
THE INDEPENDENT MAGAZINE FOR THE UBUNTU LINUX COMMUNITY

PROGRAMMING SERIES SPECIAL EDITION

 PROGRAMPROGRAM
 IN PYTHONIN PYTHON
 Volume Volume SixSix
 Parts 3Parts 32-32-388

Full Circle

Full Circle Magazine is neither affiliated, with nor endorsed by, Canonical Ltd.

Full Circle Magazine Specials

full circle magazine

The articles contained in this magazine are released under the Creative Commons Attribution-Share Alike 3.0
Unported license. This means you can adapt, copy, distribute and transmit the articles but only under the following conditions:

You must attribute the work to the original author in some way (at least a name, email or URL) and to this magazine by name ('full circle magazine') and
the URL www.fullcirclemagazine.org (but not attribute the article(s) in any way that suggests that they endorse you or your use of the work). If you alter,
transform, or build upon this work, you must distribute the resulting work under the same, similar or a compatible license.
Full Circle Magazine is entirely independent of Canonical, the sponsor of Ubuntu projects and the views and opinions in the magazine should in
no way be assumed to have Canonical endorsement.

Please note: this Special
Edition is provided with
absolutely no warranty
whatsoever; neither the
contributors nor Full Circle
Magazine accept any
responsibility or liability for
loss or damage resulting from
readers choosing to apply this
content to theirs or others
computers and equipment.

About Full Circle

Full Circle is a free,
independent, magazine
dedicated to the Ubuntu
family of Linux operating
systems. Each month, it
contains helpful how-to
articles and reader-
submitted stories.

Full Circle also features a
companion podcast, the Full
Circle Podcast which covers
the magazine, along with
other news of interest.

Welcome to another 'single-topic special'
In response to reader requests, we are assembling the
content of some of our serialised articles into dedicated
editions.

For now, this is a straight reprint of the series
'Programming in Python', Parts 27-31 from issues #60
through #67, allowing peerless Python professor Gregg
Walters #66 as time off for good behaviour.

Please bear in mind the original publication date; current
versions of hardware and software may differ from those
illustrated, so check your hardware and software versions
before attempting to emulate the tutorials in these special
editions. You may have later versions of software installed
or available in your distributions' repositories.

Enjoy!

Find Us

Website:
http://www.fullcirclemagazine.org/

Forums:
http://ubuntuforums.org/
forumdisplay.php?f=270

IRC: #fullcirclemagazine on
chat.freenode.net

Editorial Team

Editor: Ronnie Tucker
(aka: RonnieTucker)
ronnie@fullcirclemagazine.org

Webmaster: Rob Kerfia
(aka: admin / linuxgeekery-
admin@fullcirclemagazine.org

Editing & Proofreading
Mike Kennedy, Lucas Westermann,
Gord Campbell, Robert Orsino,
Josh Hertel, Bert Jerred

Our thanks go to Canonical and the
many translation teams around the
world.

http://www.fullcirclemagazine.org/
http://ubuntuforums.org/forumdisplay.php?f=270
http://ubuntuforums.org/forumdisplay.php?f=270
mailto:ronnie@fullcirclemagazine.org
mailto:admin@fullcirclemagazine.org

full circle magazine #60 6 �������� �

HHOOWW--TTOO
Written by Greg D. Walters BBeeggiinnnniinngg PPyytthhoonn -- PPaarrtt 3322

I must say, I love my Android
tablet. While I use it every day,
it's not yet a replacement for
my desktop. And I must also

admit, most of what I use it for is
pretty much what everyone uses
theirs for: web browsing, listening
to music, watching videos, playing
games, and so on. I try to justify it
by having apps that deal with
grocery and todo lists, finding
cheap gas, fun things for our
grandson, etc. It's really a toy for
me right now. Why use a fancy
touch-screen tablet to do your
grocery list? Let's face it... it's the
cool looks of envy that people give
me in the store when they see me
rolling the cart down the aisle and I
tap my tablet to mark items off the
list. Ahh--- the geek factor RULES!
Of course, I can use the back of an
old envelope to hold my list. But
that wouldn't be cool and geeky,
now, would it?

Like 99% of geeky married men
in the world, I am married to a non-
geek woman. A wonderful loving
woman, to be sure, but a non-geek
who, when I start drooling at the
latest gadget, sighs, and says

something like “Well, if you REALLY
think we need that...”. Then she
gives me the same look I give her
as she is lovingly fondles the 50th
pair of shoes at the store.

In all honesty, it wasn't hard to
get the first tablet into our house. I
bought it for my wife while she was
going through chemotherapy. She
tried to use a laptop for a while,
but the heat and weight on
her lap was too much
after a while. E-books
on a laptop for her
wasn't an option,
so when she tried
to read, she had
to juggle the
book, and the
laptop, and the
mp3 player. All
while being tied
to a recliner with
tubes running into
her arm filling her
with nasty chemicals.
When I got her the
tablet, it was the best of all
worlds. She could read an e-book,
listen to music, watch a TV show,
browse the web, check her E-mail,
update her cancer blog, follow her

friends on facebook, and play
games - all on a device that was
light and cool. If she got tired, she
could just slip it off to the side
between her and the recliner (or
bed when she was home trying to
regain strength). MUCH better than
a bulky laptop, and book, mp3
player, remote control, and more.

As she was getting
pumped full of noxious

chemicals, I would
commandeer a
table and chair in
the corner of the
treatment
room, near a
power outlet,
and try to work
on my six-year
old laptop. In
between

projects, I would
do research on

Android
programming. I found

out that most programming
for Android is done in Java. I had
almost resigned myself to re-
learning Java when I stumbled
across a few tools that allow

Python programming for the
Android Operating system. One of
these tools is called “SL4A”. SL4A
stands for Scripting Layer for
Android. That's what we will
concentrate on in the next couple
of articles. We'll really focus on
getting SL4A set up on Android in
this one.

You might ask, why in the world
I would be talking about Android
programming in a magazine
designed for Linux. Well, the
simple reason is that the core of
Android is Linux. Everything that
Android is, sits on top of Linux!

Many web pages show how to
load SL4A into the Android
Emulator for Desktops. We'll look
at doing that another time, but for
now we'll deal with the Android
device itself. To install SL4A on
your Android device, go to
http://code.google.com/p/android-
scripting/; you'll find the
installation file for SL4A. Don't be
absolutely confused here. There's a
square High Density barcode that
you tap to download the APK. Be
sure that you have the “Unknown

full circle magazine #60 7 �������� �

HOWTO - BEGINNING PYTHON 32
Sources” option enabled in the
Application settings. It's a quick
download. Once you have it
downloaded and installed, go
ahead and find the icon, and tap it.
What you will see is a rather
disappointing black screen saying
“Scripts...No matches found”.
That's OK. Hit the menu button and
select View. You'll see a menu.
Select Interpreters. Then select
menu again, and select Add. From
the next menu, select Python 2.6.2.
This should ask you to start a
browser session to download
Python for Android. Once this is
installed, select Open. You'll get a
screen menu with the options to
Install, Import Modules, Browse
Modules, and Uninstall modules.
Select Install. Now Python will
download and install along with
other extra modules. In addition,
you'll get some sample scripts.
Finally, tap the back button and
you'll see Python 2.6.2 installed in
the interpreters screen. Tap again
on the back button and you'll see a
list of some sample python scripts.

That's all we are going to do this
time. All I wanted to do is whet
your appetite. Explore Python on
Android. You might also want to
visit

http://developer.android.com/sdk/i
ndex.html to get the Android SDK
(Software Development Kit) for
your desktop. It includes an
Android Emulator so you can play
along. Setting up the SDK is really
pretty easy on Linux, so you
shouldn't have too much trouble.

�

������ ��� � ������
������������� �����
������ ����� ������
���

Greg is the owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with his family. His website is
www.thedesignatedgeek.net.

How to Include Accents from the Keyboard
by Barry Smith

I f your Linux system is in French, German, or Spanish, and,
therefore, requiring accents, or if, occasionally, you need to use
accents which do not appear in English words, many users do not
know that there is a very easy way to do this from the keyboard.

The following applies to only the UK keyboard.

Acute accent
Press Alt Gr + ; (semi-colon) Lift hand then press the desired vowel é

Circumflex
Press Alt Gr + ' (apostrophe) Lift hand then press the desired vowel î

Grave accent
Press Alt Gr + # (hache) Lift hand then press the desired vowel è

Umlaut
Press Alt Gr + [Lift hand then press u ü

ñ - Press Alt Gr +] Lift hand then press n ñ

œ - Press Shift + Alt Gr Lift hand then press o then press e œ
The œ will not appear until after the e is keyed.

To get ¿ and ¡ (inverted exclamation mark) which I use all the time in
Spanish before questions, and exclamations, press Alt Gr + Shift,
keeping both keys pressed, then hit _ (underscore) for ¿ or hit !
(exclamation mark) for ¡.

If you want any of these in capitals, just press Shift before keying in
the letter.

full circle magazine #61 7
�������� �

HHOOWW--TTOO
Written by Greg D. Walters BBeeggiinnnniinngg PPyytthhoonn -- PPaarrtt 3333

This time, we’ll set up the
Android SDK on our Linux
desktop. We’ll also create
a virtual Android device,

install SL4A and python on it, and
do a quick test.

Please be aware, this is not
something you would want to do
for machines that have less than 1
GB of ram. The emulator eats up a
huge amount of memory. I’ve tried
it on a laptop running Ubuntu with
only 512 MB of ram. It WILL work,
but it is REALLY slow.

Here’s a quick list of what we’ll
do. We’ll go step-by-step in a
minute.
• Install the Java JDK6.
• Install the Android SDK starter
pack.
• Create and setup AVDs.
• Test AVD, and install SL4A and
Python.

In reality, we should also install
Eclipse and the Android ADT plugin
for Eclipse, but, since we won’t be
dealing with Eclipse in this set of
articles, we can bypass that. If you
want to include those steps, head

over to
http://developer.android.com/sdk/i
nstalling.html to see all the steps
in the suggested order. Let’s get
started.

STEP 1 - Java JDK 6

From everything I’ve read and
tried, it must be the actual Sun
release. OpenJDK is not supposed
to work. You can find information
on this on the web, but here’s the
steps that I did. In a terminal, type
the following...

sudo addaptrepository
ppa:ferramroberto/java

sudo aptget update

sudo aptget install sun
java6jdk

Once everything here is done,
you will want to edit your .bashrc
file to set “JAVA_HOME” so
everything runs correctly. I used
gedit and, at the bottom of the
file, I added the following line...

export
JAVA_HOME=”/usr/lib/jvm/java
6sun1.6.0.06”

Save the file and move on to
step 2.

STEP 2 - Android SDK
Starter Pack

Now the actual “fun” begins.
You’ll want to go to
developer.android.com/sdk/index.
html. This is where the SDK is
located. Download the latest
version for Linux, which, at the
time of this writing, is android-
sdk_r18-linux.tgz. Using Archive
Manager, unpack it somewhere
convenient. I put it in my home
directory. Everything runs directly
from this folder, so you really don’t
have to install anything. So the
path for me is
/home/greg/android-sdk-linux.
Navigate to this folder, then go to
the tools folder. There you will find
a file called “android”. This is what
runs the actual SDK. I created a
launcher on my desktop to make it
easy to get to.

Now the boring part. Run the
android file, and the Android SDK
Manager will start. It will go out

and update the platforms that are
available. I will warn you now that
this process will take some time, so
don’t bother if you don’t have a lot
of time to deal with it. For the sake
of brevity, I would suggest you get
only one platform to start. A good
one to begin with is the Android
2.1 platform, since, for the most
part, if you develop for an older
platform, there should be no
problem running on a newer
platform. You also need to get the
Tools set as well. Simply check the
box next to those two items, then
click on the install button. Once
you get the platform of your
choice, and the tool set, you are
almost ready to create your first
virtual machine.

STEP 3 - Create and set
up your first AVD

Back in the Android SDK
Manager, select Tools from the
main menu, then select Manage
AVDs. This will open a new window.
Since this is the first time, there
won’t be any virtual devices set up.
Click on the “New” button. This
opens yet another window where

full circle magazine #61 8 �������� �

HOWTO - BEGINNING PYTHON 33
we define the properties of the
virtual Android device. Here’s the
steps that you should use to set up
a simple Android emulator device:
• Set the name of the device. This
is important if you have more than
one device.
• Set the target platform level.
• Set the size of the SD card (see
below).
• Set the skin resolution.
• Create the device.

So, In the name text box, type
“Test1”. Under the target combo-
box, select Android 2.1 - API Level
7. In the text box for “SD Card:”
enter 512 and make sure the
dropdown shows “MiB”. Under
“Skin”, set the resolution to
800x600. (You can play with the
other built-in sizes on your own.)
Finally, click the “Create AVD”
button. Soon, you’ll see a message
box saying that the AVD was
created.

STEP 4 - Testing the
AVD and installing
SL4A and Python

Now, finally, we can have a bit
of fun. Highlight the AVD you just
created and click on the Start

button. In the dialog box that pops
up, simply click the “Launch”
button. Now, you have to wait a
few minutes for the virtual device
to be created in memory, and the
Android platform to be
loaded and started.
(We’ll talk about
speeding this
process up in
later runs.)

Once the
AVD starts up
and you have
the “home”
screen up, you
will install SL4A.
Using the
browser or the
google web search
box on the home screen,
search for “sl4a”. Go to the
downloads page, and you’ll
eventually find the web page for
the downloads at
http://code.google.com/p/android-
scripting/downloads/list.

Scroll down the page until you
get to the sl4a_r5 link. Open the
link and tap on the “sl4a_r5.apk”
link. Notice I said “tap” rather than
“click”. Start thinking about using
your finger to tap the screen rather
than clicking the mouse. It will

make your programming transition
easier. You’ll see the download
start. You may have to pull down
the notification bar at the top to
get to the downloaded file. Tap on

that, then tap the install
button.

Once the file is
downloaded,
you’ll be
presented with
the option to
open the
downloaded
app or to tap
“Done” to exit
the installer.

Here we will want
to tap “Open”.

Now SL4A will start.
You’ll probably see a dialog

asking if you will agree to usage
tracking. Either accept or refuse
this - it’s up to you. Before we go
any farther, you should know some
keyboard shortcuts that will help
you move around. Since we don’t
have a “real” Android device,
buttons like Back, Home, and
Menu, aren’t available. You’ll need
them to navigate around. Here’s a
few important shortcuts.

Back - Escape

Home - Home
Menu - F2

Now we will want to download
and install python into SL4A. To do
this, first tap Menu (press F2).
Select “View” from the menu. Now
select “Interpreters”. It looks like
nothing happened, but tap Menu
again (F2), then select “Add” from
the popup. Now scroll down and
select “Python 2.6.2”. This will
download the base package for
Python for Android. Install the
package, then open it. You will be
presented with four options.
Install, Import Modules, Browse
Modules, and Uninstall Module.
Tap on Install. This will start
downloading and installing all the
pieces of the latest Python for
Android. This can take a few
minutes.

Once everything is done, tap
Back (escape key) until you get to
the SL4A Interpreters screen. Now
everything is loaded for us to play
in Python on Android. Tap Python
2.6.2, and you’ll be in the
“standard” Python shell. This is just
like the shell on your desktop. Type
the following three lines, one at a
time, into the shell. Be sure to wait
for the “>>>” prompt each time.

full circle magazine #61 9 �������� �

Greg is the owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with his family. His website is
www.thedesignatedgeek.net.

HOWTO - BEGINNING PYTHON 33
import android

droid = android.Android()

droid.makeToast(“Hello from
Python on Android”)

After you type the last line and
press Enter, you’ll see a rounded
corner box at the center bottom of
the shell that says “Hello from
Python on Android”. That’s what
the “droid.makeToast” command
does.

You’ve written your first Python
script for Android. Neat, huh?

Now let’s create a shortcut on
the Android home screen. Tap the
Home key (Home button). If you
chose the 2.1 platform, you should
see a slider bar on the far right of
the screen. If you chose another
platform, it might be a square or
rectangle consisting of small
squares. Either way, this gets you
to the Apps screen. Tap that, and
find the SL4A icon. Now perform a
“long tap” (long click), which will
create a shortcut on the Home
screen. Move the shortcut
wherever you want it.

Next, we will create our first
saved script. Go back into SL4A.

You should be presented with the
sample scripts that come with
Python 4 Android. Tap the Menu
button and select “Add”. Select
“Python 2.6.2” from the list. You’ll
be presented with the script editor.
At the top is the filename box with
“.py” already filled out. Below that
is the editor window that already
has the first two lines of our
program entered for us. (I included
them below in italics so you can
check it. We also used these two
lines in our first sample.)

import android

droid = android.Android()

Now, enter the following two
lines to the python script.

uname =
droid.dialogGetInput(“What’s
your name?”)

droid.makeToast(“Hello %s
from Python on Android”) %
uname.result

The first new line will create a
dialog box (droid.dialogGetInput())
that asks for the user’s name. The
response is returned to our
program in uname.result. We’ve
already used the droid.makeToast()
function.

Name the file andtest1.py, then
tap Done, and tap “Save & Run”. If
everything worked, you should see
a dialog box asking for your name.
After you enter it, you should see
the alert at the bottom of the
screen saying “Hello Your Name
from Python on Android”.

That’s all for this time. For now,
there’s a TON of documentation
about SL4A for free on the web.
You can play a bit on your own until
next time. I’d suggest that you
start by going to
http://code.google.com/p/android-
scripting/wiki/Tutorials.

O'Reilly are looking forward to
celebrating Velocity's 5th Year with you
June 25-27, at the Santa Clara
Convention Center. You'll meet the
smartest people working in web
performance and operations at the
O'Reilly Velocity Conference. Web and
mobile users expect better
performance than ever before. To
meet, and exceed, their expectations,
you need to master a daunting array of
web performance, operations, and
mobile performance issues. Velocity
offers the best opportunity to learn the
newest info on what you need to know
to build a faster and stronger web.

Take advantage of this rare opportunity
to meet face-to-face with a cadre of
industry leaders who are taking web
performance and operations to the
next level. Velocity packs a wealth of
big ideas, know-how, and connections
into three concentrated days. You'll be
able to apply what you've learned
immediately and you'll be well
prepared for what lies ahead with four
in-depth tracks covering the key
aspects of web performance,
operations, mobile performance, and
Velocity culture.

Velocity has sold out the last two years,
so if you want to reserve your spot at
Velocity 2012, register now and save an
additional 20% with code FULLCIR.

full circle magazine #62 8 �������� �

HHOOWW--TTOO
Written by Greg D. Walters BBeeggiinnnniinngg PPyytthhoonn -- PPaarrtt 3344

This time, we’ll finish up
using SL4A. We’ll make a
larger program and then
send it to the virtual

machine via ADB.

Let’s deal with our code first. In
this, we’ll simply be trying out
some of the “widgets” that are
available to us when using SL4A.
Start on your desktop using your
favorite editor.

Enter the code shown top right
and save it (but don’t try to run it)
as “atest.py”.

The first line imports the
android library. We create an
instance of it in the second line.
Line 3 creates and displays a dialog
box with the title “Hello”, the
prompt of “What’s your name?”, a
text box for the user to enter their
name, and two buttons, “OK” and
“Cancel”. Once the user presses
“OK”, the response is returned in
the variable uname. The last line
(so far) then says “Hello
{username} from python on
Android!”. This isn’t new, we did
this before. Now we’ll add more

code (above).

Save your code as atest1.py.
We’ll be sending this to our virtual
machine after we discuss what it
does.

Take a look at the first four lines
we just entered. We create an alert
type dialog asking “Would you like
to play a game?”. In the case of an
alert type dialog, there’s no text
box to enter anything. The next
two lines say to create two

buttons, one with the text “Yes”,
which is a “positive” button, and
one with the text “No”, a
“negative” button. The positive
and negative buttons refer to the
response returned - either
“positive” or “negative”. The next
line then shows the dialog. The
next seven lines wait for a
response from the user.

We create a simple loop (while
True:) then wait for a response for
up to 10 seconds by using the

droid.eventWait(value) call. The
response (either “positive” or
“negative”) will be returned in -
you guessed it - the response
variable. If response has the name
of “dialog”, then we will break out
of the loop and return the
response. If nothing happens
before the timeout occurs, we
simply break out of the loop. The
actual information returned in the
response variable is something like
this (assuming the “positive” or
“Yes” button is pressed)...

import android

droid = android.Android()
uname = droid.dialogGetInput("Hello","What's your name?")
droid.makeToast("Hello %s from python on Android!" % uname.result)

droid.dialogCreateAlert(uname.result,"Would you like to play a game?")
droid.dialogSetPositiveButtonText('Yes')
droid.dialogSetNegativeButtonText('No')
droid.dialogShow()
while True: #wait for events for up to 10 seconds...

response = droid.eventWait(10000).result
if response == None:
break
if response["name"] == "dialog":
break

droid.dialogDismiss()

full circle magazine #62 9 �������� �

HOWTO - BEGINNING PYTHON 34

{u’data’: {u’which’:
u’positive’}, u’name’:
u’dialog’, u’time’:
1339021661398000.0}

You can see that the value is
passed in the ‘data’ dictionary, the
dialog key is in the ‘name’
dictionary, and there is a ‘time’
value that we don’t care about
here.

Finally we dismiss the dialog
box.

Before we can send our code to
the virtual machine, we have to
start the virtual machine. Start
your Android emulator. Once it
starts up, notice that the title bar
has four digits at the start of the
title. This is the port that the
machine is listening on. In my case
(and probably yours) it’s 5554.

Now, let’s push it to our virtual
machine. Open a terminal window
and change to the folder you saved
the code in. Assuming you have set
your path to include the SDK, type

adb devices

This asks adb to show any
devices that are connected. This
can include not only the Android

emulator but also any
smartphones, tablets, or other
Android devices. You should see
something like this...

List of devices attached
emulator5554 device

Now that we are sure that our
device is attached, we want to
push the application to the device.
The syntax is...

adb push source_filename
destination_path_and_filename

So, in my case it would be...

adb push atest1.py
/sdcard/sl4a/scripts/atest1.p
y

If everything works correctly,
you’ll get a rather disappointing
message similar to this...

11 KB/s (570 bytes in 0.046s)

Now, on
the Android
emulator,
start SL4A.
You should
see all of the
python
scripts, and,
in there you

should see atest1.py. Tap
(click) on ‘atest1.py’, and
you’ll see a popup dialog with
6 icons. From left to right,
they are “Run in a dialog
window”, “Run outside of a
window”, “Edit”, “Save”,
“Delete”, and “Open in an external
editor”. Right now, tap (click) on
the far left icon “Run in a dialog
window” so you can see what
happens.

You’ll see the first dialog asking
for your name. Enter something in
the box and tap (click) the ‘Ok’
button. You’ll see the hello
message. Next, you’ll see the alert
dialog. Tap (click) on either button
to dismiss the dialog. We aren’t
looking at the responses yet so it
doesn’t matter which one you
choose. Now we’ll add some more
code (top right).

I’m sure you can figure out that

this set of code simply checks the
response, and, if it’s ‘None’ due to
a timeout, we simply print “Timed
out.” And, if it’s actually something
we want, then we assign the data
to the variable rdialog. Now add
the next bit of code (below)...

This part of the code will look at
the data passed back by the
button-press event. We check to
see if the response has a “which”
key, and, if so, it’s a legitimate
button press for us. We then check
to see if the result is a “positive”
(‘Ok’ button) response. If so, we’ll
create another alert dialog, but
this time, we will add a list of items
for the user to choose from. In this
case, we offer the user to select

if response==None:
print "Timed out."

else:
rdialog=response["data"]

if rdialog.has_key("which"):
result=rdialog["which"]
if result=="positive":

droid.dialogCreateAlert("Play a Game","Select a game to play")
droid.dialogSetItems(['Checkers','Chess','Hangman','Thermal

Nuclear War']) # 0,1,2,3
droid.dialogShow()
resp = droid.dialogGetResponse()

full circle magazine #62 10
�������� �

Greg is the owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with his family. His website is
www.thedesignatedgeek.net.

HOWTO - BEGINNING PYTHON 34
from a list including Checkers,
Chess, Hangman, and Thermal
Nuclear War, and we assign the
values 0 to 3 to each item. (Is this
starting to seem familiar? Yes, it’s
from a movie.) We then display the
dialog and wait for a response. The
part of the response we are
interested in is in the form of a
dictionary. Assuming the user
tapped (clicked) on Chess, the
resulting response comes back like
this...

Result(id=12,
result={u’item’:1},
error=None)

In this case, we are really
interested in the result portion of

the returned data. The selection is
#1 and is held in the ‘item’ key.
Here’s the next part of the code
(above right)...

Here we check to see if the
response has the key “item”, and, if
so, assign it to the variable “sel”.
Now we use an if/elif/else loop to
check the values and deal with
whichever is selected. We use the
droid.makeToast function to
display our response. Of course,
you could add your own code here.
Now for the last of the code
(bottom right)...

As you can see, we simply
respond to the other types of
button-presses here.

Save, push, and run the
program.

As you can see, SL4A gives you

the ability to make “GUIfied”
applications, but not full gui apps.
This however, should not keep you
from going forward and starting to
write your own programs for
Android. Don’t expect to put these
up on the “market”. Most people
really want full GUI type apps. We’ll
look at that next time. For more
information on using SL4A, simply
do a web search and you’ll find lots
of tutorials and more information.

By the way, you can push
directly to your smartphone or
tablet in the same way.

As usual, the code has been put
up on pastebin at
http://pastebin.com/REkFYcSU

See you next time.

if resp.result.has_key("item"):
sel = resp.result['item']
if sel == 0:

droid.makeToast("Enjoy your checkers game")
elif sel == 1:

droid.makeToast("I like Chess")
elif sel == 2:

droid.makeToast("Want to 'hang around' for a while?")
else:

droid.makeToast("The only way to win is not to play...")

elif result=="negative":
droid.makeToast("Sorry. See you later.")

elif rdialog.has_key("canceled"):
print "Sorry you can't make up your mind."

else:
print "unknown response=",response

print "Done"

full circle magazine #63 7
�������� �

HHOOWW--TTOO
Written by Greg D. Walters BBeeggiinnnniinngg PPyytthhoonn -- PPaarrtt 3355

This time, we are going to
take a short detour from
our exploration of
Android programming,

and look at a new framework for
GUI programming called Kivy.
You’ll want to head over to
http://kivy.org and download and
install the package – before
getting too far into this month’s
installment. The Ubuntu
installation instructions can be
found at
http://kivy.org/docs/installation/in
stallation-ubuntu.html.

First off, Kivy is an open source
library that makes use of multi-
touch displays. If that isn’t cool
enough, it’s also cross-platform,
which means that it will run on
Linux, Windows, Mac OSX, IOS and
Android. Now you can see why we
are talking about this. But
remember, for the most part,
anything you code using Kivy, can
run on any of the above platforms
without recoding.

Before we go too far, let me
make a couple of statements. Kivy
is VERY powerful. Kivy gives you a

new set of tools to make your GUI
programming. All that having been
said, Kivy is also fairly complicated
to deal with. You are limited to the
widgets that they have provided. In
addition, there is no GUI designer
for Kivy, so you have to do a GREAT
deal of pre-planning before you try
to do anything complicated. Also
remember, Kivy is continually
under development so things can
change quickly. So far, I haven’t
found any of my test code that has
broken by a new version of Kivy,
but that’s always a possibility.

Rather than jump in and create
our own code this month, we’ll
look at some of the examples that

come with Kivy, and, next month,
we’ll “roll our own”.

Once you’ve unpacked Kivy into
its own folder, use a terminal and
change to that folder. Mine is in
/home/greg/Kivy-1.3.0. Now
change to the examples folder,
then to the widgets folder. Let’s
look at the accordion_1.py
example.

It’s very simple, but shows a
really neat widget. Below is their
code.

As you can see, the first three
lines are import statements. Any
widget you use must be imported,

and you must always import App
from kivy.app.

The next eight lines are the
main application class. The class is
defined, then a routine called build
is created. You will almost always
have a build routine somewhere in
your Kivy programs. Next we set a
root object from the Accordion
widget. Next we create five
AccordionItems and set their title.
We then add ten labels with the
text “Very big content”. We then
add each label to the root widget
(the Accordion) and then finally we
return the root object. This, in
essence, displays the root object in
the window that Kivy creates for

from kivy.uix.accordion import Accordion, AccordionItem
from kivy.uix.label import Label
from kivy.app import App

class AccordionApp(App):
def build(self):

root = Accordion()
for x in xrange(5):

item = AccordionItem(title='Title %d' % x)
item.add_widget(Label(text='Very big content\n' * 10))
root.add_widget(item)

return root

if __name__ == '__main__':
AccordionApp().run()

full circle magazine #63 8 �������� �

HOWTO - BEGINNING PYTHON 35
us. Finally we have the “if
__name__” statement and then run
the application.

Go ahead and run it to see what
it does.

You will see that in a moment
or two, a window opens up with
five vertical bars in it. Clicking on a
bar causes it to open up revealing
the ten labels. Of course, each bar
has the same text in the ten labels,
but you can figure out how to fix
that.

The Accordion widget can be
used for any number of things, but
the thing that has always jumped
to my mind is for a configuration
screen... each bar being a different
configuration set.

Next we’ll look at the
textalign.py example. It’s not as
“sexy” as the last one, but it’s a
good example that gives you some
important information for later on.

Before we look at the code, run
the program.

What you should see is a label
at the top of the window, a set of
nine red boxes with text in a 3x3

grid, and four buttons along the
bottom of the window. As you click
(tap) each of the buttons, the
alignment of the text within the
red boxes will change. The main
reason you would want to pay
attention to this example is how to
use and control some of the
important widgets as well as how
to change the alignment in your
widgets, which is not completely
intuitive.

Above right is their code for this
one. I’ll break it into pieces. First
the import code (above right).

Below is something special.
They created a class with no code
in it. I’ll discuss that in a few
minutes:

class BoundedLabel(Label):

pass

Next a class called “Selector”
(below) is created:

class Selector(FloatLayout):

app = ObjectProperty(None)

Now the Application class is
created.

Here the routine select is
created. A GridLayout widget is
created (called grid) which has 3
rows and 3 columns. This grid is
going to hold the nine red boxes.

for valign in ('bottom',
'middle', 'top'):

for halign in ('left',
'center', 'right'):

Here we have two loops, one
inner and one outer.

label = BoundedLabel(text='V:
%s\nH: %s' % (valign,

halign),

size_hint=(None, None),

halign=halign, valign=valign)

In the code above, an instance
of the BoundedLabel widget is
created, once for each of the nine
red boxes. You might want to stop
here and say “But wait! There isn’t
a BoundedLabel widget. It just has
a pass statement in it.” Well, yes,
and no. We are creating an
instance of a custom widget. As I
said a little bit above, we’ll talk
more about that in a minute.

In the code block (top right,
next page), we examine the
variable ‘case’ which is passed into
the select routine.

from kivy.app import App
from kivy.uix.label import Label
from kivy.uix.gridlayout import GridLayout
from kivy.uix.floatlayout import FloatLayout
from kivy.properties import ObjectProperty

class TextAlignApp(App):

def select(self, case):

grid = GridLayout(rows=3, cols=3, spacing=10, size_hint=(None, None),
pos_hint={'center_x': .5, 'center_y': .5})

full circle magazine #63 9 �������� �

HOWTO - BEGINNING PYTHON 35
Here, the grid is removed, to

clear the screen.

if self.grid:

self.root.remove_widget(self.
grid)

The bind method here sets the
size, and the grid is added to the
root object.

grid.bind(minimum_size=grid.s
etter('size'))

self.grid = grid

self.root.add_widget(grid)

Remember in the last example I
said that you will almost always
use a build routine. Here is the one
for this example. The root object is
created with a FloatLayout widget.
Next (middle right) we call the
Selector class to create a Selector
object, then it’s added to the root
object, and we initialize the display
by calling self.select(0).

Finally the application is
allowed to run.

TextAlignApp().run()

Now, before we can go any
further, we need to clear up a few
things. First, if you look in the

folder that holds the .py file, you’ll
notice another file called
textalign.kv. This is a special file
that Kivy uses to allow you to
create your own widgets and rules.
When your Kivy application starts,
it looks in the same directory for
the .kv helper file. If it is there,
then it loads it first. Here’s the
code in the .kv file.

This first line tells Kivy what
minimum version of Kivy that must
be used to run this app.

#:kivy 1.0

Here the BoundedLabel widget
is created. Each of the red boxes in
the application is a BoundedLabel.

Color sets the background color
of the box to red (rgb: 1,0,0). The
Rectangle widget creates a (you
guessed it) rectangle. When we call
the BoundedLabel widget in the
actual application code, we are
passing a label as the parent. The
size and position (here in the .kv
file) are set to whatever the size
and position of the label are.

Here (right, next page) the
Selector widget is created. This is
the four buttons that appear at the
bottom of the window as well as

the label across the top of the
window.

Notice that the label that makes
up the title at the top of the
window has a position (pos_hint)
as top, has a height of 50 pixels
and a font size of 16. Each of the
buttons has an alignment for the
text of center. The on_release
statement is a bind-like statement
so that, when the button is

released, it calls (in this case)
root.app.select with a case value.

Hopefully, this is beginning to
make sense now. You can see why
Kivy is so powerful.

Let’s talk for a moment about
two widgets that I have passed
over in the discussion of the
application code, The GridLayout
and the FloatLayout.

if case == 0:
label.text_size = (None, None)

elif case == 1:
label.text_size = (label.width, None)

elif case == 2:
label.text_size = (None, label.height)
else:
label.text_size = label.size

grid.add_widget(label)

def build(self):
self.root = FloatLayout()

self.selector = Selector(app=self)
self.root.add_widget(self.selector)
self.grid = None

self.select(0)
return self.root

<BoundedLabel>:
canvas.before:

Color:
rgb: 1, 0, 0

Rectangle:
pos: self.pos

size: self.size

full circle magazine #63 10
�������� �

Greg is the owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with his family. His website is
www.thedesignatedgeek.net.

HOWTO - BEGINNING PYTHON 35

The GridLayout is a parent
widget that uses a row and column
description to allow widgets to be
placed in each cell. In this case, it is
a 3x3 grid (like a Tic-Tac-Toe (or
Naughts and Crosses) board).

__|__|__
__|__|__
| |

When you want to place a
widget into a GridLayout, you use
the add_widget method. Here lies
a problem. You can’t specify which
control goes into which grid cell
other than the order in which you
add them. In addition, each widget
is added from left to right, top to
bottom. You can’t have an empty
cell. Of course, you can cheat. I’ll
leave that up to you to figure out.

The FloatLayout widget seems
to be just a parent container for
other child widgets.

I’ve glossed over a few points
for now. My intent this time was
simply to get you somewhat
excited about the possibilities that
Kivy has to offer. In the next
couple of articles, we’ll continue to
explore what Kivy has for us, how
to use various widgets, and how to
create an APK to publish our

applications to Android.

Until then, explore
more of the examples in
Kivy, and be sure to go to
the documentation page
for Kivy at
http://kivy.org/docs/.

<Selector>:
Label:
pos_hint: {'top': 1}

size_hint_y: None
height: 50

font_size: 16
text: 'Demonstration of text valign and halign'
BoxLayout:

size_hint_y: None
height: 50

ToggleButton:
halign: 'center'

group: 'case'
text: 'label.text_size =\n(None, None)'
on_release: root.app.select(0)
state: 'down'

ToggleButton:
halign: 'center'

group: 'case'
text: 'label.text_size =\n(label.width, None)'
on_release: root.app.select(1)

ToggleButton:
halign: 'center'
group: 'case'

text: 'label.text_size =\n(None, label.height)'
on_release: root.app.select(2)

ToggleButton:
halign: 'center'
group: 'case'

text: 'label.text_size =\n(label.width, label.height)'
on_release: root.app.select(3)

full circle magazine #64 7
�������� �

HHOOWW--TTOO
Written by Greg D. Walters BBeeggiinnnniinngg PPyytthhoonn -- PPaarrtt 3366

Before I begin, I want to
note that this article
marks three years of the
Beginning Programming

using Python series. I want to
thank Ronnie and the entire staff
of Full Circle Magazine for all their
support and especially, you, the
readers. I NEVER thought that this
would continue this long.

I also want to take a second to
note that there has been some
comments floating around the
ether that, after three years, the
word “Beginning” might be
misplaced in the title of this series.
After all, after three years, would
you still be a beginner? Well, on
some levels, I agree. However, I
still get comments from readers
saying that they just found the
series and Full Circle Magazine,
and that they are now running
back to the beginning of the series.
So, those people ARE beginners.
So, as of part 37, we’ll drop
“Beginning” from the series title.

Now to the actual meat of this
article... more on Kivy.

Imagine you play guitar. Not air
guitar, but an actual guitar.
However, you aren’t the best guitar
player, and some chords are
problematical for you. For
example, you know the standard C,
E, G, F type chords, but some
chords – like F# minor or C# minor
– while doable, are hard to get your
fingers set in a fast song. What do
you do, especially if the gig is only
a couple of weeks away and you
HAVE to be up to speed TODAY?
The workaround for this is to use
the Capo (that funny clippy thing
that you see sometimes on the
neck of the guitar). This raises the
key of the guitar and you use
different chords to match the rest
of the band. This is called
transposing. Sometimes, you can
transpose on the fly in your head.
Sometimes, it’s easier to sit down
on paper and work out that if, for

example, the chord is F# minor and
you put the capo on fret 2, you can
simply play an E minor. But that
takes time. Let’s make an app that
allows you to simply scroll through
the fret positions to find the
easiest chords to play.

Our app will be fairly simple. A
title label, a button with our basic
scale as the text, a scrollview (a
wonderful parent widget that
holds other controls and allows
you to “fling” the inside of the
control to scroll) holding a number
of buttons that have repositioned
scales as the text, and an exit
button. It will look SOMETHING
like the text below.

Start with a new python file
named main.py. This will be
important if/when you decide to
create an Android app from Kivy.

Now we’ll add
our import
statements
which are shown
on the next page, top right.

Notice the second line,
“kivy.require(‘1.0.8’)”. This allows
you to make sure that you can use
the latest and greatest goodies
that Kivy provides. Also notice that
we are including a system exit (line
3). We’ll eventually include an exit
button.

Here is the beginning of our
class called “Transpose”.

class Transpose(App):

def exit(instance):

sys.exit()

Now we work on our build

Transposer Ver 0.1

C C#/Db D D#/Eb E F F#/Gb G G#/Ab A A#/Bb B C
__

1| C#/Db D D#/Eb E F F#/Gb G G#/Ab A A#/Bb B C C#/Db
2| D D#/Eb E F F#/Gb G G#/Ab A A#/Bb B C C#/Db D

full circle magazine #64 8 �������� �

HOWTO - BEGINNING PYTHON 36
routine (middle right). This is
needed for every Kivy app.

This looks rather confusing.
Unfortunately, the editor doesn’t
always keep spaces correct even in
a mono-spaced font. The idea is
that the text1 string is a simple
scale starting with the note “C”.
Each should be centered within 5
spaces. Like the text shown
bottom right.

The text2 string should be the
same thing but repeated. We will
use an offset into the text2 string
to fill in the button text within the
scrollview widget.

Now we create the root object
(which is our main window)
containing a GridLayout widget. If
you remember WAY back when we
were doing other GUI
development for Glade, there was
a grid view widget. Well, the
GridLayout here is pretty much the
same. In this case, we have a grid
that has one column and three
rows. In each of the cells created in
the grid, we can put other widgets.
Remember, we can’t define which
widget goes where other than in
the order in which we place the
widgets.

root =
GridLayout(orientation='verti
cal', spacing=10,
cols=1,rows=3)

In this case, the representation
is as follows....

(0) title label

(1) main button

(2) scrollview

The scrollview contains multiple
items – in our case buttons. Next,
we create the label which will be at
the top of our application.

lbl = Label(text='Transposer
Ver 0.1',

font_size=20,
size_hint=(None,None),
size=(480,20),
padding=(10,10))

The properties that are set
should be fairly self-explanatory.
The only ones that might give you
some trouble would be the

padding and size_hint properties.
The padding is the number of
pixels around the item in an x,y
reference. Taken directly from the
Kivy documentation size_hint (for
X which is same as Y) is defined as:

����� ����� ���������� �������

����� ��������� ��������� �� ���

��������� ����� ������ �������� �� ���

�������������� �������������

���������� ��� ����� ����� ���

����� �� �� ��������� � ��������� ��

�� ��� ����� �� ����� ��� ���� ���� ��

��� ������� ��� ��������������

In this case, size_hint is set to
none, which defaults to 100% or 1.
This will be more important (and
convoluted) later on.

Now we define our “main”
button (next page, top right). This
is a static reference for the scale.

Again, most of this should be

import kivy
kivy.require('1.0.8')
from sys import exit
from kivy.app import App
from kivy.core.window import Window
from kivy.uix.button import Button
from kivy.uix.label import Label
from kivy.uix.anchorlayout import AnchorLayout
from kivy.uix.scrollview import ScrollView
from kivy.uix.gridlayout import GridLayout

def build(self):
#
text1 = " C C#/Db D D#/Eb E F F#/Gb G G#/Ab A A#/Bb B C"
text2 = " C C#/Db D D#/Eb E F F#/Gb G G#/Ab A A#/Bb B C C#/Db D

D#/Eb E F F#/Gb G G#/Ab A A#/Bb B C C#/Db"
#

| | | | | | | | | | | |
12345678901234567890123456789012345678901234567890123456
C C#/Db E F F#/Gb G G#/Ab A A#/Bb B C

full circle magazine #64 9 �������� �

Greg is the owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with his family. His website is
www.thedesignatedgeek.net.

HOWTO - BEGINNING PYTHON 36
fairly clear.

Now we add the widgets to the
root object, which is the
GridLayout widget. The label (lbl)
goes in the first cell, the button
(btn1) goes in the second.

#
root.add_widget(lbl)
root.add_widget(btn1)
#

Now comes some harder-to-
understand code. We create
another GridLayout object and call
it “s”. We then bind it to the height
of the next widget which, in this
case, will be the ScrollView, NOT
the buttons.

s = GridLayout(cols=1,
spacing = 10, size_hint_y =
None)
s.bind(minimum_height=s.sette
r('height'))

Now (middle right) we create
20 buttons, fill in the text
property, and then add it to the
GridLayout.

Now we create the ScrollView,
set its size, and add it to the root
GridLayout.

sv =
ScrollView(size_hint=(None,

None), size=(600,400))

sv.center = Window.center

root.add_widget(sv)

Lastly, we add the GridLayout
that holds all our buttons
into the ScrollView, and
return the root object to
the application.

sv.add_widget(s)

return root

Finally, we have our “if
__name__” routine. Notice
that we are setting
ourselves up for the
possibility of using the
application as an android
app.

if __name__ in
('__main__','__android__'):

Transpose().run()

Now you might wonder why I
used buttons instead of labels for
all our textual objects. That’s
because labels in Kivy don’t have
any kind of visible border by
default. We will play with this in
the next installment. We will also
add an exit button and a little bit
more.

The source code can be found
on PasteBin at
http://pastebin.com/hsicnyt1

Until next time, enjoy and thank
you for putting up with me for
three years!

btn1 = Button(text = " " + text1,size=(680,40),
size_hint=(None, None),
halign='left',
font_name='data/fonts/DroidSansMono.ttf',
padding=(20,20))

for i in range(0,19):
if i <= 12:

if i < 10:
t1 = " " + str(i) + "| "

else:
t1 = str(i) + "| "

else:
t1 = ''
text2 = ''

btn = Button(text = t1 + text2[(i*5):(i*5)+65],
size=(680, 40),
size_hint=(None,None),
halign='left',
font_name='data/fonts/DroidSansMono.ttf')

s.add_widget(btn)
#

full circle magazine #65 6
�������� �

HHOOWW--TTOO
Written by Greg D. Walters PPrrooggrraammmmiinngg iinn PPyytthhoonn -- PPaarrtt 3377

Thismonth, we’ll finish up
the transposer program
that we wrote in Kivy.
Hopefully, you saved the

code from last time, because we’ll
be building upon it. If not, grab the
code from FCM#64.

Let’s start by recapping what
we did last month. We created an
application that allows for a
guitarist to quickly transpose from
one key to the other. The ultimate
goal is to be able to run this app
not only on your Linux or Windows
box, but on an android device as

well. I take mine on my tablet
whenever I go to band practice. I
was going to deal with packaging
our project for Android, but some
things have changed in the method
to do that, so we’ll work on that
next month.

The app, as we left it last time,
looked like that shown below left.

When we are done, it should
look like the screen below right.

The first thing you will notice is
that there are blue labels rather

than boring gray ones. The next is
that there are three buttons.
Finally the scrollable labels are
closer to the entire width of the
window. Other than that, it’s
pretty much (visually) the same.
One of the buttons is an “about”
button that will pop up simple
information, but it explains how to
make a simple popup. One of the
buttons is an exit button. The
other button will swap the label
text to make it easy to transpose
from piano to guitar or guitar to
piano.

Let’s get started by creating a
.kv file (above right). This is what
will give us the colored labels. It’s a
very simple file.

#:kivy 1.0
#:import kivy kivy

<BoundedLabel>:
canvas.before:
Color:

rgb: 0, 0, 1
Rectangle:

pos: self.pos
size: self.size

full circle magazine #65 7
�������� �

HOWTO - PROGRAMMING IN PYTHON 37
The first two lines are required.

They basically say what version of
Kivy to expect. Next we create a
new type of label called
‘BoundedLabel’. The color is set
with RGB values (between 0 and 1,
which can be considered as 100
percent), and as you can see the
blue value is set at 100 percent.
We will also create a rectangle
which is the actual label. Save this
as “transpose.kv”. You must use
the name of the class that will be
using it.

Now that you have that
completed, add the following lines
just before the transpose class to
the source file from last time:

class BoundedLabel(Label):

pass

To make it work, all we need is a
definition. Before we go any
further, add the following line to
the import section:

from kivy.uix.popup import
Popup

This allows us to create the
popup later on. Now, in the
Transpose class, just inside the def
build routine, place the code
shown above right.

The LoadLabels routine will give
us the colored labels
(BoundedLabel) and the swap
ability. You saw most of this last
time. We pass a value to the “w”
parameter to determine which text
is being displayed. The
l=BoundedLabel line is pretty much
the same line from last time, with
the exception that, this time, we
are using a BoundedLabel widget
instead of a Button widget. The
LoadLabels will mainly be called
from the next routine, Swap. Place
this code (shown right) below
LoadLabels.

def LoadLabels(w):
if w == 0:

tex0 = self.text1
tex1 = self.text2

else:
tex0 = self.text3
tex1 = self.text4

for i in range(0,22):
if i <= 12:

if i < 10:
t1 = " " + str(i) + "| "

else:
t1 = str(i) + "| "
t = tex1

else:
t1 = ''
t = ''

l = BoundedLabel(text=t1+t[(i*6):(i*6)+78], size=(780, 35),
size_hint=(None,None),halign='left',
font_name='data/fonts/DroidSansMono.ttf')

s.add_widget(l)

def Swap(instance):
if self.whichway == 0:

self.whichway = 1
btnWhich.text = "Guitar > Piano"
btn1.text = " " + self.text3
s.clear_widgets()
LoadLabels(1)

else:
self.whichway = 0
btnWhich.text = "Piano > Guitar"
btn1.text = " " + self.text1
s.clear_widgets()
LoadLabels(0)

full circle magazine #65 8 �������� �

HOWTO - PROGRAMMING IN PYTHON 37

You can see that this routine is
pretty self explanatory. We use a
variable (self.whichway) to
determine “which way” the labels
are displaying... from Guitar to
Piano or Piano to Guitar.

Be sure to save your work at
this point, since we are going to be
making a lot of changes from here
on.

Replace the lines defining text1
and text two with the lines shown
above.

We set self.whichway to 0 which
will be our default for the swap
procedure. Then we define four
strings instead of the two we had
last time. You might notice that
strings text3 and text4 are simple
reversals of text1 and text2.

Now we will tweak the root line
definition. Change it from...

root =

GridLayout(orientation='verti
cal', spacing=10,
cols=1,rows=3)

to

root =
GridLayout(orientation='verti
cal', spacing=6, cols=1,
rows=4,
row_default_height=40)

We’ve changed the spacing
from 10 to 6 and set the default
row height to 40 pixels. Change the
text for the label (next line) to
“text='Transposer Ver 0.8.0'”.
Everything else stays the same on
this line.

Now change the button
definition line from...

btn1 = Button(text = " " +
text1,size=(680,40),

size_hint=(None,None),

halign='left',

font_name='data/fonts/DroidSa

nsMono.ttf',

padding=(20,20))

to:

btn1 = Button(text = " "
+ self.text1,size=(780,20),

size_hint=(None, None),

halign='left',

font_name='data/fonts/DroidSa
nsMono.ttf',

padding=(20,2),

background_color=[0.39,0.07,.
92,1])

Notice that I’ve changed the
formatting of the first definition
for clarity. The big changes are the
size change from 680,40 to 780,20
and the background color for the
button. Remember, we can change
the background color for buttons,
not “standard” labels.

Next, we will define three

AnchorLayout widgets for the
three buttons that we will add in
later. I named them al0
(AnchorLayout0), al1 and al2. We
also add the code for the About
Popup, and define our buttons
along with the bind statements.
This is shown on the next page, top
left.

Find the “s = GridLayout” line
and change the spacing from 10 to
4. Next, add the following line
after the s.bind line (right before
the for loop):

LoadLabels(0)

This calls the LoadLabels
routine with our default “which” of
0.

Next, comment out the entire
for loop code. This starts with “for i
in range(0,19):” and ends with
“s.add_widget(btn)”. We don’t
need this since the LoadLabels
routine does this for us.

self.whichway=0

self.text1 = " C | B |A#/Bb| A |G#/Ab| G |F#/Gb| F | E |D#/Eb| D |C#/Db| C |"

self.text2 = " C | B |A#/Bb| A |G#/Ab| G |F#/Gb| F | E |D#/Eb| D |C#/Db| C | B |A#/Bb| A |G#/Ab| G |F#/Gb| F | E |D#/Ab| D |C#/Db| C |"

self.text3 = " C |C#/Db| D |D#/Eb| E | F |F#/Gb| G |G#/Ab| A |A#/Bb| B | C |"

self.text4 = " C |C#/Db| D |D#/Eb| E | F |F#/Gb| G |G#/Ab| A |A#/Bb| B | C |C#/Db| D |D#/Eb| E | F |F#/Gb| G |G#/Ab| A |A#/Bb| B | C |C#/Db|"

full circle magazine #65 9 �������� �

Greg is the owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with his family. His website is
www.thedesignatedgeek.net.

HOWTO - PROGRAMMING IN PYTHON 37

Now, save your code and try to
run it. You should see a deep
purple button at the top, and our
pretty blue BoundLabels. Plus, you
will notice that the BoundLabels in
the scroll window are closer
together, which makes it much
easier to read.

We are almost through with our
code, but we still have a few things
to do. After the “sv = ScrollView”
line add the following line...

sv.size = (720, 320)

This sets the size of the
ScrollView widget to 720 by 320 –
which makes it wider within the
root window. Now, before the
“return root” line, add the code

shown top right.

Here we add the three buttons
to the AnchorLayout widgets,
create a GridLayout to hold the
AnchorLayouts, and then finally
add the AnchorLayouts to the
GridLayout.

Go back just below the “def
Swap” routine and add the
following...

def ShowAbout(instance):

popup.open()

That’s it. Save and run the code.
If you click on the About button,
you will see the simple popup. Just
click anywhere outside of the
popup to make it go away.

Now our code is written. You
can find the full code at
http://pastebin.com/GftmjENs

Next, we need to create our
android package... but that will
have to wait for next time.

If you want to get set up and try
packaging for Android before next
month, you should go to
http://kivy.org/docs/guide/packagi
ng-android.html for the

documentation on this. Be sure to
follow the documentation
carefully.

See you next month.

al0 = AnchorLayout()
al1 = AnchorLayout()
al2 = AnchorLayout()
popup = Popup(title='About Transposer',

content=Label(text='Written by G.D. Walters'),
size_hint=(None,None),size=(400,400))

btnWhich = Button(text = "Piano > Guitar",
size=(180,40),size_hint=(None,None))

btnWhich.bind(on_release=Swap)
btnAbout = Button(text="About",size=(180,40),

size_hint=(None,None))
btnAbout.bind(on_release=ShowAbout)
btnExit = Button(text="Exit", size=(180,40),

size_hint=(None,None))
btnExit.bind(on_release=exit)

al0.add_widget(btnWhich)
al1.add_widget(btnExit)
al2.add_widget(btnAbout)
bgl = GridLayout(orientation='vertical',

spacing=6, cols=3,rows=1,
row_default_height=40)

bgl.add_widget(al0)
bgl.add_widget(al1)
bgl.add_widget(al2)

full circle magazine #67 8 �������� �

HHOOWW--TTOO
Written by Greg Walters PPrrooggrraammmmiinngg IInn PPyytthhoonn:: PPtt 3388

AsIpromised in part 37,
we will take the
transposer app that we
created, and create an

APK to install it on your android
device.

Before we get started, let’s
make sure we have everything
ready. First thing we need is the
two files we created last time in a
folder that you can easily access.
Let’s call it “transposer”. Create it
in your home directory. Next, copy
the two files (transpose.kv and
transpose.py) into that folder. Now
rename transpose.py to main.py.
This part is important.

Next, we need to reference the
kivy packaging instructions in a
web browser. The link is
http://kivy.org/docs/guide/packagi
ng-android.html. We will be using
this for the next steps, but not
exactly as the Kivy people
intended. You should have the
android SDK from our earlier
lesson. Ideally, you will go through
and get all the software that is
listed there, but for our purposes,
you can just follow along here. You

will need to download the python-
for-android software. Open a
terminal window and type the
following...

git clone
git://github.com/kivy/python-
for-android

This will download and set up
the software that we need to
continue. Now, in a terminal
window, change your directory to
the python-for-
android/dist/default folder.

Now you will find a file called
build.py. This is what will do all the
work for us. Now comes the magic.

The build.py program will take
various command-line arguments
and create the APK for you. Shown
above is the syntax for build.py

taken directly from the Kivy
documentation.

For our use, we will use the
following command (the “\” is a
line continuation character):

./build.py --dir ~/transposer
--package
org.RainyDay.transposer \
--name "RainyDay Transposer"

--version 1.0.0 debug

Let’s look at the pieces of the
command...

./build.py - this is the application
--dir ~/transposer - this is the
directory where our application
code lives.
--package
org.RainyDay.transposer - This is
the name of the package
--name “RainyDay Transposer” -

this is the name of the application
that will show up in the apps
drawer.
--version 1.0.0 - the version of our
application
debug - this is the level of release
(debug or release)

Once you execute this,
assuming that everything worked
as expected, you should have a
number of files in the /bin folder.
The one you are looking for is
titled “RainyDayTransposer-1.0.0-
debug.apk”. You can copy this to
your android device using your
favorite file manager app, and
install it just like any other
application from the various app
stores.

That’s all I have time for this
month.

./build.py --dir <path to your app>
--name "<title>"
--package <org.of.your.app>
--version <human version>
--icon <path to an icon to use>
--orientation <landscape|portrait>
--permission <android permission like VIBRATE> (multiple allowed)
<debug|release> <installd|installr|...>

