
full circle magazine #189 30 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarrtt 112299

Aside from the snap controls
that I described last month, at

first glance it may not look like
much has changed in the main
Inkscape window with the release
of version 1.2 – apart from the
welcome return of these zoom
buttons to the main Control bar, of
course:

Observant readers may notice
that not only have the ‘Zoom to fit
selection’, ‘Zoom to fit drawing’,
and ‘Zoom to fit page’ buttons
reappeared, but they’re
accompanied by a new sibling.
Clicking this fourth button will
center the page in the window, but
without changing the current zoom.
This can be useful when you’ve lost
your way in a drawing, either
because you’ve zoomed in or out
too far, or have gone a bit wild with
the pan option.

A less obvious addition to the
main window is a change to the
toolbox. Last month, I looked at the

new preferences that allow you to
turn individual tool icons on and off,
or to change their size. But those
are not the only changes to the way
these buttons are displayed. It’s
now possible to adjust the width of
the toolbox by dragging the right-
hand separator. There’s no obvious
visual affordance for this (i.e. a
‘handle’), but if you move the
mouse slowly over the dividing line
between the toolbox and the ruler
(or canvas, if you have rulers
hidden), your mouse pointer will
change to indicate where you can
click-and-drag. This allows you to
transition seamlessly from the
classic vertical list of icons, to a
squarer layout in which each group
of buttons occupies its own row –
or, indeed, something in-between if
you prefer.

Personally I think that the one-
row-per-group view is rather
wasteful, as it’s not possible to
dock other dialogs in the empty
space below the icons. But I can
certainly see the benefit of
changing to two columns if you’re
working on a screen with limited
height, but still want access to all of

the icons rather than turning some
off.

One thing to note is that it’s
possible to drag the divider the
other way, to collapse your toolbox
down until it’s no longer visible.
That’s not the same as using the
View > Show/Hide > Toolbox menu
entry – that menu will still indicate
that the toolbox is visible, even
though you can’t see it. To avoid
confusion, I suggest not collapsing
the toolbox by dragging the
separator: if you want to hide it,
use the menu entry instead. If
that’s something you do regularly,
then you can assign a keyboard
shortcut to the menu option via
Edit > Preferences > Interface >
Keyboard. It’s in the ‘Canvas
Display’ section of the keyboard
shortcuts.

Once again, observant readers
may notice the addition of a new
icon to the end of the toolbox. This
is for managing multiple pages in
an Inkscape document, which is
such a major new feature that I’ll be
covering it separately in future.

full circle magazine #189 31 contents ^

HOWTO - INKSCAPE
There’s been one other

significant change to the main
window but, like the resizeable
toolbox, it’s not immediately
obvious that anything is different.
The color palette, at the bottom of
the window, has seen a major
overhaul. Most of the changes take
place towards the right of the
palette, where you’ll find a pair of
up/down buttons, and a menu
button.

We’ll skip the up/down buttons
for now, and go straight to the
menu button. Users familiar with
earlier releases may know that
there’s been a pop-up menu
hanging around in this corner for a
long time, allowing you to switch
between different palettes and
adjust a few settings related to the
display of the swatches. The old
design was a text-only menu, with
some submenus providing a limited
selection of options (e.g. None/
Solid/Wide for the border around
each color swatch). The new menu
is a richer UI widget, allowing for a
small thin-line preview of each

palette – which makes it much
easier to pick the right one. This
image shows the old and new
menus, for comparison.

The various options for
configuring the display of the
palette have now been moved into
a single pop-up which is opened via
the ‘Configure…’ option at the
bottom of the menu.

The options in here are pretty
self-explanatory. ‘Tile size’ sets the
basic size for the swatches, though
the actual height and width will
vary based on the aspect ratio. I’ll
gloss over the fact that the ‘Aspect’
slider runs from -1.0 to 1.0 (that’s
not really how aspect ratios work),
and just state that negative values
make the swatches taller than they
are wide, positive values make
them short and fat, and zero makes
them square. The nice thing about
all the controls in this pop-up is that
you can see their effect on the
swatches dynamically as you
change them, so it’s not worth
getting too caught up in the
specific values – just drag the
sliders until the palette looks the
way you want it to.

The ‘Stretch to fill’ option is a
little odd. Ticking it disables the
Aspect slider entirely, which in
‘normal’ UI terms should really
mean that the checkbox is put
above the slider to indicate the

parent-child relationship between
them. That’s not what makes it odd
though: the weird thing is that it
really does what it suggests it will
only for palettes with few entries.
Let’s start by looking at a case
where it does work: the very limited
color set of the ‘Android icon
palette’. Here’s how that palette
appears with the ‘Stretch to fill’
option disabled (top) and enabled
(bottom).

It doesn’t take a genius to see
that the ‘Stretch to fill’ option has
stretched the individual swatches
to fill the available space. No big
surprises there – it’s exactly what
you would expect an option with
that name to do. But what happens
if there are a larger number of
colors in the palette – something
like the ‘Blues’ palette, for example.
Here’s how that palette appears
with the ‘Stretch to fill’ option
disabled (top) and enabled
(bottom).

If you’re struggling to spot the

full circle magazine #189 32 contents ^

HOWTO - INKSCAPE

difference, you’re not alone. In
both cases, the swatches actually
extend over three rows (on my
screen), with those up/down
buttons being used to switch
between them (you can also use
the scroll wheel on your mouse, if
you prefer). But clearly the
swatches haven’t been made
narrower in order to fit them all in
the available space, as you might
expect or want. ‘Stretch to fill’ very
specifically means ‘Stretch’ and not
‘Compress’.

Perhaps you’re thinking that
Inkscape is just being sensible, as
there are too many colors in that
palette to fit on one row in a usable
way. Not so: unchecking that option
and manually setting the tile size to
11 and the aspect to -0.7 is enough
to get the entire palette to fit in a
single line.

Moving on from the
inconsistencies of stretching

swatches, the ‘Border’ option
adjusts the amount of space around
each swatch. If you want your
palette to look like a continuous
gradient of color (assuming the
tones are so arranged), then set
this to zero. Higher values add more
space around each swatch, which
may be useful to avoid mis-clicks, or
simply to ensure each swatch
appears as an individual item rather
than blending with its neighbours.

The final option, ‘Rows’, exposes
what I think is the most significant
flaw in the new palette interface.
When the number of swatches is
simply too large for them all to
appear in the available space, they
overflow onto multiple rows. You
can then scroll through them using
the up/down buttons or the mouse
wheel, as I described above. The
‘Rows’ control determines how
many rows can be displayed in the
palette area – basically, how tall the
palette area is. This can allow you to

display an entire palette at once,
rather than having to use the up/
down buttons to access them all.
This image shows the difference
between Rows=1 and Rows=5 when
using the Inkscape Default palette.

If you’re the sort of person who
wants to see all the colors in the
palette, all the time, this might be
fine. But what if you’re also the sort
of person who switches between
different palettes, depending on
your needs? Here’s how the palette
area looks when you’ve got Rows=5
but you’ve selected the Android
Icon Palette.

That’s a lot of wasted space.
Enabling the ‘Stretch to fill’ option
doesn’t help much either, as that
only stretches the swatches
horizontally, and does nothing to
fill the additional blank rows. The
‘Rows’ parameter sets a fixed
number of rows to display, even if
fewer rows would make more
sense. It would be nicer, I think, to
have the number of displayed rows
adjust dynamically, using the ‘Rows’
parameter to set a maximum.

But in my opinion there’s a

bigger issue to consider. In previous
versions, the palette would scroll
horizontally if it couldn’t all fit on
screen. You could switch to a
vertical scrolling mode by enabling
the ‘Wrap’ checkbox in the palette
menu, which would give the same
effect as the palette in version 1.2.
But the new release doesn’t offer
an equivalent way to revert to the
horizontal scrolling design of its
predecessors. You’re forced to use
a vertically scrolling palette,
whether you like it or not.

This may seem like a trivial gripe,
but there are pragmatic reasons
why a horizontally scrolling palette
is arguably better in some cases.
Let’s consider that sweeping blue
palette once more – here it is with
Rows=3 on my machine.

Try to imagine that as one long

horizontal palette. Yes, you can only
see a small ‘window’ of colors at a
time, but scrolling the mouse wheel
over the colors smoothly moves the
line along, with no breaks or
discontinuities. It’s easy to see the
relative colors of every swatch
when compared with its

full circle magazine #189 33 contents ^

HOWTO - INKSCAPE
neighbours.

With a multi-row display,
however, there are breaks
artificially added to the flow of
color. Your eyes have to scan from
the end of one row to the start of
the next in order to continue
progressing along the palette.
Swatches can now be completely
surrounded by up to 8 immediate
neighbours, not just one on each
side. This affects your eye’s ability
to discriminate between the colors,
especially where (as in this
screenshot), some light colors are
sandwiched between darker rows.
And the position of those breaks
aren’t consistent, but change with
the window size and the
parameters chosen for the palette
display. Your favourite shade of
blue might be at the start of the
second line one day, but buried
somewhere in the middle of a block
of color the next.

For now, us ‘single row’
advocates just have to live with this
forced vertically scrolling design,
but I do hope that a horizontally
scrollable palette makes a return in
a future release.

Moving on from the palette to a
related topic: the Fill & Stroke

dialog has seen some useful tweaks
and improvements. You may recall
that previous versions offered tabs,
and then buttons, to switch
between different color pickers.
The choices were RGB, HSL, HSV,
CMYK, Wheel, and CMS. Those tabs/
buttons have been replaced once
more, with a pop-up menu that
adds ‘HSLuv’ to the mix.

You may have noticed that
there’s no ‘Wheel’ option on the
menu. Fear not! The wheel has been
moved to a collapsible section in
the HSL, HSV and HSLuv modes,
giving you the option to use both
the wheel and the sliders in
combination far more easily. I don’t
understand why it didn’t also make
it into the RGB view, as I can’t see
any technical reason for preventing
it (Inkscape uses RGB internally, so,
even if you pick your colors using
CMYK, what ends up in the file is
actually an RGB conversion of your

color). The HSLuv view is an
interesting one: I can’t really make
sense of it, even with the
visualisation offered by the wheel
view, but I daresay there are users
with more specific color
requirements (and knowledge) who
will benefit from the addition of
this mode.

The color pickers aren’t the only
change in the Fill & Stroke dialog…
but I’ve reached my word count for
this article, so the other new
additions will be the subject of next
month’s instalment.

Mark uses Inkscape to create comics
for the web (www.peppertop.com/)
as well as for print. You can follow
him on Twitter for more comic and
Inkscape content:
@PeppertopComics

http://www.peppertop.com

full circle magazine #190 27 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarrtt 113300

Last time, we looked at the
updated color pickers in the Fill

& Stroke dialog, including the more
widely available color wheel, and
the new HSLuv color picker.

To be honest, I still struggle to
understand how to pick a specific

target color in the HSLuv picker, but
it’s apparently intended to make it
easier to choose colors that have an
optically similar saturation. You
may find that one practical use for
this mode is to perform your
‘normal’ color selection using the
palette or the other pickers, but
then switch to this mode if you
need to create additional colors
that share a similar ‘strength’. For
example, this might be helpful if
you’re trying to stick to pastel
colors in your design, without
having to work around all the more
vibrant ones in the other color
pickers.

As I mentioned last time,
switching between the new color
pickers is done using a pop-up
menu. This keeps the UI looking
neat and tidy, but does mean a bit
more mouse work, either in clicks
or drags, to switch back and forth
between the choices. If you do
need to change between different
pickers quite frequently, then you
might find it more convenient to
return to a UI that presents all the
options at once. In that case, open
the Inkscape Preferences (Edit >

Preferences) and select the
‘Interface’ entry at the left (select
it, don’t just expand it). Part-way
down, you’ll find the ‘Use compact
color selector mode switch’ option.

Un-check that option and the
color picker pop-up will be replaced
by a group of radio buttons instead.
It’s not the nested-tabs interface of
old, but it’s a bit closer to the
previous design, and requires fewer
mouse interactions.

So far, I’ve shown these color
pickers in the ‘Flat Color’ mode of
the Fill tab, but this whole section is
a common component that is used
elsewhere in the application,
whether it’s the ‘Swatch’ section of
the Fill tab, or the ‘Replace Color’
tool in the Extensions > Color
menu. And, in all cases, the
preference to use radio buttons is
honoured, so you won’t find
yourself dealing with
inconsistencies in that part of the
UI across the application.

One place that makes use of the
color pickers is in the Gradient
Editor. Recent Inkscape converts
might only be familiar with the on-
canvas editing of gradients, but
veteran users will remember the
days of a simple gradient editor
accessed via the Fill & Stroke
dialog. For a long time, it was
possible to re-enable that with a
preference, but there’s no longer a
need for that as a brand-new
gradient editor is now available by
default.

The old editor was sparse and

full circle magazine #190 28 contents ^

HOWTO - INKSCAPE
could best be described as
‘functional’. But it was still
extremely useful at times. When
dealing with very small objects or
complex scenes, it’s often easier to
edit a gradient via a separate UI,
rather than on the canvas. The re-
addition of a dedicated editor, as
well as the on-canvas tools, now
offers the best of both worlds. And
the new editor is a lot more
functional than the old one, too.

As has long been the case, linear
and radial gradients are separate
buttons at the top of the Fill or
Stroke Paint tabs of the dialog. You
can also find Mesh Gradients here,
but they have nothing to do with
the gradient editor, and still have to

be modified entirely on-canvas.
Having selected either Linear or
Radial gradient mode, you’re
presented with a compact UI that
squeezes a lot of options into a
small space.

At the top-left is one of the
most important parts of this
interface, but it’s one that is easy to
gloss over. This pop-up houses the
gradient list that used to occupy
this entire tab in previous releases!

You may wonder why I think this
is so important: this is the key to
avoiding gradient proliferation.
Particularly in very complex
drawings, it’s possible to end up
with a large number of gradients,
many of which are either identical,
or similar enough, that they could
be replaced with a single entry. In
that case, you may wish to
consolidate some of those

gradients into one, ensuring that all
the objects update when you
change the gradient, and
potentially resulting in a smaller file
size too. Conversely, you might
want to ensure that each gradient
is used only once, so that edits for
one object don’t affect any others.

This pop-up shows you all the
gradients that currently exist in the
document, together with a count of
the number of objects they’re
applied to. With an object selected
on the canvas, pick a gradient from
this list to have it applied, replacing
any existing gradient it might have
had (you should also see the count
– in the ‘#’ column – increase when
you do this). The pop-up is also a
good way to see if you still have any
gradients in the document that
aren’t being used (the count column
shows 0), and which can therefore
be removed by using File > Clean Up
Document, before saving. Note that
these will also be auto-removed if
the ‘Auto-delete unused gradients’
setting is enabled in Edit >
Preferences, within the Tools >
Gradient pane, so check that if you

find that unused gradients are
being purged when you don’t want
them to be.

At the bottom of this pop-up are
plus and minus buttons. The former
will duplicate the currently selected
gradient and apply it to the
currently selected object(s). This is
useful if you need a gradient that is
similar to an existing one, but want
a separate copy that can be edited
without affecting other objects.
The minus button deletes the
currently selected gradient if it is
‘unused’. The use of this word in the
tooltip is perhaps a little
misleading: it will delete a gradient
if it is actively used on the currently
selected object, but no others – i.e.
if there’s a ‘1’ in the count column
(so, not really ‘unused’ then). The
button becomes disabled if the
column holds ‘2’ or more,
preventing really serious disasters
that might affect many objects.
What it doesn’t do is clear out any
non-selected gradients, whether
they have a ‘1’ or even a ‘0’ in the
count column. You either have to
select-then-remove each of those
separately, or use the File > Clean
Up Document option to delete the
‘0’ entries en masse.

One feature which is still

full circle magazine #190 29 contents ^

HOWTO - INKSCAPE
missing from this part of the UI, and
which I would love to see added, is
an option to select all the objects
that use a particular gradient. It’s
all well and good knowing that I’ve
still got one object left on the page
using a gradient, but it would be
better still if the application could
show me which object it is!

Moving on from this pop-up, on
the same row of controls, you’ll
next find a small button. In my
screenshot, it’s shown as a double-
headed arrow, but it may differ
depending on what icon set you
use. This button reverses the entire
gradient, flipping the order of all
the stops. Note that using this
button will automatically create a
copy of your gradient (assuming
the ‘Prevent sharing of gradient
definitions’ preference is enabled
in the Tools > Gradient pane of the
prefs), so any other objects sharing
the original won’t be adversely
affected. I don’t really know why
this button doesn’t deserve to have
a label when all the other controls
on this row do, but it means that it
doesn’t stand out quite as much as
it should.

Finally, on this row is another
pop-up – complete with label. This
one says ‘Repeat’, and the pop-up

lets you choose whether the
gradient should not repeat (‘None’),
should repeat as a direct copy of
itself (‘Direct’), or should alternate
its repeats between direct and
reversed copies (‘Reflected’). This
has a visible effect only on objects
where the gradient end stops are
placed inside the element, and
determines what happens to the
parts of the object beyond the
stops. In the case of ‘None’, the end
stop colors are simply continued, so
you won’t end up with a big gap
beyond the handles of the gradient,
whereas the other two options
repeat the gradient stops. In no
case does the gradient simply stop
where the end points are placed, so
you won’t end up with an object
that has unfilled corners (unless
your gradient is designed that way).

In this example, I’ve used the
same red-white gradient in both
linear and radial modes. The end
stops have been moved to be well
within the outlines of the squares,
and you can see how the three
options deal with coloring the areas
beyond those stops.

Below that first row of controls
in the dialog, we get to a wide
colored track that previews the
gradient itself, with handles below
it indicating the stop positions and
colors. Note that you’ll still see a
linear representation of the
gradient here, even if you’re
actually editing a radial gradient.
That’s not usually a problem in
practice, but you may find it easier
to still make some changes to the
individual stops on the canvas
where you can at least see the
gradient used in context.

Each of the gradient stop
handles can be moved – even the
end ones – by dragging them along
this track. They can’t pass each
other, though, so if you’ve got three
stops set to red, green, blue, then
no amount of sliding will change
the order if you actually wanted
green, blue, red. Instead, you’ll have
to set each stop color separately by

selecting the handles one-by-one,
and using the color picker section
below. When a stop is selected, a
small circle is displayed in the
handle.

New stops can be added by
double-clicking in the track, or
removed by selecting them and
pressing the Backspace or Delete
key on your keyboard. The editor
doesn’t allow for single-stop
gradients, however, so you won’t be
able to delete the first or last stops
if there are only two stops in the
gradient. If dragging the handles to
position the stops is too coarse for
your requirements, it’s also
possible to adjust the selected
stop’s position numerically using
the Stop Offset control below the
gradient track. The number in this
box runs from 0.00 at the left of the
track, to 1.00 at the right. Even this
approach prohibits you from
swapping stops around, though, so
don’t think you can sneak that
green stop into first place just by
nudging the red one up a bit, then
setting green to zero.

The individual stops are also
displayed as a vertical list at the left
of the display. It’s possible to hide
this list using the ‘Stops’ control
just above, though I can’t see any

full circle magazine #190 30 contents ^

HOWTO - INKSCAPE
particularly good reason why you
would want to. The selection in this
list is kept in sync with the selected
handle on the preview track, and
vice versa, so you can just select the
stops using whichever is most
convenient at the time.

This list also provides plus and
minus buttons at the bottom. The
latter is pretty self-explanatory: it
deletes the currently selected stop,
unless there are only two
remaining. The plus button is
slightly more complex: when a stop
is selected, clicking this button will
create a new stop placed exactly
halfway between the selected stop
and the next one. The only
exception is if the last stop is
selected, then the new stop is
added halfway between the
penultimate stop and the last one.
When a stop is added (even if via a
double-click on the track), Inkscape
sets its color to the existing value
of the gradient at that point. This
ensures that the gradient remains
undisturbed by default, until you
start to shift the stop around, or
change its color.

The last part of the gradient
editor is the large color picker to
the right of the stop list, used for
setting the stop’s color. As this

reflects the same style and
operation as the new color picker
for flat fills, I’m sure you can work
out how to operate it without any
further help from me. Just note
that SVG gradients can include
translucent or transparent stops. If
you actually want opaque colors,
then make sure to set the Alpha
channel accordingly – I’ve been
caught out more than once when
I’ve found that the ‘white’ in my
gradient was actually just the page
color showing through, causing
problems with my PNG exports.

As a frequent user of gradients,
I’m extremely pleased to see the
return of a dedicated editor – and
very happy with the way it’s turned
out. I would like to see the addition
of a context menu to the color
stops, however – providing a
convenient way to select common
colors (e.g. black, white, most
recently used), or to set one stop to
the same color as another without
having to resort to copy-pasting the
hex code. For that matter, being
able to drag and drop palette
entries onto stops would be a nice
addition, too. But those are just
items for the wish list, and aren’t
meant to undermine the great work
that the developers have already
put into this feature.

As great as the color pickers and
gradient editor are, there’s yet
more that has been added to the
Fill & Stroke dialog! So far we’ve
looked at the controls that are
common to both the fill and the
stroke, but the Stroke Style tab
carries a few things that are specific
to strokes alone. But, again, the
word count catches up with me, so
the additions and changes in that
tab will be the subject of next
month’s instalment...

Mark uses Inkscape to create comics
for the web (www.peppertop.com/)
as well as for print. You can follow
him on Twitter for more comic and
Inkscape content:
@PeppertopComics

http://www.peppertop.com

full circle magazine #190 31 contents ^

HHOOWW--TTOO
Written by Ronnie Tucker

FFrreeeeCCAADD -- PPaarrtt 22

Welcome back! Ok, I need you
to create a new project, a

new body, a new sketch, add a
centered rectangle, and stop there
in the Sketcher workbench.

Let’s look at getting this piece
locked in place and adding (or
removing) some bits.

If you look in the left panel,
you’ll see a bit that says ‘2 DoF(s)’.
This means two things aren’t locked
in place. Not the end of the world,
but it means items could move and
mess things up later.

You can click the ‘2 DoF(s)’ link

and it’ll show you what’s not
locked, but I can tell you that it’s all
four corner points. In other words:
we can move all four sides. The
middle is locked in place as we did
that by choosing to make the
rectangle from the middle point
outwards.

So, left-click on the top edge of
the rectangle and it’ll change to
green. Now left-click the Constrain
horizontal distance icon. This will
give us a popup that’ll let us lock
that size in place.

I’m going for 40mm.

You’ll see that we now have a
size on our drawing.

Let’s do the same for the left or
right side, but choose the vertical
icon beside the horizontal and
make it 30mm.

Lovely. Now you’ll notice the
whole thing is green. This is
because it is locked in place and
can’t be moved by accident. The left
panel also says ‘fully constrained’.

full circle magazine #190 32 contents ^

HOWTO - FREECAD

I’m not keen on the 30mm text
being on the inside though. You can
click and drag on it to move it
outside the box. I prefer that.

Now, you could close that and
go back to the Part design

workbench, and pad it, but let’s add
some circles inside it. We’ll think of
those as screw holes for now.

Click the Create circle icon.

Same as the rectangle, we'll

need two clicks to draw the circle.
One in the center and one on the
outside edge. So, make two circles
inside the rectangle. I’ll put one to-
left and one bottom-right. Don’t
forget to right-click (or Esc) to come
out of creating circles mode.

If you need to move the circles,
you click and drag on the center
point. You can click and drag on the
circle outline to resize it.

Let’s lock a size in for these
circles. Click the outline and choose
the Constrain arc or circle icon. This
is currently set for diameter, but
you can click the down-arrow and
choose to make it a radius if you
like. I’ll make it 6mm. I need the
other one to be the same. So click
the outline of the 6mm one we just
did, hold down the CTRL key, and
click the other circle. Now click the

full circle magazine #190 33 contents ^

HOWTO - FREECAD

Constrain equal icon. It looks like a
big red equals sign (=). Voila! The
two circles are the same.

If you double-click the 06mm
label on the top-right one, you can
change it, and it’ll change them
both. Try it. Set the top-left circle to
5mm.

We need to constrain these to
make sure they’re in the right place.
Click on the center point for the
circle top-left. Hold down CTRL.
Click the top-left corner of the
rectangle and choose the
horizontal constraint (like we did
with the rectangle sides). Let’s go
with 8mm. Select the same two
points and choose vertical
constraints and choose 8mm again.

I’ll let you figure out how to do
the other circle.

So now our drawing is green and
all locked down.

Again, like last time, click Close
in the left panel.

This time, though, look at the
top icons in the Part design
workbench. See the yellow and red
ones?

Well, yellow means add, red
means remove. That first one with
the yellow box is the pad icon. It
does the exact same as we did last
time. Click the pad icon and make it
2mm this time.

If you want to marvel at your
creation you can use the middle

mouse button (or scroll wheel held
down) to move the model about.
Hold both middle and right buttons
to rotate.

On the left panel, click the right-
arrow beside Pad. This will show a
greyed out Sketch below it. Double-
click the Sketch to go back into it.

Feel free to add another two
holes to either corner of the
rectangle to give four holes. We’ll
start with that four hole plate next
time. Ronnie is the founder of Full Circle

and, somehow, still editing this thing.
He also paints, draws and does
woodcarving in his spare time.

full circle magazine #191 38 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarrtt 113311

It’s hard to believe that I’m now
onto my third article about the

changes and additions that
Inkscape 1.2 brought to the Fill &
Stroke dialog, yet there’s still
plenty to write about. I love that:
this dialog is one of the most
frequently used parts of Inkscape
for almost any workflow, so the fact
that the developers have chosen to
put some serious effort into
improving it should bring benefits
to every user. Previously, I looked at
the new color pickers and the
return of a gradient editor. Now it’s
time to turn my attention to the
changes in the Stroke Style tab.
Let’s begin by comparing the old
version, 1.1 (below left) to the new

version, 1.2 (below right).

I sense you may be a little
disappointed with that grand
reveal. On the surface little has
changed. The Markers buttons now
show a thin line when no marker is
selected, and the order of the Join
buttons has changed to better
match that of the Cap buttons, but
otherwise things are about the
same, right?

In truth, there have been two
significant additions to this tab, but
they both hide behind pop-up
menu buttons. The first is the
Dashes pop-up, which now shows as
a two-column list, making it easier

to see all the dash options at once,
especially on smaller screens.

While I like the idea of a two-
dimensional display for the dashes,
I’m not sure the current
arrangement works terribly well.
The ‘order’ of the entries runs
along the rows first, rather than the

columns. This makes it difficult to
see the relationship between
groups of patterns that were
previously vertically adjacent to
each other. Using a column-first
order would have been a better
choice, I think. Better still would be
to take the new design a step
further with a three-column layout:
one for dots, one for dashes, and
one for mixed patterns.

The Custom option, which used
to live at the bottom of the list, has
been promoted to the top – and
with good reason. In earlier
versions of Inkscape, this was a
misleading option to say the least.
It was more of an output than an
input; an indicator, rather than a
control. If you were to load an SVG
file with a custom dash pattern,
then Inkscape would switch to this
option in the UI. But manually
selecting it for your own Inkscape-
drawn lines did nothing, and
certainly didn’t allow you to create
a custom dash pattern (other than
via a trip to the XML editor). That
has now changed, and selecting this
option expands the fields in the
dialog a little, adding a ‘Pattern’

full circle magazine #191 39 contents ^

HOWTO - INKSCAPE
field.

The content of this field needs a
little explanation, if you’re not
intimately familiar with the way
dash patterns are defined in SVG. It
takes a series of space separated
numbers. The first number is the
length of the first dash (or dot –
which is really just a small dash in
this case). The second number is
the length of the space that follows
it. The third is the length of the
second dash, and the fourth is the
space that follows that. And so it
continues, with odd entries
defining the lengths of the dashes,
and even entries defining the
length of the spaces.

Fortunately there is a shortcut
built into the spec to make your life
a little easier. There’s no need to
list enough entries to cover the
entire length of your path: the
pattern is automatically repeated
for you. Entering ‘1 2 3 4’ is exactly
the same as entering ‘1 2 3 4 1 2 3 4
1 2 3 4…’. But this also has a
significant effect if you enter a
series with an odd number of
entries: this automatic repeating

means that it’s the same as
entering a series with an even
number, in which the second half is
a duplicate of the first. So ‘1 2 3’
becomes ‘1 2 3 1 2 3…’. The
significance of this is that any odd
entry in the first half (denoting a
dash) turns into an even entry in the
second half (denoting a space), and
vice-versa.

From this you might have
worked out that the simplest dash
pattern is just a single number. ‘5’,
for example, would actually be
equivalent to writing ‘5 5 5 5 5…’ -
i.e. a series of equally sized dashes
and spaces, each 5 units in length.

Ah yes, the units. You may have
noticed that all my examples have
been simple numbers with no units.
The SVG spec states that the
numbers are all in ‘user units’, which
should relate to the viewBox used
in the SVG. Unless you’ve been
messing around with that in the
Document Properties dialog,
Inkscape will generally set the
viewBox dimensions to be the same
as the document size. So if your
document is defined in mm (e.g. an
A4 page), then each ‘user unit’ will
be 1mm. At least that’s the theory.
But, in practice, it doesn’t seem to
work like that, so you’re probably

best just using a bit of trial and
error to get the parts of the pattern
to be the lengths you want.

The SVG spec also supports
percentages in the dash pattern,
but Inkscape does not appear to do
so. Percentages are actually less
useful than you might expect for
this purpose. It would make sense
for percentages to be based on the
length of the path segment. That
would allow you to enter a single
value of ‘20%’ in order to get three
equal length dashes (with two
matching spaces between them),
which exactly fills the length of the
path. But for reasons that I can’t
fathom, the SVG spec uses the size
of the viewport (i.e. the window) as
the basis for calculating
percentages, making them
practically useless, in my opinion.

There’s a workaround for that
limitation, in SVG terms. You can
add a ‘pathLength’ attribute to a
<path> element which tells the
renderer to override the actual
path length when performing some
calculations – such as defining the
dash pattern. By setting
pathLength to 100, any values
entered in the dash pattern should
therefore work as percentages.
Here’s an example SVG file which
draws a 90 unit long path, but uses
pathLength to tell the browser to
treat it as 100 units, so that the
dash pattern value (in the ‘stroke-
dasharray’ attribute) is effectively
treated as 20% of the path length.

The top line is the output when
this path is rendered in Firefox. You
can see that there are three equally

full circle magazine #191 40 contents ^

HOWTO - INKSCAPE
sized dashes, with two equally sized
spaces between them, as expected.
The bottom line is the same file
rendered in Inkscape. The
pathLength attribute is ignored, so
the pattern does not fit exactly into
a 90 unit path, resulting in longer
dashes and spaces, with the last
dash being cut-off. It’s a real shame
that this attribute isn’t honoured in
Inkscape, as it’s the only way to
create dash patterns that always fit
the path exactly. For now you’re
stuck with some trial and error in
the dash pattern field, and you’ll
have to resign yourself to repeating
the process any time the path
length changes.

You may have noticed that the
dash pattern always starts with a
value for the first dash, with the
first space coming after it. What if
you want your pattern to start with
a space, followed by a dash? There’s
no way to specify that in the
pattern itself, but the spinbox to
the right of the Dashes pop-up
button lets you apply an offset to
the rendering of any dash pattern,
whether it’s one of the built-in
options or a series of your own
devising. This can be used to nudge
your pattern forwards or
backwards to make it start with a
space rather than a dash (or,

indeed, with a half-dash or quarter-
space, or any other adjustment you
care to make).

Moving on from dashes, the pop-
ups for the start, mid and end
markers have also seen a major
overhaul in version 1.2, turning
markers into a hugely more
versatile tool than they previously
were. Unfortunately, if you’re on a
small screen, you might find a bit of
a problem with the new UI. My

personal preference for dialogs is
to have them floating in separate
windows, rather than docked to the
main window. This goes doubly for
a small screen, as it gives me the
ability to move them out of the way
easily or, courtesy of my window
manager, to ‘shade’ them (i.e.
collapse them to just the title bar)
when I’m not actively using them.
But if you try to open one of these
pop-ups when the Fill & Stroke
dialog has been reduced to its
smallest practical size, you will find
that many of the controls are cut
off.

The only workarounds for this
that I’ve found are to either make
the dialog larger, or to dock it at
the side of the Inkscape window. In
either case, clicking one of the
marker fields will open the full pop-
up.

Until you select a marker type,
the bottom half of the dialog will
be disabled. The first icon, at the
top-left of the pop-up, is always just
a thin gray line. This is the ‘no-
marker’ option, and is the thing to
click if you wish to remove the
current marker selection. Following
that, on the top line, is an entry for
each marker definition that is
currently used in the document.
This makes it much easier to re-use
the same marker for the start and
end of the line, or to maintain
consistency throughout a
document. Do note, however, that
using this option will ‘link’ all the
uses of that marker to a single
reference in the SVG; if you
subsequently edit one of the
markers (see below), all the linked
versions will also change. For that
reason it’s often best to choose
your marker from the lower part of
the palette, not from this ‘currently
used’ section, if you think there’s
any chance you might want to edit

full circle magazine #191 41 contents ^

HOWTO - INKSCAPE
any of the markers later. This
section will wrap onto multiple
lines, if necessary, and is also where
you’ll find any custom markers
you’ve created using the Object >
Objects to Marker menu entry.

Below a horizontal separator
that, oddly, doesn’t stretch to the
full width of the pop-up, you’ll find
the complete set of markers that
are built into Inkscape.
Unfortunately, I haven’t been able
to find a practical way to edit this
collection. If you need to use the
same custom markers regularly, the
best approach seems to be to
create your own default SVG file or
template which contains them.

There are some interesting
things to note about the marker
icons in this section. The first is that
each is presented with an
associated gray line. This
represents the stroke of the path
on which the marker will be
applied, and carries a couple of
useful bits of information: the
relative size of the marker
compared with the line (e.g. those
on the last row are the same width
as the stroke thickness, so appear
more like line caps than markers),
and the position of the marker
relative to the line (e.g. the pencil is

offset to one side of the path).

It’s also worth noting that the
position of each icon on the gray
line, and the direction the marker
faces, will be different depending
on whether you’re selecting a start,
end, or mid marker. For example,
with mid markers, the gray line
passes right through them, whereas
for the others, the icon shows the
marker placed at the appropriate
end of the line. This is a subtle bit
of UI design, but it helps to make
more sense of how the final marker
will appear in your document.

Once you’ve selected a marker,
the bottom section becomes
enabled to allow you to edit it to
some extent. The options are
mostly self-explanatory, and the
preview pane on the left gives you
a good idea of what the end result
will look like as you play around
with the spinboxes. The
‘Orientation’ buttons in the middle
are worth some extra explanation,
though.

These all deal with which
direction the marker will face in. For
some shapes, such as circles, these
will make little or no difference. But
for something like an arrow head,
these buttons are essential to

ensure that your markers point in
the right direction.

The second button is the
simplest to explain: this makes the
marker point in the direction of the
path, from start to end. With this
enabled, using an arrow head as a
start marker will show it as pointing
in the direction of the path’s end,
which is probably not what you
want in this case. For mid and end
markers, however, this is usually
likely to be the best choice.

The first button behaves
similarly, but flips the direction by
180° for start markers. If you find
your start maker is pointing the
wrong way, switch between the
first and second buttons as
necessary. Initially you might think
that the last button is the right one
to use in this case, but it’s probably
not. That button flips the actual
path definition, not the way it’s
used in one specific instance –
which means it also flips the
direction of any other uses of that
marker within the document (i.e. if
you selected the same entry using
the ‘current document’ line of
markers at the top of the pop-up).

The third button simply allows
you to specify a fixed angle for the

marker. Note that this is an
absolute angle, not relative to the
path direction. For example, if you
set this to -90° to make mid-marker
arrows point upwards, they’ll point
directly upwards for every node,
regardless of the twists and turns
of your path. If you actually need a
marker to run at an angle that is
relative to the path direction,
rather than the page, you’ll need to
create your own marker that is
suitably oriented, use Object >
Objects to Marker, choose it in the
pop-up, and make sure to use the
first or second button in this
section.

In the bottom-left of the pop-up
is an ‘Edit on canvas’ button. Click
this and the on-canvas version of
the marker will gain some basic
editing handles. If you have
multiple mid markers, these
handles will appear on the first one.
Using any of the three square
handles you can resize the marker
(hold Ctrl to scale proportionately);
the circle is used to rotate it; the

diamond in the
middle can be
used to move
it, adjusting
the offset
from the path.

full circle magazine #191 42 contents ^

Mark uses Inkscape to create comics
for the web (www.peppertop.com/)
as well as for print. You can follow
him on Twitter for more comic and
Inkscape content:
@PeppertopComics

HOWTO - INKSCAPE
This will usually be a more

intuitive way to adjust the size,
position and rotation of the
markers. Note that adjusting the
rotation will automatically switch
the ‘Orientation’ option to the third
button, so steer clear of that
circular handle if you need your
marker to follow the direction of
the path.

Finally, a note on color. SVG2
defines two keywords, ‘context-
stroke’ and ‘context-fill’, as a
shorthand for the stroke and fill
color of the current object,
respectively. Many of the markers
make use of these to determine
what color(s) should be used to
render them. As a general rule,
arrows and terminators tend to
follow the stroke color (which is
usually what you want), while the
markers which appear with a white
fill in the pop-up also use the fill
color (which may not be what you
want at all). If you wish to use
different colors for your markers,
you’ll need to dig around in the
XML editor, find the marker
definition, then drill down to the
path itself (or some other part of
the design, as needed) and modify
the style attribute. It’s not for the
faint-hearted, so make sure you
save a backup of your file before

you start messing around with the
XML editor like this.

A particularly fine example of
the context-stroke keyword at work
is in the marker that looks like a
pencil. This combines the keyword
with some translucent panels in
order to create a pencil whose body
matches the stroke color of your
path, but which still has some
shadows and highlights based on
that same color.

At the opposite end of the
spectrum is the marker that looks
like a location pin from a mapping
site. This is hard-coded to always be
red. If you want it to match your
stroke color (or fill color), find it in
the <defs> section of the XML
editor, drill down to the path that’s
inside the <marker> element, and
change the ‘style’ attribute so that
the ‘fill’ property is ‘context-
stroke’ (or ‘context-fill’) instead of

‘#ff0000’. As an example, here is an
image in which I’ve set the start
marker to a fill color of ‘context-
stroke’, left the mid marker as the
default red, and set the end marker
to a hard-coded value of ‘#009900’.

These new features in the Fill &
Stroke dialog initially seem like
small changes, but I’m sure you can
see that they open up a lot of the
possibilities that SVG offers, but
which were previously hard to use
within Inkscape. It’s a shame that
changing the colors of markers
requires a trip to the XML editor,
and the technical knowledge that
comes with that, but most users
probably won’t need that level of
control anyway.

https://www.peppertop.com

full circle magazine #191 43 contents ^

HHOOWW--TTOO
Written by Ronnie Tucker

FFrreeeeCCAADD -- PPaarrtt 33

So, you’ve got your plate with
four holes? Good. Now I’ll bet

you did those additional two the
same as the other two? Well, let me
show you another, quicker, way.

Here’s my two additional holes.

I’ll select the outline of the one
05mm constrained hole, then the
two new ones. Now select the
equals icon. That’s them set to the
same diameter. So now changing
that one circle will change the

diameter of all four.

To set them in place, I’ll use a
new thing: constrain horizontally/
vertically. No, not the ones we used
last time as they’re for distance. I’ll
select the center point of the top-

left circle, then the center point of
the top-right one, and click the
constrain horizontal icon. Just looks
like a red minus-sign.

So now those two circles are
lined up. If I do the top-right and

full circle magazine #191 44 contents ^

HOWTO - FREECAD

bottom-right center points and do a
vertical constraint, then that’ll lock
that top-right one in place now.

Same deal for the bottom-left
circle.

And that’s me locked down.

Clicking Close will take me back
to the Part design workbench.
Looking good.

Let’s end this part by making it
look a bit more fancy. While in the
Part design workbench, we want to
click one of the top outlines of one
of the holes. Let’s say top-left. It’ll

full circle magazine #191 45 contents ^

HOWTO - FREECAD

go green.

Now click the red chamfer icon.

Nice! That’ll let the screw head
sit level with the plate. The items
on the left panel will let you edit
the size of the chamfer. Or, let’s

click the Add button and click on
the outline of the other three
circles. You only need to click Add
once. When you’ve clicked all the
outlines you click OK to end adding.

Note on the left panel that
Chamfer is now added to the list.
Think of this as a list of past actions
that you can still jump back to.

Next time, we’ll add more to the
plate.

Now I’m not saying you need to,
but feel free to click on a top edge
of the plate and choose the fillet
icon (beside chamfer). Just saying…

Ronnie is the founder of Full Circle
and, somehow, still editing this thing.
He also paints, draws and does
woodcarving in his spare time.

full circle magazine #192 31 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarrtt 113322

Perhaps the most important
addition in Inkscape 1.2 is the

ability to support multiple pages in
a single document. This is a much
requested feature which opens up
a lot more power for working with
multi-page PDF files (both
importing and exporting), though
it’s not without its limitations,
particularly when used on the web.
More on that topic next month.
This time we’ll take a look at how to
create and work with multiple
pages from within Inkscape itself.

By default Inkscape opens with
its traditional single-page view.
Whereas many applications might
provide a dedicated dialog or menu
options for adding and removing
pages, Inkscape treats such tasks as
more akin to a drawing task than a
management one. Gaining access to

the new multi-page
features therefore
requires you to switch
drawing tools,
choosing the new icon
at the bottom of the
toolbox (outlined in
red).

With the correct tool selected
your page will gain a small, square
handle at each corner, and the tool
control bar will change to show the
initial set of controls for managing
pages.

Using the square handles you
can dynamically change the size of
the existing page on the canvas. I
recommend using the bottom-right
handle for this for the simple
reason that pressing Ctrl-Z will
undo this change ‘cleanly’. If you
move any of the other three
handles then an undo operation will
actually cause the page to shift on
the screen. The end result is pretty
much the same, especially if you
pan the canvas afterwards, but the
movement is somewhat jarring. It’s
also worth noting that these
handles don’t honor the usual
Inkscape modifier keys for resizing
in proportion, or along a single
direction, which is a shame.

Manually resizing the page isn’t
your only option though. You can
use the third control on the toolbar
(the page with four arrows pointing
to it) to resize the page. If you had
no objects selected when switching
to the page tool, this button will
resize the page to fit the contents;
if you had items selected then it
resizes the page to fit the selection.
Unfortunately there’s no facility to
include an offset or margin, so if
you don’t want your page boundary
to absolutely hug your objects
tightly you’ll either have to
manually resize afterwards, or add
a temporary object to your page
that is larger than the combined
elements, then delete it
afterwards. Unfortunately this
same omission is now present in the
re-designed Document Properties
dialog, which is rather annoying for
those of us that prefer to include a
little breathing room around our

creations.

If you prefer to set your page
size to specific dimensions, you can
do that using the input field and
drop-down combination widget in
the tool control bar. Click in the
field and enter dimensions with
units directly (e.g. 100mm x
100mm). Or select one of the
presets from the drop-down list.

So far all we’ve looked at with
this ‘multi-page’ tool is how to
resize the existing single page. Let’s
add a second page to our
document, by clicking on the first
icon in the tool control bar.
Inkscape creates a new page on the
canvas – you may need to zoom out
to see both. The new page will be
the same size as the previously
selected one. Now that you have
more than one page you can click in
each of them to change the
‘current’ page (the one that will be
affected by clicks and changes in
the tool control bar), or click and
drag inside the page area to move it
around on the canvas. With more
than one page in the document, the
tool control bar itself also gains

full circle magazine #192 32 contents ^

HOWTO - INKSCAPE
more widgets:

In the middle we have a pair of
buttons that allow you to reorder
the pages. Currently the first of the
two pages is selected, so the text
reads “1/2”. There are buttons for
moving the order of the page: the
left one is disabled, because we
can’t move this page earlier than
position 1. The right button is
enabled, though, so we could click
that to move the selected page to
position 2 (effectively swapping the
page order, since we only have two
pages). Using these buttons also
moves the pages around on the
canvas, as well as changing the
order in which they are listed in the
SVG file.

The text field reads “Page 1” in
grey text. Inkscape gives each page
a default label of this form, if you
don’t provide one of your own, in
order to help you keep track of
which page is the currently selected
one. Often it may make more sense
for you to name some or all of your
pages explicitly. Simply type
something into the text box, and
the corresponding page on the
canvas will be decorated with a
small tag at the top-left which
shows the name you entered. A
manually entered label will be

stored as part of the SVG
document, whereas the automatic
labels are not, and are generated by
Inkscape when needed. It’s
perfectly okay for you to combine
both approaches, using manually
defined labels for key pages, and
falling back to the automatic “Page
n” syntax for the others.

The button after the text field is
used to delete the currently
selected page. However, the exact
behaviour depends on the state of
the last button. That last button is
actually a toggle, which determines
how objects are moved when a
page is moved around the canvas.
With it toggled off, the objects and
the pages are treated as two
entirely separate things. If you
move a page, or even delete it, the
objects themselves remain
unaffected.

Toggle it on, however, and
things become more complicated.
In that state, any object that
intersects with a page that is moved
or deleted will also be moved or
deleted. The important word there
is ‘intersects’. When an object is
wholly contained within the page
boundary, the behaviour makes
sense. Move a page, and the
contents of the page move with it.

Delete a page and its contents
disappear too. But this also applies
to any object that overlaps with the
page boundary, even a little. It
might be 99.9% on the canvas,
barely touching the page, but it will
get dragged around or deleted just
the same as something entirely
within the page. This can be
particularly troublesome when
pages are positioned close
together, and an object ‘bleeds’ out
of one, and slightly into another.
Moving that second page will drag
the object with it, even if it was
meant to be kept on the first page.

Unfortunately there’s no fine
control with this. Either every
intersecting object moves (button
toggled on), or none of them do
(button toggled off). There’s no
way to ‘de-select’ specific objects
prior to the move, or anchor them
more tightly to the correct page. In
practice it’s not usually a huge
problem, but it’s definitely
something to be aware of,

especially if you keep your pages
close to each other, but let your
objects bleed out of the
boundaries.

If you do manage to accidentally
move or delete an object, the usual
Edit > Undo (Ctrl-Z) option will
generally save you. But the multi-
page code is still new, and I have
experienced a few crashes when
using it, so I wouldn’t rely on that
safety net too heavily. As usual I
recommend saving frequently and
making sure you have autosave
enabled (Edit > Preferences > Input/
Output > Autosave).

With the Page tool selected you
actually have other options besides
the tool control bar for performing
some of the page-related tasks. You
can create a new page simply by
drawing a rectangle on the canvas.
This lets you create new pages that
aren’t the same size as the currently
selected one – but you also don’t
get accurate control over the
dimensions. Having created the
page, you can select it and then
change the page size from the
input field and drop-down in the
tool control bar – but if you’re
going to do that then I’m not sure I
see much benefit in drawing out
the page on the canvas first

full circle magazine #192 33 contents ^

HOWTO - INKSCAPE
anyway.

Deleting a page can also be
done simply by pressing the Delete
key on your keyboard, as you might
imagine. Right-clicking on a page
will bring up a context menu with a
few common options, too:

There’s no context menu when
you click on the empty canvas. It
would have been nice to at least
have a ‘New Page’ option that
creates a new page with the
currently selected page’s
dimensions, but placed at the
mouse position.

Since this is new code, not every
part of Inkscape is fully aware of
this multi-page world. I’ve already
described how to change the page
size using the page tool, but it’s a
little disappointing to find that the
Document Properties dialog only
knows about the first page. It
doesn’t matter which page you
have selected, changing the size in
that dialog will only affect the first
one. I would actually prefer it if this
dialog acted as a ‘master’ control,
setting the size for all the pages.
That would be more consistent with
the other controls in this dialog,
such as the color picker for
changing the page background,

which does apply to all the pages.
As it is, there’s no way to select
multiple pages if you want to resize
them all to the same dimensions, so
you’ll have to resize each one by
hand by adjusting its dimensions in
the tool control bar.

Conversely, the Align &
Distribute dialog does recognise
different pages. If you select ‘Page’
in the ‘Relative To’ pop-up, your
objects will align to the page
they’re currently in. If they straddle
more than one page it’s a little
more hit-and-miss as to which one
they’ll align to. There is some tricky-
to-explain logic to it, but it’s such a
corner case that it’s not worth
trying to put it into words. If you
find yourself in this situation, and
your objects align to the wrong
page, you should just move them to
be well and truly inside the correct
page and try again.

Guides in Inkscape have always
extended beyond the page
boundaries and into the infinite
space of the canvas itself. The
multi-page world doesn’t change
that, so any guides you create will
happily appear on top of all the
pages in their path. This is a good
thing, as it makes it easier for you to
snap objects to a common baseline,

for example. Another good thing is
that pages themselves can be
snapped to guides, or to other
pages, which definitely helps with
alignment. They don’t snap to
objects though, so you may want to
use Object > Objects to Guides if
you have to create alignment
anchors based on your content
(don’t forget to duplicate the object
first!).

On that note, it would have
been really nice if the Objects to
Guides option did something useful
when the Page tool is selected. The
obvious thing would be to create
guides based on the selected page,
while not removing the page itself.
That would make it very easy to
align pages to each other, but
unfortunately the option just does
nothing when a page is selected.

A similar missed opportunity is
present in the spacing placed
between new pages when you
create them. Starting from a single
page document, clicking the New
Page button in the tool control bar
creates a second page, then a third,
and so on – each of them offset
from the previous one with a small
gap. Now let’s consider the
following example: I’ve created a
second page, but haven’t moved

either of them from their initial
positions. I’ve also drawn a
rectangle that fills the first page,
though I’ve rounded the corners so
you can see the page behind it.

It’s easy to imagine that this
rectangle might equally be a border
shape, a watermark, a line marking
a header or footer, or some other
object that you wish to copy to the
exact same position on the second
page. Your immediate thought
might be to copy it to the clipboard,
then use Edit > Paste in Place, after
switching to the Page tool and
selecting the second page. That
doesn’t work. It just pastes the copy
on top of the original object, which
is the same behaviour it’s always
had, but seems slightly wrong when
dealing with multiple pages.

Another approach might be to
duplicate the object, then try to
position it using the arrow keys.

full circle magazine #192 34 contents ^

HOWTO - INKSCAPE
This is where the gap size becomes
a problem. A seasoned Inkscape
user probably knows the trick of
moving things around by holding
the Shift key while pressing the
arrow keys. This moves objects in
discrete steps that are always the
same, regardless of your zoom
level. I often use this technique
when I have to temporarily move an
object out of the way, then back
again – provided I count the
number of keypresses I made, I can
be certain it will return to the exact
same position, no matter how much
panning and zooming I’ve done in
the meantime. This would be an
ideal way to move an object to
precisely the same position on
another page… all it requires is that
the gap is an exact multiple of the
Shift-Arrow step size.

As you’ve probably guessed by
now, it’s not. It’s just a little out,
leaving your object misaligned one
way or the other. Yes there are
other ways to align objects on the
page. But this small oversight
complicates an otherwise simple
task.

Having created your multi-page
document, you might want to know
what you can actually do with it.
Loading it into a web browser only

shows the first page – but more on
that topic next month. You can save
as a PDF file, which also preserves
any page labels, and successfully
handles different page sizes. For
anyone trying to use Inkscape as a
desktop publishing program, this
will likely be more than sufficient.
I’d still recommend learning to use
Scribus if this is the sort of thing
you do regularly – Inkscape works
well enough for the occasional one-
off, but it’s no replacement for a
fully-fledged DTP program.

Another use for multiple pages
is to help organise a document that
contains several images which you
may later wish to export in another
format for use as assets in a game
or website, for example. I’m talking
about the old ‘Export PNG Image…’
option in the File menu, which is
now just ‘Export…’. The name

change is for a good reason: this
release adds many more options to
this dialog which solve some long-
standing complaints about the
application. We’ll take a look at this
using the following multi-page
document:

When creating a single export
image, the dialog has been
somewhat de-cluttered, presenting
only the main options. The more
obscure parameters now appear in
a second dialog when you start the
export process, provided you UN-
check the ‘Hide Export Settings’
checkbox. The main Export dialog
also includes a preview image that
will give you a good idea of what
the final export will look like, and in
the case of selecting the
‘Document’ button for a single
export, this shows that pages are
ignored completely, and the

exported file will be a single image
for the entire document.

Clicking on the ‘Page’ button
updates the UI a little, showing just
a single page at a time in the
preview. Just above that is a less-
than-obvious set of UI elements:
the page label, with back and
forward buttons on either side.
These buttons let you select which
page to export, and the main
canvas will zoom and pan to fill with
the relevant page as you change

full circle magazine #192 35 contents ^

Mark uses Inkscape to create comics
for the web (www.peppertop.com/)
as well as for print. You can follow
him on Twitter for more comic and
Inkscape content:
@PeppertopComics

HOWTO - INKSCAPE
them. This can actually be rather
annoying if you were quite happy
with your previous view of the
document, so I’ll take this
opportunity to remind you of the
View > Zoom > Zoom Previous
menu option, which is assigned to
the backtick (`) key by default.

Switching to the Batch Export
tab, we find a minor UI
inconsistency in that this tab
contains sub-tabs rather than
buttons for switching between the
different export modes. One of
those sub-tabs is labelled ‘Pages’
and allows you to export each
individual page as a separate file.
The order in which the pages are
presented can be a little odd, as
shown in this screenshot. It doesn’t
seem to reflect the order of the

pages on the canvas, their creation
order, alphabetical order, nor the
order they appear in the SVG file. If
you’re going to be performing
batch exports then it makes sense
to give your pages clear and
sensible labels to help work around
this confusion.

One thing to note about the
new Export dialog is that there’s
now a pop-up ‘Format’ menu. No
longer are you limited to just
exporting PNG images. You can also
export JPEGs directly, or even to
export individual objects, pages or
layers as their own separate SVG
files, which will greatly simplify
some workflows. Just be conscious
of the different pros and cons of
each format: JPEGs don’t support
transparency, for example, so
Inkscape will automatically add a
background based on the page

color (set via the File > Document
Properties… dialog). In fact the
Inkscape developers seem rather
keen for you not to use JPEG, as
demonstrated by the options dialog
that opens when you start the
export.

One final feature of the Batch
Export mode is the presence of the
‘Add Export’ button, just below the
controls for selecting the file suffix,
format and DPI. Click this to create
additional rows, allowing you to
export to multiple formats, or
multiple DPI settings at once. For
anyone who needs to generate
assets in a variety of formats or
sizes this could be a huge time
saver.

The new multi-page
functionality is a huge step forward
for Inkscape – especially combined
with the improvements in batch
exporting. But the limitation of only
seeing the first page in web
browsers is a frustrating and, quite
frankly, unnecessary one. Next
month I’ll be looking at how
multiple pages have been
implemented in the SVG file, and
demonstrating how it is actually
possible to view the additional
pages within a web browser, if you
know what you’re doing.

https://www.peppertop.com

full circle magazine #192 36 contents ^

HHOOWW--TTOO
Written by Ronnie Tucker

FFrreeeeCCAADD -- PPaarrtt 44

So let’s add a piece to our plate.
Let’s say we need to have our

finished plate screwed to a wall and
a PVC pipe is to be inserted into a
socket of some sort.

Here’s where we’re at thus far
(bottom left).

In the left panel it’s listed as
Body (the thing we’re making) then
the Pad which was done on the
(indented text) of the Sketch.
Finally we did the Chamfer (on the
holes).

To add a pipe socket, we need to
add the socket to the front face of
the plate. Right? So left click to

select the top face of the plate. It’ll
turn green. Next, click Sketch (see
image top right).

Well, this (bottom right) looks
familiar.

But instead of a blank sketch, we
have our plate as the background.
The red dot is the center point of
the plate.

Use the circle tool to draw two
circles going from the red center
point out (see image, next page,
top left).

Like in previous examples, lock
the circles down with diameters or

full circle magazine #192 37 contents ^

HOWTO - FREECAD

radius. Whichever you prefer.

I went with an inner diameter of
9mm and an outer of 13mm.

Like when we made the plate,

click Close (in the left panel) to
return to our Part Design
workbench. And, like last time, click
Pad. Voila! Adjust the height of the
pad as you see fit (top right).

Note, on the left we have (below
Chamfer) a new Pad and new
Sketch. They only apply to the pipe
socket.

If you need to adjust the depth
of the socket you can click on the
Pad001 (in my case) and you’ll see
the attributes.

Feel free to click the edge where
the socket meets the plate and
choose to put a chamfer or fillet on
it. Make it look spiffy.

Next time we’ll abandon our
plate and try something new…

full circle magazine #193 31 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarrtt 113322

In the previous instalment, I
looked at the new multi-page tool

introduced in Inkscape 1.2. As I
often delve into the guts of
Inkscape’s SVG files in this series, I
thought it would be interesting to
see exactly how multiple pages
have been implemented. What I’ve
found is a little disappointing,
because I think the developers have
made a slightly bad choice that
limits the usefulness of multi-page
mode more than was necessary. In
this article, we’ll take a look at
exactly what that mistake was, and
a couple of ways to work around it.

To investigate this, we’ll be
using a simple multi-page Inkscape
file. Each page contains a colored
rectangle that fills the whole page
area (so it’s easier to see the page
boundary when loaded into a web
browser), plus a random single
object in the middle, as a

placeholder for the real content
you might put in your document.

The first thing to do is to load
the SVG file directly into a web
browser and see what appears. You
don’t win any prizes for guessing
that only the first page is displayed.
This is simply the same behaviour as
a single-page Inkscape document. It
could be argued that the main
purpose of the multi-page tool is
for importing and exporting PDFs,
so it’s hardly surprising that a web
browser won’t show the extra
pages, but since SVG is a first-class
format for the web, it does seem a
shame that there’s no easy way to
view the other pages. But the key
word there is “easy”. If you’re
prepared to get a little technical, it
is possible to work around this
limitation.

First, let’s take a look at what’s

going on inside the SVG file itself.
You can simply open it in a text
editor, but as this is an Inkscape
column, I’m going to look at it via
the Edit > XML Editor… option
(below).

In the left pane, we can see the
tree of XML elements that make up
our file. At the top is the ‘root’
node, shown as <svg:svg …>,
followed by a <sodipodi:namedview
…>. If you’re new to Inkscape, you
may not realise it was forked from
an older program named Sodipodi,
the fingerprints of which are still
present inside Inkscape’s SVG files.
In this case, we have a
<namedview> element which is in

the ‘sodipodi’ namespace.
Namespaces are a means of mixing
multiple different XML languages
together in one file and ensuring
they don’t clash with each other. In
the case of Inkscape, it means that
anything in the ‘sodipodi’ or
‘inkscape’ namespaces are not part
of the SVG standard, and will simply
be ignored by most other
programs.

As hinted by its Sodipodi
heritage, the <namedview>
element has been present in
Inkscape files right from the start. It
contains metadata about how the
file should be displayed when
loaded into Inkscape: this is where

full circle magazine #193 32 contents ^

HOWTO - INKSCAPE
you’ll find XML attributes that store
the window size, zoom factor, and
page color, amongst other things.
But with a multi-page Inkscape
document the <namedview>
element has gained something else:
children. Expanding the
<namedview> entry in the XML
editor reveals an <inkscape:page …
> element for each page in your
document. To clarify, these are
<page> elements in the ‘inkscape’
namespace, so other applications –
including your web browser – have
no idea what to do with them.

In this screenshot, I’ve selected
the second page in the document.
You can see the attributes of the
<page> element in the right-hand
pane. These consist of the width
and height of the page, and the

coordinates of the top-left corner
of the page (x and y). There’s also
an auto-generated ID, and an
‘inkscape:label’ attribute which
holds any custom name you may
have given to the page. If you’re
familiar with the internals of SVG
files, then you may recognise the
four dimension-related attributes
as being the same as those used in
an SVG viewBox definition. That
fact gives us our first workaround
for viewing pages in a browser.

When loading an SVG file into a
web browser, there’s a little-known
trick that can be used to override
the default viewBox definition from
the main <svg> element. I covered
this previously in part 79 of this
series (FCM issue #139), but the
summary is that you can use the

‘fragment identifier’ of the file’s
URL to specify the x, y, width and
height values of the viewBox you
wish to use. Let’s look at this with
an example: first, we’ll load the SVG
file directly into Firefox and, as
expected, we see only the first
page.

To access other pages, we first
need to find the coordinates (x, y)
and dimensions (width, height)
from the relevant <inkscape:page>
element. You can see from the
screenshot of the XML editor that
Inkscape stores these to quite a
high precision but, in practice, you
can usually truncate them to just a
couple of decimal places – perhaps
even less if there’s a little free
space between the edge of the
page and the content. You then
need to take these values, swap
them into the following string, and

append the whole thing to the URL
in your web browser:

#svgView(viewBox(x,y,width,he
ight))

In the case of this example, the
filename is ‘multi_page.svg’, and
the values for the second page are
shown in the earlier screenshot of
the XML editor. The URL for viewing
the second page therefore
becomes:

.../
multi_page.svg#svgView(viewBo
x(112.6,0,102.6,102.6))

This syntax works wherever the
browser expects an image URL, so
web developers can also use it in
 elements, and even in CSS
url() values.

full circle magazine #193 33 contents ^

HOWTO - INKSCAPE
It’s a clever trick, which gives

you access to all the pages in a
multi-page Inkscape file, but it’s not
without its limitations. The biggest
of these, quite clearly, is the need
to dig into the SVG file to find the
page size and position, then copy
those values into the URL directly.
The resultant link also lacks
semantics – that specific
combination of numbers doesn’t
exactly scream ‘page 2’ to the
uninitiated. However, SVG also
allows us to add ‘named views’ to
the file (not the same thing as the
<sodipodi:namedView> element),
which still requires digging out the
magic numbers, but does at least
allow us to map each viewBox to a
more meaningful name. The
downside of this approach is that
we will need to edit the SVG file,
either with a text editor or using
Inkscape’s XML editor.

If you’re comfortable editing
XML files in a text editor, that’s
probably the easiest method. Just
make sure you don’t have the file
open in Inkscape at the same time,
or you may find your hand-crafted
edits are automatically replaced.
That approach is also described in
part 79 of this series, so this time
I’m instead going to show you how
to make the same edits within

Inkscape.

Once again, you’ll need the x, y,
width and height parameters from
the relevant <inkscape:page>
element. This time, I’ll use the
values for page 3 in the file. Again,
these were obtained by selecting
the relevant <inkscape:page>
element in the XML editor, and
looking at the attributes in the
second pane. Once again, we’ll
truncate these to 1 decimal place,
giving this set of values:
x: 225.3
y: 0
width: 102.6
height: 102.6

Observant readers may have
noticed that only the x value has
changed compared with the values
for page 2. This makes sense, as the
third page is the same size as the
others, and has only been displaced
horizontally. If your multi-page
documents all use the same page
size, with the pages aligned in a
single row, it will always be the case
that only the x value differs
between them.

Now we need to create a new
element in the document, which we
can do via the XML editor. This can
actually go anywhere in the

document, and I’ve previously
advocated putting it in the <defs>
section – but now I’ve changed my
mind. To keep similar items
grouped together, I’m actually
going to create it as a child of the
appropriate <inkscape:page>
element. To achieve this, first select
the <inkscape:page> element in the
left-hand pane of the XML editor.
While it’s highlighted, you might
want to note down those all-
important dimensions that are
shown in the second pane (which
could actually be below rather than
to the right, depending on the
orientation buttons in the bottom-
right of the dialog).

With the existing element
selected, click the first button in the
dialog’s toolbar: “New element
node”. This will open a much
smaller dialog with a single text
field and a couple of buttons,
where you should enter the name
(including the namespace
reference) of the new element you
wish to create. In this case the
string to type is “svg:view” – with no
spaces, and without the quotes.

Click the ‘Create’ button, and
you should find your new element
appears in the first pane as a child
of the <inkscape:page>. It should
already be selected, with no
attributes present in the second
pane. We will need to add two
attributes to this element. Let’s
start with the ‘id’, which you can
create by clicking on the ‘+’ button
at the top of the second pane, and
entering ‘id’ into the name field
that appears in the list below. When
you press enter, the value field will
be focused, and it’s here that you
should put the more semantic
name you wish to use for the page.
Note that this is an XML ID, which
means it can’t contain any
whitespace characters – so no ‘Page
3’ for example. In practice it’s best
to stick to alphanumeric characters,
underscores and hyphens. The first
character should be a letter, and I
tend to stick to lowercase
characters. In practice, therefore,
something like ‘page-3’ is ideal.

Now repeat the process to add a
second attribute, this time with a
name of ‘viewBox’ (watch the
capitalization), and a value of your
four values, separated by space
characters, in the order ‘x y width
height’. If all has gone well, the XML

full circle magazine #193 34 contents ^

HOWTO - INKSCAPE
editor should look something like
that shown below.

Repeat the process for each
page, using the appropriate values
and different IDs before saving
your file to commit the changes to
disk. Then, to view a page in the
browser, you simply have to use the
base URL for your SVG file, and
append a hash (#) followed by the
ID of the page. In this example,
therefore, the URL becomes ‘.../
multi_page.svg#page-3’:

Once again, this trick works with
any place that the browser expects
a URL, including tags and
CSS. In practice, I suggest picking
better semantic IDs than simply
‘page-n’ if you possibly can.
Suppose we had used ‘yellow-spiral’
as my ID in this case: if we
subsequently wanted to rearrange
the pages within the SVG document
we would only have to update the
coordinates in the <svg:view>
elements, but any website that
referred to the page by that ID
would still work without
modification.

Perhaps you can now see why I
think the Inkscape developers made
a mistake when implementing
multi-page support. The

<inkscape:page> element has
attributes for an ID, an optional
label (in the ‘inkscape’ namespace),
and the four dimension and
position values. The SVG standard
<view> element, on the other hand,
has an ID and a viewBox (which
consists of the four dimension and
position values). It’s lacking a label
attribute, but this could
legitimately be added within the
‘inkscape’ namespace, without
breaking any XML or SVG rules. I fail
to see, therefore, why the Inkscape
developers chose to use a non-
standard <page> element in their
own namespace, rather than just
use the existing SVG <view>
element, adding custom attributes
where required. Had they done so,
every Inkscape page would
automatically get a named view,
and therefore be much easier to
access via a web browser.

Sadly, this missed opportunity
leaves users either having to extract
the details of each page’s viewbox
in order to construct a suitable
#svgView(…) fragment identifier,
or manually creating their own
<view> elements to achieve the
same effect but with nicer URLs.
Next month we’ll look at a different
approach to ‘fixing’ this problem –
though one that unfortunately

comes with its own set of
limitations.

Mark uses Inkscape to create comics
for the web (www.peppertop.com/)
as well as for print. You can follow
him on Twitter for more comic and
Inkscape content:
@PeppertopComics

https://www.peppertop.com

full circle magazine #193 35 contents ^

HHOOWW--TTOO
Written by Ronnie Tucker

FFrreeeeCCAADD -- PPaarrtt 55

Let’s start anew. Click File > New
and then create a new body. If

you’ve just joined us and wonder
how, then see part 1 of this series.

Create a new sketch on the YZ
(right) plane.

What we want to do here is
create a shape on one side of the
vertical line. Do this using the
Polyline tool

Click somewhere on the vertical
line to anchor our shape there.
Click, click, click, until you get a
shape something like this:

It doesn’t have to be exact. Just
something similar. But make sure
you finish where you started. We
want this to be a closed shape.

Now, my shape is purposely
wonky so that I can show you a
couple of new tools before we
finish off this object.

See those two lines in green?
Ideally I’d like them to be exactly
horizontal. Well, all I need to do is
to (one at a time) select the line,
then click the Horizontal constraint
icon (that we used a couple of parts
ago).

See how those two lines now
have a red minus sign below them
to show they’re constrained to be
horizontal. I set the line connecting
them to vertical. You can still move
those points around, but you’ll see
how they’re locked to move only
horizontally/vertically.

I’ve moved a couple of points to
suit what we’re about to do next.

Select the top angled line.

And press delete.

Let’s use another new tool. The
arc shape. You may need to click

full circle magazine #193 36 contents ^

HOWTO - FREECAD
the down-arrow beside the arc icon
to see the End points and rim point
option.

Click on one of the open points.
You’ll see a circle appear. Click the
other point and you’ll get an arc
that you can adjust. Give our shape
a nice arc.

Feel free to do the same to the
other diagonal line.

After I did my second arc, I
moved one of my vertical points up
a bit just to make it look better.

You could, of course, lock down
all of those points but, for now, this
will do us.

In the left panel, click Close to
return back to the Part Design
workbench.

Time to do a new thing. Click the
Revolution button.

The line you see down the side is
where the shape has rotated 360
degrees.

So, as you can imagine, this is an
incredibly powerful tool. But what if

you need to make something that’s
not a perfect circle? We’ll look into
that next time.

As ever, feel free to click edges
and make it look pretty.

Ronnie is the founder of Full Circle
and, somehow, still editing this thing.
He also paints, draws and does
woodcarving in his spare time.

full circle magazine #194 29 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarrtt 113344

Over the previous few
instalments, I’ve been looking

at Inkscape’s new multi-page
feature, culminating in last month’s
analysis of how it’s implemented
within the SVG file. What I found
was that the details of each page
are stored in a proprietary ‘page’
element in the Inkscape
namespace – appearing in the XML
editor as <inkscape:page> – rather
than in a standard SVG <view>
element. This is a strange choice, in
my opinion, as using the latter
would have made the extra pages
more accessible via a web browser.

Last month, I described a couple
of methods by which a browser can
be coaxed into showing the extra
pages. The first used a little-known
version of the URL fragment
identifier to target each page by its
viewBox values. This doesn’t
require the file to be modified, but

does need you to dig into the XML
to extract the relevant numbers.
The second approach modifies the
file to manually add <view>
elements, which is more work but
does allow you to use a more
semantic URL. If you haven’t read
the previous article, I strongly
advise doing so before proceeding,
as this one directly builds on that
information.

Our aim here is to make it easier
to access all the pages of an
Inkscape document via a web
browser. One thing browsers do,
which Inkscape doesn’t, is to run
JavaScript. So, by adding a small JS
function that will be executed
when the file is opened in a
browser, we can automatically
create <view> elements from each
of the <inkscape:page> elements,
without the need to manually copy-
and-paste coordinates. This is

obviously useful when there are a
lot of pages to consider, but even
for files with just a couple of
pages, the ability to just paste the
same snippet of code into any file
without having to modify it each
time makes this approach arguably
simpler than manually creating the
<view> elements yourself.

We’ll be using the same multi-
page SVG file from last month,
consisting of four pages arranged
horizontally, with a different
background color and content in
each.

Having created a multi-page
Inkscape file, the first thing to do is

to save it to disk and open it inside
a web browser. This will display
only the first page, as expected. As
we progress through this code,
we’ll log some data to the
developer console, so open the dev
tools in the browser (typically by
pressing F12), and switch to the
‘Console’ tab. Below is how it looks
in Firefox on my Ubuntu Mate
machine.

I’ve talked about adding
JavaScript code to Inkscape files in
the past, so I won’t go into depth
about the options here. For what
we’re trying to achieve, we just
want a simple chunk of script
embedded directly into the file

full circle magazine #194 30 contents ^

HOWTO - INKSCAPE
which will run at load time. The
easiest way to create this within
Inkscape is as follows:
• Open the File > Document
Properties… dialog
• Switch to the ‘Scripting’ tab.
• Within that tab, choose the
‘Embedded scripts’ tab.
• Click the ‘+’ button below the
(empty) list of embedded scripts.
• You should see a new entry
appear in the list with an arbitrary
ID.
• Ensure that entry is selected.
• Write your code in the ‘Content’
box below.
• You can save (Ctrl-S) as you
develop, without having to close
the dialog.
• Whenever you save the file,
manually reload in the browser (F5)
to see the effect.

Let’s begin by logging out the
existing <inkscape:page> elements
to the console using this code (top
right).

It’s not essential to fully
understand the workings of this
code in order to use it, but I’ll
describe it anyway for those who
are interested. The first two lines
simply set up variables for the
namespaces we’ll need. We won’t
be using the SVG namespace just

yet, but we will require it soon, so
this is a good time to introduce it.
The third line uses one of the
browser’s built-in functions to find
all the ‘page’ elements in the
Inkscape namespace, and assign
them to a variable as a ‘collection’.

For historical and technical
reasons, a ‘collection’ is very similar
to a JS array, but not quite actually
the same thing. These days,
JavaScript’s array functions are
pretty powerful, so we would really
like to create an array from the
content of our collection so we can
use those functions. The
‘array.from(pages)’ part does
exactly that, iterating over each
entry in the collection to build up a
temporary array. We can then use
the ‘forEach’ array method to
execute a block of code for each
entry in the array.

The forEach() method expects
to have one parameter, and that
parameter should be a function.

We could build a function
elsewhere and pass its name in
here, but it’s more common in JS to
see ‘anonymous’ functions used for
small tasks like this one. In this
case, the anonymous function is
called once for each element in the
array, and, each time it’s called, it’s
passed the current element (in a
variable we’ve called ‘page’) and
the index of that element in the
array (‘idx’). The ‘=>’ syntax is used
for so-called arrow functions, and
can be thought of largely as an
alternative to the ‘function’
keyword you might be more
familiar with if you haven’t gone
near JS for a while.

Inside curly braces (‘{…}’) we
have the body of the function – just
a single line that uses the
console.log() function to print the
idx and pages values to the
developer console. Finally, the last
line closes not only the function
body, but also the end of the
forEach() method.

If you’re not very familiar with
JavaScript, then do take a few
minutes to try to understand the
code above. It’s particularly useful
to examine where each pair of
brackets (‘(…)’) and braces (‘{…}’)
start and end, and what content is
inside each one.

With that code in place, save the
file and reload it in the web
browser, and you should see
something in the console looking
similar to this:

The green numbers are the idx
values, starting at zero because…

const inkNS = 'http://www.inkscape.org/namespaces/inkscape';
const svgNS = 'http://www.w3.org/2000/svg';
const pages = document.getElementsByTagNameNS(inkNS, 'page');

Array.from(pages).forEach((page, idx) => {
 console.log(idx, page);
});

full circle magazine #194 31 contents ^

HOWTO - INKSCAPE
well, there are good reasons, but
this is not the place to go into
them. Suffice to say that most
programming languages use zero-
based indexing for things like
arrays, and JavaScript is no
exception.

Following each green number,
you can see an XML representation
of each SVG element in the array –
the four <inkscape:page> nodes
we’re interested in. Each node also
has a whole load of other baggage
attached to it in the JS world, and
you can see much of that by
expanding the small triangle next
to each one. In practice, we don’t
need any of that for our task, so
feel free to leave that triangle
unexpanded, or to collapse it back
down again if curiosity does get
the better of you.

So far, our code hasn’t really
achieved very much – just printing
the index, and the same nodes we
can see in Inkscape’s XML editor.
But now that we’ve got a way to
grab a handle to each <page>
element, we can start to pull them
apart to get to the individual
details we’ll need. We’re going to
want to extract the x, y, width, and
height values. These are stored as
‘attributes’ on the element, and

can be retrieved using the
getAttribute() method. Let’s add
four lines after the console.log() to
retrieve these values, and assign
each to a JS variable (x, y, w, h).

const x =
page.getAttribute('x');

const y =
page.getAttribute('y');

const w =
page.getAttribute('width');

const h =
page.getAttribute('height');

We could log them out at this
point, but ultimately we’re going to
want these formatted into a space-
separated string for use in a
viewBox attribute. One additional
line of code will do this for us, and
then we’ll log the result:

const viewBox = `${x} ${y} $
{w} ${h}`;

console.log(viewBox);

Be very careful! The ‘const
viewBox’ line uses a feature of JS
called ‘template strings’. These are
delimited by backticks (`) rather
than normal quotes or
apostrophes. Using this method
lets us put our variables directly
into the string using the ${}
notation, and the JS engine will

swap them out for the variables’
values when the code runs. If your
log ends up containing the actual $
{} string, then you’ve used the
wrong type of quotes, and will
need to search your keyboard again
for the easily-overlooked backtick
character.

All those previous 6 lines should
have been added after the existing
console.log() and before the
closing brace. If you’ve done it
correctly, saving the file and
reloading it in the browser should
show something like this – similar
to the previous output, but with
the viewBox values displayed after
each XML node (see image below).

Now we’ve got all the details we
need, it’s time to create a new
<view> element for each page. For
this, we need to use the
document.createElementNS()
function – the NS on the end
referring to the fact that this lets

us specify a namespace for our new
element. This is where our earlier
assignment of the svgNS variable
will be used, ensuring that we end
up with what is effectively an
<svg:view> element, rather than an
<inkscape:view> element, or
anything else.

Each <view> element will also
require two attributes. One is the
‘viewBox’ for which we’ve already
prepared the value. The other is an
‘id’ attribute which will define the
string we have to append to our
URL to view this page. For the sake
of simplicity, we’re just going to
name the pages ‘page-1’, ‘page-2’,
and so on, using another JS
template string in which we’ll also
add 1 to the value to rid ourselves
of those pesky zero-indexed
numbers. Therefore, to create our
new element, and set both
attributes, we’ll need these three
lines of code:

full circle magazine #194 32 contents ^

HOWTO - INKSCAPE
const view =
document.createElementNS(svgN
S, 'view');

view.setAttribute('id',
`page-${idx + 1}`);

view.setAttribute('viewBox',
viewBox);

There’s just one thing left to do.
Although we’ve created our new
<view> element, it currently just
lives as an object in the JS world,
and needs to be inserted into the
browser’s internal model of the
document. We’ll insert each <view>
as a child of the corresponding
<inkscape:page> element in order
to keep things neatly together. This
last line will do the job:

page.appendChild(view);

With that, the final code should
look like this – albeit that you can’t
actually see all the lines at once in
Inkscape’s unfortunately inflexible
editor field (top right).

You can optionally remove the
console.log() lines if you wish, as
they’re purely there for
educational and debugging
purposes, and have no effect on
the actual operation of the code.

Now that the code is done, how
do you actually use it? Simply load

the SVG file directly into your
browser, and append ‘#page-2’ to
the end of the URL to view the
second page. I’m sure you can work
out the syntax for the other pages.
Entering an invalid ID (e.g. ‘#page-
22’) simply causes the browser to
show the first page.

There we have it: a small chunk
of JS that you can add to any multi-
page Inkscape file to make the
additional pages available via a
web browser. What more could you
possibly want?

Quite a bit as it happens. This
code is good, but it suffers from a
significant limitation: in order for
the browser to execute it, the SVG
file has to be loaded directly (or
within an <object> tag). Most
common ways of including SVG
files in a web page – via an
tag or a CSS url() function – are
deliberately prevented from
executing JavaScript. This
significantly limits the usefulness
of this code – at least as it stands.

Another issue is that we’ve just
given each page a rather generic ID.
Within Inkscape, it’s possible to
name each page – wouldn’t it be
nicer if we could use those names
when referring to each page, rather

than just page-1 and page-2?

Next month, I’ll extend this code
a little further to address both
these issues. It still won’t give the
simple, seamless experience that
we could have had if Inkscape

natively created named views, but
it’s better than being stuck with
multi-page files that can display
only the first page!

Mark uses Inkscape to create comics
for the web (www.peppertop.com/)
as well as for print. You can follow
him on Twitter for more comic and
Inkscape content:
@PeppertopComics

const inkNS = 'http://www.inkscape.org/namespaces/
inkscape';
const svgNS = 'http://www.w3.org/2000/svg';
const pages = document.getElementsByTagNameNS(inkNS,
'page');

Array.from(pages).forEach((page, idx) => {
 console.log(idx, page);

 const x = page.getAttribute('x');
 const y = page.getAttribute('y');
 const w = page.getAttribute('width');
 const h = page.getAttribute('height');
 const viewBox = `${x} ${y} ${w} ${h}`;
 console.log(viewBox);

 const view = document.createElementNS(svgNS, 'view');
 view.setAttribute('id', `page-${idx + 1}`);
 view.setAttribute('viewBox', viewBox);
 page.appendChild(view);

});

http://www.peppertop.com

full circle magazine #194 33 contents ^

HHOOWW--TTOO
Written by Ronnie Tucker

FFrreeeeCCAADD -- PPaarrtt 66

So, let’s start a new project. It is,
of course, File > New, then

create a new body, and a new
sketch, in the XY (top-down) plane.

This is where we want to make
the path that our shape will follow.

For this I used the Create Slot
tool.

Now close that sketch and
create a new sketch in the YZ
(right) plane. That white line you
see is our last sketch, the path. So I
used the slot tool again to draw a
quick shape.

Now for the magic.

Close that sketch.

What we’re seeing here is the
path (in white) and the shape
that’ll follow that path (in green).
Make sure the shape is selected (in
green). If not, select it from the left
panel which shows both sketches.

With the shape selected, click
the Additive Pipe tool.

In the left panel, click Add Edge
and select a piece of the path.

Don’t worry about it looking
semi-transparent or the color of it.
This is just a preview. Click Add
Edge and add the remaining edges.
When all is done, click OK.

Nice! Now we have an irregular
shape as a path. Now, be careful
with the paths you make, as a
wonky angle or something similar
will cause your shape to also go a
bit wonky. So, if your shape doesn’t
close properly, it’s probably down
to a wonky path.

Let’s finish up by adding a crude
bottom to our makeshift bath
shape.

Click the sketch for the path
(you may need to click the arrow
beside AdditivePipe in the left
panel to see the sketches), and
click the Pad tool. As ever, edit the
thickness of the padding.

You can, of course, double-click
the sketch (in the left panel) to edit
the path to then edit the object.
Give it a try.

full circle magazine #195 32 contents ^

HHOOWW--TTOO
Written by Mark Crutch IInnkkssccaappee -- PPaarrtt 113355

Correction: This article includes a
fix to address an issue with the
code published last month which
failed to work if Inkscape inserted
the <script> tag near the top of the
SVG file.

Last time I demonstrated how to
write a small chunk of

JavaScript that can be added to a
multi-page Inkscape file in order
for all the pages to be viewable in a
web browser by appending ‘#page-
2’ to the URL (without the quotes,
and replacing ‘2’ with the relevant
page number). That’s a useful step
forward, but Inkscape lets you
explicitly name pages, so it would
be nice if we could use those
names in the URL, rather than a
generic string. This month I’m
going to extend the existing script
to add exactly this capability. But
before I do, I need to address an
issue that was discovered by
‘dwhall’ on the official Inkscape
forum.

Although I tested the code

extensively before writing the
previous article, dwhall was unable
to get it working in their own files.
With a bit of digging, I was able to
track the problem down : my test
files had the <script> tag inserted
at the end of the file, whereas
theirs was inserted near the start.
I’m not sure why this difference
occurred – we had both used
various Inkscape releases, and I’d
also made some manual edits while
testing the code, so the difference
could potentially have been
introduced in a number of
different ways. Having the <script>

tag near the start meant that the
JS was being executed before the
SVG content had finished being
read and rendered, so the call to
getElementsByTagName(), for
example, was failing to return the
correct elements. That same code
worked fine when it was at the
bottom of the file.

One solution to this is to
manually move the <script> tag to
the end of the file – but that
involves editing XML in a text
editor, which is not a very user-
friendly approach. Instead I’ve

modified the code by wrapping it
all in a function, named
‘createViewElements()’. That stops
the code running immediately as
the JavaScript is parsed, but we
still need some way to make sure it
still runs once the page has loaded.
The answer to this is to add a line
at the end, outside the function,
which listens for the browser’s
‘onload’ event, and responds by
calling the function.

With these changes in place, the
code now looks like that shown
above.

 10 function createViewElements() {
 20 const inkNS = 'http://www.inkscape.org/namespaces/inkscape';
 30 const svgNS = 'http://www.w3.org/2000/svg';
 40 const pages = document.getElementsByTagNameNS(inkNS, 'page');
 50
 60 Array.from(pages).forEach((page, idx) => {
 70 const x = page.getAttribute('x');
 80 const y = page.getAttribute('y');
 90 const w = page.getAttribute('width');
100 const h = page.getAttribute('height');
110 const viewBox = `${x} ${y} ${w} ${h}`;
120
130 const view = document.createElementNS(svgNS, 'view');
140 view.setAttribute('id', `page-${idx + 1}`);
150 view.setAttribute('viewBox', viewBox);
160 page.appendChild(view);
170 });
180 }
190
200 window.addEventListener('load', createViewElements);

full circle magazine #195 33 contents ^

HOWTO - INKSCAPE

I’ve added line numbers to make
it clearer which parts of the code
I’m referring to in the rest of this
month’s article, but I’m using the
convention from my BASIC days
back in the 80s of incrementing the
numbers in tens so that I can
squeeze new lines of code in-
between as necessary. Do not
include any line numbers when
entering this code into Inkscape!
I’ve also removed the console.log()
calls that I’d previously left in, for
brevity. If your own code still
contains them it won’t cause any
problems.

If we’re going to make this code
support named pages, we’ll need
to begin by naming some pages in

Inkscape, then open the XML editor
to see how those values are stored
in the file. Using the same demo
page as last time, I’ve given each
page a name based on its contents
– ‘Red star’, ‘Orange diamond’ and
so on.

It may not be very obvious by

the time this screenshot has been
resized and compressed to fit the
magazine’s PDF file, but if you do
this yourself you’ll quickly find that
the page names are stored as part
of the <inkscape:page> element
(no surprise there!), in an attribute
called ‘label’ which is also in the
‘inkscape’ namespace. The use of
the namespace on the attribute
seems a little unnecessary to me,
given that the whole element is

non-standard and in a custom
namespace already, but we have to
work with the format we’ve got,
not what we think it should be.

We’ll need to extract the page
names into JavaScript variables for
further processing. In reality our
code already works on one page at
a time, courtesy of the forEach()
loop, so we actually only need to
get the name from the attribute in
the page that’s currently being
processed. We’ve already used the
getAttribute() function to extract
attribute values, but this time
we’ve also got that pesky
namespace to deal with. That
requires the getAttributeNS()
function which is exactly the same,
but takes a namespace as the first
parameter. Despite this small
difference, we’ll keep all the
attribute-getting code together,
resulting in the insertion of line
105:

105 const label =
page.getAttributeNS(inkNS,
'label');

It’s entirely possible that the
label attribute doesn’t exist on a
particular page. You should be free
to just add labels to some pages
and not others, without the code
breaking. Fortunately,
getAttributeNS() won’t just fall
over in that case, but rather it will
return a JS null value. So if ‘label’
ends up holding a string, we know
that the page had a label applied,
whereas if it is null, there was no
page label. We can use that to
write an ‘if’ statement containing
code that should only run if a label
is present. This goes inside the end
of the existing loop, so the file
looks like this (top right).

Note the jump in line numbers
after 162, as we’ll need more than
just a single line of code in this
section. The first thing we’ll need
to do in here is to ensure that the
label is valid for use as the ID for a
<view> element. IDs have pretty
strict rules about what characters
they’re allowed to contain,
whereas Inkscape page labels are

160 page.appendChild(view);
161
162 if (label !== null) {
 // More code to go in here…
169 }
170 });

full circle magazine #195 34 contents ^

HOWTO - INKSCAPE
far more lax. We’ll take a rather
basic approach to this problem:
we’ll just replace every character
that’s not alphanumeric with an
underscore.

163 const idLabel =
label.replace(/\W/g, '_');

This calls the JS replace()
method on our string, passing it
two parameters. The second is
pretty obviously the replacement
string we want to use, but what
about that first one? That’s a
JavaScript regular expression –
similar to those that you may be
familiar with from grep or sed on
the command line, but with some
significant differences in syntax. In
JS a regular expression is delimited
by slash characters (‘/’) in much the
same way that a string is delimited
by quotes. So the actual regular
expression itself is just the ‘\W’
between those slashes. What does
that mean?

In the command line world you
might be familiar with character
classes in regular expressions –
special values such as [:alnum:]
which match against the range of
alphanumeric characters
(equivalent to [a-zA-Z0-9]). JS has
its own set of character classes,

with the closest match to [:alnum:]
being \w (lower-case ‘w’). This
actually matches not only
alphanumeric characters, but also
the underscore character. No, I
don’t know why they decided to
throw an arbitrary underscore into
the mix, but that’s the way it works.
Each of these character classes has
an inverse, using the upper-case
version of the letter. So the ‘\W’
used in our code matches any
character that is NOT an
alphanumeric character or an
underscore.

The ‘g’ at the end of the regex is
a flag that turns this into a ‘global’
regular expression. All that means
is that it will apply to all the
substrings that match, not just the
first one. Without this a label such
as “Red star #1” would be
transformed into “Red_star #1”.
With this one extra character the
transformation becomes
“Red_star__1” instead. Note that
both the second space and the
hash character are transformed,
resulting in a double-underscore in
the final string. If you prefer to

collapse sequences of multiple
matching characters down to a
single underscore, replace the
regex with /\W+/g instead. The
additional ‘+’ will cause the ‘\W’ to
not just match a single character,
but any consecutive sequence of
one or more characters, replacing
entire spans of non-alphanumerics
with a single underscore. I think
this is usually a little more user-
friendly, so I’ll include the ‘+’ in the
final code.

Now that we’ve got an ID-
friendly name, we can create the
new <view> element, just like we
did last time. In fact, the code will
be virtually identical, which makes
it a prime target for moving out
into a separate function. For our
purposes we want a function that
takes the strings for the ID and
viewBox as parameters, as well as a
reference to the current <page>
element. It will create the new
<view> and append it to the
<page>, as before. The current
code looks like this (above).

Let’s extract lines 130 to 160

into a function, which we’ll put
between the end of the existing
function (line 180) and the event
listener (line 200). The main change
in this code is that the ID that we
previously generated on line 140 is
now going to be passed in to the
function call, so on line 184 below
we use the parameter name. We’ll
also move the svgNS variable
(previously on line 30, now on line
183) as it’s only used by the
createElementNS() function and no
longer needs to exist in the main
function (next page, top right).

If you’ve kept up so far, then
well done! It’s time to take a break
and test the new functionality. You
should be able to access each page
either by appending ‘#page-n’ to
the URL (e.g. file.svg#page-3) or by
appending a hash followed by the
page label, with non-alphanumerics
replaced by underscores. With my
test file, appending
‘#Orange_diamond’ to the URL
produces this (image shown next
page, bottom left).

130 const view = document.createElementNS(svgNS, 'view');
140 view.setAttribute('id', `page-${idx + 1}`);
150 view.setAttribute('viewBox', viewBox);
160 page.appendChild(view);

full circle magazine #195 35 contents ^

HOWTO - INKSCAPE
I’ve opened the developer tools

and switched to the Inspector in
order to see what’s actually
happened in the document. Sure
enough, each of my
<inkscape:page> elements now
contains two children, both <view>
elements, with an ID corresponding
to the page number, and another
corresponding to the label. Either
can be used as a fragment
identifier in the URL to give exactly
the same result.

You can stop there if you want.
We’ve achieved the goal we set for
ourselves, of being able to access
pages by their label. But with little
effort we can make this script even
more useful. There’s a way we can
apply those additions to the file,

permanently.

Currently our SVG file has a
significant limitation. The <view>
elements are created dynamically
when the JavaScript runs – but JS
only runs when we load the SVG
file directly, or via an <object> tag,
neither of which are common in
today’s web. More often our files
are pulled into a page via an HTML
 tag, or a CSS url() function,
and in those cases we can’t use
fragment identifiers unless we
manually edit the file to add

<view> elements as described a
couple of articles ago.

One workaround to this is to
add the code from this article, load
the SVG directly into a web
browser, and then save the page
(with a new name) from within the
web browser. That creates a new
file that contains the current
version of the document – i.e. the
one which contains the <view>
elements that the code created.
We’ve just automated the task of
adding the new elements to the

180 }
181
182 function insertSVGView(page, id, viewBox) {
183 const svgNS = 'http://www.w3.org/2000/svg';
184 const view = document.createElementNS(svgNS, 'view');
185 view.setAttribute('id', id);
186 view.setAttribute('viewBox', viewBox);
187 page.appendChild(view);
188 }
190
200 window.addEventListener('load', createViewElements);

Now we can replace lines 130-160 with a single call to the new function, as follows:

130 insertSVGView(page, `page-${idx + 1}`, viewBox);
170 });

Save the file and make sure it still works as it did previously. Assuming it does, then our last step is to call
the new function inside our ‘if’ block, creating another <view> element if the page has a label. This is as
simple as it sounds – just adding a new line after we’ve created the ID:

162 if (label !== null) {
163 const idLabel = label.replace(/\W/g, '_');
164 insertSVGView(page, idLabel, viewBox);
169 }

full circle magazine #195 36 contents ^

HOWTO - INKSCAPE
file, avoiding the need for our
error-prone manual editing.

That works, but leaves us with a
small problem. The new file
already contains the additional
<view> elements… but it also still
contains the code that creates new
<view> elements. If that file is
loaded directly into a browser, all
the new <view> elements get
created again, resulting in twice as
many as we wanted. Here’s how it
looks in the Firefox developer tools
(bottom left).

To fix this we need to modify
the function that creates the
<view> elements to test for the
existence of the ID in the page. If it
already exists then the function
just exits before creating any new
elements. Otherwise it carries on
as before. We can achieve this with
a couple of lines at the top of the
function. They go after line 182,
but as I’ve already used the line
numbers after that, I’ll show them
without numbers in the code below
(it was the same in the 80s – the

idea of numbering in tens falls
down as soon as you need to insert
11 new lines!). Shown top right.

The first line assigns null to the
‘foundID’ variable if the ID does
NOT already exist in the page.
Otherwise it assigns a reference to
the element. The second line then
tests ‘foundID’ and returns from
the function if it’s not null (i.e. if
the element already exists).

With that in place, our enhanced
function is complete. Here’s a
breakdown of how to use it:
• Create a multi-page Inkscape
document.
• Optionally add labels to some or
all of the pages.
• Add this entire JS script via the
Document Properties dialog.
• Save the file.
• Load it directly into a web
browser. That triggers the creation
of the extra <view> elements.
• Save it from the web browser,
fixing those new elements into the
file.

Now you can load it any way you
want, and access the additional
pages with a fragment identifier
based on the page number or label.

Finally, next page, here’s the
complete code we ended up with.
No line numbers this time, to make
it easier for you to copy and paste
it into Inkscape.

full circle magazine #195 37 contents ^

Mark uses Inkscape to create comics
for the web (www.peppertop.com/)
as well as for print. You can follow
him on Twitter for more comic and
Inkscape content:
@PeppertopComics

function createViewElements() {
 const inkNS = 'http://www.inkscape.org/namespaces/inkscape';
 const svgNS = 'http://www.w3.org/2000/svg';
 const pages = document.getElementsByTagNameNS(inkNS, 'page');

 Array.from(pages).forEach((page, idx) => {
 const x = page.getAttribute('x');
 const y = page.getAttribute('y');
 const w = page.getAttribute('width');
 const h = page.getAttribute('height');
 const label = page.getAttributeNS(inkNS, 'label');
 const idLabel = label.replace(/\W+/g, '_');
 const viewBox = `${x} ${y} ${w} ${h}`;
 insertSVGView(page, `page-${idx + 1}`, viewBox);

 if (label !== null) {
 const idLabel = label.replace(/\W/g, '_');
 insertSVGView(page, idLabel, viewBox);
 }
 });
}

function insertSVGView(page, id, viewBox) {
 const foundID = document.getElementById(id);
 if (foundID !== null) return;

 const svgNS = 'http://www.w3.org/2000/svg';
 const view = document.createElementNS(svgNS, 'view');
 view.setAttribute('id', id);
 view.setAttribute('viewBox', viewBox);
 page.appendChild(view);
}

window.addEventListener('load', createViewElements);

HOWTO - INKSCAPE

http://www.peppertop.com

full circle magazine #195 38 contents ^

HHOOWW--TTOO
Written by Ronnie Tucker

FFrreeeeCCAADD -- PPaarrtt 77

OK, so you’ve got a thing, but
how do you get it to your

printer? Well, I’m glad you asked.

First things first: FreeCAD is
only for making the object. It won’t
prepare or send an object to your
printer. For that, you need
something like Ultimaker Cura
(https://ultimaker.com/software/
ultimaker-cura). It will take the
object and ‘slice’ it. It will then
export a gcode file that tells your
printer how to print each slice.

EXPORT

I’m pretty sure we covered
saving a FreeCAD thing, but if not:
File > Save As. Exporting is
different. It will make a file that
has your thing as a finished model.
If you need to go back and edit
something then you need the
FreeCAD file.

First, make sure you have the
last thing in the left panel selected.
Otherwise, FreeCAD won’t export.

Do a File > Export and save as
an STL file. This is pretty much the
standard for 3D printing models.

SLICING

As I mentioned previously,
We’re now done with FreeCAD with
regards to printing this plate (as

I’ve called it).

Load up Cura. I’m using the
AppImage version. So a double
click on the downloaded file will
start it.

The next part is outwith this
series, but you need to give Cura
your printer settings. Cura comes
with a huge list of printers that it
supports. If your printer isn’t on
the list then maybe contact the
makers and ask if they have a Cura

settings file. The makers of my
Tina2 supplied a Cura settings file
which was nice.

Head to the Cura menu and click
File > Open File(s) and select the

STL file.

Last thing is to click the ‘Slice’
button to have Cura analyse the
model to see how it should be
printed. It’ll give you a print
estimate time (which is a nice
feature), but click Preview to see

what the printer will do.

https://ultimaker.com/software/ultimaker-cura

full circle magazine #195 39 contents ^

HOWTO - FREECAD
In this window you can view

each slice and using the sliders
show exactly what the printer will
do.

Last thing to do is click ‘Save to
Disk’ and save the sliced model as a
gcode file.

Now it’s a case of getting the
gcode file to the printer. In my case
I copy it to a memory card and pop
that into the printer, choose the
file on the little screen, and click
print. Then it’s a case of making a
cuppa and coming back after, in
this case, about 15 minutes.

THERE’S MORE TO CURA

I’ve greatly simplified the Cura
process here as this series is
focusing on FreeCAD. With Cura
you can have different adhesion
for the printing process (skirt,
platform, etc.), different infill
amounts (for saving PLA by making
the object hollow, but still sturdy),
supports (for overhanging parts).
The list goes on.

Well, that’s about it for this
series. I hope you enjoyed it. I have
to be honest and say I don’t know
enough about FreeCAD to write
more parts. If you know more
about FreeCAD and would like to
continue the series, feel free to
email me:
ronnie@fullcirclemagazine.org

mailto:ronnie@fullcirclemagazine.org

