
THE INDEPENDENT MAGAZINE FOR THE UBUNTU LINUX COMMUNITY

PROGRAMMING SERIES SPECIAL EDITION

 PROGRAMPROGRAM
 IN PYTHONIN PYTHON
 Volume Volume SixSeven
 Parts 3Parts 32-39-483

Full Circle

Full Circle Magazine is neither ailiated, with nor endorsed by, Canonical Ltd.

Full Circle Magazine Specials

full circle magazine

The articles contained in this magazine are released under the Creative Commons Attribution-Share Alike 3.0
Unported license. This means you can adapt, copy, distribute and transmit the articles but only under the following conditions:

You must attribute the work to the original author in some way (at least a name, email or URL) and to this magazine by name ('full circle magazine') and
the URL www.fullcirclemagazine.org (but not attribute the article(s) in any way that suggests that they endorse you or your use of the work). If you alter,
transform, or build upon this work, you must distribute the resulting work under the same, similar or a compatible license.
Full Circle Magazine is entirely independent of Canonical, the sponsor of Ubuntu projects and the views and opinions in the magazine should in
no way be assumed to have Canonical endorsement.

Please note: this Special
Edition is provided with
absolutely no warranty
whatsoever; neither the
contributors nor Full Circle
Magazine accept any
responsibility or liability for
loss or damage resulting from
readers choosing to apply this
content to theirs or others
computers and equipment.

About Full Circle

Full Circle is a free,
independent, magazine
dedicated to the Ubuntu
family of Linux operating
systems. Each month, it
contains helpful how-to
articles and reader-
submitted stories.

Full Circle also features a
companion podcast, the Full
Circle Podcast which covers
the magazine, along with
other news of interest.

Welcome to another 'single-topic special'

In response to reader requests, we are assembling the
content of some of our serialised articles into dedicated
editions.

For now, this is a straight reprint of the series
'Programming in Python', Parts 39-43 from issues #68
through #72, by peerless Python professor Gregg
Walters.

Please bear in mind the original publication date; current
versions of hardware and software may difer from those
illustrated, so check your hardware and software versions
before attempting to emulate the tutorials in these special
editions. You may have later versions of software installed
or available in your distributions' repositories.

Enjoy!

Find Us

Website:
http://www.fullcirclemagazine.org/

Forums:
http://ubuntuforums.org/
forumdisplay.php?f=270

IRC: #fullcirclemagazine on
chat.freenode.net

Editorial Team

Editor: Ronnie Tucker
(aka: RonnieTucker)
ronnie@fullcirclemagazine.org

Webmaster: Rob Keria
(aka: admin / linuxgeekery-
admin@fullcirclemagazine.org

Editing & Proofreading
Mike Kennedy, Lucas Westermann,
Gord Campbell, Robert Orsino,
Josh Hertel, Bert Jerred

Our thanks go to Canonical and the
many translation teams around the
world.

full circle magazine #68 8 contents ^

HHOOWW--TTOO
Written by Greg Walters PPrrooggrraammmmiinngg IInn PPyytthhoonn:: PPtt 3399

M
any, many months

ago, we worked with

API calls for Weather

Underground.

Actually, it was in part 11 which

was back in issue #37. Well, we are

going to deal with APIs again, this

time for a website named TVRage

(http://tvrage.com). If you aren’t

familiar with this site, it deals with

television shows. So far, every TV

show that I could think of has been

in their system. In this series of

articles, we are going to revisit

XML, APIs, and ElementTree to

create a wrapper library that will

allow us to create a small library

which simplifies our retrieval of TV

information on our favorite shows.

Now, I mentioned a wrapper

library. What’s that? In simple

terms, when you create or use a

wrapper library, you are using a set

of code that “wraps” the

complexity of the website’s API

into an easy-to-use library. Before

we get started, I need to make a

few things clear. First, this is a free

service. However, they do request

donations for use of their API. If

you feel that this is a worthwhile

service, please consider donating

$10 US or more. Second, you

should register at their website

and get your own API key. It’s free,

so there’s really no reason not to,

especially if you are going to use

the information provided here. In

addition, you have access to a few

other fields of information like

series and episode summaries that

are not included in the

unregistered version. Third, they

are hard at work at updating the

API. This means that when you get

to seeing this article, their API

might have changed. We’ll be using

the public feeds, which are free for

everyone to use as of December

2012. The API website is located at

http://services.tvrage.com/info.ph

p?page=main and shows a few

examples of the types of

information that are available.

Now, let’s begin looking at the

API and how we can use it.

Using their API, we can get very

specific information about the

show itself and/or we can get

episode level information. There

are basically three steps to finding

information about TV Shows. Here

are the steps:

• Search their database looking for

the show name to get the specific

Show ID which must be used to get

more data. Think of the showid

value as a key directly into a record

set in a database, which in this case

it is.

• Once you have the Show ID,

obtain the show level information.

• Finally, gather the information

about a specific episode. This

comes from a list of each and every

episode that the show has had to

date.

There are three basic web calls

we will make to get this

information. First is the search call,

second the show information call,

and finally the the episode list call.

Here are the base calls that we

will use...

• Search for ShowID based on a

show name -
http://services.tvrage.com/fe
eds/search.php?show={SomeShow
}

• Pull the show level data based on

the Show ID (sid) -
http://services.tvrage.com/fe
eds/showinfo.php?sid={SomeSho
wID}

• Pull the episode list for Show ID

(sid) -
http://services.tvrage.com/fe
eds/episode_list.php?sid={Som
eShowID}

What gets returned is a stream

of data in XML format. Let’s take a

moment to review what XML looks

like. The first line should always be

similar to the one shown below to

be considered a proper XML data

stream (below).

<?xml version="1.0" encoding="UTF-8" ?>
<ROOT TAG>

<PARENT TAG>
<CHILD TAG 1>DATA</CLOSING CHILD TAG 1>
<CHILD TAG 2>DATA</CLOSING CHILD TAG 2>
<CHILD TAG 3>DATA</CLOSING CHILD TAG 3>

</CLOSING PARENT TAG>
</CLOSING ROOT TAG>

http://services.tvrage.com/info.php?page=main
http://tvrage.com

full circle magazine #68 9 contents ^

HOWTO - PROGRAMMING PYTHON Pt39

Every piece of data is enclosed

within a defining tag and end-tag.

Sometimes you will have a child

tag that is a parent tag in itself like

this...

<CHILD PARENT TAG>

<CHILD TAG 1>DATA</CLOSING
CHILD TAG 1>

</CLOSING CHILD PARENT TAG>

You also may see a tag that has

an attribute associated with it:

<TAG INFORMATION = VALUE>

<CHILD TAG>DATA</CLOSING
CHILD TAG>

</CLOSING TAG>

Sometimes, you might see a tag

with no data associated with it. It

would come across like this...

<prodnum/>

Sometimes, if there is no

information for a specific tag, the

tag itself just won’t be there. Your

program will have to deal with

these possibilities.

So, when we go through and

deal with the XML data, we start

with the root tag, and parse each

tag – looking for the data we care

about. In some instances we want

everything; in others, we care

about only certain pieces of the

information.

Now, let’s look at the first call

and see what gets returned.

Assume the show we are looking

for is Buffy the Vampire Slayer.

Our search call would look like this:

http://services.tvrage.com/fe
eds/search.php?show=buffy

The returned XML file would

look like this:

http://pastebin.com/Eh6ZtJ9N.

Note that I put the indents in

myself to make it easier for you to

read. Now let’s break down the

XML file to see what we actually

have.

<Results> - This is the ROOT of the

XML data. The last line of the

stream we get back should be the

closing tag </Results>. Basically,

this marks the beginning and end

of the XML stream. There could be

zero results or fifty results.

<show> This is the parent node

that says “What follows (until the

end show tag) is the information

about a single tv show”. Again, it’s

ended by its end tag </show>.

Anything within these two tags

should be considered one show’s

worth of information.

<showid>2930</show> This is the

showid tag. This holds the sid that

we have to use to get the show

information, in this case 2930.

<name>Buffy the Vampire

Slayer</name> This is the name of

the show

<link>...</link> This would be the

link to the show itself (or, in the

case of an episode, the episode

information) on the TVRage

website.

<country>...</country> The

country of origin for the show.

…

</show>

</Results>

In the case of our program, we

would be really interested in only

the two fields <showid> and

<name>. We might also consider

paying attention to the <started>

field as well. This is because we

rarely get back just one set of

data, especially if we didn’t give

the absolutely complete show

name. For example, if we were

interested in the show “The Big

Bang Theory,” and searched using

only the string “Big Bang”, we

would get twenty or so data sets

back because anything that even

remotely matched “big” or “bang”

would be returned. However, if we

were interested in the show

“NCIS,” and we searched for that,

we would get back many

responses. Some not what we

would expect right away. Not only

would we get “NCIS”, “NCIS: Los

Angeles”, “The Real NCIS”, but also

“The Streets of San Francisco” and

“Da Vinci’s Inquest”, and many

more, since the letters “N” “C” “I”

and “S” are in all of those, pretty

much in that order.

Once we know the show id that

we want, then we can request the

show information for that ID. The

data is similar to the data we just

http://pastebin.com/Eh6ZtJ9N

full circle magazine #68 10 contents ^

HOWTO - PROGRAMMING PYTHON Pt39

got back in the search response,

but more detailed. Again, using

Buffy as our example request, here

(next page, right) is an abbreviated

version of the XML file.

You can see that much of the

data is included in the original

search response stream. However,

things like network, network

country, runtime, air day and time,

are specific to this response set.

Next, we would request the

episode list. If the show is only one

season long and has/had only six

episodes, this stream would be

short. However, let’s take the case

of one of my favorite TV shows,

Doctor Who. Doctor Who is a

British TV show that, in its original

form, started in 1963 and ran for

26 seasons (‘series’ for our friends

in the UK) until 1989. Its first

season alone had 42 episodes,

while other seasons/series have

around 24 episodes. You can see

where you might have a HUGE

stream to parse through.

What we get back from the

episode list request is as shown on

the next page (again using Buffy as

our example); I’m going to just use

part of the stream so you get a

good idea of what comes back.

So to recap, the

information we really

want/need in the search

for show id by name

stream would be...
<showid>
<name>
<started>

In the Show

Information stream we

would (normally) want...
<seasons>
<started>
<start date>
<origin_country>
<status>
<genres>
<runtime>
<network>
<airtime>
<airday>
<timezone>

and from the episode list

stream...
<Season>
<episode number>
<season number>
<production number>
<airdate>
<link>
<title>

A word of “warning”

here. Season number and

Episode number data are

not what you might think

right away. In the case of

<Showinfo>
<showid>2930</showid>
<showname>Buffy the Vampire Slayer</showname>
<showlink>http://tvrage.com/Buffy_The_Vampire_Slayer</showlink>
<seasons>7</seasons>
<started>1997</started>
<startdate>Mar/10/1997</startdate>
<ended>May/20/2003</ended>
<origin_country>US</origin_country>
<status>Canceled/Ended</status>
<classification>Scripted</classification>
<genres>

<genre>Action</genre>
<genre>Adventure</genre>
<genre>Comedy</genre>
<genre>Drama</genre>
<genre>Mystery</genre>
<genre>Sci-Fi</genre>

</genres>
<runtime>60</runtime>
<network country="US">UPN</network>
<airtime>20:00</airtime>
<airday>Tuesday</airday>
<timezone>GMT-5 -DST</timezone>
<akas>

<aka country="SE">Buffy & vampyrerna</aka>
<aka country="DE">Buffy - Im Bann der Dämonen</aka>
<aka country="NO">Buffy - Vampyrenes skrekk</aka>
<aka country="HU">Buffy a vámpírok réme</aka>
<aka country="FR">Buffy Contre les Vampires</aka>
<aka country="IT">Buffy l'Ammazza Vampiri</aka>
<aka country="PL">Buffy postrach wampirów</aka>
<aka country="BR">Buffy, a Caça-Vampiros</aka>
<aka country="PT">Buffy, a Caçadora de Vampiros</aka>
<aka country="ES">Buffy, Cazavampiros</aka>
<aka country="HR">Buffy, ubojica vampira</aka>
<aka country="FI">Buffy, vampyyrintappaja</aka>
<aka country="EE">Vampiiritapja Buffy</aka>
<aka country="IS">Vampírubaninn Buffy</aka>

</akas>
</Showinfo>

full circle magazine #68 11 contents ^

HOWTO - PROGRAMMING PYTHON Pt39

the data from TVRage, the season

number is the number of the

episode within the season. The

episode number is the number for

that episode within the total life

span of the series. The production

number is a number that was used

internally to the series, that, for

many people, means little if

anything.

Now that we have refreshed

our memory on XML file structures

and examined the TVRage API

calls, we are ready to start our

coding, but that will have to wait

until next time.

Until then, have a good holiday

season.

<Show>
<name>Buffy the Vampire Slayer</name>
<totalseasons>7</totalseasons>
<Episodelist>

<Season no="1">
<episode>

<epnum>1</epnum>
<seasonnum>01</seasonnum>
<prodnum>4V01</prodnum>
<airdate>1997-03-10</airdate>
<link>http://www.tvrage.com/Buffy_The_Vampire_Slayer/episodes/28077</link>
<title>Welcome to the Hellmouth (1)</title>

</episode>
<episode>

<epnum>2</epnum>
<seasonnum>02</seasonnum>
<prodnum>4V02</prodnum>
<airdate>1997-03-10</airdate>
<link>http://www.tvrage.com/Buffy_The_Vampire_Slayer/episodes/28078</link>
<title>The Harvest (2)</title>

</episode>
<episode>

<epnum>3</epnum>
<seasonnum>03</seasonnum>
<prodnum>4V03</prodnum>
<airdate>1997-03-17</airdate>
<link>http://www.tvrage.com/Buffy_The_Vampire_Slayer/episodes/28079</link>
<title>Witch</title>

</episode>
...

</Season>
</Episodelist>

</Show>

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with his family. His website is
www.thedesignatedgeek.net.

http://www.thedesignatedgeek.net

full circle magazine #69 8 contents ^

HHOOWW--TTOO
Written by Greg Walters PPrrooggrraammmmiinngg IInn PPyytthhoonn:: PPtt 4400

Last time, we had a gross

discussion about the TVRAGE

web API. Now we will start to look

at writing code to work with it.

The goal of this part is to begin

the process of creating code that

will be a reusable module that can

be imported into any python

program and will provide access to

the API easily.

While the TVRAGE API gives us

a number of things we can do, and

the registered version even more,

we will concentrate on only three

calls:

1 - Search for show by show name,

and get the ShowID

2 - Get show information based on

ShowID

3 - Get episode specific

information based on ShowID

Last time, I showed you the

“unregistered” and accessible-by-

anyone API calls. This time we will

use the registered calls – based on

a registration key I have. I’m going

to share this key with you (TVRAGE

knows that I’m going to do this).

However, I ask that, if you are

going to use the API, that you

please register and get your own

key, and that you don’t abuse the

site. Please also consider donating

to them to support their

continuing efforts.

We will create three main

routines to make the calls and

return the information, three

routines that will be used to

display the returned information

(assuming that we are running in

the “stand alone” mode), and a

main routine to do the work –

again assuming that we are

running in the “stand alone” mode.

Here is the list of routines we

will be creating (although not all of

them this time. I want to leave

room for others in this issue.)

def FindIdByName(self,
showname, debug = 0)

def GetShowInfo(self, showid,
debug = 0)

def GetEpisodeList(self,
showid, debug = 0)

def DisplaySearchResult(self,
ShowListDict)

def DisplayShowInfo(self,
dict)

def DisplayEpisodeList(self,
SeriesName, SeasonCount,
EpisodeList)

def main()

The routine FindIdByName

takes a string (showname), makes

the API call, parses the XML

response, and returns a list of

shows that match with the

information in a dictionary, so this

will be a list of dictionaries.

GetShowInfo takes the showid

from the above routine and

returns a dictionary of information

about the series. GetEpisodeList

also uses the showid from the

above routine and returns a list of

dictionaries containing information

for each episode.

We will use a series of strings to

hold the key and the base URL, and

then append to those what we

need. For example consider the

following code (we’ll expand these

later).

self.ApiKey =
"Itnl8IyY1hsR9n0IP6zI"

self.FindSeriesString =
"http://services.tvrage.com/m
yfeeds/search.php?key="

The call we need to send (to get

back a list of series information

with the series id) would be:

http://services.tvrage.com/myfeed

s/search.php?key=Itnl8IyY1hsR9n0I

P6zI&show={ShowName}

We combine the string like

this...

strng = self.FindSeriesString
+ self.ApiKey + "&show=" +
showname

For the purposes of testing, I

will be using a show named

“Continuum” which, if you’ve never

seen it, is a wonderful science

fiction show on the Showcase

network out of Canada. I’m using

this show for a few reasons. First,

there are only (as of this writing)

two shows that match the search

string “Continuum”, so that makes

your debug easy, and secondly,

there’s currently only one season

of 10 episodes for you to deal with.

full circle magazine #69 9 contents ^

HOWTO - PROGRAMMING PYTHON Pt40

You should have an idea what

you will be looking for in your

parsing routines, so I’ve placed the

full URL calls below for you to test,

before you get started with your

coding.

Search using a show name...

http://services.tvrage.com/myfeed

s/search.php?key=Itnl8IyY1hsR9n0I

P6zI&show=continuum

Retrieve Series information using

the ShowID (sid)

http://services.tvrage.com/myfeed

s/showinfo.php?key=Itnl8IyY1hsR9

n0IP6zI&sid=30789

Retrieve Episode list and

information using the ShowID (sid)

http://services.tvrage.com/myfeed

s/episode_list.php?key=Itnl8IyY1hs

R9n0IP6zI&sid=30789

Now that we have all that out

of the way, let’s get started with

our code.

You’ll create a file with the

name of “tvrage.py”. We’ll be using

this for the next issue or two.

We’ll start with our imports

shown above right.

You can see that we will be

using ElementTree to do the XML

parsing, and urllib for the internet

communication. The sys library is

used for sys.exit.

We’ll set up the main loop now

so we can test things as we go

(bottom right). Remember this is

the last thing in our source file.

As I said earlier, the first four

lines are our partial strings to build

the URL for the function that we

want to use. (GetEpisodeListString

should all be on one line.) The last

four lines are the initialization of

the lists we will be using later.

First (middle right), we set up

the string that will be used as the

URL. Next, we set up the socket

with an 8 second default timeout.

Then we call urllib.urlopen with

our generated URL and (hopefully)

#===
IMPORTS
#===
from xml.etree import ElementTree as ET
import urllib
import sys

#===
Main loop
#===
if __name__ == "__main__":

main()

Now we start our class. The name of the class is “TvRage”. We’ll also make our __init__ routine now.

class TvRage:
def __init__(self):

self.ApiKey = "Itnl8IyY1hsR9n0IP6zI"
self.FindSeriesString = "http://services.tvrage.com/myfeeds/search.php?key="
self.GetShowInfoString = "http://services.tvrage.com/myfeeds/showinfo.php?key="
self.GetEpisodeListString =

"http://services.tvrage.com/myfeeds/episode_list.php?key="
self.ShowList = []
self.ShowInfo = []
self.EpisodeList = []
self.EpisodeItem = []

def FindIdByName(self,showname,debug = 0):
strng = self.FindSeriesString + self.ApiKey + "&show=" + showname
urllib.socket.setdefaulttimeout(8)
usock = urllib.urlopen(strng)
tree = ET.parse(usock).getroot()
usock.close()
foundcounter = 0
self.showlist = []

full circle magazine #69 10 contents ^

HOWTO - PROGRAMMING PYTHON Pt40

receive our xml file in the usock

object. We call ElementTree setup

so we can parse the xml

information. (If you are lost here,

please re-read my articles on XML

(parts 10, 11 and 12 appearing in

FCM #36, 37 and 38)). Next, we

close the socket, and initialize the

counter for the number of matches

found, and reset the list ‘showlist’

to an empty list.

Now we will step through the

xml information using the tag

‘show’ as the parent for what we

want. Remember the returned

information looks something like

that shown top right.

We will be going through each

group of information for the

parent ‘show’ and parsing out the

information. In practice, all we

really need is the show name

(<name>) and the showid

(<showid>) shown bottom left, but

we’ll handle all of the results.

I’ll discuss the first one and

you’ll understand the rest. As we

go through the information, we

look for tags (bottom right) that

match what we want. If we find

any, we assign each to a temporary

variable and then put that into the

dictionary as a value with a key

that matches what we are putting

in. In the case of the above, we are

looking for the tag ‘showid’ in the

XML data. When we find it, we

assign that as a value to the

dictionary key ‘ID’.

The next portion (next page,

top right) deals with the genre(s)

of the show. As you can see from

the above XML snippet, this show

has four different genres that it

fits into. Action, Crime, Drama, and

Sci-Fi. We need to handle each.

Finally, we increment the

foundcounter variable, and append

this dictionary into the list

‘showlist’. Then we start the entire

thing over until there is no more

<Results>
<show>

<showid>30789</showid>
<name>Continuum</name>
<link>http://www.tvrage.com/Continuum</link>
<country>CA</country>
<started>2012</started>
<ended>0</ended>
<seasons>2</seasons>
<status>Returning Series</status>
<classification>Scripted</classification>
<genres>

<genre>Action</genre>
<genre>Crime</genre>
<genre>Drama</genre>
<genre>Sci-Fi</genre>

</genres>
</show>
...

</Results>

for node in tree.findall('show'):
showinfo = []
genrestring = None
dict = {}
for n in node:

if n.tag == 'showid':
showid = n.text
dict['ID'] = showid

elif n.tag == 'name':
showname = n.text
dict['Name'] = showname

elif n.tag == 'link':
showlink = n.text
dict['Link'] = showlink

elif n.tag == 'country':
showcountry = n.text
dict['Country'] = showcountry

elif n.tag == 'started':
showstarted = n.text
dict['Started'] = showstarted

elif n.tag == 'ended':
showended = n.text
dict['Ended'] = showended

elif n.tag == 'seasons':
showseasons = n.text
dict['Seasons'] = showseasons

elif n.tag == 'status':
showstatus = n.text
dict['Status'] = showstatus

elif n.tag == 'classification':
showclassification = n.text
dict['Classification'] = showclassification

full circle magazine #69 11 contents ^

HOWTO - PROGRAMMING PYTHON Pt40

XML data. Once everything is

done, we return the list of

dictionaries (bottom right).

Most of the code is pretty self

explanatory. We’ll concentrate on

the for loop we use to print out

the information. We loop through

each item in the list of dictionaries

and print a counter variable, the

show name (c[‘Name’]), and the id.

The result looks something like

this...

Enter Series Name ->
continuum
2 Found

1 - Continuum - 30789
2 - Continuum (Web series) -
32083
Enter Selection or 0 to exit
->

Please remember that the list

of items is zero based, so when the

user enters ‘1’, they are really

asking for dictionary number 0. We

do this, because “regular” people

think that counting should start

with ‘1’ not 0. And we can then use

0 to escape the routine and not

make them use ‘Q’ or ‘q’ or ‘-1’.

Now, the “main” routine that

pulls it all together for us.

For today, we’ll just start the

routine (middle right) and continue

it next time.

Next time, we’ll add the other

routines. For now, the code can be

found at

http://pastebin.com/6iw5NQrW

See you soon.

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with his family. His website is
www.thedesignatedgeek.net.

elif n.tag == 'genres':
for subelement in n:

if subelement.tag == 'genre':
if subelement.text != None:

if genrestring == None:
genrestring = subelement.text

else:
genrestring += " | " + subelement.text

dict['Genres'] = genrestring

foundcounter += 1
self.showlist.append(dict)

return self.showlist
#==

The next thing we will do is create the routine to display all of our results.

def DisplayShowResult(self, ShowListDict):
lcnt = len(ShowListDict)
print "%d Found" % lcnt
print "------------------------"
cntr = 1
for c in ShowListDict:

print "%d - %s - %s" % (cntr,c['Name'],c['ID'])
cntr += 1

sel = raw_input("Enter Selection or 0 to exit -> ")
return sel

def main():
tr = TvRage()
#--------------------
Find Series by name
#--------------------
nam = raw_input("Enter Series Name -> ")
if nam != None:

sl = tr.FindIdByName(nam)
which = tr.DisplayShowResult(sl)
if which == 0:

sys.exit()
else:

option = int(which)-1
id = sl[option]['ID']
print "ShowID selected was %s" % id

http://www.thedesignatedgeek.net
http://pastebin.com/6iw5NQrW

full circle magazine #70 8 contents ^

HHOOWW--TTOO
Written by Greg Walters PPrrooggrraammmmiinngg IInn PPyytthhoonn:: PPtt 4411

Last month, we started our

command line version of a

library to talk to the TVRAGE web

API. This month we will continue

adding to that library. If you don’t

have the code from last month,

please get it now from pastebin

(http://pastebin.com/6iw5NQrW)

because we will be adding to that

code.

The way we left the code, you

would run the program and enter

in the terminal window the name

of a TV show you want information

on. Remember, we used the show

Continuum. Once you pressed

<Enter>, the program would call

the api and search by the name of

the show, and then return a list of

show names that matches your

input. You then would select from

the list by entering a number and it

would show “ShowID selected was

30789”. Now, we will create the

code that will use that ShowID to

get the series information. One

other thing to keep in mind: the

display routines are there pretty

much to prove the routine works.

The ultimate goal here is to create

a reusable library that can be used

in something like a GUI program.

Feel free to modify the display

routines if you want to do more

with the standalone capabilities of

the library.

The last routine we created in

the class was “DisplayShowResult”.

Right after that, and before the

routine “main,” is where we will

put our next routine. The

information that will be returned

(there is other information, but we

will use only the list below) will be

in a dictionary and will contain (if

available):

• Show ID

• Show Name

• Show Link

• Origin Country of network

• Number of seasons

• Series image

• Year Started

• Date Started

• Date Ended

• Status
(canceled, returning, current, etc)

• Classification
(scripted, reality, etc)

• Series Summary

• Genre(s)

• Runtime in minutes

• Name of the network that

originally aired the show

• Network country
(pretty much the same thing as Origin
Country)

• Air time

• Air Day (of week)

• TimeZone

Shown above is the beginning

of the code.

You should recognize most of

the code from last time. There’s

really not much changed. Here’s

more code (shown below).

def GetShowInfo(self,showid,debug=0):
showidstr = str(showid)
strng = self.GetShowInfoString + self.ApiKey + "&sid=" + showidstr
urllib.socket.setdefaulttimeout(8)
usock = urllib.urlopen(strng)
tree = ET.parse(usock).getroot()
usock.close()
dict = {}

for child in tree:
if child.tag == 'showid':

dict['ID'] = child.text
elif child.tag == 'showname':

dict['Name'] = child.text
elif child.tag == 'showlink':

dict['Link'] = child.text
elif child.tag == 'origin_country':

dict['Country'] = child.text
elif child.tag == 'seasons':

dict['Seasons'] = child.text
elif child.tag == 'image':

dict['Image'] = child.text
elif child.tag == 'started':

dict['Started'] = child.text
elif child.tag == 'startdate':

dict['StartDate'] = child.text

http://pastebin.com/6iw5NQrW

full circle magazine #70 9 contents ^

HOWTO - PROGRAMMING PYTHON Pt41

As you can see (above), there’s

nothing really new in this bit of

code either, if you’ve been keeping

up with the series. We are using a

for loop, checking each tag in the

XML file for a specific value. If we

find it, we assign it to a dictionary

item.

Now things get a bit more

complicated. We are going to

check for the tag “genres”. This has

child tags underneath it with the

name of “genre”. For any given

show, there can be multiple

genres. We’ll have to append the

genres to a string as they come up

and separate them with a vertical

bar and two spaces like this “ | “

(shown top right).

Now we are pretty much back

to “normal” code (shown middle

right) that you’ve already seen. The

only thing that’s a bit different is

the tag “network” which has an

attribute “country”. We grab the

attribute data by looking for

“child.attrib[‘attributetag’]”

instead of “child.text”.

That’s the end of this routine.

Now (below) we’ll need some way

to display the information we

worked so hard to get. We’ll create

a routine called “DisplayShowInfo”.

Now, we must update the

“main” routine (next page, shown

top right) to support our two new

routines. I’m giving the entire

routine below, but the new code is

shown in black.

Next page, bottom left, is what

the output of “DisplayShowInfo”

should look like, assuming you

chose “Continuum” as the show.

Please notice that I’m not

displaying the time zone

information here, but feel free to

add it if you wish.

elif child.tag == 'ended':
dict['Ended'] = child.text

elif child.tag == 'status':
dict['Status'] = child.text

elif child.tag == 'classification':
dict['Classification'] = child.text

elif child.tag == 'summary':
dict['Summary'] = child.text

elif child.tag == 'genres':
genrestring = None
for subelement in child:

if subelement.tag == 'genre':
if subelement.text != None:

if genrestring == None:
genrestring = subelement.text

else:
genrestring += " | " + subelement.text

dict['Genres'] = genrestring

elif child.tag == 'runtime':
dict['Runtime'] = child.text

elif child.tag == 'network': # has attribute
dict['NetworkCountry'] = child.attrib['country']
dict['Network'] = child.text

elif child.tag == 'airtime':
dict['Airtime'] = child.text

elif child.tag == 'airday':
dict['Airday'] = child.text

elif child.tag == 'timezone':
dict['Timezone'] = child.text

return dict

def DisplayShowInfo(self,dict):
print "Show: %s" % dict['Name']
print "ID: %s Started: %s Ended: %s Start Date: %s Seasons: %s" %

(dict['ID'],dict['Started'],dict['Ended'],dict['StartDate'],dict['Seasons'])
print "Link: %s" % dict['Link']
print "Image: %s" % dict['Image']
print "Country: %s Status: %s Classification: %s" %

(dict['Country'],dict['Status'],dict['Classification'])
print "Runtime: %s Network: %s Airday: %s Airtime: %s" %

(dict['Runtime'],dict['Network'],dict['Airday'],dict['Airtime'])
print "Genres: %s" % dict['Genres']
print "Summary: \n%s" % dict['Summary']

full circle magazine #70 10 contents ^

HOWTO - PROGRAMMING PYTHON Pt41

Next, we need to work on the

episode list routines for the series.

The “worker” routine will be called

“GetEpisodeList” and will provide

the following information...

• Season

• Episode Number

• Season Episode Number
(the number of the episode within the
season)

• Production Number

• Air Date

• Link

• Title

• Summary

• Rating

• Screen Capture Image of Episode

(if available)

Before we start with the code,

it would be helpful to revisit what

the episode list request to the API

returns. It looks something like

that shown on the next page, top

right.

The information for each

episode is in the “episode” tag –

which is a child of “Season” – which

is a child of “Episodelist” – which is

a child of “Show”. We have to be

careful how we parse this. As with

most of our “worker” routines this

time, the first few lines (below) are

fairly easy to understand by now.

Now we need to look for the

“name” and “totalseasons” tags

below the “root” tag “Show”. Once

we’ve dealt with them, we look for

def main():
tr = TvRage()
#--------------------
Find Series by name
#--------------------
nam = raw_input("Enter Series Name -> ")
if nam != None:

sl = tr.FindIdByName(nam)
which = tr.DisplayShowResult(sl)
if which == 0:

sys.exit()
else:

option = int(which)-1
id = sl[option]['ID']
print "ShowID selected was %s" % id

#------------------------------
Get Show Info
#------------------------------
showinfo = tr.GetShowInfo(id)
#------------------------------
Display Show Info
#------------------------------
tr.DisplayShowInfo(showinfo)

ShowID selected was 30789
Show: Continuum
ID: 30789 Started: 2012 Ended: None Start Date:
May/27/2012 Seasons: 2
Link: http://www.tvrage.com/Continuum
Image: http://images.tvrage.com/shows/31/30789.jpg
Country: CA Status: Returning Series Classification:
Scripted
Runtime: 60 Network: Showcase Airday: Sunday
Airtime: 21:00
Genres: Action | Crime | Drama | Sci-Fi
Summary:
Continuum is a one-hour police drama centered on Kiera
Cameron, a regular cop from 65 years in the future who
finds herself trapped in present day Vancouver. She is
alone, a stranger in a strange land, and has eight of the
most ruthless criminals from the future, known as Liber8,
loose in the city.

Lucky for Kiera, through the use of her CMR (cellular
memory recall), a futuristic liquid chip technology
implanted in her brain, she connects with Alec Sadler, a
seventeen-year-old tech genius. When Kiera calls and Alec
answers, a very unique partnership begins.

Kiera’s first desire is to get "home." But until she
figures out a way to do that, she must survive in our
time period and use all the resources available to her to
track and capture the terrorists before they alter
history enough to change the course of the future. After
all, what’s the point of going back if the future isn’t
the one you left?

def GetEpisodeList(self,showid,debug=0):
showidstr = str(showid)
strng = self.GetEpisodeListString + self.ApiKey

+ "&sid=" + showidstr
urllib.socket.setdefaulttimeout(8)
usock = urllib.urlopen(strng)
tree = ET.parse(usock).getroot()
usock.close()
for child in tree:

full circle magazine #70 11 contents ^

HOWTO - PROGRAMMING PYTHON Pt41

the “Episodelist”, “Season” tags.

Notice above that the “Season” tag

has an attribute. You might notice

(in the code above) that we aren’t

including the “Showname” or

“Totalseasons” data in the

dictionary. We are assigning them

to a variable that will be returned

at the end of the routine to the

calling code.

Now that we have that portion

of the data, we deal with the

episode specific information

(shown below).

All that’s left now (bottom

right) is to append the episode

specific information (that we’ve

put into the dictionary) to our list,

and keep going. Once we are done

with all the episodes, we return to

the calling routine and, as I stated

earlier, return three items of data,

“ShowName”, “TotalSeasons” and

the list of dictionaries.

Next, we need to create our

display routine. Again, it’s fairly

straightforward. The only thing

that you might not recognize is the

“if e.has_key(‘keynamehere’)“ lines.

This is a check to make sure that

there is actually data in the

“Rating” and “Summary” variables.

<Show>
<name>Continuum</name>
<totalseasons>2</totalseasons>
<Episodelist>
<Season no="1">
<episode>
<epnum>1</epnum>
<seasonnum>01</seasonnum>
<prodnum/>
<airdate>2012-05-27</airdate>
<link>
http://www.tvrage.com/Continuum/episodes/1065162187
</link>
<title>A Stitch in Time</title>
<summary>
Inspector Kiera Cameron loses everything she has and finds
herself on a new mission when she and eight dangerous
terrorists are transported from their time in 2077 back to
2012 during the terrorist’s attempt to escape execution.
She takes on a new identity and joins the VPD in order to
stop the terrorists’ reign of violence. Along the way, she
befriends Alec Sadler, the 17 year old who will one day
grow up to create the technology her world is built upon.
</summary>
<rating>8.8</rating>
<screencap>
http://images.tvrage.com/screencaps/154/30789/1065162187.p
ng
</screencap>
</episode>

if child.tag == 'name':
ShowName = child.text

elif child.tag == 'totalseasons':
TotalSeasons = child.text

elif child.tag == 'Episodelist':
for c in child:

if c.tag == 'Season':
dict = {}
seasonnum = c.attrib['no']
for el in c:

if el.tag == 'episode':
dict={}
dict['Season'] = seasonnum
for ep in el:

if ep.tag == 'epnum':
dict['EpisodeNumber'] = ep.text

elif ep.tag == 'seasonnum':
dict['SeasonEpisodeNumber'] = ep.text

elif ep.tag == 'prodnum':
dict['ProductionNumber'] = ep.text

elif ep.tag == 'airdate':
dict['AirDate'] = ep.text

elif ep.tag == 'link':
dict['Link'] = ep.text

elif ep.tag == 'title':
dict['Title'] = ep.text

elif ep.tag == 'summary':
dict['Summary'] = ep.text

elif ep.tag == 'rating':
dict['Rating'] = ep.text

elif ep.tag == 'screencap':
dict['ScreenCap'] = ep.text

self.EpisodeItem.append(dict)
return ShowName,TotalSeasons,self.EpisodeItem

http://pastebin.com/6iw5NQrW

full circle magazine #70 12 contents ^

HOWTO - PROGRAMMING PYTHON Pt41

Some shows don’t have this

information, so we include the

check to make our print-to-screen

data a little prettier (shown above

right).

All that’s left is to update our

“main” routine (next page, shown

top right). Once again, I’m going to

provide the full “main” routine

with the newest code in black

bold.

Now, if you save and run the

program, the output of the

“GetEpisodeList” and

“DisplayEpisodeList” will work.

Shown bottom right is a snippet of

the Episode information.

That’s it for this month. As

always, you can find the full source

code on pastebin at

http://pastebin.com/kWSEfs2E. I

hope you enjoy playing with the

library. There is additional data

available from the API that you can

include. Please remember, TVRage

provides this information for free,

so consider donating to them to

help their efforts at updating the

API and for all their hard work.

I’ll see you next time. Enjoy.

def DisplayEpisodeList(self,SeriesName,SeasonCount,EpisodeList):
print "--------------------------------------"
print "Series Name: %s" % SeriesName
print "Total number of seasons: %s" % SeasonCount
print "Total number of episodes: %d" % len(EpisodeList)
print "--------------------------------------"
for e in EpisodeList:

print "Season: %s" % e['Season']
print " Season Episode Number: %s - Series Episode Number: %s" %

(e['SeasonEpisodeNumber'],e['EpisodeNumber'])
print " Title: %s" % e['Title']
if e.has_key('Rating'):

print " Airdate: %s Rating: %s" % (e['AirDate'],e['Rating'])
else:

print " Airdate: %s Rating: NONE" % e['AirDate']
if e.has_key('Summary'):

print " Summary: \n%s" % e['Summary']
else:

print " Summary: NA"
print "==========================="

print "------------ End of episode list ------------"

Series Name: Continuum
Total number of seasons: 2
Total number of episodes: 10

Season: 1

Season Episode Number: 01 - Series Episode Number: 1
Title: A Stitch in Time
Airdate: 2012-05-27 Rating: 8.8
Summary:

Inspector Kiera Cameron loses everything she has and finds herself on a new mission when
she and eight dangerous terrorists are transported from their time in 2077 back to 2012
during the terrorist’s attempt to escape execution. She takes on a new identity and
joins the VPD in order to stop the terrorists’ reign of violence. Along the way, she
befriends Alec Sadler, the 17 year old who will one day grow up to create the technology
her world is built upon.
===========================

http://pastebin.com/kWSEfs2E

full circle magazine #70 13 contents ^

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with his family. His website is
www.thedesignatedgeek.net.

HOWTO - PROGRAMMING PYTHON Pt41

def main():
tr = TvRage()
#--------------------
Find Series by name
#--------------------
nam = raw_input("Enter Series Name -> ")
if nam != None:

sl = tr.FindIdByName(nam)
which = tr.DisplayShowResult(sl)
if which == 0:

sys.exit()
else:

option = int(which)-1
id = sl[option]['ID']
print "ShowID selected was %s" % id

#------------------------------
Get Show Info
#------------------------------
showinfo = tr.GetShowInfo(id)
#------------------------------
Display Show Info
#------------------------------
tr.DisplayShowInfo(showinfo)
#-----------------------------
Get Episode List
#-----------------------------
SeriesName,TotalSeasons,episodelist = tr.GetEpisodeList(id)
#-----------------------------
Display Episode List
#-----------------------------
tr.DisplayEpisodeList(SeriesName,TotalSeasons,episodelist)
#-----------------------------

http://www.thedesignatedgeek.net
http://nostarch.com/

full circle magazine #71 8 contents ^

HHOOWW--TTOO
Written by Greg Walters PPrrooggrraammmmiinngg IInn PPyytthhoonn:: PPtt 4422

Let's assume that you have

decided to create a multimedia

center for your family room. You

have a dedicated computer for the

wonderful program called XBMC.

You've spent days ripping your

DVD movies and TV series onto the

computer. You have done the

research and named the files the

correct way. But let's say that one

of your favorite shows is "NCIS,"

and you have every episode that

you can get on DVD. You found a

place that provides the current

episodes as well. You want to find

out what the next episode is and

when it will be broadcast. Plus, you

want to create a list of all the TV

episodes that you have to impress

your friends.

This is the project we will be

starting this month. Our first task

is to dig through the folder

containing your TV shows,

grabbing the series name, and

each episode – including the name

and season number, and the

episode number. All this

information will go into a database

for easy storage.

According to XBMC, you should

name each of your tv episode files

like this:

Tv.Show.Name.SxxExx.Episode
name here if you
care.extension

So, let's use the very first

episode of NCIS as an example. The

filename for an AVI file would be:

NCIS.S01E01.Yankee White.avi

and the very latest episode

would be:

NCIS.S10E17.Prime Suspect.avi

If you have a show name that

has more than one word, it could

look like this:

Doctor.Who.2005.S07E04.The
Power of Three.mp4

The directory structure should

be as follows:

TVShows
2 Broke Girls

Season 1
Episode 1
Episode 2
...

Season 2

...
Doctor Who 2005

Season 1
...

Season 2
...

and so on. Now that we know what

we will be looking for and where it

will be, let's move on.

A very long time ago, we

created a program to make a

database of our MP3 files. That

was back in issue #35 I believe,

which was part number 9 of this

series. We used a routine called

WalkThePath to recursively dig

through all the folders from a

starting path, and pull out the

filenames that had a ".mp3"

extension. We will reuse most of

that routine and modify it for our

purposes. In this version, we will be

looking for video files that have

one of the following extensions:

.avi

.mkv

.m4v

.mp4

Which are very common

extensions for video files in the

media PC world.

Now we will get started with

the first part of our project. Create

a file called "tvfilesearch.py". Be

sure to save it when we are done

this month, because we will be

building on it next month.

Let's start with our imports:

import os
from os.path import join,
getsize, exists
import sys
import apsw
import re

As you can see, we are

importing the os, sys and apsw

libraries. We've used them all

before. We are also importing the

re library to support Regular

Expressions. We'll touch on that

quickly this time, but more in the

next article.

Now, let's do our last two

routines next (next page). All our

other code will go in between the

imports and these last two

routines.

This (next page, bottom right) is

our main worker routine. In it, we

full circle magazine #71 9 contents ^

HOWTO - PROGRAMMING PYTHON Pt42

create a connection to the SQLite

database provided by apsw. Next

we create a cursor to interact with

it. Then we call the MakeDatabase

routine which will create the

database if it doesn't exist.

My TV files are located on two

hard drives. So I created a list to

hold the path names. If you have

only one location, you can change

the three lines to be as follows:

startfolder =
"/filepath/folder/"

WalkThePath(startfolder)

Next, we create our "standard"

if __name__ routine.

#============================
if __name__ == '__main__':

main()

Now all the dull stuff is done, so

we can move on the the meat and

potatoes of our project. We'll start

with the MakeDataBase routine

(middle right). Put it right after the

imports.

We discussed this routine

before when we dealt with the

MP3 scanner, so I'll just remind you

that, in this routine, we check to

see if the table exists, and if not,

we create it.

Now we'll create the

WalkThePath routine (right,

second from bottom).

When we enter the routine (as

we talked about way back when),

we give the filepath that we are

going to search through. We clear

the showname variable, which we

will use later, and open an error

log file. Then we let the routine do

its thing. We get back from the call

(os.walk) a 3-tuple (directory path,

directory names, filenames). The

directory path is a string which is

the path to the directory, directory

names is a list of the names of

subdirectories in the path, and the

filenames is a list of non-directory

names. We then parse through the

list of filenames, checking to see if

the filename ends with one of our

target extensions.

for file in [f for f in files
if f.endswith
(('.avi','mkv','mp4','m4v'))]
:

#===
def main():

global connection
global cursor
Create the connection and cursor.
connection = apsw.Connection("TvShows.db3")
cursor = connection.cursor()
MakeDataBase()

#===
Set your video media paths
#===
startfolder = ["/extramedia/tv_files/","/media/freeagnt/tv_files_2/"]
for cntr in range(0,2):

WalkThePath(startfolder[cntr])
Close the cursor and the database

cursor.close()
connection.close()
print("Finished")

#===
def MakeDataBase():

IF the table does not exist, this will create the table.
Otherwise, this will be ignored due to the 'IF NOT EXISTS' clause
sql = 'CREATE TABLE IF NOT EXISTS TvShows (pkID INTEGER PRIMARY KEY, Series TEXT,

RootPath TEXT, Filename TEXT, Season TEXT, EPISODE TEXT);'
cursor.execute(sql)

#===
def WalkThePath(filepath):

showname = ""
Open the error log file
efile = open('errors.log',"w")
for root, dirs, files in

os.walk(filepath,topdown=True):

full circle magazine #71 10 contents ^

HOWTO - PROGRAMMING PYTHON Pt42

Now, we split the filename into

the extension and the filename

(without the extension). Next, we

call the GetSeasonEpisode routine

to pull out the Season/Episode

information that is embedded in

the filename, assuming it is

correctly formatted.

OriginalFilename,ext =
os.path.splitext(file)

fl = file

isok,data =
GetSeasonEpisode(fl)

GetSeasonEpisode returns a

boolean and a list (in this case

"data") which holds the name of

the series, the season, and the

episode numbers. If a filename

doesn't have the correct format,

the "isok" boolean variable (top

right) will be false.

Next (middle right), we will

check to see if the file is in the

database. If so, we don't want to

duplicate it. We simply check for

the filename. We could go deeper

and make sure the path is the same

as well, but for this time, this is

enough.

If everything works as it should,

the response from the query

should only be a 1 or a 0. If it's a 0,

then it's not there, and we will

write the information to the

database. If it is, we just move

past. Notice the Try Except

commands above and below. If

something goes wrong, like some

character that the database

doesn't like, it will keep the

program from aborting. We will,

however, log the error so we can

check it out later on.

We are simply inserting a new

record into the database or writing

to the error file.

Close the log

file
efile.close

End of WalkThePath

Now, let's look at the

GetSeasonEpisode routine.

#============================
=============
def

if isok:
showname = data[0]
season = data[1]
episode = data[2]
print("Season {0} Episode {1}".format(season,episode))

else:
print("No Season/EPisode")
efile.writelines('---------------------------\n')
efile.writelines('{0} has no series/episode information\n'.format(file))
efile.writelines('---------------------------\n\n')

sqlquery = 'SELECT count(pkid) as rowcount from TvShows where Filename =
"%s";' % fl

try:
for x in cursor.execute(sqlquery):

rcntr = x[0]
if rcntr == 0: # It's not there, so add it

try:
sql = 'INSERT INTO TvShows (Series,RootPath,Filename,Season,Episode)

VALUES (?,?,?,?,?)'
cursor.execute(sql,(showname,root,fl,season,episode))

except:
print("Error")
efile.writelines('---------------------------\n')
efile.writelines('Error writing to database...\n')
efile.writelines('Filename = {0}\n'.format(file))
efile.writelines('---------------------------\n\n')

except:
print("Error")

print('Series - {0} File - {1}'.format(showname,file))

full circle magazine #71 11 contents ^

HOWTO - PROGRAMMING PYTHON Pt42
GetSeasonEpisode(filename):

filename =
filename.upper()

resp =
re.search(r'(.*).S\d\dE\d\d(\
.*)', filename, re.M|re.I)

The re.search portion of the

code is part of the re library. It

uses a pattern string, and, in this

case, the filename that we want to

parse. The re.M|re.I are parameters

that say that we want to use a

multiline type search (re.M)

combined with an ignore-case

(re.I). As I said earlier, we'll deal

with the regular expressions more

next month, since our routine will

match only one type of

series|episode string. As for the

search pattern we are looking for:

".S", followed by two decimal

numbers, followed by an

uppercase "E", then two more

numbers, then a period. If our

filename looked like

"tvshow.S01E03.avi", this would

match. However, some people

encode their shows like this

"tvshow.s01e03.avi", or

"tvshow.103.avi", which makes it

harder to deal with. We'll modify

this routine next month to cover

the majority of the instances. The

"r'" allows for a raw string to be

used within the search.

Continuing on, the search

returns a match object that we can

look at. "resp" is a response that is

empty if there is no match, and, in

this case, two groups of returned

information. The first one will give

us the characters up to the match,

and the second including the

match. So, in the case above,

group(1) would be "tvshow", and

the second group would be

"tvshow.S01E03.". This is specified

by the parens in the search "(.*)"

and "(\.*)".

if resp:
showname =

resp.group(1)

We take the show name from

group number one. Then we get

the length of that so we can grab

the series and episode string with

a substring command.

shownamelength =
len(showname) + 1

se =
filename[shownamelength:shown
amelength+6]

season = se[1:3]
episode = se[4:6]

Next, we replace any periods in

the showname with a space – to be

more "Human Readable".

showname =
showname.replace("."," ")

We create a list to include the

show name, season and episode,

and return it along with the True

boolean to say things went well.

ret =
[showname,season,episode]

return True,ret

Otherwise, if we didn't find a

match, we create our list

containing no show name and two

"-1" numbers, and this gets

returned with a boolean False.

else:
ret = ["",-1,-1]
return False,ret

That's all the code. Now let's

see what the output would look

like. Assuming your file structures

are exactly like mine, some of the

output on the screen would look

like this...

Season 02 Episode 04
SELECT count(pkid) as
rowcount from TvShows where
Filename =
"InSecurity.S02E04.avi";
Series - INSECURITY File -
InSecurity.S02E04.avi
Season 01 Episode 08
SELECT count(pkid) as
rowcount from TvShows where
Filename =
"Prime.Suspect.US.S01E08.Unde
rwater.avi";
Series - PRIME SUSPECT US
File -

Prime.Suspect.US.S01E08.Under
water.avi

and so on. You can shorten the

output to keep the screen from

driving you crazy if you would like.

As we said earlier, each entry we

find gets put to the database.

Something like this:

pkID | Series | Root Path
| Filename
| Season | Episode

2526 | NCIS |
/extramedia/tv_files/NCIS/Sea
son
7|NCIS.S07E04.Good.Cop.Bad.Co
p.avi | 7 | 4

As always, the full code listing is

available on PasteBin.com at

http://pastebin.com/txmmagkL

Next time, we will deal with

more Season|Episode formats, and

do some other things to flesh out

our program.

See you soon.

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with his family. His website is
www.thedesignatedgeek.net.

http://www.thedesignatedgeek.net
http://pastebin.com/6iw5NQrW
http://pastebin.com/txmmagkL

full circle magazine #72 8 contents ^

HHOOWW--TTOO
Written by Greg Walters PPrrooggrraammmmiinngg IInn PPyytthhoonn:: PPtt 4433

Last time, we started a project

that would eventually use the

TvRage module that we created

the month before that. Now we

will continue the project. This time

we will be adding functionality to

our program: tweaking the

filename parse routine and adding

two fields (TvRageId and Status) to

the database. So, let’s jump right

in.

First, we will make the changes

to our import lines. For those who

are just joining us, I'll include the

ones from last time (shown top

right).

The lines after ‘import re’ are

the new ones for this time.

The next thing we will do is

rewrite the GetSeasonEpisode

routine. We are going to throw out

pretty much everything we did last

month, and make it more flexible

across the possible season/episode

schemes. In this iteration, we will

be able to support the following

schemes...

Series.S00E00

Series.s00e00

Series.S00E00.S00E01

Series.00x00

Series.S0000

Series.0x00

We will also fix any ‘missing

leading zero’ issues before we

write to the database.

Our first pattern tries to catch

multi-episode files. There are

various naming schemes, but the

one we will support is similar to

'S01E03.S01E04'. We use the

pattern string

"(.*)\.s(\d{1,2})e(\d{1,2})\.s(\d{1,2})

e(\d{1,2})". This returns (hopefully)

five groups which consist of: the

series name (S[1]), season(S[2]),

episode number 1 (S[3]), season

(S[4]), and episode number 2 (S[5]).

Remember that the parens create

each group for returns. In the case

above, we group anything from the

first character up to the ".s", then

two numbers, skip the "e", then

two numbers, and repeat. So the

filename

"Monk.S01E05.S01E06.avi" returns

the following groups...

S[1] = Monk

S[2] = 01

S[3] = 05

S[4] = 01

S[5] = 06

We are using only groups S[1],

S[2] and S[3] in this code, but you

can see where we are going with

this. If we find a match, we set a

variable named “GoOn” to true.

This allows us to know what we

should do after we’ve fallen

through the various If lines.

So, next page (top right) is the

code for the GetSeasonEpisode

routine.

When we get to this point,

(next page, bottom left) we

prepare the show name by

removing any periods in the show

name, and then pull the season

and episode information from the

various groups, and return them.

For the season information, if we

have a pattern like “S00E00”, the

season number will have a leading

zero. However if the pattern is like

“xxx”, then the season is assumed

to be the first character, and the

trailing two are the episode. In

order to be forward thinking, we

want to make the season a two-

digit number with a leading zero if

needed.

Next, in our MakeDatabase

routine, we will change the create

import os
from os.path import join, getsize, exists
import sys
import apsw
import re
#------------------------------
NEW LINES START HERE
#------------------------------
from xml.etree import ElementTree as ET
import urllib
import string
from TvRage import TvRage

full circle magazine #72 9 contents ^

HOWTO - PROGRAMMING PYTHON Pt43

SQL statement to add the two new

fields (next page, top).

Again, the only thing that has

changed from last time is the last

two field definitions.

In our WalkThePath routine, the

only changes are the lines that

actually insert into the database.

This is to support the new

structure. If you remember from

last time, we pass the folder that

holds our TV files to this routine. In

my case, there are two folders, so

it's set into a list and we use a for

loop to pass each into the routine.

As we go through the routine, we

walk through each directory

looking for files with extensions of

.avi, .mkv, .mp4 and .m4v. When we

find a file that matches, we send it

to the GetSeasonEpisode routine.

We then check to see if we already

def GetSeasonEpisode(filename):
GoOn = False
filename = filename.upper()

This is our first pattern check.
#Should catch multi episode .S01E01.S01E02 type filenames
resp = re.search(r'(.*)\.s(\d{1,2})e(\d{1,2})\.s(\d{1,2})e(\d{1,2})',filename, re.I)
if resp:

showname = resp.group(1)
GoOn = True

else:

Our second pattern check looks for SddEdd or sddedd...
Should catch SddEdd or sddedd

resp = re.search(r'(.*).S(\d\d?)E(\d\d?)(\.*)', filename, re.I)
if resp:

showname = resp.group(1)
GoOn = True

else:

The next pattern looks for ddxdd.
#check for ddxdd
resp = re.search(r'(.*)\.(\d{1,2})x(\d{1,2})(.*)', filename, re.I)
if resp:

showname = resp.group(1)
GoOn = True

else:

This pattern checks for Sdddd.
#check for Sdddd
resp = re.search(r'(.*).S(\d\d)(.\d\d?)' , filename, re.I)
if resp:

showname = resp.group(1)
GoOn = True

else:

And finally we try for ddd
Should catch xxx
resp = re.search(r'(.*)(\d)(.\d\d?)',filename,re.I)
if resp:

showname = resp.group(1)
GoOn = True

if GoOn:
shownamelength = len(showname) + 1
showname = showname.replace("."," ")
season = resp.group(2)
if len(season) == 1:

season = "0" + season
episode = resp.group(3)
ret = [showname,season,episode]
return True,ret

else:
ret = ["",-1,-1]
return False,ret

full circle magazine #72 10 contents ^

HOWTO - PROGRAMMING PYTHON Pt43

have it entered into the database,

and, if not, we add it. I’m going to

give you (top right) only part of the

routine from last month.

The two lines in black are the

ones that are new this time.

We are already over halfway

done. Next are some support

routines that work with our

TvRage routine to fill in the

database fields. Our first routine

runs after the WalkThePath

routine, and runs through the

database, getting the series name

and querying the TvRage server for

the id number. Once we have that,

we update the database, then use

that id number to once again query

TvRage to get the current status of

the series. This status can be "New

Series", "Returning Series",

"Canceled", "Ended" and "On

Haitus". The reason we want this

information is that, when we go to

check for new episodes, we don't

want to bother with series that

won't have any new episodes

because they are cancelled. So,

now we have the status and can

write that to the database (above).

We will pause here in our code

and look at the SQL query we are

using. It’s a bit different from

anything we’ve done before. The

string is:

SELECT DISTINCT series FROM
TvShows WHERE tvrageid = -1

Which says, give me just one

instance of the series name, no

matter how many of them I have,

where the field tvrageid is equal to

“-1”. If, for example, we have 103

episodes of Doctor Who 2005. By

using the Distinct, I will get back

only one record, assuming that we

haven’t gotten a TvRageID yet.

for x in
SeriesCursor.execute(sqlstrin
g):

seriesname = x[0]

searchname =

string.capwords(x[0]," ")

We are using the capwords

routine from the string library to

change the series name (x[0]) to a

“proper case” from the all-

uppercase we currently store the

show name in. We do this because

TvRage expects something other

that all-uppercase entries, and we

won’t get the results we are

looking for. So the series name

“THE MAN FROM UNCLE” will be

converted to “The Man From

def MakeDataBase():
IF the table does not exist, this will create the table.
Otherwise, this will be ignored due to the 'IF NOT EXISTS' clause
sql = 'CREATE TABLE IF NOT EXISTS TvShows (pkID INTEGER PRIMARY KEY, Series TEXT, RootPath TEXT, Filename TEXT,

Season TEXT, Episode TEXT, tvrageid TEXT,status TEXT);'
cursor.execute(sql)

sqlquery = 'SELECT count(pkid) as rowcount from TvShows where Filename =
"%s";' % fl

try:
for x in cursor.execute(sqlquery):

rcntr = x[0]
if rcntr == 0: # It's not there, so add it

try:
sql = 'INSERT INTO TvShows

(Series,RootPath,Filename,Season,Episode,tvrageid) VALUES (?,?,?,?,?,?)'
cursor.execute(sql,(showname,root,fl,season,episode,-1))

except:

def WalkTheDatabase():
tr = TvRage()
SeriesCursor = connection.cursor()
sqlstring = "SELECT DISTINCT series FROM TvShows WHERE tvrageid = -1"

full circle magazine #72 11 contents ^

HOWTO - PROGRAMMING PYTHON Pt43

Uncle”. We use that in the call to

our TvRage Library FindIdByName.

This gets the list of matching

shows, and displays them for us to

pick the best one. Once we pick

one, we update the database with

the id number and then call the

GetShowStatus routine to get the

current show status from TvRage

(bottom right).

The UpdateDatabase routine

(top) simply uses the series name

as the key to update all the records

with the proper TvRage ID.

GetShowStatus (above) is also

very simple. We call the

GetShowInfo routine from the

TvRage library by passing the id

that we just got to TvRage – to get

the series information. If you

remember, there is a lot of

information provided about the

series from TvRage, but all we are

concerned about at this point is

the show status. Since everything

is returned in a dictionary, we just

look for the [‘Status’] key. Once we

have it, we update the database

with that and move on. We are almost done with our

code. We finally add one line to our

main routine from last month (in

black, below) to call the

“WalkTheDatabase” routine after

we are done getting all our

print("Requesting information on " + searchname)
sl = tr.FindIdByName(searchname)
which = tr.DisplayShowResult(sl)
if which == 0:

print("Nothing found for %s" % seriesname)
else:

option = int(which)-1
id = sl[option]['ID']
UpdateDatabase(seriesname,id)
GetShowStatus(seriesname,id)

def UpdateDatabase(seriesname,id):
idcursor = connection.cursor()
sqlstring = 'UPDATE tvshows SET tvrageid = ' + id + ' WHERE series = "' + seriesname + '"'
try:

idcursor.execute(sqlstring)
except:

print "error"

def GetShowStatus(seriesname,id):
tr = TvRage()
idcursor = connection.cursor()
dict = tr.GetShowInfo(id)
status = dict['Status']
sqlstring = 'UPDATE tvshows SET status = "' + status + '" WHERE series = "' + seriesname + '"'
try:

idcursor.execute(sqlstring)
except:

print "Error"

startfolder = ["/extramedia/tv_files","/media/freeagnt/tv_files_2"]
#for cntr in range(0,2):

#WalkThePath(startfolder[cntr])
WalkTheDatabase()
Close the cursor and the database
cursor.close()
connection.close()
print("Finished")

http://pastebin.com/6iw5NQrW

full circle magazine #72 12 contents ^

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with his family. His website is
www.thedesignatedgeek.net.

HOWTO - PROGRAMMING PYTHON Pt43

filenames. Again, I’m going to give

you only part of the Main routine,

just so you can find the correct

place to put the new line.

That’s all our code. Let’s

mentally go over what happens

when we run the program.

First, we create the database if

it doesn’t exist.

Next, we walk through the

predefined paths, looking for files

that have any one of the following

extensions:

.AVI, .MKV, .M4V, .MP4

When we find one, we go

through and try to parse the

filename looking for a series name,

Season number, and episode

number. We take that information

and put it into a database, if it

does not already exist there.

Once we are through looking

for files, we query the database

looking for series names that don’t

have a TvRage ID associated with

them. We then will query the

TvRage API and ask for matching

files to gather that ID. Each series

will go through that step once. The

following screenshot shows the

options for, in this case, the tv

series Midsomer Murders.

I entered (in this case) 1, which

associates that series with the

TvRage ID 4466. That’s entered

into the database, and we then use

that ID to request the current

status for the series, again from

TvRage. In this case, we got back

“Returning Series”. This is then

entered into the database and we

move on.

While doing the initial “run”

into the database, it will take a

while and require your attention,

because each and every series

needs to ask about the ID number

match. The good news is that this

has to be done only once. If you

are “somewhat normal”, you won’t

have that many to deal with. I had

157 different series to do, so it

took a little while. Since I was

careful when I set up my filenames

(checking TvRage and

TheTvDB.com for the proper

wording of the series name), the

majority of the searches were the

#1 option.

Just to let you know, over half

of the TV series that I have either

ended or have been canceled. That

should tell you something about

the age group I fall in.

The full code is, as always,

available on PasteBin at

http://pastebin.com/MeuGyKpX

Next time we will continue with

the integration with TvRage. Until

then have a great month!

Requesting information on Midsomer Murders
5 Found

1 - Midsomer Murders - 4466
2 - Motives and Murders - 31373
3 - See No Evil: The Moors Murders - 11199
4 - The Atlanta Child Murders - 26402
5 - Motives & Murders: Cracking the Case - 33322
Enter Selection or 0 to exit ->

http://www.thedesignatedgeek.net
http://pastebin.com/MeuGyKpX

	Slide 1
	Slide 2

