
THE INDEPENDENT MAGAZINE FOR THE UBUNTU LINUX COMMUNITY

PROGRAMMING SERIES SPECIAL EDITION

 PROGRAMPROGRAM
 IN PYTHONIN PYTHON
 Volume Volume SixEight
 Parts 3Parts 442-34-4388

Full Circle

Full Circle Magazine is neither ailiated, with nor endorsed by, Canonical Ltd.

Full Circle Magazine Specials

full circle magazine

The articles contained in this magazine are released under the Creative Commons Attribution-Share Alike 3.0
Unported license. This means you can adapt, copy, distribute and transmit the articles but only under the following conditions:

You must attribute the work to the original author in some way (at least a name, email or URL) and to this magazine by name ('full circle magazine') and
the URL www.fullcirclemagazine.org (but not attribute the article(s) in any way that suggests that they endorse you or your use of the work). If you alter,
transform, or build upon this work, you must distribute the resulting work under the same, similar or a compatible license.
Full Circle Magazine is entirely independent of Canonical, the sponsor of Ubuntu projects and the views and opinions in the magazine should in
no way be assumed to have Canonical endorsement.

Please note: this Special
Edition is provided with
absolutely no warranty
whatsoever; neither the
contributors nor Full Circle
Magazine accept any
responsibility or liability for
loss or damage resulting from
readers choosing to apply this
content to theirs or others
computers and equipment.

About Full Circle

Full Circle is a free,
independent, magazine
dedicated to the Ubuntu
family of Linux operating
systems. Each month, it
contains helpful how-to
articles and reader-
submitted stories.

Full Circle also features a
companion podcast, the Full
Circle Podcast which covers
the magazine, along with
other news of interest.

Welcome to another 'single-topic special'

In response to reader requests, we are assembling the
content of some of our serialised articles into dedicated
editions.

For now, this is a straight reprint of the series
'Programming in Python', Parts 44-48 from issues #73
through #78, allowing peerless Python professor Gregg
Walters #74 as time of for good behaviour.

Please bear in mind the original publication date; current
versions of hardware and software may difer from those
illustrated, so check your hardware and software versions
before attempting to emulate the tutorials in these special
editions. You may have later versions of software installed
or available in your distributions' repositories.

Enjoy!

Find Us

Website:
http://www.fullcirclemagazine.org/

Forums:
http://ubuntuforums.org/
forumdisplay.php?f=270

IRC: #fullcirclemagazine on
chat.freenode.net

Editorial Team

Editor: Ronnie Tucker
(aka: RonnieTucker)
ronnie@fullcirclemagazine.org

Webmaster: Rob Keria
(aka: admin / linuxgeekery-
admin@fullcirclemagazine.org

Editing & Proofreading
Mike Kennedy, Lucas Westermann,
Gord Campbell, Robert Orsino,
Josh Hertel, Bert Jerred

Our thanks go to Canonical and the
many translation teams around the
world.

full circle magazine #73 8 contents ^

HHOOWW--TTOO
Written by Greg Walters PPrrooggrraammmmiinngg IInn PPyytthhoonn:: PPtt 4444

We are going to take a short

detour this month from our

TVRage program to partially

answer a question from a reader. I

was asked to talk about QT

Creator, and how to use it to

design user interfaces for Python

programs.

Unfortunately, from what I can

tell, the support for QT Creator

isn't ready yet for Python. It IS

being worked on, but is not “ready

for prime time” quite yet.

So, in an effort to get us ready

for that future article, we will work

with QT4 Designer. You will need

to install (if they aren't already)

python-qt4, qt4-dev-tools, python-

qt4-dev, pyqt4-dev-tools and

libqt4-dev.

Once that is done, you can find

QT4 Designer under Applications |

Programming. Go ahead and start

it up. You should be presented

with something like the following:

Make sure that 'Main Window'

is selected, and click the 'Create'

button. Now you will have a blank

form that you can drag and drop

controls onto.

The first thing we want to do is

resize the main window. Make it

about 500x300. You can tell how

big it is by looking at the Property

Editor under the geometry

property on the right side of the

designer window. Now, scroll down

on the property editor list box until

you see 'windowTitle'. Change the

text from 'MainWindow' to 'Python

Test1'. You should see the title bar

of our design window change to

'Python Test1 – untitled*'. Now is a

good time to save our project.

Name it 'pytest1.ui'. Next, we will

put a button on our form. This will

be an exit button to end the test

program. On the left side of the

designer window you will see all of

the controls that are available. Find

the 'Buttons' section and drag and

drop the 'Push Button' control

onto the form. Unlike the GUI

designers we have used in the

past, you don't have to create grids

to contain your controls when you

use QT4 Designer. Move the

button to near center-bottom of

the form. If you look at the

Property Editor under geometry,

you will see something like this:

[(200,260), 97x27]

In the parentheses are the X

and Y positions of the object

(push-button in this case) on the

form, followed by its width and

height. I moved mine to 200,260.

Just above that is the

objectName property—which, by

default, is set to 'pushButton'.

Change that to 'btnExit'. Now

scroll down on the Property Editor

list to the 'QAbstractButton'

section, and set the 'text' property

to 'Exit'. You can see on our form

that the text on the button has

changed.

Now, add another button and

position it at 200,200. Change its

objectName property to

'btnClickMe,' and set the text to

'Click Me!'.

Next add a label. You will find it

in the toolbox on the left under

'DisplayWidgets'. Put it close to

the center of the form (I put mine

full circle magazine #73 9 contents ^

HOWTO - PROGRAMMING PYTHON Pt44

at 210,130), and set its

objectName property to lblDisplay.

We will want to make it bigger

than what it is by default, so set its

size to somewhere around 221 x

20. In the property editor, scroll

down to the 'Qlabel’ section, and

set the Horizontal alignment to

'AlignHCenter'. Change the text to

blank. We will set the text in

code—when the btnClickMe is

clicked. Now save the project

again.

SLOTS & SIGNALS

This next section might be a bit

difficult to wrap your head around,

especially if you have been with us

for a long time and have dealt with

the previous GUI designers. In the

other designers, we used events

that were raised when an object

was clicked, like a button. In QT4

Designer, events are called Signals,

and the function that is called by

that signal is called a Slot. So, for

our Exit button, we use the Click

signal to call the Main Window

Close slot. Are you totally

confused right now? I was when I

first dealt with QT, but it begins to

make sense after a while.

Fortunately, there is a very easy

way to use predefined slots &

signals. If you press the F4 button

on the keyboard, you will be in the

Edit Signals & Slots mode. (To get

out of the Edit Signals & Slots

mode, press F3.) Now, left click and

hold on the Exit button, and drag

slightly up and to the right, off the

button onto the main form, then

release the click. You will see a

dialog pop up that looks

something like that shown above.

This will give us an easy way to

connect the clicked signal to the

form. Select the first option on the

left which should be 'clicked()'. This

will enable the right side of the

window and select the 'close()'

option from the list, then click

'OK'. You will see something that

looks like this:

The click signal (event) is linked

to the Close routine of the main

window.

For the btnClickMe clicked

signal, we will do that in code.

Save the file one more time.

Exit QT4 Designer and open a

terminal. Change to the directory

that you saved the file in. Now we

will generate a python file by using

the command line tool pyuic4. This

will read the .ui file. The command

will be:

pyuic4 -x pytest1.ui -o
pytest1.py

The -x parameter says to

include the code to run and display

the UI. The -o parameter says to

create an output file rather than

just display the file in stdout. One

important thing to note here. Be

SURE to have everything done in

QT4 Designer before you create

the python file. Otherwise, it will

be completely rewritten and you'll

have to start over from scratch.

Once you've done this, you will

have your python file. Open it up in

your favorite editor.

The file itself is only about 65

lines long, including comments. We

had only a few controls so, it

wouldn't be very long. I'm not

going to show a great deal of the

code. You should be able to follow

most all of the code by now.

However we will be creating and

adding to the code in order to put

the functionality in to set the label

text.

The first thing we need to do is

copy the signal & slot line and

modify it. Somewhere around line

47 should be the following code:

QtCore.QObject.connect(self.b
tnExit,
QtCore.SIGNAL(_fromUtf8("clic

full circle magazine #73 10 contents ^

HOWTO - PROGRAMMING PYTHON Pt44
ked()")), MainWindow.close)

Copy that, and, right below it,

paste the copy. Then change it to:

QtCore.QObject.connect(self.b
tnClickMe,
QtCore.SIGNAL(_fromUtf8("clic
ked()")), self.SetLabelText)

This will then create the

signal/slot connection to our

routine that will set the label text.

Under the retranslateUi routine

add the following code:

def SetLabelText(self):

self.lblDisplay.setText(_from
Utf8("That Tickles!!!"))

I got the label setText

information from the initialization

line in the setupUi routine.

Now run your code. Everything

should work as expected.

Although this is a VERY simple

example, I'm sure you are

advanced enough to play with QT4

Designer and get an idea of the

power of the tool.

Next month, we will return

from our detour and start working

on the user interface for our

TVRage program.

As always, the code can be

found on pastebin at

http://pastebin.com/98fSasdb for

the .ui code, and

http://pastebin.com/yC30B885 for

the python code.

See you next time.

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with his family. His website is
www.thedesignatedgeek.net.

MY STORY QUICKIE
By Anthony Venable

This story begins at the beginning of 2010. I was broke at the

time so I was trying to find a free operating system. I needed

something I could run on my PCs at home. I had searched on the

Internet, but found nothing useful for a long time. But one day I

was at Barnes and Noble and I saw a magazine for Linux. (While I

had heard of Linux before, I never thought of it as something I

would ever be able to use.) When I asked people who I knew were

computer professionals, I was told it was for people that were

experts, and difficult to use. I never heard anything positive about

it. I am so amazed that I hadn’t came across it sooner.

When I read the magazine I became exposed to Ubuntu 9.10 -

Karmic Koala. It sounded so good, as if it was exactly what I was

looking for. As a result, I got very excited took it home, and to my

surprise had such an easy time installing it to my PC that I decided

to run it along with Windows XP as a dual boot system. All I did

was put the live CD in the drive and the instructions were step by

step you would have to be pretty slow to not get how to set

things up.

Since then I have been very satisfied with Ubuntu in general

and I have been able to check out later versions of it such as 10.04

(Maverick Meerkat) and 10.10 Lucid Lynx. I looked forward to

future versiobs for how they integrate multi-touch even more

than 10.04.

This experience just goes to show once again how I manage to

find the coolest stuff by accident.

http://www.thedesignatedgeek.net
http://pastebin.com/98fSasdb
http://pastebin.com/yC30B885

full circle magazine #75 8 contents ^

HHOOWW--TTOO
Written by Greg Walters PPrrooggrraammmmiinngg IInn PPyytthhoonn -- PPaarrtt 4455

This time, we are going to

rework our database program

from the previous few articles

(parts 41, 42 and 43). Then, over

the next few articles, we will use

QT to create the user interface.

First, let's look at how the

existing application works. Here's a

gross overview:

• Create a connection to the

database – which creates the

database if needed.

• Create a cursor to the database.

• Create the table if it doesn't

exist.

• Assign the video folder(s) to a

variable.

• Walk through the folder(s)

looking for video files.

• Get the filename, seriesname,

season number, episode number.

• Check to see if the episode exists

in the database.

• If it is not there, add it to the

database with a “-1” as the TvRage

ID.

• Then walk through the database

getting show id and status if

needed, and update database.

We will redesign the database

to include another table and

modify the existing data table.

First, we will create our new table

called Series. It will hold all the

information about the tv series we

have on our system. The new table

will include the following fields:

• Pkid

• Series Name

• TvRage Series ID

• Number of seasons

• Start Date

• Ended Flag

• Country of origin

• Status of the series (ended,

current, etc)

• Classification (scripted, "reality",

etc)

• Summary of the series plot

• Genres

• Runtime in minutes

• Network

• Day of the week it airs

• Time of day it airs

• Path to the series

We can use the existing

MakeDataBase routine to create

our new table. Before the existing

code, add the code shown above

right.

The SQL statement (“sql = …”)

should be all on one line, but is

broken out here for ease of your

understanding. We’ll leave the

modification of the existing table

for later.

Now we have to modify our

WalkThePath routine to save the

series name and path into the

series table.

Replace the line that says

sqlquery = 'SELECT
count(pkid) as rowcount from
TvShows where Filename =
"%s";' % fl

with

sqlquery = 'SELECT
count(pkid) as rowcount from
series where seriesName =
"%s";' % showname

This (to refresh your memory)

will check to see if we have already

put the series into the table. Now

find the two lines that say:

sql = 'INSERT INTO TvShows
(Series,RootPath,Filename,Sea
son,Episode,tvrageid) VALUES
(?,?,?,?,?,?)'

cursor.execute(sql,(showname,
root,fl,season,episode,-1))

sql = 'CREATE TABLE IF NOT EXISTS Series (
pkid INTEGER PRIMARY KEY AUTOINCREMENT,
SeriesName TEXT,
SeriesID TEXT,
Seasons TEXT,
StartDate TEXT,
Ended TEXT,
OriginCountry TEXT,
Status TEXT,
Classification TEXT,
Summary TEXT,
Genres TEXT,
Runtime TEXT,
Network TEXT,
AirDay TEXT,
AirTime TEXT,
Path TEXT);'

cursor.execute(sql)

full circle magazine #75 9 contents ^

HOWTO - PYTHON PT45

and replace them with

sql = 'INSERT INTO Series
(SeriesName,Path,SeriesID)
VALUES (?,?,?)'

cursor.execute(sql,(showname,
root,-1))

This will insert the series name

(showname), path to the series,

and a “-1” as the TvRage id. We use

the “-1” as a flag to know that we

need the series information from

TvRage.

Next we will rework the

WalkTheDatabase routine to pull

those series that we don’t have any

information for (SeriesID = -1) and

update that record.

Change the query string from

sqlstring = "SELECT DISTINCT
series FROM TvShows WHERE
tvrageid = -1"

to

sqlstring = "SELECT
pkid,SeriesName FROM Series
WHERE SeriesID = -1"

This will create a result-set that

we can then use to query TvRage

for each series. Now find/replace

the following two lines

seriesname = x[0]

searchname =
string.capwords(x[0]," ")

with

pkid = x[0]

seriesname = x[1]

searchname =
string.capwords(x[1]," ")

We will use the pkID for the

update statement. Next we have

to modify the call to the

UpdateDatabase routine to include

the pkid. Change the line

UpdateDatabase(seriesname,id)

to

UpdateDatabase(seriesname,id,
pkid)

and change the line

GetShowStatus(seriesname,id)

to

GetShowData(seriesname,id,pki
d)

Which will be a new routine we

will create in a moment.

Next, change the definition of

the UpdateDatabase routine from

def
UpdateDatabase(seriesname,id)
:

to

def
UpdateDatabase(seriesname,id,
pkid):

Next, we need to change the

query string from

sqlstring = 'UPDATE tvshows
SET tvrageid = ' + id + '
WHERE series = "' +
seriesname + '"'

to

sqlstring = 'UPDATE Series
SET SeriesID = ' + id + '
WHERE pkID = %d' % pkid

Now we need to create the

GetShowData routine (top). We’ll

grab the information from TvRage

and insert it into the Series table.

Just as a memory refresher, we

are creating an instance of the

TvRage routines and creating a

dictionary that holds the

information on our series. We will

then create variables to hold the

data for updating the table

(above).

Remember that Genres come in

as subelements and contain one or

many genre listings. Luckily when

we coded the TvRage routines, we

created a string that holds all the

genres, no matter how many are

returned, so we can just use the

genre string:

genres = dict['Genres']

def GetShowData(seriesname,id,pkid):
tr = TvRage()
idcursor = connection.cursor()
dict = tr.GetShowInfo(id)

seasons = dict['Seasons']
startdate = dict['StartDate']
ended = dict['Ended']
origincountry = dict['Country']
status = dict['Status']
classification = dict['Classification']
summary = dict['Summary']

full circle magazine #75 10 contents ^

HOWTO - PYTHON PT45
runtime = dict['Runtime']

network = dict['Network']

airday = dict['Airday']

airtime = dict['Airtime']

Finally, we create the query

string to do the update (bottom).

Again, this should all be on one

line, but I’ve broken it up here to

make it easy to understand.

The {number} portion (just to

remind you) is similar to the “%s”

formatting option. This creates our

query string replacing the

{number} with the actual data we

want. Since we’ve already defined

all of these fields as text, we want

to use the double quotes to

enclose the data being added.

And lastly, we write to the

database (below).

That is all for this time. Next

time, we’ll continue as I laid out at

the beginning of the article. Until

next time, Enjoy.

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with his family. His website is
www.thedesignatedgeek.net.

sqlstring = 'Update Series SET Seasons = "{0}", StartDate = "{1}", Ended = "{2}",
OriginCountry = "{3}", Status = "{4}", Classification = "{5}",
Summary = "{6}", Genres = "{7}", Runtime = "{8}", Network = "{9}",
AirDay = "{10}",AirTime = "{11}"
WHERE pkID ={12}'.format(seasons,startdate,ended,
origincountry,status,classification,summary,
genres,runtime,network,airday,airtime,pkid)

try:
idcursor.execute(sqlstring)

except:
print "Error Adding Series Information"

The Ubuntu Podcast covers all

the latest news and issues facing

Ubuntu Linux users and Free

Software fans in general. The

show appeals to the newest user

and the oldest coder. Our

discussions cover the

development of Ubuntu but

aren’t overly technical. We are

lucky enough to have some

great guests on the show, telling

us first hand about the latest

exciting developments they are

working on, in a way that we can

all understand! We also talk

about the Ubuntu community

and what it gets up to.

The show is presented by

members of the UK’s Ubuntu

Linux community. Because it is

covered by the Ubuntu Code of

Conduct it is suitable for all.

The show is broadcast live every

fortnight on a Tuesday evening

(British time) and is available for

download the following day.

podcast.ubuntu-uk.org

http://www.thedesignatedgeek.net
http://podcast.ubuntu-uk.org/

full circle magazine #76 9 contents ^

HHOOWW--TTOO
Written by Greg Walters PPrrooggrraammmmiinngg IInn PPyytthhoonn -- PPaarrtt 4466

U sually, my articles are fairly

long. However, due to some

medical issues, this will be a fairly

short article (in the grand scheme

of things) this month. However, we

will push through and continue our

series on the media manager

program.

One of the things our program

will do for us is let us know if we

have any missing episodes from

any given series in the database.

Here's the scenario. We have a

series, we'll call it “That 80's

Show”, that ran for three seasons.

In season 2, there were 15

episodes. However, we have only

13 of them in our library. How do

we find which episodes are missing

– programmatically?

The simplest way is to use lists

and sets. We have already used

lists in a number of the articles

over the last four years, but Sets

are a new data type to this series,

so we'll examine them for a while.

According to the “official

documentation” for Python

(docs.python.org), here is the

definition of a set:

“A set is an unorderedcollection

with no duplicate elements. Basic

uses includemembership testing and

eliminating duplicate entries. Set

objects also supportmathematical

operations like union, intersection,

difference, andsymmetric

difference.”

I'll continue to use the example

from the documentation page to

illustrate the process.

>>> Basket =
['apple','orange','apple','pe
ar','orange','banana']

>>> fruit = set(basket)

>>> fruit

set(['orange','pear','apple',
'banana'])

Notice that in the original list

that was assigned to the basket

variable, apple and orange were

put in twice, but, when we

assigned it to a set, the duplicates

were discarded. Now, to use the

set that we just created, we can

check to see if an item of fruit (or

something else) is in the set. We

can use the “in” operator.

>>> 'orange' in fruit

True

>>> 'kiwi' in fruit

False

>>>

That's pretty simple and,

hopefully, you are beginning to see

where all this is going. Let's say we

have a shopping list that has a

bunch of fruit in it, and, as we go

through the store, we want to

check what we are missing –

basically the items in the shopping

list but not in our basket. We can

start like this.

>>> shoppinglist =
['orange','apple','pear','ban
ana','kiwi','grapes']

>>> basket =
['apple','kiwi','banana']

>>> sl = set(shoppinglist)

>>> b = set(basket)

>>> sl-b

set(['orange', 'pear',
'grapes'])

>>>

We create our two lists,

shoppinglist for what we need and

basket for what we have. We

assign each to a set and then use

the set difference operator (the

minus sign) to give us the items

that are in the shopping list but

not in the basket.

Now, using the same logic, we

will create a routine (next page,

bottom left) that will deal with our

missing episodes. We will call our

routine “FindMissing” and pass it

two variables. The first is an

integer that is set to the number of

episodes in that season and the

second is a list containing the

episode numbers that we have for

that season.

The routine, when you run it,

prints out [5, 8, 15], which is

correct. Now let's look at the code.

The first line creates a set called

EpisodesNeeded using a list of

integers created using the range

function. We need to give the

range function the start value and

end value. We add 1 to the range

high value to give us the correct

list of values from 1 to 15.

full circle magazine #76 10 contents ^

HOWTO - PYTHON PT46

Remember the range function is

actually 0 based, so when we give

it 16 (expected (15) + 1), the actual

list that range creates is 0 to 15.

We tell the range function to start

at 1, so even though the range is 0

to 15 which is 16 values, we want

15 starting at 1.

Next we create a set from the

list that is passed into our routine,

which contains the episode

numbers that we actually have.

Now we can create a list using

the set difference operator on the

two sets. We do this so we can sort

it with the list.sort() method. You

can certainly return the list if you

wish, but in this iteration of the

routine, we’ll just print it out.

Well, that’s all the time in the

chair in front of the computer that

my body can stand, so I’ll leave you

for this month, wondering how we

are going to use this in our media

manager.

Have a good month and see you

soon.

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with his family. His website is
www.thedesignatedgeek.net.

def FindMissing(expected,have):
#===================================
‘expected’ is the number of episodes we should have
‘have’ is a list of episodes that we do have
returns a sorted list of missing episode numbers
#===================================
EpisodesNeeded = set(range(1,expected+1))
EpisodesHave = set(have)
StillNeed = list(EpisodesNeeded - EpisodesHave)
StillNeed.sort()
print StillNeed

FindMissing(15,[1,2,3,4,6,7,9,10,11,12,13,14])

PYTHON SPECIAL EDITIONS:

http://fullcirclemagazine.org/issue-py01/ http://fullcirclemagazine.org/issue-py02/

http://fullcirclemagazine.org/python-
special-edition-issue-three/

http://fullcirclemagazine.org/python-
special-edition-volume-four/

http://fullcirclemagazine.org/python-
special-edition-volume-five/

http://fullcirclemagazine.org/python-
special-edition-volume-six/

http://www.thedesignatedgeek.net
http://fullcirclemagazine.org/issue-py01/
http://fullcirclemagazine.org/issue-py02/
http://fullcirclemagazine.org/python-special-edition-issue-three/
http://fullcirclemagazine.org/python-special-edition-volume-four/
http://fullcirclemagazine.org/python-special-edition-volume-five/
http://fullcirclemagazine.org/python-special-edition-volume-six/

full circle magazine #77 7 contents ^

HHOOWW--TTOO
Written by Greg Walters PPrrooggrraammmmiinngg IInn PPyytthhoonn -- PPaarrtt 4477

Last month, we discussed using

sets to show us missing

episode numbers. Now’s the time

to put the rough code we

presented into practice.

We’ll modify one routine and

write one routine. We’ll do the

modification first. In the working

file that you’ve been using the last

few months, find the

WalkThePath(filepath) routine. The

fourth and fifth lines should be:

efile =
open('errors.log',"w")

for root, dirs, files in
os.walk(filepath,topdown=True
):

In between these two lines, we

will insert the following code:

lastroot = ''

elist = []

currentshow = ''

currentseason = ''

By now, you should recognize

that all we’re doing here is

initializing variables. There are

three string variables and one list.

We will use the list to hold the

episode numbers (hence the elist

name).

Let’s take a quick look and

freshen our memory (above) about

what we’re doing in the existing

routine before we modify any

further.

The first two lines here set

things up for the walk-the-path

routine where we start at a given

folder in the file system and

recursively visit each folder below,

and check for files that have the

file extension of .avi, .mkv, .mp4 or

.m4v. If there are any, we then

iterate through the list of those

filenames.

In the line above right, we call

the GetSeasonEpisode routine to

pull the series name, season

number and episode number from

the filename. If everything parses

correctly, the variable isok is set to

true, and the data we are looking

for is placed into a list and then

returned to us.

Here (below) we are simply

assigning the data passed back

from GetSeasonEpisode and

putting them into separate

variables that we can play with.

Now that we know where we were,

let’s talk about where we are

going.

We want to get the episode

number of each file and put it into

the elist list. Once we are done

with all the files within the folder

we are currently in, we can then

make the assumption that we have

been pretty much keeping up with

the files and the highest numbered

episode is the latest one available.

As we discussed last month, we

can then create a set that is

numbered from 1 to the last

episode, and convert the list to a

set and pull a difference. While

that is great in theory, there is a bit

of a “hitch in our git-a-long” when

it comes down to actual practice.

We don’t actually get a nice and

neat indication as to when we are

done with any particular folder.

What we do have though, is the

knowledge that when we get done

with each file, the code right after

the “for file in [...” gets run. If we

know the name of the last folder

for root, dirs, files in os.walk(filepath,topdown=True):
for file in [f for f in files if f.endswith (('.avi','mkv','mp4','m4v'))]:

Combine path and filename to create a single variable.
fn = join(root,file)
OriginalFilename,ext = os.path.splitext(file)
fl = file
isok,data = GetSeasonEpisode(fl)

if isok:
showname = data[0]
season = data[1]
episode = data[2]
print("Season {0} Episode {1}".format(season,episode))

full circle magazine #77 8 contents ^

HOWTO - PYTHON PT47

visited, and the current folder

name, we can compare the two

and, if they are different, we have

finished a folder and our episode

list should be complete. That’s

what the ‘lastroot’ variable is for.

Just after the ‘for file in[‘ line is

where we’ll put the majority of our

new code. It’s only seven lines.

Here are the seven lines. (The

black lines are the existing lines for

your convenience.)

Line by line of the new code,

here is the logic:

First, we check to see if the

variable lastroot has the same

value as root (the current folder

name). If so, we are in the same

folder, so we don’t run any of the

code. If not, we then assign the

current folder name to the lastroot

variable. Next, we check to see if

the episode list (elist) has any

entries (len(elist) > 0). This is to

make sure we weren’t in an empty

directory. If we have items in the

list, then we call the Missing

routine. We pass the episode list,

the highest episode number, the

current season number, and the

name of the season, so we can

print that out later on. The last

three lines clear the list, the

current show name, and the

current season, and we move on as

we did before.

Next we have to change two

lines and add one line of code into

the if isok: code, a few lines down.

Again, right, the black lines are the

existing code:

Here, we have just come back

from the GetSeasonEpisode

routine. If we had a parsable file

name, we want to get the show

name and season number, and add

the current episode into the list.

Notice, we are converting the

episode number to an integer

before we add it to the list.

We are done with this portion

of the code. Now, all we have to do

is add the Missing routine. Just

after the WalkThePath routine,

we’ll add the following code.

Again, it is a very simple set of

code and we pretty much went

over it last month, but we’ll walk

through it just in case you missed

it.

We define the function and set

up four parameters. We will be

passing the episode list (eplist),

the number of episodes we should

expect (shouldhave) which is the

highest episode number in the

episode list, the season number

(season), and the show name

(showname).

Next, we create a set that

contains a list of numbers using

the range built-in function, starting

with 1 and going to the value in

shouldhave + 1. We then call the

difference function – on this set

for file in [f for f in files if f.endswith (('.avi','mkv','mp4','m4v'))]:
Combine path and filename to create a single variable.
if lastroot != root:

lastroot = root
if len(elist) > 0:

Missing(elist,max(elist),currentseason,currentshow)
elist = []
currentshow = ''
currentseason = ''

fn = join(root,file)

isok,data = GetSeasonEpisode(fl)
if isok:

currentshow = showname = data[0]
currentseason = season = data[1]
episode = data[2]
elist.append(int(episode))

else:

#----------------------------------
def Missing(eplist,shouldhave,season,showname):

temp = set(range(1,shouldhave+1))
ret = list(temp-set(eplist))
if len(ret) > 0:

print('Missing Episodes for {0} Season {1} - {2}'.format(showname,season,ret))

full circle magazine #77 9 contents ^

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with his family. His website is
www.thedesignatedgeek.net.

HOWTO - PYTHON PT47

and a converted set from the

episode list (temp-set(eplist)) –

and convert it back to a list. We

then check to see if there is

anything in the list – so we don’t

print a line with an empty list, and

if there’s anything there, we print

it out.

That’s it. The one flaw in this

logic is that by doing things this

way, we don’t know if there are

any new episodes that we don’t

have.

I’ve put the two routines up on

pastebin for you if you just want to

do a quick replace into your

working code. You can find it at

http://pastebin.com/XHTRv2dQ.

Have a good month and we’ll

see you soon.

The Ubuntu Podcast covers all

the latest news and issues facing

Ubuntu Linux users and Free

Software fans in general. The

show appeals to the newest user

and the oldest coder. Our

discussions cover the

development of Ubuntu but

aren’t overly technical. We are

lucky enough to have some

great guests on the show, telling

us first hand about the latest

exciting developments they are

working on, in a way that we can

all understand! We also talk

about the Ubuntu community

and what it gets up to.

The show is presented by

members of the UK’s Ubuntu

Linux community. Because it is

covered by the Ubuntu Code of

Conduct it is suitable for all.

The show is broadcast live every

fortnight on a Tuesday evening

(British time) and is available for

download the following day.

podcast.ubuntu-uk.org

PYTHON SPECIAL EDITIONS:

http://fullcirclemagazine.org/issue-py01/ http://fullcirclemagazine.org/issue-py02/

http://fullcirclemagazine.org/python-
special-edition-issue-three/

http://fullcirclemagazine.org/python-
special-edition-volume-four/

http://fullcirclemagazine.org/python-
special-edition-volume-five/

http://fullcirclemagazine.org/python-
special-edition-volume-six/

http://www.thedesignatedgeek.net
http://podcast.ubuntu-uk.org/
http://fullcirclemagazine.org/issue-py01/
http://fullcirclemagazine.org/issue-py02/
http://fullcirclemagazine.org/python-special-edition-issue-three/
http://fullcirclemagazine.org/python-special-edition-volume-four/
http://fullcirclemagazine.org/python-special-edition-volume-five/
http://fullcirclemagazine.org/python-special-edition-volume-six/

full circle magazine #78 9 contents ^

HHOOWW--TTOO
Written by Greg Walters PPrrooggrraammmmiinngg IInn PPyytthhoonn -- PPaarrtt 4488

Welcome back. It’s hard to

imagine that it’s been 4

years since I began this series. I

thought that I’d shelve the media

manager project for a bit and

return to some basics of Python

programming.

This month, I’ll revisit the print

command. It’s one of the most

used (at least in my programming)

function that never seems to get

the detail it deserves. There is a lot

of things you can do with it outside

of the standard ‘%s %d’.

Since the print function syntax

is different between Python 2.x

and 3.x, we’ll look at them

separately. Remember, however,

you can use the 3.x syntax in

Python 2.7. Most everything I

present this month will be done

from the interactive shell. You can

follow along as we go. The code

will look like this:

>>> a = "Hello Python"

>>> print("String a is %s" %
a)

and the output will be in bold, like

this:

String a is Hello Python

PYTHON 2.X

Of course you remember the

simple syntax for the print function

in 2.x uses the variable substitution

of %s or %d for simple strings or

decimals. But many other

formatting options are available.

For example, if you need to format

a number with leading zeros, you

can do it this way:

>>> print("Your value is
%03d" % 4)
Your value is 004

In this case, we use the ‘%03d’

formatting command to say,

“Display the number to a width of

3 characters and if needed, left pad

with zeros”.

>>> pi = 3.14159

>>> print('PI = %5.3f.' % pi)

PI = 3.142.

Here we use the float

formatting option. The ‘%5.3f’ says

to produce an output with a total

width of five and three decimal

places. Notice that the decimal

point takes up one of the places of

the total width.

One other thing that you might

not realize is that you can use the

keys of a dictionary as part of the

format command.

>>> info =
{"FName":"Fred","LName":"Fark
el","City":"Denver"}

>>> print('Greetings
%(FName)s %(LName)s of
%(City)s!' % info)

Greetings Fred Farkel of
Denver!

The following table shows the

various possible substitution keys

and their meanings.

full circle magazine #78 10 contents ^

HOWTO - PYTHON PT48

PYTHON 3.X

With Python 3.x, we have many

more options (remember we can

use these in Python 2.7) when it

comes to the print function.

To refresh your memory, here’s

a simple example of the 3.x print

function.

>>> print('{0}
{1}'.format("Hello","Python")
)
Hello Python

>>> print("Python is {0}
cool!".format("WAY"))
Python is WAY cool!

The replacement fields are

enclosed within curly brackets “{“

“}”. Anything outside of these are

considered a literal and will be

printed as is. In the first example,

we have numbered the

replacement fields 0 and 1. That

tells Python to take the first (0)

value and put it into the field {0}

and so on. However, you don’t have

to use any numbers at all. Using

this option causes the first value to

be places in the first set of

brackets and so on.

>>> print("This version of {}
is
{}".format("Python","3.3.2"))

This version of Python is
3.3.2

As they say on the TV ads, “BUT

WAIT… THERE’S MORE”. If we

wanted to do some inline

formatting, we have the following

options.

:<x Left align with a width
of x
:>x Right align with a width
of x
:^x Center align with a width
of x

Here is an example:

>>>
print("|{:<20}|".format("Left
"))
|Left |
>>>
print("|{:>20}|".format("Righ
t"))
| Right|
>>>
print("|{:^20}|".format("Cent
er"))
| Center |

You can even specify a fill

character along with the

justification/width.

>>>
print("{:*>10}".format(321.40
))
*****321.4

If you need to format a

date/time output, you can do

something like this:

>>> d =
datetime.datetime(2013,10,9,1
0,45,1)

>>>
print("{:%m/%d/%y}".format(d)
)
10/09/13

>>>
print("{:%H:%M:%S}".format(d)
)
10:45:01

Printing thousands separator

using a comma (or any other

character) is simple.

>>> print("This is a big
number
{:,}".format(7219219281))
This is a big number
7,219,219,281

Well, that should give you

enough food for thought for this

month. I’ll see you at the start of

the 5th year.

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with his family. His website is
www.thedesignatedgeek.net.

The Ubuntu Podcast covers all

the latest news and issues facing

Ubuntu Linux users and Free

Software fans in general. The

show appeals to the newest user

and the oldest coder. Our

discussions cover the

development of Ubuntu but

aren’t overly technical. We are

lucky enough to have some

great guests on the show, telling

us first hand about the latest

exciting developments they are

working on, in a way that we can

all understand! We also talk

about the Ubuntu community

and what it gets up to.

The show is presented by

members of the UK’s Ubuntu

Linux community. Because it is

covered by the Ubuntu Code of

Conduct it is suitable for all.

The show is broadcast live every

fortnight on a Tuesday evening

(British time) and is available for

download the following day.

podcast.ubuntu-uk.org

http://www.thedesignatedgeek.net
http://podcast.ubuntu-uk.org/

	Slide 1
	Slide 2

