The Python Collect‘;oJﬁ

Full Circle Magazine is neither affiliated with, nor endorsed by, Canonical Ltd.

http://fullcirclemagazine.org

CONTENTS

v
[a))
=
T

1
2
3
4
5
6
7
8
9

About Full Circle

Full Circle is a free, independent,
magazine dedicated to the Ubuntu
family of Linux operating systems.
Each month, it contains helpful how-
to articles and reader-submitted
stories.

Full Circle also features a companion
podcast, the Full Circle Podcast
which covers the magazine, along
with other news of interest.

Please note: this Special Edition is
provided with absolutely no warranty

Welcome to another Special Edition of
Full Circle Magazine....

The Python Collection...

Here is a reprint of the Python series written by Greg Walters, Parts
1-60 from issues #27 through #102.

Please bear in mind the original publication date; current versions of
hardware and software may differ from those illustrated, so check
your hardware and software versions before attempting to emulate
the tutorials in these special editions. You may have later versions of
software installed or available in your distributions' repositories.

Find Us

Website:
http://www.fullcirclemagazine.org/
Forums:

http://ubuntuforums.org/
forumdisplay.php?f=270

IRC: #fullcirclemagazine on
chat.freenode.net

Editorial Team

Editor: Ronnie Tucker
(aka: RonnieTucker)
ronnie@fullcirclemagazine.org

Webmaster: Lucas Westermann
admin@fullcirclemagazine.org

whatsoever; neither the contributors Enjoy! - .
nor Full Circle Magazine accept any qutlng & Proofreading
s . Mike Kennedy, Gord Campbell,
responsibility or liability for loss or Robert Orsino. Josh Hertel Bert
damaQE resulting Frgm readers Jerred, Jim Dyer and Emily Gonyer
choosing to apply this content to
thel.rs or others computers and Our thanks go to Canonical and the
SEUpmE: many translation teams around the
world.
m The articles contained in this magazine are released under the Creative Commons Attribution-Share Alike 3.0 Unported license. This means you
EEIETESE] can adapt, copy, distribute and transmit the articles but only under the following conditions: You must attribute the work to the original author

in some way (at least a name, email or URL) and to this magazine by name ('full circle magazine') and the URL www.fullcirclemagazine.org (but not attribute
the article(s) in any way that suggests that they endorse you or your use of the work). If you alter, transform, or build upon this work, you must distribute the
resulting work under the same, similar or a compatible license.

Full Circle Magazine is entirely independent of Canonical, the sponsor of Ubuntu projects and the views and opinions in the magazine should in no way
be assumed to have Canonical endorsement.

http://www.fullcirclemagazine.org/
http://ubuntuforums.org/
forumdisplay.php?f=270
mailto:ronnie@fullcirclemagazine.org

mailto:admin@fullcirclemagazine.org

HOW-T0O

Written by Greg Walters

SEE ALSO:
N/A

APPLICABLE TO:
<2 ubuntu <3 kubuntu «Zxubuntu

CATEGORIES:
"

F
:’/"
r

Dev

DEVICES:

mong the many
programming
languages currently
available, Python is
one of the easiest to learn.
Python was created in the late
1980's, and has matured :
greatly since then. It comes pre-:
installed with most Linux :
distributions, and is often one of:
the most overlooked when :
picking a language to learn.
We'll deal with command-line
programming in this article. In a :
future one, we'll play with GUI

! name =
: your name? ")

: print "Hello there, "
E+ll!ll

(Graphical User Interface)
programming. Let's jump right
in, creating a simple
application.

Our First Program

Using a text editor such as
gedit, let's type some code.
Then we'll see what each line
does and go from there.

Type the following 4 lines.

#!/usr/bin/env python

print 'Hello. I am a python

: program. '

raw_input ("What is

+ name

That's all there is to it. Save
the file as hello.py wherever

: you would like. I'd suggest

putting it in your home

. directory in a folder named

. python_examples. This simple
. example shows how easy it is
: to code in Python. Before we

can run the program, we need

full circle magazine

; Hello.
! program.

; Hello there,

; print 'Hello.
* program. '

@4

to set it to be executable. Do
: this by typing

; chmod +x hello.py

in the folder where you saved
- your python file. Now let's run
. the program.

; greg@earth:~/python_examples$§
! ./hello.py

I am a python

; What is your name? Ferd
! Burphel

Ferd Burphel!

; greg@earth:~/python_examples$

That was simple. Now, let's

look at what each line of the
: program does.

; #!/usr/bin/env python

This line tells the system

that this is a python program,
- and to use the default python
- interpreter to run the program.

I am a python

The Compleat Python

Program In Python - Part 1

! name =
! your name? ")

Simply put, this prints the

. first line "Hello. | am a python
. program.” on the terminal.

raw_input ("What is

This one is a bit more

complex. There are two parts to

this line. The first is name =,

. and the second is

. raw_input("What is your name?
. "). We'll look at the second part
- first. The command raw_input

- will print out the prompt in the
. terminal ("What is your name?
: "), and then will wait for the

: user (you) to type something

. (followed by {Enter}). Now let's
. look at the first part: name =.

. This part of the command

. assigns a variable named

. "name". What's a variable?

. Think of a variable as a shoe-

. box. You can use a shoe-box to
. store things -- shoes, computer
. parts, papers, whatever. To the
. shoe-box, it doesn't really

. matter what's in there -- it's

. just stored there. In this case, it
. stores whatever you type. In

: the case of my entry, | typed

Ferd Burphel. Python, in this

ﬁ contents ©

PROGRAM IN PYTHON - PART 1

instance, simply takes the
input and stores it in the
"name" shoe-box for use later
in the program.

print "Hello there, " + name

+ ll!ll

Once again, we are using the :

print command to display
something on the screen -- in
this case, "Hello there, ", plus
whatever is in the variable
"name", and an exclamation
point at the end. Here we are
concatenating or putting
together three pieces of
information: "Hello there",
information in the variable
"name", and the exclamation
point.

Now, let's take a moment to
discuss things a bit more
deeply before we work on our
next example. Open a terminal
window and type:

python

You should get something
like this:

python

Python 2.5.2 (r252:60911, Oct

. Type

5 2008, 19:24:49)

. [GCC 4.3.2] on linux2

n help n ,
"credits" or

"copyright",
"license" for

: more information.

P>>>

You are now in the python

. shell. From here, you can do a

. number of things, but let's see

. what we got before we go on.

. The first thing you should

' notice is the python version --

' mine is 2.5.2. Next, you should
' notice a statement indicating

. that, for help, you should type

. "help" at the prompt. I'll let you
. do that on your own. Now type:

; print 2+2
. and press enter. You'll get back
5 >>> print 2+2

P4
P>>>

Notice that we typed the

word "print" in lower case. :
. What would happen if we typed :
: "Print 2+2"? The response from

. the interpreter is this:
greg@earth:~/python exampless$:

; >>> Print 2+2

File "<stdin>", line 1

Print 2+2

fFull circle magazine

: var =

@5

A

SyntaxError: invalid syntax

. S>>

That's because the word

. "print" is a known command,
. while "Print" is not. Case is very
- important in Python.

2+2

You'll see that nothing much

. happens except Python returns
. the ">>>" prompt. Nothing is

. wrong. What we told Python to
. do is create a variable (shoe-

. box) called var, and to stick :
. into it the sum of "2+2". To see
- what var now holds, type:

. print var
. and press enter.
: >>> print var

P4
Do>>>

Now we can use var over
and over again as the number

. 4, like this:

. >>> print var * 2
" 8

>>>

The Compleat Python

If we type "print var" again

~ we'll get this:

: >>> print var
1 4
5 >>>

var hasn't changed. It's still

the sum of 2+2, or 4.
. Now let's play with variables :
. a bit more. Type: ;

This is, of course, simple

programming for this

. beginner's tutorial. Complexity
- will increase in subsequent

. tutorials. But now let's look at
. some more examples of

. variables.

In the interpreter type:

>>> strng = 'The time has

: come for all good men to come
: to the aid of the party!'

. >>> print strng
E The time has come for all
: good men to come to the aid

. of the party!

Do>>>

You've created a variable

' named "strng" (short for string)
containing the value 'The time

. has come for all good men to

. come to the aid of the party!".

* From now on (as long as we are

ﬁ contents ©

PROGRAM IN PYTHON - PART 1

in this instance of the
interpreter), our strng variable
will be the same unless we
change it. What happens if we
try to multiply this variable by
47

>>> print strng * 4

The time has come for all
good men to come to the aid
of the party!The time has

to the aid of the party!The
time has come for all good

men to come to the aid of theé
. making it a string.

party!The time has come for
all good men to come to the
aid of the party!

>>>

Well, that is not exactly what
you would expect, is it? It
printed the value of strng 4
times. Why? Well, the

interpreter knew that strng was :

a string of characters, not a
value. You can't perform math
on a string.

What if we had a variable

called s that contained '4', as in : -5 print int(s) * 4
: 16
Do>>>

the following:

>>> g = '4"
>>> print s
4

It looks as though s contains
the integer 4, but it doesn't.

. Instead it contains a string
. representation of 4. So, if we
: type 'print s * 4' we get...

E >>> print s*4
4444
P>>>

Once again, the interpreter

. knows that s is a string, not a

come for all good men to come: ., marica| value. It knows this

. because we enclosed the

number 4 with single quotes,

We can prove this by typing

print type(s) to see what the
. system thinks that variable

. type is.

; >>> print type(s)
: <type 'str'>
P>>>

Confirmation. It's a string

type. If we want to use this as a
. numerical value, we could do
. the following:

The string (s), which is '4',

" has now been converted to an

fFull circle magazine

integer and then multiplied by

4 to give 16.

You have now been

. introduced to the print

. command, the raw_input

. command, assigning variables,
. and the difference between

. strings and integers.

Let's go a bit further. In the

Python Interpreter, type quit()
. to exit back to the command
. prompt.

Simple For Loop

Now, let's explore a simple

programming loop. Go back to
. the text editor and type the
. following program.

; #! /usr/bin/env python

; for cntr in range(0,10):

print cntr

Be sure to tab the "print

. cntr" line. This is important. :
. Python doesn't use parentheses :
. "(" or curly braces "{" as do :
. other programming languages
. to show code blocks. It uses

. indentations instead.

@6

Save the program as

The Compleat Python

“for_loop.py". Before we try to
run this, let's talk about what a

. for loop is.

A loop is some code that

. does a specified instruction, or
. set of instructions, a number of
. times. In the case of our

. program, we loop 10 times,

. printing the value of the

. variable cntr (short for

. counter). So the command in

. plain English is "assign the

. variable cntr 0, loop 10 times

. printing the variable cntr

. contents, add one to cntr and

. do it all over again. Seems

. simple enough. The part of the
. code "range(0,10)" says start

- with 0, loop until the value of

. cntris 10, and quit.

Now, as before, do a

5 chmod +x for loop.py

and run the program with

; ./for_loop.py

in a terminal.

5 greg@earth:~/python_examples$
: ./for_loop.py

1

ﬁ contents ©

PROGRAM IN PYTHON - PART 1

reg@earth:~/python_examples

“nWQ VoSN WN

Well, that seems to have
worked, but why does it count
up to only 9 and then stop.

are 10 numbers printed,
starting with 0 and ending with

9. That's what we asked it to do 5

: for cntr in range(l,11):

-- print the value of cntr 10
times, adding one to the
variable each time, and quit as
soon as the value is 10.

Now you can see that, while
programming can be simple, it
can also be complex, and you
have to be sure of what you
ask the system to do. If you
changed the range statement
to be "range(1,10)", it would
start counting at 1, but end at
9, since as soon as cntr is 10,
the loop quits. So to get it to
print "1,2,3,4,5,6,7,8,9,10", we
should use range(1,11) - since
the for loop quits as soon as
the upper range number is

reached.
Also notice the syntax of the

. statement. It is "for variable in
. range(start value,end value):"
: The ":" says, we are starting a
. block of code below that should
. be indented. It is very :
. important that you remember

: the colon ":", and to indent the
. code until the block is finished.

If we modified our program

Look at the output again. There to be like this:

E#! /usr/bin/env python

print cntr

Eprint 'All Done'

We would get an output of...

;greg@earth:~/python_examples$
: ./for_loop.py

ook WNER

: 10
: All Done
: greg@earth:~/python_examples$

Make sure your indentation

Full circle magazine @ 7

is correct. Remember,
indentation shows the block

: formatting. We will get into
. more block indentation
- thoughts in our next tutorial.

. That's about all for this time. :
. Next time we'll recap and move
- forward with more python :
. programming instructions. In

. the meantime, you might want
: to consider installing a python
. specific editor like Dr. Python,

. or SPE (Stani's Python Editor),

. both of which are available

. through Synaptic.

|k ="

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his
family.

The Compleat Python

ﬁ contents ©

http://apress.com

HOW-T0O

Written by Greg Walters

.

SEE ALSO:
FCM#27 - Python Part 1

APPLICABLE TO:
<2 ubuntu <3 kubuntu «Zxubuntu

CATEGORIES:
5

Dev

DEVICES:

Correction To Partl

| received an email from David Turner
who suggested that using the Tab-key
for indentation of code is somewhat
misleading as some editors may use
more, or less, than four spaces per
indent. This is correct. Many Python
programmers (myself included) save
time by setting the tab key in their

which could lead to ugly code and other
problems. So, get into the habit of using
spaces rather than the Tab-key.

n the last installment, we
looked at a simple program
using raw_input to get a
response from the user, some

simple variable types, and a simple
: or 'Feb'). Remember that we

always count from zero. To find the :
. length of the list, we can use: :

loop using the "for" statement. In

this installment, we will delve more

into variables, and write a few
more programs.

LISTS

Let's look at another type of
variable called lists. In other
languages, a list would be
considered an array. Going back to

the analogy of shoe-boxes, an array :
= (or list) would be a number of
: boxes all glued side-by-side holding :
like items. For example, we could
: store forks in one box, knives in
another, and spoons in another.
; Let's look at a simple list. An easy
: one to picture would be a list of
: month names. We would code it

editor to four spaces. The problem is, ! like this...
however, that someone else's editor 1
may not have the same setting as yours, :

. months =

: ['Jan', 'Feb', 'Mar', 'Apr', 'May ; . . .
' Jun','Jul', 'Aug', 'Sep', 'oc . lstusingstringsasthe

.t', 'Nov', 'Dec']

To create the list, we bracket all

fFull circle magazine

@8

months[1] (which would print 'Jan'

; print len (months)

which returns 12.

: example...

: categories = ['Main :
: dish', 'Meat', 'Fish', 'Soup', 'C:
: ookies']

Then categories[0] would be

© 'Main dish’, and categories[4]

. would be 'Cookies'. Pretty simple
: again. I'm sure you can think of
many things that you can use a list
. for.

Up to now, we have created a

- information. You can also createa :
- list using integers. Looking back at

our months list, we could create a

The Compleat Python

Program In Python - Part 2

: the values with square brackets ('[' :
: and']"). We have named our list

: 'months'. To use it, we would say
: something like print months[0] or

list containing the number of days

. in each one:

g DaysInMonth =
: [31,28,31,30,31,30,31,31,30,3
i 1,30,31]

f we were to print
DaysinMonth[1] (For February)
we would get back 28, which is
an integer. Notice that | made

. the list name DaysInMonth. Just as
. easily, I could have used

Another example of a list would : daysinmonth' or just 'X'... but that

' be categories in a cookbook. For - Is not quite so easy to read. Good

: programming practices suggest
. (and this is subject to
. interpretation) that the variable

names are easy to understand.

We'll get into the whys of this later
. on. We'll play with lists some more
- in a little while.

Before we get to our next

sample program, let's look at a few
. other things about Python.

ﬁ contents ©

PROGRAM IN PYTHON - PART 2

More on Strings

We briefly discussed strings in
Part 1. Let's look at string a bit
closer. Astring is a series of
characters. Not much more than
that. In fact, you can look at a

example if we assign the string
'The time has come' to a variable
named strng, and then wanted to
know what the second character
would be, we could type:

strng = 'The time has come'
print strng[1l]

The result would be 'h'.
Remember we always count from
0, so the first character would be
[0], the second would be [1], the
third would be [2], and so on. If we

at position 4 and going through
position 8, we could say:

print strng[4:8]

which returns 'time’. Like our for
loop in part 1, the counting stops
at 8, but does not return the 8th
character, which would be the
space after 'time".

We can find out how long our
string is by using the len() function:

string as an array of characters. For : P°% ~

 pos =

_ print len(strng)

which returns 17. If we want to find
: out where in our string the word
'time' is, we could use

strng.find('time')

Now, the variable pos (short for

. position) contains 4, saying that
: 'time' starts at position 4 in our
: string. If we asked the find function :
. to find a word or sequence that

. doesn't exist in the string like this:

strng.find('apples')

We can also get each separate

E print strng.split (' ')

. which returns a list containing
. ['The', 'time', 'has', 'come']. This is
. very powerful stuff. There are
: many other built-in string ,
. functions, which we'll be using later :
: on.

fFull circle magazine

. ; print
. the returned value in pos would be :
- -1, :

F)
- o

(Months[cntr],DaysInMonth[cnt;
r]) '

@9

Literal Substitution

here is one other thing
that I will introduce
before we get to our next
programming example.

. When we want to print something
: that includes literal text as well as
. variable text, we can use what's

. called Variable Substitution. To do
. this is rather simple. If we want to :
: substitute a string, we use '%s' and

then tell Python what to

substitute. For example, to print a
month from our list above, we can
. use:

'Month =

This would print '"Month = Jan'.

If we want to substitute an integer, :

want to find the characters starting word in the string by using the split we use '%d". Look at the example

command. We will split (or break)
. the string at each space character

. by using:

: below:

: Months =
: ['Jan', 'Feb', 'Mar', 'Apr', 'May :
: ', 'Jun', 'Jul’', 'Aug’', 'Sep', 'Oc :
i t', 'Nov', 'Dec'] :
: DaysInMonth = :
: [31,28,31,30,31,30,31,31,30,3
:1,30,31] :
: for cntr in range(0,12):

print '%s has %d days.'

o

The result from this code is:
The Compleat Python

: Mar has 31
: Apr has 30
: May has 31
: Jun has 30
: Jul has 31
: Aug has 31
: Sep has 30
: Oct has 31
! Nov has 30
: Dec has 31

$s' % month[0] :

1 st =

Jan has 31
Feb has 28

days.
days.
days.
days.
days.
days.
days.
days.
days.
days.
days.
days.

Something important to

. understand here is the use of
. single quotes and double quotes. If
: you assign a variable to a string like

. this:
: st = 'The time has come'
or like this:

“The time has come”

. the result is the same. However, if
. you need to include a single quote
. in the string like this:

ﬁ contents ©

PROGRAM IN PYTHON - PART 2

st = 'He said he's on his
way'

you will get a syntax error. You
need to assign it like this:

st =
Way"

“He said he's on his

Think of it this way. To define a

kind of quotes! one atthe
beginning, and one at the end !
and they must match. If you need
to mix quotes, use the outer

quotes to be the ones that aren'tin .
the string as above. You might ask, evaluate a vanable.to avalue, we
what if | need to define a string like : mu:st use a comparison operator. .

. Let's say we want to check to see if :

: avariable is equal to a specific
. value. We would use the '==' (two
. equal signs):

“She said “Don't Worry””? In this
case, you could define it this way:

st = 'She said “Don\'t
Worry”'

an escape character, and tells
Python to print the (in this case)
single-quote ! without
considering it as a string delimiter.
Other escape character sequences
(to show just a few) would be "\n'
for new line, and '\t' for tab. We'll
deal with these in later sample
code.

Assignment verses

: variable =

: variable ==

Notice the backslash before the

single quote in 'Don't'. This is called : *E M
. loop and we want to seeifitis

: equal to, say, 12, we would use:

Equate

We need to learn a few more

: things to be able to do our next

. example. First is the difference

. between assignment and equate.
: We've used the assignment many
: times in our samples. When we

. want to assign a value to a variable, :
. we use the assignment operator or

string, you must enclose it in some :)
. the '=' (equal sign):

value

However, when we want to

value

So, if we have a variable named

i if loop == 12:

fFull circle magazine

E if loop ==

@10

Comments

The next thing we need to

. discuss is comments. Comments
. are important for many things. Not :
. only do they give you or someone
. else an idea of what you are trying
: to do, but when you come backto
your code, say 6 months from now,
© you can be reminded of what you
. were trying to do. When you start
. writing many programs, this will :
. become important. Comments also :
. allow you to make Python ignore
. certain lines of code. To comment a :
. line you use the '#' sign. For :
. example:

: # This is a comment

You can put comments

anywhere on a code line, but
. remember when you do, Python
. will ignore anything after the '#'.

If statements

Now we will return to the "if"

statement we showed briefly

- above. When we want to make a

Don't worry about the if and the : ¢ icion based on values of things,

colon shown in the example above we can use the if statement:
: yet. Just remember we have to use :
. the double-equal sign to do :

- evaluation.

12:

This will check the variable

The Compleat Python

'loop’, and, if the value is 12, then
we do whatever is in the indented

. block below. Many times this will
. be sufficient, but, what if we want

to say If a variable is something,

. then do this, otherwise do that. In
. pseudo code you could say:

if x == y then
do something

. else

do something else

- and in Python we would say:

if x == y:
do something

. else:

do something else
more things to do

The main things to remember

. here are:

1. End the if or else statements

ﬁ contents ©

PROGRAM IN PYTHON - PART 2

with a colon.
2. INDENT your code lines.

Assuming you have more than
one thing to check, you can use the
if/elif/else format. For example:

x =25
if x ==
print 'X is 1'
elif x < 6:
print 'X is less than
6)
elif x < 10:
print 'X is less than
10’
else:
print 'X is
greater'

10 or

Notice that we are using the '<'
operator to see if x is LESS THAN
certain values - in this case 6 or 10.
Other common comparison
operators would be greater than
'>', less than or equal to '<=',
greater than or equal to '>=', and
not equal "'=".

While statements

Finally, we'll look at a simple
example of the while statement.
The while statement allows you to

create a loop doing a series of

threshold has been reached. A

POooJdoUld WN PP

simple example would be

. is greater than 10, quit:

; loop =1
: while loop <= 10:

print loop
loop = loop + 1

runin a terminal would produce
- the following output:

This is exactly what we wanted

to see. Fig.1 (above right) is a
. similar example that is a bit more
- complicated, but still simple.

In this example, we are

combining the if statement, while
. loop, raw_input statement, newline :
. escape sequence, assignment

steps over and over, until a specific : : ;
operator, and comparison operator

fFull circle magazine

E Enter something or
: end

response = raw_input ("Enter something or 'quit' to end => ")

.. . ,, " loop = 1
~ assigning a variable “loop e Sesm oo g
: to 1. Then while the loop
. variable is less than or if response == 'quit':
- equal to 10, print the value Fl’z;nt_"g‘uttmg'
. of loop, add one to it and lee. BT
: continue, until, when loop print 'You typed %s' %

- 1 allin one 8 line program.

Running this example would

. produce:

'quit' to

=> FROG

. You typed FROG
: Enter something or
: end

'quit' to

=> bird

E You typed bird
: Enter something or
: end

'quit' to

=> 42

E You typed 42
: Enter something or
: end

'quit' to

=> QUIT

. You typed QUIT
: Enter something or
: end

'quit' to

=> quit

E quitting

Notice that when we typed

: 'QUIT', the program did not stop.
: That's because we are evaluating
: the value of the response variable
to 'quit’ (response == 'quit"). 'QUIT"

@11

The Compleat Python

response

FIG. 1

. does NOT equal 'quit’".

One more quick example before

. we leave for this month. Let's say

. you want to check to see if a user is
. allowed to access your program.

. While this example is not the best

. way to do this task, it's a good way
. to show some things that we've

. already learned. Basically, we will

. ask the user for their name and a

. password, compare them with

. information that we coded inside

. the program, and then make a

. decision based on what we find.

. We will use two lists !
. the allowed users and

one to hold

ﬁ contents ©

PROGRAM IN PYTHON - PART 2

one to hold the passwords.
Then we'll use raw_input to get

the information from the user, and

finally the if/elif/else statements
to check and decide if the useris

allowed. Remember, this is not the

best way to do this. We'll examine
other ways in later articles. Our
code is shown in the box to the
right.

Save this as 'password_test.py'
and run it with various inputs.

The only thing that we haven't

discussed yet is in the list checking
routine starting with 'if usrname in :

users:'. What we are doing is
checking to see if the user's name
that was entered is in the list. If it

is, we get the position of the user's :

name in the list users. Then we use ;nonth. Next time, we'll be

users.index(usrname) to get the
position in the users list so we can
pull the password, stored at the
same position in the passwords
list. For example, John is at
position 1 in the users list. His
password, 'dog' is at position 1 of
the passwords list. That way we
can match the two. Should be
pretty easy to understand at this
point.

That's enough for this

#

#password_test .py

example of if/else, lists, assignments, raw_input,
comments and evaluations

#

Assign the users and passwords

users = ['Fred',6 'John', 'Steve',6 'Ann', 'Mary']
passwords = ['access',6 'dog',6 '12345', 'kids', 'qwerty']
#

Get username and password

usrname = raw_input ('Enter your username => ')

pwd = raw_input ('Enter your password => ')

#

Check to see if user is in the list
if usrname in users:
position = users.index (usrname)
if pwd == passwords[position]:
print 'Hi there, %s.
else:
print 'Password incorrect.
else:

Access granted.' % usrname

print "Sorry...I don't recognize you.

#Get the position in the list of the users
#Find the password at position

Access denied.'

Access denied."

learning about functions

and modules. Until then,

play with what you've

already learned and have
. fun.

fFull circle magazine

@12

The Compleat Python

|k ="

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with his family.

ﬁ contents ©

HOW-T0O

Written by Greg Walters

Program In Python - Part 3

.

SEE ALSO:
FCM#27-28 - Python Parts 1-2

APPLICABLE TO:
<2 ubuntu <3 kubuntu «Zxubuntu

CATEGORIES:
T

Dev

DEVICES:

n the last article, we Iearned

about lists, literal

substitution, comments,

equate versus assignment,
if statements and while

in this part we would learn

about modules and functions. So

let's get started.

Modules

Modules are a way to extend .
: module. We have to explicitly

your Python programming. You
can create your own, or use

those that come with Python, or§

use modules that others have
created. Python itself comes
with hundreds of various
modules that make your
programming easier. A list of
the global modules that come
with Python can be found at

x.html. Some modules are
operating system specific, but
most are totally cross platform
(can be used the same way in
Linux, Mac and Microsoft

external module, you must
import it into your program.

shown above right in our first

Let's examine each line of

code. The first four lines are
lcoirr\]mlentts. Vll_e Id'SE.USS?.d tr;elrln . don't need to know that there |s
- Ih tne fast articie. Line TIVE LEIS - 5 module for SQLite. However,
: when you need it, it's already

. there. (In fact, we'll be using

Python to use the random

tell Python to do this.

full circle magazine

. sets up a 'for’

. loop to print 14
: random

: numbers. Line

. eight uses the

: randint()

. . function to print
mmmww; a random
. integer between 1 and 10.
: Notice we must tell Python
. what module the function

: comes from. We do this by
Windows). To be able to use an faarz/lcir:)grn(.l:a:\r:jlisngé\?\/er:y even
. create modules? Well, if every

: possible function were included
One of the modules that comes : P

. with Python is called 'random".
. This module allows you to
. generate pseudo-random
: numbers. We'll use the module :
statements. | promised you that :
. example.

@13

Line seven #

random example.py
Module example using the random module

#

. directly into Python, not only

. would Python become

. absolutely huge and slow, but
: bug fixing would be a

. nightmare. By using modules,
: we can segment the code into
. groups that are specific to a

. certain need. If, for example,

. you have no need to use

: database functionality, you

database modules later on in

The Compleat Python

import random
print 14 random integers
for cntr in range(1l,15):
print random.randint(1,10)

this series.)

Once you really get started

© in Python programming, you
. will probably make your own
: modules so you can use the
: code you've already written
: over and over again, without

having to re-type it. If you need

: to change something in that

: group of code, you can, with

: very little risk of breaking the

: code in your main program.

. There are limits to this and we

: will delve into this later on.

: Now, when we used the 'import
: random' statement earlier, we

. were telling Python to give us

© access to every function within

the random module. If,

. however, we only needed to
. use the randint() function, we

ﬁ contents ©

http://docs.python.org/modindex.html

PROGRAM IN PYTHON - PART 3

can re-work the import
statement like this:

from random import randint

Now when we call our
function, we don't have to use
the 'random.' identifier. So, our
code changes to

from random import randint

print 14 random integers

for cntr in range(1,15):
print randint(1,10)

Functions

When we imported the
random module, we used the
randint() function. A function is

to be called, usually more than
once, which makes it easier to
maintain, and to keep us from
typing the same code over and
over and over. As a very
general and gross statement,
any time you have to write the
same code more than once or
twice, that code is a good
candidate for a function. While
the following two examples are
silly, they make good
statements about using
functions. Let's say we wanted
to take two numbers, add

. look like the text
. shown right.

. typing, it lends itself to errors,

. either by typing or having to

. change something later on.

. Instead, we are going to create
a block of code that is designed @ @ function called 'DoTwo’ that
. takes the two numbers and

. does the math, printing the

. output each time. We start by

. using the 'def' key word (which
. says that we are going to

them, then multiply

them, and then #silly example

o . select for the function, and
Not only is this a lot of . then a list of parameters (if
. then closed by a colon (:). The
. code in the function is
. indented. Our improved silly
. example (#2) is shown below.

- As you can see, there's a lot
. less typing involved — 8 lines

. instead of 12 lines. If we need

. to change something in our

. define
: the
: functi #silly example 2...still silly, but better
§ def DoTwo (numl,num2):
§ on). print 'Adding the two numbers %d and %4 = %d
. After print 'Multiplying the two numbers %d and %d =
: 'def print 'Subtracting the two numbers %d and %d =
we print '\n’
- add DoTwo (1,2)
. the DoTwo(1,4)
" name DoTwo (10,5)
we

fFull circle magazine The Compleat Python

@14

- subtract them, print 'Adding the two numbers %d and %d = %d ' % (1,2,1+2)

T : print 'Multiplying the two numbers %d and %d = %d ' % (1,2,1*2)

: displaying the print 'Subtracting the two numbers %d and %d = %d ' % (1,2,1-2)

. numbers and results print '\n’

- each time. To make print 'Adding the two numbers %d and %d = %d ' % (1,4,1+4)

: matters worse, we print 'Multiplying the two numbers %d and %d = %d ' % (1,4,1*4)

: print 'Subtracting the two numbers %d and %d = %d ' % (1,4,1-4)

i have to .do that three print '\n'

: times with three sets print 'Adding the two numbers %d and %d = %4 ' % (10,5,10+5)

. of numbers. Our silly print 'Multiplying the two numbers %d and %d = %d ' % (10,5,10%*5)
: example would then print 'Subtracting the two numbers %d and %d = 8d ' % (10,5,10-5)
: print '\n'

function, we can do it without
: . causing too many issues to our
- any) in parentheses. This line is :

main program. We call our

. function, in this case, by using
. the function name and putting
. the parameters after.

Here is another example of a

function. Consider the following
. requirements.

We want to create a

(numl, num2, numl+num?2)
' % (numl,num2,numl*num2)
' % (numl,num2,numl-num2)

ﬁ contents ©

PROGRAM IN PYTHON - PART 3

program that will print out a
list of purchased items in a
pretty format. It must look
something like the text below.

The cost of each item and
for the total of all items will be
formatted as dollars and cents.
The width of the print out must
be able to be variable. The
values on the left and right
must be variable as well. We
will use 3 functions to do this
task. One prints the top and

detail lines including the total
line and one prints the
separator line. Luckily, there
are a number of things that
Python has that will make this
very simple. If you recall, we
printed a string multiplied by 4,
and it returned four copies of
the same string. Well we can
use that to our benefit. To print
our top or bottom line we can

two for the two + characters

and use “ '='* (width-2)". To
make things even easier, we

. will use variable substitution to
. put all these items on one line.
: So our string to print would be

. coded as 's ('+',('="* width-

: routine print this directly, but

. we will use the return keyword
: to send the generated string

. back to our calling line. We'll

- call our function 'TopOrBottom’
. and the code for this function

. looks like this.

bottom line, one prints the item
: def TopOrBottom(width):

width is total width

E of returned line

e O

10aSaal! ©
©S35S3sS c)

* (width-2)),'+")

return

We could leave out the

comment, but it's nice to be

. parameter 'width' is. To call it,
: we would say 'print

- TopOrBottom(40)' or whatever
take the desired width, subtract :

. Now we have one function that

width we wish the line to be.

takes care of two of
the lines. We can

Jlr Jlr make a new function
! Item 1 X.XX !

/| Ttem 2 X.xx [to take carg of th.e
S | separator line using
'| Total X.XX | the same kind of

= code...OR we could

modify the function
fFull circle magazine

@15

we just made to include a
parameter for the character to

. use in the middle of the pluses.
. Let's do that. We can still call it
. TopOrBottom.

: 2)),'+'). Now we could have the . def

: TopOrBottom(character,width):

width is total width

E of returned line

character is the

E character to be placed
: between the

'+' characters
-]

19aSalal
©S%S3sS °

return

E ('+', (character * (width-
:2)),"+")

Now, you can see where

. comments come in handy.

. Remember, we are returning

. the generated string, so we

. have to have something to

. receive it back when we make
. the call to it. Instead of

. able to tell at a glance what the :
- we'll just print it. Here's the
- calling line.

assigning it to another string,

E print TopOrBottom('="',40)

So now, not only have we

The Compleat Python

Let's call the new function
'Fmt'. We'll pass it 4 parameter

- values as follows:

- vall - the value to print on the
- left

. leftbit - the width of this

- “column”

- val2 - the value to print on the
. right (which should be a

. floating value)

. rightbit - the width of this

. “column”

The first task is to format the

. information for the right side.

. Since we want to format the

. value to represent dollars and

: cents, we can use a special

. function of variable substitution
. that says, print the value as a

. floating point number with n

. number of places to the right of
. the decimal point. The

. command would be '%2.f'. We

- will assign this to a variable
called 'part2'. So our code line

. would be 'part2 = '%.2f' %

: val2'. We also can use a set of

: . functions that's built into
: taken care of three of the lines, :

. we've reduced the number of
: routines that we need from 3
. down to 2. So we only have the :
. center part of the print out to
. deal with.

: Python strings called ljust and
. rjust. Ljust will left justify the
. string, padding the right side
: with whatever character you

. want. Rjust does

ﬁ contents ©

PROGRAM IN PYTHON - PART 3

the same thing, except the
padding goes on the left side.
Now for the neat bit. Using

a big string and return that to
the calling code. Here is our
next line.

return 'ss' % ('|
',vall.ljust (leftbit-2,"
'), part2.rjust (rightbit-2,"
v),| ||)

While this looks rather
daunting at first, let's dissect it
and see just how easy it is:
Return - We will send back
our created string to the
calling code.

'ss' - We are going to stick in
4 values in the string. Each %s
is a place holder.

% (- Starts the variable list

‘| ', - Print these literals
vall.ljust(leftbit-2,' ') - Take
the variable vall that we were
passed, left justify it with
spaces for (leftbit-2)
characters. We subtract 2 to
allow the '| ' on the left side.
Part2.rjust(rightbit-2,"'') -
Right justify the formatted
string of the price rightbit-2
spaces. ' |' - finish the string.

That's all there is to it.

While we should really do some
error checking, you can use

. that as something to play with
substitutions we throw together :
. function is really only two lines
. of code outside of the definition :
. line and any comments. We can :
. call it like this.

on your own. So...our Fmt

; print Fmt('Item
:1',30,iteml,10)

. the width of the

that we are
sending 30 for "
. the width of the | Item 1
. |left bit and 10 for
| Item 2

right. That
equals the 40

. that we sent to our :
. TopOrBottom routine earlier. So, :
. fire up your editor and type in

3.00 |

15.00 |

. shown above right.

While this is a very simple

. example, it should give you a

. the code below. . good idea of why and how to

_ . use functions. Now, let's extend
Save the code as 'pprintl.py':

: . . this out a bit and learn
- and run it. Your output should
. look something like the text

: Again, we could assign the
. return value to another string,
. but we can just print it. Notice

#pprintl.py
#Example of semi-useful functions

def TopOrBottom(character,width):
width is total width of returned line
return '%s%s%s' % ('+', (character * (width-2)),'+')

def Fmt(vall,leftbit,val2,rightbit):
prints two values padded with spaces
vall is thing to print on left, val2 is thing to print on right
leftbit is width of left portion, rightbit is width of right portion
part2 = '$.2f' % val2
return '%s%s%s%s' % ('| ',vall.ljust(leftbit-2,"
Define the prices of each item
iteml = 3.00
item2 = 15.00
Now print everything out...
print TopOrBottom('=',b40)
print Fmt('Item 1',30,iteml,10)
print Fmt('Item 2',30,item2,10)
print TopOrBottom('-"',40)
print Fmt('Total',30,iteml+item2,10)
print TopOrBottom('=',640)

') ,part2.rjust(rightbit-2,' '),' |")

fFull circle magazine The Compleat Python

@ 16 ﬁ contents ©

PROGRAM IN PYTHON - PART 3

more about lists. Remember
back in part 2 when we first
discussed lists? Well one thing

can contain just about
anything, including lists. Let's

define a new list in our program
. lines that call Fmt().

. Next add the following

. lines (with #NEW LINE

[['Soda',1.45],['Ca.mdy',.75], at the end) to make
['Bread’,1.95],['Milk",2.59]] . your code look like the

. text shown right.

called itms and fill it like this:

itms =

If we were to access this as

a normal list we would use print :

itms[0]. However, what we

which is not really what we
were looking for under normal
circumstances. We want to
access each item in that first
list. So we would use 'print
itms[0][0]' to get 'Soda' and
[0][1] to get the cost or 1.45.
So, now we have 4 items that
have been purchased and we
want to use that information in
our pretty print routine. The

at the bottom of the program.
Save the last program as
'pprint2.py', then comment out
the two itemx definitions and
insert the list we had above. It
should look like this now.

[['Soda',1.45],['Candy',.75],['Bread’',1.95],['Milk',2.59]]

.) J i [['Soda',1.45],['Cand
that | didn't tell you is thata list: y+,.757, ['Bread',1.95

1,['Milk',2.59]]

#iteml = 3.00
#item2 = 15.00 itms =
. itms =

Next, remove all the

| set up a counter variable

' : : for loop that cycles through the :
would get back is ['Soda’,1.45], . list for each item there. Notice
. that I've also added a variable
. called total. We set the total to
. 0 before we go into our for
loop. Then as we print each

. item sold, we add the cost to

. our total. Finally, we print the

. total out right after the

. separator line. Save your

. program and run it. You should
. see something like the text

only thing we have to change is | SV Pelow.

total

for cntr in range(0,4):
print Fmt (itms[cntr][0],30,itms[cntr][1],10) #NEW LINE
total += itms[cntr][1l] #NEW LINE

print TopOrBottom('-',40)

print Fmt('Total',30,total,10) #CHANGED LINE

print TopOrBottom('=',640)

print TopOrBottom('=',40)

0 #NEW LINE
#NEW LINE

. same way we did the total line, :
. but use (total * .086) as the
. cost.

print

: Fmt('Tax:',30,total*.086,10)

If you would like to, you can

. add more items to the list and
. see how it works.

That's it for this time. Next

. time we'll concentrate on
. classes. Enjoy!

close to the
fFull circle magazine

@17

: If you T Soda 1.45 T Greg Walters is owner of

: ’ RainyDay Solutions, LLC, a

: wanted to get | candy 0.75 | . ,

P | Bread 1.95 | consulting company in Aurora,
- wild and crazy, | Milk 5.59 | Colorado, and has been

: you could add e programming since 1972. He

' a line for tax as enjoys cooking, hiking, music,
: : | e 6.74 | and spending time with his

- well. Handle it + +

family.

The Compleat Python

ﬁ contents ©

HOW-T0O

Written by Greg Walters

SEE ALSO:
FCM#27-29 - Python Parts 1-3

APPLICABLE TO:
<2 ubuntu <3 kubuntu «Zxubuntu

CATEGORIES:
"

F
:’/"
r

Dev

DEVICES:

promised last time that we
would discuss classes. So,
that's what we'll
concentrate on. What are
classes and what good are they?:

A class is a way of
constructing objects. An object
is simply a way of handling
attributes and behaviors as a
group. | know this sounds :
confusing, but I'll break it down :
for you. Think of it this way. An
object is a way to model
something in the real world. A

class Dog():

Program In Python - Part 4

def init_ (self,dogname,dogcolor,dogheight,dogbuild,dogmood,dogage):
#here we setup the attributes of our dog

self.name = dogname
self.color = dogcolor
self.height = dogheight
self.build = dogbuild
self.mood = dogmood
self.age = dogage
self.Hungry = False
self.Tired = False

class is a method we use to
implement this. For example,

Beagle, a Lab and a German
Shepherd/Blue Heeler mix. All
three are dogs, but are all
different. There are common

. attributes among the three of

. them, but each dog has

. separate attributes as well. For
: example, the Beagle is short,

chubby, brown, and grumpy.

. Short/medium-sized/tall are all
. attributes of height. Grumpy,
* laid back, and crazy are all

attributes of mood. On the

full circle magazine

. 'Dog'. Going back to the

. attributes that we used to

. describe each above, we have
: things such as Dog.Name,

. Dog.Height, Dog.Build (skinny,
. chubby, etc.), and Dog.Color.

: : We also have behaviors such as :
: The Lab is medium-sized, black, :
. and very laid back. The

. Shepherd/Heeler mix is tall,

: skinny, black, and more than a
. bit crazy. Right away, some

: attributes are obvious.

: and so on.

: dogs is a different breed. Each
. breed would be a sub-class of
: the class Dog. In a diagram, it
. would look like this.

@18

behavior side of things, we can
. consider eating, sleeping, :
we have three dogs at home. A

playing, and other actions.

All three are of the class

Dog.Bark, Dog.Eat, Dog.Sleep,

As | said before, each of the

/--Beagle

The Compleat Python

Dog ---|-- Lab
\--Shepherd/Heeler

Each sub-class inherits all of

: the attributes of the Dog class.
. Therefore, if we create an

: instance of Beagle, it gets all of
: the attributes from its parent

. class, Dog.

: Beagle = Dog()

: Beagle.Name = 'Archie’
: Beagle.Height = 'Short'’
: Beagle.Build = 'Chubby"
! Beagle.Color = 'Brown'

Starting to make sense? So,

© let's create our gross Dog class
: (shown above). We'll start with
: the keyword "class" and the

: name of our class.

ﬁ contents ©

PROGRAM IN PYTHON - PART 4

Before we go any further in
our code, notice the function
that we have defined here. The
function __init__ (two
underscores + 'init' + two
underscores) is an initialization
function that works with any
class. As soon as we call our
class in code, this routine is
run. In this case, we have set
up a number of parameters to
set some basic information
about our class: we have a
name, color, height, build,
mood, age, and a couple of
variables Hungry and Tired.
We'll revisit these in a little bit.
Now let's add some more code.

Beagle =

'Chubby', 'Grumpy',12)
print Beagle.name
print Beagle.color
print Beagle.mood
print Beagle.Hungry

This is UNINDENTED code
that resides outside of our
class, the code that uses our
class. The first line creates an
instance of our dog class called
Beagle. This is called
instantiation. When we did this,
we also passed certain
information to the instance of
the class, such as the Beagle's

get

name, color, and so on. The

next four lines simply query the

. Beagle object and get back ;
. information in return. Time for
: more code. Add the code shown :
© in the top right box into the :
: class after the __init__ function.

Now we can call it with

: Beagle.Eat() or Beagle.Sleep().
: Let's add one more method.

: We'll call it Bark. Its code is

: shown right.

This one I've made more

. flexible. Depending on the

: mood of the dog, the bark will
: change. Shown on the next

: page is the full class code so

. far.
Dog('Archie', 'Brown', 'Short', :

So, when we run this we'll

: My name is Archie
: My color is Brown
: My mood is Grumpy
: I am hungry =
: Sniff Sniff...Not Hungry
: Yum Yum...Num Num

! GRRRRR. . .Woof Woof

False

Now, that takes care of the

grumpy old Beagle. However, |
: said earlier that | have 3 dogs.
. Because we coded the class

carefully, all we have to do is

fFull circle magazine

@19

def Eat(self):
if self.Hungry:

print 'Yum Yum...Num Num'

self.Hungry =
else:

False

print 'Sniff Sniff...Not Hungry'

def Sleep(self):
print

self.Tired = False

def Bark(self):
if self.mood ==
print

elif self.mood ==

'2ZZZ2Z2Z2Z2ZZ2Z2ZZZ2ZZ222Z2Z2Z2ZZ2Z2Z2Z2ZZ2ZZ2ZZ2ZZ"'

'Grumpy ' :
'GRRRRR. . .Woof Woof'
'Laid Back':

print 'Yawn...ok...Woof'

elif self.mood ==

'Crazy':

print 'Bark Bark Bark Bark Bark Bark Bark'

else:
print

: create two more instances of
: our dog class.

! Lab =
! Dog('Nina', 'Black', 'Medium', "' :
! Heavy', 'Laid Back',7)
! Heeler =

! Dog('Bear', 'Black','Tall', 'Sk:
! inny', 'Crazy',9)
! print
! Lab.name
! print
! Lab.color
! print
! Lab.mood
! print
! Lab.Hungry

! Lab.Bark()

! Heeler.Bark()

(>

'My Name is %s' %
'My color is %s' %
'My Mood is %s' %

'I am hungry =

Notice that | created the
The Compleat Python

'Woof Woof'

: nstances of both of the dogs

. before I did the print

. statements. That's not a

. problem, since | “defined” the
: instance before | called any of
. the methods. Here is the full

. output of our dog class

: program.

; My name is Archie
: My color is Brown
! My mood is Grumpy
: I am hungry =
: Sniff Sniff...Not Hungry
i Yum Yum...Num Num

: GRRRRR...Woof Woof

: My Name is Nina

False

ﬁ contents ©

PROGRAM IN PYTHON - PART 4

My color is Black
My Mood is Laid Back
I am hungry = False
Yawn...ok...Woof

Bark Bark Bark Bark Bark Barkg

Bark

Now that you have the
basics, your homework will be
to expand our dog class to
allow for more methods, such
as maybe Play or
EncounterStrangeDog or
something like this.

Next time, we will start
discussing GUI or Graphical
User Interface programming.

We will be using Boa Constructor

for this.

- -

| < =]

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his
family.

class Dog():

def init_ (self,dogname,dogcolor,dogheight,dogbuild,dogmood,dogage) :
#here we setup the attributes of our dog
self.name = dogname
self.color = dogcolor
self.height = dogheight
self.build = dogbuild
self.mood = dogmood

self.age = dogage

self.Hungry = False
self.Tired = False

def Eat(self):
if self.Hungry:

print 'Yum Yum...Num Num'

self.Hungry =
else:

False

print 'Sniff Sniff...Not Hungry'

def Sleep(self):

print '22Z72722727272Z22722272222Z2222222Z22ZZ2Z2Z2Z2Z"'
self.Tired = False

def Bark(self):

if self.mood == 'Grumpy':
print 'GRRRRR...Woof Woof'

elif self.mood ==
print 'Yawn..
elif self.mood ==

'Laid Back':
.0k...Woof'
'Crazy':

print 'Bark Bark Bark Bark Bark Bark Bark'

else:

print 'Woof Woof'

Beagle = Dog('Archie', 'Brown', 'Short', 'Chubby', 'Grumpy',612)
print 'My name is %s' % Beagle.name

[-)

print 'My color is %s' %

Beagle.color

print 'My mood is %s' % Beagle.mood
s

print 'I am hungry = %
Beagle.Eat ()
Beagle.Hungry = True
Beagle.Eat ()
Beagle.Bark ()

Full circle magazine @ 20

% Beagle.Hungry

The Compleat Python

ﬁ contents ©

HOW-T0O

Written by Greg Walters

.

SEE ALSO:
FCM#27-30 - Python Parts 1-4

APPLICABLE TO:
<2 ubuntu <3 kubuntu «Zxubuntu

CATEGORIES:
5

Dev

DEVICES:

f you are like me, you will
HATE the first part of this
installation. | HATE it when
an author tells me that |

have to double read every word

in their book/chapter/article,

because | just KNOW it will be a :
snore - even when | know it's for:

my own good, and | will end up
doing it anyway.

Consider yourself warned.
PLEASE read the following
boring stuff carefully. We'll get
to the fun stuff soon, but we

need to get some ground work
covered before we can really
talk about trying to program.

Synaptic and select both

Once installed, you should find
Boa under
Applications|Programming\Boa

it up. It will make things a bit
easier. Once the application
starts, you will see three
different windows (or frames):
one across the top, and two

. across the bottom. You might
. have to resize and move them
: a bit, but get things to a point
. where it looks something like

this:

) I [O (Nothing selected)

New| ContanersiLayout | Basi Controls | Butons | is Controls | ibrary | user | utities (oata) | zope

&0 0 oo EDEEMENS »aE A

|||||||||

conr roa e o |

\ Z oy,

fFull circle magazine

@21

The top frame is called the

tool frame. The bottom-left
. frame is the inspector frame,
- and the bottom-right frame is

FIRST you need to install Boa: tp¢ egitor frame. On the tool

Constructor and wxPython. Use frame, you have various tabs
. (New, Containers/Layout, etc.)
wxPython and Boa Constructor. . that will allow you to start new
: projects, add frames to existing :
. projects, and add various
Constructor. Go ahead and startg glc;r;t”ré);iiz?].ttl_igr?nrgsescic;rryour
. frame will become very

. important as we start to add
: controls to our application. The :
. editor frame allows us to edit
: our code, save our projects,

. and more. Moving our attention :
. back to the tool frame, let's

. take a look at each tab -

. starting with the “New” tab.

: While there are many options

: available here, we will discuss

(" Boa Constructor - Python IDE - wxPython GUI Builder - Zope Editor oo\
206 x If:

. only two of them. They are the
=|: 5th and 6th buttons from the

. left: wx.App and wx.Frame.

: Wx.App allows us to create a

: complete application beginning :
. with two auto-generated files.
: One is a frame file and the

: other is an application file. This :

is the method | prefer to use.

The Compleat Python

Program In Python /- Part 5

. The wx.Frame is used to add

: more frames to our application
. and/or create a standalone app
: from a single source file. We'll

. discuss this later.

Now look at the

. Containers/Layout tab. Many

. goodies here. The ones you'll

: use most are the wx.Panel (first
. on the left) and the sizers

: (2,3,4,5 and 6 from the right).

. Under Basic Controls, you'll find
: static text controls (labels), text
. boxes, check boxes, radio

: buttons, and more. Under

: Buttons, you'll find various

: forms of buttons. List Controls

: has data grids and other list

: boxes. Let's jump to Utilities

. where you'll find timers and

: menu items.

Here are a few things to

: remember as we are getting

. ready for our first app. There

. are a few bugs in the Linux

. version. One is that SOME

: controls won't allow you to

: move them in the designer. Use
. the <Ctrl>+Arrow keys to

ﬁ contents ©

PROGRAM IN PYTHON - PART 5

move or tweak the position
of your controls. Another one
you'll find when you try the
tutorials that come with Boa
Constructor - when placing a
panel control, it's hard to see.
Look for the little boxes (I'll
show you this soon). You can
also use the Objs tab on the
Inspector frame and select it
that way.

Okay, here we go. Under the : 555 s to design our GUI

. frame - which is what we'll do
. now. When you click on it you
- will be presented with a blank

'New' tab of the tool frame,
select wx.App (5th button from
the left). This will create two
new tabs in the editor frame:
one named “*(Appl)*”, the
other named “*(Framel)*".
Believe it or not, the VERY first

thing we want to do is save our

two new files, starting with the
Framel file. The save button is
the 5th button from the left in
the Editor Frame. A “Save As”
frame will pop up asking you

where you want to save the file

and what you want to call it.
Create a folder in your home

folder called GuiTests, and save you to put whatever controls

. you need to (within reason).

. The first thing we want to do is

. place a wx.panel control.

. Almost everything | have read
says not to put controls (other

the file as “Framel.py”. Notice
that the “*(Framel)*” tab now
shows as “Framel”. (The “*(“
says that the file needs to be
saved.) Now do the same thing
with the Appl tab.

Now let's examine a few of

. the buttons on the Editor Tool
. bar. The important ones for now :
. are the Save (5th from the left)
- and Run (Yellow arrow, 7th from :
. the left). If you are in a frame
. tab (Framel for example) there :
- will be some extra buttons you
. need to know about. For now

. it's the Designer button:

k|

It is an important one. It

. frame.

» |

: Framel :
\ J/

This is a blank canvas for

fFull circle magazine

@zz

than a wx.panel) directly on a

_ frame. So, click on the

Containers/Layout tab in the

: Tool Frame, then click on the
- wx.Panel button. Next, move

: somewhere on the inside of the
frame. You'll know it worked if
. you see something like this:

G)
| Framel
| | u u
u]
| | u u
\ J

Remember when | warned

: you about the bugs? Well, this
. is one of them. Don't worry. See :
. the 8 little black squares?

. That's the limits of the panel. If :
: you wanted, you could click and :
. drag one of them to resize the
: panel, but for this project what
. we want is to make the panel

. cover the entire frame. Simply :
. resize the FRAME just a little bit :
. at this point. Now we havea
. panel to put our other controls
* on. Move the frame you are

working on until you can see
The Compleat Python

the tool box for the Editor
frame. Two new buttons have

. appeared: a check and an “X".
. The “X” will cause the changes
. you made to be thrown away.

. over to the new frame that you
. are working on and click ;

¥

The Check button:

. is called the “Post” button. This
: will cause your changes to be
written into our frame file. You

. still have to save the frame file,
. but this will get the new things
. into the file. So, click on the

. Post button. There's also a post
. button on the Inspector frame,
. but we'll deal with that later.

. Now save your file.

Go back into the Design

mode. Click the '‘Buttons' tab on
. the Tool frame and then click
. the first button on the left, the

wx.Button. Then add it

. somewhere close to the middle
. of your frame. You'll have

something that looks close to

. this:
|
E buttonl E
|

h contents ©

PROGRAM IN PYTHON - PART 5

Notice that there are 8 small
squares around it just like the
panel. These are resize
handles. It also shows us what
control is currently selected. In

order to move this closer to the

center of the frame, hold down
the Control key (Ctrl) and while
that's being pressed, use the
arrow keys to move it where
you want it. Now, let's look at
the Inspector frame. There are
four tabs. Click on the '‘Constr!
tab. Here we can change the
label, name, position, size and
style. For now, let's change the
name to '‘btnShowDialog' and

. Inspector |

. clicks our button. Click on the X :
. wxPython. Now jump down to
. the class definition.

. your changes. Go back to the
. designer once again, and notice :
2 . that (assuming you still have
the Label property to 'Click Me'. ' the 'Objs' tab in the inspector
. frame selected), Framel is now :
. selected. This is good because
. it's what we want. Go back to

. the 'Constr' tab, and change

Inspector
B XK E2DHE ¢ 8 0 6l
Constr | Props | Evis | Objs

Class we, Button

Id wxlD FRAME1BUTTY -

Label Click Mel

Mame au'btnshowDialog'
¥Iposition wx.Point(152, 96)
Msize wx.Size(85, 32)
Mletula fal J

Now, let's skip over all the
rest of that tab and go to the
Objs tab. This tab shows all the
controls you have and their
parent/child relationships. As
you can see, the button is a
child of panell, which is a child
of Framel.

B X G ESDB | &

Constr | Props

Evts Dbjﬁ‘

T[] Framel

J panell

):

Post (check button) and save

. the title from 'Framel' to 'Our
: First GUI'. Post and save one

. more time. Now let's run our

- app. Click the yellow Run

. button on the Editor frame.

‘ Click Me ‘

Click all you want on the

fFull circle magazine

@23

we need to set up an event to
happen, or fire, when the user

in the upper-right corner to

. finish running the frame. Next,

go back to the designer, select

: the button and go into the

. 'Evts' tab in the inspector

. frame. Click on ButtonEvent
. and then double click on the
. Wx.EVT_BUTTON text that

. shows up, and notice that in
: the window below we get a

button event called

: 'OnBtnShowDialogButton'. Post
. and save.

L T N

Constr | Props| Evis | Objs

wod ENVT_BUTTOM

HelpEvent
KeyEwent
FocusEwvent
MouseEvent

enakies S0 sripEEn

MiscEvent

-1p.|

Before we go any further,
let's see what we've got in the

. button, but nothing will happen. way of code (page 24).

. Why? Well, we didn't tell the
button to do anything. For that,

The first line is a comment
that tells Boa Constructor that

The Compleat Python

this is a boa file. It's ignored by
the Python compiler, but not by
Boa. The next line imports

At the top, there's the

. __init_ctrls method. Notice the
. comment just under the

. definition line. Don't edit the

. code in this section. If you do,
: you will be sorry. Any place

. BELOW that routine should be
. safe. In this routine, you will

. find the definitions of each

. control on our frame.

Next, look at the __init__

. routine. Here you can put any

- calls to initializing code. Finally,
. the OnBtnShowDialogButton

. routine. This is where we will

. put our code that will do the

. work when the user clicks the

. button. Notice that there is

. currently an event.Skip() line

. there. Simply stated, this says

. just exit when this event fires.

ans) :

Now, what we are going to

. do is call a message box to pop
. up with some text. This is a

. common thing for programmers
. to do to allow the user to know
. about something - an error, or

the fact that a

ﬁ contents ©

PROGRAM IN PYTHON - PART 5

process has finished. In this
case, we will be calling the

wx.MessageBox built in routine.
: call the messagebox

The routine is called with two

parameters. The first is the text :
we wish to send in the message :
- well.
for the message box. Comment :

box and the second is the title

out the line event.Skip() and
put in the following line.

wx .MessageBox ('You Clicked
the button', 'Info')

Save and click the Run
button (yellow arrow). You
should see something like this:

‘ Click Me ‘

And when you click the
button you should see
something like this:

4)

: O Info Edl

You Clicked the button

& oK

. wx.ICON_EXCLAMAT
: ION - Show an alert
icon

gbe

Understand here
that this is just about
the simplest way to

routine. You can have] =
more parameters as

def

Here's a quick

: rundown on how to
: change the way the
: icons work on the

: message box (more
: next time).

. wx.ICON_QUESTION
. - Show a question icon

def

def

. wx.ICON_ERROR - Show an
. error icon

. wx.ICON_INFORMATION -
. Show an info icon

The way to write this would

; wx .MessageBox ('You Clicked
: the button’',
: wx.ICON_ INFORMATION)

'Info’',

or whatever icon you wanted to

@24

fFull circle magazine

#Boa:Frame:Framel
import wx
def create(parent):
return Framel (parent)
[wxID FRAMEl, wxID FRAME1BTNSHOWDIALOG, wxID FRAME1PANEL1,
[wx.

NewId() for _init ctrls in range(3)]

class Framel (wx.Frame):

_init ctrls(self, prnt):

generated method, don't edit

wx.Frame. init (self, id=wxID FRAMEl, name='',6 parent=prnt,
pos=wx.Point (543, 330), size=wx.Size (458, 253),
style=wx.DEFAULT FRAME STYLE, title=u'Our First GUI')

self.SetClientSize(wx.Size (458, 253))

self.panell = wx.Panel(id=wxID FRAME1PANELl, name='panell', parent=self,
pos=wx.Point (0, 0), size=wx.Size (458, 253),
style=wx.TAB_TRAVERSAL)

self.btnShowDialog = wx.Button(id=wxID_ FRAME1BTNSHOWDIALOG,
label=u'Click Me', name=u'btnShowDialog', parent=self.panell,
pos=wx.Point (185, 99), size=wx.Size (85, 32), style=0)

self.btnShowDialog.Bind (wx.EVT_BUTTON, self.OnBtnShowDialogButton,
id=waD_FRAMElBTNSHOWDIALOG)

__init__ (self, parent):

self. init ctrls(parent)
onBtnShowDialogButton(self, event):
event.Skip()

. use that suited the situation.

. There are also various button

. arrangement assignments

. which we'll talk about next

: time.

: | = =]
So, until next time, play

. with some of the various

: controls, placements, and

: so on. Have fun!

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his
family.

The Compleat Python

ﬁ contents ©

HOW-TO

Written by Greg Walters

.

SEE ALSO:
FCM#27-31 - Python Parts 1-5

APPLICABLE TO:
<2 ubuntu <3 kubuntu «Zxubuntu

CATEGORIES:
T

Dev

DEVICES:

g

| hope you've been playing with
Boa Constructor since our last
meeting. First we will have a very
simple program that will show one
frame, then allow you to click on a
button that will pop up another
frame. Last time we did a message
box. This time we will do a totally

when doing an application with
multiple frames or windows. So...
here we go...

Start up Boa Constructor and
close all tabs in the Editor frame

with the exception of Shell and
Explorer by using the (Ctrl-W) key
combination. This ensures that we
will be starting totally fresh. Now

create a new project by clicking on
the wx.App button (see last time's :

| FrameSecond Frame

. he title to “Main Frame” and the
© name to “FrameMain”. We'll discuss :
© naming conventions in a bit. Set

. the size to 400x340 by clicking on
: the Size check box. This drops

. down to show height and width.

. Height should be 400 and width

. should be 340:

clicking on wx.Frame (which is right :

article if needed).

Before you do anything else,
save Frame1 as “FrameMain.py”
and then save App1 as “Gui2.py".
This is important. With the GUI2
tab selected in the Editor frame,
move to the Toolbar frame, go
back to the New tab, and add
another frame to our project by

© next to the wx.App button). Make

- sure that the Application tab shows

both frames under the Module

. column. Now go back to the new
. frame and save it as

: “FrameSecond.py":

Next, open FrameMain in the

. designer. Add a wx.Panel to the
separate frame. This can be helpful © frame. Resize it a bit to make the
. panel cover the frame. Next we are

© going to change some properties -

we didn't do this last time. In the
. inspector frame, make sure that

the Constr tab is selected and set

full circle magazine

(@ shel

/4] Explorer

Application

Source | Explore

|Mndu|e
1 FrameMain

||Type

Frame

Inspector
B X EREEaEE« 8 a8
Constr | Props | Evts | Objs
Name " UFrameMain’
¥position wx.Point(653, 366)
Llsize 2wx.Size(400, 340)
Height 2340
Width 400
EIS'E‘HE wi . DEFAULT FRAME

@25

The Compleat Python

Program In Python - Part 6

\t | of the screen with the title of
GUI2 :
& ki : "Main Frame”. Now close it by
. clicking on the “X" in the upper

© right corner of the app.

ring FrameMain back into
the designer. Add two
wx.Buttons to the frame,
one above the other, and
close to the center of the frame.

: Select the top button, name that
: “btnShowNew”, and set the label
© to “Show the other frame” in the
: Constr tab of the Inspector frame.
: Use the Shift+Arrow combination
© toresize the button so that all the
: textis visible, and then use the
Now click on the Props tab. Click:
on the Centered property and set it :
: to wx.BOTH. Click the post check-
: mark and save your work. Now run
. your application by clicking on the
: button with the yellow arrow. Our
. application shows up in the center :

Ctrl+Arrow combination to move it
back to the center of the frame.

: Select the bottom button, name
© that “btnExit”, and set the label to
© “Exit”.

ﬁ contents ©

PROGRAM IN PYTHON - PART 6

Post, save, and run to see your
changes. Exit our app and go back
to the designer. We are going to
add button click events. Select the
top button, and in the inspector
frame, select the Evts tab. Click on
ButtonEvent, then double click on
wx.Evt_BUTTON. Notice you
should have
“OnBtnShowNewButton” below.
Next, select the btnExit button. Do
the same thing, making sure it
shows “OnBtnExitButton”. Post
and save. Next go to the Editor
frame and scroll down to the
bottom.

Make sure you have the two
event methods that we just
created. Here's what the frame
should look like so far:

Now it's time to deal with our

Main Frame

| Show the other frame |

other frame. Open FrameSecond in

the designer. Set the name to
“FrameSecond”, and the title to

“Second Frame”. Set centering to
wx.BOTH. Add a wx.Button, and

. center it towards the lower part of
. the frame. Set the name to

. “btnFSExit”, and change the title to :
: “Exit". Set up a button event for it.
. Next add a wx.StaticText controlin :
. the upper portion of the frame

. close to the middle. Name it

: “stHiThere”, set the label to “Hi

. there...I'm the second form!”, and
. set the font to Sans, 14 point and

. weight to wxBOLD. Now reset the
. position to be centered in the form
. right and left. You can do thisby
. unchecking the Position attribute
. and use the X position for right and :
. left, and Y for up and down until :
: you are happy. Post and save:

: Now that we have designed our
. forms, we are going to create the

. “glue” that will tie all this together. :
: g J : comment out “event.Skip()”, and

add a line that says “self.Close()”

In the Editor frame, click on the

GUI2 tab, then, below that, click on

. the Source tab. Under the line that : . . :
: . first thing we did was to make sure :

______ 1 . that the application knew we were
going to have two forms in our app.
: That's why we imported both :
: FrameMain and FrameSecond in
. the GUI2 file. Next we imported a
. reference for FrameSecond into

. FrameMain so we can call it later.

Second Frame

Hi there...I'm the second form!

fFull circle magazine

says “import FrameMain”, add
“import FrameSecond”. Save your

. changes. Next, select the
: “FrameMain” tab. Under the line

that says “import wx”, add a line

. that says “import FrameSecond”.

Next scroll down, and find the line

. that says “def _init__(selF,

. parent):”. Add a line after the

. “self._init_ctrls(parent)” line that

: says “self.Fs =

. FrameSecond.FrameSecond(self)”.
: Now under the “def

OnBtnShowNewButton(self,

. event):” event, comment out
. “event.Skip()” and add the

following two lines:

; self.Fs.Show()
: self.Hide ()

Finally, under

5 “OnBtnExitButton” method,

What does all this do? OK. The

We initialized it in the “_init_"

@ 26 The Compleat Python

method. And in the
“OnBtnShowNewButton” event we

. told it that when the button was

. clicked, we want to first show the

. second frame, and to hide the main
. frame. Finally we have the

. statement to close the application

. when the Exit button is clicked.

Now, switch to the code for

. FrameSecond. The changes here

. are relatively small. Under the

. “_init_" method, add a line that

. says “self.parent = parent” which

. adds a variable self.parent. Finally,
. under the click event for

. FSExitButton, comment out the

. “event.Skip()” line, and add the

. following two lines:

; self.parent.Show ()
: self.Hide()

ﬁ contents ©

PROGRAM IN PYTHON - PART 6

Remember we hid the main
frame when we showed the second
frame, so we have to re-show it.
Finally we hide the second frame.
Save your changes.

Here is all the code for you to
verify everything (this page and
following page):

GUI2 code:

#!/usr/bin/env python
#Boa : App : BoaApp

import wx

import FrameMain
import FrameSecond

modules ={u'FrameMain': [1,
u'FrameMain.py'],
u'FrameSecond':

class BoaApp (wx.App) :
def OnInit (self):

Now you can run your
application. If everything went

: right, you will be able to click on

. btnShownNew, and see the First

: frame disappear and second frame
: appear. Clicking on the Exit button
: on the second frame will cause

. that frame to disappear and the

'Main frame of Application’',

[0, '', u'FrameSecond.py']}

self .main = FrameMain.create (None)

self.main.Show ()

self.SetTopWindow (self.main)

return True

def main () :
application = BoalApp (0)
application.MainLoop ()

if _ name__ == '_ _main__ ':
main ()

full circle magazine

@27

FrameMain code:
#Boa:Frame:FrameMain

import wx
import FrameSecond

def create(parent):
return FrameMain (parent)

[wxID_FRAMEMAIN, wxID_ FRAMEMAINBTNEXIT,
wxID_FRAMEMAINBTNSHOWNEW,
wxID_FRAMEMAINPANEL1,

] = [wx.NewId() for _init_ctrls in range(4)]

class FrameMain (wx.Frame) :
def _init_ctrls(self, prnt):
generated method, don't edit
wx .Frame._init__ (self, id=wxID_FRAMEMAIN,
name=u'FrameMain',
parent=prnt, pos=wx.Point (846,
size=wx.Size (400, 340),
style=wx .DEFAULT_FRAME_STYLE, title=u'Main

177),

Frame')
self.SetClientSize (wx.Size (400, 340))
self.Center (wx.BOTH)

self.panell = wx.Panel (id=wxID_FRAMEMAINPANELI1,
name="'panell',
parent=self, pos=wx.Point (0, 0),
size=wx.Size (400, 340),
style=wx.TAB_TRAVERSAL)

self .btnShowNew =
wx .Button (id=wxID_FRAMEMAINBTNSHOWNEW,
label=u'Show the other frame',
name=u'btnShowNew',
parent=self.panell, pos=wx.Point (120,
size=wx.Size (168, 29),
style=0)
self .btnShowNew. SetBackgroundColour (wx.Colour (25,
175, 23))
self .btnShowNew.Bind (wx.EVT_BUTTON,
self.OnBtnShowNewButton,
id=wxID_FRAMEMAINBTNSHOWNEW)

103),

The Compleat Python

h contents ©

PROGRAM IN PYTHON - PART 6

FrameMain Code (cont.):
self .btnExit =
wx .Button (id=wxID_FRAMEMAINBTNEXIT, label=u'Exit',
name=u'btnExit', parent=self.panell,
pos=wx.Point (162, 191),
size=wx.Size (85, 29), style=0)
self .btnExit.SetBackgroundColour (wx.Colour (225,
91))
self .btnExit.Bind (wx.EVT_BUTTON,
self.OnBtnExitButton,
id=wxID_FRAMEMAINBTNEXIT)

218,

def _ _init__ (self, parent):
self. init_ctrls (parent)

self .Fs = FrameSecond.FrameSecond (self)
def OnBtnShowNewButton (self, event) :
#event . Skip ()
self .Fs.Show ()
self .Hide ()
def OnBtnExitButton(self, event):

#event . Skip ()
self.Close()

FrameSecond code:
#Boa:Frame :FrameSecond

import wx

def create(parent) :
return FrameSecond (parent)

[wxID_FRAMESECOND, wxID_FRAMESECONDBTNFSEXIT,
wxID_ FRAMESECONDPANEL1,

wxID_ FRAMESECONDSTATICTEXTI1,

] = [wx.NewId() for _init_ctrls in range (4)]

class FrameSecond (wx.Frame) :
def _init_ctrls(self, prnt):
generated method, don't edit
wx.Frame.__init__ (self, id=wxID_FRAMESECOND,
name=u'FrameSecond',

full circle magazine

size=wx.Size (419,

Frame')

parent=prnt, pos=wx.Point (849,
236),
style=wx.DEFAULT_ FRAME_STYLE, title=u'Second

457) ,

self.SetClientSize (wx.Size (419,
self.Center (wx.BOTH)
self.SetBackgroundStyle (wx.BG_STYLE_COLOUR)

236))

self.panell = wx.Panel (id=wxID_FRAMESECONDPANEL1,

name="'panell',

size=wx.Size (419,

parent=self, pos=wx.Point (0,
236) ,
style=wx.TAB_TRAVERSAL)

0),

self .btnFSExit =

wx .Button (id=wxID_FRAMESECONDBTNFSEXIT, label=u'Exit',

pos=wx.Point (174,

name=u'btnFSExit',

180),
size=wx.Size (85, 29), style=0)

self .btnFSExit .Bind (wx.EVT_BUTTON,

parent=self.panell,

self.OnBtnFSExitButton,

id=wxID_ FRAMESECONDBTNFSEXIT)

self.staticTextl =

wx.StaticText (id=wxID_FRAMESECONDSTATICTEXTI1,

label=u"Hi there...I'm the second form!",

name="'staticTextl',

size=wx.Size (336,

parent=self.panell, pos=wx.Point (45, 49),
23),
style=0)
self.staticTextl.SetFont (wx.Font (14, wx.SWISS,

wx .NORMAL, wx.BOLD,

False, u'Sans'))

def __init__ (self, parent):

def OnBtnFSExitButton (self,

@28

self. init_ctrls (parent)
self.parent = parent

event) :
#fevent . Skip ()
self.parent.Show ()

self .Hide ()

The Compleat Python

ﬁ contents ©

PROGRAM IN PYTHON - PART 6

main frame to re-appear.
Clicking on the Exit button on
the main frame will close the
application.

| promised you we'd discuss
naming conventions. Remember
way back, we discussed
commenting your code? Well, by
using well-formed names for GUI
controls, your code is fairly self-
documenting. If you just left
control names as staticText1 or

button1 or whatever, when you are :
- well, that's a good idea. All are
: available via Synaptic.

creating a complex frame with
many controls, especially if there
are a lot of text boxes or buttons,
then naming them something that
is meaningful is very important. It
might not be too important if you
are the only one who will ever see
the code, but to someone coming
behind you later on, the good
control names will help them out
considerably. Therefore, use
something like the following:

Control type - Name prefix
Static text - st_

Button - btn_

Text Box — txt_

Check Box - chk_

Radio Button - rb_

Frame - Frm_ or Frame_

You can come up with your own :

ideas for naming conventions as

you grow as a programmer, and in
some instances your employer

: might have conventions already in
- place.

Next time, we will leave GUI

. programming aside for a bit and

. concentrate on database

. programming. Meanwhile, get

. python-apsw and python-

. mysqldb loaded on your system.
: You will also need sqlite and

. sqlitebrowser for SQLite. If you

want to experiment with MySql as

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with his family.

fFull circle magazine

@29

A True Friend

Don't worry, the world
is full of pretty girls.

\

The Interview

And I'm sure many of
thern would want to
have sex with you.

\

It may not be
cheap though.

lt's easy. Just imagine
you're talking to me.

\

That way you can he
casual. Now what would
you say?

\

| Dont forget the heer. |

| guees we're gonna
have to work on that.

|

by Richard Redei
The Compleat Python

by Richard Redei

ﬁ contents ©

HOW-TO

Written by Greg Walters

SEE ALSO:
FCM#27-32 - Python Parts 1-6

APPLICABLE TO:
<2 ubuntu <3 kubuntu «Zxubuntu

CATEGORIES:
5

Dev

DEVICES:

to organize relevant papers
together. But after time, they
would get over-stuffed, and fall

too many times.
Using these filing cabinets

It could take days to find all the
papers that were in the various
cabinets. Businesses suffered
horribly. It was a very dark time in
the history of man- and woman-
kind.

mountain somewhere (I personally

© think it was Colorado, but I'm not

ood morning Boys and
Girls. It's story time.

Everyone get settled and :
comfy. Ready? Good! '

sure), came a lovely fairy. This fairy
. was blue and silver - with beautiful :

wings and white hair, and was

. about 1 foot tall. Her name, believe

¢ it or not, was See-Quill. Isn't that a

Once upon a time, the world was :
ruled by paper. Paper, paper :
everywhere. They had to make
special homes for all that paper.
They were called filing cabinets, and:
were big metal things that would
take rooms and rooms and rooms at:
businesses to house all the paper. In:
each filing cabinet was something
called a file folder, which attempted

funny name? Anyway, See-Quill

said that she could fix everything
: having to do with all the paperand :
. Filing cabinets and wasted time, if

only people would believe in

computers and her. She called this

power a “Database”. She said that
the “Database” could replace the

* entire filing system. Some people

full circle magazine

@30

of paper.

All fairy promises, however,

come with some sort of
properly required a college degree. :

requirement. That requirement

: was that whoever wanted to use

. the power of See-Quill needed to
. learn a bit of a different language.
. It wouldn't be too difficult a

. language to learn. In fact, it was

. much like the one the people

: already used. It just has a different :
Then one day, from the top of a :
© to think about things very carefully :
: BEFORE you said them - to use the :
. power of See-Quill. :

way of saying things, and you had

One day, a young boy named,
curiously enough, User, came to

. see See-Quill. He was very
. impressed with her beauty, and :
: said "See-Quill, Please teach me to :

use your power."” See-Quill said

: that she would.

She said, “First, you have to

know how your information is laid
. out. Show me your papers.”

The Compleat Python

Program In Python - Part 7

. did, and soon their lives were very
. happy. Some didn't, and their lives
: stayed the same, lost in mountains :
apart when they got old or opened :

Being a young boy, User had

. only a few pieces of paper. See-

Quill said, “User, right now you

: could live with papers and file

© folders. However, | can get

. glimpses of the future, and you will
. someday have so many papers that
. they would, if placed on top of

. each other, be taller than you by 15
© times. We should use my power.”

So, working together, User and

See-Quill created a “database
: thingie” (a fairy technical term),

and User lived happily ever after.
The End.

OF course, the story is not

ﬁ contents ©

PROGRAM IN PYTHON - PART 7

completely true. However,
using databases and SQL can
make our lives easier. This
time, we will learn about some

use them in a program. Some
people might think that this
might not be the “correct” way
or the “best” way, butitis a
reasonable way. So let's begin.

Databases are like the filing
cabinets in our story above. Data
tables are like the file folders. The

individual records in the tables are like :
: into two parts. We'll create the
. database this time, and the application :
© to read and update the database next
: time.

statements to do things with the data. :

the sheets of paper. Each piece of
information is called a field. It falls
together very nicely, doesn't it? You
use SQL (pronounced See-Quill)

SQL stands for Structured Query

Language, and is basically designed to

be an easy way to use databases. In
practice, however, it can become very
complicated. We will keep things
pretty simple for this installment.

We need to create a plan, like
starting any construction project. So,
think of a recipe card, which is a good
thing to think about, since we are
going to create a recipe database
program. Around my house, recipes
come in various forms: 3x5 card, 8x10
pieces of paper, napkins with the
recipe scribbled on it, pages from

magazines, and even stranger forms.
They can be found in books, boxes,

binders, and other things. However,

: they all pretty much have one thing in
simple SQL queries, and how to :
© case, at the top you have the recipe

. title and maybe how many servings it
: makes and where it came from. The

. middle contains the list of ingredients, :
: and the bottom contains the

. instructions - dealing with the order

: that things are done in, the cooking

. time, and so on. We will use this

. general format as the template of our
database project. We will break this up :
. Integer Primary Key. As you have

common: the format. In almost every

Here's an example. Let's say we
have the recipe shown right.

: Notice the order we just discussed.
. Now when we design our database -
: we could make it very large and have
: one record for everything in the

: recipe. That, however, would be

. clumsy and hard to deal with. Instead,
© we are going to use the recipe card as
. atemplate. One table will handle the
: top of the card, or the gross

. information about the recipe; one

. table will handle the middle of the

" card, or the ingredients information;

and one table will handle the bottom,
fFull circle magazine

@31

or the instructions.

Make sure you have installed

© SQLite and APSW. SQLite is a

. small database engine that

. doesn't require you to have a
separate database server, which
. makes it ideal for our little

application. Everything you learn

. here can be used with larger

. database systems like MySQL and
: others. The other good thing

. about SQLite is that it uses

: limited data types. These types

are Text, Numeric, Blob, and

learned already, text is pretty

: much anything. Our

The Compleat Python

Spanish Rice

Serves: 4

Source: Greg Walters
Ingredients:

1 cup parboiled Rice (uncooked)
1 pound Hamburger

2 cups Water

1 8 0z can Tomato Sauce

1 small Onion chopped

1 clove Garlic chopped

1 tablespoon Ground Cumin
1 teaspoon Ground Oregano
Salt and Pepper to taste
Salsa to taste

Instructions:
Brown hamburger.

Add all other ingredients.

Bring to boil.

Stir, lower to simmer and cover.
Cook for 20 minutes.

Do not look, do not touch.

Stir and serve.

h contents ©

PROGRAM IN PYTHON - PART 7

ingredients, instructions, and
the title of our recipe are all
text types - even though they
have numbers in them.
Numeric datatypes store
numbers. These can be integer
values or floating point or real
values. Blobs are binary data,
and can include things like
pictures and other things.
Integer Primary Key values are
special. The SQLite database
engine automatically puts in a
guaranteed unique integer
value for us. This will be
important later on.

APSW stands for Another
Python SQLite Wrapper and is a
quick way to communicate with
SQLite. Now let's go over some of
the ways to create our SQL
statements.

To obtain records from a
database, you would use the
SELECT statement. The format
would be:

SELECT [what] FROM [which

table(s)] WHERE [Constraints]

So, if we want to get all the
fields from the Recipes table we
would use:

SELECT * FROM Recipes

If you wish to obtain just a

. record by its primary key, you have :
. to know what that value is (pkID in
. this instance), and we have to

. include a WHERE command in the
. statement. We could use:

. SELECT * FROM Recipes WHERE
: pkID = 2

Simple enough...right? Pretty

. much plain language. Now,
suppose we want to just get the :
. name of the recipe and the number : have three tables, each can be
. of servings it makes - for all recipes. :
: It's easy. All you have to do is
- include a list of the fields that you

want in the SELECT statement:

E SELECT name, servings FROM
: Recipes

To insert records, we use the

. INSERT INTO command. The syntax :
s

. INSERT INTO [table name]
: (field list) VALUES (values
: to insert)

So, to insert a recipe into the

recipe table the command would
' be

' INSERT INTO Recipes

fFull circle magazine

@32

(name, servings, source) VALUES
(“Tacos” ,4,"Greg”)

To delete a record we can use

: DELETE FROM Recipes WHERE
: pkID = 10

There's also an UPDATE

statement, but we'll leave that for
: another time.

More on SELECT

In the case of our database, we

. related together by using recipelD
. pointing to the pkID of the recipe
. table. Let's say we want to get all

. the instructions for a given recipe.
: We can do it like this:

: SELECT Recipes.name,
: Recipes.servings,
: Recipes.source,

Instructions.Instructions

: FROM Recipes LEFT JOIN :
i instructions ON (Recipes.pkid :
: = Instructions.recipeid) :
: WHERE Recipes.pkid = 1

However, that is a lot of typing

and very redundant. We can use a
. method called aliasing. We can do
it like this:

: SELECT r.name, r.servings,

r.source, i.Instructions FROM

The Compleat Python

Recipes r LEFT JOIN
instructions i ON (r.pkid =

: i.recipeid) WHERE r.pkid =1

It's shorter and still readable.

Now we will write a small program
. that will create our database,

. create our tables, and put some

. simple data into the tables to have
. something to work with. We

. COULD write this into our full

. program, but, for this example, we
. will make a separate program. This
. isarun-once program - if you try to
. run it a second time, it will fail at

. the table creation statements.

. Again, we could wrap it with a

. try...catch handler, but we'll do that
. another time.

We start by importing the APSW

wrapper.

; import apsw

The next thing we need to do is
create a connection to our

. database. It will be located in the
. same directory where we

ﬁ contents ©

PROGRAM IN PYTHON - PART 7

have our application. When we
create this connection, SQLite

automatically looks to see if the :

database exists. If so, it opens
it. If not, it creates the
database for us. Once we have
a connection, we need what is
called a cursor. This creates a
mechanism that we can use to
work with the database. So
remember, we need both a
connection and a cursor. These
are created like this:

Opening/creating database

ookbookl.db3")
cursor=connection.cursor ()

Okay - we have our connection
and our cursor. Now we need to
create our tables. There will be

to hold the gross recipe
information, one for the
instructions for each recipe, and
one to hold the list of the
ingredients. Couldn't we do it with
just one table? Well, yes we could,
but, as you will see, it will make
that one table very large, and will
include a bunch of duplicate
information.

We can look at the table

RECIPES

PkID (Integer Primary Key)
name (Text)

source (Text)

serves (Text)

structure like this. Each columnis a
. separate table as shown above
. right.

Each table has a field called

pkID. This is the primary key that

- will be unique within the table. This
connection=apsw.Connection ("c : ISiMmportant so that the data tables
. never have a completely duplicated :
. record. This is an integer data type, :
. and is automatically assigned by

. the database engine. Can you do

. without it? Yes, but you run the risk
. of accidentally creating a

three tables in our application. One : duplicated record id. In the case of
. the Recipes table, we will use this
. number as a reference for which

: instruction and which set of

ingredients go with that recipe.

We would first put the

. information into the database so

. that the name, source and number
. served goes into the recipe table. :
. The pkID is automatically assigned. :
. Let's pretend that this is the very

first record in our table, so the

fFull circle magazine

; sql =

INSTRUCTIONS

PkID (Integer Primary Key)
recipeID (Integer)
instructions (Text)

. database engine would assign the
- value 1 to the pkID. We will use this :
- value to relate the informationin
. the other tables to this recipe. The :
. instructions table is simple. It just
. holds the long text of the

- instructions, its own pkID and then :
. a pointer to the recipe in the recipe cursor.execute (sql)
table. The ingredients table is a bit :

i sql = 'CREATE TABLE

: Ingredients (pkID INTEGER
. PRIMARY KEY,
| TEXT,

more complicated in that we have

. one record for each ingredient as
. well as its own pkID and the

. pointer back to our recipe table

. record.

So in order to create the recipe

table, we define a string variable
. called sql, and assign it the
. command to create the table:

'CREATE TABLE Recipes
(pkiD INTEGER PRIMARY KEY,

; name TEXT, servings TEXT,
: source TEXT)'

Next we have to tell ASPW to

actually do the sgl command:

@33

The Compleat Python

: Sql =
: Instructions (pkID INTEGER
: PRIMARY KEY,
: TEXT,

cursor.execute (sql)

INGREDIENTS

PkID (Integer Primary Key)
recipeID (Integer)
ingredients (Text)

Now we create the other tables:

'CREATE TABLE

instructions
recipeID NUMERIC) '

ingredients
recipeID NUMERIC) '

E cursor.execute (sql)

Once we have the tables

. created, we will use the INSERT
. INTO command to enter each set
. of datainto its proper table.

Remember, the pkID is

ﬁ contents ©

PROGRAM IN PYTHON - PART 7

automatically entered for us, so
we don't include that in the list
of fields in our insert
statement. Since we will be
using the field names, they can
be in any order, not just the
order they were created in. As
long as we know the names of
the fields, everything will work
correctly. The insert statement
for our recipe table entry
becomes

INSERT INTO Recipes (name,
serves, source) VALUES
(“Spanish Rice”, 4,"Greg
Walters”)

Next we need to find out the

in the recipe table. We can do this
with a simple command:

SELECT last_insert_rowid()
However, it doesn't just come

We need to use a series of
statements like this:

sql = "SELECT
last_insert_rowid ()"

cursor.execute (sql)

for x in cursor.execute(sql): :

lastid = x[0]

. VALUES (

. Stir.
. : and cook for 20 minutes or
out as something we canreally use. | nti1 211 1iquid is

: absorbed.")' % lastid

Why is this? Well, when we get
data back from ASPW, it comes

: back as a tuple. This is something

. we haven't talked about yet. The

. quick explanation is that a tuple is
. (if you look at the code above) like
: alist, but it can't be changed. Many
. people use tuples rarely; others

: use them often; it's up to you. The
. bottom line is that we want to use
: the first value returned. We use

. the 'for' loop to get the value into
: the tuple variable x. Make sense?

: OK. Let's continue...

Next, we would create the

insert statement for the
: instructions:

value that was assigned to the pkiD
: sql = 'INSERT INTO

: Instructions

(recipelID, instructions)

: %s, "Brown hamburger.
: Stir in all other
: ingredients. Bring to a boil. :

Lower to simmer. Cover

E cursor.execute (sql)

Notice that we are using the

: variable substitution (%s) to place
. the pkID of the recipe (lastid) into :
the sql statement. Finally, we need

* to put each ingredient into the

ingredient table. I'll show you just

fFull circle magazine

@34

one for now:

é sql = 'INSERT INTO
: Ingredients :
: (recipelID, ingredients) VALUES :

%$s,"l cup parboiled Rice
(uncooked) ") ' % lastid

: cursor.execute (sql)

It's not too hard to understand

at this point. Next time it will get a
. bit more complicated. '

If you would like the full source

. code, I've placed it on my website.
: Goto

. www.thedesignatedgeek.com to
. download it.

Next time, we will use what

. we've learned over the seriesto
. create a menu-driven front end for
: our recipe program - ;

it will allow

. viewing all recipes in a list format,
: viewing a single recipe, searching
. for a recipe, and adding and

. deleting recipes.

| suggest that you spend some

time reading up on SQL
: programming. You'll be happy you
- did.

The Compleat Python

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with his Family.

ﬁ contents ©

http://www.thedesignatedgeek.com

HOW-T0O

Written by Greg Walters

.

SEE ALSO:
FCM#27-33 - Python Parts 1-7

APPLICABLE TO:
<2 ubuntu <3 kubuntu «Zxubuntu

CATEGORIES:
"

y |
;’?" _____#_

Dev

DEVICES:

e will continue
programming our

recipe database that :

we started in Part 7.

and don't let go. But remember,
car at all times. We have already

to display the contents, add to it

and delete from it. So how do we doé

that? We will start with an
application that runsin a terminal,
so we need to create a menu. We

will also create a class that will
hold our database routines. Let's
start with a stub of our program
shown above right.

Now we will layout our menu.
We do that so we can stub our

class. Our menu will be a rather big

loop that will display a list of

options that the user can perform.

We'll use a while loop. Change the

menu routine to look like the code

shown below right.

Next we stub the menu with an

iflelif|else structure which is

~ shown at the top of the next page.

Let's take a quick look at our

© menu routine. We start off by :
. printing the prompts that the user :
¢ can perform. We set a variable :
This will be a long one, with a lot of :

code, so grab on with all your might : ypjle Function to continue looping '

- until loop = False. We use the

keep your hands and feet inside the raw_input() command to wait For

© the user to select an option, and

created our database. Now we want§ then

(loop) to True, and then use the

full circle magazine

@35

Program In Python - Part 8

#!/usr/bin/python

Cookbook.py
Created for Beginning Programming Using Python #8
and Full Circle Magazine

import apsw
import string
import webbrowser

class Cookbook:

def Menu() :
cbk = Cookbook() # Initialize the class

Menu ()

def Menu() :
cbk = Cookbook() # Initialize the class
loop = True

while loop == True:
print
print ' RECIPE DATABASE'
print
print ' 1 - Show All Recipes'
print ' 2 - Search for a recipe'
print ' 3 - Show a Recipe'
print ' 4 - Delete a recipe'
print ' 5 - Add a recipe'
print ' 6 - Print a recipe'
print ' 0 - Exit'
print
response = raw_input ('Enter a selection -—> ')

The Compleat Python

h contents ©

PROGRAM IN PYTHON - PART 8

if response == 'l': # Show all recipes

pass

elif response == '2': # Search for a recipe
pass

elif response == '3': # Show a single recipe
pass

elif response == '4': # Delete Recipe
pass

elif response == '5': # Add a recipe
pass

elif response == '6': # Print a recipe
pass

elif response == '0': # Exit the program
print 'Goodbye'
loop = False

else:
print 'Unrecognized command. Try again.'

our if routine At

to handle whichever option the
user selected. Before we can
run this for a test, we need to
create a stub inside our class
for the _init__ routine:

def _ _init__ (self):
pass

Now, save your program where
you saved the database you

it. You should see something like
that shown above right.

It should simply print the menu
over and over, until you type “0”,
and then print “Goodbye” and exit.

: this point, we can now start stubs
. of our routines in the Cookbook

. class. We will need a routine that

- will display all the information out
- of the Recipes data table, one that :
- will allow you to search for a

. recipe, one that will show the data
. for asingle recipe from all three :
. tables, one that will delete a recipe, :
. one that will allow you to add a

. recipe, and one that will print the
created from the last time, and run : recipe to the default printer. The
. PrintAllRecipes routine doesn't

. need a parameter other than the
- (self) parameter, neither does the :
- SearchforRecipe nor the EnterNew :
" routines. The PrintSingleRecipe,

fFull circle magazine

/usr/bin/python -u
"/home/greg/python_examples/APSW/cookbook/cookbook_stub.py"

— Show All Recipes

— Search for a recipe
— Show a Recipe

— Delete a recipe

— Add a recipe

— Print a recipe

- Exit

Enter a selection —>

: DeleteRecipe and PrintOut

: routines all need to know what
: recipe to deal with, so they will
: need to have a parameter that
. we'll call “which”. Use the pass
: command to finish each stub.

: Under the Cookbook class, create

: the routine stubs:

; def PrintAllRecipes (self):

def :
! PrintSingleRecipe (self,which) :

pass

i def SearchForRecipe (self):

pass

pass

: def DeleteRecipe(self,which):5

pass

; def EnterNew (self):

pass

. def PrintOut (self,which):

pass

For a number of the menu

: items, we will want to print out all

" of the recipes from the Recipe

@36

The Compleat Python

© table - so the user can pick from

© that list. These will be options 1, 3,
: 4 and 6. So, modify the menu

© routine for those options, replacing
© the pass command with

© cbk.PrintAllRecipes(). Our response
: check routine will now look like the
: code at the top of the next page.

One more thing to do is to set

up the __init__routine. Replace the
. stub with the following lines:

def __init__ (self):
global connection
global cursor
self.totalcount = 0

; connection=apsw.Connection ("c
! ookbook.db3")

cursor=connection.cursor ()

ﬁ contents ©

PROGRAM IN PYTHON - PART 8

Show all recipes

Search for a recipe
Show a single recipe
Delete Recipe

Add a recipe

Print a recipe

Exit the program

if response == 'l':
cbk.PrintAllRecipes ()
elif response == '2':
pass
elif response == '3':
cbk.PrintAllRecipes ()
elif response == '4':
cbk.PrintAllRecipes ()
elif response == '5':
pass
elif response == '6':
cbk.PrintAllRecipes ()
elif response == '0':
print 'Goodbye'
loop = False
else:
print

First we create two global
variables for our connection
and cursor. We can access

cookbook class. Next, we

which we use to count the
number of recipes. We'll be
using this variable later on.
Finally we create the
connection and the cursor.

The next step will be to flesh

out the PrintAllRecipes() routine in
- article last time.

the Cookbook class. Since we have
the global variables for connection
and cursor, we don't need to re-
create them in each routine. Next,
we will want to do a “pretty print”

'Unrecognized command.

: Item Name

Try again.'

. to the screen for headers for our

- recipe list. We'll use the “%s"

. formatting command, and the left

them from anywhere within the justify command, to spac.e outour
: screen output. We want it to look

create a variable self.totalcount like this:

Serves Source

Finally, we need to create our

SQL statement, query the
. database, and display the results.

Most of this was covered in the

sql = 'SELECT * FROM
: Recipes'
cntr = 0

for x in

fFull circle magazine

cursor.execute (sql) :
cntr += 1
print '%s %s %s %s'

: ust (30))
: print '
self.totalcount = cntr

: The cntr variable will count the
. number of recipes we display to
. the user. Now our routine is done.
Shown below is the full code for

something.

: Notice that we are using the
. tuple thatis returned from the

. cursor.execute routine from ASPW.

. We are printing the pkID as the

item for each recipe. This will allow
. us to select the correct recipe later :

: on. When you run your program,

def PrintAllRecipes (self) :

print '%s %s %s %s'

you should see the menu, and
when you select option 1, you'll get

% (str(x[0]).rjust (5),x[1].19u . what's shown at the top of the

. st (30),x[2].1ljust (20),x[3].15 :

next page.

That's what we wanted, except

if you are running the app in

. Dr.Python or the like, the program

doesn't pause. Let's add a pause

. until the user presses a key so they
can look at the output for a second
: o . . or two. While we are atiit, let's

. the routine, just in case you missed orint out the total number of
. recipes from the variable we set up
a moment ago. Add to the bottom

. of option 1 of the menu:

$('Item'.ljust (5), 'Name'.ljust (30), 'Serves'.ljust (20),"'

Source'.ljust (30))

print ' !
sql = 'SELECT * FROM Recipes'
cntr = 0

for x in cursor.execute(sql):

cntr += 1

print '%s %s %s %s'
S(str(x[0]) .rjust (5),x[1].1ljust (30),x[2].1ljust (20),x[3]

.1just (30))

|l

print '
self.totalcount =

The Compleat Python

@37

cntr

ﬁ contents ©

PROGRAM IN PYTHON - PART 8

Enter a selection —> 1
Item Name

Serves Source

pkiD/name/servings/source, we
can use x[0],x[1],x[2] and x[3] as
. the detail. Then, we want to select
. everything from the ingredients

1 Spanish Rice

2 Pickled Pepper-Onion Relish

4 Greg
9 half pints

Complete Guide to Home Canning

table where the recipelD (our key
. into the recipes data table) is

RECIPE DATABASE

— Show All Recipes

— Search for a recipe
— Show a Recipe
Delete a recipe

— Add a recipe

— Print a recipe

- Exit

oonuldWNPE
|

. equal to the pkID we just used. We
. loop through the tuple returned,

. printing each ingredient, and then

: finally we get the instructions from
. the instructions table —just like we

Enter a selection —>

print 'Total Recipes - %s'
%$cbk.totalcount

res = raw_input ('Press A Key
-> ')

We'll skip option #2 (Search for
a recipe) for a moment, and deal
with #3 (Show a single recipe).
Let's deal with the menu portion
first. We'll show the list of recipes,
as for option 1, and then ask the
user to select one. To make sure
we don't get errors due to a bad
user input, we'll use the Try|Except

: structure. We will print the prompt :
. to the user (Select a recipe!), :
. then, if they enter a correct

. response, we'll call the

. PrintSingleRecipe() routine in our

. Cookbook class with the pkID from
. our Recipe table. If the entry is not
: anumber, it will raise a ValueError
. exception, which we handle with

. the except ValueError: catch shown :
" right. :

Next, we'll work on our

. PrintSingleRecipe routine in the

: Cookbook class. We start with the
. connection and cursor again, then
: create our SQL statement. In this

case, we use 'SELECT * FROM

fFull circle magazine

@38

. did for the ingredients table.

. Finally, we wait for the user to

. press a key so they can see the

. recipe on the screen. The code is
. shown on the next page.

Now, we have two routines

Recipes WHERE pkID = %s" %

- str(which)' where which is the value :
. we want to find. Then we “pretty
. print” the output, again from the

. tuple returned by ASPW. In this :
. case, we Use X as the gross variable,
. and then each one with bracketed :
. index into the tuple. Since the table
. layout is :

try:
res = int (raw_input ('Select a Recipe —> '))
if res <= cbk.totalcount:
cbk.PrintSingleRecipe (res)
elif res == cbk.totalcount + 1:
print 'Back To Menu...'
else:
print 'Unrecognized command.
except ValueError:

print 'Not a number...back to menu.'

The Compleat Python

Returning to menu.'

ﬁ contents ©

PROGRAM IN PYTHON - PART 8

out of the six finished. So, let's
deal with the search routine,
again starting with the menu.
Luckily this time, we just call
the search routine in the class,
so replace the pass command
with:

cbk.SearchForRecipe ()

Now to flesh out our search
code. In the Cookbook class,
replace our stub for the
SearchForRecipe with the code
shown on the next page.

There's a lot going on there.

ways to search, and a way to exit
the routine. We can let the user
search by a word in the recipe
name, a word in the recipe source,
or aword in the ingredient list.
Because of this, we can't just use

the display routine we just created,

and will need to create custom
printout routines. The first two
options use simple SELECT
statements with an added twist.
We are using the “like” qualifier. If

SQLite Database Browser, our like
statement uses a wildcard
character of “%". So, to look for a

. from the recipe table, and the

. ingredients from the ingredients
. table, joining or relating the

. ingredient table ON the recipelD
. being equal to the pkID in the :
we were using a query browser like : recipe table, then searching for our :
. ingredient using the like :
" statement, and, finally, grouping

recipe containing “rice” in the

recipe name, our query would be:

. SELECT * FROM Recipes WHERE
: name like

'$rice$%'’

However, since the “%"

. character is also a substitution :
. character in our strings, we have to
: use %% in our text. To make it :
© worse, we are using the :
. substitution character to insert the
. word the user is searching for. :
. Therefore, we must make it

- '%%%s%%'. Sorry if this is as clear

. as mud. The third queryis calleda :
. Join statement. Let's look at it a bit :

After we create our connection and : closer:

cursor, we display our search menu. : .

We are going to give the user three ;| 9% = "SELECT . :
: r.pkid, r.name, r.servings,r.so:

: urce, i.ingredients FROM

: Recipes r Left Join

: ingredients i on (r.pkid =

: i.recipeid) WHERE

: i.ingredients like '%%%s%%'

: GROUP BY r.pkid"

$response

We are selecting everything

the result by the pkID in the recipe
fFull circle magazine

: if searchin

@39

def PrintSingleRecipe (self,which):

sql =
str (which)
print

'SELECT * FROM Recipes WHERE pkID =

0 0 0 0 10 N0 0 Pt P a0 N 0 Pt P N0 0 0 P a0 N0 0 0 P a0 N0 0 0 P N0 0 0 o0 a0 N0 0 0 P N0 N0 0 0 P N0 N0 0 P2 P N0 N 0 P Py

for x in cursor.execute(sql) :

recipeid =x[0]

print "Title: " + x[1]
print "Serves: " + x[2]
print "Source: " + x[3]
print
U i 00 00 00 00 o0 00 0 o0 o0 o0 0 i o o0 o0 0 o0 P P o0 0 P P9 0 0 o P P P 0 0 P9 P D 0 N0 N0 B0 b 0 N0 N0 0 0 0 P9 0 0 P P00 |
sgql = 'SELECT * FROM Ingredients WHERE RecipeID =
%$s' % recipeid
print 'Ingredient List:'
for x in cursor.execute(sql) :
print x[1]
print '
print 'Instructions:'
sgql = 'SELECT * FROM Instructions WHERE RecipeID
= %s' % recipeid

for x in cursor.execute(sql) :

print x[1]
print

resp =

table to keep duplicates from
being shown. If you remember, we
have peppers twice in the second
recipe (Onion and pepper relish),

. one green and one red. That could :
. create confusion in our user's mind. :
: Our menu uses :

searchin =
Search Type -> ')

|4|:

The Compleat Python

0 0 0 P 10 N0 0 Pt P a0 N 0 Pt P N0 0 0 P a0 N0 0 0 P a0 N0 0 0 1o N0 0 0 o0 a0 N0 0 0 P N0 N0 0 0 P N0 N0 0 P2 P N0 N 0 P9 0

raw_input ('Press A Key —> ')

: which says: if searchin (the value
. the user entered) is NOT equal to 4
. then do the options, if itis 4, then

. don'tdo

raw_input ('Enter :

ﬁ contents ©

def SearchForRecipe (self) :
print the search menu

print ' !
print ' Search in'
print ' !
print ' 1 - Recipe Name'
print ' 2 - Recipe Source'
print ' 3 - Ingredients'
print ' 4 - Exit'
searchin = raw_input ('Enter Search Type —> ')
if searchin != '4':
if searchin == '1':
search = 'Recipe Name'
elif searchin == '2':
search = 'Recipe Source'
elif searchin == '3':
search = 'Ingredients'

parm = searchin
response = raw_input ('Search for what in %$s (blank to exit) -> ' % search)

if parm == 'l': # Recipe Name
sql = "SELECT pkid, name, source, servings FROM Recipes WHERE name like '%%%s%%'" %response
elif parm == '2': # Recipe Source
sql = "SELECT pkid,name, source, servings FROM Recipes WHERE source like '%%%s%%'" %response
elif parm == '3': # Ingredients
sql = "SELECT r.pkid, r.name, r.servings, r.source,i.ingredients FROM Recipes r Left Join ingredients i
on (r.pkid = i.recipeid) WHERE i.ingredients like '%%%s%%' GROUP BY r.pkid" S%response
try:
if parm == '3':

print '%$s %s %s %s %s'
%$('Item'.ljust (5), 'Name'.ljust (30), 'Serves'.ljust (20), 'Source'.ljust (30), 'Ingredient'.1ljust (30))

print
else:
print '%$s %s %s %s' %$('Item'.ljust(5), 'Name'.ljust (30), 'Serves'.ljust (20), 'Source'.ljust (30))
print ' !
for x in cursor.execute(sql):
if parm == '3':

print '%$s %s %s %s %s'
% (str(x[0]) .rjust (5),x[1] .1just (30),x[2] .1just (20),x[3].1just (30),x[4].1just (30))
else:

print '%s %s %s %s' %$(str(x[0]) .rjust (5),x[1].1just(30),x[3].1just(20),x[2].1just(30))

except:
print 'An Error Occured'

print
inkey = raw_input ('Press a key')

full circle magazine @ 40 The Compleat Python 4 contents ~

PROGRAM IN PYTHON - PART 8

anything, just fall through.
Notice that | used “!=" as Not

Equal To instead of “<>". Either :

will work under Python 2.x.
However, in Python 3.x, it will
give a syntax error. We'll cover
more Python 3.x changes in a
future article. For now, start
using “!="to make your life
easier to move to Python 3.x in
the future. Finally, we “pretty
print” again our output. Let's
look at what the user will see,
shown right.

You can see how nicely the
program prints the output. Now,
the user can go back to the menu
and use option #3 to print
whichever recipe they want to see.
Next we will add recipes to our
database. Again, we just have to
add one line to our menu routine,
the call to the EnterNew routine:

cbk.EnterNew ()

The code that needs to replace
the stub in the Cookbook class for
EnterNew() is at:
http://pastebin.com/f1d868e63.

We start by defining a list
named “ings” — which stands

Enter a selection -> 2

Search in

1 - Recipe Name

2 - Recipe Source

3 - Ingredients

4 - Exit

Enter Search Type -—> 1

Search for what in Recipe Name (blank to exit) —-> rice

Item Name Serves Source

1 Spanish Rice 4 Greg

Press a key

Easy enough. Now for the ingredient search...

Enter a selection -—> 2

Search in

1 Recipe Name

2 — Recipe Source

3 - Ingredients

4 - Exit

Enter Search Type -> 3

Search for what in Ingredients (blank to exit) -> onion

Item Name Serves Source Ingredient

1 Spanish Rice 4 1 small
Onion chopped
2 Pickled Pepper-Onion Relish 9 half pints

finely chopped Onions

Greg

Complete Guide to Home Canning 6 cups

Press a key

fFull circle magazine The Compleat Python

@41

ﬁ contents ©

http://pastebin.com/f1d868e63

PROGRAM IN PYTHON - PART 8

for ingredients. We then ask the
user to enter the title, source,
and servings. We then enter a
loop, asking for each
ingredient, appending to the
ing list. If the user enters 0, we
exit the loop and continue on
asking for the instructions. We
then show the recipe contents
and ask the user to verify
before saving the data. We use
INSERT INTO statements, like
we did last time, and return to
the menu. One thing we have
to be careful of is the single
quote in our entries. USUALLY,
this won't be a problem in the
ingredient list or the
instructions, but in our title or
source fields, it could come up.
We need to add an escape
character to any single quotes.
We do this with the
string.replace routine, which is
why we imported the string

the code shown above right
under option #4.

DeleteRecipe() routine.

Quickly, we'll go through the
delete routine. We first ask the
user which recipe to delete (back in

the menu), and pass that pkiD
number into our delete routine.

. Next, we ask the user 'are they
. SURE' they want to delete the

. recipe. If the response is “Y" :
. (string.upper(resp) =="Y"), then we :
. create the sql delete statements. :
: Notice that this time we have to

. delete records from all three

. tables. We certainly could just :
. delete the record from the recipes
. table, but then we'd have orphan
. records in the other two, and that
. wouldn't be good. When we delete :
. the record from the recipe table,
. we use the pkiD field. In the other :
. two tables, we use the recipelD :
. field.

Finally, we will deal with the

: routine to print the recipes. We'll
. be creating a VERY simple HTML
. file, opening the default browser
. and allowing them to print from
. there. This is why we are importing
library. In the menu routine, put : :
: menu routine for option #6, insert
. the code shown at the top of the
: next page.

Then, in the Cookbook class, use :
the code shown below right for the

the webbrowser library. In the

Again, we display a list of all the :
. recipes, and allow them to select
. the one that they wish to print. We
. call the PrintOut routine in the
" Cookbook class. That code is

shown at the top right of the next
fFull circle magazine

. page.

cbk.PrintAllRecipes ()
print 'O - Return To Menu'
try:
res = int (raw_input ('Select a Recipe to DELETE
or 0 to exit -—> "'))
if res != 0:
cbk.DeleteRecipe (res)
elif res == '0':
print 'Back To Menu...'
else:
print 'Unrecognized command. Returning to
menu. '
except ValueError:

print 'Not a number...back to menu.'

def DeleteRecipe (self,which) :
resp = raw_input ('Are You SURE you want to Delete
this record? (¥/n) -> ')
if string.upper (resp) == 'Y':
sql = "DELETE FROM Recipes WHERE pkID = %s" %
str (which)
cursor.execute (sql)
sql = "DELETE FROM Instructions WHERE recipelD
= %s" % str(which)
cursor.execute (sql)
sql = "DELETE FROM Ingredients WHERE recipelD
= %s" % str(which)
cursor.execute (sql)
print "Recipe information DELETED"
resp = raw_input ('Press A Key —> ')
else:
print "Delete Aborted - Returning to menu"

the fi.write command. We use the
. <H1></H1> header 1 tag for the

We start with the fi = . title, the

. open([filename],'w') command :
. which creates the file. We then pull :
. the information from the recipe
" table, and write it to the file with

@42

The Compleat Python

ﬁ contents ©

PROGRAM IN PYTHON -

PART 8

<H2> tag for servings and
source. We then use the
 list tags for our
ingredient list, and then write
the instructions. Other than
that it's simple queries we've
already learned. Finally, we
close the file with the fi.close()
command, and use
webbrowser.open([filename])
with the file we just created.
The user can then print from
their web browser - if required.

WHEW! This was our biggest

application to date. I've posted the

full source code (and the sample
database if you missed last month)

on my website. If you don't want to

type it allin or have any problems,
then hop over to my web site,
www.thedesignatedgeek.com to
get the code.

| k="

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with his family.

cbk.PrintAllRecipes ()
print '0 - Return To Menu'
try:
res = int (raw_input ('Select a Recipe to DELETE or 0 to exit —>
if res !'= 0:
cbk.PrintOut (res)
elif res == '0':
print 'Back To Menu...'
else:
print 'Unrecognized command. Returning to menu.'
except ValueError:
print 'Not a number...back to menu.'

def PrintOut (self,which) :
fi = open('recipeprint.html', 'w')
sgql = "SELECT * FROM Recipes WHERE pkID = %s" % which
for x in cursor.execute(sql):
RecipeName = x[1]
RecipeSource = x[3]
RecipeServings = x[2]
fi.write ("<H1>%s</H1>" % RecipeName)
fi.write ("<H2>Source: %s</H2>" % RecipeSource)
fi.write ("<H2>Servings: %s</H2>" % RecipeServings)
fi.write ("<H3> Ingredient List: </H3>")
sgql = 'SELECT * FROM Ingredients WHERE RecipelID = %s' % which
for x in cursor.execute(sql):
fi.write ("<1i>%s</1i>" % x[1])
fi.write ("<H3>Instructions:</H3>")
sgql = 'SELECT * FROM Instructions WHERE RecipelID = %s' % which
for x in cursor.execute(sql):
fi.write(x[1])
fi.close()
webbrowser.open ('recipeprint.html')
print "Done"

Full circle magazine @ 43 The Compleat Python

"))

ﬁ contents ©

http://www.thedesignatedgeek.com

HOW-TO

Written by Greg Walters

SEE ALSO:
FCM#27-34 - Python Parts 1-8

APPLICABLE TO:
<2 ubuntu <3 kubuntu «Zxubuntu

CATEGORIES:
5

Dev

DEVICES:

have some of your favorite

form of MP3 files. When you

was disk space. Now the biggest
problem is remembering what |
have and where it is.

In this and the next installment
we will look at making a catalog

a look at some new python
concepts as well as re-visiting our
database skills.

First, an MP3 file can hold
information about the file itself.
The title of the song, the album,
artist and more information. This
information is held in ID3 tags and
is referred to as metadata. Backin
the early days, there was only a

could be held inside of the MP3

favorite songs ever) when you had
a song with the name “Clowns (The
Demise of the European Circus
with No Thanks to Fellini)”, you
only got the first 30 characters.

That was a BIG frustration for
: many people. So, the “standard”

ID3 tag became known as ID3v1

fFull circle magazine

This new format allowed for

. variable length information and

: was placed at the beginning of the
. file, while the old ID3v1 metadata

: was still stuck at the end of the file
. for the benefit of the older

. players. Now the metadata

. container could hold up to 256 MB
: of data. This was ideal for radio

. stations and crazies like me.

: Under ID3v2, each group of

- information is held in what's called
limited amount of information that :

a frame and each frame has a

. frame identifier. In an earlier
file. Originally, it was stored at the :

o very end of the file in a block of
Fyou are anything like me, you : 178 pytes. Because of the small
. size of this block, you could only

music on your computer inthe : 4(d 30 characters for the title of

. the song, name of the artist, and

have less than 1000 music files, it's : <5 on. For many music files, this

rather easy to remember what you : a5 fine, but (and this is one of my
have and where itis. I, on the other :
hand, have many more than that. In:
a past life, | was a DJ and converted :
most of my music a number of years:

ago. The biggest problem that | had:

version of ID3v2, the identifier was

. three characters long. The current
. version (ID3v2.4) uses a four
. character identifier.

In the early days, we would

. open the file in binary mode, and
- dig around getting the information :
: as we needed it, but that was a lot
. of work, because there were no

. standard libraries available to

: handle it. Now we have a number
. of libraries that handle this for us.
. We will use one for our project

. called Mutagen. You will want to

" gointo Synaptic and install

@44

The Compleat Python

Program In Python - Part 9

. and a new format was created
. called, amazingly enough, ID3v2.
For our MP3 files. We will also take :

: python-mutagen. If you want, you
: could do a search for “ID3” in

: Synaptic. You'll find there are over
: 90 packages (in Karmic), and if you
: type “Python” in the quick search

: box, you'll find 8 packages. There

- are pros and cons with any of

: them, but For our project, we'll

- stick with Mutagen. Feel free to

: dig into some of the other ones for
- your extended learning.

Now that you have Mutagen

installed, we'll start our coding.

Start a new project and name it

“mCat”. We'll start by doing our
- imports.

ﬁ contents ©

PROGRAM IN PYTHON - PART 9

from mutagen.mp3 import MP3
import os

from os.path import
join,getsize, exists

import sys
import apsw

For the most part, you've seen
these before. Next, we want to
create our stubbed function
headers.

def MakeDataBase():
pass

def S2HMS (t):
pass

def WalkThePath (musicpath) :
pass

def error (message) :
pass

def main() :
pass

def usage():
pass

Ahhh...something new. We now

have a main function and a usage

function. What are these for? Let's

put one more thing in before we
discuss them.

\}

if name == ' main :

main ()

What the heck is that? Thisis a

trick that allows our file to be used
as either a stand alone application

. or a re-usable module that gets

. imported into another app.

. Basically it says “IF this Ffile is the

. main app, we should go into the

© main routine to run, otherwise we
. are going to use this as a utility

. module and the functions will be

. called directly from another

. program.

Next, we'll flesh out the usage

function. Below is the full code for
. the usage routine.

Here we are going to create a

. message to display to the user if

. they don't start our application

. with a parameter that we need to

. be able to run as a standalone app.
: Notice we use '\n' to force a new

def usage():
message = (

line and \t' to force a tab. We also

use a '%s' to include the application
: name which is held in the

© sys.argv[0]. We then use the error
. routine to output the message,

. then exit the application

- (sys.exit(1)).

Next, let's flesh out the error

routine. Here is the full error
routine.

; def error (message):

print >> sys.stderr,

; str (message)

We are using something called

. redirection here (the “>>"). When :
. we use the function “print”, we are
. telling python we want to output,
. or stream, to the standard output :
. device, usually the terminal that we :
. are running in. To do thiswe use

\n'

(invisibly) stdout. When we want
to send an error message, we use

. the stderr stream. This is also the
. terminal. So we redirect the print
. output to the stderr stream.

Now, let's work on the main

. routine. Here we will setup our

. connection and cursor for our

. database, then look at our system

. argument parameters, and if

. everything is good, we'll call our

. Functions to do the actual work we
. want done. Here's the code:

As we did last time, we

'mCat — Finds all *.mp3 files in a given folder (and sub-folders), \n'
and write that information to a SQLite database.\n\n'

'\tread the id3 tags,

'Usage:\n'

'"\t{0} <foldername>\n'

'\t WHERE <foldername> is the path to your MP3 files.\n\n'
'Author: Greg Walters\n'
'For Full Circle Magazine\n'

\n'

) . format (sys.argv[0])

error (message)
sys.exit (1)

fFull circle magazine

@45

The Compleat Python

ﬁ contents ©

PROGRAM IN PYTHON - PART 9

def main () :
global connection
global cursor

if len(sys.argv) != 2:
usage ()

else:
StartFolder =

sys.argv[l]
if not exists (StartFolder):

From os.path

print ('Path {0} does not seem to
exist...Exiting.') .format (StartFolder)

sys.exit (1)
else:

print ('About to work {0}
folder(s) : ') . format (StartFolder)
Create the connection and cursor.
connection=apsw.Connection ("mCat .db3")
cursor=connection.cursor ()
Make the database if it doesn't exist...

MakeDataBase ()

Do the actual work...
WalkThePath (StartFolder)
Close the cursor and connection...

cursor.close ()
connection.close ()

Let us know we are finished...

print ("FINISHED!")

create two global variables :
called connection and cursor :
for our database. Next we look
at the parameters (if any)
passed from the command line
in the terminal. We do this with :
the sys.argv command. Here
we are looking for two
parameters, first the
application name which is
automatic and secondly the

path to our MP3 files. If we

. don't see two parameters, we
. jump to the usage routine,

. which prints our message to

. the screen and exits. If we do,

we fall into the else clause of

you have a path with a space in

fFull circle magazine

@46

it, for example,
(/mnt/musicmain/Adult

. Contemporary), the characters
. after the space will be seen as
. another parameter. So, :
. whenever you use a path with a :
. space, make sure you quote it.
. We then setup our connection
. and cursor, create the

. database, then do the actual

: hard work in the WalkThePath
. routine and finally close our

: cursor and connection to the

. database and then tell the user :
. we are done. The full :
. WalkThePath routine can be

: found at:

. http://pastebin.com/CegsAXjW.

First we clear the three

: counters we will be using to keep

. track of the work that has been

. done. Next we open a file to hold

. our error log just in case we have

: any problems. Next we do a

. recursive walk down the path

. provided by the user. Basically, we
. start at the provided file path and

- “walk” in and out of any sub-folders :
: that happen to be there, looking

: our IF statement. Next, we put For any files that have a *.mp3

. the parameter for the starting
. path into the StartFolder
- variable. Understand that if

. extension. Next we increment the
. folder counter then the file :
: counter to keep track of how many
* files we've dealt with. Next we we :

step through each of the files. We
The Compleat Python

clear the local variables that hold
the information about each song.

. We use the join function from
. os.path to create a proper path and
: filename so we can tell mutagen

where to find the file. Now we

pass the filename to the MP3 class
: getting back an instance of “audio”.
Next we get all the ID3 tags this

. File contains and then step through
that list checking for the tags we

: want to deal with and assigning
them to our temporary variables.

This way, we can keep errors to a

. minimum. Take a look at the

. portion of code dealing with the
track number. When mutagen

. returns a track number it can be a
single value, a value like “4/18" or
. as _trk[0] and _trk[1] or it can be
absolutely nothing. We use the

. try/except wrappers to catch any
errors that will occur due to this.

: Next, look at the writing of the
data records. We are doing things
. a bit different from last time. Here
we create the SQL statement like
. before, but this time we are

replacing the value variables with

. “?". We then put in the values in

ﬁ contents ©

http://pastebin.com/CegsAXjW

PROGRAM IN PYTHON - PART 9

the cursor.execute statement.
According to the ASPW web
site, this is the better way to
deal with it, so | won't argue
with them. Finally we deal with
any other types of errors we
come up with. For the most

part, these will be TypeErrors or :

ValueErrors and will probably
occur because of Unicode
characters that can't be
handled. Take a quick look at
the strange way we are
formatting and outputting the
string. We aren't using the '%'
substitution character. We are

which is part of the Python 3.x
specification. The basic form
is:

Print ('String that will be
printed with {0} number of

statements”) . format (replaceme

nt values)

We are using the basic syntax
for the efile.writelines as well.

Finally we should take a look at
the S2HMS routine. This routine
will take the length of the song
which is a floating point value
returned by mutagen and convert
it to a string using either
“Hour:Minutes:Seconds” format or

“Minutes:Seconds” format. Look at

the return statements. Once again,

. we are using the Python 3.x :
. formatting syntax. However,

. there's something new in the mix.
: We are using three substitution

- sets (0, 1 and 2), but what's the ;
"“:02n" after numbers 1 and 2? That :
. says that we want leading zeros to
- two places. Soifasongis2

. minutes and 4 seconds, the

: returned string would be “2:04",

: not “2:4".

The Full code of our program is

at: http://pastebin.com/rFF4Gm7E.
using a “{0}"” type substitution, :

Dig around on the web and see

what you can find about Mutagen.
. It does more than just MP3s.

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with his Family.

fFull circle magazine

@47

MY STORY QUICKIE

My studio is fully digital with four Windows XP machines in a peer to
peer network. My fifth machine runs Linux Ubuntu 9.04 exclusively
as my test machine for Linux. | started with Ubuntu 7.04 and have
upgraded each time there was a release. | have found it to be very
stable, easy to use and configure as each version improves the OS.

At this time it is only my test bed but is linked to my network and
shares data with my Windows machines. | have been very happy
with the stability of Ubuntu in its upgrades, programs, hardware
support, and driver updates. Although it is unfortunate that more
major vendors such as Adobe don't port over, but Wine seems to
work well. There are graphics programs and professional printers
related to my camera equipment that do not work so | will have to
wait until Wine gets better or the software gets ported over.

Audio, video, CD/DVD, USB, and Zip drives all seem to work 'out of
the box"' which is nice. Still some flaws in the software but they
appear to be minor annoyances.

All in all Ubuntu has been visually refreshing and fun to play with. |
am not a geek so | really do not use the command line unless
curious about a tutorial and want to try it, the OS GUI is quite
complete for us non-geeks who want to stick to a GUI.

| download Full Circle Magazine every month and have shared it with
one of my colleagues to show him what is available. A lot of people
still do not know about the OS and how easy it is to use, but as the
Microsoft disgruntled get the word out | expect to see more growth.
The one thing | absolutely love about this OS is the ability to shut
down a misbehaving program. The break button works slickly in
Linux and eliminates the frustration of waiting for Windows to
unfreeze in XP. Why can't Windows do something as easy as that? |
seldom need to use the button in Linux anyway which shows how
stable Linux is.

Brian G Hartnell - Photographer

The Compleat Python

h contents ©

http://pastebin.com/rFf4Gm7E

HOW-T0O

Written by Greg Walters

Program In Python - Part 10

.

SEE ALSO:
FCM#27-35 - Python Parts 1-9

APPLICABLE TO:
<2 ubuntu <3 kubuntu «Zxubuntu

CATEGORIES:
"

F
f
r

Dev

DEVICES:

the term XML. You may

not, however, know what :

it is. XML will be the Focus example of an XML file:

of our lesson this month. The goal
is:

* To familiarize you with what XML
is.

XML files in your own applications.
 Get you ready for a fairly large
XML project next time.

So... let's talk about XML. XML

stands for EXtensible Markup
Language, very much like HTML. It
was designed to provide a way to
store and transport data
efficiently over the Internet or
other communication path. XML is
basically a text file that is

should be fairly self-documenting.
Being a text file, it can be

easier transfer of the data. Unlike
your data to look. As | said a

moment before, XML doesn't
require you to stick to a series of

. standard tags. You can create your :

ou probably have heard of own.

Let's take a look at a generic

i <root>

<nodel>Data

; Here</nodel>

<node2

. ; attribute="something”>Node 2
* To show you how to read and write:

data</node2>
<node3>
<node3subl>more

g data</node3subl>

</node3>

" </root>

full circle magazine

The first thing to notice is the

. indentation. In reality, indentation
. is simply for human consumption.
. The XML file would work just as

. wellif it looked like this...

i <root><nodel>Data
formatted using your own tags and :
! attribute="something”>Node 2
i data</node2><node3><node3sub
! 1>more

compressed to allow for fasterand : gata</node3subl></node3></ro
: ot>

HTML, XML doesn't do anything by
itself. It doesn't care how you want :

Here</nodel><node2

Next, the tags contained in the
<>" brackets have some rules.

First, they must be a single word.
. Next, when you have a start tag

(For example <root>) you must

. have a matching closing tag. The

. closing tag starts with a “/". Tags

. are also case sensitive: <node>,

: <Node>, <NODE> and <NodE> are
. all different tags, and the closing

. tag must match. Tag names may :
: contain letters, numbers and other :
: characters, but may not start with ~:
: a number or punctuation. You

: should avoid
: tag names since some software

. applications might consider them
: some sort of command or property :
" of an object. Also, colons are :

@48

" " un u.n

.and “" in your

The Compleat Python

reserved for something else. Tags
- are referred to as elements.

Every XML file is basically a tree

: - starting from a root and

: branching out from there. Every
: XML file MUST have a root

: element, which is the parent of

- everything else in the file. Look

: again at our example. After the

: root, there are three child

: elements: node1, node2 and

: node3. While they are children of
: the root element, node3 is also a
- parent of node3sub1.

Now take a look at node2.

: Notice that in addition to having

- its normal data inside the brackets,
‘it also has something called an

- attribute. These days, many

- developers avoid attributes, since

ﬁ contents ©

PROGRAM IN PYTHON - PART 10

elements are just as effective
and less hassle, but you will
find that attributes are still
used. We'll look at them some
more in a little bit.

Let's take a look at the useful
example below.

Here we have the root element
named "people", containing two
child elements named "person".
Each 'person’ child has 6 child
elements: firstname, lastname,
gender, address, city and state. At
first glance, you might think of this
XML file as a database
(remembering the last few

lessons), and you would be correct.

In Fact, some applications use XML

<people>
<person>

files as simple database structures.
Now, writing an application to read

. this XML file could be done without :
: too much trouble. Simply open the
: file, read each line and, based on

. the element, deal with the data as
. it's read and then close the file

. when you are done. However, there :
. are better ways to do it. :

In the following examples, we

: are going to use a library module

. called ElementTree. You can get it
. directly from Synaptic by installing
. python-elementtree. However, |

. chose to go to the ElementTree

. website

. (http://effbot.org/downloads/#ele
. menttree) and download the

. source file directly (elementtree-

<firstname>Samantha</firstname>
<lastname>Pharoh</lastname>
<gender>Female</gender>
<address>123 Main St.</address>

<city>Denver</city>

<state>Colorado</state>

</person>
<person>

<firstname>Steve</firstname>
<lastname>Levon</lastname>
<gender>Male</gender>

<address>332120 Arapahoe Blvd.</address>

<city>Denver</city>

<state>Colorado</state>

</person>
</people>

fFull circle magazine

1.2.6-20050316.tar.gz). Once
downloaded, | used the package
manager to extractit to a :
. temporary folder. | changed to that
. folder and did a “sudo python
. setup.py install”. This placed the
. files into the python common

something like what is shown
~ below right.

All that we did was allow
. ElementTree to open the file, parse
. the file into its base

folder so | could use it in either

Now for our code.

. The first thing we

: want to do is test our
. install of

. ElementTree. Here's
. the code:

; import
: elementtree.Elemen
: tTree as ET

; tree =
: ET.parse ('xmlsampl

i el.xml')

; ET.dump (tree)

When we run the

test program, we
" should get back

@49

The Compleat Python

: python 2.5 or 2.6. Now we can start :
. to work. Create a folder to hold :
: this month's code, copy the above

: XML data into your favorite text

. editor, and save it into that folder

. as “xmlsample1.xml".

/usr/bin/python -u
"/home/greg/Documents/articles/xml/read
erl.py"

<people>
<person>
<firstname>Samantha</firstname>
<lastname>Pharoh</lastname>
<gender>Female</gender>
<address>123 Main St.</address>
<city>Denver</city>
<state>Colorado</state>
</person>
<person>
<firstname>Steve</firstname>
<lastname>Levon</lastname>
<gender>Male</gender>
<address>332120 Arapahoe
Blvd.</address>
<city>Denver</city>
<state>Colorado</state>
</person>
</people>

ﬁ contents ©

http://effbot.org/downloads/#elementtree

PROGRAM IN PYTHON - PART 10

parts, and dump it out as it is in
memory. Nothing fancy here.

following:

import

elementtree.ElementTree as ET:

tree =
ET.parse ('xmlsamplel.xml')

person =
tree.findall('.//person')

for p in person:
for dat in p:
print "Element:

)
S -

and run it again. Now your output
should be:

/usr/bin/python -u

"/home/greg/Documents/article;

s/xml/readerl.py"

Element: firstname - Data:
Samantha

Element: lastname - Data:
Pharoh

Element: gender - Data:
Female

Element: address - Data: 123
Main St.

Element: city — Data: Denver
Element: state - Data:
Colorado

Element: firstname - Data:
Steve

Element: lastname - Data:
Levon

Element: gender - Data: Male
Element: address - Data:

. 332120 Arapahoe Blvd.
) ! Element:
Now, replace your code with the | Element :

! Colorado

city - Data: Denver

state - Data:

through each person object. We
then created another for loop to

: pull out the data for each person,

: and display it by showing the

. element name (.tag) and the data

© (.text).

Now we have each piece of data :

: along with the tag name. We can

: simply do some pretty printing to

: deal with what we have. Let's look

© at what we did here. We had

: ElementTree parse the file into an

: object named tree. We then asked

. ElementTree to find all instances of :

: person. In the sample we are using, :

bata: ben dldat b) . there are two, but it could be 1 or
R TRy : : 1000. Person is a child of people

: and we know that people is simply

. the root. All of our data is broken

. down within person. Next we

: created a simple for loop to walk

Now for a more real-world

: example. My family and | enjoy an
: activity called Geocaching. If you

. don't know what that is, it's a

: “geeky” treasure hunt that uses a
: hand-held GPS device to find

something someone else has
hidden. They post the gross GPS

© coordinates on a web site,

: sometimes with clues, and we :
- enter the coordinates into our GPS
: and then try to go find it. According
© to Wikipedia, there are over '
© 1,000,000 active cache sites world

<?xml version="1.0" encoding="ISO-8859-1"7?>
<loc version="1.0" src="NaviCache'">

<name id="NO2CAC"><![CDATA[Take Goofy Pictures at Grapevine Lake

<waypoint>
Open Cache: Unrestricted
Cache Type: Normal
Cache Size: Normal

Difficulty: 1.5
Terrain : 2.0]]1></name>

<coord 1lat="32.9890166666667"
<type>Geocache</type>

wide, so there are probably a few

in your area. | use two websites to
get the locations we search for.
: Oneis
http://www.geocaching.com/ and
. the otheris http://navicache.com/.
There are others, but these two are
. about the biggest.

Files that contain the

information for each geocaching

: site are usually basic XML files.
There are applications that will

. take those data and transfer them
to the GPS device. Some of

by g_phillips

lon="-97.0728833333333" />

<link text="Cache Details">http://www.navicache.com/cgi-
bin/db/displaycache2.pl?CacheID=11436</1link>

</waypoint>
</loc>

fFull circle magazine

@50

The Compleat Python

Navicache file

ﬁ contents ©

http://www.geocaching.com/
http://navicache.com/

PROGRAM IN PYTHON - PART 10

them act as database programs
- that allow you to keep track of
your activity, sometimes with
maps. For now, we'll
concentrate on just parsing the
download files.

| went to Navicache and found a
recent hide in Texas. The
information from the file is shown
on the previous page.

Copy the data from that box,
and save it as “Cache.loc”. Before
we start coding, let's examine the
cache file.

The First line basically tells us
that this is a validated XML file, so
we can safely ignore it. The next
line (that starts with “loc”) is our
root, and has the attributes
"version" and "src". Remember |

said earlier that attributes are used

in some files. We'll deal with more
attributes in this File as we go on.
Again, the root in this case can be
ignored. The next line gives us our
waypoint child. (A waypoint is a
location where, in this case, the
cache is to be found.) Now we get
the important data that we want.

There is the name of the cache, the

coordinates in latitude and
longitude, the type of cache it is,
and a link to the web page for

. tree =

=

more information about this cache.
The name element is a long string

. that has a bunch of information

. that we can use, but we'll need to
. parse it ourselves. Now let's create :
. a new application to read and

- display this file. Name it

. "readacache.py". Start with the

. import and parse statements from
. our previous example.

; import
§ elementtree.ElementTree as ET

ET.parse('Cache.loc')

Now we want to get back just

. the data within the waypoint tag.
: To do this, we use the .find

. function within ElementTree. This
. will be returned in the object “w".

tree.find('.//waypoint')

for wl in w:
if wl.tag == "name":

Since we will be looking at the

fFull circle magazine

_ data we will be getting back.

: Goofy Pictures at Grapevine
: Lake

. Difficulty: 1.5

: Terrain

@51

'name’ tag first, let's review the newstring =

oldstring[startposition:endpo
: sition]

E <name
. id="NO2CAC"><! [CDATA [Take

: So, we can use the code below
. to grab the information we need.

by g _phillips
Open Cache: Unrestricted : Next we need to grab theid
: . that's located in the attribute of
. Cache Type: Normal . the name tag. We check to see if
! Cache Size: Normal . there are any attributes (which we

. know there are), like this:

: 2.0]]1></name>

This is one really long string.

. The 'id' of the cache is set as an

. attribute. The name is the part

. after “CDATA" and before the

. “Open Cache:" part. We will be :
. chopping up the string into smaller :
. portions that we want. We can get :

. part of a string by using:
Next, we want to go through all :

. the data. We'll use a for loop to do
: this. Within the loop, we will check
. the tag to find the elements

- 'name’, 'coord', 'type' and 'link'.

. Based on which tag we get, we'll

. pull out the information to print it
. later on.

Get text of cache name up to the phrase "Open Cache: "
CacheName = wl.text[:wl.text.find("Open Cache: ")-1]

Get the text between "Open Cache: " and "Cache Type: "
OpenCache = wl.text[wl.text.find("Open Cache:
")+12:wl.text.find("Cache Type: ")-1]

More of the same

CacheType = wl.text[wl.text.find("Cache Type:
"Y+12:wl.text.find("Cache Size: ")-1]

CacheSize = wl.text[wl.text.find("Cache Size:
")+12:wl.text.find("Difficulty: ")-1]

Difficulty= wl.text[wl.text.find("Difficulty:
"Y+12:wl.text.find("Terrain ") -1]

Terrain = wl.text [wl.text.find("Terrain ")+12:]

The Compleat Python

ﬁ contents ©

PROGRAM IN PYTHON - PART 10
if wl.keys():

for name,value in
wl.items () : |_‘n |

if name == 'id':
CacheID = value

Now, we can deal with the other
tags for Coordinates, type, and link :

the code shown below right.
Finally, we print them out to see

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with his family.

them using the code at the bottom

right. Far right is the full code.

You've learned enough
now to read most XML
files. As always, you can
get the full code for this
lesson on my website
which is at:
http://www.thedesignate

dgeek.com.

elif wl.tag == "coord":
if wl.keys():
for name,value in wl.items() :

if name == "lat":
Lat = value
elif name == "lon":

Lon = value

elif wl.tag == "type":

GType = wl.text

Next time, we will
utilize our XML
knowledge to get
information from a
wonderful weather site
and displayitin a

. print
terminal. Have fun!

print
print
print
print
print
print
print
print
print
print

elif wl.tag == "link":
if wl.keys():
for name, value in wl.items():

Info = value

Link = wl.text

"Cache Name: ", CacheName
"Cache ID: ",CachelID

"Open Cache: ", OpenCache
"Cache Type: ",CacheType

"Cache Size: ",CacheSize
"Difficulty: ", Difficulty
"Terrain: ",Terrain

"Lat: ",Lat

"Lon: ",Lon

"GType: ", GType
"Link: ",Link

full circle magazine

import elementtree.ElementTree as ET
tree = ET.parse('Cache.loc’)
w = tree.find('.//waypoint')
for w1 in w:
if wi.tag == "name":

Get text of cache name up to the phrase "Open Cache: "

CacheName = w1.text[:w1.text.find("Open Cache: ")-1]

Get the text between "Open Cache: " and "Cache Type: "

OpenCache = w1.text[w1.text.find("Open Cache: ")+12:w1.text.find("Cache
Type: ")-1]

More of the same

CacheType = w1.text[w1.text.find("Cache Type: ")+12:w1.text.find("Cache Size:
")-1]

CacheSize = w1.text[w1.text.find("Cache Size: ")+12:w1.text.find("Difficulty: ")-
1]

Difficulty= w1.text[w1.text.find("Difficulty: ")+12:w1.text.find("Terrain :")-1]
Terrain = wi.text[w1.text.find("Terrain :")+12:]
if w1.keys():
for name,value in w1.items():
if name =="id":
CachelD = value
elif w1.tag == "coord":
if w1.keys():
for name,value in w1.items():
if name == "lat":
Lat = value
elif name == "lon":
Lon = value
elif w1.tag == "type":
GType = w1.text
elif w1.tag == "link":
if w1.keys():
for name, value in w1.items():
Info = value
Link = w1.text
print "Cache Name: ",CacheName
print "Cache ID: ",CachelD
print "Open Cache: ",OpenCache
print "Cache Type: ",CacheType
print "Cache Size: ",CacheSize
print "Difficulty: ", Difficulty
print "Terrain: ", Terrain
print "Lat: ",Lat
print "Lon: ",Lon
print "GType: ",GType
print "Link: ",Link
print "="*25

print "finished"

http://www.thedesignatedgeek.com

HOW-T0O

Written by Greg Walters

Program In Python - Part 11

.

SEE ALSO:
FCM#27-36 - Python Parts 1-10

APPLICABLE TO:
<2 ubuntu <3 kubuntu «Zxubuntu

CATEGORIES:
"

F
f
r

Dev

DEVICES:

ast time, | promised you

expertise to grab weather

information from a website :

and display it in a terminal. Well,
that time has come.

We will use an API from

question “What's an API"” rising in
your throat. API stands for
Application Programming Interface.

interface with another program.
Think of the libraries we import.

Some of those can be run as stand-

alone applications, but if we
import the application as a library,

our own program, and we get to
use someone else's code. In this
case, we will use specially

the wunderground website for
information about the weather -
without using a web browser.

Some people might say that an API

is like a secret back door into
another program - that the
programmer(s) intentionally put
there for our use. Either way, this
is a supported extension of one

application for its use in other

applications.
that we would use our XML

Sounds intriguing? Well, read
on, my dear padawan.

Fire up your favorite browser,

. and head to
- www.wunderground.com. Now
www.wunderground.com. | hear the:

enter your postal code or city and

© state (or country) into the search
: box. There is a wealth of

© information here. Now, let's jump
It's really a fancy phrase for a way to:

to the APl web page:

" http://wiki.wunderground.com/ind

ex.php/API - XML
full circle magazine

@53

One of the first things you will

notice is the API Terms of Service.
) , ' Please read and follow them. They
we can use many of its functions in : aren't onerous, and are really
simple to abide by. The things that
: are going to be of interest to us

. are the GeoLookupXML,
formatted URL addresses to query : WXCurrentObXML. AlertsXML
and ForecastXML calls. Take some

. time to scan over them.

I'm going to skip the

GeoLookupXML routine, and let

: you look at that on your own. We

- will concentrate on two other

: commands: WXCurrentObXML

. (Current Conditions) this time, and
. ForecastXML (Forecast) next time.

Here's the link for

. WXCurrentObXML:

: http://api.wunderground.com/aut
: o/wui/geo/WXCurrentObXML/ind
: ex.xml?query=80013

Replace the 80013 U.S. ZIP

code with your postal code or if

: you are outside the U.S. you can

. try city, country - like Paris, France,
§ or London, England.

And the link for the
The Compleat Python

ForecastXML:
: http://api.wunderground.com/aut

: o/wui/geo/ForecastXML/index.xml
 2query=80013

Again, replace the 80013 U.S.

ZIP code with your postal code or
city, country.

Let's start with the current

- information. Paste the address

- into your favorite browser. You'll
- see a great deal of information

: returned. I'll let you decide what's
- really important to you, but we'll

: look at a few of the elements.

For our example, we'll pay

attention to the following tags:

display location

ﬁ contents ©

http://www.wunderground.com
http://wiki.wunderground.com/index.php/API_-_XML
http://api.wunderground.com/auto/wui/geo/WXCurrentObXML/index.xml?query=80013
http://api.wunderground.com/auto/wui/geo/WXCurrentObXML/index.xml?query=80013
http://api.wunderground.com/auto/wui/geo/ForecastXML/index.xml?query=80013

PROGRAM IN PYTHON - PART 11

observation_time
weather
temperature string
relative_humidity
wind_string
pressure_string

Of course, you can add other
tags that are of interest to you.
However, these tags will provide
enough of an example to take you
as far as you would like to go.

Now that we know what we will
be looking for, let's start coding
our app. Let's look at the gross
flow of the program.

First, we check what the user
has asked us to do. If she passed a
location, we will use that,
otherwise we will use the default
location we code into the main
routine. We then pass that
getCurrents routine. We use the
location to build the request string
to send out to the web. We use
urllib.urlopen to get the response
from the web, and put that in an
object, and pass that object to

ElementTree library function parse.

We then close the connection to
the web and start looking for our
tags. When we find a tag we are
interested in, we save that text
into a variable that we can use to

output the data later on. Once we
have all our data, we display it.

Fairly simple in concept.

Start by naming your file

w_currents.py. Here's the import
- portion of our code:

; from xml.etree import
! ElementTree as ET

; import urllib
; import sys

; import getopt

Next, we'll put a series of help

lines (above right) above the
imports.

_ Be sure to use the triple double- :
: quotes. This allows us to have a :
: multi-line comment. We'll discuss
© this part more in a bit.

© Now we'll create our class stubs, :
: below right, and the main routines, :
: which are shown on the following
: page.

You will remember from

fFull circle magazine

@54

""" w_currents.py
Returns current conditions, forecast and alerts for a
given zipcode from WeatherUnderground.com.

Usage: python wonderground.py [options]
Options:

—h, —--help Show this help

-1, —-location City, State to use

-z, —-zip Zipcode to use as location
Examples:

w_currents.py -h (shows this help information)
w_currents.py -z 80013 (uses the zip code 80013 as
location)

muan

class CurrentInfo:

This routine retrieves the current condition xml data from
WeatherUnderground. com

based off of the zip code or Airport Code...

currently tested only with Zip Code and Airport code
For location,

if zip code use something like 80013 (no quotes)

if airport use something like "KDEN" (use double—quotes)
if city/state (US) use something like "Aurora, $20CO" or
“Aurora,CO” (use double—quotes)

if city/country, use something like "London, $20England"
(use double—quotes)

def getCurrents (self, debuglevel, Location) :

pass

def output (self):

pass

def Dolt (self,Location):
pass

#
END OF CLASS CurrentInfo ()
#

The Compleat Python

ﬁ contents ©

PROGRAM IN PYTHON - PART 11

previous articles the "if
__name__"line. IF we are calling
this as a stand alone app, we will
run the main routine - otherwise
we can use this as part of a library.
Once in the main routine, we then
check what was passed into the
routine, if anything.

If the user uses the "-h" or "--
help" parameter, we print out the
triple-commented help lines at the
top of the program code. This is
called by the usage routine telling
the app to print __doc__

If the user uses the "-("
(location) or "-z"
override the internally set location
value. When passing a location, be
sure that you use double quotes to
enclose the string and that you do

the current conditions for Dallas,
Texas, use -l "Dallas,Texas".

Astute readers will realize that

the same. You can modify the -l to
check for spaces and reformat the
string before passing it to the
routines. That's something you can
do by now.

Finally, we create an instance of
our CurrentInfo class that we call

currents, and then pass the

location to the "Dolt" routine. Let's _
fill that in now: :

E def DolIt (self,Location):
E self.getCurrents (1, Location)

E self.output ()

Very simple. We pass the

. location and debug level to the

. getCurrents routine, and then call
. the output routine. While we could
. have simply done the output :
. directly from the getCurrents

: routine, we are developing the :
. Flexibility to output in various ways
(zipcode), that will : :

if we need to.

The code for the getCurrents

routine is displayed on the next
. page.
not use spaces. For example, to get :

Here we have a parameter

called'debuglevel. By doing th.is, we again before release.
. can print out helpfulinformation if :
: things don't seem to be going quite

the -z and -l checks are pretty much :

the way we want them to. It's also

sure to remove the code and test it
fFull circle magazine

@55

def usage():
print _ doc_
def main (argv) :
location = 80013
try:

opts, args =
"zip=", "location="])
except getopt.GetoptError:
usage ()

sys.exit (2)

for opt, arg in opts:

if opt in ("-h", "—--help"):
usage ()

sys.exit ()

elif opt in ("-1",

getopt .getopt (argv,

"hz:1:", ["help=",

"——location") :

location = arg

elif opt in ("-z", "—-zip"):
location = arg

print "Location = %s" % location
currents = CurrentInfo()

currents.DolIt (location)

#=============================
Main loop
#=============================
if name == " main "

main (sys.argv[l:])

Now, we use a try/except

:) wrapper to make sure that if
- useful when we are doing our early :

. code. If, when you are all happy

: with the way your code is working,
: you can remove anything related to :
. debuglevel. If you are going to
. release this into the wild, like if you :
" are doing this for someone else, be

- something goes wrong, the app :
. doesn't just blow up. Under the try :
: side, we set up the URL, thenseta :
: timeout of eight seconds

: (urllib.socket. setdefaulttlmeout(8))

. We do this because, sometimes,
wunderground is busy and doesn't

The Compleat Python

respond. This

ﬁ contents ©

PROGRAM IN PYTHON - PART 11

way we don't just sit there
waiting for the web. If you want to
get more information on urllib, a
good place to start is
http://docs.python.org/library/urlli

b.html.

If anything unexpected
happens, we fall through to the
except section, and print an error
message, and then exit the
application (sys.exit(2)).

Assuming everything works, we
start looking for our tags. The first
thing we do is find our location
with the tree.findall("//full").
Remember, tree is the parsed
object returned by elementtree.
What is returned by the website
APl in part is shown below.

This is our first instance of the
tag <full>, which in this case is
"Aurora, CO". That's what we want

<display_location>
<full>Aurora, CO</full>
<city>Aurora</city>
<state>CO</state>

to use as our location. Next, we are
looking for "observation_time".

© This is the time when the current
. conditions were recorded. We :
: continue looking for all the data we :
© are interested in - using the same
. methodology.

Finally we deal with our output

routine which is shown top left on
: the following page.

Here we simply print out the

: variables.

: That's all there is to it. A sample :
: output from my zip code with :
. debuglevel set to 1 is shown

: bottom left on the next page.

Please note that | chose to use

the tags that included both

<state_name>Colorado</state_name>

<country>US</country>

<country_ iso3166>US</country_iso3166>

<zip>80013</zip>

<latitude>39.65906525</latitude>
<longitude>-104.78105927</longitude>
<elevation>1706.00000000 ft</elevation>

</display_location>

full circle magazine

@56

def getCurrents (self,debuglevel, Location) :
if debuglevel > O:

print "Location = %s" % Location

try:

CurrentConditions =

'http://api.wunderground. com/auto/wui/geo/WXCurrent ObXML

/index.xml?query=%s' % Location
urllib.socket.setdefaulttimeout (8)

usock = urllib.urlopen (CurrentConditions)

tree = ET.parse (usock)

usock.close()

except:

print 'ERROR - Current Conditions - Could not get
information from server...'

if debuglevel > O:

print Location

sys.exit (2)

Get Display Location

for loc in tree.findall("//£full"):

self.location = loc.text

Get Observation time

for tim in tree.findall("//observation_time"):
self.obtime = tim.text

Get Current conditions

for weather in tree.findall ("//weather") :
self.we = weather.text

Get Temp

for TempF in tree.findall ("//temperature_string"):
self.tmpB = TempF.text

#Get Humidity

for hum in tree.findall("//relative_humidity") :
self.relhum = hum.text

Get Wind info

for windstring in tree.findall("//wind_string") :
self.winds = windstring.text

Get Barometric Pressure

for pressure in tree.findall("//pressure_string"):
self .baroB = pressure.text

getCurrents routine

ﬁ contents ©

The Compleat Python

http://docs.python.org/library/urllib.html

PROGRAM IN PYTHON - PART 11

def output (self):

print 'Weather Information From Wunderground.com'
print 'Weather info for %s ' % self.location
print self.obtime

print 'Current Weather - %$s' % self.we

print 'Current Temp - %s' % self.tmpB

print 'Barometric Pressure - %s' % self.baroB
print 'Relative Humidity - %s' % self.relhum
print 'Winds %s' % self.winds

Fahrenheit and Celsius values. If :
you wish, for example, to display
only Celsius values, you can use the :
<temp_c> tag rather than the
<temperature_string> tag.

The full code can be
downloaded from:
http://pastebin.com/4ibJGm74

| =k =]

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with his Family.

Next time, we'll concentrate on
the forecast portion of the API. In
the meantime, have fun!

Location = 80013

Weather Information From Wunderground.com
Weather info for Aurora, Colorado

Last Updated on May 3, 11:55 AM MDT
Current Weather - Partly Cloudy

Current Temp — 57 F (14 C)

Barometric Pressure - 29.92 in (1013 mb)
Relative Humidity - 25%

Winds From the WNW at 10 MPH

Script terminated.

fFull circle magazine

Vs

L www.fuIIcircIemagazine.org)

full circle *
"t‘“‘*ﬂ\ Full

wr Circle

@57

The Full Circle Podcast is back and better than
ever!

Topics in episode six include:

* News - Ubuntu 10.04 released

* Opinions

» Gaming - Steam coming to Linux?
» Feedback

...and all the usual hilarity.

Your Hosts:

* Robin Catling
e Ed Hewitt

e Dave Wilkins

The podcast and show notes are at:
http://fullcirclemagazine.org/

The Compleat Python

ﬁ contents ©

http://pastebin.com/4ibJGm74
http://url.fullcirclemagazine.org/88a985
http://fullcirclemagazine.org/

HOW-T0O

Written by Greg Walters

.

SEE ALSO:
FCM#27-37 - Python Parts 1 - 11

APPLICABLE TO:
<2 ubuntu <3 kubuntu «Zxubuntu

CATEGORIES:
"

F
:’/"
r

Dev

DEVICES:

the API from wunderground,

and wrote some code to grab

the current conditions. This
time, we will be dealing with the
forecast portion of the API. If you
haven't had a chance to look at the
last two installments about XML,
and the last one specifically, you
might want to review them before
moving forward.

Just as there was a web address

for the current conditions, there is

one for the forecast. Here is the
link to the forecast XML page:

“number” element, then an
. element that has children of its

http://api.wunderground.com/auto :
/wui/geo/ForecastXML/index.xml? :
: and something called fcttext...then :
. it repeats itself. The first thing

. you'll notice is that under

. txt_forecast, the date isn't a date,
: but a time value. It turns out that
: this is when the forecast was :
. released. The <number> tag shows :
. how many forecasts there are for
: the next 24 hour period. | can't

. think of a time that I've seen this
'simpleforecast' and 'moon_phase'. :
. for the 24 hour period

query=80013

As before, you can change the
'80013' to your City/Country,
City/State, or postal code. You'll
probably get back about 600 lines
of XML code. You have a root
element of 'forecast’, and then
four sub elements:
'termsofservice', 'txt_forecast',

We will concentrate on the
'txt_forecast' and 'simpleforecast'

. elements.
n our last session, we looked at :

Since we went over the usage,

: main, and “if __name__" sections

. last time, I'll leave those to you to
. deal with and just concentrate on
. the goodies that we need for this
. time. Since | showed you a snippet
. Ftxt_forecast, let's start with that. :

Shown below is a very small

portion of the txt_forecast set for
© my area.

After the txt_forecast parent
element, we get the date, a

full circle magazine

@58

Program In Python - Part 12

. (<Forecastday>), you have a period
: number, multiple icon options, a

© title option (“Today”, “Tonight”,

: “Tomorrow”), and the text of a
simple forecast. This is a quick

. overview of the forecast, usually

. for the next 12 hours.

own called forecastday which
includes period, icon, icons, title

value less than 2. For each forecast

<txt_forecast>
<date>3:31 PM MDT</date>
<number>2</number>
—<forecastday>
<period>1l</period>
<icon>nt_cloudy</icon>
+<icons></icons>
<title>Tonight</title>
—<fcttext>
Mostly cloudy with a 20
percent chance of thunderstorms in the evening...then
partly cloudy after midnight. Lows in the mid 40s.
Southeast winds 10 to 15 mph shifting to the south after
midnight.
</fcttext>
</forecastday>
+<forecastday></forecastday>
</txt_forecast>

The Compleat Python

ﬁ contents ©

http://api.wunderground.com/auto/wui/geo/ForecastXML/index.xml?query=80013

PROGRAM IN PYTHON - PART 12

Before we start working with
our code, we should take a look at
the <simpleforecast> portion of
the xml File which is shown right.

There is a <forecastday> tag for
each day of the forecast period,

in various formats (I personally like
the <pretty> tag), projected high
and low temps in both Fahrenheit
and Celsius, gross condition

projection, various icons, a sky icon :
. the current conditions routine we
. worked on last time. The only :
. major difference (so far) is the URL :
. we are using. Now things change.
: Since we have multiple children

: that have the same tag within the

. parent, we have to make our parse :
. calls a bit different. The code is top
. left on the following page. :

(sky conditions at the reporting
station), and “pop” which stands
for “Probability Of Precipitation”.
The <moon_phase> tag provides
some interesting information
including sunset, sunrise, and
moon information.

Now we'll get into the code.
Here is the import set:

from xml.etree import
ElementTree as ET

import urllib
import sys

import getopt

Now we need to start our class.
We will create an __init__ routine
to setup and clear the variables
that we need, this is shown top

right on the following page.

If you don't care about carrying

. the ability of both Fahrenheit and
. Celsius, then leave out whichever
: variable set you don't want. |

. decided to carry both.

usually 6 days including the current :
day. You have the date information :
. retrieval routine to get the :
. forecast data. This is shown bottom :
. right on the next page. :

Next, we'll start our main

This is pretty much the same as

Notice we are using tree.find

this time, and we are using for :
. loops to walk through the data. It's
- ashame that Python :

fFull circle magazine

@59

<simpleforecast>
—<forecastday>
<period>1</period>
—<date>
<epoch>1275706825</epoch>

<pretty_ short>9:00 PM MDT</pretty_short>

<pretty>9:00 PM MDT on June 04,
<day>4</day>
<month>6</month>
<year>2010</year>
<yday>154</yday>
<hour>21</hour>
<min>00</min>
<sec>25</sec>
<isdst>1</isdst>
<monthname>June</monthname>
<weekday_short/>
<weekday>Friday</weekday>
<ampm>PM</ampm>
<tz_short>MDT</tz_short>
<tz_long>America/Denver</tz_long>

</date>

—<high>
<fahrenheit>92</fahrenheit>
<celsius>33</celsius>

</high>

—<low>
<fahrenheit>58</fahrenheit>
<celsius>14</celsius>

</low>

<conditions>Partly Cloudy</conditions>

<icon>partlycloudy</icon>

+<icons>

<skyicon>partlycloudy</skyicon>

<pop>10</pop>

</forecastday>

</simpleforecast>

The Compleat Python

2010</pretty>

ﬁ contents ©

PROGRAM IN PYTHON - PART 12

#
Get the forecast for today and (if available)
tonight

#

fest = tree.find('.//txt_forecast')
for £ in fcst:

class ForecastInfo:
def _ _init__ (self):

self.forecastText = [] # Today/tonight forecast
information

self.Title = [] # Today/tonight

self.date = "'

self.icon = [] # Icon to use for conditions
today/tonight

self.periods = 0
self.period = 0

if f£f.tag == 'number': #
self.periods = f.text # Extended forecast information
elif f.tag == 'date': #
self.date = f.text self.extIcon = [] # Icon to use for extended
for subelement in f: forecast
if subelement.tag == 'period': self.extDay = [] # Day text for this forecast
self.period=int (subelement.text) ("Monday", "Tuesday" etc)
if subelement.tag == 'fcttext': self.extHigh = [] # High Temp. (F)
self. forecastText.append (subelement.text) self.extHighC = [] # High Temp. (C)
elif subelement.tag == 'icon': self.extLow = [] # Low Temp. (F)
self.icon.append(subelement.text) self.extLowC = [] # Low Temp. (C)
elif subelement.tag == 'title': self.extConditions = [] # Conditions text
self.Title.append (subelement.text) self.extPeriod = [] # Numerical Period information
(counter)
self.extpop = [] # Percent chance Of
Precipitation
def GetForecastData (self, location):
try:
forecastdata = 'http://api.wunderground.com/auto/wui/geo/ForecastXML/index.xml?query=%s' % location

urllib.socket.setdefaulttimeout (8)
usock = urllib.urlopen (forecastdata)
tree = ET.parse (usock)
usock.close ()

except:

print 'ERROR - Forecast - Could not get information from server...'

sys.exit (2)

full circle magazine

The Compleat Python

@ 60 ﬁ contents ©

PROGRAM IN PYTHON - PART 12

doesn't offer a SELECT/CASE
command set like other languages.
The IF/ELIF routine, however,
works well, just a bit clunkier. Now
we'll break down the code. We
assign the variable fcst to
everything within the

data for that group. We then look

fFor the tags <date> and <number> - : :
. self.GetForecastData (Location :

)

since those are simple “first level”
tags - and load that data into our
variables. Now things get a bit

more difficult. Look back at our xml

response example. There are two
instances of <forecastday>. Under
<forecastday> are sub-elements
that consist of <period>, <icon>,
<icons>, <title> and <fcttext>.

use the IF statement to load them
into our variables.

Next we need to look at the
extended forecast data for the
next X number of days. We are
basically using the same
methodology to fill our variables;
this is shown top right.

Now we need to create our

output routine. As we did last time,

it will be fairly generic. The code

for this is shown on the right of the

following page.

code:
: http://pastebin.com/wsSXMXQx

Again, if you don't want to carry
both Centigrade and Fahrenheit

: information, then modify the code
: to show what you want. Finally, we
: have a “Dolt” routine:

. def :
! DoIt (self,Location,US, Include :

<txt_forecast> tag. This gets all the | Today,Output) :

self.output(US,IncludeToday,O;
! utput) :

Now we can call the routine as

follows:

. forecast = ForecastInfo ()

We'll loop through these, and again :

. forecast.DoIt('80013',1,0,0) :
: # Insert your own postal code :

That's about it for this time. I'll

leave the alert data to you, if you
© want to go through that.

Here is the complete running

Have fun until next time.

fFull circle magazine

@61

Now get the extended forecast

fcst = tree.find('.//simpleforecast')
for £ in fcst:
for subelement in f:
if subelement.tag == 'period':
self.extPeriod.append (subelement . text)
elif subelement.tag == 'conditions':
self.extConditions. append (subelement.text)
elif subelement.tag == 'icon':
self.extIcon.append (subelement.text)
elif subelement.tag == 'pop':
self.extpop.append (subelement . text)
elif subelement.tag == 'date':
for child in subelement.getchildren() :
if child.tag == 'weekday':
self.extDay.append(child.text)
elif subelement.tag == 'high':
for child in subelement.getchildren() :
if child.tag == 'fahrenheit':
self.extHigh.append (child.text)
if child.tag == 'celsius':
self.extHighC.append (child.text)
elif subelement.tag == 'low':
for child in subelement.getchildren() :
if child.tag == 'fahrenheit':
self.extLow.append(child.text)
if child.tag == 'celsius':
self.extLowC.append (child.text)

|k ="|

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with his family.

The Compleat Python

ﬁ contents ©

http://pastebin.com/wsSXMXQx

HOW-TO

Written by Greg Walters

his month, we talk about

using Curses in Python.

No, we're not talking

about using Python to say
dirty words, although you can if
you really feel the need. We are
talking about using the Curses
library to do some fancy screen
output.

If you are old enough to
remember the early days of
computers, you will remember
that, in business, computers were
all mainframes - with dumb
terminals (screens and keyboards)
for input and output. You could
have many terminals connected to
one computer. The problem was

that the terminals were very dumb :
devices. They had neither windows, :
: (myscreen = curses.initscr()). This is :
: our canvas that we will paint to.

colors, or much of anything - just
24 lines of 80 characters (at best).

When personal computers became

popular, in the old days of DOS and :
: draw a border around our canvas.

: Thisisn't needed, but it makes the
. screen look nicer. We then use the
. addstr method to “write” some

. text on our canvas starting on line
: 12 position 25. Think of the .addstr :
' " takes up one of our “usable”

@62

CPM, that is what you had as well.
When programmers worked on
fancy screens (those days),
especially for data input and
display, they used graph paper to
design the screen. Each block on
the graph paper was one character

position. When we deal with our
Python programs that runin a

terminal, we still deal with a 24x80

screen. However, that limitation
can be easily dealt with by proper
forethought and preparation. So,
go out to your local office supply
store and get yourself a few pads
of graph paper.

Anyway, let's jump right in and
create our first Curses program,

shown above right. I'll explain after :
: method makes our work visible. If
we don't refresh the screen, our

Short but simple. Let's examine :
it line by line. First, we do our :
- imports, which you are very familiar :
© with by now. Next, we create a new :
: © our terminal to act normally. The

curses.endwin() command is VERY

you've had a look at the code.

Curses screen object, initialize it,
and call the object myscreen.

Next, we use the
myscreen.border(0) command to

method of a Curses print

full circle magazine

#!/usr/bin/env python
CursesExamplel

import curses

myscreen = curses.initscr()
myscreen.border (0)
myscreen.addstr (12,
myscreen.refresh ()
myscreen.getch ()
curses.endwin ()

25,

statement. Finally, the .refresh()

changes won't be seen. Then we

- wait for the user to press any key

(.getch) and then we release the
screen object (.endwin) to allow

important, and, if it doesn't get

. called, your terminal will be leftina:
. major mess. So, make sure that you '
. get this method called before your :
. application ends. :

Save this program as

CursesExample1.py and runitina
: terminal. Some things to note.

Whenever you use a border, it

The Compleat Python

Program In Python - Part 13

"See Curses,

See Curses Run!")

. character positions for each

. character in the border. In addition,
. both the line and character

: position count is ZERO based. This
. means that the first line in our

. screen is line 0 and the last line is

. line 23. So, the very top left

ﬁ contents ©

PROGRAM IN PYTHON - PART 13

position is referred to 0,0 and
the bottom right position is 23,79.
Let's make a quick example (above
right) to show this.

Very simple stuff except the

try/finally blocks. Remember, | said :
© Start with the following

: template. You might want to

© save this snippet (below right)
: so you can use it for your own
© future programs.

that curses.endwin is VERY
important and needs to be called
before your application finishes.
Well, this way, even if things go
very badly, the endwin routine will
get called. There's many ways of
doing this, but this way seems
pretty simple to me.

Now let's create a nice menu
system. If you remember back a
while, we did a cookbook
application that had a menu
(Programming Python - Part 8).
Everything in the terminal simply
scrolled up when we printed
something. This time we'll take

that idea and make a dummy
menu that you can use to

. pretty up the cookbook.
: Shown below is what we used
. back then.

This time, we'll use Curses.

Now, save your template

again as “cursesmenul.py” so
that we can work on the file
- and keep the template.

RECIPE DATABASE

— Show All Recipes

— Search for a recipe
— Show a Recipe
Delete a recipe

— Add a recipe

— Print a recipe

- Exit

oo WwWDbDEKL
|

Enter a selection —>

full circle magazine

#!/usr/bin/env python
CursesExample2
import curses

#
MAIN LOOP
#
try:
myscreen = curses.initscr()
myscreen.clear ()
myscreen.addstr (0,0, "0 1 2 3
4 5 6 ")

myscreen.addstr (1,0, "1234567890123456789012345678901234567890
1234567890123456789012345678901234567890")

myscreen.addstr (10,0, "10")
myscreen.addstr (20,0, "20")
myscreen.addstr (23,0, "23 - Press Any Key to Continue")
myscreen.refresh ()
myscreen.getch ()
finally:

#!/usr/bin/env python
#
Curses Programming Template
#

import curses

def InitScreen (Border) :
if Border ==
myscreen.border (0)

#
MAIN LOOP
#
myscreen = curses.initscr ()
InitScreen (1)
try:
myscreen.refresh ()
Your Code Stuff Here...
myscreen.addstr (1,1, "Press Any Key to Continue")
myscreen.getch ()
finally:
curses.endwin ()

@ 63 The Compleat Python

ﬁ contents ©

J

PROGRAM IN PYTHON - PART 13

Before we go any further with

our code, we are going to do this in curses.initscreen

a modular way. Here (above right) Logigiwg - 4 Show th _
. owMainMenu ow e main menu
154 pseudp-code example of what MainInKey # This is our main input handling routine
we are going to do. While Key != O:
If Key == 1:
OFcourse th|s pseudo Code is ShowAllRecipesMenu # Show the All Recipes Menu
just that...pseudo. But it gives you Inkeyl # Do the input routines for this
. . . ShowMainMenu # Show the main menu
an idea of where we are going with If Key ==
this whole thing. Since this is just SearchForARecipeMenu # Show the Search for a Recipe Menu
anexanuﬂenNeM(NﬂygojustsoFar§ IEKeyZ z Dg thehinput routines for this option
: : ShowMainMenu Show the main menu again
here, but you ca’n take |t§ll the way : If Key ==
'FyOU\Nant-LetSStart“”ththe ShowARecipeMenu # Show the Show a recipe menu routine
main lOOp (middle far right). InKey3 # Do the input routine for this routine
ShowMainMenu # Show the main menu again

And so on and so on

Not much in the way of # Restore the terminal

programming here. We have our
try|finally blocks just as we had in
our template. We initialize the

curses.endwin ()

def DoMainMenu () :

Curses screen and then call a myscreen.erase ()
. . myscreen.addstr (1,1, # MAIN LOOP
routine named LogicLoop. That " " try:
code is shown bottom far right. myscreen.addstr (2,1, " Recipe myscreen = curses.initscr()
Database") - LogicLoop ()
Again, not much, but this is only myscreen.addstr(3,1,) fmaiii;es e
a sample. Here we are going to call myscreen.addstr (4,1, " 1 - Show All

two routines. One called

Recipes")

DoMainMenu and the other myscreen.addstr (5,1, " 2 - Search for a
MainlnKey. DoMainMenu will show recipe") _
our main menu. and the MainInKey myscreen.addstr (6,1, " 3 Show a recipe")
. ! . myscreen.addstr (7,1, " 4 Delete a recipe")
routine handles everythlng for that : myscreen.addstr(8,1, " 5 - Add a recipa")
main menu. Tthe DoMainMenu : myscreen.addstr (9,1, " 6 - Print a recipe") .
. . . © o 0 def LogicLoop() :
routine is shown right. myscreen.addstr (10,1, 0 Exit") S
myscreen.addstr (11,1, o_aln enu ()
0 " MainInKey ()
myscreen.addstr (12,1, " Enter a selection: ")
myscreen.refresh ()

full circle magazine

@64

The Compleat Python

ﬁ contents ©

PROGRAM IN PYTHON - PART 13

Notice that this routine does
nothing but clear the screen
(myscreen.erase), and then print
what we want on the screen. There
is nothing here dealing with
keyboard handling. That's the job
of the MainIinKey routine, which is
shown below.

This is really a simple routine.
We jump into a while loop until the
key that is entered by the user
equals 0. Within the loop, we

def MainInKey () :
key = 'X'
while key != ord('0'):
key =

check to see if it's equal to various
values, and, if so, we do a series of

: routines, and finally call the main
. menu when we are done. You can
: fill in most of these routines for :
- yourself by now, but we will look at :
: option 2, Search for a Recipe. The
: menu is short and sweet. The

: InKey2 routine (right) is a bit more
. complicated.

myscreen.getch (12, 22)

myscreen.addch (12, 22, key)

if key == ord('1'):

ShowAllRecipesMenu ()

DoMainMenu ()

elif key == ord('2"'"):
SearchForARecipeMenu ()

InKey2 ()
DoMainMenu ()

elif key == ord('3"'"):
ShowARecipeMenu ()

DoMainMenu ()

elif key == ord('4"'):
NotReady (" 'Delete A Recipe'")

DoMainMenu ()

elif key == ord('5"'"):
NotReady (" 'Add A Recipe'")

DoMainMenu ()

elif key == ord('6"'):
NotReady (" 'Print A Recipe'")

DoMainMenu ()
myscreen.refresh ()

full circle magazine

def SearchForARecipeMenu():

def

def

@65

myscreen.
myscreen.
myscreen
myscreen
myscreen.
myscreen.
myscreen.
myscreen.
myscreen

InKey2 (
key = "

)
x]
doloop =

addstr(4,1, "--——————————— ")
addstr(5,1, " Search in")

.addstr(6,1, "-—-———————— - ")
.addstr(7,1, " 1 - Recipe Name")

addstr(8,1, " 2 - Recipe Source")

addstr(9,1, " 3 - Ingredients")

addstr(10,1," 0 - Exit")

addstr (11,1, "Enter Search Type -> ")

.refresh ()

1

while doloop == 1:
key = myscreen.getch(1l1,22)
myscreen.addch (11,22, key)

tmpstr = "Enter text to search in "
if key == ord('1l'):
sstr = "'Recipe Name' for -> "
tmpstr = tmpstr + sstr

retstring = GetSearchLine(13,1,tmpstr)
break
elif key == ord('2'):
sstr = "'Recipe Source' for -> "
tmpstr = tmpstr + sstr
retstring = GetSearchLine(13,1,tmpstr)
break
elif key == ord('3'):
sstr = "'Ingredients' for -> "
tmpstr = tmpstr + sstr
retstring = GetSearchLine(13,1,tmpstr)
break
else:
retstring = ""
break
if retstring != "":
myscreen.addstr (15,1, "You entered - " + retstring)
else:

myscreen.addstr (15,1, "You entered a blank string")

myscreen.
myscreen.
myscreen.

refresh ()
addstr (20,1, "Press a key")
getch()

GetSearchLine (row,col,strng):

myscreen.
myscreen.
instring

myscreen.
myscreen.

addstr (row,col,strng)

refresh()

= myscreen.getstr(row,len(strng)+1)
addstr(row,len(strng)+1,instring)
refresh()

return instring

The Compleat Python

h contents ©

PROGRAM IN PYTHON -

PART 13

Again, we are using a standard
while loop here. We set the
variable doloop = 1, so that our
loop is endless until we get what
we want. We use the break
command to drop out of the while
loop. The three options are very
similar. The major difference is
that we start with a variable
named tmpstr, and then append
whatever option text has been
selected...making it a bit more
friendly. We then call a routine
called GetSearchLine to get the
string to search for. We use the
getstr routine to get a string from
the user rather than a character.
We then return that string back to
our input routine for further
processing.

The Full code is at:
http://pastebin.com/ELuzZ3T4P

One final thing. If you are
interested in looking into Curses
programming further, there are

many other methods available than: | |

what we used this month. Besides
doing a Google search, your best
starting point is the official docs
page at
http://docs.python.org/library/curs
es.html.

See you next time.

It seems that the code for
Python Pt.11 isn't properly
indented on Pastebin. The
correct URL for Python Pt.11
code is:
http://pastebin.com/Pk74fLF3

Please check: .
http://fullcirclemagazine.pastebi ::
n.com for all Python (and future) -
code. :

Greg Walters is owner of
RainyDay Solutions, LLC, a
: consulting company in Aurora,
: Colorado, and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with his family.

fFull circle magazine

full circle

"5

@66

L www.fuIlcirclemagazine.org)

* News

» Feedback

Your Hosts:

* Robin Catling
* Ed Hewitt

* Ronnie Tucker

The Full Circle Podcast is back and better than ever!
Topics in episode ten include:

* Opinion - Contributing articles with the FCM Editor.
* Interview - with Amber Graner

...and all the usual hilarity.

The podcast and show notes are at:
http://Fullcirclemagazine.org/

Full
Circle

The Compleat Python

ﬁ contents ©

http://url.fullcirclemagazine.org/88a985
http://fullcirclemagazine.org/
http://pastebin.com/ELuZ3T4P
http://docs.python.org/library/curses.html
http://pastebin.com/Pk74fLF3
http://fullcirclemagazine.pastebin.com

HOW-T0

Written by Greg Walters

ast time we talked about

the Curses library. This

time we are going to delve

further into the curses
library, and concentrate on the
color commands. Just in case you
missed the last article, let's have a
quick review. First, you have to
import the curses library. Next you
have to call curses.initscr to get
things started. To put text on the
screen you call the addstr function,
and then call refresh to show your
changes to the screen. Finally, you
have to call curses.endwin() to
restore the terminal window to its
normal state.

Now, we are going to create a
quick and easy program that uses
color. It's pretty much the same as
what we did before, but we have a

we use curses.start_color() to tell
the system that we want to use
color in our program. Next, we
assign a color pair of foreground
and background. We can assign
many pairs, and use them
whenever we want. We do that by
using the curses.init_pair function.
The syntax is:

curses.init_pair([pairnumber];

, [foreground
color], [background color])

The colors are set up by using

“curses.COLOR_" and the color you

want. For example,
curses.COLOR_BLUE or

curses.COLOR_GREEN. The options :

here are black, red, green, yellow,

blue, magenta, cyan and white. Just

add “curses.COLOR_", and the

color you want, in upper case. Once :

we have set up our color pair, we
can use it as a final parameter in

our screen.addstr function like this:

: myscreen.addstr([row],[column;
: 1, [text], curses.color_pair (X) :

)

Here X is the color set we wish

to use.
few new commands this time. First

Save the following code (above

right) as colortest1.py, then runit. :
- Don't try to run a curses program in : This makes sure that if anything
. an IDE like SPE or Dr. Python. Run it :

from a terminal.

What you should see is a grey

background, with three lines of

text saying “ Thisis atest "in

full circle magazine

@67

import curses
try:
myscreen =
curses.start_color()
curses.init_pair (1,
curses .COLOR_GREEN)
curses.init_pair (2,
curses.COLOR_WHITE)
curses.init_pair (3,

Program In Python - Part 14

curses.initscr()
curses.COLOR_BLACK,

curses.COLOR_BLUE,

curses .COLOR_MAGENTA, curses .COLOR_BLACK)

myscreen.clear ()
myscreen.addstr (3,1, "
",curses.color_pair(l))
myscreen.addstr(4,1,"
",curses.color_pair(2))
myscreen.addstr (5,1, "
",curses.color_pair(3))
myscreen.refresh ()
myscreen.getch ()
finally:
curses.endwin ()

- different colors. The first should be :
. black-on-green, the second blue-
: on-white, and the third magenta on :
: the grey background.

Remember the Try/Finally set.

happens, our program will

: automatically restore our terminal
: toits normal state. There is

. another way. There is a curses :
: command called wrapper. Wrapper :

does all the work for you. It does

The Compleat Python

This is a test

This is a test

This is a test

the curses.initscr(), the

© curses.start_color(), and the

curses.endwin(), so that you don't

. have to. The one thing you have to
: remember is that you call

© curses.wrapper with your main

© routine. It passes back your screen

: pointer. On the following page (top
© right) is the same program as

. before, but this time using the

ﬁ contents ©

PROGRAM IN PYTHON - PART 14

curses.wrapper function.

That's a whole lot easier, and
we don't have to worry about
calling curses.endwin() if
something bad happens. All the
work is done for us.

Now that we have a bunch of
basics, let's put some of the things

work, and start making a game.
Before we start however, let's lay
out what we are going to do. Our
game will pick a random uppercase
letter, and move it from the right
side of the screen to the left side.
At a random position, it will drop
down to the bottom of the screen.
We'll have a “gun” that can be
moved using the right and left
arrow keys to be positioned below

the falling letter. Then, by pressing
. something that will run. We still

. need to make a few more routines
. before it will do much. Let's work
our gun explodes. If we loose three
. letter from right to left on the
. screen: ;
. http://fullcirclemagazine.pastebin.c :
. om/z5CgMAgm :
Let's get started. We need to do :

the space bar, we will shoot it. If
we shoot the letter before it gets
to our gun, we get a point. If not,

guns, the game is over. While on
the surface this seems like a simple
game, there's a lot of code to it.

our setup, and create a few
routines before we go very far.
Create a new project and call it
game1.py. Start with the code

shown below right:

This code won't do much right

: now, but it's our starting point.

: Notice that we have four init_pair
. statements setting the colors that
. we will use for our random color

. sets, and one for the explosions

. (number 5). Now we need to set up :
. some variables and constants that :
we've learned over the past year to : :
. will put them in the __init__ routine :
. of class Game1. Replace the pass
. statementin __init__ with the code
. on the following page. :

will be used during our game. We

© You should be able to figure out :
. what is happening in these
. definitions. If you are unsure at this :
. precise moment, it should become
. clearer as we fill in the code.

We are getting closer to having

on the routine that will move a

: This is our longest routine in the
. program, and there are some :

fFull circle magazine

@68

import

curses

def main (stdscreen) :
curses.init_pair (1, curses.COLOR_BLACK,

curses.

COLOR_GREEN)

curses.init_pair (2, curses.COLOR_BLUE,

curses.

COLOR_WHITE)

curses.init_pair (3,
curses.COLOR_MAGENTA, curses .COLOR_BLACK)
stdscreen.clear ()

stdscreen.addstr (3,1, "
", curses.color_pair(l))
stdscreen.addstr (4,1, "
", curses.color_pair(2))
stdscreen.addstr (5,1, "
", curses.color_pair(3))
stdscreen.refresh ()
stdscreen.getch ()
curses.wrapper (main)

import
import

curses
random

class Gamel () :
def _ _init__ (self):

pass

def main (self, stdscr) :

curses.

curses

curses

curses

curses

curses.init_pair (1,
COLOR_GREEN)
curses.init_pair (2,

.COLOR_BLACK)

curses.init_pair (3,

.COLOR_BLUE)

curses.init_pair (4,

.COLOR_BLUE)

curses.init_pair (5,

.COLOR_RED)

def StartUp(self):

g:

curses.wrapper (self.
Gamel ()

g.StartUp ()

The Compleat Python

This is a test

This is a test

This is a test

curses
curses
curses
curses

curses

main)

.COLOR_BLACK,
.COLOR_BLUE,
.COLOR_YELLOW,
.COLOR_GREEN,

.COLOR_BLACK,

ﬁ contents ©

http://fullcirclemagazine.pastebin.com/z5CgMAgm

PROGRAM IN PYTHON - PART 14

new functions in this routine.

The scrn.delch function deletes the _

character at the given row |
column. The curses.napms() tells

python to sleep (nap) for X number

of milliseconds (ms).
So the logic in this routine is as
follows (in pseudocode) on the

next page (top right).

You should be able to follow

the code by now. We need two new

routines to keep everything
correct. The first is Explode, which

we will stub with the pass directive.

The second is ResetForNew. This is
where we will reset the current
row for the letter to the default
letterline, reset the current
column, set the DroppinglLetter
flag to 0, pick a random letter, and
pick a random drop point.
Following page, middle right, are
those two routines.

Now we need four more
routines to keep up with things
(next page, bottom right). One
picks a random letter, the other
picks a random drop point.
Remember we quickly discussed
the random module early on in the
series.

In PickALetter, we generate a

ir

. andom integer between 65 and 90
: (“A" to “Z"). Remember when we

: use the random integer function

: we must give a range of minimum-
. number to maximum-number. The
- same thing goes for PickDropPoint. :
. We also make a call to :
* random.seed() in both routines,

Line Specific Stuff
self.Gunline = 22

self.GunPosition =
self.LetterLine = 2
self.Scoreline =1
self.ScorePosition
self.LivesPosition =

39

Letter Specific Stu
self.Currentletter =

self.CurrentlLetterPos
self .DropPosition = 1
self .DroppinglLetter =
self.CurrentletterLin
self.LetterWaitCount

Bullet Specific Stu
self.Shooting = 0

self.BulletRow = self
self .BulletColumn = s

Other Stuff
self.LoopCount =
self.GameScore =
self.Lives = 3
self.CurrentColor = 1
self .DecScoreOnMiss =

11
o o

which sets up the random
fFull circle magazine

generator with a different number

#Row where our gun lives

#Wwhere the gun starts on GunLine
#Where our letter runs right to left
#Wwhere we are going to display the score
50 #Where the score column is
65 #Where the lives column is

ff

"A" #A dummy Holder Variable

ition = 78 #Where the letter will start on the LetterLine
0 #A dummy Holder Variable

0 #Flag — Is the letter dropping?

e =3 #A dummy Holder Variable

= 15 #How many times should we loop before actually

working?
ff

#Flag — Is the gun shooting?
.GunLine - 1
elf.GunPosition

#How many loops have we done in MovelLetter
#Current Game Score
#Default number of lives
#A dummy Holder Variable

0 #Set to 1 if you want to decrement the
fiscore every time the letter hits the
#bottom row

which we will also stub for the time

: every time it's called. The fourth : being.

© routine is called CheckKeys. This

: routine will look at any keystrokes : def _

. entered by the user, and deal with Chec};g‘:}sfs (self, scrn, keyin) :
. them to move our gun. However, def CheckForHit (self, scrn):
: we'll stub it out for the moment pass

: but we will need it later. We'll also
" need a routine called CheckForHit,

@69

We are going to create a small

ﬁ contents ©

The Compleat Python

PROGRAM IN PYTHON - PART 14

routine which will be the

“ . \ . IF we have waited the correct number of loops THEN
brains” of our game. We'll call it

Reset the loop counter

GameLoop (next page, top right). IF we are moving to the left of the screen THEN
Delete the character at the the current row,column.
The logic behind this is to first Sleep for 30 milliseconds

IF the current column is greater than 2 THEN
set our keyboard to nOdelay(1)' Decrement the current column

This means that we won't wait for a : Set the character at the current row,column
keystroke to happen, and when it IF the current column is at the random column to drop to the bottom THEN
does, we just cache it for latter : 02 S0 R EpEORICNR BRE (0 2

. . ELSE
proce55|-ng.Then we enter a while : Delete the character at the current row,column
loop which we force to always be Sleep for 50 milliseconds
true (1) so that the game continues IF the current row is less than the line the gun is on THEN
until we are ready for it to end. We : Increment the current row
. : Set the character at the current row, column

nap for 40 milliseconds, move our ELSE
letter and then check to see if the IF
user has pressed a key. Ifit's a "Q" Explode (which includes decrementing the score if you wish) and check to

TR : if we continue.
notice it's upper case), or the ESC see L. . .
(PP)' : Pick a new letter and position and start everything over again.
key, then we break out of our loop : ELSE
and end the program. Otherwise, : Increment the loopcounter
we check to seeifit's a left or right : Refresh the screen.

arrow key, or the space bar. Later

) We also need the PrintScore
on, you can make the game a bit

SiFFicult by checking th . routine that will show the current def Explode(self,scrn):
more difTicutt by checking the - score and the number of lives that : pass
keystroke against the current : left N bottom right). Glis BRI T ¢
character and onlv fire the qun if are le (nex page, bottomrig) : self.CurrentLetterlLine = self.LetterLine
th h y dth g K : : self.CurrentLetterPosition = 78
€ USEMhas pressed the same key, Now we only need to add some : self.Droppingletter = 0

ala a simple typing tutor. Just
remember to remove the “Q" as a
quit key.

self .PickALetter ()

. code (next page, bottom left) to self.PickDropPoint ()

© our main routine to start our game
. loop. The additional code is below.

. Add it under the last init_pair call. e EHEL G (R
: : random. seed ()

: char = random.randint (65, 90)
Now we should have a program : self.CurrentLetter = chr (char)

We'll also need to create a
routine that sets up for each new

play of our game. Let's cgll it . that does something. Give it a try.
NewGame (next page, middle 'l wait def PickDropPoint (self) :

right). : 5 random. seed ()
self .DropPosition = random.randint (3, 78)

Full circle magazine @ 70 The Compleat Python A contents ~

PROGRAM IN PYTHON - PART 14

Now we have a program that
picks a random uppercase letter,
moves it from the right side of the
screen to the left a random
number of columns, then moves

that letter down to the bottom(ish) :
. whichever direction we want it to
. go. The only thing that is new in

of the screen. However, the first
thing you should notice is that

every time you run the program
the first letter is always “A”, and

the drop point is always column 10.
. at the same time, we are forcing

That's because we set defaults in
the _init__ routine. To fix this,
simply call self.ResetForNew
before you enter the while loop in
the Main routine.

At this point, we need to work

on our “gun” and supporting
routines. Add the code (next page,
top right) to the Game1 class.

Movegun will take the current
gun position and move it in

this routine is at the end of the

- addch routine. We are calling the

colorpair (2) to set the color, and,

scrn.getch (self.Scoreline, self.ScorePosition)

def GameLoop (self, scrn) :
test =1
while test
curses.napms (20)
self .Moveletter (scrn)
keyin =

#Set the loop

if keyin ord('Q') or keyin ==

or <Esc>

the gun to have the bold attribute.

. We are using a bitwise OR (“|") to

force the attribute on. Next we
need to flesh out our CheckKeys
routine. Replace the pass

stdscr.addstr (11, 28, "Welcome to Letter Attack")

stdscr.addstr (13,28, "Press a key to begin...

stdscr.getch ()
stdscr.clear ()
Playloop = 1
while PlayLoop ==

.")

self .NewGame (stdscr)
self.GameLoop (stdscr)

stdscr.
curses.
stdscr.
stdscr.
again? (Y/N)")
keyin =

break
else:

nodelay (0)
flushinp ()
addstr (12, 35, "Game Over")
addstr (14,23, "Do you want

to play

stdscr.getch (14, 56)
if keyin == ord("N") or keyin ==

ord("n"

stdscr.clear ()

fFull circle magazine

break
else:
self.CheckKeys (scrn, keyin)
self .PrintScore (scrn)
if self.lives
break
curses. flushinp ()
scrn.clear ()

def NewGame (self, scrn) :
self.GunChar = curses.ACS_SSBS

27 :

|Q|

scrn.addch (self.GunlLine, self.GunPosition, self.GunChar, cur

ses.color_pair(2) |

curses.A_BOLD)

scrn.nodelay (1) #Don't wait for a

keystroke...just cache it.

self .ResetForNew ()
self.GameScore = 0
self.Lives = 3

self .PrintScore (scrn)

def PrintScore (self, scrn) :

scrn.addstr (self.Scoreline, self.ScorePosition, "SCORE:

%d"

% self.GameScore)

scrn.addstr (self.Scoreline, self.LivesPosition, "LIVES:

@71

The Compleat Python

ﬁ contents ©

PROGRAM IN PYTHON - PART 14

statement with the new code
(next page, bottom right).

Now we need to make a routine :

that will move our bullet “up” the
screen (below left).

We need a few more routines
(next page, top right) before we
are finished. Here's the code to fill
out the CheckForHit routine and
the code to ExplodeBullet.

Finally we need to flesh out our

Explode routine. Replace pass with

the following code (next page,
bottom).

Now we have a working
program. You can tweak the value
in LetterWaitCount to speed up or
slow down the movement of the
letter going across the screen to
make it easier or harder. You can
also use the variable CurrentColor
to create a random color choice
and set the letter color to one of
the 4 color sets we have made and

change the color assignment to the

random color. | wanted to give you
a challenge.

| hope you had Fun this time,
and will add some additional code
to make the game more playable.
As always, the full code is available

at www.thedesignatedgeek.com,
or at:

: http://fullcirclemagazine.pastebin.

com/DeReeh8m.

if keyin == 260:

left arrow -

def MoveGun (self, scrn,direction) :

scrn.addch (self.GunlLine, self.GunPosition," ")

if direction == # left
if self.GunPosition > O:

self.GunPosition —= 1

elif direction == # right

if self.GunPosition < 79:

self.GunPosition += 1

scrn.addch (self.GunlLine, self.GunPosition, self.GunChar, cur

NOT on keypad

self .MoveGun (scrn, 0)

curses. flushinp ()
elif keyin == 261:

#Flush out the input buffer for safety.

right arrow - NOT on keypad

self .MoveGun (scrn, 1)

curses. flushinp ()
elif keyin == 52:

#Flush out the input buffer for safety.

left arrow ON keypad

self .MoveGun (scrn, 0)

curses. flushinp ()
elif keyin == 54:

#Flush out the input buffer for safety.

right arrow ON keypad

self .MoveGun (scrn, 1)

curses. flushinp()
elif keyin == 32:
if self.Shooting

#Flush out the input buffer for safety.

#space

self.Shooting = 1
self.BulletColumn = self.GunPosition
scrn.addch (self.BulletRow, self.BulletColumn, " |")

curses. flushinp ()

|k ="

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with his family.

fFull circle magazine

@72

#Flush out the input buffer for safety.

def MoveBullet (self, scrn) :

scrn.addch (self.BulletRow, self.BulletColumn, " ")

if self.BulletRow > self.LetterLine:
self.CheckForHit (scrn)
self.BulletRow —= 1

scrn.addch (self.BulletRow, self.BulletColumn, " |")
else:
self.CheckForHit (scrn)

scrn.addch (self.BulletRow, self.BulletColumn, " ")

self.BulletRow = self.GunLine - 1
self.Shooting = 0

The Compleat Python

ﬁ contents ©

http://www.thedesignatedgeek.com
http://fullcirclemagazine.pastebin.com/DeReeh8m

HOW-T0O

Written by Greg Walters

Program In Python - Part 15

his month we are going to

explore Pygame, a set of

modules designed for

writing games. The
website is
http://www.pygame.org/. To quote
from the Pygame read-me:
“Pygame is a cross-platform library
designed to make it easy to write
multimedia software, such as
games, in Python. Pygame requires
the Python language and SDL
multimedia library. It can also make
use of several other popular
libraries.”

You can install Pygame through
: gives us. It's a neat utility that you

. should consider installing.

Synaptic as 'python-pygame’'. Do
this now so we can move forward.

First, we import Pygame (see
above right). Next, we set the
os.environ to make our window
centered in our screen. Next, we
initialize Pygame, then set the

Pygame window to 800x600 pixels, :
: Background to a tanish color. Next, :

. after the
. pygame.display.set_caption line,
: add the following lines...

and set the caption. Finally, we
display the screen, and gointo a
loop waiting for a keystroke or
mouse-button-down event. The

screen is an object that will contain

anything we decide to put oniit. It's

g Background = 208,

called a surface. Think of it as a
piece of paper that we will draw
things onto.

Not very exciting, but it's a start.

Let's make it a bit less boring. We
can change the background color
to something less dark. | found a

program called “colorname” that
you can install via the Ubuntu

Software Center. This allows you to

use the “color wheel” to pick a
color you like, and it will give you

the RGB or Red, Green, Blue values

of that color. We must use RGB
colors if we don't want to use the
predefined colors that Pygame

Right after the import

statements, add...

202, 104

This will set the variable

screen. fill (Background)

full circle magazine

@73

#This is the Import

import pygame

from pygame.locals import *
import os

This will make our game window centered in the screen
os.environ|['SDL_VIDEO_CENTERED'] = '1'

Initialize pygame
pygame.init ()
#setup the screen
screen =

pygame.display.set_mode ((800,

600))

Set the caption (title bar of the window)
pygame.display.set_caption ('Pygame Test #1')
display the screen and wait for an event

doloop =1
while doloop:

if pygame.event.wait () .type in (KEYDOWN,

MOUSEBUTTONDOWN) :
break

E pygame.display.update ()

© The screen:fill() method will set :

© the color to whatever we pass it.

: The next line,

. pygame.display.update(), actually :

: updates the changes to our screen. :
. assignment for the foreground

: Save this off as pygame1.py, and :

. we'll move on.

Now we will display some text

in our bland looking window. Again,
© let's start with our import :
. statements and the background

variable assignment from our last

The Compleat Python

program.

import pygame

: from pygame.locals import *
! import os
: Background =

208, 202, 104

Now, add an additional variable

color of our font.

; FontForeground = 255,255,255
i # White

Then, we will add in the majority

of the code from our last

ﬁ contents ©

http://www.pygame.org/

PROGRAM IN PYTHON - PART 15

program (shown right).

If you run this now, nothing has
changed visually since all we did is
add the Foreground definition.

before the loop portion of our
code, enter the following lines:

font =
pygame. font .Font (None, 27)
text = font.render ('Here is
some text', True,
FontForeground, Background)
textrect = text.get_rect()
screen.blit (text, textrect)
pygame.display.update ()

Go ahead, save the program as
pygame2.py, and run the program.
On the top left of our window, you
should see the text “Here is some
text"”.

Let's break down the new
commands. First, we call the Font

wish to use, and the second is the
font size. Right now, we'll just use
'‘None', and let the system pick a
generic font fFor us, and set the
font size to 27 points.

Next we have the font.render()
method. This has four arguments.
In order, they are the text we wish

to display, whether we want to use
anti-aliasing (True in this case), the

. foreground color of the font, and, :
: finally, the background color of the
: font. :
Now, after the screen.fill() line, and :

The next line (text.get_rect())

© assigns a rectangle object that we
. will use to put the text on the

. screen. This is an important thing,
: since almost everything else we

. will deal with is rectangles. (You'll :
. understand more in a bit.) Then we :
© blit the rectangle onto the screen.
: And, finally, we update the screen
. to show our text. What is blit, and
. why the heck should | want to do

. something that sounds so weird?

: Well, the term goes WAY back to

: the 1970s, and came from Xerox

. PARC (which is where we owe so

. much of today's technology). The

. term was originally called BitBLT

. which stands for Bit (or Bitmap)

. Block Transfer. That changed to

method and pass it two arguments. :

The first is the name of the font we ' Blit (possibly because it's shorter).

Basically we are plopping our
image or text on to the screen.

What if we want the text to be

: centered in the screen instead of

. on the top line where it takes a bit
. of time to see? In between the

. text.get_rect() line and the

" screen.blit line, put the following

two lines:
fFull circle magazine

@74

This will make our game window centered in the screen
os.environ|['SDL_VIDEO_CENTERED'] = '1'

Initialize pygame
pPygame.init ()
Setup the screen

screen = pygame.display.set_mode ((800,

600))

Set the caption (title bar of the window)
pygame .display.set_caption('Pygame Test #1')

screen.fill (Background)
pygame.display.update ()

Our Loop
doloop =1
while doloop:

if pygame.event.wait () .type in (KEYDOWN,

MOUSEBUTTONDOWN) :
break

! textRect.centerx =
! screen.get_rect () .centerx
! textRect.centery =
! screen.get_rect () .centery

Here we are getting the center

. of the screen object (remember
. surface) in x and y pixel positions,
. and setting our textRect object x

and y center points to those values. at this point. How do we know

. what the actual path and filename

P e . of the font we want to use is on
. is centered within our surface. You :

can also modify the text by using
- (inour sample code)

. font.set_bold(True) and/or

. fFont.set_italic(True) right after the :
. pygame.font.Font line.

Run the program. Now our text

Remember we discussed very

The Compleat Python

. briefly the 'None' option when we

. set the font to a generic font. Let's
. say you want to use a fancier font.
. As | stated before, the

. pygame.font.Font() method takes

. two arguments. The first is the

. path and file name of the font we

. want to use, and the second is the
. font size. The problem is multi-fold

: any given system? ThankFfully,

. Pygame has a function that takes
. care of that for us. It's called

- match_font. Here's a quick

. program that will print the path

. and filename of (in this case) the
- Courier New font.

ﬁ contents ©

PROGRAM IN PYTHON - PART 15

import pygame

from pygame.locals import *
import os

print

er New')

On my system, the returned
value is

refonts/cour.ttf”. If, however, the
font is not found, the return value
is “None”. Assuming that the font
IS found, then we can assign the
returned value to a variable, and
we can then use the following
assignment.

courier =

pygame. font .match_font ('Couri
er New')

font =

pygame. font .Font (courier, 27)

Change your last version of the

program to include these two lines

and try it again. The bottom line is,
either use a font that you KNOW
will be available on the end user's
machine, or include it when you
distribute your program and hard
code the font path and name.
There are other ways around this,
but I'll leave that to you to figure
out so we can move on.

While text is nice, graphics are

better. | found a really nice tutorial
for Pygame written by Peyton

: McCollugh, and thought I'd take
pygame. font .match_font ('Couri and mOdIFy It. F.or thIS- part, we
- need to start with a picture that

- will move around our surface. This
. picture is known as a sprite. Use

: GIMP or some other tool and :
“/usr/share/fonts/truetype/msttco : Create a stick figure. Nothing fancy, :
- just a generic stick figure. I'll

: assume that you are using GIMP.

: Start a new image, set the size to

: 50 pixels in both height and width,
- and, under advance options, set the :
: 'Fill With' option to Transparency.

: Use the pencil tool with a brush of
: Circle (03). Draw your little figure,
: and save it as stick.png into the

: same folder you have been using

. for the code this time. Here is what : it bt it is a bit harder than it
- mine looks like. I'm sure you can do :

better.

| know...I'm not an

purposes, that will do.
We saved it as a.png
file, and set the

: background to be transparent, so
: that just the little black lines of our
. stick figure show up - and not a

: white or other color background
- will show.

Let's talk about what we want
the program to do. We want to

fFull circle magazine

import pygame
from pygame.locals import *
import os

Background = 0,255,127

os.environ|['SDL_VIDEO_CENTERED'] = '1'

pygame.init ()
screen

= pygame.display.set_mode ((800,

600))

pygame.display.set_caption ('Pygame Example #4 - Sprite')

screen. fill (Background)

. show a Pygame window that has

: our stick figure drawing in it. We

. want the figure to move when we
. press any of the arrow keys up,

- down, right and left, assuming we
: aren't at the edge of the screen

. and cannot move any further. We
. want the game to quit when we

. press the “q” key. Now, moving the :
: sprite around might seem easy, and :

- initially sounds. We start by

. creating two rectangles. One for

: the sprite itself and one that is the
. . same size but is blank. We blit the
artist. However, for our . sprite onto the surface to start,

. then, when the user presses a key,
. we blit the blank rectangle over

. the original sprite, figure out the

. new position, and blit the sprite

- back onto the surface at its new

. position. Pretty much what we did
. with the alphabet game last time.

. That's about it for this program. It
- will give us an idea how to actually
- place a graphic on the screen and

@75

The Compleat Python

: move it around.

So, start a new program, and

. call it pygame4.py. Put in the

: includes we've been using during
: this tutorial. This time we'll use a

© minty green background so those
. values should be 0, 255, 127 (see

above).

Next, we create a class that will

handle our graphic or sprite (next
. page, shown bottom left). Put this
. right after the imports.

What is all this doing? Let's start

: with the __init__routine. We

: initialize the sprite module of

. Pygame with the

: pygame.sprte.Sprite. _init__line.

© We then set the surface, and call it
. screen. This will allow us to check

. to see if the sprite is going off the
. screen. We then create and set the
. position of the blank oldsprite

* variable, which will keep the old

ﬁ contents ©

PROGRAM IN PYTHON - PART 15

position of our sprite. Now we
load our stick figure sprite with the
pygame.image.load routine,

passing it the filename (and path, if :
: was, otherwise its position is
. moved the amount we send into it.

it's not in the program's path).
Then we get a reference (self.rect)
to the sprite which sets up the
width and height of the rectangle
automatically, and set the x,y
position of that rectangle to the
position we pass into the routine.

The update routine basically
makes a copy of the sprite, then

. checks to see if the sprite goes off

the screen. If so, it's left where it

Now, after the screen.fill

statement, put the code shown on
. the following page (right-hand
side).

class Sprite (pygame.sprite.Sprite):
def _ _init__ (self, position):
pPygame.sprite.Sprite.__init__ (self)
Save a copy of the screen's rectangle
self.screen = pygame.display.get_surface () .get_rect ()
Create a variable to store the previous position of the sprite

self.oldsprite = (O,

0, 0, 0)

self.image = pygame.image.load('stick3.png')
self.rect = self.image.get_rect ()

self.rect.x
self.rect.y

def update (self,

amount) :

position[0]
position[1]

Here we create an instance of
our class, calling it character. Then

. we blit the sprite. We create the
. blank sprite rectangle, and fill it
. with the background color. We

. update the surface and start our
. loop.

As long as DoLoop is equal to 1,

. we loop through the code. We use
. pygame.event.get() to get a

. keyboard character. We then test it :
: . up. If the key value is equal to “q",

. we set DoLoop to 0, and so will

. break out of the loop. After all of

. that, we blit the blank character to
. the old position, blit the sprite to

. the new position, and finally

. update - but in this case, we update
. only the two rectangles containing
. the blank sprite and the active

. sprite. This saves a tremendous
amount of time and processing.

Make a copy of the current rectangle for use in erasing
self.oldsprite = self.rect
Move the rectangle by the specified amount

self.rect =

self.rect .move (amount)

Check to see if we are off the screen

if self.rect.x < 0:
self.rect.x = 0

elif self.rect.x > (self.screen.width - self.rect.width):
self.rect.x = self.screen.width - self.rect.width

if self.rect.y < O:
self.rect.y = 0

elif self.rect.y > (self.screen.height - self.rect.height):
self.rect.y = self.screen.height - self.rect.height

fFull circle magazine

@76

The Compleat Python

against the event type. Ifit's QUIT,
we exit. If it's a pygame KEYDOWN

. event, we process it. We look at the
. key value returned, and compare it
. to constants defined by Pygame.

© We then call the update routine in

. our class. Notice here that we

. simply are passing a list containing

. the number of pixels on the X and

. Y axis to move the character. We

. bump it by 10 pixels (positive for

right or down, negative for left or

" n

As always, the full code is

. available at

. www.thedesignatedgeek.com or at
. http://fullcirclemagazine.pastebin.
com/DvSpZbaj.

There's a ton more that Pygame

can do. | suggest that you hop over
. to their website, and look at the
. reference page

ﬁ contents ©

http://www.thedesignatedgeek.com
http://fullcirclemagazine.pastebin.com/DvSpZbaj

PROGRAM IN PYTHON - PART 15

(http://www.pygame.org/docs/r
ef/index.html). In addition, you can
take a look at some of the games
that others have put up.

character = Sprite((screen.get_rect () .x, screen.get_rect() .y))
screen.blit (character.image, character.rect)

Create a Surface the size of our character

Next time, we will be digging
deeperinto Pygame by creating a
game that comes from my

past...my very DISTANT past. DoLoop = 1

while DolLoop:

blank = pygame.Surface ((character.rect.width, character.rect.height))
blank.£fill (Background)

pygame.display.update ()

for event in pygame.event.get () :
if event.type == pygame.QUIT:
sys.exit ()
Check for movement
elif event.type == pygame.KEYDOWN:
if event.key == pygame.K_ LEFT:

character.update([-10, O0])

elif event.key == pygame.K_UP:

character.update ([0, -10])

elif event.key == pygame.K_RIGHT:

character.update ([10, 0])

elif event.key == pygame.K_DOWN:

character.update ([0, 10])

elif event.key == pygame.K_q:

DoLoop = 0

Erase the old position by putting our blank Surface on it
screen.blit (blank, character.oldsprite)

Draw the new position

screen.blit (character.image, character.rect)

Update ONLY the modified areas of the screen
pygame.display.update ([character.oldsprite, character.rect])

|k ="

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with his family.

full circle magazine

The Compleat Python

@77

ﬁ contents ©

http://www.pygame.org/docs/ref/index.html

HOW-T0O

Written by Greg Walters

while ago, | promised
someone that | would
discuss the differences
between Python 2.x and
3.x. Last time, | said that we would
continue our pygame
programming, but | felt that |
should keep my promise, so we'll
delve into pygame more next time.

Many changes have gone into
Python 3.x. There is a large amount
of information about these
changes on the Web, and I'll
include a few links at the end of
the article. There are also many

concerns about making the change.

I'm going to concentrate on
changes that affect the things
you've learned so far.

Let's get started.

PRINT

As I've said before, one of the
most important issues is the way
we deal with the Print command.
Under 2.x we simply can use:

print “This is a test”

and be done with it. However

under 3.x, if we try that we will get : _
© the example shown below left, and,
: under 3.1, you can get the proper
: result. However, that is due to

: change since the '%s' and '%d'

: formatting functions are going

: away. The new way is to use '{x}'

: replacement statements is shown
: below.

the error message shown above
right.

Not happy. In order to use the

print command, we must put what
: we want to print in parentheses
- like this:

; print (“this is a test”)

Not a very big change, but

. something we have to be aware of.
. You can get ready for your own

. migration by using this syntax

. under python 2.x.

Formatting and
. variable substitution

Formatting and variable

substitution have also changed.

Under 2.x, we have used things like

>>> months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul’', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
>>> print "You selected month %s" % months[3]

You selected month Apr
>>>

OLD WAY

>>> months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul’', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
>>> print ("You selected month {0}".format (months[3]))

You selected month Apr
>>>

full circle magazine

@78

NEW WAY

The Compleat Python

Program In Python - Part 16

; >>> print ("Hello {0}.
: glad you are here at
: {1}".format ("Fred", "MySite.co

; Hello Fred.
! here at MySite.com

>>> print "This is a test"
File "<stdin>", line 1
print "This is a test"
A
SyntaxError:
>>>

invalid syntax

It seems to me to be actually

. easier to read. You can also do
: things like this:

I'm

m"))

I'm glad you are

Dos>>

Remember, you can still use '%s'

. and so on, but they will be going
: away.

Numbers

Under Python 2.x, if you did:

i x = 5/2.0

: x would contain 2.5. However if you
© did:

i x = 5/2

: x would contain 2 due to

* truncation. Under 3., if you do:

x = 5/2

h contents ©

PROGRAM IN PYTHON - PART 16

you still get 2.5. To truncate the

division you have to do:
x =5//2

INPUT

A while back, we dealt with a
menu system that used raw_input()
to get a response from the user of
our application. It went something
like this:

selection —> ')

That was fine under 2.x.
However, under 3.x we get:

Traceback (most recent call
last) :

File "<stdin>", line 1, in
<module>

NameError: name 'raw_input'
is not defined

Thisisn't a big issue. The
raw_input() method has been
replaced with input(). Simply
change the line to:

response = input ('Enter a
selection —> ')

and it works just fine.

Not Equal

Converting older
. programs to Python 3.x

. to help convert a 2.x application to
: 3.x compliant code. This doesn't

response = raw_input ('Enter a i 5\ways work, but it will get you _
: close in many cases. The conversion :

tool is named (aptly) “2to3”. Let's

Under 2.x, we could test for ‘not take a really simple

. equal’ with “<>". However, that's . progra[n ashan Jl' Item 1 3.00 JI'
: not allowed in 3.x The test : example. The) | Item 2 15.00 |
: operator is now “!=". . example below is + H
: . from way back in | Total 18.00 |
: Beginning Python + +

s

cript terminated.

Part 3.

When run under 2.x, the output

looks like that shown above right, : SyntaxErzoz:

Python 3.x comes with a utility

: OF course, when we run it under :
¢ 3.x, it doesn't work.

File "pprintl.py", line 18 :
print TopOrBottom('=',40)§

#pprintl.py
#Example of semi-useful functions

def TopOrBottom(character,width) :
width is total width of returned line
return '%s%s%s' % ('+', (character * (width-2)),'+"'")

def Fmt (vall, leftbit,val2, rightbit):
prints two values padded with spaces
vall is thing to print on left, val2 is thing to print on right
leftbit is width of left portion, rightbit is width of right portion
part2 = '$.2f' & val2

return '%s%s%s%s' % ('| ',vall.ljust (leftbit-2,' ') ,part2.rjust (rightbit-2,"'

Define the prices of each item
iteml = 3.00
item2 = 15.00
Now print everything out...
print TopOrBottom('="', 40)
print Fmt ('Item 1',630,iteml, 10)
print Fmt ('Item 2',630,item2,10)
print TopOrBottom('-"', 40)
print Fmt ('Total',6 30,iteml+item2,10)
print TopOrBottom('="', 40)

® ™

full circle magazine The Compleat Python

A

invalid syntax

We'll try to let the conversion

. app Fix it for us. First, we should

© create a backup of our application
© that will be converted. | do it by

1Y)

ﬁ contents ©

PROGRAM IN PYTHON - PART 16

creating a copy of the file, and
append a “v3” to the end of the
filename:

code is not changed. We have to
use the “-w" flag to tell it to write

: the changes to the file. This is

- shown below right.

cp pprintl.py pprintlv3.py

There's multiple ways to run the :
app. The simplest way is just to let
the app check our code and tell us
where the problems are, which is
shown below left.

Notice that the original source

> 2to3 pprintlv3.py

You'll also notice that the

: output is the same. This time,
. however, our source file (shown on :
© the next page) is changed to a
: "version 3.x compatible” file.

Now the program works as it is

RefactoringTool: Skipping implicit fixer: buffer
RefactoringTool: Skipping implicit fixer: idioms
RefactoringTool: Skipping implicit fixer: set_literal
RefactoringTool: Skipping implicit fixer: ws_comma
RefactoringTool: Refactored pprintlv3.py

——— pprintlv3.py (original)
+++ pprintlv3.py (refactored)
@@ -15,9 +15,9 @@

iteml = 3.00

item2 = 15.00

Now print everything out...
—-print TopOrBottom('=',40)
-print Fmt ('Item 1',630,iteml, 10)
-print Fmt ('Item 2',630,item2,10)
—-print TopOrBottom('-',40)
-print Fmt ('Total',6 30, iteml+item2, 10)
—-print TopOrBottom('=',40)
+print (TopOrBottom('=",40))

+print (Fmt ('Item 1',630,iteml, 10))
+print (Fmt ('Item 2',30,item2,10))

+print (TopOrBottom('—"',40))

+print (Fmt ('Total', 30, iteml+item2,10))

+print (TopOrBottom('=",40))

RefactoringTool: Files that need to be modified:

RefactoringTool: pprintlv3.py

full circle magazine

was simple, it still runs under

version 2.x as well.

Do | switch to 3.x now?

Most of the issues are common

: to any change in a programming

. language. Syntax changes abound
: with every new version. Short cuts
: like += or -= sometimes come out

: of the blue and actually make our

: > 1215 lives easier.
. supposed to under 3.x. And, since it :

> 2to3 -w pprintlv3.py

What's the downside to simply
migrating to 3.x right now? Well,

there's a little bit. Many of the

. library modules that we've used

© are not available for version 3.x

* right now. Things like Mutegen
that we've used a few articles back
: just aren't available yet. While this
is a stumbling block, it doesn't

: require you to completely give up
on Python v3.x.

My suggestion is to start coding

RefactoringTool: Skipping implicit fixer: buffer
RefactoringTool: Skipping implicit fixer: idioms
RefactoringTool: Skipping implicit fixer: set_literal
RefactoringTool: Skipping implicit fixer: ws_comma
RefactoringTool: Refactored pprintlv3.py

——— pprintlv3.py (original)
+++ pprintlv3.py (refactored)
@@ -15,9 +15,9 @@

iteml = 3.00

item2 = 15.00

Now print everything out..
—print TopOrBottom('="',40)
-print Fmt('Item 1',630,iteml, 10)
—-print Fmt ('Item 2',630,item2,10)
—print TopOrBottom('-"',40)
—print Fmt ('Total',6 30, iteml+item2,10)
—print TopOrBottom('="', 40)

+print (TopOrBottom('="',40))

+print (Fmt ('Item 1',630,iteml, 10))
+print (Fmt ('Item 2',630,item2,10))

+print (TopOrBottom('—"',40))

+print (Fmt ('Total', 30, iteml+item2,10))

+print (TopOrBottom('="',40))

RefactoringTool: Files that were modified:

RefactoringTool: pprintlv3.py

@80

The Compleat Python

ﬁ contents ©

PROGRAM IN PYTHON - PART 16

using proper 3.x syntax now.
Python version 2.6 supports almost
everything you would need to
write in the 3.x way. This way, you
will be good to go once you have to
change to 3.x. If you can live with
the standard module library, go
ahead and make the plunge. If, on
the other hand, you push the
envelope, you might just want to
wait until the module library
catches up. It will.

Below are some links that |
thought might be helpful. The first
is to the usage page of 2to3. The
second is a 4-page cheat sheet that
| have found to be a very good
reference. The third is to what |
consider to be just about the best

| get around to writing mine.)
We'll see you next time.

Links

2to3 usage

http://docs.python.org/library/2to
3.html

Moving from Python 2 to Python 3
(A 4 page cheat sheet)

http://ptgmedia.pearsoncmg.com/i
mprint_downloads/informit/promo °

tions/python/python2python3.pdf

#pprintl.py
#Example of semi-useful functions

def TopOrBottom(character,width):
width is total width of returned line
return '%$s%s%s' % ('+', (character * (width-2)),'+'")
def Fmt (vall, leftbit,val2, rightbit):
prints two values padded with spaces
vall is thing to print on left, val2 is thing to print on right
leftbit is width of left portion, rightbit is width of right portion
part2 = '%$.2f' % val2
return '%s%s%s%s' % ('| ',vall.ljust (leftbit-2,' ') ,part2.rjust (rightbit-2,"'
Define the prices of each item
iteml = 3.00
item2 = 15.00
Now print everything out...
print (TopOrBottom('="',40))
print (Fmt ('Item 1',630,iteml, 10))
print (Fmt ('Item 2',630,item2,10))
print (TopOrBottom('—"',40))
print (Fmt ('Total',6 30,iteml+item2,10))
print (TopOrBottom('="',40))

book on using Python. (That is until | Dive into Python 3

: http://diveintopython3.org/

in Aurora, Colorado, and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with his family.

Full circle magazine @ 81 The Compleat Python

)

B2
Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company

ﬁ contents ©

http://docs.python.org/library/2to3.html
http://ptgmedia.pearsoncmg.com/imprint_downloads/informit/promotions/python/python2python3.pdf
http://diveintopython3.org/

HOW-T0O

Written by Greg Walters

s | was finishing up the

last installment of our

series, | got an email

about a programming
competition. While we don't have
time to deal with this one, various
sites have programming
competitions throughout the year.
The competition information can
be found at
http://www.freiesmagazin.de/third

programming_contest - if you are

interested. That made me realize
that we haven't talked about true
Client/Server programming. So
with that in mind, we'll dig into this
topic, and see where we can go
with it.

So, what is a Client/Server
Application? In very simple terms,
anytime you use a program (or

data from another application or
computer, you are using a
client/server system. Let's look at
an example that we actually used
before. Remember when we made

our cookbook program? That was a :
- you have an idea of what I'm going :
: to be talking about. If not, let me

VERY simple example (and not a
very good one) of a client/server
application. The SQLite database is

the server, the application we
wrote is the client. A better
example would be the following.
There is a database on a computer
in another part of your office,

floors away. It holds information on :
the inventory of the store you work :
. Then you got about 15 feet of

: string (again from your loving

. mother), ran the end of the string
the database located somewhere is :
. knot in each end of the string to
- hold it inside the can. You then got :
: your best buddy, and stretched the :
© string tightly and yelled into the
. can while your friend held his can
: up to his ear. The vibrations from
: The first thing we need to think :
. about is the location of our server.
: Many people have only one

. computer in their house. Some

. people might have 7 or 8.

even a web interface) that accesses :

at. You use a point of sale register
(one of 10) within the store. Each
of those registers are a client and

the server.
While we won't try to create

that kind of system here, we can
learn some of the basics.

To use a client/server system,

. we have to connect from the client
- machine to the server machine. We :
. do this with what is called a pipe or :
- socket. If you ever made a “tin can” :
: own, and the poor server has to

telephone when you were a kid,

paint you a picture of times gone

fFull circle magazine

: by. First, you had to get your

. mother to save you two tin cans
: from beans or something. Then you :
. cleaned them carefully, and took
: them out to the garage. You used a :
© first. In pseudo code, here's what
. happens.

small nail and a hammer to poke a
small hole in the bottom of each.

through each can, and tied a large

the bottom of the can went

: through the taut string, and caused :
: the other can bottom to vibrate. Of :
: course, you could hear without the
: can, but that was beside the point. :
: It was cool. The socket is about the :
. same thing. The client has a direct
. connection (think of the string) to

the server. If many clients are
connecting to the server, each
client would have a tin can of their

have the same number of tin cans

. all held tightly to each client's
" string phone. The bottom line here *

@82

The Compleat Python

Program In Python - Part 17

is each client has its own direct line
© to the server.

Let's make a simple server and
client. We'll start with the server

. Create a socket

. Get name of server machine

. Select a port

: Bind socket to address and port

Listen for a connection

If connected...
Accept the connection
Print we got a connection
Close the connection

The actual code to our server is
shown on the next page, bottom

- left.

So, we create the socket, get

: the hostname of the machine we

: are running the server on, bind the
© socket to the port, and start to

. listen. When we get a connection

© request, we accept it, we print the
: fact we are connected, send “Hello
: and Goodbye”, and close the

: socket.

ﬁ contents ©

http://www.freiesmagazin.de/third_programming_contest

PROGRAM IN PYTHON - PART 17

Now we need to have a client to
make the whole thing work (shown
bottom right).

The code is almost like the
server, but, in this case, we

connect, print what we receive, and :
© imports, we set up some variables. :
© BUFSIZ holds the size of the buffer :
: that we will use to hold the :
© information that we receive from

© the client. We also set up the port
. we will listen on, and a list holding
: the host and port number.

close the socket.

The output from the programs
are very predictable. On the server
side of things we get...

My hostname is earth

I'm now connected to
('127.0.1.1', 45879)

and on the client side we get...

Hello and Goodbye

So, it's pretty simple. Now let's
do something a bit more realistic.

#!/usr/bin/env python
#serverl.py

import socket

soc = socket.socket ()

hostname = socket.gethostname ()
print "My hostname is ", hostname

port = 21000
soc.bind ((hostname, port))
soc.listen (5)

while True:

con, address = soc.accept ()

We'll create a server that actually
will do something. The code for

server version 2 can be found at: :
http://Fullcirclemaqazine.pastebin.cg
om/Az8vNUvV7 :

Let's break it down. After our

We next create a class called

: ServCmd. In the __init__routine,
© we create a socket, and bind the
© interface to that socket. In the run
© routine, we start listening, and wait :
: for a command from the client. :

When we do get a command

from the client, we use the

os.popen()
routine. This

basically creates a

command shell
and runs the
command.

Next the client

(above right),
which is a good

print "I'm now connected to ",address deal easier.
con.send("Hello and Goodbye")

con.close ()

Full circle magazine @ 83

#!/usr/bin/env python
client2.py

from socket import *
from time import time
from time import sleep
import sys

BUFSIZE = 4096

class CmdLine:
def _ _init__ (self,host):

self .HOST = host
self .PORT = 29876
self .ADDR =

self.sock None

def makeConnection (self) :

(self .HOST, self.PORT)

self.sock = socket (AF_INET, SOCK_STREAM)

self.sock.connect (self.ADDR)

def sendCmd(self, cmd):
self.sock.send (cmd)

def getResults (self):

data = self.sock.recv (BUFSIZE)

print data

if _ name__ == '_ _main__':
conn = CmdLine ('localhost')
conn.makeConnection ()
conn.sendCmd('ls —-al')
conn.getResults ()
conn.sendCmd ('BYE')

#!/usr/bin/python
clientl.py
#

import socket

soc = socket.socket ()

hostname = socket.gethostname ()

port = 21000

soc.connect ((hostname,
print soc.recv(1024)
The (soc.close

ﬁ contents ©

http://fullcirclemagazine.pastebin.com/Az8vNUv7

PROGRAM IN PYTHON - PART 17

We'll skip everything here
except the send command, since

you now have enough information

to figure it out on your own. The
conn.sendCmd() line (line 31)
sends a simple ls -al request.
Here's what my responses look
like. Yours will be somewhat
different.

Server:

python server2.py
.listening
.connected:

42198)

Command received - 1ls -al

Command received - BYE
.listening

Client:

python client2a.py

total 72

drwxr-xr—-x 2 greg greg 4096
2010-11-08 05:49

drwxr-xr-x 5 greg greg 4096
2010-11-04 06:29

-rw—-r——r—— 1 greg greg 751

2010-11-08 05:31 client2a.py

-rw—-r——r—— 1 greg greg 760

-rw—-r——r—— 1 greg greg 737
2010-11-08 05:25 client2.py
-rw-r—--r—— 1 greg greg 733

2010-11-08 04:37 client2.py~

-rw-r—--r—— 1 greg greg 1595

2010-11-08 05:30 client2.pyc

-rw—-r——-r—— 1 greg greg 449

. 2010-11-07 10:01

: python_clientl.py

: -rw-r——-r—— 1 greg greg 466
: 2010-11-07 10:01

: python_clientl.py~

! -rw-r—-r—-— 1 greg greg 691
: 2010-11-07 09:51

: python_serverl.py

! —-rw-r—-r—-— 1 greg greg 666
: 2010-11-06 06:57

: python_serverl.py~

: -rw-r——-r—— 1 greg greg 445
: 2010-11-04 06:29 re-testl.py
: -rw-r——-r—— 1 greg greg 1318
: 2010-11-08 05:49 server2a.py
: -rw-r——-r—— 1 greg greg 1302
: 2010-11-08 05:30 server2a.py~ :
! -rw-r—--r-- 1 greg greg 1268
: 2010-11-06 08:02 server2.py

: -rw-r——-r—— 1 greg greg 1445

: 2010-11-06 07:50 server2.py~

: -rw-r——r—— 1 greg greg 2279

: 2010-11-08 05:30 server2.pyc

('127.0.0.1"',

. setup, | use the following line:

; conn =
! CmdLine('192.168.2.12")

2010-11-07 07:38 ping2.py
-rw—-r—-—-r—— 1 greg greg 466

information back and forth from
~ one machine (or terminal) to
another.

Next time, we'll make our

client/server applications much
. more robust.

We can also connect from

: another machine without changes

: anywhere - with the single

: exception of the conn = :
: CmdLine('localhost') (line 29) in the

: client program. In this case, change :
: the 'localhost' portion to the IP

: address of the machine that the
2010-11-08 05:28 client2a.py~ :

server is running on. For my home (R

: Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with his family.

@84

So, now we are able to send

fFull circle magazine The Compleat Python

Ideas & Writers
Wanted

Code Bugs Blueprints Translations Answ[&s

[Full Circle magazine #

We've created Full Circle project
and team pages on LaunchPad.
The idea being that non-writers
can go to the project page, click
‘Answers’ at the top of the page,
and leave your article ideas, but
please be specific with your
idea! Don't just put ‘server
article’, please specify what the
server should do!

Readers who fancy writing an
article, but aren’t sure what to
write about, can register on the
Full Circle team page, then
assign article ideas to
themselves, and get writing! We
do ask that if you can’t get the
article written within several
weeks (a month at most) that
you reopen the question to let
someone else grab the idea.

Project page, for ideas:
https://launchpad.net/fullcircle
Team page for writers:
https://launchpad.net/~fullcircle

ﬁ contents ©

https://launchpad.net/fullcircle
https://launchpad.net/~fullcircle

HOW-T0

Written by Greg Walters

ast time, we created a very

simple client/server

system. This time, we are

going to extend it a bit.
The server is a tic-tac-toe (or
naughts and crosses) board and
checker. The client portion acts as
the input/output.

We'll start by using the same
server code as last time, and
modifying it as we go. If you didn't
save the code from then, go to
http://Fullcirclemagazine.pastebin.
com/UhquVK4N, get the source
code for this time, and follow
along. The Ffirst change comes in
the __init__ routine where we
initialize two new variables,
self.player and self.gameboard.
The gameboard is a simple list of

it as follows (more visual than just
the Flat list). This list will hold our
data. There are three possible
entries per cell. “-" means the cell is
empty. “X" means the cell is
occupied by player 1 and “O”
means the cell is occupied by
player 2. The grid looks like this
when put in two dimensions:

routines have no changes, so we'll
: concentrate on the changes to the

: procCmd routine next.
lists or a basic array. We can access :

. waited for a command from the

: client, then sent it to the os.popen :
: routine. This time, we will parse the :
. command sent in. In this case, we
- have three separate commands we :
- will listen for. They are 'Start’, :
: 'Move', and 'GOODBYE'. When we
. receive the 'Start' command, the

[01([01 |
[11[01 |
[2]1[0] |

(01111 |
(111011 |
[21[11 |

[0]1[2]
[11[2]
[2][2]

So starting with the server code :
from last month, in the routine :
__init__ routine, add the following
lines:

The 'Move' command is a

compound command, in that it
: contains the command, and the

. position that the player wants to

The next three lines are
new. ..

move to. For example, 'Move A3'.
. We parse the command to get

. three parts, the 'move' command

self.player =1
self.gameboard =
v,v_v],[v_v’v_v’v_v],[v_v’v_

=

self.run()

The run, listen, and servCmd

© itself, and the the row and column. :
: Finally the 'GOODBYE' command
. simply resets the game board for
: another game.

So, we receive the command

. from the client in the procCmd
: routine. We then check the

: command to see what we are

: supposed to do. Within the

: procCmd routine, find the 5th line

In last time's article, the server

server should initialize the game

full circle magazine

@85

. down, and, after the line that says
. "if self.processingloop:”, remove
. the rest of that set of code. Now

we'll set up the commands as we

. laid the out. Here's the code for the

Start command:

: if self.processingloop:

if ecmd == 'Start':
self.InitGameBoard()
self .PrintGameBoard (1)

The Compleat Python

Program In Python - Part 18

board to all “-” and then send a
. “print out” of the board to the
: client.

Next, let's look at the Move

: portion of the routine (shown

: below). We first check the First four
: characters of the passed-in

: command to see if they match

: 'Move'. If they match, we then pull

: the rest of the string starting at

© position 5 (since things are 0

: based), and assign that to a

© variable named position. We then

: check to see if the first character is

eitheran'A’",'B', or 'C'. These

: represent the row that the client

: has sent. We then take the integer
: value of the next character and

: that's our column:

if cmd[:4] == 'Move':

print "MOVE COMMAND"

position = cmd[5:]

if position[0] == 'A':
row = 0

elif position[O0]
row = 1

IBI:

elif position[O0]
row = 2
else:
self.cli.send('Invalid
position')
return
col = int (position[1])-1

ﬁ contents ©

PROGRAM IN PYTHON - PART 18

Next, we make a quick check to
verify that the row position is
within the allowable positions:

if row < 0 or row > 2:

self.cli.send('Invalid
position')

return

Finally, we verify that the
position is empty ('-'), and, if the
current player is number 1, we put
an “X" otherwise we put a "O". We
then call the PrintGameBoard
routine with a “0” parameter:

if self.gameboard[row] [col]

if self.player ==

self.gameboard[row] [col]
HXH

else:

self.gameboard[row] [col]

lloll

. self.PrintGameBoard (0)

" n

, Which the move logic uses to

; def InitGameBoard(self):

self.gameboard =

(=", '-

v,v_v],[v_v,v_v,v_v],[v_v,v_

AN

The PrintGameBoard routine

. (below) prints the game board, :
: calls the checkwin routine, and sets
: the player number. We build a large :
© string to send to the client so it
: only has to enter the listen routine :
: once per move. The firsttime '
: parameter is included to send the
: pretty print of the gameboard

: when the client first connects or

: resets the game:

def PrintGameBoard (self, firsttime) :

#Print the header row
outp = (' 1 2

3') + chr(13) + chr(10)

Next, we check to see if the

. Firsttime parameterissetto 0 or 1
. (below). Only if firsttime is set to 0, :
: That finishes the changes to the :
: procCmd routine. Next we have the :
© “initialize the game board” routine. :
All it does is to set each position to :
‘a
 verify that a space is empty:

we check to see if the current
player has won, and, if so, add the

. win, we then add the “Enter
move..." text to the output string.
- Finally we send the string out to

if firsttime ==

if self.player ==

the client with the cli.send routine:
Finally, on the next page, we

- have the server check for a win

. routine. We have already set the

. player to either an “X" or “0”, so

: we start by using a simple for loop.

'Player X WINS!' text to the output :) >
¢ If we find a win, we return True

string. If the current player did not :
J prind . from the routine. Our for variable
. 'C' represents each row in our list
. of lists. First, we will check each

Row for a horizontal win:

ret = self.checkwin ("X")

else:

ret = self.checkwin ("O")

if ret == True:

if self.player ==
outp += "Player 1 WINS!"

else:

outp += "Player 2 WINS!"

else:

if self.player
self.player

else:

1:
2

self . player = 1
outp += ('Enter move for player %s' %

self .player)
self.cli.send (outp)

outp += (" A {0} | {1} | {2}".format (self.gameboard[0] [0],6 self.gameboard[0] [1], self.gameboard[0] [2])) + chr (13)+chr(10)

outp += (' --—1——————— ')+ chr(13)+chr(10)
outp += (" B {0} | {1} | {2}".format (self.gameboard[1l] [0],6 self.gameboard[1][1l], self.gameboard[1l][2]))+ chr(13)+chr(10)
outp += (' --—1——————— ')+ chr(13)+chr(10)
outp += (" C {0} | {1} | {2}".format (self.gameboard[2] [0],6 self.gameboard[2] [1], self.gameboard[2] [2]))+ chr(13)+chr(10)
outp += (' --—1——————— ')+ chr(13)+chr(10)

fFull circle magazine The Compleat Python

@ 86 ﬁ contents ©

PROGRAM IN PYTHON - PART 18

First, we will check each Row for a horizontal win:
def checkwin (self,player):
#loop through rows and columns
for c in range(0,3):
#icheck for horizontal line
if self.gameboard[c] [0]
self.gameboard[c] [1]

== player and
== player and self.gameboard[c] [2]

player:
prlnt "*********\n\n%s wins\n\n*********"
player
playerwin = True
return playerwin
Next, we check each Column for a win:
#icheck for vertical line
elif self.gameboard[0] [c] == player and
self.gameboard[1l] [c] == player and self.gameboard[2] [c]

player:
print "** $s wins **" % player
playerwin = True
return playerwin

Now we check for the diagonal win from left to right...
#icheck for diagonal win (left to right)
elif self.gameboard[0] [0] == player and

self.gameboard[1l] [1] == player and self.gameboard[2] [2]

player:

print "** $s wins **" $ player
playerwin = True
return playerwin

Then from right to left...
#icheck for diagonal win (right to left)

elif self.gameboard[0] [2] == player and
self.gameboard[1l] [1] == player and self.gameboard[2] [0]
player:
print "** $s wins **" $ player
playerwin = True
return playerwin
Finally, if there is no win, we return false:

else:
playerwin = False
return playerwin

full circle magazine

The Client

Once again, we start with the
simple routine that we had last
time. The changes start right
after the call to
conn.makeConnection. We send a

Goodbye command. The biggest
thing to remember here is that
you must send a command, then
get a response before sending
another command. Think of it as
a polite conversation. Make your
statement, listen for a response,
then make another statement,
listen for a response, and so on.
In this sample we use raw_input
simply so you can see what is

going on:
if _ name__ == '_ _main__':
conn =

CmdLine ('localhost')
conn.makeConnection ()
conn.sendCmd ('Start')
conn.getResults ()
conn.sendCmd ('Move A3')
conn.getResults ()

r = raw_input ("Press

Enter")
conn.sendCmd ('Move B2')
conn.getResults ()

r = raw_input ("Press

Enter")

Continue the sendCmd,

getResults, raw_input routine set

with the following commands

@87

The Compleat Python

(you already have the code for the
A3 and B2 moves), C1, A1, C3, B3,

. €2, then end with a GOODBYE
: command.

. Moving Forward
Start, various Moves, and finally a :

So, here is your "homework”

© assignment. In the client app,

: remove the hard coded move

: commands, and use raw_input() to
: prompt for and get moves from

: the player(s) in the form of “A3" or
: “B2", then prepend the command

: “Move" before sending it to the

. server.

Next time, we'll modify our

server to actually play the other
. player.

Server and Client Full Source

: Code can be found at

. http://fullcirclemagazine.pastebin.
: com/UhquVK4N or at
http://thedesignatedgeek.com

|k ="

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with his family.

ﬁ contents ©

http://fullcirclemagazine.pastebin.com/UhquVK4N
http://thedesignatedgeek.com

HOW-T0O

Written by Greg Walters

his time, we are going to

work on finishing our Tic-

Tac-Toe program.

However, unlike most of
my other articles, | won't be
providing the code. You will! I will
however, be giving you the rules.
After 18 months, you have the
tools and knowledge to finish this
project. I'm sure of it.

First, let's look at the logic of
playing Tic-Tac-Toe. We'll look at it
in pseudo-code. Let's look First at
the game board. It's laid out like
this...

Corner | Side | Corner
_______ +________+_______
Side | Center | Side
_______ +________+_______
Corner | Side | Corner

Now, whoever is “X", goes first.
Their first best move is to take a
corner square. Any corner square,
it doesn't matter. We'll deal with
the permutations of playing “X"
first, these are shown right.

Program In Python - Part 19

IF “O” takes a CORNER square THEN

ELIF

ELSE

Scenario 1
“X" should take one of the remaining corner squares. Doesn't matter which.
IF “0O” blocks the win THEN
“X"” takes remaining corner square.
Finish for win.
ELSE
Finish for win.
“O"” takes a SIDE square THEN
Scenario 2
“X" takes CENTER square
IF “O” blocks win THEN
“X" takes corner square that is not bordered by any “0O”
Finish for win.
ELSE
Finish for win.

“O” has played in the CENTER square - Scenario 3
“X" takes corner square diagonally to

original move

: Some possible play outs are
. shown on the next page.

As you can see, the logicis

IF “X"” plays to non-center square

IF “0” plays on corner square
play q THEN

“X"” plays remaining open corner square

au n
Finish for win. O” takes Center Square

IF “X"” has corner square AND
side square THEN
#Scenario 5
“0” takes corner diagonally
from corner “X”
Block possible wins to a

ELSE
Game will be a draw - Scenario 4
Block “O” win.
Block any other possible wins

draw.

u,n ELSE
: “"). You should be able # “X” has two Edge squares

: to modify the code — Scenario 6
: from last month to “0” moves to corner

© deal with this, or at bordered by both “X"s
: IF “X” blocks win THEN

- somewhat complex, but can easily

. least write one from

“0” takes any square.

The standpoint of the “O”

player is shown below right. ; scratch to simply be a

5 desktop tic-tac-toe
program.

@88

. be broken down in a series of IF Block and force draw

" statements (notice | used “Then”,
but in Python, we don't, we use the

ELSE
Finish for win.

h contents ©

full circle magazine The Compleat Python

PROGRAM IN PYTHON - PART 19

Scenario °
X | - | . % % % < % « Ideas & Writers
— - - o o 0 - o - Wanted
-1 - | X X X X o X o
] Full Circle magazine #
Scenario Code Bugs Blueprints Translations Answers
X | - | X X X X X X X = &
-1 - | 0 0 0 0 - 0 -
L B - - © ° X © We've created Full Circle project
Scenario and team pages on LaunchPad.
X | - | X X X X X X X The idea being that non-writers
- = - ; ; ; ;{ ; § can go to the project page, click
' ' ‘Answers’ at the top of the page,
Scenario and leave your article ideas, but
X | - | X X X X X X X please be specific with your
-1 = - X ’é ’é g ’é g idea! Don't just put ‘server
' ' article’, please specify what the
Scenario server should do!
X | - | X X X X - X X
- = - - X ’é ’é ’é ’é Readers who fancy writing an
| | article, but aren’t sure what to
Scenario write about, can register on the
-1 - - - - o) X O X Full Circle team page, then
X1 - X X X X = X - assign article ideas to
— | = - 0 o) 0 - (o] 0

themselves, and get writing! We
do ask that if you can’t get the
article written within several
weeks (a month at most) that
you reopen the question to let
someone else grab the idea.

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with his family.

thon

Full circle magazine @ 89 The Compleat Python 4\ contents ~

Project page, for ideas:
https://launchpad.net/fullcircle
Team page for writers:
https://launchpad.net/~fullcircle

https://launchpad.net/fullcircle
https://launchpad.net/~fullcircle

elcome back. This
time we will re-
address GUI

this time we will be using the
pyGTK library. We won't be
working with a GUI designer
right now, we'll just be working
with the library.

Use Synaptic to install
python-gtk2, python-gtk2-
tutorial, and python-gtk2-doc.

Let's jump right in and make :
: vent", self.delete event)

our first program using pyGTK,
it's shown above right.

For awhile, we will be
building on this simple code
set. On line #3 is a new
command. The line
“pygtk.require('2.0')” means

that the application will not run
- “simple2.py”, and, once again,

unless the pygtk module is at

least version 2.0. In the __init__
: when you click the “X” on the

: title bar, the application will
: exit. What is actually happening :
. here? The first line we added
: (self.window.connect...)

* connects the delete event to a

routine, we assign a window to
the self.window variable (line
8), and then show it (line 9).
Remember that the __init__
routine is run as soon as we
instantiate the class (line 13).

Save this code as “simplel.py”.

programming, but :
. upper left corner of my

. desktop. In order to end the :
. program, you have to hit Ctrl-C :
. in the terminal. Why? We :
. haven't added any code to

: destroy and actually end the

. app. That's what we'll do next.
: Add the following line before

. the self.window.show() line...

Run it in a terminal. You'll

. see a simple window show up
: somewhere on your desktop.

On mine, it shows up in the

Then after the gtk.main()

; def delete_event(self,
! widget, event, data=None):

gtk.main_quit()
return False

Now save your app as

run it from a terminal. Now,

callback routine, in this case

full circle magazine

@90

simple.py

import pygtk
pygtk.require('2.0')
import gtk

class Simple:
def init_ (self):
self.window =
self.window.show()
def main(self):
gtk.main()
if name_ == "_ main_":
simple = Simple()
simple.main()

_ . self.delete_event. By returning
self.window.connect ("delete_e “False” to the system, it also
. destroys the actual window

. from system memory.

: call, add the following routine... : :
: : Now, | don't know about you, :

: but | prefer my applications to
. open in the center of the

: screen, not someplace random, :
: orin a corner - where it might
: be obscured by something else. :
. Let's modify the code to do this. :
. All we need to do is add the

. following line before the

: self.window.connect line in the

__init__ function:

As you might guess, this sets
The Compleat Python

Program In Python - Part 20

gtk.Window(gtk .WINDOW TOPLEVEL)

: the position of the window in

. the center of the screen. Save
. the app as “simple3.py” and
©run it

That's much nicer, but

there's not much there. So, let's
: try to add a widget. If you

remember WAY back when we

: worked with Boa Constructor,

widgets are simply predefined
controls that we can add to our

: window to do things. One of the
: simplest controls to add is a

: button. We will add the

: following code right after the

§ self.window.set position(gtk.g seﬁAyn1domLcopnectln1g!n our
: WIN POS CENTER) : previous code in the __init__

© routine:

ﬁ contents ©

PROGRAM IN PYTHON - PART 20

self.button =
gtk.Button("Close Me")

self.button.connect("clicked" .
. terminal “Button 1 clicked”,
. then calls the gtk.main_quit()

: routine. This will close the

: window and terminate the

. application - just as if you had
. clicked the “X” on the title bar.
. Again, save this as

,self.btnlClicked, None)
self.window.add(self.button)
self.button.show()

The first line defines the
button, and the text on the
button surface. The next line is
the connector to the click
event. The third line adds the
button to the window, and the

the window surface. Looking at
the self.button.connect line,
you'll see that there are three
arguments. The first is the
event we want to connect to,
the second is the routine that

triggered, in this case

self.btn1Clicked”, and the third button into the window and the

will be passed to the routine we window resized to fit the
. control.

is the argument (|f any) that
just defined.

Next, we need to create the
self.btn1Clicked routine. Put
this after the self.delete_event
routine:

def

btnlclicked(self,widget,data=;
. Constructor - we used sizer

. box ntainers) to hol r
"Button 1 clicked" ° boxes (containers) to hold ou

None) :

print
gtk.main quit()

As you can see, the routine

doesn't do much. It prints in the . ;
- we'll add a HBox (Horizontal

and :
box) to hold our button, and

. add another button. If we

: wanted a vertical container, we

. would use a VBox.

“simpled4.py”, and runitin a

. terminal. You'll see our

fourth line shows the button on centered ‘f}“”do"" WIF,h a .button
. that says “Close me”. Click on

: it, and the application closes,

. as designed. Notice, however,

. that the window is much

. smaller than it was in the

. simple3.py application. You can
. resize the application, but the

will be called when the event is button resizes with it. Why is

: this? Well, we simply shoved a

: We sort of broke the rules of :
: GUI programming by putting

. the button directly on the form,
. without using a container.

: Remember back when we did

: our first series on GUI

programming using Boa

controls. We should do this,

fFull circle magazine

even if we only have just one
control. For our next example,

To start, use “simple4.py” as

. our base code. Delete

. everything between the lines
. self.window.connect(..
. self.window.show(). This is

. where we will add our new

. lines. The code for the HBox
: and our first button are...

.) and

: self.boxl = gtk.HBox(False,0)
: self.window.add(self.boxl)

: self.button =

: gtk.Button("Button 1")

: self.button.connect("clicked"
: ,self.btnlClicked,None)

: self.boxl.pack start(self.but
: ton,True,True,0)

: self.button.show()

Breaking down this code, we

: add a HBox, naming it

. self.box1. The parameters we
. pass to the HBox are

. homogeneous (True or False),
. and a spacing value:

. HBox =

: gtk.HBox (homogeneous=False,
: spacing=0)

@91

The Compleat Python

Ideas & Writers
Wanted

[Full Circle magazine “ J

Code Bugs Blueprints Translations Answgs

We’ve created Full Circle
project and team pages on
LaunchPad. The idea being
that non-writers can go to
the project page, click
‘Answers’ at the top of the
page, and leave your article
ideas, but please be specific
with your idea! Don’t just put
‘server article’, please
specify what the server
should do!

Readers who fancy writing an
article, but aren’t sure what
to write about, can register
on the Full Circle team page,
then assign article ideas to
themselves, and get writing!
We do ask that if you can’t
get the article written within
several weeks (a month at
most) that you reopen the
question to let someone else
grab the idea.

Project page, For ideas:
https://launchpad.net/fullcircl

ﬁ contents ©

https://launchpad.net/fullcircle
https://launchpad.net/~fullcircle

PROGRAM IN PYTHON - PART 20

The homogeneous
parameter controls whether
each widget in the box has the
same size (width in the case of
an HBox and height in the case
of a VBox.) In this case, we
pass it false, and a spacing
value of 0. Next, we add the
box to the window. Now, we
create the button as before,
and connect the clicked event
to our routine.

Now, we come to a new
command. The
self.box1l.pack start command

is used to add the button to the :
: self.button2.show()

; self.boxl.show()

container (HBox). We use this
command instead of the
self.window.add command for
the widgets we want to be in
the container. The command
(as above) is...

True, fill=True, padding=0)
The pack_start command
has the following parameters.
First is the widget, next is
expand (True or False), then fill
(True or False), and a padding
value. Spacing for the
containers is the amount of
space in between the widgets,
and padding is for the right/left

side of the widgets. The expand
argument allows you to choose

. whether the widgets in the box
. will fill all the extra space in the :
. box (True), or if the box shrinks :
. to fit the widgets (False). The
. fill argument has an effect only
. if the expand argument is True. : response without closing the
. Finally we show the button.
. Next is the code for the second

. button:

: self.button2 =

: gtk.Button("Button 2")
: self.button2.connect("clicked :
: ",self.btn2Clicked,None)
: self.boxl.pack start(self.but :
L, : 2". Click on them and notice

. that they properly respond to

. the click event as we have

. discussed. Now, before closing
. the window, resize it (drag at

: the bottom right of the

ton2,True,True,0)

Notice that this code is

pretty much the same thing as

- the first button widget. The last : | . 40) and notice that the

. line of this new code shows the :

box.pack_start(widget,expand=; box.

Now, we have to add the

self.btn2Clicked routine. After
. the self.btn1Clicked routine,
. add the following code...

; def
: btn2Clicked(self,widget,data=:
: None):

fFull circle magazine

@92

and in the btn1Clicked
routine, comment out the line:

gtk.main_quit()

We want both buttons to

5 print their “Button X clicked”

. window.

Save this as “simpleda.py”.

. Run it in a terminal. What you
- will see is a centered window
. with two buttons (right up to

. the edges of the window) :
: marked “Button 1” and “Button is by using a table. Many times,
. if everything you have can fit

. into a grid-like structure easily,
. then a table is your best (and

. easiest) bet. You can think of a
. table like a spreadsheet grid

. with rows and columns holding
. widgets. Each widget can take

. up one or more cells - as your

. application requires. Maybe the
- following diagram will help

. buttons grow and shrink

. equally as you resize the

. window. To understand the
expand parameter, change the :
: code for the

. self.box1.pack_start from True
. to False in both lines. Re-run

. your program and see what :
. happens. This time, the window :
. starts out looking the same, but:
. when you resize the window,

print "Button 2 clicked" i tha pyttons stay the same

width, and there is empty
The Compleat Python

space to the right as you
expand the window. Next,

. change the expand parameter
. back to True and set the fill

. parameter to False. Re-run and
. notice that the buttons stay the
: same width, but there is empty
. space to the left and right of

. the buttons as you resize the

. window. Remember the fill

. parameter doesn't do anything
. if the expand parameter is set

. to False.

Another way to pack widgets

. visualize the possibility. Here is

. a 2x2 grid:
.0 1 2
1 S o +
| | |
) o +
| | |
o +

ﬁ contents ©

PROGRAM IN PYTHON - PART 20

Into the first row, we will
place two buttons. One in
column 1 and one in column 2.
Into the second row, we will

columns. Like this...

0 1 2
Ot——mmmmm e Fom e +
| Button 1 | Button 2 |
) I S Fom e +
| Button 3 |
24— Fom e +

To set up a table, we create
a table object and add it into
the window. The call to create
the table is...

Table =

gtk.Table(rows=1,columns=1,ho; table.attach (buttonx,1,2,0,1) | .
: . before any widgets are placed.
. Finally, we are forcing the

. window to 250 x 100 pixels

. using the “set_size_request”

. funciton. Makes sense so far?

: Now, we create the table and

. add it to the window...

mogeneous=True)

If the homogeneous flag is

widget in the table. If set to
False, the size of the table
boxes will be dictated by the
tallest widget in the same row
and the widest widget in its
column. We then create a
widget (like a button above),

then attach that widget into the

table in the proper row and
column. The attach call is as
follows...

table.attach(widget, left
point,right point,top

! point,bottom
i point,xoptions=EXPAND|FILL,yo :
! ptions=EXPAND |FILL, :

place one button spanning both : ;,23ding=0, ypadding=0)

The only required

. parameters are the first 5. So,
© to attach a button to the table
: in row 0 column 0, we would

: use the following command...

table.attach(buttonx,0,1,0,1) things here that we need to

: discuss before we move on.

: i Lin ts the title of th
: row 0 column 1 (remember this : € 9 sets the title of the

. is zero based) as button 2 is
- above, the call would be...

If it were to be placed into

Hopefully, this is as clear as

set to True, the size of the table - mud for you now. Let's get

boxes are resized to the largest started with our code, and

- you'll understand better. First
- the common part...

! # tablel.py

! import pygtk

! pygtk.require('2.0')
! import gtk

: class Table:

def init_ (self):
self.window =

self.window.set_position(gtk.

fFull circle magazine

; table =
: # Create a 2x2 grid
: self.window.add(table)

@93

WIN_POS_CENTER)

: self.window.set_title("Table
! Test 1")

g self.window.set border width(
1 20)

g self.window.set_size request(:
: 250, :

100)

There are a couple of new

. window to “Table Test 1”. We

. use the “set_border_width” call
. to give a border of 20 pixels

: around the entire window

gtk.Table(2, 2,

Next, we create our first

| gtk.Window(gtk.wInpow TopLeve . PULLON, setup the event
P L) - . connection, attach it to the

' table grid point, and show it...

The Compleat Python

: . button2 =
. self.window.connect("delete e : 2")
: vent", self.delete_event)

True) : putton3 =
: button3.connect("clicked", sel
: £f.ExitApp, "button 3")

: table.attach(button3,0,2,1,2)

E button3.show()

buttonl =
lll)

gtk.Button("Button

: buttonl.connect("clicked", sel
: f.callback, "button 1")

: table.attach(buttonl1,0,1,0,1)
: buttonl.show()

Now button number 2...

gtk.Button("Button

! button2.connect("clicked",sel
: f.callback, "button 2")

: table.attach(button2,1,2,0,1)
: button2.show()

Almost exactly the same as

: button number 1, but notice

: the change in the table.attach

: call. Also notice that the routine
. we will be using for the event

. handling is called

. “self.callback”, and is the same
. for both buttons. That's good

. for now. You'll understand what
: we're doing in a moment.

Now for the third button.

This will be our “Quit” button:

gtk.Button("Quit")

Finally, show the table and

the window. Also here is the

main routine and the delete

ﬁ contents ©

PROGRAM IN PYTHON - PART 20

routine we have used before:

table.show()
self.window.show()
def main(self):
gtk.main()
def delete_ event(self,
widget, event, data=None):
gtk.main quit()
return False

Now for the fun part. For

both button 1 and button 2, we
set the event handler routine to

Here's the code :
. code...

“self.callback”.

for that.

def :

callback(self,widget,data=Nong

e): :
print "%s was pressed" %;

data :

What happens is that when
the user clicks on the button,

the click event is triggered, and
. to use pyGTK to create a GUI
. program, the steps are...

the data that was provided
when we set the event
connection is sent in. For
button 1, the data that will be
sent is “button 1”, and for
button 2 it is “button 2”. All we
are doing here is printing
“button x was pressed”
terminal. I'm sure you can see
that this could be a very useful
tool when combined with a
nicely structured IF | ELIF |

Pif name == "

ELSE routine.

Now to finish up, we have to

. define the “ExitApp” routine for :
. when the “Quit” button is
. clicked...

g def ExitApp(self, widget,
: event, data=None):

print "Quit button was

; pressed"

gtk.main_quit()

And now the final main

__main__
table = Table()
table.main()

Combine all this code into a

single app called “tablel.py”.
: Run it in a terminal.

So to recap, when we want

.« Create the window.

. » Create HBox(s), VBox(s) or
: Table(s) to hold your widgets.
-« Pack or attach the widgets
into the :
.« Show the widgets.

: » Show the box or table.
.+ Show the window.

(depending on box or table).

fFull circle magazine

@94

Now we have many of the
tools and knowledge to go

- forward. All code is up on

Pastebin at

. http://fullcirclemagazine.pasteb
: in.com/wnzRsXn9. See you next

: time.

|k ="|

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,

The Compleat Python

Clrcle

Podcast

Full

p pgthon Full Circle Podcast

. In episode #15: Brainstorms,
: FUD and Media Players

: * Review: FCM#44.
: * News:
. Software Centre ratings,

: Fuduntu, Unity, Android, and

: more!

: * Gaming: Humble Indie Bundle
: 2, Mass Effect, FreeCiv, and

: Dropbox.

Brainstorm ideas,

: OGG - 46.9Mb
: mp3 - 40.4Mb

Runtime: 1hr 24min 34sec
: Released: 13th Jan. 2011

ﬁ contents ©

http://fullcirclemagazine.org/
http://fullcirclemagazine.pastebin.com/wnzRsXn9

Program In Python - Part 21

f you've been with me for a

long while, you might
remember back to parts 5
and 6. We talked about

using Boa Constructor to design

our GUI application. Well, this
time, we are going to deal with
Glade Designer. Different, but
similar. You can install it from
the Ubuntu Software Center:
search for glade, and install
GTK+ 2 User Interface Builder.

Just to let you know, this will be

an application that we’ll need
multiple parts of these tutorials to

a playlist maker for our MP3, and
other media files. This portion of

design portion. Next time, we'll
deal with the code that glues all
the parts of the GUI together.

Now to start designing our
application. When you first start
the Glade designer, you will have
a preferences window open
(above). Select Libglade, and

“inside toplevels”, then click close. :
This will give us our designer main :
" to the attributes section, change

window.

Set options in your project

Project file format:
® GtkBuilder O Libglade
Object names are unique:
® within the project O inside toplevels
Image resources are loaded locally:

® From the project directory

O From a project relative directory

1

*Unsaved 1

Edit View Projects Help

Wl ever kxoeife

évAclions 3
é%WW@A
e
e
oDz ®
NEEEE
==
{aT=—
HID B E O
O H =
H B = 3
EE B b
R

¥ Control and Di...

HEmE e-

© From this directory Vw greg | v J
Toolkit version(s) required:
gtk+ catalog
O 28 @ 210 @ 212 O 2.14 ® 2.16
Verify versions and deprecations: Execute
f

|

Let's take a look at the main

.) . window (right). On the left is our
cover. The ultimate goal is to build ' toolkit, in the middle is the

. designer area, and on the right is

o . : our attribute and hierarchy areas.
the tutorial will be focusing on the : Y

In the toolkit area, find the

group marked “Toplevels”, and
click on the first tool there (if you
hover over it, it should show

: “Window"). This will give us our
blank window “canvas” that we

: will be working with.

Notice that, in the hierarchy
area, you see window1l under the
Widgets section. Now move down

the name from window1l to

full circle magazine

:hbel—Fl\:I-D-
(14 =g =

EEEEJ'

®- = = &]

| < search widgets >

Actions
v Widgets
[windowl
Objects

[~] Window Properties - GtkWindow [window1]

General L;mcking ‘gommnn ‘gignals ‘ é; |

Name: [Windowl I 3

Accel Groups:
‘Window Type:
‘Window Title:
Window Role:
Resizable:

: MainWindow, and set the Window :
. Title to “Playlist Maker v1.0”. Save :
© what you have as

© “PlaylistMaker.glade”. Before we
© can move on, in the attributes

- section of the General tab, find the :
: Window Position pulldown and set
. it to Center. Click the check box
for Default Width, and set this to

: 650. Do the same for Default
Height, but set it to 350. Next,

: click on the Common tab, and

: scroll down to the entry marked :
~ “Visible”. BE SURE TO SET THISTO -

@95

The Compleat Python

- “YES” - otherwise your window

won't show. Finally, select the

: Signals tab, scroll down to the
. GtkObject section, and click the
: arrow pointing to the right. Under

destroy, click the pulldown in the

: Handler column, and select

© “on_MainWindow_destroy” setting.
: This gives us an event that gets

: raised when the user closes our

: window by clicking on the “X" in

: the titlebar. One word of warning...
. After setting the destroy event,

click somewhere above or below

ﬁ contents ©

PROGRAM IN PYTHON - PART 21

to make the change take. This
seems to be a bug in Glade
Deisgner. Again, save your project.

Just as before when we were
doing GUI design, we need to put

This is the hardest thing to
remember when doing GUI
programming. We will be adding a
vertical box to hold our widgets in
the window, so, on the toolbox
under Containers, select Vertical
Box (second icon from the left on

window in the designer section.
You will be presented with a pop
up window that asks how many
slots or items you want. The
default is three, but we need five.
The layout, from top to bottom,
will be a toolbar, an area for a
treelist control, two horizontal
areas for labels, buttons and text
entry boxes, and a status bar.

Now we can start adding our
widgets. First, add a toolbar from
the toolbox. It's the (in my setup)
fourth icon on the second line
under containers. Click in the

will shrink and almost disappear.
Don't worry, we'll get it back in a
few minutes.

Next, we need to add a Scrolled

Window to the next slot down to
hold our treelist. This will allow us

. to scroll within the treelist. So, find :
. the Scrolled Window icon under
. the Containers section of the

_ _ - toolbox (second icon from the left
our widgets in vboxes and hboxes. . on the fifth row on my setup), and
. click that into the second slot of

. the vbox. Next, we will add two

. Horizontal boxes, one to each of

. the next slots. Each needs three

. slots. Finally, add a Status Bar to

. the bottom slot. This is under the

o . Control and Display section of the
the top row), and click in our blank toolbox near the bottom. Now your :
. designer should look something

. like the image below.

Last, but not least, add a Tree

sm@ e konfe

View widget from the Control and
Display section of the toolbox into
the scrolled window widget. You'll

. get a pop-up asking which

. TreeView model you wish to use.

. Just click the “OK” button for now.
. We'll set that up later.

Now we need to concentrate on :
: the Scroll Window for a second.
Click on it in the hierarchy area.
Scroll down in the General tab to
the entry marked “Horizontal
Scrollbar Policy”. Change that to

. the Vertical Scrollbar Policy. Save
. again.

OK, now let's concentrate on

¥ Actions .

C|E = oE ea

L |[pieves]
OEE2 =
BEDEE
BB

|[r coniners
e R=R N
ODF ==y
DB 8
S| B @ ob-
i

topmost slot of the vbox. That slot : |

P (e Y
- m ® @™

Dlwe my ®E

Bhel —F1 [==
b= o=

\IBED'

[< search widgets > } .

Actions
v Widgets
[windowl
Objects

E]Window Properties - GtkWindow [window1]

General ‘ Packing ‘ Common ‘ signals ‘ & ‘

[window1

—
Top Level

1

T

L v

Name:

Accel Groups:
Window Type:
Window Title:
Window Role:

Resizable:

fFull circle magazine

@96

General | Hierarchy

Label |Type

our toolbar. This area will be at the
top of our application right under

. the title bar. It will hold various

. buttons for us that will do the

. majority of the work. We will use

. eleven buttons in the toolbar, and,
. from left to right, they are...

Add, Delete, Clear List, a

: Separator, Move To Top, Move Up,
Move Down, Move to bottom,

. another Separator, About, and
Exit.

Over on the hierarchy area,

. ‘Always', and then do the same for . click on “toolbarl”. That should
- highlight it. At the top of the Glade
. Designer is something that looks

. like a pencil. Click that. That

© brings up the tool bar editor. Click
. on the Hierarchy tab. You'll see

. something like this:.

We will be adding all of our

: toolbar buttons from here. The

. steps will be:

.+ Click the Add Button.

.« Change the name of the button.
: + Modify the label of the button.
.« Select the image.

Tool Bar Editor - toolbarl

J

The Compleat Python

ﬁ contents ©

PROGRAM IN PYTHON - PART 21

This will be repeated for all
eleven of our widgets. So, Click
Add, then in the name box, type
“tbtnAdd”. Scroll down to the Edit
Label portion and type “Add” in
the Label box, then a little further :
down under Edit Image, in the text :
box for Stock ID, use the pulldown :
to select “Add”. That takes care of :
our Add button. We named it
“tbtnAdd” so we can reference it
in our code later. The “tbtn” is
shorthand for "Toolbar Button'.
This way, in our code, it's easy to
find and is fairly self documenting. :

Now, we need to add the rest
of the widgets to our tool bar. Add
another button for Delete. This
one will be named (as you might
guess) “tbtnDelete”. Again, set
the label and the icon. Next, add
another button naming it
“tbtnClearAll” and use the Clear
icon. Now we want a Separator.
So, click Add, under name type
“Sepl” and in the pulldown for
type, select Separator.

Add the rest of the widgets
naming them “tbtnMoveToTop”,
“tbtnMoveUp”, "tbtnMoveDown”,
"tbtnMoveToBottom”, “Sep2”,
“tbtnAbout” and “tbtnQuit”. I'm
sure you can find the correct
icons. Once you are finished, you

. something that looks like the
: image below.

: should highlight both the entry in
. the hierarchy and the button itself. :
Go back to the attributes section,
. select the Signals tab, and expand :
: the GtkToolButton to reveal the
. clicked event. Under handler in

. hboxs. The top hbox will contain

: (from left to right) a label, a text
. widget, and a button. In the

: toolbox, select the label widget

. (not the blue one), and put it in

: the left slot. Now put a Text Entry
. widget in the center slot and a

: button in the right slot. Do the

can quit the hierarchy window and
save your work. You should have

Now, we need to set the event
handlers for all the buttons we
created. In the hierarchy area,
select the tbtnAdd widget. This

Next, we need to fill in our

same for the second hbox.

fFull circle magazine

. attributes for the widgets we just
: added. In the hierarchy area,

. select labell under hbox1. In the
. attributes section, select the

. General tab, scroll down to “Edit
label appearance” area, and set
. the label to read “Path to save

. file:". Next, go to the Packing tab

: and set Expand to “No”. You might : _
P g . Finally, set the name of the Text

: remember the discussion on : .
: . Entry widget to “txtPath”.

: packing from last month. Set the

: this isn't a toolbar button, we

; “Folder...”. Then click on the

It's now time to set our

. padding to 4, which gives a little
. bit of room on the left and right

. the clicked event, as before, select : Side of our label. Now select

. “on_tbtnAdd_clicked”, then click
. above or below to force the

change. Do this for all the other
. buttons we created - selecting the :
. “on_tbtnDelete_clicked” event and :
© 50 on. Remember to click off of it :
. to force the change, and save your:
project. Our separators don't need :
events, so just pass over them.

“btnGetFolder”. Notice that since

didn't preface it with a 't'. Scroll
down to the Label entry and enter :

Signals tab and set the button

~ event of GtkButton/clicked to

. “on_btnGetFolder clicked”. Before
. we set the attributes of the next
set of widgets in the next hbox,

: we need to do one more thing.
Select the hbox1 in the hierarchy
. area and under the Packing tab,

. set expand to “No”. This makes

: the hbox take up less space.

Now, do the same thing for

hbox2, setting its Expand to “No”,

then set the label text to
: buttonl and set the Expand under :

the Packing tab to “No” also. Go
. back to the General tab and set
. the name of our button to

. “Filename:”, expand to “No”,

. padding to 4. Set the name of the
. button to “btnSavePlaylist”, its

: text to “Save Playlist File...”, its

. Expand attribute to “No”, set up

. its clicked event, and set the

: name of the Text Entry widget

. here to “txtFilename”. Once again,
: save everything.

[0 4 Faes o

®

[< search widgets >
oo
v B8 toolbarl

O tbtnAdd

O tbtnDelete

O tbtnClearall
Sepl

O tbtnMoveToTop

O tbtnMoveUp

O tbtnMoveDown

O tbtnMoveToBottom
Sep2

[tbtnAbout

O tbtnQuit

v [scrolledwindow1

7

The Compleat Python

ﬁ contents ©

PROGRAM IN PYTHON - PART 21

So now our window should look
something like the image below
left.

All that is wonderful, but what

did we really do? We can't run this
as a program, since we don't have :

any code. What we have done is
create an XML file called
“playlistmaker.glade”. Don't let
the extension fool you. It's really

you can open it with your favorite
editor (gedit in my case) and look
at it.

You'll see plain text describing
our window and each widget with
their attributes. For example, let's
look at the code (above) for the
main widget, the actual window
itself.

You can see that the name of
the widget is “MainWindow”, its
title is “Playlist Maker v1.0”, the
event handler, and so on.

QO I T4 w@

<widget class="GtkWindow" id="MainWindow">
<property name="visible">True</property>
<property name="title" translatable="yes">Playlist Maker vl1l.0</property>
<property name="window position">center</property>
<property name="default width">650</property>
<property name="default height">350</property>
<signal name="destroy" handler="on MainWindow destroy"/>

Let's take a look the code

(shown below) for one of our

. toolbar buttons.
an XML file. If you are very careful, :

Hopefully this is starting to

make sense to you. Now, we need
: to write some code to allow us to
. see our hard work actually do

: something. Bring up your code

. editor and start with this...

So, we have created our

imports pretty much like we did
. last month. Notice we are

: importing “sys” and “MP3” from
. mutagen.mp3. We installed

: mutagen back in

<child>

article number 9, so if you don't
: have that on your system, refer
© back to that one. We'll need the
mutagen import for next time, and :
© the sys import is set so the system
© can exit properly on the last
exception.

Next, we need to create our

. class that will define our window.
: This is shown above right.

Pretty much the same kind of

thing we've done before. Notice
. the last two lines here. We are
. defining the glade file

. (self.gladfile) to be the name of
. the file we created in the Glade
. designer. Notice also that we

didn't include a path, just a file
name. If your glade file is going to

: reside somewhere away from your
: actual code, you must put a path

. as well. However, it's always

: smart to keep them together.

. Next, we define our window as

. self.wTree. We'll be referring to

: that every time we need to refer

: to the window. We are also saying
© that the file is an XML file, and the
. window we will be using is the one
: named “MainWindow”. You can

<widget class="GtkToolButton" id="tbtnAdd">
<property name="visible">True</property>

- I

Path to save file:

<property name="label" translatable="yes">Add</property>

<property name="use_underline">True</property>
<property name="stock id">gtk-add</property>
<signal name="clicked" handler="on_ tbtnAdd clicked"/>
</widget>
v <packing>

Filename: l

” Save Playlist File... ‘

</child>

fFull circle magazine

The Compleat Python

<property name="expand">False</property>
<property name="homogeneous">True</property>
</packing>

@98

ﬁ contents ©

PROGRAM IN PYTHON - PART 21

#!/usr/bin/env python
import sys
from mutagen.mp3 import MP3
try:

import pygtk

pygtk.require("2.0")
except:

pass
try:

import gtk

import gtk.glade
except:

sys.exit (1)

have multiple windows defined
in a single glade file. More on
that another time.

Now we need to deal with
our events. Last month we
used button.connect or

time we are going to do
something a bit differently. We
will use a dictionary. A
dictionary is like an array,
except rather than being
referenced by its index, it's
referenced by a key and then
has a data element. Key and
Data. Here's the code that will
probably make it easier to

Pif name

understand. I'm only going to
give you two events for now
(shown below)...

So we have two events:
“on_MainWindow_destroy” and
“on_tbtnQuit _clicked” are the

keys in our dictionary. The data

for our dictionary is
“gtk.main_quit” for both
entries. Whenever an event is
triggered by our GUI, the

: system uses the event to find
. the key of our dictionary, then
: knows what routine to call -

: from the data segment. Next

: we need to connect the

. dictionary to the signal handler :
: of our window. We do it with

window.connect calls to refer to : the following line of code.

our event handler routines. This :

; self.wTree.signal_autoconnect;
i (dict)

We're almost ready. We still

: need our main routine code:

== "_ main__":
plm = PlayListMaker ()
gtk.main()

Create Event Handlers

#
#
#
d

ict = {"on_MainWindow_destroy": gtk.main quit,

"on:tbthuit_clicked": gtk.main_quit}

fFull circle magazine

. “playlistmaker.py”.
. Now you can run it
. (shown above right).

© right now, other than
: open and close

. properly. The rest is

: for next time. Just to
: whet your appetite,

. we'll be discussing the use of

; Python source:

@99

class PlayListMaker:
def init__ (self):

e
Window Creation
#

self.gladefile = "playlistmaker.glade"
self.wTree =

gtk.glade.XML(self.gladefile, "MainWindow")

Save this file as

Playlist Maker v1.0

*0J F4&FE wD

It doesn't do much

v

g T Es
Path to save file: I " Folder...

1 Save Playlist File...

Filename:[

the TreeView, Dialog boxes, and

: adding a bunch more code. So
: tune in next time.

. Glade file:
: http://fullcirclemagazine.pasteb :
: In.com/YM6UQEe3 B |

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,

ﬁ contents ©

http://fullcirclemagazine.pasteb
in.com/wbfDmmBh :

The Compleat Python

http://fullcirclemagazine.pastebin.com/YM6U0Ee3
http://fullcirclemagazine.pastebin.com/wbfDmmBh

Program In Python - Part 22

Correction

i Last month, in part 21, you
' were told to save what you
i have as

' "PlaylistMaker.glade", but, in
i the code, it was referred to

' as: "playlistmaker.glade".

i I’'m sure you noticed that

' one has capitals and the

i other does not. The code will
' run only if you use both the

i call and file name with, or

o start off on the right
foot, you need to have

and playlistmaker.py
from last month. If you don't,
jump over to the last issue and
get the goodies. Before we get
to the code, let's take a look at
what a playlist file is. There are
multiple versions of play lists,
and they all have different
extensions. The one we will be
creating will be a *.m3u type
playlist. In its simplest form, it's
just a text file that starts with
“#EXTM3U”, and then has an
entry for each song file you

: want to play - including the full

path. There's also an extension
that can be added before each
entry that includes the length
of the song, the album name

the song comes from, the track :

number, and the song name.
We'll bypass the extension for
now and just concentrate on
the basic version.

Here is an example of a M3U
playlist file..

#EXTM3U

: Adult Contemporary/Chris

! Rea/Collection/02 - On The
: Beach.mp3

: Adult Contemporary/Chris
the playlistmaker.glade :
: You Think It's Over) .mp3

: Adult Contemporary/Chris

! Rea/Collection/11 - Looking
! For The Summer.mp3

Rea/Collection/07 - Fool (If

All path names are relative to
. the location of the playlist file.

. OK...now let's get to coding.

. Shown right is the opening of
. the source code from last

: month.

* Now, we need to create an

event handler routine for each
full circle magazine

@ 100

#!/usr/bin/env python
import sys
from mutagen.mp3 import MP3
try:

import pygtk

pygtk.require("2.0")
except:

pass
try:

import gtk

import gtk.glade
except:

sys.exit(1l)

next the class definition
class PlayListCreator:
def init (self):
self.gladefile = "playlistmaker.glade"
self.wTree = gtk.glade.XML(self.gladefile, "MainWindow")

and the main routine

if name_ == "_main_":
plc = PlayListCreator()
gtk.main()

Next, we have our dictionary which should go after the __init__

routine.
def SetEventDictionary(self):
dict = {"on_MainWindow_destroy": gtk.main quit,

"on_tbtnQuit clicked": gtk.main_ quit,
"on_tbtnAdd clicked": self.on_tbtnAdd _clicked,
"on_tbtnDelete clicked": self.on_tbtnDelete clicked,
"on_tbtnClearAll clicked": self.on_tbtnClearAll clicked,
"on_tbtnMoveToTop clicked": self.on_tbtnMoveToTop clicked,
"on_tbtnMoveUp clicked": self.on_tbtnMoveUp clicked,
"on_tbtnMoveDown clicked": self.on_tbtnMoveDown clicked,
"on_tbtnMoveToBottom clicked": self.on_tbtnMoveToBottom clicked,
"on_tbtnAbout clicked": self.on_tbtnAbout clicked,
"on_btnGetFolder_ clicked": self.on_btnGetFolder clicked,
"on_btnSavePlaylist clicked": self.on_btnSavePlaylist clicked}

The Compleat Python

ﬁ contents ©

PROGRAM IN PYTHON - PART 22

of our events that we have set
up. Notice that
on_MainWindow_destroy and

done for us, so we need to
have only 10 more (shown top
right). Just make stubs for now.

We'll modify these stubbed
routines in a few minutes. For
now, this should get us up and
running with an application,
and we can test things as we
go. But, we need to add one
more line to the __init__ routine
before we can run the app.
After the self.wTree line, add...

self.SetEventDictionary ()

Now, you can run the
application, see the window,
and click the Quit toolbar
button to exit the application
properly. Save the code as
"playlistmaker-1la.py" and give
it a try. Remember to save it in
the same folder as the glade
file we created last time, or
copy the glade file into the
folder you saved this code in.

We also need to define a few
variables for future use. Add
these after the
SetEventDictionary call in the

__init__ function.

: self.CurrentPath = ""

on_tbtnQuit clicked are already :Zi:gg;giﬁzﬁm’:’ o

0

: Now, we will create a function

: that allows us to display a

: popup dialog box whenever we
: need to give some information
: to our user. There is a built-in

: set of routines that we will use,
: but we'll make a routine of our
: own to make it easier for us. It
: is the gtk.MessageDialog

: routine, and the syntax is as

. follows...

; gtk.MessageDialog(parent,flag;
. s,MessageType,Buttons,message :

)

: Some discussion is needed

. before we go too much further.
: The message type can be one
. of the following...

: GTK_MESSAGE_INFO -

: Informational message

{ GTK_MESSAGE_WARNING -

: Nonfatal warning message
GTK_MESSAGE_QUESTION -

! Question requiring a choice
: GTK_MESSAGE_ERROR - Fatal

! error message

And the button types are...

fFull circle magazine

@ 101

def
pass
def
pass
def
pass
def
pass
def
pass
def
pass
def
pass
def
pass
def
pass
def
pass

GTK_BUTTONS NONE - no buttons :

‘ at all : MESSAGE_INFO,gtk.BUTTONS OK,"

: GTK BUTTONS OK - an OK button :
: - - : response = dlg.run()
. GTK_BUTTONS CLOSE - a Close : dlg.destroy()
: button :
! GTK_BUTTONS CANCEL - a Cancel:
: button

: GTK_BUTTONS _YES NO - Yes and
: No buttons

: GTK_BUTTONS_OK_CANCEL - OK

: and Cancel Buttons

: Normally, you would use the
. following code , or similar, to
: create the dialog, display it,

: wait for a response, and then
. destroy it.

dlg =

The Compleat Python

on_tbtnAdd clicked(self,widget):
on_tbtnDelete clicked(self,widget):
on_tbtnClearAll clicked(self,widget):
on_tbtnMoveToTop clicked(self,widget):
on_tbtnMoveUp clicked(self,widget):
on_tbtnMoveDown clicked(self,widget):
on_tbtnMoveToBottom clicked(self,widget):
on_tbtnAbout clicked(self,widget):
on_btnGetFolder clicked(self,widget):

on_btnSavePlaylist clicked(self,widget):

gtk.MessageDialog(None,0,gtk.

This is a test message...")

: However, if you want to display
: a message box to the user

: more than once or twice, that's
: a LOT of typing. The general

: rule of thumb is that if you

: write a series of lines-of-code

: more than once or twice, it's

: usually better to create a

© function and then call that.

© Think of it this way: If we want
: to display a message dialog to
" the user, say ten times in your

ﬁ contents ©

PROGRAM IN PYTHON - PART 22

application, that's 10 X 3 (or
30) lines of code. By making a
function to do this for us (using
the example | just presented),
we would have 10 + 3 (or 13)

lines of code to write. The more

we call a dialog, the less code
we actually have to type, and
the more readable our code is.
Our function (top right) will
allow us to call any of the four
message dialog types with just
one routine using different
parameters.

This is a very simple function
that we would then call like
this...

self.MessageBox ("info", "The
button QUIT was clicked")

Notice that if we choose to use
the MESSAGE_QUESTION type
of dialog, there are two

possible responses that will be

-a "Yes" or a "No". Whichever
button the user clicks, we will
receive the information back in
our code. To use the question
dialog, the call would be
something like this...

response =
self .MessageBox("question","A

; if respons
: gtk .RESPONSE_YES:

def MessageBox(self,level, text):

if level == "info":
dlg = gtk.MessageDialog(None,0,gtk.MESSAGE INFO,gtk.BUTTONS OK, text)
elif level == "warning":
dlg = gtk.MessageDialog(None,0,gtk.MESSAGE WARNING,gtk.BUTTONS OK, text)
elif level == "error":
dlg = gtk.MessageDialog(None,0,gtk.MESSAGE_ ERROR,gtk.BUTTONS OK, text)
elif level == "question":
dlg = gtk.MessageDialog(None,0,gtk.MESSAGE QUESTION,gtk.BUTTONS YES NO,text)
if level == "question":
resp = dlg.run()

dlg.destroy ()
return resp

else:
resp =

dlg.run()

dlg.destroy ()

! re you sure you
i want to do this
! now?")

print "Yes was

; clicked"

; elif response ==
: gtk.RESPONSE_NO:

print "NO was

returned by the message dialog : clicked
: You can see how you
: can check the value
: of the button

: returned. So now,

. replace the "pass"

. call in each of our

. event handler routines with

def

def

def

def

def

def

def

def

def

def

something like that shown

full circle magazine

on_tbtnAdd clicked(self,widget):

self.MessageBox ("info","Button Add was clicked...")
on_tbtnDelete clicked(self,widget):
self.MessageBox("info", "Button Delete was clicked...")
on_tbtnClearAll clicked(self,widget):
self.MessageBox("info","Button ClearAll was clicked...")
on_tbtnMoveToTop clicked(self,widget):

self.MessageBox ("info", "Button MoveToTop was clicked...")
on_tbtnMoveUp clicked(self,widget):
self.MessageBox("info", "Button MoveUp was clicked...")
on_tbtnMoveDown clicked(self,widget):
self.MessageBox("info", "Button MoveDown was clicked...")

on_tbtnMoveToBottom clicked(self,widget):
self.MessageBox("info", "Button MoveToBottom was clicked...")
on_tbtnAbout clicked(self,widget):

self .MessageBox("info","Button About was clicked...")
on_btnGetFolder clicked(self,widget):

self.MessageBox ("info", "Button GetFolder was clicked...")
on_btnSavePlaylist clicked(self,widget):
self.MessageBox ("info", "Button SavePlaylist was clicked...")
. below right. : this gives you a visual

' . indication that the buttons

- work the way we want. Save

h contents ©

E We won't keep it like this, but

@ 102

The Compleat Python

PROGRAM IN PYTHON - PART 22

the code now as "playlistmaker-
1b.py", and test your program.
Now we are going to create a
function to set our widget
references. This routine is going :
to be called only once, butit
will make our code much more
manageable and readable.
Basically, we want to create

local variables that reference

the widgets in our glade

window - so we can make calls
to them whenever (if ever) we
need to. Put this function

(above right) below the
SetEventDictionary function.

Please notice that there is one
thing that isn't referenced in
our routine. That would be the
treeview widget. We'll make
that reference when we set up
the treeview itself. Also of note
is the last line of our routine. In
order to use the status bar, we
need to refer to it by its context :
id. We'll be using this later on.

def SetWidgetReferences (self):

self.txtFilename

self.txtPath =
self.tbtnAdd =

self.tbtnDelete
self.tbtnClearAll = o
self.wTree.get_widget ("tbtnQuit")

self.tbtnQuit
self.tbtnAbout

self.tbtnMoveToTop =
self.tbtnMoveUp
self.tbtnMoveDown =
self.tbtnMoveToBottom =
self.btnGetFolder =
self.btnSavePlaylist =
self.wTree.get_widget("statusbarl")

= self.sbar.get_context_id("Statusbar")

self.sbar =

self.context_id

= self.wTree.get_widget ("txtFilename")

self.wTree.get_widget ("txtPath")
self.wTree.get_widget ("tbtnAdd")
= self.wTree.get_widget("tbtnDelete")

self .wTree.get widget ("tbtnClearAll")

self.wTree.get_widget ("tbtnAbout")
self.wTree.get_widget ("tbtnMoveToTop")

= self.wTree.get_widget ("tbtnMoveUp")

self.wTree.get_widget ("tbtnMoveDown")
self.wTree.get_widget ("tbtnMoveToBottom")
self.wTree.get_widget ("btnGetFolder")
self.wTree.get_widget ("btnSavePlaylist")

and then add a call to it right after the self.SetEventDictionary() call in the __init__ function.

self.SetWidgetReferences ()

function. Here's the code,
. below right.

: Save your code and then
. give it a try. You should

. see a pop-up box,

. centered in our

application, that displays

. everything we have set.

. There are more attributes

Next, let's set up the function
that displays the “about” dialog :
when we click the About
toolbar button. Again, there is a :
built-in routine to do this :
provided by the GTK library. Put :
this after the MessageBox

. that you can set for the
: about box (which can be
. found at

http://www.pygtk.org/docs

: /pygtk/class-

gtkaboutdialog.html), but

" these are what | would

consider a minimum set.
fFull circle magazine

def ShowAbout (self):
about = gtk.AboutDialog()
about.set program name("Playlist Maker")
about.set_version("1.0")
about.set_copyright("(c) 2011 by Greg Walters")
about.set_comments("Written for Full Circle Magazine")
about.set_website("http://thedesignatedgeek.com")
about.run()
about.destroy ()

Now, comment out (or simply remove) the messagebox call in the
on_tbtnAbout clicked routine, and replace it with a call to the
ShowAbout function. Make it look like this.

def on_tbtnAbout_clicked(self,widget):
#self.MessageBox("info", "Button About was clicked...")
self.ShowAbout ()

The Compleat Python

@ 103 ﬁ contents ©

PROGRAM IN PYTHON - PART 22

Before we go on, we need to
discuss exactly what will
happen from here. The general
idea is that the user will click
on the "Add" toolbar button,
we'll pop up a file dialog box to
allow them to add files to the
playlist, and then display the
file information into our
treeview widget. From there,
they can add more files, delete

single file entries, delete all file :
. columns. One is for the

: name of the music file,

. one is for the extension of the

- file (mp3, 0gg, wav, etc) and

. the final column is for the path.
: Combining this into a string

. (path, filename, extension)

. gives us the entry into the
seems simple enough, there's a :
. could, of course, add more

. columns as you wish, but for

. now, we'll deal with just three.
discuss that. This will get pretty :

. A treeview is simply a visual

. storage container that holds

- and displays a model. The

entries, move a file entry up,
down, or to the top or down to
the bottom of the treeview.
Eventually, they'll set the path
that the file will be saved to,
provide a filename with a
"m3u" extension, and click the
save file button. While this

lot that happens behind the
scenes. The magic all happens
in the treeview widget, so let's

deep, so you might want to
read carefully, since an
understanding of this will keep

you from making mistakes later :
: that holds and manipulates our
. data. There are two different

A treeview can be something as:
. used with a treeview, but you

: can certainly create your own.

" That having been said, for 98%

on.

simple as a columnar list of
data like a spreadsheet or
database representation, or it
could be more complex like a

file-folder listing with
parents and children,

. where the folder would
. be the parent and the

. files in that folder

. would be the children,
. or something even

. more complex. For this
. project, we'll use the

- first example, a

. columnar list. In the

list, there will be three

playlist we will be writing. You

model is the actual "device"

pre-defined models that are

of your work, one of the two
fFull circle magazine

self
self
self
self

. pre-defined models will do what :
. use to display the data. This is

.playList =
self.
self.

def SetupTreeview(self):
self.
self.
self.
self.
self.
self.
self.

0
1
2
"Filename"

cFName
cFType
cFPath
sFName
sFType "Type"

sFPath "Folder"
treeview =

self.wTree.get_widget("treeviewl")
.AddPlaylistColumn(self.sFName,self.cFName)
.AddPlaylistColumn(self.sFType,self.cFType)
.AddPlaylistColumn(self.sFPath,self.cFPath)
gtk.ListStore(str,str,str)

treeview.set_model(self.playList)
treeview.set_grid lines(gtk.TREE_VIEW GRID LINES BOTH)

: you need. The two types are

. GTKListStore and GTKTreeStore. :
: draw the data into the tree

. As their names suggest, the

. ListStore model is usually used
. for lists, the TreeStore is used

. for Trees. For our application,

. we will be using a GTKListStore.

The basic steps are:

.« Create a reference to the

. TreeView widget.

.« Add the columns.

.« Set the type of renderer to
. use.

.« Create the ListStore. :
.« Set the model attribute in the :
. Treeview to our model.
. Fill in the data.

" The third step is to set up the

@ 104

The Compleat Python

type of renderer the column will

simply a routine that is used to

. model. There are many

. different cell renderers that

. come with GTK, but most of the
. ones that you would normally

. use include GtkCellRenderText

. and GtkCellRendererToggle.

. So, let's create a function

. (shown above) that sets up our
. TreeView widget. We'll call it

. SetupupTreeview. First we'll

. define some variables for our

. columns, set the variable

reference of the TreeView itself,

. add the columns, set up the
. ListStore, and set the model.
. Here's the code for the

- function. Put it after the

ﬁ contents ©

PROGRAM IN PYTHON - PART 22

SetWidgetReferences function.

The variables cFName, cFType and :

cFPath define the column
numbers. The variables sFName,
sFType and sFPath will hold the
column names in our displayed
view. The seventh line sets the
variable reference of the treeview
widget as named in our glade file.

Next we call a routine (next page,
top right), which we'll create in
just a moment, for each column
we want. Then we define our

and finally set the model attribute
of our TreeView widget to our
GTKListStore. Let's create the
AddPlaylistColumn function next.
Put it after the SetupTreeview
function.

Each column is created with this
function. We pass in the title of
the column (what's displayed on

columnlD. In this case, the
variables we set up earlier
(sFName and cFname) will be
passed here. We then create a
column in our TreeView widget
giving the title, what kind of cell
renderer it will be using, and,
finally, the id of the column. We
then set the column to be

. append the
. column into
. the TreeView.

resizable, set
the sort id,
and finally

. Add these two functions to your
. code. | choose to put them right
. after the SetWidgetReferences

. function, but you can put it

. anywhere within the

. PlayListCreator class. Add the

. following line after the call to

. SetWidgetReferences() in the
GTKListStore with three text fields, :

__init__ function to call the

. function.
E self.SetupTreeview()

Save and run your program, and
. you will see that we now have

. three columns with headers in our :
. TreeView widget.

. There are so many things left to
the top line of each column) and a : do. We have to have a way to get :
. the music filenames from the user :
. and put them into the TreeView as :
: rows of data. We have to create
. our Delete, ClearAll, movement
. functions, save routine, and file
. path routines, plus a few

. "pretty" things that will make

© our application look more

professional. Let's start with the

fFull circle magazine

@ 105

def AddPlaylistColumn(self,title,columnId):
column = gtk.TreeViewColumn(title,gtk.CellRendererText (), text=columnId)
column.set resizable(True)
column.set sort column_id(columnId)
self.treeview.append column(column)

: Add routine. After all, that's the
. first button on our toolbar.

. When the user clicks the Add

. button, we want to pop up a

. "standard" open-file dialog that
. allows for multiple selections.

. Once the user has made their

. selection, we then want to take
. this data and add it into the

. treeview, as | stated above. So the :
. first logical thing to do is work on
. the File Dialog. Again, GTK

. provides us a way to call a

. "standard" file dialog in code. We
. could hard code this as just lines
. in the on_tbtnAdd_clicked event
handler, but let's make a separate :
. class to handle this. While we are :
. at it, we can make this class

. handle not only a file OPEN dialog, :

. but a folder SELECT dialog as well. © The first part of our code should be an

IF statement

As before with the MessageBox
function, you can pull this into a

. We'll start by defining a new class
. called FileDialog which will have

: only one function called

: ShowDialog. That function will

. take two parameters, one called

: 'which' (a'0' or a '1"), that

. designates whether we are

: creating an open-file or select-

. folder dialog, and the other is the
. path that should be used for the

. default view of the dialog called

© CurrentPath. Create this class just
. before our main code at the

. bottom of the source file.

; class FileDialog:

def

ShowDialog(self,which,CurrentPat
: h):

. snippet file that has all kinds of | if which == 0: # file chooser
. reusable routines for later use.
dialog = gtk.FileChooserDialog("Select files to add...",None,

gtk.FILE_CHOOSER ACTION OPEN,
(gtk.STOCK_CANCEL, gtk.RESPONSE_ CANCEL,
gtk.STOCK_OPEN, gtk.RESPONSE OK))

The Compleat Python

ﬁ contents ©

PROGRAM IN PYTHON - PART 22

else: # folder chooser

Before going any further, let's
explore how the file/folder dialog
is actually called and used. The
syntax of the dialog is as follows

and returns a dialog object. Our
first line (under if which ==
be the line shown below.

As you can see, the title is "Select

files to add...", the parent is set to : _
. setting the

© current path, and
. then displaying

: the dialog itself.

. Before we type

: in the code, let

. me explain why

: we want to deal with the current

. path. Every time you pop up a file
. dialog box, and you DON'T set a

. path, the default is to the folder

. where our application resides. So,
. let's say that the music files that

: the user would be looking for are
: in /media/music_files/, and are

: then broken down by genre, and

. further by artist, and further by

: album. Let's further assume that

. the user has installed our

" application in

None. We are requesting a File
Open type dialog (action), and we
want a Cancel and an Open
button, both using "stock" type
icons. We are also setting the
return codes of
gtk.RESPONSE_CANCEL and
gtk.RESPONSE_OK for when the
user makes their selections. The
call for our Folder Chooser under
the Else clause is similar.

Basically, the only thing that
changed between the two
definitions are the title (shown
above right) and the action type.
So our code for the class should
now be the code shown middle
right.

: on the multiple select feature so
. the user can select (you guessed
: it) multiple files to add. If we

. didn't set this,

: the dialog would

gtk.FileChooserDialog(title,p :

arent,action,buttons,backend) : only allow one

) will : _
. set_select_multip

: le is set to False
. by default. Our
: next lines are

These set the default response to

be the OK button, and then to turn dialog = gtk.FileChooserDialog("Select Save Folder..",6 None,

gtk.FILE CHOOSER ACTION SELECT FOLDER,
(gtk.STOCK CANCEL, gtk.RESPONSE CANCEL,
gtk.STOCK_OPEN, gtk.RESPONSE OK))

class FileDialog:
def ShowDialog(self,which,CurrentPath):

Lo if which == #file chooser

: file to be #gtk.FileChooserDialog(title,parent,action,buttons,backend)

: selected at a dialog = gtk.FileChooserDialog("Select files to add...",None,
: time, since

gtk .FILE CHOOSER ACTION OPEN,
(gtk.STOCK_CANCEL, gtk.RESPONSE CANCEL,
gtk.STOCK OPEN, gtk.RESPONSE OK))
else: #folder chooser

dialog = gtk.FileChooserDialog("Select Save Folder..",6 None,
gtk.FILE CHOOSER ACTION SELECT FOLDER,
(gtk.STOCK_CANCEL, gtk.RESPONSE CANCEL,
gtk.STOCK_OPEN, gtk.RESPONSE OK))

The next two lines will be (outside of the IF/ELSE statement)...

dialog.set_default response(gtk.RESPONSE_ OK)

if CurrentPath != "":
dialog.set current folder(CurrentPath)
response = dialog.run()

Next, we need to handle the response from the dialog.

if response == gtk.RESPONSE OK:
fileselection = dialog.get_ filenames()
CurrentPath = dialog.get_current folder()
dialog.destroy()
return (fileselection,CurrentPath)

elif response == gtk.RESPONSE_ CANCEL:
print 'Closed, no files selected'
dialog.destroy()

/home/user2/playlistmaker. Each

fFull circle magazine The Compleat Python

@ 106 ﬁ contents ©

PROGRAM IN PYTHON - PART 22

time we pop up the dialog, the
starting folder would be
/home/user2/playlistmaker.
Quickly, the user would become

folder he was in to be the starting
folder next time. Make sense? OK.

of code.

button which sends back a
gtk.RESPONSE_OK, we get the
name or names of the files the

dialog, and then return the data
back to the calling routine. If, on
the other hand, the user clicked
on the 'Cancel' button, we simply
destroy the dialog. | put the print
statement in there just to show
you that the button press worked.
You can leave it or take it out.
Notice that when we return from
the Open button part of the
routine, we are returning two sets
of values. 'fileselection' is a list of
the files selected by the user, as
well as the CurrentPath.

In order to get the routine to do
something, add the following line
under the on_tbtnAdd_click
routine...

£
user selected, set the current path :

to the folder we are in, destroy the :
: self.CurrentPath

fd = FileDialog()

: selectedfiles,self.CurrentPat:
: h =
: fd.ShowDialog(0,self.CurrentP :

frustrated by this, wanting the last : iy

. Here we retrieve the two return

So, bottom right are our next lines : \5jues that are sent from our

: return call. For now, add the

. following code to see what the

Here we check the responses sent : jnformation returned will look like.

back. If the user clicked the 'Open' :
: for £ in selectedfiles:

print "Current path is %s" %

When you run the program,

are no files selected. Don't worry

fFull circle magazine

@ 107

about that right now - we'll handle
that in a little bit. I just wanted to

. let you see what comes back if the :
: 'Open' button is pressed. One :
. thing we should do is add a filter
. to our file-open dialog. Since we
. expect the user to normally select
. music files, we should (1) give the :
. option to display only music files, :
. and (2) give the option to show all
. files just-in-case. We do this by
. using the filefilter attributes of the :
. dialog. Here's the code for that
print "User selected %s" % Whlc_h Sh,OUId go in the V_VhICh -
. section right after the dialog set
- line.

; filter = gtk.FileFilter()
: filter.set name("Music
: Files")

P : filter.add pattern("*.mp3")
. click on the 'Add' button. You'll see :

. the file dialog. Now move to
. somewhere where you have some @ 91
' files and select them. You can hold | Z:1te* =
. down the [ctrl] key and click on

. multiple files to select them

- individually, or the [shift] key to

. select multiple contiguous files.

. Click on the 'Open' button, and

- look at the response in your

. terminal window. Please note that
- if you click on the 'Cancel' button
: right now, you'll get an error

. message. That's because the

. above code assumes that there

filter.add:pattern("*.ogg")

. filter.add pattern("*.wav")
: dialog.add filter(filter)

gEk.FileFilter()

: filter.set name("All files")
: filter.add_pattern("*")
: dialog.add_filter(filter)

We are setting up two "groups",

. one for music files

. (filter.set_name("Music Files")),

. and the other for all files. We use
. a pattern to define the types of

. files we want. | have defined three
. patterns, but you can add or
. delete any that you wish. | put the
" the filename into path, filename,

music filter first, since that's what

The Compleat Python

we will assume the user is going
to be mainly concerned with. So
the steps are...

* Define a filter variable.
.« Set the name.

* Add a pattern.
* Add the filter to the dialog.

© You can have as many or as few
. filters as you wish. Also notice that

once you have added the filter to

. the dialog, you can re-use the
. variable for the filter.

. Back in the on_tbtnAdd_clicked

. routine, comment out the last

. lines we added and replace them
: with this one line.

E self.AddFilesToTreeview(selec
: tedfiles)

so our routine now looks like the
: code shown on the next page.

. So, when we get the response
back from file dialog, we will send the
. list containing the selected files to
this routine. Once here, we set up a
counter variable (how many files we
are adding), then parse the list.

Remember that each entry contains

the fully qualified filename with path

and extension. We'll want to split

ﬁ contents ©

PROGRAM IN PYTHON - PART 22

def on tbtnAdd clicked(self,widget):
fd = FileDialog()
selectedfiles,self.CurrentPath =
fd.ShowDialog(0,self.CurrentPath)

As always, the full code can be
. found at

http://pastebin.com/JtrhuE71.

self.AddFilesToTreeview(selectedfiles)

We now have to create the function that we just put the call
to. Put this function after the on_btnSavePlaylist_clicked

routine.

def AddFilesToTreeview(self,FileList):

counter = 0
for £ in FileLlist:

extStart = f.rfind(".")
fnameStart = f.rfind("/")
extension = f[extStart+l:]

fname = f[fnameStart+l:extStart]
fpath = f[:fnameStart]

data = [fname,extension, fpath]
self.playlList.append(data)

counter += 1

self.RowCount += counter
self.sbar.push(self.context_id,"%s files added

and extension. First we get the
very last 'period' from the
filename and assume that is
the beginning of the extension
and assign its position in the
string to extStart. Next we find
the very last '/* in the filename
to determine the beginning of

the filename. Then we break up

. Now you can run the

: application and see the data in
. the TreeView.

the string into extension,
filename and file path. We then
stuff these values into a list
named 'data' and append this
into our playlist ListStore. We

- increment the counter since we
- have done all the work. Finally

. we increment the variable :
: RowCount which holds the total :
- number of rows in our :
ListStore, and then we print a

. message to the status bar.

fFull circle magazine

@ 108

Next time, we'll finalize our
- application, filling in the
. missing routines, etc.

The Compleat Python

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,

ﬁ contents ©

http://pastebin.com/JtrhuE71

Program In Python - Part 23

his time, we are going
to finish our
playlistmaker program.
Last time, we got a

good bit done, but we left some :
. contain “logo.png”.

things incomplete. We can't

save the playlist, we don't have :
: box, select treeviewl,

. go to the signal tab,
. and, under GtkTreeView

the movement functions done,
we can't select the file path to
store the file in, and so on.

However, there are a few things :
: handler for

. on_treeviewl_cursor_ch
: anged. Remember, as |

. told you last month, to

: click off that to make

. the change stick. Finally,
: again in the hierarchy

. box, select txtFilename,

: and go to the signal tab.
. Scroll down until you

: find 'GtkWidget', and

- scroll down further until you get
: to 'key-press-event'. Add a
. handler for :
- 'on_txtFilename_key_press_eve
. nt'. Save your glade project and :

. close glade.

that we need to do before we
start coding. First, we need to
find an image for the logo for
our application in the about
box, and for when the
application is minimized. You
can dig around in the
/usr/share/icons folder for an
icon you like, or you can go on
the web and get one, or create
one yourself. Whatever you get,

put it into your code folder with :

the glade file and the source
code from last month. Name it
logo.png. Next, we need to
open the glade file from last
month and make a few
changes.

First, using the MainWindow,
go to the General tab, and

. scroll down until you

. find Icon. Using the

. browse tool, find your
. icon and select that.

Now the text box should

Next, in the hierarchy

| cursor-changed, add a

: Now it's time to complete
. our project. We'll start from
" where we left off using last

month's code.
full circle magazine

elif response gtk .RESPONSE CANCEL:
print 'Closed, no files selected'
dialog.destroy()

Notice that we aren't returning anything. This is what caused the
error. So to fix this, we want to add the following line of code after the
dialog.destroy() line.

Return ([],"")

This will keep the error from happening. Next, let's add the text box
event handler we created in glade. To our dictionary, add the following
line.

"on_txtFilename key press_event": self.txtFilenameKeyPress,
As you remember, this creates a function to handle the keypress
event. We'll next create the function.

def txtFilenameKeyPress (self,widget,data):
if data.keyval == 65293: # The value of the return key

The first thing | want to do is _ You might imagine, this
. modify the code in class . simply looks at the value of

. FileDialog. If you remember . each key that is pressed when
: from last time. if the user . the user is in the txtFilename

clicked the 'Cancel' button, text box, and compares it to the
: there was an error raised. We value 65293, which is the code

. will fix that first. At the end of . that is assigned to the return

the routine, you have the code k;:y (gntelrl keK). If it mlatclhes,
- shown above. : then it calls the SavePlaylist

© function. The user doesn't have
to even click the button.

ﬁ contents ©

The Compleat Python

@ 109

PROGRAM IN PYTHON - PART 23

Now on to new code. Let's
deal with the toolbar button
ClearAll. When the user clicks
this button, we want the :
treeview and the ListStore to be :
cleared. This is a simple one- :
liner that we can put into the
on_tbtnClearAll_clicked routine.

def .
on_tbtnClearAll clicked(self, :
widget):

self.playList.clear()

| know that you are thinking

. “What the heck is an iterator?”
. Well you already have used
. them and don't even know it.

Think about the following code

. (above right) from the
. AddFilesToTreeview function
. from last month.

Look at the 'for' statement

. portion. We use an iterator to
. walk through the list called
. FileList. Basically, in this case,

. the iterator simply goes

We are simply telling the
playList ListStore to clear itself.
That was easy. Now we'll deal
with the Delete toolbar button.
Much harder, but once we get
into it, you'll understand.

. through each entry in the list

. returning each item separately.
. What we are going to do is

. create an iterator, fill that with
. the selected rows in the

. treeview, and use that like a

. list. So the code (middle right)

First we have to discuss how
we get a selection from the
treeview widget and the
ListStore. This is complicated,
so go slowly. In order to get
data back from the ListStore,
we first have to get a
gtk.TreeSelection which is a
helper object that manages the
selection within a treeview.
Then we use that helper object
to retrieve the model type, and
an iterator that contains the
selected rows.

. for on_tbtnDelete clicked
- will be.

The first line creates

. the TreeSelection object.

. We use that to get the

. rows selected (which is only

. one because we didn't set the
. model to support multiple

. selections), fill that into a list
. called iters, and then walk it

. removing (like the .clear

. method). We also decrement

the variable RowCount, and

fFull circle magazine

@ 110

def AddFilesToTreeview(self,FileList):

counter = 0
for £ in FileList:
extStart =
fnameStart =
extension =
fname =
fpath =
data =

f.rfind(".")
f.rfind("/")
f[extStart+l:]
f[fnameStart+l:extStart]
f[:fnameStart]

[fname,extension, fpath]

self.playList.append(data)

counter += 1

def on_tbtnDelete clicked(self,widget):
sel = self.treeview.get selection()

(model ,rows) =
iters=[]
for row in rows:

sel.get_gelected_rows()

iters.append(self.playList.get_iter(row))

for i in iters:
if i is not None:

self.playList.remove (i)

self.RowCount -= 1
self.sbar.push(self.context_id,"%d files in list." %

(self.RowCount))

fd = FileDialog()
filepath,self.CurrentPath =

o

def on btnGetFolder clicked(self,widget):

fd.ShowDialog(1l,self.CurrentPath)

self.txtPath.set_text(filepath[O0])

. then display the number of files : on_btnGetFolder_clicked

. in the status bar.

Now, before we get to the

move functions, let's deal with

. the save-file-path function.

. We'll use our FileDialog class as :
. by the FileDialog into the
" textbox that we set up

. before. We'll do all the code
" (bottom right)for this in the

The Compleat Python

. routine.

The only thing really

different from before is the last
. line of this code. We are putting

the name of the path returned

ﬁ contents ©

PROGRAM IN PYTHON - PART 23

previously using the set text
method. Remember that the
data returned to us is in the
form of a list, even though
there is only one entry. That's
why we use 'filepath[0]'.

Let's do the file-save
function. We can safely do that
before we deal with the move
functions. We'll create a
function called SavePlaylist.
The first thing we need to do
(above right) is check to see if
there is anything in the txtPath
text box. Next we need to
check to see if there is a

filename in the txtFilename text

box. For both of those
instances, we use the
.get_text() method of the text
box.

Now that we know that we

have a path (fp) and a filename

(fn), we can open the file, print
our M3U header, and walk the
playList. The path is stored (if
you will remember) in column
2, the filename in column 0,
and the extension in column 1.
We simply (right) create a
string and then write it to the
file and finally close the file.

: the move functions. Let's start

. with the Move To Top routine.

. Like we did when we wrote the

. delete function, we get the _
. selection and then the selected :
- row. Next we have to step :

def SavePlaylist(self):
fp self.txtPath.get text()
fn

Now check the values...

if fp == "";

Get the filepath from the text box

self.txtFilename.get text() # Get the filename from the filename text box

IF the path is blank...

self.MessageBox ("error",6 "Please provide a filepath for the playlist.")

elif fn == "":

IF the filename is blank...

self.MessageBox ("error",6 "Please provide a filename for the playlist file.")

else:

plfile = open(fp + "/" + £fn,"w")
plfile.writelines (' #EXTM3U\n')
for row in self.playlList:

plfile.writelines("%s/%s.%s\n"
Finally close the file

plfile.close

Otherwise we are good to go.

Open the file
Print the M3U Header

% (row[2],row[0],row[l])) #Write the line data

Lastly, we pop up a message box informing the user that the file has been saved.

self.MessageBox("info","Playlist file saved!")

We now need to put in a call to this routine in our on_btnSavePlaylist_clicked event handler

routine.

def on btnSavePlaylist clicked(self,widget):

self.SavePlaylist ()

Save your code and test it. Your play list should save properly and look something like the

We can now start work on

through the rows to get two

fFull circle magazine

@ 111

def on_tbtnMoveToTop clicked(self,widget):

sel = self.treeview.get_selection()
(model,rows) = sel.get selected_rows()
for pathl in rows:

path2 = 0
iterl=model.get_iter(pathl)
iter2 = model.get_iter(path2)
model.move before(iterl,iter2)

The Compleat Python

ﬁ contents ©

PROGRAM IN PYTHON - PART 23

variables. We will call them
pathl and path2. Path2, in this
case will be set to 0, which is
the “target” row. Pathl is the
row the user has selected. We
finally use the
model.move_before() method
to move the selected row up to
row 0, effectively pushing
everything down. We'll put the
code (below right) directly in
the on_tbtnMoveToTop_clicked
routine.

For the MoveToBottom
function, we will use almost
exactly the same code as the
MoveToTop routine, but, in
place of the
model.move_before() method,
we will use the
model.move_after() method,

and, instead of setting path2 to
. well. In the extended format,

. there is an extra line that can :
. be added to the file before each :
. song file entry that contains

. extra information about the

. song. The format of this line is
. as follows...

Now let's take a look at what

0, we set it to self.RowCount-1.
Now you understand why we
have a RowCount variable.
Remember the counts are zero
based, so we have to use
RowCount-1 (above right).

it will take to do the MoveUp
routine. Once again, it is fairly

similar to the last two functions

we created. This time, we get

. the MoveDown function. This

. time however, we check to see :
. if path2 is LESS than or equal to :
. the value of self.RowCount-1 :
. (third down, right).

pathl which is the selected row
and then assign that row

. number-1 to path2. Then IF

. path2 (the target row) is

. greater than or equal to 0, we
. use the model.swap() method
. (second down, right).

The same thing applies for

Now let's make some

. changes to the abilities of our
. play list. In last month's article, :
. | showed you the basic format :
. of the play list file (bottom).

However, | did say that there
was an extended format as :

#EXTM3U

: #EXTINF: [Length of song in
: seconds], [Artist Name] —
: [Song Title]

: You might have wondered
. why we included the mutagen

def on_tbtnMoveToBottom clicked(self,widget):

sel = self.treeview.get_selection()
(model,rows) = sel.get selected rows()
for pathl in rows:

path2 = self.RowCount-1
iterl=model.get_iter(pathl)
iter2 = model.get iter(path2)
model.move after(iterl,iter2)

def on_tbtnMoveUp clicked(self,widget):

sel = self.treeview.get_selection()
(model,rows) = sel.get selected rows()
for pathl in rows:
path2 = (pathl[0]-1,)
if path2[0] >= O:
iterl=model.get_iter(pathl)
iter2 = model.get_iter(path2)
model.swap(iterl,iter2)

def on_tbtnMoveDown clicked(self,widget):

sel = self.Ereeview.get_selection()
(model,rows) = sel.get selected rows()
for pathl in rows:
path2 = (pathl[0]+1,)
iterl=model.get_iter(pathl)
if path2[0] <= self.RowCount-1:
iter2 = model.get iter(path2)
model.swap(iterl,iter2)

Adult Contemporary/Chris Rea/Collection/02 - On The Beach.mp3

Adult Contemporary/Chris Rea/Collection/07 - Fool (If You Think It's Over) .mp3

Adult Contemporary/Chris Rea/Collection/11 - Looking For The Summer.mp3

fFull circle magazine

@ 112

The Compleat Python

- library from the beginning since
. we never used it. Well, we will

. now. To refresh your memory,

. the mutagen library is for

. accessing ID3 tag information

. from inside of MP3 files. To get

ﬁ contents ©

PROGRAM IN PYTHON - PART 23

the full discussion about this,
please refer to issue 35 of Full
Circle which has my part 9 of
this series. We'll create a
function to deal with the
reading of the MP3 file and
return the Artist name, the
Song Title, and the length of
the song in seconds, which are
the three things we need for
the extended information line.
Put the function after the
ShowAbout function within the
PlaylistCreator class (next
page, top right).

Again, to refresh your
memory, I'll walk through the
code. First we clear the three
return variables so that if
anything happens they are
blank upon return. We then

pass in the filename of the MP3

file we are going to look at.

Next we pull the keys into (yes,
you guessed it) an iterator, and :

walk through that iterator
looking for two specific tags.
They are 'TPE1' which is the

artist name, and 'TIT2' which is

the song title. Now, if the key
doesn't exist, we would get an
error, so we wrap each get call
with a 'try|except' statement.
We then pull the song length
from the audio.info.length

attribute, and return the

. whole shebang.

Now, we will want to

. modify the SavePlaylist

- function to support the

. extended information

. line. While we are there,
. let's check to see if the

. filename exists, and, if

. so, flag the user and

. exit the routine. Also, to
. make things a bit easier
. for the user, since we

. don't support any other
- filetype, let's

import os.path

def GetMP3Info(self,filename):
artist = "'
title = '
songlength = 0
audio = MP3(filename)
keys = audio.keys()
for key in keys:

try:
if key == "TPEl": # Artist
artist = audio.get (key)
except:
artist = '
try:
if key == "TIT2": # Song Title
title = audio.get (key)
except:

title = "'
songlength = audio.info.length
return (artist,title,songlength)

Audio Length

Then, go ahead and comment out your existing SavePlaylist function and we'll replace it.

def SavePlaylist(self):

fp = self.txtPath.get text()

Get the file path from the text box

fn = self.txtFilename.get text() # Get the filename from the text box

if fp == "":

IF filepath is blank...

self.MessageBox ("error", "Please provide a filepath for the playlist.")

elif fn == "":

IF filename is blank...

self.MessageBox ("error", "Please provide a filename for the playlist file.")

else:

Otherwise

Up to this point, the routine is the same. Here's where the changes start.

extStart

if extStart
fn +=

fn.rfind(".") # Find the extension start position

'.m3u' #append the extension if there isn't one.

self.txtFilename.set text(fn) #replace the filename in the text box

fFull circle magazine

The Compleat Python

@ 113 ﬁ contents ©

PROGRAM IN PYTHON -

PART 23

automatically append the
extension '.m3u' to the path
and filename if it doesn't exist.
First add an import line at the
top of the code importing

os.path between the sys import :

and the mutagen import
(bottom right).

Just like in the

AddFilesToTreeview function, we :

: self.MessageBox("error",
: file already exists.
: select another.")

will use the 'rfind' method to
find the position of the last
period ('.") in the filename fn. If

there isn't one, the return value :

is set to -1. So we check to see
if the return value is -1, and, if
so, we append the extension

in the text box just to be nice.

if os.path.exists(fp + "/" +
fn):

def SetupToolTips(self):

else:

plfile = open(fp + "/" + £fn,"w")
plfile.writelines ('#EXTM3U\n')

Open the file

for row in self.playList:

fname = "

plfile.close

self.MessageBox("info",

"The
Please

Next, we want to wrap the

rest of the function with an

: IF|ELSE clause (top right) so if
_ : the file already exists, we

and then put the filename back - simply fall out of the routine.
. We use os.path.exists(filename)

to do this check.

$s/%s.%s"
artist,title,songlength =
if songlength > 0 and (artist

plfile.writelines ("#EXTINF:%d,%s -
plfile.writelines("%s\n" %
Finally Close the file

% (row[2],row[0],row[1l])
self.GetMP3Info (fname)

$s\n" %
fname)

"Playlist file saved!")

The rest of the code is
mostly the save as before, but
let's look at it anyway.

Line 2 opens the file we are

: going to write. Line 3 puts the

M3U header in. Line 4 sets up

. for a walk through the playList

ListStore. Line 5 creates the

. filename from the three
: columns of the ListStore. Line 6 :
. calls GetMP3Info and stores the

return values into variables.

self.tbtnAdd.set tooltip text("Add a file or files to the playlist.")
self.tbtnAbout.set tooltip text("Display the About Information.")
self.tbtnDelete.set_tooltip text("Delete selected entry from the list.")

and title !=

self.tbtnClearAll.set tooltip text("Remove all entries from the list.")
self.tbtnQuit.set tooltip text("Quit this program.")

#Print the M3U header

II):
(songlength,artist,title))

¢ Line 7 then checks to see if we
: have values in all three

© variables. If so, we write the

. extended information line in

: line 8, otherwise we don't try.

: Line 9 writes the filename line

. as before. Line 10 closes the

: file gracefully, and line 11 pops
: up the message box letting the
: user know the process is all

done.

self.tbtnMoveToTop.set tooltip text("Move the selected entry to the top of the list.")

self.tbtnMoveUp.set tooltip text("Move the selected entry up in the list.")
self.tbtnMoveDown.set tooltip text("Move the selected entry down in the list.")

self.tbtnMoveToBottostet_tooltip_text("Move the selected entry to the bottom of the list.")
self.btnGetFolder.set tooltip text("Select the folder that the playlist will be saved to.")

self.btnSavePlaylist.set tooltip text("Save the playlist.")
self.txtFilename.set tooltip text("Enter the filename to be saved here.

@ 114

you if you don't include it.")

full circle magazine The Compleat Python

The extension

'.m3u' will be added for

ﬁ contents ©

PROGRAM IN PYTHON - PART 23

Go ahead and save your
code and give it a test drive.

At this point about the only
thing that should be added
would be some tool tips for our
controls when the user hovers

the mouse pointer over them. It :
- including the glade file we

. created last month, can be

. found at pastebin:

: http://pastebin.com/tQJizcwT

adds that professional flair
(below). Let's create a function
to do that now.

We are using the widget
references we set up earlier,
and then setting the text for

it) set_tooltip_text attribute.

Next we need to add the call to
the routine. Back in the __init__

routine, after the
self.SetWidgetReferences line,
add:

self.SetupToolTops ()

Last, but certainly not least,
we want to put our logo into
our About box. Just like
everything else there, there's
an attribute for that. Add the

following line to the ShowAbout

routine.

about.set logo(gtk.gdk.pixbufé

_new_from:file("logo.png"))

That's about it. You now
have a fully functioning

. program that looks good, and
. does a wonderful job of

. creating a playlist for your

: music files.

The full source code,

Until next time, enjoy your

" new found skills.
the tooltip via the (you guessed :

e == |

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Colorado
and has been programming since
1972. He enjoys cooking, hiking,
music, and spending time with
his family. His website is

fFull circle magazine

EXTRA!EXTRA!
READALLABOUTIT?

BUILD THE PERFECT,
SERVER WITH ~_ °
UBUNTU 9.10

THE PERFECT SERVER
SPECIAL EDITION

This is a special edition of
Full Circle that is a direct
reprint of the Perfect
Server articles that were
first published in FCM#31-
#34.

Full Circle Special Editions
Released On Unsuspecting
World*

http://fullcirclemaqgazine.or

a/special-edition-1-the-

< \.‘% full Ci[f!ﬁ

PROGRAMMING SERIES S

PROGRAM
IN PYTHON

Volume One

PYTHON
SPECIAL EDITION #01

This is a reprint of
Beginning Python Parts 01
- 08 by Greg Walters.

http://fullcirclemaqgazine.o
ra/pvthon-special-edition-

* Neither Full Circle magazine, nor its makers, apologize for any hysteria caused in the release of its publications.

The Compleat Python

@ 115

ﬁ contents ©

http://fullcirclemagazine.org/special-edition-1-the-perfect-server/
http://fullcirclemagazine.org/python-special-edition-1/
http://www.thedesignatedgeek.com

OW! It's hard to
believe that this is :
the 24th issue :
already. Two years :
we've been learning Python! :
You've come a very long way.

printer...

import os

g pPr = os.popen('lpr','w')

! pr.write('print test from

This time we are going to
cover two topics. The first is
printing to a printer, the second :
is creation of RTF (Rich Text :
Format) files for output.

Generic Printing under
Linux

So let's start with printing to
a printer. The idea to cover this
came from an email sent by
Gord Campbell. It's actually
easy to do most printing from
Linux, and easier than that
other operating system that
starts with “WIN” - and | won't
deal with that OS.

: linux via python\n')
5 pr.write('Print finished\n')

: pr.close()

This is fairly easy to

. understand as long as you

. expand your mind just a bit. In
. the above code, 'lpr' is the print :
. spooler. The only requirement is :
. that we have already :
. configured 'lpd' and that it's
. running. More than likely, when :
: you use a printer under Ubuntu, :
. it's already done for you. 'Lpd'
. is usually referred to as a

. “magic-filter” that can

. automatically convert different
. types of documents to

- something the printer can

As long as all you want to
print is straight text, no bold,
italics, font changes, etg, it's
fairly easy. Here's a simple app
that will print directly to your

. understand. We are going to

. print to the 'lpr' device/object.
. Think of it simply as a file. We
. open the file. We have to

import ‘os'. Then in line 2, we

full circle magazine

: filename =

We can also create a text

file, then send it out to the
. printer like this...

! import os

'dummy.file'

o

os.system('lpr %s' %
filename)

In this case, we are still

. to basically create a command
. that looks to linux like we sent
: it from a terminal.

PYRTF

Now let's deal with RTF files.

" RTF format (that's kind of like

@ 116

The Compleat Python

Program In Python - Part 24

. open the 'lpr' with write access :
© - assigning it to the object '
. variable 'pr'. We then do a :
: 'pr.write' with anything we want :
: to print. Finally (line 5) we close :
. the file, which will send the '
. data out to the printer.

Wow! It's hard to
believe that this is
the 24th issue
already. Two years
we've been learning
Python!

saying PIN number since PIN

. stands for Personal

. Identification Number, so that
. translates to Personal-

. Identification-Number Number.
. Something from the

. department of redundancy

. department, huh?) was

. originally created by the

; using the Ipr object, but we are Microsoft Corporation in 1987,

using the 'os.system' command by the TeX typesetting

. language. PyRTF is a wonderful
. library that makes it easy to
. write RTF files. You have to do

I'll leave you to play with this | 2°™M¢€ planning up front on how

for now.

and its syntax was influenced

. you want your files to look, but
. the results will be well worth it.

First, you need to download

and install the PyRTF package.
- Goto
http://pyrtf.sourceforge.net and

ﬁ contents ©

http://pyrtf.sourceforge.net

PROGRAM IN PYTHON - PART 24

get the PyRTF-0.45.tar.gz
package. Save it someplace
and use archive manager to
unpack it. Then using terminal,
go to where you unpacked it.
First we need to install the
package, so type “sudo python
setup.py install” and it will be

an examples folder there.
There's some good information
there on how to do some
advanced things.

Here we go. Let's start as we
usually do, creating the stub of
our program which is shown on
the next page, top right.

Before going any further,
we'll discuss what's going on.
Line 2 imports the PyRTF

library. Note that we are using a

different import format than
normal. This one imports
everything from the library.
Our main working routine is
MakeExample. We've stubbed
for now. The OpenFile routine
creates the file for us with the
name we pass into it, appends
the extension “rtf”, puts it into

the “write” mode, and returns a :

file handle.

We've already discussed the 5

if __name__ routine before, but

to refresh your memory, if we
are running the program in a

. standalone mode, the internal
: variable __name__is set to

S u

__main__". If we call it as an

. import from another program,
. then it will just ignore that

. portion of the code.

installed for you. Notice there is :

Here, we create an instance

. of the Renderer object, call the
. MakeExample routine, getting

. the returned object doc. We :
. then write the file (in doc) using :
. the OpenFile routine. :

Now for the meat of our

worker routine MakeExample.
- Replace the pass statement
with the code shown below.

Let's look at what we have

doc = Document ()
ss doc.StyleSheet
section = Section()

doc.Sections.append(section)

#!/usr/bin/env python
from PyRTF import *

def MakeExample():
pass

def OpenFile(name)
return file('%s.rtf' %

if name_ == ' main_ '
DR = Renderer()
doc = MakeExample()

name,

|w|)

DR.Write(doc, OpenFile('rtftesta'))

print "Finished"

: style sheet. Then we create an
. instance of the section object
. and append it to the document. :
. Think of a section as a chapter
. in a book. Next we create a

. paragraph using the Normal

. style. The author of PyRTF has
. preset this to be 11-point Arial :
. done. In the first line we create : font. We Fhen put whatever text :
. an instance of Document. Then we want into the paragraph,

. we create an instance of the

p = Paragraph(ss.ParagraphStyles.Normal)

p-append('This is our first test writing to a RTF file. '
'This first paragraph is in the preset style called normal '
'and any following paragraphs will use this style until we change it.')

section.append(p)

return doc

fFull circle magazine

@ 117

The Compleat Python

return our doc document.

That is very easy. Again, you

. need to plan your output fairly
. carefully, but nothing too
. onerous.

Save the program as
“rtftesta.py” and run it. When

. it's completed, use openoffice
. append that to the section, and :

(or LibreOffice) to open the file

ﬁ contents ©

PROGRAM IN PYTHON - PART 24

and look at it.

Now let's do some neat

things. First, we'll add a header.

Once again, the author of
PyRTF has given us a
predefined style called
Headerl. We'll use that for our
header. In between the
doc.Sections.append line and

the p = Paragraph line, add the

following.

p:
Paragraph(ss.ParagraphStyles.
Headingl)

section.append(p)

Change the name of the rtf
file to “rtftestb”. It should look
like this:

DR.Write(doc,
OpenFile('rtftestb'))

Let's look at how to
change fonts, font
sizes and attributes
(bold, italic, etc) on
the fly.

p:
p.append (

Paragraph(ss.ParagraphStyles.Normal)
'It is also possible to provide overrides for elements of a style. ',

'For example you can change just the font ',

TEXT ('
1 orl,

TEXT (' typeface to Impact',

size to 24 point', size=48),

' or even more Attributes like',
TEXT(' BOLD',bold=True),

TEXT ('
TEXT ('

')

section.append(p)

Save this as rtftestb.py and

. run it. So now we have a

. header. I'm sure your mind is
. going down many roads

: . thinking about what more can
. d('E le Head 1) : _
prappend(Exanpie Heading 1) . we do. Here's a list of what the
. author has given us as the

. predefined styles.

Normal, Normal Short,

. Heading 1, Heading 2, Normal

. Numbered, Normal Numbered

. 2. There's also a List style,

: which | will let you play with on
. your own. If you want to see

. more, on this and other things,
. the styles are defined in the file :
. Elements.py in the distribution
. you installed.

While these styles are good

for many things, we might want
: to use something other than

the provided styles. Let's look

fFull circle magazine

@ 118

or Italic',italic=True),
or BOTH',bold=True,italic=True),

. at how to change fonts, font
. sizes and attributes (bold, italic, :
. etc) on the fly. After our :
paragraph and before we return :
. the document object, insert the :
. code shown top right, and

: change the output filename to
. rtftestc. Save the file as

. rtftestc.py. And run it. The new :
. portion of our document should :
. look like this...

It is also possible to provide

overrides for elements of a
. style. For example you can
: change just the font size to 24

point or typeface to Impact or

Now what have we done?
Line 1 creates a new

. paragraph. We then start, as

we did before, putting in our

The Compleat Python

font=ss.Fonts.Impact),

text. Look at the fourth line

(TEXT("' size to 24 point', size =

. 48),). By using the TEXT

qualifier, we are telling PyRTF
to do something different in the

. middle of the sentence, which
- in this case is to change the
. size of the font (Arial at this
: point) to 24-point, followed by

the 'size = ' command. But,

. wait a moment. The 'size ='

. says 48, and what we are

. printing says 24 point, and the
. output is actually in 24-point

. text. What's going on here?

. Well the size command is in

- half points. So if we want an 8-
. even more Attributes like BOLD
. or Italic or BOTH.

point font we have to use size

= 16. Make sense?

Next, we continue the text

and then change the font with
. the 'font =' command. Again,

everything within the inline

ﬁ contents ©

PROGRAM IN PYTHON - PART 24

TEXT command between the
single quotes is going to be
affected and nothing else.

Ok. If that all makes sense,
what else can we do?

We can also set the color of
the text within the TEXT inline
command. Like this.

p = Paragraph()
p.append('This is a new
paragraph with the word ',
TEXT('RED',colour=ss.Colours.
Red),

' in Red text.')

section.append(p)

restate the paragraph style as
Normal, since it sticks until we
change it. Also notice that if

you live in the U.S., you have to :
. LucidaSansUnicode,

. MicrosoftSansSerif,

. PalatinoLinotype,

. MonotypeCorsiva, Papyrus,

. Sylfaen, Symbol, Tahoma,

. TimesNewRoman, TrebuchetMS
- and Verdana.

use the “proper” spelling of
colour.

Here are the colors that are
(again) predefined: Black, Blue,
Turquoise, Green, Pink, Red,
Yellow, White, BlueDark, Teal,
GreenDark, Violet, RedDark,

YellowDark, GreyDark and Grey.

p = Paragraph(ss.ParagraphStyles.Courier)

p.append('Now we are using the Courier style at 8 points.

'All subsequent paragraphs will use this style automatically.
'This saves typing and is the default behaviour for RTF documents.',6 LINE)

section.append(p)
p = Paragraph()

p.append('Also notice that there is a blank line between the previous paragraph ',

'and this one.

section.append(p)

And here is a list of all the

predefined fonts (in the
- notation you must use to set
- them):

. Arial, ArialBlack, ArialNarrow,

. BitstreamVeraSans,

. BitstreamVeraSerif,

. BookAntiqua,

. BookmanOldStyle,

. BookmanOldStyle, Castellar,

. CenturyGothic, ComicSansMS,
Notice that we didn't have to :
. FranklinGothicMedium,

. Garamond, Georgia,

. Haettenschweiler, Impact,

CourierNew,

LucidaConsole,

So now you must be thinking |

fFull circle magazine

@ 119

: that this is all well and good,
. but how do we make our own
. styles? That's pretty easy. Move :
. to the top of our file, and before :
. our header line, add the ;
. following code.

5 result = doc.StyleSheet
5 NormalText = :
: TextStyle(TextPropertySet(res :
: ult.Fonts.CourierNew,16))
 ps2 =

: ParagraphStyle('Courier', Norm :

: alText.Copy())

5 result.ParagraphStyles.append

(ps2)

Before we write the code to

. actually use it, let's see what

. we have done. We are creating
. a new stylesheet instance :
. called result. In the second line, :

That is because of the "LINE" inline command.')

. as Courier. Remember, we have
. to use 16 as the size since the

font size is in half-point values.

Now, before the return line

at the bottom of the routine,
. let's include a new paragraph
. using the Courier style.

So now you have a new style

. you can use anytime you want.
: You can use any font in the list
: above and create your own

. styles. Simply copy the style

. code and replace the font and

. size information as you wish.

. We can also do this...

! NormalText =

5 TextStyle(TextPropertySet (res
: ult.Fonts.Arial,22,bold=True,
E colour=ss.Colours.Red))

“registering” the style

: ps2 =
we are _settmg Fhe font Columnn Header 1 | Column Header 2 | Column Header 3
: to 8-point Courier
: Fow ldatal Fow 1 data 2 Fow 1 data 3
: New, and then
FRow 2 datal Row 2 data 2 Eow 2 dafa 3

The Compleat Python

ﬁ contents ©

PROGRAM IN PYTHON - PART 24

ParagraphStyle('ArialBoldRed"
;NormalText.Copy())

result.ParagraphStyles.append;

(ps2)
And add the code below...

p:

ArialBoldRed)

using the ArialBoldRed
style.',LINE)
section.append(p)

to print the ArialBoldRed
style.

Tables

Many times, tables are the
only way to properly represent
data in a document. Doing

tables in text is hard to do, and,

in SOME cases, it's pretty easy
in PyRTF. I'll explain this
statement later in this article.

Let's look at a standard table it

(shown below) in
OpenOffice/LibreOffice. It looks
like a spreadsheet, where

Rows go left to right,

; doc =

i ss =

columns go down. Easy

concept.

Let's start a new application

and call it rtfTable-a.py. Start
: with our standard code (shown
: on the next page) and build

. from there.
Paragraph(ss.Paragraphstyles.;

We don't need to discuss

p.append (LINE, 'And now we are : this since it's basically the

: same code that we used

. before. Now, we'll flesh out the
. TableExample routine. I'm

: basically using part of the

. example file provided by the

: author of PyRTF. Replace the

. pass statement in the routine

: with the following code...

Document ()
doc.StyleSheet

section = Section()

; doc.Sections.append(section)

This part is the same as

. before, so we'll just gloss over

§ table =
. Table(TabPS.DEFAULT WIDTH *
everything ends up in columns. :

7,

TabPS.DEFAULT WIDTH * 3

full circle magazine

#!/usr/bin/env python

from PyRTF import *

def

def

if name

This line (yes, it's really one
. line, but is broken up for easy
© viewing) creates our basic
© table. We are creating a table
© with 3 columns, the first is 7
. tabs wide, the second and third :
. are three tabs wide. We don't
: have to deal with tabs alone,
© you can enter the widths in

TableExample():
pass

OpenFile (name) :

return file('%s.rtf' % name, 'w')

__main__':

DR = Renderer()

doc = TableExample()

DR.Write(doc, OpenFile('rtftable-a'))

print "Finished"

TabPS.DEFAULT WIDTH * 3 .
-) : Here we are setting the data

. that goes into each cell in the
- first row.

el =

: Cell(Paragraph(ss.ParagraphSt
: yles.Heading2, 'Heading2

! Style'))

; c2 =
: Cell(Paragraph(ss.ParagraphSt
! yles.Normal, 'Back to Normal

© twips. More on that in a : Style'))

; moment. ; c3 = Cell (Paragraph('More

: ! Normal Style'))

: cl = Cell(Paragraph('Row One, !

: Cell Omne')) ! table.AddRow(cl,c2,c3)

; c2 = Cell (Paragraph('Row One,g .

. Cell Two')) : This group of code sets the

: : data for row number two.

: €3 = Cell(Paragraph('Row One, : Notice we can set a different
Cell Three'))

r

table.AddRow(cl,c2,c3)

@ 120

style for a single or multiple
cells.

The Compleat Python

ﬁ contents ©

PROGRAM IN PYTHON - PART 24

cl =

Cell (Paragraph(ss.ParagraphsSt

yles.Heading2, 'Heading2
Style'))

c2 =

yles.Normal, 'Back to Normal
Style'))

c3 = Cell (Paragraph('More
Normal Style'))

table.AddRow(cl,c2,c3)

This sets the final row.

section.append(table)

return doc

This appends the table into
the section and returns the
document for printing.

Save and run the app. You'll
notice that everything is about
what you would expect, but

there is no border for the table.

That can make things difficult.
Let's fix that. Again, I'll mainly
use code from the example file
provided by the PyRTF author.

Save your file as rtftable-
b.py. Now, delete everything
between
‘doc.Sections.append(section)’
and 'return doc' in the

TableExample routine, and
replace it with the following...

: thin_edge = BorderPS(
: width=20,

! style=BorderPS.SINGLE)
Cell (Paragraph(ss.ParagraphsSt :
: thick _edge = BorderPS(
: width=80,
! style=BorderPS.SINGLE)

E thin frame = FramePS(
: thin_edge, thin_edge,
: thin_edge, thin_edge)

E thick frame = FramePS(
: thick _edge, thick_edge,
: thick _edge, thick_edge)

E mixed frame = FramePS (
: thin_edge,
: thin_edge,

thick edge,
thick edge)

Here we are setting up the

edge and frame definitions for
borders and frames.

: table = Table(

: TabPS. DEFAULT WIDTH * 3,
: TabPS. DEFAULT WIDTH * 3,
: TabPS. DEFAULT WIDTH * 3

; cl = Cell(Paragraph('R1C1l'
:), thin_ frame)
c2 = Cell(Paragraph('R1lC2'
)
; c3 = Cell(Paragraph('R1C3'

), thick frame)

" table.AddRow(cl, c2, c3)

full circle magazine

; cl = Cell(Paragraph(

In row one, the cells in

. column one (thin frame) and
. column 3 (thick frame) will
have a border around them.

'R2C1'
))
; c2 = Cell(Paragraph('R2C2'
))
; c3 = Cell(Paragraph('R2C3'

. table.AddRow(cl, c2, c3)

None of the cells will have a

border in the second row.

; cl = Cell(Paragraph('R3C1l'
:), mixed frame)
c2 = Cell(Paragraph('R3C2'
))
; c3 = Cell(Paragraph('R3C3'

), mixed frame)

. table.AddRow(cl, c2, c3)

Once again, cells in column
1 and three have a mixed

: frame in row three.

§ section.append(table)

So. You have just about

everything you need to create,
" through code, RTF documents.

@ 121

The Compleat Python

See you next time!

: Source code can be found at

- pastebin as usual. The first part
: can be found at

: http://pastebin.com/3Rs7T3D7
- which is the sum of rtftest.py

: (a-e), and the second

" rtftable.py (a-b) is at

. http://pastebin.com/XbaE2uP7.

=

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Colorado
and has been programming since
1972. He enjoys cooking, hiking,
music, and spending time with
his family. His website is

ﬁ contents ©

http://www.thedesignatedgeek.com
http://pastebin.com/3Rs7T3D7
http://pastebin.com/XbaE2uP7

number of you have

GUI programming

articles and how much :
: module. Some of them are

Toplevel (main window)
¢ container, Buttons, Labels,

you've enjoyed them. In
response to that, we will start
taking a look at a different GUI

toolkit called Tkinter. This is the :
: CheckButtons, RadioButtons,

|II

“official” way to do GUI

programming in Python. Tkinter : :
- and much more. There are also :
: many modules that add

functionallity on top of Tkinter.
. This month, we'll focus on four

has been around for a long
time, and has gotten a pretty
bad rap for looking “old
fashioned”. This has changed

recently, so | thought we'd fight :
. basically refer to it as the root

: window), Frame, Labels, and

that bad thought process.
PLEASE NOTE - All of the code

presented here is for Python 2.x
. we'll look at more widgets in

only. In an upcoming article,

we'll discuss how to use tkinter

in Python 3.x. If you MUST use
Python 3.x, change the import
statements to “from tkinter
import *”.

Of Background
Tkinter stands for “Tk

language all on its own, and the

. Tkinter module allows us to use :

commented about the : the GUI functions there. There

. are a number of widgets that

come natively with the Tkinter

Frames, Text Entry,

Canvas, Multiline Text entry,

widgets. Toplevel (from here I'll

Buttons. In the next article,
more depth.

Basically, we have the

parent doesn't have to be the

full circle magazine

. the child widgets, we have to
: use what's called “geometry

: management”. It's how things
: get put into the main root

. window. Most programmers use : positions. At first glance, you
. one of three types of geometry :
: management, either Packer,

: Grid, or Place management. In
: my humble opinion, the Packer :
: method is very clumsy. I'll let
: . you dig into that on your own.
. Toplevel container widget which :
. contains (holds) other widgets.
. This is the root or master

A Little History And A Bit ; Yinqow- Within this root

. window, we place the widgets
. we want to use within our

. program. Each widget, other

: than the Toplevel root widget

interface”. Tk is a programming : container, has a parent. The

. allows for extremely accurate

. placement of the widgets, but
. can be complicated. We'll

. discuss the Place method in a

. future article set. For this time,
. we'll concentrate on the Grid

: method.

@ 122

root window. It can

- be a different RowgongNﬁ
. widget. We'll || 0,1
. explore that next | 0,2
. month. For this | 0,3

: month, everything
. will have a parent
. of the root

. window.

Program In Python - Part 25

_—
NN NN
- N N .
whNhE~=O
Wwww
. N NN
WO
'S
- N N .

(S S)

: There are rows and columns.
: Columns are vertical, rows are

. horizontal. Here's a simple text

In order to place and display :

The Place management method 5

Think of a spreadsheet.

The Compleat Python

! root =

: representation of the cell
: addresses of a simple 5-column
. by 4-row grid (above right).

So parent has the grid, the

widgets go into the grid

: might think that this is very

: limiting. However, widgets can
: span multiple grid positions in

. either the column direction, the
: row direction, or both.

. Our First Example

Our first example is SUPER

simple (only four lines), but
: shows a good bit.

; from Tkinter import *

Tk ()

button = Button(root, text =

ﬁ contents ©

PROGRAM IN PYTHON - PART 25

"Hello FullCircle").grid()

root.mainloop ()

Now, what's going on here?
Line one imports the Tkinter

library. Next, we instantiate the

Tk object using root. (Tk is part
of Tkinter). Here's line three.

button = Button(root, text =
"Hello FullCircle").grid()

We create a button called
button, set its parent to the
root window, set its text to

“Hello FullCircle,” and set it into

the grid. Finally, we call the
window's main loop. Very
simple from our perspective,
but there's a lot that goes on
behind the scenes. Thankfully,
we don't need to understand
what that is at this time.

Run the program and let's
see what happens. On my
machine the main window
shows up at the lower left of
the screen. It might show up
somewhere else on yours.
Clicking the button doesn't do
anything. Let's fix that in our
next example.

Our Second Example

class App:

def init_(self, master):
frame = Frame(master)
self.lblText = Label(frame, text = "This is a label widget")

self.btnQuit =
self.btnHello =
frame.grid (column

self.1lblText.grid(column =
self.btnHello.grid(column =
self.btnQuit.grid(column =

This time, we'll create a

class called App. This will be :
. the class that actually holds our :
. window. Let's get started.

from Tkinter import *

We define our class, and, in

the __init__ routine, we set up
. our widgets and place them
. into the grid.

The first line in the __init__

self.lblText = Label (frame,

fFull circle magazine

Button (frame, text="Quit",

: text =
: widget")

5)] E self.btnQuit =
: routine creates a frame that will :

. be the parent of all of our other
. widgets. The parent of the :
. frame is the root window

. (Toplevel widget). Next we
. define a label, and two buttons.
. Let's look at the label creation
. line.

E self.btnHello =
: text="Hello",
: command=self.SaySomething)

@ 123

0, row = 0)

0, row = 1)
1, row = 1)

"This is a label

We create the label widget

. and call it self.Ib[Text. That's
. inherited from the Label widget :
. object. We set its parent

This is the import statement (frame), and set the text that

for the Tkinter library. . we want it to display (text =

. “this is a label widget”). It's

: that simple. Of course we can
. do much more than that, but
. for now that's all we need. Next :
. we set up the two Buttons we
- will use:

Button (frame,
text="Quit", fg="red",
command=frame.quit)

We name the widgets, set

- their parent (frame), and set :
the text we want them to show. :

Now btnQuit has an attribute
The Compleat Python

0, row = 0, columnspan

fg="red", command=frame.quit)
Button (frame, text="Hello", command=self.SaySomething)

=2)

: marked fg which we set to

: “red”. You might have guessed
. this sets the foreground color or
. text color to the color red. The

. last attribute is to set the

- callback command we want to

. use when the user clicks the

: button. In the case of btnQuit,

. it's frame.quit, which ends the

. program. This is a built in

- function, so we don't need to

- actually create it. In the case of
. btnHello, it's a routine called

. self.SaySomething. This we

. have to create, but we have a

. bit more to go through first.

We need to put our widgets

into the grid. Here's the lines

Button (frame, : again'

E frame.grid(column = 0, row =
: 0)

E self.lblText.grid(column = O,

row = 0, columnspan = 2)

ﬁ contents ©

PROGRAM IN PYTHON - PART 25

self.btnHello.grid(column =
0, row = 1)

self.btnQuit.grid(column = 1, :

row = 1)

First, we assign a grid to the
frame. Next, we set the grid
attribute of each widget to
where we want the widget to
go. Notice the columnspan line
for the label (self.IblText). This
says that we want the label to
span across two grid columns.
Since we have only two

columns, that's the entire width :

of the application. Now we can
create our callback function:

def SaySomething(self):

terminal window the message
~ “Hello to FullCircle Magazine
: Readers!!”

class - our App class - and run
. the main loop.

; root = Tk()

E app = App(root)

; root.mainloop ()

: Give it a try. Now things

. actually do something. But
again, the window position is

. very inconvenient. Let's fix that
. in our next example.

Our Third Example

print "Hello to FullCircleE

Magazine Readers!!"
This simply prints in the

class Calculator():
def init_ (self,root)
master = Frame (root
self.CurrentValue =
self.HolderValue =
self.CurrentFunctio
self.CurrentDisplay
self.CurrentDisplay
self.DecimalNext =
self.DecimalCount =

self.DefineWidgets (master)
self.PlaceWidgets (master)

: Save the last example as

. example3.py. Everything is

. exactly the same except for

' one line. It's
at the bottom

: in our main
)0 routine calls.
0 I'll show you
n="'" those lines

= StringVar() with our new
.set('0")]
False one:

0

root = Tk()

('150x75+550+

fFull circle magazine

. app =

Finally, we instantiate the Tk root.mainloop ()

root.geometryi

@ 124

150')

App (root)

What this does is force our

. initial window to be 150 pixels

. wide and 75 pixels high. We

. also want the upper left corner
. of the window to be placed at

. X-pixel position 550 (right and

. left) and the Y-pixel position at
: 150 (top to botton). How did |

. come up with these numbers? |

. started with some :
. reasonable values

. and tweaked them

. from there. It's a bit

. of a pain in the neck

. to do it this way, but
. the results are better
. than not doing it at W
- all.

Our Fourth Example - A
. Simple Calculator

Subtract, Multiply, and Divide.
Right is what it looks like in

The Compleat Python

| o |
EEENENEY
lal5]6]-]|
7189 ~]|
|- 1o .17/
| = |
| cear |

from Tkinter import *

def StartUp():
global val, w, root
root
root.title('Easy Calc')
root.geometry('247x330+469+199"')
Calculator (root)
root.mainloop ()

= Tk()

- simple text form.

We'll dive right into it and I'll

. explain the code (middle right)
. as we go.

: Now, let's look at something :

. a bit more complicated. This '
. time, we'll create a simple “4

. banger” calculator. If you don't
. know, the phrase “4 banger”

. means four functions: Add,

Outside of the geometry

. statement, this (left) should be
. pretty easy for you to

. understand by now. Remember,
. pick some reasonable values,

- tweak them, and then move on.

ﬁ contents ©

PROGRAM IN PYTHON - PART 25

We begin our class definition

and set up our __init__ function. .

We set up three variables as
follows:

* CurrentValue - Holds the
current value that has been
input into the calculator.

* HolderValue - Holds the
value that existed before the
user clicks a function key.

* CurrentFunction - This is
simply a “bookmark” to note
what function is being dealt
with.

Next, we define the
CurrentDisplay variable and
assign it to the StringVar
object. This is a special object
that is part of the Tkinter
toolkit. Whatever widget you
assign this to automatically
updates the value within the
widget. In this case, we will be
using this to hold whatever we
want the display label widget
to... er... well... display. We

have to instantiate it before we : :
. are telling the label to justify all :
. text to the east or on the right :
. side of the widget. There is a

. justify attribute, but that's for
. multiple lines of text. The

. anchor attribute has the :
" following options... N, NE, E, SE,

can assign it to the widget.
Then we use the built in 'set'
function. We then define a
boolean variable called
DecimalNext, and a variable
DecimalCount, and then call
the DefineWidgets function,

which creates all

. self.btnl
the widgets, and self.btnl
. then call the self.btn2
. PlaceWidget self.btn2
- function, which self.btn3
: tuall | self.btn3
. actually places self.btn4
. them in the root self.btn4
: window.
. def

: DefineWidgets (self,master):

; self.lblDisplay =
: Label (master,anchor=E,relief

; SUNKEN, bg="white" ,height=2, te
: xtvariable=self.CurrentDispla :
L Y)

Now, we have already

. defined a label earlier.

: However, this time we are
. adding a number of other
. attributes. Notice that we aren't :
. using the 'text' attribute. Here,
. we assign the label to the
parent (master), then set the

. anchor (or, for our purposes,

. justification) for the text, when

it gets written. In this case, we

fFull circle magazine

= Button(master,

@ 125

text =

:'S, SW, W, NW and CENTER. The :
. default is CENTER. You should

. think compass points for these.
. Under normal circumstances,

. the only really usable values

. are E (right), W (left), and

. Center.

Next, we set the relief or

. visual style of the label. The

. “legal” options here are FLAT,
. SUNKEN, RAISED, GROOVE, and :
. RIDGE. The default is FLAT if

. height to 2 (which is two text
. lines high, not in pixels), and
- finally assign the variable we
. just defined a moment ago

. (self.CurrentDisplay) to the

. textvariable attribute.

Whenever the value of

The Compleat Python

'1',width =

4 ,height=3)

.bind ('<ButtonRelease-1>', lambda e: self.funcNumButton(1l))
= Button(master, text = '2',width = 4,height=3)
.bind ('<ButtonRelease-1>', lambda e: self.funcNumButton(2))
= Button(master, text = '3',width = 4,height=3)
.bind ('<ButtonRelease-1>', lambda e: self.funcNumButton(3))
= Button(master, text = '4',width = 4,height=3)
.bind ('<ButtonRelease-1>', lambda e: self.funcNumButton(4))

self.CurrentDisplay changes,

. the label will change its text to
. match automatically.

Shown above, we'll create

some of the buttons.

I've shown only 4 buttons

. here. That's because, as you
. can see, the code is almost
. exactly the same. Again, we've

created buttons earlier in this

: tutor, but let's take a closer
. you don't specify anything. Feel :
. free to try the other :
. combinations on your own after :
. we're done. Next, we set the :
. background (bg) to white in

. order to set it off from the rest
. of the window a bit. We set the

look at what we are doing here.

We start by defining the

. parent (master), the text that

. we want on the button, and the
. width and height. Notice that

: the width is in characters and

. the height is in text lines. If you
. were doing a graphic in the

. button, you would use pixels to
. define the height and width.

: This can become a bit

. confusing until you get your

head firmly wrapped around it.

ﬁ contents ©

PROGRAM IN PYTHON - PART 25

Next, we are setting the bind
attribute. When we did the
buttons in the previous
examples, we used the

‘command=" attribute to define

what function should be called
when the user clicks the
button. This time, we are using
the '.bind' attribute. It's almost
the same thing, but this is an
easier way to do it, and to pass
information to the callback
routine that is static. Notice
that here we are using
'<ButtonRelease-1>"' as the
trigger for the bind. In this
case, we want to make sure
that it's only after the user
clicks AND releases the left
mouse button that we make
our callback. Lastly, we define
the callback we want to call,
and what we are going to pass

to it. Now, those of you who are
astute (which is each and every :

one of you) will notice

call.

In Python, we use Lambda to

define anonymous functions
that will appear to interpreter
as a valid statement. This
allows us to put multiple
segments into a single line of
code. Think of it as a mini

something new. The 'lambda e:'

self.btnDash = Button(master, text = '-',width = 4,height=3)
self.btnDash.bind('<ButtonRelease-1>', lambda e: self.funcFuncButton('ABS'))
self.btnDot = Button(master, text = '.',width = 4,height=3)

self.btnDot.bind('<ButtonRelease-1>', lambda e: self.funcFuncButton('Dec'))

The btnDash sets the value to the absolute value of the value entered. 523 remains 523 and -523
becomes 523. The btnDot button enters a decimal point. These examples, and the ones below,
use the callback funcFuncButton.

self.btnPlus = Button(master,text = '+', width = 4, height=3)
self.btnPlus.bind('<ButtonRelease-1>', lambda e: self.funcFuncButton('Add'))
self.btnMinus = Button(master,text = '-', width = 4, height=3)

self.btnMinus.bind('<ButtonRelease-1>', lambda e:
self. funcFuncButton('Subtract'))

self.btnStar = Button(master,text = '*', width = 4, height=3)
self.btnStar.bind('<ButtonRelease-1>', lambda e: self.funcFuncButton('Multiply'))
self.btnDiv = Button(master,text = '/', width = 4, height=3)
self.btnDiv.bind('<ButtonRelease-1>', lambda e: self.funcFuncButton('Divide'))
self.btnEqual = Button(master, text = '=')

self.btnEqual.bind('<ButtonRelease-1>', lambda e: self.funcFuncButton('Eq'))

Here are the four buttons that do our math functions.
self.btnClear = Button(master, text = 'CLEAR')
self.btnClear.bind('<ButtonRelease-1>', lambda e: self.funcClear())

Finally, here is the clear button. It, of course, clears the holder variables and the display. Now we
place the widgets in the PlaceWidget routine. First, we initialize the grid, then start putting the

widgets into the grid. Here's the first part of the routine.
def PlaceWidgets(self,master):
master.grid (column=0,row=0)
self.lblDisplay.grid(column=0,row=0,columnspan = 4,sticky=EW)

self.btnl.grid(column = 0, row = 1)
self.btn2.grid(column = 1, row = 1)
self.btn3.grid(column = 2, row = 1)
self.btnd4d.grid(column = 0, row = 2)
self.btn5.grid(column = 1, row = 2)
self.btn6.grid(column = 2, row = 2)
self.btn7.grid(column = 0, row = 3)
self.btn8.grid(column = 1, row = 3)
self.btn9.grid(column = 2, row = 3)
self.btn0.grid(column = 1, row = 4)

fFull circle magazine The Compleat Python

@ 126 ﬁ contents ©

PROGRAM IN PYTHON - PART 25

function. In this case, we are
setting up the name of the

callback function and the value

we want to send as well as the
event tag (e:). We'll talk more

about Lambda in a later article.

For now, just follow the
example.

I've given you the first four
buttons. Copy and paste the
above code for buttons 5
through 9 and button 0. They
are all the same with the
exception of the button name
and the value we send the
callback. Next steps are shown
right.

The only thing that hasn't
been covered before are the
columnspan and sticky
attributes. As | mentioned

before, a widget can span more :
. (logically) 5, then 6, then 3,

. then the “+,” then 1, then 2,
: then 7, then the “=" buttons.
. How do we handle this in code? :
. We have already set the :
. callbacks for the number

. buttons to the funcNumButton
- function. There's two ways to

than one column or row. In this
case, we are “stretching” the
label widget across all four
columns. That's what the
“columnspan” attribute does.
There's a “rowspan” attribute
as well. The “sticky” attribute
tells the widget where to align

its edges. Think of it as how the
widget fills itself within the grid. :
- and then when we need to

Above left is the rest of our
buttons.

self.btnDash.grid(column = 0, row =
self.btnDot.grid(column = 2, row =
self.btnPlus.grid(column = =
self.btnMinus.grid(column = 3, row

self.

self

self.
self.

def

3,row

btnStar.grid(column = 3, row = 3)
.btnDiv.grid(column=3, row = 4)
btnEqual.grid(column=0, row=5,columnspan
btnClear.grid(column=0, row=6,columnspan

funcNumButton(self,val):
if self.DecimalNext True:

4 ,sticky=NSEW)
4, sticky = NSEW)

self.DecimalCount

self.CurrentValue
else:

self.CurrentValue
self.DisplayIt()

Before we go any further

let's take a look at how things
. will work when the user presses :
- buttons.

Let's say the user wants to

enter 563 + 127 and get the

answer. They will press or click

handle this. We can keep the
information entered as a string

convert it into a number, or we
fFull circle magazine

+= 1

= self.CurrentValue + (val * (10**-self.DecimalCount))

= (self.CurrentvValue * 10) + val

. can keep it as a number the

. entire time. We will use the

. latter method. To do this, we
- will keep the value that is :
- already there (0 when we start) :
. in a variable called

. “self.CurrentValue”, When a

. number comes in, we take the
- variable, multiply it by 10 and

. add the new value. So, when

. the user enters 5, 6 and 3, we
- do the following...

E User clicks 5 — 0 * 10 + 5
: (3)

E User clicks 6 — 5 * 10 + 6
. (56)

E User clicks 3 — 56 * 10 + 3
* (563)

@ 127

The Compleat Python

Of course we then display

the “self.CurrentValue” variable
. in the label.

Next, the user clicks the “+”

. key. We take the value in

. “self.CurrentValue” and place it
. into the variable

. “self.HolderValue,” and reset

. the “self.CurrentValue” to 0. We
. then repeat the process for the
. clicks on 1, 2 and 7. When the

. user clicks the “=" key, we

. then add the values in

. “self.CurrentValue” and

. “self.HolderValue”, display

. them, then clear both variables
© to continue.

ﬁ contents ©

PROGRAM IN PYTHON - PART 25

Above is the code to start
defining our callbacks.

The “funcNumButton routine

receives the value we passed

from the button press. The only

thing that is different from the
example above is what if the
user pressed the decimal
button (“.”). Below, you'll see
that we use a boolean variable
to hold the fact they pressed

the decimal button, and, on the

next click, we deal with it.
That's what the “if

self.DecimalNext == True:” line :

is all about. Let's walk through
it.

The user clicks 3, then 2,
then the decimal, then 4, to
create “32.4”. We handle the 3
and 2 clicks through the
“funcNumButton” routine. We

check to see if self.DecimalNext

is True (which in this case it
isn't until the user clicks the “.”
button). If not, we simply
multiply the held value
(self.CurrentValue) by 10 and
add the incoming value. When
the user clicks the “.”, the
callback “funcFuncButton” is
called with the “Dec” value. All
we do is set the boolean
variable “self.DecimalNext” to

def funcFuncButton(self, function):
if function =='Dec':
self.DecimalNext = True
else:
self.DecimalNext = False
self.DecimalCount = 0
if function == 'ABS':
self.CurrentvValue *= -1
self.DisplayIt()

The ABS function simply takes the current value and multiplies it by -1.

elif function == 'Add’':
self.HolderValue = self.CurrentValue
self.CurrentValue = 0
self.CurrentFunction = 'Add’

The Add function copies “self.CurrentValue” into “self.HolderValue”, clears “self.CurrentValue”,
and sets the “self.CurrentFunction” to “Add”. The Subtract, Multiply and Divide functions do the

same thing with the proper keyword being set in “self.CurrentFunction”.

elif function == 'Subtract':
self.HolderValue = self.CurrentValue
self.Currentvalue = 0
self.CurrentFunction = 'Subtract'

elif function == 'Multiply’':
self.HolderValue = self.CurrentValue
self.Currentvalue = 0
self.CurrentFunction = 'Multiply’

elif function == 'Divide':
self.HolderValue = self.CurrentValue
self.Currentvalue = 0
self.CurrentFunction = 'Divide’

The “Eq” function (Equals) is where the “magic” happens. It will be easy for you to understand
the following code by now.

elif function == 'Eq':
if self.CurrentFunction == 'Add':
self.CurrentValue += self.HolderValue
elif self.CurrentFunction == 'Subtract':
self.CurrentValue = self.HolderValue - self.CurrentValue
elif self.CurrentFunction == 'Multiply':
self.CurrentValue *= self.HolderValue
elif self.CurrentFunction == 'Divide’':

self.CurrentValue = self.HolderValue / self.CurrentValue
self.DisplayIt()
self.CurrentValue = 0
self.HolderValue = 0

@ 128

fFull circle magazine The Compleat Python

ﬁ contents ©

PROGRAM IN PYTHON - PART 25

True. When the user clicks the
4, we will test the
“self.DecimalNext” value and,
since it's true, we play some
magic. First, we increment the
self.DecimalCount variable.
This tells us how many decimal

places we are working with. We :
. variables.

then take the incoming value,
multiply it by (10%*-
self.DecimalCount). Using this
magic operator, we get a
simple “raised to the power of”
function. For example 10**2
returns 100. 10**-2 returns
0.01. Eventually, using this
routine will result in a rounding
issue, but for our simple
calculator, it will work for most
reasonable decimal numbers.
I'll leave it to you to work out a

better function. Think of this as :
. “.set” method to change the
- value.

your homework for this month.

The “funcClear” routine
simply clears the two holding

variables, then sets the display. : print('currentvalue = {0} -
; HolderValue = :
: {1}'.format (self.CurrentValue :

; ;self.HolderValue))

def funcClear(self):
self.CurrentvValue = 0
self.HolderValue = 0

self.DisplayIt()

Now the functions. We've

" lines.

already discussed what
happens with the function

. 'Dec'. We set this one up first

- with the “if” statement. We go
. to the “else,” and if the

- function is anything else, we

. clear the “self.DecimalNext”

and “self.DecimalCount”

The next set of steps are

shown on the previous page
. (right hand box).

The Displaylt routine simply

. sets the value in the display

. label. Remember we told the

- label to “monitor” the variable
. “self.CurrentDisplay”.

: Whenever it changes, the label
. automatically changes the

display to match. We use the

; def DisplayIt(self):

; self.CurrentDisplay.set(self.E
: CurrentValue) :

Finally we have our startup

fFull circle magazine

@ 129

if name == ' main

: StartUp()

Now you can run the

program and give it a test.

As always, the code for this

. article can be found at

. PasteBin. Examples 1, 2 and 3
. are at:

. http://pastebin.com/mBAS1Um
. m and the Calc.py example is

- at:

. http://pastebin.com/LbMibFOu

: Next month, we will continue :
. looking at Tkinter and its :
. wealth of widgets. In a future

- article, we'll look at a GUI

. designer for tkinter called

. PAGE. In the meantime, have

. fun playing. | think you'll enjoy
. Tkinter.

—

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Colorado
and has been programming since
1972. He enjoys cooking, hiking,
music, and spending time with
his family. His website is

The Compleat Python

Maybe it's time for me
to get married.

))

slla
LI

=43
-]

I know we've been
colleagues for a while now
but that might be just a little
bit too much.

-
EC%
by Richard Redei

contents ©

>

http://www.thedesignatedgeek.com
http://pastebin.com/mBAS1Umm
http://pastebin.com/LbMibF0u

ast month we discussed
: a one of many type selection

. widget. It also has two options,
. on and off. However, they are
. grouped together to provide a

tkinter and four of the

widgets available:

TopLevel, Frames,
Buttons, and Labels. | also told

you last month, I'd discuss how
: have only one selection. You

. can have multiple groups of

. Radiobuttons that, if properly
. programmed, won't interact

: with each other.

to have a widget as a parent
other than the Toplevel widget.

So, this month, we'll discuss
more on Frames, Buttons, and
Labels, and introduce
Checkboxes, Radio buttons,
Textboxes (Entry widgets),
Listboxes with a vertical
scrollbar, and Messageboxes.
Before we get started, let's
examine some of these
widgets.

many of many type selection
widget that has two options,

are usually used to provide a
series of options where any,

many, or all of those options
may be selected. You can set
an event to inform you when

the checkbox has been toggled,

or just query the value of the
widget at any time.

Radiobuttons are considered

set of options that logically can

A Listbox provides a list of

: items for the user to select
. from. Most times, you want the :
: user to select only one of the

: items at a time, but there can
: be occasions that you will allow :
: the user to select multiple '
Checkboxes are considered a :
. placed either horizontally or

. vertically to allow the user to

checked or not checked, or you : €asily look through all the items

could consider it on or off. They :

items. A scroll bar can be

available.

Our project will consist of a

main window and seven main
- frames that visually group our
: widget sets:

* The first frame will be very

. basic. It simply consists of

various labels, showing the

full circle magazine

. will contain

: buttons, again

. pretty simple, that
. use the different £
. relief options.

Labels
* The second

def

* [n this frame,

we'll have two

. checkboxes and a

. button that can

. programmatically toggle them,
. and they will send their state (1 :
. or 0) back to the terminal :
: window when clicked or

: toggled.

* Next, we'll have two

. groups of three radio buttons,
. each sending a message to the :
. terminal window when clicked.
: Each group is separate.

* This is a list box with a

. vertical scroll bar that sends a
: message to the terminal
- whenever an item is selected,

@ 130

The Compleat Python

Program In Python - Part 26

different relief
. options.

class Demo:
__init__ (self, master):
self.DefineVars ()

widgetdemol.py

from Tkinter import *

self.BuildWidgets (master)

self.PlaceWidgets (f)

- and will have two buttons. One
button will clear the list box
and the other will fill it with

some dummy values.
e The final frame will have a

series of buttons that will call
various types of message
boxes.

So now, we'll start our

: project. Let's name it

: “widgetdemol.py”. Be sure to
* This has some text or entry >ave It becausg We.W'I.I be
: . , : writing our project in little
. boxes, which aren't new to you, :

: but there's also a button to

. enable and disable one of

: them. When disabled, no entry

. can be made to that textbox.

. pieces, and build on them to

. make our full app. Each piece

: revolves around one of the

: frames. You'll notice that I'm

: including a number of

: comments as we go, So you can
. refer back to what's happening.
. Above are first few lines.

ﬁ contents ©

HOWTO - PROGRAM IN PYTHON - PART 26

The first two lines
(comments) are the name of
the application and what we
are concentrating on in this
part. Line three is our import
statement. Then we define our
class. The next line starts our
__init__ routine, which you all
should be familiar with by now,
but, if you are just joining us,

it's the code that gets run when

we instantiate the routine in
the main portion of the
program. We are passing it the
Toplevel or root window, which
comes in as master here. The
last three lines (so far), call
three different routines. The
first (DefineVars) will set up
various variables we'll need as
we go. The next (BuildWidgets)
will be where we define our
widgets, and the last
(PlaceWidgets) is where we
actually place the widgets into
the root window. As we did last
time, we'll be using the grid

BuildWidgets will return the
object “f” (which is our root
window), and we'll pass that
along to the PlaceWidgets
routine.

Above right is our
BuildWidgets routine. Each of

def BuildWidgets(self,master):

Define our widgets
frame = Frame (master)
Labels

self.lblframe =

Frame (frame,relief =
borderwidth = 2, width =

SUNKEN, padx =
500)

3, pady = 3,

self.lbll = Label(self.lblframe,text="Flat Label",relief = FLAT,
width = 13,borderwidth = 2)

self.1lbl2 = Label(self.lblframe,text="Sunken Label", relief = SUNKEN,
width = 13, borderwidth = 2)

self.1lbl3 = Label(self.lblframe,text="Ridge Label", relief = RIDGE, width = 13,
borderwidth = 2)

self.1lbl4 = Label(self.lblframe,text="Raised Label", relief = RAISED,
width = 13, borderwidth = 2)

self.1lbl5 = Label(self.lblframe,text="Groove Label", relief = GROOVE,

width = 13,

return frame

. the lines that start with “self.”
. have been split for two reasons. :
: First, it's good practice to keep
. the line length to 80 characters
. or less. Secondly, it makes it

. easier on our wonderful editor.
: You can do two things. One, just
. make each line long, or keep it
. as is. Python lets us split lines
. as long as they are within

. parentheses or brackets. As |
geometry manager. Notice that : said earlier, we are defining the :
. widgets before we place them
. in the grid. You'll notice when
. we do the next routine, that we :
. can also define a widget at the
. time we place it in the grid, but :
. defining it before we put it in
" the grid in a routine like this

fFull circle magazine

@ 131

borderwidth = 2)

. makes it easier to keep track of :
. set to 0, and the effect of being
. sunken won't be noticed.

. Finally, we set the total width of
. the frame to 500 pixels.

everything, since we are doing

. (most of) the definitions in this
routine.

So, first we define our

. master frame. This is where we :
. will be putting the rest of our : widget that we will use. We set
. widgets. Next, we define a child :
. (of the master frame) frame

- that will hold five labels, and

. call it Iblframe. We set the

. various attributes of the frame
. here. We set the relief to

: 'SUNKEN', a padding of 3 pixels
. on left and right (padx), and 3

. pixels on the top and bottom

. (pady). We also set the

: borderwidth to 2 pixels so that

its sunken relief is noticeable.
The Compleat Python

By default, the borderwidth is

Next, we define each label

the parent as self.lblframe, and

. not to frame. This way all the

. labels are children of Iblframe,

- and Iblframe is a child of frame.
. Notice that each definition is

. pretty much the same for all

. five of the labels except the

. name of the widget (Ibl1, Ibl2,

. etc), the text, and the relief or

. visual effect. Finally, we return

. the frame back to the calling

routine (__init_).

ﬁ contents ©

HOWTO - PROGRAM IN PYTHON - PART 26

The following page (top
right) shows our PlaceWidgets
routine.

We get the frame object in
as a parameter called master.
We assign that to 'frame' to
simply be consistent with what
we did in the BuildWidgets
routine. Next, we set our main

row = 0)). If we don't do this,
nothing works correctly. Then
we start putting our widgets
into the grid locations. First we
put the frame (Iblframe) that
holds all our labels, and set its
attributes. We put it in column
0, row 1, set the padding to 5

5 columns (left and right), and
to force the frame to expand

or West and East). Now comes
the part that sort of breaks the
rule that | told you about. We
are placing a label as the first
widget in the frame, but we
didn't define it ahead of time.
We define it now. We set the
parent to Iblframe, just like the
other labels. We set the text to

the anchor to east (‘e'). If you
remember from last time, using

5 root
: root.geometry('750x40+150+150
2)

“Labels |”, the width to 15, and @ Z°°t-Fitle("Widget Demo 17)

: demo = Demo (root)
" root.mainloop ()

the anchor attribute, we
can set where in the

. widget the text will

. display. In this case, it's

- along the right border.

. Now the fun part. Here

. we define the grid

. location (and any other

. grid attributes we need

_ _ . to), simply by appending
grid up (frame.grid(column = 0, -« grid” at the end of the
. label definition.

Next, we lay out all of

. our other labels in the
. grid - starting at column 1, row
. 0.

Here is our DefineVars

pixels on all sides, tell it to span : routine. Notice that we simply

. use the pass statement for
finally use the “sticky” attribute : Now. We'll be filling it in later
. on, and we don't need it for this :

fully to the left and right (“WE”, : Part:

E def DefineVars(self):

Define our resources
pass

And lastly we put in our

. main routine code:

Tk ()

fFull circle magazine

frame

Place the widgets

frame.grid (column

Place the labels

self.lblframe.grid(column = 0, row = 1, padx = 5, pady
columnspan
Label (self.lblframe,text="'Labels |',width=15,

1l =

self.
self.
self.
self.
self.

: First, we instantiate an

. instance of Tk. Thern we set

. the size of the main window to
. 750 pixels wide by 40 pixels :
: high, and locate it at 150 pixels :
. from the left and top of the :
. screen. Then we set the title of :

" the window and instantiate our : Widgetdemola.py, and let's

Give it a try. You should see

1bl1l.

1bl2

def PlaceWidgets(self, master):
master

0, row

0)

5,
5,sticky='WE')

anchor='e') .grid(column=0, row=0)

grid(column

.grid(column
1b13.
1bl4.
1b15.

grid(column
grid(column
grid(column

Place the buttons

: Demo object, and finally call
. the Tk mainloop.

row
row
row
row
row

= 0, padx = 3, pady = 5)
= 0, padx = 3, pady = 5)
= 0, padx = 3, pady = 5)
= 0, padx = 3, pady = 5)
= 0, padx = 3, pady = 5)

. the five labels plus the “last
: minute” label in various

. glorious effects.

Buttons

Now save what you have as

. add some buttons. Since we
. built our base program to be
. added to, we'll simply add the

. parts that apply. Let's start with

self.btnframe.grid(column=0, row = 2, padx = 5,
pady = 5, columnspan = 5,sticky = 'WE')
1 = Label(self.btnframe,text='Buttons |',width=15,
anchor='e') .grid (column=0, row=0)

self.btnl.grid(column = 1, row = 0, padx = 3, pady = 3)
self.btn2.grid(column = 2, row = 0, padx = 3, pady = 3)
self.btn3.grid(column = 3, row = 0, padx = 3, pady = 3)
self.btnd4d.grid(column = 4, row = 0, padx = 3, pady = 3)
self.btn5.grid(column = 5, row = 0, padx = 3, pady = 3)

@ 132

The Compleat Python

contents ©

]

HOWTO - PROGRAM IN PYTHON - PART 26

the BuildWidgets routine. After
the labels definitions, and
before the “return frame” line,
add what is shown on the next
page, top right.

Nothing really new here.
We've defined the buttons, with :
their attributes, and set their
callbacks via the .bind
configuration. Notice that we
are using lambda to send the
values 1 through 5 based on
which button is clicked. In the
callback, we'll use that so we
know which button we are
dealing with. Now we'll work in
the PlaceWidgets routine. Put
the code below after the last
label placement.

Once again, nothing really
new here, so we'll move on.
Bottom right is our callback
routine. Put it after the
DefineVars routine.

Again, nothing really fancy
here. We just use a series of
IF/ELIF routines to print what
button was clicked. The main
thing to look at here (when we
run the program) is that the
sunken button doesn't “move”
when you click on it. You would
not usually use the sunken

. button that stays

relief unless you

were making a # Buttons

“down” when you self.btnl
. click it. Finally, we
. need to tweak the SRl
. geometry self.btn3
: statement to
§ support the extra self.btn4
widgets we put in: P
E root.geometry('750
: x110+150+150") self.btnl
: self.btn2
. Ok. All done with ~ self.btn3
éth' Save it self.btn4
: 15 one. self.btn5

- and run it.

Now save this as

widgetdemolb.py, and we'll
. move on to checkboxes.

ECheckboxes

As | said earlier, this part of

. the demo has a normal button

- and two checkboxes. The first

. checkbox is what you would

. normally expect a checkbox to

. look like. The second is more

. like a “sticky” button - when it's :
. not selected (or checked), it

. looks like a normal button.

- When you select it, it looks like
. a button that is stuck down. We :
. can do this by simply setting

the indicatoron attribute to

fFull circle magazine

self.btnframe =

.bind(
.bind(
.bind(
.bind(
.bind(

. False. The “normal”
: toggle the checkboxes from
. checked to unchecked, and vice :
. versa, each time you click the
- button. We get to do this

@9133

Frame (frame,relief =

borderwidth = 2, width =

SUNKEN, padx =

3, pady = 3,
500)

= Button(self.btnframe,text="Flat Button",

relief =

FLAT, borderwidth = 2)

= Button(self.btnframe,text="Sunken Button",

relief =

SUNKEN, borderwidth = 2)

= Button(self.btnframe,text="Ridge Button",

relief =

RIDGE, borderwidth = 2)

= Button(self.btnframe,text="Raised Button",

relief =

RAISED, borderwidth = 2)

= Button(self.btnframe,text="Groove Button",

relief =
'<ButtonRelease-1>"
'<ButtonRelease-1>"
'<ButtonRelease-1>"
'<ButtonRelease-1>"
'<ButtonRelease-1>"

def BtnCallback(self val):

if val

GROOVE, borderwidth = 2)
,lambda e:
, lambda
, lambda
, lambda
, lambda

self.BtnCallback(1l))
: self.BtnCallback(2))
: self.BtnCallback(3))
: self.BtnCallback(4))
: self.BtnCallback(5))

® 0o 0 0

print ("Flat Button Clicked...")

elif val ==

print ("Sunken Button Clicked...")

elif val

print ("Ridge Button Clicked...")

elif val

print ("Raised Button Clicked...")

elif val == 5:

print ("Groove Button Clicked...")

button will

checkbox. We bind the left
The Compleat Python

mouse button click event
5 (button release) to a function

so we can send a message (in

. this case) to the terminal. In
. addition to all of this, we are
. programmatically by calling the :
- .toggle method attached to the

setting two variables (one for

. each of the checkboxes) that

we can query at any time. In

ﬁ contents ©

HOWTO - PROGRAM IN PYTHON - PART 26

this case, each time the
checkbox is clicked we query
this value and print it. Pay
attention to the variable

portion of the code. It is used in :

many widgets.

Under the BuildWidget
routine, after the button code
we just put in and before the
return statement, put the code
shown on the next page, top
right.

Again, you have seen all of
this before. We create the
frame to hold our widgets. We
set up a button and two check
boxes. Let's place them now
using the code on the next
page, middle right.

Now we define the two
variables that we will use to
monitor the value of each
check box. Under DefineVars,
comment out the pass
statement, and add this...

self.Chklval
self.Chk2val

IntVar ()
IntVar ()

After the button callback
return, put the text shown
bottom right.

And finally replace the
geometry statement with this:

170+150+150")

buttons.

root.geometry('750x

Check Boxes
self.cbframe = Frame(frame, relief = SUNKEN, padx = 3, pady = 3,

Save and run. borderwidth = 2, width = 500)

Save it as self.chkl = Checkbutton(self.cbframe, text = "Normal Checkbox",
: widgetdemolc.py, variable=self.Chklval)
: and let's do radio self.chk2 = Checkbutton(self.cbframe, text = "Checkbox",
: variable=self.Chk2Val,indicatoron = False)

self.chkl.bind('<ButtonRelease-1>',6lambda e: self.ChkBoxClick(1l))
self.chk2.bind('<ButtonRelease-1>',6lambda e: self.ChkBoxClick(2))

Radiobuttons self.btnToggleCB = Button(self.cbframe,text="Toggle Cbs")

self.btnToggleCB.bind('<ButtonRelease-1>',6self.btnToggle)
If you are old

. enough to remember
: car radios with push

. buttons to select the
. station presets, you'll

Place the Checkboxes and toggle button

. understand why self.cbframe.grid(column = 0, row = 3, padx = 5, pady = 5,

: these are called columnspan = 5,sticky = 'WE')

: Radiobuttons. When 1 = Label(self.cbframe,text='Check Boxes |',width=15,

: : : anchor='e') .grid (column=0, row=0)

: usu1gr§chowatqns, self.btnToggleCB.grid(column = 1, row = 0, padx = 3, pady = 3)
: the variable attribute self.chkl.grid(column = 2, row = 0, padx = 3, pady = 3)

. is very important. self.chk2.grid(column = 3, row = 0, padx = 3, pady = 3)

. This is what groups
. the radiobuttons

def btnToggle(self,pl):
self.chkl.toggle()
self.chk2.toggle()
print ("Check box 1 value is {0}".format(self.Chklval.get()))
print ("Check box 2 value is {0}".format(self.Chk2vVal.get()))

def ChkBoxClick(self,val):
if val == 1:
print ("Check box 1 value is {0}".format(self.Chklval.get()))
elif val == 2:
print ("Check box 2 value is {0}".format(self.Chk2val.get()))

full circle magazine @ 134 The Compleat Python A contents ~

HOWTO - PROGRAM IN PYTHON - PART 26

together. In this demo, the first that the buttons will return a
group of buttons is grouped by value that makes sense

the variable named self.RBVal. : whenever they are clicked.
The second is grouped by the
variable self.RBValue2. We also
need to set the value attribute
at design time. This ensures

Back to BuildWidgets, and,
. just before the return
. statement, add the code shown
. on the following page.

Radio Buttons

self.rbframe = Frame(frame, relief = SUNKEN, padx = 3,

self.rbl = Radiobutton(self.rbframe, text =
self.rb2 = Radiobutton(self.rbframe, text =
self.rb3 = Radiobutton(self.rbframe, text =

self.rbl.bind('<ButtonRelease-1>',6lambda e:
self.rb2.bind('<ButtonRelease-1>',6lambda e:
self.rb3.bind('<ButtonRelease-1>',6lambda e:

self.rb4 = Radiobutton(self.rbframe, text =
self.rb5 = Radiobutton(self.rbframe, text =
self.rb6 = Radiobutton(self.rbframe, text =

self.rb4.bind('<ButtonRelease-1>',6lambda e:
self.rb5.bind('<ButtonRelease-1>',6lambda e:
self.rb6.bind('<ButtonRelease-1>',6lambda e:

In PlaceWidgets, add this:

One thing of note here. and still function correctly.
Notice the “last minute” label

. definitions in the PlaceWidget
routine. These long lines are . self.RBVal = IntVar()
. broken up to show how to use _ _

- parens to allow our long lines to ;| Add the click routines:
be formatted nicely in our code, | def RBClick(self):

"Radio 1", variable

Place the Radio Buttons and select the first one

self.rbframe.grid(column = 0, row = 4, padx
1 = Label(self.rbframe,
text='Radio Buttons |',

pady = 3,

. In DefineVars add:

borderwidth = 2, width = 500)
self.RBVal, value = 1)

"Radio 2", variable = self.RBVal, value = 2)
"Radio 3", variable = self.RBVal, value = 3)

self .RBClick())

self .RBClick())

self .RBClick())

"Radio 4", variable = self.RBVal2, value = "1-1")
"Radio 5", variable = self.RBVal2, value = "1-2")
"Radio 6", variable = self.RBVal2, value = "1-3")
self.RBClick2())

self.RBClick2())

self.RBClick2())

= 5, pady = 5, columnspan = 5,sticky = 'WE')

width=15,anchor='e') .grid(column=0, row=0)

self.rbl.grid(column = 2, row = 0, padx = 3, pady = 3, sticky =
self.rb2.grid(column = 3, row = 0, padx = 3, pady = 3, sticky =
self.rb3.grid(column = 4, row = 0, padx = 3, pady = 3, sticky =
self.RBVal.set("1")

1 = Label(self.rbframe,text='| Another Set |°',

width = 15,

anchor = 'e').grid(column 5, row = 0)

self.rbd4.grid(column = 6, row = 0)
self.rb5.grid(column = 7, row = 0)
self.rb6.grid(column = 8, row = 0)
self.RBVal2.set("1-1")

Full circle magazine @ 135

"EW')
'"WE')
'"WE')

The Compleat Python ﬁ contents ~

HOWTO - PROGRAM IN PYTHON - PART 26

print ("Radio Button
clicked - Value is

{0}".format (self.RBVal.get()) : routine.

Listbox

)

def RBClick2(self):

print ("Radio Button
clicked - Value is
{0}".format (self.RBVal2.get ()

))

and, finally, rework the

root.geometry('750%x220+150+15 :

0')

Save the project as
widgetdemold.py, and run it.
Now, we'll start working on
standard textboxes (or entry
widgets).

Entry

Again, we've used textboxes
or entry widgets in various GUI
flavors before. However this
time, as | said earlier, we will
show how to keep the user
from making changes to the
textbox by disabling it. This is

data, and allowing the user to
change it only when in the
“edit” mode. By now, you
should be pretty sure that the
first thing we need to do is add

code (shown right) to
the BuildWidget

Next we'll work

. our listbox. Starting
. in BuildWidgets, add
: the code from the

. following page, right

geometry statement as follows. : side.

As usual, we

. create our frame,

: Then we create our

. vertical scroll bar. We
: do this before we

. create the list box,

: because we have to

. reference the

: scrollbar '.set'

. method. Notice the

. attribute 'height =

. 5'. This forces the

. listbox to show 5

. items at a time. In

. the .bind statement,
. we use

. '<<ListboxSelect>>'
helpful if you are showing some : as the event. It's

: called a virtual

. event, since it's not
: really an “officia
© event.

|II

fFull circle magazine

Textboxes
self.tbframe =
3, borderwidth = 2, width =

Frame (frame, relief =

500)

SUNKEN, padx = 3, pady =

self.txtl = Entry(self.tbframe, width = 10)
self.txt2 = Entry(self.tbframe, disabledbackground="#cccccc",
width = 10)

self.btnDisable =
"Enable/Disable")

self.btnDisable.bind('<ButtonRelease-1>",
self.btnDisableClick)

Button(self.tbframe, text =

Next, add this code to the PlaceWidget routine:
Place the Textboxes
self.tbframe.grid(column = 0, row = 5, padx
columnspan = 5,sticky = 'WE')
1 = Label(self.tbframe,text='Textboxes |',width=15,
anchor='e') .grid(column=0, row=0)
self.txtl.grid(column = 2, ro 0, padx 3, pady 3)
self.txt2.grid(column = 3, ro 0, padx 3, pady 3)
self.btnDisable.grid(column = 1, row = 0, padx = 3, pady = 3)

5, pady = 5,

W =
W =

Add this line to the bottom of the DefineVars routine:
self.Disabled = False

Now, add the function that responds to the button click event:
def btnDisableClick(self,pl):

if self.Disabled False:
self.Disabled = True
self.txt2.configure(state='disabled’')

else:
self.Disabled = False
self.txt2.configure(state='normal"')

And finally, rework the geometry statement:
root.geometry('750x270+150+150"')

Save it as widgetdemold.py, and run it.

The Compleat Python

@ 136 ﬁ contents ©

HOWTO - PROGRAM IN PYTHON - PART 26

Place the Listbox and support buttons

self.lstframe.grid(column = 0, row = 6, padx = 5,
pady = 5, columnspan = 5,sticky = 'WE')

1 = Label(self.lstframe,text='List Box |',width=15,
anchor='e') .grid (column=0, row=0, rowspan=2)

self.lbox.grid(column = 2, row = 0,rowspan=2)

self.vScroll.grid(column = 3, row = O,rowspan = 2,
sticky = 'NSW')

self.btnClearLBox.grid(column = 1, row = 0, padx =
5)

self.btnFillLBox.grid(column = 1, row = 1, padx =
5)

In DefineVars add this...

List for List box items

self.examples = ['Item One', 'Item Two', 'Item
Three','Item Four']

And add the following support routines:
def ClearList(self):
self.lbox.delete(0,END)

def FillList(self):
Note, clear the listbox first...no check is done
for ex in self.examples:
self.lbox.insert (END,ex)
insert([O0,ACTIVE,END],item)

def LBoxSelect(self,pl):
print ("Listbox Item clicked")
items = self.lbox.curselection()
selitem = items[0]
print ("Index of selected item =
{0}".format (selitem))
print ("Text of selected item =
{0}".format (self.lbox.get(selitem)))

Finally, update the geometry line.
root.geometry('750x370+150+150"')

Save this as widgetdemole.py, and run it. Now we will do our last

modifications to our application.

full circle magazine

@ 137

List Box Stuff
self.lstframe = Frame(frame,
relief = SUNKEN,
padx = 3,
pady = 3,
borderwidth = 2,
width = 500
)
Scrollbar for list box
self.VScroll = Scrollbar(self.lstframe)
self.lbox = Listbox(self.lstframe,
height = 5,
yscrollcommand = self.VScroll.set)
default height is 10

self.lbox.bind('<<ListboxSelect>>',6 self.LBoxSelect)
self.VScroll.config(command =
self.lbox.yview)
self.btnClearLBox = Button(
self.lstframe,

text = "Clear List",
command = self.ClearList,
width = 11

)
self.btnFillLBox = Button(

self.lstframe,

text = "Fill List",
command = self.FillList,
width = 11

)

<<ListboxSelect>> is virtual event
Fill the list box
self.FillList ()

Now, we'll deal with the
additional code for the

PlaceWidgets routine, and ~ : This section is simply a
that's shown on the following : series of “normal” buttons that

page, left side. . will call various types of
: Message Dialogs. We've done
© them before in a different GUI

ﬁ contents ©

Message Dialogs

The Compleat Python

HOWTO - PROGRAM IN PYTHON - PART 26

toolkit. We will explore only 5 Save this as I've put the code for http://pastebin.com/ZqrgHcdG.
different types, but there are widgetdemolf.py, and play widgetdemolf.py on pastebin

more. In this section, we'll look : away. © at

at Info, Warning, Error, ‘

Question, and Yes/No dialogs. def ShowMessageBox(self,which):

These are very useful when you : if which == 1:

need to pass some information tkMessageBox.showinfo('Demo', 'This is an INFO messagebox')

elif which == 2:

to your u,ser I!W a rather t_)lg way. tkMessageBox.showwarning('Demo’', 'This is a WARNING messagebox')
In the BuildWidgets routine add : elif which == 3:
the code shown below. § tkMessageBox.showerror('Demo’', 'This is an ERROR messagebox')
: elif which == 4:
Here is the support routine. resp = tkMessageBox.askquestion('Demo', 'This is a QUESTION messagebox?')

. : print('{0} was pressed...'.format(resp))
For the first three (Info, 5 il el hy, e e
Warning, and Error), you simply : resp = tkMessageBox.askyesno('Demo’','This is a YES/NO messagebox')
call 'tkMessageBox.showinfo', print('{0} was pressed...'.format(resp))
or whichever you need, with :
two parameters. F!I‘St is the tltle; # Buttons to show message boxes and dialogs
for the message dialog, and : self.mbframe = Frame(frame,relief = SUNKEN,padx = 3, pady = 3, borderwidth = 2)
second is the actual message : self.btnMBInfo = Button(self.mbframe,text = "Info")
you want to show. The icon is self.btnMBWarning = Button(self.mbframe,text = "Warning")

: : self.btnMBError = Button(self.mbframe,text = "Error")

handl,ed for you by tk_mter' For : self.btnMBQuestion = Button(self.mbframe,text = "Question")
the dialogs that provide a : self.btnMBYesNo = Button(self.mbframe,text = "Yes/No")
response (question, yes/no), we : self.btnMBInfo.bind('<ButtonRelease-1>', lambda e: self.ShowMessageBox (1))
provide a variable that receives : self.btnMBWarning.bind('<ButtonRelease-1>', lambda e: self.ShowMessageBox(2))

: self.btnMBError.bind('<ButtonRelease-1>', lambda e: self.ShowMessageBox(3))
th,e value of which button was : self.btnMBQuestion.bind('<ButtonRelease-1>', lambda e: self.ShowMessageBox(4))
C“Cke_d- In Fhe case of the) : self.btnMBYesNo.bind('<ButtonRelease-1>', lambda e: self.ShowMessageBox(5))
question dialog, the response is :

either “yes” or “no”, and, in the : Now, add the code for the PlaceWidgets routine:

case of the yes/no dialog, the

response is either “True” or # Messagebox buttons and frame
“False” : self.mbframe.grid(column = O0,row = 7, columnspan = 5, padx = 5, sticky = 'WE')
) 1 = Label(self.mbframe,text='Message Boxes |',width=15, anchor='e').grid(column=0,row=0)
: self.btnMBInfo.grid(column = 1, row = 0, padx= 3)

Finally, modify the geometry : self.btnMBWarning.grid(column = 2, row = 0, padx= 3)
line: : self.btnMBError.grid(column = 3, row = 0, padx= 3)
root.geometry('750x490+550+155 self.btnMBQuestion.grid(column = 4, row = 0, padx= 3)
0') self.btnMBYesNo.grid(column = 5, row = 0, padx= 3)

Full circle magazine @ 138 The Compleat Python A contents ~

http://pastebin.com/ZqrgHcdG

f you've ever waited in line :
: and unless you save it to a

. long-term variable, there's no
. way to get the data back.

to buy a movie ticket,

you've been in a queue. If

you've ever had to wait in
traffic at rush hour, you've
been in a queue. If you've ever
waited in a government office
with one of those little tickets
that says you’re number 98,

number 42," you've been in a
gueue.

In the world of computers,

most times, you don't have to
think about them. They are
invisible to the user. But if you

events, you will eventually

data of one type or another,
waiting in line for its turn to be
processed. Once it's in the
queue, it's there until it gets
accessed, and then it's gone.
You can't get the value of the
next data item unless you pull
it out of the queue. You can't,
for example, get the value of
the 15th item in the queue. You
have to access the other 14
items first. Once it's accessed,

it's out of the queue. It's gone,

There are multiple types of

: queues. The most common
. ones are FIFO (First In, First
: Out), LIFO (Last In, First Out),
, . Priority, and Ring. We'll talk
and the sign says "Now serving about ring queues another

time.

FIFO queues are what we

. see in everyday life. All of the
gueues are common. As a user, - examples | listed above are
: FIFO queues. The first person in :
. the line gets handled first,
, : : moves on, then everyone
ever have to deal with realtime . moves up one spot in the line.
, = : In a FIFO buffer, there is (within :
have to deal with them. It's just " reason) no limit to the number
. of items it can hold. They just

: stack up in order. As an item is
. handled, it is pulled out (or

. dequeued) of the queue, and

. everything moves closer to the :
: front of the queue by one

. position.

LIFO Queues are less

: common in life, but there are
- still real-world examples. The

one that comes to mind most
fFull circle magazine

@ 139

of the buffer (plates pulled off

Priority queues are a bit

: harder for many people to
. imagine right off the bat. Think :
: of a company that has one :
. printer. Everyone uses that one
: printer. The print jobs are

: handled by department priority.
. Payroll has a higher priority

. (and thankfully so) than say,

: you, a programmer. You have a
. higher priority (and thankfully

: s0) than the receptionist. So in
: short, the data that has a

higher priority gets handled,
The Compleat Python

Program In Python - Part 27

: quickly is a stack of dishes in :
: your kitchen cabinet. When the :
. dishes are washed and dryed, :
: they get stacked in the cabinet. :
: The last one in on the stack is
. the first one that comes out to
. be used. All the rest have to

. wait, maybe for days, to be

. used. It's a good thing that the
. movie ticket queue is FIFO, isn't :
. it? Like the FIFO queue, within
. reason, there is no limit to the
. size of a LIFO queue. The first
. item in the queue has to wait

: as newer items are pulled out

There are multiple
types of queues.
The most common
ones are FIFO (First
In, First Out), LIFO
(Last In, First Out),
Priority, and Ring.

. and gets out of the queue,
: before data that has a lower
© priority.

FIFO

FIFO queues are easy to

. the stack) until it's the only one : visualize in terms of data. A

- left. . python list is an easy mental

. representation. Consider this
- list...

© [1,2,3,4,5,6,7,8,9,10]

There are 10 items in the

: list. As a list, you access them

. by index. However, in a queue,
© you can't access the items by

© index. You have to deal with the
. next one in the line and the list
- isn't static. It's VERY dynamic.

: As we request the next item in

: the queue, it gets removed. So
: using the example above, you

request one item from the

ﬁ contents ©

HOWTO - PROGRAM IN PYTHON - PART 27

import Queue

fifo = Queue.Queue()

for i in range(5):
fifo.put (i)

while not fifo.empty():
print fifo.get()

queue. It returns the first item
(1) and the queue then looks
like this.

[2,3,4,5,6,7,8,9,10]

Request two more and you
get 2, then 3, returned, and
then the queue looks like this.

[4,5,6,7,8,9,10]

I'm sure you get the idea.
Python provides a simple
library, surprisingly enough,
called Queue, that works well
for small-to-medium sized
queues, up to about 500 items.
Above is a simple example to
show it.

In this example, we initialize
the queue (fifo =
Queue.Queue()) then put the
numbers 0 through 4 into our

queue (fifo.put(i)). We then use
. the buffer is full before we try
: to put the item in, the last item

. is simply discarded.

the internal method .get() to
pull items off the queue until
the queue is empty, .empty().
What is returned is 0,1,2,3,4.
You can also set the maximum

. fifo =

import Queue
fifo = Queue.Queue(1l2)
for i in range(13):
if not fifo.full():
fifo.put (i)

while not fifo.empty():
print fifo.get()

Queue.Queue (300)

Once the maximum number

. of items have been loaded, the
. Queue blocks any additional

. entries going into the queue. :
. This has a side effect of making :
. the program look like it's

. "locked" up, though. The

. easiest way to get around this
' is to use the Queue.full() check :
. (above right). .
. In this case, the queue is set
. for a maximum of 12 items. As
. we put items into the queue,

. we start with '0' and get up to
: '11'. When we hit number 12,

' though, the buffer is already

full. Since we check to see if

There are other options, but
they can cause other side-

fFull circle magazine

effects, and we will address this

~in a future article. So, for the

. majority of the time, the

. bottom line is either use a

. queue with no limit or make

. sure you have more space in

. your queue than you will need.

LIFO

number of items that the queue :
. can handle by initializing it with :
. the size of the queue like this.

import Queue

lifo = Queue.LifoQueue ()

for i in range(5):
lifo.put (i)

while not lifo.empty():
print lifo.get()

The Queue library also

. supports LIFO queues. We'll use :
. the above list as a visual

. example. Setting up our queue,
- it looks like this:

: 11,2,3,4,5,6,7,8,9,10]

Pulling three items from the

queue, it then looks like this:

: 11,2,3,4,5,6,7]

Remember that in a LIFO

. queue, items are removed in a
. LAST-in FIRST-out order. Here's
. the simple example modified

. for a LIFO queue:

When we run it, we get

"4321.0"

@ 140

The Compleat Python

As with the FIFO queue, you
. have the ability to set the size
. of the queue, and you can use
. the .full() check.

P9 = Queue.PriorityQueue()
pq.put((3, 'Medium 1'))
Pg.put((4, 'Medium 2'))
pg.put((10, 'Low'))
pg.put((1,'high'))

while not pg.empty():

nex = pq.get()
print nex
print nex[1]

PRIORITY

While it's not often used, a
. Priority queue can sometimes
. be helpful. It's pretty much the
. same as the other queue
. structures, but we need to pass
. a tuple that holds both the
. priority and the data. Here's an
. example using the Queue

(1,
high
(3, 'Medium')
Medium

(4, 'Medium')
Medium

(10, 'Low')
Low

'high')

ﬁ contents ©

HOWTO - PROGRAM IN PYTHON - PART 27

library:

First, we initialize the queue. :
Then we put four items into the

queue. Notice we use the
format (priority, data) to put
our data. The library sorts our
data in a ascending order
based on the priority value.
When we pull the data, it

comes back as a tuple, just like
we put it in. You can address by :

index the data. What we get
back is...

In our first two examples, we :
: for adding to the queue, and

: one for pulling from the queue,
. and three labels, one showing
: when the queue is empty, one :
. showing when the queue is full, :
: and one to display what has :
. been pulled from the queue. :
. We'll also be writing some code :
. to automatically center the :
: window within the screen.

. Above left is the beginning of
. the code.

simply printed the data that
comes out of our queue. That's
fine for these examples, but in
real-world programming, you
probably need to do something
with that information as soon
as it comes out of the queue,
otherwise it's lost. When we
use the 'print fifo.get', we send
the data to the terminal and
then it's destroyed. Just
something to keep in mind.

Now let's use some of what
we've already learned about
tkinter to create a queue demo
program. This demo will have
two frames. The first will
contain (to the user) three
buttons. One for a FIFO queue,

import sys

from Tkinter import *
import ttk

import tkMessageBox
import Queue

class QueueTest:

def init (self,master

self.DefineVars ()

None) :

f = self.BuildWidgets (master)

self.PlaceWidgets (f)

self.ShowStatus ()

one for a LIFO queue, and one

for a PRIORITY queue. The
. second frame will contain an

entry widget, two buttons, one

Here we have our imports

and the beginning of our class.
. As before, we create the

init__ routine with the

. DefineVars, BuildWidgets, and
. PlaceWidgets routines. We also
: have a routine called :
ShowStatus (above right) which

@ 141

fFull circle magazine

def

The Compleat Python

def DefineVars(self):
self.QueueType = ''
self.FullStatus = StringVar()
self.EmptyStatus = StringVar ()
self.Item = StringVar()
self.Output = StringVar ()
Define the queues
self.fifo = Queue.Queue(10)
self.lifo = Queue.LifoQueue(10)
self.pq = Queue.PriorityQueue(10)
self.obj = self.fifo

BuildWwidgets (self, master):
Define our widgets
frame = Frame (master)
self.fl = Frame(frame,

relief = SUNKEN,

borderwidth=2,

width = 300,

padx 3,

pady 3

)
self.btnFifo = Button(self.fl,

text = "FIFO"

)

self.btnFifo.bind('<ButtonRelease-1>",
lambda e: self.btnMain(1l)

)

self.btnLifo = Button(self.fl,
text = "LIFO"

)

self.btnLifo.bind('<ButtonRelease-1>",
lambda e: self.btnMain(2)

)

self.btnPriority = Button(self.fl,
text = "PRIORITY"

)

self.btnPriority.bind('<ButtonRelease-1>",
lambda e: self.btnMain(3)

)

ﬁ contents ©

HOWTO - PROGRAM IN PYTHON - PART 27

will... well, show the status of
our queue.

We now create our
DefineVars routine. We have
four StringVar() objects, an
empty variable called
QueueType, and three queue
objects - one for each of the
types of queues that we are

going to play with. We have set :
. for the entry widget. Here we
. bind the self. AddToQueue

. routine to the <Return> key. :
. This way, the user doesn't have :
: to use the mouse to add the :

the maximum size of the
queues at 10 for the purposes
of the demo. We also have
created an object called obj,
and assigned it to the FIFO

queue. When we select a queue
. data into the entry widget, and :
. press <Return> if they want to. :

type from the buttons, we will
set this object to the queue
that we want. This way, the
queue is maintained when we
switch to another queue type
(code is on previous page,
bottom right).

Here we start the widget
definitions. We create our first
frame, the three buttons, and
their bindings. Notice we are
using the same routine to
handle the binding callback.
Each button sends a value to
the callback routine to denote
which button was clicked. We
could just as easily have
created a dedicated routine for

each button. However, since all

three buttons are dealing with a

. common task, | thought it :
. would be good to work them as :
. a group (code shown right). :

. Next (below right), we set up :
. the second frame, the entry :
. widget, and the two buttons.

. The only thing here that is out

of the ordinary is the binding

data. They can just enter the

Here (next page, bottom) is

. the last three widget

. definitions. All three are labels.
. We set the textvariable

. attribute to the variables we

. defined earlier. If you

. remember, when that variable :
. changes, so does the text in the :
. label. We also do somethinga
. bit different on the IblData

. label. We will use a different

. font to make it stand out when
. we display the data pulled from
. the queue. Remember that we
- have to return the frame object :

so it can be used in the

fFull circle magazine

self.f2 = Frame(frame,

)

relief = SUNKEN,
borderwidth=2,
width = 300,
padx
pady

3,
3

self.txtAdd = Entry(self.f2,

)

self.txtAdd.bind('<Return>',6 self.AddToQueue)

width=5,
textvar=self.Item

self.btnAdd = Button(self.f2,

)

text='Add to Queue’',
padx

pady

3,
3

self.btnAdd.bind('<ButtonRelease-1>"',6self.AddToQueue)
self.btnGet = Button(self.f2,

)

text='Get Next Item',
padx

pady

3,
3

self.btnGet.bind('<ButtonRelease-1>',6self.GetFromQueue)

@ 142

self.lblEmpty = Label(self.f2,
textvariable=self.EmptyStatus,
relief=FLAT

)

self.1lblFull = Label(self.f2,
textvariable=self.FullStatus,
relief=FLAT

)

self.lblData = Label(self.f2,
textvariable=self.Output,
relief = FLAT,
font=("Helvetica", 16),
padx = 5

)

return frame

The Compleat Python

ﬁ contents ©

HOWTO - PROGRAM IN PYTHON - PART 27

PlaceWidget routine.

This (next page, middle) is
the beginning of the
PlaceWidgets routine. Notice
here that we put five empty
labels at the very top of the
root window. I'm doing this to

set spacing. This is an easy way :

to “cheat” and make your
window placement much
easier. We then set the first
frame, then another “cheater”
label, then the three buttons.
Here we place the second

frame, another “cheater” label, :

Now our main button

: queue, and finally change the
: title of our root window to

. display the queue type we are
© using. After that, we print the

: queue type to the terminal

self.f2.grid (column =_0,row = 2,sticky='nsew',6columnspan=5,padx =
Label (self.f2,text='"',width = 15,anchor =

1l =

def btnMain(self,pl):

. callback routine, btnMain. 3 P;e:: ;;eueType _ rrro
. Remember we are sending in self.obj = self.fifo
¢ (through the pl parameter) root.title('Queue Tests - FIFO')
: which button was clicked. We elif pl == 2:
: th If T variable : self.QueueType = 'LIFO'
: use efse Queue gpﬁ a abe; self.obj = self.lifo
: as a rererence tO_W 'C. queue root.title('Queue Tests - LIFO')
: type we are dealing with, then : elif pl == 3:
: we assign self.obj to the proper : self.QueueType = 'PRIORITY'
: self.obj = self.pq

root.title('Queue Tests - Priority')
print self.QueueType
self.ShowStatus ()

5, pady =
0)

5)
'e').grid(column = 0, row =

and the rest of our widgets.

self.txtAdd.grid (column=1, row=0)

self.btnAdd.grid (column=2, row=0)

def Quit(self):
self.btnGet.grid (column=3, row=0)

sys.exit()

Next we have our “standard”
quit routine which simply calls :
sys.exit() (above right).

self.lblData.grid(column =

def PlaceWidgets(self, master):
frame = master
Place the widgets
frame.grid(column = O,

row = 0)

self.lblEmpty.grid(column=2, row=1)
self.1lblFull.grid(column=3, row =
4, row

1)

0)

1 = Label (frame,text='"',relief=FLAT,width = 15, anchor = 'e').grid(column = 0, row = 0)
1 = Label (frame,text='"',relief=FLAT,width = 15, anchor = 'e').grid(column = 1, row = 0)
1 = Label (frame,text='"',relief=FLAT,width = 15, anchor = 'e').grid(column = 2, row = 0)
1 = Label (frame,text='"',relief=FLAT,width = 15, anchor = 'e').grid(column = 3, row = 0)
1 = Label (frame,text='"',relief=FLAT,width = 15, anchor = 'e').grid(column = 4, row = 0)
self.fl.grid(column = O, row = 1,sticky='nsew',columnspan=5,padx = 5,pady = 5)

1l = Label(self.fl,text='"',width = 25,anchor = 'e').grid(column = 0, row = 0)

self.btnFifo.grid(column =
self.btnLifo.grid(column =
self.btnPriority.grid(column =

l,row = 0,padx = 4)
2,row = 0,padx = 4)
3, row = 0, padx = 4)

full circle magazine The Compleat Python

@ 143 ﬁ contents ©

HOWTO - PROGRAM IN PYTHON - PART 27

window (you don't really
have to do that), and call
the ShowStatus routine.
Next (following page, top
right) we'll make the
ShowsStatus routine.

As you can see, it's pretty
simple. We set the label
variables to their proper
state so they display if the
gqueue we are using is either
full, empty, or somewhere in
between.

The AddToQueue routine
(next page, bottom right) is
also fairly straight-forward. We

get the data from the entry box
: show the data, and update the

using the .get() function. We

then check to see if the current

queue type is a priority queue.
If so, we need to make sure it's
in the correct format. We do
that by checking for the

we complain to the user via an
error message box. If
everything seems correct, we
then check to see if the queue
that we are currently using is
full. Remember, if the queue is
full, the put routine is blocked
and the program will hang. If
everything is fine, we add the
item to the queue and update
the status.

if name

L __main__':

def Center (window):
Get the width and height of the screen
sw = window.winfo_screenwidth()
sh = window.winfo_screenheight ()

Get the width and height of the window

rw = window.winfo_reqwidth()
rh = window.winfo_reqheight ()
Xc = (sw-rw)/2
yc = (sh-rh)/2

window.geometry ("%dx%d+%d+%d"% (xrw,rh,xc,yc))
window.deiconify ()

The GetFromQueue routine

. (middle right) is even easier. :
. We check to see if the queue is :
- empty soas nottorunintoa
: blocking issue, and, if not, we

if not

pull the data from the queue,

status.

We are getting to the end of

: our application. Here is the

: center window routine

presence of a comma. If it isn't (above left). We first
' " i get the screen width

. and screen height of

. the screen we are on.

: We then get the width

. and height of the root

: window by using the

: winfo_reqwidth() and

. winfo_regheight()

: routines built into

: tkinter. These routines,

def AddToQueue(self,pl):
temp = self.Item.get()
if self.QueueTyp 'PRIORITY':
commapos = temp.find(',"')
if commapos == -
print "ERROR"

else:

elif not self.obj.full():
self.obj.put(self.Item.get())

self.Item.set('')

self.ShowStatus ()

@ 144

when called at the

fFull circle magazine The Compleat Python

def ShowStatus(self):
Check for Empty
if self.obj.empty() == True:

self.EmptyStatus.set ('Empty')

else:

self.EmptyStatus.set('"')

Check for Full
if self.obj.full() == True:

self.FullStatus.set('FULL')

else:

self.FullStatus.set('"')

def GetFromQueue(self,pl):
self.Output.set('"')

self.obj.empty():

temp = self.obj.get()
self.Output.set("Pulled
{0}".format (temp))
self.ShowStatus ()

tkMessageBox.showerror ('Queue Demo',
'Priority entry must be in format\r(priority,data)’')

self.obj.put(self.Item.get())

ﬁ contents ©

HOWTO - PROGRAM IN PYTHON - PART 27

right time, will return
the width and height of
the root window based
on the widget
placement. If you call it
too early, you'll get
data, but it won't be
what you really need. We then
subtract the required window
width from the screen width,

FIFO')

same thing for the height
information. We then use that

information to set the geometry :

call. In MOST instances, this
works wonderfully. However,
there might be times that you
need to set the required width
and height by hand.

Finally, we instantiate the
root window, set the base title,

We then call root.after, which
waits x number of milliseconds
(in this case 3) after the root
window is instantiated, and
then calls the Center routine.
This way, the root window has
been completely set up and is
ready to go, so we can get the
root window width and height.
You might have to tweak the
delay time a bit. Some
machines are much faster than
others. 3 works fine on my

root
root.title('Queue Tests -

= Tk()

demo = QueueTest (root)
root.after(3,Center,root)

: machine, your mileage may

: vary. Last but not least, we call
: the root window mainloop to

. get the application to run.

and divide it by two, and do the : :
: As you play with the queues, :
: notice that if you put some data :
in one queue (let's say the FIFO :
: queue) then switch to another
: queue (let's say the LIFO

: queue), the data that was put
: into the FIFO queue is still there :
: and waiting for you. You can :
. completely or partially fill all
. three queues, then start

: _ . playing with them.
instantiate the QueueTest class. :

Well, that's it for this time.

Have fun with your queues. The
: QueueTest code can be found
© at

http://pastebin.com/5BBUiDce.

fFull circle magazine

@ 145

Below Lereo

S, | e——— | iH

Below Zero is a Co-located Server Hosting specialist in the UK.

Uniquely we only provide rack
space and bandwidth. This makes
our service more reliable, more
flexible, more focused and more
competitively priced. We
concentrate solely on the hosting of
Co-located Servers and their
associated systems, within Scotland's Data Centres.

At the heart of our networking
infrastructure is state-of-the-art
BGP4 routing that offers optimal
data delivery and automatic
multihomed failover between our
outstanding providers. Customers
may rest assured that we only use
the highest quality of bandwidth; our policy is to pay more for
the best of breed providers and because we buy in bulk this
doesn't impact our extremely competitive pricing.

At Below Zero we help you to achieve Zero Downtime.

www.zerodowntime.co.uk
The Compleat Python ﬁcontents ~

http://pastebin.com/5BBUiDce
http://www.zerodowntime.co.uk
http://belowzero.biz

HOW-T0

Written by Greg Walters

e are going to

widgets provided
by tkinter. This
time we will look at menus,
combo boxes, spin boxes,
separator bar, progress bars

them one at a time.

ever used. Tkinter makes it
VERY easy for us to make
menus. Combo Boxes are
similar to the list box that we
explored in the last widget
demo article, except the list
“pops down” instead of being
visible at all times. Spin box
controls are great for giving a
fixed range of values that can
“scroll” up or down. For

example, if we want the user to :

be able to choose from integers
. our application. You've seen

: most of this before.

between 1 and 100, we can
easily use a spin box. Progress
bars are a wonderful way to
show that your application
hasn't locked up when
something takes a lot of time,
like reading records from a

explore even more :
. task. There are two types of :
: progress bars, Determinate and :
. Indeterminate. You use a §
. determinate progress bar when :
: you know just how many items :
and notebooks. Let's talk about : You are dealing with. If you :
. don't know the number of items :
: or the percentage of how done

1 1 : . .

every application that you have : yould use the Indeterminate
. version. We will work with both. :
- Finally a notebook widget (or
. tabbed widget) is used many

. times for things like

. configuration screens. You can
. logically group a series of

: widgets on each tab.

. database. It can show the

percentage of completion of a

So, let's get started. As

usual, we will create a base
. application and build on to it :
with each extra widget we add. :

Shown right is the first part of

Save all of this as

widgetdemo?2a.py. Remember
: we will use this as the base to
: build the full demo. Now we will :

start the process of creating the

full circle magazine

Program In Python - Part 28

import sys

from Tkinter import *

import ttk

Shows how to create a menu
class WidgetDemo2:

def init_ (self,master = None):
self.DefineVars ()
f = self.BuildWidgets (master)
self.PlaceWidgets (f)

def DefineVars(self):
pass

And here is the bottom of our program. Again, you have

seen this before. Nothing new here.

if name__ == ' main__ ':
def Center (window):

Get the width and height of the screen

sw = window.winfo_screenwidth()
sh = window.winfo screenheight ()

Get the width and height of the window

rw window.winfo_reqwidth()

rh = window.winfo_reqheight ()
Xc = (sw-rw)/2
yc = (sh-rh)/2

print "{0}x{1}".format (rw,rh)

window.geometry ("%dx%d+%d+%d"% (xrw,rh,xc,yc))

window.deiconify ()

root = Tk()

root.title('More Widgets Demo')
demo = WidgetDemo2 (root)
root.after (13,Center,root)
root.mainloop ()

@ 146

The Compleat Python

ﬁ contents ©

HOWTO - PROGRAM IN PYTHON - PART 28

menu. Here are the steps we
need to do. First, we define a
variable to hold the menu
instance. Like most any widget
we use, the format is...

OurVariable =
options).

Widget (parent,
In this case, we are using
the Menu widget and we will
assign it to master as the
parent. We do this under the
BuildWidgets routine. Next we
create another menu item, this

commands and separators as
needed. Finally we add it to the
menu bar and do it all over
again until we are done. In our
example, we'll have the
menubar, a File pulldown, an
Edit pulldown and a Help
pulldown (top right). Let's get
started.

Next (middle right) we
concentrate on the File Menu.
There will be five elements.
New, Open, Save, a separator
and Exit. We'll use the
.add_command method to add
the command. All we really
need to do is call the method
with the text (label =) and
then provide a callback
function to handle when the

: do the same thing for the
. Edit and Help menus.

. of the menu group

_ e . definitions that says
time calling it filemenu. We add | “tearoff=0". If you were to
: change the “=0"to “=1",

: the menu would start with

. what looks like a dashed

. line and if you drag it, it

. “tears off” and creates its

: own window. While this

. might be helpful sometime
: in the future, we don't want
. that here.

: need to place the menu.

. We don't do a normal

: placement with the .grid()
: function. We simply add it by
: using the parent.config function :
. (bottom right). :

user clicks the item. Finally we
use the menubar.add _cascade

. function to attach the menu to
. the bar.

Notice that the Exit

command uses “root.quit” to
- end the program. No call back
: needed for that. Next we'll

def BuildWidgets(self,master):

frame = Frame(master)
#

MENU STUFF

#

Create the menu bar
self.menubar = Menu(master)

Notice the part in each

Create the File Pull Down,

filemenu

filemenu.
filemenu.
filemenu.
filemenu.
filemenu.
self.menubar.add cascade(label =

tearoff = 0)

"File", menu

and add it to the menu bar
Menu(self .menubar,

self.FileNew)
self.FileOpen)
self.FileSave)

add command(label = "New", command =
add command(label = "Open", command =
add command(label = "Save", command =
add_separator()

add_command(label = "Exit", command =

= root.quit)

= filemenu)

Last but not least, we

Create the Edit Pull Down

editmenu = Menu(self.menubar, tearoff = 0)
editmenu.add command(label = "Cut", command = s
editmenu.add command(label = "Copy", command =
editmenu.add command(label = "Paste", command =
self.menubar.add cascade(label = "Edit", menu =

Create the Help Pull Down

helpmenu =

Menu (self.menubar, tearoff=0)
helpmenu.add command(label = "About", command
self.menubar.add cascade(label = "Help", menu

elf.EditCut)

self.EditCopy)
self.EditPaste)
editmenu)

self.HelpAbout)
helpmenu)

All of this has gone in the

BuildWidgets routine. Now

(next page, top right) we need

fFull circle magazine

Now, display the menu
master.config(menu =

self .menubar)

#

End of Menu Stuff

#

@ 147

The Compleat Python

ﬁ contents ©

HOWTO - PROGRAM IN PYTHON - PART 28

to add a generic frame and set
the return statement before we
move on to the PlaceWidgets
routine.

Finally (next page, bottom
right) we need to create all the
callbacks we defined earlier.
For the demo, all we'll do is
print something in the terminal
used to launch the program.

as widgetdemo2b.py and we'll
get started. The imports, class

- definition and the def _init__

: routines are all the same, as is
. the bottom part of the

: program. We'll add two lines to
: the DefineVars routine. Either

: comment out the “pass” _
. statement or erase it and put in :
. the following code. (I included
. the definition line just for

self.fl = Frame(frame,

relief = SUNKEN,
borderwidth = 2,
width = 500,
height = 100

)

return frame

Next we (as we have done multiple times) deal with

placing our other widgets.

def PlaceWidgets(self,master):

That's it. Save and run the | clarity.) frame = master
; :) . . : frame.grid(column = 0, row = 0)
program. Click on each of the . First we define a label, which :
menu options (saving File|Exit . we've done before. Next we ; self.fl.grid(column = O,
for last). . define the combo box. We use ::"i’c:yoi e
Now (below) we'll deal with ttk.Combobox”, deflr_ne the)
the combo box. Save your file parent and set the height to 19, :
def DefineVars(self): def FileNew(self):
self.cmbolVal = StringVar() print "Menu - File New"
self.clvals = ['None', 'Option 1',6 'Option 2', 'Option 3']
def FileOpen(self):
After our the self.f1 definition in BuildWidgets and before the “return frame” line print “Menu — File Open*
insert the following code. def FileSave(self):
4 Combo B print "Menu - File Save"
ombo Box
self.lblchb i Label (self.fl, text = "Combo Box: ") def EditCut(self):
self.cmbol = ttk.Combobox(ie}fﬁil, i print "Menu - Edit Cut"
elg - " n -
width =_20' _ def EditCopy(self):
)textvarlable = self.cmbolVal print "Menu - Edit Copy"
self.cmbol['Yalues'] = self.clvals def EditPaste(self):
Bind the virtual event to the callback print "Menu - Edit Paste"
self.cmbol.bind ("<<ComboboxSelected>>",self.cmbotest)
def HelpAbout (self):
print "Menu - Help About"

fFull circle magazine

@ 148

The Compleat Python

ﬁ contents ©

HOWTO - PROGRAM IN PYTHON - PART 28

the width to 20 and the
textvariable to “self.cmbolVal”.
Remember that we set
textvariables in the last widget
demo, but just in case you
forgot...this is changed anytime
the value in the combo box is
changed. We defined it in
DefineVars as a StringVar

that we want the user to
choose from, again we defined
that in DefineVars. Finally we
bind the virtual event
<<ComboboxSelected>> to
the cmbotest routine that we
will flesh out in a minute.

Next let's place the combo
box and the label into our form
(top right).

Save everything and test it
out.

Now save as
widgetdemo2c.py and we'll
start with the separator bar.

updated tkinter provides a
separator bar widget, I've
never been able to get it to
work. Here's an easy work
around. We use a frame with a
height of 2. The only changes
to our program will be the

5 self.spinval =

definition of the frame in
BuildWidgets after the combo

. box bind statement and placing :
. the frame in the Place Widgets
. routine. So, in BuildWidgets put :
. in the following lines (shown :
. middle right)...

Once again, you've seen all

object. Next we load the values : this before. Save and test it.
. You'll probably have to expand
. the topmost window to see the
. separator, but it will become

. much more evident in the next
. demo. Save as 5
. widgetdemo2d.py and we'll add :
. the spin control. :

Under DefineVars, add the

. following line...

StringVar()

. By now, you know that this is:
. so we can get the value at any :
. time we want. Next, we'll add

. some code to the BuildWidgets
: routine...just before the “return

This is SO super easy. While the frame™ line (bottom right).

Here we define a label and

the spin control. The spin
. control definition is as follows:

: ourwidget =

: Spinbox(parent,low value,
: high value, width,

" textvariable, wrap)

fFull circle magazine

self.lblcb.grid(column
self.cmbol.grid(column
row = 2,

columnspan =

pady = 2
)

4,

And finally we put in the callback which simply prints what
the user selected into the terminal window.

def cmbotest(self,pl):
print self.cmbolVal.get ()

self.fsep = Frame(self.fl,

width =

140,

height = 2,
relief = RIDGE,
borderwidth = 2

)
And in PlaceWidgets put in this ...

self.fsep.grid(column = O,
row = 3,
columnspan =
sticky
padx =
pady =
)

3,
3

|We|

8,

self.lblsc
self.spinl

Label (self.fl, text

Spinbox (self.f1,
from = 1.0
to = 10.0,
width = 3,

textvariable =

wrap=True

)

= "Spin Control:")

14

self.spinval,

@ 149

The Compleat Python

ﬁ contents ©

HOWTO - PROGRAM IN PYTHON - PART 28

The low value must be called
as “from_" since the word
“from” is a keyword and using
that would simply confuse
everyting. The values “from_
and “to” must be defined as
float values. In this case we :
want it to have a low value of 1 :
and a high value of 10. Finally :
the wrap option says that if the :
value is (in our case) 10 and
the user clicks on the up arrow, :
we want it to wrap around to
the low value and keep going.
The same works for the low
value. If the user clicks the
down arrow of the control and
the value is 1, it wraps to 10
and keeps going. If you set
“wrap=False”, the control
simply stops at whichever
direction the user is going.

n

Now we'll place the widgets
in PlaceWidgets (below).

Again, that's it. Save and
play. You'll really notice the
separator now.

Save as widgetdemoZ2e.py

and we'll do the progress bars.

Again, we need to define

: some variables, so in the
. DefineVars routine add the
. following code...

! self.spinval2 = StringVar()

self.btnStatus = False

: self.pbar2val = StringVar()

It should be pretty obvious

: what the two StringVar

. variables are. We'll discuss the
: “self.btnStatus” in a moment. :
: For now, let's go and define the :
. widgets for this portion in '
. BuildWidgets (right).

Again this goes before the

: “return frame” line. What we

: are doing is setting up a frame
. for us to put the widgets into.

. Then we set up two labels as
: guides. Next we define the first :
. progress bar. Here the only '
: things that might be strange

: are length, mode and

: maximum. Length is the size in
: pixels of our bar. Maximum is

: the highest value that will be

: seen. In this case it's 100 since

self.lblsc.grid(column
self.spinl.grid(column

row

pady

)

0, row = 4)
1,

4

N ~

#

Progress Bar Stuff

#

self.

self.

self.

self

self.

self

self

self

.pbar2

frmPBar = Frame(self.f1,
relief = SUNKEN,
borderwidth = 2

)

1bl0 = Label (self.frmPBar,
text = "Progress Bars"
)
1bl1l = Label (self.frmPBar,
text = "Indeterminate",
anchor = 'e'
)
.pbar = ttk.Progressbar(self.frmPBar,

orient = HORIZONTAL,
length = 100,
mode = 'indeterminate',
maximum = 100
)

btnptest = Button(self.frmPBar,
text = "Start",

command = self.TestPBar

)

.1bl2 = Label(self.frmPBar,

text = "Determinate"

)

orient = HORIZONTAL,
length = 100,
mode = 'determinate’,

variable = self.pbar2val

)

.spin2 = Spinbox(self.frmPBar,

from = 1.0,
to = 100.0,

ttk.Progressbar (self. frmPBar,

textvariable = self.spinval2,

wrap = True,
width = 5,
command = self.Spin2Do

)

fFull circle magazine

@ 150

The Compleat Python

ﬁ contents ©

HOWTO - PROGRAM IN PYTHON - PART 28

we are looking at percentage.
Mode in this case is
'indeterminate'. Remember, we
use this mode when we don't
know how far we've gotten in a
task so we just want to let the
user know that something is
happening.

Next we add a button
(you've done this before),
another label another progress
bar and another spin control.
The mode for the second
progress bar is “determinate”.

We will use the spin control to
set the “percentage” of

: completion. Next add the

: following lines (next page, top
: left) into the PlaceWidgets

: routine.

Lastly, we add two routines

to control our progress bars
. (botom right).

The TestPBar routine controls

. the indeterminate progress bar.
: Basically, we are starting and
stopping an internal timer that
- is built into the progress bar.

#

NOTEBOOK

#

self.nframe = Frame(self.f1l,

self.notebook = ttk.Notebook(self.nframe,

relief = SUNKEN,
borderwidth = 2,
width = 500,
height = 300

)

width = 490,
height = 290
)

Progress Bar
self.frmPBar.grid(column = O,
row = 5,
columnspan = 8,
sticky = 'nsew',
padx =
pady
)
self.1bl0.grid (column
self.lbll.grid(column
row = 1
pady =
)
self.pbar.grid(column = 1, row = 1)
self.btnptest.grid(column = 3, row = 1)
self.lbl2.grid(column = O,

ww
-

0, row = 0)

W ~

row = 2,

pady = 3

)
self.pbar2.grid(column = 1, row = 2)
self.spin2.grid(column = 3, row = 2)

self.pl = Frame(self.notebook)
self.p2 = Frame(self.notebook)
self.notebook.add(self.pl, text
self.notebook.add(self.p2,text
self.1lspl = Label(self.pl,

text = "This
page number 1",

padx = 3,

pady = 3

)

'Page One')
'Page Two')

is a label on

def TestPBar(self):

if self.btnStatus == False:
self.btnptest.config(text="Stop")
self.btnStatus = True
self.pbar.start (10)

else:
self.btnptest.config(text="Start")
self.btnStatus = False
self.pbar.stop()

def Spin2Do(self):
v = self.spinval2.get()
print v
self.pbar2val.set (v)

full circle magazine

The Compleat Python

ﬁ contents ©

HOWTO - PROGRAM IN PYTHON - PART 28

The line “self.pbar.start(10)”
sets the timer to 10 milliseconds.
This makes the bar move fairly
quickly. Feel free to play with this
value up and down on your own.
The Spin2Do routine simply sets
the progress bar to whatever
value the spin control has. We
print it as well to the terminal.

before the “return frame” line...

Let's look at what we did. First, :
. we define a frame for our :
. notebook widget. Now we define
. the widget. All the options are
. ones we've seen before. Next we
. define two frames named self.pl
. and self.p2. These act as our

: pages. The next two lines

That's all the changes for this.
Save and play.

(self.notebook.add) attach the
. frames to the notebook widget

- and they get a tab attached to

Now save as widgetdemo2f.py
and we'll deal with the tabbed
notebook widgets. In BuildWidgets :
put the following code (below) :

them. We also set the text for the

. tabs. Finally, we put a label on ;
page number one. We'll put one on:
. page number two when we place :

self.nframe.grid(column

row =

=! 0,
6,

columnspan = 8,
rowspan = 7,

the controls just for fun.

In the PlaceWidgets routine putg

the following code (below).

The only thing that might

possibly be strange is the label on

page two. We combine the
definition and placement in the

grid with the same command. We

did that when we did our first
widget demo app.

That's it. Save and play.

As always the full code for the

full application is up on pastebin atg

http://pastebin.com/qSPkSNU1.

Enjoy. Next time we'll deal with

some more database stuff.

sticky = 'nsew’
)
self.notebook.grid(column = O,
row = 0,
columnspan = 11,
sticky = 'nsew’
)
self.lspl.grid(column = 0,row = 0)
self.lsp2 = Label(self.p2,
text = 'This is a label on PAGE 2',
padx = 3,
pady = 3
) .grid(
column = O,
row = 1
)
Full circle magazine @ 152 The Compleat Python

ﬁ contents ©

http://pastebin.com/qSPkSNU1

HOW-T0O

Written by Greg Walters

little while ago, | was
asked to convert a
MySQL database to
SQLite. Looking
around the web for a quick and

easy (and free) solution, I found :

nothing that worked with the
current version of MySQL for
me. So | decided to go ahead
and “roll my own”.

The MySQL Administrator

program allows you to backup a
: addition to that, SQLite doesn't

support the “PRIMARY KEY” line.
. In SQLite, we set a primary key
. by using “INTEGER PRIMARY

. KEY AUTOINCREMENT” when

. we define the field. The other

. thing that SQLite doesn't

. support is the “unsigned”

. keyword.

database into a flat text file.
Many SQLite browsers allow
you to read a flat sql definition
file and create the database
from there. However, there are
many things that MySQL
supports that SQLite doesn't.
So this month, we'll write a
conversion program that reads
a MySQL dump file and creates
a SQLite version.

Let's start by looking at the
MySQL dump file. It consists of
a section that creates the
database, and then sections
that create each table within
the database followed by the
data for that table, if it's

. included in the dump file. _
. (There's an option to export the :
. table schema(s) only). Shown
. above right is an example of
. one of the create table

sections.

. The first thing that we would
. need to get rid of is in the last
. line. Everything after the

. ending parenthesis needs to go
: away. (SQLite does not support

an InnoDB database). In

When it comes to the data,

. the “INSERT INTO” statements
. are also non-compatible. The

. problem here is that SQLite

: doesn't allow multiple inserts
: within the same statement.

: Here's a short example from

. the MySql dump file. Notice

(right) that the end-of-line

full circle magazine

Program In Python - Part 29

DROP TABLE IF EXISTS " categoriesmain’;
CREATE TABLE ~categoriesmain’
int (10) unsigned NOT NULL

“idCategoriesMain”
auto_increment,

“CatText"

PRIMARY KEY

char (100) NOT NULL default '',
(" idCategoriesMain’)

) ENGINE=InnoDB AUTO_ INCREMENT=40 DEFAULT

CHARSET=latinl;

INSERT INTO "categoriesmain’

(" idCategoriesMain” , CatText) VALUES

(1, 'Appetizer'),
(2, 'Snack'),
(3, 'Barbecue’),
(4, 'Cake'),
(5,'Candy"'),
(6, 'Beverages');

To make this compatible, we need to change this from a
single statement format to a series of single statements like

this:

INSERT INTO “categoriesmain’

(T idcategoriesMain” , "CatText)

INSERT INTO “categoriesmain’

(T idcategoriesMain” , "CatText)

INSERT INTO “categoriesmain’

(T idcategoriesMain” , "CatText)

INSERT INTO “categoriesmain’

(T idcategoriesMain” , "CatText")

INSERT INTO “categoriesmain’

(T idcategoriesMain” , "CatText")

INSERT INTO “categoriesmain’

(T idcategoriesMain” , "CatText")

VALUES

VALUES

VALUES

VALUES

VALUES

VALUES

(1, 'Appetizer');
(2, 'Snack');
(3, 'Barbecue’);
(4, 'Cake');
(5,'Candy');

(6, 'Beverages');

@ 153

The Compleat Python

ﬁ contents ©

HOWTO - PROGRAM IN PYTHON - PART 29

marker is a semicolon.

We will also ignore any

Once we have the converted
SQL file, we'll use a program
similar to the public domain
program SQLite Database
Browser to actually deal with
the process of creating the
database, tables, and data.

Let's get started. Start a new
project folder and a new python :
. statement.

file. Name it MySQL2SQLite.py.

Shown above right is the
import statement, the class
definition, and the __init__
routine.

This will be a commandline
driven program, so we'll need

n

to create the “if _name__
statement, a command line

: argument handler, and a usage :
comment lines, and the CREATE : :
DATABASE and USE statements. : ;
: This goes at the very end of the :
. program. All other code we :
: create will go above this:

routine (if the user doesn't
know how to use the program).

; def error (message):

print >> sys.stderr,

; str (message)

Below is the handler that
does the printing of the usage

: The Dolt() routine is called if :
© our program is being run stand- :
. alone from the command line,
: which is the design. However, if :
: we want to keep this as a :
- library to be included in another:
. program at another time, we

#!/usr/bin/env python

#

MySQL2SQLite.py

#

IMPORTS

import sys

#

#

BEGIN CLASS MySQL2SQLite
#

class MySQL2SQLite:

def init_ (self):
self.InputFile = ""
self.OutputFile = ""

self.WriteFile = 0
self.DebugMode = 0
self.SchemaOnly = 0
self.DirectMode = False

def DoIt():

#

Setup Variables

#
SourceFile =
OutputFile =
Debug = False
Help = False
SchemaOnly = False

#

if len(sys.argv) ==

usage()
else:
for a in sys.argv:
print a

if a.startswith("Infile="):
pos = a.find("=")
SourceFile = a[pos+1:]

elif a.startswith("Outfile="):
pos = a.find("=")
OutputFile = a[pos+1l:]

elif a == 'Debug':
Debug = True

elif a == 'SchemaOnly':
SchemaOnly = True

elif a == '-Help' or a == '-H' or a == '-?':
Help = True

if Help == True:
usage ()

r = MySQL2SQLite ()
r.SetUp (SourceFile,OutputFile,Debug,SchemaOnly)
r .DoWork ()

full circle magazine

@ 154

The Compleat Python

ﬁ contents ©

HOWTO - PROGRAM IN PYTHON - PART 29

can just use the class. Here
we set up a number of
variables to make sure that
everything works correctly.
The code shown bottom right
then parses the command line
arguments passed to our
program, and gets things
ready for the main routines.

When we start the
program, we need to provide
at least two variables on the
command line. These are the
Input file, and the Output file.
We also will provide support
for the user to see what is
happening as the program is
running, an option to just
create the tables and not stuff

def usage():
message = (

\n'

'MySQL2SQLite - A database converter\n'

'Author: Greg Walters\n'

'"USAGE:\n'

'MySOL2SQLite Infile=filename [Outfile=filename]

where\n'

Infile is the MySQL dump file\n'

Outfile (optional) is the output filename\n'

[SchemaOnly]

[Debug] [-H-Help-2?\n'

SchemaOnly (optional) Create Tables, DO NOT IMPORT DATA\n'

Debug (optional) - Turn on debugging messages\n'

-H or -Help or -? - Show this message\n'
'Copyright (C) 2011 by G.D. Walters\n'

! (if Outfile is omitted, assumed direct to SQLite\n'

)

error (message)
sys.exit (1)

if __name == "__main__":
DoIt ()

\n'

the data, and for the user to
call for help. Our “normal”
command line to start the
program looks like this:

MySQL2SQLite Infile=Foo
Outfile=Bar

where “Foo” is the name of

the MySQL dump file, and “Bar”

is the name of the SQLite sql
file we want the program to
Create.

You can also call it like this:

: MySQL2SQLite Infile=Foo
: Outfile=Bar Debug SchemaOnly

: Which will add the option to
. show the debug messages and
: to ONLY create the tables and

. not import the data.

Finally if the user asks for
. help, we just go to the usage
. portion of the program.

: Before we continue, let's

. take another look at how the

: command line argument
support works.

fFull circle magazine

When a user enters the

. program name from the

. command line (terminal), the

. operating system keeps track
. of the information entered and
. passes it to the program just in :
. case there are any options

. entered. If no options (also

. called arguments) are entered,
. the number of arguments is

. one, which is the name of the

. application - in our case

. MySQL2SQLite.py. We can

. access these arguments by :
~ calling the sys.arg command. If

@ 155

The Compleat Python

. the count is greater than one,

. we will access them in a for

. loop. We will step through the

. list of arguments and check

. each one. Some programs

. require you to enter the

: arguments in a specific order.

. By using the for loop approach,
. the arguments can be entered

. in any order. If the user doesn't
. supply any arguments, or uses

. the help arguments, we show

. the usage screen. Shown above
. is the routine for that.

Moving on, once we have

ﬁ contents ©

HOWTO - PROGRAM IN PYTHON - PART 29

parsed the argument set, we
instantiate the class, call the

Notice that there is the
ability to not write to a

setup routine, which fills certain : file, useful for debugging

variables and then call the
DoWork routine. We'll start our
class now (which is shown on
the next page, bottom right).

This (next page, top right) is
the definition and the __init__
routine. Here we setup the
variables that we will need as
we go through the code.
Remember that right before we

call the DoWork routine, we call

the Setup routine. We take our
empty variables and assign the
correct values to them here.

. purposes. We also have

: the ability to simply write
: the schema, or database
: structure, without writing
. the data. This is helpful if
: you are taking a

. database and starting a

. new project without

: wanting to use any

: existing data.

We start off by

: opening the SQL Dump

. file, then setting some

: internal scope variables.

while 1:
line = f.readline()
cntr += 1
if not line:
break

"--" or comments (/*!)

Ignore blank lines, lines that start with

if line.startswith("--

"): #Comments

def SetUp(self, In, Out = '', Debug
self.InputFile = In
if Out == '';:
self.writeFile = 0
else:
self.WriteFile = 1

self.OutputFile = Out

if Debug == True:
self.DebugMode = 1
if Schema == 1:

self.SchemaOnly = 1

def DoWork(self):

f = open(self.InputFile)
print "Starting Process"
cntr = 0

insertmode = 0
CreateTableMode = 0
InsertStart = "INSERT INTO "
AI = "auto_increment"

PK = "PRIMARY KEY "

= False, Schema = 0):

Now, we'll deal with the DoWork routine, which is where the actual
“magic” happens.

IPK = " INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL"

CT = "CREATE TABLE "
Begin
if self.WriteFile == 1:

OutFile = open(self.OutputFile, 'w')

pass
elif len(line) == 1: # Blank Lines #

pass # BEGIN CLASS MySQL2SQLite
elif line.startswith("/*!"): # Comments #

pass class MySQL2SQLite:

elif line.startswith("USE"):
#Ignore USE lines
pass

elif line.startswith ("CREATE
pass

def init (self):
self.InputFile = ""
self.OutputFile = ""
self.WriteFile
self.DebugMode
self.SchemaOnly = 0

DATABASE "): =0
=0

full circle magazine The Compleat Python

@ 156 ﬁ contents ©

HOWTO - PROGRAM IN PYTHON - PART 29

We also define some strings to
save us typing later on. Then, if
we are to write to an output
file, we open it and then we
start the entire process. We will
read each line of the input file,

process it, and potentially write :

it to the output file. We use a
forced while loop to assist
reading each line, with a break
command when there is
nothing left in the input file. We
use f.readline() to get the line
to work, and assign it to the
variable “line”. Some lines, we
can safely ignore. We'll simply
use an if/elif statement

followed by a pass statement to :

accomplish this (below).

Next we can stop ignoring
things and actually do
something. If we have a
CreateTable statement, we'll
start that process. Remember
we defined CT to be equal to
“Create Table”. Here (above
right), we set a variable
“CreateTableMode” to be equal
to 1, so we know that's what

we are doing, since each field
definition is on a separate line.
: We then take our line, remove
: the carriage return, and get
: that ready to write to our out
- file, and, if required, write it.

: Now (middle right) we need
: to start dealing with each line

First, (third)))

d the elif line.startswith(CT):
. _OM”]On CreateTableMode = 1
: right) we 11 = len(line)
: check to see if line = line[:11-1]
: the line if self.DebugMode ==
: . “ print "Starting Create Table"
: _contalns auto print line
: increment”. if self.WriteFile ==
© We will OutFile.write(line)
: assume that

: within the create table

: statements -

: manipulating each line to
. keep SQLite happy. There
: are many things that

: SQLite won't deal with.

“CatText"
PRIMARY KEY
) ENGINE=InnoDB AUTO_INCREMENT=40 DEFAULT CHARSET=latinl;

CREATE TABLE ~categoriesmain” (
“idCategoriesMain” int(10) unsigned NOT NULL auto_increment,
char (100) NOT NULL default '',

(" idCategoriesMain™)

. Let's look at a Create Table
. statement from MySQL again.

: One thing that SQLite will :
. absolutely have an issue with is :
. the entire last line after the :
. closing parenthesis. Another is

: the line just above that, the

: Primary Key line. Yet another

© thing is the unsigned keyword

© in the second line. It will take a

: bit of code (below) to work

. around these issues, but we

: can make it happen.

pl
if

line.find (AI)
line.startswith(") "):
CreateTableMode = 0

if self.DebugMode

print "Finished Table Create"

newline "); \n"

if self.WriteFile ==
OutFile.write(newline)
if self.DebugMode

print "Writing Line {0}

".format (newline)

elif CreateTableMode

Parse the line..

if self.DebugMode

print "Line to process — {0}".format(line)

elif pl != -1:

Line is primary key line
1 = line.strip()
fnpos 1.find(" int(")
if fnpos != -1:
fn 1[:fnpos]
newline fn + IPK #+ "
if self.WriteFile
OutFile.write(newline)
if self.DebugMode
print "Writing Line {0}

,\n"

".format (newline)

fFull circle magazine

@ 157

The Compleat Python

ﬁ contents ©

HOWTO - PROGRAM IN PYTHON - PART 29

this will be the primary key line.

While this might be true 98.6%
of the time, it won't always be.
However, we'll keep it simple.

Next we check to see if the line
starts with “) ”. This will signify

table section. If so, we simply
set a string to close the
statement properly in the
variable “newline”, turn off the

CreateTableMode variable, and,

if we are writing to file, write it
out.

Now (bottom right) we use

the auto increment key word.
First, we strip the line of any
spurious spaces, then check to
see where (we are assuming it
is there) the phrase “ int(“ is
within the line. We will be

INTEGER PRIMARY KEY
AUTOINCREMENT NOT NULL".
The length of the integer
doesn't matter to SQLite.

Again, we write it out if we

_ should.

Now we look for the phrase

“PRIMARY KEY “ within the line.
: Notice the extra space at the
this is the last line of the create :

end - that's on purpose. If it

: arises, we ignore the line.

P elif
: line.strip().startswith(PK):

pass

Now (top right) we look for

the phrase “ unsigned “ (again

. keep the extra spaces) and

the information we found about replace it with .

o u

That's the end of the create

: table routine. Now (below) we
: move on to the insert

. statements for the data. The

_ o . . InsertStart variable is the
replacing this with the phrase - phrase “INSERT INTO “. We
: check for that because MySQL
. allows for multiple insert

. statements in a single

elif line.find(" unsigned ") != -1:
line = line.replace(" unsigned "," ")
line = line.strip()
11 = len(line)
line = line[:11-1]
if self.WriteFile ==
OutFile.write("," + line)

if self.DebugMode ==
print "Writing Line {0}".format(line)

Otherwise, we can deal with the line.

else:
11 = len(line)
line = line.strip()
line = line[:11-4]

if self.DebugMode == 1:
print "," + line

if self.WriteFile == 1:
OutFile.write("," + line)

if insertmode ==

elif line.startswith(InsertStart):

insertmode = 1

Get tablename and field list here
istatement = line

Strip CR/LF from istatement line
1 = len(istatement)

istatement = istatement[:1-2]

if posx != -1:

11 = line[:posx+3]

insertmode = 0

if self.DebugMode == 1:
print istatement +
print "———m e

if self.WriteFile == 1:
OutFile.write(istatement + 11+"\n")

Otherwise, wejointhe preludetothevalue
statement and end it with a semicolon.

elif posl != -1:
11 = line[:posl+2]
if self.DebugMode == 1:
print istatement + 11 + ";"
if self.WriteFile == 1:

OutFile.write(istatement + 11 + ";\n")

fFull circle magazine

@ 158

The Compleat Python

ﬁ contents ©

HOWTO - PROGRAMIN PYTHON - PART 29

The line “self.pbar.start(10)” sets the
timer to 10 milliseconds. This makes the
bar move fairly quickly. Feel freeto play
with this value up and down on your own.
The Spin2Do routine simply sets the
progress bar to whatever value the spin
control has. We print it as well to the
terminal. -

That's all the changes for th|s Save and
play. :

Now save as widgetdemo2f.py and we'll
deal with the tabbed notebook widgets. In
BuildWidgets put the following code
(below) before the “return frame? line...

Let's look at what we did. First, we
define a frame for our notebook widget.
Now we define the widget. All the options
are ones we've seen before. Next we
define two frames named self.pl:and
self.p2. These act as our pages. The next
two lines (self.notebook.add) attach the
frames to the notebook widget and they
get a tab attached to them. We also set
the text for the tabs. Finally, we put a label
on page number one. We'll put one on
page number two when we place the
controls just for fun. :

In the PlaceWidgets routine put the
following code (below). ;

The only thing that might poséibly be
strange is the label on page two. We

fFull circle magazine

combine the definition and placement in
the grid with the same command. We did
that when we did ourgfirst widget demo

app.
That's it. Save andé play.
As always the full code for the full

application is up on pastebin at
http://pastebin.com/gGSPKSNU1.

Enjoy. Next time wé'll deal with some
more database stuff. :

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Colorado and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with h|s family. His website is

else:
if self.DebugMode
print "Testing line {0}".format(line)
posl = line.find("),")
posx = line.find(");")
if self.DebugMode

print "posl = {0}, posx = {1}".format (posl,posx)
if posl != -1:
11 = line[:posl+l]

if self.DebugMode == 1:
print istatement + 11 + ";"

if self.WriteFile == 1:
OutFile.write(istatement + 11 + ";\n")

else:

insertmode = 0

11 = line[:posx+1]

if self.DebugMode == 1:
print istatement + 11 + ";"

if self.WriteFile == 1:
OutFile.write(istatement + 11 + ";\n")

The Compleat Python

@ 159

ﬁ contents ©

http://www.thedesignatedgeek.com
http://pastebin.com/cPvzNT7T

i

his month, we'll
explore yet another

for Tkinter. Many
people have an issue with

a built-in designer. While I've

your applications without a
designer, we will examine one
now. It's called Page. Basically
it's a version of Visual TCL with
Python support on top. The
current version is 3.2 and can
be found at

http://sourceforge.net/projects/ :

. is a “launch pad”, one is a

page/files/latest/download.

Prerequisites

You need TCK/TK 8.5.4 or
later, Python 2.6 or later, and
pyttk - which you can get (if
you don't already have it) from

http://pypi.python.org/pypi/pytt

k. You probably have all of
these with the possible
exception of pyttk.

Installation

HOW-T0O

Written by Greg D. Walters

. easier installation routine.
GUI designer, this time . Simply unpack the distribution
' - file into a folder of your choice.
. Run the script called

Tkinter because it doesn't offer : configure” from the folder
. where you just unpacked :
shown you how to easily design ' everythmg_. This W|II“creat? your:
. launch script called “page

. which you use to get

. everything going. That's it.

Fia Edr Opaons Wondow Wdgsl sn Pyfhan

You can't really ask for an

Learning Page

When you start Page, you'll :
get three windows (forms). One :

full circle magazine

Beginning Python - Part 30

. toolbox, and one shows the
. Attribute Editor.

To start a new project, click

on the Toplevel button in the
. toolbox.

=
[3 |Pointer

Standard/vTcl Tcl/Tk Widgets (-)

7] Toplevel
Message
i1 Frame

Canvas

[P TS

i Westiw Wisgel Gin_Python

@ 160 The Compleat Python

in the tool box and then click
: where you want it on the main
. form.

For now, let's do a button.

Click on the Button button on
: the toolbox, and then click
: somewhere on the main form.

Next, in the launch pad form,

: click on Window and select

: Attribute Editor (if it's not

. already showing). Your single

: button should be highlighted

. already, so move it around the
: form and when you release the
: This creates your main form. :
: You can move it wherever you

: wish on your screen. Next, and
: from now on, click on a widget

mouse button you should see

: the position change in the
: attribute editor form under 'x
: position' and 'y position'.

Here we can set other

: attributes such as the text on

: the button (or most any other

. widget), the alias for the widget
: (the name we will refer to in

: our code), color, the name we

: will call it and more. Near the

. bottom of the attribute editor is
: the text field. This is the text

. that appears to the user for, in

" this case, the button widget.

ﬁ contents ©

http://sourceforge.net/projects/page/files/latest/download
http://pypi.python.org/pypi/pyttk

HOWTO - BEGINNING PYTHON 30

Let's change this from “button”
to “Exit”. Notice that now the
button says “Exit”. Now resize
the form to just show the
button and recenter the button
in the form.

Next click in the main form
someplace where the button
isn't. The attribute editor form
now shows the attributes for
the main form. Find the “title”
field and change this from
“New Toplevel 1” to “Test
Form”.

dialog box, type TestForm.tcl
and click the Save button.

. Notice this is saved as a TCL
. file, not a Python file. We'll
. create the python file next.

In the launch pad, find the

Gen_Python menu item and
- click it. Select Generate Python
and a new form appears.

Page has generated (as the

name suggests) our python
. code for us and placed it in a
. window for us to view. At the

i bottom of this form, are three

| Test Form

| |
m Exit

Now, before we save our
project, we need to create a
folder to hold our project files.
Create a folder somewhere on
your drive called
“PageProjects”. Now, in the
launch pad window, select File
then Save As. Navigate to your
PageProjects folder, and, in the

buttons...Save, Run, and Close.

Click Save. If, at this point,
you were to look in your

fFull circle magazine

@ 161

PageProjects folder, you will see
the python file (TestForm.py).

: Now click on the Run button. In
. a few seconds, you'll see the

. project start up. The button is
: not connected to anything yet,
. so it won't do anything if you

. click on it. Simply close the

. form with the “X” in the corner
. of the window. Now close the

. Python Console window with

: the close button at the bottom
: right.

Back at our main form,

. highlight the Exit button and
. right click on it. Select
: “Bindings...”. Under the menu

is a set of buttons.

T wdgern

Insert Move Add Delete
H E - -

Butlon

- Toplevel
: fall

Button1
<Button-1=

Buiton
<ButtonRelease-1>
<Button-1>
<Leave>
<Enter>

The first on the left allows

5 you to create a new binding.

Click on “Button-1". This allows
The Compleat Python

us to enter the binding for the
left mouse button. In the

. window on the right, type
. “Button1Click”.

Widget bindings For .top]

S| Insert Move Add Delate
: [Button1 Pt tan] €1 ok

<Buttan-1=

<BullonRelsazs-1=
<Bulton-1=
wleaves

-I':EF'I"'EI"'_I
<Key-space:

<Bhif-Key-Tab=
<<PraviWindows>

Save and generate the
python code again. Scroll down

. in the Python Console to the

. bottom of the file. Above the

. “class Test_Form” code is the

. function we just asked to be

. created. Notice that at this

. point, it simply is passed. Look

. further down and you'll see the
. code that creates and controls

. our button. Everything is done

. for us already. However, we still
—<Kevspace= I have to tell the button what to
. do. Close the Python Console

. and we'll continue.

On the launch pad, click

ﬁ contents ©

http://www.cafelinux.org/OzOs/

HOWTO - BEGINNING PYTHON 30

Window then select Function
List. Here we will write our
method to close the window.

Function List

py:Button1Click

the Add button. Click it. In the
Function box, type
“py:ButtonlClick” and, in the
Arguments box, type “pl”, and :

change the text in the lower box; python code.

to...

def ButtonlClick(pl):
sys.exit ()

Function List
AN = R oY
py:Button1Click

Function !py:ButchGlick

Arguments |p1

O B8 & @ A
jief ButtonlC

sys.exi tH

kipl) :

Click on the checkmark and

. we are done with this.

Next we have to bind this

". As

Now save and generate your :

You should see the following

code near the bottom, but
»: OUTSIDE of the Test_Form
. class...

. def ButtonlClick(pl)
: sys.exit()

py:Button1Clic

. And the last line of the class
. should be...

; self.Buttonl.bind('<Button-
Po1>

,ButtonlcClick)

Now, if you run your code

fFull circle magazine

and click on the Exit button, the

form should close properly.

: Moving Forward
. routine to the button. Select the'
. button in the form, right click it,

: and select “Bindings...
. before, click on the far left
. button on the toolbar and

. select Button-1. This is the .
. event for the left mouse button
i click. In the right text box, enter:
, . “ButtonlClick”. Make sure you
The first button on the left is " Use the same case that you did
. for the Function we just

. created. Click the checkmark

. on the right side.

Now let's do something more :
: complicated. We'll create a '
- demo showing some of the ;
- widgets that are available. First :
. close Page and restart it. Next,

create a new Toplevel form. Add
. bindings, let's create our click

. functions. Open the Function
. List and create two functions.
. The first should be called

two frames, one above the

: other and expand them to

. pretty much take up the entire
. width of the form. In the top
. frame, place a label, and, using :
. the attributes editor, change
- the text to “Buttons:”. Next, add :
: two buttons along the horizontal:
. plane. Change the text of the
. left one to “Normal”, and the
- right one to “Sunken”. While the :
- sunken button is selected, :
. change the relief to “sunken”

. and name it btnSunken. Name
. the “Normal” button

“btnNormal”. Save this project

. as “Demos.tcl”.

Next, place in the lower

. frame a label saying “Radio
: Buttons” and four radio buttons :
: like in the image below. Finally,
: place an Exit button below the
" bottom frame.

@ 162

The Compleat Python

E print

E print

Buttons

Sunk

Normal

@ radio 1
@ radio 2

Radio Buttons ™ radig

* radig

Exit

Before we work on the

btnNormalClicked and the other

. btnSunkenClicked. Make sure

you set the arguments box to
include pl. Here's the code you

. should have for them...

def btnNormalClicked(pl):

"Normal Button Clicked"

E def btnSunkenClicked(pl)

"Sunken Button Clicked"

Let's add our button

bindings. For each button, right
. click it, select “Bindings...”
- add, as before, a binding to the

, and

. functions we created. For the

. normal button, it would be

. “btnNormalClicked”, and for the
~ sunken button it would be

ﬁ contents ©

HOWTO - BEGINNING PYTHON 30

btnSunkenClicked. Save and
generate your code. Now, if you

were to test the program under :

the “Run” option of the Python
Console, and click any of the
buttons, you won't see
anything happen. However,
when you close the application,
you should see the print
responses. This is normal for
Page and if you simply run it
from the command line as you

normally do, things should work

as expected.

Now for our radio buttons.
We have grouped them in two
“clusters”. The first two (Radio
1 and Radio 2) will be cluster 1
and the other two will be
cluster 2. Click on Radiol and
in the Attribute Editor, set the
value to 0 and the variable to
“rbcl”. Set the variable for

to 1. Do the same thing for
Radio 3 and Radio 4 but for
both of these set the variable
0 “rbc2”. If you want, you can
deal with the click of the
radiobuttons and print
something to the terminal, but
for now, the important thing is
that the clusters work. Clicking

not influence Radio3 or Radio4,

def set Tk var():

These are Tk variables passed to Tkinter and must
be defined before the widgets using them are created.

global rbcl

rbcl = StringVar()

global rbc2

rbc2 = StringVar()

def btnExitClicked(pl)
sys.exit()

def btnNormalClicked(pl)
print "Normal Button Clicked"
def btnSunkenClicked(pl)
print "Sunken Button Clicked"

and the same for Radio2 and so
. on.

the surface of what Page can

. do, and we'll start doing

. something much more realistic

Finally, you should create a

: . next time.
. function for the Exit button, and :
: bind it to the button like we did
. in the first example.

The python code can be

. found on pastebin at

http://pastebin.com/gqa0YVaTb.

If you've been following

: " " - along as we have done our
Radio 2 to “rbcl” and the value othe? Tkinter applications, you
: should be able to understand

. the code shown above right. If
. not, please go back a few

. issues for a full discussion of

this code.

You can see that using Page

yourself. We've only scratched

fFull circle magazine

One note before we go for

: this month. You might have

. noticed that I've missed a

: couple of issues. This is due to
. my wife being diagnosed with

: cancer last year. As hard as |

: have tried to keep things from
. falling through the cracks, a

: . number of things have. One of
. makes the basic design process :

Radiol will deselect Radio2 and . much easier than doing it

these things is my old

? domain/web site at

www—t—heele&gaa’eedgeeleeemlg

@ 163

The Compleat Python

blew it and missed the renewal.
Due to this, the domain was

. sold out from under me. | have
. set up

. www.thedesignatedgeek.net

- with all the old stuff. | will be

. working hard the next month to
: bring it all up to date.

See you next time.

3=

Greg Walters is owner of
RainyDay Solutions, LLC, a consulting
company in Colorado and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with h|s family. His website is

ﬁ contents ©

http://www.thedesignatedgeek.net
http://pastebin.com/qq0YVgTb
http://www.thedesignatedgeek.net

oS

fter our last meeting
you should have a

to use Page. If not,
please read last month's
article. We'll continue this time

by creating a file list application

with a GUI. The goal here is to
create a GUI application that

will recursively walk through a
directory, looking for files with

a defined set of extensions, and

display the output in a
treeview. For this example we

will look for media files with the

n "

extensions of “.avi”, “.mkv”,
M.mv4"’ M.mp3" and “.Ogg".

This time, the text might
seem a bit terse in the design
portion. All I'm going to do is
give you directions for
placement of widgets and the
required attributes and values
like this...

Widget
Attribute: Value

| will only quote text string

when it is needed. For example
- attributes.

for one of the buttons, the text
should be set to “...".

HOW-T0O

Written by Greg D. Walters

Here's what the GUI of our

. application will look like...
fairly good idea of how :

; Alias:
! Title:

= m N
IExilE :

™ .mkv ™ .mp3
I mva I .ogg

Tree Col1 =t

1

: As you can see, we have our :
. main form, an exit button, a
. text entry box with a button

- that will call up an ask for

. directory dialog box, 5 check
. boxes for extension selecting
. extension types, a “GO!"” button :
- to actually start the processing
. and a treeview to display our

: output.

So, let's get started. Fire up

Editor set the following

full circle magazine

! Alias:

@ 164

Beginning Python - Part 31

Searcher
Searcher

Be sure to save often. When
you save the file, save it as

: “Searcher”. Remember, Page
: puts the .tcl extension for you
. and when you finally generate
© the python code, it will be

. saved in the same folder.

Next add a frame. It should

go at the very top of the main
: frame. Set the attributes as

. follows.
. Width: 595
: Height: 55

: X position: O
i y position: 0

In this frame, add a button.

. This will be our Exit button,

btnExit
Text: Exit

Create another frame.

! Wwidth: 325
! Height:

185
y position: 60

The Compleat Python

; Alias:
! Text: FilePath
. Wwidth: 266

. Height: 21

: Move this close to the center :
. of the frame or close to the §
. frame's right side. | set mine to :
: X530 and Y 10. :

Page and create a new top level
. widget. Using the Attribute :

; Alias:
g Text: “...

Here is what this frame will

look like, to give you a guide
: going forward through this

: section.
Path:
[.avi
[.mkv [.mp3
[.mvd [.ogg

oo |

In this frame, add a label.

. Set the text attribute to “Path:”.
: Move it close to the top left of
. the frame.

In the same frame, add an

entry widget.

txtPath

Add a button to the right of
the entry widget.

btnSearchPath
” (no quotes)

Add five (5) check buttons.

Put them in the following

order...

ﬁ contents ©

HOWTO - BEGINNING PYTHON 31

The three check buttons on
the left are for video files and
the two on the right are for
audio files. We will deal with
the three on the left first, then
the two on the right.

Alias: chkAVI
Text: “.avi” (no quotes)
Variable: VchkAVI

Alias: chkMKV
Text: “.mkv” (no quotes)
Variable: VchkMKV

Alias: chkMV4
Text: “.mv4” (no quotes)
Variable: VchkMVv4

Alias: chkMP3
Text: “.mp3” (no quotes)
Variable: VchkMP3

Alias: chkOGG
Text: “.ogg” (no quotes)
Variable: VchkOGG

Finally, in this frame add a
button somewhere below the

five check boxes and somewhat :))
: def btnExitClick(pl):

centered within the frame.

Alias: btnGo
Text: GO!

Now add one more frame
below our last frame.

Width: 565
Height: 265

| placed mine around X0Y

. 250. You might have to resize
. your main form to have the

. entire frame show. Within this
. frame, add a Scrolledtreeview

. widget.
. Wwidth: 550
: Height: 254

: X Position: 10
: Y Position: 10

There. We've designed our

. GUI. Now all that is left to do is
. create our function list and bind :
. the functions to our buttons.

In the Function list window,

. click the New button (the far

. left button). This brings up the
. new function editor. Change the:
. text in the Function entry box
. from “py: xxx” to

- “py:btnExitClick()”. In the

. arguments entry box type “pl”. :
. In the bottom multiline entry
. box, change the text to:

sys.exit()

Notice that this is not

indented. Page will do that for
" us when it creates the python

file.
fFull circle magazine

@ 165

Next create another function
called btnGoClick. Remember

. to add a passed parameter of
. “pl”. Leave the “pass”

. statement. We'll change that
. later.

Finally, add another function

. called “btnSearchPath”. Again,
. leave the pass statement.

Lastly, we need to bind the

Do NOT

- include the parens () here.

Bind the GO button to

btnGoClick and the “...” button
: to btnSearchPathClick.

Save your GUI and generate

the python code.

Now all we have left is to

create the code that “glues”
. the GUI together.

Open up the code we just

5 generated in your favorite

editor. Let's start off by
The Compleat Python

examining what Page created

- forus.

At the top of the file is our

. standard python header and a
. single import statement to

. import the sys library. Next is

. some rather confusing (at first
. glance) code. This basically

. looks at the version of python
. you are trying to run the

: . application in and then to
- buttons to the functions we just :

: . import the correct versions of
. Created.

. the tkinter libraries. Unless you
Right-click on the exit button : are _usmg_python 3.x, you can
. we created, select Bind. A large basically ignore the last two.
. box will pop up. Click on the :
. New binding button, Click on

. Button-1 and change the word
. “TODOQ” in the right text entry

' box to “btnExitClick”.

We'll be modifying the 2.x

code portion to import other
. tkinter modules in a few
. moments.

Next is the “vp_start gui()”

routine. This is the program's

: main routine. This sets up our

. gui, sets the variables we need,
. and then calls the tkinter main

loop. You might notice the line

. “w = None” below this. It is not
. indented and it isn't supposed

. to be.

Next are two routines

(create_Searcher and
. destroy_Searcher) that are
. used to replace the main loop

routine if we are calling this

ﬁ contents ©

HOWTO - BEGINNING PYTHON 31

application as a library. We
don't need to worry about
these.

Next is the “set Tk var”
routine. We define the tkinter
variables used that need to be
set up before we create the
widgets. You might recognize
these as the text variable for
the FilePath entry widget and
the variables for our check
boxes. The next three routines
here are the functions we
created using the function
editor and an “init()” function.

Run the program now. Notice | from os.path import join,

: getsize, exists

that the check buttons have
grayed out checks in them. We

don't want that in our “release” .
. has the line “py2 = True”. As
to clear them before the form is : We said before, this is the

. section that deals with the
functioning thing other than the : tkinter imports for Python

. version 2.x. Below the “import
. ttk”, we need to add the

. following to support the

. FileDialog library. We also need

to import the tkFont module.

app, so we'll create some code
displayed to the user. The only

check boxes is the Exit button.

Go ahead and end the
program.

Now, we'll take a look at the
class that actually holds the
GUI definition. That would be

all the widgets are defined and
placed in our form. You should
be familiar with this by now.

Two more classes are
created for us that hold the

. code to support the scrolled
. tree view. We don't have to

. change any of this. It was all
. created by Page for us.

Now let's go back to the top

of the code and start
. modifying.

We need to import a few

. import os

Now find the section that

E import tkFileDialog

“class Searcher”. Here is where : *™port tkFont

Next we need to add some

" variables to the “set Tk var()”

routine. At the bottom of the
fFull circle magazine

E global exts,

. fp

; el

@ 166

routine, add the following

~lines...

FileList

E exts = []

! FileList=[]

Here we create two global

. list of the extensions that the

. user selects from the GUI.

. “FileList" holds a list of lists of
. the matching files found when
. we do our search. We'll use that :
. to populate the treeview :
. widget.

Since our “btnExitClick” is

already done for us by Page,
- we'll deal with the “btnGoClick” :
. routine. Comment out the pass :
. statement and add the code so : the “btnSearchPathClick”

. it looks like this...

. def btnGoClick(pl)
; #pass

; BuildExts ()

= FilePath.get ()
= tuple(exts)
Walkit (fp,el)

The Compleat Python

LoadDataGrid()

This is the routine that will

. be called when the user clicks

. the “GO!” button. We call a

: routine called “BuildExts” which
. creates the list of the

. extensions that the user has

: . selected. Then we get the path
. variables (exts and FileList) that:
- will be accessed later on in our :

: , . code. Both are lists. “exts” is a
: more library modules, so under :

. the “import sys” statement,
© add...

that the user has selected from

. the AskDirectory dialog and

. assign that to the fp variable.

. We then create a tuple from the
. extension list, which is needed

. when we check for files. We

. then call a routine called

“Walkit”, passing the target

. directory and the extension
. tuple.

Finally we call a routine

called “LoadDataGrid”.

Next we need to flesh out

. routine. Comment out the pass
. statement and change the code
. to look like this...

; def btnSearchPathClick(pl)

#pass

path =

; tkFileDialog.askdirectory ()
: #**self.file opt)

FilePath.set (path)

ﬁ contents ©

HOWTO - BEGINNING PYTHON 31

The init routine is next. VchkMP3.set ('0") straightforward. We define a
Again, make the code look like variable “ColHeads” with the def BuildExts():
this... : VchkMv4.set ('0") . headings we want in each if VehkAVI.get() == '1':
: : . exts.append(".avi")
def init(): VchkOGG.set ('0") column of the treeview. We do i b pEe] == LT
: : this as a list. We then set the exts.append(".mkv")
fpass Here, all we are doing is heading attribute for each if VchkMP3.get() == '1.'.:
. setting the variables (which - column. We also set the s Vcﬁl’:;‘sl_i‘gzi’(‘d(;m?i)
Fires AFTER Widgets : automatically sets the check : column width to the size of this exts.append(".mv4")
and Window are created... : state in our check boxes) to . header. if VchkOGG.get() == '1':
_ : “0”. If you remember, R CIIE (M 0GR
global treeview - whenever the check box is . Finally we have to create
BlankChecks () clicked, t.his variable is the “LoadDataGr!d" routipe . adjust the width of each
. automatically updated. If the i (next page, top right) whichiis = ,jymn (again) to match the
treeview = - variable is changed by our - where we load our data into the | ¢i 0 of the column data.
w.Scrolledtreeviewl . code, the check box responds : treeview. Each row of the :
. as well. Now (above right) we'll : treeview is one entry in the . That's it for the first blush of

SetupTreeview() : deal with the routine that builds : FileList list variable. We also

. the list of extensions

: the application. Give it a run
 from what the user has 9ef Walkit(musicpath,extensions):

Here we create a global

called “treeview”. We then call : licked rentr = 0
a routine that will clear the clicked. £l =[]

rav checks from the check : for root, dirs, files in os.walk(musicpath):
g y . the “t . ” : Cast your memory rcntr += 1 # This is the number of folders we have walked

OX_eS' aSSIQn. e ‘treeview . back to my ninth article for file in [f for f in files if f.endswith(extensions)]:
variable to point to the Scrolled : iy FCM#35. We wrote f1.append(file)
treeview in our form and call : some code to create a f1.append(root)
“SetupTreeview” to set the catalog of MP3 files. iifﬁlst-append(fl)

Here's the code for the . version of that routine P ——
BlankChecks routine which . (middle right). Refer back to glogal coinastt
needs to be next. . FCM#35 if you have ColHeads = ['Filename','Path']
def BlankChecks (): questions about this :zieziiwiiogziggzgé?o1umns=ColHeads, show="headings")
: routine. :

treeview.heading(col, text = col.title(),
: command = lambda ¢ = col: sortby(treeview, c, 0))
: Next (bottom I’Ig.ht) we ## adjust the column's width to the header string
VchkMKV.set ('0"') : call the SetUpTreeweW treeview.column(col, width =

routine. It's fairly tkFont.Font () .measure(col.title()))

VchkAVI.set('0')

Full circle magazine @ 167 The Compleat Python A contents ~

HOWTO - BEGINNING PYTHON 31

and see how we did. Notice will call “busyStart”. def LoadDataGrid():
that if you have a large number After our “LoadDataGrid” global ColHeads
of files to go through, the © routine, insert the code for ¢ in FileList:
. - : . . treeview.insert('', 'end',values=c)
program looks _Ilk_e It's not) shown middle right. # adjust column's width if necessary to fit each value
responding. This is something , for ix, val in enumerate(c):
that needs to be fixed. We'll We first check to see col w = tkFont.Font().measure(val)
. if a value was passed to if treeview.column(ColHeads[ix],width=None)<col w:

create routines to change our

cursor from the default to a : “newcursor”. If not, we treeview.column(ColHeads[ix], width=col w)
“watch” style cursor and back : default to the :
: busyCursor. Then we def busyStart (newcursor=None):

so when we do something that
takes a long time, the user will

- walk through the global preBusyCursors

if not newcursor:

notice. busyWidgetS tUpIe and newcursor = busyCursor
: set the cursor to newPreBusyCursors = {}
In the “set_Tk_var” routine, : whatever we want. for component in busyWidgets:
add the foIIowing code at the : newPreBusyCursors|[component] = component|['cursor']
bottom Now put the code component.configuxl'e(cursor=newcursor)
: : hown bottom right component.update idletasks()
: S) g preBusyCursors = (newPreBusyCursors, preBusyCursors)
global . below it.
busyCursor, preBusyCursors, bus :) . def busyEnd():
yWidgets 5 I_n this routine, we e e e
N = watch: . basically reset the if not preBusyCursors:
usytursor = ‘wate . cursor for the return

oldPreBusyCursors = preBusyCursors[0]
preBusyCursors = preBusyCursors[l]
for component in busyWidgets:

. widgets in our
: busyWidget tuple

preBusyCursors = None

busyWidgets = (root,) back to our default try:
. : cursor. component.configure (cursor=oldPreBusyCursors|[component])
What we do here is set up : except KeyError:
global variables, assign them Save and run your pass
and then we set the widget(s) : program. You should component.update_idletasks ()
T atthe Crsor v | development. Fom todays pastobin st
In this case we set it to root long list of files to go through article, you can see how having httg:[(gastebm.com[AAlkE4Dy
which is our full window. Notice . ' - a good de§|gn of your GUI and the python code is saved
that this is a tuple. . While this application ahead of time can make the - at _
Next we create two routines | doesn't really do much but . development process easy and : http://pastebin.com/VZm5un3e.

to set and unset the cursor. : show you how to use Page to

. fairly painless.
First the set routine, which we create really fast code .

See you next time.
The tcl file is saved in

Full circle magazine @ 168 The Compleat Python A contents ~

http://pastebin.com/AA1kE4Dy
http://pastebin.com/VZm5un3e

I %
must say, | love my
Android tablet. While | use

it every day, it's not yet a
replacement for my

desktop. And | must also admit, :
: REALLY think we need that...”.

Then she gives me the same
- look | give her as she is lovingly :
: fondles the 50th pair of shoes
. at the store.

most of what | use it for is
pretty much what everyone
uses theirs for: web browsing,
listening to music, watching
videos, playing games, and so
on. | try to justify it by having

todo lists, finding cheap gas,
fun things for our grandson,

now. Why use a fancy touch-
screen tablet to do your
grocery list? Let's face it... it's
the cool looks of envy that
people give me in the store
when they see me rolling the
cart down the aisle and | tap

my tablet to mark items off the :
. lap was too

list. Ahh--- the geek factor

RULES! Of course, | can use the :

back of an old envelope to hold :
. laptop for her wasn't

. an option, so when she

. tried to read, she had to juggle
. the book, and the laptop, and

. the mp3 player. All while being

my list. But that wouldn't be
cool and geeky, now, would it?

Like 99% of geeky married
men in the world, | am married
to a non-geek woman. A

HOW-T0O

Written by Greg D. Walters

. wonderful loving woman, to be :
: sure, but a non-geek who, when:
. | start drooling at the latest
. gadget, sighs, and says

something like “Well, if you

In all honesty, it wasn't

apps that deal with grocery and @ hard to get the first
. tablet into our

. house. | bought it
etc. It's really a toy for me right : for my wife while
: she was going

. through

. chemotherapy.

: She tried to

. use a laptop

. for a while, but

. the heat and

weight on her

much after a
while. E-books on a

tied to a recliner with tubes

full circle magazine

@ 169

Beginning Python - Part 32

: running into her arm filling her
with nasty chemicals. When |

. got her the tablet, it was the

. best of all worlds. She could

: read an e-book, listen to music, :

. watch a TV show, browse the
: web, check her E-mail, update

her cancer blog, follow her

. friends on facebook, and play
: games - all on a device that

' was light and cool. If she:
: Operating system. One of these
. tools is called “SL4A”. SLAA

the side between :
. Android. That's what we will
: concentrate on in the next
bed when she :

got tired, she could
just slip it off to

her and the
recliner (or

was home
trying to
regain
strength).
MUCH better
than a bulky
laptop, and
book, mp3
player, remote
control, and more.

As she was getting

. pumped full of noxious
: chemicals, | would
 commandeer a table and chair

in the corner of the treatment
The Compleat Python

: room, near a power outlet, and
© try to work on my six-year old

. laptop. In between projects, |

: would do research on Android

programming. | found out that

: most programming for Android
. is done in Java. | had almost

: resigned myself to re-learning

: Java when | stumbled across a

. few tools that allow Python

programming for the Android

stands for Scripting Layer for

couple of articles. We'll really

: focus on getting SL4A set up on
. Android in this one.

You might ask, why in the

. world | would be talking about
: Android programming in a

: magazine designed for Linux.

: Well, the simple reason is that
: the core of Android is Linux.

: Everything that Android is, sits
: on top of Linux!

Many web pages show how

to load SL4A into the Android
: Emulator for Desktops. We'll

look at doing that another time,

ﬁ contents ©

HOWTO - BEGINNING PYTHON 32

but for now we'll deal with the
Android device itself. To install
SL4A on your Android device,

go to

http://code.google.com/p/andro

id-scripting/; you'll find the
installation file for SL4A. Don't
be absolutely confused here.
There's a square High Density
barcode that you tap to

download the APK. Be sure that :
. see Python 2.6.2 installed in the:
. interpreters screen. Tap again
Application settings. It's a quick : on the back button and you'll
: see a list of some sample

. python scripts.

you have the “Unknown
Sources” option enabled in the

download. Once you have it
downloaded and installed, go
ahead and find the icon, and
tap it. What you will see is a
rather disappointing black
screen saying “Scripts...No
matches found”. That's OK. Hit
the menu button and select
View. You'll see a menu. Select
Interpreters. Then select menu

This should ask you to start a
browser session to download

to Install, Import Modules,
Browse Modules, and Uninstall
modules. Select Install. Now
Python will download and
install along with other extra

you'll see a rather
disappointing black
screen [...] That's
OK.

modules. In addition, you'll get
: some sample scripts. Finally,

tap the back button and you'll

. That's all we are going to do :
. this time. All | wanted to do is
. whet your appetite. Explore
. Python on Android. You might
. also want to visit :
. http://developer.android.com/sd :
. k/index.html to get the Android
again, and select Add. From the : E%(f(Softwa:je Dketvelol|?tr_nerl1td
next menu, select Python 2.6.2. : 't) Tor your desktop. 1t Inclu esé
- an Android Emulator so you can :
. play along. Setting up the SDK
Python for Android. Once this is : Is really pretty Ieasy on Linux, :
installed, select Open. You'll get : 50 you shouldn't have too much

a screen menu with the options trouble.

fFull circle magazine

@ 170

How to Include Accents from the Keyboard
by Barry Smith

f your Linux system is in French, German, or Spanish, and,

therefore, requiring accents, or if, occasionally, you need

to use accents which do not appear in English words,

many users do not know that there is a very easy way to
do this from the keyboard. The following applies to only the UK
keyboard.

Acute accent
Press Alt Gr + ; (semi-colon) Lift hand then press the desired
vowel é

Circumflex
Press Alt Gr + ' (apostrophe) Lift hand then press the desired
vowel 1

Grave accent
Press Alt Gr + # (hache) Lift hand then press the desired
vowel e

Umlaut
Press Alt Gr + [Lift hand then press u u

A - Press Alt Gr +] Lift hand then press n i

e - Press Shift + Alt Gr Lift hand then press o then press e ce
The ce will not appear until after the e is keyed.

To get ¢ and i (inverted exclamation mark) which | use all the
time in Spanish before questions, and exclamations, press Alt
Gr + Shift, keeping both keys pressed, then hit _ (underscore)
for ¢ or hit ! (exclamation mark) for i.

The Compleat Python

h contents ©

http://code.google.com/p/android-scripting/
http://developer.android.com/sdk/index.html

HOW-T0

Beginning Python - Part 33

Written by Greg D. Walters

his time, we’ll set up

Linux desktop. We'll

also create a virtual
Android device, install SL4A
and python on it, and do a
quick test.

Please be aware, this is not
something you would want to
do for machines that have less

than 1 GB of ram. The emulator :
: Sun release. Open)DK is not

: supposed to work. You can find
: information on this on the web, :
. but here’s the steps that | did.
. In a terminal, type the

: following...

eats up a huge amount of
memory. I've tried it on a
laptop running Ubuntu with
only 512 MB of ram. It WILL
work, but it is REALLY slow.

Here's a quick list of what
we’ll do. We'll go step-by-step
in a minute.

* Install the Java JDK®6.

* Install the Android SDK
starter pack.

* Create and setup AVDs.

* Test AVD, and install SL4A
and Python.

In reality, we should also
install Eclipse and the Android
ADT plugin for Eclipse, but,
since we won’t be dealing with
Eclipse in this set of articles, we

can bypass that. If you want to
the Android SDK on our :
- to :
. http://developer.android.com/sd :
. k/installing.html to see all the

. steps in the suggested order.
. Let’s get started.

STEP 1 - Java JDK 6

; sudo add-apt-repository
: ppa:ferramroberto/java

; sudo apt-get update

; sudo apt-get install sun-
! java6-jdk

include those steps, head over

From everything I've read
and tried, it must be the actual

Once everything here is

- done, you will want to edit your o
. _bashrc file to set “JAVA HOME” This is what runs the actual
so everything runs correctly. |
. used gedit and, at the bottom

* of the file, | added the following

@ 171

line...

full circle magazine

. export :
: JAVA_HOME="/usr/lib/jvm/java- :
! 6-sun-1.6.0.06"

. version for Linux, which, at the
: time of this writing, is android-
. sdk_r18-linux.tgz. Using Archive :

. convenient. | put it in my home : the Tools set as well. Simply
. directory. Everything runs
. directly from this folder, so you :
: really don’t have to install

. anything. So the path for me is
. /home/greg/android-sdk-linux.
. Navigate to this folder, then go :
: to the tools folder. There you

will find a file called “android”.

: SDK. | created a launcher on
: my desktop to make it easy to

get to.

The Compleat Python

Now the boring part. Run the
android file, and the Android

: SDK Manager will start. It will

Save the file and move on to : 9° out and update the

step 2.

' STEP 2 - Android SDK
. Starter Pack

: Now the actual “fun” begins. :
: You'll want to go to :
. developer.android.com/sdk/inde :
: x.html. This is where the SDK is :
. located. Download the latest

. platforms that are available. |

: will warn you now that this

: process will take some time, so
. don’t bother if you don't have a
. lot of time to deal with it. For

. the sake of brevity, | would

: suggest you get only one

platform to start. A good one to
begin with is the Android 2.1

: platform, since, for the most
. part, if you develop for an older
. platform, there should be no
. problem running on a newer

: check the box next to those two
: items, then click on the install

: button. Once you get the

. platform of your choice, and

: the tool set, you are almost

. ready to create your first virtual
: machine.

STEP 3 - Create and set
. up your first AVD

Back in the Android SDK

" Manager, select Tools from the

ﬁ contents ©

http://developer.android.com/sdk/index
http://developer.android.com/sdk/installing.html

HOWTO - BEGINNING PYTHON 33

main menu, then select
Manage AVDs. This will open a
new window. Since this is the
first time, there won’t be any
virtual devices set up. Click on
the “New” button. This opens
yet another window where we
define the properties of the
virtual Android device. Here’s
the steps that you should use
to set up a simple Android
emulator device:

* Set the name of the device.
This is important if you have
more than one device.

» Set the target platform level.
» Set the size of the SD card
(see below).

» Set the skin resolution.

* Create the device.

So, In the name text box,
type “Testl”. Under the target

API Level 7. In the text box for

sure the dropdown shows
“MiB”. Under “Skin”, set the

resolution to 800x600. (You can :
play with the other built-in sizes :
. the browser or the google web

. search box on the home screen,
. search for “sl4a”. Go to the

. downloads page, and you’ll

- eventually find the web page

on your own.) Finally, click the
“Create AVD” button. Soon,
you’'ll see a message box
saying that the AVD was
created.

STEP 4 - Testing the

. AVD and installing SL4A
. and Python

Now, finally, we can

. have a bit of fun.

- Highlight the AVD

: you just created

- and click on the

. Start button.

- In the dialog

. box that pops

. up, simply

. click the

. “Launch”

. button. Now,

: you have to

. wait a few

. minutes for the

. virtual device to be

. created in memory,

. and the Android platform :
combo-box, select Android 2.1 - : to be loaded and started. (We’ I

- talk about speeding this

“SD Card:” enter 512 and make

process up in later runs.)

Once the AVD starts up and
you have the “home” screen
up, you will install SL4A. Using

for the downloads at
fFull circle magazine

@ 172

http://code.google.com/p/androi

_ d-scriptinag/downloads/list.

Scroll down the page until

you get to the sl4a_r5 link. :
Open the link and tap on :

the “sl4a_r5.apk”
link. Notice | said

“click”. Start

using your
finger to tap
the screen
rather than
clicking the
mouse. It will
make your
programming
transition easier.
You’ll see the
download start. You
may have to pull down the

Once the file is downloaded,

. you'll be presented with the

. option to open the downloaded :
. app or to tap “Done” to exit the :
. installer. Here we will want to
. tap “Open”.

Now SL4A will start. You'll
probably see a dialog asking if

The Compleat Python

you will agree to usage

tracking. Either accept or
. refuse this -
. Before we go any farther, you
: should know some keyboard

it’s up to you.

shortcuts that will help you

. move around. Since we don't
. have a “real”
“tap” rather than :
. Menu, aren’t available. You'll
thinking about :
. Here’s a few important
. shortcuts.

Android device,
buttons like Back, Home, and

need them to navigate around.

Back - Escape
Home - Home
Menu - F2

Now we will want to

. download and install python

. into SL4A. To do this, first tap

: Menu (press F2). Select “View”
. from the menu. Now select
notification bar at the top to get:
§ to the downloaded file. Tap on

. that, then tap the install button.

“Interpreters”. It looks like

. nothing happened, but tap

. Menu again (F2), then select

. “Add” from the popup. Now

. scroll down and select “Python
. 2.6.2". This will download the

: base package for Python for

Android. Install the package,

: then open it. You will be

. presented with four options.

. Install, Import Modules, Browse
: Modules, and Uninstall Module.

Tap on Install. This will start

ﬁ contents ©

http://code.google.com/p/android-scripting/downloads/list

HOWTO - BEGINNING PYTHON 33

downloading and installing all
the pieces of the latest Python
for Android. This can take a few
minutes.

Once everything is done, tap :

Back (escape key) until you get

to play in Python on Android.
Tap Python 2.6.2, and you’ll be
in the “standard” Python shell.

This is just like the shell on your :

desktop. Type the following
three lines, one at a time, into
the shell. Be sure to wait for
the “>>>" prompt each time.

import android

droid = android.Android()

droid.makeToast (“Hello from
Python on Android”)

After you type the last line
and press Enter, you'll see a
rounded corner box at the
center bottom of the shell that
says “Hello from Python on
Android”. That’'s what the
“droid.makeToast” command
does.

You’'ve written your first

Python script for Android. Neat, :

huh?

Now let’s create a shortcut
on the Android home screen.

. Tap the Home key (Home

: button). If you chose the 2.1
. platform, you should see a ;
slider bar on the far right of the :
. screen. If you chose another :
to the SL4A Interpreters screen. :
Now everything is loaded for us :
: squares. Either way, this gets
. you to the Apps screen. Tap

. that, and find the SL4A icon.
Now perform a “long tap” (long :
. click), which will create a :
. shortcut on the Home screen.
: Move the shortcut wherever

: you want it.

platform, it might be a square

Next, we will create our first
saved script. Go back into
SL4A. You should be presented
with the sample scripts that
come with Python 4 Android.

~ Tap the Menu button and select
. “Add”. Select “Python 2.6.2"
: from the list. You'll be

. presented with the script editor. :
. At the top is the filename box
. with “.py” already filled out.

: Below that is the editor window :
. that already has the first two
. lines of our program entered for :
. us. (I included them below in
. italics so you can check it. We
also used these two lines in our

first sample.)
fFull circle magazine

; droid =

@ 173

import android

android.Android ()

lines to the python script.

; uname =
: droid.dialogGetInput (“What’'s

or rectangle consisting of small : -
: your name?”)

E droid.makeToast (“Hello %s
: from Python on Android”) %

uname.result

The first new line will create

. a dialog box

. (droid.dialogGetInput()) that
. asks for the user’'s name. The
. response is returned to our

. program in uname.result.

. We've already used the

. droid.makeToast() function.

Name the file andtestl.py,

. then tap Done, and tap “Save & :
: Run”. If everything worked, you
- should see a dialog box asking
- for your name. After you enter
- it, you should see the alert at
. the bottom of the screen saying :
: “Hello Your Name from Python

on Android”.

That's all for this time. For
now, there’s a TON of
documentation about SL4A for

The Compleat Python

free on the web. You'can'play a
bit on your own until next time.

- 1'd suggest that you start by
:-going to
Now, enter the following two :

http://code.google.com/p/androi

: d-scripting/wiki/Tutorials.

Greg is the owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his
family. His website is

ﬁ contents ©

http://www.thedesignatedgeek.net
http://code.google.com/p/android-scripting/wiki/Tutorials

s

his time, we’ll finish up
using SL4A. We’ll make

a larger program and
then send it to the
virtual machine via ADB.

Let’s deal with our code first.

In this, we’ll simply be trying
out some of the “widgets” that
are available to us when using
SL4A. Start on your desktop
using your favorite editor.

Enter the code shown top
right and save it (but don't try
to run it) as “atest.py”.

The first line imports the
android library. We create an

Line 3 creates and displays a
the prompt of “What’s your

to enter their name, and two
buttons, “OK” and “Cancel”.
Once the user presses “OK”,
the response is returned in the
variable uname. The last line
(so far) then says “Hello
{username} from python on
Android!”. This isn’t new, we
did this before. Now we’ll add

HOW-T0O

Written by Greg D. Walters

import android

droid
uname

android.Android ()

Beginning Python - Part 34

droid.dialogGetInput ("Hello", "What's your name?")
droid.makeToast ("Hello %s from python on Android!" %

uname.result)

droid.dialogCreateAlert (uname.result, "Would you like to play a game?")
droid.dialogSetPositiveButtonText ('Yes')
droid.dialogSetNegativeButtonText ('No')

droid.dialogShow()
while True:

#wait for events for up to 10 seconds...

response = droid.eventWait (10000).result

if response == None:

break

if response["name"] == "dialog":
break

droid.dialogDismiss ()

more code (above).
instance of it in the second line.

Take a look at the first four

. lines we just entered. We create :
. an alert type dialog asking :
: “Would you like to play a

: game?”. In the case of an alert
. type dialog, there's no text box :

: response for up to 10 seconds

. to enter anything. The next two by using the

~ lines say to create two buttons, : 41iq eventWait(value) call. The :

@ 174

one with the text “Yes”, which

full circle magazine

is a “positive” button, and one :
© with the text “No”, a “negative” :
Save your code as atestl.py. :

dialog box with the title “Hello”, : We'll be sending this to our

: virtual machine after we

name?”, a text box for the user : discuss what it does.

button. The positive and

. negative buttons refer to the
. response returned - either

. “positive” or “negative”. The
- next line then shows the dialog. :
: . happens before the timeout

. occurs, we simply break out of

: the loop. The actual information
. returned in the response

. variable is something like this

. (assuming the “positive” or

: “Yes” button is pressed)...

The next seven lines wait for a

¢ response from the user.

We create a simple loop

(while True:) then wait for a

The Compleat Python

* response (either “positive” or

“negative”) will be returned in -

you guessed it - the response

. variable. If response has the

: name of “dialog”, then we will

. break out of the loop and return

the response. If nothing

ﬁ contents ©

HOWTO - BEGINNING PYTHON 34

{u’data’: {u’which’:
u’positive’}, u’name’:
u’dialog’, u’'time’:
1339021661398000.0}

passed in the ‘data’ dictionary,
the dialog key is in the ‘name’

dictionary, and there is a ‘time’

value that we don’t care about
here.

Finally we dismiss the dialog
box.

to start the virtual machine.
Start your Android emulator.
Once it starts up, notice that
the title bar has four digits at
the start of the title. This is the
port that the machine is
listening on. In my case (and
probably yours) it's 5554.

Now, let’s push it to our
virtual machine. Open a

terminal window and change to
. emulator, start

the folder you saved the code

in. Assuming you have set your :

path to include the SDK, type

adb devices

This asks adb to show any
devices that are connected.
This can include not only the

" atestl.py. Tap

Android emulator but also any
smartphones, tablets, or other

Android devices. You should see :
: something like this...

You can see that the value is
: List of devices attached
: emulator-5554

device

Now that we are sure that

; adb push source filename
Before we can send our code

to the virtual machine, we have :

So, in my case it would be...

5 adb push atestl.py
: /sdcard/sl4a/scripts/atestl.p:

'S

i 11 KB/s (570 bytes in 0.046s) :

Now, on the Android

resp
(click) on

fFull circle magazine

. they are “Run in a dialog

. window”, “Run outside of a
. window”, “Edit”, “Save”,

. “Delete”, and “Open in an
. external editor”. Right now, tap :

: s . (click) on the far left icon “Run
. our device is attached, we want :

. to push the application to the
- device. The syntax is...

@ 175

‘atestl.py’, and you’'ll see
a popup dialog with 6
icons. From left to right,

- in a dialog window"” so you can
. see what happens.

You'll see the first dialog

destination path and filename asking for your name. Enter
— - = . something in the box and tap
. (click) the “‘Ok’ button. You'll
. see the hello message. Next,
. you'll see the alert dialog. Tap
. (click) on either button to
. dismiss the dialog. We aren’t
: looking at the responses yet so
. If everything works correctly, : it doesn’t matter which one you :
: you'll get a rather disappointing :

: e _ : choose. Now we’ll add some
: message similar to this...

. more code (top right).

I’'m sure you can figure out
that this set of code simply

droid.dialogCreateAlert ("Play a Game
droid.dialogSetItems (['Checkers', 'Chess', 'Hangman', 'Thermal

: SL4A. You if rdialog.has_key("which"):
: should see all result=rdialog["which"]

. the python if result=="positive":

. scripts, and, in

E there you Nuclear War']) # 0,1,2,3

: should see

droid.dialogShow()

droid.dialogGetResponse ()

The Compleat Python

if response==None:

print "Timed out."

else:

rdialog=response["data"]

. checks the response, and, if it’s
- ‘None’ due to a timeout, we

: simply print “Timed out.” And,

. if it’s actually something we

. want, then we assign the data

. to the variable rdialog. Now add
. the next bit of code (below)...

This part of the code will

look at the data passed back by
. the button-press event. We

. check to see if the response

. has a “which” key, and, if so,

. it’s a legitimate button press

. for us. We then check to see if
. the result is a “positive” (‘Ok’

. button) response. If so, we’ll

. create another alert dialog, but
. this time, we will add a list of

. items for the user to choose

. from. In this case, we offer the

","Select a game to play")

ﬁ contents ©

HOWTO - BEGINNING PYTHON 34

user to select from a list
including Checkers, Chess,

Hangman, and Thermal Nuclear :

War, and we assign the values
0 to 3 to each item. (Is this
starting to seem familiar? Yes,
it’s from a movie.) We then
display the dialog and wait for
a response. The part of the

response we are interested in is
. of the returned data. The

. selection is #1 and is held in

in the form of a dictionary.
Assuming the user tapped
(clicked) on Chess, the resulting

response comes back like this...

Result (id=12,
result={u’item’:1},
error=None)

In this case, we are really
interested in the result portion

if resp.result.has key("item"):

sel = resp.result['item']
if sel ==
droid.makeToast ("Enjoy your checkers game")
elif sel == 1:
droid.makeToast ("I like Chess")
elif sel == 2:
droid.makeToast ("Want to 'hang around' for a while?")
else:

droid.makeToast ("The only way to win is not to play...")

the ‘item’ key. Here's the next

part of the code (above right)...

Here we check to see if the

. response has the key “item”,
. and, if so, assign it to the

. variable “sel”. Now we use an
. if/elif/else loop to check the

. values and deal with whichever
. is selected. We use the

. droid.makeToast function to
. display our response. Of course, :
. you could add your own code
. here. Now for the last of the

. code (bottom right)...

As you can see, we simply

respond to the other types of
- button-presses here.

Save, push, and run the

program.

As you can see, SL4A gives

| you the ability to make

fFull circle magazine

@ 176

elif result=="negative":

droid.makeToast ("Sorry.

See you later.")

elif rdialog.has_key("canceled"):
print "Sorry you can't make up your mind."

else:

print "unknown response=",6response

print "Done"

. “GUIfied” applications, but not
- full gui apps. This however,

: should not keep you from going
. forward and starting to write :
. your own programs for Android.

. As usual, the code has been
. put up on pastebin at
. http://pastebin.com/REKFYcSU

See you next time.

Don’t expect to put these up on :

. the “market”. Most people

. really want full GUI type apps. :
. We'll look at that next time. For :
. more information on using '
: SL4A, simply do a web search
. and you'll find lots of tutorials
. and more information.

By the way, you can push

directly to your smartphone or
. tablet in the same way.

The Compleat Python

=

Greg is the owner of RainyDay
Solutions, LLC, a consulting
company in Aurora, Colorado,
and has been programming since
1972. He enjoys cooking, hiking,
music, and spending time with
his family. His website is

ﬁ contents ©

http://www.thedesignatedgeek.net
http://pastebin.com/REkFYcSU

HOW-T0

Beginning Python - Part 35

Written by Greg D. Walters

his time, we are going
to take a short detour

from our exploration of :
. is also fairly complicated to

- deal with. You are limited to the :
. widgets that they have

Android programming,
and look at a new framework
for GUI programming called

Kivy. You'll want to head over to : :
: no GUI designer for Kivy, so you :

: into its own folder, use a

and install the package - before have to do a GREAT deal of pre- :

getting too far into this month’s :
. anything complicated. Also

. remember, Kivy is continually
: under development so things

http://kivy.org and download

installment. The Ubuntu
installation instructions can be
found at

http://kivy.org/docs/installation/i

: haven’t found any of my test

: code that has broken by a new
. version of Kivy, but that's

. always a possibility.

nstallation-ubuntu.html.

First off, Kivy is an open
source library that makes use
of multi-touch displays. If that
isn’t cool enough, it’s also
cross-platform, which means
that it will run on Linux,
Windows, Mac OSX, IOS and
Android. Now you can see why
we are talking about this. But
remember, for the most part,
anything you code using Kivy,
can run on any of the above
platforms without recoding.

Before we go too far, let me
make a couple of statements.
Kivy is VERY powerful. Kivy

gives you a new set of tools to
. make your GUI programming.

All that having been said, Kivy

provided. In addition, there is

planning before you try to do

can change quickly. So far, |

Rather than jump in and

create our own code this
: month, we'll look at some of
. the examples that come with

Kivy, and, next month, we’ll

. “roll our own”.

Once you've unpacked Kivy

: terminal and change to that

: folder. Mine is in

: /home/greg/Kivy-1.3.0. Now

: change to the examples folder,
: then to the widgets folder. Let’s :
. look at the accordion_1.py
. example.

their code.

from kivy.uix.accordion import Accordion, AccordionItem
from kivy.uix.label import Label

from kivy.app import App

class AccordionApp (App) :
def build(self):

root = Accordion()
for x in xrange(5):

item = AccordionItem(title='Title %d' % Xx)
item.add_widget (Label (text='Very big content\n' * 10))
root.add widget(item)

return root

if name__ == ' main__ ':
AccordionApp () .run()

full circle magazine

@ 177

The Compleat Python

As you can see, the first

: three lines are import

. statements. Any widget you

: use must be imported, and you
: must always import App from

kKivy.app.

The next eight lines are the

: main application class. The

: class is defined, then a routine
: called build is created. You will

. almost always have a build

: routine somewhere in your Kivy
: programs. Next we set a root

: object from the Accordion

. widget. Next we create five

It's very simple, but shows a ' Accordionltems and set their

" really neat widget. Below is : title. We then add ten labels

. with the text “Very big

ﬁ contents ©

http://kivy.org
http://kivy.org/docs/installation/installation-ubuntu.html

HOWTO - BEGINNING PYTHON 35

content”. We then add each
label to the root widget (the
Accordion) and then finally we
return the root object. This, in
essence, displays the root
object in the window that Kivy
creates for us. Finally we have
the “if _name__” statement
and then run the application.

Go ahead and run it to see
what it does.

You will see that in a
moment or two, a window

to open up revealing the ten
labels. Of course, each bar has
the same text in the ten labels,
but you can figure out how to
fix that.

used for any number of things,
but the thing that has always
jumped to my mind is for a

being a different configuration
set.

Next we’ll look at the
textalign.py example. It's not
as “sexy” as the last one, but
it’s a good example that gives
you some important
information for later on.

Before we look at the code,

~run the program.

What you should see is a

- label at the top of the window, :
. a set of nine red boxes with text :
. in a 3x3 grid, and four buttons
- along the bottom of the 5
. window. As you click (tap) each
. of the buttons, the alignment of :
. the text within the red boxes
- will change. The main reason
. you would want to pay .
. attention to this example is how :
. to use and control some of the

opens up with five vertical bars : important widgets as well as

in it. Clicking on a bar causes it how to change the alignment in :

: . created.
: your widgets, which is not :

. completely intuitive.

Above right is their code for

Below is something special.

They created a class with no

configuration screen... each bar . code in it. I'll discuss that in a

. few minutes:

class TextAlignApp (App):

def select(self, case):

grid =

fFull circle magazine

: app =

from kivy.app import App

from kivy.uix.label import Label

from kivy.uix.gridlayout import GridLayout
from kivy.uix.floatlayout import FloatLayout
from kivy.properties import ObjectProperty

E class BoundedLabel (Label):

pass

Next a class called

“Selector” (below) is created:

E class Selector(FloatLayout):

ObjectProperty (None)

Now the Application class is

Here the routine select is

E for valign in ('bottom’',
: 'middle’,

'top'):

E for halign in ('left’,
: 'center',

'right'):

‘center _y':

The Compleat Python

i label =

Here we have two loops, one

. inner and one outer.

: BoundedLabel (text='V:
: $s\nH: %s' % (valign,
: halign),

E size hint=(None, None),

E halign=halign, valign=valign)

In the code above, an

instance of the BoundedLabel
. widget is created, once for each

'~ created. A GridLayout widget is : Of the nine red boxes. You

; created (called grid) which has
- this one. I'll break it into pieces. :
- First the import code (above

The Accordion widget can be : right).

: might want to stop here and

" 3 rows and 3 columns. This grid : say “But wait! There isn't a

is going to hold the nine red
. boxes.

: BoundedLabel widget. It just

. has a pass statement in it.”

. Well, yes, and no. We are

. creating an instance of a

. custom widget. As | said a little
. bit above, we’ll talk more about
: that in a minute.

GridLayout (rows=3, cols=3, spacing=10, size_hint=(None, None),
pos_hint={'center x': .5,

@ 178

-5})

ﬁ contents ©

HOWTO - BEGINNING PYTHON 35

In the code block (top right,
next page), we examine the
variable ‘case’ which is passed
into the select routine.

Here, the grid is removed, to
clear the screen.

if self.grid:

self.root.remove widget(self.
grid)

The bind method here sets
the size, and the grid is added
to the root object.

grid.bind(minimum size=grid.s
etter('size'))

self.grid = grid
self.root.add widget(grid)

Remember in the last
example | said that you will
almost always use a build
routine. Here is the one for this
example. The root object is
created with a FloatLayout
widget. Next (middle right) we

call the Selector class to create
: 1,0,0). The Rectangle widget
. creates a (you guessed it)

. rectangle. When we call the

. BoundedLabel widget in the

. actual application code, we are
. passing a label as the parent.

a Selector object, then it's
added to the root object, and
we initialize the display by
calling self.select(0).

Finally the application is
allowed to run.

TextAlignApp () .run()

Now, before we can go any

. further, we need to clear up a

. few things. First, if you look in

. the folder that holds the .py

. file, you'll notice another file

. called textalign.kv. This is a

. special file that Kivy uses to

. allow you to create your own

. widgets and rules. When your

. Kivy application starts, it looks
. in the same directory for the :
. kv helper file. If it is there, then :
. it loads it first. Here’s the code :
: in the .kv file.

This first line tells Kivy what

minimum version of Kivy that
. must be used to run this app.

. #:kivy 1.0

Here the BoundedLabel

widget is created. Each of the
. red boxes in the application is a :
. BoundedLabel.

Color sets the background
color of the box to red (rgb:

The size and position (here in

fFull circle magazine

if case ==

label.text_size =

elif case ==

label.text_size

elif case ==

label.text_size =

else:

label.text size =

(None,

(None, None)

(label.width, None)

label.height)

label.size

_grid.add_widget(label)

def build(self):
self.root =
self.selector =

FloatLayout ()
Selector (app=self)

self.root.add widget(self.selector)

self.grid = None
self.select (0)
return self.root

<BoundedLabel>:
canvas.before:
Color:
rgb: 1, 0, O
Rectangle:
pos: self.pos

size:

. the .kv file) are set to whatever
. the size and position of the
. label are.

Here (right, next page) the

Notice that the label that

. the window has a position
. (pos_hint) as top, has a height
of 50 pixels and a font size of

@ 179

The Compleat Python

self.size

16. Each of the buttons has an

. alignment for the text of center.
. The on_release statement is a
. bind-like statement so that,

: -)) . when the button is released, it
. Selector widget is created. This

- is the four buttons that appear
. at the bottom of the window as :
. well as the label across the top
. of the window.

. calls (in this case)
. root.app.select with a case
. value.

Hopefully, this is beginning

. to make sense now. You can

: _ . see why Kivy is so powerful.
. makes up the title at the top of :

Let’s talk for a moment

about two widgets that | have
" passed over in the discussion of

ﬁ contents ©

HOWTO - BEGINNING PYTHON 35

the application code, The time was simply to get
GridLayout and the ~ you somewhat excited
FloatLayout. . about the possibilities

: that Kivy has to offer. In

The GridLayout is a parent
widget that uses a row and
column description to allow
widgets to be placed in each . for us, how to use
cell. In this case, it is a 3x3 grid - various widgets, and
(like a Tic-Tac-Toe (or Naughts
and Crosses) board).

. the next couple of

. to Android.

| . Until then, explore

. more of the examples in
. Kivy, and be sure to go

. to the documentation

When you want to place a
widget into a GridLayout, you
use th_e add_widget method. ' page for Kivy at
Here lies a problem. You can’t . http://kivy.ora/docs/.
specify which control goes into
which grid cell other than the
order in which you add them. In :
addition, each widget is added
from left to right, top to
bottom. You can’t have an
empty cell. Of course, you can
cheat. I'll leave that up to you
to figure out.

The FloatLayout widget
seems to be just a parent
container for other child
widgets.

I've glossed over a few
points for now. My intent this

fFull circle magazine

. articles, we’ll continue to
. explore what Kivy has

how to create an APK to
: publish our applications

<Selector>:

Label:
pos_hint: {'top': 1}
size_hint_y: None
height: 50
font _size: 16
text: 'Demonstration of text valign and halign'
BoxLayout:
size_hint_y: None
height: 50
ToggleButton:
halign: 'center'
group: 'case'
text: 'label.text size =\n(None, None)'
on release: root.app.select(0)
state: 'down'
ToggleButton:
halign: 'center'
group: 'case'
text: 'label.text size =\n(label.width, None)'
on release: root.app.select(1l)
ToggleButton:
halign: 'center'
group: 'case'
text: 'label.text size =\n(None, label.height)'
on release: root.app.select(2)
ToggleButton:
halign: 'center'
group: 'case'
text: 'label.text size =\n(label.width, label.height)'
on release: root.app.select(3)

=

Greg is the owner of RainyDay
Solutions, LLC, a consulting
company in Aurora, Colorado,
and has been programming since
1972. He enjoys cooking, hiking,
music, and spending time with
his family. His website is

@ 180 The Compleat Python A contents ~

http://www.thedesignatedgeek.net
http://kivy.org/docs/

HOW-T0O

efore | begin, | want to :
note that this article :
marks three years of :
the Beginning
Programming using Python
series. | want to thank Ronnie
and the entire staff of Full Circle :
Magazine for all their support
and especially, you, the
readers. | NEVER thought that
this would continue this long.

| also want to take a second
to note that there has been
some comments floating
around the ether that, after
three years, the word
“Beginning” might be
misplaced in the title of this
series. After all, after three
years, would you still be a
beginner? Well, on some levels,
| agree. However, | still get
comments from readers saying
that they just found the series
and Full Circle Magazine, and :
that they are now running back :
to the beginning of the series.
So, those people ARE
beginners. So, as of part 37, :
we’ll drop “Beginning” from the :
series title. ’

Written by Greg D. Walters

. air guitar, but an actual guitar.
: However, you aren’t the best

: guitar player, and some chords is F# minor and you put the

: capo on fret 2, you can simply
: play an E minor. But that takes

: are problematical for you. For
. example, you know the

. standard C, E, G, F type chords, :
: but some chords - like F#

: minor or C# minor - while

: doable, are hard to get your
- fingers set in a fast song. What :
. do you do, especially if the gig
. is only a couple of weeks away
: and you HAVE to be up to

. speed TODAY? The workaround
: for this is to use the Capo (that
: funny clippy thing that you see
: sometimes on the neck of the

© guitar). This raises the key of

© the guitar and you use different :
: chords to match the rest of the

Now to the actual meat of
this article... more on Kivy.

band. This is called transposing.
: Sometimes, you can transpose

: on the fly in your head.

Imagine you play guitar. Not :

: Sometimes, it's easier to sit
: down on paper and work out
© that if, for example, the chord

. time. Let’s make an app that

. allows you to simply scroll

: through the fret positions to

: find the easiest chords to play.

that have repositioned scales

. as the text, and an exit button.

. SOMETHING
. like the text
: below.

Beginning Python - Part 36

It will look

Start with a new python file

: named main.py. This will be

. important if/when you decide to
. create an Android app from

. Kivy. Now we’ll add our import

: statements which are shown on
. the next page, top right.

Notice the second line,

Our app will be fairly simple. - “Kivy.require('1.0.8")". This

© Atitle label, a button with our
- basic scale as the text, a

- scrollview (a wonderful parent
. widget that holds other controls :
- and allows you to “fling” the
. inside of the control to scroll)
. holding a number of buttons

: allows you to make sure that

: you can use the latest and

: greatest goodies that Kivy

. provides. Also notice that we

: are including a system exit (line
: 3). We'll eventually include an

© exit button.

Here is the beginning of our

class called “Transpose”.

Transposer Ver 0.1

C Cc#/pb D D#/Eb E F F#/Gb G G#/Ab A A#/Bb B c
1| c#/pb D D#/Eb E F F#/Gb G G#/Ab A A#/Bb B C C#/Db
D D#/Eb E F F#/Gb G G#/Ab A A#/Bb B C C#/pb D

2|

full circle magazine

@ 181

The Compleat Python

ﬁ contents ©

HOWTO - BEGINNING PYTHON 36

class Transpose (App):
def exit(instance):

sys.exit()

Now we work on our build
routine (middle right). This is
needed for every Kivy app.

This looks rather confusing.
Unfortunately, the editor
doesn’t always keep spaces
correct even in a mono-spaced
font. The idea is that the textl
string is a simple scale starting
with the note “C”. Each should
be centered within 5 spaces.
Like the text shown bottom
right.

The text2 string should be
the same thing but repeated.
We will use an offset into the
text2 string to fill in the button
text within the scrollview
widget.

Now we create the root
object (which is our main
window) containing a
GridLayout widget. If you
remember WAY back when we
were doing other GUI
development for Glade, there
was a grid view widget. Well,
the GridLayout here is pretty

much the same. In this case,
we have a grid that has one

: column and three rows. In each :
. of the cells created in the grid,
: we can put other widgets.

: Remember, we can’t define :
: which widget goes where other :
: than in the order in which we
: place the widgets.

! root = :
! GridLayout (orientation='verti :
: cal', spacing=10,
! cols=1,rows=3)

In this case, the

. representation is as follows....

(0) title label
(1) main button
(2) scrollview

The scrollview contains

def build(self):

D#/Eb E

multiple items - in our case
. buttons. Next, we create the
label which will be at the top of :

our application.

fFull circle magazine

C C#/pb D D#/Eb E
C C#/pb D D#/Eb E
F#/Gb G G#/Ab A A#/Bb B

@ 182

import kivy
kivy.require('1.0.8"')
from sys import exit
from kivy.app import App

from kivy.core.window import Window

from kivy.uix.button import Button

from kivy.uix.label import Label

from kivy.uix.anchorlayout import AnchorLayout
from kivy.uix.scrollview import ScrollView
from kivy.uix.gridlayout import GridLayout

: 1bl = Label(text='Transposer
i Ver 0.1,

font_size=20,

size_ hint=(None,None),
size=(480,20),
padding=(10,10))

The properties that are set

- should be fairly self- :
- explanatory. The only ones that :
. might give you some trouble
. would be the padding and

. size_hint properties. The

: padding is the number of pixels :

C C#/Db"

. around the item in an x,y

. reference. Taken directly from
. the Kivy documentation

: size_hint (for X which is same
: asY) is defined as:

X size hint. Represents how much

space the widget should use in the

direction of the X axis, relative to its

: parent’s width. Only Layout and
. Window make use of the hint. The
: value is in percent as a float from 0.

to 1., where 1. means the full size of

F F#/Gb G G#/Ab A A#/Bb B C"
F F#/Gb G G#/Ab A A#/Bb B C C#/Db D

12345678901234567890123456789012345678901234567890123456

C C#/Db E

The Compleat Python

F F#/Gb G G#/Ab A A#/Bb B C

ﬁ contents ©

HOWTO - BEGINNING PYTHON 36

his parent. 0.5 represents 50%.

In this case, size_hint is set
to none, which defaults to
100% or 1. This will be more
important (and convoluted)
later on.

Now we define our “main”
button (next page, top right).

scale.

fairly clear.

Now we add the widgets to
the root object, which is the
GridLayout widget. The label
(Ibl) goes in the first cell, the
button (btnl) goes in the
second.

root.add widget (1lbl)
root.add widget (btnl)

Now comes some harder-to-
understand code. We create
another GridLayout object and
call it “s”. We then bind it to
the height of the next widget
which, in this case, will be the
ScrollView, NOT the buttons.

s = GridLayout (cols=1,
spacing = 10, size_hint y =
None)

s.bind(minimum height=s.sette
r('height'))

Now (middle right) we create
20 buttons, fill in the text

. property, and then add it to the :
GridLayout. :

Now we create the

: ScrollView, set its size,
: and add it to the root

: GridLayout.

This is a static reference for the : 4, =
: ScrollView(size_hint=(N
: one,
Again, most of this should be :

None),
size=(600,400))

! sv.center =
! Window.center

; root.add widget(sv)

Lastly, we add the

. GridLayout that holds all

btnl = Button(text = "

' + textl,size=(680,40),

size hint=(None, None),

halign="'left’,

font_name='data/fonts/DroidSansMono.ttf',

padding=(20,20))

for i in range(0,19):

if i <= 12:
if i < 10:
tl = " " + str(i) + "|
else:
tl = str(i) + "|
else:
tl = '
text2 = '

btn = Button(text = tl + text2[(i*5):(i*5)+65],

size=(680, 40),
size_hint=(None, None),
halign='left’,

font name='data/fonts/DroidSansMono.ttf')

s.add_widgeg(btn)

: our buttons into the

: ScrollView, and return
: the root object to the
. application.

; sv.add_widget(s)

! return root

Finally, we have our “if

. __name__" routine. Notice that
. we are setting ourselves up for
. the possibility of using the

. application as an android app.

Pif name in
(' _main_',' android '):

Transpose() .run()

fFull circle magazine

: Now you might wonder why :
. | used buttons instead of labels
: for all our textual objects.

. That’s because labels in Kivy

: don’t have any kind of visible

. border by default. We will play
. with this in the next :
- installment. We will also add an :
: exit button and a little bit more. :

The source code can be

: found on PasteBin at

http://pastebin.com/hsicnytl

@ 183

The Compleat Python

: enjoy and thank
. you for putting
: up with me for
: three years!

Until next time,

=

Greg is the owner of RainyDay
Solutions, LLC, a consulting
company in Aurora, Colorado,
and has been programming since
1972. He enjoys cooking, hiking,
music, and spending time with
his family. His website is

ﬁ contents ©

http://www.thedesignatedgeek.net
http://pastebin.com/hsicnyt1

b4

HOW-T0O

his month, we’ll finish

up the transposer

program that we wrote

in Kivy. Hopefully, you
saved the code from last time,
because we’ll be building upon
it. If not, grab the code from
FCM#64.

Let’s start by recapping what :
we did last month. We created
an application that allows for a
guitarist to quickly transpose
from one key to the other. The
ultimate goal is to be able to
run this app not only on your

C C#/Db D D#/Eb E F F#/Gb

0] C C#/Db D D#/Eb E F F#/Gb
1| C#/Db D D#/Eb E F
2| D D#/Eb E F F#/Gb G GH#/Ab
3| D#/Eb E F
4| E F F#/Gb G GH/Ab A A#/Bb
5| F F#/Gb G G#/Ab A A#/Bb B
6| F#/Gb G G#/Ab A A#H/Bb B

G GH/Ab A A#/Bb B C C#/Db

7|

Written by Greg D. Walters

time, looked like that shown
. below left.

look like the screen below right.

Transposer Ver 0.7

Fi#/Gb G G#/Ab A A#/Bb B

F#/Gb G GH#/Ab A A#/Bb B

C C#/Db D D#/Eb E F

The app, as we left it last

When we are done, it should

G G#/Ab A A#/Bb B

G GH/Ab A A#/Bb B

C C#/Db
A AH#/Bb B C C#/Db D

C C#/Db D D#/Eb
B C C#/Db D D#/Eb E

C C#/Db D D#/Eb E

F#/Gb

D D#/Eb E F F#/Gb G

fFull circle magazine

@ 184

Programming in Python - Part 37

. Linux or Windows box, buton
. an android device as well. | take :
: mine on my tablet whenever |
. go to band practice. | was going :
- to deal with packaging our :
. project for Android, but some
: things have changed in the

. method to do that, so we’ll

. work on that next month.

The first thing you will notice
is that there are blue labels

. rather than boring gray ones.

The next is that there are three

. buttons. Finally the scrollable
- labels are closer to the entire
. width of the window. Other than :
. that, it’s pretty much (visually) :
. the same. One of the buttons is :
. an “about” button that will pop
. up simple information, but it

. explains how to make a simple :
. popup. One of the buttons is an
. exit button. The other button
- will swap the label text to make :
. it easy to transpose from piano

#:kivy 1.0
#:import kivy kivy

<BoundedLabel>:
canvas.before:
Color:
rgb: 0, 0, 1
Rectangle:
pos:
size:

self.pos
self.size

to guitar or guitar to piano.

Let’'s get started by creating

- a .kv file (above right). This is

what will give us the colored

. labels. It's a very simple file.

Transposer Ver 0.8.0

| B |A#/Bb| A |GH#/Ab| G

| B |A#/Bb| A |GH#/Ab| G

B |A#/Bb| A |GH#/Ab| G |F#/Gb|

2| A#/Bb| A |GH/Ab| G |[F#/Gb| F |

G |F#/Gb| F | E

4| G#/Ab| G |F#/Gb| F | E |D#/Eb]

5| G |F#/Gb| F | E |D#/Eb| D

6| F#/Gb| F | E |D#/Eb| D |C#/Db|

7| F | E |D#/Eb| D |C#/Db| C |

Piano --» Guitar

The Compleat Python

[F#/Gb] F | E

[F#/Gb| F | E

|D#/Eb| D

|D#/Eb| D |CH#/Db| C |

|D#/Eb| D |CH#/Db| C |

| E |D#/Eb| D |C#/Db|] C | B |

|D#/ER| D |C#/Db| C | B |AH#/Bb|

|c#/bb| C | B |A#/Bb| A |

|C#/Db| C | |A#/Bb| A |GH/Ab|

|C#/Db] C | B |A#/Bb| A |GH/Ab| G |

| B |A#/Bb| A |GH/Ab| G |F#/Gb|

|A#/Bb| A |GH#/Ab| G |F#/Gb| F |

ﬁ contents ©

HOWTO - PROGRAMMING IN PYTHON 37

The first two lines are
required. They basically say
what version of Kivy to expect.
Next we create a new type of
label called ‘BoundedLabel’.
The color is set with RGB

values (between 0 and 1, which

can be considered as 100
percent), and as you can see
the blue value is set at 100
percent. We will also create a
rectangle which is the actual
label. Save this as
“transpose.kv”. You must use
the name of the class that will
be using it.

Now that you have that
completed, add the following
lines just before the transpose

class to the source file from last :

time:
class BoundedLabel (Label):

pass

To make it work, all we need
is a definition. Before we go
any further, add the following
line to the import section:

from kivy.uix.popup import
Popup

This allows us to create the
popup later on. Now, in the
Transpose class, just inside the
def build routine, place the

def LoadLabels (w):

if w ==
self.textl
self.text2

tex0
texl
else:
tex0 self.text3
texl self.text4
for i in range(0,22):
if 1 <= 12:
if i < 10:

t1 =" " + Str(i) e nl n

else:

tl = str(i) + "| "

t = texl
else:
tl = '
t - T

1 = BoundedLabel (text=t1+t[(i*6):(i*6)+78], size=(780,

35),

size_hint=(None,None),halign='left’,
font name='data/fonts/DroidSansMono.ttf')

s.add_wiaget(l)

code shown above right. f

The LoadLabels routine will

. give us the colored labels

. (BoundedLabel) and the swap
. ability. You saw most of this last
. time. We pass a value to the

“w” parameter to determine

. which text is being displayed.

. The I=BoundedLabel line is :
. pretty much the same line from :
. last time, with the exception :
. that, this time, we are usinga :
. BoundedLabel widget instead of :
. a Button widget. The :

LoadLabels will mainly be called 5

@ 185

fFull circle magazine

def Swap(instance):

if self.whichway == O:
self.whichway = 1
btnWhich.text = "Guitar --> Piano"
btnl.text = " " + self.text3
s.clear widgets()
LoadLabels (1)

else:
self.whichway
btnWhich. text
btnl.text = "
s.clear widgets()
LoadLabels (0)

0
"Piano --> Guitar"
" + self.textl

The Compleat Python

ﬁ contents ©

HOWTO - PROGRAMMING IN PYTHON 37

self.whichway=0
self.textl = "
self.text2 = "
self.text3 = " C |c#/Db| D |D#/Eb| E

self.text4d = " C |c#/Db| D |D#/Eb| E

rom the next routine, Swap.
Place this code (shown right)
below LoadLabels.

You can see that this routine
is pretty self explanatory. We
use a variable (self.whichway)
to determine “which way” the
labels are displaying... from
Guitar to Piano or Piano to
Guitar.

be making a lot of changes
from here on.

Replace the lines defining
textl and text two with the
lines shown above.

We set self.whichway to 0

which will be our default for the ' gefinition line from..

swap procedure. Then we
define four strings instead of
the two we had last time. You
might notice that strings text3
and text4 are simple reversals
of textl and text2.

¢ | B |a#/Bb| A |G#/Ab|

c | B |a#/Bb| A |G#/Ab|

G |F#/6b| F | E |D#/Eb| D |c#/Db| C

@

|F#/6b| F | E |D#/Eb| D |c#/Db| C

F |F#/Gb|

(7]

|c#/ab| A |A#/Bb|] B | C

@

F |F#/Gb| |c#/ab| A |a#/Bb|] B | C

Now we will tweak the root

line definition. Change it from...

. root = :
: GridLayout (orientation='verti :
: cal', spacing=10, '
: cols=1,rows=3)

to

: root = :
: GridLayout (orientation='verti :
: cal', spacing=6, cols=l, :
: rows=4,

Be sure to save your work at : row_default height=40)

this point, since we are going to

We’'ve changed the spacing

. from 10 to 6 and set the default :
. row height to 40 pixels. Change
. the text for the label (next line)
. to “text='Transposer Ver

© 0.8.0"". Everything else stays

. the same on this line.

Now change the button

; btnl = Button(text =" " +
: textl,size=(680,40),

size_hint=(None,None),

halign='1left’',

fFull circle magazine

| B |a#/Bb| A |G#/Ab| G |F#/Gb| F

|c#/Db| D |D#/Eb| E

@ 186

; font_name='data/fonts/DroidSaE

nsMono.ttf',
padding=(20,20))

to:

btnl = Button(text = " "
: + self.textl,size=(780,20),

size hint=(None, None),

halign='left’,

: font_name='data/fonts/DroidSa;
: nsMono.ttf',

padding=(20,2),

. Notice that I've changed the :
. formatting of the first definition :
- for clarity. The big changes are
. the size change from 680,40 to :
: 780,20 and the background :
. color for the button.

. Remember, we can change the
. background color for buttons,

. not “standard” labels.

The Compleat Python

F |F#/6b| G |G#/Ab| A |A#/Bb| B

E |D#/Ab| D |c#/Db| C

Cc |c#/pb|"

Next, we will define three

. AnchorLayout widgets for the
. three buttons that we will add
. in later. | named them al0

. (AnchorLayoutO0), all and al2.
. We also add the code for the

. About Popup, and define our

. buttons along with the bind

. statements. This is shown on
. the next page, top left.

Find the “s = GridLayout”

- line and change the spacing
. from 10 to 4. Next, add the

. following line after the s.bind
. background color=[0.39,0.07,. line (right before the for loop):

; 22,11) ; LoadLabels (0)

This calls the LoadLabels
routine with our default “which”

EofO.

Next, comment out the

. entire for loop code. This starts
. with “for i in range(0,19):” and

. ends with “s.add_widget(btn)".

. We don’t need this since the

. LoadLabels routine does this for

us.

ﬁ contents ©

HOWTO - PROGRAMMING IN PYTHON 37

al0 = AnchorLayout () al0.add widget (btnWhich)
all = AnchorLayout () all.add widget (btnExit)
al2 = AnchorLayout () al2.add widget (btnAbout)

popup = Popup(title='About Transposer',
content=Label (text='Written by G.D. Walters'),
size hint=(None,None),size=(400,400))
btnWwhich = Button(text = "Piano --> Guitar",
size=(180,40),size_hint=(None,None))
btnWhich.bind(on_release=Swap)
btnAbout = Button(text="About",size=(180,40),
size hint=(None,None))
btnAbout.bind(on_release=ShowAbout)
btnExit = Button(text="Exit", size=(180,40),
size_ hint=(None,None))

bgl = GridLayout (orientation='vertical',
spacing=6, cols=3,rows=1,
row _default height=40)

bgl.add widget (alO)

bgl.add widget(all)

bgl.add widget(al2)

ransposer Ver 0.8.0

btnExit.bind(on_release=exit)

purple button at the top, and
our pretty blue BoundLabels.
Plus, you will notice that the
BoundLabels in the scroll
window are closer together,
which makes it much easier to
read.

We are almost through with
our code, but we still have a
few things to do. After the “sv
= ScrollView” line add the
following line...

sv.size = (720, 320)
This sets the size of the
ScrollView widget to 720 by

320 - which makes it wider

Now, save your code and try within the root window. Now,

to run it. You should see a deep before the “return root” line,

: add the code shown top right.

Here we add the three

. buttons to the AnchorlLayout ;
. widgets, create a GridLayout to :
. hold the AnchorLayouts, and
. then finally add the

. AnchorLayouts to the

- GridLayout.

Go back just below the “def

Swap” routine and add the
- following...

E def ShowAbout (instance):

popup.open()

That’s it. Save and run the
code. If you click on the About

fFull circle magazine

| B | JE'I.# .l'r B b | JE'I.

| B | Jﬂl‘# .l'l. E: b | F'l
| JE'I.# .l'r Bb | JE'I. | EI# .l'r JE.Lb |
A |GH#/Ab| G

|G#/Ab| G |F#/Gb|

. button, you will see the simple
. popup. Just click anywhere :
. outside of the popup to make it :
. go away.

Now our code is written. You

can find the full code at

. http://pastebin.com/GftmjENs

Next, we need to create our

android package... but that will
. have to wait for next time.

If you want to get set up and °

@ 187

The Compleat Python

|G#/Ab| G
|G#/Ab| G
G |F#/Gb| F | E
|F#/Gb| F | E

E R E

|F#/Gb| F | E |D#/

|F#/Gb| F | E |D#/
|D#/Eb| D
|D#/Eb| D |CH/L

|D#/Eb| D |C#/Db| C

try packaging for Android
: before next month, you should

go to

. http://kivy.org/docs/guide/packa
. ging-android.html for the

. documentation on this. Be sure
. to follow the documentation

. carefully.

See you next month.

h contents ©

http://pastebin.com/GftmjENs
http://kivy.org/docs/guide/packaging-android.html

HOW-T0

Written by Greg Walters

s | promised in part

37, we will take the

transposer app that

we created, and
create an APK to install it on
your android device.

Before we get started, let’s
make sure we have everything

a folder that you can easily
access. Let’s call it
“transposer”. Create it in your
home directory. Next, copy the
two files (transpose.kv and
transpose.py) into that folder.
Now rename transpose.py to
main.py. This part is important.

Next, we need to reference
the kivy packaging instructions
in a web browser. The link is

ging-android.html. We will be
using this for the next steps,

but not exactly as the Kivy
people intended. You should
have the android SDK from our
earlier lesson. ldeally, you will
go through and get all the
software that is listed there, but

: for our purposes, you can just
ready. First thing we need is the :
two files we created last time in :
: android software. Open a

: terminal window and type the
: following...

; git clone
i git://github.com/kivy/python- :
: for-android

build.py. This is what will do all
- the work for us. Now comes the :
: magic.

: take various command-line

Programming In Python: Pt 38

./build.py

--name "<title>"

--dir <path to your app>

--package <org.of.your.app>

--version <human

version>

--icon <path to an icon to use>

--orientation <landscape|portrait>
--permission <android permission like VIBRATE> (multiple allowed)
<debug|release> <installd|installr|...>

follow along here. You will need
to download the python-for-

for you. Shown above is the

syntax for build.py taken

- directly from the Kivy
. documentation.

For our use, we will use the

: ./build.py --dir ~/transposer§

! —-package

This will download and set

. up the software that we need to :
. continue. Now, in a terminal

. window, change your directory
. to the python-for-

http://kivy.org/docs/guide/packa | android/dist/default folder.

Now you will find a file called :

The build.py program will

arguments and create the APK

full circle magazine

! org.RainyDay.transposer \
--name "RainyDay Transposer" :
: should have a number of files in

: the /bin folder. The one you are
- looking for is titled

: “RainyDayTransposer-1.0.0-

. debug.apk”. You can copy this

: to your android device using

. your favorite file manager app,

. directory where our application : and install it just like any other

. code lives.
. --package

. org.RainyDay.transposer - This is :
* the name of the package :

@ 188

: —-version 1.0.0 debug

Let’s look at the pieces of

the command...

- /build.py - this is the

application

- --dir ~/transposer - this is the

The Compleat Python

. --name “RainyDay Transposer” -
. this is the name of the

. application that will show up in
. the apps drawer.

: --version 1.0.0 - the version of

: . _ - our application
: following command (the “\" is a :

P : _ : debug - this is the level of
: line continuation character): :

. release (debug or release)

Once you execute this,

assuming that everything
. worked as expected, you

. application from the various
: app stores.

That's all | have time for this
month.

ﬁ contents ©

http://kivy.org/docs/guide/packaging-android.html

HOW-T0

Written by Greg Walters

any, many months
ago, we worked
with API calls for
Weather

Underground. Actually, it was in
part 11 which was back in issue :

#37. Well, we are going to deal :
: get your own API key. It's free,

: so there’s really no reason not
: to, especially if you are going to :
: use the information provided
: here. In addition, you have

: access to a few other fields of
: information like series and

. episode summaries that are not :
: included in the unregistered :
: version. Third, they are hard at
. work at updating the API. This
. means that when you get to

. seeing this article, their API

: might have changed. We'll be

: using the public feeds, which

: are free for everyone to use as
. of December 2012. The API

: website is located at

. http://services.tvrage.com/info.

a wrapper library, you are using : php?page=main and shows a

. few examples of the types of
information that are available.

with APIs again, this time for a
website named TVRage
(http://tvrage.com). If you
aren’t familiar with this site, it
deals with television shows. So
far, every TV show that | could
think of has been in their
system. In this series of
articles, we are going to revisit
XML, APIs, and ElementTree to
create a wrapper library that
will allow us to create a small
library which simplifies our
retrieval of TV information on
our favorite shows.

Now, | mentioned a wrapper
library. What's that? In simple
terms, when you create or use

a set of code that “wraps” the
complexity of the website’s API
into an easy-to-use library.

Before we get started, | need to

make a few things clear. First,

: this is a free service. However,
. they do request donations for

: use of their API. If you feel that
© this is a worthwhile service,

please consider donating $10

register at their website and

Now, let’'s begin looking at
the APl and how we can use it.

full circle magazine

@ 189

Using their API, we can get

© very specific information about
: the show itself and/or we can
. get episode level information.
: There are basically three steps
US or more. Second, you should

to finding information about TV

: Shows. Here are the steps: :
.« Search their database looking :
: for the show name to get the :
specific Show ID which must be :
: used to get more data. Think of :
. the showid value as a key

: directly into a record set in a

: database, which in this case it

IS.

: » Once you have the Show ID,
: obtain the show level

: information.

: « Finally, gather the information :
: about a specific episode. This
: comes from a list of each and
. every episode that the show

. has had to date.

Programming In Python: Pt 39

There are three basic web

calls we will make to get this

. information. First is the search
. call, second the show

- information call, and finally the
. the episode list call.

Here are the base calls that

: we will use...

e Search for ShowlID based on a
show name -

: http://services.tvrage.com/fe
! eds/search.php?show={SomeShow

)

 Pull the show level data
: based on the Show ID (sid) -

§ http://services.tvrage.com/fe
: eds/showinfo.php?sid={SomeSho
! wID}

. Pull the episode list for Show

- ID (sid) -

! http://services.tvrage.com/fe
! eds/episode_list.php?sid={Som
: eShowID}

<?xml version="1.0" encoding="UTF-8" 2>

<ROOT TAG>
<PARENT TAG>

<CHILD TAG 1>DATA</CLOSING CHILD TAG 1>
<CHILD TAG 2>DATA</CLOSING CHILD TAG 2>
<CHILD TAG 3>DATA</CLOSING CHILD TAG 3>

</CLOSING PARENT TAG>
</CLOSING ROOT TAG>

The Compleat Python

ﬁ contents ©

http://services.tvrage.com/info.php?page=main
http://tvrage.com

HOWTO - PROGRAMMING PYTHON Pt39

What gets returned is a
stream of data in XML format.
Let’s take a moment to review
what XML looks like. The first
line should always be similar to
the one shown below to be
considered a proper XML data
stream (below).

Every piece of data is
enclosed within a defining tag
and end-tag. Sometimes you
will have a child tag that is a
parent tag in itself like this...

<CHILD PARENT TAG>

<CHILD TAG 1>DATA</CLOSING
CHILD TAG 1>

</CLOSING CHILD PARENT TAG>

You also may see a tag that
has an attribute associated
with it:

<TAG INFORMATION = VALUE>

<CHILD TAG>DATA</CLOSING
CHILD TAG>

</CLOSING TAG>

Sometimes, you might see a
tag with no data associated
with it. It would come across
like this...

<prodnum/>

Sometimes, if there is no
information for a specific tag,

. the tag itself just won’t be
. there. Your program will have to
. deal with these possibilities.

So, when we go through and

. deal with the XML data, we
. start with the root tag, and
. parse each tag - looking for the :
. data we care about. In some

. instances we want everything;
. in others, we care about only

. certain pieces of the

. information.

Now, let’s look at the first

. call and see what gets

: returned. Assume the show we
. are looking for is Buffy the

. Vampire Slayer. Our search call :
. would look like this:

E http://services.tvrage.com/fe:
: eds/search.php?show=buffy

The returned XML file would

. look like this:
http://pastebin.com/Eh6Zt|9N.

: Note that | put the indents in :
. myself to make it easier for you :
: to read. Now let’s break down
. the XML file to see what we

. actually have.

<Results> - This is the ROOT of

the XML data. The last line of

fFull circle magazine

@ 190

©IN;)

. the stream we get back should
. be the closing tag </Results>.
. Basically, this marks the

. beginning and end of the XML
. stream. There could be zero

. results or fifty results.

. <show> This is the parent node
. that says “What follows (until

. the end show tag) is the

. information about a single tv

. show”. Again, it's ended by its
. end tag </show>. Anything

. information.

. <showid>2930</show> This is

: the showid tag. This holds the
. sid that we have to use to get
. the show information, in this

. case 2930.

: <name>Buffy the Vampire

. of the show
. <link>...</link> This would be

. the case of an episode, the
: episode information) on the
TVRage website.

The Compleat Python

<country>...</country> The
. country of origin for the show.

</show>
. </Results>

In the case of our program,

. we would be really interested in
- only the two fields <showid>

. and <name>. We might also

. consider paying attention to

. the <started> field as well.

. This is because we rarely get

- within these two tags should be :
; g : back just one set of data,

. considered one show’s worth of : . } , ;

. especially if we didn’t give the

. absolutely complete show

. name. For example, if we were

. interested in the show “The Big

. Bang Theory,” and searched

. using only the string “Big

. Bang”, we would get twenty or

. Slayer</name> This is the name S0 dat.a sets back because
. anything that even remotely

matched “big” or “bang” would

. the link to the show itself (or, in : be returned. However, if we
: were interested in the show

. “NCIS,” and we searched for

" that, we would get back many

ﬁ contents ©

http://pastebin.com/Eh6ZtJ9N

HOWTO - PROGRAMMING PYTHON Pt39

responses. Some not what we
would expect right away. Not
only would we get “NCIS”,
“NCIS: Los Angeles”, “The Real
NCIS”, but also “The Streets of
San Francisco” and “Da Vinci’s

the letters “N” “C” “1” and “S”
are in all of those, pretty much
in that order.

Once we know the show id
that we want, then we can
request the show information
for that ID. The data is similar
to the data we just got back in
the search response, but more
detailed. Again, using Buffy as
our example request, here
(next page, right) is an
abbreviated version of the XML
file.

data is included in the original
search response stream.
However, things like network,
network country, runtime, air
day and time, are specific to
this response set.

Next, we would request the
episode list. If the show is only
one season long and has/had
only six episodes, this stream
would be short. However, let’s

take the case of one of
my favorite TV shows,

: Doctor Who. Doctor Who
© is a British TV show that,
© in its original form,

: started in 1963 and ran
Inquest”, and many more, since :
© for our friends in the UK)

© until 1989. Its first season
. alone had 42 episodes,

: while other

. seasons/series have

: around 24 episodes. You

: can see where you might
: have a HUGE stream to

. parse through.

for 26 seasons (‘series’

What we get back

. from the episode list

. request is as shown on
. the next page (again

: using Buffy as our

. example); I'm going to
You can see that much of the :
: stream so you get a good
. idea of what comes back.

just use part of the

So to recap, the

information we really
. want/need in the search
: for show id by name

: stream would be...
! <showid>

! <name>

! <started>

In the Show

fFull circle magazine

<Showinfo>

<showid>2930</showid>

<showname>Buffy the Vampire Slayer</showname>

<showlink>http://tvrage.com/Buffy The Vampire Slayer</showlink>

<seasons>7</seasons>

<started>1997</started>

<startdate>Mar/10/1997</startdate>

<ended>May/20/2003</ended>

<origin country>US</origin country>

<status>Canceled/Ended</status>

<classification>Scripted</classification>

<genres>
<genre>Action</genre>
<genre>Adventure</genre>
<genre>Comedy</genre>
<genre>Drama</genre>
<genre>Mystery</genre>
<genre>Sci-Fi</genre>

</genres>

<runtime>60</runtime>

<network country="US">UPN</network>

<airtime>20:00</airtime>

<airday>Tuesday</airday>

<timezone>GMT-5 -DST</timezone>

<akas>
<aka country="SE">Buffy & vampyrerna</aka>
<aka country="DE">Buffy - Im Bann der Damonen</aka>

<aka country="NO">Buffy - Vampyrenes skrekk</aka>
<aka country="HU">Buffy a vampirok réme</aka>
<aka country="FR">Buffy Contre les Vampires</aka>
<aka country="IT">Buffy 1l'Ammazza Vampiri</aka>
<aka country="PL">Buffy postrach wampiréw</aka>
<aka country="BR">Buffy, a Caca-Vampiros</aka>
<aka country="PT">Buffy, a Cacadora de Vampiros</aka>
<aka country="ES">Buffy, Cazavampiros</aka>
<aka country="HR">Buffy, ubojica vampira</aka>
<aka country="FI">Buffy, vampyyrintappaja</aka>
<aka country="EE">Vampiiritapja Buffy</aka>
<aka country="IS">Vampirubaninn Buffy</aka>
</akas>

</Showinfo>

The Compleat Python

@ 191 ﬁ contents ©

HOWTO - PROGRAMMING PYTHON Pt39

Information stream we would

(normally) want...
<seasons>
<started>

<start date>
<origin_country>
<status>
<genres>
<runtime>
<network>
<airtime>
<airday>
<timezone>

and from the episode list

stream...

<Season>

<episode number>
<season number>
<production number>
<airdate>

<link>

<title>

A word of “warning” here.
Season number and Episode
number data are not what you
might think right away. In the
case of the data from TVRage,

the season number is the

number of the episode within

the season. The episode

number is the number for that
episode within the total life

span of the series. The

means little if anything.

<Show>

<name>Buffy the Vampire Slayer</name>

<totalseasons>7</totalseasons>
<Episodelist>
<Season no="1">
<episode>
<epnum>1</epnum>

<seasonnum>01</seasonnum>

<prodnum>4V01</prodnum>

<airdate>1997-03-10</airdate>
<link>http://www.tvrage.com/Buffy The Vampire Slayer/episodes/28077</link>
<title>Welcome to the Hellmouth (1)</title>

</episode>
<episode>
<epnum>2</epnum>

<seasonnum>02</seasonnum>

<prodnum>4vV02</prodnum>

<airdate>1997-03-10</airdate>
<link>http://www.tvrage.com/Buffy The Vampire Slayer/episodes/28078</link>
<title>The Harvest (2)</title>

</episode>
<episode>
<epnum>3</epnum>

<seasonnum>03</seasonnum>

<prodnum>4V03</prodnum>

<airdate>1997-03-17</airdate>
<link>http://www.tvrage.com/Buffy The Vampire Slayer/episodes/28079</link>

<title>Witch</title>
</episode>
</Season>
</Episodelist>
</Show>

Now that we have refreshed

our memory on XML file
: structures and examined the
: TVRage API calls, we are ready

production number is a number to start our coding, but that will

that was used internally to the
series, that, for many people,

: have to wait until next time.

Until then, have a good

' holiday season.

full circle magazine

@ 192

The Compleat Python

=

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his
family. His website is

ﬁ contents ©

http://www.thedesignatedgeek.net

HOW-T0O

Written by Greg Walters

Programming In Python: Pt 40

oo

ast time, we had a
gross discussion about
the TVRAGE web API.

Now we will start to look
: own key, and that you don't

abuse the site. Please also
: consider donating to them to

: support their continuing efforts. :
: : SeriesName,
: EpisodeList)

at writing code to work with it.

The goal of this part is to
begin the process of creating
code that will be a reusable
module that can be imported
into any python program and
will provide access to the API
easily.

While the TVRAGE API gives
us a number of things we can
do, and the registered version

on only three calls:
1 - Search for show by show
name, and get the ShowlID

2 - Get show information based
: will be creating (although not

 all of them this time. | want to
: leave room for others in this

on ShowlD
3 - Get episode specific
information based on ShowID

Last time, | showed you the
“unregistered” and accessible-
by-anyone API calls. This time
we will use the registered calls
- based on a registration key |
have. I’'m going to share this
key with you (TVRAGE knows

that I'm going to do this).
- However, | ask that, if you are
: going to use the API, that you

please register and get your

We will create three main

: routines to make the calls and
: return the information, three

: routines that will be used to

: display the returned

: information (assuming that we
: are running in the “stand

. alone” mode), and a main
even more, we will concentrate " routine to do the work - again
: assuming that we are running
: in the “stand alone” mode.

Here is the list of routines we RV
: returns a dictionary of

. information about the series.
. GetEpisodelList also uses the
. showid from the above routine :
: and returns a list of dictionaries :
: containing information for each :
. episode.

© issue.)
; def FindIdByName(self,
: showname, debug = 0)

; def GetShowInfo(self, showid,é
: debug = 0) :

def GetEpisodelList (self,

full circle magazine

g showid, debug = 0)

g def DisplayShowInfo(self,
i dict)

def DisplayEpisodelList (self,
SeasonCount,

g def main()

The routine FindldByName

. takes a string (showname),

: makes the API call, parses the
: XML response, and returns a list :
. of shows that match with the
. information in a dictionary, so
: this will be a list of dictionaries. :
: GetShowiInfo takes the showid

from the above routine and

We will use a series of

strings to hold the key and the
" base URL, and then append to

@ 193

The Compleat Python

. those what we need. For

: : example consider the following
: def DisplaySearchResult (self, : code (we'll expand these later).
: ShowListDict) :

: ! self.ApiKey =

! "Itnl8IyYlhsR9nOIP6zI"

g self.FindSeriesString =
: "http://services.tvrage.com/m
: yfeeds/search.php?key="

The call we need to send (to

get back a list of series
. information with the series id)
. would be:

http://services.tvrage.com/myfe

eds/search.php?key=I1tnl8lyY1lh

: SRONOIP6zI&show={ShowName
L}

We combine the string like

- this...

; strng = self.FindSeriesString
! + self.ApiKey + "&show=" +
! showname

For the purposes of testing, |
will be using a show named
“Continuum” which, if you've

. never seen it, is a wonderful

. science fiction show on the

: Showcase network out of

. Canada. I'm using this show for
- a few reasons. First, there are

h contents ©

http://services.tvrage.com/myfeeds/search.php?key=Itnl8IyY1hsR9n0IP6zI&show={ShowName}

HOWTO - PROGRAMMING PYTHON Pt40

only (as of this writing) two
shows that match the search
string “Continuum”, so that
makes your debug easy, and

one season of 10 episodes for
you to deal with.

You should have an idea
what you will be looking for in
your parsing routines, so I've
placed the full URL calls below
for you to test, before you get
started with your coding.

Search using a show name...

http://services.tvrage.com/myfe
eds/search.php?key=ItnI8lyY1lh :

sRINOIP6zI&show=continuum

Retrieve Series information
using the ShowlID (sid)

http://services.tvrage.com/myfe
eds/showinfo.php?key=Itni8lyY :

1hsR9n0IP6zI&sid=30789

Retrieve Episode list and
information using the ShowlID
(sid)

http://services.tvrage.com/myfe
eds/episode_list.php?key=Itni8I :

yY1hsR9nO0IP6zI&sid=30789

Now that we have all that

out of the way, let’'s get started

with our code.

You'll create a file with the
name of “tvrage.py”. We’'ll be

: using this for the next issue or
: two.
secondly, there’s currently only :

We'll start with our imports

shown above right.

You can see that we will be

. using ElementTree to do the

: XML parsing, and urllib for the
: internet communication. The

: sys library is used for sys.exit.

We’'ll set up the main loop

. now so we can test things as

#

IMPORTS

#

from xml.etree import ElementTree as ET

import urllib
import sys

we go (bottom right).
: Remember this is the last thing
. in our source file.

def FindIdByName (self, showname,debug = 0):
strng = self.FindSeriesString + self.ApiKey + "&show=" + showname
urllib.socket.setdefaulttimeout (8)

usock =

urllib.urlopen(strng)

tree = ET.parse(usock) .getroot ()

usock.close()
foundcounter = 0

#

Main loop

#

if name__ == "_main_":
main()

. (GetEpisodeListString should all
: be on one line.) The last four
. lines are the initialization of the
. lists we will be using later.
: As | said earlier, the first four :
. lines are our partial strings to :
© build the URL for the function
. that we want to use.

First (middle right), we set

. up the string that will be used
. as the URL. Next, we set up the

Now we start our class. The name of the class is “TvRage”. We’ll also make our __init__ routine

Nnow.

class TvRage:
def init_(self):

self.ApiKey = "Itnl8IyYlhsR9nOIP6zI"
self.FindSeriesString = "http://services.tvrage.com/myfeeds/search.php?key="
self.GetShowInfoString = "http://services.tvrage.com/myfeeds/showinfo.php?key="

self.GetEpisodeListString =
"http://services.tvrage.com/myfeeds/episode list.php?key="

self.ShowList =
fFull circle magazine

[1
@ 194 The Compleat Python

ﬁ contents ©

http://services.tvrage.com/myfeeds/search.php?key=Itnl8IyY1hsR9n0IP6zI&show=continuum
http://services.tvrage.com/myfeeds/showinfo.php?key=Itnl8IyY1hsR9n0IP6zI&sid=30789
http://services.tvrage.com/myfeeds/episode_list.php?key=Itnl8IyY1hsR9n0IP6zI&sid=30789

HOWTO - PROGRAMMING PYTHON Pt40

socket with an 8 second default
timeout. Then we call
urllib.urlopen with our
generated URL and (hopefully)

object. We call ElementTree
setup so we can parse the xml
information. (If you are lost

on XML (parts 10, 11 and 12
appearing in FCM #36, 37 and

and initialize the counter for
the number of matches found,
and reset the list ‘showlist’ to
an empty list.

xml information using the tag
‘show’ as the parent for what
we want. Remember the
returned information looks
something like that shown top
right.

We will be going through
each group of information for
the parent ‘show’ and parsing
out the information. In practice,

all we really need is the show
name (<name>) and the

. showid (<showid>) shown
bottom left, but we’ll handle all
receive our xml file in the usock

of the results.

I'll discuss the first one and

. you'll understand the rest. As

here, please re-read my articles : we go through the mforma.tlon,
. we look for tags (bottom right) :

that match what we want. If we

38)). Next, we close the socket, : find any, we assign each to a

: temporary variable and then :

© put that into the dictionary as a

: value with a key that matches 5

: what we are putting in. In the

: case of the above, we are

Now we will step through the :

© the XML data. When we find it, :

. we assign that as a value to the :

. dictionary key ‘ID".

looking for the tag ‘showid’ in

The next portion (next page,

© top right) deals with the

. genre(s) of the show. As you

: can see from the above XML

: snippet, this show has four

. different genres that it fits into.
: Action, Crime, Drama, and Sci-

for node in tree.findall('show'):

showinfo = []
genrestring = None
dict = {}
for n in node:
if n.tag == 'showid’':
showid = n.text

fFull circle magazine

@ 195

<Results>

<show>
<showid>30789</showid>
<name>Continuum</name>
<link>http://www.tvrage.com/Continuum</link>
<country>CA</country>
<started>2012</started>
<ended>0</ended>
<seasons>2</seasons>
<status>Returning Series</status>
<classification>Scripted</classification>
<genres>
<genre>Action</genre>
<genre>Crime</genre>
<genre>Drama</genre>
<genre>Sci-Fi</genre>
</genres>
</show>

elif n.tag == 'name':
showname = n.text
dict['Name'] = showname
elif n.tag == 'link':
showlink = n.text
dict['Link'] = showlink
elif n.tag == 'country':
showcountry = n.text
dict['Country'] = showcountry
elif n.tag == 'started':
showstarted = n.text
dict['Started'] = showstarted
elif n.tag == 'ended':
showended = n.text
dict['Ended'] = showended
elif n.tag == 'seasons':
showseasons = n.text
dict['Seasons'] = showseasons
elif n.tag == 'status':
showstatus = n.text
dict['Status'] = showstatus
elif n.tag == 'classification':
showclassification = n.text

The Compleat Python

ﬁ contents ©

HOWTO - PROGRAMMING PYTHON Pt40

Fi. We need to handle each.

Finally, we increment the
foundcounter variable, and
append this dictionary into the

list ‘showlist’. Then we start the

entire thing over until there is
no more XML data. Once
everything is done, we return
the list of dictionaries (bottom
right).

Most of the code is pretty
self explanatory. We'll
concentrate on the for loop we

counting should start with ‘1’

not 0. And we can then use O to
. escape the routine and not g
. make them use ‘Q" or ‘q" or *-1".

: Now, the “main” routine that
. pulls it all together for us. :

: For today, we’ll just start the
: routine (middle right) and :
: continue it next time.

Next time, we’'ll add the

other routines. For now, the
: code can be found at

use to print out the information. : http://pastebin.com/6iw5NQrwW

We loop through each item in

the list of dictionaries and print

a counter variable, the show
name (c[‘Name’]), and the id.
The result looks something like
this...

Enter Series Name ->
continuum
2 Found

1 - Continuum - 30789

2 - Continuum (Web series) -
32083

Enter Selection or 0 to exit
->

Please remember that the
list of items is zero based, so
when the user enters ‘1’, they
are really asking for dictionary
number 0. We do this, because
“regular” people think that

See you soon.

foundcounter += 1

elif n.tag == 'genres':
for subelement in n:

if subelement.tag ==

'genre':

if subelement.text != None:
if genrestring == None:
genrestring = subelement.text
else:
genrestring += " | " + subelement.text

def main():
tr = TvRage(

o
Find Serie
o
nam = raw_in
if nam != No
sl = tr.
which =
if which
sys.

else:
opti
id =
prin

self.showlist.append(dict)

return self.showlist

)

put ("Enter Series Name -> ")
ne:

FindIdByName (nam)
tr.DisplayShowResult(sl)

exit(;

on = int(which)-1
sl[option]['ID']
t "ShowID selected was %s" % id

#

The next thing we will do is create the routine to display all of our results.

def DisplayShowResult(self, ShowListDict):

lcnt = len(ShowListDict)

print "%d Found" lcnt

print "———————— "
cntr = 1

for ¢ in ShowListDict:

print "%d - %s - %s" %

cntr += 1

fFull circle magazine

@ 196

[-)

(cntr,c|

The Compleat Python

'Name'],c['ID'])

ﬁ contents ©

http://pastebin.com/6iw5NQrW

I %
ast month, we started

our command line
version of a library to

talk to the TVRAGE web

API. This month we will
continue adding to that library.

If you don’t have the code from :
: mind: the display routines are
. there pretty much to prove the
(http://pastebin.com/6iw5NOrW :
. goal here is to create a

. reusable library that can be
. used in something like a GUI
. program. Feel free to modify :
. the display routines if you want :
: to do more with the standalone :
. capabilities of the library.

last month, please get it now
from pastebin

) because we will be adding to
that code.

The way we left the code,

you would run the program and :

enter in the terminal window
the name of a TV show you
want information on.
Remember, we used the show
Continuum. Once you pressed
<Enter>, the program would
call the api and search by the
name of the show, and then

return a list of show names that :
- information that will be
: returned (there is other

matches your input. You then
would select from the list by

entering a number and it would
. only the list below) will be in a

show “ShowlID selected was

30789”. Now, we will create the :
. available):
: « Show ID

code that will use that ShowID
to get the series information.
One other thing to keep in

HOW-T0O

Written by Greg Walters

Programming

def GetShowInfo(self,showid,debug=0):

showidstr =

str (showid)

In Python: Pt 41

strng = self.GetShowInfoString + self.ApiKey + "&sid=" + showidstr
urllib.socket.setdefaulttimeout (8)
usock = urllib.urlopen(strng)

tree =
usock.close()
dict = {}

routine works. The ultimate

The last routine we created

. in the class was

. “DisplayShowResult”. Right
. after that, and before the :
. routine “main,” is where we will :

put our next routine. The

information, but we will use

dictionary and will contain (if

e Show Name

full circle magazine

@ 197

ET.parse(usock) .getroot ()

.+ Show Link

. Origin Country of network
. » Number of seasons

. * Series image

. * Year Started

. » Date Started

.+ Date Ended

» Status
(canceled, returning, current, etc)

. » Classification
. (scripted, reality, etc)
. Series Summary

for child in tree:
if child.tag == "'
dict['ID']
elif child.tag
dict['Name'
elif child.tag
dict['Link'
elif child.tag
dict['Country
elif child.tag ==
dict['Seasons
elif child.tag ==
dict['Image']
elif child.tag
dict['Started
elif child.tag

1
1

The Compleat Python

.« Genre(s)

: « Runtime in minutes

. » Name of the network that
. originally aired the show

.« Network country
: (pretty much the same thing as Origin
: Country)

.« Air time
.« Air Day (of week)
.« TimeZone

Shown above is the

showid':
child.text

= 'showname':

= child.text

= 'showlink':

= child.text

= 'origin country':

'] = child.text
'seasons':

'] = child.text
'image':

= child.text
'started’:

'] = child.text
'startdate’':

h contents ©

http://pastebin.com/6iw5NQrW

HOWTO - PROGRAMMING PYTHON Pt41

elif child.tag ==
dict['Ended']
elif child.tag ==
dict['Status']
elif child.tag ==

dict['Classification'] =

elif child.tag ==

beginning of the code.

You should recognize most of :
the code from last time. There’s :
really not much changed. :
Here’s more code (shown
below).

As you can see (above),
there’s nothing really new in
this bit of code either, if you've
been keeping up with the
series. We are using a for loop,
checking each tag in the XML

back to “normal” code (shown
: middle right) that you've
. already seen. The only thing

. attribute “country”. We grab :
. the attribute data by looking for:
. “child.attrib[‘attributetag’]”
: instead of “child.text”.

'ended ' : elif child.tag == 'genres':

= child.text genrestring = None

'status': for subelement in child:

= child.text if subelement.tag == 'genre':

'classification': if subelement.text != None:
child.text if genrestring == None:

Now we are pretty much dict['NetworkCountry'] =
dict['Network'] = child.text
elif child.tag == 'airtime':

dict['Airtime'] = child.text

: == _ elif child.tag == 'airday':
. that’s a bit different is the tag dict['Airday'] = child.text
: “network” which has an elif child.tag == 'timezone':

dict['Timezone'] = child.text

: some way to display the
. information we worked so hard

'summary’': genrestring = subelement.text
else:
genrestring += " | " + subelement.text
. them with a vertical bar and :
: two spaces like this “ | “ (shown :
; : elif child.tag == 'runtime':
top right). dict['Runtime'] = child.text
elif child.tag == 'network': # has attribute

child.attrib['country']

: Now, we must update the
: “main” routine (next page,

file for a specific value. If we
find it, we assign it to a

: to get. We'll create a routine

shown top right) to support our
. called “DisplayShowInfo”.

That's the end of this . two new routines. I'm giving

dictionary item.

Now things get a bit more
complicated. We are goingto
check for the tag “genres”. This :
has child tags underneath it :
with the name of “genre”. For
any given show, there can be
multiple genres. We'll have to
append the genres to a string
as they come up and separate

. routine. Now (below) we’ll need

def DisplayShowInfo(self,dict):
print "Show: %s" % dict['Name']
print "ID: %s Started: %s Ended: %s Start Date: %s Seasons: %s"
(dict['ID'],dict['Started'],dict['Ended'],dict['StartDate'],dict['Seasons'])
print "Link: %s" % dict['Link']
print "Image: %s" % dict['Image']
print "Country: %s Status: $%s Classification:
(dict['Country'],dict['Status'],dict['Classification'])
print "Runtime: %s Network: %s Airday: %s Airtime:
(dict['Runtime'] ,dict['Network'],dict['Airday'],dict['Airtime'])
print "Genres: % dict['Genres']

$s" %
@ 198

can o
S °

o o
S °

full circle magazine The Compleat Python

. the entire routine below, but

ﬁ contents ©

HOWTO - PROGRAMMING PYTHON Pt41

the new code is shown in black.
. to add it if you wish.
Next page, bottom left, is
what the output of
“DisplayShowlInfo” should look
like, assuming you chose
“Continuum” as the show.

Next, we need to work on

: will provide the following
© information...
© + Season

* Episode Number

Please notice that I’'m not
displaying the time zone

ShowID selected was 30789
Show: Continuum

ID: 30789 Started: 2012
May/27/2012 Seasons: 2
Link: http://www.tvrage.com/Continuum

Image: http://images.tvrage.com/shows/31/30789.jpg
Country: CA Status: Returning Series Classification:
Scripted

Runtime: 60 Network: Showcase
Airtime: 21:00

Genres: Action | Crime | Drama | Sci-Fi

Summary:

Continuum is a one-hour police drama centered on Kiera
Cameron, a regular cop from 65 years in the future who
finds herself trapped in present day Vancouver. She is
alone, a stranger in a strange land, and has eight of the
most ruthless criminals from the future, known as Libers8,
loose in the city.

Ended: None Start Date:

Airday: Sunday

Lucky for Kiera, through the use of her CMR (cellular
memory recall), a futuristic liquid chip technology
implanted in her brain, she connects with Alec Sadler, a
seventeen-year-old tech genius. When Kiera calls and Alec
answers, a very unique partnership begins.

Kiera’'s first desire is to get "home." But until she
figures out a way to do that, she must survive in our
time period and use all the resources available to her to
track and capture the terrorists before they alter

full circle magazine

information here, but feel free

the episode list routines for the
. series. The “worker” routine will :
: be called “GetEpisodeList” and :

© (the number of the episode within the
: season)

@ 199

def main():
tr = TvRage()

o e
Find Series by name
e
nam = raw_input ("Enter Series Name -> ")
if nam != None:
sl = tr.FindIdByName (nam)
which = tr.DisplayShowResult(sl)
if which == 0:
sys.exit()
else:
option = int(which)-1
id = sl[option]['ID']
print "ShowID selected was %s" % id
e
Get Show Info
e
showinfo = tr.GetShowInfo(id)
e

Display Show Info

* Season Episode Number * Screen Capture Image of

. Episode (if available)

* Production Number Before we start with the

* Ar Date . code, it would be helpful to
= Link © revisit what the episode list
* Title : request to the API returns. It
® Summary - looks something like that

* Rating

shown on the next page, top

def GetEpisodeList (self,showid,debug=0):
showidstr = str(showid)

strng = self.GetEpisodelListString + self.ApiKey

+ "&sid=" + showidstr
urllib.socket.setdefaulttimeout (8)
usock = urllib.urlopen(strng)
tree = ET.parse(usock) .getroot ()
usock.close()
for child in tree:

The Compleat Python

h contents ©

HOWTO - PROGRAMMING PYTHON Pt41

if child.tag ==
= child.text
elif child.tag ==

TotalSeasons =
elif child.tag ==

ShowName

'name’' :

'totalseasons':
child. text
'Episodelist’':

for ¢ in child:

if c.tag == 'Season’':
dict = {}
seasonnum = c.attrib['no']

for el in c:

right.

“worker” routines this time, the

© first few lines (below) are fairly

The information for each
episode is in the “episode” tag
- which is a child of “Season” -
which is a child of “Episodelist”
- which is a child of “Show”. We :
have to be careful how we :
parse this. As with most of our

. easy to understand by now.

Now we need to look for the

: “name” and “totalseasons”

tags below the “root” tag

. “Show"”. Once we've dealt with
. them, we look for the

<Show>

<name>Continuum</name>

<totalseasons>2</totalseasons>

<Episodelist>

<Season no="1">

<episode>

<epnum>1</epnum>

<seasonnum>01</seasonnum>

<prodnum/>

<airdate>2012-05-27</airdate>

<link>

http://www.tvrage.com/Continuum/episodes/1065162187
</1link>

<title>A Stitch in Time</title>

<summary>

Inspector Kiera Cameron loses everything she has and finds
herself on a new mission when she and eight dangerous
terrorists are transported from their time in 2077 back to
2012 during the terrorist’s attempt to escape execution.
She takes on a new identity and joins the VPD in order to
stop the terrorists’ reign of violence. Along the way, she
befriends Alec Sadler, the 17 year old who will one day
grow up to create the technology her world is built upon.
</summary>

<rating>8.8</rating>

<screencap>
http://images.tvrage.com/screencaps/154/30789/1065162187.p

if el.tag == 'episode':
dict={}
dict['Season'] = seasonnum
for ep in el:
if ep.tag == 'epnum':
dict['EpisodeNumber'] = ep.text
elif ep.tag == 'seasonnum':
dict['SeasonEpisodeNumber'] = ep.text
elif ep.tag == 'prodnum':
dict['ProductionNumber'] = ep.text
elif ep.tag == 'airdate':
dict['AirDate'] = ep.text
elif ep.tag == 'link':
dict['Link'] = ep.text
elif ep.tag == 'title':
dict['Title'] = ep.text
elif ep.tag == 'summary':
dict['Summary'] = ep.text
elif ep.tag == 'rating':

dict['Rating'] = ep.text

full circle magazine

@ 200

“Episodelist”, “Season” tags.
: Notice above that the “Season” :
. tag has an attribute. You might

notice (in the code above) that

: we aren’t including the

. “Showname” or “Totalseasons”
. data in the dictionary. We are

. assigning them to a variable

self.EpisodeItem.append(dict)

that will be returned at the end

of the routine to the calling

: code.

Now that we have that

portion of the data, we deal
. with the episode specific
information (shown below).

return ShowName,TotalSeasons,self.Episodeltem

The Compleat Python

h contents ©

http://pastebin.com/6iw5NQrW

HOWTO - PROGRAMMING PYTHON Pt41

All that’s left now (bottom
right) is to append the episode

specific information (that we’ve

put into the dictionary) to our
list, and keep going. Once we
are done with all the episodes,
we return to the calling routine
and, as | stated earlier, return
three items of data,
“ShowName”, “TotalSeasons”
and the list of dictionaries.

Next, we need to create our

display routine. Again, it’s fairly

straightforward. The only thing
that you might not recognize is
the “if
e.has_key(‘keynamehere’)“
lines. This is a check to make
sure that there is actually data

in the “Rating” and “Summary”

variables. Some shows don’t
have this information, so we
include the check to make our
print-to-screen data a little
prettier (shown above right).

All that's left is to update our

“main” routine (next page,
shown top right). Once again,
I’'m going to provide the full
“main” routine with the newest
code in black bold.

Now, if you save and run the

: program, the output of the

: “GetEpisodelList” and

. “DisplayEpisodeList” will work.
* Shown bottom right is a snippet :

def DisplayEpisodelList (self,SeriesName,SeasonCount,EpisodeList):

print "-——— - ——-———C—————.—_—.—_.——_—— . — — "

print "Series Name: %$s" % SeriesName

print "Total number of seasons: %s" % SeasonCount
print "Total number of episodes: %d" % len(Episodelist)
print "-——— - ———-——C———————.—_.—_.———_——. — — "

for e in Episodelist:

o

print "Season: %s" % e['Season']
print " Season Episode Number:
(e['SeasonEpisodeNumber'],e['EpisodeNumber'])

print " Title: %s" % e['Title']
if e.has_key('Rating'):

print " Airdate: %s
else:

print " Airdate: %s
if e.has_key('Summary'):

$s - Series Episode Number: %s" %
$s" % (e['AirDate'],e['Rating'])

Rating: NONE" % e['AirDate']

print " Summary: \n%s" % e['Summary']
else:
print " Summary: NA"
print n "
Series Name: Continuum

Total number of seasons: 2
Total number of episodes: 10
Season: 1

Season Episode Number: 01 - Series Episode Number: 1

Title: A Stitch in Time
Airdate: 2012-05-27 Rating: 8.8
Summary:

Inspector Kiera Cameron loses everything she has and finds herself on a new mission when
she and eight dangerous terrorists are transported from their time in 2077 back to 2012
during the terrorist’s attempt to escape execution. She takes on a new identity and

joins the VPD in order to stop the terrorists’ reign of violence. Along the way, she
befriends Alec Sadler, the 17 year old who will one day grow up to create the technology
her world is built upon.

: | hope you enjoy playing with

: the library. There is additional

: data available from the API that
: you can include. Please

remember, TVRage provides

ﬁ contents ©

: That's it for this month. As
always, you can find the full
: source code on pastebin at

http://pastebin.com/kWSEfs2E.

@ 201

of the Episode information.

full circle magazine The Compleat Python

http://pastebin.com/kWSEfs2E

HOWTO - PROGRAMMING PYTHON Pt41

def main():
tr = TvRage()

nam =
if nam != None:
sl =

raw_input ("Enter Series Name -> ")

tr.FindIdByName (nam)

which = tr.DisplayShowResult(sl)

if which == 0:
sys.exit()

else:
option =
id =

showinfo =

0
()
2}
-
o
0
2
V)
3
o
=
(]
ﬁ
o
=
0
o
1]
n
(¢)
=]
0
0
e}
'.l.
n
0
Qo
(0]
=
-
n
ﬂ
I

this information for free, so
consider donating to them to
help their efforts at updating
the APl and for all their hard
work.

I'll see you next time. Enjoy.

int (which)-1
sl[option]['ID']
print "ShowID selected was %s"

o\°
M-
Q

tr.GetEpisodeList (id)

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his

fFull circle magazine

@ 202

@n

a

°

a

o

[}

a

o

[}

o

Catalog

Art, Photography, Design
Business

For Kids

General Computing
Hardware and DIY
LEGC®

Linux, BSD, Unix
Mac

Manga
Programming
Science & Math
Security

System Administration

Free ebook edition with
print book purchase from
nostarch.com!

Shopping cart

View your shopping cart

User login

¢ Login
¢ Create account

Bestsellers

Floquent JavaSeript

Practical
Walware

New!

THE Bo0K OF

ILEGOD

RE
)
- ﬂ L)

medieval villages,

e
o |

o starch press

the finest in geek entertainment

‘Whether you're just getting
started with GIMP or
working to master GIMP's
more complex features,
you'l find the answers
you're looking for in The
Book of GIMP.

Learn You Some Erlang
for Great Good! is a
hilariously illustrated guide
to the concurrent
functional programming
language

Il Full of fun examples and

| colorillustrations, Python
= For Kids is a playful

| introduction to Python that
| will help any beginner get

started with programming

Master Your Mac teaches
the fearless user to
harness the many powerful
features that lie beneath
085 X's glossy surface

Whether you're brand
new to LEGO or have
been building for years,
unleash your imagination
with The LEGO
Adventure Book! Learn
to build robots, trains,
and much mare.

The Unofficial LEGO
Technic Builder's Guide
is filled with building
techniques and tips for
creating strong yet
elegant machines and
mechanisms

Coming Soon

BLENDER

MASTER CLASS

ABSOLUT ‘
OPENB

Catalog

(see all)

Blender Master Class is
a practical, hands-on
guide to the potential of
the popular open-source
3D graphics tool
Chapters walk through
the steps in the modeling

process, from concept art to that final polish

Absolute OpenBSD, 2nd
Edition is a practical and
straightforward guide for
the experienced UMIX user
who wants to add
OpenBSD to his or her
repertoire

The Modern Web deftly
guides you through the
technologies web
developers will need now

and in the years to come

Arduino Workshop.
takes you through 65
electronics projscts that
show the full range of cool
stuff you can do with
Arduino.

In Realm of Racket, you'l
learn to wield Racket's
mighty yet mind-bending
power by reading comics
and programming games

The BrickGun Book
offers step-by-step
building instructions for
five ultra-realistic LEGO®
handgun models.

The Compleat Python

ﬁ contents ©

http://www.thedesignatedgeek.net
http://nostarch.com/

HOW-T0O

Written by Greg Walters

Programming In Python: Pt 42

S

et's assume that you
have decided to create

your family room. You
have a dedicated computer for
the wonderful program called
XBMC. You've spent days
ripping your DVD movies and
TV series onto the computer.
You have done the research
and named the files the correct
way. But let's say that one of
your favorite shows is "NCIS,"
and you have every episode
that you can get on DVD. You

found a place that provides the

current episodes as well. You
want to find out what the next
episode is and when it will be
broadcast. Plus, you want to
create a list of all the TV
episodes that you have to
impress your friends.

This is the project we will be
starting this month. Our first

task is to dig through the folder
. should be as follows:

containing your TV shows,
grabbing the series name, and
each episode - including the
name and season number, and
the episode number. All this

information will go into a
- database for easy storage.
a multimedia center for :

According to XBMC, you

. should name each of your tv
. episode files like this:
; Tv.Show.Name.SxxExx.Episode

: name here if you
! care.extension

So, let's use the very first

episode of NCIS as an example.
. The filename for an AVI file
. would be:

g NCIS.SO0lEOl.Yankee White.avi

and the very latest episode

. would be:

: NCIS.S10El7.Prime Suspect.avi

If you have a show name

. Doctor.Who.2005.S07E04.The
: Power of Three.mp4

The directory structure

; TVShows

2 Broke Girls
Season 1
Episode 1
Episode 2

full circle magazine

@ 203

Season 2

Doctor Who 2005
Season 1

Season 2

and so on. Now that we know
- what we will be looking for and
where it will be, let's move on.

A very long time ago, we

: created a program to make a

: database of our MP3 files. That
: was back in issue #35 | believe, :
: which was part number 9 of

© this series. We used a routine

. called WalkThePath to

: recursively dig through all the
: folders from a starting path,

: and pull out the filenames that

that has more than one word, it - had a ".mp3" extension. We will ;

could look like this: : reuse most of that routine and

. modify it for our purposes. In

: this version, we will be looking
: for video files that have one of
: the following extensions:

.avi
.mkv
.mév
.mp4

Which are very common
extensions for video files in the

The Compleat Python

media PC world.

Now we will get started with

. the first part of our project.

. Create a file called

. "tvfilesearch.py". Be sure to

. save it when we are done this
: month, because we will be

. building on it next month.

Let's start with our imports:

! import os

: from os.path import join,
! getsize, exists

! import sys

! import apsw

. import re

As you can see, we are

. importing the os, sys and apsw
. libraries. We've used them all

. before. We are also importing

. the re library to support

. Regular Expressions. We'll

: touch on that quickly this time,
: but more in the next article.

Now, let's do our last two

: routines next (next page). All

. our other code will go in

. between the imports and these
: last two routines.

This (next page, bottom
right) is our main worker

ﬁ contents ©

HOWTO - PROGRAMMING PYTHON Pt42

routine. In it, we create a
connection to the SQLite
database provided by apsw.
Next we create a cursor to
interact with it. Then we call
the MakeDatabase routine
which will create the database
if it doesn't exist.

My TV files are located on
two hard drives. So | created a
list to hold the path names. If

you have only one location, you :

can change the three lines to
be as follows:

startfolder =
"/filepath/folder/"

WalkThePath(startfolder)

Next, we create our
"standard" if __name__ routine.

: and if not, we create it.

WalkThePath routine (right,
. second from bottom).

. (as we talked about way back
. when), we give the filepath that :
: we are going to search through. :
. We clear the showname :
. variable, which we will use :
. later, and open an error log file. :

#

if name__ == ' main_':
main()

SO we can move on the the
meat and potatoes of our
project. We'll start with the
MakeDataBase routine (middle
right). Put it right after the
imports.

We discussed this routine
before when we dealt with the
MP3 scanner, so I'll just remind

. Then we let the routine do its
. thing. We get back from the call : the directory, directory names
. (os.walk) a 3-tuple (directory
: path, directory names,

Now all the dull stuff is done, filenames). The directory path

you that, in this routine, we

#

check to see if the table exists, 4o main():

global connection
global cursor

Now we'll create the

#
def MakeDataBase():

Create the connection and cursor.
connection = apsw.Connection("TvShows.db3")
cursor = connection.cursor ()

IF the table does not exist, this will create the table.

Otherwise, this will be ignored due to the
sql =

RootPath TEXT, Filename TEXT, Season TEXT, EPISODE TEXT);'
cursor.execute(sql)

When we enter the routine

'IF NOT EXISTS'
'CREATE TABLE IF NOT EXISTS TvShows (pkID INTEGER PRIMARY KEY, Series TEXT,

clause

#

def WalkThePath(filepath):
showname = ""

for root, dirs,

. is a string which is the path to

. is a list of the names of
. subdirectories in the path, and
: the filenames is a list of non-

#
Set your video media paths

#

Open the error log file
efile = open('errors.log',6 "w")
files in
os.walk(filepath,topdown=True):

. directory names. We then parse
: through the list of filenames,

: checking to see if the filename

: ends with one of our target

. extensions.

startfolder = ["/extramedia/tv_files/","/media/freeagnt/tv_files 2/"]

for cntr in range(0,2):
WalkThePath(startfolder[cntr])
Close the cursor and the database
cursor.close()
connection.close()

fFull circle magazine The Compleat Python

@ 204

ﬁ contents ©

HOWTO - PROGRAMMING PYTHON Pt42

for file in [f for f in files L
if f.endswith if isok:

S('.avi','mkv','mp4','m4v'))]: showname = data[0]
°)) : season = data[l]
Now, we split the filename : episode = data[2]

into the extension and the :

filename (without the else:
extension). Next, we call the

GetSeasonEpisode routine to

pull out the Season/Episode

information that is embedded

print ("No Season/EPisode")

efile.writelines('—-—————————
efile.writelines('{0} has no series/episode information\n'.format(file))

print ("Season {0} Episode {1}".format (season,episode))

\n')

n1thefHenarne,assunﬁngitis : I sqlquery = 'SELECT count(pkid) as rowcount from TvShows where Filename =
correctly formatted. : T erye
OriginalFilename, ext = S D IR S e e

.path.splitext(fil _
©os-pa splitext(tile) if rcntr == # It's not there, so add it
fl = file

: try:

isok,data = : sql = 'INSERT INTO TvShows (Series,RootPath,Filename,Season,Episode)

GetSeasonEpisode (£fl) : VALUES (?,?,?,?,?)"'

GetSeasonEpisode returns a : except:
boolean and a list (in this case : print ("Error")
"data") which holds the name
of the series, the season, and

filename doesn't have the except:
correct format, the "isok" : 25t (8 ot)
boolean variable (top right) will

be false. If everything works as it goes wrong, like some

Next (middle right), we will : should, the response from the : character that the database
check to see if the file is in the : query should only be a1 or a 0. : doesn't like, it will keep the

database. If so, we don't want : Ifit's a 0, then it's not there,
to duplicate it. We simply check | and we will write the :
for the filename. We could go : information to the database. If : can check it out later on.
deeper and make sure the path : itis, we just move past. Notice
is the same as well, but for this * the Try Except commands

time, this is enough. above and below. If something

Full circle magazine @ 205 The Compleat Python

efile.writelines('--—-—-—-——————————=-
efile.writelines('Error writing to database...\n')

: efile.writelines('Filename = {0}\n'.format(file))
the epiSOde numbers. If a efile.writelines('-—=——=————————————

. i file
: program from aborting. We will, :
: however, log the error so we :

We are simply inserting a :
new record into the database or’

cursor.execute(sql, (showname, root, fl,season,episode))

writing to the error file.

Close the log

efile.close
End of WalkThePath

Now, let's look at the

GetSeasonEpisode routine.

#

ﬁ contents ©

HOWTO - PROGRAMMING PYTHON Pt42

def
GetSeasonEpisode(filename):
filename =
filename.upper ()
resp =
re.search(r' (.*).S\d\deE\d\d(\
.*)', filename, re.M|re.I)

The re.search portion of the
code is part of the re library. It
uses a pattern string, and, in
this case, the filename that we

parameters that say that we
want to use a multiline type

ignore-case (re.l). As | said
earlier, we'll deal with the
regular expressions more next
month, since our routine will
match only one type of
series|episode string. As for the
search pattern we are looking
for: ".S", followed by two
decimal numbers, followed by
an uppercase "E", then two

our filename looked like

match. However, some people
encode their shows like this
"tvshow.s01e03.avi", or
"tvshow.103.avi", which makes
it harder to deal with. We'll
modify this routine next month
to cover the majority of the
instances. The "r'" allows for a

raw string to be used within the

search.

Continuing on, the search

: returns a match object that we

. can look at. "resp" is a

. response that is empty if there

. is no match, and, in this case,

. two groups of returned

. information. The first one will

. give us the characters up to the

: match, and the second :

want to parse. The re.Mjre.| are including the match. So, in the

. case above, group(1) would be :
: : . "tvshow", and the second group :

search (re.M) combined with an . would be "tvshow.S01E03.".

. This is specified by the parens

- in the search "(.*¥)" and "(\.*%)".

if resp:
showname =

; resp.group(1l)

We take the show name

from group number one. Then
. we get the length of that so we
more numbers, then a period. If :

command.

: shownamelength =

: len(showname) + 1

: se = :

: filename[shownamelength:shown :

: amelength+6]

' season = se[l:3]
episode = se[4:6]

Next, we replace any periods

fFull circle magazine

@ 206

in the showname with a space -

_ to be more "Human Readable".

showname =

: showname.replace("."," ")

We create a list to include

. the show name, season and
. episode, and return it along

. with the True boolean to say
. things went well.

ret =
[showname, season,episode]
return True,ret

else:
ret = ["",-1,-1]
return False,ret

like. Assuming your file

. structures are exactly like

. mine, some of the output on
. the screen would look like

. this...

Season 02 Episode 04

: SELECT count (pkid) as

: rowcount from TvShows where
: Filename =

: "InSecurity.S02EO04.avi";

Series - INSECURITY File -

The Compleat Python

InSecurity.S02EO4.avi
Season 01 Episode 08

: SELECT count(pkid) as

: rowcount from TvShows where

: Filename =

: "Prime.Suspect.US.SO01E08.Unde
. rwater.avi";

: Series - PRIME SUSPECT US

: File -

: Prime.Suspect.US.SO01E08.Under
: water.avi

. and so on. You can shorten the
. output to keep the screen from
. driving you crazy if you would

- like. As we said earlier, each

Otherwise, if we didn't find a . entry we find gets put to the

. match, we create our list

. containing no show name and
: two "-1" numbers, and this gets :
. returned with a boolean False.

. database. Something like this:

. pkID | Series | Root Path

| Filename
| season | Episode

: 2526 | NCIS |
: /extramedia/tv_files/NCIS/Sea
: son

: 7|NCIS.S07E04.Good.Cop.Bad.Co
! p.avi | 7

That's all the code. Now let's :

. see what the output would look :
can grab the series and episode :

. string with a substring
"tvshow.S01E03.avi", this would :

| 4

As always, the full code

. listing is available on
. PasteBin.com at
. http://pastebin.com/txmmagkL

Next time, we will deal with

more Season|Episode formats,
. and do some other things to
. flesh out our program.

See you soon.

ﬁ contents ©

http://pastebin.com/6iw5NQrW
http://pastebin.com/txmmagkL

HOW-T0O

Written by Greg Walters

Programming In Python: Pt 43

S

ast time, we started a
project that would
eventually use the

TvRage module that we Series.

created the month before that.
Now we will continue the
project. This time we will be
adding functionality to our
program: tweaking the
filename parse routine and
adding two fields (TvRageld
and Status) to the database.
So, let’s jump right in.

First, we will make the

changes to our import lines. For

those who are just joining us,
I'll include the ones from last
time (shown top right).

The lines after ‘import re’
are the new ones for this time.

The next thing we will do is
rewrite the GetSeasonEpisode
routine. We are going to throw
out pretty much everything we
did last month, and make it
more flexible across the
possible season/episode
schemes. In this iteration, we
will be able to support the

! Series.
! Series.
! Series.

! Series.

: following schemes...

; Series.SO0OEQO

s00e00
SOO0EO00.SOOEO1
00x00

S0000

0x00

We will also fix any ‘missing

leading zero’ issues before we
- write to the database.

Our first pattern tries to

In the case above, we group

full circle magazine

L s[1]

 s[5]

@ 207

import os

from os.path import join, getsize, exists

import sys
import apsw
import re

from xml.etree import ElementTree as ET

import urllib
import string
from TvRage import TvRage

: anything from the first

: character up to the ".s", then

: two numbers, skip the "e", then
: two numbers, and repeat. So

: the filename

. "Monk.S01E05.501E06.avi"

- catch multi-episode files. There @ returns the following groups...

: are various naming schemes,
: but the one we will supportis
: similar to 'SO1E03.S01E04'. We
: use the pattern string

- "(\.s(\d{1,2})e(\d{1,2})\.s(\d
: {1,2})e(\d{1,2})". This returns
: (hopefully) five groups which

: consist of: the series name

: (S[1]), season(S[2]), episode

: number 1 (S[3]), season (S[41]),
: and episode number 2 (S[5]).

: Remember that the parens

. create each group for returns.

= Monk
S[2] = 01
S[3] = 05
S[4] = 01

= 06

We are using only groups

- S[1], S[2] and S[31 in this code, :
. but you can see where we are
. going with this. If we find a

match, we set a variable

The Compleat Python

: named “GoOn” to true. This
. allows us to know what we

. should do after we've fallen
. through the various If lines.

So, next page (top right) is

the code for the
. GetSeasonEpisode routine.

When we get to this point,

. (next page, bottom left) we

. prepare the show name by

. removing any periods in the

: show name, and then pull the

. season and episode information
. from the various groups, and

. return them. For the season

information, if we have a

. pattern like “SO0OE00”, the
. season number will have a
* leading zero. However if the

ﬁ contents ©

HOWTO - PROGRAMMING PYTHON Pt43

pattern is like “xxx”, then the
season is assumed to be the
first character, and the trailing

two are the episode. In order to
be forward thinking, we want to :

make the season a two-digit
number with a leading zero if
needed.

Next, in our MakeDatabase
routine, we will change the
create SQL statement to add
the two new fields (next page,

top).

Again, the only thing that
has changed from last time is
the last two field definitions.

In our WalkThePath routine,
the only changes are the lines
that actually insert into the

database. This is to support the
new structure. If you remember :

def GetSeasonEpisode(filename):
GoOn = False
filename = filename.upper ()

This is our first pattern check.

#Should catch multi episode .S01E01.S01E02 type filenames

resp =
re.I)
if resp:
showname = resp.group(1l)
GoOn = True
else:

Our second pattern check looks for Sdd
Should catch SddEdd or sddedd

resp =
if resp:
showname = resp.group(l)
GoOn = True
else:

The next pattern looks for ddxdd.
#check for ddxdd

resp = re.search(r'(.*)\.(\d{1,2})x(\d{1,2})(.*)', filename, re.I)

if resp:
showname = resp.group(1l)
GoOn = True

else:

Edd or sddedd...

re.search(r'(.*).S(\d\d?)E(\d\d?)(\.*)', filename, re.I)

for sdddd
re.search(r'(.*).S(\d\d) (.\d\d?)"

group (1)

ddd

XXX

his pattern checks for Sdddd.

if GoOn: #check

shownamelength = len(showname) + 1) resp =

showname = showname.replace("."," ") if resp:

season = resp.group(2) showname = resp.

if len(season) == 1: GoOn = True

season = "O" + season else:

episode = resp.group(3)

ret = [showname, season,episode] And finally we try for

return True,ret # Should catch
else: resp =

ret = ["",-1,-1] if resp:

return False,ret showname =

full circle magazine

@ 208

resp.group(1l)

The Compleat Python

14

re.search(r' (.*)(\d) (.\d\d?)',filename,re.I)

re.search(r'(.*)\.s(\d{1,2})e(\d{1,2})\.s(\d{1,2})e(\d{1,2})',filename,

filename, re.I)

ﬁ contents ©

HOWTO - PROGRAMMING PYTHON Pt43

def MakeDataBase():
IF the table does not exist, this will create the table.
Otherwise, this will be ignored due to the 'IF NOT EXISTS'
sql =
Season TEXT, Episode TEXT, tvrageid TEXT,status TEXT);'

clause

cursor.execute(sql)

from last time, we pass the
folder that holds our TV files to
this routine. In my case, there

are two folders, so it's set into a :

list and we use a for loop to
pass each into the routine. As
we go through the routine, we
walk through each directory

looking for files with extensions :

of .avi, .mkv, .mp4 and .m4v.
When we find a file that
matches, we send it to the
GetSeasonEpisode routine. We

then check to see if we already

have it entered into the

database, and, if not, we add it. : \walkThePath routine, and runs

I’'m going to give you (top right) : through the database, getting

. the series name and querying

. the TvRage server for the id :

. number. Once we have that, we :

. update the database, then use

the ones that are new this time. : that id number to once again
. query TvRage to get the

We are already over halfway : current status of the series.

: This status can be "New

. Series", "Returning Series",

. "Canceled", "Ended" and "On

* Haitus". The reason we want

only part of the routine from
last month.

The two lines in black are

done. Next are some support
routines that work with our
TvRage routine to fill in the
database fields. Our first
routine runs after the

sqlquery =
fl
try:

for x in cur
rcntr =
if rcentr ==

try:
sql =

o\°
0]
-
o\°

sor.execute(sqlquery):
x[0]

It's not there, so add it

'INSERT INTO TvShows

'CREATE TABLE IF NOT EXISTS TvShows (pkID INTEGER PRIMARY KEY, Series TEXT, RootPath TEXT, Filename TEXT,

'SELECT count (pkid) as rowcount from TvShows where Filename =

(Series,RootPath,Filename,Season,Episode,tvrageid) VALUES (?,?,?,?2,?,?)'
cursor.execute(sql, (showname, root, fl,season,episode,-1))

except:

def WalkTheDatabase():
tr = TvRage()
SeriesCursor =
sqglstring =

this information is that, when

fFull circle magazine

@ 209

connection.cursor ()
"SELECT DISTINCT series FROM TvShows WHERE tvrageid = -1"

. we go to check for new

. episodes, we don't want to

. bother with series that won't
. have any new episodes :
because they are cancelled. So, :
: now we have the status and

: can write that to the database
. (above).

We will pause here in our

code and look at the SQL query
. we are using. It's a bit different
. from anything we’ve done

before. The string is:
The Compleat Python

E SELECT DISTINCT series FROM
: TvShows WHERE tvrageid = -1

Which says, give me just one
instance of the series name, no

matter how many of them |

. have, where the field tvrageid

. is equal to “-1". If, for example,
. we have 103 episodes of

. Doctor Who 2005. By using the
. Distinct, | will get back only one
. record, assuming that we

. haven’t gotten a TvRagelD yet.

ﬁ contents ©

HOWTO - PROGRAMMING PYTHON Pt43

def UpdateDatabase(seriesname,id):

idcursor = connection.cursor()
sqlstring = 'UPDATE tvshows SET tvrageid = ' + id + '
try:
idcursor.execute(sqlstring)
except:

print "error"

def GetShowStatus(seriesname,id):
tr = TvRage()
idcursor = connection.cursor()
dict = tr.GetShowInfo(id)
status = dict['Status']
sqlstring = 'UPDATE tvshows SET status = "'
try:
idcursor.execute(sqlstring)
except:

+ status +

for x in

SeriesCursor.execute(sqglstrin Uncle”. We use that in the call

9): . to our TvRage Library
seriesname = x[0] . FindldByName. This gets the
. list of matching shows, and ;
. searchname = . displays them for us to pick the :
string.capwords (x[0]," ")

We are using the capwords
routine from the string library
to change the series name
(x[0]) to a “proper case” from

number and then call the

. GetShowsStatus routine to get
. the current show status from
: TvRage (bottom right).

WHERE series = "'

'" WHERE series = "'

' be converted to “The Man From

. best one. Once we pick one, we :
. update the database with the id :

(top) simply uses the series

+ seriesname +

+ seriesname +

print ("Requesting information on " + searchname)
sl = tr.FindIdByName (searchname)
which = tr.DisplayShowResult(sl)
if which == 0:
print ("Nothing found for %s" %
else:
option = int(which)-1
id = sl[option]['ID']
UpdateDatabase(seriesname, id)
GetShowStatus (seriesname, id)

seriesname)

The UpdateDatabase routine name as the key to update all

: the records with the proper

the all-uppercase we currently : TvRage ID.
store the show name in. We do '
this because TvRage expects startfolder = ["/extramedia/tv_files","/media/freeagnt/tv_files 2"]

something other that all- eds GRiEs con SR I(Ued) |

uppercase entries, and we
won't get the results we are
looking for. So the series name
“THE MAN FROM UNCLE" will

WalkTheDatabase()

cursor.close()
connection.close()

full circle magazine

@ 210

#WalkThePath (startfolder[cntr])

Close the cursor and the database

The Compleat Python

ﬁ contents ©

http://pastebin.com/6iw5NQrW

HOWTO - PROGRAMMING PYTHON Pt43

GetShowsStatus (above) is
also very simple. We call the
GetShowlnfo routine from the
TvRage library by passing the
id that we just got to TvRage -

to get the series information. If :
you remember, there is a lot of :

information provided about the :
. through and try to parse the

. filename looking for a series

: name, Season number, and

. episode number. We take that
. information and put it into a

. database, if it does not already
. exist there.

series from TvRage, but all we
are concerned about at this
point is the show status. Since
everything is returned in a
dictionary, we just look for the
[‘Status’] key. Once we have it,
we update the database with
that and move on.

our main routine from last
month (in black, below) to call

the “WalkTheDatabase” routine
. ask for matching files to gather :

our filenames. Again’ I'm going that ID. EaCh Series will gO

. through that step once. The
. following screenshot shows the :

find the correct place to put the : options for, in this case, the tv

. series Midsomer Murders.

after we are done getting all

to give you only part of the
Main routine, just so you can

new line.

That’s all our code. Let’s

mentally go over what happens
- with the TvRage ID 4466.

. That's entered into the
. database, and we then use that :
ID to request the current status

when we run the program.

First, we create the database :

if it doesn’t exist.

Next, we walk through the

. predefined paths, looking for
. files that have any one of the
. following extensions:

.AVI, .MKV, .M4V, .MP4

When we find one, we go

Once we are through looking

: into the database, it will take a

We are a|most done W|th our for fileS, we query the database :

code. We finally add one line to :
: don’t have a TvRage ID

. associated with them. We then

looking for series names that

will query the TvRage API and

| entered (in this case) 1,
which associates that series

fFull circle magazine

@ 211

Requesting information on Midsomer Murders

The Moors Murders - 11199

- Motives & Murders: Cracking the Case - 33322

5 Found

1 - Midsomer Murders - 4466

2 - Motives and Murders - 31373

3 - See No Evil:

4 - The Atlanta Child Murders - 26402
5

Enter Selection or 0 to exit ->

. for the series, again from

: TvRage. In this case, we got
. back “Returning Series”. This is :
. then entered into the database
: and we move on.

While doing the initial “run”

- while and require your

. attention, because each and :
. every series needs to ask about :
. the ID number match. The good :
: news is that this has to be don
: only once. If you are

. “somewhat normal”, you won't
- have that many to deal with. |
. had 157 different series to do,
: so it took a little while. Since |

. was careful when | set up my

. filenames (checking TvRage

. and TheTvDB.com for the

. proper wording of the series

. name), the majority of the

: searches were the #1 option.

Just to let you know, over

The Compleat Python

half of the TV series that | have
. either ended or have been

canceled. That should tell you

. something about the age group
- I fall in.

The full code is, as always,

available on PasteBin at
. http://pastebin.com/MeuGyKpX

Next time we will continue
with the integration with
/Rage. Until then have a great
onth!

=

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his
family. His website is

ﬁ contents ©

http://www.thedesignatedgeek.net
http://pastebin.com/MeuGyKpX

HOW-T0

Written by Greg Walters

Programming In Python: Pt 44

%
e are going to take :
a short detour this :
month from our
TVRage program
to partially answer a question
from a reader. | was asked to
talk about QT Creator, and how :
to use it to design user :
interfaces for Python programs.

Unfortunately, from what |
can tell, the support for QT
Creator isn't ready yet for
Python. It IS being worked on,
but is not “ready for prime
time” quite yet.

So, in an effort to get us

ready for that future article, we :

will work with QT4 Designer.
You will need to install (if they

aren't already) python-qt4, qt4- :

dev-tools, python-qt4-dev,
pyqt4-dev-tools and libqt4-dev.

Once that is done, you can
find QT4 Designer under
Applications | Programming. Go
ahead and start it up. You
should be presented with
something like the following:

: Window' is selected, and click
: the 'Create' button. Now you

: will have a blank form that you
: can drag and drop controls

: onto.

Make sure that 'Main

. see 'windowTitle'. Change the
: text from 'MainWindow' to

: 'Python Testl'. You should see
: the title bar of our design _
: window change to 'Python Test1
© - untitled*'. Now is a good time

: to save our project. Name it

The first thing we want to do :

: is resize the main window. Make :
© it about 500x300. You can tell

. how big it is by looking at the

: Property Editor under the

: geometry property on the right
. side of the designer window.

: Now, scroll down on the :
. property editor list box until you

File Edit Form View Settings Window Help

'‘pytestl.ui'. Next, we will put a
button on our form. This will be

© an exit button to end the test

: program. On the left side of the :
- designer window you will see

: all of the controls that are

: available. Find the 'Buttons'

. section and drag and drop the
'Push Button' control onto the

R = ¥ Ml Bl - =) =9 G oz =3
O = R T ‘%‘ NRE-MEWE = = 58
. |Widget Box & Object Inspector
F ® New Form
— - Layouts N = templates/forms |
* | = Vertical Layout Dialog with Buttons Bo...
ﬂﬂ] Horizontal Layout Dialog with Buttons Right
8% Grid Layout Dialog without Buttons i
a3
a0
ik Form Layout widget
- Spacers (" Widgets H
* | Bedl Horizontal Spacer (@ Custom Widgets | :
E verticalspacer
1 Buttons 1
N @ Push Button
@ Tool Button
| @ Radio Button
. | B check Box Embedded Design
: e Command Link Button Dovice:
: . Button Box
HE IEnEiEoaeaasa) Screen Size: | Default size
E Lisk View i Receiver
|98 Tree View show this Dialog on Startup
B mable view | open.. ||Recent =|| close |[Create
Column View

full circle magazine

@ 212

The Compleat Python

: [(200,260),

. form. Unlike the GUI designers
. we have used in the past, you

. don't have to create grids to

: contain your controls when you

use QT4 Designer. Move the

. button to near center-bottom of
. the form. If you look at the

. Property Editor under

. geometry, you will see

: something like this:

97x217]

In the parentheses are the X

. and Y positions of the object

. (push-button in this case) on

. the form, followed by its width
. and height. | moved mine to

: 200,260.

Just above that is the

: objectName property—which,
. by default, is set to

. '‘pushButton’. Change that to

. 'btnExit'. Now scroll down on

. the Property Editor list to the

. 'QAbstractButton' section, and
. set the 'text' property to 'Exit'.
. You can see on our form that

. the text on the button has

. changed.

ﬁ contents ©

HOWTO - PROGRAMMING PYTHON Pt44

Now, add another button
and position it at 200,200.
Change its objectName
property to 'btnClickMe,' and
set the text to 'Click Me!".

Next add a label. You will :
find it in the toolbox on the left :
under 'DisplayWidgets'. Put it :
close to the center of the form :
(I put mine at 210,130), and set :
its objectName property to :
IbIDisplay. We will want to make :
it bigger than what it is by :
default, so set its size to
somewhere around 221 x 20. In :
the property editor, scroll down :
to the 'Qlabel’ section, and set
the Horizontal alignment to
‘AlignHCenter'. Change the text :
to blank. We will set the text in
code—when the btnClickMe is
clicked. Now save the project
again.

SLoTs & SIGNALS

This next section might be a easy way to use predefined

: slots & signals. If you press the :))
F4 button on the keyboard, you right side of the window and
- will be in the Edit Signals &

. Slots mode. (To get out of the
. Edit Signals & Slots mode,

. press F3.) Now, left click and

bit difficult to wrap your head
around, especially if you have
been with us for a long time
and have dealt with the
previous GUI designers. In the
other designers, we used
events that were raised when

btnExit (QPushButton)

clicked(bool)
customContextMenuRequested(QPo
destroyed()

destroyed{QObject*)

pressed()

released()

toggled(bool)

MainWindow (QMainWindow)

Edit...

. function that is called by that
. signal is called a Slot. So, for

. our Exit button, we use the

. Click signal to call the Main

. Window Close slot. Are you

. totally confused right now? |

. was when | first dealt with QT,
. but it begins to make sense

. after a while.

. an object was clicked, like a :
. button. In QT4 Designer, events :
. are called Signals, and the '

Fortunately, there is a very

hold on the Exit button, and

fFull circle magazine

close()

clicked()—

. drag slightly up and to the

: right, off the button onto the

. main form, then release the

. click. You will see a dialog pop
. up that looks something like

. that shown above.

to connect the clicked signal to important thing to note here.
. the form. Select the first option
. on the left which should be

: ‘'clicked()'. This will enable the

. select the 'close()' option from
. the list, then click 'OK". You will
. see something that looks like

. this:

@ 213

This will give us an easy way

The Compleat Python

The click signal (event) is
linked to the Close routine of

the main window.

For the btnClickMe clicked

signal, we will do that in code.

Save the file one more time.

. Exit QT4 Designer and open a

. terminal. Change to the

- directory that you saved the file
. in. Now we will generate a

. python file by using the

© command line tool pyuic4. This
. will read the .ui file. The

. command will be:

; pyuic4 -x pytestl.ui -o
: pytestl.py

The -x parameter says to

. include the code to run and
. display the UI. The -0

. parameter says to create an
. output file rather than just

display the file in stdout. One

: Be SURE to have everything

. done in QT4 Designer before

. you create the python file.

. Otherwise, it will be completely
. rewritten and you'll have to

. start over from scratch.

Once you've done this, you

"~ will have your python file. Open

ﬁ contents ©

HOWTO - PROGRAMMING PYTHON Pt44

it up in your favorite editor.

The file itself is only about
65 lines long, including
comments. We had only a few
controls so, it wouldn't be very
long. I'm not going to show a
great deal of the code. You
should be able to follow most

all of the code by now. However information from the

. initialization line in the setupUi
. routine.

we will be creating and adding
to the code in order to put the
functionality in to set the label
text.

is copy the signal & slot line
and modify it. Somewhere
around line 47 should be the
following code:

tnExit,

ked()")), MainWindow.close)

Copy that, and, right below
it, paste the copy. Then change
it to:

QtCore.QObject.connect (self.b
tnClickMe,
OtCore.SIGNAL(_fromUtf8("clic
ked()")), self.SetLabelText)

This will then create the
signal/slot connection to our

routine that will set the label
text. Under the retranslateUi

routine add the following code:

; def SetLabelText(self):

; self.lleisplay.setText(_from5
: Utf8("That Tickles!!!")) :

| got the label setText

Now run your code.

Everything should work as

The first thing we need to do : expected.

Although this is a VERY

simple example, I'm sure you
- are advanced enough to play
. with QT4 Designer and get an

QtCore.QObject.connect(self.b;idea ofthe[anerofthetooL

QtCore.SIGNAL(fromUtf8("clic :

Next month, we will return

from our detour and start
. working on the user interface
. for our TVRage program.

As always, the code can be
found on pastebin at
http://pastebin.com/98fSasdb
for the .ui code, and
http://pastebin.com/yC30B885
for the python code.

fFull circle magazine

@ 214

MY STORY QUICKIE
By Anthony Venable

his story begins at the beginning of 2010. | was

broke at the time so | was trying to find a free

operating system. | needed something | could run

on my PCs at home. | had searched on the Internet,
but found nothing useful for a long time. But one day | was
at Barnes and Noble and | saw a magazine for Linux. (While
| had heard of Linux before, | never thought of it as
something | would ever be able to use.) When | asked
people who | knew were computer professionals, | was told
it was for people that were experts, and difficult to use. |
never heard anything positive about it. | am so amazed that
| hadn’t came across it sooner.

When | read the magazine | became exposed to Ubuntu
9.10 - Karmic Koala. It sounded so good, as if it was exactly
what | was looking for. As a result, | got very excited took it
home, and to my surprise had such an easy time installing
it to my PC that | decided to run it along with Windows XP
as a dual boot system. All | did was put the live CD in the
drive and the instructions were step by step you would
have to be pretty slow to not get how to set things up.

Since then | have been very satisfied with Ubuntu in
general and | have been able to check out later versions of
it such as 10.04 (Maverick Meerkat) and 10.10 Lucid Lynx. |
looked forward to future versiobs for how they integrate
multi-touch even more than 10.04.

This experience just goes to show once again how |
manage to find the coolest stuff by accident.

The Compleat Python

ﬁ contents ©

http://pastebin.com/98fSasdb
http://pastebin.com/yC30B885

I%
his time, we are going

program from the

previous few articles
(parts 41, 42 and 43). Then,
over the next few articles, we
will use QT to create the user
interface.

First, let's look at how the
existing application works.
Here's a gross overview:

e Create a connection to the
database - which creates the
database if needed.

* Create a cursor to the
database.

* Create the table if it doesn't
exist.

* Assign the video folder(s) to a
: e Status of the series (ended,

current, etc)
: » Classification (scripted,

variable.
* Walk through the folder(s)
looking for video files.

* Get the filename, seriesname,
: » Summary of the series plot

season number, episode
number.

* Check to see if the episode
exists in the database.

e If it is not there, add it to the
database with a “-1” as the
TvRage ID.

* Then walk through the

HOW-T0O

Written by Greg Walters

database getting show id and
to rework our database : status if needed, and update

database.

We will redesign the

. database to include another

: table and modify the existing

. data table. First, we will create
: our new table called Series. It

- will hold all the information

: about the tv series we have on
: our system. The new table will
: include the following fields:

: « Pkid

: « Series Name

.« TvRage Series ID

.« Number of seasons

: o Start Date

.« Ended Flag

* Country of origin

"reality”, etc)

Genres

Runtime in minutes
Network

Day of the week it airs
Time of day it airs
Path to the series

full circle magazine

sql =

Programming In Python - Part 45

'CREATE TABLE IF NOT EXISTS Series (

pkid INTEGER PRIMARY KEY AUTOINCREMENT,

SeriesName TEXT,
SeriesID TEXT,
Seasons TEXT,
StartDate TEXT,
Ended TEXT,

OriginCountry TEXT,

Status TEXT,

Classification TEXT,

Summary TEXT,
Genres TEXT,
Runtime TEXT,
Network TEXT,
AirDay TEXT,
AirTime TEXT,

: We can use the existing
. MakeDataBase routine to
: create our new table. Before

. shown above right.

: The SQL statement (“sql =

: ...") should be all on one line,

© but is broken out here for ease
. of your understanding. We'll

. leave the modification of the

. existing table for later.

: Now we have to modify our
: WalkThePath routine to save

: the series name and path into
" the series table.

@ 215

The Compleat Python

: : sqlquery =
. the existing code, add the code :
: TvShows where Filename =
D "gst;t % £l

. sqlquery =
: count (pkid) as rowcount from
: series where seriesName =

Cone

Replace the line that says

'SELECT
count (pkid) as rowcount from

with

'SELECT

showname

n 1 o
%s";' %

This (to refresh your

memory) will check to see if we
. have already put the series into
: the table. Now find the two

lines that say:

h contents ©

HOWTO - PYTHON PT45

sql = 'INSERT INTO TvShows
(Series,RootPath,Filename, Sea
son,Episode,tvrageid) VALUES

('P 2. 2. 2. 2?2 ?2)!
Sp 88,8 ,8,¢

root, fl,season,episode,-1))

and replace them with

sgql = 'INSERT INTO Series
(SeriesName,Path,SeriesID)
VALUES (?,?,?)'

root,-1))

This will insert the series
name (showname), path to the
series, and a “-1” as the

flag to know that we need the

Next we will rework the
WalkTheDatabase routine to
pull those series that we don’t
have any information for

record.

Change the query string
from

Sqlstring = "SELECT DISTINCT
series FROM TvShows WHERE
tvrageid = -1"

§ seriesname
cursor.execute(sql, (showname, :

! searchname =

: string.capwords (x[0]," ")

TvRage id. We use the “-1” as a | P**d =
; seriesname
series information from TvRage. :

: searchname =

! string.capwords(x[1]," ")

to

! sqlstring = "SELECT

: pkid,SeriesName FROM Series
! WHERE SeriesID =
cursor.execute(sql, (showname, :

_1||

This will create a result-set

. that we can then use to query
: TvRage for each series. Now

: find/replace the following two
. lines

x[0]

with

x[0]

x[1]

We will use the pkID for the

update statement. Next we
- _ : have to modify the call to the

(SeriesD = -1) and update that . UpdateDatabase routine to

. include the pkid. Change the

: line

to

: UpdateDatabase(seriesname,id,;

pkid)

full circle magazine

@ 216

def GetShowData(seriesname,id,pkid):

tr = TvRage()
idcursor =
dict =

seasons = dict['Seasons']
startdate =
ended = dict['Ended']
origincountry =
status = dict['Status']
classification =

summary = dict['Summary']

and change the line

§ GetShowStatus (seriesname, id)

to

§ GetShowData(seriesname,id,pki;
: d)

Which will be a new routine

. we will create in a moment.

Next, change the definition

of the UpdateDatabase routine
. from

: def

. UpdateDatabase(seriesname,id) : UpdateDatabase(seriesname, id) :

°
.

to
def

The Compleat Python

! SET tvrageid = '
! WHERE series = "' +
! seriesname +

connection.cursor()
tr.GetShowInfo(id)

dict['StartDate']
dict['Country']

dict['Classification']

; UpdateDatabase(seriesname, id,
! pkid):

Next, we need to change the

query string from

'UPDATE tvshows
+ id + '

sqlstring =

to
; sqlstring = 'UPDATE Series
! SET SeriesID = ' + id + '
: WHERE pkID = %d' % pkid

Now we need to create the

. GetShowData routine (top).

: We’'ll grab the information from
: TvRage and insert it into the

: Series table.

h contents ©

HOWTO - PYTHON PT45

Just as a memory refresher,
we are creating an instance of
the TvRage routines and

the information on our series.

hold the data for updating the
table (above).

Remember that Genres
come in as subelements and
contain one or many genre

listings. Luckily when we coded
. we've already defined all of :
. these fields as text, we want to :
. use the double quotes to :
. enclose the data being added.

the TvRage routines, we
created a string that holds all
the genres, no matter how
many are returned, so we can
just use the genre string:

genres = dict['Genres']
runtime = dict['Runtime'’]

network = dict['Network']
airday = dict['Airday']
airtime = dict['Airtime']

try:

Finally, we create the query
string to do the update

. (bottom). Again, this should all
creating a dictionary that holds :

be on one line, but I've broken

it up here to make it easy to
We will then create variables to

understand.

The {number} portion (just

to remind you) is similar to the
. “%s"” formatting option. This

. creates our query string

. replacing the {number} with

the actual data we want. Since

And lastly, we write to the

database (below).

. That is all for this time. Next :
. time, we'll continue as | laid out :
. at the beginning of the article. :
. Until next time, Enjoy.

=

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He

enjoys cooking, hiking, music,
and spending time with his

idcursor.execute(sqlstring)
except:
print "Error Adding Series Information"

sglstring = 'Update Series SET Seasons = "{0}", StartDate = "{1}", Ended = "{2}",
OriginCountry = "{3}", Status = "{4}", Classification = "{5}",

Summary = "{6}", Genres = "{7}", Runtime = "{8}", Network = "{9}",

AirDay = "{10}",AirTime = "{11}"

WHERE pkID ={12}'.format (seasons,startdate,ended,
origincountry,status,classification,summary,
genres,runtime,network,airday,airtime,pkid)

Full circle magazine The Compleat Python

@ 217

((©)) ubuntu

The Ubuntu Podcast covers all
the latest news and issues facing
Ubuntu Linux users and Free
Software fans in general. The
show appeals to the newest user
and the oldest coder. Our
discussions cover the
development of Ubuntu but
aren’t overly technical. We are
lucky enough to have some great
guests on the show, telling us
first hand about the latest
exciting developments they are
working on, in a way that we can
all understand! We also talk
about the Ubuntu community
and what it gets up to.

The show is presented by
members of the UK's Ubuntu
Linux community. Because it is
covered by the Ubuntu Code of
Conduct it is suitable for all.

The show is broadcast live every
fortnight on a Tuesday evening
(British time) and is available for
download the following day.

podcast.ubuntu-uk.org

ﬁ contents ©

http://www.thedesignatedgeek.net
http://podcast.ubuntu-uk.org/

HOW-T0

Written by Greg Walters

Programming In Python - Part 46

sually, my articles are
- is the definition of a set:

fairly long. However,

due to some medical

issues, this will be a
fairly short article (in the grand
scheme of things) this month.
However, we will push through
and continue our series on the
media manager program.

One of the things our
program will do for us is let us
know if we have any missing
episodes from any given series
in the database. Here's the
scenario. We have a series,
we'll call it “That 80's Show”,
that ran for three seasons. In
season 2, there were 15
episodes. However, we have
only 13 of them in our library.

are missing -
programmatically?

The simplest way is to use
lists and sets. We have already
used lists in a number of the

but Sets are a new data type to
this series, so we'll examine
them for a while. According to
the “official documentation” for

i >>> fruit =

Python (docs.python.org), here

“A set is an unordered collection

: with no duplicate elements. Basic
- uses include membership testing and
- eliminating duplicate entries. Set
© objects also support mathematical
: operations like union, intersection,
. difference, and symmetric

. difference.”

I'll continue to use the

example from the
- documentation page to
- illustrate the process.

§ >>> Basket = :
: ['apple', 'orange', 'apple’,'pe :
i ar','orange', 'banana’]

set (basket)

How do we find which episodes : >>> fruit

© Notice that in the original list :
: that was assigned to the basket :
: variable, apple and orange
articles over the last four years, :
© assigned it to a set, the

: duplicates were discarded. :
" Now, to use the set that we just

@ 218

created, we can check to see if
full circle magazine

an item of fruit (or something
. else) is in the set. We can use
: the “in” operator.

i >>> 'orange' in fruit
True
i >>> 'kiwi' in fruit

: False

Po>>>

That's pretty simple and,

. hopefully, you are beginning to
. see where all this is going. Let's
. say we have a shopping list

: that has a bunch of fruit in it,

and, as we go through the

: store, we want to check what

© we are missing - basically the
© items in the shopping list but

: not in our basket. We can start
: like this.

; set (['orange', 'pear', 'apple', :
! 'banana']) : >>> shoppinglist =
: : ['orange', 'apple', 'pear', 'ban:)) e
: second is a list containing the

: episode numbers that we have

for that season.

ana', 'kiwi', 'grapes']

¢ >>> basket =

! ['apple', 'kiwi', 'banana’]
were put in twice, but, when we :

P >>> sl =

set (shoppinglist)

>>> b = set(basket)

The Compleat Python

E set (['orange',
: 'grapes'])

: >>> sl-b

'pear’,

HISSSN

We create our two lists,

. shoppinglist for what we need
. and basket for what we have.

. We assign each to a set and

: then use the set difference

. operator (the minus sign) to

. give us the items that are in

. the shopping list but not in the
: basket.

Now, using the same logic,

. we will create a routine (next

: page, bottom left) that will deal
: with our missing episodes. We

. will call our routine

: “FindMissing” and pass it two

: variables. The first is an integer
© that is set to the number of

: episodes in that season and the

The routine, when you run it,

. prints out [5, 8, 15], which is
: correct. Now let's look at the

code. The first line creates a set

ﬁ contents ©

HOWTO - PYTHON PT46

called EpisodesNeeded using a
list of integers created using
the range function. We need to
give the range function the
start value and end value. We
add 1 to the range high value
to give us the correct list of

lues from 1 to 15. R
values from 1 to 15. Remember . the chair in front of the

. computer that my body can

. stand, so I'll leave you for this
. month, wondering how we are
. going to use this in our media
. manager.

the range function is actually 0
based, so when we give it 16
(expected (15) + 1), the actual
list that range creates is 0 to
15. We tell the range function
to start at 1, so even though

the range is 0 to 15 which is 16

values, we want 15 starting at
1.

Next we create a set from
the list that is passed into our
routine, which contains the
episode numbers that we
actually have.

Now we can create a list
using the set difference

operator on the two sets. We do
this so we can sort it with the

. list.sort() method. You can

. certainly return the list if you

. wish, but in this iteration of the
. routine, we'll just print it out.

Well, that’'s all the time in

Have a good month and see

. you soon.

=

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his

def FindMissing(expected, have):

is the number of episodes we should have

#

‘expected’

‘have’ is a list of episodes that we do have

returns a sorted list of missing episode numbers
#

EpisodesNeeded = set(range(l,expected+l))
EpisodesHave = set (have)

StillNeed =

StillNeed.sort ()
print StillNeed

list (EpisodesNeeded - EpisodesHave)

fFull circle magazine

@ 219

PYTHON SPEcIAL EDITIONS:

; \é} full circle

PROGRAMMING SERIES SPECIAL EDITION

<1 full circle

PROGRAMMING SERIES SPECAL EDITION

=
PROGRAM
IN PYTHON

Volume One

http://fullcirclemagazine.org/issue- http://fullcirclem zine.or

PROGRAM
IN PYTHON

Volume Three

INPYTHON

Volume Four

thon-

zine. http://fullcirclemagazine.or
-thr special-edition-volume-four

http://fullcirclem
ial-edition-i

PROGRAM
IN PYTHON

Volume Six
Parts 32-38

L
PROGRAM
IN PYTHON

Volume Five
Parts 27-31

http:[[fullcirclmagazine.org[python—

http://fullcirclemagazine.org/python- / . :
special-edition-volume-six/

special-edition-volume-five/

The Compleat Python

ﬁ contents ©

http://www.thedesignatedgeek.net
http://fullcirclemagazine.org/issue-py01/
http://fullcirclemagazine.org/issue-py02/
http://fullcirclemagazine.org/python-special-edition-issue-three/
http://fullcirclemagazine.org/python-special-edition-volume-four/
http://fullcirclemagazine.org/python-special-edition-volume-five/
http://fullcirclemagazine.org/python-special-edition-volume-six/

I %
ast month, we
discussed using sets to

show us missing
episode numbers.

Now's the time to put the rough

code we presented into
practice.

write one routine. We’ll do the
modification first. In the
working file that you've been
using the last few months, find
the WalkThePath(filepath)
routine. The fourth and fifth
lines should be:

efile =
open('errors.log',"w")

for root, dirs, files in

)¢

In between these two lines,
we will insert the following
code:

lastroot = "'
elist =

[]

currentshow = ''

HOW-T0O

Written by Greg Walters

for root, dirs,

! currentseason = ''

By now, you should

recognize that all we're doing
. here is initializing variables. :
We'll modify one routine and There are three str_mg varlabl_es
- and one list. We will use the list :
: to hold the episode numbers

(hence the elist name).

Let’s take a quick look and

: freshen our memory (above)

. about what we’re doing in the
: existing routine before we

. modify any further.

The first two lines here set

os.walk(filepath, topdown=True ;th|ngslprorthe\NaIK{he-path
: routine where we start at a

. given folder in the file system
: and recursively visit each folder :
. below, and check for files that
. have the file extension of .avi,
- .mkv, .mp4 or .m4v. If there are :
: any, we then iterate through

: the list of those filenames.

In the line above right, we

*call the GetSeasonEpisode

full circle magazine

@ 220

Programming In Python - Part 47

files in os.walk(filepath,topdown=True):
for file in [f for f in files if f.endswith (('.avi',6K 'mkv', 'mp4', 'm4v'))]:

Combine path and filename to create a single variable.

fn = join(root,file)
OriginalFilename,ext =
fl1 = file
isok,data =

routine to pull the series name,
. season number and episode
. number from the filename. If :
: everything parses correctly, the
© variable isok is set to true, and
. the data we are looking for is

. placed into a list and then

. returned to us.

: Here (below) we are simply
- assigning the data passed back :
. from GetSeasonEpisode and
© putting them into separate _
- variables that we can play with. :
Now that we know where we

© were, let’s talk about where we
© are going.

if isok:
showname = data[O0]
season = data[l]
episode = data[2]

print ("Season {0} Episode

The Compleat Python

os.path.splitext(file)

GetSeasonEpisode (fl)

We want to get the episode

. number of each file and put it
© into the elist list. Once we are

done with all the files within the

. folder we are currently in, we

. can then make the assumption
. that we have been pretty much
. keeping up with the files and

. the highest numbered episode

. is the latest one available. As

we discussed last month, we

. can then create a set that is
: numbered from 1 to the last

episode, and convert the list to

. a set and pull a difference.

. While that is great in theory,

. there is a bit of a “hitch in our

. git-a-long” when it comes down

{1}".format (season,episode))

h contents ©

HOWTO - PYTHON PT47

to actual practice. We don’t
actually get a nice and neat
indication as to when we are

done with any particular folder.
What we do have though, is the :

knowledge that when we get
done with each file, the code
right after the “for file in [...”
gets run. If we know the name
of the last folder visited, and
the current folder name, we
can compare the two and, if
they are different, we have
finished a folder and our
episode list should be
complete. That's what the
‘lastroot’ variable is for.

is where we'll put the majority

of our new code. It's only seven :
: show name, and the current

lines. Here are the seven lines.

(The black lines are the existing :
. did before.

lines for your convenience.)

Line by line of the new code,

here is the logic:

First, we check to see if the
variable lastroot has the same

name). If so, we are in the
same folder, so we don’t run

any of the code. If not, we then

assign the current folder name
to the lastroot variable. Next,
we check to see if the episode

. the list, then we call the

. Missing routine. We pass the

. episode list, the highest

. episode number, the current

. season number, and the name
Just after the ‘for file in[‘ line : :
. that out later on. The last three :

. lines and add one line of code
. into the if isok: code, a few

. lines down. Again, right, the

- black lines are the existing

value as root (the current folder code:

for file in [f for f in files if f.endswith (('.avi',6K 'mkv','mp4',6'mév'))]:
Combine path and filename to create a single variable.

if lastroot != root:
lastroot = root
if len(elist) > O:

Missing(elist,max(elist),currentseason,currentshow)

elist = []
currentshow = ''
currentseason = ''

. Here, we have just come

. back from the

. GetSeasonEpisode routine. If

: we had a parsable file name,
we want to get the show name
. and season number, and add

. the current episode into the

. list. Notice, we are converting

. the episode number to an

. integer before we add it to the

Next we have to change two : list.

of the season, so we can print
lines clear the list, the current

season, and we move on as we

: We are done with this :
. portion of the code. Now, all we :
. have to do is add the Missing

def Missing(eplist,shouldhave,season,showname):
temp = set(range(l,shouldhave+l))
ret = list(temp-set(eplist))
if len(ret) > O:

- list (elist) has any entries isok,data = GetSeasonEpisode(fl)

. (len(elist) > 0). This is to make if isok:

: sure we weren’t in an empt currentshow = showname = data[0]
. £ h) p_y currentseason = season = data[l]
. directory. If we have items in episode = data[2]

elist.append(int (episode))

routine. Just after the
. WalkThePath routine, we’ll add
. the following code.

Again, it is a very simple set

. of code and we pretty much
. went over it last month, but
. we'll walk through it just in

. case you missed it.

We define the function and

set up four parameters. We will
. be passing the episode list
. (eplist), the number of episodes

we should expect (shouldhave)

. which is the highest episode

print ('Missing Episodes for {0} Season {1} - {2}'.format(showname,hseason,ret))

Full circle magazine The Compleat Python

@ 221

ﬁ contents ©

HOWTO - PYTHON PT47

number in the episode list, the
season number (season), and
the show name (showname).

Next, we create a set that
contains a list of numbers using
the range built-in function,
starting with 1 and going to the
value in shouldhave + 1. We
then call the difference function
- on this set and a converted
set from the episode list (temp-
set(eplist)) - and convert it
back to a list. We then check to
see if there is anything in the
list - so we don’t print a line
with an empty list, and if
there’s anything there, we print
it out.

That’s it. The one flaw in this
logic is that by doing things this
way, we don’t know if there are
any new episodes that we don’t
have.

I've put the two routines up
on pastebin for you if you just
want to do a quick replace into
your working code. You can find
it at
http://pastebin.com/XHTRv2dQ.

Have a good month and
we’ll see you soon.

ubuntu

m()) uk podcast

The Ubuntu Podcast covers all
the latest news and issues facing
Ubuntu Linux users and Free
Software fans in general. The
show appeals to the newest user
and the oldest coder. Our
discussions cover the
development of Ubuntu but
aren’t overly technical. We are
lucky enough to have some great
guests on the show, telling us
first hand about the latest
exciting developments they are
working on, in a way that we can
all understand! We also talk
about the Ubuntu community
and what it gets up to.

The show is presented by
members of the UK's Ubuntu
Linux community. Because it is
covered by the Ubuntu Code of
Conduct it is suitable for all.

The show is broadcast live every
fortnight on a Tuesday evening
(British time) and is available for
download the following day.

podcast.ubuntu-uk.org

fFull circle magazine

PYTHON SPEcIAL EDITIONS:

PROGRALY

=
PROGRAM
IN PYTHON

Volume One

http://fullcirclemagazine.org/issue-

. é} full circle

MING SERIES SPECIAL EDITION

; \..:(’) full circle

PROGRAMMING SERIES SPECAL EDITION

http://fullcirclem zine.ora/i

PROGRAM
IN PYTHON

Volume Three

http://fullcirclem

PACGRAMMING SURSES SPTCIAL B

INPYTHON

Volume Four

zine.or http://fullcirclemagazine.or
-thr special-edition-volume-four

ition-i

L
PROGRAM
IN PYTHON

Volume Five
Parts 27-31

http://fullcirclemagazine.org/python-
special-edition-volume-five/

@ 222

The Compleat Python

PROGRAM
IN PYTHON

Volume Six
Parts 32-38

httQ:[[fuIIcircImagazine.org[python—
special-edition-volume-six/

ﬁ contents ©

http://pastebin.com/XHTRv2dQ
http://podcast.ubuntu-uk.org/
http://fullcirclemagazine.org/issue-py01/
http://fullcirclemagazine.org/issue-py02/
http://fullcirclemagazine.org/python-special-edition-issue-three/
http://fullcirclemagazine.org/python-special-edition-volume-four/
http://fullcirclemagazine.org/python-special-edition-volume-five/
http://fullcirclemagazine.org/python-special-edition-volume-six/

HOW-T0

Written by Greg Walters

; >>> a = "Hello Python"

Programming In Python - Part 48

elcome back. It's - "Hello 1" i Here we use the float : >>> info =
hard to imagine :T print("String a 1s 55" % : formatting option. The ‘%5.3f | {"FName":"Fred", "LName":"Fark

that it’s been 4
years since |

I'd shelve the media manager
project for a bit and return to
some basics of Python
programming.

This month, I'll revisit the

~ and the output will be in bold,

began this series. | thought that : like this:

; String a is Hello Python

. PYTHON 2.X

: says to produce an output with
© a total width of five and three

: decimal places. Notice that the
. decimal point takes up one of

: the places of the total width.

One other thing that you

Of course you remember the might not realize is that you

- simple syntax for the print

: el","City":"Denver"}

: >>> print('Greetings

! $(FName)s % (LName)s of
! g(City)s!' $
! Greetings Fred Farkel of
. Denver!

info)

The following table shows

* the various possible

. can use the keys of a dictionary : sybstitution keys and their

: as part of the format command. :

print command. It's one of the : function in 2.x uses the variable : : meanings.
i : i i 0 ()
most used_(at least in my : sgbstltuthn of %s or.Ad for PR P——
programming) function that . simple strings or decimals. But = s
never seems to get the detail it | many other formatting options . e e
deserves. There is a lot of - are available. For example, if ' Sinedinieger deci
things you can do with it : you need to format a number ' Obsolete - identical to 'd
outside of the standard ‘%s . with leading zeros, you can do ‘o Signed octal value
%d’. it this way: X' Signed hexadecimal - lowercase
Si h int . §>>> print ("Your value is X Signed hexadecimal - uppercase

InC? t e prlnt unction 303d" % 4) 'f Floating point decimal

syntax is different between : Your value is 004
, : ‘e’ Floati i ial - |
Python 2 X and 3.X, we ” |00k at e oating point exponential - lowercase
them Separately. Remember’ In this case, we use the : 'E' Floating point exponential - uppercase
hOwever, you Can use the 3.x ‘%03d’ fOFmattlng command to 'g' Floating point format - uses lowercase exponential format if exponent is less
Syntax in Python 2.7. Most : Say ”Display the number to a : than -4 or not less than precision, decimal format otherwise
everything | present this month width of 3 characters and if 'G' Floating point format - uses uppercase exponential format if exponent is less
“ b d f th : needed Ieft pad Wlth zeros” than -4 or not less than precision, decimal format otherwise
Wi e daone i1rom e : ’ .
,) : e Single charact
interactive shell. You can follow . i —
a|ong as we go. The code will i:i P;i:t3 :l];$1§9°/5 se s i T String (converts valid Python object using repr())
look like this: : PI =P3 . 14é . oot : s pi) 's' String (converts valid Python object using str())
%' No argument is converted, results in a '%' character

full circle magazine

@ 223

The Compleat Python

ﬁ contents ©

HOWTO - PYTHON PT48

PYTHON 3.x
With Python 3.x, we have

many more options (remember “BUT WAIT... THERE'S MORE". If :
we can use these in Python 2.7) : C .
- we wanted to do some inline

. formatting, we have the
. following options.

when it comes to the print
function.

To refresh your memory,
here’s a simple example of the
3.x print function.

>>> print (' {0}

{1}'.format("Hello","Python") : of x

)
Hello Python

>>> print("Python is {0}
cool!".format ("WAY"))
Python is WAY cool!

The replacement fields are
enclosed within curly brackets
“{“ “}”. Anything outside of
these are considered a literal
and will be printed as is. In the
first example, we have
numbered the replacement

to take the first (0) value and
put it into the field {0} and so

use any numbers at all. Using
this option causes the first
value to be places in the first
set of brackets and so on.

>>> print("This version of {} date/time output, you can do

is
{}".format ("Python","3.3.2"))

E :<x Left align with a width

E >>>
: print("|{:<20}|".format ("Left :
£ "))

. |Left |
D >>>

: print("|{:>20}|".format ("Righ :
Eil'—"))

This version of Python is
3.3.2

As they say on the TV ads,

: of x

: :>x Right align with a width

: of x

: :”x Center align with a width:

Here is an example:

: Right|

: >>> :
: print("|{:720}|".format("Cent :
er"))

o Center |

fields 0 and 1. That tells Python

You can even specify a fill

character along with the
. justification/width.

on. However, you don’t have to : J /
P>>>

§ print("{:*>10}".format(321.40;
E ll***321.4

If you need to format a

something like this:

fFull circle magazine

@ 224

>>> d =
datetime.datetime(2013,10,9,1

: 0,45,1)
>

print("{:%m/%d/%y}".format(d)

:)

: 10/09/13

D >>>

: print("{:%H:%M:%S}".format(d)
:)

: 10:45:01

Printing thousands separator

: using a comma (or any other
. character) is simple.
5 >>> print("This is a big

: number
: {:,}".format(7219219281))

This is a big number

: 7,219,219,281

Well, that should give you

. enough food for thought for this
. month. I'll see you at the start
. of the 5th year.

=

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his

The Compleat Python

ubuntu

mO) uk podcast

The Ubuntu Podcast covers all
the latest news and issues facing
Ubuntu Linux users and Free
Software fans in general. The
show appeals to the newest user
and the oldest coder. Our
discussions cover the
development of Ubuntu but
aren’t overly technical. We are
lucky enough to have some great
guests on the show, telling us
first hand about the latest
exciting developments they are
working on, in a way that we can
all understand! We also talk
about the Ubuntu community
and what it gets up to.

The show is presented by
members of the UK's Ubuntu
Linux community. Because it is
covered by the Ubuntu Code of
Conduct it is suitable for all.

The show is broadcast live every
fortnight on a Tuesday evening
(British time) and is available for
download the following day.

podcast.ubuntu-uk.org

ﬁ contents ©

http://www.thedesignatedgeek.net
http://podcast.ubuntu-uk.org/

HOW-T0O

Written by Greg Walters

hile | was working
this week, a very

name of Michael
W. suggested that | should
consider what happens with
floating-point numbers and
equality.
Take for example a simple
calculation: 1.1 + 2.2

The answer, you say, is 3.3!
Any school-kid who has dealt
with fractions knows that. Well,
tell your computer. If you start
up the Python Interactive Shell
and at the prompt type

(1.1+2.2) == 3.3,
shell responds “False”.
WHAT?!1?1?

Now, confused, you type at
the prompt:

>>>1.14+2.2

3.3000000000000003

© t0 .33333333333333333...
. ever and a day, but take, for
: example, the fraction 1/10.

. Everyone knows that 1/10 is
: equal to .1, right? If you use the :
: interactive shell you can see :

And the shell responds back: that:

: >>>1/10

You stare at the screen in

. disbelief and first think “I must
wise person by the have typed sqmething wrong”.
: Then you realize that you

. didn't. So you type:

P >>>2.2+3.3
i 5.5

Now you are even more

. confused and you think to

. yourself “Ok. This is either a
: bug or some kind of sick Easter :
" egg.” No, it's neither a bug nor answer. So, how do we see the
. an Easter egg. It's real. While | :
: knew about this a very long

. time ago, it had slipped into the :
: cobwebs hidden in the dark

. recesses of my old mind, so |
: had to bring it up here. What
you might be surprised that the
. binary floating-point numbers.

we are seeing is the joy of

We all know that %5 equates
for

0

full circle magazine

Oh, right. We have to have

. at least one of the values a

. floating-point value to show any
. decimal points since an

. integer/integer returns an

: integer. So we try again.

i >>>1/10.0
$0.1

Ok. Reality is back. No, not

really. Python is simply showing :
: you a rounded version of the

“real” answer? We can use the

decimal library to see what'’s
. really happening.

: >>> from decimal import *

: >>> Decimal(1/10.0) :
: Decimal('0. 100000000000000005

© 55111512312578270211815834045 :
: 41015625")

: WOW. So let’s try our original
: formula and see what that
. would show:

>>> Decimal(1.1+2.2)
! Decimal('3.300000000000000266 :
: 45352591003756970167160034179 :

6875")

It seems to just be getting

worse and worse. So what is
. really happening?

@ 225

The Compleat Python

Programming In Python - Part 49

This is called Representation

: Error, and exists in almost

every modern programming

. language (Python, C, C++,
Java, and even Fortran and

: more), and on almost every
: modern computer. This is

: because these machines use
: |IEEE-754 floating-point

: arithmetic which (on most

machines and OS platforms)

: maps to an IEEE-754 double-
precision number. This double-
: precision number has a
precision of 53 bits. So, our 0.1,
: when represented in this 53-bit
double-precision, turns into:

0.000110011001100110011001100
11001100110011001100110011010

That's close to .1, but not

: close enough to avoid issues.

So what do we do about it?
: Well, the quick answer is that

: you probably can live with it for

: 90% of the things we have to

. do out there in the real world -
: by using the round() method.

:© While you have to decide on

. the number of decimal points

that you must have in your

ﬁ contents ©

HOWTO - PYTHON PT49

world to carry the precision that
you need, for the most part,
this will be an acceptable
workaround.

we have gone over the round

method, so I'll briefly go over it.

The syntax is very simple:

round(v,d)
where v is the value you want

decimals (maximum) you want
after the decimal point.
According to the Python
documentation, “Values are
rounded to the closest multiple
of 10 to the power of minus n
digits; if two multiples are
equally close, rounding is done
away from 0”. All that being
said, if the number is 1.4144,
and we round it to 3 decimal
places, the returned value will
be 1.414. If the number is
1.4145 it would be returned as
1.415.

For example, let’s use the

value of pi that comes from the -9 P
. It goes back to the initial issue

the math library before you can : W& have been talking about.

: The actual conversion to a

math library. (You must import

do this, by the way.)

>>> math.pi
3.141592653589793

Now, if we wanted to round

that value down to 5 decimal

| honestly don’t remember if : Places, we would use:

>>> round(math.pi,5)
3.14159

That is the “standard” value

. >>> round(math.pi,4)
: 3.1416

All that sounds good until

. you run into a value like 2.675
. and try to round it to 2 decimal :
. places. The assumption (since it :
. is exactly halfway between 2.67 :
- and 2.68) is that the returned
- value will be 2.68. Try it.

. >>> round(2.675,2)
L 2.67

That might cause a problem.

binary floating-point number

that is 53 bits long, the number

becomes:

; 2.674999999999999822365316059;
: 9749535221893310546875 :

which then rounds down to
2.67.

The bottom line here is when

. trying to compare floating-point

. of pi that most everyone knows numbers, be aware that some

. off the top of their head. That's :
to round and d is the number of : great. However, fwe set the

. number of decimal places to be :
. returned to 4, look what :

. happens.

. things just don’t translate well.

See you next time!

. Greg Walters is owner of

. RainyDay Solutions, LLC, a

. consulting company in Aurora,
. Colorado, and has been

. programming since 1972. He

. enjoys cooking, hiking, music,
. and spending time with his

. family. His website is

www.thedesignatedgeek.net.

Full circle magazine @ 226 The Compleat Python

ﬁ contents ©

www.thedesignatedgeek.net.

HOW-T0O

Written by Greg Walters

oo

his month, | thought I'd :

talk about a couple of

lesser known functions, :

maketrans and
translate.

We'll start with the translate :
method. The translate method
returns a copy of a string - with
all characters in the translate
table replaced, or has the
characters in the optional
parameter deletechars :
removed from the string. Here’s :
the syntax.
s =
str.translate(table[,deletech :
aracters])

: string as parameters and

: returns a table that is used as
: the first parameter into the

: translate method. Here (top

right) is a very simple example. . 1bcd2fgh3jklmn4pqrst5vwxyz

: “Th2 t3m2 hls c4m2”

: vowels as before. outtable is

Programming In Python - Part 50

Notice that we included

None as the translate table.

While this part is cool, it gets

better. There is a function
called maketrans. It takes an

input string and an output

It returns:

Let’s look at what this does.

. We assign intable to a string of : :
: contains the entire 256 possible :

. assigned the numbers 1,2,3,4,5 :

Before we get to the table
portion of the method, let’s
look at the delete portion. Let’s :
say that you have the string
“The time has come”. And you
want to delete all the vowels
(for some weird reason) from
that string. You can code it like
this:

astr = “The time has come”
astr.translate(None, 'aeiou’)

will return:

“Th tm hs cm”

: as a string. When we make the
. call to maketrans, our actual

- trantable is as follows (shown
. below. The “\x” means that it is :

intable = ‘aeiou’
outtable = ‘12345’
trantable =

astr = “The time has come”
astr.translate(trantable)

hexadecimal char):

If you look at it carefully,

you'll see that the lowercase
: vowel letters are replaced with
: the numbers we specified:

ending with “\xff”. So the table

ascii character set. So, when

: the translate method gets the
: table, it iterates (or walks
: through) each character,

getting that characters value in

maketrans (intable,outtable)

: Hex, and then finds that value
© in the translate table and

: substitutes it in the output

: string. The Hex representation
. of our original astr string (‘The
: time has come’) is shown

. below.

:© If you look even closer, you'll :
. see that there actually 256

© entries starting with “\x00” and :
. whole thing. Think back to your

So now it should be making

: sense.

Now the purpose of this

schooling where you learned

: about Julius Ceasar. Whenever
: he wanted to send a message
. of a confidential matter, he

: would use a cipher that would
© shift all the letters of the

\x54\x68\x65\x20\x74\x69\x6d\x65\x20\x68\x61\x73\x20\x63\x6£\x6d\x65

T h e t i m

e h a s c

m e

"\x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\x0c\r\x0e\x0£f\x10\x11\x12\x13\x14\
x15\x16\x17\x18\x19\x1la\x1lb\xlc\xld\xle\x1f !"#$3&\'()*+,-./0123456789:;<=>?Q@ABC
DEFGHIJKLMNOPQRSTUVWXYZ[\\]"_~1bcd2fgh3jklmndpqrst5vwxyz{|}~\x7£\x80\x81\x82\x83
\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8£\x90\x91\x92\x93\x94\x95\x96\x97
\x98\x99\x9a\x9b\x9¢c\x9d\x9%9e\x9f\xa0\xal\xa2\xa3\xad4\xa5\xa6\xa7\xa8\xa9\xaa\xab
\xac\xad\xae\xaf\xb0\xb1l\xb2\xb3\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf
\xc0\xcl\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf\xd0\xd1l\xd2\xd3
\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf\xe0\xel\xe2\xe3\xes4\xe5\xeb\xe7
\xe8\xe9\xea\xeb\xec\xed\xee\xef\xfO\xf1\xf2\x£f3\x£f4\xf5\x£f6\xf7\x£f8\xf9\xfa\xfb

full circle magazine

@ 227

The Compleat Python

h contents ©

HOWTO - PYTHON PT50

alphabet three characters to
the right. So, using todays
english alphabet:

ABCDEFGHIJKLMNOPORSTUVWXYZabc | code is pretty much what we've :
. covered above or in earlier '

: Python articles, but I'll go over

defghijklmnopgrstuvwxyz

becomes:

DEFGHIJKLMNOPQRSTUVWXYZabcdef;

ghijklmnopqrstuvwxyzABC

by today’s standards, when |
was a school kid, we used this
all the time to send messages
to each other. We used a

start the encryption string, the
logic behind it was the same.

No one knows how effective
this actually was for good old
Julius. One would think that if
someone intercepted the
message, they would have
thought that it was in some
foreign language. We can only
speculate.

We can easily use the
translate method and the
maketrans helper function to
allow us to have fun with this.
Let’'s say we want to make a
simple program that allows us
to enter a string of “plain text”
and get back an encrypted

method that Caesar used. For
simplicity sake, let’s only use

uppercase characters (shown

~top right).

Everything in the above

it quickly.
The first two lines are the in

, : ; : and out strings. We've just

While this seems very simple ' shifted the characters and

: wrapped around to create the

: out string. The next two lines

: create a table for encoding and :

different index into the string to : one for decoding. Line 5
: prompts the user to enter a

: string to encode. We then

: encode that string (EncString)

: in the next line. To decode it,

. we simply use the translate

: method on the encoded string

: to get the plain text back.

. Finally we print both strings

: out. Here’s the output of the

© program.

; Enter the plaintext string ->

THE TIME HAS COME

: Encoded string is -

: WKH WLPH KDV FRPH

: Decoded string is -

: THE TIME HAS COME

Just like back in school. But

let’s flesh it out just a bit to
string using the same side right make'lt a bit more usable. The
: code is almost the same with a

- few exceptions. First, we have

added a space to the end of the
fFull circle magazine

. program is:
: Encode or Decode (E or D) -> E :
! Enter the string -> THE TIME HAS:

® <

from string import maketrans

intab) #Decode

raw_input ("Enter the plaintext string -> ")

intab = "ABCDEFGHIJKLMNOPQORSTUVWXYZ"

outtab = "DEFGHIJKLMNOPQRSTUVWXYZABC"
EncTrantab = maketrans(intab,outtab) #Encode
DecTrantab = maketrans (outtab,

instring =

EncString = instring.translate(EncTrantab)

DecString = EncString.translate(DecTrantab)

print ("Encoded string is - %s"

: obvious in the encrypted string. :
. The next change is where we
ask if the user wants to encode : | . o o cvbverrpn
: or decode the string. Finally we :
. added an if statement to

. control what we print (shown

. bottom right).

The output from the

from string import maketrans

% EncString)

intab string and in between the . CcoME
: “Z"” and the “A” in the outtab
. string. This helps keep the

: actual words from being too

! Encoded string is -
WKHCWLPHCKDVCFRPH

And to test the decode side
of things:

; Encode or Decode (E or D) -> D
: Enter the string ->

: Decoded string is - THE TIME HAS
: COME

Well, hopefully you are

. starting to get ideas about how
. to use this new information in
: your own code. See you next

time!

#Be sure to include the space character in the strings

intab = "ABCDEFGHIJKLMNOPQORSTUVWXYZ "

outtab = "DEFGHIJKLMNOPQRSTUVWXYZ ABC"

EncTrantab = maketrans(intab,outtab) #Encode
DecTrantab = maketrans(outtab,intab) #Decode
which = raw_input ("Encode or Decode (E or D) -> ")
instring = raw_input("Enter the string -> ")
EncString = instring.translate(EncTrantab)
DecString = instring.translate(DecTrantab)

if which == "E":

print ("Encoded string is
else:

Ine comptledtl Fytnon

- %s" % EncString)

ﬂ contents ©

HOW-T0O

Written by Greg Walters

oo

his month, I’'m going to charting, well, you pretty much to sing its praises. It is a suite Windows machine, but

Programming In Python - Part 51

discuss a product that had no choice but to use the of three parts, a reports . everything that | show can be
is new to me, but has : expensive stuff. Believe me, . designer, a report engine and a : done in Linux (so please forgive
apparently been I’'ve looked for years for really report server. All have had a i me in advance).

around for a number of years. : good free reporting tools, and : chance to play with is the : , _

It's called NextReports from - I'm not sure how | have missed : reports designer, but if the One of the first things you

: should know is that it supports

Advantage Software Factory, : this package for so many years . designer is any indication of the : _
and you can get it free from : (version 2.1 was released in : power, ease and flexibility of ~ ; databases like Oracle, Mysql,
http://www.next-reports.com/. : March of 2009 and they are . the rest of the suite, this thing : SQLite, MSSQL and more.
Not only that, but it's open : currently up to version 6.3). But : is a winner. Everything is based on queries
source and it runs under - now that I've found it, I'm : . . - and a really good thing is that
Windows and Linux! . absolutely pumped about it. 5 This month, we are going to : only SELECT type queries are
: : concentrate on the designer. . allowed. This means that

Before | start telling you Now that I've stepped down : Because of some constraints on : nothing in the source database

about the product, let me get : from my soap box, | can begin : my time, I'm working on a : can be changed by accident.

: You can enter your own queries
: or use a visual designer.

on my soapbox and vent for a

moment Or tWO. For a Iong . File Perspective Tools Help

time, I've been working with S FECER N
B (@ Bplorer x|

The screenshot shows how

databases and reports. One of o . 37 | % nice a Ul it is. Things are pretty
the things that I've had issues : |[£|s # comecion: - all: oo i g

with is that while there are free : |[5| & - Intuitive and it won't take you
database solutions out there, [&4 | long to be productive at this.
like SQLite and MySql, there ’ 3 E.EW Let's tgke a look at the steps to
was precious little available - IRt get going.

that was free for report 1= e ! "Il Start with File | New | Data
designer tools. More timesthan || le - - cxoo : Source. Next, name your source
not, any reports either had to) whatever you want to call it.

be done with very expensive q 5 —all :

software tOOIS, or the deve|0per‘ NETT Column Alias Output | SotType | SortOrder | GroupBy | Criteriz | Or @] Now tell NeXtReportS what
had to roll his own. Some tools : E Kind of database ,',t 15 |n"the
were available, but were : T o) dropdown called “Type:". You
lacking. When it came to T : can skip over the Driver section

Active DataSource:youth @l and go to the URL: section. This
full circle magazine @ 229 The Compleat Python A contents ~

http://www.next-reports.com/

HOWTO - PYTHON PT51

is where you put the path to
the database. If you are using,
for example, a SQLite
database, this will be filled in
for you: “jdbc:sqglite:<dbfile-
path>". Replace the <dbfile-
path> with the path to your
database. Other types of

databases have similar types of

information already populated
to help you. Next, click the
“Test” button to make sure you

can connect. If everything goes

correctly, then click “Save” and :
o = :
E&j Connections
2| Demo
B L libtest
) test
& View
& Edit Ctrl-E
o Delete
| Schemas Ctrl-5 F‘ :
|5

EP---#_,- outh
- % (default)
El] Clueries
35 Reports I}
":& Charts

B k1 (3.kids
a

E g E::::EF:::S B B w1 (%.worshipnotes)

[] B ParentName2 1 B * (Al columns)

] B ParentPhaonel | Acolyte

[] B ParentPhone2 1 B Active

] B SmallGroupGuidelD A CountAs

[B State E 8 Description

[B ZipCode 8 Lector

[] B birthday [] B MoteDate

B fname 8 Other

[B grade 8 Usher

B Iname 8 Worshiphote

178 pkiD -] 8 kidiD

[] B school ~| |C178 pkip

Table Column Alias | Output | Sort Type | Sort Order Group By Critr -
kids (k1) fname :
kids (k1) Iname b
kids (k1) Active

worshipnotes (wl)
worshipnotes (wl)
worshipnotes (wl)

WorshipNote
Usher
Other
Lector

DNescrintion

4
ﬂ‘m‘m|b|w‘m‘—t 4

worshipnotes (wl)

2 |lworshinnotes fud)

MEE EEEEE

4 Oens Necinner .'r 5 Ouerv Editar |'r

. you’'ll see it added to the

: Connetions tree. The next thing
: you need to do is make a

: connection to your database

: that you have just added. Now,
: right click on the database and
: then click on Connect.

; Once you are connected,

- you'll see that you have four

: possible things to choose from.
. The next three are so you can

charts. Simple enough. Now

click on the “+” sign to the left
of “%"” which will open up your

. database table display. Now

: you will have Tables, Views and
© Procedures in the tree. Once

: again, click on the “+” sign

: next to “Tables”. This will show
- all your tables. Now if you want
. to use the visual query

: designer, just drag the table(s)

: you want to deal with onto the

. designer canvas to the right.

Once you have all your

. tables there, you can start
: making connections between
. the tables.

In the example here, | have

© two tables, one with

: information about kids in a

: confirmation class and the

. other with entries for worship
. notes taken. The worship note
: The “%" is the database tables. :

table doesn’t have the kid’s

: name in it, just an id that points
. create new queries, reports and :
. did a drag and drop to make

to the kid information table. |

T Y LT | artmr

fFull circle magazine

@ 230

The Compleat Python

: Table Column Alias Dutput Sort Type Sort Order Group By Criteria
kids (k1) fname [w] Ascending
-____I
kids (k1) F'u':twe |
worshipnotes (wi) WoarshipMote
worshipnotes (wi) Lsher
. worshipnotes (wi) Cther

[

ﬁ contents ©

HOWTO - PYTHON PT51

that link between the kidID field
and the pkID of the kid table.
Then | selected each field |
wanted to have in the result
set. In this case, the kid’s first

and last name and an active (or:
. can. For example, | want to

: combine the kids first and last
: names (fname and Iname) into

not-deleted) flag in the kids
table and multiple fields from

. you will (hopefully if you did it
. correctly) get the query results
. in a grid below the editor. If you :
' . comma at the end. Once you
. have your query the way you
. want it, click on the save

. button to save the query. You

. a full name. We can do that by
. putting a line after the
. “kl.Iname,” line like this:

. kl.fname || “ “ || kl.lname
as FullName,

To test your query, simply
click on the “running man” and

want to add manual lines you

. will have the two fields with a
. space between in a field named :
. designer.

. will be asked what you want to
- call it.

in the tree and right click on
. the query you just created.

The “||” characters are
concatenation characters so we

“FullName”. Don’t forget the

Select “New Report from
Query”. The query designer

: canvas goes away and is

replaced by the report

On the left is the properties

. window for any given field or

. the entire report. On the right is
. the report designer itself.

. Notice that it looks like a

. spreadsheet. Each row is

Next, click on the Query item :

considered a “band” and holds

- information for that report row.
. In the case of this example, we

BB IS | a| %
1| SELECT

2 kl.fname,

3 kl. lname,

4 wl.WorshipNote,

5 wl.Usher,

] wl.Other,

7 wl.Lector,

a wl.Description,

a wl.Countds,

10 wl.hcolyte

11 FROM I

12 kids k1,

13 worshipnotes wl

14 | HHERE

15 wl.k1dID = kl.pkID AHD
16 kEl.hctive = 1

17 | ORDER. BY

14 kl.lname,

19 kl. Ename

the notes table. The grid below
shows each of the fields, which
table it comes from, and other
information.

As you can see, we can set
criteria like “Active = 1",
choose to display a field or not,
and set sort type and sort
order. Once you are satisfied
with this, you can click on the
tab below and see your actual
SQL query.

Michael

fFull circle magazine

@ 231

The Compleat Python

ﬁ contents ©

LHE | B | b ‘
mi= S 952 | | [lRecords [10 | [youth +| @ ToHtml - Zoom| 100 %
Segoe U 0,12 o e N = N S N N |
g background [1R:255 G:235 B:2... 0 | 1 | B | 3 | 4 | 5 | 6 | = | 3 |)
;|| foreground I R0 G:0 B:0 - 20... 0 -
= horizontal allignment LEFT = Bl Report Title
— | vertical allignment MIDDLE 1 H1 | fname Iname FullMame WorshipNote Usher Other Lector Description Countfs Acolyte
= pa:de!'” TREE [=] DO SC{fname} |5C{lname} SC{FullName} SC{Worshiphote} SC{Usher} SC{Other} SC{lector} SC{Description} $C{CountAs} SC{Acolyte
£|| padding :
Z|| border (0,0,0,0) £ Fo
2 wrap text O
text rotation 0
h— hide repeated value]
Report Title
: fname Iname FullName WorshipNote Usher Other Lector Description CountAs Acolyte
: Michael 1 0 0 0 1 0
: Michael 1 0 0 a 1 1
- Michael 1 0 0 0 1 0
. Michael 1 0 0 0 1 1
Michael 1 0 0 0 [/\\3 1 0
: Michael 1 0 0 0 1 0
: Michael 1 0 0 0 2 0
1 0 0 0 2 0

HOWTO - PYTHON PT51

have four rows, two header
rows, one detail row and a
footer row. You can add or
delete rows as needed. This
method is not quite as free-
form as some other report

nice and clean report.

The two header rows hold
our report title and column
headers. The detail row has
each field we will be reporting
on and the footer row is the

=
i 1 | 2
] Ho
1 H1 |fname Iname FullMame
=1 DO | sCifnagpi——==— e SR
= | QS_ Copy Cirl-C
Cut Ctrl-X
Paste Ctrl-v
Insert b
Delete cell Delete
Group J
Merge Cells
Unmerge Cells
Delete all

report footer. Let’s take a look
at how the report looks as a
default. Click on the button at
the top of the bar marked “To
Html” to see the report. (I
blurred the kids last names,

that’s not an issue in the

~ generator.)

For a report with almost no

work, that'’s really nice. But
. let’s pretty it up a bit. Let's
designers, but makes for a very ;| Cr€ate a group that puts all of
. the data for any given kid

. under the kid’s name.

Right click on the first

column of the data row. Select
. Group and then Add.

You will be presented with a

. new window asking which of

. the fields you want to create

. the group upon. In this case, |
. select FullName and then click
' ¢ the Ok button. Now we have a
. grouping break. We can also

. get rid of the three fields

. (fname, Iname and FullName)
. in the detail section, since we'll :

w

Garrett

[TR T G G §
oo o a o

: Trevor

P T o JRE S Sy
L I o T e R e T

Zachary
fFull circle magazine

-

1

L I e I e TR o O i

e Y i S e TR o (e

be displaying the name in the
group band. Simply right-click

. on them and select “Delete

. Cell”. Now you can resize the

. three empty cells on the left to
. make the gap less obvious.

Taking a quick peek at what

. the report looks like now will

. show you that the information
. for each kid is all nicely

. grouped together.

(=)

praise song 1

Lo e R T i
I e e (Gt
- O O 9O =

Lo I R e T s I o
- - T o
e A s |

The Compleat Python

really easy to do, but makes
your report look like you spent

. days on it. By using the

. Wingdings font from Windows,

. the two characters we want are
. Ox6F(0168) for an empty box

. and OxFE (0254) for a checked
. box.

Before | go on, the one thing

that Windows does better than
. Linux (that | have found) is the

, . use of the Alt+NumPad entry of
That’s nicer, but now let’s do :

: something kind of fun. All the

- 1s and Os obviously stand for

. yes and no. That’s rather

. boring for a report, so let’s add
. an advanced conditional

. statement for each of those

. fields that will show a box with
. a check for Yes (or 1) and an

- empty box for No (or 0). It’s

. special characters. Linux

. doesn’t allow that. There was a
. work around that used

. Ctrl+Shift+U then the unicode
. value for the character you

. wanted. However, that doesn’t
. work on all machines. The

. easiest way I've found to do

. this on Linux, is to open

. Character Map, use the search
. function to find the unicode

. character you want, double-

. click the character to copy it to
. the “Text to copy:” box, then

. click the “Copy” and then paste
. it into your document. The

. unicode characters for them

. are 2610 (empty box) and 2611
. (checked box) using the

- WingDings 2 font. I'm sure

. there are many other easier

. ways to deal with this, but I'm

shy on time. (Be sure you have

ﬁ contents ©

HOWTO - PYTHON PT51

Columns | [Operators Editor

SC_Acolyte || | && (and)[a]
SC_CountAs 2| |l (or) |
SC_Description %é ! (net)

| |==(eq)
I=(ne) [
[« <)

1| i€ () 4

SC_fname
SC_FullMame
SC_Lector

Variables
SV_DATE
SV_GROUP_ROW
SV_PAGE_NO
SV_PRODUCT
SV_REPORT_NAME

[»]

|4 | | L

:}else { ;)

I

[»

-

[z

Common selected in the Script
list.)

We’'ll start with the
WorshipNotes field. On the
detail row, right click on the
field you want to do. In this
case it's marked
$C{WorshipNote}. Choose
Insert, then Expression. Yet
another wonderful thing that
NextReports gives us it the
ability to do pretty much
everything with as little typing
as possible. Look in the center
of window where it says
Operators. Double click on the
“if..else..” selection, and it will
fill that into the editor for you
as a template so you don’t
make a mistake.

| | ovr | 1:26

Now, we want to put the

. WorshipNotes field in the

. parentheses of the editor.

. Simply click in between the two
. parentheses to place the cursor :
: and then double-click on the

. field you want to go in there.

: BAM! It's filled in for you. Now :
. click after the field name in the :
- editor and then double-click on :
. the “== (eq)” operator. Then
: add a “1”, so the editor line

. Trevor

OO0 & E

Zacharv

fFull circle magazine

. if ($C_WorshipNote
; i } else { ; }

@ 233

reads

1)«

We are almost finished with

: our expression The first set of
: curly brackets define what to

- do if the expression is True and :
© the second is what to do if it's
: false. In this case, we’ll use the :
: CharMap (in windows, Linux
| has one as well, for example
Lo J[ge=] | : gucharmap if you are using
Qnome) to copy the characters © more to learn but that’s for
. into our editor string. Or, under :
: windows, you can hold the

. {Alt} key and press 0168 for

: the empty box and 0254 for the :

checked box. So now our

. expression is (at least in
: Windows):

if ($C_WorshipNote
ubu; } else { "0"; }

Name the expression (|

used WNotes) and save it.

[

o R e T e Y T
e R e T e Y i T
e D a9

The Compleat Python

Under properties for that field,
select the font (WingDings is

. what | used here) and this is
. what it will look like.

There’s our pretty little

boxes. Doing this to the other

fields is just as simple.

It only took me about 3

: hours of playing with the

: package to get to this point and
. a whole lot further. | can truly

. say that | have a great amount

. another day. You can use

. templates to color your report,
: you can add images, and much
: more.

Next time, I'll talk about how

we might go about embedding
1) {:
. program. Until then, have fun
. playing with this wonder FREE
. software.

these reports into a Python

. el el ek el
S~ R

ﬁ contents ©

HOW-T0O

Written by Greg Walters

The Python
Quick Syntax

Reference

SELECT pkgs,
WHERE (Holiday <> 1)

Count (DOW) as CountOfDOW FROM study

Programming In Python - Part 52

AND DayName in ("Monday", "Tuesday", "Wednesday", "Thursday", "Friday")

GROUP BY pkgs

: and Amazon

(http://www.amazon.com/The-
. Python-Quick-Syntax-

: Reference/dp/1430264780) as
. well as others. It is, as the title
: suggests, a syntax reference

. that will help those of us who

: program in other languages as
- well as Python, to remember

. how a certain command works
: and the requirements for that

efore we get started
on this month’s actual :
python subject, let me :
toot my own horn for
just a minute. In late December :
and early January, my first book :
on Python was published by
Apress. It is named "The Python :
Quick Syntax Reference", and is :
available from a number of
places. You can find it on the
Apress site :
(http://www.apress.com/978143
0264781), Springer.com :
(http://www.springer. com[comg
uter/book/978-1-4302-6478-1)

. command. Please help a poor
: old programmer make a living
: by buying the book, if you can.

Now on to bigger and better

¢ things.

While | was working on my
. latest book for Apress, |
rediscovered a SQL command

. that | didn't discuss when we

were working with SQL

. databases a long time ago, so |
: thought I'd share the

. information with you. It is the

: CREATE TABLE AS SELECT

: command, which allows us to

. pull a query from one table (or
. joined tables) and create

: another table on the fly. The

. general syntax is:

CREATE TABLE [IF NOT EXISTS]

: {New Table Name} AS SELECT
: {query}

The part in square brackets

. (IF NOT EXISTS) is totally

. optional, which will create the
. table only if it doesn’t exist

. already. The part in curly

. brackets, however, is not. The
. first is the new table name and
. the second is the query that

you want to use to pull data
: and create the new table.

Assume we have a database

: that has multiple tables in it.

: One of the tables is named

: "study" that holds data from a
: receiving operation. There are
. six fields which are shown

. below.

One of the datasets that we

. will need to produce from this

: raw data is a grouping of

. package count and the number
. of days within the study that

: quantity of packages came in

: on, assuming that the days are
. weekdays (Monday thru Friday)
. and that the day is not a

. holiday, since holidays have

: less than normal number of

PkID - Integer, Primary Key, AutoIncrement

DOM - Integer - Day of the month (1-31)

DOW - Integer - Day of week (1-7 (Sunday = 1, Monday = 2, etc))

Pkgs - Integer - Number of packages received that day

DayName - TEXT - "Sunday", "Monday", etc

Holiday - Integer O or 1 (Is this day considered a holiday or not) 1 means yes

full circle magazine

@ 234

The Compleat Python

ﬁ contents ©

http://www.apress.com/9781430264781
http://www.springer.com/computer/book/978-1-4302-6478-1
http://www.amazon.com/The-Python-Quick-Syntax-Reference/dp/1430264780
http://www.amazon.com/The-Python-Quick-Syntax-Reference/dp/1430264780

HOWTO - PYTHON PT52

packages. Our query is shown

above.

This then provides us with
data that would look something :

like this:

pkgs
31
32
33

48

So the data is showing that
during the study of 65 days,
only one weekday had 31
packages but 3 weekdays had
48 packages and so on. Similar
queries could be created that
would cover holidays and

weekends.

While having the data simply :
as a returned dataset from the
query, we might want to do
further analysis on the data, so
we want to put the resulting
data from the query into a
table. That's why we would
create a table from the query.
So in the following example, :
shown above right, we create a :
table named "weekdays" using :
the same query we just showed :

above.

Now anytime we need the
data for that weekday result

CountOfDow

1
2
1

3

need, and have tested the
: query, then we can begin our
¢ code. Assuming we already

number of past articles.

CREATE TABLE IF NOT EXISTS weekdays AS
SELECT pkgs, Count (DOW) as CountOfDOW FROM study
WHERE (Holiday <> 1)
AND DayName in ("Monday", "Tuesday", "Wednesday", "Thursday", "Friday")
GROUP BY pkgs

def OpenDB():

. set, we can just run a query on global connection
: the weekdays table. :

global cursor
connection = apsw.Connection("labpackagestudy.db3")

Once we know what we cursor = connection.cursor()

: Now we need to create the first cursor having data we
© routine that will actually create : need to maintain. We will be

: . the table with the returned : using it in the final part of the
: have the study table created : : .
: : dataset from the query, shown : code. We then drop the table if
: and populated, we can use ; : , .

; : below, then alter it and run : it exists and run our query on
- Python to then create our new some calculations ' the “study” table

- table in the main database. Just : ' '

- asan FYl, am using the APSW : As you can see, we wantto Now we create three more
: SQLite library to do the : create a second cursor, so that : columns (shown below) within
. database work. : we don’t run any risk of the : the weekdays table named

: We, of course, have to dd - 1 ALTER TABLE kd -ADD COLUMN bability REAL
: . . addcolquery = ' weekdays probability !
: open a connection “jght) cursor.execute (addcolquery)

. and create a cursor to addcolquery = 'ALTER TABLE weekdays ADD COLUMN lower REAL'

: the SQLite database. We cursor.execute (addcolquery)

have Covered thls In a addcolquery = 'ALTER TABLE weekdays ADD COLUMN upper REAL'

cursor.execute(addcolquery)

def DoWeekDays():
Create a second cursor for updating the new table

cursor2 = connection.cursor()

gl = "DROP TABLE IF EXISTS weekdays"

cursor.execute(ql)

query = '''CREATE TABLE IF NOT EXISTS weekdays AS SELECT pkgs,
Count (DOW) as CountOfDOW FROM study WHERE (Holiday <> 1)
AND DayName in
("Monday", "Tuesday", "Wednesday", "Thursday", "Friday")
GROUP BY pkgs'''

Full circle magazine @ 235 The Compleat Python 4\ contents ~

HOWTO - PYTHON PT52

“probability”, “lower” and
“upper”. We do this by using
the “ALTER TABLE” SQL
command.

The next step (top right) will
be to sum the data in the
CountOfDOW field.

There is only one record
returned, but we do the for loop
thing anyway. Remember from
the above discussion that the
“CountOfDow” field holds the
number of days during the
study that a particular number
of packages came in. This gives :
us a value that contains the :
sum of all of the “CountOfDow” :
entries. Just so you have a
reference as we go forward, the
number | got from all my :
dummy data is 44.

LastUpper = .0

for row in cl:

cod
pkg

row[1l]
row[O0]

Now we will create a

. probability of each daily

. package count in the database
- and calculate an upper and :
. lower value that will be used in

another process later on.

: Notice that we check to see if
. the LastUpper variable contains :
. .0". If it does, we set it to the
. probability value, otherwise we :
. set it to the lower plus the :

probability value.

Finally we use an update

. SQL statement to put the new
: computed values into the
. database.

What we end up with is a

package count (pkgs), a count

upquery = "SELECT * FROM
weekdays"
cl = cursor.execute(upquery)

of the number of days that
. package count came in, a
. probability of that occurring

. within the whole of the study

Here we have done a
‘SELECT all’ query so every
record in the datatable is in the :
‘c1l’ cursor. We'll walk through
each row of the dataset, pulling :
the pkgs (row[0]) and :
CountOfDow (row[1]) data into
variables.

(31 packages on 1 day out of a
. total of 44 (weekdays in that

60+ day study), will have a

. probability of 0.02.).

If we add up all the

should add up to 1.0 .

fFull circle magazine

sumquery =

"SELECT Sum(CountOfDOW) as Sm FROM weekdays"

tmp = cursor.execute(sumquery)

for t in tmp:
DaySum = t[O0]

prob = cod / float(DaySum)
if LastUpper != .0:
lower = LastUpper
LastUpper = (lower + prob)
else:
lower = .0

LastUpper = prob

nquery =
lower =

o

u =

'UPDATE weekdays SET probability
$f, upper =
% (prob,lower,LastUpper, pkqg)
cursor2.execute(nquery)

o\°

o\°
Qi rh
~ -

$f WHERE pkgs

End of DoWeekDays

= S =

The upper and lower values

. then reflect a number between
. floating point number 0 and 1

- that will mirror the possibility of : .
" any random number within that ; Otml to see an example of this.
. range that will give us a

. randomized number of

. packages. This number can

. then be used for a statistics
. analysis of this data. A “normal :
. real-world” example would be

. to predict the number of cars

. that arrive at a carwash based
. on observational data done in

. the field. If you want to

. understand more, you could

. probability values in the table it : look at

@ 236

The Compleat Python

. http://www.algebra.com/algebr
: a/homework/Probability-and-

. statistics/Probability-and-

. statistics.fag.question.309110.

. All we did is generate (the hard
. part) easily with Python.

The code for the two

. routines that we presented this
. time is at:
. http://pastebin.com/kMc9EXes

Until next time.

ﬁ contents ©

http://www.algebra.com/algebra/homework/Probability-and-statistics/Probability-and-statistics.faq.question.309110.html
http://pastebin.com/kMc9EXes
http://www.algebra.com/algebra/homework/Probability-and-statistics/Probability-and-statistics.faq.question.309110.htm
http://pastebin.com/kMc9EXes

HOW-T0

Written by Greg D. Walters

Program In Python - Part 53

i

"abcdefghijklmﬁopqrstuvwxyz"

. ; localvalidl =
his month, I thought I : * lowercase characters localvalid2 = "ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890"
would create a routine : * upper case characters localvalid3 = "!#$%&'*+-/=2" ~{|}~."
that makes a license : » numbers between 0 and 9 Offset = 0

key from an email. We
all know the reason for having
a license key, and if you ever
need to have a quick and dirty
set of routines to do it, you can
use this. Remember, Python is
a scripting language, so the
source is always readable.
There are ways around this;
we’ll discuss them in another
article. Let's take a look at the
“gross” logic behind the code,

code.

address and then break it into
two parts, the local part (the

part before the “@"” character)
and the domain part (the part

after the “@"” character). There

are very specific rules for email :
: values, we get a sum of 1670,

. then we divide that by the
- length of the email address
i (23); we get 72. Remember we

address validity, and it can get
very complicated. For our
purposes, we will only use
some of the rules and only on

the local part. You can do a web
search on the actual rule set. In :

our code, we will only look at:

: email, we then will create a

. “checksum character” which is
: based on the ascii value of

. each character in the entire

: email address, and then divide
before we actually dive into the : it by the number of characters
: in the email address. For

. example, let’s use a mythical
First, we will ask for an email :
: fredjones@someplace.com. If
: we walk through the email

: address, we can get the ascii
: value of each character by

: « special characters

(1 #$%E& /=27 {]}~)
: « period characters are allowed, :
: but may not be repeated next
: to each other (..., etc)

Once we have validated the

email address of

using the ord() function. When
we add up each of the ascii

are using integer division here,
so our result will be an integer.

full circle magazine

fredjones@someplace.com we
. get a license key of:

; j[vHihnsriwDwsqitpegi2gsq

code. Since this is the 53rd
. article in the series, | won't be

@ 237

Now that we have our
checksum value, we subtract

© 68 from that (ascii ‘D’) to

: create an offset. We use this
. offset when we encode each

. character in the email. Just to
- make things a bit harder to _
- decode, we put the length (with :
. offset) as character position 2
: and the checksum as character :
© position 4.

So for the email

Lets get started with the

def IsvValidEmail (s,debug=0):
email = s
pos = email.rfind("@")

local = email[:pos]
domain = email[pos+1:]
if debug ==

print local

print domain
isgood = False
localvalid =

The Compleat Python

quite as verbose from here on
: out.

First our imports.

! import sys

Now (as shown above right)
we will create a string that will

- include all of our “legal”

. Characters for the IsValidEmail

. function. I've split it into 3

. strings so it fits nicely for the

: magazine. We combine them in
. the IsValidEmail routine. We

. also set a global variable

. ‘Offset’ to 0. This will be the

. value that we add (later on) to
. each character when we create
. the encoded string.

localvalidl + localvalid2 + localvalid3

ﬁ contents ©

HOWTO - PYTHON PART 53

Now for our first function.
This (below) is the IsValidEmail
routine. Basically we pass the
email in the variable s, and an

optional debug flag. We use the

the past, to provide some print
statements to see how things
are going. Usually we would
simply pass a 1 as the second
parameter if we want to see
the progress verbosely.

email address to the variable
‘email’ and find the ‘@’
character that separates the
local from the domain portions
of the email. We then assign

(I think it’s appropriate) ‘local’,
and the domain portion to
‘domain’. We then set the
boolean isgood flag to False
and finally create the
‘localvalid’ string from the 3
shorter strings we set up
earlier.

Next (top right) we simply
walk through each character in
the local portion of the email
against the list of valid
characters using the in

local portion of the email fails

the test, we break out of the for

loop, setting the ‘isgood’ flag to
. False. =

Finally, we look for any set of :
debug flag, as we have done in perio_d characters that are

: contiguous. We use the

. string.find routine that will

. match anything that is like ‘..’
: or ‘..." and so on. Being a lazy
. programmer, | used only a

. single “double dot” check that
. works for anything more.

First we assign the passed in

r = email.find("..")
if r > -1:
isgood = False

The last thing we do in the

: routine is return the value of

the local portion of the email to the ‘isgood’ flag.

return isgood

The next routine (bottom

: right) is the CheckSum routine
. which is fairly short. We walk

. each character in the email and :
. create a running sum of the

. ascii value of each using the
: built-in ‘ord’ type conversion.
. As | stated earlier, we take that
. sum and divide it by the length :
. of the email address. We return
. the checksum value and the

keyword. If any character in the :
y y - character represented by that

checksum.

fFull circle magazine

Check Local Part
for cntr in range(0,len(local)):
if local[cntr] in localvalid:

if debug ==
print local[cntr],ord(local[cntr]), "True"
isgood = True
else:
if debug ==
print local[cntr],ord(local[cntr]),"False"
isgood = False
break
def CheckSum(s,debug = 0):
sum = 0
email = s.upper()
for cntr in range(0,len(email)):
if debug ==

print email[cntr],ord(email[cntr])
sum += ord(email[cntr])
cs = sum/len(email)
if debug ==

print('Sum = %d' % sum)
print ('ChkSum = %d' % cs)
print ('ChkSum = %s' % chr(cs))

@ 238

Now for the EncodeKey

. so we can change it within the
: function and so it can be used
. in other functions. We then set
. the Offset variable to the

checksum minus 68. As in the
example presented at the

. beginning of the article, it

- would be 72-68 which equals 4. | character 0 is ‘f’, character 1 is

We then step through each

The Compleat Python

. character of the email address
. routine. While it looks simple, it :
. requires some concentration so :
. pay attention! We assign the

. Offset variable to global status

adding the offset to the ascii
value of that character. For the

. ‘f" in ‘fredjones’, it would be

: 102 + 4 or 106 which equates
. to ‘i’. Using the counter

. variable ‘cntr’, we then

. determine what we add to the
. ‘NewEmail’ string we build up
. character by character. Notice
. in the code that we go from 0

. to the length of the email, so

‘r and so on. Now comes the

ﬁ contents ©

HOWTO - PYTHON PART 53

part that might confuse some
of you. If cntr is a value of 1

(‘r'), we insert the character for :

the length of the email + 68
and then the offset character,

which using our example would :

be iYt. The next time we go

through the loop, cntr will equal :

2, but we already have 3
characters in the email. That's
where we want to insert the
checksum character (‘F’) and
then the third character offset.

offset character to the string,
and when the loop is done, we
return the key (top right).

The DecodeKey routine
(bottom right) basically
reverses the process we used
in the EncodeKey routine. One
thing you might notice here is
that in the first ‘if debug’
statement of this function, |
used ‘!= 0’ rather than ‘== 1,
simply to remind you that the
two can be interchangeable.

def DoIt():
email =
isok =

if isok == True:
csum,csumchr =
ke =
print ("License Key

print ("Original email

The Dolt function (below)

asks for an email address using

‘raw_input’, then calls the

. functions in order to create the '

: license key.

: Lastly, we call the Dolt

¢ routine.

E if name__ == "_main_":
DoIt ()

© Now, obviously the output is :
: not super-encrypted, and if :
, : someone were to put in a fair
From there, we simply add each | . ount of time, they could
. figure out what we used to

. create the key fairly easily.

: However, it should give you

. enough of a starting point that
. you could simply modify the :
. code to make it much harder to :
: break. You could, for example,
. use a random number rather
: than the ‘D’ (68). If you do that, :
: set a seed in the code so that it :
- will always generate the same
: random number. You could also
: go a bit deeper and put the :
. offset value somewhere into

raw_input("Please enter email address -> ")
IsValidEmail (email, 0)

CheckSum(email)
EncodeKey (email,csum,0)

%s" % ke)
%s" % DecodeKey(ke,0))

fFull circle magazine

@ 239

def EncodeKey(s, csum,
global Offset
email = s
Offset =
if debug
print ("Offset i
NewEmail = ""
for cntr in range (O
ch = ord(email]|
if cntr ==
NewEmail

csum - 68

chr (ch)
elif cntr ==
NewEmail
else:
NewEmail

N

if debug
print cntr, New

def DecodeKey(s,debug =
global Offset
eml = ""
for cntr in range(O
if debug != 0:
print cntr,
Offset,chr(ord(s[cntr])

if cntr ==
eml = eml +
elif cntr == 1:
emllen = or
elif cntr == 3:
csumchr=s[c
else:
eml = eml +
if debug ==

the license key, maybe the last :
: character so you could use that : http://pastebin.com/MH9nVTNK.
. as the decryption offset.

debug = 0):

s %3d" % Offset)

;len(email)):
cntr]) + Offset

NewEmail + (chr(len(email)+68)) +

NewEmail + chr(csum) + chr(ch)
NewEmail + chr(ch)

Email

0):

(len(s)):

s[cntr],ord(s[cntr]) -
-Offset)

chr (ord(s[cntr])-Offset)
d(s[cntr])-Offset
ntr]

chr (ord(s[cntr])-Offset)

i available at

Until next time, enjoy.

As always, the full source is

The Compleat Python

ﬁ contents ©

http://pastebin.com/MH9nVTNK

HOW-T0O

Written by Greg D. Walters

Program In Python - Part 54

S

dealing with high

blood pressure

issues. My doctor
suggested that | do something

that allowed me to concentrate :
: that you count stitches from

. the pattern. The second is

: much harder than the first. Go
: to your favorite fabric store or
: craft section of your local

: mega-mart and you’ll get the
© idea.

myself in that position again, so :

on something fairly useful, but
rather trivial. | dealt with it by
trying to do counted cross
stitch. It's creative, focused,
and keeps your mind occupied
on what you are doing, not
what is bothering you. | find

| broke out the hoop and
needles and started again.

In case you aren’t familiar
with counted cross stitch, I'll
give you a gross overview of
what it is. Cross stitch is a type

patterns of thread that
eventually make up a picture.
The thread is called “floss” and

“aida”. According to Wikipedia,
aida is a special fabric that has
tiny squares that have small
holes at regular intervals that
form the squares. This
facilitates the placement of the

any years ago, | was “x" patterns that make the

: image. There are two types of
: cross stitch. One has an image
: printed on the aida (sort of like
: paint by numbers), and the

other uses totally blank aida

Also a while back, | started

: playing with creating a program :
: that would take an image and
: convert it into a cross stitch

. pattern. One thing lead to

: another, and | had to shelve the:
: program for other things. I've
: now dusted off the idea and

of needlework that uses tiny ‘x started anew.

We will spend the next few

. articles dealing with this
the fabric that you use is called :
. since some things are fairly

: complex and have many parts
. to them. Here is the “game

: plan”:

. » Create a database for the

project. It will take a while,

pixel colors to floss colors.

full circle magazine

@ 240

: « Create a GUI using Tkinter for
: the application.

: « Flesh out the application to

. do the manipulation of the

: image files.

: « Create a PDF file that will be
© the ultimate pattern for the

. project.

What you will learn

* Revisitation of database and
- XML manipulation.
: * Revisitation of Tkinter GUI

proglrammlnlg.l Ifyou rr]r)lsseld the color that will match the floss
- previous articles on this, please . colors. Of course, the human
. eye is the ultimate decision

: * Image manipulation using PIL maker. If you are not familiar

. (http://pillow.readthedocs.org/e :
! n/latest/).

refer to FCM issues 51 thru 54.

* PDF creation using pyFPDF

. (https://code.google.com f
. df).

. GETTING STARTED

The first thing in our list of

tasks is to create the database

makedb.py

DMC.xml to SQLite database

that will hold the DMC(™) floss

. colors and reference them to

. the closest approximation to

. the RGB (Red, Green, Blue)

. values that are used in images
. on the computer. At the same
. time, the database will hold the
. hex value and the HSV (Hue,

. Saturation, Value)

. representations for each floss

. color. It seems that HSV is the
. easiest way to find the

. “closest” representation of a

. with HSV color representations,
. there is a rather complex
: writeup on Wikipedia at

http://en.wikipedia.org/wiki/HSL

. _and_HSV. It might help, but it
: might make things less clear.

The first thing we need is an

. XML file that has the DMC floss

For Full Circle Magazine #85

import apsw

from xml.etree import ElementTree as ET

tablename = "DMC"
The Compleat Python

ﬁ contents ©

https://code.google.com/p/pyfpdf
http://pillow.readthedocs.org/en/latest/
http://sourceforge.net/p/kxstitch/feature-requests/9/

HOWTO - PYTHON PART 54

colors with a RGB conversion.
The best one | found is at
http://sourceforge.net/p/kxstitc
h/feature-requests/9/. The file

it and put it in a folder that you
will use to hold the Python
code.

Now we will be using apsw
(below) to do our database
manipulation, which you should
already have and ElementTree
to do the XML parsing (which is
included in Python version
2.74+).

As always, we start with our
imports. In this program, we
have only the two. We also set
the name of the table.

The next portion should be
familiar if you have been
reading the articles for a while.
We create a function that will
read the XML file, and parse it
for us. We then can use the
information to load the

file is shown top right.

We are looking for the
<floss> tag for each line of
information. To do this, we use
the .findall(‘floss’) command.
Once we have the information

line, we break each tag (name,
description, etc.) into separate

. variables to place into the 5
. database. When it comes to the :
you want is dmc.xml. Download : :

<color> tag, we use the

. .floss.findall(‘color’) command
. to get each value of Red, Green :
- and Blue. :

We start by telling the

. function that we will be using
. the global variables connection :
. and cursor. We then set the :
. filename of the XML file, parse
. the XML file, and get started.

. We also use a counter variable
: to show that something is

. happening while the parsing

. and database inserts are going
:on.

Now that we have all our

. data, we need to create the

: SQL insert statement and

. execute it. Notice the “\" after

. the word VALUES in the SQL

. statement. That is a line- :

. continuation character to make

database. A snippet of the XML t easigr for printling here in. the
: magazine. We will be creating

. the database and table in a few :

. moments.

SQL = "INSERT INTO DMC

; (DMC,Description,Red,Green,BlE
i ue) VALUES \

fFull circle magazine

@ 241

<floss>
<name>150</name>

<description>Dusty Rose Ultra VDK</description>

<color>
<red>171</red>

<green>2</green>

<blue>73</blue>
</color>

def ReadXML():
global connection
global cursor
fn = 'dmc.xml'

tree = ET.parse(fn)
root = tree.getroot()
cntr = 0
for floss in root.findall('floss'):
name = floss.find('name').text
desc = floss.find('description').text

for colour in floss.findall('color'):
red = colour.find('red').text
green = colour.find('green').text

def OpenDB():
global connection
global cursor
global ucursor
global dbname

connection = apsw.Connection("floss.db3")
cursor = connection.cursor ()

: [-) [-) o (=) [-) o
: ('%s','%s',%s,%8,%8)" %

: (name,desc,red,green,blue)

cursor.execute (SQL)

Now, we print to the

. terminal window that

something is going on:

The Compleat Python

print "Working record

E {0}".format (cntr)

cntr += 1

Now we create and/or open

the database in the OpenDB

routine (bottom right). If you've

ﬁ contents ©

HOWTO - PYTHON PART 54

been with us when we have
done database work before,
you will notice that we are

using two cursors this time. The

cursor variable is used for the
“normal” inserts, and later on
in the select statement for the
update to set the hex and HSV
values. We have to use two
cursors, since if you modify a
cursor in the middle of a logic
statement, you lose everything
with the new command. By

for the update statements.

OpenDB routine.

Now that the database is
created and/or opened, we can
set up our table (top right).
Notice that the SQL statement
below uses the triple quote to
allow for the line to break
neatly for viewing.

The EmptyTables routine
(middle right) is there just to

need to run the application

clean and empty table if it
exists.

IF we were to stop here, we
would have a reasonable
working database with the DMC

def MakeTables():

sql = '''CREATE TABLE IF NOT EXISTS DMC
(pkID INTEGER PRIMARY KEY, DMC INTEGER,
Description TEXT, Red INTEGER, Green INTEGER, Blue INTEGER,
HEX TEXT,H INTEGER,S INTEGER,V INTEGER)'''

cursor.execute(sql)

def rgb2hex(rgb):
return '%02x%02x%02x' %

. color, color name and the RGB
. values associated with each. :
. However, as | alluded to before, :
. it is easier to pick the closest
using ‘ucursor’, we can use that : floss color by using the HSV
: data.

Other than that, it is our normal :

We next create the hex

value from the RGB values
(middle left).

The next function creates

. the HSV values from the RGB :
. values. | found the algorithm on
. the internet. You can research it :
. there. :

Finally, we create the

. UpdateDB function (next page,
make sure that if we want to or : tOP left). We use the SELECT *
: FROM DMC command and use
more than once, we start with a . the “standard” cursor variable
. to hold the data. We then step
. through the returned data, and
. read the RGB values, and pass
. them to the rgb2hex function

' as a tuple and to the rgb2hsv

function as three separate

fFull circle magazine

rgb

@ 242

def EmptyTables():

sql="DELETE FROM %s" %

tablename

cursor.execute(sql)

def rgb2hsv(r, g, b):

r, g, b = r/255.0, g/255.

mx = max(r, g, b)
mn = min(r, g, b)
df = mx-mn
if mx == mn:

h=0
elif mx == r:

h = (60 * ((g-b)/df)
elif mx == g:

h = (60 * ((b-r)/df)
elif mx == b:

h = (60 * ((r-g)/df)
if mx == 0:

s =0
else:

s = df/mx

vV = mx

: values. Once we get the return
. values, we use the update SQL
. command to match the proper
. record by using the primary key :
. (pkID). As | stated before, we
. have to use a separate cursor
. for the update statement.

0, b/255.0

+ 360)

o\°

360

+ 120) %

o\

360

+ 240)

o\°

360

to create the database, and, at
. the end, we print “Finished” so
: the user knows everything is

done.

E OpenDB ()
: MakeTables ()
: EmptyTables() # Just to be

: safe

The last thing we do is call
each of the functions in order

The Compleat Python

: ReadXML ()

UpdateDB ()

ﬁ contents ©

http://pastebin.com/Zegqw3pi

HOWTO - PYTHON PART 54

print "Finished"

| named this program :
“MakeDB”. The database should
be created in the same folder :
where the code and XML file are'
located. As always, the full code
can be found at :

http://pastebin.com/Zeggw3pi.

Next time, we will work on
the GUI. We use Tkinter for the :
GUI, so, in the meantime, you
might want to refresh your
memory by looking at FCM
issues 51 thru 54 where | take
you through Tkinter.

Until next time, have a good
month. :

fFull circle magazine

@ 243

The Compleat Python

ﬁ contents ©

http://pastebin.com/Zegqw3pi.

HOW-T0O

Written by Greg D. Walters

Program In Python - Part 55

cis

his is the second in a
multi-part tutorial on
creating a Cross Stitch
pattern generator. In
the first part (FCM85), we
created a database containing
the DMC™ floss colors with

part, we will create the GUI
using Tkinter. We will also use
PIL (Python Imaging Library)
and PMW (Python Mega
Widgets). You'll need to
download those libraries and
install them before we go too

far. For PIL, go to the Pillow fork

at https://qithub.com/python-
imaging/Pillow and download

the latest version. For PMW, go

to http://pmw.sourceforge.net/

and download from there.

You will also need two image

files. One is a simple grey
rectangle 500x400 pixels. You
can use GIMP or some other

image manipulating program to

create it. Name it default.jpg,
and place it into your source
code directory along with the
database. The other is an
image of a folder for the open

: image button. | got one from
. open clipart and searched for
: the word “folder”. | found a

: reasonable one at

. https://openclipart.org/detail/17 :
: 7890/file-folder-by-thebyteman- :
: 177890. Open it in GIMP, resize :
their closest RGB values. In this @ it to 30x30 and save itinthe
: same directory as the other two :

: files as “open.gif”.

Above is a screenshot of

: what the finished GUI will look
. like. There are four main frames :
© in the GULI. Three on the left
side and one on the right. When:
: we go through the build widget

|| % Cross Stitch Pattern Creator

File Process Help

: process, | refer to them as Top
- Frame, Middle Frame, Bottom :
: Frame and Side Frame. The top :
. frame deals with the original

image. The middle frame deals
with the processing of the
image. The bottom frame

: shows the original image on the import tkFileDialog

left and the processed image

: on the right, and the side frame
. displays the colors and floss :
: required. It seems from first

: glance there is a lot of wasted

space here, but when you see

the program run, it doesn’t

really have that much empty

space, once we get through the import Pmw

i=| Original Colors:

Original Size:

Original Filename:

Processed Color List
Original DMC Name/Number

Aida Stitch Size: M Colors: |50

Processed Image Colors:

Aida Fabric Size: Border Size: 10

Processed Image Stitch Count:

full circle magazine

@ 244

The Compleat Python

. processing portion.

Now we are ready to start

. working on the code. Here is
. our long list of imports...

: from Tkinter import *

import tkCommonDialog

. import tkMessageBox
; import ttk

: from PIL import
: Image,ImageTk, ImageOps

| import apsw # Database
. Access

; import math # Math library

. import sys

From the sheer number of

imports, you can tell this is

: going to be a long program. In

. fact, the Ul portion of the code

. will be over 300 lines, including
: comments. The “good” news is
. that about 200 of the lines of

- code deal with the Tkinter

ﬁ contents ©

https://github.com/python-imaging/Pillow
http://pmw.sourceforge.net/
https://openclipart.org/detail/177890/file-folder-by-thebyteman-177890

HOWTO - PYTHON PART 55

portion of the program, the
actual GUI itself. The majority
of the remaining lines of code
in this portion are stubs for
functions needed for the next
article.

We’ll create a class to hold
all of our Ul processing code
(next page, top right).

First, we have the class

definition and next we have the :
. entered, you define a global

variable and then assign it to a
. Variable Class (BooleanVar, :
: DoubleVar, IntVar or StringVar).

__init__ function which we pass
the TopLevel “root” window
into. We create the TopLevel
window in the last four lines of

the program. Within the __init__
. to the values within the widget
. values so you can access them

function we are defining all the
global variables and doing

some initial assignments before :
: methods. In the next lines of

we start the other functions.

The first thing we do is create a :
. variable name, then assign it to :
. the proper wrapper class. | put :

list of Tuples that hold the
picture file formats that we

need when we call the OpenfFile : :
. to try to help you keep track of :
. what we are doing. :

dialog. The next two lines
below, define and ready the
two image files we just created
(open folder GIF file, and the
grey rectangle - which will be
used as placeholders for our
images used to create the
pattern.

self.openimage =
PhotoImage(file='open.gif"')

5 self.DefaultImage :
: =ImageTk.PhotoImage(self.Thumg
; bnail ("default.jpg",450,450)) :

Now we get into the global

. definitions (middle right). If you
. remember, when you use :
. Tkinter, if you have a widget

. like a text entry box or combo
box that you want to retrieve

the information selected or

This will then “track” changes

with the .get() or .set()

code, we create the global

some comments into the code

As you can see, we are

. setting a variable called

. OriginalFilename, which holds
. the image that we want to

. create the pattern from,

* OriginalColorCount which holds

@ 245

the number of colors in the

fFull circle magazine

class XStitch:

def init_ (self, master):

self.picFormats = |

('JPEG / JFIF','*.jpg'),

('Portable Network Graphics','*.png'),
('CompuServer GIF',6 '*.gif'),

('Windows Bitmap', '*.bmp'),

('All File Types *.*',

global OriginalFilen
OriginalFilename = S
global OriginalColor
OriginalColorCount =
global OriginalSize

global ComboStitch
ComboStitch = IntVar
global ComboSize
ComboSize =
global FabricWidth
FabricWidth =
global FabricHeight
FabricHeight =
global MaxColors
MaxColors = IntVar ()
global BorderSize

. original image file, and

. OriginalSize which holds the
. size in pixels of the original
. image. As they say on tv... “BUT:
. WAIT! THERE'S MORE!" (bottom
. right):

The Compleat Python

'*.*'),

UI Required
ame
tringVar ()
Count
StringVar()

Q)

StringVar ()
DoubleVar ()

DoubleVar ()

: The ComboStitch variable is
. set by a combobox, and

. handles the stitch size of the
aida that you wish to use for

. your project. The ComboSize

. variable is also set by a combo
" box and holds the size of the

ﬁ contents ©

HOWTO - PYTHON PART 55

aida fabric. FabricHeight and
FabricWidth are the
breakdowns from the aida size.
MaxColors is a value from an
entry box to set the number of
colors, and BorderSize is a
floating point value that

aida for framing.

global ProcessedColors

global ProcessedSize
ProcessedSize = StringVar ()

global DmcColor

DmcColor = StringVar()

The final ‘variable class’
variables are used for
information once we have

processed the original image to

the desired parameters.

The next set of globals is

(top right) used for easy access

throughout the program. For
the most part, they are either
obvious by their name, or will
become obvious once we use
them. There are three not-so-
obvious variables here.
backgroundColorl and
backgroundColor2 are tuples

that are used in the gridding
process, and the

: ReadyToProcess variable is

: used to designate that the

: original image is loaded and

. everything is ready to go - just
: in case the user presses the
specifies the amount of unused :

Process button too early.

Finally we have assigned all

: our globals, and now have the

ProcessedColors = StringvVar() code that actually creates the
: GUI. We open the database,

. create the menu, set up the

. widgets, and finally place the

. widgets into the proper places. :

© Just to give you a heads-up, we :

. will be using the Grid geometry :

. placement manager. More on

© that later.

§ self.OpenDB()

self .MakeMenu (master)

E frm =
: self.BuildWidgets (master)

E self.PlaceWidgets (frm)

The next portion of our code

: (middle right) will set up the

menu bar. I've tried to lay it out

fFull circle magazine

@ 246

global ShowGrid
ShowGrid = True

global ProcessedImage

ProcessedImage = ""
global GridImage
GridImage = ""

global backgroundColorl

backgroundColorl =

(120,)*3

global backgroundColor2

backgroundColor2 =

(0,)*3
global ReadyToProcess

BEGIN UI DEFINITION

SHE SHE R

def MakeMenu(self,master):
menu = Menu(master)
root.config(menu=menu)

filemenu = Menu(menu,

tearoff=0)

process = Menu(menu,tearoff=0)

filemenu.add command(label="New")
filemenu.add command(label="Open", command=self.GetFileName)
filemenu.add command(label="Save", command=self.FileSave)

filemenu.add separator()

filemenu.add:command(label="Exit", command=self.DoExit)

logically so it will be easy to

understand.

We define a function called
MakeMenu, and pass in the

TopLevel window. We then
. define the three menu sets we

will be creating. One for File,

The Compleat Python

. one for Process, and one for
: Help.

; menu.add cascade(label="File"

, menu=filemenu)

: menu.add cascade(label="Proce
: ss" ,menu=process)

menu.add

ﬁ contents ©

HOWTO - PYTHON PART 55

_cascade(label="Help" ,menu=he
1p)

Now we set up the File menu :

options (bottom right). Open
will open our image and uses a
function called “GetFileName”.

Save will create the output PDF

file and uses the FileSave
function. We add a separator
and finally an Exit function.

Now we have the Process
option and the Help functions
(next page, top right).

All of the options in the
menu bar are also available

from various buttons within the

program.
Now we will make our
BuildWidgets function. This is

where we create all the widgets :

that will be used on the GUI.

def
BuildwWwidgets (self, master):

self.frame =

Frame(master,width=900,heightg

=850)

We start with the function
(bottom right) definition,

passing in the TopLevel window

(master) and placing a frame

that holds all of our other

Assuming you remember or
: refreshed your memory on

: Tkinter, it should be fairly

: straight-forward. Let’s look at
: the first label as a discussion
©jtem.

: self.labell =

; Label (self.frml,text =
! "Original Filename: ")

self.entFileName =
self.btnGetFN =

self.label2 =
self.lblOriginalColorCount =

self.label3 =
self.lblOriginalSize =

full circle magazine

widgets. I've added comments Attt
: . . : # Process Menu
: to help realize which part of B e e e e
: code deals with which frame. : process.add command(label="All",command=self.Process)
: We’ll deal with the top frame o
: first : # Help Menu
: ' e e e e

help.add_command(label="Help",command=self.ShowHelp)
help.add_separator()
help.add_ command(label="About",command=self.ShowAbout)

. label. Now let’s take a moment
. to look at the button
. self.btnGetFN.

: widget type we want to use; in
: this case Label. Finally we set
: the parameters we want to

. apply to that widget starting

: with the parent widget : self.btnGetFN =

. (self.frm1), and in this case, the : ?:‘:;ZZ;ZT;f(');:ﬁéa;’;dthﬂ8’
. text that will show up in the ’ '

First, we . Ry M Middle Frame ———————————
. define the self.frm2 = Frame(self.frame,width=900,height=160,bd=4,relief=GROOVE)
; name of the self.lbl4 = Label(self.frm2,text="Aida Stitch Size: ")
R self.1lbl5 = Label(self.frm2,text="Aida Fabric Size: ")
: widget self.TComboboxl = ttk.Combobox(self.frm2,6 textvariable=ComboStitch,width=8)
. (self.labell =). self.TComboboxl.bind ('<<ComboboxSelected>>', self.StitchSizeSelect)
: Next we set self.TCombobox1l|['values'] = (7,10,11,12,14,16,18,22)
; that variable self.TCombobox2 = ttk.Combobox(self.frm2, textvariable=ComboSize,width = 8)
: . self.TCombobox2.bind('<<ComboboxSelected>>',6self.AidaSizeSelect)
: to which self.TCombobox2['values'] = ("12x18","15x18","30")
i S TOP FRAME —————— e
self.frml = Frame(self.frame,width=900,height=100,bd=4,relief=GROOVE)
self.labell = Label(self.frml,text = "Original Filename: ")

Entry(self.frml,width=50,textvariable=OriginalFilename)
Button(self.frml, width=28, image=self.openimage,
command=self.GetFileName)

Label (self.frml,text = "Original Colors: ")

Label (self.frml,text="",width=10,
textvariable=OriginalColorCount)

Label (self.frml,text = "Original Size: ")

Label (self.frml,text="",width=10,

The Compleat Python

@ 247 ﬁ contents ©

HOWTO - PYTHON PART 55

command=self.GetFileName)

First thing to notice is that

this is broken into two lines. You

can safely place everything on

one line...it is just too long to fit

into a 72-character line. We'll
really pay attention to the
parameters we use here. First
the parent (frm1l), next the
width which is set at 28. When
we use a widget that has the
option of text or an image, we
have to be careful setting the
width. If it will contain text, the
width parameter is the number
of characters it will hold. If it is
to display an image, it will be
set at the number of pixels.
Finally, we set the command
parameter, which tells the
system what function to call
when the button is clicked.

One more thing to look at is
the textvariable parameter.
This tells us what variable will
hold the information that will
be displayed in the widget. We
set these in the __init__

function earlier. One other thing

to mention is that the frame
itself has two parameters you

might not remember. The Relief :
parameter sets the border type -

of the frame, which in this case

self.1lbl6 = Label(self.frm2,text="Max Colors: ")
self.entMaxColors = Entry(self.frm2,textvariable=MaxColors,width=3)
self.1lbl7 = Label(self.frm2,text="Border Size: ")
self.entBorderSize = Entry(self.frm2,textvariable=BorderSize,width = 8)
self.frmLine = Frame(self.frm2,width=6,height=80,bd=3,relief="raised")

self.1bl8 = Label (self.frm2,text="

Processed Image Colors: ")

self.1bl9 = Label(self.frm2,text="Processed Image Stitch Count: ")
Label (self.frm2, width=10,textvariable=ProcessedColors,

self.lblProcessedColors

justify=LEFT)

self.lblProcessedSize =

justify=LEFT)

Label (self.frm2, width=10, textvariable=ProcessedSize,

self.btnDoIt = Button(self.frm2,text="Process",width=11,command = self.Process)

self.btnShowGrid = Button(self.frm2,text="Hide Grid", width=11,
command=self.ShowHideGrid)

self.btnCreatePDF = Button(self.frm2, text="Create PDF", width=11,

self.frm3 =

self.lblImagelL

-—-- Bottom Frame ----—-—-———-————-
Frame (self.frame,width=450,height=450,bd=4,relief=GROOVE)
image=self.DefaultImage,

= Label (self.frm3,

height=400, width=400, borderwidth=2, relief=GROOVE)

self.lblImageR = Label (self.frm3,
width=400,borderwidth=2, relief=GROOVE)

. is GROOVE, and the bd

: parameter sets the border

: width. Border width defaults at
: 0 so if you want to see the

. effect, you have to set the

: border width (bd is a shortcut).

Now we’ll deal with the
middle frame widgets.

The last 6 lines of this

section (previous page, middle

right) deal with the two combo
boxes in the Ul. Each combo

e Side Frame —————————————— -
self.frm4 = Frame(self.frame,width = 300,height=580,bd=4,relief=GROOVE)
Create the ScrolledFrame.

self.sf = Pmw.ScrolledFrame(self.frm4,

labelpos = 'n’',

usehullsize = 1,
hull width = 300,

hull height = 567,)

return self.frame

full circle magazine

@ 248

The Compleat Python

image=self.DefaultImage, height=400,

. box uses three lines (the way |
. programmed it to make it easy
. to understand). In the first line,
. we set the basic parameters.

: The next line, we bind the

: combobox selection-changed

. event to the function

label text = 'Processed Color List',

ﬁ contents ©

HOWTO - PYTHON PART 55

StitchSizeSelect, and the last

line has a list of the values that

will be available for the
pulldown.

Everything else above is
pretty “normal” stuff. Now we
set our defaults for the widgets
that need them. Again, we are
using the global variables that
we set up in the __init__
function and wrapped to the
widget variable class.

ComboStitch.set (14)
ComboSize.set("15x18")
FabricWidth.set (15)
FabricHeight.set (18)
MaxColors.set (50)

BorderSize.set(1.0)

Now we deal with the
bottom frame. This is really

simple, since we have to set up :

only the frame and two labels
which we will use to hold our
images.

Finally we deal with the side
frame. The side frame will hold
a ScrolledFrame from the PMW
library. It's really easy to use
and provides a nice interface to

ROW | Col 0 | Col 1 - Col 6

0 | Labell | entFileName
1|

def PlaceWidgets(self, frame):
frame.grid(column = 0, row = 0)
e TOP FRAME
self.frml.grid(column=0,row=0, rowspan=2,sticky="new")
self.labell.grid(column=0,row=0,sticky="'w')

self.entFileName.grid (column=1,row=0,sticky='w',columnspan =

self.btnGetFN.grid (column=7 ,row = 0,sticky='w')
self.label2.grid(column=9,row=0,sticky='w',6padx=10)
self.lblOriginalColorCount.grid(column=10,row=0,sticky='w"')
self.label3.grid(column=9,row=1,sticky='w',6 padx=10,pady=5)

MIDDLE FRAME
self.frm2.grid(column=0, row=2,rowspan=2,sticky="new")
self.lbl4.grid(column=0,row=0,sticky="new" , pady=5)
self.1lbl5.grid(column=0, row=1,sticky="new")
self.TComboboxl.grid(column=1,row=0,sticky="new",pady=5)
self.TCombobox2.grid(column=1,row=1,sticky="new")
self.1lbl6.grid(column=2,row = 0,sticky="new",padx=5,pady=5)
self.entMaxColors.grid(column=3, row=0,sticky="new" ,pady=5)
self.1bl7.grid(column=2,row=1,sticky="'new',bpadx=5)
self.entBorderSize.grid(column=3,row=1,sticky="'new')

| btnGenFN| Label2|lblOriginalColorCount
| Label3|lbloriginalSize

5)

self.frmLine.grid (column=4, row=0, rowspan=2,sticky='"new',6 padx=15)

self.1bl8.grid(column=5, row=0,sticky="'"new', pady=5)
self.1bl9.grid(column=5, row=1,sticky="'new')
self.lblProcessedColors.grid(column=6,row=0,sticky='w')
self.lblProcessedSize.grid(column=6, row=1,sticky="'new')
self.btnDoIt.grid(column=7,row=0,sticky='e',padx=5,pady = 5)
self.btnShowGrid.grid (column=7,row=1,sticky="'e', padx=5,pady

. the information about the floss
. that should be used. You can #
. research the ScrolledFrame on
© your own, since we still have a

BOTTOM FRAME

lot to cover here.

full circle magazine The Compleat Python

@ 249

=5)

self.frm3.grid (column=0,row=4,sticky="nsew")
self.lblImagelL.grid(column=0, row=0,sticky="w")
self.lblImageR.grid (column=1, row=0,sticky="e")

h contents ©

HOWTO - PYTHON PART 55

That's all for the widgets.
Now we have to place them. As
| said earlier, we will be using
the Grid geometry manager,
rather than the absolute or
pack managers.

The Grid method places the
widgets in (you guessed it) a
grid, referenced by row and
column designations. I'll use
the top frame as an example
(shown top right).

First we place the frame.

You can see that we place
the widget by using the
{widgetname}.grid command,
then the row and column
positions. Notice that we are
telling the entry widget to span
5 columns. Padx and pady
values will place some extra

sides (padx) or the top and
bottom (pady). The sticky

command for text.

The middle frame is a bit

more complicated, but basically
the same as the top frame. You :

might notice an extra frame in
the middle of the code
(self.frmLine). This gives us a

nice divider between the

options section and the display

: section. Since there is no :
: horizontal or vertical line

: widget, | cheated and used a

. frame with a width of 6 pixels
: and border width of 3, making
© it just look like a fat line.

The bottom frame is simple

since we have only the frame
- and the two labels to hold the
images.

The side frame is pretty

: much the same thing, except
: the ScrolledFrame allows for a
: frame to be set to the interior
: of the scrolled frame widget.

: We then create three widgets
. here and place them in their

: grids as column headers. We do :
: this since we assigned the
© interior frame for the scroll
space on both the right and left :

frame here and we have to

def
def

e SIDE FRAME —-—--——————mm e ——
self.frmd4.grid(column=2,row=0,rowspan=12,sticky="new")
self.sf.grid(column=0, row=1)

self.sfFrame = self.sf.interior ()

self.lblchl = Label (self.sfFrame,text=" Original")
self.lblch2 = Label (self.sfFrame,text=" DMC")
self.lblch3 = Label(self.sfFrame,text="Name/Number")
self.lblchl.grid(column=0,row=0,sticky='w"')
self.lblch2.grid(column=1,row=0,sticky='w"')
self.lblch3.grid(column=2, row=0,sticky="w")

def Thumbnail(self,file,hsize,wsize):

size = hsize,wsize

extpos = file.rfind(".")

outfile =

im.thumbnail (size)

file[:extpos] + ".thumbnail"
im = Image.open(file)

im.save(outfile, "JPEG")

That's all the hard work for

: now. At this point, we will

: create all of the functions that
:© we need to get the GUI to run,
: stubbing most of them until

: next month. There are a few we :
- will go ahead and complete, '

: : but they are fairly short.
. assign the parent (self.sfFframe) :

. after we have created it.
parameter is similar to a justify :

The first function will be the

Exit option from the menu bar.
: It’s under the File menu option. :

def DoExit(self):
sys.exit ()

The only other one is the

: Thumbnail function. We need

this to fill the grey rectangles

. into the labels in the bottom
: frame. We pass the filename
: and the width and height that
: we want the thumbnail image

o be.

ShowHelp (self):, def ShowAbout(self):, def OpenDB(self):, def ShowHideGrid(self):
StitchSizeSelect(self,p):, def AidaSizeSelect(self,p):, def Process(self):

def CreatePDF(self):, def OriginalInfo(self,file):, def GetColorCount(self,file):
def GetHW(self,file):, def GetHW2(self,file):, def GetColors(self,image):

def

Pixelate(self,im,pixelSize):, def ReduceColours(self, ImageName):

def MakelLines(self,im,pixelSize):, def MakeLines2(self,im,pixelSize):
def Rgb2Hex (self,rgb):, def FillScrolledList(self,filename):
def GetBestDistance(self,rl,gl,bl):

fFull circle magazine

@ 250

The Compleat Python

ﬁ contents ©

http://pastebin.com/XtBawJps

HOWTO - PYTHON PART 55

Since this article is so long,
I'm going to give you a list of

function names and all you have:
to do is stub it out by using the :
pass command. We'll fill them in:
next month. I'll give you the first:

one as an example, but you
should already know how to do
it.

def GetFileName(self):
pass

For the rest of the functions,
I'll just give you the def lines. Be:
sure to include them all in your :

code.

You can see, we have a large :

amount of work to do next
month. We still have four more

lines to write to finish up for thisé

month. This is out of our class
code.

root = Tk()

root.title("Cross Stitch
Pattern Creator")

test = XStitch(root)

root.mainloop ()

The first line sets up the root

TopLevel window. The next line

sets the title on the top line. The
third line instantiates our XStitch

class, and the last line starts
the main loop that shows the Ul
and gives control over to it.

Well that's a lot for this :
month, but we are finally done. :

. You can actually run the
. program to see the GUL.

As always, the code is

. available on Pastebin at
. http://pastebin.com/XtBaw|ps.

Next month we will flesh out
the code. See you then. '

Full circle magazine @ 251

The Compleat Python

ﬁ contents ©

http://pastebin.com/XtBawJps.

b4

e’'ve been working :

on a Cross Stitch

pattern generator.

Last month we did :
the Ul portion, and now it’s :
time to do the code that does
the most of the work. Next
month we will start working on
the PDF file output portion.

HOW-T0O

Written by Greg D. Walters

those values and display them

- in the GUI. We then open the
: image and create a thumbnail

image to display in the left

- image in the bottom frame. See
- the text box to the right. :

Next we do the

ShowHideGrid function. This

. simply exchanges two images

We'll work on the menu
items first. The code is shown
below.

. in the right image label based
- on the global variable
: ShowGrid. If False, we change

: the text on the show/hide

The global ReadyToProcess
variable is used to make sure
that if the user presses the
Process button, the system
doesn’t try to process things
without anything to process.
We use the tkFileDialog
askopenfilename built-in dialog
routine to get the filename of
the original image. We then get :
the number of colors in the :
original image as well as the
width and height. We save

def GetFileName (self):

© pbutton, then set the ShowGrid
: variable to true and set the

: image to the one with the grid.
. Otherwise we change the text
: on the show/hide button to

: “Show Grid”, set the ShowGrid :
: variable to False and put up the :
. ungridded image. Code is on :
. the next page, top left.

The StitchSizeSelect function
 is fired whenever the stitch size :
: combobox is changed. We get

global ReadyToProcess

fileName =

full circle magazine

Program In Python - Part 56

OriginalFilename.set (fileName)
OriginalColorCount.set (self.GetColorCount (fileName))
OriginalSize.set(self.GetHW(fileName))
masterimage=Image.open (fileName)
masterimage.thumbnail ((400,400))

self.img = ImageTk.PhotoImage (masterimage)
self.lblImageL['image'] = self.img

ReadyToProcess = True

The FileSave menu option will simply call the CreatePDF routine, once it's
finished.

def FileSave(self):
self.CreatePDF ()

We'll stub out the ShowHelp and ShowAbout routines with a dialog box saying
that those options are not yet available.

def ShowHelp(self):
tkMessageBox.showinfo(title="Help" ,message='Sorry,
but help is not yet available.')

def ShowAbout (self):
tkMessageBox.showinfo(title="About" ,message='Sorry,
but the About function is not yet available.')

We’'ve written the OpenDB routine a dozen times before, so you should know
what it does.

def OpenDB(self):
global connection
global cursor

tkFileDialog.askopenfilename (parent=root,filetypes=self.picFormats ,title="Select File to open...")

@ 252

The Compleat Python

h contents ©

HOWTO - PYTHON PART 56

def ShowHideGrid(self):
global ShowGrid

if ShowGrid ==

ShowGrid = True

False:
self.btnShowGrid['text'] =

'Hide Grid'

self.im2=Image.open(self.GridImage)
self.im2.thumbnail ((400,400))

self.img3 =

else:

self.btnShowGrid['text'] =
False

ShowGrid =

ImageTk.PhotoImage(self.im2)
self.lblImageR['image'] =

self.img3

'Show Grid'

self.im2=Image.open(self.ProcessedImage)
self.im2.thumbnail ((400,400))

self.img3 =

the value from the combo box

and assign it to a local variable.

selection =

The AidaSizeSelect function
(top right) is very similar to the
StitchSizeSelect function. We
set the FabricWidth and

ComboStitch.get i '
omboStitch.get () - ReadyToProcess (below) just in

. case the user tries to run the
. process function before the
. image is loaded.

ImageTk.PhotoImage (self.im2)

the selection on the combo :
. box. We also default to 30x30 if :

. they select 30.
def StitchSizeSelect(self,p): :

We have a variable called

We pixelate the original file

def AidaSizeSelect(self,p):

selection = ComboSize.get ()
if selection != "30":
pos = selection.find("x"
width = int(selection[:pos])
height=int (selection[pos+1l:])
else:
width = 30

height = 30

FabricWidth.set (width)

. allows us to group that 5x5

matrix to a single color. We

then reduce the colors, get the
: width and height of the

processed image and set the

© size so the user can see how

big the resulting image will be.

Place image

E self.im2=Image.open(Reduced)

E self.img3 =

ImageTk.PhotoImage(self.im2)

; self.lblImageR|['image'] =
: self.img3

; self.ProcessedImage =

'iml.png'

The above set of code places

: the processed image into the

: image that will hold the

: processed image. The next set
. of code will create a grid so

: that the user will have the grid
: © to do the cross stitching.

i self.im2.thumbnail((400,400)) :
: : self.MakeLines (Reduced,5)

: self.MakeLines2 ('output.png’',

FabricHeight globals based on : . : ! 50
gnt g to a 5x5 pixel matrix This : 20)
def Process(self):
global ReadyToProcess
o o
if ReadyToProcess == False:
tkMessageBox.showinfo(title="ERROR...",message='You must load an original imaage first.')
else:
newimage = self.Pixelate(OriginalFilename.get(),5)
Reduced = self.ReduceColors (newimage)
W,H = self.GetHW2 (Reduced)
siz = "{0}x{1}".format (W/5,H/5)

full circle magazine

@ 253

The Compleat Python

h contents ©

HOWTO - PYTHON PART 56

self.im2 =
Image.open('output2.png')

self.im2.thumbnail ((400,400)) :

self.img3 =
ImageTk.PhotoImage(self.im2)

self.lblImageR['image'] =
self.img3

self.FillScrolledList('output;
. uses the .getcolors method to

. get the number of colors in the

. image file. We have to use

: 1600000 as the maxcolors

. parameter because if the

. image contains more than 256

. colors (or whatever is in the

. parameter, the method returns

: ‘None’. This function is similar

tkMessageBox.showinfo(title=" to the GetColors function
. except the GetColors works

. with an already opened image

. file. If you use GetColorCount,

. you have to pass an unopened

- file.

-png’)

self.GridImage =
'output2.png'

We stub the CreatePDF
function until we finish the PDF
function next month.

def CreatePDF (self):

Create PDF",message='Sorry,
but the Create PDF function
is not yet available.')

The Originalinfo() routine
gets and sets variables based
on the original image format,
size and mode.

def OriginalInfo(self,file):
im = Image.open(file)
imFormat = im.format
imSize = im.size
imMode = im.mode

self.size = imSize
self.imformat = imFormat
self.immode = imMode

def Pixelate(self,im,pixelSize):

image = Image.open(im)
self.GetColors (image)

image = image.resize((image.size[0]/pixelSize, image.size[l]/pixelSize), Image.NEAREST)

image = image.resize((image.size[0]*pixelSize,

self.GetColors (image)
#image.show()

image.save('newimage.png')

The GetColorCount function

; def GetColorCount(self,file):;

im = Image.open(file)
numColors =

; im.getcolors (1600000)

self.colors =

; len (numColors)

return self.colors

The next two functions
return the height and width of

: the image file in pixels. The

. difference between the two is
: that GetHW returns a string like :
: . routine defaults to 0 over color
. count over 256.

1024x768 and GetHW?2 returns

two integers.

; def GetHW(self,file):

im =
tmp =

Image.open(file)

def ReduceColors(self, ImageName):
#Reduce colors
numcolors=MaxColors.get ()

image =

Image.open (ImageName)

image.size[l] *pixelSize),

Image.NEAREST)

m.size[1l])
return tmp

. def GetHW2(self,file):

im =
return

Image.open(file)

; im.size[0],im.size[1]

GetColors will get the

number of colors in the passed
. image file. We use 1.6 million
: colors as the parameter,

because the image.getcolors()

g def GetColors(self,image):

numColors =

g image.getcolors (1600000)
"{0}x{1}".format(im.size[O],i§

colors = len(numColors)

output = image.convert('P', palette=Image.ADAPTIVE, colors=numcolors)
X = output.convert("RGB")
self.GetColors (x)

numcolors =

x.getcolors ()

ProcessedColors.set (len(numcolors))
x.save('iml.png')

full circle magazine

@ 254

The Compleat Python

h contents ©

HOWTO - PYTHON PART 56

The Pixelate function
(above) takes two parameters,
image filename (im) and the
size of pixels you want. The
work is done by the
image.resize method. | found
this routine on the web in a
number of places. In this
instance we will be passing a
pixel size of 5, which works well
for Cross Stitch projects. We
also tell the method to take the
color of the nearest neighbor.
This returns a new image,
which we save as a file and
return the filename.

The ReduceColors routine
(below) basically uses the

. rgb

Image.ADAPTIVE pallet so we

can get a much smaller number
: of colors. :

There are two MakelLines

(top right) routines. They create
- the grid we spoke of earlier. :

Rgb2Hex() returns a hex

: value of the RGB value that is
: passed in. We will use thisto
: try to compare the colors in the :
. database with the colors in the
: image.

; def Rgb2Hex (self,rgb):

return '#%02x%02x%02x"' %

def FillScrolledList(self,filename):

im =
numColors =
colors =
cntr = 1
for ¢ in numColors:

hexcolor =

Image.open(filename)
im.getcolors ()
len (numColors)

self.Rgb2Hex (c[1])

lblColor=Label (self.sfFrame, text="

l1blColor.grid (row

pkID =

rset =

for r in rset:
hexcolor2 =
dmcnum =
colorname =

= cntr, column = 0, sticky =

r[6]
r[l]
r[2]

lblColor2=Label (self.sfFrame, text="

1blColor2.grid(row =
lblColor3=Label (self.sfFrame,6 text =

DmcColor.set (dmcnum)

full circle magazine

cntr,column = 1,sticky = 'w

def MakelLines(self,im,pixelSize):
global backgroundColorl

image = Image.open(im)

pixel = image.load()

for i in range(0,image.size[0],pixelSize):

for j in range(0,image.size[l],pixelSize):
for r in range(pixelSize):

pixel[i+r,j] backgroundColorl
pixel[i,j+r] backgroundColorl

image.save('output.png')

def MakelLines2(self,im,pixelSize):
global backgroundColor2

e

image = Image.open(im)

pixel = image.load()

for i in range(0,image.size[0],pixelSize):

for j in range(0,image.size[l],pixelSize):
for r in range(pixelSize):
try:
pixel[i+r,j]
pixel[i,j+r]
except:

backgroundColor2
backgroundColor2

" ,bg=hexcolor,relief=GROOVE)

'nsew' ,padx=10,pady=5)
self.GetBestDistance(c[1][0],c[1][1],c[1]1[2])

sql = "SELECT * FROM DMC WHERE pkID =
cursor.execute(sql)

{0}".format (pkID)

",bg="#" + hexcolor2,relief=GROOVE)
' ,padx=5,pady=5)

str(dmcnum) + "-" + colorname,justify=LEFT)

@ 255

The Compleat Python

h contents ©

HOWTO - PYTHON PART 56

The ScrollList (below) on the
right side holds the colors that
will be used to get the proper
floss colors. We simply create

labels to hold the colors (visual)

and text.

This (next page) is the
routine that we use to try to

find the closest match between

the color in the image and the

color in the database. There are

many different algorithms on
the web that you can look at
and try to understand the logic
behind it. It gets rather
complicated.

Ok. That’s all for this month.
Next time, we will start creating :
the PDF output file so the cross :

stitcher has something to work
with.

As always, the code is
available on PasteBin at

http://pastebin.com/DmQ1GeUx

We will continue in the next
month or so. I’'m facing some
surgery soon so I’'m not sure

how soon | will be able to sit for

any long periods of time. Until
then, enjoy.

def GetBestDistance(self,rl,gl,bl):

dist = math.sqrt(((rl-r2)**2) + ((gl-g2)**2) + ((bl-b2)**2))

sql = "SELECT * FROM DMC"
rset = cursor.execute(sql)
BestDist = 10000.0
for r in rset:

pkID = r[O0]

r2 = r[3]
g2 = r[4]
b2 = r[5]

dist = math.sqrt(((rl-r2)**2) + ((gl-g2)**2) + ((bl-b2)**2))

if dist < BestDist:
BestDist dist
BestpkID pkID

=

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his
family. His website is

Full circle magazine @ 256

The Compleat Python

ﬁ contents ©

http://www.thedesignatedgeek.net
http://pastebin.com/DmQ1GeUx

HOW-T0O

Written by Greg Walters

Program In Python Pt. 57

S

orry for missing so
many months. | still

The first line imports the

unit given in the unit

CRoss STITCH PATTERN Python’) : pdf.cell(Width, Height, text,
GENERATOR - PART 4 - pdf . output (‘examplel.pdf’, F’ parameter. ?zzgir, line, align, fill,
) : :
UNDERSTANDING PYFPDF ; . The third line creates a page
: to enter data into. Notice a . Where:

. library file. The next creates an : Page is not automatically

' instance of the FPDF object. We ; created when we create the

.« Width is length of cell. If 0,
: width extends to the right

can't sit forllong i use the default values for this : instance of the object. The margin. . .
_ r_)erlods of time, so this - example, which are: . origin of the page is the upper- : ° Height is the height of the
article might be shorter than "« Portrait . left corner, and the current cell. ' '
what you are used to. My L Measure Unit = Millimeters. . position defaults to 1 cm from L. Text is the string of text you
original plan was to jump right : : the margin. The margin can be : want to print.

into the PDF output portion of
the program, but there is so
much to understand about this
library, | decided to use this
installment as a tutorial on

pyfPDF and then tackle the PDF

output next time. So let’'s get
started.

FPDF stands for Free PDF. A
VERY minimal example would
be as follows:

from fpdf import FPDF

pdf = FPDF ()

pdf.add page()
pdf.set_font(‘Arial’,’'B’,16)

pdf.cell (40,10, 'Hello From

. « Format = A4

If you need to use ‘US’

standards, you could do it this
S way:

pdf=FPDF(‘P’,’'in’, 'Letter)

Notice the parameters are

- FPDF(orientation, units,
: format): :
: « Possible values for orientation
: are “P” for Portrait and “l” for
. Landscape.

. » Possible values for units are:
© ‘pt’ (poiints), ‘mm’ (millimeter),
- ‘cm’ (centimeter), ‘in’ (inches).
: « Possible values for format are:
© ‘A3’, ‘A4’, ‘A5’, ‘Letter’, ‘Legal’

© or a tuple containing the width

and height expressed in the

full circle magazine

@ 257

. changed with the SetMargins
- function.

ZapfDingbats.

Now we can print a cell with

- the pdf.cell() call. A cell is a

rectangular area, possibly

: framed, which contains some
© text. Output is at the current
© position which is specified

© (40,10 cm) in the above

example. The parameters are:

The Compleat Python

* Border is either 0 (no
. border(default)), 1 is border, or
. a string of any or all of the

Before you can actually print : following characters:

© any text, you must call

: pdf.set_font() to define a font.
: In the line above, we are

. defining Arial Bold 16 point.

: Standard valid fonts are Arial,
: Times, Courier, Symbol and

N R -

.+ Line is where the current

. position should go after printing
. the text. Values are 0 (to the

. right), 1 (to the beginning of

. the next line, 2 (below). Default
: is 0, and putting 1 is equivalent
. to putting 0 and calling In()

: immediatly after.

* Align allows to center or align
. the text within the cell. Values

. are "L" (left), "C" (center), "R"

. (right).

. * Fill sets the background to be
. painted (true) or transparent

" (false). Default is false.

ﬁ contents ©

HOWTO - PROGRAM IN PYTHON 57

e Link is a url or identifier
returned by addlink().

Finally, the document is

closed and sent to the file with
Output. The parameters are

destination are "I" (inline to

browser(default)), "F" (local file :
- allowed:

. * gray scales on at most 8 bits
. (256 levels)

. * indexed colors

.« true colors (24 bits)

given by name), "D" (to the
browser and force a file
download with the name
passed), and "S" (return the
document as a string).

Since we will be sending our
- allowed, and if you are using a
. version of FPDF prior to 1.7,

. Alpha channel is not supported. : calling the image function with

. the filename, the x position of :
L /N where the picture will go on the :
right) from the pyFPDF tutorial. . page, the y position, and the

. width of the picture.

cross stitch images to the pdf
file, we will have to understand
the image function.

The function is called like
this:

pdf.image(name,x=None,y=None,;

W=0 7 h=0 ’ type: nn , link=" n)

can be specified in different
ways:

» Explicit width and height or
* One explicit dimension

Supported formats are JPEG,

PNG, and GIF. If you wish to use
GIF files, you must get the GD

. extension.

For JPEGs, all flavors are

- allowed:
fpdf.output(name,dest). If file is :
not specified, the output will be :
sent to the browser. Options for :

e gray scale
e true colours (24 bits)
e CMYK (32 bits)

For PNGs, the following are

Note: interlacing is not

| stole this example (shown

You have been around long

enough that you should be able
- to look at the program and

This function puts the image. : ,\jarstand what is going on.

The size it will take on the page . But in this example the line we
. are REALLY interested in is the

- fourth line:

; this.image('imgl.png',10,8,33E
i) :

fFull circle magazine

month. See you soon.

@ 258

from fpdf import FPDF

class PDF (FPDF):
def header(this):

Logo - replace with a small png of your own
this.image('imgl.png',10,8,33)
Arial bold 15
this.set_font('Arial','B',15)
Move to the right
this.cell(80)
Title
this.cell (30,10, 'Title',1,0,'C")
Line break
this.1ln(20)

Instantiation of inherited class
pd£=PDF ()

pdf.alias _nb pages()

pdf.add page()
pdf.set_font('Times','',12)

for i in range(1,41):

In this instance, we are

Now that you have a gross

. grasp of the library, we will . a
. start our PDF code next time.

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his

ﬁ contents ©

Until then, have a good

The Compleat Python

http://www.thedesignatedgeek.net

b4

irst, let me thank all the
: from the horror flicks of the

: 70’s and 80’s rang through my
: mind, rather than running

. screaming from the room, |

: innocently asked what was

: wrong. He responded that there :
: was something wrong with one
: of the macros and “the thing

© just quits in the middle of the

: calculations”. As | whipped out
. my white cowboy hat, | said in
: my best hero voice “Don’t

: worry citizen. We'll have you up :
: and running in no time.” Within
: a short while, | discovered the
. reason the spreadsheet was

: unceremoniously crashing was
: that one cell in one of 35

. workbooks was getting a divide :
: by zero error due to an

. expected value not being

. entered in another cell in yet

. another one of the 35

. workbooks. Let me make this

. perfectly clear, it was not my

: boss’s fault. All he had asked

: for was a simple way to get the
. higher-up values from the data. :
. (The previous two sentences

. have absolutely nothing to do

readers who sent me

emails of hope and

wishes for a quick
recovery. They were very kind
and helpful. | also want to
thank Ronnie, our wonderful
editor, for his support and
patience during that painful
period. | still have issues with
sitting for long periods of time,
so this is being done over the
course of a number of days, so
| hope the continuity that I'm
trying for works. Now on with
“the show”...

Not too long ago, | was
walking to the time clock and
the General Manager of my
“day job” called me into his
office. Hoping it was just a
“how’s it going” talk, | went in
and sat down. He then started
the meeting with “I’'m having a
problem with my spreadsheet
program, and was hoping you
could help me”.

As my vision darkened and
the three-note ominous
orchestral string hits “Da Da

HOW-T0O

Written by Greg D. Walters

DAAAAAAAAA’ that we all know :

with the fact that my boss may

fFull circle magazine

@ 259

Program in Python - Part 57

read this article! Or maybe it

: does.)

As | walked back to my work

area, brushing the spurious bits :
: of computer code from my :

white hat, | realized that this

. would be an excellent teaching
: moment. So, here we are. But
- first, let’s revert back to 1979
. when Apple introduced Visicalc. :
: That was the first “Free Form
: Calculation type system” to

really make a hit in the
marketplace. While there were

: many bugs in the software, the :
- world loved the idea and clones :
: (bugs and all) began to pop up
: on other computer systems,

like the Commodore Pet and

: other Apple competitors

: (including Microsoft in 1981

: with a program called

© Multiplan). Finally, in 1983, a

: company called Lotus

- Development Corp. introduced :
: Lotus 1-2-3. While very close to :
: Visicalc in many aspects, _
including the menu structure, it :
: was written completely in x86 . from Peter Parker’s uncle Ben...

: assembly language, which

made it very fast, and many of

The Compleat Python

. the bugs of Visicalc were fixed.
. Lotus 1-2-3 was so popular that
. it became a common

: benchmark to test a machine

for “PC Compatibility”.

The advent of the Free Form

Calculation systems, allowed
: the “normal” person to deal
: with numbers in a way that

previously was in the realm of

the programmer. Almost

. anyone could, in a few hours or
. s0, make sense of numbers,

. create charts and graphs, and

. share that information with

coworkers. Shortly after that,

. the ability to automate some

. portions of the spreadsheet

. through Macros and Basic-like

: embedded languages gave

. these non-programmer users

. even more power over their

. destiny. They could get the

. answers themselves, and pretty
. charts and graphs as well,

without having to wait in the

queue for I.T. assistance.

However, as we all learned

ﬁ contents ©

HOWTO - PYTHON

WITH GREAT POWER, COMES
GREAT RESPONSIBILITY.

Soon the spreadsheet was
taken into areas that were
better suited for databases

workbooks upon workbooks

and if one little number along
the way didn’t happen to get
updated... well, we had the old
“house of cards” effect.

While | don’t think that every

spreadsheet is evil, there are
some (read this to say ‘many’)
that should have been
converted to databases many
years ago. They just became

too large and unwieldy for their

own good. If someone had just

sat down with the programmers

and said, “Please help”, the
world would be a kinder,
gentler place.

Now as | step down from my

soapbox, we come to the real
reason for this month’s article.

should have a way to deal with

tools. You never know when
you will be called upon to pull

data from a spreadsheet and
manipulate it. While there are

: many ways to get data from

. spreadsheets like using CSV

. files, which has its own

. drawbacks, sometimes you

. need to read and write directly
than spreadsheets. We now had ' from and to a ‘live’
. . spreadsheet. After looking
that relied on other workbooks, ' around, | settled on a very nice
. library to access my boss’s

. problematical spreadsheet.

A | B
1 1 6
2| 2 T
3| 3 8
4| 4 9
5(5 |10

We will be adding the library

e o Puth . called XLRD, which one might
very good Fython programmer - imagine stands for eXcelL ReaD.

. ; . This library allows us to easily
spreadsheets in their arsenal of - read data from Excel files (.xlIs , :

© xlsx and .xIsm) from versions

2.0 onward.
fFull circle magazine

. XLRD :
. (https://pypi.python.org/pypi/XIr :
. d). We can use it like is shown :
. below.

@ 260

Let’s create an excel

. Spreadsheet that we can use to .
. examine the functionality of
. XLRD. Either open excel, or
. openoffice or libreoffice calc. In
. the first column (A), enter the

: numbers 1 to 5 going down. In
. the next column (B), enter 6 to
. 10. It should look something

. like this:

Now save the spreadsheet

: as “examplel.xIs” in the folder
. you will use to save the test

. code. This way, we won’t have
. to worry about paths.

Now download and install

import xlrd
def OpenFile(path):

Save the file as examplel.py
in the same folder as the

spreadsheet. Since the code is
: so0 short, we will simply discuss

it here. Of course, the first line

. imports the library. Then we
. create a function called

. OpenFile and pass the name
. (and path if needed) of the

. spreadsheet to the function.

Now we call the

. open_workbook method and

. get back a ‘book’ object. Then

. we use the nsheets attribute to
. return the number of ACTIVE

. workbooks. We can also get the
: name of the workbooks. In this
. case, they are the default. We

use the sheet by index method

. to get Sheetl into the
. first_sheet object. Now we can

Open and read excel file
book = xlrd.open workbook (path)
Get number of active workbooks

print "Number of workbooks:

" ,book.nsheets

Get the names of those workbooks

print "Workbook names:

",book.sheet names ()

first sheet = book.sheet by index(0)

cell =

first sheet.cell(1l,1)

print "Cell at 1,1: ",cell

print "Cell Value at 1,1:

if name_ == "_main_":
path = "examplel.xls"

The Compleat Python

",cell.value

ﬁ contents ©

https://pypi.python.org/pypi/xlrd

HOWTO - PYTHON

start getting data. We get the _
information from the cell at _ import xlrd

iy . def OpenFile(path):
position (1,1) which translates e T e e e T (e

to cell position B2 (it's Zero first sheet = book.sheet by index(0)
based, so cell A1 would be . # Get the number of rows in this workbook
(0,0)). We print the data from : rows = first sheet.nrows

get the number of columns in this workbook

there, both what the cell

cols = first sheet.ncols

contains and the value, so we print "There are %d rows in this workbook." % rows
could use it in a calculation if print "There are %d cols in this workbook." % cols
we wish. : for r in range(0,rows):

cells = first sheet.row_slice(rowx=r,start_colx=0,end colx=cols)

, print cells
That was really easy, wasn't

it? Now, let’'s do somethinga | if _name == " main_ ":

bit more useful. Enter the code : path = "examplel.xls"

shown on the next page (top : . . : _ :

right) and save it as : ‘f|rst_sheet_row_sl|ce’_ This gets : estion, Start_Column, : [number:3.0, number:8.0]

. , . : ; : End_Column) ! [number:4.0, number:9.0]

example2.py’. This example '?'hbeloscykng;c;(ias”Zsoic?lIg:/://s'n row. . [number:5.0, number:10.0]

1\:/\;:2 \?vlg?ltt;)(;.l;;he contents of : So we have used the Press any key to continue .
' P X = . number of rows and the

first sheet.row_slice(RowInQu: number of columns in

: _ We’ll do one more example
¢ calculations. The output from

Since we already used the :
: before we end this month’s

first four lines of code in the : :
first example, we’ll skip them. : 1 ° 1102014 Lour prt%grarpkshthld look . article. Go to the spreadsheet
. o : something like this... : -
By using the ‘sheet.nrows’ and : |2 7 4/15/2015 : 9 . and in column C put some
‘sheet.ncols’ attributes, we get | [o P | There are 5 rows in this . dates. Here’s what my |
the number of rows and : : workbook. spreadsheet looks like now:
columns. This can be helpful, : |4 9 9/30/1963 i There are 2 cols in this :
: : workbook. : You can use any dates you
not only so we k.now whatwe g 10 3/3/2000 : [number:1.0, number:6.0] ' like. Now let’s re-run our
are deglmg Wli'Zh, we can write . [number:2.0, number:7.0] : :
“generic” routines that use _ : :
those values in our calculations : for ¢ in cells:
as you will see. In fact, we use : if c.ctype == xlrd.XL_CELL DATE:
‘rows’ in a for |OOp to obtain : date_value = xlrd.xldate_as_tuple(c.value,book.datemode)
o . : dt = str(date value[l]) + "/" + str(date value[2]) + "/" + str(date value[O0])
each row’s information. . - - —
print dt
else:

Notice the line that has
Full circle magazine @ 261 The Compleat Python A& contents ~

HOWTO - PYTHON

example2.py program. Here is
the output from mine.

There are 5 rows in this
workbook.

There are 3 cols in this
workbook.

[number:1.0, number:6.0,
xldate:41649.0]
[number:2.0, number:7.0,
xldate:42109.0]
[number:3.0, number:8.0,
xldate:31587.0]
[number:4.0, number:9.0,
xldate:23284.0]
[number:5.0, number:10.0,
xldate:36588.0]

Press any key to continue ...

Well, that’s not what we
expected. It seems that excel
holds dates as a value that is
simply formatted for whatever
we ask it to. This might be
helpful for sorting and
calculations, but, for showing
the actual data, this won't do.
Luckily, the writers of the
library already thought of this.
Delete the line that says “print :
cells” and replace it with the
code shown below.

Here, we go through each
cell in the cells list and check :
the type of the cell to see if it is':
considered a XL_CELL_DATE. If :
it is, then we convert it to a
tuple. It is stored as

YYYY,MM,DD. We simply pretty
it up to print it as MM/DD/YYYY.
Here is the output of our new
program...

There are 5 rows in this
workbook.

There are 3 cols in this
workbook.

1.0

6.0

1/10/2014

2.0

7.0

4/15/2015

3.0

8.0

6/24/1986

4.0

9.0

9/30/1963

5.0

10.0

3/3/2000

Press any key to continue ...

Just for your information, :
there is a library from the same:
wonderful people called XLWT, :
which allows you to write to :
excel files. There is a wonderful :
tutorial and documentation on
these two libraries at

http://www.python-excel.org/.

The source code for
example3.py is on pastebin at

http://pastebin.com bWz7beBw.§

Hopefully, I'll see you next
month.

Full circle magazine @ 262

The Compleat Python

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his
family. His website is

ﬁ contents ©

http://www.thedesignatedgeek.net
http://www.python-excel.org/
http://pastebin.com/bWz7beBw

b4

HOW-T0O

Program in Python - Part 58

l

ast time, we discussed

reading and using data

from an Excel file

directly. If you
remember, my boss (from my
“day” job) had a massive
spreadsheet that if one
calculation failed, it caused the
entire process to abort. Well, |
created a database from that
spreadsheet that was easy to
get a report from. However,
the original spreadsheet
created pretty charts and
graphs that his bosses liked to
see. So | undertook the task to
create charts so everyone
would be happy.

After spending about two
days digging into the existing
charting/graphing packages
already available for Python,

most free, most of them output
. eventually be able to do

: colours, but just plain black

. bars would suffice for the time
: being. It should be standalone

directly to a file, like a pdf file
or some sort of a graphics (jpg,
png, svg) file. What | was
looking for was one that would

go directly to a wxPython frame :
: called as a library. It wasn’t
: supposed to be so generic that

or panel so it can be displayed
inside a GUI program. | found
one solution, but it required so

Written by Greg D. Walters

i = eees

Monthly Sales - Colorado Springs

N

that the possibility of just giving
: the application on a flash drive
. quickly became nil,

So, being the pig-headed,

: tenacious, never-say-die kinda
: guy that | am, | decided to write :
: one on my own. The original

: goal was that it was to do (at

. least) bar-charts and maybe in
. the future line charts and/or

other types. It also should

in general so that it could be

it gets complicated, just dates

fFull circle magazine

@ 263

: along the horizontal (bottom)
. axis, values along the vertical
. axis and bars that represent

. the daily sales for that period.
. In order to keep the chart

: somewhat neat, the dates

: should be angled so that they
. don’t overwrite each other. So,
: what | came up with will be

. presented here. Left, is a

: sample output of the code.

. pretty, but it does the job. If it
: needs to be prettier later on,

: then | can work on it down the
: road.

The first thing | had to do

. was pull out my wxPython

: documentation to remember

. the graphic commands. In able
: to draw graphics, we use the a
: “dc” or Device Context. It's sort :
. of like a blank canvas that we
. can draw points, lines, and text :
: to. wxPython offers 9 different
. types of dc objects and | chose
: the wx.PaintDC which works

. from the OnPaintEvent. We will :

: _ : something, but that’s not
: use some very basic commands :

to do our drawing and painting.

The Compleat Python

. These are:

: dc.DrawLine

: dc.SetPen

: dc.SetFont

: dc.DrawText

: dc.DrawRectangle

: dc.DrawRotatedText

: dc.GetFullTextExtent

Those are the only wxPython

: routines we will use, though

. there are many others that

_ _ : would make our program much
Again, not fancy, not terribly . prettier. We will combine these
: commands into our own

: “logical” routines like,

: DrawBars, DrawAxis,

: DrawValues, and so on. While |
: could have done it in one or

: two large routines, | wanted to
. break them out into routines

. that make sense for the

: teaching moment. So let’s get

: started looking into the code.

: Create a file called mygraph.py.
. | couldn’t come up with

: anything pithy, since PyChart,

. PyGraph and the like are all

. taken. Maybe if | had a bit

: more time, I'd come up with

important. Let’s get started.
First, we’ll do the imports as we

ﬁ contents ©

HOWTO - PYTHON

always do.

#!/usr/bin/python

mygraph.py
import wx

from datetime import date,
datetime, time

import time

import math

Obviously, we need to
import he wxPython library and
the math library will help us
with some of the calculations.

are used to do the date
calculations for the horizontal
axis labels.

Something to keep in mind
as we go from here...When you
think about drawing on a
context, the upper left corner of :
the container window (our dc)
is X=0, Y=0. X is the horizontal :
axis and Y is the vertical axis.
The closer we get the lower
right corner, both numbers go
higher. In our program, we will
actually start by drawing a box
that defines our charting area
which starts at upper left X=10,
Y=10 and end with lower right

definition and the
routine.

class Line(wx.Frame):

IncomingData, ChartTitle):

768))

def init_(self, parent, id, FrameTitle,
wx.Frame. init_(self, parent, id, FrameTitle, size=(1024,
self. Blnd(wx EVT _PAINT, self.OnPaint)
self.BoxWidth = 790
self.BoxHeight = 690
self.ChartTitle = ChartTitle
self.data = []
self.SetData(IncomingData)
self.Centre()

. at X=800, Y=700. However,

. before we get to that part, we
. have to define a class to handle :
. the routines and the :
: routine. Hopefully you

. remember these from earlier
. sessions.

The datetime and time libraries :

_init__

Top right is the class
init__

Our class is called Line and

we will be creating a wxFrame
. to do our drawing. This could

also be a panel within a frame

? or any number of other options.
My choice was to have a Frame :
. pop up with our chart data on
. it. When the class is first

. instantiated, the
. is called with the name of the
. parent object, the id of that

5 object, the title of the frame (in :
. We set some variables

_init__

. the title bar), the data that we
want to chart and finally the

fFull circle magazine

routine :

@ 264

def DrawBox(self,dc):
#Horizontal

dc.DrawLine(10,10,800,10)
dc.DrawLine(10,700,800,700)

#Vertical

dc.DrawLine(10,10,10,700)
dc.DrawLine (800,10,800,700)

This is fairly simple. We pass the dc of the frame, then draw
four lines. The DrawLine function parameters are:

. title of the chart itself. Next we :
. create the wx.Frame object that
. is 1024x768 pixels in size. Next :
. we bind the paint event (which

is called everything the frame
is created, moved, covered,

. uncovered, etc.) to our event
: routine OnPaint. Remember,
. since this is inside of a class we :
. use the “self.” to say the
. routine belongs to the

class not somewhere else.

(BoxWidth, BoxHeight,

The Compleat Python

ChartTitle, data) for use later.
After we set self.data to an
empty list, we call a routine

. called SetData to find our data
. scale, which we will discuss

. further down. Finally, we set

. the frame to be centered in the
. screen and call the Show

routine. This will automatically

def DrawAxis(self,dc):

#Horizontal
dc.DrawLine(60,580,700,580)
#Vertical

dc.DrawLine (60,580,60,80)

ﬁ contents ©

HOWTO - PYTHON

call the OnPaint routine since
we are creating the Frame.

Next (above) we will write a
routine that will create a box
that shows the area that we
want to constrict our graph to.
This is not a clipping or

constraining box, it is simply to
. most of the others, but part of
. that is the comments | put in.

. The first two lines set the font
. and the pen style that we will

. be using. In the first line

. (SetFont), we define the font to :

. not italic and bold. Next we set : the center of our text within our :
(horizontal) and Y (vertical) axis :
. and the width to be 20. Now we :
. need to figure out the width of
. the text that we will be drawing :
. s0 we know how to center it in
. the box. We get this

. information by calling the

draw the eye to what we want
the user to look at.

Not really difficult. We will
be using the DrawLine function
several times throughout the
program. Next we will create a
routine that will draw the X

lines on the screen. We again
pass the dc of the frame into
the routine.

Since we just discussed the
DrawLine method, there’s

nothing very out of the ordinary :
. that we will be drawing using
580 pixels down the Frame that :
. and so on that we just defined.
. The tuple that is returned

. contains Width, Height, Decent

here. We are drawing a line

starts at X=60 and ends at
X=700. Then we draw a line
that starts at X=60 Y=580 and
goes up to X=60 Y=80. This
one is drawn from the bottom
up, but we could have drawn it
from the top down.

Next we will deal with the

. (how far down letters like “g
- and “y
. line) and any leading space.
: For our purposes, all we are
" concerned with the width. If

DrawTitle routine. Once again,
we pass the dc of the frame as

. well as the text we want to

. draw. During this process,

. think of drawing text rather

. than printing text. It's a very
. minor thing, but it will help.

This routine is longer than

the colour of the pen to black

GetFullTextExtent with the text

the font, font size, pen width

g n

a n

will go below the base

you remember, we defined the
fFull circle magazine

@ 265

def DrawTitle(self,dc,txt):

E dc.SetFont (wx.Font (20,wx .DEFAULT ,wx . NORMAL ,wx . BOLD))

dc.SetPen (wx.Pen(wx.NamedColour ('black'),20))
#Get the length of the text to draw

vals = dc.GetFullTextExtent (txt)

Returned (Width,height,Decent,externalleading)
#Get the left position (x) to draw centered text

txtleft =

(self.BoxWidth-vals[0])/2

dc.DrawText (txt, txtleft, 30)

def DrawDateTicks(self,dc,dcount):
for cntr in range(1l,dcount+l):
dc.DrawLine (65+(cntr*20),580,65+(cntr*20),600)

. width of the box back in the

. box we take the box width
: minus the width of the text and :
. then divide it by 2. That will be :
. the X value we use to draw our
. text. Finally, we reset the pen

. size and colour. Rather than

. use some default values we

. pick out of nowhere, we could

. have called the dc.GetPen

. function before we started, but
. when | started the project, |

- didn’t think about it.

Our next routine will draw

. the tic lines along the

horizontal axis at the bottom of
. the chart. We want them to be

equidistant along the line. We

. pass (as usual) the dc and a

value | called dcount which is
the number of dates we want

. to show. Since the number of

. days in any given month can

- range from 28 to 31, | wanted

. to be a bit dynamic. We simply
. use a for loop to count the

. number of lines to draw, which
. one to draw and where. If you

. have been carefully paying

. attention, we will start the lines
. at position 85 and it will be 20

. pixels high and they will be 20

. pixels apart.

def DrawRotText (self,dc,txt,x,y):
dc.SetFont (wx.Font (10,wx .DEFAULT,wx . NORMAL ,wx . BOLD))
dc.SetPen (wx.Pen(wx.NamedColour('black'),20))
dc.DrawRotatedText (txt,x,y,-45)

The Compleat Python

ﬁ contents ©

HOWTO - PYTHON

When we get around to
drawing the dates into the

chart, we want to draw the text

on an angle. That way, the text :
¥ Y : why | chose the value of 500

. for the vertical axis when we
. drew the line from 80 to 580 (or:
. actually 580 to 80). I choseto :
. use a 500 pixel “view port” to
. contain our values. That way,
. we can create a scaling value

and the angle we want the text based on an offset of 500.

doesn’t draw over itself and,
well let’s admit it, looks cool.
For this we will use the
DrawRotatedText function. The
function takes the text that we
want to have drawn, the X and
Y location as a starting point

to be drawn. In this case, we
want the text to be rotated
anti-clockwise by 45 degrees
which we enter as “-45"”. We
will set the font and pen
parameters each time the text
is drawn. We’ll deal with the
actual draw date function in a
little bit.

We will also want to draw
the values along the vertical

If we had the same range of
data each time, it would be
very easy to do. However,
reality shows that the data
range of our chart could vary
from run to run. One time, the

next time it could be 3000.
How could we create a generic
routine that would account for

this? | will try to explain my
mindset here.

You might have wondered

: Let’s say that for a given run :
. that our highest value is 395.
. We can simply draw a bar that
. is 395 pixels high to represent
. that value. The next run, our
. highest value is 2,345. If we
. try to draw the bar to its full
. height, it would disappear off
. the top of the chart. In order to :
. show the value, we can round
. the value to the nearest 500,
axis showing tics along the way. : which would be 2500 and then
. set that as the top value of our :
. axis. We then can scale the :
. value by dividing 2500 by 500
. which gives us a “scaling
. factor” of 4. Now if we take our:
. data values and divide each :
highest value could be 300. The . one by our scaling factor, we
- can then plot the values that
. they will fit within our graph.

So (shown top right) we
fFull circle magazine

. need to find the highest value
. within our data and round that
: up to the nearest 500. So 375
. would be 500, 3750 would be

: 5000 and so on.

: Next, we need to decide
- what kind of data we are going

@ 266

#
Round up to the nearest 500
#
def roundup(self, x):

return int(math.ceil(x/500.0))*500

def SetData(self,DataToUse):
if type(DataToUse[l]) is tuple:
self.DateList=[]
self.ValList=[]
for 1 in DataToUse:
self.DateList.append(1[0])
self.ValList.append(1[1])
self.HiValue = self.roundup(max(self.ValList))
self.ScalevValue = self.HiValue/500
else:
self.ValList=[]
self.DateList=[]
for 1 in DataToUse:
self.ValList.append(1l)
self.HiValue = self.roundup(max(self.ValList))

. to use. You will see further

. down the program that |

. provide two different types of

. data in lists. One assumes that
. the date range we will use,

. along the X axis, is data for

. October, but you can easily

. follow that code (shown in a

. def DrawValues (self,dc):

c2 =0

for cntr in range(580,30,-50):
dc.SetPen (wx.Pen (wx.NamedColour ('black'),1))
dc.DrawLine (60,cntr,50,cntr)
dc.SetFont (wx.Font (10,wx .DEFAULT ,wx . NORMAL ,wx . BOLD))
dc.SetPen (wx.Pen (wx.NamedColour ('black'),20))
dc.DrawText (str(c2),26,cntr-7)
c2 = c2 + (50 * self.ScaleValue)

The Compleat Python

ﬁ contents ©

HOWTO - PYTHON

few moments) and change it to

whatever month you wish. The

second data list, is more
generic and provides both a
date and a value as a list of
tuples. This allows for data to

be passed for any time period.

The date is a string and the
value is either an integer or a

float. The SetData function will :
look at the first value within the:
data list and to determine if it is:
a tuple. If it is, we assume that :

the data structure of the list is
the second option, if not, it is
the first.

If it is a tuple, we create two
lists, one for the dates and one

for the values. We then walk
the list splitting the data

between the two lists. Once we

have that done, we then find
the highest value
(max(self.ValList)) and send it
the roundup function (shown
above) so we can get our

scaling value. If the data isn’t |n
tuples, then we clear BOTH lists:

and do the same steps as
above.

Now that we have our scale :
value we can draw our tics and :

the values that will represent
our vertical axis. We again use

def DrawBars(self,dc):

dc.SetPen (wx.Pen (wx.NamedColour ('black'),5))
for cntr in range(0,len(self.VallList)):
dc.DrawRectangle (84 + (cntr* 20),580,2,self.ValList[cntr]/-self.ScaleValue)

Convert mm/dd/yy to unix timestamp

#

#

#

def DateToStamp(self,x):
x = x+" 00:00:00"

return(time.mktime(time.strptime(x,

Convert mm/dd/yy to unix timestamp

#
#
#
d

a for loop, this time from 580
to 30 with a step of -50 to work
our way up the line and draw a
10 pixel line. Next we set the
font (just in case it gets
changed somehow) and draw
the value of each of our values.

Now we get into the routines§

that will create the date tics

along the X axis if we choose toé

have a simple list of data

without including the dates. We '
have two support routines, one :

called DateToStamp and the
other Timestamp2Date (Yes, |

got lazy when | wrote this one).

Rather than going through a

bunch of complicated DateTimeé

routines to determine the
number of days in any given

fFull circle magazine

@ 267

ef Timestamp2Date(self,tstmp):

"Sm/%d/%Y $H:3M:35")))

Draw the dates in rotated text

#
#
#
d

ed =
ed = ed + 86400
stp =1

for cntr in range(sd,ed,86400):
self.Timestamp2Date (cntr)
self.DrawRotText (dc,dt, 65+ (stp*20),600)

dt =

month, I'm going to use a start:
date and an end date, convert :
both of those to Unix :
timestamps to get the proper
day of month within the
sequence. I've shown you the
DateToStamp routine before
and the Timestamp2Date
simply reverses the process.

The next routine takes the
start date and end date, as we

The Compleat Python

ef DrawDates(self,dc,startdate,enddate):
sd = int(self.DateToStamp(startdate))
int (self.DateToStamp (enddate))

QO M®unLuncnn —o

moment ago, converts them to
Unix timestamps, then adds
86400 (the number of ticks in a
24 hour period) to make sure
we get the last date in the
sequence, then uses another
for loop to draw the rotated
text where we want it.

We are now at the OnPaint
event handler that calls all the
helper routines we dealt with so

ﬁ contents ©

HOWTO - PYTHON

far. Remember, by using the
PaintDC, every time the frame
is moved, re-sized, covered or
uncovered, the OnPaint event
handler is called, thereby
assuring our graph will be
persistent.

First (shown on the next
page, top left) we get an

call the DrawBox, DrawAxis,
DrawTitle, and the

. DrawDateTicks routines. We

. then determine if the DatelList
. list (created in the SetData

. routine called from __init__

. routine) is empty or if it has

. dates for us to draw. If so, we
. call the DrawDates routine with :
. the proper values. We then call
instance of our dc, and then we :

the DrawValues routine and

#

Main routine

#

def OnPaint(self,event):
dec =
self.DrawBox (dc)
self.DrawAxis (dc)

wx.PaintDC(self)

self.DrawTitle(dc,self.ChartTitle)

Date Tics and dates

self.DrawDateTicks (dc,31)

leng =
if leng > O:
sd =

len(self.DatelList)

self.DateList[0]

ed = self.DateList[4]
self.DrawDates (dc,sd, ed)

else:

self.DrawDates (dc,"02/01/2015","03/01/2015")
Value Tics - Draw 10 tics

self.DrawValues (dc)

if name == " main ":
data =

Iou

finally the DrawBars routine.
Now you should understand

. why | broke everything down
. into little bitty chunks.

The last thing we have to

look at is the runtime routine.
- You probably remember that

the 'if _name__ ==
__main__"" runs if we are

nr

. calling the program as a

. standalone rather than as a

. library. The next two lines are

. the dummy data that | used to
. test the program. You could

. comment out the first one and
. run it with the second data line
. which is the one that uses the

. tuple. The last three lines will

. instantiate the wxPython

. routines, then the Line class

- and finally call the :
. app.MainLoop wxPython routine :
. to get the frame to run. :

So there it is. Our own

on pastebin at

http://pastebin.com/m2feeh5P.

Until next time, have fun

coding.

graphing/charting program and
- library. I've put the full code up :

=

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his

(300,20,47,96,1200,700,500,230,179,500,300,20,47,96,200,400,500,230,179,500,300,20,47,96,200,400,500,230,179,500,475,423)
#data = (("02/01/2015",169.63),("02/02/2015",188.81),("02/03/2015",61.85),("02/04/2015",94.53),("02/05/2015",235.85))

app = wx.App()
Line(None, -1,

fFull circle magazine

'Bar Chart',data,"Monthly Sales - Colorado Springs")

@ 268

The Compleat Python

ﬁ contents ©

http://www.thedesignatedgeek.net
http://pastebin.com/m2feeh5P

HOW-TO

Program in Python Pt. 59

Written by Greg. D. Walters

irst, let me say Happy

100 to Ronnie and the

crew. It’s a privilege to

be part of this
milestone.

This time | thought that I'd
share some information on my
new obsession. I've started
repairing and building stringed

musical instruments like guitars :

and violins. Believe it or not,
there is a lot of math involved
in musical instruments. Today,
we will look at some of the
math involved with the length
of strings and where the frets
should be placed on the
fretboard.

Take a look at the picture of
the guitar. | annotated various
items in the image. The
important things to look at are
the Nut near the top of the
fingerboard, the Frets, the
Bridge near the bottom, and
the white “line” within the
bridge called the Saddle. The

a perfect spot to change the
length of the string to create a

CLTLLLY meem Nl.lt

e — Fret #1

------ ~Fret #7

N
R

IARERS __.Fret #12

note that is in tune. The
f the frets is t ¢ . positions of these frets are not
purpose of the 1rets Is to create . arbitrary, but mathematically

" determined.

full circle magazine

@ 269

Different scale lengths will

: create different feel and tones.
: For example, guitars like the

. Fender Stratocasters® have a
: scale length of 25%"”, which

: produces a rich and strong bell- :
. like tone. On the other hand,
* Gibson guitars often use a scale

length of 24%4". This creates a
The Compleat Python

Now, the physics of vibrating lower string tension which

: strings tells us that if you half
: the vibrating string length of a
: theoretically perfect string, you : ,,
. will double the frequency of the : that a scale length of 25

: vibrations. In the case of a
: guitar, this string length is
. between the nut and the :
. saddle. This distance is referred
: to the Scale Length of the :
© guitar. The half-point that

. allows for the doubled

: frequency is fret # 12. If

. correctly done, just by lightly
: placing your finger on the

: string at this location, you get a :
: pleasing tone. There are a few
: other positions that this will

: happen, but the 12th fret

: should be the perfect location
: for this doubling, making the

. note go up one octave.

. makes an easier playing feel
: and a warmer tone. Other
. guitar manufacturers decided

: makes a clearer tone than
. either of the other two
. “standard” scale lengths.

So with the ability of a guitar

. maker to come up with their

. own scale length, the spacing

. of the frets will have to be

. recalculated. This is something
. that luthiers (quitar makers)

: have been dealing with for

. hundreds of years.

In the past, there was a

. technique called the rule of 18
. which involves successively

. dividing the scale length minus
. the offset to the previous fret

. by 18. While this kind of

. worked, the tones were off, the
. higher up the fingerboard the

. player went. These days, we

. use a different constant. This

: constant is 17.817. By using

. this “new” constant, the 12th

. fret or octave is at the exact

position to be half the scale

ﬁ contents ©

HOWTO - PYTHON

length of the string.

Now, these calculations are
easy enough to do by paper
and pencil or even a simple
calculator, it's just as easy to
create a Python program to do
the calculations for us in just a
second. Once you have the

for the fret at the correct
positions and then hammer in
the frets.

So, let’s take a look at the
program.

that will prompt for the scale
length of the guitar (or bass),
do the calculations and then
print out the distances. The
calculations and all returned
lengths are all in inches, so all
our friends that use metric
measurements, please add the
proper conversion calculations.
After almost 5 years, you
should be able to do this with
ease.

We don’t need to import any
libraries for this so we will start :

off by defining a couple of
variables.

ScaleLength = 0

. CumulativeLength = 0

: Next we will create a routine
. (top right) that will be called
. repeatedly as we “travel down” :
. the fingerboard. We will pass
: two values into this routine. :
sositions, you simply saw a slot . One is the scale length and the
! : other is the cumulative
. distance from the nut to the

. previous fret.

In this routine, we take the

. scale length, subtract the
. cumulative distance and assign :
W . that value to BridgeToFret. We
e want fo create a program : then take that value, divide it
. by our constant (17.817), add
. back in the cumulative distance :
. and then return that valueto
: our calling routine. Remember,
. we could simply have returned
© the calculated value without
. assigning it to a variable name. :
. However, if we ever want to

def DoWork (ScalelLength):

CumulativeLength = 0

for x in range(1,25):
FretNumber = x

if FretNumber ==

CumulativeLength

else:

CumulativeLength
print (“Fret=%d,NutToFret=%.3f" %

@ 270

fFull circle magazine

def CalcSpacing(Length,NTF):

BridgeToFret = Length-NTF
(BridgeToFret/17.817) + NTF

NutToFret =
return NutToFret

. inspect the calculated values,
. it’s easier to do if we assign the :
. by a formatted version of the

. value before we return it.
: . cumulative length.

Now we will make our

. worker routine. We’ve done this :
- kind of thing many times in the
. past. We will pass it the scale

. length and it will loop for up to
. 24 frets (range(1,25)). Even if

. your project has less than 24

: frets, you will have the correct
. positions of all the frets you do :
: have. | chose 24 because that'’s :
the maximum of frets for most

guitars. When we get into the

. loop, we check the fret number
. (x) and if it is 1, we pass the

. cumulative length as 0, since

. this is the first calculation.

. Otherwise, we pass the last

: cumulative length in and it

. becomes the result from the

= CalcSpacing(ScaleLength,0)

- calculation routine. Finally, we

print each fret number followed

Finally, we have the code

. that does the prompting for the
. scale length. I'm sure you will

. remember the format for the

: raw_input routine, since we

. have used it so many times

. before. Something you might

. not remember: that raw_input

always returns a string, so

. when we pass it off to the

: DoWork routine, we have to

. pass it as a floating point

. number so the routine will work
. correctly. Of course, we could

: simply pass it as a string, but

. we would have to deal with the
. conversion in the DoWork

. routine.

= CalcSpacing(ScaleLength,CumulativelLength)

The Compleat Python

(FretNumber,CumulativeLength))

ﬁ contents ©

HOWTO - PYTHON

ScaleLength =

raw_input (“Please enter Scale

Length of guitar -> “)

DoWork (float (ScaleLength))

You might wonder what good

this program will do if you
aren’t going to build a guitar

from scratch. It can be valuable
when you're looking at buying a':
used guitar or trying to tweak a :

guitar with a floating bridge.
Also, if you are a guitar player,
this might have been
something you didn’t know
about guitars.

Of course, the code is
available from pastebin at

http://pastebin.com/A2RNECt5.

full circle magazine

@ 271

The Compleat Python

ﬁ contents ©

http://pastebin.com/A2RNECt5

HOW-T0O

Python In The REAL World

Written by Greg D. Walters

elcome fellow
pythoners. As the
kids here in the
central parts of
the U.S. say, “What's Shakin’
Bacon?” I'm not exactly sure
what that’'s supposed to mean,
but | assume it’'s a good thing.

You might notice the new
header. | decided that I've
taught you all the basics of
Python that | can for “general”
programming, SO how we are
going to delve into using

Python to talk to other types of
. and access to an HDMI monitor :

: or TV. Eventually, you should

: also consider getting a

. breadboard and some

: connecting wires for when we

: start to interface to the outside
: world. You can find any number
. of places that sell the Pi on the
. Internet. Here in the U.S., we

: can get them for around $35.

computers and controllers, like
the Raspberry Pi and the
Arduino micro controller. We’ll
look at things like temperature
sensors, controlling motors,
flashing LEDs and more.

This issue we will be
focusing on what we’ll need to
do this and focus on a few of
the projects we will be looking
at in the future. Next issue, we
will start the first project.

One of the things we will talk :

about next time will be the

: Raspberry Pi. The Pi is a credit-
: card sized computer that

: natively runs Linux on an SD

: card. Its output goes to your TV
. set via HDMI. It also has an

. Ethernet connection for Internet :
© access. '

You can find out more at the

. official site

! https://www.raspberrypi.org. If
: you want to follow along with

: the projects, you will need a Pi,
: SD card, Keyboard, Mouse, a

: 5volt DC power supply like the

ones on modern cell phones,

: One other thing about the Pi :
© is that it provides access to a
: series of pins that support GPIO :
(General Purpose Input/Output). :

Basically, this means that you

full circle magazine

@ 272

: can write programs that will

: send signals to the output pins
. and read the signals from the

© input pins. This can be used to
. interface to things like LEDs,

sensors, push buttons, etc.

: Many people have made home
: automation systems, multiple

© processor systems (by linking

: 40 or so Pi computers together
: to emulate a supercomputer),

: weather stations, even drones.
. So you can imagine that the
: possibilities are endless. That's
- why | decided to start with it for :
© this series of articles. :

After a while, we will begin

. to work with the Arduino, which :
- according to the official website :
. (https://www.arduino.cc): :
“Arduino is an open-source

. electronics platform based on easy-
© to-use hardware and software. It's

: intended for anyone making

. interactive projects”.

Once again, this is an

: exciting device to work with. In

this part of the series, we will
look at talking to the Arduino,
first in its native scripting

The Compleat Python

language, and then in Python
. and eventually interfacing the
. Pi with the Arduino.

| know this month’s article is

. fairly short, but I've been doing
. poorly health-wise, so I'm

: saving my strength for the next
. article. Until then, grab some

. electronics and get ready for

. fun!

=

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his

ﬁ contents ©

http://www.thedesignatedgeek.net
https://www.raspberrypi.org
https://www.arduino.cc

