
THE INDEPENDENT MAGAZINE FOR THE UBUNTU LINUX COMMUNITY

PROGRAMMING SERIES SPECIAL EDITION

 PROGRAMPROGRAM
 IN PYTHONIN PYTHON
 Volume Four Volume Four

Full Circle

Full Circle Magazine is neither affiliated, with nor endorsed by, Canonical Ltd.

Full Circle Magazine Specials

Full Circle Magazine

The articles contained in this magazine are released under the Creative Commons Attribution-Share Alike 3.0
Unported license. This means you can adapt, copy, distribute and transmit the articles but only under the following conditions:

You must attribute the work to the original author in some way (at least a name, email or URL) and to this magazine by name ('full circle magazine') and
the URL www.fullcirclemagazine.org (but not attribute the article(s) in any way that suggests that they endorse you or your use of the work). If you alter,
transform, or build upon this work, you must distribute the resulting work under the same, similar or a compatible license.
Full Circle Magazine is entirely independent of Canonical, the sponsor of Ubuntu projects and the views and opinions in the magazine should in
no way be assumed to have Canonical endorsement.

Please note: this Special
Edition is provided with
absolutely no warranty
whatsoever; neither the
contributors nor Full Circle
Magazine accept any
responsibility or liability for
loss or damage resulting from
readers choosing to apply this
content to theirs or others
computers and equipment.

About Full Circle

Full Circle is a free,
independent, magazine
dedicated to the Ubuntu
family of Linux operating
systems. Each month, it
contains helpful how-to
articles and reader-
submitted stories.

Full Circle also features a
companion podcast, the Full
Circle Podcast which covers
the magazine, along with
other news of interest.

Welcome to another 'single-topic special'
In response to reader requests, we are assembling the
content of some of our serialised articles into dedicated
editions.

For now, this is a straight reprint of the series
'Programming in Python', Parts 22-26 from issues #48
through #52; nothing fancy, just the facts.

Please bear in mind the original publication date; current
versions of hardware and software may differ from those
illustrated, so check your hardware and software versions
before attempting to emulate the tutorials in these special
editions. You may have later versions of software installed
or available in your distributions' repositories.

Enjoy!

Find Us

Website:
http://www.fullcirclemagazine.org/

Forums:
http://ubuntuforums.org/
forumdisplay.php?f=270

IRC: #fullcirclemagazine on
chat.freenode.net

Editorial Team

Editor: Ronnie Tucker
(aka: RonnieTucker)
ronnie@fullcirclemagazine.org

Webmaster: Rob Kerfia
(aka: admin / linuxgeekery-
admin@fullcirclemagazine.org

Podcaster: Robin Catling
(aka RobinCatling)
podcast@fullcirclemagazine.org

Communications Manager:
Robert Clipsham
(aka: mrmonday) -
mrmonday@fullcirclemagazine.org

http://www.fullcirclemagazine.org/
http://ubuntuforums.org/forumdisplay.php?f=270
http://ubuntuforums.org/forumdisplay.php?f=270
mailto:ronnie@fullcirclemagazine.org
mailto:admin@fullcirclemagazine.org
mailto:podcast@fullcirclemagazine.org
mailto:mrmonday@fullcirclemagazine.org

full circle magazine #48 7 contents ^

HHOOWW--TTOO
Written by Greg Walters PPrrooggrraamm IInn PPyytthhoonn -- PPaarrtt 2222

Tostart off on the right
foot, you need to have
the playlistmaker.glade
and playlistmaker.py from

last month. If you don't, jump over
to the last issue and get the
goodies. Before we get to the
code, let's take a look at what a
playlist file is. There are multiple
versions of play lists, and they all
have different extensions. The one
we will be creating will be a *.m3u
type playlist. In its simplest form,
it's just a text file that starts with
“#EXTM3U”, and then has an entry
for each song file you want to play -

including the full path. There's
also an extension that can be
added before each entry that
includes the length of the song,
the album name the song comes
from, the track number, and the
song name. We'll bypass the
extension for now and just
concentrate on the basic version.

Here is an example of a M3U
playlist file..
.
#EXTM3U
Adult Contemporary/Chris
Rea/Collection/02 - On The
Beach.mp3
Adult Contemporary/Chris
Rea/Collection/07 - Fool (If
You Think It's Over).mp3
Adult Contemporary/Chris
Rea/Collection/11 - Looking
For The Summer.mp3

All path names are relative to the
location of the playlist file.

OK...now let's get to coding.
Shown right is the opening of the
source code from last month.

Now, we need to create an event
handler routine for each of our
events that we have set up. Notice
that on_MainWindow_destroy and

Correction

Last month, in part 21, you
were told to save what you
have as "PlaylistMaker.glade",
but, in the code, it was referred
to as: "playlistmaker.glade". I’m
sure you noticed that one has
capitals and the other does not.
The code will run only if you use
both the call and file name
with, or both without, the
capitals.

#!/usr/bin/env python
import sys
from mutagen.mp3 import MP3
try:

import pygtk
pygtk.require("2.0")

except:
pass

try:
import gtk
import gtk.glade

except:
sys.exit(1)

next the class definition
class PlayListCreator:

def __init__(self):
self.gladefile = "playlistmaker.glade"
self.wTree = gtk.glade.XML(self.gladefile,"MainWindow")

and the main routine
if __name__ == "__main__":

plc = PlayListCreator()
gtk.main()

Next, we have our dictionary which should go after the __init__ routine.
def SetEventDictionary(self):
dict = {"on_MainWindow_destroy": gtk.main_quit,
"on_tbtnQuit_clicked": gtk.main_quit,
"on_tbtnAdd_clicked": self.on_tbtnAdd_clicked,
"on_tbtnDelete_clicked": self.on_tbtnDelete_clicked,
"on_tbtnClearAll_clicked": self.on_tbtnClearAll_clicked,
"on_tbtnMoveToTop_clicked": self.on_tbtnMoveToTop_clicked,
"on_tbtnMoveUp_clicked": self.on_tbtnMoveUp_clicked,
"on_tbtnMoveDown_clicked": self.on_tbtnMoveDown_clicked,
"on_tbtnMoveToBottom_clicked": self.on_tbtnMoveToBottom_clicked,
"on_tbtnAbout_clicked": self.on_tbtnAbout_clicked,
"on_btnGetFolder_clicked": self.on_btnGetFolder_clicked,
"on_btnSavePlaylist_clicked": self.on_btnSavePlaylist_clicked}

self.wTree.signal_autoconnect(dict)

full circle magazine #48 8 contents ^

PROGRAM IN PYTHON - PART 22
on_tbtnQuit_clicked are already
done for us, so we need to have
only 10 more (shown top right).
Just make stubs for now.

We'll modify these stubbed
routines in a few minutes. For now,
this should get us up and running
with an application, and we can
test things as we go. But, we need
to add one more line to the
__init__ routine before we can run
the app. After the self.wTree line,
add...

self.SetEventDictionary()

Now, you can run the application,
see the window, and click the Quit
toolbar button to exit the
application properly. Save the
code as "playlistmaker-1a.py" and
give it a try. Remember to save it
in the same folder as the glade file
we created last time, or copy the
glade file into the folder you saved
this code in.

We also need to define a few
variables for future use. Add these
after the SetEventDictionary call in
the __init__ function.

self.CurrentPath = ""
self.CurrentRow = 0
self.RowCount = 0

Now, we will create a function that
allows us to display a popup dialog
box whenever we need to give
some information to our user.
There is a built-in set of routines
that we will use, but we'll make a
routine of our own to make it
easier for us. It is the
gtk.MessageDialog routine, and
the syntax is as follows...

gtk.MessageDialog(parent,flag
s,MessageType,Buttons,message
)

Some discussion is needed before
we go too much further. The
message type can be one of the
following...

GTK_MESSAGE_INFO -
Informational message
GTK_MESSAGE_WARNING -
Nonfatal warning message
GTK_MESSAGE_QUESTION -
Question requiring a choice
GTK_MESSAGE_ERROR - Fatal
error message

And the button types are...

GTK_BUTTONS_NONE - no
buttons at all
GTK_BUTTONS_OK - an OK
button
GTK_BUTTONS_CLOSE - a Close
button
GTK_BUTTONS_CANCEL - a

Cancel button
GTK_BUTTONS_YES_NO - Yes and
No buttons
GTK_BUTTONS_OK_CANCEL - OK
and Cancel Buttons

Normally, you would use the
following code , or similar, to
create the dialog, display it, wait
for a response, and then destroy it.

dlg =
gtk.MessageDialog(None,0,gtk.
MESSAGE_INFO,gtk.BUTTONS_OK,"
This is a test message...")
response = dlg.run()
dlg.destroy()

However, if you want to display a
message box to the user more

than once or twice, that's a LOT of
typing. The general rule of thumb
is that if you write a series of lines-
of-code more than once or twice,
it's usually better to create a
function and then call that. Think
of it this way: If we want to display
a message dialog to the user, say
ten times in your application,
that's 10 X 3 (or 30) lines of code.
By making a function to do this for
us (using the example I just
presented), we would have 10 + 3
(or 13) lines of code to write. The
more we call a dialog, the less
code we actually have to type, and
the more readable our code is. Our

def on_tbtnAdd_clicked(self,widget):
pass

def on_tbtnDelete_clicked(self,widget):
pass

def on_tbtnClearAll_clicked(self,widget):
pass

def on_tbtnMoveToTop_clicked(self,widget):
pass

def on_tbtnMoveUp_clicked(self,widget):
pass

def on_tbtnMoveDown_clicked(self,widget):
pass

def on_tbtnMoveToBottom_clicked(self,widget):
pass

def on_tbtnAbout_clicked(self,widget):
pass

def on_btnGetFolder_clicked(self,widget):
pass

def on_btnSavePlaylist_clicked(self,widget):
pass

full circle magazine #48 9 contents ^

function (top right) will allow us to
call any of the four message dialog
types with just one routine using
different parameters.

This is a very simple function that
we would then call like this...

self.MessageBox("info","The
button QUIT was clicked")

Notice that if we choose to use the
MESSAGE_QUESTION type of
dialog, there are two possible
responses that will be returned by
the message dialog - a "Yes" or a
"No". Whichever button the user
clicks, we will receive the
information back in our code. To
use the question dialog, the call
would be something like this...

response =
self.MessageBox("question","A
re you sure you want to do
this now?")

if response ==
gtk.RESPONSE_YES:

print "Yes was clicked"

elif response ==
gtk.RESPONSE_NO:

print "NO was clicked"

You can see how you can check the
value of the button returned. So

now, replace the
"pass" call in each of
our event handler
routines with
something like that
shown below right.

We won't keep it like
this, but this gives you
a visual indication that
the buttons work the
way we want. Save the
code now as
"playlistmaker-1b.py",
and test your
program. Now we are
going to create a
function to set our
widget references.
This routine is going to be called
only once, but it will make our

code much more manageable and
readable. Basically, we want to
create local variables that

reference the widgets in our glade
window - so we can make calls to
them whenever (if ever) we need

PROGRAM IN PYTHON - PART 22

def MessageBox(self,level,text):
if level == "info":

dlg = gtk.MessageDialog(None,0,gtk.MESSAGE_INFO,gtk.BUTTONS_OK,text)
elif level == "warning":

dlg = gtk.MessageDialog(None,0,gtk.MESSAGE_WARNING,gtk.BUTTONS_OK,text)
elif level == "error":

dlg = gtk.MessageDialog(None,0,gtk.MESSAGE_ERROR,gtk.BUTTONS_OK,text)
elif level == "question":

dlg = gtk.MessageDialog(None,0,gtk.MESSAGE_QUESTION,gtk.BUTTONS_YES_NO,text)
if level == "question":

resp = dlg.run()
dlg.destroy()
return resp

else:
resp = dlg.run()
dlg.destroy()

def on_tbtnAdd_clicked(self,widget):
self.MessageBox("info","Button Add was clicked...")

def on_tbtnDelete_clicked(self,widget):
self.MessageBox("info","Button Delete was clicked...")

def on_tbtnClearAll_clicked(self,widget):
self.MessageBox("info","Button ClearAll was clicked...")

def on_tbtnMoveToTop_clicked(self,widget):
self.MessageBox("info","Button MoveToTop was clicked...")

def on_tbtnMoveUp_clicked(self,widget):
self.MessageBox("info","Button MoveUp was clicked...")

def on_tbtnMoveDown_clicked(self,widget):
self.MessageBox("info","Button MoveDown was clicked...")

def on_tbtnMoveToBottom_clicked(self,widget):
self.MessageBox("info","Button MoveToBottom was clicked...")

def on_tbtnAbout_clicked(self,widget):
self.MessageBox("info","Button About was clicked...")

def on_btnGetFolder_clicked(self,widget):
self.MessageBox("info","Button GetFolder was clicked...")

def on_btnSavePlaylist_clicked(self,widget):
self.MessageBox("info","Button SavePlaylist was clicked...")

full circle magazine #48 10 contents ^

to. Put this function (above right)
below the SetEventDictionary
function.

Please notice that there is one
thing that isn't referenced in our
routine. That would be the
treeview widget. We'll make that
reference when we set up the
treeview itself. Also of note is the
last line of our routine. In order to
use the status bar, we need to
refer to it by its context id. We'll
be using this later on.

Next, let's set up the function that
displays the “about” dialog when
we click the About toolbar button.
Again, there is a built-in routine to
do this provided by the GTK
library. Put this after the
MessageBox function. Here's the
code, below right.

Save your code and then give it a
try. You should see a pop-up box,
centered in our application, that
displays everything we have set.
There are more attributes that you
can set for the about box (which
can be found at
http://www.pygtk.org/docs/pygtk/
class-gtkaboutdialog.html), but
these are what I would consider a
minimum set.

Before we go on, we need to
discuss exactly what will
happen from here. The
general idea is that the user
will click on the "Add"
toolbar button, we'll pop up
a file dialog box to allow
them to add files to the
playlist, and then display the
file information into our
treeview widget. From
there, they can add more
files, delete single file
entries, delete all file
entries, move a file entry up,
down, or to the top or down
to the bottom of the

PROGRAM IN PYTHON - PART 22

def SetWidgetReferences(self):
self.txtFilename = self.wTree.get_widget("txtFilename")
self.txtPath = self.wTree.get_widget("txtPath")
self.tbtnAdd = self.wTree.get_widget("tbtnAdd")
self.tbtnDelete = self.wTree.get_widget("tbtnDelete")
self.tbtnClearAll = self.wTree.get_widget("tbtnClearAll")
self.tbtnQuit = self.wTree.get_widget("tbtnQuit")
self.tbtnAbout = self.wTree.get_widget("tbtnAbout")
self.tbtnMoveToTop = self.wTree.get_widget("tbtnMoveToTop")
self.tbtnMoveUp = self.wTree.get_widget("tbtnMoveUp")
self.tbtnMoveDown = self.wTree.get_widget("tbtnMoveDown")
self.tbtnMoveToBottom = self.wTree.get_widget("tbtnMoveToBottom")
self.btnGetFolder = self.wTree.get_widget("btnGetFolder")
self.btnSavePlaylist = self.wTree.get_widget("btnSavePlaylist")
self.sbar = self.wTree.get_widget("statusbar1")
self.context_id = self.sbar.get_context_id("Statusbar")

and then add a call to it right after the self.SetEventDictionary() call in the __init__ function.

self.SetWidgetReferences()

def ShowAbout(self):
about = gtk.AboutDialog()
about.set_program_name("Playlist Maker")
about.set_version("1.0")
about.set_copyright("(c) 2011 by Greg Walters")
about.set_comments("Written for Full Circle Magazine")
about.set_website("http://thedesignatedgeek.com")
about.run()
about.destroy()

Now, comment out (or simply remove) the messagebox call in the
on_tbtnAbout_clicked routine, and replace it with a call to the ShowAbout
function. Make it look like this.

def on_tbtnAbout_clicked(self,widget):
#self.MessageBox("info","Button About was clicked...")
self.ShowAbout()

full circle magazine #48 11 contents ^

PROGRAM IN PYTHON - PART 22
treeview. Eventually, they'll set
the path that the file will be saved
to, provide a filename with a
"m3u" extension, and click the
save file button. While this seems
simple enough, there's a lot that
happens behind the scenes. The
magic all happens in the treeview
widget, so let's discuss that. This
will get pretty deep, so you might
want to read carefully, since an
understanding of this will keep
you from making mistakes later on.

A treeview can be something as
simple as a columnar list of data
like a spreadsheet or database
representation, or it could be
more complex like a file-folder
listing with parents and children,
where the folder would be the
parent and the files in that folder
would be the children, or
something even more complex.
For this project, we'll use the first
example, a columnar list. In the
list, there will be three columns.
One is for the name of the music
file, one is for the extension of the
file (mp3, ogg, wav, etc) and the
final column is for the path.
Combining this into a string (path,
filename, extension) gives us the
entry into the playlist we will be
writing. You could, of course, add
more columns as you wish, but for

now, we'll deal with just
three.

A treeview is simply a
visual storage container
that holds and displays a
model. The model is the
actual "device" that holds
and manipulates our
data. There are two
different pre-defined
models that are used
with a treeview, but you
can certainly create your
own. That having been said, for
98% of your work, one of the two
pre-defined models will do what
you need. The two types are
GTKListStore and GTKTreeStore.
As their names suggest, the
ListStore model is usually used for
lists, the TreeStore is used for
Trees. For our application, we will
be using a GTKListStore.
The basic steps are:

• Create a reference to the
TreeView widget.
• Add the columns.
• Set the type of renderer to use.
• Create the ListStore.
• Set the model attribute in the
Treeview to our model.
• Fill in the data.

The third step is to set up the type

of renderer the column will use to
display the data. This is simply a
routine that is used to draw the
data into the tree model. There
are many different cell renderers
that come with GTK, but most of
the ones that you would normally
use include GtkCellRenderText and
GtkCellRendererToggle.

So, let's create a function (shown
above) that sets up our TreeView
widget. We'll call it
SetupupTreeview. First we'll
define some variables for our
columns, set the variable
reference of the TreeView itself,
add the columns, set up the
ListStore, and set the model.
Here's the code for the function.
Put it after the
SetWidgetReferences function.

The variables cFName, cFType and
cFPath define the column
numbers. The variables sFName,
sFType and sFPath will hold the
column names in our displayed
view. The seventh line sets the
variable reference of the treeview
widget as named in our glade file.

Next we call a routine (next page,
top right), which we'll create in
just a moment, for each column we
want. Then we define our
GTKListStore with three text
fields, and finally set the model
attribute of our TreeView widget
to our GTKListStore. Let's create
the AddPlaylistColumn function
next. Put it after the
SetupTreeview function.

Each column is created with this

def SetupTreeview(self):
self.cFName = 0
self.cFType = 1
self.cFPath = 2
self.sFName = "Filename"
self.sFType = "Type"
self.sFPath = "Folder"
self.treeview = self.wTree.get_widget("treeview1")
self.AddPlaylistColumn(self.sFName,self.cFName)
self.AddPlaylistColumn(self.sFType,self.cFType)
self.AddPlaylistColumn(self.sFPath,self.cFPath)
self.playList = gtk.ListStore(str,str,str)
self.treeview.set_model(self.playList)
self.treeview.set_grid_lines(gtk.TREE_VIEW_GRID_LINES_BOTH)

full circle magazine #48 12 contents ^

PROGRAM IN PYTHON - PART 22
function. We pass in the title of
the column (what's displayed on
the top line of each column) and a
columnID. In this case, the
variables we set up earlier
(sFName and cFname) will be
passed here. We then create a
column in our TreeView widget
giving the title, what kind of cell
renderer it will be using, and,
finally, the id of the column. We
then set the column to be
resizable, set the sort id, and
finally append the column into the
TreeView.

Add these two functions to your
code. I choose to put them right
after the SetWidgetReferences
function, but you can put it
anywhere within the
PlayListCreator class. Add the
following line after the call to
SetWidgetReferences() in the
__init__ function to call the
function.

self.SetupTreeview()

Save and run your program, and
you will see that we now have
three columns with headers in our
TreeView widget.

There are so many things left to
do. We have to have a way to get

the music
filenames
from the user
and put them
into the
TreeView as
rows of data. We have to create
our Delete, ClearAll, movement
functions, save routine, and file
path routines, plus a few "pretty"
things that will make our
application look more
professional. Let's start with the
Add routine. After all, that's the
first button on our toolbar.
When the user clicks the Add
button, we want to pop up a
"standard" open-file dialog that
allows for multiple selections.
Once the user has made their
selection, we then want to take
this data and add it into the
treeview, as I stated above. So the
first logical thing to do is work on
the File Dialog. Again, GTK
provides us a way to call a
"standard" file dialog in code. We
could hard code this as just lines in
the on_tbtnAdd_clicked event
handler, but let's make a separate
class to handle this. While we are
at it, we can make this class
handle not only a file OPEN
dialog, but a folder SELECT
dialog as well. As before with
the MessageBox function, you

can pull this into a snippet file that
has all kinds of reusable routines
for later use.

We'll start by defining a new class
called FileDialog which will have
only one function called
ShowDialog. That function will
take two parameters, one called
'which' (a '0' or a '1'), that
designates whether we are
creating an open-file or select-
folder dialog, and the other is the
path that should be used for the
default view of the dialog called
CurrentPath. Create this class just
before our main code at the
bottom of the source file.

class FileDialog:

def
ShowDialog(self,which,Current
Path):

The first part of our code should

be an IF statement

if which == 0: # file
chooser

...
else: # folder chooser

...

Before going any further, let's
explore how the file/folder dialog
is actually called and used. The
syntax of the dialog is as follows

gtk.FileChooserDialog(title,p
arent,action,buttons,backend)

and returns a dialog object. Our
first line (under if which == 0) will
be the line shown below.

As you can see, the title is "Select
files to add...", the parent is set to
None. We are requesting a File
Open type dialog (action), and we
want a Cancel and an Open button,
both using "stock" type icons. We

def AddPlaylistColumn(self,title,columnId):
column = gtk.TreeViewColumn(title,gtk.CellRendererText(),text=columnId)
column.set_resizable(True)
column.set_sort_column_id(columnId)
self.treeview.append_column(column)

dialog = gtk.FileChooserDialog("Select files to add...",None,
gtk.FILE_CHOOSER_ACTION_OPEN,
(gtk.STOCK_CANCEL, gtk.RESPONSE_CANCEL,
gtk.STOCK_OPEN, gtk.RESPONSE_OK))

full circle magazine #48 13 contents ^

PROGRAM IN PYTHON - PART 22
are also setting the return codes
of gtk.RESPONSE_CANCEL and
gtk.RESPONSE_OK for when the
user makes their selections. The
call for our Folder Chooser under
the Else clause is similar.

Basically, the only thing that
changed between the two
definitions are the title (shown
above right) and the action type.
So our code for the class should
now be the code shown middle
right.

These set the default response to
be the OK button, and then to turn
on the multiple select feature so
the user can select (you guessed
it) multiple files to add. If we didn't
set this, the dialog would only
allow one file to be selected at a
time, since set_select_multiple is
set to False by default. Our next
lines are setting the current path,
and then displaying the dialog
itself. Before we type in the code,
let me explain why we want to
deal with the current path. Every
time you pop up a file dialog box,
and you DON'T set a path, the
default is to the folder where our
application resides. So, let's say
that the music files that the user
would be looking for are in
/media/music_files/, and are then

broken down by genre, and further
by artist, and further by album.
Let's further assume that the user
has installed our application in
/home/user2/playlistmaker. Each
time we pop up
the dialog, the
starting folder
would be
/home/user2/pla
ylistmaker.
Quickly, the user
would become
frustrated by
this, wanting the
last folder he
was in to be the
starting folder
next time. Make
sense? OK. So,
bottom right are
our next lines of
code.

Here we check the responses sent
back. If the user clicked the 'Open'
button which sends back a
gtk.RESPONSE_OK, we get the
name or names of the files the
user selected, set the current path
to the folder we are in, destroy the
dialog, and then return the data
back to the calling routine. If, on
the other hand, the user clicked on
the 'Cancel' button, we simply
destroy the dialog. I put the print

dialog = gtk.FileChooserDialog("Select Save Folder..",None,
gtk.FILE_CHOOSER_ACTION_SELECT_FOLDER,

(gtk.STOCK_CANCEL, gtk.RESPONSE_CANCEL,
gtk.STOCK_OPEN, gtk.RESPONSE_OK))

class FileDialog:
def ShowDialog(self,which,CurrentPath):

if which == 0: #file chooser
#gtk.FileChooserDialog(title,parent,action,buttons,backend)
dialog = gtk.FileChooserDialog("Select files to add...",None,

gtk.FILE_CHOOSER_ACTION_OPEN,
(gtk.STOCK_CANCEL, gtk.RESPONSE_CANCEL,
gtk.STOCK_OPEN, gtk.RESPONSE_OK))

else: #folder chooser
dialog = gtk.FileChooserDialog("Select Save Folder..",None,

gtk.FILE_CHOOSER_ACTION_SELECT_FOLDER,
(gtk.STOCK_CANCEL, gtk.RESPONSE_CANCEL,
gtk.STOCK_OPEN, gtk.RESPONSE_OK))

The next two lines will be (outside of the IF/ELSE statement)...

dialog.set_default_response(gtk.RESPONSE_OK)
dialog.set_select_multiple(True)

if CurrentPath != "":
dialog.set_current_folder(CurrentPath)

response = dialog.run()

Next, we need to handle the response from the dialog.

if response == gtk.RESPONSE_OK:
fileselection = dialog.get_filenames()
CurrentPath = dialog.get_current_folder()
dialog.destroy()
return (fileselection,CurrentPath)

elif response == gtk.RESPONSE_CANCEL:
print 'Closed, no files selected'
dialog.destroy()

full circle magazine #48 14 contents ^

PROGRAM IN PYTHON - PART 22
statement in there just to show
you that the button press worked.
You can leave it or take it out.
Notice that when we return from
the Open button part of the
routine, we are returning two sets
of values. 'fileselection' is a list of
the files selected by the user, as
well as the CurrentPath.

In order to get the routine to do
something, add the following line
under the on_tbtnAdd_click
routine...

fd = FileDialog()

selectedfiles,self.CurrentPat
h =
fd.ShowDialog(0,self.CurrentP
ath)

Here we retrieve the two return
values that are sent from our
return call. For now, add the
following code to see what the
information returned will look like.

for f in selectedfiles:

print "User selected %s"
% f

print "Current path is %s" %
self.CurrentPath

When you run the program,
click on the 'Add' button. You'll see
the file dialog. Now move to

somewhere where you have some
files and select them. You can hold
down the [ctrl] key and click on
multiple files to select them
individually, or the [shift] key to
select multiple contiguous files.
Click on the 'Open' button, and
look at the response in your
terminal window. Please note that
if you click on the 'Cancel' button
right now, you'll get an error
message. That's because the
above code assumes that there are
no files selected. Don't worry
about that right now - we'll handle
that in a little bit. I just wanted to
let you see what comes back if the
'Open' button is pressed. One
thing we should do is add a filter
to our file-open dialog. Since we
expect the user to normally select
music files, we should (1) give the
option to display only music files,
and (2) give the option to show all
files just-in-case. We do this by
using the filefilter attributes of
the dialog. Here's the code for
that which should go in the which
== 0 section right after the dialog
set line.

filter = gtk.FileFilter()
filter.set_name("Music
Files")
filter.add_pattern("*.mp3")
filter.add_pattern("*.ogg")
filter.add_pattern("*.wav")

dialog.add_filter(filter)
filter = gtk.FileFilter()
filter.set_name("All files")
filter.add_pattern("*")
dialog.add_filter(filter)

We are setting up two "groups",
one for music files
(filter.set_name("Music Files")),
and the other for all files. We use a
pattern to define the types of files
we want. I have defined three
patterns, but you can add or
delete any that you wish. I put the
music filter first, since that's what
we will assume the user is going to
be mainly concerned with. So the
steps are...

• Define a filter variable.
• Set the name.
• Add a pattern.
• Add the filter to the dialog.

You can have as many or as few
filters as you wish. Also notice that
once you have added the filter to
the dialog, you can re-use the
variable for the filter.

Back in the on_tbtnAdd_clicked
routine, comment out the last
lines we added and replace them
with this one line.

self.AddFilesToTreeview(selec
tedfiles)

so our routine now looks like the
code shown on the next page.

So, when we get the response
back from file dialog, we will send
the list containing the selected
files to this routine. Once here, we
set up a counter variable (how
many files we are adding), then
parse the list. Remember that each
entry contains the fully qualified
filename with path and extension.
We'll want to split the filename
into path, filename, and extension.
First we get the very last 'period'
from the filename and assume
that is the beginning of the
extension and assign its position in
the string to extStart. Next we
find the very last '/' in the filename
to determine the beginning of the
filename. Then we break up the
string into extension, filename and
file path. We then stuff these
values into a list named 'data' and
append this into our playlist
ListStore. We increment the
counter since we have done all the
work. Finally we increment the
variable RowCount which holds
the total number of rows in our
ListStore, and then we print a
message to the status bar.

Now you can run the application

full circle magazine #48 15 contents ^

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with his family.

EXTRA!EXTRA!
READALLABOUTIT!

Full Circle Special
Editions Released On
Unsuspecting World*

THE PERFECT SERVER
SPECIAL EDITION

This is a special edition of Full
Circle that is a direct reprint
of the Perfect Server articles
that were first published in
FCM#31-#34.

http://fullcirclemagazine.org/
special-edition-1-the-perfect-
server/

* Neither Full Circle magazine, nor its makers, apologize for any hysteria caused in the release of its publications.

PYTHON
SPECIAL EDITION #01

This is a reprint of Beginning
Python Parts 01 – 08 by Greg
Walters.

http://fullcirclemagazine.org
/python-special-edition-1/

def on_tbtnAdd_clicked(self,widget):
fd = FileDialog()
selectedfiles,self.CurrentPath =

fd.ShowDialog(0,self.CurrentPath)
self.AddFilesToTreeview(selectedfiles)

We now have to create the function that we just put the call to.
Put this function after the on_btnSavePlaylist_clicked routine.

def AddFilesToTreeview(self,FileList):
counter = 0
for f in FileList:

extStart = f.rfind(".")
fnameStart = f.rfind("/")
extension = f[extStart+1:]
fname = f[fnameStart+1:extStart]
fpath = f[:fnameStart]
data = [fname,extension,fpath]
self.playList.append(data)
counter += 1

self.RowCount += counter
self.sbar.push(self.context_id,"%s files added

for a total of %d" % (counter,self.RowCount))

PROGRAM IN PYTHON - PART 22

and see the data in the TreeView.

As always, the full code can be
found at
http://pastebin.com/JtrhuE71.

Next time, we'll finalize our
application, filling in the missing
routines, etc.

full circle magazine #49 7 contents ^

HHOOWW--TTOO
Written by Greg Walters PPrrooggrraamm IInn PPyytthhoonn -- PPaarrtt 2233

This time, we are going to
finish our playlistmaker
program. Last time, we
got a good bit done, but

we left some things incomplete.
We can't save the playlist, we don't
have the movement functions
done, we can't select the file path
to store the file in, and so on.
However, there are a few things
that we need to do before we start
coding. First, we need to find an
image for the logo for our
application in the about box, and
for when the application is
minimized. You can dig around in
the /usr/share/icons folder for an
icon you like, or you can go on the
web and get one, or create one
yourself. Whatever you get, put it
into your code folder with the
glade file and the source code
from last month. Name it logo.png.
Next, we need to open the glade
file from last month and make a
few changes.

First, using the MainWindow,
go to the General tab, and scroll
down until you find Icon. Using the
browse tool, find your icon and
select that. Now the text box

should contain “logo.png”.
Next, in the hierarchy box,
select treeview1, go to the
signal tab, and, under
GtkTreeView | cursor-
changed, add a handler for
on_treeview1_cursor_chan
ged. Remember, as I told
you last month, to click off
that to make the change
stick. Finally, again in the
hierarchy box, select
txtFilename, and go to the
signal tab. Scroll down
until you find 'GtkWidget',
and scroll down further
until you get to 'key-press-
event'. Add a handler for
'on_txtFilename_key_press
_event'. Save your glade
project and close glade.

Now it's time to complete our
project. We'll start from where we
left off using last month's code.

The first thing I want to do is
modify the code in class FileDialog.
If you remember from last time, if
the user clicked the 'Cancel'
button, there was an error raised.
We will fix that first. At the end of

the routine, you have the code
shown above.

You might imagine, this simply
looks at the value of each key that
is pressed when the user is in the
txtFilename text box, and
compares it to the value 65293,
which is the code that is assigned
to the return key (enter key). If it
matches, then it calls the

SavePlaylist function. The user
doesn't have to even click the
button.

Now on to new code. Let's deal
with the toolbar button ClearAll.
When the user clicks this button,
we want the treeview and the
ListStore to be cleared. This is a
simple one-liner that we can put

elif response == gtk.RESPONSE_CANCEL:
print 'Closed, no files selected'
dialog.destroy()

Notice that we aren't returning anything. This is what caused the error. So to
fix this, we want to add the following line of code after the dialog.destroy()
line.

Return ([],"")

This will keep the error from happening. Next, let's add the text box event
handler we created in glade. To our dictionary, add the following line.

"on_txtFilename_key_press_event": self.txtFilenameKeyPress,

As you remember, this creates a function to handle the keypress event. We'll
next create the function.

def txtFilenameKeyPress(self,widget,data):
if data.keyval == 65293: # The value of the return key

self.SavePlaylist()

full circle magazine #49 8 contents ^

PROGRAM IN PYTHON - PART 23
into the on_tbtnClearAll_clicked
routine.

def
on_tbtnClearAll_clicked(self,
widget):

self.playList.clear()

We are simply telling the
playList ListStore to clear itself.
That was easy. Now we'll deal with
the Delete toolbar button. Much
harder, but once we get into it,
you'll understand.

First we have to discuss how we
get a selection from the treeview
widget and the ListStore. This is
complicated, so go slowly. In order
to get data back from the
ListStore, we first have to get a
gtk.TreeSelection which is a helper
object that manages the selection
within a treeview. Then we use
that helper object to retrieve the
model type, and an iterator that
contains the selected rows.

I know that you are thinking
“What the heck is an iterator?”
Well you already have used them
and don't even know it. Think
about the following code (above
right) from the
AddFilesToTreeview function from
last month.

Look at the 'for' statement
portion. We use an iterator to walk
through the list called FileList.
Basically, in this case, the iterator
simply goes through each entry in
the list returning each item
separately. What we are going to
do is create an iterator, fill that
with the selected rows in the
treeview, and use that like a list.
So the code (middle right) for
on_tbtnDelete_clicked will be.

The first line creates the
TreeSelection object. We use that
to get the rows selected (which is
only one because we didn't set the
model to support multiple
selections), fill that into a list
called iters, and then walk it
removing (like the .clear
method). We also
decrement the variable
RowCount, and then display
the number of files in the
status bar.

Now, before we get to the
move functions, let's deal with the
save-file-path function. We'll use
our FileDialog class as before.
We'll do all the code (bottom
right)for this in the
on_btnGetFolder_clicked routine.

The only thing really different
from before is the last line of this
code. We are putting the name of
the path returned by the
FileDialog into the textbox that we
set up previously using the
set_text method. Remember that
the data returned to us is in the

form of a list, even though there is
only one entry. That's why we use
'filepath[0]'.

Let's do the file-save function.
We can safely do that before we
deal with the move functions.
We'll create a function called

def AddFilesToTreeview(self,FileList):
counter = 0
for f in FileList:

extStart = f.rfind(".")
fnameStart = f.rfind("/")
extension = f[extStart+1:]
fname = f[fnameStart+1:extStart]
fpath = f[:fnameStart]
data = [fname,extension,fpath]
self.playList.append(data)
counter += 1

def on_tbtnDelete_clicked(self,widget):
sel = self.treeview.get_selection()
(model,rows) = sel.get_selected_rows()
iters=[]
for row in rows:

iters.append(self.playList.get_iter(row))
for i in iters:

if i is not None:
self.playList.remove(i)
self.RowCount -= 1

self.sbar.push(self.context_id,"%d files in list." %
(self.RowCount))

def on_btnGetFolder_clicked(self,widget):
fd = FileDialog()
filepath,self.CurrentPath = fd.ShowDialog(1,self.CurrentPath)
self.txtPath.set_text(filepath[0])

full circle magazine #49 9 contents ^

SavePlaylist. The first thing we
need to do (above right) is check
to see if there is anything in the
txtPath text box. Next we need to
check to see if there is a filename
in the txtFilename text box. For
both of those instances, we use
the .get_text() method of the text
box.

Now that we know that we
have a path (fp) and a filename
(fn), we can open the file, print our
M3U header, and walk the playList.
The path is stored (if you will
remember) in column 2, the
filename in column 0, and the
extension in column 1. We simply
(right) create a string and then
write it to the file and finally close
the file.

We can now start work on the
move functions. Let's start with
the Move To Top routine. Like we
did when we wrote the delete
function, we get the selection and
then the selected row. Next we
have to step through the rows to
get two variables. We will call
them path1 and path2. Path2, in
this case will be set to 0, which is
the “target” row. Path1 is the row
the user has selected. We finally
use the model.move_before()

method to move the selected row
up to row 0, effectively pushing
everything down. We'll put the
code (below right) directly in the
on_tbtnMoveToTop_clicked
routine.

For the MoveToBottom

PROGRAM IN PYTHON - PART 23

def SavePlaylist(self):
fp = self.txtPath.get_text() # Get the filepath from the text box
fn = self.txtFilename.get_text() # Get the filename from the filename text box

Now check the values...

if fp == "": # IF the path is blank...
self.MessageBox("error","Please provide a filepath for the playlist.")

elif fn == "": # IF the filename is blank...
self.MessageBox("error","Please provide a filename for the playlist file.")

else: # Otherwise we are good to go.

plfile = open(fp + "/" + fn,"w") # Open the file
plfile.writelines('#EXTM3U\n') # Print the M3U Header
for row in self.playList:

plfile.writelines("%s/%s.%s\n" % (row[2],row[0],row[1])) #Write the line data
plfile.close # Finally close the file

Lastly, we pop up a message box informing the user that the file has been saved.

self.MessageBox("info","Playlist file saved!")

We now need to put in a call to this routine in our on_btnSavePlaylist_clicked event handler routine.

def on_btnSavePlaylist_clicked(self,widget):
self.SavePlaylist()

Save your code and test it. Your play list should save properly and look something like the sample I gave
you last month.

def on_tbtnMoveToTop_clicked(self,widget):
sel = self.treeview.get_selection()
(model,rows) = sel.get_selected_rows()
for path1 in rows:

path2 = 0
iter1=model.get_iter(path1)
iter2 = model.get_iter(path2)
model.move_before(iter1,iter2)

full circle magazine #49 10 contents ^

function, we will use almost
exactly the same code as the
MoveToTop routine, but, in place
of the model.move_before()
method, we will use the
model.move_after() method, and,
instead of setting path2 to 0, we
set it to self.RowCount-1. Now you
understand why we have a
RowCount variable. Remember the
counts are zero based, so we have
to use RowCount-1 (above right).

Now let's take a look at what it
will take to do the MoveUp
routine. Once again, it is fairly
similar to the last two functions
we created. This time, we get
path1 which is the selected row
and then assign that row
number–1 to path2. Then IF path2
(the target row) is greater than or
equal to 0, we use the
model.swap() method (second
down, right).

The same thing applies for the
MoveDown function. This time
however, we check to see if path2
is LESS than or equal to the value
of self.RowCount-1 (third down,
right).

Now let's make some changes
to the abilities of our play list. In

last month's article, I showed you
the basic format of the play list file
(bottom).

However, I did say that there
was an extended format as well. In
the extended format, there is an
extra line that can be added to the
file before each song file entry
that contains extra information
about the song. The format of this
line is as follows...

#EXTINF:[Length of song in
seconds],[Artist Name] –
[Song Title]

You might have wondered why
we included the mutagen library
from the beginning since we never
used it. Well, we will now. To
refresh your memory, the
mutagen library is for accessing
ID3 tag information from inside of
MP3 files. To get the full
discussion about this, please refer
to issue 35 of Full Circle which has
my part 9 of this series. We'll
create a function to deal with the
reading of the MP3 file and return
the Artist name, the Song Title,

and the length of the song in
seconds, which are the three
things we need for the extended
information line. Put the function
after the ShowAbout function

within the PlaylistCreator class
(next page, top right).

Again, to refresh your memory,
I'll walk through the code. First we

PROGRAM IN PYTHON - PART 23

def on_tbtnMoveToBottom_clicked(self,widget):
sel = self.treeview.get_selection()
(model,rows) = sel.get_selected_rows()
for path1 in rows:

path2 = self.RowCount-1
iter1=model.get_iter(path1)
iter2 = model.get_iter(path2)
model.move_after(iter1,iter2)

def on_tbtnMoveUp_clicked(self,widget):
sel = self.treeview.get_selection()
(model,rows) = sel.get_selected_rows()
for path1 in rows:

path2 = (path1[0]-1,)
if path2[0] >= 0:

iter1=model.get_iter(path1)
iter2 = model.get_iter(path2)
model.swap(iter1,iter2)

def on_tbtnMoveDown_clicked(self,widget):
sel = self.treeview.get_selection()
(model,rows) = sel.get_selected_rows()
for path1 in rows:

path2 = (path1[0]+1,)
iter1=model.get_iter(path1)
if path2[0] <= self.RowCount-1:

iter2 = model.get_iter(path2)
model.swap(iter1,iter2)

#EXTM3U
Adult Contemporary/Chris Rea/Collection/02 - On The Beach.mp3
Adult Contemporary/Chris Rea/Collection/07 - Fool (If You Think It's Over).mp3
Adult Contemporary/Chris Rea/Collection/11 - Looking For The Summer.mp3

full circle magazine #49 11 contents ^

PROGRAM IN PYTHON - PART 23
clear the three return variables so
that if anything happens they are
blank upon return. We then pass in
the filename of the MP3 file we
are going to look at. Next we pull
the keys into (yes, you guessed it)
an iterator, and walk through that
iterator looking for two specific
tags. They are 'TPE1' which is the
artist name, and 'TIT2' which is the
song title. Now, if the key doesn't
exist, we would get an error, so we
wrap each get call with a
'try|except' statement. We then
pull the song length from the
audio.info.length attribute, and
return the whole shebang.

Now, we will want to modify
the SavePlaylist function to
support the extended information
line. While we are there, let's
check to see if the filename exists,
and, if so, flag the user and exit
the routine. Also, to make things a
bit easier for the user, since we
don't support any other filetype,
let's automatically append the
extension '.m3u' to the path and
filename if it doesn't exist. First
add an import line at the top of
the code importing os.path
between the sys import and the
mutagen import (bottom right).

Just like in the

AddFilesToTreeview
function, we will use the
'rfind' method to find the
position of the last period
('.') in the filename fn. If
there isn't one, the return
value is set to -1. So we
check to see if the return
value is -1, and, if so, we
append the extension and
then put the filename
back in the text box just
to be nice.

def GetMP3Info(self,filename):
artist = ''
title = ''
songlength = 0
audio = MP3(filename)
keys = audio.keys()
for key in keys:

try:
if key == "TPE1": # Artist

artist = audio.get(key)
except:

artist = ''
try:

if key == "TIT2": # Song Title
title = audio.get(key)

except:
title = ''

songlength = audio.info.length # Audio Length
return (artist,title,songlength)

import os.path

Then, go ahead and comment out your existing SavePlaylist function and we'll replace it.

def SavePlaylist(self):
fp = self.txtPath.get_text() # Get the file path from the text box
fn = self.txtFilename.get_text() # Get the filename from the text box
if fp == "": # IF filepath is blank...

self.MessageBox("error","Please provide a filepath for the playlist.")
elif fn == "": # IF filename is blank...

self.MessageBox("error","Please provide a filename for the playlist file.")
else: # Otherwise

Up to this point, the routine is the same. Here's where the changes start.

extStart = fn.rfind(".") # Find the extension start position
if extStart == -1:

fn += '.m3u' #append the extension if there isn't one.
self.txtFilename.set_text(fn) #replace the filename in the text box

full circle magazine #49 12 contents ^

PROGRAM IN PYTHON - PART 23
if os.path.exists(fp + "/" +
fn):

self.MessageBox("error","T
he file already exists.
Please select another.")

Next, we want to wrap the rest
of the function with an IF|ELSE
clause (top right) so if the file
already exists, we simply fall out
of the routine. We use
os.path.exists(filename) to do this
check.

The rest of the code is mostly
the save as before, but let's look at
it anyway.

Line 2 opens the file we are
going to write. Line 3 puts the
M3U header in. Line 4 sets up for a
walk through the playList
ListStore. Line 5 creates the

filename from the three columns
of the ListStore. Line 6 calls
GetMP3Info and stores the return
values into variables. Line 7 then
checks to see if we have values in
all three variables. If so, we write
the extended information line in
line 8, otherwise we don't try. Line
9 writes the filename line as
before. Line 10 closes the file
gracefully, and line 11 pops up the
message box letting the user know

the process is all done.

Go ahead and save your code
and give it a test drive.

At this point about the only
thing that should be added would
be some tool tips for our controls
when the user hovers the mouse
pointer over them. It adds that
professional flair (below). Let's
create a function to do that now.

We are using the widget
references we set up earlier, and
then setting the text for the
tooltip via the (you guessed it)
set_tooltip_text attribute. Next
we need to add the call to the
routine. Back in the __init__
routine, after the
self.SetWidgetReferences line,
add:

self.SetupToolTops()

else:
plfile = open(fp + "/" + fn,"w") # Open the file
plfile.writelines('#EXTM3U\n') #Print the M3U header
for row in self.playList:

fname = "%s/%s.%s" % (row[2],row[0],row[1])
artist,title,songlength = self.GetMP3Info(fname)
if songlength > 0 and (artist != '' and title != ''):

plfile.writelines("#EXTINF:%d,%s - %s\n" % (songlength,artist,title))
plfile.writelines("%s\n" % fname)

plfile.close # Finally Close the file
self.MessageBox("info","Playlist file saved!")

def SetupToolTips(self):
self.tbtnAdd.set_tooltip_text("Add a file or files to the playlist.")
self.tbtnAbout.set_tooltip_text("Display the About Information.")
self.tbtnDelete.set_tooltip_text("Delete selected entry from the list.")
self.tbtnClearAll.set_tooltip_text("Remove all entries from the list.")
self.tbtnQuit.set_tooltip_text("Quit this program.")
self.tbtnMoveToTop.set_tooltip_text("Move the selected entry to the top of the list.")
self.tbtnMoveUp.set_tooltip_text("Move the selected entry up in the list.")
self.tbtnMoveDown.set_tooltip_text("Move the selected entry down in the list.")
self.tbtnMoveToBottom.set_tooltip_text("Move the selected entry to the bottom of the list.")
self.btnGetFolder.set_tooltip_text("Select the folder that the playlist will be saved to.")
self.btnSavePlaylist.set_tooltip_text("Save the playlist.")
self.txtFilename.set_tooltip_text("Enter the filename to be saved here. The extension '.m3u' will be added

for you if you don't include it.")

full circle magazine #49 13 contents ^

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Colorado and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with his family. His website is
www.thedesignatedgeek.com.

EXTRA!EXTRA!
READALLABOUTIT!

Full Circle Special
Editions Released On
Unsuspecting World*

THE PERFECT SERVER
SPECIAL EDITION

This is a special edition of Full
Circle that is a direct reprint
of the Perfect Server articles
that were first published in
FCM#31-#34.

http://fullcirclemagazine.org/
special-edition-1-the-perfect-
server/

* Neither Full Circle magazine, nor its makers, apologize for any hysteria caused in the release of its publications.

PYTHON
SPECIAL EDITION #01

This is a reprint of Beginning
Python Parts 01 – 08 by Greg
Walters.

http://fullcirclemagazine.org
/python-special-edition-1/

PROGRAM IN PYTHON - PART 23

Last, but certainly not least, we
want to put our logo into our
About box. Just like everything
else there, there's an attribute for
that. Add the following line to the
ShowAbout routine.

about.set_logo(gtk.gdk.pixbuf
_new_from_file("logo.png"))

That's about it. You now have a
fully functioning program that
looks good, and does a wonderful
job of creating a playlist for your
music files.

The full source code, including
the glade file we created last
month, can be found at pastebin:
http://pastebin.com/tQJizcwT

Until next time, enjoy your new
found skills.

full circle magazine #50 8 contents ^

HHOOWW--TTOO
Written by Greg Walters PPrrooggrraamm IInn PPyytthhoonn -- PPaarrtt 2244

WOW! It's hard to
believe that this is
the 24th issue
already. Two years

we've been learning Python!
You've come a very long way.

This time we are going to cover
two topics. The first is printing to a
printer, the second is creation of
RTF (Rich Text Format) files for
output.

Generic Printing under
Linux

So let's start with printing to a
printer. The idea to cover this came
from an email sent by Gord
Campbell. It's actually easy to do
most printing from Linux, and
easier than that other operating
system that starts with “WIN” - and
I won't deal with that OS.

As long as all you want to print
is straight text, no bold, italics,
font changes, etc, it's fairly easy.
Here's a simple app that will print
directly to your printer...

import os

pr = os.popen('lpr','w')

pr.write('print test from
linux via python\n')

pr.write('Print finished\n')

pr.close()

This is fairly easy to understand
as long as you expand your mind
just a bit. In the above code, 'lpr' is
the print spooler. The only
requirement is that we have
already configured 'lpd' and that
it's running. More than likely, when
you use a printer under Ubuntu,
it's already done for you. 'Lpd' is
usually referred to as a “magic-
filter” that can automatically
convert different types of
documents to something the
printer can understand. We are
going to print to the 'lpr'
device/object. Think of it simply as
a file. We open the file. We have to
import 'os'. Then in line 2, we open
the 'lpr' with write access -
assigning it to the object variable
'pr'. We then do a 'pr.write' with
anything we want to print. Finally

(line 5) we close the file, which will
send the data out to the printer.

We can also create a text file,
then send it out to the printer like
this...

import os

filename = 'dummy.file'

os.system('lpr %s' %
filename)

In this case, we are still using
the lpr object, but we are using the
'os.system' command to basically
create a command that looks to
linux like we sent it from a
terminal.

I'll leave you to play with this
for now.

PyRTF

Now let's deal with RTF files.
RTF format (that's kind of like
saying PIN number since PIN
stands for Personal Identification
Number, so that translates to
Personal-Identification-Number
Number. Something from the

department of redundancy
department, huh?) was originally
created by the Microsoft
Corporation in 1987, and its syntax
was influenced by the TeX
typesetting language. PyRTF is a
wonderful library that makes it
easy to write RTF files. You have to
do some planning up front on how
you want your files to look, but the
results will be well worth it.

First, you need to download
and install the PyRTF package. Go
to http://pyrtf.sourceforge.net and
get the PyRTF-0.45.tar.gz package.
Save it someplace and use archive
manager to unpack it. Then using
terminal, go to where you
unpacked it. First we need to
install the package, so type “sudo
python setup.py install” and it will

“ Wow! It's hard to
believe that this is
the 24th issue
already. Two years
we've been learning
Python!

full circle magazine #50 9 contents ^

PROGRAM IN PYTHON - PART 24
be installed for you. Notice there
is an examples folder there.
There's some good information
there on how to do some
advanced things.

Here we go. Let's start as we
usually do, creating the stub of our
program which is shown on the
next page, top right.

Before going any further, we'll
discuss what's going on. Line 2
imports the PyRTF library. Note
that we are using a different
import format than normal. This
one imports everything from the
library.

Our main working routine is
MakeExample. We've stubbed for
now. The OpenFile routine creates
the file for us with the name we
pass into it, appends the extension
“rtf”, puts it into the “write” mode,
and returns a file handle.

We've already discussed the if
__name__ routine before, but to
refresh your memory, if we are
running the program in a
standalone mode, the internal
variable __name__ is set to
“__main__”. If we call it as an
import from another program,
then it will just ignore that portion
of the code.

Here, we create an instance of
the Renderer object, call the
MakeExample routine, getting the
returned object doc. We then
write the file (in doc) using the
OpenFile routine.

Now for the meat of our worker
routine MakeExample. Replace the
pass statement with the code
shown below.

Let's look at what we have
done. In the first line we create an
instance of Document. Then we
create an instance of the style
sheet. Then we create an instance
of the section object and append it
to the document. Think of a
section as a chapter in a book.
Next we create a paragraph using
the Normal style. The author of
PyRTF has preset this to be 11-
point Arial font. We then put
whatever text we want into the

paragraph, append that to the
section, and return our doc
document.

That is very easy. Again, you
need to plan your output fairly
carefully, but nothing too onerous.

Save the program as
“rtftesta.py” and run it. When it's
completed, use openoffice (or

LibreOffice) to open the file and
look at it.

Now let's do some neat things.
First, we'll add a header. Once
again, the author of PyRTF has
given us a predefined style called
Header1. We'll use that for our
header. In between the
doc.Sections.append line and the p
= Paragraph line, add the

#!/usr/bin/env python
from PyRTF import *

def MakeExample():
pass

def OpenFile(name) :
return file('%s.rtf' % name, 'w')

if __name__ == '__main__' :
DR = Renderer()
doc = MakeExample()
DR.Write(doc, OpenFile('rtftesta'))
print "Finished"

doc = Document()
ss = doc.StyleSheet
section = Section()
doc.Sections.append(section)

p = Paragraph(ss.ParagraphStyles.Normal)
p.append('This is our first test writing to a RTF file. '

'This first paragraph is in the preset style called normal '
'and any following paragraphs will use this style until we change it.')

section.append(p)

return doc

full circle magazine #50 10 contents ^

following.

p =
Paragraph(ss.ParagraphStyles.
Heading1)

p.append('Example Heading 1')

section.append(p)

Change the name of the rtf file
to “rtftestb”. It should look like
this:

DR.Write(doc,
OpenFile('rtftestb'))

Save this as rtftestb.py and run
it. So now we have a header. I'm
sure your mind is going down
many roads thinking about what
more can we do. Here's a list of
what the author has given us as
the predefined styles.

Normal, Normal Short, Heading
1, Heading 2, Normal Numbered,
Normal Numbered 2. There's also a

List style, which I will let you play
with on your own. If you want to
see more, on this and other things,
the styles are defined in the file
Elements.py in the distribution you
installed.

While these styles are good for
many things, we might want to use
something other than the
provided styles. Let's look at how
to change fonts, font sizes and
attributes (bold, italic, etc) on the
fly. After our paragraph and
before we return the document
object, insert the code shown top
right, and change the output
filename to rtftestc. Save the file
as rtftestc.py. And run it. The new
portion of our document should
look like this...

It is also possible to provide
overrides for elements of a style.

For example you can change just
the font size to 24 point or
typeface to Impact or even more
Attributes like BOLD or Italic or
BOTH.

Now what have we done? Line 1
creates a new paragraph. We then
start, as we did before, putting in
our text. Look at the fourth line
(TEXT(' size to 24 point', size =
48),). By using the TEXT qualifier,
we are telling PyRTF to do
something different in the middle
of the sentence, which in this case
is to change the size of the font
(Arial at this point) to 24-point,
followed by the 'size = ' command.
But, wait a moment. The 'size ='
says 48, and what we are printing
says 24 point, and the output is
actually in 24-point text. What's
going on here? Well the size
command is in half points. So if we

want an 8-point font we have to
use size = 16. Make sense?

Next, we continue the text and
then change the font with the
'font =' command. Again,
everything within the inline TEXT
command between the single
quotes is going to be affected and
nothing else.

Ok. If that all makes sense,
what else can we do?

We can also set the color of the
text within the TEXT inline
command. Like this.

p = Paragraph()

p.append('This is a new
paragraph with the word ',

TEXT('RED',colour=ss.Colo
urs.Red),

PROGRAM IN PYTHON - PART 24

p = Paragraph(ss.ParagraphStyles.Normal)
p.append('It is also possible to provide overrides for elements of a style. ',

'For example you can change just the font ',
TEXT(' size to 24 point', size=48),
' or',
TEXT(' typeface to Impact', font=ss.Fonts.Impact),
' or even more Attributes like',
TEXT(' BOLD',bold=True),
TEXT(' or Italic',italic=True),
TEXT(' or BOTH',bold=True,italic=True),
'.')

section.append(p)

“ Let's look at how to
change fonts, font
sizes and attributes
(bold, italic, etc) on
the fly.

full circle magazine #50 11 contents ^

' in Red text.')

section.append(p)

Notice that we didn't have to
restate the paragraph style as
Normal, since it sticks until we
change it. Also notice that if you
live in the U.S., you have to use the
“proper” spelling of colour.

Here are the colors that are
(again) predefined: Black, Blue,
Turquoise, Green, Pink, Red,
Yellow, White, BlueDark, Teal,
GreenDark, Violet, RedDark,
YellowDark, GreyDark and Grey.

And here is a list of all the
predefined fonts (in the notation
you must use to set them):

Arial, ArialBlack, ArialNarrow,
BitstreamVeraSans,
BitstreamVeraSerif, BookAntiqua,
BookmanOldStyle,
BookmanOldStyle, Castellar,
CenturyGothic, ComicSansMS,
CourierNew,
FranklinGothicMedium, Garamond,
Georgia, Haettenschweiler, Impact,
LucidaConsole,
LucidaSansUnicode,
MicrosoftSansSerif,
PalatinoLinotype,

MonotypeCorsiva, Papyrus,
Sylfaen, Symbol, Tahoma,
TimesNewRoman, TrebuchetMS
and Verdana.

So now you must be thinking
that this is all well and good, but
how do we make our own styles?
That's pretty easy. Move to the top
of our file, and before our header
line, add the following code.

result = doc.StyleSheet

NormalText =
TextStyle(TextPropertySet(res
ult.Fonts.CourierNew,16))

ps2 =
ParagraphStyle('Courier',Norm
alText.Copy())

result.ParagraphStyles.append
(ps2)

Before we write the code to
actually use it, let's see what we
have done. We are creating a new

stylesheet instance called result. In
the second line, we are setting the
font to 8-point Courier New, and
then “registering” the style as
Courier. Remember, we have to
use 16 as the size since the font
size is in half-point values.

Now, before the return line at
the bottom of the routine, let's
include a new paragraph using the
Courier style.

So now you have a new style
you can use anytime you want. You
can use any font in the list above
and create your own styles. Simply
copy the style code and replace
the font and size information as
you wish. We can also do this...

NormalText =
TextStyle(TextPropertySet(res
ult.Fonts.Arial,22,b
old=True,colour=ss.C
olours.Red))

ps2 =

ParagraphStyle('ArialBoldRed'
,NormalText.Copy())

result.ParagraphStyles.append
(ps2)

And add the code below...

p =
Paragraph(ss.ParagraphStyles.
ArialBoldRed)

p.append(LINE,'And now we
are using the ArialBoldRed
style.',LINE)

section.append(p)

to print the ArialBoldRed
style.

Tables

Many times, tables are the only
way to properly represent data in a

PROGRAM IN PYTHON - PART 24

p = Paragraph(ss.ParagraphStyles.Courier)
p.append('Now we are using the Courier style at 8 points. '

'All subsequent paragraphs will use this style automatically. '
'This saves typing and is the default behaviour for RTF documents.',LINE)

section.append(p)
p = Paragraph()
p.append('Also notice that there is a blank line between the previous paragraph ',

'and this one. That is because of the "LINE" inline command.')

section.append(p)

full circle magazine #50 12 contents ^

PROGRAM IN PYTHON - PART 24
document. Doing tables in text is
hard to do, and, in SOME cases, it's
pretty easy in PyRTF. I'll explain
this statement later in this article.

Let's look at a standard table
(shown below) in
OpenOffice/LibreOffice. It looks
like a spreadsheet, where
everything ends up in columns.

Rows go left to right, columns
go down. Easy concept.

Let's start a new application
and call it rtfTable-a.py. Start with
our standard code (shown on the
next page) and build from there.

We don't need to discuss this
since it's basically the same code
that we used before. Now, we'll
flesh out the TableExample
routine. I'm basically using part of
the example file provided by the
author of PyRTF. Replace the pass
statement in the routine with the
following code...

doc = Document()

ss = doc.StyleSheet

section = Section()

doc.Sections.append(section)

This part is the same as before,
so we'll just gloss over it.

table =
Table(TabPS.DEFAULT_WIDTH *
7,

TabPS.DEFAULT_WIDTH * 3,

TabPS.DEFAULT_WIDTH * 3)

This line (yes, it's really one
line, but is broken up for easy
viewing) creates our basic table.
We are creating a table with 3
columns, the first is 7 tabs wide,
the second and third are three
tabs wide. We don't have to deal
with tabs alone, you can enter the
widths in twips. More on that in a
moment.

c1 = Cell(Paragraph('Row
One, Cell One'))

c2 = Cell(Paragraph('Row
One, Cell Two'))

c3 = Cell(Paragraph('Row
One, Cell Three'))

table.AddRow(c1,c2,c3)

Here we are setting the data
that goes into each cell in the first
row.

c1 =
Cell(Paragraph(ss.ParagraphSt

yles.Heading2,'Heading2
Style'))

c2 =
Cell(Paragraph(ss.ParagraphSt
yles.Normal,'Back to Normal
Style'))

c3 = Cell(Paragraph('More
Normal Style'))

table.AddRow(c1,c2,c3)

This group of code sets the
data for row number two. Notice
we can set a different style for a
single or multiple cells.

c1 =
Cell(Paragraph(ss.ParagraphSt
yles.Heading2,'Heading2
Style'))

c2 =
Cell(Paragraph(ss.ParagraphSt
yles.Normal,'Back to Normal

Style'))

c3 = Cell(Paragraph('More
Normal Style'))

table.AddRow(c1,c2,c3)

This sets the final row.

section.append(table)

return doc

This appends the table into the
section and returns the document
for printing.

Save and run the app. You'll
notice that everything is about
what you would expect, but there
is no border for the table. That can
make things difficult. Let's fix that.
Again, I'll mainly use code from the

#!/usr/bin/env python

from PyRTF import *

def TableExample():
pass

def OpenFile(name):
return file('%s.rtf' % name, 'w')

if __name__ == '__main__':
DR = Renderer()
doc = TableExample()
DR.Write(doc, OpenFile('rtftable-a'))
print "Finished"

full circle magazine #50 13 contents ^

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Colorado and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with his family. His website is
www.thedesignatedgeek.com.

PROGRAM IN PYTHON - PART 24
example file provided by the
PyRTF author.

Save your file as rtftable-b.py.
Now, delete everything between
'doc.Sections.append(section)' and
'return doc' in the TableExample
routine, and replace it with the
following...

thin_edge = BorderPS(
width=20,
style=BorderPS.SINGLE)

thick_edge = BorderPS(
width=80,
style=BorderPS.SINGLE)

thin_frame = FramePS(
thin_edge, thin_edge,
thin_edge, thin_edge)

thick_frame = FramePS(
thick_edge, thick_edge,
thick_edge, thick_edge)

mixed_frame = FramePS(
thin_edge, thick_edge,
thin_edge, thick_edge)

Here we are setting up the
edge and frame definitions for
borders and frames.

table = Table(
TabPS.DEFAULT_WIDTH * 3,
TabPS.DEFAULT_WIDTH * 3,
TabPS.DEFAULT_WIDTH * 3)

c1 = Cell(Paragraph('R1C1'
), thin_frame)

c2 = Cell(Paragraph('R1C2'
))

c3 = Cell(Paragraph('R1C3'
), thick_frame)

table.AddRow(c1, c2, c3)

In row one, the cells in column
one (thin frame) and column 3
(thick frame) will have a border
around them.

c1 = Cell(Paragraph('R2C1'
))

c2 = Cell(Paragraph('R2C2'
))

c3 = Cell(Paragraph('R2C3'
))

table.AddRow(c1, c2, c3)

None of the cells will have a
border in the second row.

c1 = Cell(Paragraph('R3C1'
), mixed_frame)

c2 = Cell(Paragraph('R3C2'
))

c3 = Cell(Paragraph('R3C3'
), mixed_frame)

table.AddRow(c1, c2, c3)

Once again, cells in column 1
and three have a mixed frame in

row three.

section.append(table)

So. You have just about
everything you need to create,
through code, RTF documents.

See you next time!

Source code can be found at
pastebin as usual. The first part
can be found at
http://pastebin.com/3Rs7T3D7
which is the sum of rtftest.py (a-e),
and the second rtftable.py (a-b) is
at http://pastebin.com/XbaE2uP7.

full circle magazine #51 7 contents ^

HHOOWW--TTOO
Written by Greg Walters PPrrooggrraamm IInn PPyytthhoonn -- PPaarrtt 2255

Anumber of you have
commented about the
GUI programming
articles and how much

you've enjoyed them. In response
to that, we will start taking a look
at a different GUI toolkit called
Tkinter. This is the “official” way to
do GUI programming in Python.
Tkinter has been around for a long
time, and has gotten a pretty bad
rap for looking “old fashioned”.
This has changed recently, so I
thought we'd fight that bad
thought process.
PLEASE NOTE – All of the code
presented here is for Python 2.x
only. In an upcoming article, we'll
discuss how to use tkinter in
Python 3.x. If you MUST use
Python 3.x, change the import
statements to “from tkinter
import *”.

A Little History And A
Bit Of Background

Tkinter stands for “Tk
interface”. Tk is a programming
language all on its own, and the
Tkinter module allows us to use

the GUI functions there. There are
a number of widgets that come
natively with the Tkinter module.
Some of them are Toplevel (main
window) container, Buttons,
Labels, Frames, Text Entry,
CheckButtons, RadioButtons,
Canvas, Multiline Text entry, and
much more. There are also many
modules that add functionallity on
top of Tkinter. This month, we'll
focus on four widgets. Toplevel
(from here I'll basically refer to it
as the root window), Frame,
Labels, and Buttons. In the next
article, we'll look at more widgets
in more depth.

Basically, we have the Toplevel
container widget which contains
(holds) other widgets. This is the
root or master window. Within this
root window, we place the widgets
we want to use within our
program. Each widget, other than
the Toplevel root widget
container, has a parent. The parent
doesn't have to be the root
window. It can be a different
widget. We'll explore that next
month. For this month, everything
will have a parent of the root

window.

In order to place
and display the
child widgets, we
have to use what's
called “geometry
management”. It's
how things get put into the main
root window. Most programmers
use one of three types of
geometry management, either
Packer, Grid, or Place
management. In my humble
opinion, the Packer method is very
clumsy. I'll let you dig into that on
your own. The Place management
method allows for extremely
accurate placement of the
widgets, but can be complicated.
We'll discuss the Place method in a
future article set. For this time,
we'll concentrate on the Grid
method.

Think of a spreadsheet. There
are rows and columns. Columns
are vertical, rows are horizontal.
Here's a simple text
representation of the cell
addresses of a simple 5-column by
4-row grid (above right).

So parent has the grid, the
widgets go into the grid positions.
At first glance, you might think
that this is very limiting. However,
widgets can span multiple grid
positions in either the column
direction, the row direction, or
both.

Our First Example

Our first example is SUPER
simple (only four lines), but shows
a good bit.

from Tkinter import *

root = Tk()

button = Button(root, text =
"Hello FullCircle").grid()

root.mainloop()

Now, what's going on here?
Line one imports the Tkinter

COLUMNS - >
ROWS | 0,0 | 1,0 | 2,0 | 3,0 | 4,0 |

	0,1	1,1	2,1	3,1	4,1
0,2	1,2	2,2	3,2	4,2	
0,3	1,3	2,3	3,3	4,3	

full circle magazine #51 8 contents ^

PROGRAM IN PYTHON - PART 25
library. Next, we instantiate the Tk
object using root. (Tk is part of
Tkinter). Here's line three.

button = Button(root, text =
"Hello FullCircle").grid()

We create a button called
button, set its parent to the root
window, set its text to “Hello
FullCircle,” and set it into the grid.
Finally, we call the window's main
loop. Very simple from our
perspective, but there's a lot that
goes on behind the scenes.
Thankfully, we don't need to
understand what that is at this
time.

Run the program and let's see
what happens. On my machine the
main window shows up at the
lower left of the screen. It might
show up somewhere else on yours.
Clicking the button doesn't do
anything. Let's fix that in our next
example.

Our Second Example

This time, we'll create a class
called App. This will be the class
that actually holds our window.
Let's get started.

from Tkinter import *

This is the import statement for
the Tkinter library.

We define our class, and, in the
__init__ routine, we set up our
widgets and place them into the
grid.

The first line in the __init__
routine creates a frame that will
be the parent of all of our other
widgets. The parent of the frame
is the root window (Toplevel
widget). Next we define a label,
and two buttons. Let's look at the
label creation line.

self.lblText = Label(frame,
text = "This is a label
widget")

We create the label widget and
call it self.lblText. That's inherited
from the Label widget object. We
set its parent (frame), and set the

text that we want it to display
(text = “this is a label widget”). It's
that simple. Of course we can do
much more than that, but for now
that's all we need. Next we set up
the two Buttons we will use:

self.btnQuit = Button(frame,
text="Quit", fg="red",
command=frame.quit)

self.btnHello =
Button(frame, text="Hello",
command=self.SaySomething)

We name the widgets, set their
parent (frame), and set the text we
want them to show. Now btnQuit
has an attribute marked fg which
we set to “red”. You might have
guessed this sets the foreground
color or text color to the color red.
The last attribute is to set the
callback command we want to use
when the user clicks the button. In
the case of btnQuit, it's frame.quit,
which ends the program. This is a

built in function, so we don't need
to actually create it. In the case of
btnHello, it's a routine called
self.SaySomething. This we have to
create, but we have a bit more to
go through first.

We need to put our widgets
into the grid. Here's the lines again:

frame.grid(column = 0, row =
0)

self.lblText.grid(column =
0, row = 0, columnspan = 2)

self.btnHello.grid(column =
0, row = 1)

self.btnQuit.grid(column =
1, row = 1)

First, we assign a grid to the
frame. Next, we set the grid
attribute of each widget to where
we want the widget to go. Notice
the columnspan line for the label
(self.lblText). This says that we

class App:
def __init__(self, master):

frame = Frame(master)
self.lblText = Label(frame, text = "This is a label widget")
self.btnQuit = Button(frame, text="Quit", fg="red", command=frame.quit)
self.btnHello = Button(frame, text="Hello", command=self.SaySomething)
frame.grid(column = 0, row = 0)
self.lblText.grid(column = 0, row = 0, columnspan = 2)
self.btnHello.grid(column = 0, row = 1)
self.btnQuit.grid(column = 1, row = 1)

full circle magazine #51 9 contents ^

want the label to span across two
grid columns. Since we have only
two columns, that's the entire
width of the application. Now we
can create our callback function:

def SaySomething(self):

print "Hello to
FullCircle Magazine
Readers!!"

This simply prints in the
terminal window the message
“Hello to FullCircle Magazine
Readers!!”

Finally, we instantiate the Tk
class - our App class - and run the
main loop.

root = Tk()

app = App(root)

root.mainloop()

Give it a try. Now things
actually do something. But again,
the window position is very
inconvenient. Let's fix that in our
next example.

Our Third Example

Save the last example as
example3.py. Everything is exactly
the same except for one line. It's
at the bottom in our main routine
calls. I'll show you those lines with
our new one:

root = Tk()

root.geometry('150x75+550+150
')

app = App(root)

root.mainloop()

What this
does is force
our initial
window to be
150 pixels wide
and 75 pixels
high. We also
want the upper
left corner of
the window to
be placed at X-
pixel position

550 (right and left) and the Y-pixel
position at 150 (top to botton).
How did I come up with these
numbers? I started with some
reasonable values and tweaked
them from there. It's a bit of a pain
in the neck to do it this way, but
the results are better than not
doing it at all.

Our Fourth Example - A
Simple Calculator

Now, let's look at
something a bit more
complicated. This time,
we'll create a simple “4
banger” calculator. If
you don't know, the
phrase “4 banger”
means four functions:
Add, Subtract,
Multiply, and Divide.
Right is what it looks like in simple
text form.

We'll dive right into it and I'll
explain the code (middle right) as
we go.

Outside of the geometry
statement, this (left) should be
pretty easy for you to understand
by now. Remember, pick some
reasonable values, tweak them,

and then move on.

We begin our class definition
and set up our __init__ function.
We set up three variables as
follows:
• CurrentValue – Holds the current
value that has been input into the
calculator.
• HolderValue – Holds the value
that existed before the user clicks
a function key.

PROGRAM IN PYTHON - PART 25

0
1

| 4 | 5 | 6 | - |

| 7 | 8 | 9 | * |

| - | 0 | . | / |

=
CLEAR

from Tkinter import *

def StartUp():
global val, w, root
root = Tk()
root.title('Easy Calc')
root.geometry('247x330+469+199')
w = Calculator(root)
root.mainloop()

class Calculator():
def __init__(self,root):

master = Frame(root)
self.CurrentValue = 0
self.HolderValue = 0
self.CurrentFunction = ''
self.CurrentDisplay = StringVar()
self.CurrentDisplay.set('0')
self.DecimalNext = False
self.DecimalCount = 0
self.DefineWidgets(master)
self.PlaceWidgets(master)

full circle magazine #51 10 contents ^

• CurrentFunction – This is simply
a “bookmark” to note what
function is being dealt with.

Next, we define the
CurrentDisplay variable and assign
it to the StringVar object. This is a
special object that is part of the
Tkinter toolkit. Whatever widget
you assign this to automatically
updates the value within the
widget. In this case, we will be
using this to hold whatever we
want the display label widget to...
er... well... display. We have to
instantiate it before we can assign
it to the widget. Then we use the
built in 'set' function. We then
define a boolean variable called
DecimalNext, and a variable
DecimalCount, and then call the
DefineWidgets function, which
creates all the widgets, and then
call the PlaceWidget function,
which actually places them in the
root window.

def
DefineWidgets(self,master):

self.lblDisplay =
Label(master,anchor=E,relief
=
SUNKEN,bg="white",height=2,te
xtvariable=self.CurrentDispla
y)

Now, we have
already defined a
label earlier.
However, this time
we are adding a
number of other
attributes. Notice
that we aren't using
the 'text' attribute.
Here, we assign the label to the
parent (master), then set the
anchor (or, for our purposes,
justification) for the text, when it
gets written. In this case, we are
telling the label to justify all text
to the east or on the right side of
the widget. There is a justify
attribute, but that's for multiple
lines of text. The anchor attribute
has the following options... N, NE,
E, SE, S, SW, W, NW and CENTER.
The default is CENTER. You should
think compass points for these.
Under normal circumstances, the
only really usable values are E
(right), W (left), and Center.

Next, we set the relief or visual
style of the label. The “legal”
options here are FLAT, SUNKEN,
RAISED, GROOVE, and RIDGE. The
default is FLAT if you don't specify
anything. Feel free to try the other
combinations on your own after
we're done. Next, we set the

background (bg) to white in order
to set it off from the rest of the
window a bit. We set the height to
2 (which is two text lines high, not
in pixels), and finally assign the
variable we just defined a moment
ago (self.CurrentDisplay) to the
textvariable attribute. Whenever
the value of self.CurrentDisplay
changes, the label will change its
text to match automatically.

Shown above, we'll create some
of the buttons.

I've shown only 4 buttons here.
That's because, as you can see, the
code is almost exactly the same.
Again, we've created buttons
earlier in this tutor, but let's take a
closer look at what we are doing
here.

We start by defining the parent
(master), the text that we want on
the button, and the width and
height. Notice that the width is in

characters and the height is in text
lines. If you were doing a graphic
in the button, you would use pixels
to define the height and width.
This can become a bit confusing
until you get your head firmly
wrapped around it. Next, we are
setting the bind attribute. When
we did the buttons in the previous
examples, we used the
'command=' attribute to define
what function should be called
when the user clicks the button.
This time, we are using the '.bind'
attribute. It's almost the same
thing, but this is an easier way to
do it, and to pass information to
the callback routine that is static.
Notice that here we are using
'<ButtonRelease-1>' as the trigger
for the bind. In this case, we want
to make sure that it's only after
the user clicks AND releases the
left mouse button that we make
our callback. Lastly, we define the
callback we want to call, and what
we are going to pass to it. Now,

PROGRAM IN PYTHON - PART 25

self.btn1 = Button(master, text = '1',width = 4,height=3)
self.btn1.bind('<ButtonRelease-1>', lambda e: self.funcNumButton(1))
self.btn2 = Button(master, text = '2',width = 4,height=3)
self.btn2.bind('<ButtonRelease-1>', lambda e: self.funcNumButton(2))
self.btn3 = Button(master, text = '3',width = 4,height=3)
self.btn3.bind('<ButtonRelease-1>', lambda e: self.funcNumButton(3))
self.btn4 = Button(master, text = '4',width = 4,height=3)
self.btn4.bind('<ButtonRelease-1>', lambda e: self.funcNumButton(4))

full circle magazine #51 11 contents ^

PROGRAM IN PYTHON - PART 25
those of you who are astute
(which is each and every one of
you) will notice something new.
The 'lambda e:' call.

In Python, we use Lambda to
define anonymous functions that
will appear to interpreter as a valid
statement. This allows us to put
multiple segments into a single
line of code. Think of it as a mini
function. In this case, we are
setting up the name of the
callback function and the value we
want to send as well as the event
tag (e:). We'll talk more about
Lambda in a later article. For now,
just follow the example.

I've given you the first four
buttons. Copy and paste the above
code for buttons 5 through 9 and
button 0. They are all the same
with the exception of the button
name and the value we send the
callback. Next steps are shown
right.

The only thing that hasn't been
covered before are the
columnspan and sticky attributes.
As I mentioned before, a widget
can span more than one column or
row. In this case, we are
“stretching” the label widget
across all four columns. That's

self.btnDash = Button(master, text = '-',width = 4,height=3)
self.btnDash.bind('<ButtonRelease-1>', lambda e: self.funcFuncButton('ABS'))
self.btnDot = Button(master, text = '.',width = 4,height=3)
self.btnDot.bind('<ButtonRelease-1>', lambda e: self.funcFuncButton('Dec'))

The btnDash sets the value to the absolute value of the value entered. 523 remains 523 and -523 becomes
523. The btnDot button enters a decimal point. These examples, and the ones below, use the callback
funcFuncButton.

self.btnPlus = Button(master,text = '+', width = 4, height=3)
self.btnPlus.bind('<ButtonRelease-1>', lambda e: self.funcFuncButton('Add'))
self.btnMinus = Button(master,text = '-', width = 4, height=3)
self.btnMinus.bind('<ButtonRelease-1>', lambda e:

self.funcFuncButton('Subtract'))
self.btnStar = Button(master,text = '*', width = 4, height=3)
self.btnStar.bind('<ButtonRelease-1>', lambda e: self.funcFuncButton('Multiply'))
self.btnDiv = Button(master,text = '/', width = 4, height=3)
self.btnDiv.bind('<ButtonRelease-1>', lambda e: self.funcFuncButton('Divide'))
self.btnEqual = Button(master, text = '=')
self.btnEqual.bind('<ButtonRelease-1>', lambda e: self.funcFuncButton('Eq'))

Here are the four buttons that do our math functions.
self.btnClear = Button(master, text = 'CLEAR')
self.btnClear.bind('<ButtonRelease-1>', lambda e: self.funcClear())

Finally, here is the clear button. It, of course, clears the holder variables and the display. Now we place the
widgets in the PlaceWidget routine. First, we initialize the grid, then start putting the widgets into the grid.
Here's the first part of the routine.

def PlaceWidgets(self,master):
master.grid(column=0,row=0)
self.lblDisplay.grid(column=0,row=0,columnspan = 4,sticky=EW)
self.btn1.grid(column = 0, row = 1)
self.btn2.grid(column = 1, row = 1)
self.btn3.grid(column = 2, row = 1)
self.btn4.grid(column = 0, row = 2)
self.btn5.grid(column = 1, row = 2)
self.btn6.grid(column = 2, row = 2)
self.btn7.grid(column = 0, row = 3)
self.btn8.grid(column = 1, row = 3)
self.btn9.grid(column = 2, row = 3)
self.btn0.grid(column = 1, row = 4)

full circle magazine #51 12 contents ^

PROGRAM IN PYTHON - PART 25
what the “columnspan” attribute
does. There's a “rowspan”
attribute as well. The “sticky”
attribute tells the widget where to
align its edges. Think of it as how
the widget fills itself within the
grid. Above left is the rest of our
buttons.

Before we go any further let's
take a look at how things will work
when the user presses buttons.

Let's say the user wants to
enter 563 + 127 and get the
answer. They will press or click
(logically) 5, then 6, then 3, then
the “+,” then 1, then 2, then 7,
then the “=” buttons. How do we
handle this in code? We have
already set the callbacks for the
number buttons to the
funcNumButton function. There's
two ways to handle this. We can
keep the information entered as a
string and then when we need to
convert it into a number, or we can
keep it as a number the entire
time. We will use the latter
method. To do this, we will keep
the value that is already there (0
when we start) in a variable called
“self.CurrentValue”, When a
number comes in, we take the
variable, multiply it by 10 and add
the new value. So, when the user

enters 5, 6 and 3, we do the
following...

User clicks 5 – 0 * 10 + 5
(5)

User clicks 6 – 5 * 10 + 6
(56)

User clicks 3 – 56 * 10 + 3
(563)

Of course we then display the
“self.CurrentValue” variable in the
label.

Next, the user clicks the “+”
key. We take the value in
“self.CurrentValue” and place it
into the variable
“self.HolderValue,” and reset the
“self.CurrentValue” to 0. We then

repeat the process for the clicks
on 1, 2 and 7. When the user clicks
the “=” key, we then add the
values in “self.CurrentValue” and
“self.HolderValue”, display them,
then clear both variables to
continue.

Above is the code to start
defining our callbacks.

The “funcNumButton routine
receives the value we passed from
the button press. The only thing
that is different from the example
above is what if the user pressed
the decimal button (“.”). Below,
you'll see that we use a boolean
variable to hold the fact they
pressed the decimal button, and,

on the next click, we deal with it.
That's what the “if
self.DecimalNext == True:” line is
all about. Let's walk through it.

The user clicks 3, then 2, then
the decimal, then 4, to create
“32.4”. We handle the 3 and 2
clicks through the
“funcNumButton” routine. We
check to see if self.DecimalNext is
True (which in this case it isn't until
the user clicks the “.” button). If
not, we simply multiply the held
value (self.CurrentValue) by 10 and
add the incoming value. When the
user clicks the “.”, the callback
“funcFuncButton” is called with
the “Dec” value. All we do is set
the boolean variable

self.btnDash.grid(column = 0, row = 4)
self.btnDot.grid(column = 2, row = 4)
self.btnPlus.grid(column = 3,row = 1)
self.btnMinus.grid(column = 3, row = 2)
self.btnStar.grid(column = 3, row = 3)
self.btnDiv.grid(column=3, row = 4)
self.btnEqual.grid(column=0,row=5,columnspan = 4,sticky=NSEW)
self.btnClear.grid(column=0,row=6,columnspan = 4, sticky = NSEW)

def funcNumButton(self,val):
if self.DecimalNext == True:

self.DecimalCount += 1
self.CurrentValue = self.CurrentValue + (val * (10**-self.DecimalCount))

else:
self.CurrentValue = (self.CurrentValue * 10) + val

self.DisplayIt()

full circle magazine #51 13 contents ^

PROGRAM IN PYTHON - PART 25
“self.DecimalNext” to True. When
the user clicks the 4, we will test
the “self.DecimalNext” value and,
since it's true, we play some magic.
First, we increment the
self.DecimalCount variable. This
tells us how many decimal places
we are working with. We then take
the incoming value, multiply it by
(10**-self.DecimalCount). Using
this magic operator, we get a
simple “raised to the power of”
function. For example 10**2
returns 100. 10**-2 returns 0.01.
Eventually, using this routine will
result in a rounding issue, but for
our simple calculator, it will work
for most reasonable decimal
numbers. I'll leave it to you to work
out a better function. Think of this
as your homework for this month.

The “funcClear” routine simply
clears the two holding variables,
then sets the display.

def funcClear(self):

self.CurrentValue = 0

self.HolderValue = 0

self.DisplayIt()

Now the functions. We've
already discussed what happens
with the function 'Dec'. We set this

def funcFuncButton(self,function):
if function =='Dec':

self.DecimalNext = True
else:

self.DecimalNext = False
self.DecimalCount = 0
if function == 'ABS':

self.CurrentValue *= -1
self.DisplayIt()

The ABS function simply takes the current value and multiplies it by -1.
elif function == 'Add':

self.HolderValue = self.CurrentValue
self.CurrentValue = 0
self.CurrentFunction = 'Add'

The Add function copies “self.CurrentValue” into “self.HolderValue”, clears “self.CurrentValue”, and sets
the “self.CurrentFunction” to “Add”. The Subtract, Multiply and Divide functions do the same thing with
the proper keyword being set in “self.CurrentFunction”.

elif function == 'Subtract':
self.HolderValue = self.CurrentValue
self.CurrentValue = 0
self.CurrentFunction = 'Subtract'

elif function == 'Multiply':
self.HolderValue = self.CurrentValue
self.CurrentValue = 0
self.CurrentFunction = 'Multiply'

elif function == 'Divide':
self.HolderValue = self.CurrentValue
self.CurrentValue = 0
self.CurrentFunction = 'Divide'

The “Eq” function (Equals) is where the “magic” happens. It will be easy for you to understand the
following code by now.

elif function == 'Eq':
if self.CurrentFunction == 'Add':

self.CurrentValue += self.HolderValue
elif self.CurrentFunction == 'Subtract':

self.CurrentValue = self.HolderValue - self.CurrentValue
elif self.CurrentFunction == 'Multiply':

self.CurrentValue *= self.HolderValue
elif self.CurrentFunction == 'Divide':

self.CurrentValue = self.HolderValue / self.CurrentValue
self.DisplayIt()
self.CurrentValue = 0
self.HolderValue = 0

full circle magazine #51 14 contents ^

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Colorado and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with his family. His website is
www.thedesignatedgeek.com.

PROGRAM IN PYTHON - PART 25
one up first with the “if”
statement. We go to the “else,”
and if the function is anything else,
we clear the “self.DecimalNext”
and “self.DecimalCount” variables.

The next set of steps are shown
on the previous page (right hand
box).

The DisplayIt routine simply
sets the value in the display label.
Remember we told the label to
“monitor” the variable
“self.CurrentDisplay”. Whenever it
changes, the label automatically
changes the display to match. We
use the “.set” method to change
the value.

def DisplayIt(self):

print('CurrentValue = {0} -
HolderValue =
{1}'.format(self.CurrentValue
,self.HolderValue))

self.CurrentDisplay.set(self.
CurrentValue)

Finally we have our startup
lines.

if __name__ == '__main__':

StartUp()

Now you can run the program

and give it a test.

As always, the code for this
article can be found at PasteBin.
Examples 1, 2 and 3 are at:
http://pastebin.com/mBAS1Umm
and the Calc.py example is at:
http://pastebin.com/LbMibF0u

Next month, we will continue
looking at Tkinter and its wealth of
widgets. In a future article, we'll
look at a GUI designer for tkinter
called PAGE. In the meantime,
have fun playing. I think you'll
enjoy Tkinter.

full circle magazine #52 7 contents ^

HHOOWW--TTOO
Written by Greg Walters PPrrooggrraamm IInn PPyytthhoonn -- PPaarrtt 2266

Lastmonth we discussed
tkInter and four of the
widgets available:
TopLevel, Frames,

Buttons, and Labels. I also told you
last month, I'd discuss how to have
a widget as a parent other than
the Toplevel widget.

So, this month, we'll discuss
more on Frames, Buttons, and
Labels, and introduce Checkboxes,
Radio buttons, Textboxes (Entry
widgets), Listboxes with a vertical
scrollbar, and Messageboxes.
Before we get started, let's
examine some of these widgets.

Checkboxes are considered a
many of many type selection
widget that has two options,
checked or not checked, or you
could consider it on or off. They
are usually used to provide a series
of options where any, many, or all
of those options may be selected.
You can set an event to inform you
when the checkbox has been
toggled, or just query the value of
the widget at any time.

Radiobuttons are considered a
one of many type selection

widget. It also has two options, on
and off. However, they are
grouped together to provide a set
of options that logically can have
only one selection. You can have
multiple groups of Radiobuttons
that, if properly programmed,
won't interact with each other.

A Listbox provides a list of
items for the user to select from.
Most times, you want the user to
select only one of the items at a
time, but there can be occasions
that you will allow the user to
select multiple items. A scroll bar
can be placed either horizontally
or vertically to allow the user to
easily look through all the items
available.

Our project will consist of a
main window and seven main
frames that visually group our
widget sets:

• The first frame will be very
basic. It simply consists of various
labels, showing the different relief
options.

• The second will contain
buttons, again pretty simple, that

use the different
relief options.

• In this frame,
we'll have two
checkboxes and a
button that can
programmatically
toggle them, and
they will send their
state (1 or 0) back
to the terminal window when
clicked or toggled.

• Next, we'll have two groups of
three radio buttons, each sending
a message to the terminal window
when clicked. Each group is
separate.

• This has some text or entry
boxes, which aren't new to you,
but there's also a button to enable
and disable one of them. When
disabled, no entry can be made to
that textbox.

• This is a list box with a vertical
scroll bar that sends a message to
the terminal whenever an item is
selected, and will have two
buttons. One button will clear the
list box and the other will fill it
with some dummy values.

• The final frame will have a
series of buttons that will call

various types of message boxes.

So now, we'll start our project.
Let's name it “widgetdemo1.py”.
Be sure to save it because we will
be writing our project in little
pieces, and build on them to make
our full app. Each piece revolves
around one of the frames. You'll
notice that I'm including a number
of comments as we go, so you can
refer back to what's happening.
Above are first few lines.

The first two lines (comments)
are the name of the application
and what we are concentrating on
in this part. Line three is our
import statement. Then we define
our class. The next line starts our
__init__ routine, which you all
should be familiar with by now,

widgetdemo1.py
Labels
from Tkinter import *

class Demo:
def __init__(self,master):

self.DefineVars()
f = self.BuildWidgets(master)
self.PlaceWidgets(f)

full circle magazine #52 8 contents ^

HOWTO - PROGRAM IN PYTHON - PART 26
but, if you are just joining us, it's
the code that gets run when we
instantiate the routine in the main
portion of the program. We are
passing it the Toplevel or root
window, which comes in as master
here. The last three lines (so far),
call three different routines. The
first (DefineVars) will set up
various variables we'll need as we
go. The next (BuildWidgets) will be
where we define our widgets, and
the last (PlaceWidgets) is where
we actually place the widgets into
the root window. As we did last
time, we'll be using the grid
geometry manager. Notice that
BuildWidgets will return the object
“f” (which is our root window), and
we'll pass that along to the
PlaceWidgets routine.

Above right is our BuildWidgets
routine. Each of the lines that start
with “self.” have been split for two
reasons. First, it's good practice to
keep the line length to 80
characters or less. Secondly, it
makes it easier on our wonderful
editor. You can do two things. One,
just make each line long, or keep it
as is. Python lets us split lines as
long as they are within
parentheses or brackets. As I said
earlier, we are defining the
widgets before we place them in

the grid. You'll notice when we do
the next routine, that we can also
define a widget at the time we
place it in the grid, but defining it
before we put it in the grid in a
routine like this makes it easier to
keep track of everything, since we
are doing (most of) the definitions
in this routine.

So, first we define our master
frame. This is where we will be
putting the rest of our widgets.
Next, we define a child (of the
master frame) frame that will hold
five labels, and call it lblframe. We
set the various attributes of the
frame here. We set the relief to
'SUNKEN', a padding of 3 pixels on

left and right (padx), and 3 pixels
on the top and bottom (pady). We
also set the borderwidth to 2
pixels so that its sunken relief is
noticeable. By default, the
borderwidth is set to 0, and the
effect of being sunken won't be
noticed. Finally, we set the total
width of the frame to 500 pixels.

Next, we define each label
widget that we will use. We set the
parent as self.lblframe, and not to
frame. This way all the labels are
children of lblframe, and lblframe
is a child of frame. Notice that
each definition is pretty much the
same for all five of the labels
except the name of the widget

(lbl1, lbl2, etc), the text, and the
relief or visual effect. Finally, we
return the frame back to the
calling routine (__init__).

The following page (top right)
shows our PlaceWidgets routine.

We get the frame object in as a
parameter called master. We
assign that to 'frame' to simply be
consistent with what we did in the
BuildWidgets routine. Next, we set
our main grid up
(frame.grid(column = 0, row = 0)).
If we don't do this, nothing works
correctly. Then we start putting
our widgets into the grid locations.
First we put the frame (lblframe)

def BuildWidgets(self,master):
Define our widgets
frame = Frame(master)
Labels
self.lblframe = Frame(frame,relief = SUNKEN,padx = 3, pady = 3,

borderwidth = 2, width = 500)
self.lbl1 = Label(self.lblframe,text="Flat Label",relief = FLAT,

width = 13,borderwidth = 2)
self.lbl2 = Label(self.lblframe,text="Sunken Label", relief = SUNKEN,

width = 13, borderwidth = 2)
self.lbl3 = Label(self.lblframe,text="Ridge Label", relief = RIDGE, width = 13,

borderwidth = 2)
self.lbl4 = Label(self.lblframe,text="Raised Label", relief = RAISED,

width = 13, borderwidth = 2)
self.lbl5 = Label(self.lblframe,text="Groove Label", relief = GROOVE,

width = 13, borderwidth = 2)
return frame

full circle magazine #52 9 contents ^

that holds all our labels, and set its
attributes. We put it in column 0,
row 1, set the padding to 5 pixels
on all sides, tell it to span 5
columns (left and right), and finally
use the “sticky” attribute to force
the frame to expand fully to the
left and right (“WE”, or West and
East). Now comes the part that
sort of breaks the rule that I told
you about. We are placing a label
as the first widget in the frame,
but we didn't define it ahead of
time. We define it now. We set the
parent to lblframe, just like the
other labels. We set the text to
“Labels |”, the width to 15, and the
anchor to east ('e'). If you
remember from last time, using
the anchor attribute, we can set
where in the widget the text will
display. In this case, it's along the
right border. Now the fun part.
Here we define the grid location
(and any other grid attributes we
need to), simply by appending
“.grid” at the end of the label
definition.

Next, we lay out all of our other
labels in the grid - starting at
column 1, row 0.

Here is our DefineVars routine.
Notice that we simply use the pass

statement for now. We'll be
filling it in later on, and we
don't need it for this part:

def DefineVars(self):
Define our

resources
pass

And lastly we put in our
main routine code:

root = Tk()
root.geometry('750x40+1
50+150')
root.title("Widget
Demo 1")
demo = Demo(root)
root.mainloop()

First, we instantiate an instance
of Tk. Thern we set the size of the
main window to 750 pixels wide by
40 pixels high, and locate it at 150
pixels from the left and top of the
screen. Then we set the title of the
window and instantiate our Demo
object, and finally call the Tk
mainloop.

Give it a try. You should see the
five labels plus the “last minute”
label in various glorious effects.

Buttons

Now save what you have as

widgetdemo1a.py, and let's add
some buttons. Since we built our
base program to be added to, we'll
simply add the parts that apply.
Let's start with the BuildWidgets
routine. After the labels
definitions, and before the “return
frame” line, add what is shown on
the next page, top right.

Nothing really new here. We've
defined the buttons, with their

attributes, and set their callbacks
via the .bind configuration. Notice
that we are using lambda to send
the values 1 through 5 based on
which button is clicked. In the
callback, we'll use that so we know
which button we are dealing with.
Now we'll work in the
PlaceWidgets routine. Put the
code below after the last label
placement.

HOWTO - PROGRAM IN PYTHON - PART 26

def PlaceWidgets(self, master):
frame = master
Place the widgets
frame.grid(column = 0, row = 0)
Place the labels
self.lblframe.grid(column = 0, row = 1, padx = 5, pady = 5,

columnspan = 5,sticky='WE')
l = Label(self.lblframe,text='Labels |',width=15,

anchor='e').grid(column=0,row=0)
self.lbl1.grid(column = 1, row = 0, padx = 3, pady = 5)
self.lbl2.grid(column = 2, row = 0, padx = 3, pady = 5)
self.lbl3.grid(column = 3, row = 0, padx = 3, pady = 5)
self.lbl4.grid(column = 4, row = 0, padx = 3, pady = 5)
self.lbl5.grid(column = 5, row = 0, padx = 3, pady = 5)

Place the buttons
self.btnframe.grid(column=0, row = 2, padx = 5,

pady = 5, columnspan = 5,sticky = 'WE')
l = Label(self.btnframe,text='Buttons |',width=15,

anchor='e').grid(column=0,row=0)
self.btn1.grid(column = 1, row = 0, padx = 3, pady = 3)
self.btn2.grid(column = 2, row = 0, padx = 3, pady = 3)
self.btn3.grid(column = 3, row = 0, padx = 3, pady = 3)
self.btn4.grid(column = 4, row = 0, padx = 3, pady = 3)
self.btn5.grid(column = 5, row = 0, padx = 3, pady = 3)

full circle magazine #52 10 contents ^

Once again, nothing really new
here, so we'll move on. Bottom
right is our callback routine. Put it
after the DefineVars routine.

Again, nothing really fancy
here. We just use a series of IF/ELIF
routines to print what button was
clicked. The main thing to look at
here (when we run the program) is
that the sunken button doesn't
“move” when you click on it. You
would not usually use the sunken
relief unless you were making a
button that stays “down” when
you click it. Finally, we need to
tweak the geometry statement to
support the extra widgets we put
in:

root.geometry('750x110+150+15
0')

Ok. All done with this one. Save
it and run it.

Now save this as
widgetdemo1b.py, and we'll move
on to checkboxes.

Checkboxes

As I said earlier, this part of the
demo has a normal button and two

checkboxes. The first
checkbox is what you
would normally
expect a checkbox to
look like. The second
is more like a “sticky”
button - when it's not
selected (or checked),
it looks like a normal
button. When you
select it, it looks like
a button that is stuck
down. We can do this
by simply setting the
indicatoron attribute
to False. The
“normal” button will
toggle the checkboxes from
checked to unchecked, and vice
versa, each time you click the
button. We get to do this
programmatically by calling the
.toggle method attached to the
checkbox. We bind the left mouse
button click event (button release)
to a function so we can send a
message (in this case) to the
terminal. In addition to all of this,
we are setting two variables (one
for each of the checkboxes) that
we can query at any time. In this
case, each time the checkbox is
clicked we query this value and
print it. Pay attention to the
variable portion of the code. It is

used in many widgets.

Under the BuildWidget routine,
after the button code we just put
in and before the return
statement, put the code shown on
the next page, top right.

Again, you have seen all of this
before. We create the frame to
hold our widgets. We set up a
button and two check boxes. Let's
place them now using the code on
the next page, middle right.

Now we define the two

HOWTO - PROGRAM IN PYTHON - PART 26

Buttons
self.btnframe = Frame(frame,relief = SUNKEN,padx = 3, pady = 3,

borderwidth = 2, width = 500)
self.btn1 = Button(self.btnframe,text="Flat Button",

relief = FLAT, borderwidth = 2)
self.btn2 = Button(self.btnframe,text="Sunken Button",

relief = SUNKEN, borderwidth = 2)
self.btn3 = Button(self.btnframe,text="Ridge Button",

relief = RIDGE, borderwidth = 2)
self.btn4 = Button(self.btnframe,text="Raised Button",

relief = RAISED, borderwidth = 2)
self.btn5 = Button(self.btnframe,text="Groove Button",

relief = GROOVE, borderwidth = 2)
self.btn1.bind('<ButtonRelease-1>',lambda e: self.BtnCallback(1))
self.btn2.bind('<ButtonRelease-1>',lambda e: self.BtnCallback(2))
self.btn3.bind('<ButtonRelease-1>',lambda e: self.BtnCallback(3))
self.btn4.bind('<ButtonRelease-1>',lambda e: self.BtnCallback(4))
self.btn5.bind('<ButtonRelease-1>',lambda e: self.BtnCallback(5))

def BtnCallback(self,val):
if val == 1:

print("Flat Button Clicked...")
elif val == 2:

print("Sunken Button Clicked...")
elif val == 3:

print("Ridge Button Clicked...")
elif val == 4:

print("Raised Button Clicked...")
elif val == 5:

print("Groove Button Clicked...")

full circle magazine #52 11 contents ^

HOWTO - PROGRAM IN PYTHON - PART 26
variables that we will use to
monitor the value of each check
box. Under DefineVars, comment
out the pass statement, and add
this...

self.Chk1Val = IntVar()
self.Chk2Val = IntVar()

After the button callback
return, put the text shown bottom
right.

And finally replace the
geometry statement with this:

root.geometry('750x170+150+15
0')

Save and run. Save it as
widgetdemo1c.py, and let's do
radio buttons.

Radiobuttons

If you are old enough to
remember car radios with push
buttons to select the station
presets, you'll understand why
these are called Radiobuttons.
When using radiobuttons, the
variable attribute is very
important. This is what groups the
radiobuttons together. In this
demo, the first group of buttons is
grouped by the variable named

self.RBVal. The second
is grouped by the
variable self.RBValue2.
We also need to set the
value attribute at
design time. This
ensures that the
buttons will return a
value that makes sense
whenever they are
clicked.

Back to
BuildWidgets, and, just
before the return
statement, add the
code shown on the
following page.

One thing of note
here. Notice the “last
minute” label
definitions in the

Check Boxes
self.cbframe = Frame(frame, relief = SUNKEN, padx = 3, pady = 3,

borderwidth = 2, width = 500)
self.chk1 = Checkbutton(self.cbframe, text = "Normal Checkbox",

variable=self.Chk1Val)
self.chk2 = Checkbutton(self.cbframe, text = "Checkbox",

variable=self.Chk2Val,indicatoron = False)
self.chk1.bind('<ButtonRelease-1>',lambda e: self.ChkBoxClick(1))
self.chk2.bind('<ButtonRelease-1>',lambda e: self.ChkBoxClick(2))
self.btnToggleCB = Button(self.cbframe,text="Toggle Cbs")
self.btnToggleCB.bind('<ButtonRelease-1>',self.btnToggle)

Place the Checkboxes and toggle button
self.cbframe.grid(column = 0, row = 3, padx = 5, pady = 5,

columnspan = 5,sticky = 'WE')
l = Label(self.cbframe,text='Check Boxes |',width=15,

anchor='e').grid(column=0,row=0)
self.btnToggleCB.grid(column = 1, row = 0, padx = 3, pady = 3)
self.chk1.grid(column = 2, row = 0, padx = 3, pady = 3)
self.chk2.grid(column = 3, row = 0, padx = 3, pady = 3)

def btnToggle(self,p1):
self.chk1.toggle()
self.chk2.toggle()
print("Check box 1 value is {0}".format(self.Chk1Val.get()))
print("Check box 2 value is {0}".format(self.Chk2Val.get()))

def ChkBoxClick(self,val):
if val == 1:

print("Check box 1 value is {0}".format(self.Chk1Val.get()))
elif val == 2:

print("Check box 2 value is {0}".format(self.Chk2Val.get()))

full circle magazine #52 12 contents ^

HOWTO - PROGRAM IN PYTHON - PART 26
PlaceWidget routine. These long
lines are broken up to show how to
use parens to allow our long lines
to be formatted nicely in our code,
and still function correctly.

In DefineVars add:

self.RBVal = IntVar()

Add the click routines:

def RBClick(self):

print("Radio Button
clicked - Value is
{0}".format(self.RBVal.get())
)

def RBClick2(self):

print("Radio Button
clicked - Value is
{0}".format(self.RBVal2.get()
))

Radio Buttons
self.rbframe = Frame(frame, relief = SUNKEN, padx = 3, pady = 3, borderwidth = 2, width = 500)
self.rb1 = Radiobutton(self.rbframe, text = "Radio 1", variable = self.RBVal, value = 1)
self.rb2 = Radiobutton(self.rbframe, text = "Radio 2", variable = self.RBVal, value = 2)
self.rb3 = Radiobutton(self.rbframe, text = "Radio 3", variable = self.RBVal, value = 3)
self.rb1.bind('<ButtonRelease-1>',lambda e: self.RBClick())
self.rb2.bind('<ButtonRelease-1>',lambda e: self.RBClick())
self.rb3.bind('<ButtonRelease-1>',lambda e: self.RBClick())
self.rb4 = Radiobutton(self.rbframe, text = "Radio 4", variable = self.RBVal2, value = "1-1")
self.rb5 = Radiobutton(self.rbframe, text = "Radio 5", variable = self.RBVal2, value = "1-2")
self.rb6 = Radiobutton(self.rbframe, text = "Radio 6", variable = self.RBVal2, value = "1-3")
self.rb4.bind('<ButtonRelease-1>',lambda e: self.RBClick2())
self.rb5.bind('<ButtonRelease-1>',lambda e: self.RBClick2())
self.rb6.bind('<ButtonRelease-1>',lambda e: self.RBClick2())

In PlaceWidgets, add this:

Place the Radio Buttons and select the first one
self.rbframe.grid(column = 0, row = 4, padx = 5, pady = 5, columnspan = 5,sticky = 'WE')
l = Label(self.rbframe,

text='Radio Buttons |',
width=15,anchor='e').grid(column=0,row=0)

self.rb1.grid(column = 2, row = 0, padx = 3, pady = 3, sticky = 'EW')
self.rb2.grid(column = 3, row = 0, padx = 3, pady = 3, sticky = 'WE')
self.rb3.grid(column = 4, row = 0, padx = 3, pady = 3, sticky = 'WE')
self.RBVal.set("1")
l = Label(self.rbframe,text='| Another Set |',

width = 15,
anchor = 'e').grid(column = 5, row = 0)

self.rb4.grid(column = 6, row = 0)
self.rb5.grid(column = 7, row = 0)
self.rb6.grid(column = 8, row = 0)
self.RBVal2.set("1-1")

full circle magazine #52 13 contents ^

HOWTO - PROGRAM IN PYTHON - PART 26
and, finally, rework the geometry
statement as follows.

root.geometry('750x220+150+15
0')

Save the project as
widgetdemo1d.py, and run it. Now,
we'll start working on standard
textboxes (or entry widgets).

Entry

Again, we've used textboxes or
entry widgets in various GUI
flavors before. However this time,
as I said earlier, we will show how
to keep the user from making
changes to the textbox by
disabling it. This is helpful if you
are showing some data, and
allowing the user to change it only
when in the “edit” mode. By now,
you should be pretty sure that the
first thing we need to do is add
code (shown right) to the
BuildWidget routine.

Listbox

Next we'll work our listbox.
Starting in BuildWidgets, add the
code from the following page,
right side.

As usual, we
create our frame.
Then we create our
vertical scroll bar. We
do this before we
create the list box,
because we have to
reference the
scrollbar '.set'
method. Notice the
attribute 'height = 5'.
This forces the
listbox to show 5
items at a time. In
the .bind statement,
we use
'<<ListboxSelect>>'
as the event. It's
called a virtual event,
since it's not really
an “official” event.

Now, we'll deal
with the additional
code for the
PlaceWidgets
routine, and that's
shown on the
following page, left
side.

Message
Dialogs

This section is

Textboxes
self.tbframe = Frame(frame, relief = SUNKEN, padx = 3, pady

= 3, borderwidth = 2, width = 500)
self.txt1 = Entry(self.tbframe, width = 10)
self.txt2 = Entry(self.tbframe,

disabledbackground="#cccccc", width = 10)
self.btnDisable = Button(self.tbframe, text =

"Enable/Disable")
self.btnDisable.bind('<ButtonRelease-1>',

self.btnDisableClick)

Next, add this code to the PlaceWidget routine:
Place the Textboxes
self.tbframe.grid(column = 0, row = 5, padx = 5, pady = 5,

columnspan = 5,sticky = 'WE')
l = Label(self.tbframe,text='Textboxes |',width=15,

anchor='e').grid(column=0,row=0)
self.txt1.grid(column = 2, row = 0, padx = 3, pady = 3)
self.txt2.grid(column = 3, row = 0, padx = 3, pady = 3)
self.btnDisable.grid(column = 1, row = 0, padx = 3, pady = 3)

Add this line to the bottom of the DefineVars routine:
self.Disabled = False

Now, add the function that responds to the button click event:
def btnDisableClick(self,p1):

if self.Disabled == False:
self.Disabled = True
self.txt2.configure(state='disabled')

else:
self.Disabled = False
self.txt2.configure(state='normal')

And finally, rework the geometry statement:
root.geometry('750x270+150+150')

Save it as widgetdemo1d.py, and run it.

full circle magazine #52 14 contents ^

HOWTO - PROGRAM IN PYTHON - PART 26

List Box Stuff
self.lstframe = Frame(frame,

relief = SUNKEN,
padx = 3,
pady = 3,
borderwidth = 2,
width = 500

)
Scrollbar for list box
self.VScroll = Scrollbar(self.lstframe)
self.lbox = Listbox(self.lstframe,

height = 5,
yscrollcommand = self.VScroll.set)

default height is 10
self.lbox.bind('<<ListboxSelect>>',self.LBox

Select)
self.VScroll.config(command =

self.lbox.yview)
self.btnClearLBox = Button(

self.lstframe,
text = "Clear List",
command = self.ClearList,
width = 11

)
self.btnFillLBox = Button(

self.lstframe,
text = "Fill List",
command = self.FillList,
width = 11

)
<<ListboxSelect>> is virtual event
Fill the list box
self.FillList()

Place the Listbox and support buttons
self.lstframe.grid(column = 0, row = 6, padx = 5,

pady = 5, columnspan = 5,sticky = 'WE')
l = Label(self.lstframe,text='List Box |',width=15,

anchor='e').grid(column=0,row=0,rowspan=2)
self.lbox.grid(column = 2, row = 0,rowspan=2)
self.VScroll.grid(column = 3, row = 0,rowspan = 2,

sticky = 'NSW')
self.btnClearLBox.grid(column = 1, row = 0, padx =

5)
self.btnFillLBox.grid(column = 1, row = 1, padx = 5)

In DefineVars add this...
List for List box items
self.examples = ['Item One','Item Two','Item

Three','Item Four']

And add the following support routines:
def ClearList(self):

self.lbox.delete(0,END)

def FillList(self):
Note, clear the listbox first...no check is done
for ex in self.examples:

self.lbox.insert(END,ex)
insert([0,ACTIVE,END],item)

def LBoxSelect(self,p1):
print("Listbox Item clicked")
items = self.lbox.curselection()
selitem = items[0]
print("Index of selected item =

{0}".format(selitem))
print("Text of selected item =

{0}".format(self.lbox.get(selitem)))

Finally, update the geometry line.
root.geometry('750x370+150+150')

Save this as widgetdemo1e.py, and run it. Now we will do our last
modifications to our application.

full circle magazine #52 15 contents ^

HOWTO - PROGRAM IN PYTHON - PART 26
simply a series of “normal”

buttons that will call various types
of Message Dialogs. We've done
them before in a different GUI
toolkit. We will explore only 5
different types, but there are
more. In this section, we'll look at
Info, Warning, Error, Question, and
Yes/No dialogs. These are very
useful when you need to pass
some information to your user in a
rather big way. In the
BuildWidgets routine add the code
shown below.

Here is the support routine. For
the first three (Info, Warning, and
Error), you simply call
'tkMessageBox.showinfo', or
whichever you need, with two
parameters. First is the title for
the message dialog, and second is
the actual message you want to
show. The icon is handled for you
by tkinter. For the dialogs that
provide a response (question,
yes/no), we provide a variable that
receives the value of which button
was clicked. In the case of the
question dialog, the response is
either “yes” or “no”, and, in the
case of the yes/no dialog, the
response is either “True” or “False”.

Finally, modify the geometry
line:

root.geometry('750x490+550+15
0')

Save this as widgetdemo1f.py,
and play away.

I've put the code for
widgetdemo1f.py on pastebin at
http://pastebin.com/ZqrgHcdG.

Buttons to show message boxes and dialogs
self.mbframe = Frame(frame,relief = SUNKEN,padx = 3, pady = 3, borderwidth = 2)
self.btnMBInfo = Button(self.mbframe,text = "Info")
self.btnMBWarning = Button(self.mbframe,text = "Warning")
self.btnMBError = Button(self.mbframe,text = "Error")
self.btnMBQuestion = Button(self.mbframe,text = "Question")
self.btnMBYesNo = Button(self.mbframe,text = "Yes/No")
self.btnMBInfo.bind('<ButtonRelease-1>', lambda e: self.ShowMessageBox(1))
self.btnMBWarning.bind('<ButtonRelease-1>', lambda e: self.ShowMessageBox(2))
self.btnMBError.bind('<ButtonRelease-1>', lambda e: self.ShowMessageBox(3))
self.btnMBQuestion.bind('<ButtonRelease-1>', lambda e: self.ShowMessageBox(4))
self.btnMBYesNo.bind('<ButtonRelease-1>', lambda e: self.ShowMessageBox(5))

Now, add the code for the PlaceWidgets routine:

Messagebox buttons and frame
self.mbframe.grid(column = 0,row = 7, columnspan = 5, padx = 5, sticky = 'WE')
l = Label(self.mbframe,text='Message Boxes |',width=15, anchor='e').grid(column=0,row=0)
self.btnMBInfo.grid(column = 1, row = 0, padx= 3)
self.btnMBWarning.grid(column = 2, row = 0, padx= 3)
self.btnMBError.grid(column = 3, row = 0, padx= 3)
self.btnMBQuestion.grid(column = 4, row = 0, padx= 3)
self.btnMBYesNo.grid(column = 5, row = 0, padx= 3)

def ShowMessageBox(self,which):
if which == 1:

tkMessageBox.showinfo('Demo','This is an INFO messagebox')
elif which == 2:

tkMessageBox.showwarning('Demo','This is a WARNING messagebox')
elif which == 3:

tkMessageBox.showerror('Demo','This is an ERROR messagebox')
elif which == 4:

resp = tkMessageBox.askquestion('Demo','This is a QUESTION messagebox?')
print('{0} was pressed...'.format(resp))

elif which == 5:
resp = tkMessageBox.askyesno('Demo','This is a YES/NO messagebox')
print('{0} was pressed...'.format(resp))

