
full circle magazine #182 33 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarrtt 112222

Right on schedule, Inkscape 1.2
was released last month with a

lot of new features, and updates to
the existing UI. I will be covering
everything in detail in this column,
but not just yet. In the meantime, if
you want a good overview of the
headline features, I strongly
recommend taking two minutes out
of your day to watch the very
professionally produced official
release video: https://
www.youtube.com/watch?
v=1U4hVbvRr_g

For now, these articles are still
working through the many new Live
Path Effects (LPEs) that were
added with Inkscape 1.0 and 1.1.
The topic for this instalment is a
pair of new LPEs – “Power Clip” and
“Power Mask” – which I first
mentioned back in part 101. That
article detailed the use of the new
“Inverse Clip” and “Inverse Mask”
menu entries, with little more than
a scant reference to the fact that
they’re actually implemented as
LPEs. Now it’s time to dig into the
effects that back these capabilities
in a little more detail.

POWER CLIP

I won’t sugar coat this: I think
the name of this LPE is making a
very bold claim that is far from
matched by reality. As far as I can
tell, this effect usefully does one
and only one thing, and doesn’t
really deserve the “Power” prefix at
all. The only practical use for this
LPE is to create inverse clipping
paths.

Adding this effect to a path
works a little differently to almost
every other LPE. You can’t simply
select a path and add the Power
Clip effect from the usual dialog. If
you try, you’ll just find that the
option is disabled (as is Power
Mask, for similar reasons).

A clipping path requires one
other element to act on – the thing

you’re trying to clip. That single
element could, of course, be a
group consisting of several other
items, which allows complex
designs to be easily clipped. But the
clipping path itself is applied to
only one element or group.

With this in mind, you might
think that this LPE will become
available if you have two items
selected. In practice, however, the
Path Effects dialog itself will
chastise you with an “Only one item
can be selected” message, and the
“+” button will be disabled to
prevent you even opening the Live
Path Effects Selector dialog. How,
then, do we apply this LPE in the
first place?

There are actually two methods:
• The first is to apply it directly
using the Object > Clip > Set

Inverse (LPE) menu entry that I
discussed in part 101.
• The other is to apply a normal
clip, either via the context menu or
using the Object > Clip > Set menu
entry, then use the Path Effects
dialog to add the LPE as usual.

Yes, if you have an already
clipped object selected, only then
will you be able to add this LPE in
the normal manner.

Whichever approach you take,
this LPE really, really wants to
create an inverted clip. If you add it
directly via the menu entry, then
that’s what will happen, as you
would expect. Adding it via the
dialog to an already clipped object,
however, will immediately invert
the clip that you’ve already applied
– which might be a little more
surprising if you’re not expecting it.

As a reminder, a normal clip
preserves everything inside the
path, and hides the content
outside. An inverse clip, therefore,
hides everything inside the path
but preserves anything outside, per
the image below.

https://www.youtube.com/watch?v=1U4hVbvRr_g

full circle magazine #182 34 contents ^

HOWTO - INKSCAPE

If you really want a normal clip,
then you can uncheck the “Inverse
clip” option in the LPE’s parameters
– though doing so raises the
obvious question of why you want
to use the LPE at all in that case.

Perhaps the “power” in this LPE
actually comes from the other two
parameters? Well, the “Hide clip”
option simply modifies the clipping
path to remove the nodes that
actually do the clipping – again,
raising a question about why you
wouldn’t just remove the clip
entirely. As for “Flatten clip”: this is

another entry in my box of LPE
mystery parameters that appear to
do something, but it’s not entirely
clear quite what that something is.
My own experiments with various
combinations of objects and
groups, primitives and paths, have
failed to present me with any
situation in which it does
something useful. As usual, if you
have any idea of how it’s meant to
be used, please do get in touch.

One final important note about
this LPE is how to go about
removing it. If you only want to
temporarily stop it being applied,
then the usual approach with an
LPE is to toggle the visibility icon
(the “eye” image) in the Path
Effects dialog. This may not,
however, work as you expect. It will
remove the inverting effect of the

LPE, but still leave your object with
the non-inverted clip applied. If you
really want to see the object with
no clip at all, then you’re back to
using the “Hide” option in the LPE’s
parameters. This feels a little
awkward to me, as it requires users
to understand too much about the
implementation of clipping masks
in SVG to fully appreciate why the
normal visibility toggle doesn’t
work the way they might expect.

Permanently removing this
effect is even worse. Should you be
foolish enough to delete the effect
from the Path Effects dialog, as you
might usually do, then you’re likely
to find that your clipped objects
disappear as well – almost certainly
not what you wanted! Instead you
have to release the clip using the
Object > Clip > Release menu entry,
or the context menu alternative.
Even that comes with a sting in the
tail: your original clipping path will
also be deleted, so if you wanted to
retain both that path and the
object being clipped, you’re out of
luck.

With that exhaustive
examination of this “power” LPE,
I’ve come to the conclusion that it
serves only one useful purpose: to
simplify the task of punching a hole

in another object using a clipping
path. To be fair, I think this is an
exceptionally useful ability. I’m just
not sure it warrants the “power”
prefix, rather than simply being
called “Inverse clip”. As useful as it
is, do be aware of the problems and
limitations that come with it. If
you’ve got enough experience with
Inkscape to be able to make your
own inverse clipping paths, as I
described way back in part 13,
perhaps sticking with the old-
fashioned approach is still the safer
option.

POWER MASK

Masks are often thought of as a
more “analogue” version of
clipping. Whereas clips provide hard
edges and a binary visible/hidden
state for each part of the clipped
object, masks allow for gradients
and blurs, with every part of the
masked object having its opacity
determined over a continuum
according to the colors used in the
mask. But when it comes to the
Power Mask LPE, the behaviour and
usage compared with the Power
Clip effect is quite different in
many ways.

I prefer to keep my masks in

full circle magazine #182 35 contents ^

HOWTO - INKSCAPE
shades of gray to provide clear
control over their effects. A typical
mask would use white for those
areas that are to remain 100%
opaque, black for those that are to
become completely transparent,
and intermediate shades for levels
of opacity in-between. Any
transparent areas, including those
outside the mask shape, are also
rendered as transparent once the
mask is applied. With that refresher
done, here’s the shape and mask
we’ll be experimenting with today.

When applied as a normal mask,
the white center to the design
should ensure that the middle of
the star remains solid, while the
gradient out to the black edge will
fade out the points of the star long
before we reach their ends.
Selecting both the star and the
mask, then using the “Set Mask”
context menu entry (or Object >
Mask > Set) does, indeed, give the

result we would expect (shown
against a chequerboard background
so you can see which parts are
translucent).

What would you expect the
result to be if, instead, we use
Object > Mask > Set Inverse (LPE)?
Based on the behaviour of the
Power Clip effect, you might
imagine that the middle will be
punched out of the star, leaving the
points in place but fading towards a
large central hole. That’s certainly
what I expected the first time I
used this effect, but the actual
outcome is somewhat different.

Let’s take a closer look at the
LPE’s parameters to work out
exactly what’s happening here.

Interestingly, despite having
selected “Set Inverse (LPE)”, the
“Invert mask” option is not checked.
Instead all the hard work is being
done by the “Add background to
mask” checkbox, and the color
picker below it. This has the effect
of adding a flat colored background
to your mask, which covers the
bounding box of the element you’re
masking. In this case, it adds a white
background which combines with
our original mask to produce an
effective mask that looks like this.

With that in mind, the end result
is a little more understandable. But
it’s not exactly what I would expect
from a menu entry that bills itself
as an “inverse mask”. Perhaps if we
enable the “Invert mask” option,
we’ll get something closer to our
expectations…

Hmm… not really. The problem
now is that we’ve inverted every
part of our mask – swapping black
for white, light gray for dark gray,
and so on – but that also includes
the color of the background we’ve
added. Now, therefore, the mask
looks like this:

full circle magazine #182 36 contents ^

Mark uses Inkscape to create comics
for the web (www.peppertop.com/)
as well as for print. You can follow
him on Twitter for more comic and
Inkscape content:
@PeppertopComics

HOWTO - INKSCAPE

Again this explains the output
we’re seeing, but it’s still not really
what we had expected from an
inverse mask. What we need is the
hole in the middle from this
version, but with the points of the
stars still being visible, as we had in
the previous one. In other words,
we want a black center fading to a
white shape that continues to fill
the whole bounding box. The way
to achieve that is to change the
background color to black, so that
the “Invert mask” checkbox has the
effect of converting it to white.
With that change, we finally get the
look I was expecting from the
outset.

To summarise, in order to create
what I would consider to be the
inverse of my mask, I had to do the
following:
• Draw the mask
• Apply it to the object using

Object > Mask > Set Inverse (LPE)
• Open the Live Path Effects dialog
to access the parameters
• Set the “Invert mask” option
• Ensure the “Add background”
option is checked
• Set the background color to black

That really is a lot of work, and
it’s clear that the “Set Inverse (LPE)”
option didn’t really do much to help
us out. My advice, therefore, is to
skip this LPE entirely, and just
construct the mask you need with
the right colors from the outset.
Here’s what I would actually do to
achieve the same result:
• Draw a white rectangle that
covers the star
• Draw a black circle in the middle
• Blur the circle, or give it a black-
to-white gradient to create the soft
edges
• Group the circle and rectangle to
create the final mask
• Select both the mask and the star,
then use Object > Mask > Set

Admittedly it’s barely any fewer
steps, but I’ll wager that this
approach is a lot more intuitive to
anyone with even a little
experience using Inkscape.

And there you have these two
new “power” LPEs which, on the
surface, promise so much, yet
deliver so little in reality. The Power
Clip is potentially useful, but may
create problems when you want to
release the clip later. The Power
Mask just doesn’t do anything that
you can’t achieve by hand almost as
easily, if not moreso. They’re both
useful tools to know about, though
– if only so that you understand
how to achieve the same results
without having to get the LPEs
involved at all!

UPDATE:

via @inkscape on Twitter:

There's a bug in Inkscape 1.2 that could destroy gradients, clips &
clones in a drawing. You'll only notice it happened after saving file &
later opening it again. To work around bug DO NOT use copy-paste
while Export dialog is open! The bug will be fixed in Inkscape 1.2.1.

For more details on the bug, head here:
https://gitlab.com/inkscape/inkscape/-/issues/3600

http://www.peppertop.com
https://gitlab.com/inkscape/inkscape/-/issues/3600

full circle magazine #183 40 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarrtt 112233

One interesting aspect of the
new ‘Live Path Effects’

Selector dialog is a small toggle at
the right of the toolbar, labelled
“Show Experimental”. Turn this on,
and your collection of LPEs will be
augmented by a few others, each
with a classic cherry bomb as its
icon.

The cherry bomb has a long
history in computer interfaces as a
means to indicate something has
gone wrong – the most famous
instances being in the crash dialog
of earlier MacOS releases, and to
indicate boot problems on the Atari
ST (whose GEM interface took
rather a lot of “inspiration” from
MacOS). In the case of Inkscape,
however, it serves as a warning that
using these LPEs is risky. Not only
are they likely to be buggy, but
there’s also no guarantee that
images you create using them will
be supported in future versions.
Generally, therefore, I recommend
leaving the Show Experimental
switch disabled – unless you wish to
engage in the selfless act of
actually trying the experimental
LPEs in order to provide some

useful feedback to the developers.
Definitely don’t use them for real
work though.

The good news is that the best
LPEs can, in time, be promoted out
of the “experimental” stage and
into the suite of fully supported
effects. Such is the case with the
Boolean Operation effect, which
was experimental in version 1.0,
but received enough polish and
stability fixes to make it to the big
time in Inkscape 1.1.

BOOLEAN OPERATION

I’m going to assume that anyone
reading this is already familiar with

the existing boolean operations in
Inkscape, found under the Path
menu. If not, then you may wish to
have a read of part 7 of this series,
from way back in FCM #67! In short,
boolean operations take two paths
and manipulate them in different
ways – such as joining them
together into a single object (the
“union” operation), cutting the
shape of one out of the other
(“difference”) and keeping just the
parts where they overlap
(“intersection”), or where they
don’t overlap (“exclusion”).

Using these operations from the
Path menu is as simple as selecting
two paths and then choosing the
appropriate menu entry. You may

also need to alter the stacking
order of your paths, depending on
the operation you’re performing, as
some of them produce different
results if the roles of first and
second operand are reversed.
Inkscape uses the z-index of the
paths to determine which is which.

With LPEs, things aren’t quite so
simple when multiple paths are
required. You can’t just select your
two paths and add the effect.
Instead, you have to begin by
selecting your first operand path
and add the Boolean Operation LPE
to it in the normal manner. This will
bring up the effect’s parameters:

With just one path, a boolean
operation won’t do anything, so we
need to add the second operand.
This is done with the usual complex

full circle magazine #183 41 contents ^

HOWTO - INKSCAPE
and frustrating method of copying
it to the clipboard and “linking” it
into the LPE:
1. Select the second operand path
on the canvas. This will de-select
the first one, so you’ll lose access to
the LPE parameters.
2. Copy the selected path to the
clipboard (Ctrl-C).
3. Re-select the first operand path
in order to re-enable the LPE
parameters.
4. Click on the “Link to item” button
in the LPE controls (the one that
looks like a clipboard).

Note that you’re not actually
pasting the second path into the
LPE, but rather using this
convoluted technique in order to
add a reference to the path – a
“link” in the terminology used in
LPEs. That means you are still free
to make changes to the second
path, and don’t need to go through
this rigmarole each time: the link is
live, so changes propagate
automatically.

With two paths added, the
actual result will largely depend on
the value selected in the
“Operation” pop-up menu. The
“Swap operands” checkbox can be
used to change Inkscape’s notion of
which order the operands should

be applied in (equivalent to
swapping the z-index order when
using the traditional boolean path
operations). For some cases this will
have no effect on the output. The
image below gives you an idea of
how these two controls work when
applied to a pair of simple shapes.

At the top of the image is the
original pair of paths. In each case,
the LPE was applied to the orange
square, with the teal circle being
linked via the clipboard. The
columns below show the effect of
applying each operation, with the
top object being the default
output, and the bottom one
showing the effect of ticking the

“Swap Operands” checkbox.

The results are fairly self-
explanatory, especially if you’re
already familiar with the standard
boolean operations in Inkscape. It’s
worth noting that the operation
referred to in the LPE as
“Symmetric Difference” is, as far as
I can tell, the equivalent of Path >
Exclusion. I have no idea why the
developers opted for different
names, as it just adds unnecessary
confusion.

One significant difference
between the historical boolean
operations and this LPE is with the
output from the Division operation.

With the old-style path operations
the result is a pair of objects which
can be dragged apart. You can see
this in the image below, which
shows the original objects, the
immediate result of the Path >
Division operation, and the effect
of dragging the top-right object
away.

With the LPE version, the initial
output looks similar, however
trying to move the top-right part
actually just changes the position of
the second operand path. In order
to separate the parts (i.e. to
actually divide them), you have to
take the additional step of “fixing”
the LPE by using Path > Object to

full circle magazine #183 42 contents ^

HOWTO - INKSCAPE
Path. Of course, once you’ve done
that, you no longer have the
benefit of any “liveness”, so you
may as well have just used the older
approach in the first place.

Moving on with the parameters
for the effect, next we have a
checkbox labelled “Remove Inner” –
but only if you’re using version 1.1.
This checkbox only had an effect on
some operations that were
ultimately removed from this LPE
for the 1.1 release due to stability
issues, so there’s no need to
consider it further. It’s been
removed entirely from Inkscape
version 1.2.

The last two parameters
concern the fill rule which is applied
to each path. The first pop-up
governs the path that the LPE is
applied to, while the second is for
the one added via the clipboard. Fill
rules are one of the more obscure
parts of vector graphics, and
essentially set the rules for how
complex paths with self-
intersections or sub-paths should
be treated when applying the fill
color. You may have encountered
them via the toggle buttons in the
Fill & Stroke dialog (see part 95 of
this series, in FCM #155).

In this image, you can see what
happens when I turn the original
objects into complex paths with
several sub-paths. The top image
shows the objects with no LPE
applied (with the “evenodd” fill rule
applied via the Fill & Stroke dialog).
The second image shows the effect
of applying the “Symmetric
Difference” (aka Exclusion) effect
with both pop-ups set to “non-
zero”; the third is the same but with
them both set to “even-odd”.

In my experience, the “positive”
option just makes the objects
disappear, but that might simply be
an effect of the paths I’m using. The
“take from object” option honours
the setting in the Fill & Stroke
dialog, so, in this case, the output is
the same as the bottom image. My
advice is to leave these pop-ups set
to “take from object”, and only
fiddle with them if you have
complex paths and aren’t getting
the result you would like in terms of
the areas being filled.

As we’ve seen, the Boolean
Operation effect will accept only
two paths: the first operand (on
which the LPE is applied) and the
second operand (added via the
clipboard). This is unlike some other
LPEs which allow you to add
multiple linked paths into a list. This
is a shame, because some boolean
operations could easily be
extended to multiple objects, while
others could simply treat a list of
paths as a sequence of operands,
applying them one at a time to the
output from the previous
operation. Instead, should you wish
to apply multiple boolean
operations using this LPE, you’ll
have to add several instances of it
to your effects list. In itself, this

isn’t a problem, but you can quickly
end up with a series of entries, all
just labelled as “Boolean
operation”, which can make it hard
to keep track of what each
operation is for.

Personally, I’m more likely to
stick to the old-fashioned boolean
operations. While it’s great to have
a “live” version of these, allowing
for subsequent tweaks and
changes, the means of applying
them is a little fiddly (as with all
multi-path LPEs, to be fair), and
their liveness means that they not
only require more processing
power to display, but are also more
likely to expose bugs in the
implementation (I suffered several
hard crashes while creating the
screenshots for this article!). LPEs
also aren’t recognised by other
applications, or web browsers, so
although the output should look
the same in theory, you get a better
guarantee of that with the older
operators that make permanent
changes to the underlying paths.

SLICE

For many use cases, the Slice
LPE will likely give a better result
than the Boolean Operation effect

full circle magazine #183 43 contents ^

HOWTO - INKSCAPE
in Division mode. As noted above,
this mode does not actually
produce separate objects until you
“fix” the effect. The Slice effect, on
the other hand, does split your
object into two separate parts that
can be moved, and even styled,
independently of each other. It is
limited to splitting along a straight
line, however, so the “square and
circle” example I used for Division
can’t be replicated using Slice.

It’s a pretty easy LPE to use. Just
select your object and add the
effect. The object will be broken
into two with a vertical split down
the middle, and the two parts can
be moved and styled separately, as
shown in this simple example of
applying the Slice LPE to a star.

The parameters for this effect
are pretty simple, too.

The three buttons do exactly
what you would expect from their
labels:
• Remove any style changes that
have been applied to the individual
parts
• Use a vertical slicing line
• Use a horizontal slicing line

I’ve used the term “slicing line”
to indicate that this is a straight
line, not an SVG-style path that
could have corners and curves. But
you’re not limited to horizontal and
vertical slicing: the coordinate
boxes below can be used to set any
start and end points for the line,
allowing angled slicing lines to be
used as well. In practice, nobody is
likely to fill in the numbers here,
though, as you can switch to the
Node tool (F2) in order to move and
rotate the slicing line on-canvas
instead. This approach makes it
easy and intuitive to adjust the line
to suit your needs.

The “Allow Transforms”
checkbox is a vital part of this
effect – and one you’ll most likely
want to leave enabled all the time.
If this is unchecked then you won’t
be able to move the individual parts
around (nor skew, scale or rotate
them). They’ll stay in their original

location, relative to the source
path, which may be useful if you
want to style only parts of the
shape differently, but don’t want to
adjust their positions. For most
people, however, slicing a path
implies a need to move the pieces
around, for which this needs to
remain checked.

If you do want your shape cut
into more than two parts you can
apply the Slice effect more than
once. Here’s how our star looks
with an additional set of angled
slicing lines applied to each half,
and a bit more variation in the
styling.

Of course, the Slice LPE can be
combined with other effects. Here
are our earlier complex paths, with
the Boolean Operation effect
applied (“Symmetric Difference”
mode, “even-odd” for both
operands), followed by a pair of
Slice effects to produce four

complex paths, each with a
different fill color.

After several months, we’re now
finished with the new LPEs that
were added in Inkscape 1.0 and 1.1
(and that’s without considering the
experimental ones!). But we’re not
quite done yet: next month, I’ll take
a look at some important new
features that were added to an
existing LPE, before moving on to
the new extensions that were
added in version 1.0.

Mark uses Inkscape to create comics
for the web (www.peppertop.com/)
as well as for print. You can follow
him on Twitter for more comic and
Inkscape content:
@PeppertopComics

http://www.peppertop.com

full circle magazine #183 44 contents ^

HOWTO - INKSCAPE

UPDATE FROM INKSCAPE.ORG

IMPORTANT RELEASE OF
INKSCAPE VERSION 1.2.1
FIXES DATA LOSS AND CRASH
ISSUES

We've just resolved some
critical issues in Inkscape 1.2

that were identified by our
community. If you're currently
using Inkscape 1.2 then this is an
important update to install on your
device.

It provides a fix for a number of
critical bugs in the 1.2 release:
• drawing data about filters,
markers, gradients and more, now
saves to file after performing a
simple sequence of copy-paste-
undo with the Export dialog open;
• startup is smoother when many
fonts are installed, and
• rasterized (filtered) objects now
show up on any page of a multipage
document exported to PDF.

This release brings back the
built-in ability to open PostScript/
Encapsulated PostScript (.ps / .eps)
files with Inkscape on macOS.

Improvements were also made to
user interface translations and
documentation translations.

Linux users using the snap
packaging format will once again be
able to import and export images.
Windows users will now see the
correct Inkscape version image on
install, while users of macOS 10.13-
10.15 will be able to open
extensions without them crashing.

full circle magazine #183 29 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarrtt 112244

I first described the Taper Stroke
LPE in part 67 of this series

(FCM#127). Back then, it was in the
context of manually tracing an
image. As an example, I took the
‘Frankie’ cartoon character,
originally drawn by Vincent Mealing
for our “Monsters, Inked” comic
series, and traced over a scan of the
original artwork using a variety of
techniques. The Taper Stroke effect
was used as a quick-and-easy way to
produce more interesting outlines,
without going to the full extent of
using the Power Stroke LPE. Here’s
a screenshot that appeared in the
article, showing the result of using
the effect in the drawing, and the
UI for the LPE as it was at that time.

With Inkscape version 1.1,
several new additions were made
to the Taper Stroke parameters –
enough to warrant a quick update
in this series. Here’s how the UI
appears now:

The first change is that the
Taper Smoothing control has now
been split into two parameters,
governing the start and end
smoothing respectively. In this
context, smoothing refers to the
shape of the taper, from a very
rounded taper (smoothing: 1.0) to a
straight line (smoothing: 0). You can
see both of these used on the
image below, which shows some of
the effects that can be produced
with this LPE when used on
exaggeratedly thick lines. The Left-
hand line displays the sensible
limits of the smoothing parameter
(1.0 at the top, and 0 at the
bottom), while the rightmost line
shows the effect of setting these to
more extreme values (+/- 10.0 in
this case).

This image also shows the other
addition to this LPE: the ability to
alter the direction of the taper. The
second and fourth lines use the
default “center” direction, but the
first and third have their start and
end directions variously set to
“left” and “right”. These are the
only three options available – it’s
not possible to have a taper that
terminates only slightly left of
center, for example.

It’s worth noting that the “left”
and “right” designations are
relative to the direction of the
path. Imagine walking along the
path from start to finish to
determine which side of it is which.
In the image below, the left-hand
line has its directions set to “left”,
and the right-hand line has its
directions set to “right”, yet they
both appear the same. The
difference is that the former was
drawn from bottom to top, and the
latter from top to bottom. This also
means that using Path Reverse on
a shape with this LPE applied will
flip the visible directions of the
tapers, so watch out for that one if

full circle magazine #183 30 contents ^

HOWTO - INKSCAPE
you’re forced to reverse the path
for other reasons!

I’ve left the leftmost line
selected in order to show the
handles that are visible when the
Node tool (F2) is active. As has
always been the case, you can drag
these handles to adjust the length
of the start and end tapers. A new
addition, however, is that you can
now shift-click on them to cycle
between the three direction values,
making it quick and easy to
experiment with this upgraded
capability.

With that, we’ve reached the
end of the new Live Path Effects
added in Inkscape 1.0 and 1.1 (I’m

skipping the experimental LPEs for
the reasons mentioned last time).
But these releases also brought
with them some new extensions,
which I’ll describe below, and next
month. These can all be found
under the Extensions menu, of
course, and I’ve included the
relevant submenu at the start of
each section title.

RENDER > FRAME

Let’s start with a simple
extension. This one draws a “frame”
around each selected object in your
image. I’ve put the word “frame” in
quotes because it suggests
something far more impressive
than the result this extension
produces. You might imagine an
ornate picture frame, a Celtic knot
style border, or perhaps something
sweeping and calligraphic. Instead,
what you actually get is what
appears to be a rounded rectangle
around each selected object.
Except it’s not even a rounded
rectangle – it’s a path – so there’s
no easy way to change the corner
radius after the fact.

Drawing a rectangle that exactly
hugs the outside of an arbitrary
object is a little tricky in Inkscape.

But it’s not exactly rocket science
either. The simplest approach I
know of is to duplicate your object,
select Object Objects To Guides,
then draw a rectangle by snapping
to the intersections between the
guidelines. This extension reduces
those few steps down to one, but
doesn’t really offer many other
advantages as it does so.

Let’s look at it in action. We’ll
begin by selecting multiple items
on the canvas. In this case there are
two selections – one single star at
the top, and one group of two stars
at the bottom.

Now we’ll run the extension
with some pretty standard values
to get started: Position is set to
Outside, the checkboxes are left
un-ticked, the stroke width is set to
2px and the corner radius to 10.

Finally the stroke color is set to
black, and the fill (on the second
tab) is transparent (alpha = 0).
Here’s the result:

The Inside/Outside popup can
be used to determine whether the
frame is drawn inside the bounding
box of the selected object, or
outside it. The difference is most
obvious when the stroke thickness
is cranked up a little – to 10px in
this example.

The Clip checkbox determines
whether or not the selected item
should be clipped to the size of the

full circle magazine #183 31 contents ^

HOWTO - INKSCAPE
frame. Often this will make little
difference, but if your object has a
thick border, for example, this can
theoretically hide the portion that
extends outside the frame. I say
“theoretically” because I have not
been able to get this feature to
work reliably at all. Most of the
time enabling the Clip option just
results in the entire object being
removed. I have seen it work
correctly on one occasion, but I
haven’t been able to reproduce
that behaviour since.

The Group checkbox, on the
other hand, does seem to work. But
all it does is group the selected
object with its corresponding
frame, saving you a small manual
step if you need to keep the object
and its frame together in this way.

The new frame is rendered on
top of the selected object. Bear
that in mind before setting the Fill
tab to use an opaque color, as it will
obscure the original element. You
can change the stacking order after
applying the extension, of course,
but it’s another step to be aware of.

I don’t really see the point in this
extension. It would make some
sense if there was a field in which
to add a padding value, allowing for

frames that don’t hug the content
quite so tightly. If the frame could
be rendered in the background as
well, this would provide an easy
way to add a box and background
color for multiple items, turning
them into buttons or icons, for
example. As it stands, I see little
benefit of using this extension over
learning the small number of steps
to perform this task manually,
unless you have a very large
number of objects that require
tightly fitting rectangles around
them for some reason. Ironically
the next extension would have
been a perfect example of a use for
this feature, if it wasn’t for the fact
that the output of the Frame
extension is not at all in the right
form for Export Layer Slices to
use…

EXPORT > EXPORT LAYER
SLICES

Inkscape already has a native
mechanism for exporting multiple
items in a document as separate
PNG files, via the Batch Export
feature in the File Export PNG
Image… dialog. This assumes that
the items you want to export are
individual elements, or are already
grouped in the right way. You can

get around this limitation by simply
creating a layer on which to draw
some rectangles (or other shapes)
that mark out the sections of the
page to export, then perform a
Batch Export with those rectangles
selected. Here’s a tip: if you don’t
want the rectangles themselves to
appear as part of the exported files,
select them all and then hide the
layer before you hit the Export
button in the dialog – the Batch
Export checkbox should still say
“Batch export N selected objects”,
where N is the number of shapes
you selected in your slicing layer,
but you’re not left with a visible
stroke around the edge of each
PNG.

The Export Layer Slices
extension essentially does the
same thing. To use it you have to
create a slicing layer, then draw
rectangles to mark the areas to be
cut out and saved as separate
PNGs. The layer has to be at the top
level (rather than being a sub-layer),
and the rectangles must actually be
rectangles (i.e. <rect> elements in
the XML), not paths or any other
shape. The Export dialog approach
doesn’t have either of these
limitations.

When creating your slicing layer,

you need to ensure that the name
of the layer is the same as the name
used in the extension’s UI. By
default, this is “slices”, so the
easiest approach is simply to give
your layer the same name.

Set your export directory, and
the DPI for the images, and hit the
Apply button to create your PNG
files. If you want fine control over
the filenames, you can first change
the ID of each rectangle via the
Object Object Properties dialog
(don’t forget to hit the “Set”
button). And you probably also
want to tick the “Overwrite existing
exports” checkbox, otherwise the
extension will refuse to replace any
existing files with the same names.

Unfortunately, this extension
suffers from a major flaw, as far as I
am concerned. Given that you have
to create a whole separate layer to
define the slicing regions, I would

full circle magazine #183 32 contents ^

HOWTO - INKSCAPE
expect that layer to be omitted
from the exported images. After
all, it xists only to provide some
dimensions, it’s not actually part of
the drawing itself. But no, every
exported image includes the
rectangle’s stroke and fill as part of
the PNG. The easy workaround is to
hide the layer before running the
extension; unlike the equivalent
Export dialog workaround, there’s
no need to select the rectangles
first, but it’s still a bit of a pain
having to repeatedly hide and
unhide it, if you’re trying to fine-
tune the sizes and positions of the
slices.

But perhaps you want the
rectangle included, to provide a
nice border for your exported PNG.
You take the time to set the stroke
width and color… only to find that
your own choice of styles is
replaced by the extension after the
export. The rectangle’s stroke is
removed and the fill is replaced
with a shade of gray (file already
exists and was not overwritten), red
(file exists, but was overwritten), or
green (file was created for the first
time). If you want to try the export
again, you’ll need to revert all those
back to their original styles unless
you really want a red overlay added
to all your PNGs!

In my opinion, if you want to
export multiple slices of your
document defined by rectangles,
you may as well just use the
standard Batch Export approach,
with an optionally hidden slicing
layer. The benefits of the extension
just aren’t great enough to make it
a compelling new method of
performing this task.

This extension does offer one
other trick, however: Icon mode.
This is enabled via the checkbox of
the same name, and while it initially
appears useful, it’s also got a major
flaw that makes it less than
practical in a lot of cases. What this
mode does is to ignore the DPI
setting, and instead create a series
of square images for each slicing
region, using the pixel sizes defined
in the “Sizes” text box.
Unfortunately, it does this by
stretching each image to fit the
square aspect ratio. In short, your
slicing “rectangle” in this case
absolutely has to be a square,
otherwise the content will be
stretched out of proportion. A
much better approach would have
been to scale the content in
proportion, and automatically
center it in the square. This would
work equally well for slices that are

already square, and those of a
different aspect ratio. But alas, the
extension offers no such option.

The image below shows the
result of using Icon Mode on a
single image from a character
sheet. On the left you can see the
original Inkscape drawing, complete
with the slicing rectangle (in green,
due to this screenshot being taken
after the initial export). To the
right, you can see the icons that
were produced. Clearly not the
result I would have liked or
expected.

So there we have two of the
new extensions. I hate to be cynical,
but I can’t really see much benefit
in either of them. The Frame
extension could perhaps be useful
if it allowed some padding to be
specified, and created real
rectangles instead of paths. The
Export Layer Slices extension could
be useful if it didn’t also include the
slicing rectangles in the output, and

if it didn’t stretch the images out of
proportion in Icon mode.

What’s most annoying is that
these two extensions are
frustratingly close to working well
together. Imagine if the Frame
extension’s default behaviour was
to create real rectangles in a new
“slices” layer (with optional
padding, of course). Instantly, it
becomes an easy way to create the
initial slicing rectangles for the
Layer Slices extension if you have a
lot of elements to export. But
instead, we get these two
extensions, neither of which are
great on their own, and which don’t
work well together. What a shame.

Mark uses Inkscape to create comics
for the web (www.peppertop.com/)
as well as for print. You can follow
him on Twitter for more comic and
Inkscape content:
@PeppertopComics

http://www.peppertop.com

full circle magazine #185 34 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarrtt 112255

Interactive Mockup is the only
remaining new extension that

arrived with version 1.0 for me to
discuss in this series. But what I
initially thought was going to be a
simple topic to cover has thrown up
a few questions and issues which
will stretch this topic out to more
than one article. To start with,
though, let’s take a look at this
extension, what it does, and how to
use it.

WEB > INTERACTIVE
MOCKUP

This extension is intended to let
you use Inkscape to create user
interface mock-ups with some
limited interactivity. It could also be
used to create a simple slideshow, a
basic adventure game, or more. It
does this by injecting some simple
JavaScript into your document, so
the final file has to be loaded into a
web browser in order to produce
the interactivity suggested by its
name.

But let’s start with a quick
definition: the “interactive” mock-

ups I’m referring to here are little
more than a series of static images
containing clickable regions that let
you navigate between them. If you
were mocking up a series of dialog
boxes to form a “wizard” type of
interface, you could use this
extension to detect a click on the
“forward” and “back” buttons in
your images. Each click would
switch to another image in the
sequence, allowing you to
demonstrate how your potential
user interface might work before
you actually start to code it.

Another example is when
mocking up a website. Perhaps
you’ve got a series of images, one
for each page in the final site,
created using a design tool or from
a scanned sketch, but not yet
turned into actual HTML code.
Using this extension, you could
combine those images into a
working demonstration of how the
page might operate, complete with
clickable menus and links for
moving between the different
pages.

I’m going to use this latter

example to show you how this
extension operates, by mocking-up
a very simple 3-page website. Just
make sure you understand that this
approach could be used to let you
link any series of images together,
and isn’t restricted to websites. The
reason it’s found in the Extensions

 Web submenu is solely because
the final result is a file that has to
be opened in a web browser in
order to work.

Let’s start with the main home
page for my website. This will be
the starting content when the
document is loaded into a browser,
and will define the physical size for
the whole presentation. In this
case, I’m going to demo the site
using an HD monitor, with the
browser set to fullscreen mode (by
pressing F11), meaning I’ll have
every one of those 1920×1080
pixels to play with. To begin with,
therefore, I’ll open the Document
Properties and set my document up
as follows:
Display units: px
Page Size: Video HD 1080p (1920 ×
1080px)
Scale x: 1.0

Viewbox x, y, width, height: 0, 0,
1920, 1080 (these should be set
automatically)

The last two items aren’t so
important, but ensuring we have a
scale value of 1.0 means that we
can use specific pixel dimensions in
our page design, since there’s a 1:1
mapping between each pixel in our
drawing, and the corresponding
pixel on-screen once the page is
rendered by the browser.

Now to add some content to the
page, starting with a home page. It

full circle magazine #185 35 contents ^

HOWTO - INKSCAPE

won’t win any design awards, but it
will do the job for demonstrating
this extension (above).

The key part of the design is the
section at the top right. That’s
where I want to have links to
navigate between pages. Those are
the elements that will become
clickable in order to move from
page to page in my mock-up. Of
course, in order to be able to do
this, we actually need some pages
to move to! Time to create the
second entry in my mock-up: the
“About” page.

This is where things start to get
a little tricky. We need our new
page to have the same dimensions
as the first one. If we were creating

these as completely separate files,
that would be simple enough - just
create a new document with the
same properties as the first. In
practice, I’d probably just use File >
Save As… on the first document,
then edit the content to suit, but
either approach would create
multiple files, each with the same
basic page properties. But this
extension doesn’t link between
separate documents, so that
approach is no good.

Another sensible method would
be to create each image on a
separate layer. That way all the
images share the same document
properties, by definition. But this
extension doesn’t work with layers,

either.

What it actually does is inject
some JavaScript that will change
the viewBox attribute on the <svg>
element. This is an approach that
has been discussed in this column in
the past, with respect to “SVG
sprites” (part 79, in FCM #139).
More specifically, the extension
actually only changes the first two
numbers in the viewBox – the ones
that define the top-left corner of
the view. The other two numbers –
those that define the width and
height - remain fixed, so it’s pretty
much essential that all our mock-up
pages are the same size.

I find that the easiest way to do

this is to enable the snap-to-page
option and then draw a rectangle
from the top-left corner of the
page to the bottom-right.
Alternatively, you could simply
draw a rectangle anywhere and
then set its width and height to the
correct dimensions via the tool
control bar. In either case, you want
to end up with a rectangle that is
the same size as your main
document page, but you should
then drag it outside of the page
boundary. Repeat this for each
frame you will require in your mock-
up, so that the new ‘pages’ are
distributed around the real
Inkscape page, and don’t overlap. It
doesn’t matter if they’re arranged
in a row, column, grid, or randomly

full circle magazine #185 36 contents ^

HOWTO - INKSCAPE
placed, so don’t get unnecessarily
caught up in the positioning of each
page.

Now you can draw the content
of each image within the confines
of its rectangle. As you are likely to
need some sort of background
color in your mock-up (even if that
color is only white), I suggest giving
each rectangle a solid fill and then
locking it, or the layer it lives on, to
avoid it being accidentally moved
when drawing on top of it.

Following this approach, the
selection of pages in my mock-up
website ends up looking like the
image on the previous page,
bottom right.

Now that we have some pages
in place, we can start adding a little
interactivity using the extension.
The first thing I’m going to do is to
ensure that the “About” link on the
Home page connects to the About
page. The extension requires you to
have two elements selected: in this
case I’ll select the “About” text
element on my Home page, then
hold Shift as I click on the
background rectangle that encloses
the About page. With those two
items selected, I can click on
Extensions > Web > Interactive

Mockup, to be presented with this
rather underwhelming dialog.

As you can see, there’s nothing

but a Help tab and an “Action” pop-
up. The latter offers various ways in
which interacting with the first
element in your selection will
switch the viewBox to point to the
second element in your selection.
Most of the time you will probably
want to leave this set as “click”. In
almost all cases, therefore, there’s
nothing for you to do here but to
click on the “Apply” button and
close the dialog.

Nothing will have changed
visibly in your page, but the
extension has added some
JavaScript to the first element in
your selection. Open the Object >
Object Properties dialog and
expand the “Interactivity” section;
you’ll notice a small piece of
JavaScript has been added to one
of the fields (you may also notice
that the list of fields available in

this dialog maps suspiciously
closely to the options in the pop-up
within the extension dialog).

I’ll look at the JavaScript itself in
future, but for now it’s sufficient to
know that this is what is ultimately
responsible for changing the
viewBox when the first selected
element is interacted with (i.e.
clicked on, in this case). At this
point you can save the file as a
normal Inkscape SVG document and
load it directly into a web browser.
Browsers don’t actually make this
capability terribly obvious these
days, but you can either drag the
file directly into the browser
window, or hit Ctrl-O to bring up an
Open File dialog, just as you might
in any other program.

When the page loads in the

browser you’ll probably notice that
some of it is cut-off.

This might seem a little strange,
given that we’re working with a
scalable image, but it boils down to
the fact that we set a specific width
and height for the file, in pixels, in
the Document Properties dialog.
You may recall that the intention
was for it to fit the dimensions of
an HD screen when the browser is
switched to fullscreen mode. Press
F11, therefore, and our mock web
page fits perfectly!

Now we can test the
interactivity. Click on the “About”
link and, as expected, the view
switches to the relevant mock page
in our document. At this point,
however, no other links have been
set up, so we can’t click the “Home”
button to return to the previous
view. Neither can you use the Back
button (or keyboard shortcut)
within the browser, since the URL
hasn’t actually changed – the
JavaScript has just dynamically
updated the content of our page in
order to set the new viewBox.

Let’s return to Inkscape and fix
some of these issues by adding
more links. First we need to add a
connection going from the “About”

full circle magazine #185 37 contents ^

HOWTO - INKSCAPE
link on the Contacts page to the
rectangle of the About page itself,
in just the same way that we did
with the previous link from the
Home page. With that in place it’s
now possible to jump to the About
page from either of the others. As
this shows, it’s okay for the same
element to be the target of several
different links.

We also want both the Home
and About pages to link to the
Contacts page. We could connect
each link item individually, as we’ve
been doing so far, but the
extension offers a small shortcut
that can help us. If you call the
extension with more than two
objects selected, the last one is
used as the target, and all the
others are linked to it. This means
that we just have to select the first
“Contact” element (on the Home
page), then hold Shift while we click
on the second one (on the About
page), and continue to hold it while
we click on the target background
rectangle for the Contacts page.

With all three items selected
we’ll now use another little
shortcut, offered by Inkscape itself.
We know we don’t have to change
the single parameter within the
extension dialog, so we can just use

Extensions > Previous Extension to
run the extension directly, without
having to interact with the dialog.
The JavaScript is added to both our
menu links as one step. This
approach makes it quick and easy to
finish all the remaining links
between our three pages.

With that done, all that remains
is to save the file, reload it in the
browser, switch to full-screen (F11)
if needed, and click the fake links to
switch between all three pages of
our mocked-up website. Pretty cool
stuff, right?

Of course this is all well and
good if you’ve created your mock-
ups within Inkscape. You can easily
select the individual objects that
are to act as triggers. But what if
your “page” is actually a bitmap
image, exported from a paint
program or scanned from a sketch
on a napkin? Or it might be a more
complex Inkscape image, with your
objects nested deeply inside a
range of groups, making it tricky to
select both the trigger and the
target element at the same time. In
those cases, there’s a simple little
trick that can help you out: just
draw fresh elements over the top
of your page which will act as your
triggers and/or destinations.

Start with a simple shape with a
colored fill that covers your trigger
item completely. It doesn’t even
need to be a rectangle, if your
design calls for something more
complex. Give it a little opacity so
you can see what you’re doing as
you start to add more of them to
cater for every possible link in your
mock-up. Use the extension to add
the interactivity then, just before
saving, set the opacity way down on
these new shapes. You can set it to
zero to ensure they’re not visible on
the page at all, but that does make
it trickier to re-select them for
editing later. A useful trick is to set
their opacity to 1: this is usually so
transparent that there’s no hint of
them on the final page, but they’re
much easier to select in Inkscape
itself if they need to be modified in
future.

With this approach, it’s fairly
trivial to turn even a series of pencil
sketches into something that’s
interactive enough to work as a
proof-of-concept demo. Want to
improve the UI of your favourite
Open Source application? Before
wading in with a code editor, you
could take some screenshots, edit
them in The GIMP, and use this
extension to test out your ideas on

other users first.

I’m sure you can see how this
simple extension makes it very
quick and easy to create interactive
mock-ups. For a lot of situations,
this may be all that you need, but
next time I’ll take a look at some of
the problems presented by such a
simple system, and how they can be
addressed with just a little extra
effort.

Mark uses Inkscape to create comics
for the web (www.peppertop.com/)
as well as for print. You can follow
him on Twitter for more comic and
Inkscape content:
@PeppertopComics

http://www.peppertop.com

full circle magazine #186 25 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarrtt 112266

Last month, I looked at the Web >
Interactive Mockup extension

using a simple website mock-up. I
demonstrated how you can use this
to create a demo that works well
on a specific screen size. But even
though SVG files are scalable by
their very nature, this extension
doesn’t do a great job of producing
demos that will work across a
variety of devices. This is a
limitation we’ll try to address this
month, following on with the same
file I created last time, so make sure
you’ve read last month’s column
before pressing on with this one.

First, I need to manage your
expectations. Although we’ll be
trying to make our presentation
work better on different screen
sizes, there is a limit to what can be
done with this simple extension or
the small amount of code we’ll be
writing. All we’re aiming to do is to
make the output scalable – we’re
not going to be creating a fully
responsive mock-up where parts of
the design move around or change
appearance in order to suit mobile,
tablet, and PC displays from a
single file. Think of it instead as

creating a file that will work on
both a laptop and desktop PC, even
if the screens are slightly different
sizes.

Let’s begin by exposing the
problem we have. Last month we
created a mock-up that was
specifically sized at 1920px ×
1080px – the dimensions of a high-
definition screen. To display at that
size we loaded the file into a web
browser and pressed the F11 key in
order to remove the browser UI and
render the content full-screen. But
let’s see what the same file looks
like before the F11 button is

pressed, when the available
resolution for the SVG content is
smaller.

Vertically we can no longer see
the bottom of the page. The
available space to draw the image
has been reduced by the browser’s
UI, by the window’s title bar, and by
the top and bottom panels of my
Mate desktop environment.

Horizontally all the content fits,
because the browser isn’t showing
any scrollbars and the window
theme has thin borders, so almost
the whole width of the monitor is

available when drawing the
content. If I were to resize the
window, however, or open the
developer tools to one side, the
right-hand side of the image would
be cut off.

To make it easier to experiment
with different screen sizes, we’re
going to use the browser’s
developer tools to simulate the
page’s behaviour across a range of
screen sizes. These instructions are
for Firefox, but all modern
browsers have similar tools
available, and even the keyboard
shortcuts tend to be common
between them.
• Open the Developer Tools via the
menu, or by pressing F12.
• Switch to Responsive Design
Mode using the button at the top
of the developer tools (it looks like
a couple of rectangles,
representing a phone and a tablet),
or by pressing Ctrl-Shift-M.
• The screen content should switch
to some sort of mobile view.

You can use the controls at the
top to select specific devices to
emulate, and to switch between

full circle magazine #186 26 contents ^

HOWTO - INKSCAPE

landscape and portrait mode. For
our purposes, however, just drag
the handle at the bottom-right
corner of the screen around to
quickly try the page in various sizes
and aspect ratios. On Chrome and
Chromium, the handle may not be
visible: in that case you first need
to select “Responsive” from the
pop-up menu at the top of the page
area.

Now it should be pretty clear
that the content of the file is not
scaling to suit the window, and is
being cut off along the right or the
bottom (or both) depending on the
size of the content area.

The reason for this is pretty
straightforward. Inkscape requires
us to specify a page size when we
create a document, and in this case
we set it to our target size of

1920px × 1080px. When loading the
image into a web browser, however,
it’s trying to honour those
dimensions still, meaning that if the
available document size isn’t large
enough, the excess will just get cut
off. What we need is to replace the
width and height in the file with
something more dynamic –
something like “100%” or “auto”. Or
even to remove those fixed values
altogether and just let the browser
do the right thing. Unfortunately
none of these approaches work
within Inkscape’s Document
Properties dialog.

Although “%” appears as a unit
in many of Inkscape’s unit pickers,
the size pop-up in the Document
Properties dialog isn’t one of them.
Don’t get fooled by the “pc” unit –
that’s “picas” (1/8th of an inch).
Trying to clear the Width or Height

fields, or typing “auto” into them,
results in them being populated
with a value of 0.00001 instead.
Typing “100%”, with the units
appended to the number, just gets
converted to a value of 100, using
whatever units are selected in the
pop-up.

Although we can’t set the values
we want via the Document
Properties dialog, there are other
options open to us. If you’re
familiar with editing XML or HTML
then you could load the SVG file
into a text editor and remove or
change the “width” and “height”
attributes on the <svg> element
directly. Alternatively you can
achieve the same via Edit XML
Editor, by selecting the top entry in

the left-hand pane (the <svg>
element), and then editing the
attributes in the other pane.

Both these approaches work,
but they also have a drawback. If
you have reason to go into the
Document Properties dialog and
edit other fields in there, you may
find that these attributes return
with their original values, leaving
you playing a constant game of cat-
and-mouse, having to remember to
check or edit them just before
saving each time you edit the file.

Instead I propose a more
elegant solution. We know Inkscape
wants some ‘real’ units to define its
page size. But we also know that
we want to change those units to

full circle magazine #186 27 contents ^

HOWTO - INKSCAPE
something more abstract when the
page is viewed in a web browser.
My solution, therefore, is to
dynamically make that change
when the image is loaded into the
browser, by including a small
snippet of JavaScript in the
Inkscape file. Don’t worry, it’s not
as tricky as it sounds…
• Open File Document Properties.
• Switch to the “Scripting” tab.
• Within that, switch to the
“Embedded scripts” tab.
• There will probably already be an
entry for “inkwebjs” which you can
ignore.
• Click on the “+” button to create a
new embedded script. It will appear
in the list with a random ID.
• Select the new entry in the list.
• Put the cursor into the “Content”
field, then enter the lines of code
below.

The code itself consists of two
nearly identical lines. We need to

access the <svg> element first:
since this is the main container for
the whole file, it can be accessed as
“document.documentElement” in
JS (make sure you type in the right
case). We then need to call the
setAttribute() method, telling it the
name of the attribute we wish to
set or update (“width” or “height”),
together with the new value it
should have (“100%”). The
complete code, therefore, looks like
this:

document.documentElement.setA
ttribute("height", "100%");

document.documentElement.setA
ttribute("width", "100%");

Because that code isn’t inside a
function, it will automatically run
when the page loads in the
browser. Job done, and we don’t
need to keep remembering to
adjust any values each time we save
an edit to the file.

That solves one problem: our
content now scales to suit the
width and height of the browser,
while still maintaining its original
aspect ratio. But it also exposes
another issue with the way this
extension works. You may have
already seen the problem when
playing with the resize handle in the

responsive view: if the window size
is tall enough, then we can also see
some corners of the other pages in
our mock-up (outlined in red in this
image).

The reason for this is that our
new width and height values tell
the browser how to size the main
content (the bit inside the
viewBox), but the browser will
happily render anything outside
that area, if there’s space on the
screen to do so. We’re simply
seeing the parts of our document
that fall outside the current
viewBox region. There’s an obvious
and easy fix for this: just move the
pages further apart in the original
document. If they’re way outside

the bounds of the viewBox then
they’re far less likely to appear on
screen when they shouldn’t.

This is, of course, something of a
band-aid. Although it works in most
practical cases, there will always be
some extreme aspect ratio which is
sufficient for the other pages to
just creep in at the edge. For most
situations it’s probably good
enough, but it would be better if
we could have a solution that caters
for all cases.

What we require is some more
JavaScript that hides all the pages
in our mock-up except the one
we’re currently viewing. This
requires us to have some simple
way to define what counts as a
“page” – and it strikes me that
simply putting each page onto a
separate layer is the easiest way to
do that. Yes, I know Inkscape 1.2
has multi-page support, but using
layers will work for older releases
as well. In the case of our demo file,
we need three top-level layers, one
for each page. These will all be
direct children of the <svg>
element. To make our code more
readable, we’ll change the IDs for
the layers to “home”, “about” and
“contact” using the XML editor.

full circle magazine #186 28 contents ^

HOWTO - INKSCAPE

To simplify the code we have to
write, we’ll also move all the layers
back onto the canvas, stacking
them on top of each other. That
means you’ll have to turn them on
and off in order to edit the content,
but it also means our JS code only
has to deal with the visibility of the
layers, not with also moving the
viewBox around.

The code itself is a little more

complex than the two lines we
created earlier, though not by
much. We’ll want a function that
accepts a layer ID, and which turns
off all of the layers before turning
on the one we’ve provided. We’ll
also need to call that function when
the page loads to ensure the first
layer is visible. Finally we’ll call that
function from each of the
“interactive” elements in our mock-
up, by attaching the function call to

an onclick event or one of the other
interactivity events we’ve seen
before.

Let’s begin by adding the
function we need. Once again open
the Document Properties dialog,
select the “Scripting” tab, the
“Embedded scripts” tab, and then
the script we created earlier.
Append a blank line or two, then
add the following code (shown
below - again, remember it’s case-
sensitive)

The first line in the body of this
function uses the
querySelectorAll() method to
search the document for any
elements that match the supplied
CSS selector. The gobbledegook in
quotes actually means “find any <g>
elements that have an attribute
called ‘groupmode’ (in any
namespace), with a value of ‘layer’,
but only if they’re an immediate
child of an <svg> element”. This is
good enough to pull out only our

top-level layers, without
accidentally catching any sub-layers
or other <g> elements. The second
line then iterates over the
collection we’ve just created, hiding
each of them by setting their CSS
“display” property to “none”.

The last two lines are similar, but
only deal with a single element.
This time we use querySelector()
(without the “All”) to just find an
element with an id that matches
the one we’ve provided. In CSS
terms an ID starts with a “#”
character, so we’ll add that to
construct the selector, meaning we
can just supply a page name, such
as “home”, rather than having to
pass “#home”. The last line sets the
CSS display property for this one
element back to “inline” in order to
make it visible.

Now we need to add another
line that will call this function to
make one layer visible by default
when we load the file into the
browser. This needs to happen after
a short delay (we’re using 100ms)
to give the page a chance to load
and settle down before we start
poking with it. Append a line like
this at the end, after the closing
curly brace, replacing “home” with
the name of your own initial layer.

function showLayer(id) {
 const layers = document.querySelectorAll("svg > g[*|groupmode=layer]");
 layers.forEach(layer => layer.style.display = "none");

 const layerToShow = document.querySelector("#" + id);
 layerToShow.style.display = "inline";
}

full circle magazine #186 29 contents ^

Mark uses Inkscape to create comics
for the web (www.peppertop.com/)
as well as for print. You can follow
him on Twitter for more comic and
Inkscape content:
@PeppertopComics

HOWTO - INKSCAPE

setTimeout(() =>
showLayer("home"), 100);

To avoid any visible glitching, it’s
also worth ensuring that your
default page is the topmost layer
within Inkscape, and is not hidden.

Now all that remains is to add a
call to this function to each of our
interactive elements. We’ll have to
do this one-by-one, without the
convenient shortcuts we had when
using the extension for adding
multiple items at once. That makes
it a little more fiddly, but I think it’s
worth it for the better end result.
• Select an interactive element.
• Open the Object Object
Properties dialog.
• Expand the “Interactivity”
section, if necessary.
• Choose the field for the type of
interactivity you want (usually
“onclick”).
• If there’s already code in there
from the Interactive Mockup
extension, remove it (this will be a
call to the InkWeb.moveViewbox()
function). We don’t actually need
anything from this extension any
more!
• Type in a call to the showLayer()
function, using the ID of the layer
that should be displayed when the

element is clicked – e.g.
showLayer("home")
• Repeat for each interactive
element on each page. Hint: you
don’t need to close and reopen the
dialog, it’ll update as you select
each element.

Save the file and load it into your
browser. If you’ve done everything
correctly you should now have an
interactive mock-up that scales
correctly for any screen size, and
doesn’t suffer from other pages
peeking into view. All it took was a
few lines of JavaScript, and a single
function call added to each
interactive element. And to clarify,
this is a replacement for the
Interactive Mockup extension, not
an enhancement of it: you can add
this JS to a new Inkscape file to
create interactive mock-ups
without ever going near the
extension.

Using the extension is definitely
simpler, especially if you’re not
comfortable with JavaScript. If you
know you only have to target one
specific screen size, then that’s
probably the approach for you. But
if you need the flexibility of scaling
to suit any screen size, or prefer to
keep all your pages stacked in
layers rather than distributed

across the canvas, these few lines
of JS may be just what you need to
create an interactive demo that
suits your needs.

http://www.peppertop.com

full circle magazine #187 24 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarrtt 112277

Over the past two articles, I’ve
introduced the Web >

Interactive Mockup extension, and
gone on to show how it’s possible
to create the same effect – and
with fewer problems – with just a
minimal amount of JavaScript. This
time, I’ll be finishing this project by
adding a little more code that will
demonstrate some additional
mock-up capabilities that simply
aren’t possible using the extension.

As a reminder, so far I’ve created
a mock-up design consisting of
three layers, each representing a
different page in a website (which
could equally well have been a
design for an app, tutorial or
presentation). By stacking the
layers on top of each other, the JS
code simply has to hide all the
layers, then re-show the right one
when the mock UI is clicked. This
code is stored in the Inkscape
document, and accessed via File >
Document Properties, then the
Scripting tab, the Embedded Scripts
tab, and finally clicking on the
randomly-generated Script ID in the
list. Your code will appear in the
Content pane at the bottom of the

dialog – which is unfortunately not
resizeable (you may wish to copy/
paste between Inkscape and a text
editor to make it easier to modify
the code). After last month’s
additions, the code looks like that
shown above.

Within each interactive element,
a single line of JS triggers the
change to a different ‘page’ of the
demo. These can be found by right-
clicking on one of the elements,
selecting Object Properties, then
expanding the Interactivity section
at the bottom of the dialog. For my
examples, I’m just triggering
changes on mouse clicks, so the
‘onclick’ field contains something
like this:

showLayer("about")

That’s all we needed to do in
order to create an interactive mock-
up that scales with the size of the
web browser, and doesn’t allow any
non-active pages to be visible. Now
let’s push things a little further
with the addition of some new
features.

When looking at the pages of
our mock website, it’s clear that
they have some common elements
– in this case the whole header
section. Wouldn’t it be nice if we
could keep those on a separate
layer, so that any changes to those
elements can be made in a single
place, rather than having to apply
them to each separate layer in our
file? This is the sort of thing for
which many applications use a

‘Master’ layer. Although not as
politically charged as the use of
‘master-slave’ relationships in the
computing world, it’s nonetheless a
term that can offend people, and
which is tending to be phased out.
So rather than propagate a
troublesome word for no real gain,
I’ll be using the term ‘Main layer’.

Our first step, therefore, is to
split the file into a single Main layer,
plus one additional layer for each
page. The Main layer will contain all
the common elements, and the
others will contain just the page-
specific parts. We therefore want
our Main layer to be at the bottom
of the z-stack, and to remain visible
at all times. Here’s how our existing
three layers are split into the four
we now need:

document.documentElement.setAttribute("height", "100%");
document.documentElement.setAttribute("width", "100%");

function showLayer(id) {
 const layers = document.querySelectorAll("svg > g[*|groupmode=layer]");
 layers.forEach(layer => layer.style.display = "none");

 const layerToShow = document.querySelector("#" + id);
 layerToShow.style.display = "inline";
}

setTimeout(() => showLayer("home"), 100);

full circle magazine #187 25 contents ^

HOWTO - INKSCAPE

On the left we have the previous
three pages. On the right we now
have our Main layer at the bottom,
with the three content layers
above. I’ve added a green border
around each of the content layers

to indicate their extents: they each
now have a transparent
background, so without that it
wouldn’t be so clear exactly how
they relate to the positions in the
old pages. These green borders are
a temporary addition while

developing the mock-up, and are
removed before the layers are
actually used. Additionally,
although I’ve spread the pages out
for this image, in practice they’re all
stacked on top of each other within
the document’s viewBox, as before.

By showing the Main layer, plus
one of the others at a time, we can
therefore reproduce the same
appearance as the three layers in
the old version. All we need to do
now is to modify our code to do the
same thing on our behalf. To make
the new code a little more
readable, we’ll first use the XML
editor to change the ID of the new
layer to ‘main’, in the same way that
we changed the layer IDs
previously. When viewed in the
XML editor, the top level of our

document now looks something
like that shown above.

Looking back at our JavaScript
file from earlier, we still want our
function to perform the same basic
task: hide all the layers, then show a
specific one. Except now we also
want it to show a second layer at
the same time. It’s these two lines
that are responsible for re-showing
the specified layer in the existing
code:

const layerToShow =
document.querySelector("#" +
id);

layerToShow.style.display =
"inline";

full circle magazine #187 26 contents ^

HOWTO - INKSCAPE
We could simply add a similar

pair of lines, hard-coding the ID in
the querySelector() call as "#main".
That would definitely do the job,
but it’s not very flexible. What if we
want to show two ‘main’ layers
later, perhaps to separate the text
from the graphic elements? To give
us this extra flexibility let’s create
an array of layers that we want to
show, then loop over them to turn
them all on. If you’re not a
programmer you may not be
familiar with arrays: for our
purposes you can think of them as a
special type of variable that can
hold a list of things. For this simple
mock-up, our list will always contain
‘main’ and the id that was passed
into the function, but you should be
able to guess how you might
extend it to include ‘main-text’ and
‘main-graphics’:

const layersToDisplay =
["main", id];

Now we need to step through
the array, pulling out one item at a
time to work with. As we pull each
of them out (using a forEach()
loop), we get to assign the value to
a variable. By naming this variable
‘id’, we are able to reuse our
existing code for finding and
showing the layer. The end result is

something very similar to the code
that was previously at the end of
the showLayer() function, just with
a little more wrapped around it
(shown above).

The last thing we need to do is
to make sure that all the clickable
elements still call the showLayer()
function, passing the correct ID,
after the re-working of layers that
we did earlier. It’s particularly
important to double-check any
items that you’ve moved to the
Main layer. Once you’re happy, load
the page into a web browser and
ensure each of the elements
functions as you expect it to when
you click on it – if any don’t, then
double-check the code associated
with them.

So far, so good. But on trying
out your interactive mock-up, you
may have noticed that the mouse
pointer doesn’t change to indicate

that elements are clickable. It’s a
minor visual thing, but we can
definitely improve it. There are
various ways to tackle this, but they
all end up with us needing a line of
CSS that tells the browser what
cursor type to use. We want this to
apply to all the elements with an
‘onclick’ handler. In our SVG, these
are all implemented using ‘onclick’
attributes directly in the XML
content – which means we should
be able to add a style rule using an
‘[onclick]’ selector (matches any
element with an ‘onclick’ attribute).
That sounds like a perfect use for
Inkscape’s ‘Selectors and CSS
dialog’, right?

Wrong. As I mentioned in part
112 of this series, the dialog
doesn’t recognise the attribute
selector syntax. An alternative is to
create a suitable <style> block
directly in the XML, either using
Inkscape’s built-in XML editor, or by

editing the SVG file in a text editor.
Both of these approaches are a
little awkward, especially if you’re
not already an XML aficionado.
Instead, let’s take a similar
approach to the one we used for
setting the height and width
attributes: we’ll write a short bit of
JavaScript that will manipulate the
document directly when it’s loaded
into the browser. We want this code
to run once, on page load, so the
following snippet should be added
to the JS outside the showLayer()
function. Just appending it to the
bottom of the existing code is
probably the easiest option.

let css =
document.createElementNS("htt
p://www.w3.org/2000/svg",
"style");

css.textContent = "[onclick]
{ cursor: pointer; }";

document.documentElement.appe
ndChild(css);

function showLayer(id) {
 const layers = document.querySelectorAll("svg > g[*|groupmode=layer]");
 layers.forEach(layer => layer.style.display = "none");

 const layersToDisplay = ["main", id];
 layersToDisplay.forEach(id => {
 const layerToShow = document.querySelector("#" + id);
 layerToShow.style.display = "inline";
 });
}

full circle magazine #187 27 contents ^

HOWTO - INKSCAPE
The first line of this code creates

a new <style> block (in the SVG
namespace) and assigns it to the
‘css’ variable. The second line just
inserts a single CSS rule into the
block: if any element has an
‘onclick’ attribute, the mouse
cursor should be set to ‘pointer’
mode when it moves over the
element. Finally, the third line
inserts our new style block as a
child of the <svg> element, after all
the other content, where the
browser will pick it up and
automatically apply the rules.

There’s one last thing I’d like to
do to really make this mock-up
work effectively. You may have
noticed that each page includes a
‘hamburger menu’ at the top-right.
Let’s see if we can make that work,
at least to some extent.

One approach would be to
create six pages instead of three: a
second version of each page would
simply duplicate the original, but
with the addition of the open
menu. If you were solely using the
Interactive Mockup extension, then
that is pretty much your only
option. But we’re already up to our
elbows in real JavaScript, so we
have more subtle tools at our
disposal.

We’ve already discovered that
we can have more than one layer
visible at a time, and rely on
transparency to ensure that all the
right parts are displayed at once.
This is, after all, what we did when
we added the Main layer. So why
not do the same with the menu? In
this scenario each ‘page’ consists of
the Main layer, the relevant page
layer, and an optional menu layer
that sits on top of them all. Let’s
begin by designing the menu as a
new layer at the top of the z-stack
(shown above).

Each of the first three entries in
the menu carries the same onclick
handler as the equivalent on the

main layer (in fact I copied and
pasted the objects from there).
We’ll deal with the ‘Sign Out’ option
later. Now the question is how to
make the menu pop-up when we
click on the hamburger button – but
that’s really not so tricky. If we use
the XML editor to give the ‘Menu’
layer an ID of ‘menu’, then you can
probably guess what this function
(shown bottom right) will do.

All we need to do now is to call
the showMenu() function from the
onclick handler of the hamburger

menu that lives on the Main layer.
We’re not calling the existing
showLayer() function, so none of
the existing layers is hidden. All
that happens is that the Menu layer
is displayed in addition to the
others that were already visible –
exactly what we wanted.

As it stands, the mock-up is good
enough for demo purposes, but
perhaps a little clunky in parts.
When the menu is ‘opened’, for
example, there’s no way to ‘close’ it
other than to navigate to one of the
pages. One possible enhancement
might be to add an almost-
transparent rectangle to that layer,
behind the main content. A suitable
closeMenu() function, and an
onclick handler added to the
rectangle, would allow you to click
outside the menu to close it. I’ll
leave that one as an exercise for
the reader.

And what of that ‘Sign Out’
option? You could create another
layer containing a mocked-up sign-
out dialog, but do you really need
to? Once you’re comfortable with

function showMenu() {
 const layerToShow = document.querySelector("#menu");
 layerToShow.style.display = "inline";
}

full circle magazine #187 28 contents ^

Mark uses Inkscape to create comics
for the web (www.peppertop.com/)
as well as for print. You can follow
him on Twitter for more comic and
Inkscape content:
@PeppertopComics

HOWTO - INKSCAPE
showing and hiding things in
JavaScript, it’s always tempting to
go a little too far, and turn your
‘interactive mock-up’ into
something approaching a full UI
demonstration. Sometimes that
might be appropriate, but often it’s
better to do the bare minimum you
can to help people to visualise how
the final website or application
might work. Too much detail or
functionality can actually be a
distraction, and can even inhibit
further discussions or ideas. In this
case, therefore, the ‘Sign Out’
option will simply get an onclick
handler containing this:

alert("You are now signed
out");

With that addition our simple
mock-up is complete. The key thing
to take away is that the code for
doing something like this probably
isn’t as complex as you thought.
While the Interactive Mockup
extension can definitely be useful,
you can easily get more
functionality, and certainly a lot
more flexibility, by just learning
enough JavaScript to be able to
target some elements in the page
and selectively change their
‘style.display’ properties.

If you do want to reproduce
something like my mock-up,
perhaps as a bit of practice to get a
feel for the JS side of things, here’s
the complete code we ended up
with in the Document Properties
dialog for your convenience (see
above).

In addition to that, each
clickable element on the page has a
single function call in the ‘onclick’
field of the ‘Interactivity’ section at
the bottom of the Object > Object
Properties dialog. In most cases,
this was just a call to the

showLayer() function, passing in
the name of the page to display
(e.g. showLayer("contact")). In the
case of the hamburger menu, it was
a call to the showMenu() function.
And our final addition was a call to
the browser’s built-in alert()
function for the ‘Sign Out’ option.

When you take a step back and
look at it, that’s really quite a lot of
functionality in this interactive
mock-up, for not a huge amount of
code. But we’re done with this now
– and with ‘Interactive Mockup’
being the last of the new

extensions, we’re done with the
features that were added to
Inkscape 1.x. Next month, I’ll start
what is sure to be a long series on
the new features and additions in
Inkscape 1.2.x.

document.documentElement.setAttribute("height", "100%");
document.documentElement.setAttribute("width", "100%");

function showLayer(id) {
 const layers = document.querySelectorAll("svg > g[*|groupmode=layer]");
 layers.forEach(layer => layer.style.display = "none");

 const layersToDisplay = ["main", id];
 layersToDisplay.forEach(id => {
 const layerToShow = document.querySelector("#" + id);
 layerToShow.style.display = "inline";
 });
}

function showMenu() {
 const layerToShow = document.querySelector("#menu");
 layerToShow.style.display = "inline";
}

setTimeout(() => showLayer("home"), 100);

let css = document.createElementNS("http://www.w3.org/2000/svg", "style");
css.textContent = "[onclick] { cursor: pointer; }";
document.documentElement.appendChild(css);

http://www.peppertop.com

full circle magazine #188 33 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarrtt 112288

After months of looking at the
features added and changed in
Inkscape 1.1.x, it’s finally time to
move on to the 1.2.x series. As I
write, the project has just
announced the second point
release in this series, which
features a number of bug-fixes.
Inkscape 1.2.2 can be downloaded
from the project’s website (https://
inkscape.org/) as usual, with Linux
versions available as an AppImage,
Snap, or via a PPA. I like to keep
multiple versions installed – which
is a must if you write a monthly
column about the program – so for
the past few releases, I’ve tended
to use the AppImage. In theory,
however, it shouldn’t make much
difference which you use.

This month, I’m going to take a
look at a couple of the more

significant UI changes that have
taken place with version 1.2. First,
however, I’m going to mention a
part of the UI that, unfortunately,
hasn’t changed at all: a problem
with the icon sets.

When icon themes were added
to Inkscape, it seemed like a great
opportunity to provide a symbolic
icon set for those people who
prefer stark simplicity, while
keeping the older, more colourful
images for users who find it easier
to distinguish between different
icons if they’re not all similarly
coloured. I fall into the latter
category, so was disappointed
when 1.1 presented me with a
mixture of flat, symbolic icons
alongside the colorful ones –
replacing some of the old
standards in the process.
Unfortunately. version 1.2

continues in the same manner (top
left)

As you can see, the system-level
operations – loading, saving,
printing, and clipboard – all appear
as flat symbolic icons, while other
tools and buttons get the more
colourful icons of the past. This
screenshot was taken with the
‘Hicolor’ theme selected (Edit >
Preferences > Interface > Theming
> Change icon theme), but a similar

problem occurs with the ‘Tango’
theme. If you find yourself in a
similar situation, then try switching
to the ‘Use system icons’ option: on
my Ubuntu Mate 20.04 box, this has
allowed me to return to a
consistently colorful set of icons in
the toolbars (bottom left)

On the subject of icons,
following the Theming section in
the Inkscape preferences is a new
entry labelled ‘Toolbars’. This panel

full circle magazine #188 34 contents ^

HOWTO - INKSCAPE
provides a number of extremely
welcome controls for changing the
size and content of the main
toolbars in Inkscape.

First of all are a group of toggle
buttons that allow you to turn each
of the individual drawing tool icons
on and off in the main toolbox. This
is great news for anyone on a small
screen who wishes to slim down the
number of icons to something that
better fits the available space. It’s
also useful as a means to hide
infrequently used tools more
generally – at last I can prevent that
pesky 3D Box tool from taking up
space, and I can hide the Pen and
Calligraphy tools to stop me
inadvertently clicking them when I
meant to choose the Bézier tool.
When hiding icons, make sure you
know which tool is which, as they all
share the same generic tooltip in
this dialog. If you do choose to turn
off some icons, those tools aren’t
lost to you: you can still access
them via their keyboard shortcuts.
It’s a shame, however, that there’s
not a shortcut to temporarily
display all the icons, which would
let you pare the toolbox down to
the most commonly used features
while still giving you an easy way to
get to the less frequently used
ones.

Below these toggles are
separate sliders for adjusting the
size of the Toolbox (the one on the
left, with the tools in), and the
Control bar (the two-row toolbar
along the top of the window). Being
able to adjust these independently
is a nice touch.

Finally, there’s a control to
switch between ‘Simple’ and
‘Advanced’ modes for the Snap
controls bar – but this really isn’t
the place you want to visit if you
want to toggle that option… at
least not until version 1.3 comes
out. But to understand that
statement, we first need to look at
what’s happened with the Snap
controls in Inkscape 1.2.

The snap toolbar has been a part
of Inkscape since the beginning of
the project. By default, it appeared
on the right-hand side of the
window in the past few releases,
but selecting View > Custom would
place it at the top. This option has
been removed from version 1.2
because the toolbar itself no longer
exists. Instead, the snap controls
are now hidden in a pop-up menu at
the top-right of the Inkscape
window.

The controls themselves are so
unremarkable in appearance that
I’ve had to include the window
border and the end of the
horizontal ruler in that screenshot,
to help you orient yourself as to
where these UI elements appear.
The button on the left is a simple
toggle to turn snapping on and off
as a whole – the same effect as
using the ‘%’ keyboard shortcut. To
the right of that is a pop-up menu
for choosing which options should
apply when snapping is enabled,
and it’s here that things get a little
more interesting. Let’s look at this
menu in its default, ‘Simple’ mode:

First, we have a checkbox that
duplicates the functionality of the
snapping toggle, or the ‘%’
shortcut. Also having this option in
the menu itself means one less
mouse-click if you need to enable
snapping and adjust the options at
the same time. But the options you
can modify are clearly somewhat
limited: you can just turn various
classes of snapping on and off – for
snapping to bounding boxes, nodes,
and ‘alignment’ – but you’re not
given any details about which snap
targets are actually enabled for
each of those three entries.

The ‘alignment’ option is a new
addition, which makes it easier to
position objects relative to others
by displaying temporary alignment
guides and optional dimensions as
you drag objects around the canvas.

Note that the dimensions aren’t
enabled by default – usually you
just get the orange and red guides
shown in the screenshot. For users

full circle magazine #188 35 contents ^

HOWTO - INKSCAPE
who just want things to align neatly
but aren’t worried about the
specific dimensions, that’s fine. But
if you do want to see the numbers
as well, you need to enable the
‘Show snap distance in case of
alignment or distribution snap’
option in Edit > Preferences >
Behaviour > Snapping. Excuse the
pun, but couldn’t the developers
have come up with a more ‘snappy’

title for that option?

You’ve undoubtedly noticed the
‘Advanced Mode’ link at the bottom
of the pop-up. Clicking that reveals
something more like the snap
controls bar from versions past
(shown left), with many, many
snapping options to choose from.

I won’t describe all these options
– most of them have been covered
previously in this series. If you want
complete control over what parts of
your drawing should act as snap
targets, then this is the place to
come. And if you just want to return
to the more straightforward (and
limited) set of three toggle buttons,
the ‘Reset to simple snapping
mode’ link at the bottom of the
pop-up will do that.

But that’s where the first of my
issues with this UI arises. Clicking
that link doesn’t just switch you
back to the simpler view, it also
resets your snap settings. You may
have spent some time setting up
just the right combination of snap
targets for the way you work, but
switch back to simple mode and all
your selections are thrown away.
You might assume that toggling,
say, the Nodes button in simple
mode would do the same thing as

toggling the Nodes checkbox in
advanced mode – i.e. just turn your
entire combination of options on or
off. But that’s not the case: as soon
as you switch back to Simple mode
your individual combination of
choices is lost entirely and replaced
with whatever defaults the
developers have chosen.

Simple mode also fails to offer
options for snapping to ‘Grids’,
‘Guide lines’ and ‘Page borders’ – all
fairly common snap targets that
beginners might find useful, but
which have to be accessed via the
advanced mode. This means that,
for many users, a trip to advanced
mode will sometimes be a
necessity, without it being obvious
that returning to simple mode for
day-to-day use will lose their
settings.

I quite like the idea of a pop-up
for snapping options. It’s certainly a
lot clearer to have a title alongside
each option, rather than the slow
hover-for-a-tooltip that was often
required over almost every option
in the toolbar from earlier versions.
But I feel a better UI would have
been to make the sections in the
advanced mode collapsible. That
would allow users to reduce the list
down to the main toggles for a

simpler interface, but let them
expand each section out for full
control when needed. Here’s a
quick mock-up of how it might
appear in practice, with a couple of
the sections expanded.

With what’s currently in
Inkscape 1.2, however, I really can’t
recommend the use of Simple
mode at all. If you need to use
snapping then it’s almost inevitable
that you’ll need at least one option
from the Advanced menu at some
point, so my advice at the moment
is to only use the Advanced mode,
and never switch back to Simple
mode at all. It may seem more
complex initially, but it still beats
having your selections thrown away
without warning.

full circle magazine #188 36 contents ^

HOWTO - INKSCAPE

So, back to the conundrum of
the ‘Snap controls bar’ option in
Edit > Preferences > Interface >
Toolbars. I’d pretty much ignore it,
use the link at the bottom of the
pop-up snap menu to enable
advanced mode, and then leave
things alone. But if you don’t like
the new pop-up menu at all, it’s
worth knowing that the option to
switch back to an old-fashioned
snap toolbar is probably coming in
version 1.3 – at that time the
setting in the preferences dialog
will gain a third option to let you
use the toolbar rather than the
pop-up.

While talking about snapping,
it’s worth pointing out a few more
snap-related changes that have
taken place in 1.2. One relatively
minor difference is that the snap
settings are no longer stored as
part of the document itself, but are
stored globally for Inkscape as a
whole. To be honest I doubt this
change will really affect anyone in
any practical way, and it makes
sense to take that Inkscape-specific
metadata out of the SVG file.

One less well-known feature
that has been removed is the ability
to set snap tolerances for some

individual snap types. It used to live
in the ‘Snap’ tab of the Document
Preferences dialog, but given that
snapping is no longer a per-
document feature, that entire tab
has been removed. In theory it was
nice to be able to prioritise certain
snap types, by giving them a larger
target radius so that they would
kick in as your pointer wandered
towards the target without
requiring too much accuracy in your
aim. In practice, however, it was
likely a rarely used feature that
won’t really be missed.

On the plus side, the removal of
that tab has also meant that a
couple of rather hidden snap target
types have now been promoted
into the pop-up menu instead.
Previously the options for snapping
perpendicularly and tangentially
were in the Document Preferences,
but now live as part of the ‘Nodes’
section in the Advanced pop-up.
But that adds yet another reason to
only use the Advanced mode, and
skip the Simple option entirely.

Next month, I’ll continue to look
at – and offer an opinion on – some
of the other UI changes that have
taken place in the program with this
release.

Mark uses Inkscape to create comics
for the web (www.peppertop.com/)
as well as for print. You can follow
him on Twitter for more comic and
Inkscape content:
@PeppertopComics

http://www.peppertop.com

