1.2. If
you have the time and inclination, I
do recommend giving this release a
try and reporting any issues you
find, particularly in the new
features. The more that users
report problems with the alpha and
beta releases, the more stable the
final release is likely to be.
Information about both these
releases can be found on the
official Inkscape news page: https://
inkscape.org/news/

This month, I’ll be looking at just
one Live Path Effect (LPE) that was
added in version 1.0: Measure
Segments. This LPE operates so
differently to most that I won’t
have enough space to cover

everything in one article. This time,
I’ll look at the practical
functionality of the effect, and next
month, I’ll dig into some of the
more technical details of how it
works.

MEASURE SEGMENTS

At first glance, the Measure
Segments LPE seems fairly

straightforward – albeit with a lot
of parameters to consider. It
measures the straight line distance
between the nodes of your path,
and annotates your image with
those dimensions. This is definitely
a case where a picture is worth a
thousand words: in this image my
original path is the red line, and the
rest of the content has been
generated by the LPE.

full circle magazine #179 27 contents ^

HOWTO - INKSCAPE
The most interesting thing

about this image is that I was able
to color my original path in red
without the need to use the Clone
Original LPE, or any equivalent
technique or workaround. The
styling of the original path is
distinct from the styling of the
dimensions. Long-term readers of
this column will know that this flies
in the face of everything we know
about LPEs. Historically, the output
from an LPE has been a single path
– albeit often a very complex one –
meaning that all the different parts
of an effect would have to adopt
the same styling. Clearly there’s
something very different going on
in this case, but I’ll get back to that
next month.

For now, let’s just take the
effect at face value, and have a look
at some of the parameters we can
tweak in order to adjust its output.
For this LPE, there are so many that
they have been split across three
tabs – plus a fourth “Help” tab that
doesn’t really provide any more
information than can be gleaned
from the tooltips.

Starting with the General tab,
the Unit pop-up is pretty self-
explanatory. It’s restricted to the
units that Inkscape uses

throughout the software, so if
you’re trying to create a scale
drawing in miles or microns you
might think you’re out of luck. In
practice the format of the numeric
labels is defined over on the
Options tab, so you can get around
this limitation by replacing the
“{unit}” placeholder with a fixed
string of your own. For example you
could set the Label Format field to
“{measure} miles” or “{measure}
µm” to mark the dimensions in units
that Inkscape doesn’t support.

Back on the General tab, there is
another field that should go hand-
in-hand with the Unit pop-up, but
which has been counter-intuitively
put towards the bottom of the
dialog: the Scale field. This acts as a
multiplier for all the numeric
values, so if your original drawing is
half-size, you should set this to 2;
conversely if your drawing is
double-size, set it to 0.5, and so on.
You can even enter a negative value
here, though I’m not sure why you
would want to.

Most of the remaining fields on
this tab simply adjust the specific
appearance of the dimension lines
and labels. You can use the Font
pop-up to change the font and size;
the Position field to adjust how far

away the dimension line is from the
path being measured; the Flip Side
checkbox to select which side of
the path the dimension is drawn;
the Label Position field to change
the position of the numeric value
relative to the dimension line,
allowing it to sit on top of or below
the line (in which case you might
also want to uncheck the “Hide line
under label” option). To be honest,
the best approach is just to play
around with these fields in order to
see what they do – using the
tooltips if you need a hint – but in
my experience the default values
tend to give pretty good results.

The one widget that I don’t
understand is the Merge Overlaps
field. No matter how I draw my
paths, whether with long or short
segments, or with tight or wide
angles, I can’t get this field to have
an effect. If anyone can provide
some insight into what this field
does, please let me know.

I’m going to skip the Projection
tab for now, and go straight to
Options. This is a mish-mash of
fields, some of which would seem
to relate closely to those in the
General tab, but which have been
hidden away here instead. The
Color and Opacity picker, for

example, seems to me to be a
sensible companion to the font
picker. This widget sets a single
color that is used not only for the
dimension lines, but also the leader
lines (“Help lines” as they are
named in this extension), and the
dimension text.

In the same vein, the Precision
and Label Format fields surely
deserve to live alongside the Unit
and Scale widgets. Note that the
Precision field just sets the number
of decimal places in the text labels.
There’s no way to use significant
figures rather than decimal places,
and there’s no facility for
engineering or scientific notation.

Similarly misplaced is the
“Multiply values < 1” checkbox,
which is used to better display very
small values by multiplying them by
100 and omitting the auto-inserted
units from the text (but it won’t
omit the units if you’ve used a fixed
string in the Label Format field, as I
described earlier). This should
arguably also live with the Scale
and Units fields. The Hide Arrows
checkbox is just as deserving of a
place on the General tab as most of
the checkboxes at the bottom of
that pane.

full circle magazine #179 28 contents ^

HOWTO - INKSCAPE
None of this arbitrary placement

of widgets is a deal-breaker, but it’s
useful to be aware that the Options
tab provides these features.
Perhaps a later release will tidy up
this effect’s UI, and better group
the controls into more logical
sections.

Also on the Options tab are
what I consider to be the “sneaky”
controls: three fields that radically
increase the capabilities of this
effect, albeit at the expense of a
little extra effort on the part of the
user. The most important of these
is the Blacklist Segments field,
which takes a comma-separated list
of numbers, and uses those values
to suppress the output of the LPE
for specific path segments. Here’s
how the earlier image looks when
the string “1,2,4” is entered into
this field and the tick button is
clicked.

You can see that there are no
longer any dimension lines
rendered for three of the path
segments. The three segments are
not, however, the first, second and
fourth ones in this path. Rather
they are the second, third and
fourth: the values start at zero for
the first path segment in a classic
example of a programmer exposing
the internal indexes that the
software uses, rather than
adjusting them to be more user-
friendly to the layman.

As you might imagine, working
out which segment index you need
to use to target a specific part of
the path can quickly get tricky with
complex shapes, but this LPE does
offer a feature to help. Enabling the
“Show segment index” checkbox
will prefix each dimension with the
segment’s index, in square
brackets. Be aware that it
unfortunately doesn’t show the
index for any segments that are
already listed in the Blacklist field,
so you may want to enable this
option first, while that list is still
empty. With no blacklisted
segments, and this checkbox
enabled, you can see that indexes 1,
2 and 4 do indeed correspond to
the omitted dimensions on the

previous image.

One thing to be very conscious
of is that the segment indexes are
based on the direction in which the
path is drawn. If you use the Path >
Reverse menu entry, you’ll find that
the indexes run in the opposite
direction, probably requiring you to
adjust the blacklist. Similarly, if you
add or remove any nodes then the
indexes of some of the segments
will also change.

Due to the political sensitivity
around certain terms used in
computing, there’s a good
possibility that the “Blacklist
segments” field might be renamed
in future. Often “blocklist” is used
instead, but I think in this case

calling it “Skip segments” or
something similar would give a
better idea of its functionality. I’m
mentioning this because of the last
of the sneaky controls: Invert
Blacklist. Checking this turns the
blacklist into a whitelist – or, more
descriptively, turns the “skip
segments” list into a “draw these
segments” list. This may save you
having to enter a long list of
segment indexes when you only
want the LPE to render a small
number of segments from a
complex path. With this applied,
you can see that my list of “1,2,4”
actually results in only those
segments being drawn, rather than
those segments being omitted.

full circle magazine #179 29 contents ^

HOWTO - INKSCAPE

So why do I consider these three
fields (Blacklist segments, Invert
blacklist, Show segment index) to
be “sneaky”? It’s because they allow
you to apply this same LPE to a
path multiple times, each using
different parameters, using the
blacklist fields to ensure that each
copy of the effect targets a
different subset of the path
segments. Perhaps you need to
color-code different
measurements, alter the label
format for one segment, or simply
move the position of some
dimensions so that they don’t clash
with other parts of the image.
Using these fields will let you
achieve all that and more.

Here, for example, I’ve used two
copies of the LPE. The first colors
three of the dimensions in purple.
The second uses the same blacklist,
but with the Invert box checked, in
order to target the remaining
dimensions. These are then drawn
in blue, with a thicker line width,
arrows on the outside of the
extension lines, and a tolerance
value added by manually altering
the Label Format field.

Now let’s return to the
Projection tab that we skipped
earlier. I’ll admit that this one has
me a little stumped. When the
“Activate projection” checkbox at
the top is enabled, every node in
your path is projected in an invisible
straight line along the specified
“Angle of projection”, with the final
dimension lines showing the
distances between those projected
lines. As you can see from this
screenshot, however, the default
behaviour may not be terribly
useful, depending on the shape
you’re trying to measure, and the
angle of projection you use.

There is a section in this tab to
which you can add other objects, by
copying them to the clipboard and
using the Link to Item button, as
happens in other LPEs. According to

the tooltip, the nodes of those
objects should then be projected
onto your path in order to produce
datum points for additional
measurements. In practice, I haven’t
been able to get this feature to
work at all, regardless of what I
tried. If anyone has some insight
into how to use this facility, please
do get in touch.

The Blacklist Segments field can
be used with projection mode, but
the numbers in there are no longer
the indexes of the path segments.
Instead this allows you to turn off

individual projected measurements.
Once again the “Show segment
index” checkbox can be used to
identify the correct numbers to use.
Also once again, this allows you to
combine multiple copies of this
LPE, with different projection
angles, or mixing both projected
and non-projected dimensions to
produce the result that best suits
your needs.

While the Projection tab might
initially look useful, in cases where
you only want to project
dimensions along the horizontal or

full circle magazine #179 30 contents ^

Mark uses Inkscape to create comics
for the web (www.peppertop.com/)
as well as for print. You can follow
him on Twitter for more comic and
Inkscape content:
@PeppertopComics

HOWTO - INKSCAPE
vertical directions you may well find
that the Orientation pop-up on the
General tab lets you achieve a
better result – though you’re likely
to need to use multiple instances of
the LPE, each targeting specific
segments, in order to get things
exactly as you want them. Here’s
another copy of our dimensioned
path, this time using the
Orientation pop-up to produce the
green dimensions at the top left. In
this case I had to add two more
instances of the LPE, one for each
orientation, with both targeting the
same single segment.

This really is a very powerful
LPE, with a lot of flexibility built
into it. It’s a shame that there’s not
also a corresponding LPE for

measuring angles, but perhaps that
will come in future. Although this
may give the impression of adding
more CAD features into Inkscape, I
see it more as a means of
annotating simple sketches, rather
than producing production ready
designs. I’ve always maintained that
Inkscape is a primarily artistic
program, and if you want real CAD
capabilities then you’re better off
learning to use FreeCAD or some
other dedicated application.

In this article, we’ve seen what
this LPE is capable of – including
different fonts and multiple colours
that aren’t the same as the source
path. The way it achieves this is
radically different to the way most
LPEs work, and I’ll be looking at the
details of that – together with the
problems it brings – next time.

http://www.peppertop.com

full circle magazine #180 38 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarrtt 111199

This month doesn’t just mark 15
years of Full Circle Magazine – I

also celebrate a full decade of
writing these Inkscape columns!
Many thanks to everyone who has
read any of them over the years,
and I hope you’ve found them
useful. One thing I’ve always tried
to do is to explain the underlying
reasons for some of the oddities
and limitations in the way Inkscape
operates, and this month is no
different. Having described the
operation of the Measure
Segments LPE last time, in this
instalment I’m going to look behind
the curtain at how this effect
differs quite radically from those
that came before it. Please note,
however, that this is just for
information and education – you
don’t actually need anything in this
instalment to simply use the LPE in
the way it was intended.

First, a quick reminder of how
Live Path Effects worked
historically. An LPE was applied to a
single path, and produced a single
path as its output. The output path
would replace the source path in
the image. Here’s a very simple

example: the Roughen LPE, when
applied to the two-node path on
the left, produces the multi-node
path on the right.

Looking at this in the XML
editor, we can see that there’s still
only a single path object, but as
well as a multi-node “d” attribute, it
also contains an “original-d”
attribute (in the “inkscape”
namespace”) which has only the
two nodes of the original path.

This is a pretty clever way to
implement LPEs. Inkscape
understands the extra attributes in

its own namespace, so is able to
treat the effect as a live, editable
feature, while other SVG renderers,
such as web browsers, will still
show the result of the LPE since it’s
just a normal “d” attribute like you
would find on any SVG path object.

This approach does, however,
come with one big limitation.
Because the output is just a single
path, it can be given only one style.
Even if that path appears to be
multiple separate shapes, it’s
actually just a single SVG path
element, with gaps in the shape
described by the “d” attribute (i.e.
with sub-paths). If we look at the
same two-node path with the
“Ruler” path effect applied instead,
you can see that the result gives
the appearance of numerous small
paths. While it would be nice to be
able to style the ruler’s tick marks
separately from the main spine of

the shape, that simply isn’t possible
because, despite appearances, the
output is still just a single path,
with a single style.

With the release of version 1.0,
Inkscape has added the ability for
path effects such as “Measure
Segments” to break this historical
limitation. No longer is an LPE
limited to one path in, one path
out. Let’s apply “Measure
Segments” to the same two-node
path:

Immediately we can see that
there are multiple styles being
applied here. Our original path
maintains the thicker style we used
when drawing it, but the lines
added by the LPE are significantly
thinner. How is this possible? Quite
simply, the lines added by the LPE
are no longer just sub-paths in a “d”

full circle magazine #180 39 contents ^

HOWTO - INKSCAPE
attribute, but are additional SVG
<path> and <text> elements in
their own right. A quick look at the
XML editor shows the difference.
You might like to refer back to the
earlier screenshot of this dialog,
where the top section shows we
just have a single layer with a single
path in it. Now take a look at the
document structure after applying
this LPE:

In addition to our original path,
we now have three extra <path>
elements (two leader lines and one
measurement line), plus a <text>
element to hold the measured
value. Because these are separate
SVG elements, you can obviously
select them individually in order to
style each of them differently…
can’t you? The answer to that
question isn’t the straightforward

yes or no you might expect, so let’s
delve a little deeper still.

Intuitively, you might try to click
on one of the new elements on the
canvas in order to select it, but
you’ll find that your clicks are in
vain. Dragging a rubber band
selection box doesn’t work either.
The only thing you can select is the
original path. Having selected that
path, you can change its style as
normal. As you’ve surmised by now,
however, doing so will modify only
the original path itself, not any of
the elements added by the LPE. For
example, note the difference in
behaviour between the Ruler LPE
and the Measure Segments LPE
when I set a red stroke color on the
original path.

As you’ll know from last month’s
instalment, the color, font, line
thickness, and other aspects of the
Measure Segments LPE are set as
part of the effect’s parameters,
split between the “General” and
“Options” tabs. Should we wish to
make the dimensions match the
color of the original path, for
example, we’ll need to manually set
it via the “Color and opacity”
control in the “Options” tab.
There’s no means of linking or
inheriting styles, though, so if you
subsequently change the stroke
color of the original path, you’ll
have to also remember to manually
alter the LPE parameters to suit.

If we can’t select the new
elements using the mouse on the
canvas, is there another approach
we could use? Selecting individual
elements within the XML editor
does still work, and selects the
corresponding item on the canvas
when you do so. Even with that
selection made, mouse interactions
are restricted: you can drag the
resize handles, but still can’t drag
the object itself to move it (though
using the cursor keys will work); you
also can’t click on the object in
order to switch to the rotate/skew
handles or other modes now

available with the selection box.
You can change the style though, as
demonstrated by this image of a
multi-colored dimension line,
complete with gradients and a
different font.

There’s just one problem with
this approach, and it’s something of
a deal-breaker. The “L” in LPE stands
for “Live” because the output from
an LPE is calculated dynamically
whenever the original path
changes, or the parameters are
adjusted. This means that any
manipulation of the original path –
even just nudging the position of
one of the nodes – or any changes
to the LPE parameters, will cause
the output to be recalculated and
all your manual changes to be
discarded. You might think that this
is okay, so long as you do your
changes last, and then don’t touch
the object again, but the LPE
output is also calculated when your
file is loaded from disk: save the
file, and reopen it later, and your
manual changes are gone. There’s

full circle magazine #180 40 contents ^

HOWTO - INKSCAPE
simply no way to manually edit the
parts of the LPE such that Inkscape
won’t throw your changes away at
some point.

The reason that these new
elements are not selectable on the
canvas is that they’re all created in
a “locked” state. The ability to lock
objects has been in Inkscape for a
long time, but has generally been a
poor substitute for keeping objects
arranged in suitable layers and
locking the whole layer instead.
This is because a locked object is
difficult to unlock again – after all,
you can’t select it with the mouse
to indicate which object you want
to unlock. This situation improved
with the release of Inkscape 1.0,
which added an “Unlock Objects
Below” entry to the context menu
(see part 101 of this series for more
details). Perhaps we could use that
to allow easier editing of the
individual components of our
dimension line?

Sure enough, right-clicking on
the dimension, and selecting the
Unlock option from the context
menu, does make the individual
elements selectable with the
mouse. Now they can be
individually styled, and can even be
clicked on to switch to the rotate/

skew handles and other selection
box modes. Internally, what has
happened is that the
“sodipodi:insensitive” attribute has
been removed from each element’s
SVG node, which allows Inkscape to
treat these elements like any
normal selectable, movable, and
editable objects… right until you
edit the original path, alter the LPE
parameters, or save and load the
file. Unfortunately, just unlocking
these objects isn’t enough to break
their connection to the Live effect.

So what’s the solution? Is there a
way that we can style the individual
parts of the dimension lines beyond
the limited options provided in the
LPE parameters? Well, there is…
but only in a way that removes their
link to the original path. For
example, do you want to style the
leader lines as dashes, or with a
different thickness to the arrowed
dimension line? It’s possible, but
only by also losing the live update
of the text value when you move or
modify the path.

The way to achieve this is to use
the Path > Object to Path menu
entry. Historically, this has been the
mechanism used to “fix” the output
of an LPE, collapsing all the “live”
parts of the effect chain to produce

just a plain and simple SVG path
that has the same appearance as
the final LPE output. With the
Measure Segments LPE, you can
still use this same menu entry to
“fix” the LPEs output, except this
time the command’s name becomes
something of a misnomer: you are
no longer converting the object
into a <path> element, but rather
breaking the link between the
original path and the various
generated <path> and <text>
elements. In other words, choosing
this option doesn’t actually convert
your object into a path, but it does
convert it into separate editable
objects. Naturally, this means that
the elements are no longer “live”,
so you do lose all the auto-updating
that is so useful in an effect like
this.

For most people, all this talk of
styling parts of the Measure
Segments LPE will be somewhat
academic. In the vast majority of
cases, the normal output from the
effect will be sufficient, and the
parameters it provides will give

enough flexibility to style the new
elements well enough. If more
complex adjustments are needed,
then using Object to Path will
usually suffice, even if it does mean
sacrificing live updates of the
dimensions. It would be great if
Inkscape offered a means to
indicate that an element has been
manually styled, but that you still
want the position and text content
to update, but perhaps that’s too
niche a requirement to warrant the
development time.

Even if you don’t want to style
the dimension parts, however,
there’s one significant aspect of
this LPE’s approach that you should
be aware of, because the behaviour
is quite surprising, and could easily
catch you unawares. The behaviour
of Measure Segments with regard
to layers is, in my opinion, broken.

Let’s take another look at the
new elements in the XML editor.
This is the same content as the
earlier screenshot, but I’ve cropped
it to just show the relevant detail.

full circle magazine #180 41 contents ^

Mark uses Inkscape to create comics
for the web (www.peppertop.com/)
as well as for print. You can follow
him on Twitter for more comic and
Inkscape content:
@PeppertopComics

HOWTO - INKSCAPE

Notice that “path144” is
indented compared with the rest of
the elements? That’s the original
path to which we’ve applied the
LPE, and it’s indented because it is
a child of the Inkscape layer (the
<g> element above it). The newly
created <path> and <text>
elements, however, are not
indented because they are siblings
of the layer. This means that they
live alongside the layer, not inside
it, in the XML structure. Now let’s
see what happens when we hide
the layer.

The original line is hidden, but
the dimension elements are not.
They all live at the top level of the
SVG, not within the same layer as
the path they’re associated with, so
aren’t affected by hiding the layer
itself. This happens regardless of
how deeply nested your original
path is. Consider trying to create a
technical drawing showing

different views of an object:
common sense would tell you to
put each view in a separate layer so
they can be turned on and off
individually, but doing so will still
leave the dimensions visible. In the
following example the left hand
image shows a simple technical
drawing of a cylinder, while the
right hand one shows the result of
hiding the “Top View” layer. It’s not
exactly what most people would
expect.

There is a solution to this issue,

but it’s not pretty. You can unlock
the generated dimension content
(right-click > Unlock Objects Below)
– though you may need to do this
multiple times for each part of the
content. Then you need to select all
the parts. Finally you can move
them into the right layer using the
Layer > Move Selection to Layer…
menu option. Doing this will cause
Inkscape to re-run the LPE, locking
the objects again, but they will now
be on the correct layer. The good
news is that, once they’ve been
moved, they tend to stay put.

Further changes to the path or the
LPE parameters won’t suddenly
break them back out to the top
level again. It would be much
better, though, if Inkscape simply
created them in the same layer as
the original path by default.

Last month we looked at how to
use this effect in practical terms.
This time we’ve examined some of
the technical details behind it. Now
that the genie is out of the bottle,
it’s likely that future LPEs will also
create new elements rather than
just single paths, so understanding
what’s happening, and how they’re
different from older LPEs, might be
a useful skill to add to your
Inkscape repertoire.

http://www.peppertop.com

full circle magazine #181 34 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarrtt 112211

Although it’s not yet out as I
write, by the time you read this

article Inkscape 1.2 will have been
released. This version is a major
update that contains a huge
number of changes and additions,
and will likely provide plenty of
topics for this column for many
months to come. But let’s not get
ahead of ourselves – we haven’t
even finished looking at all the new
Live Path Effects (LPEs) that were
added to 1.0 and 1.1 yet!

CORNERS (FILLET/CHAMFER)

Consider two perpendicular
lines meeting to form a 90° corner.
Often that sharp transition from
one line to the other is exactly what
you want. But sometimes a design
calls for something more gradual:
an intermediate straight-line
segment at 45°, or a rounded
section that seamlessly joins the
two lines. Creating such gradual
corner transitions is known as
chamfering or filleting,
respectively, with the newly
inserted path being referred to as
the chamfer (for straight path
segments) or fillet (for curved

lines). Unsurprisingly, the “Corners
(Fillet/Chamfer)” LPE is the tool to
use when you want to quickly add
such shapes to your paths.

As always, let’s take a look at an
example of this effect in action. Of
course that means we’ll need a
suitable path to work on, such as
this shape which has a selection of
obtuse, acute and right angles so
you can easily see how Inkscape
applies the LPE in these different
cases.

Adding the effect to a path like
this probably won’t produce an
immediately obvious result, but
that’s just down to the values the
parameters have by default. Let’s
take a look at the UI and examine
each of the parameters individually,
as usual.

The Unit pop-up is pretty self-
explanatory, though there is one
omission that we’ll come back to
shortly. The Method pop-up allows
you to explicitly determine whether
fillets are rendered as arcs or
Bézier curves, should you care
about that distinction. Most people
won’t, and should probably just
leave this as “Auto”.

It’s the Radius field that is the
first really important one. While
this is set to zero you won’t see any
filleting or chamfering effect, so
the first thing to do is to crank this
up to a suitable value for the result
you want. If you’re using a mouse
with a scroll-wheel (which I contend

is the best control device for
serious Inkscape work), click in the
field to focus it then roll the wheel
to adjust the value in integer steps.
By doing this you can watch the
effect change the path on the
canvas in real-time, making it easy
to adjust the strength to the value
that gives the right appearance.
Here’s our test shape with a radius
of 15px.

The filleting effect is obvious on
the right-angled corners at the left,
and completely rounds off the
acute angles at the right. The
obtuse angles at the top and
bottom right, however, are barely
rounded at all. This makes sense
due to the radius being set to a
specific value: as the two sides of
the angle approach 180° so the
tangent points get closer and
closer, and the curving effect is less

full circle magazine #181 35 contents ^

HOWTO - INKSCAPE
pronounced. This can be seen more
clearly by adding circles with a
radius of 15px to each corner of our
shape, to demonstrate how the
fillet shapes are constructed.

If you want a smoother
transition in your obtuse angles
there are several solutions. The
first is simply not to use a radius
defined in explicit units at all, but
make it vary based on the
geometry of the path around each
corner. This is what the “Radius in
%” checkbox is for. Enable this
and… nothing happens. A common
problem with this and other LPEs is
that some controls don’t
immediately trigger an update on
the canvas. In this case the easiest
option is to nudge the Radius value
up by one, then back down by one,
using the plus and minus buttons at
the end of the field. With that
refresh forced, our shape now
looks like this.

Clearly the obtuse angles are a
lot smoother now, though the acute
ones have become sharper, with a
smaller radius. This raises the
obvious question as to what
“Radius in %” actually means.
Percentage of what? It’s clearly not
the same thing being used for all
the corners, so it can’t be
“percentage of bounding box
width” or anything like that. Is it
based on a percentage of the
segment length? The angle at which
the lines meet? The price of Bitcoin?
Who knows!? I certainly don’t, and
the tooltips aren’t giving any
insight.

One thing I do know, however, is
that the percentage option tends
to be more resilient to design
changes. Consider what happens
when you scale your shape up or
down: if you’ve set a specific radius
in pixels or millimetres, the LPE will
change the output path in order to
maintain that defined size. In the

case of our example shape this
causes the “prongs” to become
longer or shorter. Conversely, when
using the percentage option you’ll
find that scaling the path results in
no significant changes to its shape.
For this reason alone, unless you
have a specific requirement that
demands a fixed value radius, I
suggest enabling the “Radius in %”
checkbox.

Remember that I said that there
was an omission in the Units pop-up
that I would come back to? It’s
simply this: why isn’t there an entry
for “%” in the pop-up, instead of
also having this checkbox? With the
UI as it stands, it would be very easy
to misread the parameters as
indicating a fixed radius rather than
a percentage, by overlooking the
checkbox. As often seems to be the
case with Inkscape’s LPEs, some of
the parameters and and their
positions do rather leave me
scratching my head.

If you switch to the Node tool
(F2) while your path is selected,
you’ll see a pair of handles for each
node. On my setup they are
rendered as particularly small
shapes, so you may want to
increase the size of the handles
throughout the whole Inkscape UI

via Edit > Preferences > Interface.
These specific handles are referred
to as “knots” in the Corners LPE
interface. They can be hidden by
enabling the “Hide knots”
checkbox, so if you don’t see them
when switching to the Node tool,
double-check to see if that box is
enabled. These are also,
presumably, the knots referred to
in the label for the “Use knots
distance instead [of] radius”
checkbox – though I’m not certain
because the behaviour of that
control is less than obvious, and I’m
not even convinced that it’s needed
at all!

Checking that box (and nudging
the Radius control up and down)
modifies the shape once again. The
positions of the knots move, and
with it the curvature of the various
fillets change. The thing is, you can
actually drag the knots on the
canvas in order to manually adjust
the curvature for each fillet – and
this works regardless of the state
of the checkbox. I’m therefore at a
loss as to what this checkbox is
meant to achieve, so my advice is to
simply leave it un-ticked, enable the
“Radius in %” option, and manually
adjust any fillets you need to.

It’s worth reiterating the fact

full circle magazine #181 36 contents ^

HOWTO - INKSCAPE
that you can change each pair of
knots individually. This is the first
LPE to support storing per-node
data, allowing different parameters
to apply to different nodes within
the path. This allows you to not
only set a different radius or knot
position for each corner, but also to
mix-and-match between fillets and
chamfers, as we’ll see later, all with
just a single instance of the LPE.
Compare this with the need for
multiple LPEs each with its own
blacklist or whitelist that we had to
use to achieve something similar
with the Measure Segments LPE,
and I’m sure you’ll agree that the
new method is a lot more
straightforward to use.

Now that you know how to set
the fillet radius on a per-node basis,
you should be able to reproduce a
pair of corners like these.

The top corner has a radius of
zero, whereas the bottom corner’s
radius is set to a much larger value
simply by dragging one of the
knots. It’s important to note the
distinction between a zero radius
node and one with a radius greater
than zero as we take a look at the
next two checkboxes in this LPE.

Here we have another pair of
controls that are, in my opinion,
practically useless. When we first
began to apply fillets to this shape
we increased the radius value and
all the corners responded. Suppose,
however, you’ve manually reset
some of them to a radius of zero,
and don’t want them to be affected
by further changes. Unchecking the
first box will mean that any changes
you make in the LPE interface won’t
affect those zero radius corners. In
other words, if you want to keep
your square corners square while
adjusting all the others then
uncheck this box.

The problem is what happens if
you do want to adjust the square
corners as well. Obviously you need

to have this box checked, but that’s
not really enough. As soon as you
nudge the radius parameter up,
those corners cease to be zero
radius corners, so that checkbox no
longer applies. This is where the
second checkbox comes in: with this
checked your changes also affect
non-zero corners. Unchecking this
would mean that your changes only
affect the zero radius corners,
which is almost never what you
want – especially if it’s the radius
parameter you’re playing around
with. My advice, therefore, is to
always leave these two checkboxes
ticked. If you want to protect your
sharp corners from changes, there’s
a better way to achieve that which
I’ll describe shortly.

Personally I think these two
parameters should be collapsed
into a single checkbox labelled
“Protect zero radius corners”. When
checked, the tight corners would be
left unmolested by any changes to
the parameters, but in its
unchecked state your changes
would affect all of the corners, as
usual. In reality even this probably
isn’t required, given the next
checkbox in this dialog.

What if you don’t want to affect
all of the corners, but perhaps the

ones you want left untouched
already have a non-zero radius?
We’ve seen that the radius can be
adjusted on a per-corner basis using
the knots on the canvas, but what
about the other parameters? The
checkbox labelled “Change only
selected nodes” is the option for
you. With this enabled any changes
you make to the LPE’s parameters
will only be applied to corners that
you’ve selected. This renders the
previous checkboxes rather
redundant. If you want to modify all
the corners then just ensure that all
of them are selected. Want to leave
the zero radius ones untouched?
Just make sure they’re not selected
(but the other corners are) when
you make your modifications.
Importantly, however, you can also
choose any subset of corners to
adjust at once, regardless of their
current radius.

In the unlikely event that you’re
not familiar with selecting nodes in
Inkscape, here’s a quick recap. First,
you need to be using the Node tool
(F2). You can click on individual
corner nodes to select them, or on
a path segment to select the nodes
at either end. You can also drag the
mouse over multiple nodes to
select them (a so-called “marquee”
or “rubber band” selection).

full circle magazine #181 37 contents ^

Mark uses Inkscape to create comics
for the web (www.peppertop.com/)
as well as for print. You can follow
him on Twitter for more comic and
Inkscape content:
@PeppertopComics

HOWTO - INKSCAPE
Holding the Shift key will let you
add nodes to, or remove nodes
from, an existing selection. Most
usefully, Ctrl-A will select all the
nodes in the path, providing a quick
way to alter all the nodes at once.
The Escape key will deselect them
all, should you wish to start again
with a fresh selection. If you have
difficulty seeing the path nodes
due to the placement of the LPE’s
knots, don’t forget that you can
check the “Hide knots” control
while you make your selection.
With those basics at your fingertips
you’ll soon find that it’s quick and
easy to select exactly which corners
should be affected by your LPE
changes at any time, without
having to consider their existing
radius or other attributes.

Now we know how to apply
parameter changes to specific
nodes, but so far all the examples
we’ve looked at have been fillets.
What about chamfers? It doesn’t
take a genius to figure out that’s
what the buttons at the bottom of
the LPE parameters are for.

Depending on the state of the
“Change only selected nodes”
checkbox, clicking on one of these
buttons will change either the
selected nodes, or all nodes, to the
appropriate type of join. For
chamfers and inverse chamfers the
“Chamfer steps” parameter also
plays its part, dictating how many
straight line segments should be
used to make up the connecting
shape. Note that when this is set to
1 there is no visual difference
between a chamfer and inverse
chamfer. Here’s an example of how
the different types of join are
rendered with our test shape.

In conclusion, I think this is a
very capable and useful LPE that is
only let down a little by offering
too many non-intuitive options in
the UI which don’t seem to really
provide much benefit. My advice is
to enable the “Radius in %”
checkbox, both the “Apply
changes…” checkboxes, and the
“Change only selected nodes”
checkbox. That will give you an LPE
that behaves predictably when you
resize your objects, and which
allows you to trivially alter all of the
nodes, or just a subset of them,
depending on what you select on
the canvas.

http://www.peppertop.com

