
THE INDEPENDENT MAGAZINE FOR THE UBUNTU LINUX COMMUNITY

PROGRAMMING SERIES SPECIAL EDITION

 PROGRAMPROGRAM
 IN PYTHONIN PYTHON
 Volume Volume SixNine
 Parts 3Parts 432-39-583

Full Circle

Full Circle Magazine is neither ailiated, with nor endorsed by, Canonical Ltd.

Full Circle Magazine Specials

full circle magazine

The articles contained in this magazine are released under the Creative Commons Attribution-Share Alike 3.0
Unported license. This means you can adapt, copy, distribute and transmit the articles but only under the following conditions:

You must attribute the work to the original author in some way (at least a name, email or URL) and to this magazine by name ('full circle magazine') and
the URL www.fullcirclemagazine.org (but not attribute the article(s) in any way that suggests that they endorse you or your use of the work). If you alter,
transform, or build upon this work, you must distribute the resulting work under the same, similar or a compatible license.
Full Circle Magazine is entirely independent of Canonical, the sponsor of Ubuntu projects and the views and opinions in the magazine should in
no way be assumed to have Canonical endorsement.

Please note: this Special
Edition is provided with
absolutely no warranty
whatsoever; neither the
contributors nor Full Circle
Magazine accept any
responsibility or liability for
loss or damage resulting from
readers choosing to apply this
content to theirs or others
computers and equipment.

About Full Circle

Full Circle is a free,
independent, magazine
dedicated to the Ubuntu
family of Linux operating
systems. Each month, it
contains helpful how-to
articles and reader-
submitted stories.

Full Circle also features a
companion podcast, the Full
Circle Podcast which covers
the magazine, along with
other news of interest.

Welcome to another 'single-topic special'

In response to reader requests, we are assembling the
content of some of our serialised articles into dedicated
editions.

For now, this is a straight reprint of the series
'Programming in Python', Parts 49-53 from issues #79
through #84, allowing peerless Python professor Gregg
Walters #83 as time of for good behaviour.

Please bear in mind the original publication date; current
versions of hardware and software may difer from those
illustrated, so check your hardware and software versions
before attempting to emulate the tutorials in these special
editions. You may have later versions of software installed
or available in your distributions' repositories.

Enjoy!

Find Us

Website:
http://www.fullcirclemagazine.org/

Forums:
http://ubuntuforums.org/
forumdisplay.php?f=270

IRC: #fullcirclemagazine on
chat.freenode.net

Editorial Team

Editor: Ronnie Tucker
(aka: RonnieTucker)
ronnie@fullcirclemagazine.org

Webmaster: Rob Keria
(aka: admin / linuxgeekery-
admin@fullcirclemagazine.org

Editing & Proofreading
Mike Kennedy, Lucas Westermann,
Gord Campbell, Robert Orsino,
Josh Hertel, Bert Jerred

Our thanks go to Canonical and the
many translation teams around the
world.

full circle magazine #79 8 contents ^

HHOOWW--TTOO
Written by Greg Walters PPrrooggrraammmmiinngg IInn PPyytthhoonn -- PPaarrtt 4499

While I was working this week,

a very wise person by the

name of Michael W. suggested that

I should consider what happens

with floating-point numbers and

equality.

Take for example a simple

calculation: 1.1 + 2.2

The answer, you say, is 3.3! Any

school-kid who has dealt with

fractions knows that. Well, tell

your computer. If you start up the

Python Interactive Shell and at the

prompt type

(1.1+2.2) == 3.3

you might be surprised that the

shell responds

“False”

WHAT?!!?!?

Now, confused, you type at the

prompt:

>>>1.1+2.2

And the shell responds back:

3.3000000000000003

You stare at the screen in

disbelief and first think “I must

have typed something wrong”.

Then you realize that you didn’t. So

you type:

>>>2.2+3.3

5.5

Now you are even more

confused and you think to yourself

“Ok. This is either a bug or some

kind of sick Easter egg.” No, it’s

neither a bug nor an Easter egg.

It’s real. While I knew about this a

very long time ago, it had slipped

into the cobwebs hidden in the

dark recesses of my old mind, so I

had to bring it up here. What we

are seeing is the joy of binary

floating-point numbers.

We all know that ⅓ equates to

.33333333333333333… for ever

and a day, but take, for example,

the fraction 1/10. Everyone knows

that 1/10 is equal to .1, right? If you

use the interactive shell you can

see that:

>>>1/10

0

Oh, right. We have to have at

least one of the values a floating-

point value to show any decimal

points since an integer/integer

returns an integer. So we try again.

>>>1/10.0

0.1

Ok. Reality is back. No, not

really. Python is simply showing

you a rounded version of the

answer. So, how do we see the

“real” answer? We can use the

decimal library to see what’s really

happening.

>>> from decimal import *

>>> Decimal(1/10.0)

Decimal('0.100000000000000005
55111512312578270211815834045
41015625')

WOW. So let’s try our original

formula and see what that would

show:

>>> Decimal(1.1+2.2)

Decimal('3.300000000000000266
45352591003756970167160034179
6875')

It seems to just be getting

worse and worse. So what is really

happening?

This is called Representation

Error, and exists in almost every

modern programming language

(Python, C, C++, Java, and even

Fortran and more), and on almost

every modern computer. This is

because these machines use IEEE-

754 floating-point arithmetic

which (on most machines and OS

platforms) maps to an IEEE-754

double-precision number. This

double-precision number has a

precision of 53 bits. So, our 0.1,

when represented in this 53-bit

double-precision, turns into:

0.000110011001100110011001100
11001100110011001100110011010

That’s close to .1, but not close

enough to avoid issues.

So what do we do about it?

Well, the quick answer is that you

probably can live with it for 90% of

full circle magazine #79 9 contents ^

HOWTO - PYTHON PT49

the things we have to do out there

in the real world – by using the

round() method. While you have to

decide on the number of decimal

points that you must have in your

world to carry the precision that

you need, for the most part, this

will be an acceptable workaround.

I honestly don’t remember if we

have gone over the round method,

so I’ll briefly go over it. The syntax

is very simple:

round(v,d)

where v is the value you want to

round and d is the number of

decimals (maximum) you want

after the decimal point. According

to the Python documentation,

“Values are rounded to the closest

multiple of 10 to the power of

minus n digits; if two multiples are

equally close, rounding is done

away from 0”. All that being said, if

the number is 1.4144, and we

round it to 3 decimal places, the

returned value will be 1.414. If the

number is 1.4145 it would be

returned as 1.415.

For example, let’s use the value

of pi that comes from the math

library. (You must import the math

library before you can do this, by

the way.)

>>> math.pi

3.141592653589793

Now, if we wanted to round

that value down to 5 decimal

places, we would use:

>>> round(math.pi,5)

3.14159

That is the “standard” value of

pi that most everyone knows off

the top of their head. That’s great.

However, if we set the number of

decimal places to be returned to 4,

look what happens.

>>> round(math.pi,4)

3.1416

All that sounds good until you

run into a value like 2.675 and try

to round it to 2 decimal places. The

assumption (since it is exactly

halfway between 2.67 and 2.68) is

that the returned value will be

2.68. Try it.

>>> round(2.675,2)

2.67

That might cause a problem. It

goes back to the initial issue we

have been talking about. The

actual conversion to a binary

floating-point number that is 53

bits long, the number becomes:

2.674999999999999822365316059
9749535221893310546875

which then rounds down to

2.67.

The bottom line here is when

trying to compare floating-point

numbers, be aware that some

things just don’t translate well.

See you next time!

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with his family. His website is
www.thedesignatedgeek.net.

The Ubuntu Podcast covers all

the latest news and issues facing

Ubuntu Linux users and Free

Software fans in general. The

show appeals to the newest user

and the oldest coder. Our

discussions cover the

development of Ubuntu but

aren’t overly technical. We are

lucky enough to have some

great guests on the show, telling

us first hand about the latest

exciting developments they are

working on, in a way that we can

all understand! We also talk

about the Ubuntu community

and what it gets up to.

The show is presented by

members of the UK’s Ubuntu

Linux community. Because it is

covered by the Ubuntu Code of

Conduct it is suitable for all.

The show is broadcast live every

fortnight on a Tuesday evening

(British time) and is available for

download the following day.

podcast.ubuntu-uk.org

http://www.thedesignatedgeek.net
http://podcast.ubuntu-uk.org/

full circle magazine #80 8 contents ^

HH OOWW--TTOO
Written by Greg Walters PPrroogg rraa mm mm iinn gg II nn PPyytthh oonn -- PPaa rrtt 5500

T his month, I thought I ’d talk

about a couple of lesser known

functions, maketrans and translate.

We’ll start with the translate

method. The translate method

returns a copy of a string – with all

characters in the translate table

replaced, or has the characters in

the optional parameter

deletechars removed from the

string. Here’s the syntax.

s =
str.translate(table[,deletech
aracters])

Before we get to the table

portion of the method, let’s look at

the delete portion. Let’s say that

you have the string “The time has

come”. And you want to delete all

the vowels (for some weird reason)

from that string. You can code it

like this:

astr = “The time has come”

astr.translate(None,’aeiou’)

will return:

“Th tm hs cm”

Notice that we included None as

the translate table. While this part

is cool, it gets better. There is a

function called maketrans. It takes

an input string and an output string

as parameters and returns a table

that is used as the first parameter

into the translate method. Here

(top right) is a very simple example.

It returns:

“Th2 t3m2 h1s c4m2”

Let’s look at what this does. We

assign intable to a string of vowels

as before. outtable is assigned the

numbers 1 ,2,3,4,5 as a string. When

we make the call to maketrans, our

actual trantable is as follows

(shown below. The “\x” means that

it is hexadecimal char) :

If you look at it carefully, you’ll

see that the lowercase vowel

letters are replaced with the

numbers we specified:

1bcd2fgh3jklmn4pqrst5vwxyz

If you look even closer, you’ll

see that there actually 256 entries

starting with “\x00” and ending

with “\xff”. So the table contains

the entire 256 possible ascii

character set. So, when the

translate method gets the table, it

iterates (or walks through) each

character, getting that characters

value in Hex, and then finds that

value in the translate table and

substitutes it in the output string.

The Hex representation of our

original astr string (‘The time has

come’) is shown below.

So now it should be making

sense.

Now the purpose of this whole

thing. Think back to your schooling

where you learned about Julius

Ceasar. Whenever he wanted to

send a message of a confidential

intable = ‘aeiou’
outtable = ‘12345’
trantable = maketrans(intable,outtable)
astr = “The time has come”
astr.translate(trantable)

'\x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\x0c\r\x0e\x0f\x10\x11\x12\x13\x14\
x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f !"#$%&\'()*+,-./0123456789:;<=>?@ABC
DEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`1bcd2fgh3jklmn4pqrst5vwxyz{|}~\x7f\x80\x81\x82\x83
\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x90\x91\x92\x93\x94\x95\x96\x97
\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f\xa0\xa1\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\xaa\xab
\xac\xad\xae\xaf\xb0\xb1\xb2\xb3\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf
\xc0\xc1\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf\xd0\xd1\xd2\xd3
\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf\xe0\xe1\xe2\xe3\xe4\xe5\xe6\xe7
\xe8\xe9\xea\xeb\xec\xed\xee\xef\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb
\xfc\xfd\xfe\xff'

\x54\x68\x65\x20\x74\x69\x6d\x65\x20\x68\x61\x73\x20\x63\x6f\x6d\x65
T h e t i m e h a s c o m e

full circle magazine #80 9 contents ^

HOWTO - PYTHON PT50

matter, he would use a cipher that

would shift all the letters of the

alphabet three characters to the

right. So, using todays english

alphabet:
ABCDEFGHIJKLMNOPQRSTUVWXYZabc
defghijklmnopqrstuvwxyz

becomes:
DEFGHIJKLMNOPQRSTUVWXYZabcdef
ghijklmnopqrstuvwxyzABC

While this seems very simple by

today’s standards, when I was a

school kid, we used this all the time

to send messages to each other.

We used a different index into the

string to start the encryption

string, the logic behind it was the

same.

No one knows how effective

this actually was for good old

Julius. One would think that if

someone intercepted the message,

they would have thought that it

was in some foreign language. We

can only speculate.

We can easily use the translate

method and the maketrans helper

function to allow us to have fun

with this. Let’s say we want to

make a simple program that allows

us to enter a string of “plain text”

and get back an encrypted string

using the same side right method

that Caesar used. For simplicity

sake, let’s only use uppercase

characters (shown top right).

Everything in the above code is

pretty much what we’ve covered

above or in earlier Python articles,

but I ’ll go over it quickly.

The first two lines are the in and

out strings. We’ve just shifted the

characters and wrapped around to

create the out string. The next two

lines create a table for encoding

and one for decoding. Line 5

prompts the user to enter a string

to encode. We then encode that

string (EncString) in the next line.

To decode it, we simply use the

translate method on the encoded

string to get the plain text back.

Finally we print both strings out.

Here’s the output of the program.

Enter the plaintext string ->
THE TIME HAS COME
Encoded string is -
WKH WLPH KDV FRPH
Decoded string is -
THE TIME HAS COME

Just like back in school. But let’s

flesh it out just a bit to make it a

bit more usable. The code is almost

the same with a few exceptions.

First, we have added a space to the

end of the intab string and in

between the “Z” and the “A” in the

outtab string. This helps keep the

actual words from being too

obvious in the encrypted string.

The next change is where we ask if

the user wants to encode or

decode the string. Finally we added

an if statement to control what we

print (shown bottom right).

The output from the program is:
Encode or Decode (E or D) -> E
Enter the string -> THE TIME HAS

COME
Encoded string is -
WKHCWLPHCKDVCFRPH

And to test the decode side of

things:
Encode or Decode (E or D) -> D
Enter the string ->
WKHCWLPHCKDVCFRPH
Decoded string is - THE TIME HAS
COME

Well, hopefully you are starting

to get ideas about how to use this

new information in your own code.

from string import maketrans
#----------------------
intab = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
outtab = "DEFGHIJKLMNOPQRSTUVWXYZABC"
EncTrantab = maketrans(intab,outtab) #Encode
DecTrantab = maketrans(outtab,intab) #Decode
instring = raw_input("Enter the plaintext string -> ")
EncString = instring.translate(EncTrantab)
DecString = EncString.translate(DecTrantab)
print("Encoded string is - %s" % EncString)
print("Decoded string is - %s" % DecString)

from string import maketrans

#Be sure to include the space character in the strings
intab = "ABCDEFGHIJKLMNOPQRSTUVWXYZ "
outtab = "DEFGHIJKLMNOPQRSTUVWXYZ ABC"
EncTrantab = maketrans(intab,outtab) #Encode
DecTrantab = maketrans(outtab,intab) #Decode

which = raw_input("Encode or Decode (E or D) -> ")
instring = raw_input("Enter the string -> ")
EncString = instring.translate(EncTrantab)
DecString = instring.translate(DecTrantab)

if which == "E":
print("Encoded string is - %s" % EncString)

else:
print("Decoded string is - %s" % DecString)

full circle magazine #81 9 contents ^

HHOOWW--TTOO
Written by Greg Walters PPrrooggrraammmmiinngg II nn PPyytthhoonn -- PPaarrtt 5511

T his month, I ’m going to discuss

a product that is new to me,

but has apparently been around for

a number of years. It’s called

NextReports from Advantage

Software Factory, and you can get

it free from http://www.next-

reports.com/ . Not only that, but

it’s open source and it runs under

Windows and Linux!

Before I start telling you about

the product, let me get on my

soapbox and vent for a moment or

two. For a long time, I ’ve been

working with databases and

reports. One of the things that I ’ve

had issues with is that while there

are free database solutions out

there, like SQLite and MySql, there

was precious little available that

was free for report designer tools.

More times than not, any reports

either had to be done with very

expensive software tools, or the

developer had to roll his own.

Some tools were available, but

were lacking. When it came to

charting, well, you pretty much had

no choice but to use the expensive

stuff. Believe me, I ’ve looked for

years for really good free reporting

tools, and I ’m not sure how I have

missed this package for so many

years (version 2.1 was released in

March of 2009 and they are

currently up to version 6.3) . But

now that I ’ve found it, I ’m

absolutely pumped about it.

Now that I ’ve stepped down

from my soap box, I can begin to

sing its praises. It is a suite of three

parts, a reports designer, a report

engine and a report server. All I

have had a chance to play with is

the reports designer, but if the

designer is any indication of the

power, ease and flexibility of the

rest of the suite, this thing is a

winner.

This month, we are going to

concentrate on the designer.

Because of some constraints on my

time, I ’m working on a Windows

machine, but everything that I

show can be done in Linux (so

please forgive me in advance).

One of the first things you

should know is that it supports

databases like Oracle, MySql,

SQLite, MSSQL and more.

Everything is based on queries and

a really good thing is that only

SELECT type queries are allowed.

This means that nothing in the

source database can be changed by

accident. You can enter your own

queries or use a visual designer.

The screenshot shows how nice

a UI it is. Things are pretty intuitive

and it won’t take you long to be

productive at this. Let’s take a look

at the steps to get going.

Start with File | New | Data

Source. Next, name your source

whatever you want to call it.

Now tell NextReports what kind

of database it is in the dropdown

called “Type:”. You can skip over

the Driver section and go to the

URL: section. This is where you put

the path to the database. If you are

using, for example, a SQLite

database, this will be filled in for

you: “jdbc:sqlite:<dbfile-path>”.

Replace the <dbfile-path> with the

http://www.next-reports.com/

full circle magazine #81 1 0 contents ^

HOWTO - PYTHON PT51

path to your database. Other types

of databases have similar types of

information already populated to

help you. Next, click the “Test”

button to make sure you can

connect. If everything goes

correctly, then click “Save” and

you’ll see it added to the

Connetions tree. The next thing

you need to do is make a

connection to your database that

you have just added. Now, right

click on the database and then click

on Connect.

Once you are connected, you’ll

see that you have four possible

things to choose from. The “%” is

the database tables. The next

three are so you can create new

queries, reports and charts. Simple

enough. Now click on the “+” sign

to the left of “%” which will open

up your database table display.

Now you will have Tables, Views

and Procedures in the tree. Once

again, click on the “+” sign next to

“Tables”. This will show all your

tables. Now if you want to use the

visual query designer, just drag the

table(s) you want to deal with onto

the designer canvas to the right.

Once you have all your tables

there, you can start making

connections between the tables.

In the example here, I have two

tables, one with information about

kids in a confirmation class and the

other with entries for worship

notes taken. The worship note

table doesn’t have the kid’s name

in it, just an id that points to the kid

information table. I did a drag and

drop to make that link between the

kidID field and the pkID of the kid

table. Then I selected each field I

wanted to have in the result set. In

this case, the kid’s first and last

name and an active (or not-

deleted) flag in the kids table and

multiple fields from the notes

table. The grid below shows each

of the fields, which table it comes

from, and other information.

full circle magazine #81 1 1 contents ^

HOWTO - PYTHON PT51

As you can see, we can set

criteria like “Active = 1 ”, choose to

display a field or not, and set sort

type and sort order. Once you are

satisfied with this, you can click on

the tab below and see your actual

SQL query.

To test your query, simply click

on the “running man” and you will

(hopefully if you did it correctly)

get the query results in a grid

below the editor. If you want to

add manual lines you can. For

example, I want to combine the

kids first and last names (fname

and lname) into a full name. We can

do that by putting a line after the

“k1 .lname,” line like this:

k1.fname || “ “ || k1.lname
as FullName,

The “| | ” characters are

concatenation characters so we

will have the two fields with a

space between in a field named

“FullName”. Don’t forget the

comma at the end. Once you have

your query the way you want it,

click on the save button to save the

query. You will be asked what you

want to call it.

Next, click on the Query item in

the tree and right click on the

query you just created. Select

“New Report from Query”. The

query designer canvas goes away

and is replaced by the report

designer.

On the left is the properties

window for any given field or the

entire report. On the right is the

report designer itself. Notice that

it looks like a spreadsheet. Each

row is considered a “band” and

holds information for that report

row. In the case of this example,

we have four rows, two header

rows, one detail row and a footer

row. You can add or delete rows as

needed. This method is not quite as

free-form as some other report

designers, but makes for a very

nice and clean report.

The two header rows hold our

report title and column headers.

The detail row has each field we

will be reporting on and the footer

row is the report footer. Let’s take

a look at how the report looks as a

default. Click on the button at the

full circle magazine #81 1 2 contents ^

HOWTO - PYTHON PT51

top of the bar marked “To Html” to

see the report. (I blurred the kids

last names, that’s not an issue in

the generator.)

For a report with almost no

work, that’s really nice. But let’s

pretty it up a bit. Let’s create a

group that puts all of the data for

any given kid under the kid’s name.

Right click on the first column

of the data row. Select Group and

then Add.

You will be presented with a

new window asking which of the

fields you want to create the group

upon. In this case, I select FullName

and then click the Ok button. Now

we have a grouping break. We can

also get rid of the three fields

(fname, lname and FullName) in

the detail section, since we’ll be

displaying the name in the group

band. SImply right-click on them

and select “Delete Cell”. Now you

can resize the three empty cells on

the left to make the gap less

obvious.

Taking a quick peek at what the

report looks like now will show you

that the information for each kid is

all nicely grouped together.

That’s nicer, but now let’s do

something kind of fun. All the 1 s

and 0s obviously stand for yes and

no. That’s rather boring for a

report, so let’s add an advanced

conditional statement for each of

those fields that will show a box

with a check for Yes (or 1) and an

empty box for No (or 0). It’s really

easy to do, but makes your report

look like you spent days on it. By

using the Wingdings font from

Windows, the two characters we

want are 0x6F(01 68) for an empty

box and 0xFE (0254) for a checked

box.

Before I go on, the one thing

that Windows does better than

Linux (that I have found) is the use

of the Alt+NumPad entry of special

characters. Linux doesn’t allow

that. There was a work around that

used Ctrl+Shift+U then the unicode

value for the character you

wanted. However, that doesn’t

work on all machines. The easiest

way I ’ve found to do this on Linux,

is to open Character Map, use the

search function to find the unicode

character you want, double-click

the character to copy it to the

“Text to copy:” box, then click the

“Copy” and then paste it into your

document. The unicode characters

for them are 261 0 (empty box) and

261 1 (checked box) using the

WingDings 2 font. I ’m sure there

are many other easier ways to deal

with this, but I ’m shy on time. (Be

sure you have Common selected in

the Script list.)

We’ll start with the

WorshipNotes field. On the detail

row, right click on the field you

want to do. In this case it’s marked

$C{WorshipNote}. Choose Insert,

then Expression. Yet another

wonderful thing that NextReports

gives us it the ability to do pretty

much everything with as little

typing as possible. Look in the

center of window where it says

Operators. Double click on the

“if..else..” selection, and it will fill

that into the editor for you as a

template so you don’t make a

mistake.

Now, we want to put the

WorshipNotes field in the

parentheses of the editor. Simply

click in between the two

parentheses to place the cursor

and then double-click on the field

full circle magazine #81 1 3 contents ^

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1 972. He enjoys
cooking, hiking, music, and spending
time with his family. His website is
www.thedesignatedgeek.net.

HOWTO - PYTHON PT51

you want to go in there. BAM! It’s

filled in for you. Now click after the

field name in the editor and then

double-click on the “== (eq)”

operator. Then add a “1 ”, so the

editor line reads

if ($C_WorshipNote == 1) {
; } else { ; }

We are almost finished with our

expression The first set of curly

brackets define what to do if the

expression is True and the second

is what to do if it’s false. In this

case, we’ll use the CharMap (in

windows, Linux has one as well, for

example gucharmap if you are

using Gnome) to copy the

characters into our editor string.

Or, under windows, you can hold

the {Alt} key and press 01 68 for the

empty box and 0254 for the

checked box. So now our

expression is (at least in Windows):

if ($C_WorshipNote == 1) {
"þ"; } else { "o"; }

Name the expression (I used

WNotes) and save it. Under

properties for that field, select the

font (WingDings is what I used

here) and this is what it will look

like.

There’s our pretty little boxes.

Doing this to the other fields is just

as simple.

It only took me about 3 hours of

playing with the package to get to

this point and a whole lot further. I

can truly say that I have a great

amount more to learn but that’s

for another day. You can use

templates to color your report, you

can add images, and much more.

Next time, I ’ll talk about how we

might go about embedding these

reports into a Python program.

Until then, have fun playing with

this wonder FREE software.

http://www.thedesignatedgeek.net

full circle magazine #82 1 1 contents ^

HH OOWW--TTOO
Written by Greg Walters PPrroogg rraa mm mm iinn gg II nn PPyytthh oonn -- PPaa rrtt 5522

B efore we get started on this

month’s actual python subject,

let me toot my own horn for just a

minute. In late December and early

January, my first book on Python

was published by Apress. It is

named "The Python Quick Syntax

Reference", and is available from a

number of places. You can find it

on the Apress site

(http://www.apress.com/9781 4302

64781), Springer.com

(http://www.springer.com/comput

er/book/978-1 -4302-6478-1) and

Amazon

(http://www.amazon.com/The-

Python-Quick-Syntax-

Reference/dp/1 430264780) as well

as others. It is, as the title suggests,

a syntax reference that will help

those of us who program in other

languages as well as Python, to

remember how a certain command

works and the requirements for

that command. Please help a poor

old programmer make a living by

buying the book, if you can.

Now on to bigger and better

things.

While I was working on my

latest book for Apress, I

rediscovered a SQL command that I

didn't discuss when we were

working with SQL databases a long

time ago, so I thought I 'd share the

information with you. It is the

CREATE TABLE AS SELECT

command, which allows us to pull a

query from one table (or joined

tables) and create another table on

the fly. The general syntax is:

CREATE TABLE [IF NOT EXISTS]
{New Table Name} AS SELECT
{query}

The part in square brackets (IF

NOT EXISTS) is totally optional,

which will create the table only if it

doesn’t exist already. The part in

curly brackets, however, is not. The

first is the new table name and the

second is the query that you want

to use to pull data and create the

new table.

Assume we have a database

that has multiple tables in it. One

of the tables is named "study" that

holds data from a receiving

operation. There are six fields

which are shown below.

One of the datasets that we will

need to produce from this raw data

is a grouping of package count and

the number of days within the

study that quantity of packages

came in on, assuming that the days

are weekdays (Monday thru Friday)

and that the day is not a holiday,

since holidays have less than

normal number of packages. Our

query is shown above.

This then provides us with data

pkID - Integer, Primary Key, AutoIncrement
DOM - Integer - Day of the month (1-31)
DOW - Integer - Day of week (1-7 (Sunday = 1, Monday = 2, etc))
pkgs - Integer - Number of packages received that day
DayName - TEXT - "Sunday","Monday", etc
Holiday - Integer 0 or 1 (Is this day considered a holiday or not) 1 means yes

SELECT pkgs, Count(DOW) as CountOfDOW FROM study
WHERE (Holiday <> 1)

AND DayName in ("Monday","Tuesday","Wednesday","Thursday","Friday")
GROUP BY pkgs

http://www.apress.com/9781430264781
http://www.springer.com/computer/book/978-1-4302-6478-1
http://www.amazon.com/The-Python-Quick-Syntax-Reference/dp/1430264780
http://www.amazon.com/The-Python-Quick-Syntax-Reference/dp/1430264780

full circle magazine #82 1 2 contents ^

HOWTO - PYTHON PT52

that would look something like

this:

pkgs CountOfDow
31 1
32 2
33 1
...
48 3

So the data is showing that

during the study of 65 days, only

one weekday had 31 packages but

3 weekdays had 48 packages and

so on. Similar queries could be

created that would cover holidays

and weekends.

While having the data simply as

a returned dataset from the query,

we might want to do further

analysis on the data, so we want to

put the resulting data from the

query into a table. That's why we

would create a table from the

query. So in the following example,

shown above right, we create a

table named "weekdays" using the

same query we just showed above.

Now anytime we need the data

for that weekday result set, we can

just run a query on the weekdays

table.

Once we know what we need,

and have tested the query, then we

can begin our code. Assuming we

already have the study table

created and populated, we can use

Python to then create our new

table in the main database. Just as

an FYI , I am using the APSW SQLite

library to do the database work.

We, of course, have to open a

connection (right) and create a

cursor to the SQLite database. We

have covered this in a number of

past articles.

Now we need to create

the routine that will actually

create the table with the

returned dataset from the

query, shown below, then

alter it and run some

calculations.

As you can see, we want to

create a second cursor, so that we

don’t run any risk of the first cursor

having data we need to maintain.

We will be using it in the final part

of the code. We then drop the

table if it exists and run our query

on the “study” table.

Now we create three more

columns (shown below) within the

weekdays table named

“probability”, “lower” and “upper”.

We do this by using the “ALTER

TABLE” SQL command.

CREATE TABLE IF NOT EXISTS weekdays AS
SELECT pkgs, Count(DOW) as CountOfDOW FROM study
WHERE (Holiday <> 1)

AND DayName in ("Monday","Tuesday","Wednesday","Thursday","Friday")
GROUP BY pkgs

def OpenDB():
global connection
global cursor
connection = apsw.Connection("labpackagestudy.db3")
cursor = connection.cursor()

def DoWeekDays():
Create a second cursor for updating the new table
cursor2 = connection.cursor()
q1 = "DROP TABLE IF EXISTS weekdays"
cursor.execute(q1)
query = '''CREATE TABLE IF NOT EXISTS weekdays AS SELECT pkgs,

Count(DOW) as CountOfDOW FROM study WHERE (Holiday <> 1)
AND DayName in
("Monday","Tuesday","Wednesday","Thursday","Friday")
GROUP BY pkgs'''

cursor.execute(query)

addcolquery = 'ALTER TABLE weekdays ADD COLUMN probability REAL'
cursor.execute(addcolquery)
addcolquery = 'ALTER TABLE weekdays ADD COLUMN lower REAL'
cursor.execute(addcolquery)
addcolquery = 'ALTER TABLE weekdays ADD COLUMN upper REAL'
cursor.execute(addcolquery)

full circle magazine #82 1 3 contents ^

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1 972. He enjoys
cooking, hiking, music, and spending
time with his family. His website is
www.thedesignatedgeek.net.

HOWTO - PYTHON PT52

The next step (top right) will be

to sum the data in the

CountOfDOW field.

There is only one record

returned, but we do the for loop

thing anyway. Remember from the

above discussion that the

“CountOfDow” field holds the

number of days during the study

that a particular number of

packages came in. This gives us a

value that contains the sum of all

of the “CountOfDow” entries. Just

so you have a reference as we go

forward, the number I got from all

my dummy data is 44.

upquery = "SELECT * FROM
weekdays"

c1 = cursor.execute(upquery)

Here we have done a ‘SELECT

all’ query so every record in the

datatable is in the ‘c1 ’ cursor. We’ll

walk through each row of the

dataset, pulling the pkgs (row[0])

and CountOfDow (row[1]) data

into variables.

LastUpper = .0
for row in c1:
cod = row[1]
pkg = row[0]

Now we will create a probability

of each daily package count in the

database and calculate an upper

and lower value that will be used in

another process later on. Notice

that we check to see if the

LastUpper variable contains ‘.0’. If

it does, we set it to the probability

value, otherwise we set it to the

lower plus the probability value.

Finally we use an update SQL

statement to put the new

computed values into the

database.

What we end up with is a

package count (pkgs), a count of

the number of days that package

count came in, a probability of that

occurring within the whole of the

study (31 packages on 1 day out of

a total of 44 (weekdays in that 60+

day study), will have a probability

of 0.02.) .

If we add up all the probability

values in the table it should add up

to 1 .0 .

The upper and lower values

then reflect a number between

floating point number 0 and 1 that

will mirror the possibility of any

random number within that range

that will give us a randomized

number of packages. This number

can then be used for a statistics

analysis of this data. A “normal

real-world” example would be to

predict the number of cars that

arrive at a carwash based on

observational data done in the

field. If you want to understand

more, you could look at

http://www.algebra.com/algebra/h

omework/Probability-and-

statistics/Probability-and-

statistics.faq.question.3091 1 0.html

to see an example of this. All we

did is generate (the hard part)

easily with Python.

The code for the two routines

that we presented this time is at:

http://pastebin.com/kMc9EXes

Until next time.

sumquery = "SELECT Sum(CountOfDOW) as Sm FROM weekdays"
tmp = cursor.execute(sumquery)
for t in tmp:

DaySum = t[0]

prob = cod / float(DaySum)
if LastUpper != .0:

lower = LastUpper
LastUpper = (lower + prob)

else:
lower = .0
LastUpper = prob

nquery = 'UPDATE weekdays SET probability = %f, \
lower = %f, upper = %f WHERE pkgs = %d' \
% (prob,lower,LastUpper,pkg)

u = cursor2.execute(nquery)
#====================================
End of DoWeekDays
#====================================

http://www.thedesignatedgeek.net
http://www.algebra.com/algebra/homework/Probability-and-statistics/Probability-and-statistics.faq.question.309110.html
http://pastebin.com/kMc9EXes

full circle magazine #84 1 4 contents ^

HHOOWW--TTOO
Written by Greg D. Walters PPrrooggrraamm II nn PPyytthhoonn -- PPaarrtt 5533

T his month, I thought I would

create a routine that makes a

license key from an email. We all

know the reason for having a

license key, and if you ever need to

have a quick and dirty set of

routines to do it, you can use this.

Remember, Python is a scripting

language, so the source is always

readable. There are ways around

this; we’ll discuss them in another

article. Let’s take a look at the

“gross” logic behind the code,

before we actually dive into the

code.

First, we will ask for an email

address and then break it into two

parts, the local part (the part

before the “@” character) and the

domain part (the part after the “@”

character). There are very specific

rules for email address validity, and

it can get very complicated. For our

purposes, we will only use some of

the rules and only on the local part.

You can do a web search on the

actual rule set. In our code, we will

only look at:

• lowercase characters

• upper case characters

• numbers between 0 and 9

• special characters (!#$%&'*+-

/=?^_` {| }~.)

• period characters are allowed, but

may not be repeated next to each

other (..., etc)

Once we have validated the

email, we then will create a

“checksum character” which is

based on the ascii value of each

character in the entire email

address, and then divide it by the

number of characters in the email

address. For example, let’s use a

mythical email address of

fredjones@someplace.com. If we

walk through the email address, we

can get the ascii value of each

character by using the ord()

function. When we add up each of

the ascii values, we get a sum of

1 670, then we divide that by the

length of the email address (23);

we get 72. Remember we are using

integer division here, so our result

will be an integer.

Now that we have our checksum

value, we subtract 68 from that

(ascii ‘D’) to create an offset. We

use this offset when we encode

each character in the email. Just to

make things a bit harder to decode,

we put the length (with offset) as

character position 2 and the

checksum as character position 4.

So for the email

fredjones@someplace.com we get

a license key of:

j[vHihnsriwDwsqitpegi2gsq

Lets get started with the code.

Since this is the 53rd article in the

series, I won’t be quite as verbose

from here on out.

First our imports.

import sys

Now (as shown above right) we

will create a string that will include

all of our “legal” characters for the

IsValidEmail function. I ’ve split it

into 3 strings so it fits nicely for the

magazine. We combine them in the

IsValidEmail routine. We also set a

global variable ‘Offset’ to 0. This

will be the value that we add (later

on) to each character when we

create the encoded string.

Now for our first function. This

(below) is the IsValidEmail routine.

Basically we pass the email in the

variable s, and an optional debug

flag. We use the debug flag, as we

have done in the past, to provide

localvalid1 = "abcdefghijklmnopqrstuvwxyz"
localvalid2 = "ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890"
localvalid3 = "!#$%&'*+-/=?^_`{|}~."
Offset = 0

def IsValidEmail(s,debug=0):
email = s
pos = email.rfind("@")
local = email[:pos]
domain = email[pos+1:]
if debug == 1:

print local
print domain

isgood = False
localvalid = localvalid1 + localvalid2 + localvalid3

full circle magazine #84 1 5 contents ^

HOWTO - PYTHON PART 53

some print statements to see how

things are going. Usually we would

simply pass a 1 as the second

parameter if we want to see the

progress verbosely.

First we assign the passed in

email address to the variable

‘email’ and find the ‘@’ character

that separates the local from the

domain portions of the email. We

then assign the local portion of the

email to (I think it’s appropriate)

‘local’, and the domain portion to

‘domain’. We then set the boolean

isgood flag to False and finally

create the ‘localvalid’ string from

the 3 shorter strings we set up

earlier.

Next (top right) we simply walk

through each character in the local

portion of the email against the list

of valid characters using the in

keyword. If any character in the

local portion of the email fails the

test, we break out of the for loop,

setting the ‘isgood’ flag to False.

Finally, we look for any set of

period characters that are

contiguous. We use the string.find

routine that will match anything

that is like ‘..’ or ‘...’ and so on.

Being a lazy programmer, I used

only a single “double dot” check

that works for anything more.

r = email.find("..")
if r > -1:

isgood = False

The last thing we do in the

routine is return the value of the

‘isgood’ flag.

return isgood

The next routine (bottom right)

is the CheckSum routine which is

fairly short. We walk each

character in the email and create a

running sum of the ascii value of

each using the built-in ‘ord’ type

conversion. As I stated earlier, we

take that sum and divide it by the

length of the email address. We

return the checksum value and the

character represented by that

checksum.

Now for the EncodeKey routine.

While it looks simple, it requires

some concentration so pay

attention! We assign the Offset

variable to global status so we can

change it within the function and

so it can be used in other functions.

We then set the Offset variable to

the checksum minus 68. As in the

example presented at the

beginning of the article, it would

be 72-68 which equals 4. We then

step through each character of the

email address adding the offset to

the ascii value of that character.

For the ‘f’ in ‘fredjones’, it would be

1 02 + 4 or 1 06 which equates to ‘i ’.

Using the counter variable ‘cntr’,

we then determine what we add to

the ‘NewEmail’ string we build up

character by character. Notice in

the code that we go from 0 to the

length of the email, so character 0

is ‘f’, character 1 is ‘r’ and so on.

Now comes the part that might

confuse some of you. If cntr is a

value of 1 (‘r’) , we insert the

character for the length of the

email + 68 and then the offset

character, which using our example

would be iYt. The next time we go

through the loop, cntr will equal 2,

but we already have 3 characters in

the email. That’s where we want to

insert the checksum character (‘F’)

and then the third character offset.

From there, we simply add each

offset character to the string, and

when the loop is done, we return

the key (top right).

Check Local Part
for cntr in range(0,len(local)):

if local[cntr] in localvalid:
if debug == 1:

print local[cntr],ord(local[cntr]),"True"
isgood = True

else:
if debug == 1:

print local[cntr],ord(local[cntr]),"False"
isgood = False
break

def CheckSum(s,debug = 0):
sum = 0
email = s.upper()
for cntr in range(0,len(email)):

if debug == 1:
print email[cntr],ord(email[cntr])

sum += ord(email[cntr])
cs = sum/len(email)
if debug == 1:

print('Sum = %d' % sum)
print('ChkSum = %d' % cs)
print('ChkSum = %s' % chr(cs))

return cs,chr(cs)

full circle magazine #84 1 6 contents ^

HOWTO - PYTHON PART 53

The DecodeKey routine (bottom

right) basically reverses the

process we used in the EncodeKey

routine. One thing you might

notice here is that in the first ‘if

debug’ statement of this function, I

used ‘!= 0’ rather than ‘== 1 ’, simply

to remind you that the two can be

interchangeable.

The DoIt function (below) asks

for an email address using

‘raw_input’, then calls the

functions in order to create the

license key.

Lastly, we call the DoIt routine.

if __name__ == "__main__":
DoIt()

Now, obviously the output is

not super-encrypted, and if

someone were to put in a fair

amount of time, they could figure

out what we used to create the key

fairly easily. However, it should

give you enough of a starting point

that you could simply modify the

code to make it much harder to

break. You could, for example, use

a random number rather than the

‘D’ (68). If you do that, set a seed in

the code so that it will always

generate the same random

number. You could also go a bit

deeper and put the offset value

somewhere into the license key,

maybe the last character so you

could use that as the decryption

offset.

As always, the full source is

available at

http://pastebin.com/MH9nVTNK.

Until next time, enjoy.

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1 972. He enjoys
cooking, hiking, music, and spending
time with his family. His website is
www.thedesignatedgeek.net.

def EncodeKey(s, csum, debug = 0):
global Offset
email = s
Offset = csum - 68
if debug == 1:

print("Offset is %d" % Offset)
NewEmail = ""
for cntr in range(0,len(email)):

ch = ord(email[cntr]) + Offset
if cntr == 1:

NewEmail = NewEmail + (chr(len(email)+68)) +
chr(ch)

elif cntr == 2:
NewEmail = NewEmail + chr(csum) + chr(ch)

else:
NewEmail = NewEmail + chr(ch)

if debug == 1:
print cntr, NewEmail

return NewEmail

def DecodeKey(s,debug = 0):
global Offset
eml = ""
for cntr in range(0,len(s)):

if debug != 0:
print cntr,s[cntr],ord(s[cntr])-

Offset,chr(ord(s[cntr])-Offset)
if cntr == 0:

eml = eml + chr(ord(s[cntr])-Offset)
elif cntr == 1:

emllen = ord(s[cntr])-Offset
elif cntr == 3:

csumchr=s[cntr]
else:

eml = eml + chr(ord(s[cntr])-Offset)
if debug == 1:

print eml
return eml

def DoIt():
email = raw_input("Please enter email address -> ")
isok = IsValidEmail(email,0)
if isok == True:

csum,csumchr = CheckSum(email)
ke = EncodeKey(email,csum,0)
print("License Key = %s" % ke)
print("Original email = %s" % DecodeKey(ke,0))

http://www.thedesignatedgeek.net
http://pastebin.com/MH9nVTNK

	Slide 1
	Slide 2

