
PROGRAMMING SERIES SPECIAL EDITION

 PROGRAMPROGRAM
 IN PYTHONIN PYTHON
 Volume Two Volume Two

Full Circle Magazine is neither affiliated, with nor endorsed by, Canonical Ltd.

Full Circle Magazine Specials

Full Circle Magazine

The articles contained in this magazine are released under the Creative Commons Attribution-Share Alike 3.0
Unported license. This means you can adapt, copy, distribute and transmit the articles but only under the following conditions:

You must attribute the work to the original author in some way (at least a name, email or URL) and to this magazine by name ('full circle magazine') and
the URL www.fullcirclemagazine.org (but not attribute the article(s) in any way that suggests that they endorse you or your use of the work). If you alter,
transform, or build upon this work, you must distribute the resulting work under the same, similar or a compatible license.
Full Circle Magazine is entirely independent of Canonical, the sponsor of Ubuntu projects and the views and opinions in the magazine should in no
way be assumed to have Canonical endorsement.

Please note: this Special
Edition is provided with
absolutely no warranty
whatsoever; neither the
contributors nor Full Circle
Magazine accept any
responsibility or liability for
loss or damage resulting from
readers choosing to apply this
content to theirs or others
computers and equipment.

About Full Circle

Full Circle is a free,
independent, magazine
dedicated to the Ubuntu
family of Linux operating
systems. Each month, it
contains helpful how-to
articles and reader-
submitted stories.

Full Circle also features a
companion podcast, the Full
Circle Podcast which covers
the magazine, along with
other news of interest.

Welcome to another 'single-topic special'
In response to reader requests, we are assembling the
content of some of our serialised articles into dedicated
editions.

For now, this is a straight reprint of the series
'Programming in Python', Parts 9-16 from issues #35
through #42; nothing fancy, just the facts.

Please bear in mind the original publication date; current
versions of hardware and software may differ from those
illustrated, so check your hardware and software versions
before attempting to emulate the tutorials in these special
editions. You may have later versions of software installed
or available in your distributions' repositories.

Enjoy!

Find Us

Website:
http://www.fullcirclemagazine.org/

Forums:
http://ubuntuforums.org/
forumdisplay.php?f=270

IRC: #fullcirclemagazine on
chat.freenode.net

Editorial Team

Editor: Ronnie Tucker
(aka: RonnieTucker)
ronnie@fullcirclemagazine.org

Webmaster: Rob Kerfia
(aka: admin / linuxgeekery-
admin@fullcirclemagazine.org

Podcaster: Robin Catling
(aka RobinCatling)
podcast@fullcirclemagazine.org

Communications Manager:
Robert Clipsham
(aka: mrmonday) -
mrmonday@fullcirclemagazine.org

http://www.fullcirclemagazine.org/
http://ubuntuforums.org/forumdisplay.php?f=270
http://ubuntuforums.org/forumdisplay.php?f=270
mailto:ronnie@fullcirclemagazine.org
mailto:admin@fullcirclemagazine.org
mailto:podcast@fullcirclemagazine.org
mailto:mrmonday@fullcirclemagazine.org

full circle magazine #35 contents ^

HOW-TO Program In Python - Part 9

FCM#27-34 - Python Parts 1 - 8

GraphicsDev Internet M/media System

HDDCD/DVD USB Drive Laptop Wireless

I
f you are anything like me,
you have some of your
favorite music on your
computer in the form of

MP3 files. When you have less
than 1000 music files, it's
rather easy to remember what
you have and where it is. I, on
the other hand, have many
more than that. In a past life, I
was a DJ and converted most of
my music a number of years
ago. The biggest problem that I
had was disk space. Now the
biggest problem is

remembering what I have and
where it is.

In this and the next
installment we will look at
making a catalog for our MP3
files. We will also take a look
at some new python concepts
as well as re-visiting our
database skills.

First, an MP3 file can hold
information about the file
itself. The title of the song, the
album, artist and more
information. This information
is held in ID3 tags and is
referred to as metadata. Back
in the early days, there was
only a limited amount of
information that could be held
inside of the MP3 file.
Originally, it was stored at the
very end of the file in a block
of 128 bytes. Because of the
small size of this block, you
could only hold 30 characters
for the title of the song, name
of the artist, and so on. For
many music files, this was fine,
but (and this is one of my
favorite songs ever) when you

had a song with the name
“Clowns (The Demise of the
European Circus with No
Thanks to Fellini)”, you only
got the first 30 characters.
That was a BIG frustration for
many people. So, the
“standard” ID3 tag became
known as ID3v1 and a new
format was created called,
amazingly enough, ID3v2.
This new format allowed for
variable length information
and was placed at the
beginning of the file, while the
old ID3v1 metadata was still
stuck at the end of the file for
the benefit of the older
players. Now the metadata
container could hold up to 256
MB of data. This was ideal for
radio stations and crazies like
me. Under ID3v2, each group
of information is held in what's
called a frame and each frame
has a frame identifier. In an
earlier version of ID3v2, the
identifier was three characters
long. The current version
(ID3v2.4) uses a four character
identifier.

In the early days, we would
open the file in binary mode,
and dig around getting the
information as we needed it,
but that was a lot of work,
because there were no
standard libraries available to
handle it. Now we have a
number of libraries that handle
this for us. We will use one for
our project called Mutagen.
You will want to go into
Synaptic and install python-
mutagen. If you want, you
could do a search for “ID3” in
Synaptic. You'll find there are
over 90 packages (in Karmic),
and if you type “Python” in the
quick search box, you'll find 8
packages. There are pros and
cons with any of them, but for
our project, we'll stick with
Mutagen. Feel free to dig into
some of the other ones for
your extended learning.

Now that you have Mutagen
installed, we'll start our coding.

Start a new project and
name it “mCat”. We'll start by
doing our imports.

full circle magazine #35 contents ^

PROGRAM IN PYTHON - PART 8
from mutagen.mp3 import MP3

import os

from os.path import
join,getsize,exists

import sys

import apsw

For the most part, you've
seen these before. Next, we
want to create our stubbed
function headers.

def MakeDataBase():
pass

def S2HMS(t):
pass

def WalkThePath(musicpath):
pass

def error(message):
pass

def main():
pass

def usage():
pass

Ahhh...something new. We
now have a main function and
a usage function. What are
these for? Let's put one more
thing in before we discuss
them.

if __name__ == '__main__':
main()

What the heck is that? This
is a trick that allows our file to
be used as either a stand alone
application or a re-usable
module that gets imported into
another app. Basically it says
“IF this file is the main app, we
should go into the main routine
to run, otherwise we are going
to use this as a utility module
and the functions will be called
directly from another program.

Next, we'll flesh out the
usage function. Below is the
full code for the usage routine.

Here we are going to create
a message to display to the
user if they don't start our
application with a parameter
that we need to be able to run

as a standalone app. Notice
we use '\n' to force a new line
and '\t' to force a tab. We also
use a '%s' to include the
application name which is held
in the sys.argv[0]. We then
use the error routine to output
the message, then exit the
application (sys.exit(1)).

Next, let's flesh out the error
routine. Here is the full error
routine.

def error(message):
print >> sys.stderr,

str(message)

We are using something
called redirection here (the
“>>”). When we use the
function “print”, we are telling

python we want to output, or
stream, to the standard output
device, usually the terminal
that we are running in. To do
this we use (invisibly) stdout.
When we want to send an
error message, we use the
stderr stream. This is also the
terminal. So we redirect the
print output to the stderr
stream.

Now, let's work on the main
routine. Here we will setup our
connection and cursor for our
database, then look at our
system argument parameters,
and if everything is good, we'll
call our functions to do the
actual work we want done.
Here's the code:

def usage():
message = (

'==\n'
'mCat - Finds all *.mp3 files in a given folder (and sub-folders),\n'
'\tread the id3 tags, and write that information to a SQLite database.\n\n'
'Usage:\n'
'\t{0} <foldername>\n'
'\t WHERE <foldername> is the path to your MP3 files.\n\n'
'Author: Greg Walters\n'
'For Full Circle Magazine\n'
'==\n'
).format(sys.argv[0])

error(message)
sys.exit(1)

full circle magazine #35 contents ^

PROGRAM IN PYTHON - PART 8

As we did last time, we
create two global variables
called connection and cursor
for our database. Next we look
at the parameters (if any)
passed from the command line
in the terminal. We do this
with the sys.argv command.
Here we are looking for two
parameters, first the
application name which is

automatic and secondly the
path to our MP3 files. If we
don't see two parameters, we
jump to the usage routine,
which prints our message to
the screen and exits. If we do,
we fall into the else clause of
our IF statement. Next, we put
the parameter for the starting
path into the StartFolder
variable. Understand that if

you have a path with a space
in it, for example,
(/mnt/musicmain/Adult
Contemporary), the characters
after the space will be seen as
another parameter. So,
whenever you use a path with
a space, make sure you quote
it. We then setup our
connection and cursor, create
the database, then do the
actual hard work in the
WalkThePath routine and finally
close our cursor and
connection to the database
and then tell the user we are
done. The full WalkThePath
routine can be found at:
http://pastebin.com/CegsAXjW.

First we clear the three
counters we will be using to
keep track of the work that has
been done. Next we open a
file to hold our error log just in
case we have any problems.
Next we do a recursive walk
down the path provided by the
user. Basically, we start at the
provided file path and “walk” in
and out of any sub-folders that
happen to be there, looking for
any files that have a “.mp3”
extension. Next we increment
the folder counter then the file
counter to keep track of how

many files we've dealt with.
Next we we step through each
of the files. We clear the local
variables that hold the
information about each song.
We use the join function from
os.path to create a proper path
and filename so we can tell
mutagen where to find the file.
Now we pass the filename to
the MP3 class getting back an
instance of “audio”. Next we
get all the ID3 tags this file
contains and then step through
that list checking for the tags
we want to deal with and
assigning them to our
temporary variables. This way,
we can keep errors to a
minimum. Take a look at the
portion of code dealing with
the track number. When
mutagen returns a track
number it can be a single
value, a value like “4/18” or as
_trk[0] and _trk[1] or it can be
absolutely nothing. We use the
try/except wrappers to catch
any errors that will occur due
to this. Next, look at the
writing of the data records. We
are doing things a bit different
from last time. Here we create
the SQL statement like before,
but this time we are replacing
the value variables with “?”.

def main():
global connection
global cursor
#--
if len(sys.argv) != 2:

usage()
else:

StartFolder = sys.argv[1]
if not exists(StartFolder): # From os.path

print('Path {0} does not seem to
exist...Exiting.').format(StartFolder)

sys.exit(1)
else:

print('About to work {0}
folder(s):').format(StartFolder)

Create the connection and cursor.
connection=apsw.Connection("mCat.db3")
cursor=connection.cursor()
Make the database if it doesn't exist...
MakeDataBase()
Do the actual work...
WalkThePath(StartFolder)
Close the cursor and connection...
cursor.close()
connection.close()
Let us know we are finished...
print("FINISHED!")

full circle magazine #35 contents ^

is owner of
, a

consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his
family.

PROGRAM IN PYTHON - PART 8
We then put in the values in
the cursor.execute statement.
According to the ASPW web
site, this is the better way to
deal with it, so I won't argue
with them. Finally we deal with
any other types of errors we
come up with. For the most
part, these will be TypeErrors or
ValueErrors and will probably
occur because of Unicode
characters that can't be
handled. Take a quick look at
the strange way we are
formatting and outputting the
string. We aren't using the '%'
substitution character. We are
using a “{0}” type
substitution, which is part of
the Python 3.x specification.
The basic form is:

Print('String that will be
printed with {0} number of
statements”).format(replaceme
nt values)

We are using the basic
syntax for the efile.writelines
as well.

Finally we should take a look
at the S2HMS routine. This
routine will take the length of
the song which is a floating
point value returned by

mutagen and convert it to a
string using either
“Hour:Minutes:Seconds” format
or “Minutes:Seconds” format.
Look at the return statements.
Once again, we are using the
Python 3.x formatting syntax.
However, there's something
new in the mix. We are using
three substitution sets (0, 1
and 2), but what's the “:02n”
after numbers 1 and 2? That
says that we want leading
zeros to two places. So if a
song is 2 minutes and 4
seconds, the returned string
would be “2:04”, not “2:4”.

The full code of our program
is at:
http://pastebin.com/rFf4Gm7E.

Dig around on the web and
see what you can find about
Mutagen. It does more than
just MP3s.

MY STORY QUICKIE
My studio is fully digital with four Windows XP machines in a peer to
peer network. My fifth machine runs Linux Ubuntu 9.04 exclusively
as my test machine for Linux. I started with Ubuntu 7.04 and have
upgraded each time there was a release. I have found it to be very
stable, easy to use and configure as each version improves the OS.

At this time it is only my test bed but is linked to my network and
shares data with my Windows machines. I have been very happy
with the stability of Ubuntu in its upgrades, programs, hardware
support, and driver updates. Although it is unfortunate that more
major vendors such as Adobe don't port over, but Wine seems to
work well. There are graphics programs and professional printers
related to my camera equipment that do not work so I will have to
wait until Wine gets better or the software gets ported over.

Audio, video, CD/DVD, USB, and Zip drives all seem to work 'out of
the box' which is nice. Still some flaws in the software but they
appear to be minor annoyances.

All in all Ubuntu has been visually refreshing and fun to play with. I
am not a geek so I really do not use the command line unless
curious about a tutorial and want to try it, the OS GUI is quite
complete for us non-geeks who want to stick to a GUI.

I download Full Circle Magazine every month and have shared it
with one of my colleagues to show him what is available. A lot of
people still do not know about the OS and how easy it is to use, but
as the Microsoft disgruntled get the word out I expect to see more
growth. The one thing I absolutely love about this OS is the ability to
shut down a misbehaving program. The break button works slickly
in Linux and eliminates the frustration of waiting for Windows to
unfreeze in XP. Why can't Windows do something as easy as that? I
seldom need to use the button in Linux anyway which shows how
stable Linux is.

-

full circle magazine #36 contents ^

HOW-TO Program In Python - Part 10

FCM#27-35 - Python Parts 1 - 9

GraphicsDev Internet M/media System

HDDCD/DVD USB Drive Laptop Wireless

Y
ou probably have heard
of the term XML. You
may not, however,
know what it is. XML

will be the focus of our lesson
this month. The goal is:

• To familiarize you with what
XML is.
• To show you how to read and
write XML files in your own
applications.
• Get you ready for a fairly
large XML project next time.

So... let's talk about XML.
XML stands for EXtensible
Markup Language, very much
like HTML. It was designed to
provide a way to store and
transport data efficiently over
the Internet or other
communication path. XML is
basically a text file that is
formatted using your own tags
and should be fairly self-
documenting. Being a text
file, it can be compressed to
allow for faster and easier
transfer of the data. Unlike
HTML, XML doesn't do
anything by itself. It doesn't
care how you want your data
to look. As I said a moment
before, XML doesn't require
you to stick to a series of
standard tags. You can create
your own.

Let's take a look at a
generic example of an XML file:

<root>
<node1>Data Here</node1>
<node2

attribute=”something”>Node 2
data</node2>

<node3>
<node3sub1>more

data</node3sub1>
</node3>

</root>

The first thing to notice is
the indentation. In reality,
indentation is simply for
human consumption. The XML
file would work just as well if it
looked like this...

<root><node1>Data
Here</node1><node2
attribute=”something”>Node 2
data</node2><node3><node3sub1
>more
data</node3sub1></node3></roo
t>

Next, the tags contained in
the “<>” brackets have some
rules. First, they must be a
single word. Next, when you
have a start tag (for example
<root>) you must have a
matching closing tag. The
closing tag starts with a “/”.
Tags are also case sensitive:
<node>, <Node>, <NODE>
and <NodE> are all different
tags, and the closing tag must
match. Tag names may contain
letters, numbers and other
characters, but may not start

with a number or punctuation.
You should avoid “-”, “.” and
“:” in your tag names since
some software applications
might consider them some
sort of command or property
of an object. Also, colons are
reserved for something else.
Tags are referred to as
elements.

Every XML file is basically a
tree - starting from a root and
branching out from there.
Every XML file MUST have a
root element, which is the
parent of everything else in
the file. Look again at our
example. After the root, there
are three child elements:
node1, node2 and node3.
While they are children of the
root element, node3 is also a
parent of node3sub1.

Now take a look at node2.
Notice that in addition to
having its normal data inside
the brackets, it also has
something called an attribute.
These days, many developers
avoid attributes, since

full circle magazine #36 contents ^

PROGRAM IN PYTHON - PART 10
elements are just as effective
and less hassle, but you will
find that attributes are still
used. We'll look at them some
more in a little bit.

Let's take a look at the
useful example below.

Here we have the root
element named "people",
containing two child elements
named "person". Each 'person'
child has 6 child elements:
firstname, lastname, gender,
address, city and state. At first
glance, you might think of this
XML file as a database
(remembering the last few
lessons), and you would be

correct. In fact, some
applications use XML files as
simple database structures.
Now, writing an application to
read this XML file could be
done without too much trouble.
Simply open the file, read each
line and, based on the
element, deal with the data as
it's read and then close the file
when you are done. However,
there are better ways to do it.

In the following examples,
we are going to use a library
module called ElementTree.
You can get it directly from
Synaptic by installing python-
elementtree. However, I chose
to go to the ElementTree

website
(http://effbot.org/downloads/#el
ementtree) and download the
source file directly
(elementtree-1.2.6-
20050316.tar.gz). Once
downloaded, I used the
package manager to extract it
to a temporary folder. I
changed to that folder and did
a “sudo python setup.py
install”. This placed the files
into the python common folder
so I could use it in either
python 2.5 or 2.6.
Now we can start
to work. Create a
folder to hold this
month's code,
copy the above
XML data into your
favorite text
editor, and save it
into that folder as
“xmlsample1.xml”.

Now for our
code. The first
thing we want to
do is test our
install of
ElementTree.
Here's the code:

import
elementtree.ElementTree as ET

tree =
ET.parse('xmlsample1.xml')

ET.dump(tree)

When we run the test
program, we should get back
something like what is shown
below right.

All that we did was allow
ElementTree to open the file,
parse the file into its base

<people>
<person>

<firstname>Samantha</firstname>
<lastname>Pharoh</lastname>
<gender>Female</gender>
<address>123 Main St.</address>
<city>Denver</city>
<state>Colorado</state>

</person>
<person>

<firstname>Steve</firstname>
<lastname>Levon</lastname>
<gender>Male</gender>
<address>332120 Arapahoe Blvd.</address>
<city>Denver</city>
<state>Colorado</state>

</person>
</people>

/usr/bin/python -u
"/home/greg/Documents/articles/xml/rea

der1.py"

<people>
<person>

<firstname>Samantha</firstname>
<lastname>Pharoh</lastname>
<gender>Female</gender>
<address>123 Main St.</address>
<city>Denver</city>
<state>Colorado</state>

</person>
<person>

<firstname>Steve</firstname>
<lastname>Levon</lastname>
<gender>Male</gender>
<address>332120 Arapahoe

Blvd.</address>
<city>Denver</city>
<state>Colorado</state>

</person>
</people>

full circle magazine #36 contents ^

PROGRAM IN PYTHON - PART 10
parts, and dump it out as it is
in memory. Nothing fancy here.

Now, replace your code with
the following:

import
elementtree.ElementTree as ET

tree =
ET.parse('xmlsample1.xml')

person =
tree.findall('.//person')

for p in person:
for dat in p:

print "Element: %s -
Data: %s" %(dat.tag,dat.text)

and run it again. Now your
output should be:

/usr/bin/python -u
"/home/greg/Documents/articl

es/xml/reader1.py"

Element: firstname - Data:
Samantha
Element: lastname - Data:
Pharoh
Element: gender - Data:
Female
Element: address - Data: 123
Main St.
Element: city - Data: Denver
Element: state - Data:
Colorado
Element: firstname - Data:
Steve
Element: lastname - Data:
Levon

Element: gender - Data: Male
Element: address - Data:
332120 Arapahoe Blvd.
Element: city - Data: Denver
Element: state - Data:
Colorado

Now we have each piece of
data along with the tag name.
We can simply do some pretty
printing to deal with what we
have. Let's look at what we did
here. We had ElementTree
parse the file into an object
named tree. We then asked
ElementTree to find all
instances of person. In the
sample we are using, there are
two, but it could be 1 or 1000.
Person is a child of people and
we know that people is simply
the root. All of our data is

broken down within person.
Next we created a simple for
loop to walk through each
person object. We then created
another for loop to pull out the
data for each person, and
display it by showing the
element name (.tag) and the
data (.text).

Now for a more real-world
example. My family and I enjoy
an activity called Geocaching.
If you don't know what that is,
it's a “geeky” treasure hunt
that uses a hand-held GPS
device to find something
someone else has hidden. They
post the gross GPS coordinates
on a web site, sometimes with
clues, and we enter the

coordinates into our GPS and
then try to go find it. According
to Wikipedia, there are over
1,000,000 active cache sites
world wide, so there are
probably a few in your area. I
use two websites to get the
locations we search for. One is
http://www.geocaching.com/
and the other is
http://navicache.com/. There
are others, but these two are
about the biggest.

Files that contain the
information for each
geocaching site are usually
basic XML files. There are
applications that will take
those data and transfer them
to the GPS device. Some of

<?xml version="1.0" encoding="ISO-8859-1"?>
<loc version="1.0" src="NaviCache">

<waypoint>
<name id="N02CAC"><![CDATA[Take Goofy Pictures at Grapevine Lake by g_phillips

Open Cache: Unrestricted
Cache Type: Normal
Cache Size: Normal
Difficulty: 1.5
Terrain : 2.0]]></name>

<coord lat="32.9890166666667" lon="-97.0728833333333" />
<type>Geocache</type>
<link text="Cache Details">http://www.navicache.com/cgi-

bin/db/displaycache2.pl?CacheID=11436</link>
</waypoint>

</loc>
Navicache file

full circle magazine #36 contents ^

PROGRAM IN PYTHON - PART 10
them act as database
programs - that allow you to
keep track of your activity,
sometimes with maps. For now,
we'll concentrate on just
parsing the download files.

I went to Navicache and
found a recent hide in Texas.
The information from the file is
shown on the previous page.

Copy the data from that box,
and save it as “Cache.loc”.
Before we start coding, let's
examine the cache file.

The first line basically tells
us that this is a validated XML
file, so we can safely ignore it.
The next line (that starts with
“loc”) is our root, and has the
attributes "version" and "src".
Remember I said earlier that
attributes are used in some
files. We'll deal with more
attributes in this file as we go
on. Again, the root in this case
can be ignored. The next line
gives us our waypoint child. (A
waypoint is a location where, in
this case, the cache is to be
found.) Now we get the
important data that we want.
There is the name of the
cache, the coordinates in

latitude and longitude, the type
of cache it is, and a link to the
web page for more information
about this cache. The name
element is a long string that
has a bunch of information that
we can use, but we'll need to
parse it ourselves. Now let's
create a new application to
read and display this file. Name
it "readacache.py". Start with
the import and parse
statements from our previous
example.

import
elementtree.ElementTree as ET

tree = ET.parse('Cache.loc')

Now we want to get back
just the data within the
waypoint tag. To do this, we
use the .find function within
ElementTree. This will be
returned in the object “w”.

w = tree.find('.//waypoint')

Next, we want to go through
all the data. We'll use a for loop
to do this. Within the loop, we
will check the tag to find the
elements 'name', 'coord', 'type'
and 'link'. Based on which tag
we get, we'll pull out the
information to print it later on.

for w1 in w:
if w1.tag == "name":

Since we will be looking at
the 'name' tag first, let's review
the data we will be getting
back.

<name
id="N02CAC"><![CDATA[Take
Goofy Pictures at Grapevine
Lake by g_phillips

Open Cache: Unrestricted

Cache Type: Normal

Cache Size: Normal

Difficulty: 1.5

Terrain : 2.0]]></name>

This is one really long string.
The 'id' of the cache is set as

an attribute. The name is the
part after “CDATA” and before
the “Open Cache:” part. We will
be chopping up the string into
smaller portions that we want.
We can get part of a string by
using:

newstring =
oldstring[startposition:endpo
sition]

So, we can use the code
below to grab the information
we need.

Next we need to grab the id
that's located in the attribute
of the name tag. We check to
see if there are any attributes
(which we know there are), like
this:

Get text of cache name up to the phrase "Open Cache: "
CacheName = w1.text[:w1.text.find("Open Cache: ")-1]
Get the text between "Open Cache: " and "Cache Type: "
OpenCache = w1.text[w1.text.find("Open Cache:
")+12:w1.text.find("Cache Type: ")-1]
More of the same
CacheType = w1.text[w1.text.find("Cache Type:
")+12:w1.text.find("Cache Size: ")-1]
CacheSize = w1.text[w1.text.find("Cache Size:
")+12:w1.text.find("Difficulty: ")-1]
Difficulty= w1.text[w1.text.find("Difficulty:
")+12:w1.text.find("Terrain : ")-1]
Terrain = w1.text[w1.text.find("Terrain : ")+12:]

full circle magazine #36 contents ^

is owner of
, a

consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his
family.

PROGRAM IN PYTHON - PART 10
if w1.keys():

for name,value in
w1.items():

if name == 'id':
CacheID = value

Now, we can deal with the
other tags for Coordinates,
type, and link the code shown
below right. Finally, we print
them out to see them using the
code at the bottom right. Far
right is the full code.

You've learned
enough now to read
most XML files. As
always, you can get
the full code for this
lesson on my website
which is at:
http://www.thedesignat
edgeek.com.

Next time, we will
utilize our XML
knowledge to get
information from a
wonderful weather site
and display it in a
terminal. Have fun!

elif w1.tag == "coord":
if w1.keys():

for name,value in w1.items():
if name == "lat":

Lat = value
elif name == "lon":

Lon = value
elif w1.tag == "type":

GType = w1.text
elif w1.tag == "link":

if w1.keys():
for name, value in w1.items():

Info = value
Link = w1.text

print "Cache Name: ",CacheName
print "Cache ID: ",CacheID
print "Open Cache: ",OpenCache
print "Cache Type: ",CacheType
print "Cache Size: ",CacheSize
print "Difficulty: ", Difficulty
print "Terrain: ",Terrain
print "Lat: ",Lat
print "Lon: ",Lon
print "GType: ",GType
print "Link: ",Link

full circle magazine #37 contents ^

HOW-TO Program In Python - Part 11

FCM#27-36 - Python Parts 1 - 10

GraphicsDev Internet M/media System

HDDCD/DVD USB Drive Laptop Wireless

L
ast time, I promised you
that we would use our
XML expertise to grab
weather information

from a website and display it in
a terminal. Well, that time has
come.

We will use an API from
www.wunderground.com. I hear
the question “What's an API”
rising in your throat. API stands
for Application Programming
Interface. It's really a fancy
phrase for a way to interface

with another program. Think of
the libraries we import. Some
of those can be run as stand-
alone applications, but if we
import the application as a
library, we can use many of its
functions in our own program,
and we get to use someone
else's code. In this case, we
will use specially formatted
URL addresses to query the
wunderground website for
information about the weather
- without using a web browser.
Some people might say that
an API is like a secret back
door into another program -
that the programmer(s)
intentionally put there for our
use. Either way, this is a
supported extension of one
application for its use in other
applications.

Sounds intriguing? Well,
read on, my dear padawan.

Fire up your favorite
browser, and head to
www.wunderground.com. Now
enter your postal code or city
and state (or country) into the

search box. There is a wealth
of information here. Now, let's
jump to the API web page:
http://wiki.wunderground.com/i
ndex.php/API_-_XML

One of the first things you
will notice is the API Terms of
Service. Please read and follow
them. They aren't onerous,
and are really simple to abide
by. The things that are going
to be of interest to us are the

and calls. Take
some time to scan over them.

I'm going to skip the
GeoLookupXML routine, and let
you look at that on your own.
We will concentrate on two
other commands:
WXCurrentObXML (Current
Conditions) this time, and
ForecastXML (Forecast) next
time.

Here's the link for
WXCurrentObXML:
http://api.wunderground.com/a
uto/wui/geo/WXCurrentObXML/i

ndex.xml?query=80013

Replace the 80013 U.S. ZIP
code with your postal code or
if you are outside the U.S. you
can try city, country - like
Paris, France, or London,
England.

And the link for the
ForecastXML:
http://api.wunderground.com/a
uto/wui/geo/ForecastXML/index.
xml?query=80013

Again, replace the 80013
U.S. ZIP code with your postal
code or city, country.

Let's start with the current
information. Paste the address
into your favorite browser.
You'll see a great deal of
information returned. I'll let
you decide what's really
important to you, but we'll
look at a few of the elements.

For our example, we'll pay
attention to the following tags:

full circle magazine #37 contents ^

PROGRAM IN PYTHON - PART 11

Of course, you can add
other tags that are of interest
to you. However, these tags
will provide enough of an
example to take you as far as
you would like to go.

Now that we know what we
will be looking for, let's start
coding our app. Let's look at
the gross flow of the program.

First, we check what the
user has asked us to do. If she
passed a location, we will use
that, otherwise we will use the
default location we code into
the main routine. We then pass
that getCurrents routine. We
use the location to build the
request string to send out to
the web. We use urllib.urlopen
to get the response from the
web, and put that in an object,
and pass that object to
ElementTree library function
parse. We then close the
connection to the web and
start looking for our tags.

When we find a tag we are
interested in, we save that text
into a variable that we can use
to output the data later on.
Once we have all our data, we
display it. Fairly simple in
concept.

Start by naming your file
w_currents.py. Here's the
import portion of our code:

from xml.etree import
ElementTree as ET

import urllib

import sys

import getopt

Next, we'll put a series of
help lines (above right) above
the imports.

Be sure to use the triple
double-quotes. This allows us
to have a multi-line comment.
We'll discuss this part more in
a bit.

Now we'll create our class
stubs, below right, and the
main routines, which are shown
on the following page.

You will remember from

""" w_currents.py
Returns current conditions, forecast and alerts for a
given zipcode from WeatherUnderground.com.
Usage: python wonderground.py [options]
Options:
-h, --help Show this help
-l, --location City,State to use
-z, --zip Zipcode to use as location

Examples:
w_currents.py -h (shows this help information)
w_currents.py -z 80013 (uses the zip code 80013 as
location)
"""

class CurrentInfo:
"""
This routine retrieves the current condition xml data
from WeatherUnderground.com
based off of the zip code or Airport Code...
currently tested only with Zip Code and Airport code
For location,
if zip code use something like 80013 (no quotes)
if airport use something like "KDEN" (use double-quotes)
if city/state (US) use something like "Aurora,%20CO" or
“Aurora,CO” (use double-quotes)
if city/country, use something like "London,%20England"
(use double-quotes)
"""
def getCurrents(self,debuglevel,Location):
pass

def output(self):
pass
def DoIt(self,Location):
pass

#===
END OF CLASS CurrentInfo()
#===

full circle magazine #37 contents ^

PROGRAM IN PYTHON - PART 11
previous articles the "if
__name__" line. If we are
calling this as a stand alone
app, we will run the main
routine - otherwise we can use
this as part of a library. Once in
the main routine, we then
check what was passed into
the routine, if anything.

If the user uses the "-h" or "--
help" parameter, we print out
the triple-commented help
lines at the top of the program
code. This is called by the
usage routine telling the app to
print __doc__.

If the user uses the "-l"
(location) or "-z" (zipcode), that
will override the internally set
location value. When passing a
location, be sure that you use
double quotes to enclose the
string and that you do not use
spaces. For example, to get the
current conditions for Dallas,
Texas, use -l "Dallas,Texas".

Astute readers will realize
that the -z and -l checks are
pretty much the same. You can
modify the -l to check for
spaces and reformat the string
before passing it to the
routines. That's something you

can do by now.

Finally, we create an
instance of our CurrentInfo
class that we call currents, and
then pass the location to the
"DoIt" routine. Let's fill that in
now:

def DoIt(self,Location):

self.getCurrents(1,Location)

self.output()

Very simple. We pass the
location and debug level to the
getCurrents routine, and then
call the output routine. While
we could have simply done the
output directly from the
getCurrents routine, we are
developing the flexibility to
output in various ways if we
need to.

The code for the getCurrents
routine is displayed on the next
page.

Here we have a parameter
called debuglevel. By doing
this, we can print out helpful
information if things don't
seem to be going quite the way
we want them to. It's also
useful when we are doing our

early code. If, when you are all
happy with the way your code
is working, you can remove
anything related to debuglevel.
If you are going to release this
into the wild, like if you are
doing this for someone else, be
sure to remove the code and
test it again before release.

Now, we use a try/except

wrapper to make sure that if
something goes wrong, the app
doesn't just blow up. Under the
try side, we set up the URL,
then set a timeout of eight
seconds
(urllib.socket.setdefaulttimeout(
8)). We do this because,
sometimes, wunderground is
busy and doesn't respond. This

def usage():
print __doc__
def main(argv):
location = 80013
try:
opts, args = getopt.getopt(argv, "hz:l:", ["help=",
"zip=", "location="])
except getopt.GetoptError:
usage()
sys.exit(2)
for opt, arg in opts:
if opt in ("-h", "--help"):
usage()
sys.exit()
elif opt in ("-l", "--location"):
location = arg
elif opt in ("-z", "--zip"):
location = arg
print "Location = %s" % location
currents = CurrentInfo()
currents.DoIt(location)

#==
Main loop
#==
if __name__ == "__main__":

main(sys.argv[1:])

full circle magazine #37 contents ^

PROGRAM IN PYTHON - PART 11
way we don't just sit there
waiting for the web. If you want
to get more information on
urllib, a good place to start is
http://docs.python.org/library/ur
llib.html.

If anything unexpected
happens, we fall through to the
except section, and print an
error message, and then exit
the application (sys.exit(2)).

Assuming everything works,
we start looking for our tags.
The first thing we do is find our
location with the
tree.findall("//full"). Remember,
tree is the parsed object
returned by elementtree. What
is returned by the website API
in part is shown below.

This is our first instance of
the tag <full>, which in this

case is "Aurora, CO". That's
what we want to use as our
location. Next, we are looking
for "observation_time". This is
the time when the current
conditions were recorded. We
continue looking for all the
data we are interested in -
using the same methodology.

Finally we deal with our
output routine which is shown
top left on the following page.

Here we simply print out the
variables.

That's all there is to it. A
sample output from my zip
code with debuglevel set to 1
is shown bottom left on the
next page.

Please note that I chose to
use the tags that included both

def getCurrents(self,debuglevel,Location):
if debuglevel > 0:
print "Location = %s" % Location
try:
CurrentConditions =
'http://api.wunderground.com/auto/wui/geo/WXCurrentObXML
/index.xml?query=%s' % Location
urllib.socket.setdefaulttimeout(8)
usock = urllib.urlopen(CurrentConditions)
tree = ET.parse(usock)
usock.close()
except:
print 'ERROR - Current Conditions - Could not get
information from server...'
if debuglevel > 0:
print Location
sys.exit(2)
Get Display Location
for loc in tree.findall("//full"):
self.location = loc.text
Get Observation time
for tim in tree.findall("//observation_time"):
self.obtime = tim.text
Get Current conditions
for weather in tree.findall("//weather"):
self.we = weather.text
Get Temp
for TempF in tree.findall("//temperature_string"):
self.tmpB = TempF.text
#Get Humidity
for hum in tree.findall("//relative_humidity"):
self.relhum = hum.text
Get Wind info
for windstring in tree.findall("//wind_string"):
self.winds = windstring.text
Get Barometric Pressure
for pressure in tree.findall("//pressure_string"):
self.baroB = pressure.text

getCurrents routine

<display_location>
<full>Aurora, CO</full>
<city>Aurora</city>
<state>CO</state>
<state_name>Colorado</state_name>
<country>US</country>
<country_iso3166>US</country_iso3166>
<zip>80013</zip>
<latitude>39.65906525</latitude>
<longitude>-104.78105927</longitude>
<elevation>1706.00000000 ft</elevation>
</display_location>

full circle magazine #37 contents ^

is owner of
, a

consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his
family.

PROGRAM IN PYTHON - PART 11

Fahrenheit and Celsius values.
If you wish, for example, to
display only Celsius values,
you can use the <temp_c> tag
rather than the
<temperature_string> tag.

The full code can be
downloaded from:
http://pastebin.com/4ibJGm74

Next time, we'll concentrate
on the forecast portion of the
API. In the meantime, have fun!

def output(self):
print 'Weather Information From Wunderground.com'
print 'Weather info for %s ' % self.location
print self.obtime
print 'Current Weather - %s' % self.we
print 'Current Temp - %s' % self.tmpB
print 'Barometric Pressure - %s' % self.baroB
print 'Relative Humidity - %s' % self.relhum
print 'Winds %s' % self.winds

Location = 80013
Weather Information From Wunderground.com
Weather info for Aurora, Colorado
Last Updated on May 3, 11:55 AM MDT
Current Weather - Partly Cloudy
Current Temp - 57 F (14 C)
Barometric Pressure - 29.92 in (1013 mb)
Relative Humidity - 25%
Winds From the WNW at 10 MPH
Script terminated.

Full Circle
Podcast

The is back and better than
ever!

Topics in episode six include:
• News - Ubuntu 10.04 released
• Opinions
• Gaming - Steam coming to Linux?
• Feedback
...and all the usual hilarity.

The podcast and show notes are at:
http://fullcirclemagazine.org/

full circle magazine #38 contents ^

HOW-TO Program In Python - Part 12

FCM#27-37 - Python Parts 1 - 11

GraphicsDev Internet M/media System

HDDCD/DVD USB Drive Laptop Wireless

I
n our last session, we
looked at the API from
wunderground, and wrote
some code to grab the

current conditions. This time,
we will be dealing with the
forecast portion of the API. If
you haven't had a chance to
look at the last two installments
about XML, and the last one
specifically, you might want to
review them before moving
forward.

Just as there was a web
address for the current
conditions, there is one for the
forecast. Here is the link to the
forecast XML page:
http://api.wunderground.com/a
uto/wui/geo/ForecastXML/index.
xml?query=80013

As before, you can change
the '80013' to your
City/Country, City/State, or
postal code. You'll probably get
back about 600 lines of XML
code. You have a root element
of 'forecast', and then four sub
elements: 'termsofservice',
'txt_forecast', 'simpleforecast'
and 'moon_phase'. We will
concentrate on the
'txt_forecast' and
'simpleforecast' elements.

Since we went over the
usage, main, and “if __name__”
sections last time, I'll leave
those to you to deal with and
just concentrate on the
goodies that we need for this
time. Since I showed you a
snippet f txt_forecast, let's
start with that.

Shown below is a very small
portion of the txt_forecast set
for my area.

After the txt_forecast parent
element, we get the date, a
“number” element, then an
element that has children of its
own called forecastday which
includes period, icon, icons,
title and something called
fcttext...then it repeats itself.
The first thing you'll notice is
that under txt_forecast, the
date isn't a date, but a time
value. It turns out that this is

when the forecast was
released. The <number> tag
shows how many forecasts
there are for the next 24 hour
period. I can't think of a time
that I've seen this value less
than 2. For each forecast for
the 24 hour period
(<forecastday>), you have a
period number, multiple icon
options, a title option (“Today”,
“Tonight”, “Tomorrow”), and
the text of a simple forecast.
This is a quick overview of the
forecast, usually for the next
12 hours.

<txt_forecast>
<date>3:31 PM MDT</date>
<number>2</number>
−<forecastday>

<period>1</period>
<icon>nt_cloudy</icon>
+<icons></icons>
<title>Tonight</title>
−<fcttext>
Mostly cloudy with a 20

percent chance of thunderstorms in the evening...then
partly cloudy after midnight. Lows in the mid 40s.
Southeast winds 10 to 15 mph shifting to the south after
midnight.

</fcttext>
</forecastday>
+<forecastday></forecastday>

</txt_forecast>

full circle magazine #38 contents ^

PROGRAM IN PYTHON - PART 12
Before we start working with

our code, we should take a look
at the <simpleforecast>
portion of the xml file which is
shown right.

There is a <forecastday>
tag for each day of the forecast
period, usually 6 days including
the current day. You have the
date information in various
formats (I personally like the
<pretty> tag), projected high
and low temps in both
Fahrenheit and Celsius, gross
condition projection, various
icons, a sky icon (sky
conditions at the reporting
station), and “pop” which
stands for “Probability Of
Precipitation”. The
<moon_phase> tag provides
some interesting information
including sunset, sunrise, and
moon information.

Now we'll get into the code.
Here is the import set:

from xml.etree import
ElementTree as ET

import urllib

import sys

import getopt

Now we need to start our
class. We will create an __init__
routine to setup and clear the
variables that we need, this is
shown top right on the
following page.

If you don't care about
carrying the ability of both
Fahrenheit and Celsius, then
leave out whichever variable
set you don't want. I decided to
carry both.

Next, we'll start our main
retrieval routine to get the
forecast data. This is shown
bottom right on the next page.

This is pretty much the
same as the current conditions
routine we worked on last time.
The only major difference (so
far) is the URL we are using.
Now things change. Since we
have multiple children that
have the same tag within the
parent, we have to make our
parse calls a bit different. The
code is top left on the following
page.

Notice we are using tree.find
this time, and we are using for
loops to walk through the data.
It's a shame that Python

<simpleforecast>
−<forecastday>

<period>1</period>
−<date>

<epoch>1275706825</epoch>
<pretty_short>9:00 PM MDT</pretty_short>
<pretty>9:00 PM MDT on June 04, 2010</pretty>
<day>4</day>
<month>6</month>
<year>2010</year>
<yday>154</yday>
<hour>21</hour>
<min>00</min>
<sec>25</sec>
<isdst>1</isdst>
<monthname>June</monthname>
<weekday_short/>
<weekday>Friday</weekday>
<ampm>PM</ampm>
<tz_short>MDT</tz_short>
<tz_long>America/Denver</tz_long>

</date>
−<high>

<fahrenheit>92</fahrenheit>
<celsius>33</celsius>

</high>
−<low>

<fahrenheit>58</fahrenheit>
<celsius>14</celsius>

</low>
<conditions>Partly Cloudy</conditions>
<icon>partlycloudy</icon>
+<icons>
<skyicon>partlycloudy</skyicon>
<pop>10</pop>

</forecastday>
...

</simpleforecast>

full circle magazine #38 contents ^

class ForecastInfo:
def __init__(self):

self.forecastText = [] # Today/tonight forecast
information

self.Title = [] # Today/tonight
self.date = ''
self.icon = [] # Icon to use for conditions

today/tonight
self.periods = 0
self.period = 0

#==
Extended forecast information
#==
self.extIcon = [] # Icon to use for extended

forecast
self.extDay = [] # Day text for this forecast

("Monday", "Tuesday" etc)
self.extHigh = [] # High Temp. (F)
self.extHighC = [] # High Temp. (C)
self.extLow = [] # Low Temp. (F)
self.extLowC = [] # Low Temp. (C)
self.extConditions = [] # Conditions text
self.extPeriod = [] # Numerical Period

information (counter)
self.extpop = [] # Percent chance Of

Precipitation

def GetForecastData(self,location):
try:

forecastdata = 'http://api.wunderground.com/auto/wui/geo/ForecastXML/index.xml?query=%s' % location
urllib.socket.setdefaulttimeout(8)
usock = urllib.urlopen(forecastdata)
tree = ET.parse(usock)
usock.close()

except:
print 'ERROR - Forecast - Could not get information from server...'
sys.exit(2)

#=================================
Get the forecast for today and (if available)
tonight
#=================================
fcst = tree.find('.//txt_forecast')
for f in fcst:

if f.tag == 'number':
self.periods = f.text

elif f.tag == 'date':
self.date = f.text

for subelement in f:
if subelement.tag == 'period':

self.period=int(subelement.text)
if subelement.tag == 'fcttext':

self.forecastText.append(subelement.text)
elif subelement.tag == 'icon':

self.icon.append(subelement.text)
elif subelement.tag == 'title':

self.Title.append(subelement.text)

full circle magazine #38 contents ^

is owner of
, a

consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his
family.

PROGRAM IN PYTHON - PART 12
doesn't offer a SELECT/CASE
command set like other
languages. The IF/ELIF routine,
however, works well, just a bit
clunkier. Now we'll break down
the code. We assign the
variable fcst to everything
within the <txt_forecast> tag.
This gets all the data for that
group. We then look for the
tags <date> and <number> -
since those are simple “first
level” tags - and load that data
into our variables. Now things
get a bit more difficult. Look
back at our xml response
example. There are two
instances of <forecastday>.
Under <forecastday> are sub-
elements that consist of
<period>, <icon>, <icons>,
<title> and <fcttext>. We'll
loop through these, and again
use the IF statement to load
them into our variables.

Next we need to look at the
extended forecast data for the
next X number of days. We are
basically using the same
methodology to fill our
variables; this is shown top
right.

Now we need to create our
output routine. As we did last

time, it will be fairly generic.
The code for this is shown on
the right of the following page.

Again, if you don't want to
carry both Centigrade and
Fahrenheit information, then
modify the code to show what
you want. Finally, we have a
“DoIt” routine:

def
DoIt(self,Location,US,Include
Today,Output):

self.GetForecastData(Loca
tion)

self.output(US,IncludeTod
ay,Output)

Now we can call the routine
as follows:

forecast = ForecastInfo()

forecast.DoIt('80013',1,0,0)
Insert your own postal code

That's about it for this time.
I'll leave the alert data to you,
if you want to go through that.

Here is the complete
running code:
http://pastebin.com/wsSXMXQx

#=================================
Now get the extended forecast

#=================================
fcst = tree.find('.//simpleforecast')
for f in fcst:

for subelement in f:
if subelement.tag == 'period':

self.extPeriod.append(subelement.text)
elif subelement.tag == 'conditions':

self.extConditions.append(subelement.text)
elif subelement.tag == 'icon':

self.extIcon.append(subelement.text)
elif subelement.tag == 'pop':

self.extpop.append(subelement.text)
elif subelement.tag == 'date':

for child in subelement.getchildren():
if child.tag == 'weekday':

self.extDay.append(child.text)
elif subelement.tag == 'high':

for child in subelement.getchildren():
if child.tag == 'fahrenheit':

self.extHigh.append(child.text)
if child.tag == 'celsius':

self.extHighC.append(child.text)
elif subelement.tag == 'low':

for child in subelement.getchildren():
if child.tag == 'fahrenheit':

self.extLow.append(child.text)
if child.tag == 'celsius':

self.extLowC.append(child.text)

full circle magazine #38 contents ^

PROGRAM IN PYTHON - PART 12

Full Circle
Podcast

The is back and better than
ever!

Topics in episode eight include:
• News - Maverick development
• Lubuntu interview
• Gaming - Ed reviews Osmos
• Feedback
...and all the usual hilarity.

The podcast and show notes are at:
http://fullcirclemagazine.org/

def output(self,US,IncludeToday,Output):
US takes 0,1 or 2
0 = Centigrade
1 = Fahrenheit
2 = both (if available)
Now print it all
if Output == 0:

for c in range(int(self.period)):
if c <> 1:

print '-------------------------------'
print 'Forecast for %s' %

self.Title[c].lower()
print 'Forecast = %s' %

self.forecastText[c]
print 'ICON=%s' % self.icon[c]
print '-----------------------------------'

print 'Extended Forecast...'
if IncludeToday == 1:

startRange = 0
else:

startRange = 1
for c in range(startRange,6):

print self.extDay[c]
if US == 0: #Centigrade information

print '\tHigh - %s(C)' %
self.extHigh[c]

print '\tLow - %s(C)' % self.extLow[c]
elif US == 1: #Fahrenheit information

print '\tHigh - %s(F)' %
self.extHigh[c]

print '\tLow - %s(F)' % self.extLow[c]
else: #US == 2 both(if available)

print '\tHigh - %s' % self.extHigh[c]
print '\tLow - %s' % self.extLow[c]

if int(self.extpop[c]) == 0:
print '\tConditions - %s.' %

self.extConditions[c]
else:

print '\tConditions - %s. %d%% chance
of precipitation.' %
(self.extConditions[c],int(self.extpop[c]))

full circle magazine #39 contents ^

HOW-TO Program In Python - Part 13

T
his month, we talk
about using Curses in
Python. No, we're not
talking about using

Python to say dirty words,
although you can if you really
feel the need. We are talking
about using the Curses library
to do some fancy screen
output.

If you are old enough to
remember the early days of
computers, you will remember
that, in business, computers
were all mainframes - with
dumb terminals (screens and
keyboards) for input and
output. You could have many
terminals connected to one
computer. The problem was
that the terminals were very
dumb devices. They had
neither windows, colors, or
much of anything - just 24 lines
of 80 characters (at best).
When personal computers
became popular, in the old
days of DOS and CPM, that is
what you had as well. When
programmers worked on fancy
screens (those days),

especially for data input and
display, they used graph paper
to design the screen. Each
block on the graph paper was
one character position. When
we deal with our Python
programs that run in a
terminal, we still deal with a
24x80 screen. However, that
limitation can be easily dealt
with by proper forethought and
preparation. So, go out to your
local office supply store and
get yourself a few pads of
graph paper.

Anyway, let's jump right in
and create our first Curses
program, shown above right.
I'll explain after you've had a
look at the code.

Short but simple. Let's
examine it line by line. First, we
do our imports, which you are
very familiar with by now. Next,
we create a new Curses screen
object, initialize it, and call the
object myscreen. (myscreen =
curses.initscr()). This is our
canvas that we will paint to.
Next, we use the

myscreen.border(0) command
to draw a border around our
canvas. This isn't needed, but
it makes the screen look nicer.
We then use the addstr method
to “write” some text on our
canvas starting on line 12
position 25. Think of the
.addstr method of a Curses
print statement. Finally, the
.refresh() method makes our
work visible. If we don't refresh
the screen, our changes won't
be seen. Then we wait for the
user to press any key (.getch)
and then we release the screen
object (.endwin) to allow our
terminal to act normally. The
curses.endwin() command is
VERY important, and, if it

doesn't get called, your
terminal will be left in a major
mess. So, make sure that you
get this method called before
your application ends.

Save this program as
CursesExample1.py and run it
in a terminal. Some things to
note. Whenever you use a
border, it takes up one of our
“usable” character positions
for each character in the
border. In addition, both the
line and character position
count is ZERO based. This
means that the first line in our
screen is line 0 and the last line
is line 23. So, the very top left

#!/usr/bin/env python
CursesExample1
#-------------------------------
Curses Programming Sample 1
#-------------------------------
import curses
myscreen = curses.initscr()
myscreen.border(0)
myscreen.addstr(12, 25, "See Curses, See Curses Run!")
myscreen.refresh()
myscreen.getch()
curses.endwin()

full circle magazine #39 contents ^

PROGRAM IN PYTHON - PART 13
position is referred to 0,0 and
the bottom right position is
23,79. Let's make a quick
example (above right) to show
this.

Very simple stuff except the
try/finally blocks. Remember, I
said that curses.endwin is VERY
important and needs to be
called before your application
finishes. Well, this way, even if
things go very badly, the
endwin routine will get called.
There's many ways of doing
this, but this way seems pretty
simple to me.

Now let's create a nice
menu system. If you remember
back a while, we did a
cookbook application that had
a menu (Programming Python -
Part 8). Everything in the

terminal simply scrolled up
when we printed
something. This time we'll
take that idea and make a
dummy menu that you can
use to pretty up the
cookbook. Shown below is
what we used back then.

This time, we'll use
Curses. Start with the
following template. You
might want to save this
snippet (below right) so
you can use it for your own
future programs.

Now, save your
template again as
“cursesmenu1.py” so that
we can work on the file
and keep the template.

#!/usr/bin/env python
CursesExample2
import curses
#==
MAIN LOOP
#==
try:

myscreen = curses.initscr()
myscreen.clear()
myscreen.addstr(0,0,"0 1 2 3

4 5 6 7")
myscreen.addstr(1,0,"123456789012345678901234567890123456

78901234567890123456789012345678901234567890")
myscreen.addstr(10,0,"10")
myscreen.addstr(20,0,"20")
myscreen.addstr(23,0, "23 - Press Any Key to Continue")
myscreen.refresh()
myscreen.getch()

finally:
curses.endwin()

===
RECIPE DATABASE

===
1 - Show All Recipes
2 - Search for a recipe
3 - Show a Recipe
4 - Delete a recipe
5 - Add a recipe
6 - Print a recipe
0 - Exit
===
Enter a selection ->

#!/usr/bin/env python
#-------------------------------
Curses Programming Template
#-------------------------------
import curses

def InitScreen(Border):
if Border == 1:

myscreen.border(0)

#==
MAIN LOOP
#==
myscreen = curses.initscr()
InitScreen(1)
try:

myscreen.refresh()
Your Code Stuff Here...
myscreen.addstr(1,1, "Press Any Key to Continue")
myscreen.getch()

finally:
curses.endwin()

full circle magazine #39 contents ^

PROGRAM IN PYTHON - PART 13
Before we go any further

with our code, we are going to
do this in a modular way. Here
(above right) is a pseudo-code
example of what we are going
to do.

Of course this pseudo code
is just that...pseudo. But it
gives you an idea of where we
are going with this whole thing.
Since this is just an example,
we'll only go just so far here,
but you can take it all the way
if you want. Let's start with the
main loop (middle far right).

Not much in the way of
programming here. We have
our try|finally blocks just as we
had in our template. We
initialize the Curses screen and
then call a routine named
LogicLoop. That code is shown
bottom far right.

Again, not much, but this is
only a sample. Here we are
going to call two routines. One
called DoMainMenu and the
other MainInKey. DoMainMenu
will show our main menu, and
the MainInKey routine handles
everything for that main menu.
Tthe DoMainMenu routine is
shown right.

curses.initscreen
LogicLoop

ShowMainMenu # Show the main menu
MainInKey # This is our main input handling routine

While Key != 0:
If Key == 1:

ShowAllRecipesMenu # Show the All Recipes Menu
Inkey1 # Do the input routines for this
ShowMainMenu # Show the main menu

If Key == 2:
SearchForARecipeMenu # Show the Search for a Recipe Menu
InKey2 # Do the input routines for this option
ShowMainMenu # Show the main menu again

If Key == 3:
ShowARecipeMenu # Show the Show a recipe menu routine
InKey3 # Do the input routine for this routine
ShowMainMenu # Show the main menu again

… # And so on and so on
curses.endwin() # Restore the terminal

MAIN LOOP
try:

myscreen = curses.initscr()
LogicLoop()

finally:
curses.endwin()

def LogicLoop():
DoMainMenu()
MainInKey()

def DoMainMenu():
myscreen.erase()
myscreen.addstr(1,1,

"==")
myscreen.addstr(2,1, " Recipe

Database")
myscreen.addstr(3,1,

"==")
myscreen.addstr(4,1, " 1 - Show All

Recipes")
myscreen.addstr(5,1, " 2 - Search for a

recipe")
myscreen.addstr(6,1, " 3 - Show a recipe")
myscreen.addstr(7,1, " 4 - Delete a recipe")
myscreen.addstr(8,1, " 5 - Add a recipe")
myscreen.addstr(9,1, " 6 - Print a recipe")
myscreen.addstr(10,1, " 0 - Exit")
myscreen.addstr(11,1,

"==")
myscreen.addstr(12,1, " Enter a selection: ")
myscreen.refresh()

full circle magazine #39 contents ^

PROGRAM IN PYTHON - PART 13
Notice that this routine does

nothing but clear the screen
(myscreen.erase), and then
print what we want on the
screen. There is nothing here
dealing with keyboard
handling. That's the job of the
MainInKey routine, which is
shown below.

This is really a simple
routine. We jump into a while
loop until the key that is

entered by the user equals 0.
Within the loop, we check to
see if it's equal to various
values, and, if so, we do a
series of routines, and finally
call the main menu when we
are done. You can fill in most of
these routines for yourself by
now, but we will look at option
2, Search for a Recipe. The
menu is short and sweet. The
InKey2 routine (right) is a bit
more complicated.

def MainInKey():
key = 'X'
while key != ord('0'):

key = myscreen.getch(12,22)
myscreen.addch(12,22,key)
if key == ord('1'):

ShowAllRecipesMenu()
DoMainMenu()

elif key == ord('2'):
SearchForARecipeMenu()
InKey2()
DoMainMenu()

elif key == ord('3'):
ShowARecipeMenu()
DoMainMenu()

elif key == ord('4'):
NotReady("'Delete A Recipe'")
DoMainMenu()

elif key == ord('5'):
NotReady("'Add A Recipe'")
DoMainMenu()

elif key == ord('6'):
NotReady("'Print A Recipe'")
DoMainMenu()

myscreen.refresh()

def SearchForARecipeMenu():
myscreen.addstr(4,1, "-------------------------------")
myscreen.addstr(5,1, " Search in")
myscreen.addstr(6,1, "-------------------------------")
myscreen.addstr(7,1, " 1 - Recipe Name")
myscreen.addstr(8,1, " 2 - Recipe Source")
myscreen.addstr(9,1, " 3 - Ingredients")
myscreen.addstr(10,1," 0 - Exit")
myscreen.addstr(11,1,"Enter Search Type -> ")
myscreen.refresh()

def InKey2():
key = 'X'
doloop = 1
while doloop == 1:

key = myscreen.getch(11,22)
myscreen.addch(11,22,key)
tmpstr = "Enter text to search in "
if key == ord('1'):

sstr = "'Recipe Name' for -> "
tmpstr = tmpstr + sstr
retstring = GetSearchLine(13,1,tmpstr)
break

elif key == ord('2'):
sstr = "'Recipe Source' for -> "
tmpstr = tmpstr + sstr
retstring = GetSearchLine(13,1,tmpstr)
break

elif key == ord('3'):
sstr = "'Ingredients' for -> "
tmpstr = tmpstr + sstr
retstring = GetSearchLine(13,1,tmpstr)
break

else:
retstring = ""
break

if retstring != "":
myscreen.addstr(15,1,"You entered - " + retstring)

else:
myscreen.addstr(15,1,"You entered a blank string")

myscreen.refresh()
myscreen.addstr(20,1,"Press a key")
myscreen.getch()

def GetSearchLine(row,col,strng):
myscreen.addstr(row,col,strng)
myscreen.refresh()
instring = myscreen.getstr(row,len(strng)+1)
myscreen.addstr(row,len(strng)+1,instring)
myscreen.refresh()
return instring

full circle magazine #39 contents ^

is owner of
, a

consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his
family.

PROGRAM IN PYTHON - PART 13

Full Circle
Podcast

The is back and better than
ever!

Topics in episode ten include:
• News
• Opinion - Contributing articles with the FCM Editor.
• Interview - with Amber Graner
• Feedback
...and all the usual hilarity.

•

The podcast and show notes are at:
http://fullcirclemagazine.org/

Again, we are using a
standard while loop here. We
set the variable doloop = 1, so
that our loop is endless until
we get what we want. We use
the break command to drop
out of the while loop. The three
options are very similar. The
major difference is that we
start with a variable named
tmpstr, and then append
whatever option text has been
selected...making it a bit more
friendly. We then call a routine
called GetSearchLine to get
the string to search for. We use
the getstr routine to get a
string from the user rather
than a character. We then
return that string back to our
input routine for further
processing.

The full code is at:
http://pastebin.com/ELuZ3T4P

One final thing. If you are
interested in looking into
Curses programming further,
there are many other methods
available than what we used
this month. Besides doing a
Google search, your best
starting point is the official
docs page at

http://docs.python.org/library/c
urses.html.

OOPS!
It seems that the code for

isn't properly
indented on Pastebin. The
correct URL for Python Pt.11
code is:
http://pastebin.com/Pk74fLF3

Please check:
http://fullcirclemagazine.past
ebin.com for all Python (and
future) code.

contents ^

curses.init_pair([pairnumber]
,[foreground
color],[background color])

myscreen.addstr([row],[column
],[text],curses.color_pair(X)
)

import curses
try:

myscreen = curses.initscr()
curses.start_color()
curses.init_pair(1, curses.COLOR_BLACK,

curses.COLOR_GREEN)
curses.init_pair(2, curses.COLOR_BLUE,

curses.COLOR_WHITE)
curses.init_pair(3,

curses.COLOR_MAGENTA,curses.COLOR_BLACK)
myscreen.clear()
myscreen.addstr(3,1," This is a test

",curses.color_pair(1))
myscreen.addstr(4,1," This is a test

",curses.color_pair(2))
myscreen.addstr(5,1," This is a test

",curses.color_pair(3))
myscreen.refresh()
myscreen.getch()

finally:
curses.endwin()

contents ^

import curses
def main(stdscreen):

curses.init_pair(1, curses.COLOR_BLACK,
curses.COLOR_GREEN)

curses.init_pair(2, curses.COLOR_BLUE,
curses.COLOR_WHITE)

curses.init_pair(3,
curses.COLOR_MAGENTA,curses.COLOR_BLACK)

stdscreen.clear()
stdscreen.addstr(3,1," This is a test

",curses.color_pair(1))
stdscreen.addstr(4,1," This is a test

",curses.color_pair(2))
stdscreen.addstr(5,1," This is a test

",curses.color_pair(3))
stdscreen.refresh()
stdscreen.getch()

curses.wrapper(main)

import curses
import random

class Game1():
def __init__(self):

pass
def main(self,stdscr):

curses.init_pair(1, curses.COLOR_BLACK,
curses.COLOR_GREEN)

curses.init_pair(2, curses.COLOR_BLUE,
curses.COLOR_BLACK)

curses.init_pair(3, curses.COLOR_YELLOW,
curses.COLOR_BLUE)

curses.init_pair(4, curses.COLOR_GREEN,
curses.COLOR_BLUE)

curses.init_pair(5, curses.COLOR_BLACK,
curses.COLOR_RED)

def StartUp(self):
curses.wrapper(self.main)

g = Game1()
g.StartUp()

contents ^

def
CheckKeys(self,scrn,keyin):

pass
def CheckForHit(self,scrn):

pass

Line Specific Stuff
self.GunLine = 22 #Row where our gun lives
self.GunPosition = 39 #Where the gun starts on GunLine
self.LetterLine = 2 #Where our letter runs right to left
self.ScoreLine = 1 #Where we are going to display the score
self.ScorePosition = 50 #Where the score column is
self.LivesPosition = 65 #Where the lives column is

Letter Specific Stuff
self.CurrentLetter = "A" #A dummy Holder Variable
self.CurrentLetterPosition = 78 #Where the letter will start on the LetterLine
self.DropPosition = 10 #A dummy Holder Variable
self.DroppingLetter = 0 #Flag - Is the letter dropping?
self.CurrentLetterLine = 3 #A dummy Holder Variable
self.LetterWaitCount = 15 #How many times should we loop before actually

working?

Bullet Specific Stuff
self.Shooting = 0 #Flag - Is the gun shooting?
self.BulletRow = self.GunLine - 1
self.BulletColumn = self.GunPosition

Other Stuff
self.LoopCount = 0 #How many loops have we done in MoveLetter
self.GameScore = 0 #Current Game Score
self.Lives = 3 #Default number of lives
self.CurrentColor = 1 #A dummy Holder Variable
self.DecScoreOnMiss = 0 #Set to 1 if you want to decrement the

#score every time the letter hits the
#bottom row

contents ^

IF we have waited the correct number of loops THEN
Reset the loop counter
IF we are moving to the left of the screen THEN
Delete the character at the the current row,column.
Sleep for 50 milliseconds
IF the current column is greater than 2 THEN

Decrement the current column
Set the character at the current row,column
IF the current column is at the random column to drop to the bottom THEN

Set the DroppingLetter flag to 1
ELSE
Delete the character at the current row,column
Sleep for 50 milliseconds
IF the current row is less than the line the gun is on THEN

Increment the current row
Set the character at the current row,column

ELSE
IF
Explode (which includes decrementing the score if you wish) and check to
see if we continue.
Pick a new letter and position and start everything over again.

ELSE
Increment the loopcounter

Refresh the screen.

def Explode(self,scrn):
pass

def ResetForNew(self):
self.CurrentLetterLine = self.LetterLine
self.CurrentLetterPosition = 78
self.DroppingLetter = 0
self.PickALetter()
self.PickDropPoint()

def PickALetter(self):
random.seed()
char = random.randint(65,90)
self.CurrentLetter = chr(char)

def PickDropPoint(self):
random.seed()
self.DropPosition = random.randint(3,78)

contents ^

def GameLoop(self,scrn):
test = 1 #Set the loop
while test == 1:

curses.napms(20)
self.MoveLetter(scrn)
keyin =

scrn.getch(self.ScoreLine,self.ScorePosition)
if keyin == ord('Q') or keyin == 27: # 'Q'

or <Esc>
break

else:
self.CheckKeys(scrn,keyin)

self.PrintScore(scrn)
if self.Lives == 0:

break
curses.flushinp()
scrn.clear()

def NewGame(self,scrn):
self.GunChar = curses.ACS_SSBS
scrn.addch(self.GunLine,self.GunPosition,self.Gun

Char,curses.color_pair(2) | curses.A_BOLD)
scrn.nodelay(1) #Don't wait for a

keystroke...just cache it.
self.ResetForNew()
self.GameScore = 0
self.Lives = 3
self.PrintScore(scrn)
scrn.move(self.ScoreLine,self.ScorePosition)

def PrintScore(self,scrn):
scrn.addstr(self.ScoreLine,self.ScorePosition,"S

CORE: %d" % self.GameScore)
scrn.addstr(self.ScoreLine,self.LivesPosition,"L

IVES: %d" % self.Lives)

stdscr.addstr(11,28,"Welcome to Letter Attack")
stdscr.addstr(13,28,"Press a key to begin....")
stdscr.getch()
stdscr.clear()
PlayLoop = 1
while PlayLoop == 1:

self.NewGame(stdscr)
self.GameLoop(stdscr)
stdscr.nodelay(0)
curses.flushinp()
stdscr.addstr(12,35,"Game Over")
stdscr.addstr(14,23,"Do you want to play

again? (Y/N)")
keyin = stdscr.getch(14,56)
if keyin == ord("N") or keyin == ord("n"):

break
else:

stdscr.clear()

contents ^

def MoveGun(self,scrn,direction):
scrn.addch(self.GunLine,self.GunPosition," ")
if direction == 0: # left

if self.GunPosition > 0:
self.GunPosition -= 1

elif direction == 1: # right
if self.GunPosition < 79:

self.GunPosition += 1
scrn.addch(self.GunLine,self.GunPosition,self.Gun

Char,curses.color_pair(2) | curses.A_BOLD)

if keyin == 260: # left arrow - NOT on keypad
self.MoveGun(scrn,0)
curses.flushinp() #Flush out the input buffer for safety.

elif keyin == 261: # right arrow - NOT on keypad
self.MoveGun(scrn,1)
curses.flushinp() #Flush out the input buffer for safety.

elif keyin == 52: # left arrow ON keypad
self.MoveGun(scrn,0)
curses.flushinp() #Flush out the input buffer for safety.

elif keyin == 54: # right arrow ON keypad
self.MoveGun(scrn,1)
curses.flushinp() #Flush out the input buffer for safety.

elif keyin == 32: #space
if self.Shooting == 0:

self.Shooting = 1
self.BulletColumn = self.GunPosition
scrn.addch(self.BulletRow,self.BulletColumn,"|")
curses.flushinp() #Flush out the input buffer for safety.

def MoveBullet(self,scrn):
scrn.addch(self.BulletRow,self.BulletColumn," ")
if self.BulletRow > self.LetterLine:

self.CheckForHit(scrn)
self.BulletRow -= 1
scrn.addch(self.BulletRow,self.BulletColumn,

"|")
else:

self.CheckForHit(scrn)
scrn.addch(self.BulletRow,self.BulletColumn,

" ")
self.BulletRow = self.GunLine - 1
self.Shooting = 0

contents ^

def CheckForHit(self,scrn):
if self.Shooting == 1:

if self.BulletRow == self.CurrentLetterLine:
if self.BulletColumn == self.CurrentLetterPosition:

scrn.addch(self.BulletRow,self.BulletColumn," ")

self.ExplodeBullet(scrn)
self.GameScore +=1
self.ResetForNew()

def ExplodeBullet(self,scrn):
scrn.addch(self.BulletRow,self.BulletColumn,"X",curses.color_pair(5))
scrn.refresh()
curses.napms(200)
scrn.addch(self.BulletRow,self.BulletColumn,"|",curses.color_pair(5))
scrn.refresh()
curses.napms(200)
scrn.addch(self.BulletRow,self.BulletColumn,"-",curses.color_pair(5))
scrn.refresh()
curses.napms(200)
scrn.addch(self.BulletRow,self.BulletColumn,".",curses.color_pair(5))
scrn.refresh()
curses.napms(200)
scrn.addch(self.BulletRow,self.BulletColumn," ",curses.color_pair(5))
scrn.refresh()
curses.napms(200)

scrn.addch(self.CurrentLetterLine,self.CurrentLetterPosition,"X",curses.color_pair(5))
curses.napms(100)
scrn.refresh()
scrn.addch(self.CurrentLetterLine,self.CurrentLetterPosition,"|",curses.color_pair(5))
curses.napms(100)
scrn.refresh()
scrn.addch(self.CurrentLetterLine,self.CurrentLetterPosition,"-",curses.color_pair(5))
curses.napms(100)
scrn.refresh()
scrn.addch(self.CurrentLetterLine,self.CurrentLetterPosition,".",curses.color_pair(5))
curses.napms(100)
scrn.refresh()
scrn.addch(self.CurrentLetterLine,self.CurrentLetterPosition," ")
scrn.addch(self.GunLine,self.GunPosition,self.GunChar,curses.color_pair(2) | curses.A_BOLD)
scrn.refresh()

8 contents ^

HHOOWW--TTOO
Written by Greg Walters PPrrooggrraamm IInn PPyytthhoonn -- PPaarrtt 1155

Background = 208, 202, 104

screen.fill(Background)
pygame.display.update()

import pygame
from pygame.locals import *
import os
Background = 208, 202, 104

FontForeground = 255,255,255
White

#This is the Import
import pygame
from pygame.locals import *
import os
This will make our game window centered in the screen
os.environ['SDL_VIDEO_CENTERED'] = '1'
Initialize pygame
pygame.init()
#setup the screen
screen = pygame.display.set_mode((800, 600))
Set the caption (title bar of the window)
pygame.display.set_caption('Pygame Test #1')
display the screen and wait for an event
doloop = 1
while doloop:

if pygame.event.wait().type in (KEYDOWN,
MOUSEBUTTONDOWN):

break

9 contents ^

PROGRAM IN PYTHON - PART 15

font =
pygame.font.Font(None,27)
text = font.render('Here is
some text', True,
FontForeground, Background)
textrect = text.get_rect()
screen.blit(text,textrect)
pygame.display.update()

textRect.centerx =
screen.get_rect().centerx
textRect.centery =
screen.get_rect().centery

This will make our game window centered in the screen
os.environ['SDL_VIDEO_CENTERED'] = '1'
Initialize pygame
pygame.init()
Setup the screen
screen = pygame.display.set_mode((800, 600))
Set the caption (title bar of the window)
pygame.display.set_caption('Pygame Test #1')
screen.fill(Background)
pygame.display.update()

Our Loop
doloop = 1
while doloop:

if pygame.event.wait().type in (KEYDOWN,
MOUSEBUTTONDOWN):

break

10 contents ^

PROGRAM IN PYTHON - PART 15

import pygame
from pygame.locals import *
import os
print
pygame.font.match_font('Couri
er New')

courier =
pygame.font.match_font('Couri
er New')
font =
pygame.font.Font(courier,27)

import pygame
from pygame.locals import *
import os

Background = 0,255,127
os.environ['SDL_VIDEO_CENTERED'] = '1'
pygame.init()
screen = pygame.display.set_mode((800, 600))
pygame.display.set_caption('Pygame Example #4 - Sprite')
screen.fill(Background)

11 contents ^

PROGRAM IN PYTHON - PART 15

class Sprite(pygame.sprite.Sprite):
def __init__(self, position):

pygame.sprite.Sprite.__init__(self)
Save a copy of the screen's rectangle
self.screen = pygame.display.get_surface().get_rect()
Create a variable to store the previous position of the sprite
self.oldsprite = (0, 0, 0, 0)
self.image = pygame.image.load('stick3.png')
self.rect = self.image.get_rect()
self.rect.x = position[0]
self.rect.y = position[1]

def update(self, amount):
Make a copy of the current rectangle for use in erasing
self.oldsprite = self.rect
Move the rectangle by the specified amount
self.rect = self.rect.move(amount)
Check to see if we are off the screen
if self.rect.x < 0:

self.rect.x = 0
elif self.rect.x > (self.screen.width - self.rect.width):

self.rect.x = self.screen.width - self.rect.width
if self.rect.y < 0:

self.rect.y = 0
elif self.rect.y > (self.screen.height - self.rect.height):

self.rect.y = self.screen.height - self.rect.height

12 contents ^

Greg Walters

PROGRAM IN PYTHON - PART 15

character = Sprite((screen.get_rect().x, screen.get_rect().y))
screen.blit(character.image, character.rect)

Create a Surface the size of our character
blank = pygame.Surface((character.rect.width, character.rect.height))
blank.fill(Background)

pygame.display.update()
DoLoop = 1
while DoLoop:

for event in pygame.event.get():
if event.type == pygame.QUIT:

sys.exit()
Check for movement
elif event.type == pygame.KEYDOWN:

if event.key == pygame.K_LEFT:
character.update([-10, 0])

elif event.key == pygame.K_UP:
character.update([0, -10])

elif event.key == pygame.K_RIGHT:
character.update([10, 0])

elif event.key == pygame.K_DOWN:
character.update([0, 10])

elif event.key == pygame.K_q:
DoLoop = 0

Erase the old position by putting our blank Surface on it
screen.blit(blank, character.oldsprite)
Draw the new position
screen.blit(character.image, character.rect)
Update ONLY the modified areas of the screen
pygame.display.update([character.oldsprite, character.rect])

8 contents ^

HHOOWW--TTOO
Written by Greg Walters PPrrooggrraamm IInn PPyytthhoonn -- PPaarrtt 1166

PRINT

print “This is a test”

print(“this is a test”)

Formatting and
variable substitution

>>> print("Hello {0}. I'm
glad you are here at
{1}".format("Fred","MySite.co
m"))

Hello Fred. I'm glad you are
here at MySite.com

>>>

Numbers

x = 5/2.0

x = 5/2

x = 5/2

>>> print "This is a test"
File "<stdin>", line 1

print "This is a test"
^

SyntaxError: invalid syntax
>>>

>>> months = ['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec']
>>> print "You selected month %s" % months[3]
You selected month Apr
>>>

>>> months = ['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec']
>>> print("You selected month {0}".format(months[3]))
You selected month Apr
>>>

OLDWAY

NEWWAY

9 contents ^

PROGRAM IN PYTHON - PART 16

x = 5//2

INPUT

response = raw_input('Enter
a selection -> ')

Traceback (most recent call
last):

File "<stdin>", line 1, in
<module>

NameError: name 'raw_input'
is not defined

response = input('Enter a
selection -> ')

Not Equal

Converting older
programs to Python 3.x

File "pprint1.py", line 18

print TopOrBottom('=',40)
^

SyntaxError: invalid syntax

#pprint1.py
#Example of semi-useful functions

def TopOrBottom(character,width):
width is total width of returned line
return '%s%s%s' % ('+',(character * (width-2)),'+')

def Fmt(val1,leftbit,val2,rightbit):
prints two values padded with spaces
val1 is thing to print on left, val2 is thing to print on right
leftbit is width of left portion, rightbit is width of right portion
part2 = '%.2f' % val2
return '%s%s%s%s' % ('| ',val1.ljust(leftbit-2,' '),part2.rjust(rightbit-2,' '),' |')

Define the prices of each item
item1 = 3.00
item2 = 15.00
Now print everything out...
print TopOrBottom('=',40)
print Fmt('Item 1',30,item1,10)
print Fmt('Item 2',30,item2,10)
print TopOrBottom('-',40)
print Fmt('Total',30,item1+item2,10)
print TopOrBottom('=',40)

+======================================+
| Item 1 3.00 |
| Item 2 15.00 |
+--------------------------------------+
| Total 18.00 |
+======================================+
Script terminated.

10 contents ^

PROGRAM IN PYTHON - PART 16

cp pprint1.py pprint1v3.py
Do I switch to 3.x now?

> 2to3 pprint1v3.py
RefactoringTool: Skipping implicit fixer: buffer
RefactoringTool: Skipping implicit fixer: idioms
RefactoringTool: Skipping implicit fixer: set_literal
RefactoringTool: Skipping implicit fixer: ws_comma
RefactoringTool: Refactored pprint1v3.py
--- pprint1v3.py (original)
+++ pprint1v3.py (refactored)
@@ -15,9 +15,9 @@
item1 = 3.00
item2 = 15.00
Now print everything out...

-print TopOrBottom('=',40)
-print Fmt('Item 1',30,item1,10)
-print Fmt('Item 2',30,item2,10)
-print TopOrBottom('-',40)
-print Fmt('Total',30,item1+item2,10)
-print TopOrBottom('=',40)
+print(TopOrBottom('=',40))
+print(Fmt('Item 1',30,item1,10))
+print(Fmt('Item 2',30,item2,10))
+print(TopOrBottom('-',40))
+print(Fmt('Total',30,item1+item2,10))
+print(TopOrBottom('=',40))
RefactoringTool: Files that need to be modified:
RefactoringTool: pprint1v3.py

> 2to3 -w pprint1v3.py
RefactoringTool: Skipping implicit fixer: buffer
RefactoringTool: Skipping implicit fixer: idioms
RefactoringTool: Skipping implicit fixer: set_literal
RefactoringTool: Skipping implicit fixer: ws_comma
RefactoringTool: Refactored pprint1v3.py
--- pprint1v3.py (original)
+++ pprint1v3.py (refactored)
@@ -15,9 +15,9 @@
item1 = 3.00
item2 = 15.00
Now print everything out...

-print TopOrBottom('=',40)
-print Fmt('Item 1',30,item1,10)
-print Fmt('Item 2',30,item2,10)
-print TopOrBottom('-',40)
-print Fmt('Total',30,item1+item2,10)
-print TopOrBottom('=',40)
+print(TopOrBottom('=',40))
+print(Fmt('Item 1',30,item1,10))
+print(Fmt('Item 2',30,item2,10))
+print(TopOrBottom('-',40))
+print(Fmt('Total',30,item1+item2,10))
+print(TopOrBottom('=',40))
RefactoringTool: Files that were modified:
RefactoringTool: pprint1v3.py

11 contents ^

Greg Walters

PROGRAM IN PYTHON - PART 16

Links

#pprint1.py
#Example of semi-useful functions

def TopOrBottom(character,width):
width is total width of returned line
return '%s%s%s' % ('+',(character * (width-2)),'+')

def Fmt(val1,leftbit,val2,rightbit):
prints two values padded with spaces
val1 is thing to print on left, val2 is thing to print on right
leftbit is width of left portion, rightbit is width of right portion
part2 = '%.2f' % val2
return '%s%s%s%s' % ('| ',val1.ljust(leftbit-2,' '),part2.rjust(rightbit-2,' '),' |')

Define the prices of each item
item1 = 3.00
item2 = 15.00
Now print everything out...
print(TopOrBottom('=',40))
print(Fmt('Item 1',30,item1,10))
print(Fmt('Item 2',30,item2,10))
print(TopOrBottom('-',40))
print(Fmt('Total',30,item1+item2,10))
print(TopOrBottom('=',40))

