
The Python Collection

Full Circle
THE INDEPENDENT MAGAZINE FOR THE UBUNTU LINUX COMMUNITY

Python Special Edition

FFuu llll CCii rrccllee MMaaggaazziinnee ii ss nneeii tthheerr aaffffii llii aa tteedd wwii tthh ,, nnoorr eennddoorrsseedd bbyy,, CCaannoonn ii ccaa ll LLttdd ..

http://fullcirclemagazine.org

Part Page

1 4

2 8

3 1 3

4 1 8

5 21

6 25

7 30

8 35

9 44

1 0 48

1 1 53

1 2 58

1 3 62

1 4 67

1 5 73

1 6 78

1 7 82

1 8 85

1 9 88

20 90

Part Page

21 95

22 1 00

23 1 09

24 1 1 6

25 1 22

26 1 30

27 1 39

28 1 46

29 1 53

30 1 60

31 1 64

32 1 69

33 1 71

34 1 74

35 1 77

36 1 81

37 1 84

38 1 88

39 1 89

40 1 93

Part Page

41 1 97

42 203

43 207

44 21 2

45 21 5

46 21 8

47 220

48 223

49 225

50 227

51 229

52 234

53 237

54 240

55 244

56 252

57 257

57 259

58 263

59 269

60 272

CONTENTS

The Python Collection...

Here is a reprint of the Python series written by Greg Walters, Parts

1 -60 from issues #27 through #1 02.

Please bear in mind the original publication date; current versions of

hardware and software may differ from those illustrated, so check

your hardware and software versions before attempting to emulate

the tutorials in these special editions. You may have later versions of

software installed or available in your distributions' repositories.

Enjoy!

About Full Circle

Full Circle is a free, independent,

magazine dedicated to the Ubuntu

family of Linux operating systems.

Each month, it contains helpful how-

to articles and reader-submitted

stories.

Full Circle also features a companion

podcast, the Full Circle Podcast

which covers the magazine, along

with other news of interest.

Please note: this Special Edition is
provided with absolutely no warranty

whatsoever; neither the contributors

nor Full Circle Magazine accept any

responsibility or liability for loss or

damage resulting from readers

choosing to apply this content to

theirs or others computers and

equipment

Find Us

Website:

http://www.fullcirclemagazine.org/

Forums:

http://ubuntuforums.org/

forumdisplay.php?f=270

IRC: #fullcirclemagazine on

chat.freenode.net

Editorial Team

Editor: Ronnie Tucker

(aka: RonnieTucker)

ronnie@fullcirclemagazine.org

Webmaster: Lucas Westermann

admin@fullcirclemagazine.org

Editing & Proofreading

Mike Kennedy, Gord Campbell,

Robert Orsino, Josh Hertel, Bert

Jerred, Jim Dyer and Emily Gonyer

Our thanks go to Canonical and the

many translation teams around the

world.

The articles contained in this magazine are released under the Creative Commons Attribution-Share Alike 3.0 Unported license. This means you

can adapt, copy, distribute and transmit the articles but only under the following conditions: You must attribute the work to the original author

in some way (at least a name, email or URL) and to this magazine by name ('full circle magazine') and the URL www.fullcirclemagazine.org (but not attribute

the article(s) in any way that suggests that they endorse you or your use of the work). If you alter, transform, or build upon this work, you must distribute the

resulting work under the same, similar or a compatible license.

Full Circle Magazine is entirely independent of Canonical, the sponsor of Ubuntu projects and the views and opinions in the magazine should in no way

be assumed to have Canonical endorsement.

Welcome to another Special Edition of
Full Circle Magazine....

http://www.fullcirclemagazine.org/
http://ubuntuforums.org/forumdisplay.php?f=270
mailto:ronnie@fullcirclemagazine.org
mailto:admin@fullcirclemagazine.org

full circle magazine 4 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg Walters PPrroogg rraa mm II nn PPyytthh oonn -- PPaa rrtt 11

SEE ALSO:
N/A

APPLICABLE TO:

CATEGORIES:

DEVICES:

GraphicDev Internet M/media System

HDDCD/DVD USB Drive Laptop Wireless

A
mong the many
programming
languages currently
avai lable, Python is

one of the easiest to learn.
Python was created in the late
1980's, and has matured
greatly since then. It comes pre-
instal led with most Linux
distributions, and is often one of
the most overlooked when
picking a language to learn.
We' l l deal with command-l ine
programming in this article. In a
future one, we' l l play with GUI

(Graphical User Interface)
programming. Let's jump right
in, creating a simple
appl ication.

Our First Program
Using a text editor such as

gedit, let's type some code.
Then we' l l see what each l ine
does and go from there.

Type the fol lowing 4 l ines.

#!/usr/bin/env python

print 'Hello. I am a python

program.'

name = raw_input("What is

your name? ")

print "Hello there, " + name

+ "!"

That's al l there is to it. Save
the fi le as hel lo.py wherever
you would l ike. I 'd suggest
putting it in your home
directory in a folder named
python_examples. This simple
example shows how easy it is
to code in Python. Before we
can run the program, we need

to set it to be executable. Do
this by typing

chmod +x hello.py

in the folder where you saved
your python fi le. Now let's run
the program.

greg@earth:~/python_examples$

./hello.py

Hello. I am a python

program.

What is your name? Ferd

Burphel

Hello there, Ferd Burphel!

greg@earth:~/python_examples$

That was simple. Now, let's
look at what each l ine of the
program does.

#!/usr/bin/env python

This l ine tel ls the system
that this is a python program,
and to use the default python
interpreter to run the program.

print 'Hello. I am a python

program.'

Simply put, this prints the
first l ine "Hel lo. I am a python
program." on the terminal .

name = raw_input("What is

your name? ")

This one is a bit more
complex. There are two parts to
this l ine. The first is name =,
and the second is
raw_input("What is your name?
"). We' l l look at the second part
first. The command raw_input
wi l l print out the prompt in the
terminal ("What is your name?
"), and then wi l l wait for the
user (you) to type something
(fol lowed by {Enter}). Now let's
look at the first part: name =.
This part of the command
assigns a variable named
"name". What's a variable?
Think of a variable as a shoe-
box. You can use a shoe-box to
store things -- shoes, computer
parts, papers, whatever. To the
shoe-box, it doesn't real ly
matter what's in there -- it's
just stored there. In this case, it
stores whatever you type. In
the case of my entry, I typed
Ferd Burphel . Python, in this

full circle magazine 5 contents ^The Compleat Python

PROGRAM IN PYTHON ‐ PART 1
instance, simply takes the

input and stores it in the
"name" shoe-box for use later
in the program.

print "Hello there, " + name

+ "!"

Once again, we are using the
print command to display
something on the screen -- in
this case, "Hel lo there, " , plus
whatever is in the variable
"name", and an exclamation
point at the end. Here we are
concatenating or putting
together three pieces of
information: "Hel lo there",
information in the variable
"name", and the exclamation
point.

Now, let's take a moment to
discuss things a bit more
deeply before we work on our
next example. Open a terminal
window and type:

python

You should get something
l ike this:

greg@earth:~/python_examples$

python

Python 2.5.2 (r252:60911, Oct

5 2008, 19:24:49)

[GCC 4.3.2] on linux2

Type "help", "copyright",

"credits" or "license" for

more information.

>>>

You are now in the python
shel l . From here, you can do a
number of things, but let's see
what we got before we go on.
The first thing you should
notice is the python version --
mine is 2.5.2 . Next, you should
notice a statement indicating
that, for help, you should type
"help" at the prompt. I ' l l let you
do that on your own. Now type:

print 2+2

and press enter. You' l l get back

>>> print 2+2

4

>>>

Notice that we typed the
word "print" in lower case.
What would happen if we typed
"Print 2+2"? The response from
the interpreter is this:

>>> Print 2+2

File "<stdin>", line 1

Print 2+2

^

SyntaxError: invalid syntax

>>>

That's because the word
"print" is a known command,
whi le "Print" is not. Case is very
important in Python.

Now let's play with variables
a bit more. Type:

var = 2+2

You' l l see that nothing much
happens except Python returns
the ">>>" prompt. Nothing is
wrong. What we told Python to
do is create a variable (shoe-
box) cal led var, and to stick
into it the sum of "2+2". To see
what var now holds, type:

print var

and press enter.

>>> print var

4

>>>

Now we can use var over
and over again as the number
4, l ike this:

>>> print var * 2

8

>>>

I f we type "print var" again
we' l l get this:

>>> print var

4

>>>

var hasn't changed. It's sti l l
the sum of 2+2, or 4.

This is, of course, simple
programming for this
beginner's tutoria l . Complexity
wi l l increase in subsequent
tutoria ls. But now let's look at
some more examples of
variables.

In the interpreter type:

>>> strng = 'The time has

come for all good men to come

to the aid of the party!'

>>> print strng

The time has come for all

good men to come to the aid

of the party!

>>>

You've created a variable
named "strng" (short for string)
containing the value 'The time
has come for al l good men to
come to the aid of the party! ' .
From now on (as long as we are

full circle magazine 6 contents ^The Compleat Python

in this instance of the
interpreter), our strng variable
wi l l be the same unless we
change it. What happens if we
try to multiply this variable by
4?

>>> print strng * 4

The time has come for all

good men to come to the aid

of the party!The time has

come for all good men to come

to the aid of the party!The

time has come for all good

men to come to the aid of the

party!The time has come for

all good men to come to the

aid of the party!

>>>

Well , that is not exactly what
you would expect, is it? It
printed the value of strng 4
times. Why? Wel l , the
interpreter knew that strng was
a string of characters, not a
value. You can't perform math
on a string.

What if we had a variable
cal led s that contained '4' , as in
the fol lowing:

>>> s = '4'

>>> print s

4

I t looks as though s contains
the integer 4, but it doesn't.
Instead it contains a string
representation of 4. So, if we
type 'print s * 4' we get. . .

>>> print s*4

4444

>>>

Once again, the interpreter
knows that s is a string, not a
numerical value. I t knows this
because we enclosed the
number 4 with single quotes,
making it a string.

We can prove this by typing
print type(s) to see what the
system thinks that variable
type is.

>>> print type(s)

<type 'str'>

>>>

Confirmation. I t's a string
type. If we want to use this as a
numerical value, we could do
the fol lowing:

>>> print int(s) * 4

16

>>>

The string (s), which is '4' ,
has now been converted to an

integer and then multipl ied by
4 to give 16.

You have now been
introduced to the print
command, the raw_input
command, assigning variables,
and the difference between
strings and integers.

Let's go a bit further. In the
Python Interpreter, type quit()
to exit back to the command
prompt.

Simple For Loop
Now, let's explore a simple

programming loop. Go back to
the text editor and type the
fol lowing program.

#! /usr/bin/env python

for cntr in range(0,10):

print cntr

Be sure to tab the "print
cntr" l ine. This is important.
Python doesn't use parentheses
"(" or curly braces "{" as do
other programming languages
to show code blocks. I t uses
indentations instead.

Save the program as

"for_loop.py". Before we try to
run this, let's talk about what a
for loop is.

A loop is some code that
does a specified instruction, or
set of instructions, a number of
times. In the case of our
program, we loop 10 times,
printing the value of the
variable cntr (short for
counter). So the command in
plain Engl ish is "assign the
variable cntr 0, loop 10 times
printing the variable cntr
contents, add one to cntr and
do it al l over again. Seems
simple enough. The part of the
code "range(0,10)" says start
with 0, loop unti l the value of
cntr is 10, and quit.

Now, as before, do a

chmod +x for_loop.py

and run the program with

./for_loop.py

in a terminal .

greg@earth:~/python_examples$

./for_loop.py

0

1

PROGRAM IN PYTHON ‐ PART 1

full circle magazine 7 contents ^The Compleat Python

PROGRAM IN PYTHON ‐ PART 1
2

3

4

5

6

7

8

9

greg@earth:~/python_examples

$

Well , that seems to have
worked, but why does it count
up to only 9 and then stop.
Look at the output again. There
are 10 numbers printed,
starting with 0 and ending with
9. That's what we asked it to do
-- print the value of cntr 10
times, adding one to the
variable each time, and quit as
soon as the value is 10.

Now you can see that, whi le
programming can be simple, it
can also be complex, and you
have to be sure of what you
ask the system to do. If you
changed the range statement
to be "range(1,10)" , i t would
start counting at 1, but end at
9, since as soon as cntr is 10,
the loop quits. So to get it to
print "1,2 ,3,4,5,6,7,8,9,10", we
should use range(1,11) - since
the for loop quits as soon as
the upper range number is

reached.
Also notice the syntax of the

statement. I t is "for variable in
range(start value,end value): "
The ": " says, we are starting a
block of code below that should
be indented. I t is very
important that you remember
the colon ": " , and to indent the
code unti l the block is finished.

If we modified our program
to be l ike this:

#! /usr/bin/env python

for cntr in range(1,11):

print cntr

print 'All Done'

We would get an output of. . .

greg@earth:~/python_examples$

./for_loop.py

1

2

3

4

5

6

7

8

9

10

All Done

greg@earth:~/python_examples$

Make sure your indentation

is correct. Remember,
indentation shows the block
formatting. We wi l l get into
more block indentation
thoughts in our next tutoria l .

That's about al l for this time.
Next time we' l l recap and move
forward with more python
programming instructions. In
the meantime, you might want
to consider instal l ing a python
specific editor l ike Dr. Python,
or SPE (Stani 's Python Editor),
both of which are avai lable
through Synaptic.

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his
fami ly.

http://apress.com

full circle magazine 8 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg Walters PPrroogg rraa mm II nn PPyytthh oonn -- PPaa rrtt 22

SEE ALSO:
FCM#27 - Python Part 1

APPLICABLE TO:

CATEGORIES:

DEVICES:

GraphicDev Internet M/media System

HDDCD/DVD USB Drive Laptop Wireless

I
n the last installment, we

looked at a simple program

using raw_input to get a

response from the user, some

simple variable types, and a simple

loop using the "for" statement. In

this installment, we will delve more

into variables, and write a few

more programs.

LISTS

Let's look at another type of

variable called lists. In other

languages, a list would be

considered an array. Going back to

the analogy of shoe-boxes, an array

(or list) would be a number of

boxes all glued side-by-side holding

like items. For example, we could

store forks in one box, knives in

another, and spoons in another.

Let's look at a simple list. An easy

one to picture would be a list of

month names. We would code it

like this...

months =
['Jan','Feb','Mar','Apr','May
','Jun','Jul','Aug','Sep','Oc
t','Nov','Dec']

To create the list, we bracket all

the values with square brackets ('['

and '] ') . We have named our list

'months'. To use it, we would say

something like print months[0] or

months[1] (which would print 'Jan'

or 'Feb') . Remember that we

always count from zero. To find the

length of the list, we can use:

print len(months)

which returns 1 2.

Another example of a list would

be categories in a cookbook. For

example...

categories = ['Main
dish','Meat','Fish','Soup','C
ookies']

Then categories[0] would be

'Main dish', and categories[4]

would be 'Cookies'. Pretty simple

again. I 'm sure you can think of

many things that you can use a list

for.

Up to now, we have created a

list using strings as the

information. You can also create a

list using integers. Looking back at

our months list, we could create a

list containing the number of days

in each one:

DaysInMonth =
[31,28,31,30,31,30,31,31,30,3
1,30,31]

I
fwe were to print

DaysInMonth[1] (for February)

we would get back 28, which is

an integer. Notice that I made

the list name DaysInMonth. Just as

easily, I could have used

'daysinmonth' or just 'X'... but that

is not quite so easy to read. Good

programming practices suggest

(and this is subject to

interpretation) that the variable

names are easy to understand.

We'll get into the whys of this later

on. We'll play with lists some more

in a little while.

Before we get to our next

sample program, let's look at a few

other things about Python.

Correction To Part1
I received an email from David Turner
who suggested that using the Tab-key
for indentation of code is somewhat
misleading as some editors may use
more, or less, than four spaces per
indent. This is correct. Many Python
programmers (myself included) save
time by setting the tab key in their
editor to four spaces. The problem is,
however, that someone else's editor
may not have the same setting as yours,
which could lead to ugly code and other
problems. So, get into the habit of using
spaces rather than the Tab-key.

full circle magazine 9 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 2

More on Strings

We briefly discussed strings in

Part 1 . Let's look at string a bit

closer. A string is a series of

characters. Not much more than

that. In fact, you can look at a

string as an array of characters. For

example if we assign the string

'The time has come' to a variable

named strng, and then wanted to

know what the second character

would be, we could type:

strng = 'The time has come'
print strng[1]

The result would be 'h'.

Remember we always count from

0, so the first character would be

[0] , the second would be [1] , the

third would be [2] , and so on. If we

want to find the characters starting

at position 4 and going through

position 8, we could say:

print strng[4:8]

which returns 'time'. Like our for

loop in part 1 , the counting stops

at 8, but does not return the 8th

character, which would be the

space after 'time'.

We can find out how long our

string is by using the len() function:

print len(strng)

which returns 1 7. If we want to find

out where in our string the word

'time' is, we could use

pos = strng.find('time')

Now, the variable pos (short for

position) contains 4, saying that

'time' starts at position 4 in our

string. If we asked the find function

to find a word or sequence that

doesn't exist in the string like this:

pos = strng.find('apples')

the returned value in pos would be

-1 .

We can also get each separate

word in the string by using the split

command. We will split (or break)

the string at each space character

by using:

print strng.split(' ')

which returns a list containing

['The', 'time', 'has' , 'come'] . This is

very powerful stuff. There are

many other built-in string

functions, which we'll be using later

on.

Literal Substitution

T
here is one other thing

that I will introduce

before we get to our next

programming example.

When we want to print something

that includes literal text as well as

variable text, we can use what's

called Variable Substitution. To do

this is rather simple. If we want to

substitute a string, we use '%s' and

then tell Python what to

substitute. For example, to print a

month from our list above, we can

use:

print 'Month = %s' % month[0]

This would print 'Month = Jan'.

If we want to substitute an integer,

we use '%d'. Look at the example

below:

Months =
['Jan','Feb','Mar','Apr','May
','Jun','Jul','Aug','Sep','Oc
t','Nov','Dec']
DaysInMonth =
[31,28,31,30,31,30,31,31,30,3
1,30,31]
for cntr in range(0,12):

print '%s has %d days.'
%
(Months[cntr],DaysInMonth[cnt
r])

The result from this code is:

Jan has 31 days.
Feb has 28 days.
Mar has 31 days.
Apr has 30 days.
May has 31 days.
Jun has 30 days.
Jul has 31 days.
Aug has 31 days.
Sep has 30 days.
Oct has 31 days.
Nov has 30 days.
Dec has 31 days.

Something important to

understand here is the use of

single quotes and double quotes. If

you assign a variable to a string like

this:

st = 'The time has come'

or like this:

st = “The time has come”

the result is the same. However, if

you need to include a single quote

in the string like this:

full circle magazine 1 0 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 2
st = 'He said he's on his
way'

you will get a syntax error. You

need to assign it like this:

st = “He said he's on his
way”

Think of it this way. To define a

string, you must enclose it in some

kind of quotes ! one at the

beginning, and one at the end !

and they must match. If you need

to mix quotes, use the outer

quotes to be the ones that aren't in

the string as above. You might ask,

what if I need to define a string like

“She said “Don't Worry””? In this

case, you could define it this way:

st = 'She said “Don\'t
Worry”'

Notice the backslash before the

single quote in 'Don't' . This is called

an escape character, and tells

Python to print the (in this case)

single-quote ! without

considering it as a string delimiter.

Other escape character sequences

(to show just a few) would be '\n'

for new line, and '\t' for tab. We'll

deal with these in later sample

code.

Assignment verses

Equate

We need to learn a few more

things to be able to do our next

example. First is the difference

between assignment and equate.

We've used the assignment many

times in our samples. When we

want to assign a value to a variable,

we use the assignment operator or

the '=' (equal sign):

variable = value

However, when we want to

evaluate a variable to a value, we

must use a comparison operator.

Let's say we want to check to see if

a variable is equal to a specific

value. We would use the '==' (two

equal signs):

variable == value

So, if we have a variable named

loop and we want to see if it is

equal to, say, 1 2, we would use:

if loop == 12:

Don't worry about the if and the

colon shown in the example above

yet. Just remember we have to use

the double-equal sign to do

evaluation.

Comments

The next thing we need to

discuss is comments. Comments

are important for many things. Not

only do they give you or someone

else an idea of what you are trying

to do, but when you come back to

your code, say 6 months from now,

you can be reminded of what you

were trying to do. When you start

writing many programs, this will

become important. Comments also

allow you to make Python ignore

certain lines of code. To comment a

line you use the '#' sign. For

example:

This is a comment

You can put comments

anywhere on a code line, but

remember when you do, Python

will ignore anything after the '#'.

If statements

Now we will return to the "if"

statement we showed briefly

above. When we want to make a

decision based on values of things,

we can use the if statement:

if loop == 12:

This will check the variable

'loop', and, if the value is 1 2, then

we do whatever is in the indented

block below. Many times this will

be sufficient, but, what if we want

to say If a variable is something,

then do this, otherwise do that. In

pseudo code you could say:

if x == y then
do something

else
do something else

and in Python we would say:

if x == y:
do something

else:
do something else
more things to do

The main things to remember

here are:

1 . End the if or else statements

full circle magazine 1 1 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 2

with a colon.

2. INDENT your code lines.

Assuming you have more than

one thing to check, you can use the

if/elif/else format. For example:

x = 5
if x == 1:

print 'X is 1'
elif x < 6:

print 'X is less than
6'
elif x < 10:

print 'X is less than
10'
else:

print 'X is 10 or
greater'

Notice that we are using the '<'

operator to see if x is LESS THAN

certain values - in this case 6 or 1 0.

Other common comparison

operators would be greater than

'>' , less than or equal to '<=',

greater than or equal to '>=', and

not equal ' !=' .

While statements

Finally, we'll look at a simple

example of the while statement.

The while statement allows you to

create a loop doing a series of

steps over and over, until a specific

threshold has been reached. A

simple example would be

assigning a variable “loop”

to 1 . Then while the loop

variable is less than or

equal to 1 0, print the value

of loop, add one to it and

continue, until, when loop

is greater than 1 0, quit:

loop = 1
while loop <= 10:

print loop
loop = loop + 1

run in a terminal would produce

the following output:

1
2
3
4
5
6
7
8
9
10

This is exactly what we wanted

to see. Fig.1 (above right) is a

similar example that is a bit more

complicated, but still simple.

In this example, we are

combining the if statement, while

loop, raw_input statement, newline

escape sequence, assignment

operator, and comparison operator

! all in one 8 line program.

Running this example would

produce:

Enter something or 'quit' to
end
=> FROG

You typed FROG
Enter something or 'quit' to
end
=> bird

You typed bird
Enter something or 'quit' to
end
=> 42

You typed 42
Enter something or 'quit' to
end
=> QUIT

You typed QUIT
Enter something or 'quit' to
end
=> quit

quitting

Notice that when we typed

'QUIT', the program did not stop.

That's because we are evaluating

the value of the response variable

to 'quit' (response == 'quit') . 'QUIT'

does NOT equal 'quit' .

One more quick example before

we leave for this month. Let's say

you want to check to see if a user is

allowed to access your program.

While this example is not the best

way to do this task, it's a good way

to show some things that we've

already learned. Basically, we will

ask the user for their name and a

password, compare them with

information that we coded inside

the program, and then make a

decision based on what we find.

We will use two lists ! one to hold

the allowed users and

loop = 1
while loop == 1:

response = raw_input("Enter something or 'quit' to end => ")
if response == 'quit':

print 'quitting'
loop = 0

else:
print 'You typed %s' % response

FIG. 1

full circle magazine 1 2 contents ^The Compleat Python

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1 972. He enjoys
cooking, hiking, music, and spending
time with his family.

PROGRAM IN PYTHON - PART 2

one to hold the passwords.

Then we'll use raw_input to get

the information from the user, and

finally the if/elif/else statements

to check and decide if the user is

allowed. Remember, this is not the

best way to do this. We'll examine

other ways in later articles. Our

code is shown in the box to the

right.

Save this as 'password_test.py'

and run it with various inputs.

The only thing that we haven't

discussed yet is in the list checking

routine starting with 'if usrname in

users:' . What we are doing is

checking to see if the user's name

that was entered is in the list. If it

is, we get the position of the user's

name in the list users. Then we use

users.index(usrname) to get the

position in the users list so we can

pull the password, stored at the

same position in the passwords

list. For example, John is at

position 1 in the users list. His

password, 'dog' is at position 1 of

the passwords list. That way we

can match the two. Should be

pretty easy to understand at this

point.

That's enough for this

month. Next time, we'll be
learning about functions
and modules. Until then,
play with what you've
already learned and have
fun.

#---
#password_test.py
example of if/else, lists, assignments,raw_input,
comments and evaluations
#---
Assign the users and passwords
users = ['Fred','John','Steve','Ann','Mary']
passwords = ['access','dog','12345','kids','qwerty']
#---
Get username and password
usrname = raw_input('Enter your username => ')
pwd = raw_input('Enter your password => ')
#---
Check to see if user is in the list
if usrname in users:

position = users.index(usrname) #Get the position in the list of the users
if pwd == passwords[position]: #Find the password at position

print 'Hi there, %s. Access granted.' % usrname
else:

print 'Password incorrect. Access denied.'
else:

print "Sorry...I don't recognize you. Access denied."

full circle magazine 1 3 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg Walters PPrroogg rraa mm II nn PPyytthh oonn -- PPaa rrtt 33

SEE ALSO:
FCM#27-28 - Python Parts 1-2

APPLICABLE TO:

CATEGORIES:

DEVICES:

GraphicDev Internet M/media System

HDDCD/DVD USB Drive Laptop Wireless

I
n the last article, we learned
about l ists, l i teral
substitution, comments,
equate versus assignment,

if statements and whi le
statements. I promised you that
in this part we would learn
about modules and functions. So
let's get started.

Modules
Modules are a way to extend

your Python programming. You
can create your own, or use

those that come with Python, or
use modules that others have
created. Python itself comes
with hundreds of various
modules that make your
programming easier. A l ist of
the global modules that come
with Python can be found at
http: //docs.python.org/modinde
x.html. Some modules are
operating system specific, but
most are total ly cross platform
(can be used the same way in
Linux, Mac and Microsoft
Windows). To be able to use an
external module, you must
import it into your program.
One of the modules that comes
with Python is cal led 'random'.
This module al lows you to
generate pseudo-random
numbers. We' l l use the module
shown above right in our first
example.

Let's examine each l ine of
code. The first four l ines are
comments. We discussed them
in the last article. Line five tel ls
Python to use the random
module. We have to expl icitly
tel l Python to do this.

Line seven
sets up a 'for'
loop to print 14
random
numbers. Line
eight uses the
randint()
function to print
a random
integer between 1 and 10.
Notice we must tel l Python
what module the function
comes from. We do this by
saying (in this case)
random.randint. Why even
create modules? Wel l , i f every
possible function were included
directly into Python, not only
would Python become
absolutely huge and slow, but
bug fixing would be a
nightmare. By using modules,
we can segment the code into
groups that are specific to a
certain need. If, for example,
you have no need to use
database functional ity, you
don't need to know that there is
a module for SQLite. However,
when you need it, i t's already
there. (In fact, we' l l be using
database modules later on in

this series.)

Once you real ly get started
in Python programming, you
wi l l probably make your own
modules so you can use the
code you've already written
over and over again, without
having to re-type it. I f you need
to change something in that
group of code, you can, with
very l ittle risk of breaking the
code in your main program.
There are l imits to this and we
wi l l delve into this later on.
Now, when we used the ' import
random' statement earl ier, we
were tel l ing Python to give us
access to every function within
the random module. I f,
however, we only needed to
use the randint() function, we

#=======================================

random_example.py

Module example using the random module

#=======================================

import random

print 14 random integers

for cntr in range(1,15):

print random.randint(1,10)

http://docs.python.org/modindex.html

full circle magazine 1 4 contents ^The Compleat Python

PROGRAM IN PYTHON ‐ PART 3
can re-work the import

statement l ike this:

from random import randint

Now when we cal l our
function, we don't have to use
the 'random. ' identifier. So, our
code changes to

from random import randint

print 14 random integers

for cntr in range(1,15):

print randint(1,10)

Functions
When we imported the

random module, we used the
randint() function. A function is
a block of code that is designed
to be cal led, usual ly more than
once, which makes it easier to
maintain, and to keep us from
typing the same code over and
over and over. As a very
general and gross statement,
any time you have to write the
same code more than once or
twice, that code is a good
candidate for a function. Whi le
the fol lowing two examples are
si l ly, they make good
statements about using
functions. Let's say we wanted
to take two numbers, add

them, then multiply
them, and then
subtract them,
displaying the
numbers and results
each time. To make
matters worse, we
have to do that three
times with three sets
of numbers. Our si l ly
example would then
look l ike the text
shown right.

Not only is this a lot of
typing, it lends itself to errors,
either by typing or having to
change something later on.
Instead, we are going to create
a function cal led 'DoTwo' that
takes the two numbers and
does the math, printing the
output each time. We start by
using the 'def' key word (which
says that we are going to
define
the
functi
on).
After
'def'
we
add
the
name
we

select for the function, and
then a l ist of parameters (if
any) in parentheses. This l ine is
then closed by a colon (:) . The
code in the function is
indented. Our improved si l ly
example (#2) is shown below.

As you can see, there's a lot
less typing involved — 8 l ines
instead of 12 l ines. I f we need
to change something in our

function, we can do it without
causing too many issues to our
main program. We cal l our
function, in this case, by using
the function name and putting
the parameters after.

Here is another example of a
function. Consider the fol lowing
requirements.

We want to create a

#silly example

print 'Adding the two numbers %d and %d = %d ' % (1,2,1+2)

print 'Multiplying the two numbers %d and %d = %d ' % (1,2,1*2)

print 'Subtracting the two numbers %d and %d = %d ' % (1,2,12)

print '\n'

print 'Adding the two numbers %d and %d = %d ' % (1,4,1+4)

print 'Multiplying the two numbers %d and %d = %d ' % (1,4,1*4)

print 'Subtracting the two numbers %d and %d = %d ' % (1,4,14)

print '\n'

print 'Adding the two numbers %d and %d = %d ' % (10,5,10+5)

print 'Multiplying the two numbers %d and %d = %d ' % (10,5,10*5)

print 'Subtracting the two numbers %d and %d = %d ' % (10,5,105)

print '\n'

#silly example 2...still silly, but better

def DoTwo(num1,num2):

print 'Adding the two numbers %d and %d = %d ' % (num1,num2,num1+num2)

print 'Multiplying the two numbers %d and %d = %d ' % (num1,num2,num1*num2)

print 'Subtracting the two numbers %d and %d = %d ' % (num1,num2,num1num2)

print '\n'

DoTwo(1,2)

DoTwo(1,4)

DoTwo(10,5)

full circle magazine 1 5 contents ^The Compleat Python

PROGRAM IN PYTHON ‐ PART 3
program that wi l l print out a

l ist of purchased items in a
pretty format. I t must look
something l ike the text below.

The cost of each item and
for the total of al l i tems wi l l be
formatted as dol lars and cents.
The width of the print out must
be able to be variable. The
values on the left and right
must be variable as wel l . We
wi l l use 3 functions to do this
task. One prints the top and
bottom l ine, one prints the item
detai l l ines including the total
l ine and one prints the
separator l ine. Lucki ly, there
are a number of things that
Python has that wi l l make this
very simple. I f you recal l , we
printed a string multipl ied by 4,
and it returned four copies of
the same string. Wel l we can
use that to our benefit. To print
our top or bottom l ine we can
take the desired width, subtract
two for the two + characters

and use “ '=' * (width-2)”. To
make things even easier, we
wi l l use variable substitution to
put al l these items on one l ine.
So our string to print would be
coded as 's ('+ ' , ('= ' * width-
2)) , '+ ') . Now we could have the
routine print this directly, but
we wi l l use the return keyword
to send the generated string
back to our cal l ing l ine. We' l l
cal l our function 'TopOrBottom'
and the code for this function
looks l ike this.

def TopOrBottom(width):

width is total width

of returned line

return '%s%s%s' %

('+',('=' * (width2)),'+')

We could leave out the
comment, but it's nice to be
able to tel l at a glance what the
parameter 'width' is. To cal l i t,
we would say 'print
TopOrBottom(40)' or whatever
width we wish the l ine to be.
Now we have one function that

takes care of two of
the l ines. We can
make a new function
to take care of the
separator l ine using
the same kind of
code. . .OR we could
modify the function

we just made to include a
parameter for the character to
use in the middle of the pluses.
Let's do that. We can sti l l cal l i t
TopOrBottom.

def

TopOrBottom(character,width):

width is total width

of returned line

character is the

character to be placed

between the '+' characters

return '%s%s%s' %

('+',(character * (width

2)),'+')

Now, you can see where
comments come in handy.
Remember, we are returning
the generated string, so we
have to have something to
receive it back when we make
the cal l to it. Instead of
assigning it to another string,
we' l l just print it. Here's the
cal l ing l ine.

print TopOrBottom('=',40)

So now, not only have we
taken care of three of the l ines,
we've reduced the number of
routines that we need from 3
down to 2. So we only have the
center part of the print out to
deal with.

Let's cal l the new function
'Fmt' . We' l l pass it 4 parameter
values as fol lows:
val1 – the value to print on the
left
leftbit – the width of this
“column”
val2 – the value to print on the
right (which should be a
floating value)
rightbit – the width of this
“column”

The first task is to format the
information for the right side.
Since we want to format the
value to represent dol lars and
cents, we can use a special
function of variable substitution
that says, print the value as a
floating point number with n
number of places to the right of
the decimal point. The
command would be '%2.f' . We
wi l l assign this to a variable
cal led 'part2 ' . So our code l ine
would be 'part2 = '%.2f' %
val2 ' . We also can use a set of
functions that's bui lt into
Python strings cal led l just and
rjust. Ljust wi l l left justify the
string, padding the right side
with whatever character you
want. Rjust does

'+===============================+'

'| Item 1 X.XX |'

'| Item 2 X.XX |'

'||'

'| Total X.XX |'

'+===============================+'

full circle magazine 1 6 contents ^The Compleat Python

PROGRAM IN PYTHON ‐ PART 3
the same thing, except the

padding goes on the left side.
Now for the neat bit. Using
substitutions we throw together
a big string and return that to
the cal l ing code. Here is our
next l ine.

return 'ss' % ('|

',val1.ljust(leftbit2,'

'),part2.rjust(rightbit2,'

'),' |')

While this looks rather
daunting at first, let's dissect it
and see just how easy it is:
Return - We wi l l send back
our created string to the
cal l ing code.
'ss' - We are going to stick in
4 values in the string. Each %s
is a place holder.
% (- Starts the variable l ist
' | ' , - Print these l iterals
val1. ljust(leftbit-2, ' ') - Take
the variable val1 that we were
passed, left justify it with
spaces for (leftbit-2)
characters. We subtract 2 to
al low the ' | ' on the left side.
Part2.rjust(rightbit-2, ' ') -
Right justify the formatted
string of the price rightbit-2
spaces. ' | ' - finish the string.

That's al l there is to it.

Whi le we should real ly do some
error checking, you can use
that as something to play with
on your own. So. . .our Fmt
function is real ly only two l ines
of code outside of the definition
l ine and any comments. We can
cal l i t l ike this.

print Fmt('Item

1',30,item1,10)

Again, we could assign the
return value to another string,
but we can just print it. Notice

that we are
sending 30 for
the width of the
left bit and 10 for
the width of the
right. That
equals the 40
that we sent to our
TopOrBottom routine earl ier. So,
fire up your editor and type in
the code below.

Save the code as 'pprint1.py'
and run it. Your output should
look something l ike the text

shown above right.

Whi le this is a very simple
example, it should give you a
good idea of why and how to
use functions. Now, let's extend
this out a bit and learn

#pprint1.py

#Example of semiuseful functions

def TopOrBottom(character,width):

width is total width of returned line

return '%s%s%s' % ('+',(character * (width2)),'+')

def Fmt(val1,leftbit,val2,rightbit):

prints two values padded with spaces

val1 is thing to print on left, val2 is thing to print on right

leftbit is width of left portion, rightbit is width of right portion

part2 = '%.2f' % val2

return '%s%s%s%s' % ('| ',val1.ljust(leftbit2,' '),part2.rjust(rightbit2,' '),' |')

Define the prices of each item

item1 = 3.00

item2 = 15.00

Now print everything out...

print TopOrBottom('=',40)

print Fmt('Item 1',30,item1,10)

print Fmt('Item 2',30,item2,10)

print TopOrBottom('',40)

print Fmt('Total',30,item1+item2,10)

print TopOrBottom('=',40)

+======================================+

| Item 1 3.00 |

| Item 2 15.00 |

full circle magazine 1 7 contents ^The Compleat Python

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his
fami ly.

PROGRAM IN PYTHON ‐ PART 3
more about l ists. Remember

back in part 2 when we first
discussed l ists? Wel l one thing
that I didn't tel l you is that a l ist
can contain just about
anything, including l ists. Let's
define a new l ist in our program
cal led itms and fi l l i t l ike this:

itms =

[['Soda',1.45],['Candy',.75],

['Bread',1.95],['Milk',2.59]]

I f we were to access this as
a normal l ist we would use print
itms[0]. However, what we
would get back is ['Soda' ,1.45],
which is not real ly what we
were looking for under normal
circumstances. We want to
access each item in that first
l ist. So we would use 'print
itms[0][0] ' to get 'Soda' and
[0][1] to get the cost or 1.45.
So, now we have 4 items that
have been purchased and we
want to use that information in
our pretty print routine. The
only thing we have to change is
at the bottom of the program.
Save the last program as
'pprint2.py' , then comment out
the two itemx definitions and
insert the l ist we had above. It
should look l ike this now.

#item1 = 3.00

#item2 = 15.00

itms =

[['Soda',1.45],['Cand

y',.75],['Bread',1.95

],['Milk',2.59]]

Next, remove al l the
l ines that cal l Fmt() .
Next add the fol lowing
l ines (with #NEW LINE
at the end) to make
your code look l ike the
text shown right.

I set up a counter variable
for loop that cycles through the
l ist for each item there. Notice
that I 've also added a variable
cal led total . We set the total to
0 before we go into our for
loop. Then as we print each
item sold, we add the cost to
our total . Final ly, we print the
total out right after the
separator l ine. Save your
program and run it. You should
see something l ike the text
shown below.

If you
wanted to get
wi ld and crazy,
you could add
a l ine for tax as
wel l . Handle it
close to the

same way we did the total l ine,
but use (total * .086) as the
cost.

print

Fmt('Tax:',30,total*.086,10)

I f you would l ike to, you can
add more items to the l ist and
see how it works.

That's it for this time. Next
time we' l l concentrate on
classes. Enjoy!

itms = [['Soda',1.45],['Candy',.75],['Bread',1.95],['Milk',2.59]]

print TopOrBottom('=',40)

total = 0 #NEW LINE

for cntr in range(0,4): #NEW LINE

print Fmt(itms[cntr][0],30,itms[cntr][1],10) #NEW LINE

total += itms[cntr][1] #NEW LINE

print TopOrBottom('',40)

print Fmt('Total',30,total,10) #CHANGED LINE

print TopOrBottom('=',40)

+======================================+

| Soda 1.45 |

| Candy 0.75 |

| Bread 1.95 |

| Milk 2.59 |

++

| Total 6.74 |

+======================================+

full circle magazine 1 8 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg Walters PPrroogg rraa mm II nn PPyytthh oonn -- PPaa rrtt 44

SEE ALSO:
FCM#27-29 - Python Parts 1-3

APPLICABLE TO:

CATEGORIES:

DEVICES:

GraphicDev Internet M/media System

HDDCD/DVD USB Drive Laptop Wireless

I
promised last time that we
would discuss classes. So,
that's what we' l l
concentrate on. What are

classes and what good are they?

A class is a way of
constructing objects. An object
is simply a way of handl ing
attributes and behaviors as a
group. I know this sounds
confusing, but I ' l l break it down
for you. Think of it this way. An
object is a way to model
something in the real world. A

class is a method we use to
implement this. For example,
we have three dogs at home. A
Beagle, a Lab and a German
Shepherd/Blue Heeler mix. Al l
three are dogs, but are al l
d ifferent. There are common
attributes among the three of
them, but each dog has
separate attributes as wel l . For
example, the Beagle is short,
chubby, brown, and grumpy.
The Lab is medium-sized, black,
and very laid back. The
Shepherd/Heeler mix is tal l ,
skinny, black, and more than a
bit crazy. Right away, some
attributes are obvious.
Short/medium-sized/tal l are al l
attributes of height. Grumpy,
la id back, and crazy are al l
attributes of mood. On the

behavior side of things, we can
consider eating, sleeping,
playing, and other actions.

Al l three are of the class
'Dog' . Going back to the
attributes that we used to
describe each above, we have
things such as Dog.Name,
Dog.Height, Dog.Bui ld (skinny,
chubby, etc.) , and Dog.Color.
We also have behaviors such as
Dog.Bark, Dog.Eat, Dog.Sleep,
and so on.

As I said before, each of the
dogs is a different breed. Each
breed would be a sub-class of
the class Dog. In a diagram, it
would look l ike this.

/Beagle

Dog | Lab

\Shepherd/Heeler

Each sub-class inherits al l of
the attributes of the Dog class.
Therefore, if we create an
instance of Beagle, it gets al l of
the attributes from its parent
class, Dog.

Beagle = Dog()

Beagle.Name = 'Archie'

Beagle.Height = 'Short'

Beagle.Build = 'Chubby'

Beagle.Color = 'Brown'

Starting to make sense? So,
let's create our gross Dog class
(shown above). We' l l start with
the keyword "class" and the
name of our class.

class Dog():

def __init__(self,dogname,dogcolor,dogheight,dogbuild,dogmood,dogage):

#here we setup the attributes of our dog

self.name = dogname

self.color = dogcolor

self.height = dogheight

self.build = dogbuild

self.mood = dogmood

self.age = dogage

self.Hungry = False

self.Tired = False

full circle magazine 1 9 contents ^The Compleat Python

PROGRAM IN PYTHON ‐ PART 4
Before we go any further in

our code, notice the function
that we have defined here. The
function __init__ (two
underscores + ' init' + two
underscores) is an initia l ization
function that works with any
class. As soon as we cal l our
class in code, this routine is
run. In this case, we have set
up a number of parameters to
set some basic information
about our class: we have a
name, color, height, bui ld,
mood, age, and a couple of
variables Hungry and Tired.
We' l l revisit these in a l ittle bit.
Now let's add some more code.

Beagle =

Dog('Archie','Brown','Short',

'Chubby','Grumpy',12)

print Beagle.name

print Beagle.color

print Beagle.mood

print Beagle.Hungry

This is UNINDENTED code
that resides outside of our
class, the code that uses our
class. The first l ine creates an
instance of our dog class cal led
Beagle. This is cal led
instantiation. When we did this,
we also passed certain
information to the instance of
the class, such as the Beagle's

name, color, and so on. The
next four l ines simply query the
Beagle object and get back
information in return. Time for
more code. Add the code shown
in the top right box into the
class after the __init__ function.

Now we can cal l i t with
Beagle.Eat() or Beagle.Sleep().
Let's add one more method.
We' l l cal l i t Bark. I ts code is
shown right.

This one I 've made more
flexible. Depending on the
mood of the dog, the bark wi l l
change. Shown on the next
page is the ful l class code so
far.

So, when we run this we' l l
get

My name is Archie

My color is Brown

My mood is Grumpy

I am hungry = False

Sniff Sniff...Not Hungry

Yum Yum...Num Num

GRRRRR...Woof Woof

Now, that takes care of the
grumpy old Beagle. However, I
said earl ier that I have 3 dogs.
Because we coded the class
careful ly, a l l we have to do is

create two more instances of
our dog class.

Lab =

Dog('Nina','Black','Medium','

Heavy','Laid Back',7)

Heeler =

Dog('Bear','Black','Tall','Sk

inny','Crazy',9)

print 'My Name is %s' %

Lab.name

print 'My color is %s' %

Lab.color

print 'My Mood is %s' %

Lab.mood

print 'I am hungry = %s' %

Lab.Hungry

Lab.Bark()

Heeler.Bark()

Notice that I created the

i
nstances of both of the dogs
before I did the print
statements. That's not a
problem, since I “defined” the
instance before I cal led any of
the methods. Here is the ful l
output of our dog class
program.

My name is Archie

My color is Brown

My mood is Grumpy

I am hungry = False

Sniff Sniff...Not Hungry

Yum Yum...Num Num

GRRRRR...Woof Woof

My Name is Nina

def Eat(self):

if self.Hungry:

print 'Yum Yum...Num Num'

self.Hungry = False

else:

print 'Sniff Sniff...Not Hungry'

def Sleep(self):

print 'ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ'

self.Tired = False

def Bark(self):

if self.mood == 'Grumpy':

print 'GRRRRR...Woof Woof'

elif self.mood == 'Laid Back':

print 'Yawn...ok...Woof'

elif self.mood == 'Crazy':

print 'Bark Bark Bark Bark Bark Bark Bark'

else:

print 'Woof Woof'

full circle magazine 20 contents ^The Compleat Python

PROGRAM IN PYTHON ‐ PART 4

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his
fami ly.

My color is Black

My Mood is Laid Back

I am hungry = False

Yawn...ok...Woof

Bark Bark Bark Bark Bark Bark

Bark

Now that you have the
basics, your homework wi l l be
to expand our dog class to
al low for more methods, such
as maybe Play or
EncounterStrangeDog or
something l ike this.

Next time, we wi l l start
discussing GUI or Graphical
User Interface programming.
We wi l l be using Boa Constructor

for this.

class Dog():

def __init__(self,dogname,dogcolor,dogheight,dogbuild,dogmood,dogage):

#here we setup the attributes of our dog

self.name = dogname

self.color = dogcolor

self.height = dogheight

self.build = dogbuild

self.mood = dogmood

self.age = dogage

self.Hungry = False

self.Tired = False

def Eat(self):

if self.Hungry:

print 'Yum Yum...Num Num'

self.Hungry = False

else:

print 'Sniff Sniff...Not Hungry'

def Sleep(self):

print 'ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ'

self.Tired = False

def Bark(self):

if self.mood == 'Grumpy':

print 'GRRRRR...Woof Woof'

elif self.mood == 'Laid Back':

print 'Yawn...ok...Woof'

elif self.mood == 'Crazy':

print 'Bark Bark Bark Bark Bark Bark Bark'

else:

print 'Woof Woof'

Beagle = Dog('Archie','Brown','Short','Chubby','Grumpy',12)

print 'My name is %s' % Beagle.name

print 'My color is %s' % Beagle.color

print 'My mood is %s' % Beagle.mood

print 'I am hungry = %s' % Beagle.Hungry

Beagle.Eat()

Beagle.Hungry = True

Beagle.Eat()

Beagle.Bark()

full circle magazine 21 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg Walters PPrroogg rraa mm II nn PPyytthh oonn -- PPaa rrtt 55

SEE ALSO:
FCM#27-30 - Python Parts 1-4

APPLICABLE TO:

CATEGORIES:

DEVICES:

GraphicDev Internet M/media System

HDDCD/DVD USB Drive Laptop Wireless

I
f you are l ike me, you wi l l
HATE the first part of this
instal lation. I HATE it when
an author tel ls me that I

have to double read every word
in their book/chapter/article,
because I just KNOW it wi l l be a
snore - even when I know it's for
my own good, and I wi l l end up
doing it anyway.

Consider yourself warned.
PLEASE read the fol lowing
boring stuff careful ly. We' l l get
to the fun stuff soon, but we

need to get some ground work
covered before we can real ly
talk about trying to program.

FIRST you need to instal l Boa
Constructor and wxPython. Use
Synaptic and select both
wxPython and Boa Constructor.
Once instal led, you should find
Boa under
Appl ications|Programming\Boa
Constructor. Go ahead and start
it up. I t wi l l make things a bit
easier. Once the appl ication
starts, you wi l l see three
different windows (or frames):
one across the top, and two
across the bottom. You might
have to resize and move them
a bit, but get things to a point
where it looks something l ike
this:

The top frame is cal led the
tool frame. The bottom-left
frame is the inspector frame,
and the bottom-right frame is
the editor frame. On the tool
frame, you have various tabs
(New, Containers/Layout, etc.)
that wi l l a l low you to start new
projects, add frames to existing
projects, and add various
controls to the frames for your
appl ication. The inspector
frame wi l l become very
important as we start to add
controls to our appl ication. The
editor frame al lows us to edit
our code, save our projects,
and more. Moving our attention
back to the tool frame, let's
take a look at each tab -
starting with the “New” tab.
Whi le there are many options
avai lable here, we wi l l d iscuss
only two of them. They are the
5th and 6th buttons from the
left: wx.App and wx.Frame.
Wx.App al lows us to create a
complete appl ication beginning
with two auto-generated fi les.
One is a frame fi le and the
other is an appl ication fi le. This
is the method I prefer to use.

The wx.Frame is used to add
more frames to our appl ication
and/or create a standalone app
from a single source fi le. We' l l
d iscuss this later.

Now look at the
Containers/Layout tab. Many
goodies here. The ones you' l l
use most are the wx.Panel (first
on the left) and the sizers
(2,3,4,5 and 6 from the right).
Under Basic Controls, you' l l find
static text controls (labels), text
boxes, check boxes, radio
buttons, and more. Under
Buttons, you' l l find various
forms of buttons. List Controls
has data grids and other l ist
boxes. Let's jump to Uti l i ties
where you' l l find timers and
menu items.

Here are a few things to
remember as we are getting
ready for our first app. There
are a few bugs in the Linux
version. One is that SOME
controls won't al low you to
move them in the designer. Use
the <Ctrl>+Arrow keys to

full circle magazine 22 contents ^The Compleat Python

PROGRAM IN PYTHON ‐ PART 5
move or tweak the position

of your controls. Another one
you' l l find when you try the
tutoria ls that come with Boa
Constructor - when placing a
panel control , i t's hard to see.
Look for the l ittle boxes (I ' l l
show you this soon). You can
also use the Objs tab on the
Inspector frame and select it
that way.

Okay, here we go. Under the
'New' tab of the tool frame,
select wx.App (5th button from
the left) . This wi l l create two
new tabs in the editor frame:
one named “*(App1)*”, the
other named “*(Frame1)*”.
Bel ieve it or not, the VERY first
thing we want to do is save our
two new fi les, starting with the
Frame1 fi le. The save button is
the 5th button from the left in
the Editor Frame. A “Save As”
frame wi l l pop up asking you
where you want to save the fi le
and what you want to cal l i t.
Create a folder in your home
folder cal led GuiTests, and save
the fi le as “Frame1.py”. Notice
that the “*(Frame1)*” tab now
shows as “Frame1”. (The “*(“
says that the fi le needs to be
saved.) Now do the same thing
with the App1 tab.

Now let's examine a few of
the buttons on the Editor Tool
bar. The important ones for now
are the Save (5th from the left)
and Run (Yel low arrow, 7th from
the left) . I f you are in a frame
tab (Frame1 for example) there
wi l l be some extra buttons you
need to know about. For now
it's the Designer button:

I t is an important one. It
al lows us to design our GUI
frame - which is what we' l l do
now. When you cl ick on it you
wi l l be presented with a blank
frame.

This is a blank canvas for
you to put whatever controls
you need to (within reason).
The first thing we want to do is
place a wx.panel control .
Almost everything I have read
says not to put controls (other

than a wx.panel) directly on a
frame. So, cl ick on the
Containers/Layout tab in the
Tool Frame, then cl ick on the
wx.Panel button. Next, move
over to the new frame that you
are working on and cl ick
somewhere on the inside of the
frame. You' l l know it worked if
you see something l ike this:

Remember when I warned
you about the bugs? Wel l , this
is one of them. Don't worry. See
the 8 l ittle black squares?
That's the l imits of the panel . I f
you wanted, you could cl ick and
drag one of them to resize the
panel , but for this project what
we want is to make the panel
cover the entire frame. Simply
resize the FRAME just a l i ttle bit
at this point. Now we have a
panel to put our other controls
on. Move the frame you are
working on unti l you can see

the tool box for the Editor
frame. Two new buttons have
appeared: a check and an “X”.
The “X” wi l l cause the changes
you made to be thrown away.

The Check button:

is cal led the “Post” button. This
wi l l cause your changes to be
written into our frame fi le. You
sti l l have to save the frame fi le,
but this wi l l get the new things
into the fi le. So, cl ick on the
Post button. There's also a post
button on the Inspector frame,
but we' l l deal with that later.
Now save your fi le.

Go back into the Design
mode. Cl ick the 'Buttons' tab on
the Tool frame and then cl ick
the first button on the left, the
wx.Button. Then add it
somewhere close to the middle
of your frame. You' l l have
something that looks close to
this:

full circle magazine 23 contents ^The Compleat Python

PROGRAM IN PYTHON ‐ PART 5
Notice that there are 8 smal l

squares around it just l ike the
panel . These are resize
handles. I t a lso shows us what
control is currently selected. In
order to move this closer to the
center of the frame, hold down
the Control key (Ctrl) and whi le
that's being pressed, use the
arrow keys to move it where
you want it. Now, let's look at
the Inspector frame. There are
four tabs. Cl ick on the 'Constr'
tab. Here we can change the
label , name, position, size and
style. For now, let's change the
name to 'btnShowDialog' and
the Label property to 'Cl ick Me' .

Now, let's skip over al l the
rest of that tab and go to the
Objs tab. This tab shows al l the
controls you have and their
parent/chi ld relationships. As
you can see, the button is a
chi ld of panel1, which is a chi ld
of Frame1.

Post (check button) and save
your changes. Go back to the
designer once again, and notice
that (assuming you sti l l have
the 'Objs' tab in the inspector
frame selected), Frame1 is now
selected. This is good because
it's what we want. Go back to
the 'Constr' tab, and change
the title from 'Frame1' to 'Our
First GUI ' . Post and save one
more time. Now let's run our
app. Cl ick the yel low Run
button on the Editor frame.

Cl ick al l you want on the
button, but nothing wi l l happen.
Why? Wel l , we didn't tel l the
button to do anything. For that,

we need to set up an event to
happen, or fire, when the user
cl icks our button. Cl ick on the X
in the upper-right corner to
finish running the frame. Next,
go back to the designer, select
the button and go into the
'Evts' tab in the inspector
frame. Cl ick on ButtonEvent
and then double cl ick on the
wx.EVT_BUTTON text that
shows up, and notice that in
the window below we get a
button event cal led
'OnBtnShowDialogButton' . Post
and save.

Before we go any further,
let's see what we've got in the
way of code (page 24).

The first l ine is a comment
that tel ls Boa Constructor that

this is a boa fi le. I t's ignored by
the Python compi ler, but not by
Boa. The next l ine imports
wxPython. Now jump down to
the class definition.

At the top, there's the
__init_ctrls method. Notice the
comment just under the
definition l ine. Don't edit the
code in this section. I f you do,
you wi l l be sorry. Any place
BELOW that routine should be
safe. In this routine, you wi l l
find the definitions of each
control on our frame.

Next, look at the __init__
routine. Here you can put any
cal ls to initia l izing code. Final ly,
the OnBtnShowDialogButton
routine. This is where we wi l l
put our code that wi l l do the
work when the user cl icks the
button. Notice that there is
currently an event.Skip() l ine
there. Simply stated, this says
just exit when this event fires.

Now, what we are going to
do is cal l a message box to pop
up with some text. This is a
common thing for programmers
to do to al low the user to know
about something - an error, or
the fact that a

full circle magazine 24 contents ^The Compleat Python

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his
fami ly.

process has finished. In this
case, we wi l l be cal l ing the
wx.MessageBox bui lt in routine.
The routine is cal led with two
parameters. The first is the text
we wish to send in the message
box and the second is the title
for the message box. Comment
out the l ine event.Skip() and
put in the fol lowing l ine.

wx.MessageBox('You Clicked

the button', 'Info')

Save and cl ick the Run
button (yel low arrow). You
should see something l ike this:

And when you cl ick the
button you should see
something l ike this:

Understand here
that this is just about
the simplest way to
cal l the messagebox
routine. You can have
more parameters as
wel l .

Here's a quick
rundown on how to
change the way the
icons work on the
message box (more
next time).

wx.ICON_QUESTION
- Show a question icon

wx.ICON_EXCLAMAT
ION - Show an alert
icon

wx.ICON_ERROR - Show an
error icon

wx.ICON_INFORMATION -
Show an info icon

The way to write this would
be

wx.MessageBox('You Clicked

the button', 'Info',

wx.ICON_INFORMATION)

or whatever icon you wanted to

use that suited the situation.
There are also various button
arrangement assignments
which we' l l ta lk about next
time.

So, until next time, play
with some of the various
controls, placements, and
so on. Have fun!

#Boa:Frame:Frame1

import wx

def create(parent):

return Frame1(parent)

[wxID_FRAME1, wxID_FRAME1BTNSHOWDIALOG, wxID_FRAME1PANEL1,

] = [wx.NewId() for _init_ctrls in range(3)]

class Frame1(wx.Frame):

def _init_ctrls(self, prnt):

generated method, don't edit

wx.Frame.__init__(self, id=wxID_FRAME1, name='', parent=prnt,

pos=wx.Point(543, 330), size=wx.Size(458, 253),

style=wx.DEFAULT_FRAME_STYLE, title=u'Our First GUI')

self.SetClientSize(wx.Size(458, 253))

self.panel1 = wx.Panel(id=wxID_FRAME1PANEL1, name='panel1', parent=self,

pos=wx.Point(0, 0), size=wx.Size(458, 253),

style=wx.TAB_TRAVERSAL)

self.btnShowDialog = wx.Button(id=wxID_FRAME1BTNSHOWDIALOG,

label=u'Click Me', name=u'btnShowDialog', parent=self.panel1,

pos=wx.Point(185, 99), size=wx.Size(85, 32), style=0)

self.btnShowDialog.Bind(wx.EVT_BUTTON, self.OnBtnShowDialogButton,

id=wxID_FRAME1BTNSHOWDIALOG)

def __init__(self, parent):

self._init_ctrls(parent)

def OnBtnShowDialogButton(self, event):

event.Skip()

PROGRAM IN PYTHON ‐ PART 5

full circle magazine 25 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg Walters PPrroogg rraa mm II nn PPyytthh oonn -- PPaa rrtt 66

SEE ALSO:
FCM#27-31 - Python Parts 1 -5

APPLICABLE TO:

CATEGORIES:

DEVICES:

GraphicDev Internet M/media System

HDDCD/DVD USB Drive Laptop Wireless

I hope you've been playing with

Boa Constructor since our last

meeting. First we will have a very

simple program that will show one

frame, then allow you to click on a

button that will pop up another

frame. Last time we did a message

box. This time we will do a totally

separate frame. This can be helpful

when doing an application with

multiple frames or windows. So...

here we go...

Start up Boa Constructor and

close all tabs in the Editor frame

with the exception of Shell and

Explorer by using the (Ctrl-W) key

combination. This ensures that we

will be starting totally fresh. Now

create a new project by clicking on

the wx.App button (see last time's

article if needed).

Before you do anything else,

save Frame1 as “FrameMain.py”

and then save App1 as “Gui2.py”.

This is important. With the GUI2

tab selected in the Editor frame,

move to the Toolbar frame, go

back to the New tab, and add

another frame to our project by

clicking on wx.Frame (which is right

next to the wx.App button). Make

sure that the Application tab shows

both frames under the Module

column. Now go back to the new

frame and save it as

“FrameSecond.py”:

Next, open FrameMain in the

designer. Add a wx.Panel to the

frame. Resize it a bit to make the

panel cover the frame. Next we are

going to change some properties -

we didn't do this last time. In the

inspector frame, make sure that

the Constr tab is selected and set

t

he title to “Main Frame” and the

name to “FrameMain”. We'll discuss

naming conventions in a bit. Set

the size to 400x340 by clicking on

the Size check box. This drops

down to show height and width.

Height should be 400 and width

should be 340:

Now click on the Props tab. Click

on the Centered property and set it

to wx.BOTH. Click the post check-

mark and save your work. Now run

your application by clicking on the

button with the yellow arrow. Our

application shows up in the center

of the screen with the title of

“Main Frame”. Now close it by

clicking on the “X” in the upper

right corner of the app.

B
ring FrameMain back into

the designer. Add two

wx.Buttons to the frame,

one above the other, and

close to the center of the frame.

Select the top button, name that

“btnShowNew”, and set the label

to “Show the other frame” in the

Constr tab of the Inspector frame.

Use the Shift+Arrow combination

to resize the button so that all the

text is visible, and then use the

Ctrl+Arrow combination to move it

back to the center of the frame.

Select the bottom button, name

that “btnExit”, and set the label to

“Exit”.

full circle magazine 26 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 6

Post, save, and run to see your

changes. Exit our app and go back

to the designer. We are going to

add button click events. Select the

top button, and in the inspector

frame, select the Evts tab. Click on

ButtonEvent, then double click on

wx.Evt_BUTTON. Notice you

should have

“OnBtnShowNewButton” below.

Next, select the btnExit button. Do

the same thing, making sure it

shows “OnBtnExitButton”. Post

and save. Next go to the Editor

frame and scroll down to the

bottom.

Make sure you have the two

event methods that we just

created. Here's what the frame

should look like so far:

Now it's time to deal with our

other frame. Open FrameSecond in

the designer. Set the name to

“FrameSecond”, and the title to

“Second Frame”. Set centering to

wx.BOTH. Add a wx.Button, and

center it towards the lower part of

the frame. Set the name to

“btnFSExit”, and change the title to

“Exit”. Set up a button event for it.

Next add a wx.StaticText control in

the upper portion of the frame

close to the middle. Name it

“stHiThere”, set the label to “Hi

there...I 'm the second form!”, and

set the font to Sans, 1 4 point and

weight to wxBOLD. Now reset the

position to be centered in the form

right and left. You can do this by

unchecking the Position attribute

and use the X position for right and

left, and Y for up and down until

you are happy. Post and save:

Now that we have designed our

forms, we are going to create the

“glue” that will tie all this together.

In the Editor frame, click on the

GUI2 tab, then, below that, click on

the Source tab. Under the line that

says “import FrameMain”, add

“import FrameSecond”. Save your

changes. Next, select the

“FrameMain” tab. Under the line

that says “import wx”, add a line

that says “import FrameSecond”.

Next scroll down, and find the line

that says “def __init__(self,

parent):”. Add a line after the

“self._init_ctrls(parent)” line that

says “self.Fs =

FrameSecond.FrameSecond(self)”.

Now under the “def

OnBtnShowNewButton(self,

event):” event, comment out

“event.Skip()” and add the

following two lines:

self.Fs.Show()
self.Hide()

Finally, under

“OnBtnExitButton” method,

comment out “event.Skip()”, and

add a line that says “self.Close()”

What does all this do? OK. The

first thing we did was to make sure

that the application knew we were

going to have two forms in our app.

That's why we imported both

FrameMain and FrameSecond in

the GUI2 file. Next we imported a

reference for FrameSecond into

FrameMain so we can call it later.

We initialized it in the “_init_”

method. And in the

“OnBtnShowNewButton” event we

told it that when the button was

clicked, we want to first show the

second frame, and to hide the main

frame. Finally we have the

statement to close the application

when the Exit button is clicked.

Now, switch to the code for

FrameSecond. The changes here

are relatively small. Under the

“_init_” method, add a line that

says “self.parent = parent” which

adds a variable self.parent. Finally,

under the click event for

FSExitButton, comment out the

“event.Skip()” line, and add the

following two lines:

self.parent.Show()
self.Hide()

full circle magazine 27 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 6

Remember we hid the main

frame when we showed the second

frame, so we have to re-show it.

Finally we hide the second frame.

Save your changes.

Here is all the code for you to

verify everything (this page and

following page):

Now you can run your

application. If everything went

right, you will be able to click on

btnShownNew, and see the first

frame disappear and second frame

appear. Clicking on the Exit button

on the second frame will cause

that frame to disappear and the

GUI2 code:

#!/usr/bin/env python
#Boa:App:BoaApp

import wx

import FrameMain
import FrameSecond

modules ={u'FrameMain': [1, 'Main frame of Application',
u'FrameMain.py'],
u'FrameSecond': [0, '', u'FrameSecond.py']}

class BoaApp(wx.App):
def OnInit(self):

self.main = FrameMain.create(None)
self.main.Show()
self.SetTopWindow(self.main)
return True

def main():
application = BoaApp(0)
application.MainLoop()

if __name__ == '__main__':
main()

FrameMain code:

#Boa:Frame:FrameMain

import wx
import FrameSecond

def create(parent):
return FrameMain(parent)

[wxID_FRAMEMAIN, wxID_FRAMEMAINBTNEXIT,
wxID_FRAMEMAINBTNSHOWNEW,
wxID_FRAMEMAINPANEL1,

] = [wx.NewId() for _init_ctrls in range(4)]

class FrameMain(wx.Frame):
def _init_ctrls(self, prnt):

generated method, don't edit
wx.Frame.__init__(self, id=wxID_FRAMEMAIN,

name=u'FrameMain',
parent=prnt, pos=wx.Point(846, 177),

size=wx.Size(400, 340),
style=wx.DEFAULT_FRAME_STYLE, title=u'Main

Frame')
self.SetClientSize(wx.Size(400, 340))
self.Center(wx.BOTH)

self.panel1 = wx.Panel(id=wxID_FRAMEMAINPANEL1,
name='panel1',

parent=self, pos=wx.Point(0, 0),
size=wx.Size(400, 340),

style=wx.TAB_TRAVERSAL)

self.btnShowNew =
wx.Button(id=wxID_FRAMEMAINBTNSHOWNEW,

label=u'Show the other frame',
name=u'btnShowNew',

parent=self.panel1, pos=wx.Point(120, 103),
size=wx.Size(168, 29),

style=0)
self.btnShowNew.SetBackgroundColour(wx.Colour(25,

175, 23))
self.btnShowNew.Bind(wx.EVT_BUTTON,

self.OnBtnShowNewButton,
id=wxID_FRAMEMAINBTNSHOWNEW)

full circle magazine 28 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 6

FrameMain Code (cont.):
self.btnExit =

wx.Button(id=wxID_FRAMEMAINBTNEXIT, label=u'Exit',
name=u'btnExit', parent=self.panel1,

pos=wx.Point(162, 191),
size=wx.Size(85, 29), style=0)

self.btnExit.SetBackgroundColour(wx.Colour(225,
218, 91))

self.btnExit.Bind(wx.EVT_BUTTON,
self.OnBtnExitButton,

id=wxID_FRAMEMAINBTNEXIT)

def __init__(self, parent):
self._init_ctrls(parent)
self.Fs = FrameSecond.FrameSecond(self)

def OnBtnShowNewButton(self, event):
#event.Skip()
self.Fs.Show()
self.Hide()

def OnBtnExitButton(self, event):
#event.Skip()
self.Close()

FrameSecond code:
#Boa:Frame:FrameSecond

import wx

def create(parent):
return FrameSecond(parent)

[wxID_FRAMESECOND, wxID_FRAMESECONDBTNFSEXIT,
wxID_FRAMESECONDPANEL1,
wxID_FRAMESECONDSTATICTEXT1,
] = [wx.NewId() for _init_ctrls in range(4)]

class FrameSecond(wx.Frame):
def _init_ctrls(self, prnt):

generated method, don't edit
wx.Frame.__init__(self, id=wxID_FRAMESECOND,

name=u'FrameSecond',

parent=prnt, pos=wx.Point(849, 457),
size=wx.Size(419, 236),

style=wx.DEFAULT_FRAME_STYLE, title=u'Second
Frame')

self.SetClientSize(wx.Size(419, 236))
self.Center(wx.BOTH)
self.SetBackgroundStyle(wx.BG_STYLE_COLOUR)

self.panel1 = wx.Panel(id=wxID_FRAMESECONDPANEL1,
name='panel1',

parent=self, pos=wx.Point(0, 0),
size=wx.Size(419, 236),

style=wx.TAB_TRAVERSAL)

self.btnFSExit =
wx.Button(id=wxID_FRAMESECONDBTNFSEXIT, label=u'Exit',

name=u'btnFSExit', parent=self.panel1,
pos=wx.Point(174, 180),

size=wx.Size(85, 29), style=0)
self.btnFSExit.Bind(wx.EVT_BUTTON,

self.OnBtnFSExitButton,
id=wxID_FRAMESECONDBTNFSEXIT)

self.staticText1 =
wx.StaticText(id=wxID_FRAMESECONDSTATICTEXT1,

label=u"Hi there...I'm the second form!",
name='staticText1',

parent=self.panel1, pos=wx.Point(45, 49),
size=wx.Size(336, 23),

style=0)
self.staticText1.SetFont(wx.Font(14, wx.SWISS,

wx.NORMAL, wx.BOLD,
False, u'Sans'))

def __init__(self, parent):
self._init_ctrls(parent)
self.parent = parent

def OnBtnFSExitButton(self, event):
#event.Skip()
self.parent.Show()
self.Hide()

full circle magazine 29 contents ^The Compleat Python

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1 972. He enjoys
cooking, hiking, music, and spending
time with his family.

PROGRAM IN PYTHON - PART 6
main frame to re-appear.
Cl icking on the Exit button on
the main frame wi l l close the
appl ication.

I promised you we'd discuss

naming conventions. Remember

way back, we discussed

commenting your code? Well, by

using well-formed names for GUI

controls, your code is fairly self-

documenting. If you just left

control names as staticText1 or

button1 or whatever, when you are

creating a complex frame with

many controls, especially if there

are a lot of text boxes or buttons,

then naming them something that

is meaningful is very important. It

might not be too important if you

are the only one who will ever see

the code, but to someone coming

behind you later on, the good

control names will help them out

considerably. Therefore, use

something like the following:

Control type - Name prefix
Static text - st_
Button - btn_
Text Box - txt_
Check Box - chk_
Radio Button - rb_
Frame - Frm_ or Frame_

You can come up with your own

ideas for naming conventions as

you grow as a programmer, and in

some instances your employer

might have conventions already in

place.

Next time, we will leave GUI

programming aside for a bit and

concentrate on database

programming. Meanwhile, get

python-apsw and python-
mysqldb loaded on your system.

You will also need sqlite and

sqlitebrowser for SQLite. If you
want to experiment with MySql as

well, that's a good idea. All are

available via Synaptic.

by Richard Redeiby Richard Redei

full circle magazine 30 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg Walters PPrroogg rraa mm II nn PPyytthh oonn -- PPaa rrtt 77

SEE ALSO:
FCM#27-32 - Python Parts 1 - 6

APPLICABLE TO:

CATEGORIES:

DEVICES:

GraphicDev Internet M/media System

HDDCD/DVD USB Drive Laptop Wireless

G
ood morning Boys and

Girls. It's story time.

Everyone get settled and

comfy. Ready? Good!

Once upon a time, the world was

ruled by paper. Paper, paper

everywhere. They had to make

special homes for all that paper.

They were called filing cabinets, and

were big metal things that would

take rooms and rooms and rooms at

businesses to house all the paper. In

each filing cabinet was something

called a file folder, which attempted

to organize relevant papers

together. But after time, they

would get over-stuffed, and fall

apart when they got old or opened

too many times.

Using these filing cabinets

properly required a college degree.

It could take days to find all the

papers that were in the various

cabinets. Businesses suffered

horribly. It was a very dark time in

the history of man- and woman-

kind.

Then one day, from the top of a

mountain somewhere (I personally

think it was Colorado, but I 'm not

sure), came a lovely fairy. This fairy

was blue and silver - with beautiful

wings and white hair, and was

about 1 foot tall. Her name, believe

it or not, was See-Quill. Isn't that a

funny name? Anyway, See-Quill

said that she could fix everything

having to do with all the paper and

filing cabinets and wasted time, if

only people would believe in

computers and her. She called this

power a “Database”. She said that

the “Database” could replace the

entire filing system. Some people

did, and soon their lives were very

happy. Some didn't, and their lives

stayed the same, lost in mountains

of paper.

All fairy promises, however,

come with some sort of

requirement. That requirement

was that whoever wanted to use

the power of See-Quill needed to

learn a bit of a different language.

It wouldn't be too difficult a

language to learn. In fact, it was

much like the one the people

already used. It just has a different

way of saying things, and you had

to think about things very carefully

BEFORE you said them - to use the

power of See-Quill.

One day, a young boy named,

curiously enough, User, came to

see See-Quill. He was very

impressed with her beauty, and

said “See-Quill, Please teach me to

use your power.” See-Quill said

that she would.

She said, “First, you have to

know how your information is laid

out. Show me your papers.”

Being a young boy, User had

only a few pieces of paper. See-

Quill said, “User, right now you

could live with papers and file

folders. However, I can get

glimpses of the future, and you will

someday have so many papers that

they would, if placed on top of

each other, be taller than you by 1 5

times. We should use my power.”

So, working together, User and

See-Quill created a “database

thingie” (a fairy technical term),

and User lived happily ever after.

The End.

Of course, the story is not

full circle magazine 31 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 7

completely true. However,
using databases and SQL can
make our l ives easier. This
time, we wi l l learn about some
simple SQL queries, and how to
use them in a program. Some
people might think that this
might not be the “correct” way
or the “best” way, but it is a
reasonable way. So let's begin.

Databases are like the filing

cabinets in our story above. Data

tables are like the file folders. The

individual records in the tables are like

the sheets of paper. Each piece of

information is called a field. It falls

together very nicely, doesn't it? You

use SQL (pronounced See-Quill)

statements to do things with the data.

SQL stands for Structured Query

Language, and is basically designed to

be an easy way to use databases. In

practice, however, it can become very

complicated. We will keep things

pretty simple for this installment.

We need to create a plan, like

starting any construction project. So,

think of a recipe card, which is a good

thing to think about, since we are

going to create a recipe database

program. Around my house, recipes

come in various forms: 3x5 card, 8x1 0

pieces of paper, napkins with the

recipe scribbled on it, pages from

magazines, and even stranger forms.

They can be found in books, boxes,

binders, and other things. However,

they all pretty much have one thing in

common: the format. In almost every

case, at the top you have the recipe

title and maybe how many servings it

makes and where it came from. The

middle contains the list of ingredients,

and the bottom contains the

instructions - dealing with the order

that things are done in, the cooking

time, and so on. We will use this

general format as the template of our

database project. We will break this up

into two parts. We'll create the

database this time, and the application

to read and update the database next

time.

Here's an example. Let's say we

have the recipe shown right.

Notice the order we just discussed.

Now when we design our database -

we could make it very large and have

one record for everything in the

recipe. That, however, would be

clumsy and hard to deal with. Instead,

we are going to use the recipe card as

a template. One table will handle the

top of the card, or the gross

information about the recipe; one

table will handle the middle of the

card, or the ingredients information;

and one table will handle the bottom,

or the instructions.

Make sure you have installed

SQLite and APSW. SQLite is a

small database engine that

doesn't require you to have a

separate database server, which

makes it ideal for our little

application. Everything you learn

here can be used with larger

database systems like MySQL and

others. The other good thing

about SQLite is that it uses

limited data types. These types

are Text, Numeric, Blob, and

Integer Primary Key. As you have

learned already, text is pretty

much anything. Our

Spanish Rice

Serves: 4

Source: Greg Walters

Ingredients:
1 cup parboiled Rice (uncooked)

1 pound Hamburger

2 cups Water

1 8 oz can Tomato Sauce

1 small Onion chopped

1 clove Garlic chopped

1 tablespoon Ground Cumin

1 teaspoon Ground Oregano

Salt and Pepper to taste

Salsa to taste

Instructions:
Brown hamburger.

Add all other ingredients.

Bring to boil.

Stir, lower to simmer and cover.

Cook for 20 minutes.

Do not look, do not touch.

Stir and serve.

full circle magazine 32 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 7

ingredients, instructions, and
the title of our recipe are al l
text types - even though they
have numbers in them.
Numeric datatypes store
numbers. These can be integer
values or floating point or real
values. Blobs are binary data,
and can include things l ike
pictures and other things.
Integer Primary Key values are
special . The SQLite database
engine automatical ly puts in a
guaranteed unique integer
value for us. This wi l l be
important later on.

APSW stands for Another

Python SQLite Wrapper and is a

quick way to communicate with

SQLite. Now let's go over some of

the ways to create our SQL

statements.

To obtain records from a

database, you would use the

SELECT statement. The format

would be:

SELECT [what] FROM [which
table(s)] WHERE [Constraints]

So, if we want to get all the

fields from the Recipes table we

would use:

SELECT * FROM Recipes

If you wish to obtain just a

record by its primary key, you have

to know what that value is (pkID in

this instance), and we have to

include a WHERE command in the

statement. We could use:

SELECT * FROM Recipes WHERE
pkID = 2

Simple enough...right? Pretty

much plain language. Now,

suppose we want to just get the

name of the recipe and the number

of servings it makes - for all recipes.

It's easy. All you have to do is

include a list of the fields that you

want in the SELECT statement:

SELECT name, servings FROM
Recipes

To insert records, we use the

INSERT INTO command. The syntax

is

INSERT INTO [table name]
(field list) VALUES (values
to insert)

So, to insert a recipe into the

recipe table the command would

be

INSERT INTO Recipes

(name,servings,source) VALUES
(“Tacos”,4,”Greg”)

To delete a record we can use

DELETE FROM Recipes WHERE
pkID = 10

There's also an UPDATE

statement, but we'll leave that for

another time.

More on SELECT

In the case of our database, we

have three tables, each can be

related together by using recipeID

pointing to the pkID of the recipe

table. Let's say we want to get all

the instructions for a given recipe.

We can do it like this:

SELECT Recipes.name,
Recipes.servings,
Recipes.source,
Instructions.Instructions
FROM Recipes LEFT JOIN
instructions ON (Recipes.pkid
= Instructions.recipeid)
WHERE Recipes.pkid = 1

However, that is a lot of typing

and very redundant. We can use a

method called aliasing. We can do

it like this:

SELECT r.name, r.servings,
r.source, i.Instructions FROM

Recipes r LEFT JOIN
instructions i ON (r.pkid =
i.recipeid) WHERE r.pkid = 1

I t's shorter and still readable.

Now we will write a small program

that will create our database,

create our tables, and put some

simple data into the tables to have

something to work with. We

COULD write this into our full

program, but, for this example, we

will make a separate program. This

is a run-once program - if you try to

run it a second time, it will fail at

the table creation statements.

Again, we could wrap it with a

try...catch handler, but we'll do that

another time.

We start by importing the APSW

wrapper.

import apsw

The next thing we need to do is

create a connection to our

database. It will be located in the

same directory where we

full circle magazine 33 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 7
have our appl ication. When we
create this connection, SQLite
automatical ly looks to see if the
database exists. I f so, it opens
it. I f not, i t creates the
database for us. Once we have
a connection, we need what is
cal led a cursor. This creates a
mechanism that we can use to
work with the database. So
remember, we need both a
connection and a cursor. These
are created l ike this:

Opening/creating database

connection=apsw.Connection("c
ookbook1.db3")
cursor=connection.cursor()

Okay - we have our connection

and our cursor. Now we need to

create our tables. There will be

three tables in our application. One

to hold the gross recipe

information, one for the

instructions for each recipe, and

one to hold the list of the

ingredients. Couldn't we do it with

just one table? Well, yes we could,

but, as you will see, it will make

that one table very large, and will

include a bunch of duplicate

information.

We can look at the table

structure like this. Each column is a

separate table as shown above

right.

Each table has a field called

pkID. This is the primary key that

will be unique within the table. This

is important so that the data tables

never have a completely duplicated

record. This is an integer data type,

and is automatically assigned by

the database engine. Can you do

without it? Yes, but you run the risk

of accidentally creating a

duplicated record id. In the case of

the Recipes table, we will use this

number as a reference for which

instruction and which set of

ingredients go with that recipe.

We would first put the

information into the database so

that the name, source and number

served goes into the recipe table.

The pkID is automatically assigned.

Let's pretend that this is the very

first record in our table, so the

database engine would assign the

value 1 to the pkID. We will use this

value to relate the information in

the other tables to this recipe. The

instructions table is simple. It just

holds the long text of the

instructions, its own pkID and then

a pointer to the recipe in the recipe

table. The ingredients table is a bit

more complicated in that we have

one record for each ingredient as

well as its own pkID and the

pointer back to our recipe table

record.

So in order to create the recipe

table, we define a string variable

called sql, and assign it the

command to create the table:

sql = 'CREATE TABLE Recipes
(pkiD INTEGER PRIMARY KEY,
name TEXT, servings TEXT,
source TEXT)'

Next we have to tell ASPW to

actually do the sql command:

cursor.execute(sql)

Now we create the other tables:

sql = 'CREATE TABLE
Instructions (pkID INTEGER
PRIMARY KEY, instructions
TEXT, recipeID NUMERIC)'

cursor.execute(sql)

sql = 'CREATE TABLE
Ingredients (pkID INTEGER
PRIMARY KEY, ingredients
TEXT, recipeID NUMERIC)'

cursor.execute(sql)

Once we have the tables

created, we will use the INSERT

INTO command to enter each set

of data into its proper table.

Remember, the pkID is

RECIPES INSTRUCTIONS INGREDIENTS
------------ ---------------------- --------------------
pkID (Integer Primary Key) pkID(Integer Primary Key) pkID (Integer Primary Key)
name (Text) recipeID (Integer) recipeID (Integer)
source (Text) instructions (Text) ingredients (Text)
serves (Text)

full circle magazine 34 contents ^The Compleat Python

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1 972. He enjoys
cooking, hiking, music, and spending
time with his family.

PROGRAM IN PYTHON - PART 7

automatical ly entered for us, so
we don't include that in the l ist
of fields in our insert
statement. Since we wi l l be
using the field names, they can
be in any order, not just the
order they were created in. As
long as we know the names of
the fields, everything wi l l work
correctly. The insert statement
for our recipe table entry
becomes

INSERT INTO Recipes (name,
serves, source) VALUES
(“Spanish Rice”,4,”Greg
Walters”)

Next we need to find out the

value that was assigned to the pkID

in the recipe table. We can do this

with a simple command:

SELECT last_insert_rowid()

However, it doesn't just come

out as something we can really use.

We need to use a series of

statements like this:

sql = "SELECT
last_insert_rowid()"

cursor.execute(sql)

for x in cursor.execute(sql):
lastid = x[0]

Why is this? Well, when we get

data back from ASPW, it comes

back as a tuple. This is something

we haven't talked about yet. The

quick explanation is that a tuple is

(if you look at the code above) like

a list, but it can't be changed. Many

people use tuples rarely; others

use them often; it's up to you. The

bottom line is that we want to use

the first value returned. We use

the 'for' loop to get the value into

the tuple variable x. Make sense?

OK. Let's continue...

Next, we would create the

insert statement for the

instructions:

sql = 'INSERT INTO
Instructions
(recipeID,instructions)
VALUES(%s,"Brown hamburger.
Stir in all other
ingredients. Bring to a boil.
Stir. Lower to simmer. Cover
and cook for 20 minutes or
until all liquid is
absorbed.")' % lastid

cursor.execute(sql)

Notice that we are using the

variable substitution (%s) to place

the pkID of the recipe (lastid) into

the sql statement. Finally, we need

to put each ingredient into the

ingredient table. I ' ll show you just

one for now:

sql = 'INSERT INTO
Ingredients
(recipeID,ingredients) VALUES
(%s,"1 cup parboiled Rice
(uncooked)")' % lastid

cursor.execute(sql)

I t's not too hard to understand

at this point. Next time it will get a

bit more complicated.

If you would like the full source

code, I 've placed it on my website.

Go to

www.thedesignatedgeek.com to

download it.

Next time, we will use what

we've learned over the series to

create a menu-driven front end for

our recipe program - it will allow

viewing all recipes in a list format,

viewing a single recipe, searching

for a recipe, and adding and

deleting recipes.

I suggest that you spend some

time reading up on SQL

programming. You'll be happy you

did.

http://www.thedesignatedgeek.com

full circle magazine 35 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg Walters PPrroogg rraa mm II nn PPyytthh oonn -- PPaa rrtt 88

SEE ALSO:
FCM#27-33 - Python Parts 1 - 7

APPLICABLE TO:

CATEGORIES:

DEVICES:

GraphicDev Internet M/media System

HDDCD/DVD USB Drive Laptop Wireless

W
ewill continue

programming our

recipe database that

we started in Part 7.

This will be a long one, with a lot of

code, so grab on with all your might

and don't let go. But remember,

keep your hands and feet inside the

car at all times. We have already

created our database. Now we want

to display the contents, add to it

and delete from it. So how do we do

that? We will start with an

application that runs in a terminal,

so we need to create a menu. We

will also create a class that will

hold our database routines. Let's

start with a stub of our program

shown above right.

Now we will layout our menu.

We do that so we can stub our

class. Our menu will be a rather big

loop that will display a list of

options that the user can perform.

We'll use a while loop. Change the

menu routine to look like the code

shown below right.

Next we stub the menu with an

if|elif|else structure which is

shown at the top of the next page.

Let's take a quick look at our

menu routine. We start off by

printing the prompts that the user

can perform. We set a variable

(loop) to True, and then use the

while function to continue looping

until loop = False. We use the

raw_input() command to wait for

the user to select an option, and

then

#!/usr/bin/python
#--
Cookbook.py
Created for Beginning Programming Using Python #8
and Full Circle Magazine
#--
import apsw
import string
import webbrowser

class Cookbook:

def Menu():
cbk = Cookbook() # Initialize the class

Menu()

def Menu():
cbk = Cookbook() # Initialize the class
loop = True
while loop == True:

print
'==='

print ' RECIPE DATABASE'
print

'==='
print ' 1 - Show All Recipes'
print ' 2 - Search for a recipe'
print ' 3 - Show a Recipe'
print ' 4 - Delete a recipe'
print ' 5 - Add a recipe'
print ' 6 - Print a recipe'
print ' 0 - Exit'
print

'==='
response = raw_input('Enter a selection -> ')

full circle magazine 36 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 8

our if routine
to handle whichever option the
user selected. Before we can
run this for a test, we need to
create a stub inside our class
for the __init__ routine:

def __init__(self):
pass

Now, save your program where

you saved the database you

created from the last time, and run

it. You should see something like

that shown above right.

It should simply print the menu

over and over, until you type “0”,

and then print “Goodbye” and exit.

At

this point, we can now start stubs

of our routines in the Cookbook

class. We will need a routine that

will display all the information out

of the Recipes data table, one that

will allow you to search for a

recipe, one that will show the data

for a single recipe from all three

tables, one that will delete a recipe,

one that will allow you to add a

recipe, and one that will print the

recipe to the default printer. The

PrintAllRecipes routine doesn't

need a parameter other than the

(self) parameter, neither does the

SearchforRecipe nor the EnterNew

routines. The PrintSingleRecipe,

DeleteRecipe and PrintOut

routines all need to know what

recipe to deal with, so they will

need to have a parameter that

we'll call “which”. Use the pass

command to finish each stub.

Under the Cookbook class, create

the routine stubs:

def PrintAllRecipes(self):
pass

def SearchForRecipe(self):
pass

def
PrintSingleRecipe(self,which)
:

pass
def DeleteRecipe(self,which):

pass
def EnterNew(self):

pass
def PrintOut(self,which):

pass

For a number of the menu

items, we will want to print out all

of the recipes from the Recipe

table – so the user can pick from

that list. These will be options 1 , 3,

4 and 6. So, modify the menu

routine for those options, replacing

the pass command with

cbk.PrintAllRecipes() . Our response

check routine will now look like the

code at the top of the next page.

One more thing to do is to set

up the __init__ routine. Replace the

stub with the following lines:

def __init__(self):
global connection
global cursor
self.totalcount = 0

connection=apsw.Connection("c
ookbook.db3")
cursor=connection.cursor()

if response == '1': # Show all recipes
pass

elif response == '2': # Search for a recipe
pass

elif response == '3': # Show a single recipe
pass

elif response == '4': # Delete Recipe
pass

elif response == '5': # Add a recipe
pass

elif response == '6': # Print a recipe
pass

elif response == '0': # Exit the program
print 'Goodbye'
loop = False

else:
print 'Unrecognized command. Try again.'

/usr/bin/python -u
"/home/greg/python_examples/APSW/cookbook/cookbook_stub.py"
===

RECIPE DATABASE
===
1 - Show All Recipes
2 - Search for a recipe
3 - Show a Recipe
4 - Delete a recipe
5 - Add a recipe
6 - Print a recipe
0 - Exit
===
Enter a selection ->

full circle magazine 37 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 8

First we create two global
variables for our connection
and cursor. We can access
them from anywhere within the
cookbook class. Next, we
create a variable self. totalcount
which we use to count the
number of recipes. We' l l be
using this variable later on.
Final ly we create the
connection and the cursor.

The next step will be to flesh

out the PrintAllRecipes() routine in

the Cookbook class. Since we have

the global variables for connection

and cursor, we don't need to re-

create them in each routine. Next,

we will want to do a “pretty print”

to the screen for headers for our

recipe list. We'll use the “%s”

formatting command, and the left

justify command, to space out our

screen output. We want it to look

like this:

Item Name Serves Source

Finally, we need to create our

SQL statement, query the

database, and display the results.

Most of this was covered in the

article last time.

sql = 'SELECT * FROM
Recipes'

cntr = 0
for x in

cursor.execute(sql):
cntr += 1
print '%s %s %s %s'

%(str(x[0]).rjust(5),x[1].lju
st(30),x[2].ljust(20),x[3].lj
ust(30))

print '-------------'
self.totalcount = cntr

The cntr variable will count the

number of recipes we display to

the user. Now our routine is done.

Shown below is the full code for

the routine, just in case you missed

something.

Notice that we are using the

tuple that is returned from the

cursor.execute routine from ASPW.

We are printing the pkID as the

item for each recipe. This will allow

us to select the correct recipe later

on. When you run your program,

you should see the menu, and

when you select option 1 , you'll get

what's shown at the top of the

next page.

That's what we wanted, except

if you are running the app in

Dr.Python or the like, the program

doesn't pause. Let's add a pause

until the user presses a key so they

can look at the output for a second

or two. While we are at it, let's

print out the total number of

recipes from the variable we set up

a moment ago. Add to the bottom

of option 1 of the menu:

if response == '1': # Show all recipes
cbk.PrintAllRecipes()

elif response == '2': # Search for a recipe
pass

elif response == '3': # Show a single recipe
cbk.PrintAllRecipes()

elif response == '4': # Delete Recipe
cbk.PrintAllRecipes()

elif response == '5': # Add a recipe
pass

elif response == '6': # Print a recipe
cbk.PrintAllRecipes()

elif response == '0': # Exit the program
print 'Goodbye'
loop = False

else:
print 'Unrecognized command. Try again.'

def PrintAllRecipes(self):
print '%s %s %s %s'

%('Item'.ljust(5),'Name'.ljust(30),'Serves'.ljust(20),'
Source'.ljust(30))

print '---------------------------------'
sql = 'SELECT * FROM Recipes'
cntr = 0
for x in cursor.execute(sql):

cntr += 1
print '%s %s %s %s'

%(str(x[0]).rjust(5),x[1].ljust(30),x[2].ljust(20),x[3]
.ljust(30))

print '---------------------------------'
self.totalcount = cntr

full circle magazine 38 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 8

print 'Total Recipes - %s'
%cbk.totalcount

print '----------------------

-'

res = raw_input('Press A Key
-> ')

We'll skip option #2 (Search for

a recipe) for a moment, and deal

with #3 (Show a single recipe).

Let's deal with the menu portion

first. We'll show the list of recipes,

as for option 1 , and then ask the

user to select one. To make sure

we don't get errors due to a bad

user input, we'll use the Try|Except

structure. We will print the prompt

to the user (Select a recipe !) ,

then, if they enter a correct

response, we'll call the

PrintSingleRecipe() routine in our

Cookbook class with the pkID from

our Recipe table. If the entry is not

a number, it will raise a ValueError

exception, which we handle with

the except ValueError: catch shown

right.

Next, we'll work on our

PrintSingleRecipe routine in the

Cookbook class. We start with the

connection and cursor again, then

create our SQL statement. In this

case, we use 'SELECT * FROM

Recipes WHERE pkID = %s” %

str(which) ' where which is the value

we want to find. Then we “pretty

print” the output, again from the

tuple returned by ASPW. In this

case, we use x as the gross variable,

and then each one with bracketed

index into the tuple. Since the table

layout is

pkID/name/servings/source, we

can use x[0] ,x[1] ,x[2] and x[3] as

the detail. Then, we want to select

everything from the ingredients

table where the recipeID (our key

into the recipes data table) is

equal to the pkID we just used. We

loop through the tuple returned,

printing each ingredient, and then

finally we get the instructions from

the instructions table – just like we

did for the ingredients table.

Finally, we wait for the user to

press a key so they can see the

recipe on the screen. The code is

shown on the next page.

Now, we have two routines

Enter a selection -> 1
Item Name Serves Source
--

1 Spanish Rice 4 Greg
2 Pickled Pepper-Onion Relish 9 half pints Complete Guide to Home Canning

--
===

RECIPE DATABASE
===
1 - Show All Recipes
2 - Search for a recipe
3 - Show a Recipe
4 - Delete a recipe
5 - Add a recipe
6 - Print a recipe
0 - Exit
===
Enter a selection ->

try:
res = int(raw_input('Select a Recipe -> '))
if res <= cbk.totalcount:

cbk.PrintSingleRecipe(res)
elif res == cbk.totalcount + 1:

print 'Back To Menu...'
else:

print 'Unrecognized command. Returning to menu.'
except ValueError:

print 'Not a number...back to menu.'

full circle magazine 39 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 8

out of the six finished. So, let's
deal with the search routine,
again starting with the menu.
Lucki ly this time, we just cal l
the search routine in the class,
so replace the pass command
with:

cbk.SearchForRecipe()

Now to flesh out our search

code. In the Cookbook class,

replace our stub for the

SearchForRecipe with the code

shown on the next page.

There's a lot going on there.

After we create our connection and

cursor, we display our search menu.

We are going to give the user three

ways to search, and a way to exit

the routine. We can let the user

search by a word in the recipe

name, a word in the recipe source,

or a word in the ingredient list.

Because of this, we can't just use

the display routine we just created,

and will need to create custom

printout routines. The first two

options use simple SELECT

statements with an added twist.

We are using the “like” qualifier. If

we were using a query browser like

SQLite Database Browser, our like

statement uses a wildcard

character of “%”. So, to look for a

recipe containing “rice” in the

recipe name, our query would be:

SELECT * FROM Recipes WHERE
name like '%rice%'

However, since the “%”

character is also a substitution

character in our strings, we have to

use %% in our text. To make it

worse, we are using the

substitution character to insert the

word the user is searching for.

Therefore, we must make it

'%%%s%%'. Sorry if this is as clear

as mud. The third query is called a

Join statement. Let's look at it a bit

closer:

sql = "SELECT
r.pkid,r.name,r.servings,r.so
urce,i.ingredients FROM
Recipes r Left Join
ingredients i on (r.pkid =
i.recipeid) WHERE
i.ingredients like '%%%s%%'
GROUP BY r.pkid" %response

We are selecting everything

from the recipe table, and the

ingredients from the ingredients

table, joining or relating the

ingredient table ON the recipeID

being equal to the pkID in the

recipe table, then searching for our

ingredient using the like

statement, and, finally, grouping

the result by the pkID in the recipe

table to keep duplicates from

being shown. If you remember, we

have peppers twice in the second

recipe (Onion and pepper relish) ,

one green and one red. That could

create confusion in our user's mind.

Our menu uses

searchin = raw_input('Enter
Search Type -> ')

if searchin != '4':

which says: if searchin (the value

the user entered) is NOT equal to 4

then do the options, if it is 4, then

don't do

def PrintSingleRecipe(self,which):
sql = 'SELECT * FROM Recipes WHERE pkID = %s' %

str(which)
print

'~~'
for x in cursor.execute(sql):

recipeid =x[0]
print "Title: " + x[1]
print "Serves: " + x[2]
print "Source: " + x[3]

print
'~~'

sql = 'SELECT * FROM Ingredients WHERE RecipeID =
%s' % recipeid

print 'Ingredient List:'
for x in cursor.execute(sql):

print x[1]
print ''
print 'Instructions:'
sql = 'SELECT * FROM Instructions WHERE RecipeID

= %s' % recipeid
for x in cursor.execute(sql):

print x[1]
print

'~~'
resp = raw_input('Press A Key -> ')

full circle magazine 40 contents ^The Compleat Python

def SearchForRecipe(self):
print the search menu
print '-------------------------------'
print ' Search in'
print '-------------------------------'
print ' 1 - Recipe Name'
print ' 2 - Recipe Source'
print ' 3 - Ingredients'
print ' 4 - Exit'
searchin = raw_input('Enter Search Type -> ')
if searchin != '4':

if searchin == '1':
search = 'Recipe Name'

elif searchin == '2':
search = 'Recipe Source'

elif searchin == '3':
search = 'Ingredients'

parm = searchin
response = raw_input('Search for what in %s (blank to exit) -> ' % search)
if parm == '1': # Recipe Name

sql = "SELECT pkid,name,source,servings FROM Recipes WHERE name like '%%%s%%'" %response
elif parm == '2': # Recipe Source

sql = "SELECT pkid,name,source,servings FROM Recipes WHERE source like '%%%s%%'" %response
elif parm == '3': # Ingredients

sql = "SELECT r.pkid,r.name,r.servings,r.source,i.ingredients FROM Recipes r Left Join ingredients i
on (r.pkid = i.recipeid) WHERE i.ingredients like '%%%s%%' GROUP BY r.pkid" %response

try:
if parm == '3':

print '%s %s %s %s %s'
%('Item'.ljust(5),'Name'.ljust(30),'Serves'.ljust(20),'Source'.ljust(30),'Ingredient'.ljust(30))

print '--'
else:

print '%s %s %s %s' %('Item'.ljust(5),'Name'.ljust(30),'Serves'.ljust(20),'Source'.ljust(30))
print '--'

for x in cursor.execute(sql):
if parm == '3':

print '%s %s %s %s %s'
%(str(x[0]).rjust(5),x[1].ljust(30),x[2].ljust(20),x[3].ljust(30),x[4].ljust(30))

else:
print '%s %s %s %s' %(str(x[0]).rjust(5),x[1].ljust(30),x[3].ljust(20),x[2].ljust(30))

except:
print 'An Error Occured'

print '--'
inkey = raw_input('Press a key')

full circle magazine 41 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 8

anything, just fal l through.
Notice that I used “!=” as Not
Equal To instead of “<>”. Either
wi l l work under Python 2.x.
However, in Python 3.x, it wi l l
g ive a syntax error. We' l l cover
more Python 3.x changes in a
future article. For now, start
using “!=” to make your l ife
easier to move to Python 3.x in
the future. Final ly, we “pretty
print” again our output. Let's
look at what the user wi l l see,
shown right.

You can see how nicely the

program prints the output. Now,

the user can go back to the menu

and use option #3 to print

whichever recipe they want to see.

Next we will add recipes to our

database. Again, we just have to

add one line to our menu routine,

the call to the EnterNew routine:

cbk.EnterNew()

The code that needs to replace

the stub in the Cookbook class for

EnterNew() is at:

http://pastebin.com/f1 d868e63.

We start by defining a list

named “ings” – which stands

Enter a selection -> 2

Search in

1 - Recipe Name
2 - Recipe Source
3 - Ingredients
4 - Exit
Enter Search Type -> 1
Search for what in Recipe Name (blank to exit) -> rice
Item Name Serves Source
--

1 Spanish Rice 4 Greg
--
Press a key

Easy enough. Now for the ingredient search...

Enter a selection -> 2

Search in

1 - Recipe Name
2 - Recipe Source
3 - Ingredients
4 - Exit
Enter Search Type -> 3
Search for what in Ingredients (blank to exit) -> onion
Item Name Serves Source Ingredient

--
1 Spanish Rice 4 Greg 1 small
Onion chopped
2 Pickled Pepper-Onion Relish 9 half pints Complete Guide to Home Canning 6 cups
finely chopped Onions
--
Press a key

http://pastebin.com/f1d868e63

full circle magazine 42 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 8

for ingredients. We then ask the
user to enter the title, source,
and servings. We then enter a
loop, asking for each
ingredient, appending to the
ing l ist. I f the user enters 0, we
exit the loop and continue on
asking for the instructions. We
then show the recipe contents
and ask the user to verify
before saving the data. We use
INSERT INTO statements, l ike
we did last time, and return to
the menu. One thing we have
to be careful of is the single
quote in our entries. USUALLY,
this won't be a problem in the
ingredient l ist or the
instructions, but in our title or
source fields, it could come up.
We need to add an escape
character to any single quotes.
We do this with the
string.replace routine, which is
why we imported the string
l ibrary. In the menu routine, put
the code shown above right
under option #4.

Then, in the Cookbook class, use

the code shown below right for the

DeleteRecipe() routine.

Quickly, we'll go through the

delete routine. We first ask the

user which recipe to delete (back in

the menu), and pass that pkID

number into our delete routine.

Next, we ask the user 'are they

SURE' they want to delete the

recipe. If the response is “Y”

(string.upper(resp) == 'Y') , then we

create the sql delete statements.

Notice that this time we have to

delete records from all three

tables. We certainly could just

delete the record from the recipes

table, but then we'd have orphan

records in the other two, and that

wouldn't be good. When we delete

the record from the recipe table,

we use the pkID field. In the other

two tables, we use the recipeID

field.

Finally, we will deal with the

routine to print the recipes. We'll

be creating a VERY simple HTML

file, opening the default browser

and allowing them to print from

there. This is why we are importing

the webbrowser library. In the

menu routine for option #6, insert

the code shown at the top of the

next page.

Again, we display a list of all the

recipes, and allow them to select

the one that they wish to print. We

call the PrintOut routine in the

Cookbook class. That code is

shown at the top right of the next

page.

We start with the fi =

open([filename] ,'w') command

which creates the file. We then pull

the information from the recipe

table, and write it to the file with

the fi.write command. We use the

<H1 ></H1 > header 1 tag for the

title, the

cbk.PrintAllRecipes()
print '0 - Return To Menu'
try:

res = int(raw_input('Select a Recipe to DELETE
or 0 to exit -> '))

if res != 0:
cbk.DeleteRecipe(res)

elif res == '0':
print 'Back To Menu...'

else:
print 'Unrecognized command. Returning to

menu.'
except ValueError:

print 'Not a number...back to menu.'

def DeleteRecipe(self,which):
resp = raw_input('Are You SURE you want to Delete

this record? (Y/n) -> ')
if string.upper(resp) == 'Y':

sql = "DELETE FROM Recipes WHERE pkID = %s" %
str(which)

cursor.execute(sql)
sql = "DELETE FROM Instructions WHERE recipeID

= %s" % str(which)
cursor.execute(sql)
sql = "DELETE FROM Ingredients WHERE recipeID

= %s" % str(which)
cursor.execute(sql)
print "Recipe information DELETED"
resp = raw_input('Press A Key -> ')

else:
print "Delete Aborted - Returning to menu"

full circle magazine 43 contents ^The Compleat Python

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1 972. He enjoys
cooking, hiking, music, and spending
time with his family.

PROGRAM IN PYTHON - PART 8

<H2> tag for servings and
source. We then use the
<l i></l i> l ist tags for our
ingredient l ist, and then write
the instructions. Other than
that it's simple queries we've
already learned. Final ly, we
close the fi le with the fi .close()
command, and use
webbrowser.open([fi lename])
with the fi le we just created.
The user can then print from
their web browser – if required.

WHEW! This was our biggest
application to date. I 've posted the

full source code (and the sample

database if you missed last month)

on my website. If you don't want to

type it all in or have any problems,

then hop over to my web site,

www.thedesignatedgeek.com to

get the code.

cbk.PrintAllRecipes()
print '0 - Return To Menu'
try:

res = int(raw_input('Select a Recipe to DELETE or 0 to exit -> '))
if res != 0:

cbk.PrintOut(res)
elif res == '0':

print 'Back To Menu...'
else:

print 'Unrecognized command. Returning to menu.'
except ValueError:

print 'Not a number...back to menu.'

def PrintOut(self,which):
fi = open('recipeprint.html','w')
sql = "SELECT * FROM Recipes WHERE pkID = %s" % which
for x in cursor.execute(sql):

RecipeName = x[1]
RecipeSource = x[3]
RecipeServings = x[2]

fi.write("<H1>%s</H1>" % RecipeName)
fi.write("<H2>Source: %s</H2>" % RecipeSource)
fi.write("<H2>Servings: %s</H2>" % RecipeServings)
fi.write("<H3> Ingredient List: </H3>")
sql = 'SELECT * FROM Ingredients WHERE RecipeID = %s' % which
for x in cursor.execute(sql):

fi.write("%s" % x[1])
fi.write("<H3>Instructions:</H3>")
sql = 'SELECT * FROM Instructions WHERE RecipeID = %s' % which
for x in cursor.execute(sql):

fi.write(x[1])
fi.close()
webbrowser.open('recipeprint.html')
print "Done"

http://www.thedesignatedgeek.com

full circle magazine 44 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg Walters PPrroogg rraa mm II nn PPyytthh oonn -- PPaa rrtt 99

SEE ALSO:
FCM#27-34 - Python Parts 1 - 8

APPLICABLE TO:

CATEGORIES:

DEVICES:

GraphicDev Internet M/media System

HDDCD/DVD USB Drive Laptop Wireless

I
f you are anything like me, you

have some of your favorite

music on your computer in the

form of MP3 files. When you

have less than 1 000 music files, it's

rather easy to remember what you

have and where it is. I , on the other

hand, have many more than that. In

a past life, I was a DJ and converted

most of my music a number of years

ago. The biggest problem that I had

was disk space. Now the biggest

problem is remembering what I

have and where it is.

In this and the next installment

we will look at making a catalog

for our MP3 files. We will also take

a look at some new python

concepts as well as re-visiting our

database skills.

First, an MP3 file can hold

information about the file itself.

The title of the song, the album,

artist and more information. This

information is held in ID3 tags and

is referred to as metadata. Back in

the early days, there was only a

limited amount of information that

could be held inside of the MP3

file. Originally, it was stored at the

very end of the file in a block of

1 28 bytes. Because of the small

size of this block, you could only

hold 30 characters for the title of

the song, name of the artist, and

so on. For many music files, this

was fine, but (and this is one of my

favorite songs ever) when you had

a song with the name “Clowns (The

Demise of the European Circus

with No Thanks to Fellini)”, you

only got the first 30 characters.

That was a BIG frustration for

many people. So, the “standard”

ID3 tag became known as ID3v1

and a new format was created

called, amazingly enough, ID3v2.

This new format allowed for

variable length information and

was placed at the beginning of the

file, while the old ID3v1 metadata

was still stuck at the end of the file

for the benefit of the older

players. Now the metadata

container could hold up to 256 MB

of data. This was ideal for radio

stations and crazies like me.

Under ID3v2, each group of

information is held in what's called

a frame and each frame has a

frame identifier. In an earlier

version of ID3v2, the identifier was

three characters long. The current

version (ID3v2.4) uses a four

character identifier.

In the early days, we would

open the file in binary mode, and

dig around getting the information

as we needed it, but that was a lot

of work, because there were no

standard libraries available to

handle it. Now we have a number

of libraries that handle this for us.

We will use one for our project

called Mutagen. You will want to

go into Synaptic and install

python-mutagen. If you want, you

could do a search for “ID3” in

Synaptic. You'll find there are over

90 packages (in Karmic) , and if you

type “Python” in the quick search

box, you'll find 8 packages. There

are pros and cons with any of

them, but for our project, we'll

stick with Mutagen. Feel free to

dig into some of the other ones for

your extended learning.

Now that you have Mutagen

installed, we'll start our coding.

Start a new project and name it

“mCat”. We'll start by doing our

imports.

full circle magazine 45 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 9

from mutagen.mp3 import MP3

import os

from os.path import
join,getsize,exists

import sys

import apsw

For the most part, you've seen

these before. Next, we want to

create our stubbed function

headers.

def MakeDataBase():
pass

def S2HMS(t):
pass

def WalkThePath(musicpath):
pass

def error(message):
pass

def main():
pass

def usage():
pass

Ahhh...something new. We now

have a main function and a usage

function. What are these for? Let's

put one more thing in before we

discuss them.

if __name__ == '__main__':
main()

What the heck is that? This is a

trick that allows our file to be used

as either a stand alone application

or a re-usable module that gets

imported into another app.

Basically it says “IF this file is the

main app, we should go into the

main routine to run, otherwise we

are going to use this as a utility

module and the functions will be

called directly from another

program.

Next, we'll flesh out the usage

function. Below is the full code for

the usage routine.

Here we are going to create a

message to display to the user if

they don't start our application

with a parameter that we need to

be able to run as a standalone app.

Notice we use '\n' to force a new

line and '\t' to force a tab. We also

use a '%s' to include the application

name which is held in the

sys.argv[0] . We then use the error

routine to output the message,

then exit the application

(sys.exit(1)) .

Next, let's flesh out the error

routine. Here is the full error

routine.

def error(message):
print >> sys.stderr,

str(message)

We are using something called

redirection here (the “>>”). When

we use the function “print”, we are

telling python we want to output,

or stream, to the standard output

device, usually the terminal that we

are running in. To do this we use

(invisibly) stdout. When we want

to send an error message, we use

the stderr stream. This is also the

terminal. So we redirect the print

output to the stderr stream.

Now, let's work on the main

routine. Here we will setup our

connection and cursor for our

database, then look at our system

argument parameters, and if

everything is good, we'll call our

functions to do the actual work we

want done. Here's the code:

As we did last time, we

def usage():
message = (

'==\n'
'mCat - Finds all *.mp3 files in a given folder (and sub-folders),\n'
'\tread the id3 tags, and write that information to a SQLite database.\n\n'
'Usage:\n'
'\t{0} <foldername>\n'
'\t WHERE <foldername> is the path to your MP3 files.\n\n'
'Author: Greg Walters\n'
'For Full Circle Magazine\n'
'==\n'
).format(sys.argv[0])

error(message)
sys.exit(1)

full circle magazine 46 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 9

create two global variables
cal led connection and cursor
for our database. Next we look
at the parameters (if any)
passed from the command l ine
in the terminal . We do this with
the sys.argv command. Here
we are looking for two
parameters, first the
appl ication name which is
automatic and secondly the

path to our MP3 fi les. I f we
don't see two parameters, we
jump to the usage routine,
which prints our message to
the screen and exits. I f we do,
we fal l into the else clause of
our IF statement. Next, we put
the parameter for the starting
path into the StartFolder
variable. Understand that if
you have a path with a space in

it, for example,
(/mnt/musicmain/Adult
Contemporary), the characters
after the space wi l l be seen as
another parameter. So,
whenever you use a path with a
space, make sure you quote it.
We then setup our connection
and cursor, create the
database, then do the actual
hard work in the WalkThePath
routine and final ly close our
cursor and connection to the
database and then tel l the user
we are done. The ful l
WalkThePath routine can be
found at:
http: //pastebin.com/CegsAXjW.

First we clear the three

counters we will be using to keep

track of the work that has been

done. Next we open a file to hold

our error log just in case we have

any problems. Next we do a

recursive walk down the path

provided by the user. Basically, we

start at the provided file path and

“walk” in and out of any sub-folders

that happen to be there, looking

for any files that have a “.mp3”

extension. Next we increment the

folder counter then the file

counter to keep track of how many

files we've dealt with. Next we we

step through each of the files. We

clear the local variables that hold

the information about each song.

We use the join function from

os.path to create a proper path and

filename so we can tell mutagen

where to find the file. Now we

pass the filename to the MP3 class

getting back an instance of “audio”.

Next we get all the ID3 tags this

file contains and then step through

that list checking for the tags we

want to deal with and assigning

them to our temporary variables.

This way, we can keep errors to a

minimum. Take a look at the

portion of code dealing with the

track number. When mutagen

returns a track number it can be a

single value, a value like “4/1 8” or

as _trk[0] and _trk[1] or it can be

absolutely nothing. We use the

try/except wrappers to catch any

errors that will occur due to this.

Next, look at the writing of the

data records. We are doing things

a bit different from last time. Here

we create the SQL statement like

before, but this time we are

replacing the value variables with

“?”. We then put in the values in

def main():
global connection
global cursor
#--
if len(sys.argv) != 2:

usage()
else:

StartFolder = sys.argv[1]
if not exists(StartFolder): # From os.path

print('Path {0} does not seem to
exist...Exiting.').format(StartFolder)

sys.exit(1)
else:

print('About to work {0}
folder(s):').format(StartFolder)

Create the connection and cursor.
connection=apsw.Connection("mCat.db3")
cursor=connection.cursor()
Make the database if it doesn't exist...
MakeDataBase()
Do the actual work...
WalkThePath(StartFolder)
Close the cursor and connection...
cursor.close()
connection.close()
Let us know we are finished...
print("FINISHED!")

http://pastebin.com/CegsAXjW

full circle magazine 47 contents ^The Compleat Python

MY STORY QUICKIE

My studio is ful ly digital with four Windows XP machines in a peer to
peer network. My fifth machine runs Linux Ubuntu 9.04 exclusively
as my test machine for Linux. I started with Ubuntu 7.04 and have
upgraded each time there was a release. I have found it to be very
stable, easy to use and configure as each version improves the OS.

At this time it is only my test bed but is l inked to my network and
shares data with my Windows machines. I have been very happy
with the stabi l i ty of Ubuntu in its upgrades, programs, hardware
support, and driver updates. Although it is unfortunate that more
major vendors such as Adobe don't port over, but Wine seems to
work wel l . There are graphics programs and professional printers
related to my camera equipment that do not work so I wi l l have to
wait unti l Wine gets better or the software gets ported over.

Audio, video, CD/DVD, USB, and Zip drives al l seem to work 'out of
the box' which is nice. Sti l l some flaws in the software but they
appear to be minor annoyances.

Al l in al l Ubuntu has been visual ly refreshing and fun to play with. I
am not a geek so I real ly do not use the command l ine unless
curious about a tutoria l and want to try it, the OS GUI is quite
complete for us non-geeks who want to stick to a GUI .

I download Ful l Circle Magazine every month and have shared it with
one of my col leagues to show him what is avai lable. A lot of people
sti l l do not know about the OS and how easy it is to use, but as the
Microsoft disgruntled get the word out I expect to see more growth.
The one thing I absolutely love about this OS is the abi l i ty to shut
down a misbehaving program. The break button works sl ickly in
Linux and el iminates the frustration of waiting for Windows to
unfreeze in XP. Why can't Windows do something as easy as that? I
seldom need to use the button in Linux anyway which shows how
stable Linux is.

Brian G Hartnell - Photographer

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1 972. He enjoys
cooking, hiking, music, and spending
time with his family.

PROGRAM IN PYTHON - PART 9
the cursor.execute statement.
According to the ASPW web
site, this is the better way to
deal with it, so I won't argue
with them. Final ly we deal with
any other types of errors we
come up with. For the most
part, these wi l l be TypeErrors or
ValueErrors and wi l l probably
occur because of Unicode
characters that can't be
handled. Take a quick look at
the strange way we are
formatting and outputting the
string. We aren't using the '%'
substitution character. We are
using a “{0}” type substitution,
which is part of the Python 3.x
specification. The basic form
is:

Print('String that will be
printed with {0} number of
statements”).format(replaceme
nt values)

We are using the basic syntax

for the efile.writelines as well.

Finally we should take a look at

the S2HMS routine. This routine

will take the length of the song

which is a floating point value

returned by mutagen and convert

it to a string using either

“Hour:Minutes:Seconds” format or

“Minutes:Seconds” format. Look at

the return statements. Once again,

we are using the Python 3.x

formatting syntax. However,

there's something new in the mix.

We are using three substitution

sets (0, 1 and 2), but what's the

“:02n” after numbers 1 and 2? That

says that we want leading zeros to

two places. So if a song is 2

minutes and 4 seconds, the

returned string would be “2:04”,

not “2:4”.

The full code of our program is

at: http://pastebin.com/rFf4Gm7E.

Dig around on the web and see

what you can find about Mutagen.

It does more than just MP3s.

http://pastebin.com/rFf4Gm7E

full circle magazine 48 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg Walters PPrroogg rraa mm II nn PPyytthh oonn -- PPaa rrtt 11 00

SEE ALSO:
FCM#27-35 - Python Parts 1 - 9

APPLICABLE TO:

CATEGORIES:

DEVICES:

GraphicDev Internet M/media System

HDDCD/DVD USB Drive Laptop Wireless

Y
ou probably have heard of

the term XML. You may

not, however, know what

it is. XML will be the focus

of our lesson this month. The goal

is:

• To familiarize you with what XML

is.

• To show you how to read and write

XML files in your own applications.

• Get you ready for a fairly large

XML project next time.

So... let's talk about XML. XML

stands for EXtensible Markup

Language, very much like HTML. It

was designed to provide a way to

store and transport data

efficiently over the Internet or

other communication path. XML is

basically a text file that is

formatted using your own tags and

should be fairly self-documenting.

Being a text file, it can be

compressed to allow for faster and

easier transfer of the data. Unlike

HTML, XML doesn't do anything by

itself. It doesn't care how you want

your data to look. As I said a

moment before, XML doesn't

require you to stick to a series of

standard tags. You can create your

own.

Let's take a look at a generic

example of an XML file:

<root>
<node1>Data

Here</node1>
<node2

attribute=”something”>Node 2
data</node2>

<node3>
<node3sub1>more

data</node3sub1>
</node3>

</root>

The first thing to notice is the

indentation. In reality, indentation

is simply for human consumption.

The XML file would work just as

well if it looked like this...

<root><node1>Data
Here</node1><node2
attribute=”something”>Node 2
data</node2><node3><node3sub
1>more
data</node3sub1></node3></ro
ot>

Next, the tags contained in the

“<>” brackets have some rules.

First, they must be a single word.

Next, when you have a start tag

(for example <root>) you must

have a matching closing tag. The

closing tag starts with a “/”. Tags

are also case sensitive: <node>,

<Node>, <NODE> and <NodE> are

all different tags, and the closing

tag must match. Tag names may

contain letters, numbers and other

characters, but may not start with

a number or punctuation. You

should avoid “-”, “.” and “:” in your

tag names since some software

applications might consider them

some sort of command or property

of an object. Also, colons are

reserved for something else. Tags

are referred to as elements.

Every XML file is basically a tree

- starting from a root and

branching out from there. Every

XML file MUST have a root

element, which is the parent of

everything else in the file. Look

again at our example. After the

root, there are three child

elements: node1 , node2 and

node3. While they are children of

the root element, node3 is also a

parent of node3sub1 .

Now take a look at node2.

Notice that in addition to having

its normal data inside the brackets,

it also has something called an

attribute. These days, many

developers avoid attributes, since

full circle magazine 49 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 1 0

elements are just as effective
and less hassle, but you wi l l
find that attributes are sti l l
used. We' l l look at them some
more in a l ittle bit.

Let's take a look at the useful

example below.

Here we have the root element

named "people", containing two

child elements named "person".

Each 'person' child has 6 child

elements: firstname, lastname,

gender, address, city and state. At

first glance, you might think of this

XML file as a database

(remembering the last few

lessons), and you would be correct.

In fact, some applications use XML

files as simple database structures.

Now, writing an application to read

this XML file could be done without

too much trouble. Simply open the

file, read each line and, based on

the element, deal with the data as

it's read and then close the file

when you are done. However, there

are better ways to do it.

In the following examples, we

are going to use a library module

called ElementTree. You can get it

directly from Synaptic by installing

python-elementtree. However, I

chose to go to the ElementTree

website

(http://effbot.org/downloads/#ele

menttree) and download the

source file directly (elementtree-

1 .2.6-2005031 6.tar.gz) . Once

downloaded, I used the package

manager to extract it to a

temporary folder. I changed to that

folder and did a “sudo python

setup.py install”. This placed the

files into the python common

folder so I could use it in either

python 2.5 or 2.6. Now we can start

to work. Create a folder to hold

this month's code, copy the above

XML data into your favorite text

editor, and save it into that folder

as “xmlsample1 .xml”.

Now for our code.

The first thing we

want to do is test our

install of

ElementTree. Here's

the code:

import
elementtree.Elemen
tTree as ET

tree =
ET.parse('xmlsampl
e1.xml')

ET.dump(tree)

When we run the

test program, we

should get back

something like what is shown

below right.

All that we did was allow

ElementTree to open the file, parse

the file into its base

<people>
<person>

<firstname>Samantha</firstname>
<lastname>Pharoh</lastname>
<gender>Female</gender>
<address>123 Main St.</address>
<city>Denver</city>
<state>Colorado</state>

</person>
<person>

<firstname>Steve</firstname>
<lastname>Levon</lastname>
<gender>Male</gender>
<address>332120 Arapahoe Blvd.</address>
<city>Denver</city>
<state>Colorado</state>

</person>
</people>

/usr/bin/python -u
"/home/greg/Documents/articles/xml/read
er1.py"

<people>
<person>

<firstname>Samantha</firstname>
<lastname>Pharoh</lastname>
<gender>Female</gender>
<address>123 Main St.</address>
<city>Denver</city>
<state>Colorado</state>

</person>
<person>

<firstname>Steve</firstname>
<lastname>Levon</lastname>
<gender>Male</gender>
<address>332120 Arapahoe

Blvd.</address>
<city>Denver</city>
<state>Colorado</state>

</person>
</people>

http://effbot.org/downloads/#elementtree

full circle magazine 50 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 1 0

parts, and dump it out as it is in
memory. Nothing fancy here.

Now, replace your code with the

following:

import
elementtree.ElementTree as ET

tree =
ET.parse('xmlsample1.xml')

person =
tree.findall('.//person')

for p in person:
for dat in p:

print "Element: %s -
Data: %s" %(dat.tag,dat.text)

and run it again. Now your output

should be:

/usr/bin/python -u
"/home/greg/Documents/article
s/xml/reader1.py"

Element: firstname - Data:
Samantha
Element: lastname - Data:
Pharoh
Element: gender - Data:
Female
Element: address - Data: 123
Main St.
Element: city - Data: Denver
Element: state - Data:
Colorado
Element: firstname - Data:
Steve
Element: lastname - Data:
Levon

Element: gender - Data: Male
Element: address - Data:
332120 Arapahoe Blvd.
Element: city - Data: Denver
Element: state - Data:
Colorado

Now we have each piece of data

along with the tag name. We can

simply do some pretty printing to

deal with what we have. Let's look

at what we did here. We had

ElementTree parse the file into an

object named tree. We then asked

ElementTree to find all instances of

person. In the sample we are using,

there are two, but it could be 1 or

1 000. Person is a child of people

and we know that people is simply

the root. All of our data is broken

down within person. Next we

created a simple for loop to walk

through each person object. We

then created another for loop to

pull out the data for each person,

and display it by showing the

element name (.tag) and the data

(.text).

Now for a more real-world

example. My family and I enjoy an

activity called Geocaching. If you

don't know what that is, it's a

“geeky” treasure hunt that uses a

hand-held GPS device to find

something someone else has

hidden. They post the gross GPS

coordinates on a web site,

sometimes with clues, and we

enter the coordinates into our GPS

and then try to go find it. According

to Wikipedia, there are over

1 ,000,000 active cache sites world

wide, so there are probably a few

in your area. I use two websites to

get the locations we search for.

One is

http://www.geocaching.com/ and

the other is http://navicache.com/.

There are others, but these two are

about the biggest.

Files that contain the

information for each geocaching

site are usually basic XML files.

There are applications that will

take those data and transfer them

to the GPS device. Some of

<?xml version="1.0" encoding="ISO-8859-1"?>
<loc version="1.0" src="NaviCache">

<waypoint>
<name id="N02CAC"><![CDATA[Take Goofy Pictures at Grapevine Lake by g_phillips

Open Cache: Unrestricted
Cache Type: Normal
Cache Size: Normal
Difficulty: 1.5
Terrain : 2.0]]></name>

<coord lat="32.9890166666667" lon="-97.0728833333333" />
<type>Geocache</type>
<link text="Cache Details">http://www.navicache.com/cgi-

bin/db/displaycache2.pl?CacheID=11436</link>
</waypoint>

</loc>
Navicache fi le

http://www.geocaching.com/
http://navicache.com/

full circle magazine 51 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 1 0
them act as database programs
- that al low you to keep track of
your activity, sometimes with
maps. For now, we' l l
concentrate on just parsing the
download fi les.

I went to Navicache and found a

recent hide in Texas. The

information from the file is shown

on the previous page.

Copy the data from that box,

and save it as “Cache.loc”. Before

we start coding, let's examine the

cache file.

The first line basically tells us

that this is a validated XML file, so

we can safely ignore it. The next

line (that starts with “loc”) is our

root, and has the attributes

"version" and "src". Remember I

said earlier that attributes are used

in some files. We'll deal with more

attributes in this file as we go on.

Again, the root in this case can be

ignored. The next line gives us our

waypoint child. (A waypoint is a

location where, in this case, the

cache is to be found.) Now we get

the important data that we want.

There is the name of the cache, the

coordinates in latitude and

longitude, the type of cache it is,

and a link to the web page for

more information about this cache.

The name element is a long string

that has a bunch of information

that we can use, but we'll need to

parse it ourselves. Now let's create

a new application to read and

display this file. Name it

"readacache.py". Start with the

import and parse statements from

our previous example.

import
elementtree.ElementTree as ET

tree = ET.parse('Cache.loc')

Now we want to get back just

the data within the waypoint tag.

To do this, we use the .find

function within ElementTree. This

will be returned in the object “w”.

w = tree.find('.//waypoint')

Next, we want to go through all

the data. We'll use a for loop to do

this. Within the loop, we will check

the tag to find the elements

'name', 'coord', 'type' and 'link'.

Based on which tag we get, we'll

pull out the information to print it

later on.

for w1 in w:
if w1.tag == "name":

Since we will be looking at the

'name' tag first, let's review the

data we will be getting back.

<name
id="N02CAC"><![CDATA[Take
Goofy Pictures at Grapevine
Lake by g_phillips

Open Cache: Unrestricted

Cache Type: Normal

Cache Size: Normal

Difficulty: 1.5

Terrain : 2.0]]></name>

This is one really long string.

The 'id' of the cache is set as an

attribute. The name is the part

after “CDATA” and before the

“Open Cache:” part. We will be

chopping up the string into smaller

portions that we want. We can get

part of a string by using:

newstring =
oldstring[startposition:endpo
sition]

So, we can use the code below

to grab the information we need.

Next we need to grab the id

that's located in the attribute of

the name tag. We check to see if

there are any attributes (which we

know there are), like this:

Get text of cache name up to the phrase "Open Cache: "
CacheName = w1.text[:w1.text.find("Open Cache: ")-1]
Get the text between "Open Cache: " and "Cache Type: "
OpenCache = w1.text[w1.text.find("Open Cache:
")+12:w1.text.find("Cache Type: ")-1]
More of the same
CacheType = w1.text[w1.text.find("Cache Type:
")+12:w1.text.find("Cache Size: ")-1]
CacheSize = w1.text[w1.text.find("Cache Size:
")+12:w1.text.find("Difficulty: ")-1]
Difficulty= w1.text[w1.text.find("Difficulty:
")+12:w1.text.find("Terrain : ")-1]
Terrain = w1.text[w1.text.find("Terrain : ")+12:]

full circle magazine 52 contents ^The Compleat Python

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1 972. He enjoys
cooking, hiking, music, and spending
time with his family.

PROGRAM IN PYTHON - PART 1 0
if w1.keys():

for name,value in
w1.items():

if name == 'id':
CacheID = value

Now, we can deal with the other

tags for Coordinates, type, and link

the code shown below right.

Finally, we print them out to see

them using the code at the bottom

right. Far right is the full code.

You've learned enough

now to read most XML

files. As always, you can

get the full code for this

lesson on my website

which is at:

http://www.thedesignate

dgeek.com.

Next time, we will

utilize our XML

knowledge to get

information from a

wonderful weather site

and display it in a

terminal. Have fun!

elif w1.tag == "coord":
if w1.keys():

for name,value in w1.items():
if name == "lat":

Lat = value
elif name == "lon":

Lon = value
elif w1.tag == "type":

GType = w1.text
elif w1.tag == "link":

if w1.keys():
for name, value in w1.items():

Info = value
Link = w1.text

print "Cache Name: ",CacheName
print "Cache ID: ",CacheID
print "Open Cache: ",OpenCache
print "Cache Type: ",CacheType
print "Cache Size: ",CacheSize
print "Difficulty: ", Difficulty
print "Terrain: ",Terrain
print "Lat: ",Lat
print "Lon: ",Lon
print "GType: ",GType
print "Link: ",Link

import elementtree.ElementTree as ET
tree = ET.parse('Cache.loc')
w = tree.find(' .//waypoint')
for w1 in w:
if w1 .tag == "name":
Get text of cache name up to the phrase "Open Cache: "
CacheName = w1 .text[:w1 .text.find("Open Cache: ")-1]
Get the text between "Open Cache: " and "Cache Type: "
OpenCache = w1 .text[w1 .text.find("Open Cache: ")+1 2:w1 .text.find("Cache

Type: ")-1]
More of the same
CacheType = w1 .text[w1 .text.find("Cache Type: ")+1 2:w1 .text.find("Cache Size:

")-1]
CacheSize = w1 .text[w1 .text.find("Cache Size: ")+1 2:w1 .text.find("Difficulty: ")-

1]
Difficulty= w1 .text[w1 .text.find("Difficulty: ")+1 2:w1 .text.find("Terrain : ")-1]
Terrain = w1 .text[w1 .text.find("Terrain : ")+1 2:]
if w1 .keys() :
for name,value in w1 .items() :
if name == 'id' :
CacheID = value

elif w1 .tag == "coord":
if w1 .keys() :
for name,value in w1 .items() :
if name == "lat":
Lat = value

elif name == "lon":
Lon = value

elif w1 .tag == "type":
GType = w1 .text

elif w1 .tag == "link":
if w1 .keys() :
for name, value in w1 .items() :
Info = value

Link = w1 .text
print "Cache Name: ",CacheName
print "Cache ID: ",CacheID
print "Open Cache: ",OpenCache
print "Cache Type: ",CacheType
print "Cache Size: ",CacheSize
print "Difficulty: ", Difficulty
print "Terrain: ",Terrain
print "Lat: ",Lat
print "Lon: ",Lon
print "GType: ",GType
print "Link: ",Link
print "="*25

print "finished"

http://www.thedesignatedgeek.com

full circle magazine 53 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg Walters PPrroogg rraa mm II nn PPyytthh oonn -- PPaa rrtt 11 11

SEE ALSO:
FCM#27-36 - Python Parts 1 - 1 0

APPLICABLE TO:

CATEGORIES:

DEVICES:

GraphicDev Internet M/media System

HDDCD/DVD USB Drive Laptop Wireless

L
ast time, I promised you

that we would use our XML

expertise to grab weather

information from a website

and display it in a terminal. Well,

that time has come.

We will use an API from

www.wunderground.com. I hear the

question “What's an API” rising in

your throat. API stands for

Application Programming Interface.

It's really a fancy phrase for a way to

interface with another program.

Think of the libraries we import.

Some of those can be run as stand-

alone applications, but if we

import the application as a library,

we can use many of its functions in

our own program, and we get to

use someone else's code. In this

case, we will use specially

formatted URL addresses to query

the wunderground website for

information about the weather -

without using a web browser.

Some people might say that an API

is like a secret back door into

another program - that the

programmer(s) intentionally put

there for our use. Either way, this

is a supported extension of one

application for its use in other

applications.

Sounds intriguing? Well, read

on, my dear padawan.

Fire up your favorite browser,

and head to

www.wunderground.com. Now

enter your postal code or city and

state (or country) into the search

box. There is a wealth of

information here. Now, let's jump

to the API web page:

http://wiki.wunderground.com/ind

ex.php/API_-_XML

One of the first things you will

notice is the API Terms of Service.

Please read and follow them. They

aren't onerous, and are really

simple to abide by. The things that

are going to be of interest to us

are the GeoLookupXML,
WXCurrentObXML, AlertsXML
and ForecastXML calls. Take some
time to scan over them.

I 'm going to skip the

GeoLookupXML routine, and let

you look at that on your own. We

will concentrate on two other

commands: WXCurrentObXML

(Current Conditions) this time, and

ForecastXML (Forecast) next time.

Here's the link for

WXCurrentObXML:

http://api.wunderground.com/aut

o/wui/geo/WXCurrentObXML/ind

ex.xml?query=8001 3

Replace the 8001 3 U.S. ZIP

code with your postal code or if

you are outside the U.S. you can

try city, country - like Paris, France,

or London, England.

And the link for the

ForecastXML:

http://api.wunderground.com/aut

o/wui/geo/ForecastXML/index.xml

?query=8001 3

Again, replace the 8001 3 U.S.

ZIP code with your postal code or

city, country.

Let's start with the current

information. Paste the address

into your favorite browser. You'll

see a great deal of information

returned. I ' ll let you decide what's

really important to you, but we'll

look at a few of the elements.

For our example, we'll pay

attention to the following tags:

display_location

http://www.wunderground.com
http://wiki.wunderground.com/index.php/API_-_XML
http://api.wunderground.com/auto/wui/geo/WXCurrentObXML/index.xml?query=80013
http://api.wunderground.com/auto/wui/geo/WXCurrentObXML/index.xml?query=80013
http://api.wunderground.com/auto/wui/geo/ForecastXML/index.xml?query=80013

full circle magazine 54 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 1 1

observation_time
weather
temperature_string
relative_humidity
wind_string
pressure_string

Of course, you can add other

tags that are of interest to you.

However, these tags will provide

enough of an example to take you

as far as you would like to go.

Now that we know what we will

be looking for, let's start coding

our app. Let's look at the gross

flow of the program.

First, we check what the user

has asked us to do. If she passed a

location, we will use that,

otherwise we will use the default

location we code into the main

routine. We then pass that

getCurrents routine. We use the

location to build the request string

to send out to the web. We use

urllib.urlopen to get the response

from the web, and put that in an

object, and pass that object to

ElementTree library function parse.

We then close the connection to

the web and start looking for our

tags. When we find a tag we are

interested in, we save that text

into a variable that we can use to

output the data later on. Once we

have all our data, we display it.

Fairly simple in concept.

Start by naming your file

w_currents.py. Here's the import

portion of our code:

from xml.etree import
ElementTree as ET

import urllib

import sys

import getopt

Next, we'll put a series of help

lines (above right) above the

imports.

Be sure to use the triple double-

quotes. This allows us to have a

multi-line comment. We'll discuss

this part more in a bit.

Now we'll create our class stubs,

below right, and the main routines,

which are shown on the following

page.

You will remember from

""" w_currents.py
Returns current conditions, forecast and alerts for a
given zipcode from WeatherUnderground.com.
Usage: python wonderground.py [options]
Options:
-h, --help Show this help
-l, --location City,State to use
-z, --zip Zipcode to use as location

Examples:
w_currents.py -h (shows this help information)
w_currents.py -z 80013 (uses the zip code 80013 as
location)
"""

class CurrentInfo:
"""
This routine retrieves the current condition xml data from
WeatherUnderground.com
based off of the zip code or Airport Code...
currently tested only with Zip Code and Airport code
For location,
if zip code use something like 80013 (no quotes)
if airport use something like "KDEN" (use double-quotes)
if city/state (US) use something like "Aurora,%20CO" or
“Aurora,CO” (use double-quotes)
if city/country, use something like "London,%20England"
(use double-quotes)
"""
def getCurrents(self,debuglevel,Location):
pass

def output(self):
pass
def DoIt(self,Location):
pass

#===
END OF CLASS CurrentInfo()
#===

full circle magazine 55 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 1 1

previous articles the "if

__name__" line. If we are calling

this as a stand alone app, we will

run the main routine - otherwise

we can use this as part of a library.

Once in the main routine, we then

check what was passed into the

routine, if anything.

If the user uses the "-h" or "--

help" parameter, we print out the

triple-commented help lines at the

top of the program code. This is

called by the usage routine telling

the app to print __doc__.

If the user uses the "-l"

(location) or "-z" (zipcode), that will

override the internally set location

value. When passing a location, be

sure that you use double quotes to

enclose the string and that you do

not use spaces. For example, to get

the current conditions for Dallas,

Texas, use -l "Dallas,Texas".

Astute readers will realize that

the -z and -l checks are pretty much

the same. You can modify the -l to

check for spaces and reformat the

string before passing it to the

routines. That's something you can

do by now.

Finally, we create an instance of

our CurrentInfo class that we call

currents, and then pass the

location to the "DoIt" routine. Let's

fill that in now:

def DoIt(self,Location):

self.getCurrents(1,Location)

self.output()

Very simple. We pass the

location and debug level to the

getCurrents routine, and then call

the output routine. While we could

have simply done the output

directly from the getCurrents

routine, we are developing the

flexibility to output in various ways

if we need to.

The code for the getCurrents

routine is displayed on the next

page.

Here we have a parameter

called debuglevel. By doing this, we

can print out helpful information if

things don't seem to be going quite

the way we want them to. It's also

useful when we are doing our early

code. If, when you are all happy

with the way your code is working,

you can remove anything related to

debuglevel. If you are going to

release this into the wild, like if you

are doing this for someone else, be

sure to remove the code and test it

again before release.

Now, we use a try/except

wrapper to make sure that if

something goes wrong, the app

doesn't just blow up. Under the try

side, we set up the URL, then set a

timeout of eight seconds

(urllib.socket.setdefaulttimeout(8))

. We do this because, sometimes,

wunderground is busy and doesn't

respond. This

def usage():
print __doc__
def main(argv):
location = 80013
try:
opts, args = getopt.getopt(argv, "hz:l:", ["help=",
"zip=", "location="])
except getopt.GetoptError:
usage()
sys.exit(2)
for opt, arg in opts:
if opt in ("-h", "--help"):
usage()
sys.exit()
elif opt in ("-l", "--location"):
location = arg
elif opt in ("-z", "--zip"):
location = arg
print "Location = %s" % location
currents = CurrentInfo()
currents.DoIt(location)

#==
Main loop
#==
if __name__ == "__main__":

main(sys.argv[1:])

full circle magazine 56 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 1 1
way we don't just sit there

waiting for the web. If you want to

get more information on urllib, a

good place to start is

http://docs.python.org/library/urlli

b.html.

If anything unexpected

happens, we fall through to the

except section, and print an error

message, and then exit the

application (sys.exit(2)) .

Assuming everything works, we

start looking for our tags. The first

thing we do is find our location

with the tree.findall("//full") .

Remember, tree is the parsed

object returned by elementtree.

What is returned by the website

API in part is shown below.

This is our first instance of the

tag <full>, which in this case is

"Aurora, CO". That's what we want

to use as our location. Next, we are

looking for "observation_time".

This is the time when the current

conditions were recorded. We

continue looking for all the data we

are interested in - using the same

methodology.

Finally we deal with our output

routine which is shown top left on

the following page.

Here we simply print out the

variables.

That's all there is to it. A sample

output from my zip code with

debuglevel set to 1 is shown

bottom left on the next page.

Please note that I chose to use

the tags that included both

def getCurrents(self,debuglevel,Location):
if debuglevel > 0:
print "Location = %s" % Location
try:
CurrentConditions =
'http://api.wunderground.com/auto/wui/geo/WXCurrentObXML
/index.xml?query=%s' % Location
urllib.socket.setdefaulttimeout(8)
usock = urllib.urlopen(CurrentConditions)
tree = ET.parse(usock)
usock.close()
except:
print 'ERROR - Current Conditions - Could not get
information from server...'
if debuglevel > 0:
print Location
sys.exit(2)
Get Display Location
for loc in tree.findall("//full"):
self.location = loc.text
Get Observation time
for tim in tree.findall("//observation_time"):
self.obtime = tim.text
Get Current conditions
for weather in tree.findall("//weather"):
self.we = weather.text
Get Temp
for TempF in tree.findall("//temperature_string"):
self.tmpB = TempF.text
#Get Humidity
for hum in tree.findall("//relative_humidity"):
self.relhum = hum.text
Get Wind info
for windstring in tree.findall("//wind_string"):
self.winds = windstring.text
Get Barometric Pressure
for pressure in tree.findall("//pressure_string"):
self.baroB = pressure.text

getCurrents routine

<display_location>
<full>Aurora, CO</full>
<city>Aurora</city>
<state>CO</state>
<state_name>Colorado</state_name>
<country>US</country>
<country_iso3166>US</country_iso3166>
<zip>80013</zip>
<latitude>39.65906525</latitude>
<longitude>-104.78105927</longitude>
<elevation>1706.00000000 ft</elevation>
</display_location>

http://docs.python.org/library/urllib.html

full circle magazine 57 contents ^The Compleat Python

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1 972. He enjoys
cooking, hiking, music, and spending
time with his family.

PROGRAM IN PYTHON - PART 1 1

Fahrenheit and Celsius values. If

you wish, for example, to display

only Celsius values, you can use the

<temp_c> tag rather than the

<temperature_string> tag.

The full code can be

downloaded from:

http://pastebin.com/4ibJGm74

Next time, we'll concentrate on

the forecast portion of the API . In

the meantime, have fun!

def output(self):
print 'Weather Information From Wunderground.com'
print 'Weather info for %s ' % self.location
print self.obtime
print 'Current Weather - %s' % self.we
print 'Current Temp - %s' % self.tmpB
print 'Barometric Pressure - %s' % self.baroB
print 'Relative Humidity - %s' % self.relhum
print 'Winds %s' % self.winds

Location = 80013
Weather Information From Wunderground.com
Weather info for Aurora, Colorado
Last Updated on May 3, 11:55 AM MDT
Current Weather - Partly Cloudy
Current Temp - 57 F (14 C)
Barometric Pressure - 29.92 in (1013 mb)
Relative Humidity - 25%
Winds From the WNW at 10 MPH
Script terminated.

Full
Circle
Podcast

The Full Circle Podcast is back and better than

ever!

Topics in episode six include:

• News - Ubuntu 1 0.04 released

• Opinions

• Gaming - Steam coming to Linux?

• Feedback

...and all the usual hilarity.

Your Hosts:
• Robin Catling
• Ed Hewitt
• Dave Wilkins

The podcast and show notes are at:

http://fullcirclemagazine.org/

http://pastebin.com/4ibJGm74
http://url.fullcirclemagazine.org/88a985
http://fullcirclemagazine.org/

full circle magazine 58 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg Walters PPrroogg rraa mm II nn PPyytthh oonn -- PPaa rrtt 11 22

SEE ALSO:
FCM#27-37 - Python Parts 1 - 1 1

APPLICABLE TO:

CATEGORIES:

DEVICES:

GraphicDev Internet M/media System

HDDCD/DVD USB Drive Laptop Wireless

I
n our last session, we looked at

the API from wunderground,

and wrote some code to grab

the current conditions. This

time, we will be dealing with the

forecast portion of the API . If you

haven't had a chance to look at the

last two installments about XML,

and the last one specifically, you

might want to review them before

moving forward.

Just as there was a web address

for the current conditions, there is

one for the forecast. Here is the

link to the forecast XML page:

http://api.wunderground.com/auto

/wui/geo/ForecastXML/index.xml?

query=8001 3

As before, you can change the

'8001 3' to your City/Country,

City/State, or postal code. You'll

probably get back about 600 lines

of XML code. You have a root

element of 'forecast' , and then

four sub elements:

'termsofservice', 'txt_forecast' ,

'simpleforecast' and 'moon_phase'.

We will concentrate on the

'txt_forecast' and 'simpleforecast'

elements.

Since we went over the usage,

main, and “if __name__” sections

last time, I ' ll leave those to you to

deal with and just concentrate on

the goodies that we need for this

time. Since I showed you a snippet

f txt_forecast, let's start with that.

Shown below is a very small

portion of the txt_forecast set for

my area.

After the txt_forecast parent

element, we get the date, a

“number” element, then an

element that has children of its

own called forecastday which

includes period, icon, icons, title

and something called fcttext...then

it repeats itself. The first thing

you'll notice is that under

txt_forecast, the date isn't a date,

but a time value. It turns out that

this is when the forecast was

released. The <number> tag shows

how many forecasts there are for

the next 24 hour period. I can't

think of a time that I 've seen this

value less than 2. For each forecast

for the 24 hour period

(<forecastday>), you have a period

number, multiple icon options, a

title option (“Today”, “Tonight”,

“Tomorrow”), and the text of a

simple forecast. This is a quick

overview of the forecast, usually

for the next 1 2 hours.

<txt_forecast>
<date>3:31 PM MDT</date>
<number>2</number>
−<forecastday>

<period>1</period>
<icon>nt_cloudy</icon>
+<icons></icons>
<title>Tonight</title>
−<fcttext>
Mostly cloudy with a 20

percent chance of thunderstorms in the evening...then
partly cloudy after midnight. Lows in the mid 40s.
Southeast winds 10 to 15 mph shifting to the south after
midnight.

</fcttext>
</forecastday>
+<forecastday></forecastday>

</txt_forecast>

http://api.wunderground.com/auto/wui/geo/ForecastXML/index.xml?query=80013

full circle magazine 59 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 1 2

Before we start working with

our code, we should take a look at

the <simpleforecast> portion of

the xml file which is shown right.

There is a <forecastday> tag for

each day of the forecast period,

usually 6 days including the current

day. You have the date information

in various formats (I personally like

the <pretty> tag), projected high

and low temps in both Fahrenheit

and Celsius, gross condition

projection, various icons, a sky icon

(sky conditions at the reporting

station), and “pop” which stands

for “Probability Of Precipitation”.

The <moon_phase> tag provides

some interesting information

including sunset, sunrise, and

moon information.

Now we'll get into the code.

Here is the import set:

from xml.etree import
ElementTree as ET

import urllib

import sys

import getopt

Now we need to start our class.

We will create an __init__ routine

to setup and clear the variables

that we need, this is shown top

right on the following page.

If you don't care about carrying

the ability of both Fahrenheit and

Celsius, then leave out whichever

variable set you don't want. I

decided to carry both.

Next, we'll start our main

retrieval routine to get the

forecast data. This is shown bottom

right on the next page.

This is pretty much the same as

the current conditions routine we

worked on last time. The only

major difference (so far) is the URL

we are using. Now things change.

Since we have multiple children

that have the same tag within the

parent, we have to make our parse

calls a bit different. The code is top

left on the following page.

Notice we are using tree.find

this time, and we are using for

loops to walk through the data. It's

a shame that Python

<simpleforecast>
−<forecastday>

<period>1</period>
−<date>

<epoch>1275706825</epoch>
<pretty_short>9:00 PM MDT</pretty_short>
<pretty>9:00 PM MDT on June 04, 2010</pretty>
<day>4</day>
<month>6</month>
<year>2010</year>
<yday>154</yday>
<hour>21</hour>
<min>00</min>
<sec>25</sec>
<isdst>1</isdst>
<monthname>June</monthname>
<weekday_short/>
<weekday>Friday</weekday>
<ampm>PM</ampm>
<tz_short>MDT</tz_short>
<tz_long>America/Denver</tz_long>

</date>
−<high>

<fahrenheit>92</fahrenheit>
<celsius>33</celsius>

</high>
−<low>

<fahrenheit>58</fahrenheit>
<celsius>14</celsius>

</low>
<conditions>Partly Cloudy</conditions>
<icon>partlycloudy</icon>
+<icons>
<skyicon>partlycloudy</skyicon>
<pop>10</pop>

</forecastday>
...

</simpleforecast>

full circle magazine 60 contents ^The Compleat Python

class ForecastInfo:
def __init__(self):

self.forecastText = [] # Today/tonight forecast
information

self.Title = [] # Today/tonight
self.date = ''
self.icon = [] # Icon to use for conditions

today/tonight
self.periods = 0
self.period = 0
#==
Extended forecast information
#==
self.extIcon = [] # Icon to use for extended

forecast
self.extDay = [] # Day text for this forecast

("Monday", "Tuesday" etc)
self.extHigh = [] # High Temp. (F)
self.extHighC = [] # High Temp. (C)
self.extLow = [] # Low Temp. (F)
self.extLowC = [] # Low Temp. (C)
self.extConditions = [] # Conditions text
self.extPeriod = [] # Numerical Period information

(counter)
self.extpop = [] # Percent chance Of

Precipitation

def GetForecastData(self,location):
try:

forecastdata = 'http://api.wunderground.com/auto/wui/geo/ForecastXML/index.xml?query=%s' % location
urllib.socket.setdefaulttimeout(8)
usock = urllib.urlopen(forecastdata)
tree = ET.parse(usock)
usock.close()

except:
print 'ERROR - Forecast - Could not get information from server...'
sys.exit(2)

#=================================
Get the forecast for today and (if available)
tonight
#=================================
fcst = tree.find('.//txt_forecast')
for f in fcst:

if f.tag == 'number':
self.periods = f.text

elif f.tag == 'date':
self.date = f.text

for subelement in f:
if subelement.tag == 'period':

self.period=int(subelement.text)
if subelement.tag == 'fcttext':

self.forecastText.append(subelement.text)
elif subelement.tag == 'icon':

self.icon.append(subelement.text)
elif subelement.tag == 'title':

self.Title.append(subelement.text)

PROGRAM IN PYTHON - PART 1 2

full circle magazine 61 contents ^The Compleat Python

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1 972. He enjoys
cooking, hiking, music, and spending
time with his family.

PROGRAM IN PYTHON - PART 1 2

doesn't offer a SELECT/CASE

command set like other languages.

The IF/ELIF routine, however,

works well, just a bit clunkier. Now

we'll break down the code. We

assign the variable fcst to

everything within the

<txt_forecast> tag. This gets all the

data for that group. We then look

for the tags <date> and <number> -

since those are simple “first level”

tags - and load that data into our

variables. Now things get a bit

more difficult. Look back at our xml

response example. There are two

instances of <forecastday>. Under

<forecastday> are sub-elements

that consist of <period>, <icon>,

<icons>, <title> and <fcttext>.

We'll loop through these, and again

use the IF statement to load them

into our variables.

Next we need to look at the

extended forecast data for the

next X number of days. We are

basically using the same

methodology to fill our variables;

this is shown top right.

Now we need to create our

output routine. As we did last time,

it will be fairly generic. The code

for this is shown on the right of the

following page.

Again, if you don't want to carry

both Centigrade and Fahrenheit

information, then modify the code

to show what you want. Finally, we

have a “DoIt” routine:

def
DoIt(self,Location,US,Include
Today,Output):

self.GetForecastData(Location
)

self.output(US,IncludeToday,O
utput)

Now we can call the routine as

follows:

forecast = ForecastInfo()

forecast.DoIt('80013',1,0,0)
Insert your own postal code

That's about it for this time. I ' ll

leave the alert data to you, if you

want to go through that.

Here is the complete running

code:

http://pastebin.com/wsSXMXQx

Have fun until next time.

#=================================
Now get the extended forecast

#=================================
fcst = tree.find('.//simpleforecast')
for f in fcst:

for subelement in f:
if subelement.tag == 'period':

self.extPeriod.append(subelement.text)
elif subelement.tag == 'conditions':

self.extConditions.append(subelement.text)
elif subelement.tag == 'icon':

self.extIcon.append(subelement.text)
elif subelement.tag == 'pop':

self.extpop.append(subelement.text)
elif subelement.tag == 'date':

for child in subelement.getchildren():
if child.tag == 'weekday':

self.extDay.append(child.text)
elif subelement.tag == 'high':

for child in subelement.getchildren():
if child.tag == 'fahrenheit':

self.extHigh.append(child.text)
if child.tag == 'celsius':

self.extHighC.append(child.text)
elif subelement.tag == 'low':

for child in subelement.getchildren():
if child.tag == 'fahrenheit':

self.extLow.append(child.text)
if child.tag == 'celsius':

self.extLowC.append(child.text)

http://pastebin.com/wsSXMXQx

full circle magazine 62 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg Walters PPrroogg rraa mm II nn PPyytthh oonn -- PPaa rrtt 11 33

T
his month, we talk about

using Curses in Python.

No, we're not talking

about using Python to say

dirty words, although you can if

you really feel the need. We are

talking about using the Curses

library to do some fancy screen

output.

If you are old enough to

remember the early days of

computers, you will remember

that, in business, computers were

all mainframes - with dumb

terminals (screens and keyboards)

for input and output. You could

have many terminals connected to

one computer. The problem was

that the terminals were very dumb

devices. They had neither windows,

colors, or much of anything - just

24 lines of 80 characters (at best).

When personal computers became

popular, in the old days of DOS and

CPM, that is what you had as well.

When programmers worked on

fancy screens (those days),

especially for data input and

display, they used graph paper to

design the screen. Each block on

the graph paper was one character

position. When we deal with our

Python programs that run in a

terminal, we still deal with a 24x80

screen. However, that limitation

can be easily dealt with by proper

forethought and preparation. So,

go out to your local office supply

store and get yourself a few pads

of graph paper.

Anyway, let's jump right in and

create our first Curses program,

shown above right. I ' ll explain after

you've had a look at the code.

Short but simple. Let's examine

it line by line. First, we do our

imports, which you are very familiar

with by now. Next, we create a new

Curses screen object, initialize it,

and call the object myscreen.

(myscreen = curses.initscr()) . This is

our canvas that we will paint to.

Next, we use the

myscreen.border(0) command to

draw a border around our canvas.

This isn't needed, but it makes the

screen look nicer. We then use the

addstr method to “write” some

text on our canvas starting on line

1 2 position 25. Think of the .addstr

method of a Curses print

statement. Finally, the .refresh()

method makes our work visible. If

we don't refresh the screen, our

changes won't be seen. Then we

wait for the user to press any key

(.getch) and then we release the

screen object (.endwin) to allow

our terminal to act normally. The

curses.endwin() command is VERY

important, and, if it doesn't get

called, your terminal will be left in a

major mess. So, make sure that you

get this method called before your

application ends.

Save this program as

CursesExample1 .py and run it in a

terminal. Some things to note.

Whenever you use a border, it

takes up one of our “usable”

character positions for each

character in the border. In addition,

both the line and character

position count is ZERO based. This

means that the first line in our

screen is line 0 and the last line is

line 23. So, the very top left

#!/usr/bin/env python
CursesExample1
#-------------------------------
Curses Programming Sample 1
#-------------------------------
import curses
myscreen = curses.initscr()
myscreen.border(0)
myscreen.addstr(12, 25, "See Curses, See Curses Run!")
myscreen.refresh()
myscreen.getch()
curses.endwin()

full circle magazine 63 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 1 3

position is referred to 0,0 and

the bottom right position is 23,79.

Let's make a quick example (above

right) to show this.

Very simple stuff except the

try/finally blocks. Remember, I said

that curses.endwin is VERY

important and needs to be called

before your application finishes.

Well, this way, even if things go

very badly, the endwin routine will

get called. There's many ways of

doing this, but this way seems

pretty simple to me.

Now let's create a nice menu

system. If you remember back a

while, we did a cookbook

application that had a menu

(Programming Python - Part 8).

Everything in the terminal simply

scrolled up when we printed

something. This time we'll take

that idea and make a dummy

menu that you can use to

pretty up the cookbook.

Shown below is what we used

back then.

This time, we'll use Curses.

Start with the following

template. You might want to

save this snippet (below right)

so you can use it for your own

future programs.

Now, save your template

again as “cursesmenu1 .py” so

that we can work on the file

and keep the template.

#!/usr/bin/env python
CursesExample2
import curses
#==
MAIN LOOP
#==
try:

myscreen = curses.initscr()
myscreen.clear()
myscreen.addstr(0,0,"0 1 2 3

4 5 6 7")

myscreen.addstr(1,0,"1234567890123456789012345678901234567890
1234567890123456789012345678901234567890")

myscreen.addstr(10,0,"10")
myscreen.addstr(20,0,"20")
myscreen.addstr(23,0, "23 - Press Any Key to Continue")
myscreen.refresh()
myscreen.getch()

finally:

===
RECIPE DATABASE

===
1 - Show All Recipes
2 - Search for a recipe
3 - Show a Recipe
4 - Delete a recipe
5 - Add a recipe
6 - Print a recipe
0 - Exit
===
Enter a selection ->

#!/usr/bin/env python
#-------------------------------
Curses Programming Template
#-------------------------------
import curses

def InitScreen(Border):
if Border == 1:

myscreen.border(0)

#==
MAIN LOOP
#==
myscreen = curses.initscr()
InitScreen(1)
try:

myscreen.refresh()
Your Code Stuff Here...
myscreen.addstr(1,1, "Press Any Key to Continue")
myscreen.getch()

finally:
curses.endwin()

full circle magazine 64 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 1 3

Before we go any further with

our code, we are going to do this in

a modular way. Here (above right)

is a pseudo-code example of what

we are going to do.

Of course this pseudo code is

just that...pseudo. But it gives you

an idea of where we are going with

this whole thing. Since this is just

an example, we'll only go just so far

here, but you can take it all the way

if you want. Let's start with the

main loop (middle far right).

Not much in the way of

programming here. We have our

try|finally blocks just as we had in

our template. We initialize the

Curses screen and then call a

routine named LogicLoop. That

code is shown bottom far right.

Again, not much, but this is only

a sample. Here we are going to call

two routines. One called

DoMainMenu and the other

MainInKey. DoMainMenu will show

our main menu, and the MainInKey

routine handles everything for that

main menu. Tthe DoMainMenu

routine is shown right.

curses.initscreen
LogicLoop

ShowMainMenu # Show the main menu
MainInKey # This is our main input handling routine

While Key != 0:
If Key == 1:

ShowAllRecipesMenu # Show the All Recipes Menu
Inkey1 # Do the input routines for this
ShowMainMenu # Show the main menu

If Key == 2:
SearchForARecipeMenu # Show the Search for a Recipe Menu
InKey2 # Do the input routines for this option
ShowMainMenu # Show the main menu again

If Key == 3:
ShowARecipeMenu # Show the Show a recipe menu routine
InKey3 # Do the input routine for this routine
ShowMainMenu # Show the main menu again

… # And so on and so on
curses.endwin() # Restore the terminal

MAIN LOOP
try:

myscreen = curses.initscr()
LogicLoop()

finally:
curses.endwin()

def LogicLoop():
DoMainMenu()
MainInKey()

def DoMainMenu():
myscreen.erase()
myscreen.addstr(1,1,

"==")
myscreen.addstr(2,1, " Recipe

Database")
myscreen.addstr(3,1,

"==")
myscreen.addstr(4,1, " 1 - Show All

Recipes")
myscreen.addstr(5,1, " 2 - Search for a

recipe")
myscreen.addstr(6,1, " 3 - Show a recipe")
myscreen.addstr(7,1, " 4 - Delete a recipe")
myscreen.addstr(8,1, " 5 - Add a recipe")
myscreen.addstr(9,1, " 6 - Print a recipe")
myscreen.addstr(10,1, " 0 - Exit")
myscreen.addstr(11,1,

"==")
myscreen.addstr(12,1, " Enter a selection: ")
myscreen.refresh()

full circle magazine 65 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 1 3
Notice that this routine does

nothing but clear the screen

(myscreen.erase), and then print

what we want on the screen. There

is nothing here dealing with

keyboard handling. That's the job

of the MainInKey routine, which is

shown below.

This is really a simple routine.

We jump into a while loop until the

key that is entered by the user

equals 0. Within the loop, we

check to see if it's equal to various

values, and, if so, we do a series of

routines, and finally call the main

menu when we are done. You can

fill in most of these routines for

yourself by now, but we will look at

option 2, Search for a Recipe. The

menu is short and sweet. The

InKey2 routine (right) is a bit more

complicated.

def MainInKey():
key = 'X'
while key != ord('0'):

key = myscreen.getch(12,22)
myscreen.addch(12,22,key)
if key == ord('1'):

ShowAllRecipesMenu()
DoMainMenu()

elif key == ord('2'):
SearchForARecipeMenu()
InKey2()
DoMainMenu()

elif key == ord('3'):
ShowARecipeMenu()
DoMainMenu()

elif key == ord('4'):
NotReady("'Delete A Recipe'")
DoMainMenu()

elif key == ord('5'):
NotReady("'Add A Recipe'")
DoMainMenu()

elif key == ord('6'):
NotReady("'Print A Recipe'")
DoMainMenu()

myscreen.refresh()

def SearchForARecipeMenu():
myscreen.addstr(4,1, "")
myscreen.addstr(5,1, " Search in")
myscreen.addstr(6,1, "")
myscreen.addstr(7,1, " 1 Recipe Name")
myscreen.addstr(8,1, " 2 Recipe Source")
myscreen.addstr(9,1, " 3 Ingredients")
myscreen.addstr(10,1," 0 Exit")
myscreen.addstr(11,1,"Enter Search Type > ")
myscreen.refresh()

def InKey2():
key = 'X'
doloop = 1
while doloop == 1:

key = myscreen.getch(11,22)
myscreen.addch(11,22,key)
tmpstr = "Enter text to search in "
if key == ord('1'):

sstr = "'Recipe Name' for > "
tmpstr = tmpstr + sstr
retstring = GetSearchLine(13,1,tmpstr)
break

elif key == ord('2'):
sstr = "'Recipe Source' for > "
tmpstr = tmpstr + sstr
retstring = GetSearchLine(13,1,tmpstr)
break

elif key == ord('3'):
sstr = "'Ingredients' for > "
tmpstr = tmpstr + sstr
retstring = GetSearchLine(13,1,tmpstr)
break

else:
retstring = ""
break

if retstring != "":
myscreen.addstr(15,1,"You entered " + retstring)

else:
myscreen.addstr(15,1,"You entered a blank string")

myscreen.refresh()
myscreen.addstr(20,1,"Press a key")
myscreen.getch()

def GetSearchLine(row,col,strng):
myscreen.addstr(row,col,strng)
myscreen.refresh()
instring = myscreen.getstr(row,len(strng)+1)
myscreen.addstr(row,len(strng)+1,instring)
myscreen.refresh()
return instring

full circle magazine 66 contents ^The Compleat Python

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1 972. He enjoys
cooking, hiking, music, and spending
time with his family.

PROGRAM IN PYTHON - PART 1 3

Full
Circle
Podcast

The Full Circle Podcast is back and better than ever!

Topics in episode ten include:

• News

• Opinion - Contributing articles with the FCM Editor.

• Interview - with Amber Graner

• Feedback

...and all the usual hilarity.

Your Hosts:
• Robin Catling
• Ed Hewitt
• Ronnie Tucker

The podcast and show notes are at:

http://fullcirclemagazine.org/

Again, we are using a standard

while loop here. We set the

variable doloop = 1 , so that our

loop is endless until we get what

we want. We use the break

command to drop out of the while

loop. The three options are very

similar. The major difference is

that we start with a variable

named tmpstr, and then append

whatever option text has been

selected...making it a bit more

friendly. We then call a routine

called GetSearchLine to get the

string to search for. We use the

getstr routine to get a string from

the user rather than a character.

We then return that string back to

our input routine for further

processing.

The full code is at:

http://pastebin.com/ELuZ3T4P

One final thing. If you are

interested in looking into Curses

programming further, there are

many other methods available than

what we used this month. Besides

doing a Google search, your best

starting point is the official docs

page at

http://docs.python.org/library/curs

es.html.

See you next time.

OOPS!

I t seems that the code for

Python Pt.11 isn't properly
indented on Pastebin. The

correct URL for Python Pt.1 1

code is:

http://pastebin.com/Pk74fLF3

Please check:

http://fullcirclemagazine.pastebi

n.com for all Python (and future)

code.

http://url.fullcirclemagazine.org/88a985
http://fullcirclemagazine.org/
http://pastebin.com/ELuZ3T4P
http://docs.python.org/library/curses.html
http://pastebin.com/Pk74fLF3
http://fullcirclemagazine.pastebin.com

full circle magazine 67 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg Walters PPrroogg rraa mm II nn PPyytthh oonn -- PPaa rrtt 11 44

L
ast time we talked about

the Curses library. This

time we are going to delve

further into the curses

library, and concentrate on the

color commands. Just in case you

missed the last article, let's have a

quick review. First, you have to

import the curses library. Next you

have to call curses.initscr to get

things started. To put text on the

screen you call the addstr function,

and then call refresh to show your

changes to the screen. Finally, you

have to call curses.endwin() to

restore the terminal window to its

normal state.

Now, we are going to create a

quick and easy program that uses

color. It's pretty much the same as

what we did before, but we have a

few new commands this time. First

we use curses.start_color() to tell

the system that we want to use

color in our program. Next, we

assign a color pair of foreground

and background. We can assign

many pairs, and use them

whenever we want. We do that by

using the curses.init_pair function.

The syntax is:

curses.init_pair([pairnumber]
,[foreground
color],[background color])

The colors are set up by using

“curses.COLOR_” and the color you

want. For example,

curses.COLOR_BLUE or

curses.COLOR_GREEN. The options

here are black, red, green, yellow,

blue, magenta, cyan and white. Just

add “curses.COLOR_”, and the

color you want, in upper case. Once

we have set up our color pair, we

can use it as a final parameter in

our screen.addstr function like this:

myscreen.addstr([row],[column
],[text],curses.color_pair(X)
)

Here X is the color set we wish

to use.

Save the following code (above

right) as colortest1 .py, then run it.

Don't try to run a curses program in

an IDE like SPE or Dr. Python. Run it

from a terminal.

What you should see is a grey

background, with three lines of

text saying “ This is a test ” in

different colors. The first should be

black-on-green, the second blue-

on-white, and the third magenta on

the grey background.

Remember the Try/Finally set.

This makes sure that if anything

happens, our program will

automatically restore our terminal

to its normal state. There is

another way. There is a curses

command called wrapper. Wrapper

does all the work for you. It does

the curses.initscr() , the

curses.start_color() , and the

curses.endwin() , so that you don't

have to. The one thing you have to

remember is that you call

curses.wrapper with your main

routine. It passes back your screen

pointer. On the following page (top

right) is the same program as

before, but this time using the

import curses
try:

myscreen = curses.initscr()
curses.start_color()
curses.init_pair(1, curses.COLOR_BLACK,

curses.COLOR_GREEN)
curses.init_pair(2, curses.COLOR_BLUE,

curses.COLOR_WHITE)
curses.init_pair(3,

curses.COLOR_MAGENTA,curses.COLOR_BLACK)
myscreen.clear()
myscreen.addstr(3,1," This is a test

",curses.color_pair(1))
myscreen.addstr(4,1," This is a test

",curses.color_pair(2))
myscreen.addstr(5,1," This is a test

",curses.color_pair(3))
myscreen.refresh()
myscreen.getch()

finally:
curses.endwin()

full circle magazine 68 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 1 4

curses.wrapper function.

That's a whole lot easier, and

we don't have to worry about

calling curses.endwin() if

something bad happens. All the

work is done for us.

Now that we have a bunch of

basics, let's put some of the things

we've learned over the past year to

work, and start making a game.

Before we start however, let's lay

out what we are going to do. Our

game will pick a random uppercase

letter, and move it from the right

side of the screen to the left side.

At a random position, it will drop

down to the bottom of the screen.

We'll have a “gun” that can be

moved using the right and left

arrow keys to be positioned below

the falling letter. Then, by pressing

the space bar, we will shoot it. If

we shoot the letter before it gets

to our gun, we get a point. If not,

our gun explodes. If we loose three

guns, the game is over. While on

the surface this seems like a simple

game, there's a lot of code to it.

Let's get started. We need to do

our setup, and create a few

routines before we go very far.

Create a new project and call it

game1 .py. Start with the code

shown below right:

This code won't do much right

now, but it's our starting point.

Notice that we have four init_pair

statements setting the colors that

we will use for our random color

sets, and one for the explosions

(number 5). Now we need to set up

some variables and constants that

will be used during our game. We

will put them in the __init__ routine

of class Game1 . Replace the pass

statement in __init__ with the code

on the following page.

You should be able to figure out

what is happening in these

definitions. If you are unsure at this

precise moment, it should become

clearer as we fill in the code.

We are getting closer to having

something that will run. We still

need to make a few more routines

before it will do much. Let's work

on the routine that will move a

letter from right to left on the

screen:

http://fullcirclemagazine.pastebin.c

om/z5CgMAgm

This is our longest routine in the

program, and there are some

import curses
def main(stdscreen):

curses.init_pair(1, curses.COLOR_BLACK,
curses.COLOR_GREEN)

curses.init_pair(2, curses.COLOR_BLUE,
curses.COLOR_WHITE)

curses.init_pair(3,
curses.COLOR_MAGENTA,curses.COLOR_BLACK)

stdscreen.clear()
stdscreen.addstr(3,1," This is a test

",curses.color_pair(1))
stdscreen.addstr(4,1," This is a test

",curses.color_pair(2))
stdscreen.addstr(5,1," This is a test

",curses.color_pair(3))
stdscreen.refresh()
stdscreen.getch()

curses.wrapper(main)

import curses
import random

class Game1():
def __init__(self):

pass
def main(self,stdscr):

curses.init_pair(1, curses.COLOR_BLACK,
curses.COLOR_GREEN)

curses.init_pair(2, curses.COLOR_BLUE,
curses.COLOR_BLACK)

curses.init_pair(3, curses.COLOR_YELLOW,
curses.COLOR_BLUE)

curses.init_pair(4, curses.COLOR_GREEN,
curses.COLOR_BLUE)

curses.init_pair(5, curses.COLOR_BLACK,
curses.COLOR_RED)

def StartUp(self):
curses.wrapper(self.main)

g = Game1()
g.StartUp()

http://fullcirclemagazine.pastebin.com/z5CgMAgm

full circle magazine 69 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 1 4

new functions in this routine.

The scrn.delch function deletes the

character at the given row |

column. The curses.napms() tells

python to sleep (nap) for X number

of milliseconds (ms).

So the logic in this routine is as

follows (in pseudocode) on the

next page (top right).

You should be able to follow

the code by now. We need two new

routines to keep everything

correct. The first is Explode, which

we will stub with the pass directive.

The second is ResetForNew. This is

where we will reset the current

row for the letter to the default

letterline, reset the current

column, set the DroppingLetter

flag to 0, pick a random letter, and

pick a random drop point.

Following page, middle right, are

those two routines.

Now we need four more

routines to keep up with things

(next page, bottom right). One

picks a random letter, the other

picks a random drop point.

Remember we quickly discussed

the random module early on in the

series.

In PickALetter, we generate a

r

andom integer between 65 and 90

(“A” to “Z”). Remember when we

use the random integer function

we must give a range of minimum-

number to maximum-number. The

same thing goes for PickDropPoint.

We also make a call to

random.seed() in both routines,

which sets up the random

generator with a different number

every time it's called. The fourth

routine is called CheckKeys. This

routine will look at any keystrokes

entered by the user, and deal with

them to move our gun. However,

we'll stub it out for the moment

but we will need it later. We'll also

need a routine called CheckForHit,

which we will also stub for the time

being.

def
CheckKeys(self,scrn,keyin):

pass
def CheckForHit(self,scrn):

pass

We are going to create a small

Line Specific Stuff
self.GunLine = 22 #Row where our gun lives
self.GunPosition = 39 #Where the gun starts on GunLine
self.LetterLine = 2 #Where our letter runs right to left
self.ScoreLine = 1 #Where we are going to display the score
self.ScorePosition = 50 #Where the score column is
self.LivesPosition = 65 #Where the lives column is

Letter Specific Stuff
self.CurrentLetter = "A" #A dummy Holder Variable
self.CurrentLetterPosition = 78 #Where the letter will start on the LetterLine
self.DropPosition = 10 #A dummy Holder Variable
self.DroppingLetter = 0 #Flag - Is the letter dropping?
self.CurrentLetterLine = 3 #A dummy Holder Variable
self.LetterWaitCount = 15 #How many times should we loop before actually

working?

Bullet Specific Stuff
self.Shooting = 0 #Flag - Is the gun shooting?
self.BulletRow = self.GunLine - 1
self.BulletColumn = self.GunPosition

Other Stuff
self.LoopCount = 0 #How many loops have we done in MoveLetter
self.GameScore = 0 #Current Game Score
self.Lives = 3 #Default number of lives
self.CurrentColor = 1 #A dummy Holder Variable
self.DecScoreOnMiss = 0 #Set to 1 if you want to decrement the

#score every time the letter hits the
#bottom row

full circle magazine 70 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 1 4
routine which will be the

“brains” of our game. We'll call it

GameLoop (next page, top right).

The logic behind this is to first

set our keyboard to nodelay(1) .

This means that we won't wait for a

keystroke to happen, and when it

does, we just cache it for latter

processing. Then we enter a while

loop which we force to always be

true (1) so that the game continues

until we are ready for it to end. We

nap for 40 milliseconds, move our

letter and then check to see if the

user has pressed a key. If it's a “Q”

(notice it's upper case), or the ESC

key, then we break out of our loop

and end the program. Otherwise,

we check to see if it's a left or right

arrow key, or the space bar. Later

on, you can make the game a bit

more difficult by checking the

keystroke against the current

character and only fire the gun if

the user has pressed the same key,

ala a simple typing tutor. Just

remember to remove the “Q” as a

quit key.

We'll also need to create a

routine that sets up for each new

play of our game. Let's call it

NewGame (next page, middle

right).

We also need the PrintScore

routine that will show the current

score and the number of lives that

are left (next page, bottom right).

Now we only need to add some

code (next page, bottom left) to

our main routine to start our game

loop. The additional code is below.

Add it under the last init_pair call.

Now we should have a program

that does something. Give it a try.

I ' ll wait.

IF we have waited the correct number of loops THEN
Reset the loop counter
IF we are moving to the left of the screen THEN

Delete the character at the the current row,column.
Sleep for 50 milliseconds
IF the current column is greater than 2 THEN

Decrement the current column
Set the character at the current row,column
IF the current column is at the random column to drop to the bottom THEN

Set the DroppingLetter flag to 1
ELSE

Delete the character at the current row,column
Sleep for 50 milliseconds
IF the current row is less than the line the gun is on THEN

Increment the current row
Set the character at the current row,column

ELSE
IF
Explode (which includes decrementing the score if you wish) and check to
see if we continue.
Pick a new letter and position and start everything over again.

ELSE
Increment the loopcounter

Refresh the screen.

def Explode(self,scrn):
pass

def ResetForNew(self):
self.CurrentLetterLine = self.LetterLine
self.CurrentLetterPosition = 78
self.DroppingLetter = 0
self.PickALetter()
self.PickDropPoint()

def PickALetter(self):
random.seed()
char = random.randint(65,90)
self.CurrentLetter = chr(char)

def PickDropPoint(self):
random.seed()
self.DropPosition = random.randint(3,78)

full circle magazine 71 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 1 4

Now we have a program that

picks a random uppercase letter,

moves it from the right side of the

screen to the left a random

number of columns, then moves

that letter down to the bottom(ish)

of the screen. However, the first

thing you should notice is that

every time you run the program

the first letter is always “A”, and

the drop point is always column 1 0.

That's because we set defaults in

the __init__ routine. To fix this,

simply call self.ResetForNew

before you enter the while loop in

the Main routine.

At this point, we need to work

on our “gun” and supporting

routines. Add the code (next page,

top right) to the Game1 class.

Movegun will take the current

gun position and move it in

whichever direction we want it to

go. The only thing that is new in

this routine is at the end of the

addch routine. We are calling the

colorpair (2) to set the color, and,

at the same time, we are forcing

the gun to have the bold attribute.

We are using a bitwise OR (“|”) to

force the attribute on. Next we

need to flesh out our CheckKeys

routine. Replace the pass

def GameLoop(self,scrn):
test = 1 #Set the loop
while test == 1:

curses.napms(20)
self.MoveLetter(scrn)
keyin =

scrn.getch(self.ScoreLine,self.ScorePosition)
if keyin == ord('Q') or keyin == 27: # 'Q'

or <Esc>
break

else:
self.CheckKeys(scrn,keyin)

self.PrintScore(scrn)
if self.Lives == 0:

break
curses.flushinp()
scrn.clear()

def NewGame(self,scrn):
self.GunChar = curses.ACS_SSBS

scrn.addch(self.GunLine,self.GunPosition,self.GunChar,cur
ses.color_pair(2) | curses.A_BOLD)

scrn.nodelay(1) #Don't wait for a
keystroke...just cache it.

self.ResetForNew()
self.GameScore = 0
self.Lives = 3
self.PrintScore(scrn)

def PrintScore(self,scrn):

scrn.addstr(self.ScoreLine,self.ScorePosition,"SCORE:
%d" % self.GameScore)

scrn.addstr(self.ScoreLine,self.LivesPosition,"LIVES:

stdscr.addstr(11,28,"Welcome to Letter Attack")
stdscr.addstr(13,28,"Press a key to begin....")
stdscr.getch()
stdscr.clear()
PlayLoop = 1
while PlayLoop == 1:

self.NewGame(stdscr)
self.GameLoop(stdscr)
stdscr.nodelay(0)
curses.flushinp()
stdscr.addstr(12,35,"Game Over")
stdscr.addstr(14,23,"Do you want to play

again? (Y/N)")
keyin = stdscr.getch(14,56)
if keyin == ord("N") or keyin == ord("n"):

break
else:

stdscr.clear()

full circle magazine 72 contents ^The Compleat Python

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1 972. He enjoys
cooking, hiking, music, and spending
time with his family.

PROGRAM IN PYTHON - PART 1 4

statement with the new code

(next page, bottom right).

Now we need to make a routine

that will move our bullet “up” the

screen (below left) .

We need a few more routines

(next page, top right) before we

are finished. Here's the code to fill

out the CheckForHit routine and

the code to ExplodeBullet.

Finally we need to flesh out our

Explode routine. Replace pass with

the following code (next page,

bottom).

Now we have a working

program. You can tweak the value

in LetterWaitCount to speed up or

slow down the movement of the

letter going across the screen to

make it easier or harder. You can

also use the variable CurrentColor

to create a random color choice

and set the letter color to one of

the 4 color sets we have made and

change the color assignment to the

random color. I wanted to give you

a challenge.

I hope you had fun this time,

and will add some additional code

to make the game more playable.

As always, the full code is available

at www.thedesignatedgeek.com,

or at:

http://fullcirclemagazine.pastebin.

com/DeReeh8m.

def MoveGun(self,scrn,direction):
scrn.addch(self.GunLine,self.GunPosition," ")
if direction == 0: # left

if self.GunPosition > 0:
self.GunPosition -= 1

elif direction == 1: # right
if self.GunPosition < 79:

self.GunPosition += 1

scrn.addch(self.GunLine,self.GunPosition,self.GunChar,cur

if keyin == 260: # left arrow - NOT on keypad
self.MoveGun(scrn,0)
curses.flushinp() #Flush out the input buffer for safety.

elif keyin == 261: # right arrow - NOT on keypad
self.MoveGun(scrn,1)
curses.flushinp() #Flush out the input buffer for safety.

elif keyin == 52: # left arrow ON keypad
self.MoveGun(scrn,0)
curses.flushinp() #Flush out the input buffer for safety.

elif keyin == 54: # right arrow ON keypad
self.MoveGun(scrn,1)
curses.flushinp() #Flush out the input buffer for safety.

elif keyin == 32: #space
if self.Shooting == 0:

self.Shooting = 1
self.BulletColumn = self.GunPosition
scrn.addch(self.BulletRow,self.BulletColumn,"|")
curses.flushinp() #Flush out the input buffer for safety.

def MoveBullet(self,scrn):
scrn.addch(self.BulletRow,self.BulletColumn," ")
if self.BulletRow > self.LetterLine:

self.CheckForHit(scrn)
self.BulletRow -= 1

scrn.addch(self.BulletRow,self.BulletColumn,"|")
else:

self.CheckForHit(scrn)

scrn.addch(self.BulletRow,self.BulletColumn," ")
self.BulletRow = self.GunLine - 1
self.Shooting = 0

http://www.thedesignatedgeek.com
http://fullcirclemagazine.pastebin.com/DeReeh8m

full circle magazine 73 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg Walters PPrroogg rraa mm II nn PPyytthh oonn -- PPaa rrtt 11 55

T
his month we are going to

explore Pygame, a set of

modules designed for

writing games. The

website is

http://www.pygame.org/. To quote

from the Pygame read-me:

“Pygame is a cross-platform library

designed to make it easy to write

multimedia software, such as

games, in Python. Pygame requires

the Python language and SDL

multimedia library. It can also make

use of several other popular

libraries.”

You can install Pygame through

Synaptic as 'python-pygame'. Do

this now so we can move forward.

First, we import Pygame (see

above right). Next, we set the

os.environ to make our window

centered in our screen. Next, we

initialize Pygame, then set the

Pygame window to 800x600 pixels,

and set the caption. Finally, we

display the screen, and go into a

loop waiting for a keystroke or

mouse-button-down event. The

screen is an object that will contain

anything we decide to put on it. It's

called a surface. Think of it as a

piece of paper that we will draw

things onto.

Not very exciting, but it's a start.

Let's make it a bit less boring. We

can change the background color

to something less dark. I found a

program called “colorname” that

you can install via the Ubuntu

Software Center. This allows you to

use the “color wheel” to pick a

color you like, and it will give you

the RGB or Red, Green, Blue values

of that color. We must use RGB

colors if we don't want to use the

predefined colors that Pygame

gives us. It's a neat utility that you

should consider installing.

Right after the import

statements, add...

Background = 208, 202, 104

This will set the variable

Background to a tanish color. Next,

after the

pygame.display.set_caption line,

add the following lines...

screen.fill(Background)

pygame.display.update()

The screen.fill() method will set

the color to whatever we pass it.

The next line,

pygame.display.update() , actually

updates the changes to our screen.

Save this off as pygame1 .py, and

we'll move on.

Now we will display some text

in our bland looking window. Again,

let's start with our import

statements and the background

variable assignment from our last

program.

import pygame
from pygame.locals import *
import os
Background = 208, 202, 104

Now, add an additional variable

assignment for the foreground

color of our font.

FontForeground = 255,255,255
White

Then, we will add in the majority

of the code from our last

#This is the Import
import pygame
from pygame.locals import *
import os
This will make our game window centered in the screen
os.environ['SDL_VIDEO_CENTERED'] = '1'
Initialize pygame
pygame.init()
#setup the screen
screen = pygame.display.set_mode((800, 600))
Set the caption (title bar of the window)
pygame.display.set_caption('Pygame Test #1')
display the screen and wait for an event
doloop = 1
while doloop:

if pygame.event.wait().type in (KEYDOWN,
MOUSEBUTTONDOWN):

break

http://www.pygame.org/

full circle magazine 74 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 1 5

program (shown right).

If you run this now, nothing has

changed visually since all we did is

add the foreground definition.

Now, after the screen.fill() line, and

before the loop portion of our

code, enter the following lines:

font =
pygame.font.Font(None,27)
text = font.render('Here is
some text', True,
FontForeground, Background)
textrect = text.get_rect()
screen.blit(text,textrect)
pygame.display.update()

Go ahead, save the program as

pygame2.py, and run the program.

On the top left of our window, you

should see the text “Here is some

text”.

Let's break down the new

commands. First, we call the Font

method and pass it two arguments.

The first is the name of the font we

wish to use, and the second is the

font size. Right now, we'll just use

'None', and let the system pick a

generic font for us, and set the

font size to 27 points.

Next we have the font.render()

method. This has four arguments.

In order, they are the text we wish

to display, whether we want to use

anti-aliasing (True in this case), the

foreground color of the font, and,

finally, the background color of the

font.

The next line (text.get_rect())

assigns a rectangle object that we

will use to put the text on the

screen. This is an important thing,

since almost everything else we

will deal with is rectangles. (You'll

understand more in a bit.) Then we

blit the rectangle onto the screen.

And, finally, we update the screen

to show our text. What is blit, and

why the heck should I want to do

something that sounds so weird?

Well, the term goes WAY back to

the 1 970s, and came from Xerox

PARC (which is where we owe so

much of today's technology). The

term was originally called BitBLT

which stands for Bit (or Bitmap)

Block Transfer. That changed to

Blit (possibly because it's shorter).

Basically we are plopping our

image or text on to the screen.

What if we want the text to be

centered in the screen instead of

on the top line where it takes a bit

of time to see? In between the

text.get_rect() line and the

screen.blit line, put the following

two lines:

textRect.centerx =
screen.get_rect().centerx
textRect.centery =
screen.get_rect().centery

Here we are getting the center

of the screen object (remember

surface) in x and y pixel positions,

and setting our textRect object x

and y center points to those values.

Run the program. Now our text

is centered within our surface. You

can also modify the text by using

(in our sample code)

font.set_bold(True) and/or

font.set_italic(True) right after the

pygame.font.Font line.

Remember we discussed very

briefly the 'None' option when we

set the font to a generic font. Let's

say you want to use a fancier font.

As I stated before, the

pygame.font.Font() method takes

two arguments. The first is the

path and file name of the font we

want to use, and the second is the

font size. The problem is multi-fold

at this point. How do we know

what the actual path and filename

of the font we want to use is on

any given system? Thankfully,

Pygame has a function that takes

care of that for us. It's called

match_font. Here's a quick

program that will print the path

and filename of (in this case) the

Courier New font.

This will make our game window centered in the screen
os.environ['SDL_VIDEO_CENTERED'] = '1'
Initialize pygame
pygame.init()
Setup the screen
screen = pygame.display.set_mode((800, 600))
Set the caption (title bar of the window)
pygame.display.set_caption('Pygame Test #1')
screen.fill(Background)
pygame.display.update()

Our Loop
doloop = 1
while doloop:

if pygame.event.wait().type in (KEYDOWN,
MOUSEBUTTONDOWN):

break

full circle magazine 75 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 1 5

import pygame
from pygame.locals import *
import os
print
pygame.font.match_font('Couri
er New')

On my system, the returned

value is

“/usr/share/fonts/truetype/msttco

refonts/cour.ttf”. If, however, the

font is not found, the return value

is “None”. Assuming that the font

IS found, then we can assign the

returned value to a variable, and

we can then use the following

assignment.

courier =
pygame.font.match_font('Couri
er New')
font =
pygame.font.Font(courier,27)

Change your last version of the

program to include these two lines

and try it again. The bottom line is,

either use a font that you KNOW

will be available on the end user's

machine, or include it when you

distribute your program and hard

code the font path and name.

There are other ways around this,

but I 'll leave that to you to figure

out so we can move on.

While text is nice, graphics are

better. I found a really nice tutorial

for Pygame written by Peyton

McCollugh, and thought I 'd take

and modify it. For this part, we

need to start with a picture that

will move around our surface. This

picture is known as a sprite. Use

GIMP or some other tool and

create a stick figure. Nothing fancy,

just a generic stick figure. I ' ll

assume that you are using GIMP.

Start a new image, set the size to

50 pixels in both height and width,

and, under advance options, set the

'Fill With' option to Transparency.

Use the pencil tool with a brush of

Circle (03). Draw your little figure,

and save it as stick.png into the

same folder you have been using

for the code this time. Here is what

mine looks like. I 'm sure you can do

better.

I know...I 'm not an

artist. However, for our

purposes, that will do.

We saved it as a .png

file, and set the

background to be transparent, so

that just the little black lines of our

stick figure show up - and not a

white or other color background

will show.

Let's talk about what we want

the program to do. We want to

show a Pygame window that has

our stick figure drawing in it. We

want the figure to move when we

press any of the arrow keys up,

down, right and left, assuming we

aren't at the edge of the screen

and cannot move any further. We

want the game to quit when we

press the “q” key. Now, moving the

sprite around might seem easy, and

it is, but it is a bit harder than it

initially sounds. We start by

creating two rectangles. One for

the sprite itself and one that is the

same size but is blank. We blit the

sprite onto the surface to start,

then, when the user presses a key,

we blit the blank rectangle over

the original sprite, figure out the

new position, and blit the sprite

back onto the surface at its new

position. Pretty much what we did

with the alphabet game last time.

That's about it for this program. It

will give us an idea how to actually

place a graphic on the screen and

move it around.

So, start a new program, and

call it pygame4.py. Put in the

includes we've been using during

this tutorial. This time we'll use a

minty green background so those

values should be 0, 255, 1 27 (see

above).

Next, we create a class that will

handle our graphic or sprite (next

page, shown bottom left) . Put this

right after the imports.

What is all this doing? Let's start

with the __init__ routine. We

initialize the sprite module of

Pygame with the

pygame.sprte.Sprite.__init__ line.

We then set the surface, and call it

screen. This will allow us to check

to see if the sprite is going off the

screen. We then create and set the

position of the blank oldsprite

variable, which will keep the old

import pygame
from pygame.locals import *
import os

Background = 0,255,127
os.environ['SDL_VIDEO_CENTERED'] = '1'
pygame.init()
screen = pygame.display.set_mode((800, 600))
pygame.display.set_caption('Pygame Example #4 - Sprite')
screen.fill(Background)

full circle magazine 76 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 1 5
position of our sprite. Now we

load our stick figure sprite with the

pygame.image.load routine,

passing it the filename (and path, if

it's not in the program's path).

Then we get a reference (self.rect)

to the sprite which sets up the

width and height of the rectangle

automatically, and set the x,y

position of that rectangle to the

position we pass into the routine.

The update routine basically

makes a copy of the sprite, then

checks to see if the sprite goes off

the screen. If so, it's left where it

was, otherwise its position is

moved the amount we send into it.

Now, after the screen.fill

statement, put the code shown on

the following page (right-hand

side).

Here we create an instance of

our class, calling it character. Then

we blit the sprite. We create the

blank sprite rectangle, and fill it

with the background color. We

update the surface and start our

loop.

As long as DoLoop is equal to 1 ,

we loop through the code. We use

pygame.event.get() to get a

keyboard character. We then test it

against the event type. If it's QUIT,

we exit. If it's a pygame KEYDOWN

event, we process it. We look at the

key value returned, and compare it

to constants defined by Pygame.

We then call the update routine in

our class. Notice here that we

simply are passing a list containing

the number of pixels on the X and

Y axis to move the character. We

bump it by 1 0 pixels (positive for

right or down, negative for left or

up. If the key value is equal to “q”,

we set DoLoop to 0, and so will

break out of the loop. After all of

that, we blit the blank character to

the old position, blit the sprite to

the new position, and finally

update - but in this case, we update

only the two rectangles containing

the blank sprite and the active

sprite. This saves a tremendous

amount of time and processing.

As always, the full code is

available at

www.thedesignatedgeek.com or at

http://fullcirclemagazine.pastebin.

com/DvSpZbaj.

There's a ton more that Pygame

can do. I suggest that you hop over

to their website, and look at the

reference page

class Sprite(pygame.sprite.Sprite):
def __init__(self, position):

pygame.sprite.Sprite.__init__(self)
Save a copy of the screen's rectangle
self.screen = pygame.display.get_surface().get_rect()
Create a variable to store the previous position of the sprite
self.oldsprite = (0, 0, 0, 0)
self.image = pygame.image.load('stick3.png')
self.rect = self.image.get_rect()
self.rect.x = position[0]
self.rect.y = position[1]

def update(self, amount):
Make a copy of the current rectangle for use in erasing
self.oldsprite = self.rect
Move the rectangle by the specified amount
self.rect = self.rect.move(amount)
Check to see if we are off the screen
if self.rect.x < 0:

self.rect.x = 0
elif self.rect.x > (self.screen.width - self.rect.width):

self.rect.x = self.screen.width - self.rect.width
if self.rect.y < 0:

self.rect.y = 0
elif self.rect.y > (self.screen.height - self.rect.height):

self.rect.y = self.screen.height - self.rect.height

http://www.thedesignatedgeek.com
http://fullcirclemagazine.pastebin.com/DvSpZbaj

full circle magazine 77 contents ^The Compleat Python

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1 972. He enjoys
cooking, hiking, music, and spending
time with his family.

PROGRAM IN PYTHON - PART 1 5

(http://www.pygame.org/docs/r

ef/index.html). In addition, you can

take a look at some of the games

that others have put up.

Next time, we will be digging

deeper into Pygame by creating a

game that comes from my

past...my very DISTANT past.

character = Sprite((screen.get_rect().x, screen.get_rect().y))
screen.blit(character.image, character.rect)

Create a Surface the size of our character
blank = pygame.Surface((character.rect.width, character.rect.height))
blank.fill(Background)

pygame.display.update()
DoLoop = 1
while DoLoop:

for event in pygame.event.get():
if event.type == pygame.QUIT:

sys.exit()
Check for movement
elif event.type == pygame.KEYDOWN:

if event.key == pygame.K_LEFT:
character.update([-10, 0])

elif event.key == pygame.K_UP:
character.update([0, -10])

elif event.key == pygame.K_RIGHT:
character.update([10, 0])

elif event.key == pygame.K_DOWN:
character.update([0, 10])

elif event.key == pygame.K_q:
DoLoop = 0

Erase the old position by putting our blank Surface on it
screen.blit(blank, character.oldsprite)
Draw the new position
screen.blit(character.image, character.rect)
Update ONLY the modified areas of the screen
pygame.display.update([character.oldsprite, character.rect])

http://www.pygame.org/docs/ref/index.html

full circle magazine 78 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg Walters PPrroogg rraa mm II nn PPyytthh oonn -- PPaa rrtt 11 66

A
while ago, I promised

someone that I would

discuss the differences

between Python 2.x and

3.x. Last time, I said that we would

continue our pygame

programming, but I felt that I

should keep my promise, so we'll

delve into pygame more next time.

Many changes have gone into

Python 3.x. There is a large amount

of information about these

changes on the Web, and I 'll

include a few links at the end of

the article. There are also many

concerns about making the change.

I 'm going to concentrate on

changes that affect the things

you've learned so far.

Let's get started.

PRINT

As I 've said before, one of the

most important issues is the way

we deal with the Print command.

Under 2.x we simply can use:

print “This is a test”

and be done with it. However

under 3.x, if we try that we will get

the error message shown above

right.

Not happy. In order to use the

print command, we must put what

we want to print in parentheses

like this:

print(“this is a test”)

Not a very big change, but

something we have to be aware of.

You can get ready for your own

migration by using this syntax

under python 2.x.

Formatting and
variable substitution

Formatting and variable

substitution have also changed.

Under 2.x, we have used things like

the example shown below left, and,

under 3.1 , you can get the proper

result. However, that is due to

change since the '%s' and '%d'

formatting functions are going

away. The new way is to use '{x}'

replacement statements is shown

below.

It seems to me to be actually

easier to read. You can also do

things like this:

>>> print("Hello {0}. I'm
glad you are here at
{1}".format("Fred","MySite.co
m"))

Hello Fred. I'm glad you are
here at MySite.com

>>>

Remember, you can still use '%s'

and so on, but they will be going

away.

Numbers

Under Python 2.x, if you did:
x = 5/2.0

x would contain 2.5. However if you

did:
x = 5/2

x would contain 2 due to

truncation. Under 3.x, if you do:
x = 5/2

>>> print "This is a test"
File "<stdin>", line 1

print "This is a test"
^

SyntaxError: invalid syntax
>>>

>>> months = ['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec']
>>> print "You selected month %s" % months[3]
You selected month Apr
>>>

>>> months = ['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec']
>>> print("You selected month {0}".format(months[3]))
You selected month Apr
>>>

OLD WAY

NEW WAY

full circle magazine 79 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 1 6

you still get 2.5. To truncate the

division you have to do:
x = 5//2

INPUT

A while back, we dealt with a

menu system that used raw_input()

to get a response from the user of

our application. It went something

like this:

response = raw_input('Enter a
selection -> ')

That was fine under 2.x.

However, under 3.x we get:

Traceback (most recent call
last):

File "<stdin>", line 1, in
<module>

NameError: name 'raw_input'
is not defined

This isn't a big issue. The

raw_input() method has been

replaced with input() . Simply

change the line to:

response = input('Enter a
selection -> ')

and it works just fine.

Not Equal

Under 2.x, we could test for ‘not

equal’ with “<>”. However, that's

not allowed in 3.x The test

operator is now “!=”.

Converting older
programs to Python 3.x

Python 3.x comes with a utility

to help convert a 2.x application to

3.x compliant code. This doesn't

always work, but it will get you

close in many cases. The conversion

tool is named (aptly) “2to3”. Let's

take a really simple

program as an

example. The

example below is

from way back in

Beginning Python

Part 3.

When run under 2.x, the output

looks like that shown above right.

Of course, when we run it under

3.x, it doesn't work.

File "pprint1.py", line 18
print TopOrBottom('=',40)

^
SyntaxError: invalid syntax

We'll try to let the conversion

app fix it for us. First, we should

create a backup of our application

that will be converted. I do it by

#pprint1.py
#Example of semi-useful functions

def TopOrBottom(character,width):
width is total width of returned line
return '%s%s%s' % ('+',(character * (width-2)),'+')

def Fmt(val1,leftbit,val2,rightbit):
prints two values padded with spaces
val1 is thing to print on left, val2 is thing to print on right
leftbit is width of left portion, rightbit is width of right portion
part2 = '%.2f' % val2
return '%s%s%s%s' % ('| ',val1.ljust(leftbit-2,' '),part2.rjust(rightbit-2,' '),' |')

Define the prices of each item
item1 = 3.00
item2 = 15.00
Now print everything out...
print TopOrBottom('=',40)
print Fmt('Item 1',30,item1,10)
print Fmt('Item 2',30,item2,10)
print TopOrBottom('-',40)
print Fmt('Total',30,item1+item2,10)
print TopOrBottom('=',40)

+======================================+
| Item 1 3.00 |
| Item 2 15.00 |
+--------------------------------------+
| Total 18.00 |
+======================================+
Script terminated.

full circle magazine 80 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 1 6

creating a copy of the file, and

append a “v3” to the end of the

filename:

cp pprint1.py pprint1v3.py

There's multiple ways to run the

app. The simplest way is just to let

the app check our code and tell us

where the problems are, which is

shown below left.

Notice that the original source

code is not changed. We have to

use the “-w” flag to tell it to write

the changes to the file. This is

shown below right.

You'll also notice that the

output is the same. This time,

however, our source file (shown on

the next page) is changed to a

“version 3.x compatible” file.

Now the program works as it is

supposed to under 3.x. And, since it

was simple, it still runs under

version 2.x as well.

Do I switch to 3.x now?

Most of the issues are common

to any change in a programming

language. Syntax changes abound

with every new version. Short cuts

like += or -= sometimes come out

of the blue and actually make our

lives easier.

What's the downside to simply

migrating to 3.x right now? Well,

there's a little bit. Many of the

library modules that we've used

are not available for version 3.x

right now. Things like Mutegen

that we've used a few articles back

just aren't available yet. While this

is a stumbling block, it doesn't

require you to completely give up

on Python v3.x.

My suggestion is to start coding

> 2to3 pprint1v3.py
RefactoringTool: Skipping implicit fixer: buffer
RefactoringTool: Skipping implicit fixer: idioms
RefactoringTool: Skipping implicit fixer: set_literal
RefactoringTool: Skipping implicit fixer: ws_comma
RefactoringTool: Refactored pprint1v3.py
--- pprint1v3.py (original)
+++ pprint1v3.py (refactored)
@@ -15,9 +15,9 @@
item1 = 3.00
item2 = 15.00
Now print everything out...
-print TopOrBottom('=',40)
-print Fmt('Item 1',30,item1,10)
-print Fmt('Item 2',30,item2,10)
-print TopOrBottom('-',40)
-print Fmt('Total',30,item1+item2,10)
-print TopOrBottom('=',40)
+print(TopOrBottom('=',40))
+print(Fmt('Item 1',30,item1,10))
+print(Fmt('Item 2',30,item2,10))
+print(TopOrBottom('-',40))
+print(Fmt('Total',30,item1+item2,10))
+print(TopOrBottom('=',40))
RefactoringTool: Files that need to be modified:
RefactoringTool: pprint1v3.py

> 2to3 -w pprint1v3.py
RefactoringTool: Skipping implicit fixer: buffer
RefactoringTool: Skipping implicit fixer: idioms
RefactoringTool: Skipping implicit fixer: set_literal
RefactoringTool: Skipping implicit fixer: ws_comma
RefactoringTool: Refactored pprint1v3.py
--- pprint1v3.py (original)
+++ pprint1v3.py (refactored)
@@ -15,9 +15,9 @@
item1 = 3.00
item2 = 15.00
Now print everything out...

-print TopOrBottom('=',40)
-print Fmt('Item 1',30,item1,10)
-print Fmt('Item 2',30,item2,10)
-print TopOrBottom('-',40)
-print Fmt('Total',30,item1+item2,10)
-print TopOrBottom('=',40)
+print(TopOrBottom('=',40))
+print(Fmt('Item 1',30,item1,10))
+print(Fmt('Item 2',30,item2,10))
+print(TopOrBottom('-',40))
+print(Fmt('Total',30,item1+item2,10))
+print(TopOrBottom('=',40))
RefactoringTool: Files that were modified:
RefactoringTool: pprint1v3.py

full circle magazine 81 contents ^The Compleat Python

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1 972. He enjoys
cooking, hiking, music, and spending
time with his family.

PROGRAM IN PYTHON - PART 1 6
using proper 3.x syntax now.

Python version 2.6 supports almost

everything you would need to

write in the 3.x way. This way, you

will be good to go once you have to

change to 3.x. If you can live with

the standard module library, go

ahead and make the plunge. If, on

the other hand, you push the

envelope, you might just want to

wait until the module library

catches up. It will.

Below are some links that I

thought might be helpful. The first

is to the usage page of 2to3. The

second is a 4-page cheat sheet that

I have found to be a very good

reference. The third is to what I

consider to be just about the best

book on using Python. (That is until

I get around to writing mine.)

We'll see you next time.

Links

2to3 usage

http://docs.python.org/library/2to

3.html

Moving from Python 2 to Python 3

(A 4 page cheat sheet)

http://ptgmedia.pearsoncmg.com/i

mprint_downloads/informit/promo

tions/python/python2python3.pdf

Dive into Python 3

http://diveintopython3.org/

#pprint1.py
#Example of semi-useful functions

def TopOrBottom(character,width):
width is total width of returned line
return '%s%s%s' % ('+',(character * (width-2)),'+')

def Fmt(val1,leftbit,val2,rightbit):
prints two values padded with spaces
val1 is thing to print on left, val2 is thing to print on right
leftbit is width of left portion, rightbit is width of right portion
part2 = '%.2f' % val2
return '%s%s%s%s' % ('| ',val1.ljust(leftbit-2,' '),part2.rjust(rightbit-2,' '),' |')

Define the prices of each item
item1 = 3.00
item2 = 15.00
Now print everything out...
print(TopOrBottom('=',40))
print(Fmt('Item 1',30,item1,10))
print(Fmt('Item 2',30,item2,10))
print(TopOrBottom('-',40))
print(Fmt('Total',30,item1+item2,10))
print(TopOrBottom('=',40))

http://docs.python.org/library/2to3.html
http://ptgmedia.pearsoncmg.com/imprint_downloads/informit/promotions/python/python2python3.pdf
http://diveintopython3.org/

full circle magazine 82 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg Walters PPrroogg rraa mm II nn PPyytthh oonn -- PPaa rrtt 11 77

A
sI was finishing up the

last installment of our

series, I got an email

about a programming

competition. While we don't have

time to deal with this one, various

sites have programming

competitions throughout the year.

The competition information can

be found at

http://www.freiesmagazin.de/third

_programming_contest - if you are

interested. That made me realize

that we haven't talked about true

Client/Server programming. So

with that in mind, we'll dig into this

topic, and see where we can go

with it.

So, what is a Client/Server

Application? In very simple terms,

anytime you use a program (or

even a web interface) that accesses

data from another application or

computer, you are using a

client/server system. Let's look at

an example that we actually used

before. Remember when we made

our cookbook program? That was a

VERY simple example (and not a

very good one) of a client/server

application. The SQLite database is

the server, the application we

wrote is the client. A better

example would be the following.

There is a database on a computer

in another part of your office,

floors away. It holds information on

the inventory of the store you work

at. You use a point of sale register

(one of 1 0) within the store. Each

of those registers are a client and

the database located somewhere is

the server.

While we won't try to create

that kind of system here, we can

learn some of the basics.

The first thing we need to think

about is the location of our server.

Many people have only one

computer in their house. Some

people might have 7 or 8.

To use a client/server system,

we have to connect from the client

machine to the server machine. We

do this with what is called a pipe or

socket. If you ever made a “tin can”

telephone when you were a kid,

you have an idea of what I 'm going

to be talking about. If not, let me

paint you a picture of times gone

by. First, you had to get your

mother to save you two tin cans

from beans or something. Then you

cleaned them carefully, and took

them out to the garage. You used a

small nail and a hammer to poke a

small hole in the bottom of each.

Then you got about 1 5 feet of

string (again from your loving

mother), ran the end of the string

through each can, and tied a large

knot in each end of the string to

hold it inside the can. You then got

your best buddy, and stretched the

string tightly and yelled into the

can while your friend held his can

up to his ear. The vibrations from

the bottom of the can went

through the taut string, and caused

the other can bottom to vibrate. Of

course, you could hear without the

can, but that was beside the point.

It was cool. The socket is about the

same thing. The client has a direct

connection (think of the string) to

the server. If many clients are

connecting to the server, each

client would have a tin can of their

own, and the poor server has to

have the same number of tin cans

all held tightly to each client's

string phone. The bottom line here

is each client has its own direct line

to the server.

Let's make a simple server and

client. We'll start with the server

first. In pseudo code, here's what

happens.

Create a socket

Getname ofservermachine

Selecta port

Bindsocket to address andport

Listen fora connection

Ifconnected...

Accept the connection

Printwegota connection

Close the connection

The actual code to our server is

shown on the next page, bottom

left.

So, we create the socket, get

the hostname of the machine we

are running the server on, bind the

socket to the port, and start to

listen. When we get a connection

request, we accept it, we print the

fact we are connected, send “Hello

and Goodbye”, and close the

socket.

http://www.freiesmagazin.de/third_programming_contest

full circle magazine 83 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 1 7

Now we need to have a client to

make the whole thing work (shown

bottom right).

The code is almost like the

server, but, in this case, we

connect, print what we receive, and

close the socket.

The output from the programs

are very predictable. On the server

side of things we get...

My hostname is earth

I'm now connected to
('127.0.1.1', 45879)

and on the client side we get...

Hello and Goodbye

So, it's pretty simple. Now let's

do something a bit more realistic.

We'll create a server that actually

will do something. The code for

server version 2 can be found at:

http://fullcirclemagazine.pastebin.c

om/Az8vNUv7

Let's break it down. After our

imports, we set up some variables.

BUFSIZ holds the size of the buffer

that we will use to hold the

information that we receive from

the client. We also set up the port

we will listen on, and a list holding

the host and port number.

We next create a class called

ServCmd. In the __init__ routine,

we create a socket, and bind the

interface to that socket. In the run

routine, we start listening, and wait

for a command from the client.

When we do get a command

from the client, we use the

os.popen()

routine. This

basically creates a

command shell

and runs the

command.

Next the client

(above right) ,

which is a good

deal easier.

#!/usr/bin/env python
#server1.py
import socket
soc = socket.socket()
hostname = socket.gethostname()
print "My hostname is ", hostname
port = 21000
soc.bind((hostname,port))
soc.listen(5)
while True:

con,address = soc.accept()
print "I'm now connected to ",address
con.send("Hello and Goodbye")
con.close()

#!/usr/bin/python
client1.py
#====================
import socket

soc = socket.socket()
hostname = socket.gethostname()
port = 21000

soc.connect((hostname, port))
print soc.recv(1024)
soc.close

#!/usr/bin/env python
client2.py

from socket import *
from time import time
from time import sleep
import sys
BUFSIZE = 4096

class CmdLine:
def __init__(self,host):

self.HOST = host
self.PORT = 29876
self.ADDR = (self.HOST,self.PORT)
self.sock = None

def makeConnection(self):
self.sock = socket(AF_INET,SOCK_STREAM)
self.sock.connect(self.ADDR)

def sendCmd(self, cmd):
self.sock.send(cmd)

def getResults(self):
data = self.sock.recv(BUFSIZE)
print data

if __name__ == '__main__':
conn = CmdLine('localhost')
conn.makeConnection()
conn.sendCmd('ls -al')
conn.getResults()
conn.sendCmd('BYE')

http://fullcirclemagazine.pastebin.com/Az8vNUv7

full circle magazine 84 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 1 7

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1 972. He enjoys
cooking, hiking, music, and spending
time with his family.

We'll skip everything here

except the send command, since

you now have enough information

to figure it out on your own. The

conn.sendCmd() line (line 31)

sends a simple ls -al request.

Here's what my responses look

like. Yours will be somewhat

different.

Server:

python server2.py
...listening
...connected: ('127.0.0.1',
42198)
Command received - ls -al
Command received - BYE
...listening

Client:

python client2a.py
total 72
drwxr-xr-x 2 greg greg 4096
2010-11-08 05:49 .
drwxr-xr-x 5 greg greg 4096
2010-11-04 06:29 ..
-rw-r--r-- 1 greg greg 751
2010-11-08 05:31 client2a.py
-rw-r--r-- 1 greg greg 760
2010-11-08 05:28 client2a.py~
-rw-r--r-- 1 greg greg 737
2010-11-08 05:25 client2.py
-rw-r--r-- 1 greg greg 733
2010-11-08 04:37 client2.py~
-rw-r--r-- 1 greg greg 1595
2010-11-08 05:30 client2.pyc
-rw-r--r-- 1 greg greg 449

2010-11-07 07:38 ping2.py
-rw-r--r-- 1 greg greg 466
2010-11-07 10:01
python_client1.py
-rw-r--r-- 1 greg greg 466
2010-11-07 10:01
python_client1.py~
-rw-r--r-- 1 greg greg 691
2010-11-07 09:51
python_server1.py
-rw-r--r-- 1 greg greg 666
2010-11-06 06:57
python_server1.py~
-rw-r--r-- 1 greg greg 445
2010-11-04 06:29 re-test1.py
-rw-r--r-- 1 greg greg 1318
2010-11-08 05:49 server2a.py
-rw-r--r-- 1 greg greg 1302
2010-11-08 05:30 server2a.py~
-rw-r--r-- 1 greg greg 1268
2010-11-06 08:02 server2.py
-rw-r--r-- 1 greg greg 1445
2010-11-06 07:50 server2.py~
-rw-r--r-- 1 greg greg 2279
2010-11-08 05:30 server2.pyc

We can also connect from

another machine without changes

anywhere - with the single

exception of the conn =

CmdLine('localhost') (line 29) in the

client program. In this case, change

the 'localhost' portion to the IP

address of the machine that the

server is running on. For my home

setup, I use the following line:

conn =
CmdLine('192.168.2.12')

So, now we are able to send

information back and forth from

one machine (or terminal) to

another.

Next time, we'll make our

client/server applications much

more robust.

Ideas & Writers
Wanted

We’ve created Full Circle project

and team pages on LaunchPad.

The idea being that non-writers

can go to the project page, click

‘Answers‘ at the top of the page,

and leave your article ideas, but

please be specific with your

idea! Don’t just put ‘server

article’, please specify what the

server should do!

Readers who fancy writing an

article, but aren’t sure what to

write about, can register on the

Full Circle team page, then

assign article ideas to

themselves, and get writing! We

do ask that if you can’t get the

article written within several

weeks (a month at most) that

you reopen the question to let

someone else grab the idea.

Project page, for ideas:

https://launchpad.net/fullcircle

Team page for writers:

https://launchpad.net/~fullcircle

https://launchpad.net/fullcircle
https://launchpad.net/~fullcircle

full circle magazine 85 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg Walters PPrroogg rraa mm II nn PPyytthh oonn -- PPaa rrtt 11 88

L
ast time, we created a very

simple client/server

system. This time, we are

going to extend it a bit.

The server is a tic-tac-toe (or

naughts and crosses) board and

checker. The client portion acts as

the input/output.

We'll start by using the same

server code as last time, and

modifying it as we go. If you didn't

save the code from then, go to

http://fullcirclemagazine.pastebin.

com/UhquVK4N, get the source

code for this time, and follow

along. The first change comes in

the __init__ routine where we

initialize two new variables,

self.player and self.gameboard.

The gameboard is a simple list of

lists or a basic array. We can access

it as follows (more visual than just

the flat list) . This list will hold our

data. There are three possible

entries per cell. “-” means the cell is

empty. “X” means the cell is

occupied by player 1 and “O”

means the cell is occupied by

player 2. The grid looks like this

when put in two dimensions:

[0][0] | [0][1] | [0][2]
[1][0] | [1][1] | [1][2]
[2][0] | [2][1] | [2][2]

So starting with the server code

from last month, in the routine

__init__ routine, add the following

lines:

The next three lines are
new...

self.player = 1

self.gameboard = [['-','-
','-'],['-','-','-'],['-','-
','-']]

self.run()

The run, listen, and servCmd

routines have no changes, so we'll

concentrate on the changes to the

procCmd routine next.

In last time's article, the server

waited for a command from the

client, then sent it to the os.popen

routine. This time, we will parse the

command sent in. In this case, we

have three separate commands we

will listen for. They are 'Start' ,

'Move', and 'GOODBYE'. When we

receive the 'Start' command, the

server should initialize the game

board to all “-” and then send a

“print out” of the board to the

client.

The 'Move' command is a

compound command, in that it

contains the command, and the

position that the player wants to

move to. For example, 'Move A3'.

We parse the command to get

three parts, the 'move' command

itself, and the the row and column.

Finally the 'GOODBYE' command

simply resets the game board for

another game.

So, we receive the command

from the client in the procCmd

routine. We then check the

command to see what we are

supposed to do. Within the

procCmd routine, find the 5th line

down, and, after the line that says

“if self.processingloop:”, remove

the rest of that set of code. Now

we'll set up the commands as we

laid the out. Here's the code for the

Start command:

if self.processingloop:
if cmd == 'Start':

self.InitGameBoard()
self.PrintGameBoard(1)

Next, let's look at the Move

portion of the routine (shown

below). We first check the first four

characters of the passed-in

command to see if they match

'Move'. If they match, we then pull

the rest of the string starting at

position 5 (since things are 0

based), and assign that to a

variable named position. We then

check to see if the first character is

either an 'A', 'B' , or 'C'. These

represent the row that the client

has sent. We then take the integer

value of the next character and

that's our column:

if cmd[:4] == 'Move':
print "MOVE COMMAND"
position = cmd[5:]
if position[0] == 'A':

row = 0
elif position[0] == 'B':

row = 1

elif position[0] == 'C':
row = 2

else:
self.cli.send('Invalid

position')
return

col = int(position[1])-1

full circle magazine 86 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 1 8

Next, we make a quick check to

verify that the row position is

within the allowable positions:

if row < 0 or row > 2:

self.cli.send('Invalid
position')

return

Finally, we verify that the

position is empty ('-') , and, if the

current player is number 1 , we put

an “X” otherwise we put a “O”. We

then call the PrintGameBoard

routine with a “0” parameter:

if self.gameboard[row][col]
== '-':

if self.player == 1:

self.gameboard[row][col] =
"X"

else:

self.gameboard[row][col] =

"O"

self.PrintGameBoard(0)

That finishes the changes to the

procCmd routine. Next we have the

“initialize the game board” routine.

All it does is to set each position to

a “-”, which the move logic uses to

verify that a space is empty:

def InitGameBoard(self):

self.gameboard = [['-','-
','-'],['-','-','-'],['-','-
','-']]

The PrintGameBoard routine

(below) prints the game board,

calls the checkwin routine, and sets

the player number. We build a large

string to send to the client so it

only has to enter the listen routine

once per move. The firsttime

parameter is included to send the

pretty print of the gameboard

when the client first connects or

resets the game:

Next, we check to see if the

firsttime parameter is set to 0 or 1

(below). Only if firsttime is set to 0,

we check to see if the current

player has won, and, if so, add the

'Player X WINS!' text to the output

string. If the current player did not

win, we then add the “Enter

move...” text to the output string.

Finally we send the string out to

the client with the cli.send routine:

Finally, on the next page, we

have the server check for a win

routine. We have already set the

player to either an “X” or “O”, so

we start by using a simple for loop.

If we find a win, we return True

from the routine. Our for variable

'C' represents each row in our list

of lists. First, we will check each

Row for a horizontal win:

def PrintGameBoard(self,firsttime):
#Print the header row
outp = (' 1 2 3') + chr(13) + chr(10)
outp += (" A {0} | {1} | {2}".format(self.gameboard[0][0],self.gameboard[0][1],self.gameboard[0][2])) + chr(13)+chr(10)
outp += (' ------------')+ chr(13)+chr(10)
outp += (" B {0} | {1} | {2}".format(self.gameboard[1][0],self.gameboard[1][1],self.gameboard[1][2]))+ chr(13)+chr(10)
outp += (' ------------')+ chr(13)+chr(10)
outp += (" C {0} | {1} | {2}".format(self.gameboard[2][0],self.gameboard[2][1],self.gameboard[2][2]))+ chr(13)+chr(10)
outp += (' ------------')+ chr(13)+chr(10)

if firsttime == 0:
if self.player == 1:

ret = self.checkwin("X")
else:

ret = self.checkwin("O")
if ret == True:

if self.player == 1:
outp += "Player 1 WINS!"

else:
outp += "Player 2 WINS!"

else:
if self.player == 1:

self.player = 2
else:

self.player = 1
outp += ('Enter move for player %s' %

self.player)
self.cli.send(outp)

full circle magazine 87 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 1 8

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1 972. He enjoys
cooking, hiking, music, and spending
time with his family.

The Client
Once again, we start with the

simple routine that we had last

time. The changes start right

after the call to

conn.makeConnection. We send a

Start, various Moves, and finally a

Goodbye command. The biggest

thing to remember here is that

you must send a command, then

get a response before sending

another command. Think of it as

a polite conversation. Make your

statement, listen for a response,

then make another statement,

listen for a response, and so on.

In this sample we use raw_input

simply so you can see what is

going on:

if __name__ == '__main__':
conn =

CmdLine('localhost')
conn.makeConnection()
conn.sendCmd('Start')
conn.getResults()
conn.sendCmd('Move A3')
conn.getResults()
r = raw_input("Press

Enter")
conn.sendCmd('Move B2')
conn.getResults()
r = raw_input("Press

Enter")

Continue the sendCmd,

getResults, raw_input routine set

with the following commands

(you already have the code for the

A3 and B2 moves), C1 , A1 , C3, B3,

C2, then end with a GOODBYE

command.

Moving Forward
So, here is your “homework”

assignment. In the client app,

remove the hard coded move

commands, and use raw_input() to

prompt for and get moves from

the player(s) in the form of “A3” or

“B2”, then prepend the command

“Move” before sending it to the

server.

Next time, we'll modify our

server to actually play the other

player.

Server and Client Full Source

Code can be found at

http://fullcirclemagazine.pastebin.

com/UhquVK4N or at

http://thedesignatedgeek.com

First, we will check each Row for a horizontal win:
def checkwin(self,player):

#loop through rows and columns
for c in range(0,3):
#check for horizontal line

if self.gameboard[c][0] == player and
self.gameboard[c][1] == player and self.gameboard[c][2] ==
player:

print "*********\n\n%s wins\n\n*********" %
player

playerwin = True
return playerwin

Next, we check each Column for a win:
#check for vertical line
elif self.gameboard[0][c] == player and

self.gameboard[1][c] == player and self.gameboard[2][c] ==
player:

print "** %s wins **" % player
playerwin = True
return playerwin

Now we check for the diagonal win from left to right...
#check for diagonal win (left to right)
elif self.gameboard[0][0] == player and

self.gameboard[1][1] == player and self.gameboard[2][2] ==
player:

print "** %s wins **" % player
playerwin = True
return playerwin

Then from right to left...
#check for diagonal win (right to left)
elif self.gameboard[0][2] == player and

self.gameboard[1][1] == player and self.gameboard[2][0] ==
player:

print "** %s wins **" % player
playerwin = True
return playerwin

Finally, if there is no win, we return false:
else:

playerwin = False
return playerwin

http://fullcirclemagazine.pastebin.com/UhquVK4N
http://thedesignatedgeek.com

full circle magazine 88 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg Walters PPrroogg rraa mm II nn PPyytthh oonn -- PPaa rrtt 11 99

T
his time, we are going to

work on finishing our Tic-

Tac-Toe program.

However, unlike most of

my other articles, I won't be

providing the code. You will! I will

however, be giving you the rules.

After 1 8 months, you have the

tools and knowledge to finish this

project. I 'm sure of it.

First, let's look at the logic of

playing Tic-Tac-Toe. We'll look at it

in pseudo-code. Let's look first at

the game board. It's laid out like

this...

Corner | Side | Corner
-------+--------+-------
Side | Center | Side
-------+--------+-------
Corner | Side | Corner

Now, whoever is “X”, goes first.

Their first best move is to take a

corner square. Any corner square,

it doesn't matter. We'll deal with

the permutations of playing “X”

first, these are shown right.

The standpoint of the “O”

player is shown below right.

Some possible play outs are

shown on the next page.

As you can see, the logic is

somewhat complex, but can easily

be broken down in a series of IF

statements (notice I used “Then”,

but in Python, we don't, we use the

“:”) . You should be able

to modify the code

from last month to

deal with this, or at

least write one from

scratch to simply be a

desktop tic-tac-toe

program.

IF “O” takes a CORNER square THEN
Scenario 1
“X” should take one of the remaining corner squares. Doesn't matter which.
IF “O” blocks the win THEN

“X” takes remaining corner square.
Finish for win.

ELSE
Finish for win.

ELIF “O” takes a SIDE square THEN
Scenario 2
“X” takes CENTER square
IF “O” blocks win THEN

“X” takes corner square that is not bordered by any “O”
Finish for win.

ELSE
Finish for win.

ELSE
“O” has played in the CENTER square – Scenario 3
“X” takes corner square diagonally to

original move
IF “O” plays on corner square

“X” plays remaining open corner square
Finish for win.

ELSE
Game will be a draw – Scenario 4
Block “O” win.
Block any other possible wins

IF “X” plays to non-center square
THEN

“O” takes Center Square
IF “X” has corner square AND

side square THEN
#Scenario 5
“O” takes corner diagonally

from corner “X”
Block possible wins to a

draw.
ELSE

“X” has two Edge squares
– Scenario 6

“O” moves to corner
bordered by both “X”s

IF “X” blocks win THEN
“O” takes any square.
Block and force draw

ELSE
Finish for win.

full circle magazine 89 contents ^The Compleat Python

PROGRAM IN PYTHON - PART 1 9

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Aurora, Colorado, and has been
programming since 1 972. He enjoys
cooking, hiking, music, and spending
time with his family.

Ideas & Writers
Wanted

We’ve created Full Circle project

and team pages on LaunchPad.

The idea being that non-writers

can go to the project page, click

‘Answers‘ at the top of the page,

and leave your article ideas, but

please be specific with your

idea! Don’t just put ‘server

article’, please specify what the

server should do!

Readers who fancy writing an

article, but aren’t sure what to

write about, can register on the

Full Circle team page, then

assign article ideas to

themselves, and get writing! We

do ask that if you can’t get the

article written within several

weeks (a month at most) that

you reopen the question to let

someone else grab the idea.

Project page, for ideas:

https://launchpad.net/fullcircle

Team page for writers:

https://launchpad.net/~fullcircle

Scenario 1
X | - | - X | - | - X | - | - X | - | - X | - | X X | - | X X | X | X
- | - | - - | - | - - | - | - O | - | - O | - | - O | O | - O | O | -
- | - | - - | - | O X | - | O X | - | O X | - | O X | - | O X | - | O

Scenario 2
X | - | - X | - | - X | - | - X | - | - X | - | X X | - | X X | X | X
- | - | - O | - | - O | X | - O | X | - O | X | - O | X | - O | X | -
- | - | - - | - | - - | - | - - | - | O - | - | O O | - | O X | - | O

Scenario 3
X | - | - X | - | - X | - | - X | - | X X | O | X X | O | X X | O | X
- | - | - - | O | - - | O | - - | O | - - | O | - - | O | - - | O | X
- | - | - - | - | - - | - | X O | - | X O | - | X O | - | X O | - | X

Scenario 4
X | - | - X | - | - X | - | - X | - | - X | - | - X | - | X X | O | X
- | - | - - | O | - - | O | O X | O | O X | O | O X | O | O X | O | O
- | - | - - | - | - - | - | X - | - | X O | - | X O | - | X O | - | X

Scenario 5
X | - | - X | - | - X | - | - X | - | - X | - | - X | - | - X | - | X
- | - | - - | O | - - | O | X - | O | X X | O | X X | O | X X | O | X
- | - | - - | - | - - | - | - - | - | O - | - | O O | - | O O | - | O

Scenario 6
- | - | - - | - | - - | - | - - | - | - - | - | X O | - | X O | - | X
X | - | - X | O | - X | O | - X | O | - X | O | - X | O | - X | O | -
- | - | - - | - | - - | X | - O | X | - O | X | - O | X | - O | X | 0

https://launchpad.net/fullcircle
https://launchpad.net/~fullcircle

full circle magazine 90 contents ^The Compleat Python

HOW-TO
Written by Greg Walters

Program In Python - Part 20

W
elcome back. This
time we wi l l re-
address GUI
programming, but

this time we wi l l be using the
pyGTK l ibrary. We won't be
working with a GUI designer
right now, we' l l just be working
with the l ibrary.

Use Synaptic to instal l
python-gtk2, python-gtk2-
tutoria l , and python-gtk2-doc.

Let's jump right in and make
our first program using pyGTK,
it's shown above right.

For awhi le, we wi l l be
bui ld ing on this simple code
set. On l ine #3 is a new
command. The l ine
“pygtk.require('2 .0')” means
that the appl ication wi l l not run
unless the pygtk module is at
least version 2.0. In the __init__
routine, we assign a window to
the self.window variable (l ine
8), and then show it (l ine 9).
Remember that the __init__
routine is run as soon as we
instantiate the class (l ine 13).
Save this code as “simple1.py”.

Run it in a terminal . You' l l
see a simple window show up
somewhere on your desktop.
On mine, it shows up in the
upper left corner of my
desktop. In order to end the
program, you have to hit Ctrl -C
in the terminal . Why? We
haven't added any code to
destroy and actual ly end the
app. That's what we' l l do next.
Add the fol lowing l ine before
the self.window.show() l ine. . .

self.window.connect("delete_e

vent", self.delete_event)

Then after the gtk.main()
cal l , add the fol lowing routine. . .

def delete_event(self,

widget, event, data=None):

gtk.main_quit()

return False

Now save your app as
“simple2.py”, and, once again,
run it from a terminal . Now,
when you cl ick the “X” on the
title bar, the appl ication wi l l
exit. What is actual ly happening
here? The first l ine we added
(self.window.connect. . .)
connects the delete event to a
cal lback routine, in this case

self.delete_event. By returning
“False” to the system, it also
destroys the actual window
from system memory.

Now, I don't know about you,
but I prefer my appl ications to
open in the center of the
screen, not someplace random,
or in a corner - where it might
be obscured by something else.
Let's modify the code to do this.
Al l we need to do is add the
fol lowing l ine before the
self.window.connect l ine in the
__init__ function:

self.window.set_position(gtk.

WIN_POS_CENTER)

As you might guess, this sets

the position of the window in
the center of the screen. Save
the app as “simple3.py” and
run it.

That's much nicer, but
there's not much there. So, let's
try to add a widget. I f you
remember WAY back when we
worked with Boa Constructor,
widgets are simply predefined
controls that we can add to our
window to do things. One of the
simplest controls to add is a
button. We wi l l add the
fol lowing code right after the
self.window.connect l ine in our
previous code in the __init__
routine:

simple.py

import pygtk

pygtk.require('2.0')

import gtk

class Simple:

def __init__(self):

self.window = gtk.Window(gtk.WINDOW_TOPLEVEL)

self.window.show()

def main(self):

gtk.main()

if __name__ == "__main__":

simple = Simple()

simple.main()

full circle magazine 91 contents ^The Compleat Python

PROGRAM IN PYTHON ‐ PART 20
self.button =

gtk.Button("Close Me")

self.button.connect("clicked"

,self.btn1Clicked,None)

self.window.add(self.button)

self.button.show()

The first l ine defines the
button, and the text on the
button surface. The next l ine is
the connector to the cl ick
event. The third l ine adds the
button to the window, and the
fourth l ine shows the button on
the window surface. Looking at
the self.button.connect l ine,
you' l l see that there are three
arguments. The first is the
event we want to connect to,
the second is the routine that
wi l l be cal led when the event is
triggered, in this case
“self.btn1Cl icked”, and the third
is the argument (if any) that
wi l l be passed to the routine we
just defined.

Next, we need to create the
self.btn1Cl icked routine. Put
this after the self.delete_event
routine:

def

btn1Clicked(self,widget,data=

None):

print "Button 1 clicked"

gtk.main_quit()

As you can see, the routine
doesn't do much. It prints in the
terminal “Button 1 cl icked”, and
then cal ls the gtk.main_quit()
routine. This wi l l close the
window and terminate the
appl ication - just as if you had
cl icked the “X” on the title bar.
Again, save this as
“simple4.py”, and run it in a
terminal . You' l l see our
centered window with a button
that says “Close me”. Cl ick on
it, and the appl ication closes,
as designed. Notice, however,
that the window is much
smal ler than it was in the
simple3.py appl ication. You can
resize the appl ication, but the
button resizes with it. Why is
this? Wel l , we simply shoved a
button into the window and the
window resized to fit the
control .

We sort of broke the rules of
GUI programming by putting
the button directly on the form,
without using a container.
Remember back when we did
our first series on GUI
programming using Boa
Constructor - we used sizer
boxes (containers) to hold our
controls. We should do this,

even if we only have just one
control . For our next example,
we' l l add a HBox (Horizontal
box) to hold our button, and
add another button. I f we
wanted a vertical container, we
would use a VBox.

To start, use “simple4.py” as
our base code. Delete
everything between the l ines
self.window.connect(. . .) and
self.window.show(). This is
where we wi l l add our new
l ines. The code for the HBox
and our first button are. . .

self.box1 = gtk.HBox(False,0)

self.window.add(self.box1)

self.button =

gtk.Button("Button 1")

self.button.connect("clicked"

,self.btn1Clicked,None)

self.box1.pack_start(self.but

ton,True,True,0)

self.button.show()

Breaking down this code, we
add a HBox, naming it
self.box1. The parameters we
pass to the HBox are
homogeneous (True or False),
and a spacing value:

HBox =

gtk.HBox(homogeneous=False,

spacing=0)

Ideas & Writers
Wanted

We’ve created Ful l Circle
project and team pages on
LaunchPad. The idea being
that non-writers can go to
the project page, cl ick
‘Answers‘ at the top of the
page, and leave your article
ideas, but please be specific

with your idea! Don’t just put
‘server article’ , please
specify what the server
should do!

Readers who fancy writing an
article, but aren’t sure what
to write about, can register
on the Ful l Circle team page,
then assign article ideas to
themselves, and get writing!
We do ask that if you can’t

get the article written within

several weeks (a month at

most) that you reopen the

question to let someone else
grab the idea.

Project page, for ideas:
https: //launchpad.net/ful lcircl

https://launchpad.net/fullcircle
https://launchpad.net/~fullcircle

full circle magazine 92 contents ^The Compleat Python

The homogeneous
parameter controls whether
each widget in the box has the
same size (width in the case of
an HBox and height in the case
of a VBox.) In this case, we
pass it false, and a spacing
value of 0. Next, we add the
box to the window. Now, we
create the button as before,
and connect the cl icked event
to our routine.

Now, we come to a new
command. The
self.box1.pack_start command
is used to add the button to the
container (HBox). We use this
command instead of the
self.window.add command for
the widgets we want to be in
the container. The command
(as above) is. . .

box.pack_start(widget,expand=

True, fill=True, padding=0)

The pack_start command
has the fol lowing parameters.
First is the widget, next is
expand (True or False), then fi l l
(True or False), and a padding
value. Spacing for the
containers is the amount of
space in between the widgets,
and padding is for the right/left

side of the widgets. The expand
argument al lows you to choose
whether the widgets in the box
wi l l fi l l a l l the extra space in the
box (True), or if the box shrinks
to fit the widgets (False). The
fi l l argument has an effect only
if the expand argument is True.
Final ly we show the button.
Next is the code for the second
button:

self.button2 =

gtk.Button("Button 2")

self.button2.connect("clicked

",self.btn2Clicked,None)

self.box1.pack_start(self.but

ton2,True,True,0)

self.button2.show()

self.box1.show()

Notice that this code is
pretty much the same thing as
the first button widget. The last
l ine of this new code shows the
box.

Now, we have to add the
self.btn2Cl icked routine. After
the self.btn1Cl icked routine,
add the fol lowing code. . .

def

btn2Clicked(self,widget,data=

None):

print "Button 2 clicked"

and in the btn1Cl icked
routine, comment out the l ine:

gtk.main_quit()

We want both buttons to
print their “Button X cl icked”
response without closing the
window.

Save this as “simple4a.py”.
Run it in a terminal . What you
wi l l see is a centered window
with two buttons (right up to
the edges of the window)
marked “Button 1” and “Button
2”. Cl ick on them and notice
that they properly respond to
the cl ick event as we have
discussed. Now, before closing
the window, resize it (drag at
the bottom right of the
window), and notice that the
buttons grow and shrink
equal ly as you resize the
window. To understand the
expand parameter, change the
code for the
self.box1.pack_start from True
to False in both l ines. Re-run
your program and see what
happens. This time, the window
starts out looking the same, but
when you resize the window,
the buttons stay the same
width, and there is empty

space to the right as you
expand the window. Next,
change the expand parameter
back to True and set the fi l l
parameter to False. Re-run and
notice that the buttons stay the
same width, but there is empty
space to the left and right of
the buttons as you resize the
window. Remember the fi l l
parameter doesn't do anything
if the expand parameter is set
to False.

Another way to pack widgets
is by using a table. Many times,
if everything you have can fit
into a grid-l ike structure easi ly,
then a table is your best (and
easiest) bet. You can think of a
table l ike a spreadsheet grid
with rows and columns holding
widgets. Each widget can take
up one or more cel ls - as your
appl ication requires. Maybe the
fol lowing diagram wil l help
visual ize the possibi l i ty. Here is
a 2x2 grid:

0 1 2

0+++

| | |

1+++

| | |

2+++

PROGRAM IN PYTHON ‐ PART 20

full circle magazine 93 contents ^The Compleat Python

Into the first row, we wi l l
place two buttons. One in
column 1 and one in column 2.
Into the second row, we wi l l
place one button spanning both
columns. Like this. . .

0 1 2

0+++

| Button 1 | Button 2 |

1+++

| Button 3 |

2+++

To set up a table, we create
a table object and add it into
the window. The cal l to create
the table is. . .

Table =

gtk.Table(rows=1,columns=1,ho

mogeneous=True)

I f the homogeneous flag is
set to True, the size of the table
boxes are resized to the largest
widget in the table. I f set to
False, the size of the table
boxes wi l l be dictated by the
tal lest widget in the same row
and the widest widget in its
column. We then create a
widget (l ike a button above),
then attach that widget into the
table in the proper row and
column. The attach cal l is as
fol lows. . .

table.attach(widget,left

point,right point,top

point,bottom

point,xoptions=EXPAND|FILL,yo

ptions=EXPAND|FILL,

xpadding=0,ypadding=0)

The only required
parameters are the first 5. So,
to attach a button to the table
in row 0 column 0, we would
use the fol lowing command. . .

table.attach(buttonx,0,1,0,1)

I f i t were to be placed into
row 0 column 1 (remember this
is zero based) as button 2 is
above, the cal l would be. . .

table.attach(buttonx,1,2,0,1)

Hopeful ly, this is as clear as
mud for you now. Let's get
started with our code, and
you' l l understand better. First
the common part. . .

table1.py

import pygtk

pygtk.require('2.0')

import gtk

class Table:

def __init__(self):

self.window =

gtk.Window(gtk.WINDOW_TOPLEVE

L)

self.window.set_position(gtk.

WIN_POS_CENTER)

self.window.set_title("Table

Test 1")

self.window.set_border_width(

20)

self.window.set_size_request(

250, 100)

self.window.connect("delete_e

vent", self.delete_event)

There are a couple of new
things here that we need to
discuss before we move on.
Line 9 sets the title of the
window to “Table Test 1”. We
use the “set_border_width” cal l
to give a border of 20 pixels
around the entire window
before any widgets are placed.
Final ly, we are forcing the
window to 250 x 100 pixels
using the “set_size_request”
funciton. Makes sense so far?
Now, we create the table and
add it to the window. . .

table = gtk.Table(2, 2, True)

Create a 2x2 grid

self.window.add(table)

Next, we create our first
button, set up the event
connection, attach it to the
table grid point, and show it. . .

button1 = gtk.Button("Button

1")

button1.connect("clicked",sel

f.callback,"button 1")

table.attach(button1,0,1,0,1)

button1.show()

Now button number 2. . .

button2 = gtk.Button("Button

2")

button2.connect("clicked",sel

f.callback,"button 2")

table.attach(button2,1,2,0,1)

button2.show()

Almost exactly the same as
button number 1, but notice
the change in the table.attach
cal l . Also notice that the routine
we wi l l be using for the event
handl ing is cal led
“self.cal lback”, and is the same
for both buttons. That's good
for now. You' l l understand what
we're doing in a moment.

Now for the third button.
This wi l l be our “Quit” button:

button3 = gtk.Button("Quit")

button3.connect("clicked",sel

f.ExitApp,"button 3")

table.attach(button3,0,2,1,2)

button3.show()

Final ly, show the table and
the window. Also here is the
main routine and the delete

PROGRAM IN PYTHON ‐ PART 20

full circle magazine 94 contents ^The Compleat Python

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,

Full Circle Podcast
In episode #15: Brainstorms,
FUD and Media Players

* Review: FCM#44.
* News: Brainstorm ideas,
Software Centre ratings,
Fuduntu, Unity, Android, and
more!
* Gaming : Humble Indie Bundle
2, Mass Effect, FreeCiv, and
Dropbox.

Fi le Sizes:
OGG - 46.9Mb
mp3 - 40.4Mb

Runtime: 1hr 24min 34sec
Released: 13th Jan. 2011

routine we have used before:

table.show()

self.window.show()

def main(self):

gtk.main()

def delete_event(self,

widget, event, data=None):

gtk.main_quit()

return False

Now for the fun part. For
both button 1 and button 2, we
set the event handler routine to
“self.cal lback”. Here's the code
for that.

def

callback(self,widget,data=Non

e):

print "%s was pressed" %

data

What happens is that when
the user cl icks on the button,
the cl ick event is triggered, and
the data that was provided
when we set the event
connection is sent in. For
button 1, the data that wi l l be
sent is “button 1”, and for
button 2 it is “button 2”. Al l we
are doing here is printing
“button x was pressed” into the
terminal . I 'm sure you can see
that this could be a very useful
tool when combined with a
nicely structured IF | ELIF |

ELSE routine.

Now to finish up, we have to
define the “ExitApp” routine for
when the “Quit” button is
cl icked. . .

def ExitApp(self, widget,

event, data=None):

print "Quit button was

pressed"

gtk.main_quit()

And now the final main
code. . .

if __name__ == "__main__":

table = Table()

table.main()

Combine al l this code into a
single app cal led “table1.py”.
Run it in a terminal .

So to recap, when we want
to use pyGTK to create a GUI
program, the steps are. . .

• Create the window.
• Create HBox(s), VBox(s) or
Table(s) to hold your widgets.
• Pack or attach the widgets
(depending on box or table).
• Show the widgets.
• Show the box or table.
• Show the window.

Now we have many of the
tools and knowledge to go
forward. Al l code is up on
Pastebin at
http: //ful lcirclemagazine.pasteb
in.com/wnzRsXn9. See you next
time.

PROGRAM IN PYTHON ‐ PART 20

http://fullcirclemagazine.org/
http://fullcirclemagazine.pastebin.com/wnzRsXn9

full circle magazine 95 contents ^The Compleat Python

HOW-TO
Written by Greg Walters

Program In Python - Part 21

I
f you've been with me for a
long whi le, you might
remember back to parts 5
and 6. We talked about

using Boa Constructor to design
our GUI appl ication. Wel l , this
time, we are going to deal with
Glade Designer. Different, but
simi lar. You can instal l i t from
the Ubuntu Software Center:
search for glade, and instal l
GTK+ 2 User Interface Bui lder.

Just to let you know, this wi l l be

an appl ication that we’l l need

multiple parts of these tutoria ls to

cover. The ultimate goal is to bui ld

a playl ist maker for our MP3, and

other media fi les. This portion of

the tutoria l wi l l be focusing on the

design portion. Next time, we' l l

deal with the code that glues al l

the parts of the GUI together.

Now to start designing our

appl ication. When you first start

the Glade designer, you wi l l have

a preferences window open

(above). Select Libglade, and

“inside toplevels”, then cl ick close.

This wi l l g ive us our designer main

window.

Let's take a look at the main

window (right). On the left is our

toolkit, in the middle is the

designer area, and on the right is

our attribute and hierarchy areas.

In the toolkit area, find the

group marked “Toplevels”, and

cl ick on the first tool there (if you

hover over it, i t should show

“Window”). This wi l l g ive us our

blank window “canvas” that we

wi l l be working with.

Notice that, in the hierarchy

area, you see window1 under the

Widgets section. Now move down

to the attributes section, change

the name from window1 to

MainWindow, and set the Window

Title to “Playl ist Maker v1.0”. Save

what you have as

“Playl istMaker.glade”. Before we

can move on, in the attributes

section of the General tab, find the

Window Position pul ldown and set

it to Center. Cl ick the check box

for Default Width, and set this to

650. Do the same for Default

Height, but set it to 350. Next,

cl ick on the Common tab, and

scrol l down to the entry marked

“Visible”. BE SURE TO SET THIS TO

“YES” - otherwise your window

won't show. Final ly, select the

Signals tab, scrol l down to the

GtkObject section, and cl ick the

arrow pointing to the right. Under

destroy, cl ick the pul ldown in the

Handler column, and select

“on_MainWindow_destroy” setting.

This gives us an event that gets

raised when the user closes our

window by cl icking on the “X” in

the titlebar. One word of warning. . .

After setting the destroy event,

cl ick somewhere above or below

full circle magazine 96 contents ^The Compleat Python

PROGRAM IN PYTHON ‐ PART 21
to make the change take. This

seems to be a bug in Glade

Deisgner. Again, save your project.

Just as before when we were

doing GUI design, we need to put

our widgets in vboxes and hboxes.

This is the hardest thing to

remember when doing GUI

programming. We wi l l be adding a

vertical box to hold our widgets in

the window, so, on the toolbox

under Containers, select Vertical

Box (second icon from the left on

the top row), and cl ick in our blank

window in the designer section.

You wi l l be presented with a pop

up window that asks how many

slots or items you want. The

default is three, but we need five.

The layout, from top to bottom,

wi l l be a toolbar, an area for a

treel ist control , two horizontal

areas for labels, buttons and text

entry boxes, and a status bar.

Now we can start adding our

widgets. First, add a toolbar from

the toolbox. It's the (in my setup)

fourth icon on the second l ine

under containers. Cl ick in the

topmost slot of the vbox. That slot

wi l l shrink and almost disappear.

Don't worry, we' l l get it back in a

few minutes.

Next, we need to add a Scrol led

Window to the next slot down to

hold our treel ist. This wi l l a l low us

to scrol l within the treel ist. So, find

the Scrol led Window icon under

the Containers section of the

toolbox (second icon from the left

on the fifth row on my setup), and

cl ick that into the second slot of

the vbox. Next, we wi l l add two

Horizontal boxes, one to each of

the next slots. Each needs three

slots. Final ly, add a Status Bar to

the bottom slot. This is under the

Control and Display section of the

toolbox near the bottom. Now your

designer should look something

l ike the image below.

Last, but not least, add a Tree

View widget from the Control and

Display section of the toolbox into

the scrol led window widget. You' l l

get a pop-up asking which

TreeView model you wish to use.

Just cl ick the “OK” button for now.

We' l l set that up later.

Now we need to concentrate on

the Scrol l Window for a second.

Cl ick on it in the hierarchy area.

Scrol l down in the General tab to

the entry marked “Horizontal

Scrol lbar Pol icy”. Change that to

'Always' , and then do the same for

the Vertical Scrol lbar Pol icy. Save

again.

OK, now let's concentrate on

our toolbar. This area wi l l be at the

top of our appl ication right under

the title bar. I t wi l l hold various

buttons for us that wi l l do the

majority of the work. We wi l l use

eleven buttons in the toolbar, and,

from left to right, they are. . .

Add, Delete, Clear List, a

Separator, Move To Top, Move Up,

Move Down, Move to bottom,

another Separator, About, and

Exit.

Over on the hierarchy area,

cl ick on “toolbar1”. That should

highl ight it. At the top of the Glade

Designer is something that looks

l ike a penci l . Cl ick that. That

brings up the tool bar editor. Cl ick

on the Hierarchy tab. You' l l see

something l ike this: .

We wi l l be adding al l of our

toolbar buttons from here. The

steps wi l l be:

• Cl ick the Add Button.

• Change the name of the button.

• Modify the label of the button.
• Select the image.

full circle magazine 97 contents ^The Compleat Python

This wi l l be repeated for al l

eleven of our widgets. So, Cl ick

Add, then in the name box, type

“tbtnAdd”. Scrol l down to the Edit

Label portion and type “Add” in

the Label box, then a l ittle further

down under Edit Image, in the text

box for Stock ID, use the pul ldown

to select “Add”. That takes care of

our Add button. We named it

“tbtnAdd” so we can reference it

in our code later. The “tbtn” is

shorthand for 'Toolbar Button' .

This way, in our code, it's easy to

find and is fairly self documenting.

Now, we need to add the rest

of the widgets to our tool bar. Add

another button for Delete. This

one wi l l be named (as you might

guess) “tbtnDelete”. Again, set

the label and the icon. Next, add

another button naming it

“tbtnClearAl l” and use the Clear

icon. Now we want a Separator.

So, cl ick Add, under name type

“Sep1” and in the pul ldown for

type, select Separator.

Add the rest of the widgets

naming them “tbtnMoveToTop”,

“tbtnMoveUp”, ”tbtnMoveDown”,

”tbtnMoveToBottom”, “Sep2”,

“tbtnAbout” and “tbtnQuit”. I 'm

sure you can find the correct

icons. Once you are finished, you

can quit the hierarchy window and

save your work. You should have

something that looks l ike the

image below.

Now, we need to set the event

handlers for al l the buttons we

created. In the hierarchy area,

select the tbtnAdd widget. This

should highl ight both the entry in

the hierarchy and the button itself.

Go back to the attributes section,

select the Signals tab, and expand

the GtkToolButton to reveal the

cl icked event. Under handler in

the cl icked event, as before, select

“on_tbtnAdd_cl icked”, then cl ick

above or below to force the

change. Do this for al l the other

buttons we created - selecting the

“on_tbtnDelete_cl icked” event and

so on. Remember to cl ick off of it

to force the change, and save your

project. Our separators don't need

events, so just pass over them.

Next, we need to fi l l in our

hboxs. The top hbox wi l l contain

(from left to right) a label , a text

widget, and a button. In the

toolbox, select the label widget

(not the blue one), and put it in

the left slot. Now put a Text Entry

widget in the center slot and a

button in the right slot. Do the

same for the second hbox.

It's now time to set our

attributes for the widgets we just

added. In the hierarchy area,

select label1 under hbox1. In the

attributes section, select the

General tab, scrol l down to “Edit

label appearance” area, and set

the label to read “Path to save

fi le: ” . Next, go to the Packing tab

and set Expand to “No”. You might

remember the discussion on

packing from last month. Set the

padding to 4, which gives a l ittle

bit of room on the left and right

side of our label . Now select

button1 and set the Expand under

the Packing tab to “No” also. Go

back to the General tab and set

the name of our button to

“btnGetFolder”. Notice that since

this isn't a toolbar button, we

didn't preface it with a 't' . Scrol l

down to the Label entry and enter

“Folder. . . ” . Then cl ick on the

Signals tab and set the button

event of GtkButton/cl icked to

“on_btnGetFolder_cl icked”. Before

we set the attributes of the next

set of widgets in the next hbox,

we need to do one more thing.

Select the hbox1 in the hierarchy

area and under the Packing tab,

set expand to “No”. This makes

the hbox take up less space.

Final ly, set the name of the Text

Entry widget to “txtPath”.

Now, do the same thing for

hbox2, setting its Expand to “No”,

then set the label text to

“Fi lename:”, expand to “No”,

padding to 4. Set the name of the

button to “btnSavePlayl ist”, i ts

text to “Save Playl ist Fi le. . . ” , i ts

Expand attribute to “No”, set up

its cl icked event, and set the

name of the Text Entry widget

here to “txtFi lename”. Once again,

save everything.

PROGRAM IN PYTHON ‐ PART 21

full circle magazine 98 contents ^The Compleat Python

So now our window should look

something l ike the image below

left.

Al l that is wonderful , but what

did we real ly do? We can't run this

as a program, since we don't have

any code. What we have done is

create an XML fi le cal led

“playl istmaker.glade”. Don't let

the extension fool you. I t's real ly

an XML fi le. I f you are very careful ,

you can open it with your favorite

editor (gedit in my case) and look

at it.

You' l l see plain text describing

our window and each widget with

their attributes. For example, let's

look at the code (above) for the

main widget, the actual window

itself.

You can see that the name of

the widget is “MainWindow”, its

title is “Playl ist Maker v1.0”, the

event handler, and so on.

Let's take a look the code

(shown below) for one of our

toolbar buttons.

Hopeful ly this is starting to

make sense to you. Now, we need

to write some code to al low us to

see our hard work actual ly do

something. Bring up your code

editor and start with this. . .

So, we have created our

imports pretty much l ike we did

last month. Notice we are

importing “sys” and “MP3” from

mutagen.mp3. We instal led

mutagen back in

article number 9, so if you don't

have that on your system, refer

back to that one. We' l l need the

mutagen import for next time, and

the sys import is set so the system

can exit properly on the last

exception.

Next, we need to create our

class that wi l l define our window.

This is shown above right.

Pretty much the same kind of

thing we've done before. Notice

the last two l ines here. We are

defining the glade fi le

(self.g ladfi le) to be the name of

the fi le we created in the Glade

designer. Notice also that we

didn't include a path, just a fi le

name. If your glade fi le is going to

reside somewhere away from your

actual code, you must put a path

as wel l . However, it's always

smart to keep them together.

Next, we define our window as

self.wTree. We' l l be referring to

that every time we need to refer

to the window. We are also saying

that the fi le is an XML fi le, and the

window we wil l be using is the one

named “MainWindow”. You can

PROGRAM IN PYTHON ‐ PART 21
<widget class="GtkWindow" id="MainWindow">

<property name="visible">True</property>

<property name="title" translatable="yes">Playlist Maker v1.0</property>

<property name="window_position">center</property>

<property name="default_width">650</property>

<property name="default_height">350</property>

<signal name="destroy" handler="on_MainWindow_destroy"/>

<child>

<widget class="GtkToolButton" id="tbtnAdd">

<property name="visible">True</property>

<property name="label" translatable="yes">Add</property>

<property name="use_underline">True</property>

<property name="stock_id">gtkadd</property>

<signal name="clicked" handler="on_tbtnAdd_clicked"/>

</widget>

<packing>

<property name="expand">False</property>

<property name="homogeneous">True</property>

</packing>

</child>

full circle magazine 99 contents ^The Compleat Python

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,

have multiple windows defined
in a single glade fi le. More on
that another time.

Now we need to deal with
our events. Last month we
used button.connect or
window.connect cal ls to refer to
our event handler routines. This
time we are going to do
something a bit differently. We
wi l l use a dictionary. A
dictionary is l ike an array,
except rather than being
referenced by its index, it's
referenced by a key and then
has a data element. Key and
Data. Here's the code that wi l l
probably make it easier to

understand. I 'm only going to
give you two events for now
(shown below). . .

So we have two events:
“on_MainWindow_destroy” and
“on_tbtnQuit_cl icked” are the
keys in our dictionary. The data
for our dictionary is
“gtk.main_quit” for both
entries. Whenever an event is
triggered by our GUI , the
system uses the event to find
the key of our dictionary, then
knows what routine to cal l -
from the data segment. Next
we need to connect the
dictionary to the signal handler
of our window. We do it with
the fol lowing l ine of code.

self.wTree.signal_autoconnect

(dict)

We're almost ready. We sti l l
need our main routine code:

if __name__ == "__main__":

plm = PlayListMaker()

gtk.main()

Save this fi le as
“playl istmaker.py”.
Now you can run it
(shown above right).

I t doesn't do much
right now, other than
open and close
properly. The rest is
for next time. Just to
whet your appetite,
we' l l be discussing the use of
the TreeView, Dialog boxes, and
adding a bunch more code. So
tune in next time.

Glade file:

http: //ful lcirclemagazine.pasteb
in.com/YM6U0Ee3

Python source:

http: //ful lcirclemagazine.pasteb
in.com/wbfDmmBh

#!/usr/bin/env python

import sys

from mutagen.mp3 import MP3

try:

import pygtk

pygtk.require("2.0")

except:

pass

try:

import gtk

import gtk.glade

except:

sys.exit(1)

class PlayListMaker:

def __init__(self):

#===

Window Creation

#===

self.gladefile = "playlistmaker.glade"

self.wTree =

gtk.glade.XML(self.gladefile,"MainWindow")

#===

Create Event Handlers

#===

dict = {"on_MainWindow_destroy": gtk.main_quit,

"on_tbtnQuit_clicked": gtk.main_quit}

PROGRAM IN PYTHON ‐ PART 21

http://fullcirclemagazine.pastebin.com/YM6U0Ee3
http://fullcirclemagazine.pastebin.com/wbfDmmBh

full circle magazine 1 00 contents ^The Compleat Python

HOW-TO
Written by Greg Walters

Program In Python - Part 22

T
o start off on the right
foot, you need to have
the playl istmaker.glade
and playl istmaker.py

from last month. I f you don't,
jump over to the last issue and
get the goodies. Before we get
to the code, let's take a look at
what a playl ist fi le is. There are
multiple versions of play l ists,
and they al l have different
extensions. The one we wi l l be
creating wi l l be a *.m3u type
playl ist. In its simplest form, it's
just a text fi le that starts with
“#EXTM3U”, and then has an
entry for each song fi le you

want to play - including the ful l
path. There's also an extension
that can be added before each
entry that includes the length
of the song, the album name
the song comes from, the track
number, and the song name.
We' l l bypass the extension for
now and just concentrate on
the basic version.

Here is an example of a M3U
playl ist fi le. .
.

#EXTM3U

Adult Contemporary/Chris

Rea/Collection/02 On The

Beach.mp3

Adult Contemporary/Chris

Rea/Collection/07 Fool (If

You Think It's Over).mp3

Adult Contemporary/Chris

Rea/Collection/11 Looking

For The Summer.mp3

Al l path names are relative to
the location of the playl ist fi le.

OK. . .now let's get to coding.
Shown right is the opening of
the source code from last
month.

Now, we need to create an
event handler routine for each

Correction
Last month, in part 21, you
were told to save what you
have as
"Playl istMaker.glade", but, in
the code, it was referred to
as: "playl istmaker.glade".
I ’m sure you noticed that
one has capitals and the
other does not. The code wi l l
run only if you use both the
cal l and fi le name with, or

#!/usr/bin/env python

import sys

from mutagen.mp3 import MP3

try:

import pygtk

pygtk.require("2.0")

except:

pass

try:

import gtk

import gtk.glade

except:

sys.exit(1)

next the class definition
class PlayListCreator:

def __init__(self):

self.gladefile = "playlistmaker.glade"

self.wTree = gtk.glade.XML(self.gladefile,"MainWindow")

and the main routine
if __name__ == "__main__":

plc = PlayListCreator()

gtk.main()

Next, we have our dictionary which should go after the __init__
routine.
def SetEventDictionary(self):

dict = {"on_MainWindow_destroy": gtk.main_quit,

"on_tbtnQuit_clicked": gtk.main_quit,

"on_tbtnAdd_clicked": self.on_tbtnAdd_clicked,

"on_tbtnDelete_clicked": self.on_tbtnDelete_clicked,

"on_tbtnClearAll_clicked": self.on_tbtnClearAll_clicked,

"on_tbtnMoveToTop_clicked": self.on_tbtnMoveToTop_clicked,

"on_tbtnMoveUp_clicked": self.on_tbtnMoveUp_clicked,

"on_tbtnMoveDown_clicked": self.on_tbtnMoveDown_clicked,

"on_tbtnMoveToBottom_clicked": self.on_tbtnMoveToBottom_clicked,

"on_tbtnAbout_clicked": self.on_tbtnAbout_clicked,

"on_btnGetFolder_clicked": self.on_btnGetFolder_clicked,

"on_btnSavePlaylist_clicked": self.on_btnSavePlaylist_clicked}

full circle magazine 1 01 contents ^The Compleat Python

PROGRAM IN PYTHON ‐ PART 22
of our events that we have set
up. Notice that
on_MainWindow_destroy and
on_tbtnQuit_cl icked are already
done for us, so we need to
have only 10 more (shown top
right). Just make stubs for now.

We' l l modify these stubbed
routines in a few minutes. For
now, this should get us up and
running with an appl ication,
and we can test things as we
go. But, we need to add one
more l ine to the __init__ routine
before we can run the app.
After the self.wTree l ine, add. . .

self.SetEventDictionary()

Now, you can run the
appl ication, see the window,
and cl ick the Quit toolbar
button to exit the appl ication
properly. Save the code as
"playl istmaker-1a.py" and give
it a try. Remember to save it in
the same folder as the glade
fi le we created last time, or
copy the glade fi le into the
folder you saved this code in.

We also need to define a few
variables for future use. Add
these after the
SetEventDictionary cal l in the

__init__ function.

self.CurrentPath = ""

self.CurrentRow = 0

self.RowCount = 0

Now, we wi l l create a function
that al lows us to display a
popup dialog box whenever we
need to give some information
to our user. There is a bui lt-in
set of routines that we wi l l use,
but we' l l make a routine of our
own to make it easier for us. I t
is the gtk.MessageDialog
routine, and the syntax is as
fol lows. . .

gtk.MessageDialog(parent,flag

s,MessageType,Buttons,message

)

Some discussion is needed
before we go too much further.
The message type can be one
of the fol lowing. . .

GTK_MESSAGE_INFO

Informational message

GTK_MESSAGE_WARNING

Nonfatal warning message

GTK_MESSAGE_QUESTION

Question requiring a choice

GTK_MESSAGE_ERROR Fatal

error message

And the button types are. . .

GTK_BUTTONS_NONE no buttons

at all

GTK_BUTTONS_OK an OK button

GTK_BUTTONS_CLOSE a Close

button

GTK_BUTTONS_CANCEL a Cancel

button

GTK_BUTTONS_YES_NO Yes and

No buttons

GTK_BUTTONS_OK_CANCEL OK

and Cancel Buttons

Normal ly, you would use the
fol lowing code , or simi lar, to
create the dialog, display it,
wait for a response, and then
destroy it.

dlg =

gtk.MessageDialog(None,0,gtk.

MESSAGE_INFO,gtk.BUTTONS_OK,"

This is a test message...")

response = dlg.run()

dlg.destroy()

However, if you want to display
a message box to the user
more than once or twice, that's
a LOT of typing. The general
rule of thumb is that if you
write a series of l ines-of-code
more than once or twice, it's
usual ly better to create a
function and then cal l that.
Think of it this way: If we want
to display a message dialog to
the user, say ten times in your

def on_tbtnAdd_clicked(self,widget):

pass

def on_tbtnDelete_clicked(self,widget):

pass

def on_tbtnClearAll_clicked(self,widget):

pass

def on_tbtnMoveToTop_clicked(self,widget):

pass

def on_tbtnMoveUp_clicked(self,widget):

pass

def on_tbtnMoveDown_clicked(self,widget):

pass

def on_tbtnMoveToBottom_clicked(self,widget):

pass

def on_tbtnAbout_clicked(self,widget):

pass

def on_btnGetFolder_clicked(self,widget):

pass

def on_btnSavePlaylist_clicked(self,widget):

pass

full circle magazine 1 02 contents ^The Compleat Python

appl ication, that's 10 X 3 (or
30) l ines of code. By making a
function to do this for us (using
the example I just presented),
we would have 10 + 3 (or 13)
l ines of code to write. The more
we cal l a dialog, the less code
we actual ly have to type, and
the more readable our code is.
Our function (top right) wi l l
a l low us to cal l any of the four
message dialog types with just
one routine using different
parameters.

This is a very simple function
that we would then cal l l ike
this. . .

self.MessageBox("info","The

button QUIT was clicked")

Notice that if we choose to use
the MESSAGE_QUESTION type
of dialog, there are two
possible responses that wi l l be
returned by the message dialog
- a "Yes" or a "No". Whichever
button the user cl icks, we wi l l
receive the information back in
our code. To use the question
dialog, the cal l would be
something l ike this. . .

response =

self.MessageBox("question","A

re you sure you

want to do this

now?")

if response ==

gtk.RESPONSE_YES:

print "Yes was

clicked"

elif response ==

gtk.RESPONSE_NO:

print "NO was

clicked"

You can see how you
can check the value
of the button
returned. So now,
replace the "pass"
cal l in each of our
event handler routines with
something l ike that shown

below right.

We won't keep it l ike this, but

this gives you a visual
indication that the buttons
work the way we want. Save

PROGRAM IN PYTHON ‐ PART 22
def MessageBox(self,level,text):

if level == "info":

dlg = gtk.MessageDialog(None,0,gtk.MESSAGE_INFO,gtk.BUTTONS_OK,text)

elif level == "warning":

dlg = gtk.MessageDialog(None,0,gtk.MESSAGE_WARNING,gtk.BUTTONS_OK,text)

elif level == "error":

dlg = gtk.MessageDialog(None,0,gtk.MESSAGE_ERROR,gtk.BUTTONS_OK,text)

elif level == "question":

dlg = gtk.MessageDialog(None,0,gtk.MESSAGE_QUESTION,gtk.BUTTONS_YES_NO,text)

if level == "question":

resp = dlg.run()

dlg.destroy()

return resp

else:

resp = dlg.run()

dlg.destroy()

def on_tbtnAdd_clicked(self,widget):

self.MessageBox("info","Button Add was clicked...")

def on_tbtnDelete_clicked(self,widget):

self.MessageBox("info","Button Delete was clicked...")

def on_tbtnClearAll_clicked(self,widget):

self.MessageBox("info","Button ClearAll was clicked...")

def on_tbtnMoveToTop_clicked(self,widget):

self.MessageBox("info","Button MoveToTop was clicked...")

def on_tbtnMoveUp_clicked(self,widget):

self.MessageBox("info","Button MoveUp was clicked...")

def on_tbtnMoveDown_clicked(self,widget):

self.MessageBox("info","Button MoveDown was clicked...")

def on_tbtnMoveToBottom_clicked(self,widget):

self.MessageBox("info","Button MoveToBottom was clicked...")

def on_tbtnAbout_clicked(self,widget):

self.MessageBox("info","Button About was clicked...")

def on_btnGetFolder_clicked(self,widget):

self.MessageBox("info","Button GetFolder was clicked...")

def on_btnSavePlaylist_clicked(self,widget):

self.MessageBox("info","Button SavePlaylist was clicked...")

full circle magazine 1 03 contents ^The Compleat Python

the code now as "playl istmaker-
1b.py", and test your program.
Now we are going to create a
function to set our widget
references. This routine is going
to be cal led only once, but it
wi l l make our code much more
manageable and readable.
Basical ly, we want to create
local variables that reference
the widgets in our glade
window - so we can make cal ls
to them whenever (if ever) we
need to. Put this function
(above right) below the
SetEventDictionary function.

Please notice that there is one
thing that isn't referenced in
our routine. That would be the
treeview widget. We' l l make
that reference when we set up
the treeview itself. Also of note
is the last l ine of our routine. In
order to use the status bar, we
need to refer to it by its context
id. We' l l be using this later on.

Next, let's set up the function
that displays the “about” dialog
when we cl ick the About
toolbar button. Again, there is a
bui lt-in routine to do this
provided by the GTK l ibrary. Put
this after the MessageBox

function. Here's the code,
below right.

Save your code and then
give it a try. You should
see a pop-up box,
centered in our
appl ication, that displays
everything we have set.
There are more attributes
that you can set for the
about box (which can be
found at
http: //www.pygtk.org/docs
/pygtk/class-
gtkaboutdialog.html), but
these are what I would
consider a minimum set.

PROGRAM IN PYTHON ‐ PART 22
def SetWidgetReferences(self):

self.txtFilename = self.wTree.get_widget("txtFilename")

self.txtPath = self.wTree.get_widget("txtPath")

self.tbtnAdd = self.wTree.get_widget("tbtnAdd")

self.tbtnDelete = self.wTree.get_widget("tbtnDelete")

self.tbtnClearAll = self.wTree.get_widget("tbtnClearAll")

self.tbtnQuit = self.wTree.get_widget("tbtnQuit")

self.tbtnAbout = self.wTree.get_widget("tbtnAbout")

self.tbtnMoveToTop = self.wTree.get_widget("tbtnMoveToTop")

self.tbtnMoveUp = self.wTree.get_widget("tbtnMoveUp")

self.tbtnMoveDown = self.wTree.get_widget("tbtnMoveDown")

self.tbtnMoveToBottom = self.wTree.get_widget("tbtnMoveToBottom")

self.btnGetFolder = self.wTree.get_widget("btnGetFolder")

self.btnSavePlaylist = self.wTree.get_widget("btnSavePlaylist")

self.sbar = self.wTree.get_widget("statusbar1")

self.context_id = self.sbar.get_context_id("Statusbar")

and then add a cal l to it right after the self.SetEventDictionary() cal l in the __init__ function.

self.SetWidgetReferences()

def ShowAbout(self):

about = gtk.AboutDialog()

about.set_program_name("Playlist Maker")

about.set_version("1.0")

about.set_copyright("(c) 2011 by Greg Walters")

about.set_comments("Written for Full Circle Magazine")

about.set_website("http://thedesignatedgeek.com")

about.run()

about.destroy()

Now, comment out (or simply remove) the messagebox cal l in the
on_tbtnAbout_cl icked routine, and replace it with a cal l to the
ShowAbout function. Make it look l ike this.

def on_tbtnAbout_clicked(self,widget):

#self.MessageBox("info","Button About was clicked...")

self.ShowAbout()

full circle magazine 1 04 contents ^The Compleat Python

PROGRAM IN PYTHON ‐ PART 22
Before we go on, we need to
discuss exactly what wi l l
happen from here. The general
idea is that the user wi l l cl ick
on the "Add" toolbar button,
we' l l pop up a fi le dialog box to
al low them to add fi les to the
playl ist, and then display the
fi le information into our
treeview widget. From there,
they can add more fi les, delete
single fi le entries, delete al l fi le
entries, move a fi le entry up,
down, or to the top or down to
the bottom of the treeview.
Eventual ly, they' l l set the path
that the fi le wi l l be saved to,
provide a fi lename with a
"m3u" extension, and cl ick the
save fi le button. Whi le this
seems simple enough, there's a
lot that happens behind the
scenes. The magic al l happens
in the treeview widget, so let's
discuss that. This wi l l get pretty
deep, so you might want to
read careful ly, since an
understanding of this wi l l keep
you from making mistakes later
on.

A treeview can be something as
simple as a columnar l ist of
data l ike a spreadsheet or
database representation, or it
could be more complex l ike a

fi le-folder l isting with
parents and chi ldren,
where the folder would
be the parent and the
fi les in that folder
would be the chi ldren,
or something even
more complex. For this
project, we' l l use the
first example, a
columnar l ist. In the
l ist, there wi l l be three
columns. One is for the
name of the music fi le,
one is for the extension of the
fi le (mp3, ogg, wav, etc) and
the final column is for the path.
Combining this into a string
(path, fi lename, extension)
gives us the entry into the
playl ist we wi l l be writing. You
could, of course, add more
columns as you wish, but for
now, we' l l deal with just three.

A treeview is simply a visual
storage container that holds
and displays a model . The
model is the actual "device"
that holds and manipulates our
data. There are two different
pre-defined models that are
used with a treeview, but you
can certainly create your own.
That having been said, for 98%
of your work, one of the two

pre-defined models wi l l do what
you need. The two types are
GTKListStore and GTKTreeStore.
As their names suggest, the
ListStore model is usual ly used
for l ists, the TreeStore is used
for Trees. For our appl ication,
we wi l l be using a GTKListStore.

The basic steps are:

• Create a reference to the
TreeView widget.
• Add the columns.
• Set the type of renderer to
use.
• Create the ListStore.
• Set the model attribute in the
Treeview to our model .
• Fi l l in the data.

The third step is to set up the

type of renderer the column wi l l
use to display the data. This is
simply a routine that is used to
draw the data into the tree
model . There are many
different cel l renderers that
come with GTK, but most of the
ones that you would normal ly
use include GtkCel lRenderText
and GtkCel lRendererToggle.

So, let's create a function
(shown above) that sets up our
TreeView widget. We' l l cal l i t
SetupupTreeview. First we' l l
define some variables for our
columns, set the variable
reference of the TreeView itself,
add the columns, set up the
ListStore, and set the model .
Here's the code for the
function. Put it after the

def SetupTreeview(self):

self.cFName = 0

self.cFType = 1

self.cFPath = 2

self.sFName = "Filename"

self.sFType = "Type"

self.sFPath = "Folder"

self.treeview = self.wTree.get_widget("treeview1")

self.AddPlaylistColumn(self.sFName,self.cFName)

self.AddPlaylistColumn(self.sFType,self.cFType)

self.AddPlaylistColumn(self.sFPath,self.cFPath)

self.playList = gtk.ListStore(str,str,str)

self.treeview.set_model(self.playList)

self.treeview.set_grid_lines(gtk.TREE_VIEW_GRID_LINES_BOTH)

full circle magazine 1 05 contents ^The Compleat Python

PROGRAM IN PYTHON ‐ PART 22
SetWidgetReferences function.

The variables cFName, cFType and

cFPath define the column

numbers. The variables sFName,

sFType and sFPath wi l l hold the

column names in our displayed

view. The seventh l ine sets the

variable reference of the treeview

widget as named in our glade fi le.

Next we cal l a routine (next page,

top right), which we' l l create in

just a moment, for each column

we want. Then we define our

GTKListStore with three text fields,

and final ly set the model attribute

of our TreeView widget to our

GTKListStore. Let's create the

AddPlayl istColumn function next.

Put it after the SetupTreeview

function.

Each column is created with this

function. We pass in the title of

the column (what's displayed on

the top l ine of each column) and a

columnID. In this case, the

variables we set up earl ier

(sFName and cFname) wi l l be

passed here. We then create a

column in our TreeView widget

giving the title, what kind of cel l

renderer it wi l l be using, and,

final ly, the id of the column. We

then set the column to be

resizable, set

the sort id,

and final ly

append the

column into

the TreeView.

Add these two functions to your

code. I choose to put them right

after the SetWidgetReferences

function, but you can put it

anywhere within the

PlayListCreator class. Add the

fol lowing l ine after the cal l to

SetWidgetReferences() in the

__init__ function to cal l the

function.

self.SetupTreeview()

Save and run your program, and

you wi l l see that we now have

three columns with headers in our

TreeView widget.

There are so many things left to

do. We have to have a way to get

the music fi lenames from the user

and put them into the TreeView as

rows of data. We have to create

our Delete, ClearAl l , movement

functions, save routine, and fi le

path routines, plus a few

"pretty" things that wi l l make

our appl ication look more

professional . Let's start with the

Add routine. After al l , that's the

first button on our toolbar.

When the user cl icks the Add

button, we want to pop up a

"standard" open-fi le dialog that

al lows for multiple selections.

Once the user has made their

selection, we then want to take

this data and add it into the

treeview, as I stated above. So the

first logical thing to do is work on

the Fi le Dialog. Again, GTK

provides us a way to cal l a

"standard" fi le dialog in code. We

could hard code this as just l ines

in the on_tbtnAdd_cl icked event

handler, but let's make a separate

class to handle this. Whi le we are

at it, we can make this class

handle not only a fi le OPEN dialog,

but a folder SELECT dialog as wel l .

As before with the MessageBox

function, you can pul l this into a

snippet fi le that has al l kinds of

reusable routines for later use.

We' l l start by defining a new class

cal led Fi leDialog which wi l l have

only one function cal led

ShowDialog. That function wi l l

take two parameters, one cal led

'which' (a '0' or a '1 ') , that

designates whether we are

creating an open-fi le or select-

folder dialog, and the other is the

path that should be used for the

default view of the dialog cal led

CurrentPath. Create this class just

before our main code at the

bottom of the source fi le.

class FileDialog:

def

ShowDialog(self,which,CurrentPat

h):

The first part of our code should be an

IF statement

if which == 0: # file chooser

...

def AddPlaylistColumn(self,title,columnId):

column = gtk.TreeViewColumn(title,gtk.CellRendererText(),text=columnId)

column.set_resizable(True)

column.set_sort_column_id(columnId)

self.treeview.append_column(column)

dialog = gtk.FileChooserDialog("Select files to add...",None,

gtk.FILE_CHOOSER_ACTION_OPEN,

(gtk.STOCK_CANCEL, gtk.RESPONSE_CANCEL,

gtk.STOCK_OPEN, gtk.RESPONSE_OK))

full circle magazine 1 06 contents ^The Compleat Python

PROGRAM IN PYTHON ‐ PART 22
else: # folder chooser

...

Before going any further, let's

explore how the fi le/folder dialog

is actual ly cal led and used. The

syntax of the dialog is as fol lows

gtk.FileChooserDialog(title,p

arent,action,buttons,backend)

and returns a dialog object. Our

first l ine (under if which == 0) wi l l

be the l ine shown below.

As you can see, the title is "Select

fi les to add. . . " , the parent is set to

None. We are requesting a Fi le

Open type dialog (action), and we

want a Cancel and an Open

button, both using "stock" type

icons. We are also setting the

return codes of

gtk.RESPONSE_CANCEL and

gtk.RESPONSE_OK for when the

user makes their selections. The

cal l for our Folder Chooser under

the Else clause is simi lar.

Basical ly, the only thing that

changed between the two

definitions are the title (shown

above right) and the action type.

So our code for the class should

now be the code shown middle

right.

These set the default response to

be the OK button, and then to turn

on the multiple select feature so

the user can select (you guessed

it) multiple fi les to add. If we

didn't set this,

the dialog would

only al low one

fi le to be

selected at a

time, since

set_select_multip

le is set to False

by default. Our

next l ines are

setting the

current path, and

then displaying

the dialog itself.

Before we type

in the code, let

me explain why

we want to deal with the current

path. Every time you pop up a fi le

dialog box, and you DON'T set a

path, the default is to the folder

where our appl ication resides. So,

let's say that the music fi les that

the user would be looking for are

in /media/music_fi les/, and are

then broken down by genre, and

further by artist, and further by

album. Let's further assume that

the user has instal led our

appl ication in

/home/user2/playl istmaker. Each

dialog = gtk.FileChooserDialog("Select Save Folder..",None,

gtk.FILE_CHOOSER_ACTION_SELECT_FOLDER,

(gtk.STOCK_CANCEL, gtk.RESPONSE_CANCEL,

gtk.STOCK_OPEN, gtk.RESPONSE_OK))

class FileDialog:

def ShowDialog(self,which,CurrentPath):

if which == 0: #file chooser

#gtk.FileChooserDialog(title,parent,action,buttons,backend)

dialog = gtk.FileChooserDialog("Select files to add...",None,

gtk.FILE_CHOOSER_ACTION_OPEN,

(gtk.STOCK_CANCEL, gtk.RESPONSE_CANCEL,

gtk.STOCK_OPEN, gtk.RESPONSE_OK))

else: #folder chooser

dialog = gtk.FileChooserDialog("Select Save Folder..",None,

gtk.FILE_CHOOSER_ACTION_SELECT_FOLDER,

(gtk.STOCK_CANCEL, gtk.RESPONSE_CANCEL,

gtk.STOCK_OPEN, gtk.RESPONSE_OK))

The next two l ines wi l l be (outside of the IF/ELSE statement). . .

dialog.set_default_response(gtk.RESPONSE_OK)

if CurrentPath != "":

dialog.set_current_folder(CurrentPath)

response = dialog.run()

Next, we need to handle the response from the dialog.

if response == gtk.RESPONSE_OK:

fileselection = dialog.get_filenames()

CurrentPath = dialog.get_current_folder()

dialog.destroy()

return (fileselection,CurrentPath)

elif response == gtk.RESPONSE_CANCEL:

print 'Closed, no files selected'

dialog.destroy()

full circle magazine 1 07 contents ^The Compleat Python

PROGRAM IN PYTHON ‐ PART 22
time we pop up the dialog, the

starting folder would be

/home/user2/playl istmaker.

Quickly, the user would become

frustrated by this, wanting the last

folder he was in to be the starting

folder next time. Make sense? OK.

So, bottom right are our next l ines

of code.

Here we check the responses sent

back. If the user cl icked the 'Open'

button which sends back a

gtk.RESPONSE_OK, we get the

name or names of the fi les the

user selected, set the current path

to the folder we are in, destroy the

dialog, and then return the data

back to the cal l ing routine. I f, on

the other hand, the user cl icked

on the 'Cancel ' button, we simply

destroy the dialog. I put the print

statement in there just to show

you that the button press worked.

You can leave it or take it out.

Notice that when we return from

the Open button part of the

routine, we are returning two sets

of values. ' fi leselection' is a l ist of

the fi les selected by the user, as

wel l as the CurrentPath.

In order to get the routine to do

something, add the fol lowing l ine

under the on_tbtnAdd_cl ick

routine. . .

fd = FileDialog()

selectedfiles,self.CurrentPat

h =

fd.ShowDialog(0,self.CurrentP

ath)

Here we retrieve the two return

values that are sent from our

return cal l . For now, add the

fol lowing code to see what the

information returned wi l l look l ike.

for f in selectedfiles:

print "User selected %s" %

f

print "Current path is %s" %

self.CurrentPath

When you run the program,

cl ick on the 'Add' button. You' l l see

the fi le dialog. Now move to

somewhere where you have some

fi les and select them. You can hold

down the [ctrl] key and cl ick on

multiple fi les to select them

individual ly, or the [shift] key to

select multiple contiguous fi les.

Cl ick on the 'Open' button, and

look at the response in your

terminal window. Please note that

if you cl ick on the 'Cancel ' button

right now, you' l l get an error

message. That's because the

above code assumes that there

are no fi les selected. Don't worry

about that right now - we' l l handle

that in a l i ttle bit. I just wanted to

let you see what comes back if the

'Open' button is pressed. One

thing we should do is add a fi l ter

to our fi le-open dialog. Since we

expect the user to normal ly select

music fi les, we should (1) give the

option to display only music fi les,

and (2) give the option to show al l

fi les just-in-case. We do this by

using the fi lefi l ter attributes of the

dialog. Here's the code for that

which should go in the which == 0

section right after the dialog set

l ine.

filter = gtk.FileFilter()

filter.set_name("Music

Files")

filter.add_pattern("*.mp3")

filter.add_pattern("*.ogg")

filter.add_pattern("*.wav")

dialog.add_filter(filter)

filter = gtk.FileFilter()

filter.set_name("All files")

filter.add_pattern("*")

dialog.add_filter(filter)

We are setting up two "groups",

one for music fi les

(fi l ter.set_name("Music Fi les")) ,

and the other for al l fi les. We use

a pattern to define the types of

fi les we want. I have defined three

patterns, but you can add or

delete any that you wish. I put the

music fi l ter first, since that's what

we wi l l assume the user is going

to be mainly concerned with. So

the steps are. . .

• Define a fi l ter variable.

• Set the name.

• Add a pattern.

• Add the fi l ter to the dialog.

You can have as many or as few

fi lters as you wish. Also notice that

once you have added the fi l ter to

the dialog, you can re-use the

variable for the fi l ter.

Back in the on_tbtnAdd_cl icked

routine, comment out the last

l ines we added and replace them

with this one l ine.

self.AddFilesToTreeview(selec

tedfiles)

so our routine now looks l ike the

code shown on the next page.

So, when we get the response

back from fi le dialog, we wi l l send the

l ist containing the selected fi les to

this routine. Once here, we set up a

counter variable (how many fi les we

are adding), then parse the l ist.

Remember that each entry contains

the ful ly qual ified fi lename with path

and extension. We' l l want to spl it

the fi lename into path, fi lename,

full circle magazine 1 08 contents ^The Compleat Python

As always, the ful l code can be
found at
http: //pastebin.com/JtrhuE71.

Next time, we' l l final ize our
appl ication, fi l l ing in the
missing routines, etc.

and extension. First we get the
very last 'period' from the
fi lename and assume that is
the beginning of the extension
and assign its position in the
string to extStart. Next we find
the very last ' /' in the fi lename
to determine the beginning of
the fi lename. Then we break up
the string into extension,
fi lename and fi le path. We then
stuff these values into a l ist
named 'data' and append this
into our playl ist ListStore. We

increment the counter since we
have done al l the work. Final ly
we increment the variable
RowCount which holds the total
number of rows in our
ListStore, and then we print a
message to the status bar.

Now you can run the
appl ication and see the data in
the TreeView.

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,

def on_tbtnAdd_clicked(self,widget):

fd = FileDialog()

selectedfiles,self.CurrentPath =

fd.ShowDialog(0,self.CurrentPath)

self.AddFilesToTreeview(selectedfiles)

We now have to create the function that we just put the cal l
to. Put this function after the on_btnSavePlayl ist_cl icked
routine.

def AddFilesToTreeview(self,FileList):

counter = 0

for f in FileList:

extStart = f.rfind(".")

fnameStart = f.rfind("/")

extension = f[extStart+1:]

fname = f[fnameStart+1:extStart]

fpath = f[:fnameStart]

data = [fname,extension,fpath]

self.playList.append(data)

counter += 1

self.RowCount += counter

self.sbar.push(self.context_id,"%s files added

PROGRAM IN PYTHON ‐ PART 22

http://pastebin.com/JtrhuE71

full circle magazine 1 09 contents ^The Compleat Python

HOW-TO
Written by Greg Walters

Program In Python - Part 23

T
his time, we are going
to finish our
playl istmaker program.
Last time, we got a

good bit done, but we left some
things incomplete. We can't
save the playl ist, we don't have
the movement functions done,
we can't select the fi le path to
store the fi le in, and so on.
However, there are a few things
that we need to do before we
start coding. First, we need to
find an image for the logo for
our appl ication in the about
box, and for when the
appl ication is minimized. You
can dig around in the
/usr/share/icons folder for an
icon you l ike, or you can go on
the web and get one, or create
one yourself. Whatever you get,
put it into your code folder with
the glade fi le and the source
code from last month. Name it
logo.png. Next, we need to
open the glade fi le from last
month and make a few
changes.

First, using the MainWindow,
go to the General tab, and

scrol l down unti l you
find Icon. Using the
browse tool , find your
icon and select that.
Now the text box should
contain “logo.png”.
Next, in the hierarchy
box, select treeview1,
go to the signal tab,
and, under GtkTreeView
| cursor-changed, add a
handler for
on_treeview1_cursor_ch
anged. Remember, as I
told you last month, to
cl ick off that to make
the change stick. Final ly,
again in the hierarchy
box, select txtFi lename,
and go to the signal tab.
Scrol l down unti l you
find 'GtkWidget' , and
scrol l down further unti l you get
to 'key-press-event' . Add a
handler for
'on_txtFi lename_key_press_eve
nt' . Save your glade project and
close glade.

Now it's time to complete
our project. We' l l start from
where we left off using last
month's code.

The first thing I want to do is
modify the code in class
Fi leDialog. I f you remember
from last time, if the user
cl icked the 'Cancel ' button,
there was an error raised. We
wi l l fix that first. At the end of
the routine, you have the code
shown above.

You might imagine, this
simply looks at the value of
each key that is pressed when
the user is in the txtFi lename
text box, and compares it to the
value 65293, which is the code
that is assigned to the return
key (enter key). I f i t matches,
then it cal ls the SavePlayl ist
function. The user doesn't have
to even cl ick the button.

elif response == gtk.RESPONSE_CANCEL:

print 'Closed, no files selected'

dialog.destroy()

Notice that we aren't returning anything. This is what caused the
error. So to fix this, we want to add the fol lowing l ine of code after the
dialog.destroy() l ine.

Return ([],"")

This wi l l keep the error from happening. Next, let's add the text box
event handler we created in glade. To our dictionary, add the fol lowing
l ine.

"on_txtFilename_key_press_event": self.txtFilenameKeyPress,

As you remember, this creates a function to handle the keypress
event. We' l l next create the function.

def txtFilenameKeyPress(self,widget,data):

if data.keyval == 65293: # The value of the return key

full circle magazine 1 1 0 contents ^The Compleat Python

PROGRAM IN PYTHON ‐ PART 23
Now on to new code. Let's

deal with the toolbar button
ClearAl l . When the user cl icks
this button, we want the
treeview and the ListStore to be
cleared. This is a simple one-
l iner that we can put into the
on_tbtnClearAl l_cl icked routine.

def

on_tbtnClearAll_clicked(self,

widget):

self.playList.clear()

We are simply tel l ing the
playList ListStore to clear itself.
That was easy. Now we' l l deal
with the Delete toolbar button.
Much harder, but once we get
into it, you' l l understand.

First we have to discuss how
we get a selection from the
treeview widget and the
ListStore. This is compl icated,
so go slowly. In order to get
data back from the ListStore,
we first have to get a
gtk.TreeSelection which is a
helper object that manages the
selection within a treeview.
Then we use that helper object
to retrieve the model type, and
an iterator that contains the
selected rows.

I know that you are thinking
“What the heck is an iterator?”
Wel l you already have used
them and don't even know it.
Think about the fol lowing code
(above right) from the
AddFi lesToTreeview function
from last month.

Look at the 'for' statement
portion. We use an iterator to
walk through the l ist cal led
Fi leList. Basical ly, in this case,
the iterator simply goes
through each entry in the l ist
returning each item separately.
What we are going to do is
create an iterator, fi l l that with
the selected rows in the
treeview, and use that l ike a
l ist. So the code (middle right)
for on_tbtnDelete_cl icked
wi l l be.

The first l ine creates
the TreeSelection object.
We use that to get the
rows selected (which is only
one because we didn't set the
model to support multiple
selections), fi l l that into a l ist
cal led iters, and then walk it
removing (l ike the .clear
method). We also decrement
the variable RowCount, and

then display the number of fi les
in the status bar.

Now, before we get to the
move functions, let's deal with
the save-fi le-path function.
We' l l use our Fi leDialog class as
before. We' l l do al l the code
(bottom right)for this in the

on_btnGetFolder_cl icked
routine.

The only thing real ly
different from before is the last
l ine of this code. We are putting
the name of the path returned
by the Fi leDialog into the
textbox that we set up

def AddFilesToTreeview(self,FileList):

counter = 0

for f in FileList:

extStart = f.rfind(".")

fnameStart = f.rfind("/")

extension = f[extStart+1:]

fname = f[fnameStart+1:extStart]

fpath = f[:fnameStart]

data = [fname,extension,fpath]

self.playList.append(data)

counter += 1

def on_tbtnDelete_clicked(self,widget):

sel = self.treeview.get_selection()

(model,rows) = sel.get_selected_rows()

iters=[]

for row in rows:

iters.append(self.playList.get_iter(row))

for i in iters:

if i is not None:

self.playList.remove(i)

self.RowCount = 1

self.sbar.push(self.context_id,"%d files in list." %

(self.RowCount))

def on_btnGetFolder_clicked(self,widget):

fd = FileDialog()

filepath,self.CurrentPath = fd.ShowDialog(1,self.CurrentPath)

self.txtPath.set_text(filepath[0])

full circle magazine 1 1 1 contents ^The Compleat Python

previously using the set_text
method. Remember that the
data returned to us is in the
form of a l ist, even though
there is only one entry. That's
why we use 'fi lepath[0] ' .

Let's do the fi le-save
function. We can safely do that
before we deal with the move
functions. We' l l create a
function cal led SavePlayl ist.
The first thing we need to do
(above right) is check to see if
there is anything in the txtPath
text box. Next we need to
check to see if there is a
fi lename in the txtFi lename text
box. For both of those
instances, we use the
.get_text() method of the text
box.

Now that we know that we
have a path (fp) and a fi lename
(fn), we can open the fi le, print
our M3U header, and walk the
playList. The path is stored (if
you wi l l remember) in column
2, the fi lename in column 0,
and the extension in column 1.
We simply (right) create a
string and then write it to the
fi le and final ly close the fi le.

We can now start work on
the move functions. Let's start
with the Move To Top routine.
Like we did when we wrote the
delete function, we get the
selection and then the selected
row. Next we have to step
through the rows to get two

PROGRAM IN PYTHON ‐ PART 23
def SavePlaylist(self):

fp = self.txtPath.get_text() # Get the filepath from the text box

fn = self.txtFilename.get_text() # Get the filename from the filename text box

Now check the values. . .

if fp == "": # IF the path is blank...

self.MessageBox("error","Please provide a filepath for the playlist.")

elif fn == "": # IF the filename is blank...

self.MessageBox("error","Please provide a filename for the playlist file.")

else: # Otherwise we are good to go.

plfile = open(fp + "/" + fn,"w") # Open the file

plfile.writelines('#EXTM3U\n') # Print the M3U Header

for row in self.playList:

plfile.writelines("%s/%s.%s\n" % (row[2],row[0],row[1])) #Write the line data

plfile.close # Finally close the file

Lastly, we pop up a message box informing the user that the fi le has been saved.

self.MessageBox("info","Playlist file saved!")

We now need to put in a cal l to this routine in our on_btnSavePlayl ist_cl icked event handler
routine.

def on_btnSavePlaylist_clicked(self,widget):

self.SavePlaylist()

Save your code and test it. Your play l ist should save properly and look something l ike the

def on_tbtnMoveToTop_clicked(self,widget):

sel = self.treeview.get_selection()

(model,rows) = sel.get_selected_rows()

for path1 in rows:

path2 = 0

iter1=model.get_iter(path1)

iter2 = model.get_iter(path2)

model.move_before(iter1,iter2)

full circle magazine 1 1 2 contents ^The Compleat Python

variables. We wi l l cal l them
path1 and path2. Path2, in this
case wi l l be set to 0, which is
the “target” row. Path1 is the
row the user has selected. We
final ly use the
model .move_before() method
to move the selected row up to
row 0, effectively pushing
everything down. We' l l put the
code (below right) directly in
the on_tbtnMoveToTop_cl icked
routine.

For the MoveToBottom
function, we wi l l use almost
exactly the same code as the
MoveToTop routine, but, in
place of the
model .move_before() method,
we wi l l use the
model .move_after() method,
and, instead of setting path2 to
0, we set it to self.RowCount-1.
Now you understand why we
have a RowCount variable.
Remember the counts are zero
based, so we have to use
RowCount-1 (above right).

Now let's take a look at what
it wi l l take to do the MoveUp
routine. Once again, it is fairly
simi lar to the last two functions
we created. This time, we get

path1 which is the selected row
and then assign that row
number–1 to path2. Then IF
path2 (the target row) is
greater than or equal to 0, we
use the model .swap() method
(second down, right).

The same thing appl ies for
the MoveDown function. This
time however, we check to see
if path2 is LESS than or equal to
the value of self.RowCount-1
(third down, right).

Now let's make some
changes to the abi l i ties of our
play l ist. In last month's article,
I showed you the basic format
of the play l ist fi le (bottom).

However, I d id say that there
was an extended format as
wel l . In the extended format,
there is an extra l ine that can
be added to the fi le before each
song fi le entry that contains
extra information about the
song. The format of this l ine is
as fol lows. . .

#EXTINF:[Length of song in

seconds],[Artist Name] –

[Song Title]

You might have wondered
why we included the mutagen

l ibrary from the beginning since
we never used it. Wel l , we wi l l
now. To refresh your memory,
the mutagen l ibrary is for
accessing ID3 tag information
from inside of MP3 fi les. To get

PROGRAM IN PYTHON ‐ PART 23
def on_tbtnMoveToBottom_clicked(self,widget):

sel = self.treeview.get_selection()

(model,rows) = sel.get_selected_rows()

for path1 in rows:

path2 = self.RowCount1

iter1=model.get_iter(path1)

iter2 = model.get_iter(path2)

model.move_after(iter1,iter2)

def on_tbtnMoveUp_clicked(self,widget):

sel = self.treeview.get_selection()

(model,rows) = sel.get_selected_rows()

for path1 in rows:

path2 = (path1[0]1,)

if path2[0] >= 0:

iter1=model.get_iter(path1)

iter2 = model.get_iter(path2)

model.swap(iter1,iter2)

def on_tbtnMoveDown_clicked(self,widget):

sel = self.treeview.get_selection()

(model,rows) = sel.get_selected_rows()

for path1 in rows:

path2 = (path1[0]+1,)

iter1=model.get_iter(path1)

if path2[0] <= self.RowCount1:

iter2 = model.get_iter(path2)

model.swap(iter1,iter2)

#EXTM3U

Adult Contemporary/Chris Rea/Collection/02 On The Beach.mp3

Adult Contemporary/Chris Rea/Collection/07 Fool (If You Think It's Over).mp3

Adult Contemporary/Chris Rea/Collection/11 Looking For The Summer.mp3

full circle magazine 1 1 3 contents ^The Compleat Python

PROGRAM IN PYTHON ‐ PART 23
the ful l d iscussion about this,
please refer to issue 35 of Ful l
Circle which has my part 9 of
this series. We' l l create a
function to deal with the
reading of the MP3 fi le and
return the Artist name, the
Song Title, and the length of
the song in seconds, which are
the three things we need for
the extended information l ine.
Put the function after the
ShowAbout function within the
Playl istCreator class (next
page, top right).

Again, to refresh your
memory, I ' l l walk through the
code. First we clear the three
return variables so that if
anything happens they are
blank upon return. We then
pass in the fi lename of the MP3
fi le we are going to look at.
Next we pul l the keys into (yes,
you guessed it) an iterator, and
walk through that iterator
looking for two specific tags.
They are 'TPE1' which is the
artist name, and 'TIT2' which is
the song title. Now, if the key
doesn't exist, we would get an
error, so we wrap each get cal l
with a 'try|except' statement.
We then pul l the song length
from the audio. info. length

attribute, and return the
whole shebang.

Now, we wi l l want to
modify the SavePlayl ist
function to support the
extended information
l ine. Whi le we are there,
let's check to see if the
fi lename exists, and, if
so, flag the user and
exit the routine. Also, to
make things a bit easier
for the user, since we
don't support any other
fi letype, let's

def GetMP3Info(self,filename):

artist = ''

title = ''

songlength = 0

audio = MP3(filename)

keys = audio.keys()

for key in keys:

try:

if key == "TPE1": # Artist

artist = audio.get(key)

except:

artist = ''

try:

if key == "TIT2": # Song Title

title = audio.get(key)

except:

title = ''

songlength = audio.info.length # Audio Length

return (artist,title,songlength)

import os.path

Then, go ahead and comment out your existing SavePlayl ist function and we' l l replace it.

def SavePlaylist(self):

fp = self.txtPath.get_text() # Get the file path from the text box

fn = self.txtFilename.get_text() # Get the filename from the text box

if fp == "": # IF filepath is blank...

self.MessageBox("error","Please provide a filepath for the playlist.")

elif fn == "": # IF filename is blank...

self.MessageBox("error","Please provide a filename for the playlist file.")

else: # Otherwise

Up to this point, the routine is the same. Here's where the changes start.

extStart = fn.rfind(".") # Find the extension start position

if extStart == 1:

fn += '.m3u' #append the extension if there isn't one.

self.txtFilename.set_text(fn) #replace the filename in the text box

full circle magazine 1 1 4 contents ^The Compleat Python

automatical ly append the
extension ' .m3u' to the path
and fi lename if it doesn't exist.
First add an import l ine at the
top of the code importing
os.path between the sys import
and the mutagen import
(bottom right).

Just l ike in the
AddFi lesToTreeview function, we
wi l l use the 'rfind' method to
find the position of the last
period (' . ') in the fi lename fn. If
there isn't one, the return value
is set to -1. So we check to see
if the return value is -1, and, if
so, we append the extension
and then put the fi lename back
in the text box just to be nice.

if os.path.exists(fp + "/" +

fn):

self.MessageBox("error","The

file already exists. Please

select another.")

Next, we want to wrap the
rest of the function with an
IF|ELSE clause (top right) so if
the fi le already exists, we
simply fal l out of the routine.
We use os.path.exists(fi lename)
to do this check.

The rest of the code is
mostly the save as before, but
let's look at it anyway.

Line 2 opens the fi le we are
going to write. Line 3 puts the
M3U header in. Line 4 sets up
for a walk through the playList
ListStore. Line 5 creates the
fi lename from the three
columns of the ListStore. Line 6
cal ls GetMP3Info and stores the
return values into variables.

Line 7 then checks to see if we
have values in al l three
variables. I f so, we write the
extended information l ine in
l ine 8, otherwise we don't try.
Line 9 writes the fi lename l ine
as before. Line 10 closes the
fi le graceful ly, and l ine 11 pops
up the message box letting the
user know the process is al l
done.

else:

plfile = open(fp + "/" + fn,"w") # Open the file

plfile.writelines('#EXTM3U\n') #Print the M3U header

for row in self.playList:

fname = "%s/%s.%s" % (row[2],row[0],row[1])

artist,title,songlength = self.GetMP3Info(fname)

if songlength > 0 and (artist != '' and title != ''):

plfile.writelines("#EXTINF:%d,%s %s\n" % (songlength,artist,title))

plfile.writelines("%s\n" % fname)

plfile.close # Finally Close the file

self.MessageBox("info","Playlist file saved!")

def SetupToolTips(self):

self.tbtnAdd.set_tooltip_text("Add a file or files to the playlist.")

self.tbtnAbout.set_tooltip_text("Display the About Information.")

self.tbtnDelete.set_tooltip_text("Delete selected entry from the list.")

self.tbtnClearAll.set_tooltip_text("Remove all entries from the list.")

self.tbtnQuit.set_tooltip_text("Quit this program.")

self.tbtnMoveToTop.set_tooltip_text("Move the selected entry to the top of the list.")

self.tbtnMoveUp.set_tooltip_text("Move the selected entry up in the list.")

self.tbtnMoveDown.set_tooltip_text("Move the selected entry down in the list.")

self.tbtnMoveToBottom.set_tooltip_text("Move the selected entry to the bottom of the list.")

self.btnGetFolder.set_tooltip_text("Select the folder that the playlist will be saved to.")

self.btnSavePlaylist.set_tooltip_text("Save the playlist.")

self.txtFilename.set_tooltip_text("Enter the filename to be saved here. The extension '.m3u' will be added for

you if you don't include it.")

PROGRAM IN PYTHON ‐ PART 23

full circle magazine 1 1 5 contents ^The Compleat Python

Go ahead and save your
code and give it a test drive.

At this point about the only
thing that should be added
would be some tool tips for our
controls when the user hovers
the mouse pointer over them. It
adds that professional fla ir
(below). Let's create a function
to do that now.

We are using the widget
references we set up earl ier,
and then setting the text for
the tooltip via the (you guessed
it) set_tooltip_text attribute.
Next we need to add the cal l to
the routine. Back in the __init__
routine, after the
self.SetWidgetReferences l ine,
add:

self.SetupToolTops()

Last, but certainly not least,
we want to put our logo into
our About box. Just l ike
everything else there, there's
an attribute for that. Add the
fol lowing l ine to the ShowAbout
routine.

about.set_logo(gtk.gdk.pixbuf

_new_from_file("logo.png"))

That's about it. You now
have a ful ly functioning
program that looks good, and
does a wonderful job of
creating a playl ist for your
music fi les.

The ful l source code,
including the glade fi le we
created last month, can be
found at pastebin:
http: //pastebin.com/tQJ izcwT

Unti l next time, enjoy your
new found ski l ls.

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Colorado
and has been programming since
1972. He enjoys cooking, hiking,
music, and spending time with
his fami ly. His website is

EXTRA!EXTRA!
READALLABOUTIT!

Full Circle Special Editions
Released On Unsuspecting
World*

THE PERFECT SERVER

SPECIAL EDITION

This is a special edition of
Ful l Circle that is a direct
reprint of the Perfect
Server articles that were
first publ ished in FCM#31-
#34.

http: //ful lcirclemagazine.or
g/special -edition-1-the-

* Neither Full Circle magazine, nor its makers, apologize for any hysteria caused in the release of its publications.

PYTHON

SPECIAL EDITION #01

This is a reprint of
Beginning Python Parts 01
– 08 by Greg Walters.

http: //ful lcirclemagazine.o
rg/python-special -edition-

PROGRAM IN PYTHON ‐ PART 23

http://fullcirclemagazine.org/special-edition-1-the-perfect-server/
http://fullcirclemagazine.org/python-special-edition-1/
http://www.thedesignatedgeek.com

full circle magazine 1 1 6 contents ^The Compleat Python

HOW-TO
Written by Greg Walters

Program In Python - Part 24

W
OW! I t's hard to
bel ieve that this is
the 24th issue
already. Two years

we've been learning Python!
You've come a very long way.

This time we are going to
cover two topics. The first is
printing to a printer, the second
is creation of RTF (Rich Text
Format) fi les for output.

Generic Printing under
Linux

So let's start with printing to
a printer. The idea to cover this
came from an emai l sent by
Gord Campbel l . I t's actual ly
easy to do most printing from
Linux, and easier than that
other operating system that
starts with “WIN” - and I won't
deal with that OS.

As long as al l you want to
print is straight text, no bold,
ita l ics, font changes, etc, it's
fairly easy. Here's a simple app
that wi l l print directly to your

printer. . .

import os

pr = os.popen('lpr','w')

pr.write('print test from

linux via python\n')

pr.write('Print finished\n')

pr.close()

This is fairly easy to
understand as long as you
expand your mind just a bit. In
the above code, ' lpr' is the print
spooler. The only requirement is
that we have already
configured ' lpd' and that it's
running. More than l ikely, when
you use a printer under Ubuntu,
it's already done for you. 'Lpd'
is usual ly referred to as a
“magic-fi l ter” that can
automatical ly convert different
types of documents to
something the printer can
understand. We are going to
print to the ' lpr' device/object.
Think of it simply as a fi le. We
open the fi le. We have to
import 'os' . Then in l ine 2, we

open the ' lpr' with write access
- assigning it to the object
variable 'pr' . We then do a
'pr.write' with anything we want
to print. Final ly (l ine 5) we close
the fi le, which wi l l send the
data out to the printer.

We can also create a text
fi le, then send it out to the
printer l ike this. . .

import os

filename = 'dummy.file'

os.system('lpr %s' %

filename)

In this case, we are sti l l
using the lpr object, but we are
using the 'os.system' command
to basical ly create a command
that looks to l inux l ike we sent
it from a terminal .

I ' l l leave you to play with this
for now.

PyRTF
Now let's deal with RTF fi les.

RTF format (that's kind of l ike

saying PIN number since PIN
stands for Personal
Identification Number, so that
translates to Personal-
Identification-Number Number.
Something from the
department of redundancy
department, huh?) was
original ly created by the
Microsoft Corporation in 1987,
and its syntax was influenced
by the TeX typesetting
language. PyRTF is a wonderful
l ibrary that makes it easy to
write RTF fi les. You have to do
some planning up front on how
you want your fi les to look, but
the results wi l l be wel l worth it.

First, you need to download
and instal l the PyRTF package.
Go to
http: //pyrtf.sourceforge.net and

“
Wow! It's hard to

believe that this is
the 24th issue
already. Two years
we've been learning
Python!

http://pyrtf.sourceforge.net

full circle magazine 1 1 7 contents ^The Compleat Python

PROGRAM IN PYTHON ‐ PART 24
get the PyRTF-0.45.tar.gz
package. Save it someplace
and use archive manager to
unpack it. Then using terminal ,
go to where you unpacked it.
First we need to instal l the
package, so type “sudo python
setup.py instal l” and it wi l l be
instal led for you. Notice there is
an examples folder there.
There's some good information
there on how to do some
advanced things.

Here we go. Let's start as we
usual ly do, creating the stub of
our program which is shown on
the next page, top right.

Before going any further,
we' l l d iscuss what's going on.
Line 2 imports the PyRTF
l ibrary. Note that we are using a
different import format than
normal . This one imports
everything from the l ibrary.

Our main working routine is
MakeExample. We've stubbed
for now. The OpenFi le routine
creates the fi le for us with the
name we pass into it, appends
the extension “rtf”, puts it into
the “write” mode, and returns a
fi le handle.

We've already discussed the
if __name__ routine before, but

to refresh your memory, if we
are running the program in a
standalone mode, the internal
variable __name__ is set to
“__main__”. I f we cal l i t as an
import from another program,
then it wi l l just ignore that
portion of the code.

Here, we create an instance
of the Renderer object, cal l the
MakeExample routine, getting
the returned object doc. We
then write the fi le (in doc) using
the OpenFi le routine.

Now for the meat of our
worker routine MakeExample.
Replace the pass statement
with the code shown below.

Let's look at what we have
done. In the first l ine we create
an instance of Document. Then
we create an instance of the

style sheet. Then we create an
instance of the section object
and append it to the document.
Think of a section as a chapter
in a book. Next we create a
paragraph using the Normal
style. The author of PyRTF has
preset this to be 11-point Arial
font. We then put whatever text
we want into the paragraph,
append that to the section, and

return our doc document.

That is very easy. Again, you
need to plan your output fairly
careful ly, but nothing too
onerous.

Save the program as
“rtftesta.py” and run it. When
it's completed, use openoffice
(or LibreOffice) to open the fi le

#!/usr/bin/env python

from PyRTF import *

def MakeExample():

pass

def OpenFile(name) :

return file('%s.rtf' % name, 'w')

if __name__ == '__main__' :

DR = Renderer()

doc = MakeExample()

DR.Write(doc, OpenFile('rtftesta'))

print "Finished"

doc = Document()

ss = doc.StyleSheet

section = Section()

doc.Sections.append(section)

p = Paragraph(ss.ParagraphStyles.Normal)

p.append('This is our first test writing to a RTF file. '

'This first paragraph is in the preset style called normal '

'and any following paragraphs will use this style until we change it.')

section.append(p)

return doc

full circle magazine 1 1 8 contents ^The Compleat Python

and look at it.

Now let's do some neat
things. First, we' l l add a header.
Once again, the author of
PyRTF has given us a
predefined style cal led
Header1. We' l l use that for our
header. In between the
doc.Sections.append l ine and
the p = Paragraph l ine, add the
fol lowing.

p =

Paragraph(ss.ParagraphStyles.

Heading1)

p.append('Example Heading 1')

section.append(p)

Change the name of the rtf
fi le to “rtftestb”. I t should look
l ike this:

DR.Write(doc,

OpenFile('rtftestb'))

Save this as rtftestb.py and
run it. So now we have a
header. I 'm sure your mind is
going down many roads
thinking about what more can
we do. Here's a l ist of what the
author has given us as the
predefined styles.

Normal , Normal Short,
Heading 1, Heading 2, Normal
Numbered, Normal Numbered
2. There's also a List style,
which I wi l l let you play with on
your own. If you want to see
more, on this and other things,
the styles are defined in the fi le
Elements.py in the distribution
you instal led.

Whi le these styles are good
for many things, we might want
to use something other than
the provided styles. Let's look

at how to change fonts, font
sizes and attributes (bold, ita l ic,
etc) on the fly. After our
paragraph and before we return
the document object, insert the
code shown top right, and
change the output fi lename to
rtftestc. Save the fi le as
rtftestc.py. And run it. The new
portion of our document should
look l ike this. . .

I t is also possible to provide
overrides for elements of a
style. For example you can
change just the font size to 24
point or typeface to Impact or
even more Attributes l ike BOLD
or Ital ic or BOTH.

Now what have we done?
Line 1 creates a new
paragraph. We then start, as
we did before, putting in our

text. Look at the fourth l ine
(TEXT(' size to 24 point' , size =
48),) . By using the TEXT
qual ifier, we are tel l ing PyRTF
to do something different in the
middle of the sentence, which
in this case is to change the
size of the font (Arial at this
point) to 24-point, fol lowed by
the 'size = ' command. But,
wait a moment. The 'size ='
says 48, and what we are
printing says 24 point, and the
output is actual ly in 24-point
text. What's going on here?
Wel l the size command is in
half points. So if we want an 8-
point font we have to use size
= 16. Make sense?

Next, we continue the text
and then change the font with
the 'font =' command. Again,
everything within the inl ine

PROGRAM IN PYTHON ‐ PART 24
p = Paragraph(ss.ParagraphStyles.Normal)

p.append('It is also possible to provide overrides for elements of a style. ',

'For example you can change just the font ',

TEXT(' size to 24 point', size=48),

' or',

TEXT(' typeface to Impact', font=ss.Fonts.Impact),

' or even more Attributes like',

TEXT(' BOLD',bold=True),

TEXT(' or Italic',italic=True),

TEXT(' or BOTH',bold=True,italic=True),

'.')

section.append(p)

“
Let's look at how to
change fonts, font
sizes and attributes

(bold, italic, etc) on
the fly.

full circle magazine 1 1 9 contents ^The Compleat Python

TEXT command between the
single quotes is going to be
affected and nothing else.

Ok. If that al l makes sense,
what else can we do?

We can also set the color of
the text within the TEXT inl ine
command. Like this.

p = Paragraph()

p.append('This is a new

paragraph with the word ',

TEXT('RED',colour=ss.Colours.

Red),

' in Red text.')

section.append(p)

Notice that we didn't have to
restate the paragraph style as
Normal , since it sticks unti l we
change it. Also notice that if
you l ive in the U.S. , you have to
use the “proper” spel l ing of
colour.

Here are the colors that are
(again) predefined: Black, Blue,
Turquoise, Green, Pink, Red,
Yel low, White, BlueDark, Teal ,
GreenDark, Violet, RedDark,
Yel lowDark, GreyDark and Grey.

And here is a l ist of al l the
predefined fonts (in the
notation you must use to set
them):

Arial , Aria lBlack, ArialNarrow,
BitstreamVeraSans,
BitstreamVeraSerif,
BookAntiqua,
BookmanOldStyle,
BookmanOldStyle, Castel lar,
CenturyGothic, ComicSansMS,
CourierNew,
Frankl inGothicMedium,
Garamond, Georgia,
Haettenschwei ler, Impact,
LucidaConsole,
LucidaSansUnicode,
MicrosoftSansSerif,
PalatinoLinotype,
MonotypeCorsiva, Papyrus,
Sylfaen, Symbol , Tahoma,
TimesNewRoman, TrebuchetMS
and Verdana.

So now you must be thinking

that this is al l wel l and good,
but how do we make our own
styles? That's pretty easy. Move
to the top of our fi le, and before
our header l ine, add the
fol lowing code.

result = doc.StyleSheet

NormalText =

TextStyle(TextPropertySet(res

ult.Fonts.CourierNew,16))

ps2 =

ParagraphStyle('Courier',Norm

alText.Copy())

result.ParagraphStyles.append

(ps2)

Before we write the code to
actual ly use it, let's see what
we have done. We are creating
a new stylesheet instance
cal led result. In the second l ine,
we are setting the font
to 8-point Courier
New, and then
“registering” the style

as Courier. Remember, we have
to use 16 as the size since the
font size is in half-point values.

Now, before the return l ine
at the bottom of the routine,
let's include a new paragraph
using the Courier style.

So now you have a new style
you can use anytime you want.
You can use any font in the l ist
above and create your own
styles. Simply copy the style
code and replace the font and
size information as you wish.
We can also do this. . .

NormalText =

TextStyle(TextPropertySet(res

ult.Fonts.Arial,22,bold=True,

colour=ss.Colours.Red))

ps2 =

PROGRAM IN PYTHON ‐ PART 24
p = Paragraph(ss.ParagraphStyles.Courier)

p.append('Now we are using the Courier style at 8 points. '

'All subsequent paragraphs will use this style automatically. '

'This saves typing and is the default behaviour for RTF documents.',LINE)

section.append(p)

p = Paragraph()

p.append('Also notice that there is a blank line between the previous paragraph ',

'and this one. That is because of the "LINE" inline command.')

section.append(p)

full circle magazine 1 20 contents ^The Compleat Python

PROGRAM IN PYTHON ‐ PART 24
ParagraphStyle('ArialBoldRed'

,NormalText.Copy())

result.ParagraphStyles.append

(ps2)

And add the code below. . .

p =

Paragraph(ss.ParagraphStyles.

ArialBoldRed)

p.append(LINE,'And now we are

using the ArialBoldRed

style.',LINE)

section.append(p)

to print the ArialBoldRed

style.

Tables
Many times, tables are the

only way to properly represent
data in a document. Doing
tables in text is hard to do, and,
in SOME cases, it's pretty easy
in PyRTF. I ' l l explain this
statement later in this article.

Let's look at a standard table
(shown below) in
OpenOffice/LibreOffice. I t looks
l ike a spreadsheet, where
everything ends up in columns.

Rows go left to right,

columns go down. Easy
concept.

Let's start a new appl ication
and cal l i t rtfTable-a.py. Start
with our standard code (shown
on the next page) and bui ld
from there.

We don't need to discuss
this since it's basical ly the
same code that we used
before. Now, we' l l flesh out the
TableExample routine. I 'm
basical ly using part of the
example fi le provided by the
author of PyRTF. Replace the
pass statement in the routine
with the fol lowing code. . .

doc = Document()

ss = doc.StyleSheet

section = Section()

doc.Sections.append(section)

This part is the same as
before, so we' l l just gloss over
it.

table =

Table(TabPS.DEFAULT_WIDTH *

7,

TabPS.DEFAULT_WIDTH * 3,

TabPS.DEFAULT_WIDTH * 3)

This l ine (yes, it's real ly one
l ine, but is broken up for easy
viewing) creates our basic
table. We are creating a table
with 3 columns, the first is 7
tabs wide, the second and third
are three tabs wide. We don't
have to deal with tabs alone,
you can enter the widths in
twips. More on that in a
moment.

c1 = Cell(Paragraph('Row One,

Cell One'))

c2 = Cell(Paragraph('Row One,

Cell Two'))

c3 = Cell(Paragraph('Row One,

Cell Three'))

table.AddRow(c1,c2,c3)

Here we are setting the data
that goes into each cel l in the
first row.

c1 =

Cell(Paragraph(ss.ParagraphSt

yles.Heading2,'Heading2

Style'))

c2 =

Cell(Paragraph(ss.ParagraphSt

yles.Normal,'Back to Normal

Style'))

c3 = Cell(Paragraph('More

Normal Style'))

table.AddRow(c1,c2,c3)

This group of code sets the
data for row number two.
Notice we can set a different
style for a single or multiple
cel ls.

#!/usr/bin/env python

from PyRTF import *

def TableExample():

pass

def OpenFile(name):

return file('%s.rtf' % name, 'w')

if __name__ == '__main__':

DR = Renderer()

doc = TableExample()

DR.Write(doc, OpenFile('rtftablea'))

print "Finished"

full circle magazine 1 21 contents ^The Compleat Python

c1 =

Cell(Paragraph(ss.ParagraphSt

yles.Heading2,'Heading2

Style'))

c2 =

Cell(Paragraph(ss.ParagraphSt

yles.Normal,'Back to Normal

Style'))

c3 = Cell(Paragraph('More

Normal Style'))

table.AddRow(c1,c2,c3)

This sets the final row.

section.append(table)

return doc

This appends the table into
the section and returns the
document for printing.

Save and run the app. You' l l
notice that everything is about
what you would expect, but
there is no border for the table.
That can make things difficult.
Let's fix that. Again, I ' l l mainly
use code from the example fi le
provided by the PyRTF author.

Save your fi le as rtftable-
b.py. Now, delete everything
between
'doc.Sections.append(section)'
and 'return doc' in the

TableExample routine, and
replace it with the fol lowing. . .

thin_edge = BorderPS(

width=20,

style=BorderPS.SINGLE)

thick_edge = BorderPS(

width=80,

style=BorderPS.SINGLE)

thin_frame = FramePS(

thin_edge, thin_edge,

thin_edge, thin_edge)

thick_frame = FramePS(

thick_edge, thick_edge,

thick_edge, thick_edge)

mixed_frame = FramePS(

thin_edge, thick_edge,

thin_edge, thick_edge)

Here we are setting up the
edge and frame definitions for
borders and frames.

table = Table(

TabPS.DEFAULT_WIDTH * 3,

TabPS.DEFAULT_WIDTH * 3,

TabPS.DEFAULT_WIDTH * 3)

c1 = Cell(Paragraph('R1C1'

), thin_frame)

c2 = Cell(Paragraph('R1C2'

))

c3 = Cell(Paragraph('R1C3'

), thick_frame)

table.AddRow(c1, c2, c3)

In row one, the cel ls in
column one (thin frame) and
column 3 (thick frame) wi l l
have a border around them.

c1 = Cell(Paragraph('R2C1'

))

c2 = Cell(Paragraph('R2C2'

))

c3 = Cell(Paragraph('R2C3'

))

table.AddRow(c1, c2, c3)

None of the cel ls wi l l have a
border in the second row.

c1 = Cell(Paragraph('R3C1'

), mixed_frame)

c2 = Cell(Paragraph('R3C2'

))

c3 = Cell(Paragraph('R3C3'

), mixed_frame)

table.AddRow(c1, c2, c3)

Once again, cel ls in column
1 and three have a mixed
frame in row three.

section.append(table)

So. You have just about
everything you need to create,
through code, RTF documents.

See you next time!

Source code can be found at
pastebin as usual . The first part
can be found at
http: //pastebin.com/3Rs7T3D7
which is the sum of rtftest.py
(a-e), and the second
rtftable.py (a-b) is at
http: //pastebin.com/XbaE2uP7.

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Colorado
and has been programming since
1972. He enjoys cooking, hiking,
music, and spending time with
his fami ly. His website is

PROGRAM IN PYTHON ‐ PART 24

http://www.thedesignatedgeek.com
http://pastebin.com/3Rs7T3D7
http://pastebin.com/XbaE2uP7

full circle magazine 1 22 contents ^The Compleat Python

HOW-TO
Written by Greg Walters

Program In Python - Part 25

A
number of you have
commented about the
GUI programming
articles and how much

you've enjoyed them. In
response to that, we wi l l start
taking a look at a different GUI
toolkit cal led Tkinter. This is the
“officia l” way to do GUI
programming in Python. Tkinter
has been around for a long
time, and has gotten a pretty
bad rap for looking “old
fashioned”. This has changed
recently, so I thought we'd fight
that bad thought process.
PLEASE NOTE – Al l of the code
presented here is for Python 2.x
only. In an upcoming article,
we' l l d iscuss how to use tkinter
in Python 3.x. I f you MUST use
Python 3.x, change the import
statements to “from tkinter
import *”.

A Little History And A Bit
Of Background

Tkinter stands for “Tk

interface”. Tk is a programming
language al l on its own, and the

Tkinter module al lows us to use
the GUI functions there. There
are a number of widgets that
come natively with the Tkinter
module. Some of them are
Toplevel (main window)
container, Buttons, Labels,
Frames, Text Entry,
CheckButtons, RadioButtons,
Canvas, Multi l ine Text entry,
and much more. There are also
many modules that add
functional l i ty on top of Tkinter.
This month, we' l l focus on four
widgets. Toplevel (from here I ' l l
basical ly refer to it as the root
window), Frame, Labels, and
Buttons. In the next article,
we' l l look at more widgets in
more depth.

Basical ly, we have the
Toplevel container widget which
contains (holds) other widgets.
This is the root or master
window. Within this root
window, we place the widgets
we want to use within our
program. Each widget, other
than the Toplevel root widget
container, has a parent. The
parent doesn't have to be the

root window. It can
be a different
widget. We' l l
explore that next
month. For this
month, everything
wi l l have a parent
of the root
window.

In order to place and display
the chi ld widgets, we have to
use what's cal led “geometry
management”. I t's how things
get put into the main root
window. Most programmers use
one of three types of geometry
management, either Packer,
Grid, or Place management. In
my humble opinion, the Packer
method is very clumsy. I ' l l let
you dig into that on your own.
The Place management method
al lows for extremely accurate
placement of the widgets, but
can be compl icated. We' l l
d iscuss the Place method in a
future article set. For this time,
we' l l concentrate on the Grid
method.

Think of a spreadsheet.

There are rows and columns.
Columns are vertical , rows are
horizontal . Here's a simple text
representation of the cel l
addresses of a simple 5-column
by 4-row grid (above right).

So parent has the grid, the
widgets go into the grid
positions. At first glance, you
might think that this is very
l imiting. However, widgets can
span multiple grid positions in
either the column direction, the
row direction, or both.

Our First Example
Our first example is SUPER

simple (only four l ines), but
shows a good bit.

from Tkinter import *

root = Tk()

button = Button(root, text =

COLUMNS >

ROWS | 0,0 | 1,0 | 2,0 | 3,0 | 4,0 |

| | 0,1 | 1,1 | 2,1 | 3,1 | 4,1 |

| 0,2 | 1,2 | 2,2 | 3,2 | 4,2 |

| 0,3 | 1,3 | 2,3 | 3,3 | 4,3 |

full circle magazine 1 23 contents ^The Compleat Python

PROGRAM IN PYTHON ‐ PART 25
"Hello FullCircle").grid()

root.mainloop()

Now, what's going on here?
Line one imports the Tkinter
l ibrary. Next, we instantiate the
Tk object using root. (Tk is part
of Tkinter). Here's l ine three.

button = Button(root, text =

"Hello FullCircle").grid()

We create a button cal led
button, set its parent to the
root window, set its text to
“Hel lo Ful lCircle,” and set it into
the grid. Final ly, we cal l the
window's main loop. Very
simple from our perspective,
but there's a lot that goes on
behind the scenes. Thankful ly,
we don't need to understand
what that is at this time.

Run the program and let's
see what happens. On my
machine the main window
shows up at the lower left of
the screen. It might show up
somewhere else on yours.
Cl icking the button doesn't do
anything. Let's fix that in our
next example.

Our Second Example

This time, we' l l create a
class cal led App. This wi l l be
the class that actual ly holds our
window. Let's get started.

from Tkinter import *

This is the import statement
for the Tkinter l ibrary.

We define our class, and, in
the __init__ routine, we set up
our widgets and place them
into the grid.

The first l ine in the __init__
routine creates a frame that wi l l
be the parent of al l of our other
widgets. The parent of the
frame is the root window
(Toplevel widget). Next we
define a label , and two buttons.
Let's look at the label creation
l ine.

self.lblText = Label(frame,

text = "This is a label

widget")

We create the label widget
and cal l i t self. lblText. That's
inherited from the Label widget
object. We set its parent
(frame), and set the text that
we want it to display (text =
“this is a label widget”). I t's
that simple. Of course we can
do much more than that, but
for now that's al l we need. Next
we set up the two Buttons we
wi l l use:

self.btnQuit = Button(frame,

text="Quit", fg="red",

command=frame.quit)

self.btnHello = Button(frame,

text="Hello",

command=self.SaySomething)

We name the widgets, set
their parent (frame), and set
the text we want them to show.
Now btnQuit has an attribute

marked fg which we set to
“red”. You might have guessed
this sets the foreground color or
text color to the color red. The
last attribute is to set the
cal lback command we want to
use when the user cl icks the
button. In the case of btnQuit,
i t's frame.quit, which ends the
program. This is a bui lt in
function, so we don't need to
actual ly create it. In the case of
btnHel lo, i t's a routine cal led
self.SaySomething. This we
have to create, but we have a
bit more to go through first.

We need to put our widgets
into the grid. Here's the l ines
again:

frame.grid(column = 0, row =

0)

self.lblText.grid(column = 0,

row = 0, columnspan = 2)

class App:

def __init__(self, master):

frame = Frame(master)

self.lblText = Label(frame, text = "This is a label widget")

self.btnQuit = Button(frame, text="Quit", fg="red", command=frame.quit)

self.btnHello = Button(frame, text="Hello", command=self.SaySomething)

frame.grid(column = 0, row = 0)

self.lblText.grid(column = 0, row = 0, columnspan = 2)

self.btnHello.grid(column = 0, row = 1)

self.btnQuit.grid(column = 1, row = 1)

full circle magazine 1 24 contents ^The Compleat Python

self.btnHello.grid(column =

0, row = 1)

self.btnQuit.grid(column = 1,

row = 1)

First, we assign a grid to the
frame. Next, we set the grid
attribute of each widget to
where we want the widget to
go. Notice the columnspan l ine
for the label (self. lblText). This
says that we want the label to
span across two grid columns.
Since we have only two
columns, that's the entire width
of the appl ication. Now we can
create our cal lback function:

def SaySomething(self):

print "Hello to FullCircle

Magazine Readers!!"

This simply prints in the

terminal window the message
“Hel lo to Ful lCircle Magazine
Readers! ! ”

Final ly, we instantiate the Tk
class - our App class - and run
the main loop.

root = Tk()

app = App(root)

root.mainloop()

Give it a try. Now things
actual ly do something. But
again, the window position is
very inconvenient. Let's fix that
in our next example.

Our Third Example
Save the last example as

example3.py. Everything is
exactly the same except for

one l ine. I t's
at the bottom
in our main
routine cal ls.
I ' l l show you
those l ines
with our new
one:

root = Tk()

root.geometry

('150x75+550+

150')

app = App(root)

root.mainloop()

What this does is force our
initia l window to be 150 pixels
wide and 75 pixels high. We
also want the upper left corner
of the window to be placed at
X-pixel position 550 (right and
left) and the Y-pixel position at
150 (top to botton). How did I
come up with these numbers? I
started with some
reasonable values
and tweaked them
from there. I t's a bit
of a pain in the neck
to do it this way, but
the results are better
than not doing it at
al l .

Our Fourth Example ‐ A
Simple Calculator

Now, let's look at something
a bit more compl icated. This
time, we' l l create a simple “4
banger” calculator. I f you don't
know, the phrase “4 banger”
means four functions: Add,
Subtract, Multiply, and Divide.
Right is what it looks l ike in

simple text form.

We' l l d ive right into it and I ' l l
explain the code (middle right)
as we go.

Outside of the geometry
statement, this (left) should be
pretty easy for you to
understand by now. Remember,
pick some reasonable values,
tweak them, and then move on.

PROGRAM IN PYTHON ‐ PART 25

| 0 |

| 1 | 2 | 3 | + |

| 4 | 5 | 6 | |

| 7 | 8 | 9 | * |

| | 0 | . | / |

| = |

| CLEAR |

from Tkinter import *

def StartUp():

global val, w, root

root = Tk()

root.title('Easy Calc')

root.geometry('247x330+469+199')

w = Calculator(root)

root.mainloop()

class Calculator():

def __init__(self,root):

master = Frame(root)

self.CurrentValue = 0

self.HolderValue = 0

self.CurrentFunction = ''

self.CurrentDisplay = StringVar()

self.CurrentDisplay.set('0')

self.DecimalNext = False

self.DecimalCount = 0

self.DefineWidgets(master)

self.PlaceWidgets(master)

full circle magazine 1 25 contents ^The Compleat Python

We begin our class definition
and set up our __init__ function.
We set up three variables as
fol lows:
• CurrentValue – Holds the
current value that has been
input into the calculator.
• HolderValue – Holds the
value that existed before the
user cl icks a function key.
• CurrentFunction – This is
simply a “bookmark” to note
what function is being dealt
with.

Next, we define the
CurrentDisplay variable and
assign it to the StringVar
object. This is a special object
that is part of the Tkinter
toolkit. Whatever widget you
assign this to automatical ly
updates the value within the
widget. In this case, we wi l l be
using this to hold whatever we
want the display label widget
to. . . er. . . wel l . . . d isplay. We
have to instantiate it before we
can assign it to the widget.
Then we use the bui lt in 'set'
function. We then define a
boolean variable cal led
DecimalNext, and a variable
DecimalCount, and then cal l
the DefineWidgets function,

which creates al l
the widgets, and
then cal l the
PlaceWidget
function, which
actual ly places
them in the root
window.

def

DefineWidgets(self,master):

self.lblDisplay =

Label(master,anchor=E,relief

=

SUNKEN,bg="white",height=2,te

xtvariable=self.CurrentDispla

y)

Now, we have already
defined a label earl ier.
However, this time we are
adding a number of other
attributes. Notice that we aren't
using the 'text' attribute. Here,
we assign the label to the
parent (master), then set the
anchor (or, for our purposes,
justification) for the text, when
it gets written. In this case, we
are tel l ing the label to justify al l
text to the east or on the right
side of the widget. There is a
justify attribute, but that's for
multiple l ines of text. The
anchor attribute has the
fol lowing options. . . N, NE, E, SE,

S, SW, W, NW and CENTER. The
default is CENTER. You should
think compass points for these.
Under normal circumstances,
the only real ly usable values
are E (right), W (left) , and
Center.

Next, we set the rel ief or
visual style of the label . The
“legal” options here are FLAT,
SUNKEN, RAISED, GROOVE, and
RIDGE. The default is FLAT if
you don't specify anything. Feel
free to try the other
combinations on your own after
we're done. Next, we set the
background (bg) to white in
order to set it off from the rest
of the window a bit. We set the
height to 2 (which is two text
l ines high, not in pixels), and
final ly assign the variable we
just defined a moment ago
(self.CurrentDisplay) to the
textvariable attribute.
Whenever the value of

self.CurrentDisplay changes,
the label wi l l change its text to
match automatical ly.

Shown above, we' l l create
some of the buttons.

I 've shown only 4 buttons
here. That's because, as you
can see, the code is almost
exactly the same. Again, we've
created buttons earl ier in this
tutor, but let's take a closer
look at what we are doing here.

We start by defining the
parent (master), the text that
we want on the button, and the
width and height. Notice that
the width is in characters and
the height is in text l ines. I f you
were doing a graphic in the
button, you would use pixels to
define the height and width.
This can become a bit
confusing unti l you get your
head firmly wrapped around it.

PROGRAM IN PYTHON ‐ PART 25
self.btn1 = Button(master, text = '1',width = 4,height=3)

self.btn1.bind('<ButtonRelease1>', lambda e: self.funcNumButton(1))

self.btn2 = Button(master, text = '2',width = 4,height=3)

self.btn2.bind('<ButtonRelease1>', lambda e: self.funcNumButton(2))

self.btn3 = Button(master, text = '3',width = 4,height=3)

self.btn3.bind('<ButtonRelease1>', lambda e: self.funcNumButton(3))

self.btn4 = Button(master, text = '4',width = 4,height=3)

self.btn4.bind('<ButtonRelease1>', lambda e: self.funcNumButton(4))

full circle magazine 1 26 contents ^The Compleat Python

PROGRAM IN PYTHON ‐ PART 25
Next, we are setting the bind
attribute. When we did the
buttons in the previous
examples, we used the
'command=' attribute to define
what function should be cal led
when the user cl icks the
button. This time, we are using
the ' .bind' attribute. I t's almost
the same thing, but this is an
easier way to do it, and to pass
information to the cal lback
routine that is static. Notice
that here we are using
'<ButtonRelease-1>' as the
trigger for the bind. In this
case, we want to make sure
that it's only after the user
cl icks AND releases the left
mouse button that we make
our cal lback. Lastly, we define
the cal lback we want to cal l ,
and what we are going to pass
to it. Now, those of you who are
astute (which is each and every
one of you) wi l l notice
something new. The ' lambda e: '
cal l .

In Python, we use Lambda to
define anonymous functions
that wi l l appear to interpreter
as a val id statement. This
al lows us to put multiple
segments into a single l ine of
code. Think of it as a mini

self.btnDash = Button(master, text = '',width = 4,height=3)

self.btnDash.bind('<ButtonRelease1>', lambda e: self.funcFuncButton('ABS'))

self.btnDot = Button(master, text = '.',width = 4,height=3)

self.btnDot.bind('<ButtonRelease1>', lambda e: self.funcFuncButton('Dec'))

The btnDash sets the value to the absolute value of the value entered. 523 remains 523 and -523
becomes 523. The btnDot button enters a decimal point. These examples, and the ones below,
use the cal lback funcFuncButton.

self.btnPlus = Button(master,text = '+', width = 4, height=3)

self.btnPlus.bind('<ButtonRelease1>', lambda e: self.funcFuncButton('Add'))

self.btnMinus = Button(master,text = '', width = 4, height=3)

self.btnMinus.bind('<ButtonRelease1>', lambda e:

self.funcFuncButton('Subtract'))

self.btnStar = Button(master,text = '*', width = 4, height=3)

self.btnStar.bind('<ButtonRelease1>', lambda e: self.funcFuncButton('Multiply'))

self.btnDiv = Button(master,text = '/', width = 4, height=3)

self.btnDiv.bind('<ButtonRelease1>', lambda e: self.funcFuncButton('Divide'))

self.btnEqual = Button(master, text = '=')

self.btnEqual.bind('<ButtonRelease1>', lambda e: self.funcFuncButton('Eq'))

Here are the four buttons that do our math functions.
self.btnClear = Button(master, text = 'CLEAR')

self.btnClear.bind('<ButtonRelease1>', lambda e: self.funcClear())

Final ly, here is the clear button. I t, of course, clears the holder variables and the display. Now we
place the widgets in the PlaceWidget routine. First, we initia l ize the grid, then start putting the
widgets into the grid. Here's the first part of the routine.

def PlaceWidgets(self,master):

master.grid(column=0,row=0)

self.lblDisplay.grid(column=0,row=0,columnspan = 4,sticky=EW)

self.btn1.grid(column = 0, row = 1)

self.btn2.grid(column = 1, row = 1)

self.btn3.grid(column = 2, row = 1)

self.btn4.grid(column = 0, row = 2)

self.btn5.grid(column = 1, row = 2)

self.btn6.grid(column = 2, row = 2)

self.btn7.grid(column = 0, row = 3)

self.btn8.grid(column = 1, row = 3)

self.btn9.grid(column = 2, row = 3)

self.btn0.grid(column = 1, row = 4)

full circle magazine 1 27 contents ^The Compleat Python

PROGRAM IN PYTHON ‐ PART 25
function. In this case, we are
setting up the name of the
cal lback function and the value
we want to send as wel l as the
event tag (e:) . We' l l ta lk more
about Lambda in a later article.
For now, just fol low the
example.

I 've given you the first four
buttons. Copy and paste the
above code for buttons 5
through 9 and button 0. They
are al l the same with the
exception of the button name
and the value we send the
cal lback. Next steps are shown
right.

The only thing that hasn't
been covered before are the
columnspan and sticky
attributes. As I mentioned
before, a widget can span more
than one column or row. In this
case, we are “stretching” the
label widget across al l four
columns. That's what the
“columnspan” attribute does.
There's a “rowspan” attribute
as wel l . The “sticky” attribute
tel ls the widget where to al ign
its edges. Think of it as how the
widget fi l ls itself within the grid.
Above left is the rest of our
buttons.

Before we go any further
let's take a look at how things
wi l l work when the user presses
buttons.

Let's say the user wants to
enter 563 + 127 and get the
answer. They wi l l press or cl ick
(logical ly) 5, then 6, then 3,
then the “+,” then 1, then 2,
then 7, then the “=” buttons.
How do we handle this in code?
We have already set the
cal lbacks for the number
buttons to the funcNumButton
function. There's two ways to
handle this. We can keep the
information entered as a string
and then when we need to
convert it into a number, or we

can keep it as a number the
entire time. We wi l l use the
latter method. To do this, we
wi l l keep the value that is
already there (0 when we start)
in a variable cal led
“self.CurrentValue”, When a
number comes in, we take the
variable, multiply it by 10 and
add the new value. So, when
the user enters 5, 6 and 3, we
do the fol lowing. . .

User clicks 5 – 0 * 10 + 5

(5)

User clicks 6 – 5 * 10 + 6

(56)

User clicks 3 – 56 * 10 + 3

(563)

Of course we then display
the “self.CurrentValue” variable
in the label .

Next, the user cl icks the “+”
key. We take the value in
“self.CurrentValue” and place it
into the variable
“self.HolderValue,” and reset
the “self.CurrentValue” to 0. We
then repeat the process for the
cl icks on 1, 2 and 7. When the
user cl icks the “=” key, we
then add the values in
“self.CurrentValue” and
“self.HolderValue”, display
them, then clear both variables
to continue.

self.btnDash.grid(column = 0, row = 4)

self.btnDot.grid(column = 2, row = 4)

self.btnPlus.grid(column = 3,row = 1)

self.btnMinus.grid(column = 3, row = 2)

self.btnStar.grid(column = 3, row = 3)

self.btnDiv.grid(column=3, row = 4)

self.btnEqual.grid(column=0,row=5,columnspan = 4,sticky=NSEW)

self.btnClear.grid(column=0,row=6,columnspan = 4, sticky = NSEW)

def funcNumButton(self,val):

if self.DecimalNext == True:

self.DecimalCount += 1

self.CurrentValue = self.CurrentValue + (val * (10**self.DecimalCount))

else:

self.CurrentValue = (self.CurrentValue * 10) + val

self.DisplayIt()

full circle magazine 1 28 contents ^The Compleat Python

Above is the code to start
defining our cal lbacks.

The “funcNumButton routine
receives the value we passed
from the button press. The only
thing that is different from the
example above is what if the
user pressed the decimal
button (“.”) . Below, you' l l see
that we use a boolean variable
to hold the fact they pressed
the decimal button, and, on the
next cl ick, we deal with it.
That's what the “if
self.DecimalNext == True:” l ine
is al l about. Let's walk through
it.

The user cl icks 3, then 2,
then the decimal , then 4, to
create “32.4”. We handle the 3
and 2 cl icks through the
“funcNumButton” routine. We
check to see if self.DecimalNext
is True (which in this case it
isn't unti l the user cl icks the “.”
button). I f not, we simply
multiply the held value
(self.CurrentValue) by 10 and
add the incoming value. When
the user cl icks the “.”, the
cal lback “funcFuncButton” is
cal led with the “Dec” value. Al l
we do is set the boolean
variable “self.DecimalNext” to

def funcFuncButton(self,function):

if function =='Dec':

self.DecimalNext = True

else:

self.DecimalNext = False

self.DecimalCount = 0

if function == 'ABS':

self.CurrentValue *= 1

self.DisplayIt()

The ABS function simply takes the current value and multipl ies it by -1.
elif function == 'Add':

self.HolderValue = self.CurrentValue

self.CurrentValue = 0

self.CurrentFunction = 'Add'

The Add function copies “self.CurrentValue” into “self.HolderValue”, clears “self.CurrentValue”,
and sets the “self.CurrentFunction” to “Add”. The Subtract, Multiply and Divide functions do the
same thing with the proper keyword being set in “self.CurrentFunction”.

elif function == 'Subtract':

self.HolderValue = self.CurrentValue

self.CurrentValue = 0

self.CurrentFunction = 'Subtract'

elif function == 'Multiply':

self.HolderValue = self.CurrentValue

self.CurrentValue = 0

self.CurrentFunction = 'Multiply'

elif function == 'Divide':

self.HolderValue = self.CurrentValue

self.CurrentValue = 0

self.CurrentFunction = 'Divide'

The “Eq” function (Equals) is where the “magic” happens. I t wi l l be easy for you to understand
the fol lowing code by now.

elif function == 'Eq':

if self.CurrentFunction == 'Add':

self.CurrentValue += self.HolderValue

elif self.CurrentFunction == 'Subtract':

self.CurrentValue = self.HolderValue self.CurrentValue

elif self.CurrentFunction == 'Multiply':

self.CurrentValue *= self.HolderValue

elif self.CurrentFunction == 'Divide':

self.CurrentValue = self.HolderValue / self.CurrentValue

self.DisplayIt()

self.CurrentValue = 0

self.HolderValue = 0

PROGRAM IN PYTHON ‐ PART 25

full circle magazine 1 29 contents ^The Compleat Python

True. When the user cl icks the
4, we wi l l test the
“self.DecimalNext” value and,
since it's true, we play some
magic. First, we increment the
self.DecimalCount variable.
This tel ls us how many decimal
places we are working with. We
then take the incoming value,
multiply it by (10**-
self.DecimalCount). Using this
magic operator, we get a
simple “raised to the power of”
function. For example 10**2
returns 100. 10**-2 returns
0.01. Eventual ly, using this
routine wi l l result in a rounding
issue, but for our simple
calculator, it wi l l work for most
reasonable decimal numbers.
I ' l l leave it to you to work out a
better function. Think of this as
your homework for this month.

The “funcClear” routine
simply clears the two holding
variables, then sets the display.

def funcClear(self):

self.CurrentValue = 0

self.HolderValue = 0

self.DisplayIt()

Now the functions. We've

already discussed what
happens with the function
'Dec' . We set this one up first
with the “if” statement. We go
to the “else,” and if the
function is anything else, we
clear the “self.DecimalNext”
and “self.DecimalCount”
variables.

The next set of steps are
shown on the previous page
(right hand box).

The DisplayIt routine simply
sets the value in the display
label . Remember we told the
label to “monitor” the variable
“self.CurrentDisplay”.
Whenever it changes, the label
automatical ly changes the
display to match. We use the
“.set” method to change the
value.

def DisplayIt(self):

print('CurrentValue = {0}

HolderValue =

{1}'.format(self.CurrentValue

,self.HolderValue))

self.CurrentDisplay.set(self.

CurrentValue)

Final ly we have our startup
l ines.

if __name__ == '__main__':

StartUp()

Now you can run the
program and give it a test.

As always, the code for this
article can be found at
PasteBin. Examples 1, 2 and 3
are at:
http: //pastebin.com/mBAS1Um
m and the Calc.py example is
at:
http: //pastebin.com/LbMibF0u

Next month, we wi l l continue
looking at Tkinter and its
wealth of widgets. In a future
article, we' l l look at a GUI
designer for tkinter cal led
PAGE. In the meantime, have
fun playing. I think you' l l enjoy
Tkinter.

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Colorado
and has been programming since
1972. He enjoys cooking, hiking,
music, and spending time with
his fami ly. His website is
www.thedesignatedgeek.com.

PROGRAM IN PYTHON ‐ PART 25

http://www.thedesignatedgeek.com
http://pastebin.com/mBAS1Umm
http://pastebin.com/LbMibF0u

full circle magazine 1 30 contents ^The Compleat Python

HOW-TO
Written by Greg Walters

Program In Python - Part 26

L
ast month we discussed
tkInter and four of the
widgets avai lable:
TopLevel , Frames,

Buttons, and Labels. I a lso told
you last month, I 'd discuss how
to have a widget as a parent
other than the Toplevel widget.

So, this month, we' l l d iscuss
more on Frames, Buttons, and
Labels, and introduce
Checkboxes, Radio buttons,
Textboxes (Entry widgets),
Listboxes with a vertical
scrol lbar, and Messageboxes.
Before we get started, let's
examine some of these
widgets.

Checkboxes are considered a
many of many type selection
widget that has two options,
checked or not checked, or you
could consider it on or off. They
are usual ly used to provide a
series of options where any,
many, or al l of those options
may be selected. You can set
an event to inform you when
the checkbox has been toggled,
or just query the value of the
widget at any time.

Radiobuttons are considered
a one of many type selection
widget. I t a lso has two options,
on and off. However, they are
grouped together to provide a
set of options that logical ly can
have only one selection. You
can have multiple groups of
Radiobuttons that, if properly
programmed, won't interact
with each other.

A Listbox provides a l ist of
items for the user to select
from. Most times, you want the
user to select only one of the
items at a time, but there can
be occasions that you wi l l a l low
the user to select multiple
items. A scrol l bar can be
placed either horizontal ly or
vertical ly to al low the user to
easi ly look through al l the items
avai lable.

Our project wi l l consist of a
main window and seven main
frames that visual ly group our
widget sets:

• The first frame wi l l be very
basic. I t simply consists of
various labels, showing the

different rel ief
options.

• The second
wi l l contain
buttons, again
pretty simple, that
use the different
rel ief options.

• In this frame,
we' l l have two
checkboxes and a
button that can
programmatical ly toggle them,
and they wi l l send their state (1
or 0) back to the terminal
window when cl icked or
toggled.

• Next, we' l l have two
groups of three radio buttons,
each sending a message to the
terminal window when cl icked.
Each group is separate.

• This has some text or entry
boxes, which aren't new to you,
but there's also a button to
enable and disable one of
them. When disabled, no entry
can be made to that textbox.

• This is a l ist box with a
vertical scrol l bar that sends a
message to the terminal
whenever an item is selected,

and wi l l have two buttons. One
button wi l l clear the l ist box
and the other wi l l fi l l i t with
some dummy values.

• The final frame wi l l have a
series of buttons that wi l l cal l
various types of message
boxes.

So now, we' l l start our
project. Let's name it
“widgetdemo1.py”. Be sure to
save it because we wi l l be
writing our project in l i ttle
pieces, and bui ld on them to
make our ful l app. Each piece
revolves around one of the
frames. You' l l notice that I 'm
including a number of
comments as we go, so you can
refer back to what's happening.
Above are first few l ines.

widgetdemo1.py

Labels

from Tkinter import *

class Demo:

def __init__(self,master):

self.DefineVars()

f = self.BuildWidgets(master)

self.PlaceWidgets(f)

full circle magazine 1 31 contents ^The Compleat Python

The first two l ines
(comments) are the name of
the appl ication and what we
are concentrating on in this
part. Line three is our import
statement. Then we define our
class. The next l ine starts our
__init__ routine, which you al l
should be fami l iar with by now,
but, if you are just joining us,
it's the code that gets run when
we instantiate the routine in
the main portion of the
program. We are passing it the
Toplevel or root window, which
comes in as master here. The
last three l ines (so far), cal l
three different routines. The
first (DefineVars) wi l l set up
various variables we' l l need as
we go. The next (Bui ldWidgets)
wi l l be where we define our
widgets, and the last
(PlaceWidgets) is where we
actual ly place the widgets into
the root window. As we did last
time, we' l l be using the grid
geometry manager. Notice that
Bui ldWidgets wi l l return the
object “f” (which is our root
window), and we' l l pass that
along to the PlaceWidgets
routine.

Above right is our
Bui ldWidgets routine. Each of

the l ines that start with “self. ”
have been spl it for two reasons.
First, i t's good practice to keep
the l ine length to 80 characters
or less. Secondly, it makes it
easier on our wonderful editor.
You can do two things. One, just
make each l ine long, or keep it
as is. Python lets us spl it l ines
as long as they are within
parentheses or brackets. As I
said earl ier, we are defining the
widgets before we place them
in the grid. You' l l notice when
we do the next routine, that we
can also define a widget at the
time we place it in the grid, but
defining it before we put it in
the grid in a routine l ike this

makes it easier to keep track of
everything, since we are doing
(most of) the definitions in this
routine.

So, first we define our
master frame. This is where we
wi l l be putting the rest of our
widgets. Next, we define a chi ld
(of the master frame) frame
that wi l l hold five labels, and
cal l i t lblframe. We set the
various attributes of the frame
here. We set the rel ief to
'SUNKEN' , a padding of 3 pixels
on left and right (padx), and 3
pixels on the top and bottom
(pady). We also set the
borderwidth to 2 pixels so that
its sunken rel ief is noticeable.

By default, the borderwidth is
set to 0, and the effect of being
sunken won't be noticed.
Final ly, we set the total width of
the frame to 500 pixels.

Next, we define each label
widget that we wi l l use. We set
the parent as self. lblframe, and
not to frame. This way al l the
labels are chi ldren of lblframe,
and lblframe is a chi ld of frame.
Notice that each definition is
pretty much the same for al l
five of the labels except the
name of the widget (lbl1, lbl2 ,
etc), the text, and the rel ief or
visual effect. Final ly, we return
the frame back to the cal l ing
routine (__init__).

def BuildWidgets(self,master):

Define our widgets

frame = Frame(master)

Labels

self.lblframe = Frame(frame,relief = SUNKEN,padx = 3, pady = 3,

borderwidth = 2, width = 500)

self.lbl1 = Label(self.lblframe,text="Flat Label",relief = FLAT,

width = 13,borderwidth = 2)

self.lbl2 = Label(self.lblframe,text="Sunken Label", relief = SUNKEN,

width = 13, borderwidth = 2)

self.lbl3 = Label(self.lblframe,text="Ridge Label", relief = RIDGE, width = 13,

borderwidth = 2)

self.lbl4 = Label(self.lblframe,text="Raised Label", relief = RAISED,

width = 13, borderwidth = 2)

self.lbl5 = Label(self.lblframe,text="Groove Label", relief = GROOVE,

width = 13, borderwidth = 2)

return frame

HOWTO ‐ PROGRAM IN PYTHON ‐ PART 26

full circle magazine 1 32 contents ^The Compleat Python

The fol lowing page (top
right) shows our PlaceWidgets
routine.

We get the frame object in
as a parameter cal led master.
We assign that to 'frame' to
simply be consistent with what
we did in the Bui ldWidgets
routine. Next, we set our main
grid up (frame.grid(column = 0,
row = 0)). I f we don't do this,
nothing works correctly. Then
we start putting our widgets
into the grid locations. First we
put the frame (lblframe) that
holds al l our labels, and set its
attributes. We put it in column
0, row 1, set the padding to 5
pixels on al l sides, tel l i t to span
5 columns (left and right), and
final ly use the “sticky” attribute
to force the frame to expand
ful ly to the left and right (“WE”,
or West and East). Now comes
the part that sort of breaks the
rule that I told you about. We
are placing a label as the first
widget in the frame, but we
didn't define it ahead of time.
We define it now. We set the
parent to lblframe, just l ike the
other labels. We set the text to
“Labels | ” , the width to 15, and
the anchor to east ('e') . I f you
remember from last time, using

the anchor attribute, we
can set where in the
widget the text wi l l
d isplay. In this case, it's
along the right border.
Now the fun part. Here
we define the grid
location (and any other
grid attributes we need
to), simply by appending
“.grid” at the end of the
label definition.

Next, we lay out al l of
our other labels in the
grid - starting at column 1, row
0.

Here is our DefineVars
routine. Notice that we simply
use the pass statement for
now. We' l l be fi l l ing it in later
on, and we don't need it for this
part:

def DefineVars(self):

Define our resources

pass

And lastly we put in our
main routine code:

root = Tk()

root.geometry('750x40+150+150

')

root.title("Widget Demo 1")

demo = Demo(root)

root.mainloop()

First, we instantiate an
instance of Tk. Thern we set
the size of the main window to
750 pixels wide by 40 pixels
high, and locate it at 150 pixels
from the left and top of the
screen. Then we set the title of
the window and instantiate our
Demo object, and final ly cal l
the Tk mainloop.

Give it a try. You should see

the five labels plus the “last
minute” label in various
glorious effects.

Buttons
Now save what you have as

widgetdemo1a.py, and let's
add some buttons. Since we
bui lt our base program to be
added to, we' l l simply add the
parts that apply. Let's start with

HOWTO ‐ PROGRAM IN PYTHON ‐ PART 26
def PlaceWidgets(self, master):

frame = master

Place the widgets

frame.grid(column = 0, row = 0)

Place the labels

self.lblframe.grid(column = 0, row = 1, padx = 5, pady = 5,

columnspan = 5,sticky='WE')

l = Label(self.lblframe,text='Labels |',width=15,

anchor='e').grid(column=0,row=0)

self.lbl1.grid(column = 1, row = 0, padx = 3, pady = 5)

self.lbl2.grid(column = 2, row = 0, padx = 3, pady = 5)

self.lbl3.grid(column = 3, row = 0, padx = 3, pady = 5)

self.lbl4.grid(column = 4, row = 0, padx = 3, pady = 5)

self.lbl5.grid(column = 5, row = 0, padx = 3, pady = 5)

Place the buttons

self.btnframe.grid(column=0, row = 2, padx = 5,

pady = 5, columnspan = 5,sticky = 'WE')

l = Label(self.btnframe,text='Buttons |',width=15,

anchor='e').grid(column=0,row=0)

self.btn1.grid(column = 1, row = 0, padx = 3, pady = 3)

self.btn2.grid(column = 2, row = 0, padx = 3, pady = 3)

self.btn3.grid(column = 3, row = 0, padx = 3, pady = 3)

self.btn4.grid(column = 4, row = 0, padx = 3, pady = 3)

self.btn5.grid(column = 5, row = 0, padx = 3, pady = 3)

full circle magazine 1 33 contents ^The Compleat Python

the Bui ldWidgets routine. After
the labels definitions, and
before the “return frame” l ine,
add what is shown on the next
page, top right.

Nothing real ly new here.
We've defined the buttons, with
their attributes, and set their
cal lbacks via the .bind
configuration. Notice that we
are using lambda to send the
values 1 through 5 based on
which button is cl icked. In the
cal lback, we' l l use that so we
know which button we are
deal ing with. Now we' l l work in
the PlaceWidgets routine. Put
the code below after the last
label placement.

Once again, nothing real ly
new here, so we' l l move on.
Bottom right is our cal lback
routine. Put it after the
DefineVars routine.

Again, nothing real ly fancy
here. We just use a series of
IF/ELIF routines to print what
button was cl icked. The main
thing to look at here (when we
run the program) is that the
sunken button doesn't “move”
when you cl ick on it. You would
not usual ly use the sunken

rel ief unless you
were making a
button that stays
“down” when you
cl ick it. Final ly, we
need to tweak the
geometry
statement to
support the extra
widgets we put in:

root.geometry('750

x110+150+150')

Ok. Al l done with
this one. Save it
and run it.

Now save this as
widgetdemo1b.py, and we' l l
move on to checkboxes.

Checkboxes
As I said earl ier, this part of

the demo has a normal button
and two checkboxes. The first
checkbox is what you would
normal ly expect a checkbox to
look l ike. The second is more
l ike a “sticky” button - when it's
not selected (or checked), i t
looks l ike a normal button.
When you select it, i t looks l ike
a button that is stuck down. We
can do this by simply setting
the indicatoron attribute to

False. The “normal” button wi l l
toggle the checkboxes from
checked to unchecked, and vice
versa, each time you cl ick the
button. We get to do this
programmatical ly by cal l ing the
.toggle method attached to the
checkbox. We bind the left

mouse button cl ick event
(button release) to a function
so we can send a message (in
this case) to the terminal . In
addition to al l of this, we are
setting two variables (one for
each of the checkboxes) that
we can query at any time. In

Buttons

self.btnframe = Frame(frame,relief = SUNKEN,padx = 3, pady = 3,

borderwidth = 2, width = 500)

self.btn1 = Button(self.btnframe,text="Flat Button",

relief = FLAT, borderwidth = 2)

self.btn2 = Button(self.btnframe,text="Sunken Button",

relief = SUNKEN, borderwidth = 2)

self.btn3 = Button(self.btnframe,text="Ridge Button",

relief = RIDGE, borderwidth = 2)

self.btn4 = Button(self.btnframe,text="Raised Button",

relief = RAISED, borderwidth = 2)

self.btn5 = Button(self.btnframe,text="Groove Button",

relief = GROOVE, borderwidth = 2)

self.btn1.bind('<ButtonRelease1>',lambda e: self.BtnCallback(1))

self.btn2.bind('<ButtonRelease1>',lambda e: self.BtnCallback(2))

self.btn3.bind('<ButtonRelease1>',lambda e: self.BtnCallback(3))

self.btn4.bind('<ButtonRelease1>',lambda e: self.BtnCallback(4))

self.btn5.bind('<ButtonRelease1>',lambda e: self.BtnCallback(5))

def BtnCallback(self,val):

if val == 1:

print("Flat Button Clicked...")

elif val == 2:

print("Sunken Button Clicked...")

elif val == 3:

print("Ridge Button Clicked...")

elif val == 4:

print("Raised Button Clicked...")

elif val == 5:

print("Groove Button Clicked...")

HOWTO ‐ PROGRAM IN PYTHON ‐ PART 26

full circle magazine 1 34 contents ^The Compleat Python

HOWTO ‐ PROGRAM IN PYTHON ‐ PART 26
this case, each time the
checkbox is cl icked we query
this value and print it. Pay
attention to the variable
portion of the code. It is used in
many widgets.

Under the Bui ldWidget
routine, after the button code
we just put in and before the
return statement, put the code
shown on the next page, top
right.

Again, you have seen al l of
this before. We create the
frame to hold our widgets. We
set up a button and two check
boxes. Let's place them now
using the code on the next
page, middle right.

Now we define the two
variables that we wi l l use to
monitor the value of each
check box. Under DefineVars,
comment out the pass
statement, and add this. . .

self.Chk1Val = IntVar()

self.Chk2Val = IntVar()

After the button cal lback
return, put the text shown
bottom right.

And final ly replace the
geometry statement with this:

root.geometry('750x

170+150+150')

Save and run.
Save it as
widgetdemo1c.py,
and let's do radio
buttons.

Radiobuttons
I f you are old

enough to remember
car radios with push
buttons to select the
station presets, you' l l
understand why
these are cal led
Radiobuttons. When
using radiobuttons,
the variable attribute
is very important.
This is what groups
the radiobuttons

Check Boxes

self.cbframe = Frame(frame, relief = SUNKEN, padx = 3, pady = 3,

borderwidth = 2, width = 500)

self.chk1 = Checkbutton(self.cbframe, text = "Normal Checkbox",

variable=self.Chk1Val)

self.chk2 = Checkbutton(self.cbframe, text = "Checkbox",

variable=self.Chk2Val,indicatoron = False)

self.chk1.bind('<ButtonRelease1>',lambda e: self.ChkBoxClick(1))

self.chk2.bind('<ButtonRelease1>',lambda e: self.ChkBoxClick(2))

self.btnToggleCB = Button(self.cbframe,text="Toggle Cbs")

self.btnToggleCB.bind('<ButtonRelease1>',self.btnToggle)

Place the Checkboxes and toggle button

self.cbframe.grid(column = 0, row = 3, padx = 5, pady = 5,

columnspan = 5,sticky = 'WE')

l = Label(self.cbframe,text='Check Boxes |',width=15,

anchor='e').grid(column=0,row=0)

self.btnToggleCB.grid(column = 1, row = 0, padx = 3, pady = 3)

self.chk1.grid(column = 2, row = 0, padx = 3, pady = 3)

self.chk2.grid(column = 3, row = 0, padx = 3, pady = 3)

def btnToggle(self,p1):

self.chk1.toggle()

self.chk2.toggle()

print("Check box 1 value is {0}".format(self.Chk1Val.get()))

print("Check box 2 value is {0}".format(self.Chk2Val.get()))

def ChkBoxClick(self,val):

if val == 1:

print("Check box 1 value is {0}".format(self.Chk1Val.get()))

elif val == 2:

print("Check box 2 value is {0}".format(self.Chk2Val.get()))

full circle magazine 1 35 contents ^The Compleat Python

HOWTO ‐ PROGRAM IN PYTHON ‐ PART 26
together. In this demo, the first
group of buttons is grouped by
the variable named self.RBVal .
The second is grouped by the
variable self.RBValue2. We also
need to set the value attribute
at design time. This ensures

that the buttons wi l l return a
value that makes sense
whenever they are cl icked.

Back to Bui ldWidgets, and,
just before the return
statement, add the code shown
on the fol lowing page.

One thing of note here.
Notice the “last minute” label
definitions in the PlaceWidget
routine. These long l ines are
broken up to show how to use
parens to al low our long l ines to
be formatted nicely in our code,

and sti l l function correctly.

In DefineVars add:

self.RBVal = IntVar()

Add the cl ick routines:

def RBClick(self):

Radio Buttons

self.rbframe = Frame(frame, relief = SUNKEN, padx = 3, pady = 3, borderwidth = 2, width = 500)

self.rb1 = Radiobutton(self.rbframe, text = "Radio 1", variable = self.RBVal, value = 1)

self.rb2 = Radiobutton(self.rbframe, text = "Radio 2", variable = self.RBVal, value = 2)

self.rb3 = Radiobutton(self.rbframe, text = "Radio 3", variable = self.RBVal, value = 3)

self.rb1.bind('<ButtonRelease1>',lambda e: self.RBClick())

self.rb2.bind('<ButtonRelease1>',lambda e: self.RBClick())

self.rb3.bind('<ButtonRelease1>',lambda e: self.RBClick())

self.rb4 = Radiobutton(self.rbframe, text = "Radio 4", variable = self.RBVal2, value = "11")

self.rb5 = Radiobutton(self.rbframe, text = "Radio 5", variable = self.RBVal2, value = "12")

self.rb6 = Radiobutton(self.rbframe, text = "Radio 6", variable = self.RBVal2, value = "13")

self.rb4.bind('<ButtonRelease1>',lambda e: self.RBClick2())

self.rb5.bind('<ButtonRelease1>',lambda e: self.RBClick2())

self.rb6.bind('<ButtonRelease1>',lambda e: self.RBClick2())

In PlaceWidgets, add this:

Place the Radio Buttons and select the first one

self.rbframe.grid(column = 0, row = 4, padx = 5, pady = 5, columnspan = 5,sticky = 'WE')

l = Label(self.rbframe,

text='Radio Buttons |',

width=15,anchor='e').grid(column=0,row=0)

self.rb1.grid(column = 2, row = 0, padx = 3, pady = 3, sticky = 'EW')

self.rb2.grid(column = 3, row = 0, padx = 3, pady = 3, sticky = 'WE')

self.rb3.grid(column = 4, row = 0, padx = 3, pady = 3, sticky = 'WE')

self.RBVal.set("1")

l = Label(self.rbframe,text='| Another Set |',

width = 15,

anchor = 'e').grid(column = 5, row = 0)

self.rb4.grid(column = 6, row = 0)

self.rb5.grid(column = 7, row = 0)

self.rb6.grid(column = 8, row = 0)

self.RBVal2.set("11")

full circle magazine 1 36 contents ^The Compleat Python

print("Radio Button

clicked Value is

{0}".format(self.RBVal.get())

)

def RBClick2(self):

print("Radio Button

clicked Value is

{0}".format(self.RBVal2.get()

))

and, final ly, rework the
geometry statement as fol lows.

root.geometry('750x220+150+15

0')

Save the project as
widgetdemo1d.py, and run it.
Now, we' l l start working on
standard textboxes (or entry
widgets).

Entry
Again, we've used textboxes

or entry widgets in various GUI
flavors before. However this
time, as I said earl ier, we wi l l
show how to keep the user
from making changes to the
textbox by disabl ing it. This is
helpful if you are showing some
data, and al lowing the user to
change it only when in the
“edit” mode. By now, you
should be pretty sure that the
first thing we need to do is add

code (shown right) to
the Bui ldWidget
routine.

Listbox
Next we' l l work

our l istbox. Starting
in Bui ldWidgets, add
the code from the
fol lowing page, right
side.

As usual , we
create our frame.
Then we create our
vertical scrol l bar. We
do this before we
create the l ist box,
because we have to
reference the
scrol lbar ' .set'
method. Notice the
attribute 'height =
5' . This forces the
l istbox to show 5
items at a time. In
the .bind statement,
we use
'<<ListboxSelect>>'
as the event. I t's
cal led a virtual
event, since it's not
real ly an “officia l”
event.

HOWTO ‐ PROGRAM IN PYTHON ‐ PART 26
Textboxes

self.tbframe = Frame(frame, relief = SUNKEN, padx = 3, pady =

3, borderwidth = 2, width = 500)

self.txt1 = Entry(self.tbframe, width = 10)

self.txt2 = Entry(self.tbframe, disabledbackground="#cccccc",

width = 10)

self.btnDisable = Button(self.tbframe, text =

"Enable/Disable")

self.btnDisable.bind('<ButtonRelease1>',

self.btnDisableClick)

Next, add this code to the PlaceWidget routine:
Place the Textboxes

self.tbframe.grid(column = 0, row = 5, padx = 5, pady = 5,

columnspan = 5,sticky = 'WE')

l = Label(self.tbframe,text='Textboxes |',width=15,

anchor='e').grid(column=0,row=0)

self.txt1.grid(column = 2, row = 0, padx = 3, pady = 3)

self.txt2.grid(column = 3, row = 0, padx = 3, pady = 3)

self.btnDisable.grid(column = 1, row = 0, padx = 3, pady = 3)

Add this l ine to the bottom of the DefineVars routine:
self.Disabled = False

Now, add the function that responds to the button cl ick event:
def btnDisableClick(self,p1):

if self.Disabled == False:

self.Disabled = True

self.txt2.configure(state='disabled')

else:

self.Disabled = False

self.txt2.configure(state='normal')

And final ly, rework the geometry statement:
root.geometry('750x270+150+150')

Save it as widgetdemo1d.py, and run it.

full circle magazine 1 37 contents ^The Compleat Python

HOWTO ‐ PROGRAM IN PYTHON ‐ PART 26

Now, we' l l deal with the
additional code for the
PlaceWidgets routine, and
that's shown on the fol lowing
page, left side.

Message Dialogs
This section is simply a

series of “normal” buttons that
wi l l cal l various types of
Message Dialogs. We've done
them before in a different GUI

List Box Stuff

self.lstframe = Frame(frame,

relief = SUNKEN,

padx = 3,

pady = 3,

borderwidth = 2,

width = 500

)

Scrollbar for list box

self.VScroll = Scrollbar(self.lstframe)

self.lbox = Listbox(self.lstframe,

height = 5,

yscrollcommand = self.VScroll.set)

default height is 10

self.lbox.bind('<<ListboxSelect>>',self.LBoxSelect)

self.VScroll.config(command =

self.lbox.yview)

self.btnClearLBox = Button(

self.lstframe,

text = "Clear List",

command = self.ClearList,

width = 11

)

self.btnFillLBox = Button(

self.lstframe,

text = "Fill List",

command = self.FillList,

width = 11

)

<<ListboxSelect>> is virtual event

Fill the list box

self.FillList()

Place the Listbox and support buttons

self.lstframe.grid(column = 0, row = 6, padx = 5,

pady = 5, columnspan = 5,sticky = 'WE')

l = Label(self.lstframe,text='List Box |',width=15,

anchor='e').grid(column=0,row=0,rowspan=2)

self.lbox.grid(column = 2, row = 0,rowspan=2)

self.VScroll.grid(column = 3, row = 0,rowspan = 2,

sticky = 'NSW')

self.btnClearLBox.grid(column = 1, row = 0, padx =

5)

self.btnFillLBox.grid(column = 1, row = 1, padx =

5)

In DefineVars add this. . .
List for List box items

self.examples = ['Item One','Item Two','Item

Three','Item Four']

And add the fol lowing support routines:
def ClearList(self):

self.lbox.delete(0,END)

def FillList(self):

Note, clear the listbox first...no check is done

for ex in self.examples:

self.lbox.insert(END,ex)

insert([0,ACTIVE,END],item)

def LBoxSelect(self,p1):

print("Listbox Item clicked")

items = self.lbox.curselection()

selitem = items[0]

print("Index of selected item =

{0}".format(selitem))

print("Text of selected item =

{0}".format(self.lbox.get(selitem)))

Final ly, update the geometry l ine.
root.geometry('750x370+150+150')

Save this as widgetdemo1e.py, and run it. Now we wil l do our last
modifications to our appl ication.

full circle magazine 1 38 contents ^The Compleat Python

HOWTO ‐ PROGRAM IN PYTHON ‐ PART 26
toolkit. We wi l l explore only 5
different types, but there are
more. In this section, we' l l look
at Info, Warning, Error,
Question, and Yes/No dialogs.
These are very useful when you
need to pass some information
to your user in a rather big way.
In the Bui ldWidgets routine add
the code shown below.

Here is the support routine.
For the first three (Info,
Warning, and Error), you simply
cal l ' tkMessageBox.showinfo' ,
or whichever you need, with
two parameters. First is the title
for the message dialog, and
second is the actual message
you want to show. The icon is
handled for you by tkinter. For
the dialogs that provide a
response (question, yes/no), we
provide a variable that receives
the value of which button was
cl icked. In the case of the
question dialog, the response is
either “yes” or “no”, and, in the
case of the yes/no dialog, the
response is either “True” or
“False”.

Final ly, modify the geometry
l ine:
root.geometry('750x490+550+15

0')

Save this as
widgetdemo1f.py, and play
away.

I 've put the code for
widgetdemo1f.py on pastebin
at

http: //pastebin.com/ZqrgHcdG.

Buttons to show message boxes and dialogs

self.mbframe = Frame(frame,relief = SUNKEN,padx = 3, pady = 3, borderwidth = 2)

self.btnMBInfo = Button(self.mbframe,text = "Info")

self.btnMBWarning = Button(self.mbframe,text = "Warning")

self.btnMBError = Button(self.mbframe,text = "Error")

self.btnMBQuestion = Button(self.mbframe,text = "Question")

self.btnMBYesNo = Button(self.mbframe,text = "Yes/No")

self.btnMBInfo.bind('<ButtonRelease1>', lambda e: self.ShowMessageBox(1))

self.btnMBWarning.bind('<ButtonRelease1>', lambda e: self.ShowMessageBox(2))

self.btnMBError.bind('<ButtonRelease1>', lambda e: self.ShowMessageBox(3))

self.btnMBQuestion.bind('<ButtonRelease1>', lambda e: self.ShowMessageBox(4))

self.btnMBYesNo.bind('<ButtonRelease1>', lambda e: self.ShowMessageBox(5))

Now, add the code for the PlaceWidgets routine:

Messagebox buttons and frame

self.mbframe.grid(column = 0,row = 7, columnspan = 5, padx = 5, sticky = 'WE')

l = Label(self.mbframe,text='Message Boxes |',width=15, anchor='e').grid(column=0,row=0)

self.btnMBInfo.grid(column = 1, row = 0, padx= 3)

self.btnMBWarning.grid(column = 2, row = 0, padx= 3)

self.btnMBError.grid(column = 3, row = 0, padx= 3)

self.btnMBQuestion.grid(column = 4, row = 0, padx= 3)

self.btnMBYesNo.grid(column = 5, row = 0, padx= 3)

def ShowMessageBox(self,which):

if which == 1:

tkMessageBox.showinfo('Demo','This is an INFO messagebox')

elif which == 2:

tkMessageBox.showwarning('Demo','This is a WARNING messagebox')

elif which == 3:

tkMessageBox.showerror('Demo','This is an ERROR messagebox')

elif which == 4:

resp = tkMessageBox.askquestion('Demo','This is a QUESTION messagebox?')

print('{0} was pressed...'.format(resp))

elif which == 5:

resp = tkMessageBox.askyesno('Demo','This is a YES/NO messagebox')

print('{0} was pressed...'.format(resp))

http://pastebin.com/ZqrgHcdG

full circle magazine 1 39 contents ^The Compleat Python

HOW-TO
Written by Greg Walters

Program In Python - Part 27

I
f you've ever waited in l ine
to buy a movie ticket,
you've been in a queue. If
you've ever had to wait in

traffic at rush hour, you've
been in a queue. If you've ever
waited in a government office
with one of those l ittle tickets
that says you’re number 98,
and the sign says "Now serving
number 42," you've been in a
queue.

In the world of computers,
queues are common. As a user,
most times, you don't have to
think about them. They are
invisible to the user. But if you
ever have to deal with realtime
events, you wi l l eventual ly
have to deal with them. It's just
data of one type or another,
waiting in l ine for its turn to be
processed. Once it's in the
queue, it's there unti l i t gets
accessed, and then it's gone.
You can't get the value of the
next data item unless you pul l
i t out of the queue. You can't,
for example, get the value of
the 15th item in the queue. You
have to access the other 14
items first. Once it's accessed,

it's out of the queue. It's gone,
and unless you save it to a
long-term variable, there's no
way to get the data back.

There are multiple types of
queues. The most common
ones are FIFO (First In, First
Out), LIFO (Last In, First Out),
Priority, and Ring. We' l l ta lk
about ring queues another
time.

FIFO queues are what we
see in everyday l ife. Al l of the
examples I l isted above are
FIFO queues. The first person in
the l ine gets handled first,
moves on, then everyone
moves up one spot in the l ine.
In a FIFO buffer, there is (within
reason) no l imit to the number
of items it can hold. They just
stack up in order. As an item is
handled, it is pul led out (or
dequeued) of the queue, and
everything moves closer to the
front of the queue by one
position.

LIFO Queues are less
common in l ife, but there are
sti l l real-world examples. The
one that comes to mind most

quickly is a stack of dishes in
your kitchen cabinet. When the
dishes are washed and dryed,
they get stacked in the cabinet.
The last one in on the stack is
the first one that comes out to
be used. Al l the rest have to
wait, maybe for days, to be
used. It's a good thing that the
movie ticket queue is FIFO, isn't
it? Like the FIFO queue, within
reason, there is no l imit to the
size of a LIFO queue. The first
item in the queue has to wait
as newer items are pul led out
of the buffer (plates pul led off
the stack) unti l i t's the only one
left.

Priority queues are a bit
harder for many people to
imagine right off the bat. Think
of a company that has one
printer. Everyone uses that one
printer. The print jobs are
handled by department priority.
Payrol l has a higher priority
(and thankful ly so) than say,
you, a programmer. You have a
higher priority (and thankful ly
so) than the receptionist. So in
short, the data that has a
higher priority gets handled,

and gets out of the queue,
before data that has a lower
priority.

FIFO
FIFO queues are easy to

visual ize in terms of data. A
python l ist is an easy mental
representation. Consider this
l ist. . .

[1,2,3,4,5,6,7,8,9,10]

There are 10 items in the
l ist. As a l ist, you access them
by index. However, in a queue,
you can't access the items by
index. You have to deal with the
next one in the l ine and the l ist
isn't static. I t's VERY dynamic.
As we request the next item in
the queue, it gets removed. So
using the example above, you
request one item from the

“
There are multiple

types of queues.
The most common
ones are FIFO (First
In, First Out), LIFO
(Last In, First Out),

Priority, and Ring.

full circle magazine 1 40 contents ^The Compleat Python

HOWTO ‐ PROGRAM IN PYTHON ‐ PART 27

queue. It returns the first item
(1) and the queue then looks
l ike this.

[2,3,4,5,6,7,8,9,10]

Request two more and you
get 2, then 3, returned, and
then the queue looks l ike this.

[4,5,6,7,8,9,10]

I 'm sure you get the idea.
Python provides a simple
l ibrary, surprisingly enough,
cal led Queue, that works wel l
for smal l -to-medium sized
queues, up to about 500 items.
Above is a simple example to
show it.

In this example, we initia l ize
the queue (fifo =
Queue.Queue()) then put the
numbers 0 through 4 into our
queue (fifo.put(i)) . We then use
the internal method .get() to
pul l i tems off the queue unti l
the queue is empty, .empty() .
What is returned is 0,1,2 ,3,4.
You can also set the maximum

number of items that the queue
can handle by initia l izing it with
the size of the queue l ike this.

fifo = Queue.Queue(300)

Once the maximum number
of items have been loaded, the
Queue blocks any additional
entries going into the queue.
This has a side effect of making
the program look l ike it's
" locked" up, though. The
easiest way to get around this
is to use the Queue.ful l () check
(above right).

In this case, the queue is set
for a maximum of 12 items. As
we put items into the queue,
we start with '0' and get up to
'11' . When we hit number 12,
though, the buffer is already
ful l . Since we check to see if
the buffer is ful l before we try
to put the item in, the last item
is simply discarded.

There are other options, but
they can cause other side-

effects, and we wi l l address this
in a future article. So, for the
majority of the time, the
bottom l ine is either use a
queue with no l imit or make
sure you have more space in
your queue than you wi l l need.

LIFO

The Queue l ibrary also
supports LIFO queues. We' l l use
the above l ist as a visual
example. Setting up our queue,
it looks l ike this:

[1,2,3,4,5,6,7,8,9,10]

Pul l ing three items from the
queue, it then looks l ike this:

[1,2,3,4,5,6,7]

Remember that in a LIFO
queue, items are removed in a
LAST-in FIRST-out order. Here's
the simple example modified
for a LIFO queue:

When we run it, we get
"4,3,2 ,1,0" .

As with the FIFO queue, you
have the abi l i ty to set the size
of the queue, and you can use
the .ful l () check.

PRIORITY
While it's not often used, a

Priority queue can sometimes
be helpful . I t's pretty much the
same as the other queue
structures, but we need to pass
a tuple that holds both the
priority and the data. Here's an
example using the Queue

import Queue

fifo = Queue.Queue()

for i in range(5):

fifo.put(i)

while not fifo.empty():

print fifo.get()

import Queue

fifo = Queue.Queue(12)

for i in range(13):

if not fifo.full():

fifo.put(i)

while not fifo.empty():

print fifo.get()

import Queue

lifo = Queue.LifoQueue()

for i in range(5):

lifo.put(i)

while not lifo.empty():

print lifo.get()

pq = Queue.PriorityQueue()

pq.put((3,'Medium 1'))

pq.put((4,'Medium 2'))

pq.put((10,'Low'))

pq.put((1,'high'))

while not pq.empty():

nex = pq.get()

print nex

print nex[1]

(1, 'high')

high

(3, 'Medium')

Medium

(4, 'Medium')

Medium

(10, 'Low')

Low

full circle magazine 1 41 contents ^The Compleat Python

l ibrary:

First, we initia l ize the queue.
Then we put four items into the
queue. Notice we use the
format (priority, data) to put
our data. The l ibrary sorts our
data in a ascending order
based on the priority value.
When we pul l the data, it
comes back as a tuple, just l ike
we put it in. You can address by
index the data. What we get
back is. . .

In our first two examples, we
simply printed the data that
comes out of our queue. That's
fine for these examples, but in
real-world programming, you
probably need to do something
with that information as soon
as it comes out of the queue,
otherwise it's lost. When we
use the 'print fifo.get' , we send
the data to the terminal and
then it's destroyed. Just
something to keep in mind.

Now let's use some of what
we've already learned about
tkinter to create a queue demo
program. This demo wil l have
two frames. The first wi l l
contain (to the user) three
buttons. One for a FIFO queue,

one for a LIFO queue, and one
for a PRIORITY queue. The
second frame wil l contain an
entry widget, two buttons, one
for adding to the queue, and
one for pul l ing from the queue,
and three labels, one showing
when the queue is empty, one
showing when the queue is ful l ,
and one to display what has
been pul led from the queue.
We' l l a lso be writing some code
to automatical ly center the
window within the screen.
Above left is the beginning of
the code.

Here we have our imports
and the beginning of our class.
As before, we create the
__init__ routine with the
DefineVars, Bui ldWidgets, and
PlaceWidgets routines. We also
have a routine cal led
ShowStatus (above right) which

HOWTO ‐ PROGRAM IN PYTHON ‐ PART 27
import sys

from Tkinter import *

import ttk

import tkMessageBox

import Queue

class QueueTest:

def __init__(self,master = None):

self.DefineVars()

f = self.BuildWidgets(master)

self.PlaceWidgets(f)

self.ShowStatus()

def DefineVars(self):

self.QueueType = ''

self.FullStatus = StringVar()

self.EmptyStatus = StringVar()

self.Item = StringVar()

self.Output = StringVar()

Define the queues

self.fifo = Queue.Queue(10)

self.lifo = Queue.LifoQueue(10)

self.pq = Queue.PriorityQueue(10)

self.obj = self.fifo

def BuildWidgets(self,master):

Define our widgets

frame = Frame(master)

self.f1 = Frame(frame,

relief = SUNKEN,

borderwidth=2,

width = 300,

padx = 3,

pady = 3

)

self.btnFifo = Button(self.f1,

text = "FIFO"

)

self.btnFifo.bind('<ButtonRelease1>',

lambda e: self.btnMain(1)

)

self.btnLifo = Button(self.f1,

text = "LIFO"

)

self.btnLifo.bind('<ButtonRelease1>',

lambda e: self.btnMain(2)

)

self.btnPriority = Button(self.f1,

text = "PRIORITY"

)

self.btnPriority.bind('<ButtonRelease1>',

lambda e: self.btnMain(3)

)

full circle magazine 1 42 contents ^The Compleat Python

wil l . . . wel l , show the status of
our queue.

We now create our
DefineVars routine. We have
four StringVar() objects, an
empty variable cal led
QueueType, and three queue
objects - one for each of the
types of queues that we are
going to play with. We have set
the maximum size of the
queues at 10 for the purposes
of the demo. We also have
created an object cal led obj ,
and assigned it to the FIFO
queue. When we select a queue
type from the buttons, we wi l l
set this object to the queue
that we want. This way, the
queue is maintained when we
switch to another queue type
(code is on previous page,
bottom right).

Here we start the widget
definitions. We create our first
frame, the three buttons, and
their bindings. Notice we are
using the same routine to
handle the binding cal lback.
Each button sends a value to
the cal lback routine to denote
which button was cl icked. We
could just as easi ly have
created a dedicated routine for

each button. However, since al l
three buttons are deal ing with a
common task, I thought it
would be good to work them as
a group (code shown right).

Next (below right), we set up
the second frame, the entry
widget, and the two buttons.
The only thing here that is out
of the ordinary is the binding
for the entry widget. Here we
bind the self.AddToQueue
routine to the <Return> key.
This way, the user doesn't have
to use the mouse to add the
data. They can just enter the
data into the entry widget, and
press <Return> if they want to.

Here (next page, bottom) is
the last three widget
definitions. Al l three are labels.
We set the textvariable
attribute to the variables we
defined earl ier. I f you
remember, when that variable
changes, so does the text in the
label . We also do something a
bit different on the lblData
label . We wi l l use a different
font to make it stand out when
we display the data pul led from
the queue. Remember that we
have to return the frame object
so it can be used in the

HOWTO ‐ PROGRAM IN PYTHON ‐ PART 27
self.f2 = Frame(frame,

relief = SUNKEN,

borderwidth=2,

width = 300,

padx = 3,

pady = 3

)

self.txtAdd = Entry(self.f2,

width=5,

textvar=self.Item

)

self.txtAdd.bind('<Return>',self.AddToQueue)

self.btnAdd = Button(self.f2,

text='Add to Queue',

padx = 3,

pady = 3

)

self.btnAdd.bind('<ButtonRelease1>',self.AddToQueue)

self.btnGet = Button(self.f2,

text='Get Next Item',

padx = 3,

pady = 3

)

self.btnGet.bind('<ButtonRelease1>',self.GetFromQueue)

self.lblEmpty = Label(self.f2,

textvariable=self.EmptyStatus,

relief=FLAT

)

self.lblFull = Label(self.f2,

textvariable=self.FullStatus,

relief=FLAT

)

self.lblData = Label(self.f2,

textvariable=self.Output,

relief = FLAT,

font=("Helvetica", 16),

padx = 5

)

return frame

full circle magazine 1 43 contents ^The Compleat Python

HOWTO ‐ PROGRAM IN PYTHON ‐ PART 27
PlaceWidget routine.

This (next page, middle) is
the beginning of the
PlaceWidgets routine. Notice
here that we put five empty
labels at the very top of the
root window. I 'm doing this to
set spacing. This is an easy way
to “cheat” and make your
window placement much
easier. We then set the first
frame, then another “cheater”
label , then the three buttons.

Here we place the second
frame, another “cheater” label ,
and the rest of our widgets.

def Quit(self):

sys.exit()

Next we have our “standard”
quit routine which simply cal ls
sys.exit() (above right).

Now our main button
cal lback routine, btnMain.
Remember we are sending in
(through the p1 parameter)
which button was cl icked. We
use the self.QueueType variable
as a reference to which queue
type we are deal ing with, then
we assign self.obj to the proper
queue, and final ly change the
title of our root window to
display the queue type we are
using. After that, we print the
queue type to the terminal

def PlaceWidgets(self, master):

frame = master

Place the widgets

frame.grid(column = 0, row = 0)

l = Label(frame,text='',relief=FLAT,width = 15, anchor = 'e').grid(column = 0, row = 0)

l = Label(frame,text='',relief=FLAT,width = 15, anchor = 'e').grid(column = 1, row = 0)

l = Label(frame,text='',relief=FLAT,width = 15, anchor = 'e').grid(column = 2, row = 0)

l = Label(frame,text='',relief=FLAT,width = 15, anchor = 'e').grid(column = 3, row = 0)

l = Label(frame,text='',relief=FLAT,width = 15, anchor = 'e').grid(column = 4, row = 0)

self.f1.grid(column = 0,row = 1,sticky='nsew',columnspan=5,padx = 5,pady = 5)

l = Label(self.f1,text='',width = 25,anchor = 'e').grid(column = 0, row = 0)

self.btnFifo.grid(column = 1,row = 0,padx = 4)

self.btnLifo.grid(column = 2,row = 0,padx = 4)

self.btnPriority.grid(column = 3, row = 0, padx = 4)

self.f2.grid(column = 0,row = 2,sticky='nsew',columnspan=5,padx = 5, pady = 5)

l = Label(self.f2,text='',width = 15,anchor = 'e').grid(column = 0, row = 0)

self.txtAdd.grid(column=1,row=0)

self.btnAdd.grid(column=2,row=0)

self.btnGet.grid(column=3,row=0)

self.lblEmpty.grid(column=2,row=1)

self.lblFull.grid(column=3,row = 1)

self.lblData.grid(column = 4,row = 0)

def btnMain(self,p1):

if p1 == 1:

self.QueueType = 'FIFO'

self.obj = self.fifo

root.title('Queue Tests FIFO')

elif p1 == 2:

self.QueueType = 'LIFO'

self.obj = self.lifo

root.title('Queue Tests LIFO')

elif p1 == 3:

self.QueueType = 'PRIORITY'

self.obj = self.pq

root.title('Queue Tests Priority')

print self.QueueType

self.ShowStatus()

full circle magazine 1 44 contents ^The Compleat Python

HOWTO ‐ PROGRAM IN PYTHON ‐ PART 27
window (you don't real ly
have to do that), and cal l
the ShowStatus routine.
Next (fol lowing page, top
right) we' l l make the
ShowStatus routine.

As you can see, it's pretty
simple. We set the label
variables to their proper
state so they display if the
queue we are using is either
ful l , empty, or somewhere in
between.

The AddToQueue routine
(next page, bottom right) is
also fairly straight-forward. We
get the data from the entry box
using the .get() function. We
then check to see if the current
queue type is a priority queue.
If so, we need to make sure it's
in the correct format. We do
that by checking for the
presence of a comma. If it isn't,
we complain to the user via an
error message box. If
everything seems correct, we
then check to see if the queue
that we are currently using is
ful l . Remember, if the queue is
ful l , the put routine is blocked
and the program wil l hang. If
everything is fine, we add the
item to the queue and update
the status.

The GetFromQueue routine
(middle right) is even easier.
We check to see if the queue is
empty so as not to run into a
blocking issue, and, if not, we
pul l the data from the queue,
show the data, and update the
status.

We are getting to the end of
our appl ication. Here is the
center window routine
(above left) . We first
get the screen width
and screen height of
the screen we are on.
We then get the width
and height of the root
window by using the
winfo_reqwidth() and
winfo_reqheight()
routines bui lt into
tkinter. These routines,
when cal led at the

def ShowStatus(self):

Check for Empty

if self.obj.empty() == True:

self.EmptyStatus.set('Empty')

else:

self.EmptyStatus.set('')

Check for Full

if self.obj.full() == True:

self.FullStatus.set('FULL')

else:

self.FullStatus.set('')

def AddToQueue(self,p1):

temp = self.Item.get()

if self.QueueType == 'PRIORITY':

commapos = temp.find(',')

if commapos == 1:

print "ERROR"

tkMessageBox.showerror('Queue Demo',

'Priority entry must be in format\r(priority,data)')

else:

self.obj.put(self.Item.get())

elif not self.obj.full():

self.obj.put(self.Item.get())

self.Item.set('')

self.ShowStatus()

def GetFromQueue(self,p1):

self.Output.set('')

if not self.obj.empty():

temp = self.obj.get()

self.Output.set("Pulled

{0}".format(temp))

self.ShowStatus()

if __name__ == '__main__':

def Center(window):

Get the width and height of the screen

sw = window.winfo_screenwidth()

sh = window.winfo_screenheight()

Get the width and height of the window

rw = window.winfo_reqwidth()

rh = window.winfo_reqheight()

xc = (swrw)/2

yc = (shrh)/2

window.geometry("%dx%d+%d+%d"%(rw,rh,xc,yc))

window.deiconify()

full circle magazine 1 45 contents ^The Compleat Python

right time, wi l l return
the width and height of
the root window based
on the widget
placement. I f you cal l i t
too early, you' l l get
data, but it won't be
what you real ly need. We then
subtract the required window
width from the screen width,
and divide it by two, and do the
same thing for the height
information. We then use that
information to set the geometry
cal l . In MOST instances, this
works wonderful ly. However,
there might be times that you
need to set the required width
and height by hand.

Final ly, we instantiate the
root window, set the base title,
instantiate the QueueTest class.
We then cal l root.after, which
waits x number of mi l l iseconds
(in this case 3) after the root
window is instantiated, and
then cal ls the Center routine.
This way, the root window has
been completely set up and is
ready to go, so we can get the
root window width and height.
You might have to tweak the
delay time a bit. Some
machines are much faster than
others. 3 works fine on my

machine, your mi leage may
vary. Last but not least, we cal l
the root window mainloop to
get the appl ication to run.

As you play with the queues,
notice that if you put some data
in one queue (let's say the FIFO
queue) then switch to another
queue (let's say the LIFO
queue), the data that was put
into the FIFO queue is sti l l there
and waiting for you. You can
completely or partia l ly fi l l a l l
three queues, then start
playing with them.

Wel l , that's it for this time.
Have fun with your queues. The
QueueTest code can be found
at
http: //pastebin.com/5BBUiDce.

HOWTO ‐ PROGRAM IN PYTHON ‐ PART 27
root = Tk()

root.title('Queue Tests

FIFO')

demo = QueueTest(root)

root.after(3,Center,root) Z e r o D o w n t i m e

Below Zero is a Co-located Server Hosting special ist in the UK.

Uniquely we only provide rack
space and bandwidth. This makes
our service more rel iable, more
flexible, more focused and more
competitively priced. We
concentrate solely on the hosting of
Co-located Servers and their
associated systems, within Scotland's Data Centres.

At the heart of our networking
infrastructure is state-of-the-art
BGP4 routing that offers optimal
data del ivery and automatic
multihomed fai lover between our
outstanding providers. Customers
may rest assured that we only use
the highest qual ity of bandwidth; our pol icy is to pay more for
the best of breed providers and because we buy in bulk this
doesn't impact our extremely competitive pricing.

At Below Zero we help you to achieve Zero Downtime.

w w w . z e r o d o w n t i m e . c o . u k

http://pastebin.com/5BBUiDce
http://www.zerodowntime.co.uk
http://belowzero.biz

full circle magazine 1 46 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg Walters PPrroogg rraa mm II nn PPyytthh oonn -- PPaa rrtt 2288

W
e are going to
explore even more
widgets provided
by tkinter. This

time we wi l l look at menus,
combo boxes, spin boxes,
separator bar, progress bars
and notebooks. Let's talk about
them one at a time.

You've seen menus in almost
every appl ication that you have
ever used. Tkinter makes it
VERY easy for us to make
menus. Combo Boxes are
simi lar to the l ist box that we
explored in the last widget
demo article, except the l ist
“pops down” instead of being
visible at al l times. Spin box
controls are great for giving a
fixed range of values that can
“scrol l” up or down. For
example, if we want the user to
be able to choose from integers
between 1 and 100, we can
easi ly use a spin box. Progress
bars are a wonderful way to
show that your appl ication
hasn't locked up when
something takes a lot of time,
l ike reading records from a

database. I t can show the
percentage of completion of a
task. There are two types of
progress bars, Determinate and
Indeterminate. You use a
determinate progress bar when
you know just how many items
you are deal ing with. I f you
don't know the number of items
or the percentage of how done
your task is at any point, you
would use the Indeterminate
version. We wi l l work with both.
Final ly a notebook widget (or
tabbed widget) is used many
times for things l ike
configuration screens. You can
logical ly group a series of
widgets on each tab.

So, let's get started. As
usual , we wi l l create a base
appl ication and bui ld on to it
with each extra widget we add.
Shown right is the first part of
our appl ication. You've seen
most of this before.

Save al l of this as
widgetdemo2a.py. Remember
we wi l l use this as the base to
bui ld the ful l demo. Now we wil l
start the process of creating the

import sys

from Tkinter import *

import ttk

Shows how to create a menu

class WidgetDemo2:

def __init__(self,master = None):

self.DefineVars()

f = self.BuildWidgets(master)

self.PlaceWidgets(f)

def DefineVars(self):

pass

And here is the bottom of our program. Again, you have
seen this before. Nothing new here.

if __name__ == '__main__':

def Center(window):

Get the width and height of the screen

sw = window.winfo_screenwidth()

sh = window.winfo_screenheight()

Get the width and height of the window

rw = window.winfo_reqwidth()

rh = window.winfo_reqheight()

xc = (swrw)/2

yc = (shrh)/2

print "{0}x{1}".format(rw,rh)

window.geometry("%dx%d+%d+%d"%(rw,rh,xc,yc))

window.deiconify()

root = Tk()

root.title('More Widgets Demo')

demo = WidgetDemo2(root)

root.after(13,Center,root)

root.mainloop()

full circle magazine 1 47 contents ^The Compleat Python

HOWTO - PROGRAM IN PYTHON - PART 28

menu. Here are the steps we
need to do. First, we define a
variable to hold the menu
instance. Like most any widget
we use, the format is. . .

OurVariable = Widget(parent,
options).

In this case, we are using
the Menu widget and we wi l l
assign it to master as the
parent. We do this under the
Bui ldWidgets routine. Next we
create another menu item, this
time cal l ing it fi lemenu. We add
commands and separators as
needed. Final ly we add it to the
menu bar and do it al l over
again unti l we are done. In our
example, we' l l have the
menubar, a Fi le pul ldown, an
Edit pul ldown and a Help
pul ldown (top right). Let's get
started.

Next (middle right) we
concentrate on the Fi le Menu.
There wi l l be five elements.
New, Open, Save, a separator
and Exit. We' l l use the
.add_command method to add
the command. Al l we real ly
need to do is cal l the method
with the text (label =) and
then provide a cal lback
function to handle when the

user cl icks the item. Final ly we
use the menubar.add_cascade
function to attach the menu to
the bar.

Notice that the Exit
command uses “root.quit” to
end the program. No cal l back
needed for that. Next we' l l
do the same thing for the
Edit and Help menus.

Notice the part in each
of the menu group
definitions that says
“tearoff=0”. I f you were to
change the “=0” to “=1”,
the menu would start with
what looks l ike a dashed
l ine and if you drag it, i t
“tears off” and creates its
own window. Whi le this
might be helpful sometime
in the future, we don't want
that here.

Last but not least, we
need to place the menu.
We don't do a normal
placement with the .grid()
function. We simply add it by
using the parent.config function
(bottom right).

Al l of this has gone in the
Bui ldWidgets routine. Now
(next page, top right) we need

def BuildWidgets(self,master):

frame = Frame(master)

#==============================

MENU STUFF

#==============================

Create the menu bar

self.menubar = Menu(master)

Create the File Pull Down, and add it to the menu bar

filemenu = Menu(self.menubar, tearoff = 0)

filemenu.add_command(label = "New", command = self.FileNew)

filemenu.add_command(label = "Open", command = self.FileOpen)

filemenu.add_command(label = "Save", command = self.FileSave)

filemenu.add_separator()

filemenu.add_command(label = "Exit", command = root.quit)

self.menubar.add_cascade(label = "File", menu = filemenu)

Create the Edit Pull Down

editmenu = Menu(self.menubar, tearoff = 0)

editmenu.add_command(label = "Cut", command = self.EditCut)

editmenu.add_command(label = "Copy", command = self.EditCopy)

editmenu.add_command(label = "Paste", command = self.EditPaste)

self.menubar.add_cascade(label = "Edit", menu = editmenu)

Create the Help Pull Down

helpmenu = Menu(self.menubar, tearoff=0)

helpmenu.add_command(label = "About", command = self.HelpAbout)

self.menubar.add_cascade(label = "Help", menu = helpmenu)

Now, display the menu

master.config(menu = self.menubar)

#==

End of Menu Stuff

#==

full circle magazine 1 48 contents ^The Compleat Python

to add a generic frame and set
the return statement before we
move on to the PlaceWidgets
routine.

Final ly (next page, bottom
right) we need to create al l the
cal lbacks we defined earl ier.
For the demo, al l we' l l do is
print something in the terminal
used to launch the program.

That's it. Save and run the
program. Cl ick on each of the
menu options (saving Fi le|Exit
for last) .

Now (below) we' l l deal with
the combo box. Save your fi le

as widgetdemo2b.py and we' l l
get started. The imports, class
definition and the def __init__
routines are al l the same, as is
the bottom part of the
program. We' l l add two l ines to
the DefineVars routine. Either
comment out the “pass”
statement or erase it and put in
the fol lowing code. (I included
the definition l ine just for
clarity.)

First we define a label , which
we've done before. Next we
define the combo box. We use
“ttk.Combobox”, define the
parent and set the height to 19,

HOWTO - PROGRAM IN PYTHON - PART 28

self.f1 = Frame(frame,

relief = SUNKEN,

borderwidth = 2,

width = 500,

height = 100

)

return frame

Next we (as we have done multiple times) deal with
placing our other widgets.

def PlaceWidgets(self,master):

frame = master

frame.grid(column = 0, row = 0)

self.f1.grid(column = 0,

row = 0,

sticky = 'nsew'

)

def FileNew(self):

print "Menu File New"

def FileOpen(self):

print "Menu File Open"

def FileSave(self):

print "Menu File Save"

def EditCut(self):

print "Menu Edit Cut"

def EditCopy(self):

print "Menu Edit Copy"

def EditPaste(self):

print "Menu Edit Paste"

def HelpAbout(self):

print "Menu Help About"

def DefineVars(self):

self.cmbo1Val = StringVar()

self.c1Vals = ['None','Option 1','Option 2','Option 3']

After our the self. f1 definition in Bui ldWidgets and before the “return frame” l ine
insert the fol lowing code.

Combo Box

self.lblcb = Label(self.f1, text = "Combo Box: ")

self.cmbo1 = ttk.Combobox(self.f1,

height = "19",

width = 20,

textvariable = self.cmbo1Val

)

self.cmbo1['values'] = self.c1Vals

Bind the virtual event to the callback

self.cmbo1.bind("<<ComboboxSelected>>",self.cmbotest)

full circle magazine 1 49 contents ^The Compleat Python

the width to 20 and the
textvariable to “self.cmbo1Val”.
Remember that we set
textvariables in the last widget
demo, but just in case you
forgot. . . this is changed anytime
the value in the combo box is
changed. We defined it in
DefineVars as a StringVar
object. Next we load the values
that we want the user to
choose from, again we defined
that in DefineVars. Final ly we
bind the virtual event
<<ComboboxSelected>> to
the cmbotest routine that we
wi l l flesh out in a minute.

Next let's place the combo
box and the label into our form
(top right).

Save everything and test it
out.

Now save as
widgetdemo2c.py and we' l l
start with the separator bar.
This is SO super easy. Whi le the
updated tkinter provides a
separator bar widget, I 've
never been able to get it to
work. Here's an easy work
around. We use a frame with a
height of 2. The only changes
to our program wil l be the

definition of the frame in
Bui ldWidgets after the combo
box bind statement and placing
the frame in the Place Widgets
routine. So, in Bui ldWidgets put
in the fol lowing l ines (shown
middle right). . .

Once again, you've seen al l
this before. Save and test it.
You' l l probably have to expand
the topmost window to see the
separator, but it wi l l become
much more evident in the next
demo. Save as
widgetdemo2d.py and we' l l add
the spin control .

Under DefineVars, add the
fol lowing l ine. . .

self.spinval = StringVar()

By now, you know that this is
so we can get the value at any
time we want. Next, we' l l add
some code to the Bui ldWidgets
routine. . . just before the “return
frame” l ine (bottom right).

Here we define a label and
the spin control . The spin
control definition is as fol lows:

ourwidget =

Spinbox(parent,low value,

high value, width,

textvariable, wrap)

HOWTO - PROGRAM IN PYTHON - PART 28

self.lblcb.grid(column = 0,row = 2)

self.cmbo1.grid(column = 1,

row = 2,

columnspan = 4,

pady = 2

)

And final ly we put in the cal lback which simply prints what
the user selected into the terminal window.

def cmbotest(self,p1):

print self.cmbo1Val.get()

self.fsep = Frame(self.f1,

width = 140,

height = 2,

relief = RIDGE,

borderwidth = 2

)

And in PlaceWidgets put in this …

self.fsep.grid(column = 0,

row = 3,

columnspan = 8,

sticky = 'we',

padx = 3,

pady = 3

)

self.lblsc = Label(self.f1, text = "Spin Control:")

self.spin1 = Spinbox(self.f1,

from_ = 1.0,

to = 10.0,

width = 3,

textvariable = self.spinval,

wrap=True

)

full circle magazine 1 50 contents ^The Compleat Python

HOWTO - PROGRAM IN PYTHON - PART 28

The low value must be cal led
as “from_” since the word
“from” is a keyword and using
that would simply confuse
everyting. The values “from_”
and “to” must be defined as
float values. In this case we
want it to have a low value of 1
and a high value of 10. Final ly
the wrap option says that if the
value is (in our case) 10 and
the user cl icks on the up arrow,
we want it to wrap around to
the low value and keep going.
The same works for the low
value. I f the user cl icks the
down arrow of the control and
the value is 1, it wraps to 10
and keeps going. I f you set
“wrap=False”, the control
simply stops at whichever
direction the user is going.

Now we' l l place the widgets
in PlaceWidgets (below).

Again, that's it. Save and
play. You' l l real ly notice the
separator now.

Save as widgetdemo2e.py

and we' l l do the progress bars.

Again, we need to define
some variables, so in the
DefineVars routine add the
fol lowing code. . .

self.spinval2 = StringVar()

self.btnStatus = False

self.pbar2val = StringVar()

I t should be pretty obvious
what the two StringVar
variables are. We' l l d iscuss the
“self.btnStatus” in a moment.
For now, let's go and define the
widgets for this portion in
Bui ldWidgets (right).

Again this goes before the
“return frame” l ine. What we
are doing is setting up a frame
for us to put the widgets into.
Then we set up two labels as
guides. Next we define the first
progress bar. Here the only
things that might be strange
are length, mode and
maximum. Length is the size in
pixels of our bar. Maximum is
the highest value that wi l l be
seen. In this case it's 100 since

self.lblsc.grid(column = 0, row = 4)

self.spin1.grid(column = 1,

row = 4,

pady = 2

)

#=======================================

Progress Bar Stuff

#=======================================

self.frmPBar = Frame(self.f1,

relief = SUNKEN,

borderwidth = 2

)

self.lbl0 = Label(self.frmPBar,

text = "Progress Bars"

)

self.lbl1 = Label(self.frmPBar,

text = "Indeterminate",

anchor = 'e'

)

self.pbar = ttk.Progressbar(self.frmPBar,

orient = HORIZONTAL,

length = 100,

mode = 'indeterminate',

maximum = 100

)

self.btnptest = Button(self.frmPBar,

text = "Start",

command = self.TestPBar

)

self.lbl2 = Label(self.frmPBar,

text = "Determinate"

)

self.pbar2 = ttk.Progressbar(self.frmPBar,

orient = HORIZONTAL,

length = 100,

mode = 'determinate',

variable = self.pbar2val

)

self.spin2 = Spinbox(self.frmPBar,

from_ = 1.0,

to = 100.0,

textvariable = self.spinval2,

wrap = True,

width = 5,

command = self.Spin2Do

)

full circle magazine 1 51 contents ^The Compleat Python

HOWTO - PROGRAM IN PYTHON - PART 28

we are looking at percentage.
Mode in this case is
' indeterminate' . Remember, we
use this mode when we don't
know how far we've gotten in a
task so we just want to let the
user know that something is
happening.

Next we add a button
(you've done this before),
another label another progress
bar and another spin control .
The mode for the second
progress bar is “determinate”.

We wi l l use the spin control to
set the “percentage” of
completion. Next add the
fol lowing l ines (next page, top
left) into the PlaceWidgets
routine.

Lastly, we add two routines
to control our progress bars
(botom right).

The TestPBar routine controls
the indeterminate progress bar.
Basical ly, we are starting and
stopping an internal timer that
is bui lt into the progress bar.

Progress Bar

self.frmPBar.grid(column = 0,

row = 5,

columnspan = 8,

sticky = 'nsew',

padx = 3,

pady = 3

)

self.lbl0.grid(column = 0, row = 0)

self.lbl1.grid(column = 0,

row = 1,

pady = 3

)

self.pbar.grid(column = 1, row = 1)

self.btnptest.grid(column = 3, row = 1)

self.lbl2.grid(column = 0,

row = 2,

pady = 3

)

self.pbar2.grid(column = 1, row = 2)

self.spin2.grid(column = 3, row = 2)

def TestPBar(self):

if self.btnStatus == False:

self.btnptest.config(text="Stop")

self.btnStatus = True

self.pbar.start(10)

else:

self.btnptest.config(text="Start")

self.btnStatus = False

self.pbar.stop()

def Spin2Do(self):

v = self.spinval2.get()

print v

self.pbar2val.set(v)

#=======================================

NOTEBOOK

#=======================================

self.nframe = Frame(self.f1,

relief = SUNKEN,

borderwidth = 2,

width = 500,

height = 300

)

self.notebook = ttk.Notebook(self.nframe,

width = 490,

height = 290

)

self.p1 = Frame(self.notebook)

self.p2 = Frame(self.notebook)

self.notebook.add(self.p1,text = 'Page One')

self.notebook.add(self.p2,text = 'Page Two')

self.lsp1 = Label(self.p1,

text = "This is a label on

page number 1",

padx = 3,

pady = 3

)

full circle magazine 1 52 contents ^The Compleat Python

the controls just for fun.

In the PlaceWidgets routine put

the fol lowing code (below).

The only thing that might

possibly be strange is the label on

page two. We combine the

definition and placement in the

grid with the same command. We

did that when we did our first

widget demo app.

That's it. Save and play.

As always the ful l code for the

ful l appl ication is up on pastebin at

http: //pastebin.com/qSPkSNU1.

Enjoy. Next time we' l l deal with

some more database stuff.

HOWTO - PROGRAM IN PYTHON - PART 28

self.nframe.grid(column = 0,

row = 6,

columnspan = 8,

rowspan = 7,

sticky = 'nsew'

)

self.notebook.grid(column = 0,

row = 0,

columnspan = 11,

sticky = 'nsew'

)

self.lsp1.grid(column = 0,row = 0)

self.lsp2 = Label(self.p2,

text = 'This is a label on PAGE 2',

padx = 3,

pady = 3

).grid(

column = 0,

row = 1

)

The l ine “self.pbar.start(10)”

sets the timer to 10 mil l iseconds.

This makes the bar move fairly

quickly. Feel free to play with this

value up and down on your own.

The Spin2Do routine simply sets

the progress bar to whatever

value the spin control has. We

print it as wel l to the terminal .

That's al l the changes for this.

Save and play.

Now save as widgetdemo2f.py

and we' l l deal with the tabbed

notebook widgets. In Bui ldWidgets

put the fol lowing code (below)

before the “return frame” l ine. . .

Let's look at what we did. First,

we define a frame for our

notebook widget. Now we define

the widget. Al l the options are

ones we've seen before. Next we

define two frames named self.p1

and self.p2. These act as our

pages. The next two l ines

(self.notebook.add) attach the

frames to the notebook widget

and they get a tab attached to

them. We also set the text for the

tabs. Final ly, we put a label on

page number one. We' l l put one on

page number two when we place

http://pastebin.com/qSPkSNU1

full circle magazine 1 53 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg Walters PPrroogg rraa mm II nn PPyytthh oonn -- PPaa rrtt 2299

A
little whi le ago, I was
asked to convert a
MySQL database to
SQLite. Looking

around the web for a quick and
easy (and free) solution, I found
nothing that worked with the
current version of MySQL for
me. So I decided to go ahead
and “rol l my own”.

The MySQL Administrator
program al lows you to backup a
database into a flat text fi le.
Many SQLite browsers al low
you to read a flat sql definition
fi le and create the database
from there. However, there are
many things that MySQL
supports that SQLite doesn't.
So this month, we' l l write a
conversion program that reads
a MySQL dump fi le and creates
a SQLite version.

Let's start by looking at the
MySQL dump fi le. I t consists of
a section that creates the
database, and then sections
that create each table within
the database fol lowed by the
data for that table, if i t's

included in the dump fi le.
(There's an option to export the
table schema(s) only). Shown
above right is an example of
one of the create table
sections.

The first thing that we would
need to get rid of is in the last
l ine. Everything after the
ending parenthesis needs to go
away. (SQLite does not support
an InnoDB database). In
addition to that, SQLite doesn't
support the “PRIMARY KEY” l ine.
In SQLite, we set a primary key
by using “INTEGER PRIMARY
KEY AUTOINCREMENT” when
we define the field. The other
thing that SQLite doesn't
support is the “unsigned”
keyword.

When it comes to the data,
the “INSERT INTO” statements
are also non-compatible. The
problem here is that SQLite
doesn't al low multiple inserts
within the same statement.
Here's a short example from
the MySql dump fi le. Notice
(right) that the end-of-l ine

DROP TABLE IF EXISTS `categoriesmain`;

CREATE TABLE `categoriesmain` (

`idCategoriesMain` int(10) unsigned NOT NULL

auto_increment,

`CatText` char(100) NOT NULL default '',

PRIMARY KEY (`idCategoriesMain`)

) ENGINE=InnoDB AUTO_INCREMENT=40 DEFAULT

CHARSET=latin1;

INSERT INTO `categoriesmain`

(`idCategoriesMain`,`CatText`) VALUES

(1,'Appetizer'),

(2,'Snack'),

(3,'Barbecue'),

(4,'Cake'),

(5,'Candy'),

(6,'Beverages');

To make this compatible, we need to change this from a
single statement format to a series of single statements l ike
this:

INSERT INTO `categoriesmain`

(`idCategoriesMain`,`CatText`) VALUES (1,'Appetizer');

INSERT INTO `categoriesmain`

(`idCategoriesMain`,`CatText`) VALUES (2,'Snack');

INSERT INTO `categoriesmain`

(`idCategoriesMain`,`CatText`) VALUES (3,'Barbecue');

INSERT INTO `categoriesmain`

(`idCategoriesMain`,`CatText`) VALUES (4,'Cake');

INSERT INTO `categoriesmain`

(`idCategoriesMain`,`CatText`) VALUES (5,'Candy');

INSERT INTO `categoriesmain`

(`idCategoriesMain`,`CatText`) VALUES (6,'Beverages');

full circle magazine 1 54 contents ^The Compleat Python

HOWTO - PROGRAM IN PYTHON - PART 29

marker is a semicolon.

We wi l l a lso ignore any
comment l ines, and the CREATE
DATABASE and USE statements.
Once we have the converted
SQL fi le, we' l l use a program
simi lar to the publ ic domain
program SQLite Database
Browser to actual ly deal with
the process of creating the
database, tables, and data.

Let's get started. Start a new
project folder and a new python
fi le. Name it MySQL2SQLite.py.

Shown above right is the
import statement, the class
definition, and the __init__
routine.

This wi l l be a commandl ine
driven program, so we' l l need

to create the “if __name__”
statement, a command l ine
argument handler, and a usage
routine (if the user doesn't
know how to use the program).
This goes at the very end of the
program. Al l other code we
create wi l l go above this:

def error(message):

print >> sys.stderr,

str(message)

Below is the handler that
does the printing of the usage
statement.

The DoIt() routine is cal led if
our program is being run stand-
alone from the command l ine,
which is the design. However, if
we want to keep this as a
l ibrary to be included in another
program at another time, we

#!/usr/bin/env python

#====================================

MySQL2SQLite.py

#====================================

IMPORTS

import sys

#====================================

#====================================

BEGIN CLASS MySQL2SQLite

#====================================

class MySQL2SQLite:

def __init__(self):

self.InputFile = ""

self.OutputFile = ""

self.WriteFile = 0

self.DebugMode = 0

self.SchemaOnly = 0

self.DirectMode = False

def DoIt():

#=======================================

Setup Variables

#=======================================

SourceFile = ''

OutputFile = ''

Debug = False

Help = False

SchemaOnly = False

#=======================================

if len(sys.argv) == 1:

usage()

else:

for a in sys.argv:

print a

if a.startswith("Infile="):

pos = a.find("=")

SourceFile = a[pos+1:]

elif a.startswith("Outfile="):

pos = a.find("=")

OutputFile = a[pos+1:]

elif a == 'Debug':

Debug = True

elif a == 'SchemaOnly':

SchemaOnly = True

elif a == 'Help' or a == 'H' or a == '?':

Help = True

if Help == True:

usage()

r = MySQL2SQLite()

r.SetUp(SourceFile,OutputFile,Debug,SchemaOnly)

r.DoWork()

full circle magazine 1 55 contents ^The Compleat Python

can just use the class. Here
we set up a number of
variables to make sure that
everything works correctly.
The code shown bottom right
then parses the command l ine
arguments passed to our
program, and gets things
ready for the main routines.

When we start the
program, we need to provide
at least two variables on the
command l ine. These are the
Input fi le, and the Output fi le.
We also wi l l provide support
for the user to see what is
happening as the program is
running, an option to just
create the tables and not stuff
the data, and for the user to
cal l for help. Our “normal”
command l ine to start the
program looks l ike this:

MySQL2SQLite Infile=Foo

Outfile=Bar

where “Foo” is the name of
the MySQL dump fi le, and “Bar”
is the name of the SQLite sql
fi le we want the program to
create.

You can also cal l i t l ike this:

MySQL2SQLite Infile=Foo

Outfile=Bar Debug SchemaOnly

Which wi l l add the option to
show the debug messages and
to ONLY create the tables and
not import the data.

Final ly if the user asks for
help, we just go to the usage
portion of the program.

Before we continue, let's
take another look at how the
command l ine argument
support works.

When a user enters the
program name from the
command l ine (terminal) , the
operating system keeps track
of the information entered and
passes it to the program just in
case there are any options
entered. If no options (also
cal led arguments) are entered,
the number of arguments is
one, which is the name of the
appl ication - in our case
MySQL2SQLite.py. We can
access these arguments by
cal l ing the sys.arg command. If

the count is greater than one,
we wi l l access them in a for
loop. We wi l l step through the
l ist of arguments and check
each one. Some programs
require you to enter the
arguments in a specific order.
By using the for loop approach,
the arguments can be entered
in any order. I f the user doesn't
supply any arguments, or uses
the help arguments, we show
the usage screen. Shown above
is the routine for that.

Moving on, once we have

HOWTO - PROGRAM IN PYTHON - PART 29

def usage():

message = (

'===\n'

'MySQL2SQLite A database converter\n'

'Author: Greg Walters\n'

'USAGE:\n'

'MySQL2SQLite Infile=filename [Outfile=filename] [SchemaOnly] [Debug] [HHelp?\n'

' where\n'

' Infile is the MySQL dump file\n'

' Outfile (optional) is the output filename\n'

' (if Outfile is omitted, assumed direct to SQLite\n'

' SchemaOnly (optional) Create Tables, DO NOT IMPORT DATA\n'

' Debug (optional) Turn on debugging messages\n'

' H or Help or ? Show this message\n'

'Copyright (C) 2011 by G.D. Walters\n'

'===\n'

)

error(message)

sys.exit(1)

if __name__ == "__main__":

DoIt()

full circle magazine 1 56 contents ^The Compleat Python

parsed the argument set, we
instantiate the class, cal l the
setup routine, which fi l ls certain
variables and then cal l the
DoWork routine. We' l l start our
class now (which is shown on
the next page, bottom right).

This (next page, top right) is
the definition and the __init__
routine. Here we setup the
variables that we wi l l need as
we go through the code.
Remember that right before we
cal l the DoWork routine, we cal l
the Setup routine. We take our
empty variables and assign the
correct values to them here.

Notice that there is the
abi l i ty to not write to a
fi le, useful for debugging
purposes. We also have
the abi l i ty to simply write
the schema, or database
structure, without writing
the data. This is helpful if
you are taking a
database and starting a
new project without
wanting to use any
existing data.

We start off by
opening the SQL Dump
fi le, then setting some
internal scope variables.

HOWTO - PROGRAM IN PYTHON - PART 29

#====================================

BEGIN CLASS MySQL2SQLite

#====================================

class MySQL2SQLite:

def __init__(self):

self.InputFile = ""

self.OutputFile = ""

self.WriteFile = 0

self.DebugMode = 0

self.SchemaOnly = 0

def SetUp(self, In, Out = '', Debug = False, Schema = 0):

self.InputFile = In

if Out == '':

self.writeFile = 0

else:

self.WriteFile = 1

self.OutputFile = Out

if Debug == True:

self.DebugMode = 1

if Schema == 1:

self.SchemaOnly = 1

Now, we' l l deal with the DoWork routine, which is where the actual
“magic” happens.

def DoWork(self):

f = open(self.InputFile)

print "Starting Process"

cntr = 0

insertmode = 0

CreateTableMode = 0

InsertStart = "INSERT INTO "

AI = "auto_increment"

PK = "PRIMARY KEY "

IPK = " INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL"

CT = "CREATE TABLE "

Begin

if self.WriteFile == 1:

OutFile = open(self.OutputFile,'w')

while 1:

line = f.readline()

cntr += 1

if not line:

break

Ignore blank lines, lines that start with

"" or comments (/*!)

if line.startswith(""): #Comments

pass

elif len(line) == 1: # Blank Lines

pass

elif line.startswith("/*!"): # Comments

pass

elif line.startswith("USE"):

#Ignore USE lines

pass

elif line.startswith("CREATE DATABASE "):

pass

full circle magazine 1 57 contents ^The Compleat Python

HOWTO - PROGRAM IN PYTHON - PART 29

We also define some strings to
save us typing later on. Then, if
we are to write to an output
fi le, we open it and then we
start the entire process. We wi l l
read each l ine of the input fi le,
process it, and potentia l ly write
it to the output fi le. We use a
forced whi le loop to assist
reading each l ine, with a break
command when there is
nothing left in the input fi le. We
use f.readl ine() to get the l ine
to work, and assign it to the
variable “l ine”. Some l ines, we
can safely ignore. We' l l simply
use an if/el i f statement
fol lowed by a pass statement to
accompl ish this (below).

Next we can stop ignoring
things and actual ly do
something. I f we have a
CreateTable statement, we' l l
start that process. Remember
we defined CT to be equal to
“Create Table”. Here (above
right), we set a variable
“CreateTableMode” to be equal
to 1, so we know that's what

we are doing, since each field
definition is on a separate l ine.
We then take our l ine, remove
the carriage return, and get
that ready to write to our out
fi le, and, if required, write it.

Now (middle right) we need
to start deal ing with each l ine
within the create table
statements -
manipulating each l ine to
keep SQLite happy. There
are many things that
SQLite won't deal with.
Let's look at a Create Table
statement from MySQL again.

One thing that SQLite wi l l
absolutely have an issue with is
the entire last l ine after the
closing parenthesis. Another is
the l ine just above that, the
Primary Key l ine. Yet another
thing is the unsigned keyword
in the second l ine. I t wi l l take a
bit of code (below) to work
around these issues, but we
can make it happen.

First, (third
down on the
right) we
check to see if
the l ine
contains “auto
increment”.
We wi l l
assume that

elif line.startswith(CT):

CreateTableMode = 1

l1 = len(line)

line = line[:l11]

if self.DebugMode == 1:

print "Starting Create Table"

print line

if self.WriteFile == 1:

OutFile.write(line)

CREATE TABLE `categoriesmain` (

`idCategoriesMain` int(10) unsigned NOT NULL auto_increment,

`CatText` char(100) NOT NULL default '',

PRIMARY KEY (`idCategoriesMain`)

) ENGINE=InnoDB AUTO_INCREMENT=40 DEFAULT CHARSET=latin1;

elif CreateTableMode == 1:

Parse the line...

if self.DebugMode == 1:

print "Line to process – {0}".format(line)

p1 = line.find(AI)

if line.startswith(") "):

CreateTableMode = 0

if self.DebugMode == 1:

print "Finished Table Create"

newline = ");\n"

if self.WriteFile == 1:

OutFile.write(newline)

if self.DebugMode == 1:

print "Writing Line {0}".format(newline)

elif p1 != 1:

Line is primary key line

l = line.strip()

fnpos = l.find(" int(")

if fnpos != 1:

fn = l[:fnpos]

newline = fn + IPK #+ ",\n"

if self.WriteFile == 1:

OutFile.write(newline)

if self.DebugMode == 1:

print "Writing Line {0}".format(newline)

full circle magazine 1 58 contents ^The Compleat Python

HOWTO - PROGRAM IN PYTHON - PART 29

this wi l l be the primary key l ine.
Whi le this might be true 98.6%
of the time, it won't always be.
However, we' l l keep it simple.
Next we check to see if the l ine
starts with “) ”. This wi l l signify
this is the last l ine of the create
table section. I f so, we simply
set a string to close the
statement properly in the
variable “newl ine”, turn off the
CreateTableMode variable, and,
if we are writing to fi le, write it
out.

Now (bottom right) we use
the information we found about
the auto increment key word.
First, we strip the l ine of any
spurious spaces, then check to
see where (we are assuming it
is there) the phrase “ int(“ is
within the l ine. We wi l l be
replacing this with the phrase “
INTEGER PRIMARY KEY
AUTOINCREMENT NOT NULL”.
The length of the integer
doesn't matter to SQLite.

Again, we write it out if we
should.

Now we look for the phrase
“PRIMARY KEY “ within the l ine.
Notice the extra space at the
end - that's on purpose. If i t
arises, we ignore the l ine.

elif

line.strip().startswith(PK):

pass

Now (top right) we look for
the phrase “ unsigned “ (again
keep the extra spaces) and
replace it with “ “.

That's the end of the create
table routine. Now (below) we
move on to the insert
statements for the data. The
InsertStart variable is the
phrase “INSERT INTO “. We
check for that because MySQL
al lows for multiple insert
statements in a single

elif line.find(" unsigned ") != 1:

line = line.replace(" unsigned "," ")

line = line.strip()

l1 = len(line)

line = line[:l11]

if self.WriteFile == 1:

OutFile.write("," + line)

if self.DebugMode == 1:

print "Writing Line {0}".format(line)

Otherwise, we can deal with the l ine.

else:

l1 = len(line)

line = line.strip()

line = line[:l14]

if self.DebugMode == 1:

print "," + line

if self.WriteFile == 1:

OutFile.write("," + line)

elif line.startswith(InsertStart):

if insertmode == 0:

insertmode = 1

Get tablename and field list here

istatement = line

Strip CR/LF from istatement line

l = len(istatement)

istatement = istatement[:l2]

if posx != 1:

l1 = line[:posx+3]

insertmode = 0

if self.DebugMode == 1:

print istatement + l1

print ""

if self.WriteFile == 1:

OutFile.write(istatement + l1+"\n")

Otherwise, we join the prelude to the value
statement and end it with a semicolon.

elif pos1 != 1:

l1 = line[:pos1+2]

if self.DebugMode == 1:

print istatement + l1 + ";"

if self.WriteFile == 1:

OutFile.write(istatement + l1 + ";\n")

full circle magazine 1 59 contents ^The Compleat Python

The l ine “self.pbar.start(10)” sets the
timer to 10 mil l iseconds. This makes the
bar move fairly quickly. Feel free to play
with this value up and down on your own.
The Spin2Do routine simply sets the
progress bar to whatever value the spin
control has. We print it as wel l to the
terminal .

That's al l the changes for this. Save and
play.

Now save as widgetdemo2f.py and we' l l
deal with the tabbed notebook widgets. In
Bui ldWidgets put the fol lowing code
(below) before the “return frame” l ine. . .

Let's look at what we did. First, we
define a frame for our notebook widget.
Now we define the widget. Al l the options
are ones we've seen before. Next we
define two frames named self.p1 and
self.p2. These act as our pages. The next
two l ines (self.notebook.add) attach the
frames to the notebook widget and they
get a tab attached to them. We also set
the text for the tabs. Final ly, we put a label
on page number one. We' l l put one on
page number two when we place the
controls just for fun.

In the PlaceWidgets routine put the
fol lowing code (below).

The only thing that might possibly be
strange is the label on page two. We

combine the definition and placement in
the grid with the same command. We did
that when we did our first widget demo
app.

That's it. Save and play.

As always the ful l code for the ful l
appl ication is up on pastebin at
http: //pastebin.com/qSPkSNU1.

Enjoy. Next time we' l l deal with some
more database stuff.

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Colorado and has been
programming since 1 972. He enjoys
cooking, hiking, music, and spending
time with his family. His website is
www.thedesignatedgeek.com.

HOWTO - PROGRAM IN PYTHON - PART 29

else:

if self.DebugMode == 1:

print "Testing line {0}".format(line)

pos1 = line.find("),")

posx = line.find(");")

if self.DebugMode == 1:

print "pos1 = {0}, posx = {1}".format(pos1,posx)

if pos1 != 1:

l1 = line[:pos1+1]

if self.DebugMode == 1:

print istatement + l1 + ";"

if self.WriteFile == 1:

OutFile.write(istatement + l1 + ";\n")

else:

insertmode = 0

l1 = line[:posx+1]

if self.DebugMode == 1:

print istatement + l1 + ";"

if self.WriteFile == 1:

OutFile.write(istatement + l1 + ";\n")

http://www.thedesignatedgeek.com
http://pastebin.com/cPvzNT7T

full circle magazine 1 60 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg D. Walters

Beginning Python - Part 30

T
his month, we' l l
explore yet another
GUI designer, this time
for Tkinter. Many

people have an issue with
Tkinter because it doesn't offer
a bui lt-in designer. Whi le I 've
shown you how to easi ly design
your appl ications without a
designer, we wi l l examine one
now. It's cal led Page. Basical ly
it's a version of Visual TCL with
Python support on top. The
current version is 3.2 and can
be found at
http: //sourceforge.net/projects/
page/fi les/latest/download.

Prerequisites
You need TCK/TK 8.5.4 or

later, Python 2.6 or later, and
pyttk - which you can get (if
you don't already have it) from
http: //pypi .python.org/pypi/pytt
k. You probably have al l of
these with the possible
exception of pyttk.

Installation

You can't real ly ask for an
easier instal lation routine.
Simply unpack the distribution
fi le into a folder of your choice.
Run the script cal led
“configure” from the folder
where you just unpacked
everything. This wi l l create your
launch script cal led “page”
which you use to get
everything going. That's it.

Learning Page
When you start Page, you' l l

get three windows (forms). One
is a “launch pad”, one is a

toolbox, and one shows the
Attribute Editor.

To start a new project, cl ick
on the Toplevel button in the
toolbox.

This creates your main form.
You can move it wherever you
wish on your screen. Next, and
from now on, cl ick on a widget

in the tool box and then cl ick
where you want it on the main
form.

For now, let's do a button.
Cl ick on the Button button on
the toolbox, and then cl ick
somewhere on the main form.

Next, in the launch pad form,
cl ick on Window and select
Attribute Editor (if i t's not
already showing). Your single
button should be highl ighted
already, so move it around the
form and when you release the
mouse button you should see
the position change in the
attribute editor form under 'x
position' and 'y position' .

Here we can set other
attributes such as the text on
the button (or most any other
widget), the al ias for the widget
(the name we wil l refer to in
our code), color, the name we
wil l cal l i t and more. Near the
bottom of the attribute editor is
the text field. This is the text
that appears to the user for, in
this case, the button widget.

http://sourceforge.net/projects/page/files/latest/download
http://pypi.python.org/pypi/pyttk

full circle magazine 1 61 contents ^The Compleat Python

HOWTO - BEGINNING PYTHON 30

Let's change this from “button”
to “Exit”. Notice that now the
button says “Exit”. Now resize
the form to just show the
button and recenter the button
in the form.

Next cl ick in the main form
someplace where the button
isn't. The attribute editor form
now shows the attributes for
the main form. Find the “title”
field and change this from
“New Toplevel 1” to “Test
Form”.

Now, before we save our
project, we need to create a
folder to hold our project fi les.
Create a folder somewhere on
your drive cal led
“PageProjects”. Now, in the
launch pad window, select Fi le
then Save As. Navigate to your
PageProjects folder, and, in the

dialog box, type TestForm.tcl
and cl ick the Save button.
Notice this is saved as a TCL
fi le, not a Python fi le. We' l l
create the python fi le next.

In the launch pad, find the
Gen_Python menu item and
cl ick it. Select Generate Python
and a new form appears.

Page has generated (as the
name suggests) our python
code for us and placed it in a
window for us to view. At the
bottom of this form, are three
buttons. . .Save, Run, and Close.

Cl ick Save. If, at this point,
you were to look in your

PageProjects folder, you wi l l see
the python fi le (TestForm.py).
Now cl ick on the Run button. In
a few seconds, you' l l see the
project start up. The button is
not connected to anything yet,
so it won't do anything if you
cl ick on it. Simply close the
form with the “X” in the corner
of the window. Now close the
Python Console window with
the close button at the bottom
right.

Back at our main form,
highl ight the Exit button and
right cl ick on it. Select
“Bindings. . . ” . Under the menu
is a set of buttons.

The first on the left al lows
you to create a new binding.
Cl ick on “Button-1”. This al lows

us to enter the binding for the
left mouse button. In the
window on the right, type
“Button1Cl ick”.

Save and generate the
python code again. Scrol l down
in the Python Console to the
bottom of the fi le. Above the
“class Test_Form” code is the
function we just asked to be
created. Notice that at this
point, i t simply is passed. Look
further down and you' l l see the
code that creates and controls
our button. Everything is done
for us already. However, we sti l l
have to tel l the button what to
do. Close the Python Console
and we' l l continue.

On the launch pad, cl ick

http://www.cafelinux.org/OzOs/

full circle magazine 1 62 contents ^The Compleat Python

Before we work on the
bindings, let's create our cl ick
functions. Open the Function
List and create two functions.
The first should be cal led
btnNormalCl icked and the other
btnSunkenCl icked. Make sure
you set the arguments box to
include p1. Here's the code you
should have for them. . .

def btnNormalClicked(p1):

print "Normal Button Clicked"

def btnSunkenClicked(p1) :

print "Sunken Button Clicked"

Let's add our button
bindings. For each button, right
cl ick it, select “Bindings. . . ” , and
add, as before, a binding to the
functions we created. For the
normal button, it would be
“btnNormalCl icked”, and for the
sunken button it would be

and cl ick on the Exit button, the
form should close properly.

Moving Forward
Now let's do something more

compl icated. We' l l create a
demo showing some of the
widgets that are avai lable. First
close Page and restart it. Next,
create a new Toplevel form. Add
two frames, one above the
other and expand them to
pretty much take up the entire
width of the form. In the top
frame, place a label , and, using
the attributes editor, change
the text to “Buttons:”. Next, add
two buttons along the horizontal
plane. Change the text of the
left one to “Normal”, and the
right one to “Sunken”. Whi le the
sunken button is selected,
change the rel ief to “sunken”
and name it btnSunken. Name
the “Normal” button
“btnNormal”. Save this project
as “Demos.tcl” .

Next, place in the lower
frame a label saying “Radio
Buttons” and four radio buttons
l ike in the image below. Final ly,
place an Exit button below the
bottom frame.

Window then select Function
List. Here we wi l l write our
method to close the window.

The first button on the left is
the Add button. Cl ick it. In the
Function box, type
“py:Button1Cl ick” and, in the
Arguments box, type “p1”, and
change the text in the lower box
to. . .

def Button1Click(p1):

sys.exit()

HOWTO - BEGINNING PYTHON 30

Cl ick on the checkmark and
we are done with this.

Next we have to bind this
routine to the button. Select the
button in the form, right cl ick it,
and select “Bindings. . . ” . As
before, cl ick on the far left
button on the toolbar and
select Button-1. This is the
event for the left mouse button
cl ick. In the right text box, enter
“Button1Cl ick”. Make sure you
use the same case that you did
for the Function we just
created. Cl ick the checkmark
on the right side.

Now save and generate your
python code.

You should see the fol lowing
code near the bottom, but
OUTSIDE of the Test_Form
class. . .

def Button1Click(p1) :

sys.exit()

And the last l ine of the class
should be. . .

self.Button1.bind('<Button

1>',Button1Click)

Now, if you run your code

full circle magazine 1 63 contents ^The Compleat Python

btnSunkenCl icked. Save and
generate your code. Now, if you
were to test the program under
the “Run” option of the Python
Console, and cl ick any of the
buttons, you won't see
anything happen. However,
when you close the appl ication,
you should see the print
responses. This is normal for
Page and if you simply run it
from the command l ine as you
normal ly do, things should work
as expected.

Now for our radio buttons.
We have grouped them in two
“clusters”. The first two (Radio
1 and Radio 2) wi l l be cluster 1
and the other two wi l l be
cluster 2. Cl ick on Radio1 and
in the Attribute Editor, set the
value to 0 and the variable to
“rbc1”. Set the variable for
Radio 2 to “rbc1” and the value
to 1. Do the same thing for
Radio 3 and Radio 4 but for
both of these set the variable
to “rbc2”. I f you want, you can
deal with the cl ick of the
radiobuttons and print
something to the terminal , but
for now, the important thing is
that the clusters work. Cl icking
Radio1 wi l l deselect Radio2 and
not influence Radio3 or Radio4,

and the same for Radio2 and so
on.

Final ly, you should create a
function for the Exit button, and
bind it to the button l ike we did
in the first example.

I f you've been fol lowing
along as we have done our
other Tkinter appl ications, you
should be able to understand
the code shown above right. I f
not, please go back a few
issues for a ful l d iscussion of
this code.

You can see that using Page
makes the basic design process
much easier than doing it
yourself. We've only scratched

the surface of what Page can
do, and we' l l start doing
something much more real istic
next time.

The python code can be
found on pastebin at
http: //pastebin.com/qq0YVgTb.

One note before we go for
this month. You might have
noticed that I 've missed a
couple of issues. This is due to
my wife being diagnosed with
cancer last year. As hard as I
have tried to keep things from
fal l ing through the cracks, a
number of things have. One of
these things is my old
domain/web site at
www.thedesignatedgeek.com. I

blew it and missed the renewal .
Due to this, the domain was
sold out from under me. I have
set up
www.thedesignatedgeek.net

with al l the old stuff. I wi l l be
working hard the next month to
bring it al l up to date.

See you next time.

Greg Walters is owner of
RainyDay Solutions, LLC, a consulting
company in Colorado and has been
programming since 1 972. He enjoys
cooking, hiking, music, and spending
time with his family. His website is
www.thedesignatedgeek.net.

HOWTO - BEGINNING PYTHON 30

def set_Tk_var():

These are Tk variables passed to Tkinter and must

be defined before the widgets using them are created.

global rbc1

rbc1 = StringVar()

global rbc2

rbc2 = StringVar()

def btnExitClicked(p1) :

sys.exit()

def btnNormalClicked(p1) :

print "Normal Button Clicked"

def btnSunkenClicked(p1) :

print "Sunken Button Clicked"

http://www.thedesignatedgeek.net
http://pastebin.com/qq0YVgTb
http://www.thedesignatedgeek.net

full circle magazine 1 64 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg D. Walters

Beginning Python - Part 31

A
fter our last meeting
you should have a
fairly good idea of how
to use Page. If not,

please read last month's
article. We' l l continue this time
by creating a fi le l ist appl ication
with a GUI . The goal here is to
create a GUI appl ication that
wi l l recursively walk through a
directory, looking for fi les with
a defined set of extensions, and
display the output in a
treeview. For this example we
wi l l look for media fi les with the
extensions of “.avi”, “ .mkv”,
“.mv4”, “.mp3” and “.ogg”.

This time, the text might
seem a bit terse in the design
portion. Al l I 'm going to do is
give you directions for
placement of widgets and the
required attributes and values
l ike this. . .

Widget

Attribute: Value

I wi l l only quote text string
when it is needed. For example
for one of the buttons, the text
should be set to “. . . ” .

Here's what the GUI of our
appl ication wi l l look l ike. . .

As you can see, we have our
main form, an exit button, a
text entry box with a button
that wi l l cal l up an ask for
directory dialog box, 5 check
boxes for extension selecting
extension types, a “GO! ” button
to actual ly start the processing
and a treeview to display our
output.

So, let's get started. Fire up
Page and create a new top level
widget. Using the Attribute
Editor set the fol lowing
attributes.

Alias: Searcher

Title: Searcher

Be sure to save often. When
you save the fi le, save it as
“Searcher”. Remember, Page
puts the .tcl extension for you
and when you final ly generate
the python code, it wi l l be
saved in the same folder.

Next add a frame. It should
go at the very top of the main
frame. Set the attributes as
fol lows.

Width: 595

Height: 55

x position: 0

y position: 0

In this frame, add a button.
This wi l l be our Exit button.

Alias: btnExit

Text: Exit

Move this close to the center
of the frame or close to the
frame's right side. I set mine to
X 530 and Y 10.

Create another frame.

Width: 325

Height: 185

y position: 60

Here is what this frame wi l l
look l ike, to give you a guide
going forward through this
section.

In this frame, add a label .
Set the text attribute to “Path:”.
Move it close to the top left of
the frame.

In the same frame, add an
entry widget.

Alias: txtPath

Text: FilePath

Width: 266

Height: 21

Add a button to the right of
the entry widget.

Alias: btnSearchPath

Text: “...” (no quotes)

Add five (5) check buttons.
Put them in the fol lowing
order. . .

full circle magazine 1 65 contents ^The Compleat Python

HOWTO - BEGINNING PYTHON 31
x

x x

x x

The three check buttons on
the left are for video fi les and
the two on the right are for
audio fi les. We wi l l deal with
the three on the left first, then
the two on the right.

Alias: chkAVI

Text: “.avi” (no quotes)

Variable: VchkAVI

Alias: chkMKV

Text: “.mkv” (no quotes)

Variable: VchkMKV

Alias: chkMV4

Text: “.mv4” (no quotes)

Variable: VchkMV4

Alias: chkMP3

Text: “.mp3” (no quotes)

Variable: VchkMP3

Alias: chkOGG

Text: “.ogg” (no quotes)

Variable: VchkOGG

Final ly, in this frame add a
button somewhere below the
five check boxes and somewhat
centered within the frame.

Alias: btnGo

Text: GO!

Now add one more frame
below our last frame.

Width: 565

Height: 265

I placed mine around X 0 Y
250. You might have to resize
your main form to have the
entire frame show. Within this
frame, add a Scrol ledtreeview
widget.

Width: 550

Height: 254

X Position: 10

Y Position: 10

There. We've designed our
GUI . Now al l that is left to do is
create our function l ist and bind
the functions to our buttons.

In the Function l ist window,
cl ick the New button (the far
left button). This brings up the
new function editor. Change the
text in the Function entry box
from “py: xxx” to
“py:btnExitCl ick()” . In the
arguments entry box type “p1”.
In the bottom multi l ine entry
box, change the text to:

def btnExitClick(p1):

sys.exit()

Notice that this is not
indented. Page wi l l do that for
us when it creates the python
fi le.

Next create another function
cal led btnGoCl ick. Remember
to add a passed parameter of
“p1”. Leave the “pass”
statement. We' l l change that
later.

Final ly, add another function
cal led “btnSearchPath”. Again,
leave the pass statement.

Lastly, we need to bind the
buttons to the functions we just
created.

Right-cl ick on the exit button
we created, select Bind. A large
box wi l l pop up. Cl ick on the
New binding button, Cl ick on
Button-1 and change the word
“TODO” in the right text entry
box to “btnExitCl ick”. Do NOT
include the parens () here.

Bind the GO button to
btnGoCl ick and the “. . . ” button
to btnSearchPathCl ick.

Save your GUI and generate
the python code.

Now al l we have left is to
create the code that “glues”
the GUI together.

Open up the code we just
generated in your favorite
editor. Let's start off by

examining what Page created
for us.

At the top of the fi le is our
standard python header and a
single import statement to
import the sys l ibrary. Next is
some rather confusing (at first
glance) code. This basical ly
looks at the version of python
you are trying to run the
appl ication in and then to
import the correct versions of
the tkinter l ibraries. Unless you
are using python 3.x, you can
basical ly ignore the last two.

We' l l be modifying the 2.x
code portion to import other
tkinter modules in a few
moments.

Next is the “vp_start_gui()”
routine. This is the program's
main routine. This sets up our
gui , sets the variables we need,
and then cal ls the tkinter main
loop. You might notice the l ine
“w = None” below this. I t is not
indented and it isn't supposed
to be.

Next are two routines
(create_Searcher and
destroy_Searcher) that are
used to replace the main loop
routine if we are cal l ing this

full circle magazine 1 66 contents ^The Compleat Python

appl ication as a l ibrary. We
don't need to worry about
these.

Next is the “set_Tk_var”
routine. We define the tkinter
variables used that need to be
set up before we create the
widgets. You might recognize
these as the text variable for
the Fi lePath entry widget and
the variables for our check
boxes. The next three routines
here are the functions we
created using the function
editor and an “init()” function.

Run the program now. Notice
that the check buttons have
grayed out checks in them. We
don't want that in our “release”
app, so we' l l create some code
to clear them before the form is
displayed to the user. The only
functioning thing other than the
check boxes is the Exit button.

Go ahead and end the
program.

Now, we' l l take a look at the
class that actual ly holds the
GUI definition. That would be
“class Searcher”. Here is where
al l the widgets are defined and
placed in our form. You should
be fami l iar with this by now.

Two more classes are
created for us that hold the
code to support the scrol led
tree view. We don't have to
change any of this. I t was al l
created by Page for us.

Now let's go back to the top
of the code and start
modifying.

We need to import a few
more l ibrary modules, so under
the “import sys” statement,
add. . .

import os

from os.path import join,

getsize, exists

Now find the section that
has the l ine “py2 = True”. As
we said before, this is the
section that deals with the
tkinter imports for Python
version 2.x. Below the “import
ttk”, we need to add the
fol lowing to support the
Fi leDialog l ibrary. We also need
to import the tkFont module.

import tkFileDialog

import tkFont

Next we need to add some
variables to the “set_Tk_var()”
routine. At the bottom of the

routine, add the fol lowing
l ines. . .

global exts, FileList

exts = []

FileList=[]

Here we create two global
variables (exts and Fi leList) that
wi l l be accessed later on in our
code. Both are l ists. “exts” is a
l ist of the extensions that the
user selects from the GUI .
“Fi leList" holds a l ist of l ists of
the matching fi les found when
we do our search. We' l l use that
to populate the treeview
widget.

Since our “btnExitCl ick” is
already done for us by Page,
we' l l deal with the “btnGoCl ick”
routine. Comment out the pass
statement and add the code so
it looks l ike this. . .

def btnGoClick(p1) :

#pass

BuildExts()

fp = FilePath.get()

e1 = tuple(exts)

Walkit(fp,e1)

LoadDataGrid()

This is the routine that wi l l
be cal led when the user cl icks
the “GO! ” button. We cal l a
routine cal led “Bui ldExts” which
creates the l ist of the
extensions that the user has
selected. Then we get the path
that the user has selected from
the AskDirectory dialog and
assign that to the fp variable.
We then create a tuple from the
extension l ist, which is needed
when we check for fi les. We
then cal l a routine cal led
“Walkit”, passing the target
directory and the extension
tuple.

Final ly we cal l a routine
cal led “LoadDataGrid”.

Next we need to flesh out
the “btnSearchPathCl ick”
routine. Comment out the pass
statement and change the code
to look l ike this. . .

def btnSearchPathClick(p1) :

#pass

path =

tkFileDialog.askdirectory()

#**self.file_opt)

FilePath.set(path)

HOWTO - BEGINNING PYTHON 31

full circle magazine 1 67 contents ^The Compleat Python

The init routine is next.
Again, make the code look l ike
this. . .

def init():

#pass

Fires AFTER Widgets

and Window are created...

global treeview

BlankChecks()

treeview =

w.Scrolledtreeview1

SetupTreeview()

Here we create a global
cal led “treeview”. We then cal l
a routine that wi l l clear the
gray checks from the check
boxes, assign the “treeview”
variable to point to the Scrol led
treeview in our form and cal l
“SetupTreeview” to set the
headers for the columns.

Here's the code for the
BlankChecks routine which
needs to be next.

def BlankChecks():

VchkAVI.set('0')

VchkMKV.set('0')

VchkMP3.set('0')

VchkMV4.set('0')

VchkOGG.set('0')

Here, al l we are doing is
setting the variables (which
automatical ly sets the check
state in our check boxes) to
“0”. I f you remember,
whenever the check box is
cl icked, this variable is
automatical ly updated. If the
variable is changed by our
code, the check box responds
as wel l . Now (above right) we' l l
deal with the routine that bui lds
the l ist of extensions
from what the user has
cl icked.

Cast your memory
back to my ninth article
in FCM#35. We wrote
some code to create a
catalog of MP3 fi les.
We' l l use a shortened
version of that routine
(middle right). Refer back to
FCM#35 if you have
questions about this
routine.

Next (bottom right) we
cal l the SetupTreeview
routine. I t's fairly

straightforward. We define a
variable “ColHeads” with the
headings we want in each
column of the treeview. We do
this as a l ist. We then set the
heading attribute for each
column. We also set the
column width to the size of this
header.

Final ly we have to create
the “LoadDataGrid” routine
(next page, top right) which is
where we load our data into the
treeview. Each row of the
treeview is one entry in the
Fi leList l ist variable. We also

adjust the width of each
column (again) to match the
size of the column data.

That's it for the first blush of
the appl ication. Give it a run

HOWTO - BEGINNING PYTHON 31

def BuildExts():

if VchkAVI.get() == '1':

exts.append(".avi")

if VchkMKV.get() == '1':

exts.append(".mkv")

if VchkMP3.get() == '1':

exts.append(".mp3")

if VchkMV4.get() == '1':

exts.append(".mv4")

if VchkOGG.get() == '1':

exts.append(".ogg")

def Walkit(musicpath,extensions):

rcntr = 0

fl = []

for root, dirs, files in os.walk(musicpath):

rcntr += 1 # This is the number of folders we have walked

for file in [f for f in files if f.endswith(extensions)]:

fl.append(file)

fl.append(root)

FileList.append(fl)

fl=[]

def SetupTreeview():

global ColHeads

ColHeads = ['Filename','Path']

treeview.configure(columns=ColHeads,show="headings")

for col in ColHeads:

treeview.heading(col, text = col.title(),

command = lambda c = col: sortby(treeview, c, 0))

adjust the column's width to the header string

treeview.column(col, width =

tkFont.Font().measure(col.title()))

full circle magazine 1 68 contents ^The Compleat Python

HOWTO - BEGINNING PYTHON 31

and see how we did. Notice
that if you have a large number
of fi les to go through, the
program looks l ike it's not
responding. This is something
that needs to be fixed. We' l l
create routines to change our
cursor from the default to a
“watch” style cursor and back
so when we do something that
takes a long time, the user wi l l
notice.

In the “set_Tk_var” routine,
add the fol lowing code at the
bottom.

global

busyCursor,preBusyCursors,bus

yWidgets

busyCursor = 'watch'

preBusyCursors = None

busyWidgets = (root,)

What we do here is set up
global variables, assign them
and then we set the widget(s)
(in busyWidgets) we wish to
respond to the cursor change.
In this case we set it to root
which is our ful l window. Notice
that this is a tuple.

Next we create two routines
to set and unset the cursor.
First the set routine, which we

wi l l cal l “busyStart”.
After our “LoadDataGrid”
routine, insert the code
shown middle right.

We first check to see
if a value was passed to
“newcursor”. I f not, we
default to the
busyCursor. Then we
walk through the
busyWidgets tuple and
set the cursor to
whatever we want.

Now put the code
shown bottom right
below it.

In this routine, we
basical ly reset the
cursor for the
widgets in our
busyWidget tuple
back to our default
cursor.

Save and run your
program. You should
find that the cursor
changes whenever you have a
long l ist of fi les to go through.

Whi le this appl ication
doesn't real ly do much but
show you how to use Page to
create real ly fast code

development. From today's
article, you can see how having
a good design of your GUI
ahead of time can make the
development process easy and
fairly painless.

The tcl fi le is saved in

pastebin at
http: //pastebin.com/AA1kE4Dy
and the python code is saved
at
http: //pastebin.com/VZm5un3e.

See you next time.

def LoadDataGrid():

global ColHeads

for c in FileList:

treeview.insert('','end',values=c)

adjust column's width if necessary to fit each value

for ix, val in enumerate(c):

col_w = tkFont.Font().measure(val)

if treeview.column(ColHeads[ix],width=None)<col_w:

treeview.column(ColHeads[ix], width=col_w)

def busyStart(newcursor=None):

global preBusyCursors

if not newcursor:

newcursor = busyCursor

newPreBusyCursors = {}

for component in busyWidgets:

newPreBusyCursors[component] = component['cursor']

component.configure(cursor=newcursor)

component.update_idletasks()

preBusyCursors = (newPreBusyCursors, preBusyCursors)

def busyEnd():

global preBusyCursors

if not preBusyCursors:

return

oldPreBusyCursors = preBusyCursors[0]

preBusyCursors = preBusyCursors[1]

for component in busyWidgets:

try:

component.configure(cursor=oldPreBusyCursors[component])

except KeyError:

pass

component.update_idletasks()

http://pastebin.com/AA1kE4Dy
http://pastebin.com/VZm5un3e

full circle magazine 1 69 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg D. Walters

Beginning Python - Part 32

I
must say, I love my
Android tablet. Whi le I use
it every day, it's not yet a
replacement for my

desktop. And I must also admit,
most of what I use it for is
pretty much what everyone
uses theirs for: web browsing,
l istening to music, watching
videos, playing games, and so
on. I try to justify it by having
apps that deal with grocery and
todo l ists, finding cheap gas,
fun things for our grandson,
etc. I t's real ly a toy for me right
now. Why use a fancy touch-
screen tablet to do your
grocery l ist? Let's face it. . . i t's
the cool looks of envy that
people give me in the store
when they see me rol l ing the
cart down the aisle and I tap
my tablet to mark items off the
l ist. Ahh--- the geek factor
RULES! Of course, I can use the
back of an old envelope to hold
my l ist. But that wouldn't be
cool and geeky, now, would it?

Like 99% of geeky married
men in the world, I am married
to a non-geek woman. A

wonderful loving woman, to be
sure, but a non-geek who, when
I start drool ing at the latest
gadget, sighs, and says
something l ike “Wel l , i f you
REALLY think we need that. . . ” .
Then she gives me the same
look I give her as she is lovingly
fondles the 50th pair of shoes
at the store.

In al l honesty, it wasn't
hard to get the first
tablet into our
house. I bought it
for my wife whi le
she was going
through
chemotherapy.
She tried to
use a laptop
for a whi le, but
the heat and
weight on her
lap was too
much after a
whi le. E-books on a
laptop for her wasn't
an option, so when she
tried to read, she had to juggle
the book, and the laptop, and
the mp3 player. Al l whi le being
tied to a recl iner with tubes

running into her arm fi l l ing her
with nasty chemicals. When I
got her the tablet, i t was the
best of al l worlds. She could
read an e-book, l isten to music,
watch a TV show, browse the
web, check her E-mai l , update
her cancer blog, fol low her
friends on facebook, and play
games - al l on a device that

was l ight and cool . I f she
got tired, she could
just sl ip it off to
the side between
her and the
recl iner (or
bed when she
was home
trying to
regain
strength).
MUCH better
than a bulky
laptop, and
book, mp3

player, remote
control , and more.

As she was getting
pumped ful l of noxious
chemicals, I would
commandeer a table and chair
in the corner of the treatment

room, near a power outlet, and
try to work on my six-year old
laptop. In between projects, I
would do research on Android
programming. I found out that
most programming for Android
is done in Java. I had almost
resigned myself to re-learning
Java when I stumbled across a
few tools that al low Python
programming for the Android
Operating system. One of these
tools is cal led “SL4A”. SL4A
stands for Scripting Layer for
Android. That's what we wi l l
concentrate on in the next
couple of articles. We' l l real ly
focus on getting SL4A set up on
Android in this one.

You might ask, why in the
world I would be talking about
Android programming in a
magazine designed for Linux.
Wel l , the simple reason is that
the core of Android is Linux.
Everything that Android is, sits
on top of Linux!

Many web pages show how
to load SL4A into the Android
Emulator for Desktops. We' l l
look at doing that another time,

full circle magazine 1 70 contents ^The Compleat Python

HOWTO - BEGINNING PYTHON 32

but for now we' l l deal with the
Android device itself. To instal l
SL4A on your Android device,
go to
http: //code.google.com/p/andro
id-scripting/; you' l l find the
instal lation fi le for SL4A. Don't
be absolutely confused here.
There's a square High Density
barcode that you tap to
download the APK. Be sure that
you have the “Unknown
Sources” option enabled in the
Appl ication settings. I t's a quick
download. Once you have it
downloaded and instal led, go
ahead and find the icon, and
tap it. What you wi l l see is a
rather disappointing black
screen saying “Scripts. . .No
matches found”. That's OK. Hit
the menu button and select
View. You' l l see a menu. Select
Interpreters. Then select menu
again, and select Add. From the
next menu, select Python 2.6.2 .
This should ask you to start a
browser session to download
Python for Android. Once this is
instal led, select Open. You' l l get
a screen menu with the options
to Instal l , Import Modules,
Browse Modules, and Uninstal l
modules. Select Instal l . Now
Python wi l l download and
instal l a long with other extra

modules. In addition, you' l l get
some sample scripts. Final ly,
tap the back button and you' l l
see Python 2.6.2 instal led in the
interpreters screen. Tap again
on the back button and you' l l
see a l ist of some sample
python scripts.

That's al l we are going to do
this time. Al l I wanted to do is
whet your appetite. Explore
Python on Android. You might
also want to visit
http: //developer.android.com/sd
k/index.html to get the Android
SDK (Software Development
Kit) for your desktop. It includes
an Android Emulator so you can
play along. Setting up the SDK
is real ly pretty easy on Linux,
so you shouldn't have too much
trouble.

“
you'll see a rather

disappointing black
screen [...] That's

OK.

How to Include Accents from the Keyboard
by Barry Smith

I
f your Linux system is in French, German, or Spanish, and,
therefore, requiring accents, or if, occasional ly, you need
to use accents which do not appear in Engl ish words,
many users do not know that there is a very easy way to

do this from the keyboard. The fol lowing appl ies to only the UK
keyboard.

Acute accent

Press Alt Gr + ; (semi-colon) Lift hand then press the desired
vowel é

Circumflex

Press Alt Gr + ' (apostrophe) Lift hand then press the desired
vowel î

Grave accent

Press Alt Gr + # (hache) Lift hand then press the desired
vowel è

Umlaut

Press Alt Gr + [Lift hand then press u ü

ñ - Press Alt Gr +] Lift hand then press n ñ

œ - Press Shift + Alt Gr Lift hand then press o then press e œ
The œ wil l not appear unti l after the e is keyed.

To get ¿ and ¡ (inverted exclamation mark) which I use al l the
time in Spanish before questions, and exclamations, press Alt
Gr + Shift, keeping both keys pressed, then hit _ (underscore)
for ¿ or hit ! (exclamation mark) for ¡ .

http://code.google.com/p/android-scripting/
http://developer.android.com/sdk/index.html

full circle magazine 1 71 contents ^The Compleat Python

T
his time, we’l l set up
the Android SDK on our
Linux desktop. We’l l
a lso create a virtual

Android device, instal l SL4A
and python on it, and do a
quick test.

Please be aware, this is not
something you would want to
do for machines that have less
than 1 GB of ram. The emulator
eats up a huge amount of
memory. I ’ve tried it on a
laptop running Ubuntu with
only 512 MB of ram. It WILL
work, but it is REALLY slow.

Here’s a quick l ist of what
we’l l do. We’l l go step-by-step
in a minute.
• Instal l the Java JDK6.
• Instal l the Android SDK
starter pack.
• Create and setup AVDs.
• Test AVD, and instal l SL4A
and Python.

In real ity, we should also
instal l Ecl ipse and the Android
ADT plugin for Ecl ipse, but,
since we won’t be deal ing with
Ecl ipse in this set of articles, we

can bypass that. I f you want to
include those steps, head over
to
http: //developer.android.com/sd
k/instal l ing.html to see al l the
steps in the suggested order.
Let’s get started.

STEP 1 ‐ Java JDK 6
From everything I ’ve read

and tried, it must be the actual
Sun release. OpenJDK is not
supposed to work. You can find
information on this on the web,
but here’s the steps that I did.
In a terminal , type the
fol lowing. . .

sudo addaptrepository

ppa:ferramroberto/java

sudo aptget update

sudo aptget install sun

java6jdk

Once everything here is
done, you wi l l want to edit your
.bashrc fi le to set “JAVA_HOME”
so everything runs correctly. I
used gedit and, at the bottom
of the fi le, I added the fol lowing
l ine. . .

export

JAVA_HOME=”/usr/lib/jvm/java

6sun1.6.0.06”

Save the fi le and move on to
step 2.

STEP 2 ‐ Android SDK
Starter Pack

Now the actual “fun” begins.
You’ l l want to go to
developer.android.com/sdk/inde
x.html. This is where the SDK is
located. Download the latest
version for Linux, which, at the
time of this writing, is android-
sdk_r18-l inux.tgz. Using Archive
Manager, unpack it somewhere
convenient. I put it in my home
directory. Everything runs
directly from this folder, so you
real ly don’t have to instal l
anything. So the path for me is
/home/greg/android-sdk-l inux.
Navigate to this folder, then go
to the tools folder. There you
wi l l find a fi le cal led “android”.
This is what runs the actual
SDK. I created a launcher on
my desktop to make it easy to
get to.

Now the boring part. Run the
android fi le, and the Android
SDK Manager wi l l start. I t wi l l
go out and update the
platforms that are avai lable. I
wi l l warn you now that this
process wi l l take some time, so
don’t bother if you don’t have a
lot of time to deal with it. For
the sake of brevity, I would
suggest you get only one
platform to start. A good one to
begin with is the Android 2.1
platform, since, for the most
part, i f you develop for an older
platform, there should be no
problem running on a newer
platform. You also need to get
the Tools set as wel l . Simply
check the box next to those two
items, then cl ick on the instal l
button. Once you get the
platform of your choice, and
the tool set, you are almost
ready to create your first virtual
machine.

STEP 3 ‐ Create and set
up your first AVD

Back in the Android SDK
Manager, select Tools from the

HH OOWW--TTOO
Written by Greg D. Walters

Beginning Python - Part 33

http://developer.android.com/sdk/index
http://developer.android.com/sdk/installing.html

full circle magazine 1 72 contents ^The Compleat Python

HOWTO - BEGINNING PYTHON 33

main menu, then select
Manage AVDs. This wi l l open a
new window. Since this is the
first time, there won’t be any
virtual devices set up. Cl ick on
the “New” button. This opens
yet another window where we
define the properties of the
virtual Android device. Here’s
the steps that you should use
to set up a simple Android
emulator device:
• Set the name of the device.
This is important if you have
more than one device.
• Set the target platform level .
• Set the size of the SD card
(see below).
• Set the skin resolution.
• Create the device.

So, In the name text box,
type “Test1”. Under the target
combo-box, select Android 2.1 -
API Level 7. In the text box for
“SD Card:” enter 512 and make
sure the dropdown shows
“MiB”. Under “Skin”, set the
resolution to 800x600. (You can
play with the other bui lt-in sizes
on your own.) Final ly, cl ick the
“Create AVD” button. Soon,
you’ l l see a message box
saying that the AVD was
created.

STEP 4 ‐ Testing the
AVD and installing SL4A
and Python

Now, final ly, we can
have a bit of fun.
Highl ight the AVD
you just created
and cl ick on the
Start button.
In the dialog
box that pops
up, simply
cl ick the
“Launch”
button. Now,
you have to
wait a few
minutes for the
virtual device to be
created in memory,
and the Android platform
to be loaded and started. (We’l l
ta lk about speeding this
process up in later runs.)

Once the AVD starts up and
you have the “home” screen
up, you wi l l instal l SL4A. Using
the browser or the google web
search box on the home screen,
search for “sl4a”. Go to the
downloads page, and you’ l l
eventual ly find the web page
for the downloads at

http: //code.google.com/p/androi
d-scripting/downloads/l ist.

Scrol l down the page unti l
you get to the sl4a_r5 l ink.

Open the l ink and tap on
the “sl4a_r5.apk”
l ink. Notice I said
“tap” rather than
“cl ick”. Start
thinking about
using your
finger to tap
the screen
rather than
cl icking the
mouse. It wi l l
make your
programming

transition easier.
You’ l l see the

download start. You
may have to pul l down the

notification bar at the top to get
to the downloaded fi le. Tap on
that, then tap the instal l button.

Once the fi le is downloaded,
you’ l l be presented with the
option to open the downloaded
app or to tap “Done” to exit the
instal ler. Here we wi l l want to
tap “Open”.

Now SL4A wil l start. You’ l l
probably see a dialog asking if

you wi l l agree to usage
tracking. Either accept or
refuse this - it’s up to you.
Before we go any farther, you
should know some keyboard
shortcuts that wi l l help you
move around. Since we don’t
have a “real” Android device,
buttons l ike Back, Home, and
Menu, aren’t avai lable. You’ l l
need them to navigate around.
Here’s a few important
shortcuts.

Back - Escape
Home - Home
Menu - F2

Now we wil l want to
download and instal l python
into SL4A. To do this, first tap
Menu (press F2). Select “View”
from the menu. Now select
“Interpreters”. I t looks l ike
nothing happened, but tap
Menu again (F2), then select
“Add” from the popup. Now
scrol l down and select “Python
2.6.2”. This wi l l download the
base package for Python for
Android. Instal l the package,
then open it. You wi l l be
presented with four options.
Instal l , Import Modules, Browse
Modules, and Uninstal l Module.
Tap on Instal l . This wi l l start

http://code.google.com/p/android-scripting/downloads/list

full circle magazine 1 73 contents ^The Compleat Python

downloading and instal l ing al l
the pieces of the latest Python
for Android. This can take a few
minutes.

Once everything is done, tap
Back (escape key) unti l you get
to the SL4A Interpreters screen.
Now everything is loaded for us
to play in Python on Android.
Tap Python 2.6.2 , and you’ l l be
in the “standard” Python shel l .
This is just l ike the shel l on your
desktop. Type the fol lowing
three l ines, one at a time, into
the shel l . Be sure to wait for
the “>>>” prompt each time.

import android

droid = android.Android()

droid.makeToast(“Hello from

Python on Android”)

After you type the last l ine
and press Enter, you’ l l see a
rounded corner box at the
center bottom of the shel l that
says “Hel lo from Python on
Android”. That’s what the
“droid.makeToast” command
does.

You’ve written your first
Python script for Android. Neat,
huh?

Now let’s create a shortcut
on the Android home screen.
Tap the Home key (Home
button). I f you chose the 2.1
platform, you should see a
sl ider bar on the far right of the
screen. If you chose another
platform, it might be a square
or rectangle consisting of smal l
squares. Either way, this gets
you to the Apps screen. Tap
that, and find the SL4A icon.
Now perform a “long tap” (long
cl ick), which wi l l create a
shortcut on the Home screen.
Move the shortcut wherever
you want it.

Next, we wi l l create our first
saved script. Go back into
SL4A. You should be presented
with the sample scripts that
come with Python 4 Android.
Tap the Menu button and select
“Add”. Select “Python 2.6.2”
from the l ist. You’ l l be
presented with the script editor.
At the top is the fi lename box
with “.py” already fi l led out.
Below that is the editor window
that already has the first two
l ines of our program entered for
us. (I included them below in
ital ics so you can check it. We
also used these two l ines in our
first sample.)

import android

droid = android.Android()

Now, enter the fol lowing two
l ines to the python script.

uname =

droid.dialogGetInput(“What’s

your name?”)

droid.makeToast(“Hello %s

from Python on Android”) %

uname.result

The first new l ine wi l l create
a dialog box
(droid.dia logGetInput()) that
asks for the user’s name. The
response is returned to our
program in uname.result.
We’ve already used the
droid.makeToast() function.

Name the fi le andtest1.py,
then tap Done, and tap “Save &
Run”. I f everything worked, you
should see a dialog box asking
for your name. After you enter
it, you should see the alert at
the bottom of the screen saying
“Hel lo Your Name from Python
on Android”.

That’s al l for this time. For
now, there’s a TON of
documentation about SL4A for

free on the web. You can play a
bit on your own unti l next time.
I ’d suggest that you start by
going to
http: //code.google.com/p/androi
d-scripting/wiki/Tutoria ls.

Greg is the owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his
fami ly. His website is
www.thedesignatedgeek.net.

HOWTO - BEGINNING PYTHON 33

http://www.thedesignatedgeek.net
http://code.google.com/p/android-scripting/wiki/Tutorials

full circle magazine 1 74 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg D. Walters

Beginning Python - Part 34

T
his time, we’l l finish up
using SL4A. We’l l make
a larger program and
then send it to the

virtual machine via ADB.

Let’s deal with our code first.
In this, we’ l l simply be trying
out some of the “widgets” that
are avai lable to us when using
SL4A. Start on your desktop
using your favorite editor.

Enter the code shown top
right and save it (but don’t try
to run it) as “atest.py”.

The first l ine imports the
android l ibrary. We create an
instance of it in the second l ine.
Line 3 creates and displays a
dialog box with the title “Hel lo”,
the prompt of “What’s your
name?”, a text box for the user
to enter their name, and two
buttons, “OK” and “Cancel”.
Once the user presses “OK”,
the response is returned in the
variable uname. The last l ine
(so far) then says “Hel lo
{username} from python on
Android! ” . This isn’t new, we
did this before. Now we’l l add

more code (above).

Save your code as atest1.py.
We’l l be sending this to our
virtual machine after we
discuss what it does.

Take a look at the first four
l ines we just entered. We create
an alert type dialog asking
“Would you l ike to play a
game?”. In the case of an alert
type dialog, there’s no text box
to enter anything. The next two
l ines say to create two buttons,
one with the text “Yes”, which

is a “positive” button, and one
with the text “No”, a “negative”
button. The positive and
negative buttons refer to the
response returned - either
“positive” or “negative”. The
next l ine then shows the dialog.
The next seven l ines wait for a
response from the user.

We create a simple loop
(whi le True:) then wait for a
response for up to 10 seconds
by using the
droid.eventWait(value) cal l . The

response (either “positive” or
“negative”) wi l l be returned in -
you guessed it - the response
variable. I f response has the
name of “dialog”, then we wi l l
break out of the loop and return
the response. If nothing
happens before the timeout
occurs, we simply break out of
the loop. The actual information
returned in the response
variable is something l ike this
(assuming the “positive” or
“Yes” button is pressed). . .

import android

droid = android.Android()

uname = droid.dialogGetInput("Hello","What's your name?")

droid.makeToast("Hello %s from python on Android!" % uname.result)

droid.dialogCreateAlert(uname.result,"Would you like to play a game?")

droid.dialogSetPositiveButtonText('Yes')

droid.dialogSetNegativeButtonText('No')

droid.dialogShow()

while True: #wait for events for up to 10 seconds...

response = droid.eventWait(10000).result

if response == None:

break

if response["name"] == "dialog":

break

droid.dialogDismiss()

full circle magazine 1 75 contents ^The Compleat Python

HOWTO - BEGINNING PYTHON 34
{u’data’: {u’which’:

u’positive’}, u’name’:

u’dialog’, u’time’:

1339021661398000.0}

You can see that the value is
passed in the ‘data’ dictionary,
the dialog key is in the ‘name’
dictionary, and there is a ‘time’
value that we don’t care about
here.

Final ly we dismiss the dialog
box.

Before we can send our code
to the virtual machine, we have
to start the virtual machine.
Start your Android emulator.
Once it starts up, notice that
the title bar has four digits at
the start of the title. This is the
port that the machine is
l istening on. In my case (and
probably yours) it’s 5554.

Now, let’s push it to our
virtual machine. Open a
terminal window and change to
the folder you saved the code
in. Assuming you have set your
path to include the SDK, type

adb devices

This asks adb to show any
devices that are connected.
This can include not only the

Android emulator but also any
smartphones, tablets, or other
Android devices. You should see
something l ike this. . .

List of devices attached

emulator5554 device

Now that we are sure that
our device is attached, we want
to push the appl ication to the
device. The syntax is. . .

adb push source_filename

destination_path_and_filename

So, in my case it would be. . .

adb push atest1.py

/sdcard/sl4a/scripts/atest1.p

y

I f everything works correctly,
you’ l l get a rather disappointing
message simi lar to this. . .

11 KB/s (570 bytes in 0.046s)

Now, on the Android
emulator, start
SL4A. You
should see al l of
the python
scripts, and, in
there you
should see
atest1.py. Tap
(cl ick) on

‘atest1.py’, and you’ l l see
a popup dialog with 6
icons. From left to right,
they are “Run in a dialog
window”, “Run outside of a
window”, “Edit”, “Save”,
“Delete”, and “Open in an
external editor”. Right now, tap
(cl ick) on the far left icon “Run
in a dialog window” so you can
see what happens.

You’ l l see the first dialog
asking for your name. Enter
something in the box and tap
(cl ick) the ‘Ok’ button. You’ l l
see the hel lo message. Next,
you’ l l see the alert dialog. Tap
(cl ick) on either button to
dismiss the dialog. We aren’t
looking at the responses yet so
it doesn’t matter which one you
choose. Now we’l l add some
more code (top right).

I ’m sure you can figure out
that this set of code simply

checks the response, and, if i t’s
‘None’ due to a timeout, we
simply print “Timed out.” And,
if i t’s actual ly something we
want, then we assign the data
to the variable rdialog. Now add
the next bit of code (below). . .

This part of the code wi l l
look at the data passed back by
the button-press event. We
check to see if the response
has a “which” key, and, if so,
it’s a legitimate button press
for us. We then check to see if
the result is a “positive” (‘Ok’
button) response. If so, we’ l l
create another alert dialog, but
this time, we wi l l add a l ist of
items for the user to choose
from. In this case, we offer the

if response==None:

print "Timed out."

else:

rdialog=response["data"]

if rdialog.has_key("which"):

result=rdialog["which"]

if result=="positive":

droid.dialogCreateAlert("Play a Game","Select a game to play")

droid.dialogSetItems(['Checkers','Chess','Hangman','Thermal

Nuclear War']) # 0,1,2,3

droid.dialogShow()

resp = droid.dialogGetResponse()

full circle magazine 1 76 contents ^The Compleat Python

user to select from a l ist
including Checkers, Chess,
Hangman, and Thermal Nuclear
War, and we assign the values
0 to 3 to each item. (Is this
starting to seem famil iar? Yes,
it’s from a movie.) We then
display the dialog and wait for
a response. The part of the
response we are interested in is
in the form of a dictionary.
Assuming the user tapped
(cl icked) on Chess, the resulting
response comes back l ike this. . .

Result(id=12,

result={u’item’:1},

error=None)

In this case, we are real ly
interested in the result portion

of the returned data. The
selection is #1 and is held in
the ‘ item’ key. Here’s the next
part of the code (above right). . .

Here we check to see if the
response has the key “item”,
and, if so, assign it to the
variable “sel” . Now we use an
if/el i f/else loop to check the
values and deal with whichever
is selected. We use the
droid.makeToast function to
display our response. Of course,
you could add your own code
here. Now for the last of the
code (bottom right). . .

As you can see, we simply
respond to the other types of
button-presses here.

Save, push, and run the
program.

As you can see, SL4A gives
you the abi l i ty to make

“GUIfied” appl ications, but not
ful l gui apps. This however,
should not keep you from going
forward and starting to write
your own programs for Android.
Don’t expect to put these up on
the “market”. Most people
real ly want ful l GUI type apps.
We’l l look at that next time. For
more information on using
SL4A, simply do a web search
and you’ l l find lots of tutoria ls
and more information.

By the way, you can push
directly to your smartphone or
tablet in the same way.

As usual , the code has been
put up on pastebin at
http: //pastebin.com/REkFYcSU

See you next time.

Greg is the owner of RainyDay
Solutions, LLC, a consulting
company in Aurora, Colorado,
and has been programming since
1972. He enjoys cooking, hiking,
music, and spending time with
his fami ly. His website is

HOWTO - BEGINNING PYTHON 34

if resp.result.has_key("item"):

sel = resp.result['item']

if sel == 0:

droid.makeToast("Enjoy your checkers game")

elif sel == 1:

droid.makeToast("I like Chess")

elif sel == 2:

droid.makeToast("Want to 'hang around' for a while?")

else:

droid.makeToast("The only way to win is not to play...")

elif result=="negative":

droid.makeToast("Sorry. See you later.")

elif rdialog.has_key("canceled"):

print "Sorry you can't make up your mind."

else:

print "unknown response=",response

print "Done"

http://www.thedesignatedgeek.net
http://pastebin.com/REkFYcSU

full circle magazine 1 77 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg D. Walters

Beginning Python - Part 35

T
his time, we are going
to take a short detour
from our exploration of
Android programming,

and look at a new framework
for GUI programming cal led
Kivy. You’ l l want to head over to
http: //kivy.org and download
and instal l the package – before
getting too far into this month’s
instal lment. The Ubuntu
instal lation instructions can be
found at
http: //kivy.org/docs/instal lation/i
nstal lation-ubuntu.html.

First off, Kivy is an open
source l ibrary that makes use
of multi -touch displays. I f that
isn’t cool enough, it’s also
cross-platform, which means
that it wi l l run on Linux,
Windows, Mac OSX, IOS and
Android. Now you can see why
we are talking about this. But
remember, for the most part,
anything you code using Kivy,
can run on any of the above
platforms without recoding.

Before we go too far, let me
make a couple of statements.
Kivy is VERY powerful . Kivy

gives you a new set of tools to
make your GUI programming.
Al l that having been said, Kivy
is also fairly compl icated to
deal with. You are l imited to the
widgets that they have
provided. In addition, there is
no GUI designer for Kivy, so you
have to do a GREAT deal of pre-
planning before you try to do
anything compl icated. Also
remember, Kivy is continual ly
under development so things
can change quickly. So far, I
haven’t found any of my test
code that has broken by a new
version of Kivy, but that’s
always a possibi l i ty.

Rather than jump in and
create our own code this
month, we’ l l look at some of
the examples that come with
Kivy, and, next month, we’ l l
“rol l our own”.

Once you’ve unpacked Kivy
into its own folder, use a
terminal and change to that
folder. Mine is in
/home/greg/Kivy-1.3.0. Now
change to the examples folder,
then to the widgets folder. Let’s
look at the accordion_1.py
example.

I t’s very simple, but shows a
real ly neat widget. Below is
their code.

As you can see, the first
three l ines are import
statements. Any widget you
use must be imported, and you
must always import App from
kivy.app.

The next eight l ines are the
main appl ication class. The
class is defined, then a routine
cal led bui ld is created. You wi l l
a lmost always have a bui ld
routine somewhere in your Kivy
programs. Next we set a root
object from the Accordion
widget. Next we create five
AccordionItems and set their
title. We then add ten labels
with the text “Very big

from kivy.uix.accordion import Accordion, AccordionItem

from kivy.uix.label import Label

from kivy.app import App

class AccordionApp(App):

def build(self):

root = Accordion()

for x in xrange(5):

item = AccordionItem(title='Title %d' % x)

item.add_widget(Label(text='Very big content\n' * 10))

root.add_widget(item)

return root

if __name__ == '__main__':

AccordionApp().run()

http://kivy.org
http://kivy.org/docs/installation/installation-ubuntu.html

full circle magazine 1 78 contents ^The Compleat Python

HOWTO - BEGINNING PYTHON 35

content”. We then add each
label to the root widget (the
Accordion) and then final ly we
return the root object. This, in
essence, displays the root
object in the window that Kivy
creates for us. Final ly we have
the “if __name__” statement
and then run the appl ication.

Go ahead and run it to see
what it does.

You wi l l see that in a
moment or two, a window
opens up with five vertical bars
in it. Cl icking on a bar causes it
to open up reveal ing the ten
labels. Of course, each bar has
the same text in the ten labels,
but you can figure out how to
fix that.

The Accordion widget can be
used for any number of things,
but the thing that has always
jumped to my mind is for a
configuration screen. . . each bar
being a different configuration
set.

Next we’l l look at the
textal ign.py example. I t’s not
as “sexy” as the last one, but
it’s a good example that gives
you some important
information for later on.

Before we look at the code,
run the program.

What you should see is a
label at the top of the window,
a set of nine red boxes with text
in a 3x3 grid, and four buttons
along the bottom of the
window. As you cl ick (tap) each
of the buttons, the al ignment of
the text within the red boxes
wi l l change. The main reason
you would want to pay
attention to this example is how
to use and control some of the
important widgets as wel l as
how to change the al ignment in
your widgets, which is not
completely intuitive.

Above right is their code for
this one. I ’ l l break it into pieces.
First the import code (above
right).

Below is something special .
They created a class with no
code in it. I ’ l l d iscuss that in a
few minutes:

class BoundedLabel(Label):

pass

Next a class cal led
“Selector” (below) is created:

class Selector(FloatLayout):

app = ObjectProperty(None)

Now the Appl ication class is
created.

Here the routine select is
created. A GridLayout widget is
created (cal led grid) which has
3 rows and 3 columns. This grid
is going to hold the nine red
boxes.

for valign in ('bottom',

'middle', 'top'):

for halign in ('left',

'center', 'right'):

Here we have two loops, one
inner and one outer.

label = BoundedLabel(text='V:

%s\nH: %s' % (valign,

halign),

size_hint=(None, None),

halign=halign, valign=valign)

In the code above, an
instance of the BoundedLabel
widget is created, once for each
of the nine red boxes. You
might want to stop here and
say “But wait! There isn’t a
BoundedLabel widget. I t just
has a pass statement in it. ”
Wel l , yes, and no. We are
creating an instance of a
custom widget. As I said a l i ttle
bit above, we’ l l ta lk more about
that in a minute.

from kivy.app import App

from kivy.uix.label import Label

from kivy.uix.gridlayout import GridLayout

from kivy.uix.floatlayout import FloatLayout

from kivy.properties import ObjectProperty

class TextAlignApp(App):

def select(self, case):

grid = GridLayout(rows=3, cols=3, spacing=10, size_hint=(None, None),

pos_hint={'center_x': .5, 'center_y': .5})

full circle magazine 1 79 contents ^The Compleat Python

HOWTO - BEGINNING PYTHON 35

In the code block (top right,
next page), we examine the
variable ‘case’ which is passed
into the select routine.

Here, the grid is removed, to
clear the screen.

if self.grid:

self.root.remove_widget(self.

grid)

The bind method here sets
the size, and the grid is added
to the root object.

grid.bind(minimum_size=grid.s

etter('size'))

self.grid = grid

self.root.add_widget(grid)

Remember in the last
example I said that you wi l l
a lmost always use a bui ld
routine. Here is the one for this
example. The root object is
created with a FloatLayout
widget. Next (middle right) we
cal l the Selector class to create
a Selector object, then it’s
added to the root object, and
we initia l ize the display by
cal l ing self.select(0).

Final ly the appl ication is
al lowed to run.

TextAlignApp().run()

Now, before we can go any
further, we need to clear up a
few things. First, i f you look in
the folder that holds the .py
fi le, you’ l l notice another fi le
cal led textal ign.kv. This is a
special fi le that Kivy uses to
al low you to create your own
widgets and rules. When your
Kivy appl ication starts, i t looks
in the same directory for the
.kv helper fi le. I f i t is there, then
it loads it first. Here’s the code
in the .kv fi le.

This first l ine tel ls Kivy what
minimum version of Kivy that
must be used to run this app.

#:kivy 1.0

Here the BoundedLabel
widget is created. Each of the
red boxes in the appl ication is a
BoundedLabel .

Color sets the background
color of the box to red (rgb:
1,0,0). The Rectangle widget
creates a (you guessed it)
rectangle. When we cal l the
BoundedLabel widget in the
actual appl ication code, we are
passing a label as the parent.
The size and position (here in

the .kv fi le) are set to whatever
the size and position of the
label are.

Here (right, next page) the
Selector widget is created. This
is the four buttons that appear
at the bottom of the window as
wel l as the label across the top
of the window.

Notice that the label that
makes up the title at the top of
the window has a position
(pos_hint) as top, has a height
of 50 pixels and a font size of

16. Each of the buttons has an
al ignment for the text of center.
The on_release statement is a
bind-l ike statement so that,
when the button is released, it
cal ls (in this case)
root.app.select with a case
value.

Hopeful ly, this is beginning
to make sense now. You can
see why Kivy is so powerful .

Let’s talk for a moment
about two widgets that I have
passed over in the discussion of

if case == 0:

label.text_size = (None, None)

elif case == 1:

label.text_size = (label.width, None)

elif case == 2:

label.text_size = (None, label.height)

else:

label.text_size = label.size

grid.add_widget(label)

def build(self):

self.root = FloatLayout()

self.selector = Selector(app=self)

self.root.add_widget(self.selector)

self.grid = None

self.select(0)

return self.root

<BoundedLabel>:

canvas.before:

Color:

rgb: 1, 0, 0

Rectangle:

pos: self.pos

size: self.size

full circle magazine 1 80 contents ^The Compleat Python

Greg is the owner of RainyDay
Solutions, LLC, a consulting
company in Aurora, Colorado,
and has been programming since
1972. He enjoys cooking, hiking,
music, and spending time with
his fami ly. His website is

HOWTO - BEGINNING PYTHON 35

the appl ication code, The
GridLayout and the
FloatLayout.

The GridLayout is a parent
widget that uses a row and
column description to al low
widgets to be placed in each
cel l . In this case, it is a 3x3 grid
(l ike a Tic-Tac-Toe (or Naughts
and Crosses) board).

__|__|__

__|__|__

| |

When you want to place a
widget into a GridLayout, you
use the add_widget method.
Here l ies a problem. You can’t
specify which control goes into
which grid cel l other than the
order in which you add them. In
addition, each widget is added
from left to right, top to
bottom. You can’t have an
empty cel l . Of course, you can
cheat. I ’ l l leave that up to you
to figure out.

The FloatLayout widget
seems to be just a parent
container for other chi ld
widgets.

I ’ve glossed over a few
points for now. My intent this

time was simply to get
you somewhat excited
about the possibi l i ties
that Kivy has to offer. In
the next couple of
articles, we’ l l continue to
explore what Kivy has
for us, how to use
various widgets, and
how to create an APK to
publ ish our appl ications
to Android.

Unti l then, explore
more of the examples in
Kivy, and be sure to go
to the documentation
page for Kivy at
http: //kivy.org/docs/.

<Selector>:

Label:

pos_hint: {'top': 1}

size_hint_y: None

height: 50

font_size: 16

text: 'Demonstration of text valign and halign'

BoxLayout:

size_hint_y: None

height: 50

ToggleButton:

halign: 'center'

group: 'case'

text: 'label.text_size =\n(None, None)'

on_release: root.app.select(0)

state: 'down'

ToggleButton:

halign: 'center'

group: 'case'

text: 'label.text_size =\n(label.width, None)'

on_release: root.app.select(1)

ToggleButton:

halign: 'center'

group: 'case'

text: 'label.text_size =\n(None, label.height)'

on_release: root.app.select(2)

ToggleButton:

halign: 'center'

group: 'case'

text: 'label.text_size =\n(label.width, label.height)'

on_release: root.app.select(3)

http://www.thedesignatedgeek.net
http://kivy.org/docs/

full circle magazine 1 81 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg D. Walters

Beginning Python - Part 36

B
efore I begin, I want to
note that this article
marks three years of
the Beginning

Programming using Python
series. I want to thank Ronnie
and the entire staff of Ful l Circle
Magazine for al l their support
and especial ly, you, the
readers. I NEVER thought that
this would continue this long.

I a lso want to take a second
to note that there has been
some comments floating
around the ether that, after
three years, the word
“Beginning” might be
misplaced in the title of this
series. After al l , after three
years, would you sti l l be a
beginner? Wel l , on some levels,
I agree. However, I sti l l get
comments from readers saying
that they just found the series
and Ful l Circle Magazine, and
that they are now running back
to the beginning of the series.
So, those people ARE
beginners. So, as of part 37,
we’ l l drop “Beginning” from the
series title.

Now to the actual meat of
this article. . . more on Kivy.

Imagine you play guitar. Not
air guitar, but an actual guitar.
However, you aren’t the best
guitar player, and some chords
are problematical for you. For
example, you know the
standard C, E, G, F type chords,
but some chords – l ike F#
minor or C# minor – whi le
doable, are hard to get your
fingers set in a fast song. What
do you do, especial ly if the gig
is only a couple of weeks away
and you HAVE to be up to
speed TODAY? The workaround
for this is to use the Capo (that
funny cl ippy thing that you see
sometimes on the neck of the
guitar). This raises the key of
the guitar and you use different
chords to match the rest of the

band. This is cal led transposing.
Sometimes, you can transpose
on the fly in your head.
Sometimes, it’s easier to sit
down on paper and work out
that if, for example, the chord
is F# minor and you put the
capo on fret 2, you can simply
play an E minor. But that takes
time. Let’s make an app that
al lows you to simply scrol l
through the fret positions to
find the easiest chords to play.

Our app wi l l be fairly simple.
A title label , a button with our
basic scale as the text, a
scrol lview (a wonderful parent
widget that holds other controls
and al lows you to “fl ing” the
inside of the control to scrol l)
holding a number of buttons
that have repositioned scales
as the text, and an exit button.

I t wi l l look
SOMETHING
l ike the text
below.

Start with a new python fi le
named main.py. This wi l l be
important if/when you decide to
create an Android app from
Kivy. Now we’l l add our import
statements which are shown on
the next page, top right.

Notice the second l ine,
“kivy.require(‘1.0.8’)” . This
al lows you to make sure that
you can use the latest and
greatest goodies that Kivy
provides. Also notice that we
are including a system exit (l ine
3). We’l l eventual ly include an
exit button.

Here is the beginning of our
class cal led “Transpose”.

Transposer Ver 0.1

C C#/Db D D#/Eb E F F#/Gb G G#/Ab A A#/Bb B C

__

1| C#/Db D D#/Eb E F F#/Gb G G#/Ab A A#/Bb B C C#/Db

2| D D#/Eb E F F#/Gb G G#/Ab A A#/Bb B C C#/Db D

full circle magazine 1 82 contents ^The Compleat Python

HOWTO - BEGINNING PYTHON 36

class Transpose(App):

def exit(instance):

sys.exit()

Now we work on our bui ld
routine (middle right). This is
needed for every Kivy app.

This looks rather confusing.
Unfortunately, the editor
doesn’t always keep spaces
correct even in a mono-spaced
font. The idea is that the text1
string is a simple scale starting
with the note “C”. Each should
be centered within 5 spaces.
Like the text shown bottom
right.

The text2 string should be
the same thing but repeated.
We wi l l use an offset into the
text2 string to fi l l in the button
text within the scrol lview
widget.

Now we create the root
object (which is our main
window) containing a
GridLayout widget. I f you
remember WAY back when we
were doing other GUI
development for Glade, there
was a grid view widget. Wel l ,
the GridLayout here is pretty

much the same. In this case,
we have a grid that has one
column and three rows. In each
of the cel ls created in the grid,
we can put other widgets.
Remember, we can’t define
which widget goes where other
than in the order in which we
place the widgets.

root =

GridLayout(orientation='verti

cal', spacing=10,

cols=1,rows=3)

In this case, the
representation is as fol lows. . . .

(0) title label

(1) main button

(2) scrollview

The scrol lview contains

multiple items – in our case
buttons. Next, we create the
label which wi l l be at the top of
our appl ication.

lbl = Label(text='Transposer

Ver 0.1',

font_size=20,

size_hint=(None,None),

size=(480,20),

padding=(10,10))

The properties that are set
should be fairly self-
explanatory. The only ones that
might give you some trouble
would be the padding and
size_hint properties. The
padding is the number of pixels

around the item in an x,y
reference. Taken directly from
the Kivy documentation
size_hint (for X which is same
as Y) is defined as:

Xsize hint. Represents howmuch

space thewidget shoulduse in the

direction ofthe Xaxis, relative to its

parent’swidth. OnlyLayoutand

Windowmake use ofthe hint. The

value is in percentas a floatfrom 0.

to 1., where 1. means the full size of

import kivy

kivy.require('1.0.8')

from sys import exit

from kivy.app import App

from kivy.core.window import Window

from kivy.uix.button import Button

from kivy.uix.label import Label

from kivy.uix.anchorlayout import AnchorLayout

from kivy.uix.scrollview import ScrollView

from kivy.uix.gridlayout import GridLayout

def build(self):

#

text1 = " C C#/Db D D#/Eb E F F#/Gb G G#/Ab A A#/Bb B C"

text2 = " C C#/Db D D#/Eb E F F#/Gb G G#/Ab A A#/Bb B C C#/Db D

D#/Eb E F F#/Gb G G#/Ab A A#/Bb B C C#/Db"

#

| | | | | | | | | | | |

12345678901234567890123456789012345678901234567890123456

C C#/Db E F F#/Gb G G#/Ab A A#/Bb B C

full circle magazine 1 83 contents ^The Compleat Python

Greg is the owner of RainyDay
Solutions, LLC, a consulting
company in Aurora, Colorado,
and has been programming since
1972. He enjoys cooking, hiking,
music, and spending time with
his fami ly. His website is

HOWTO - BEGINNING PYTHON 36

his parent. 0.5 represents50%.

In this case, size_hint is set
to none, which defaults to
100% or 1. This wi l l be more
important (and convoluted)
later on.

Now we define our “main”
button (next page, top right).
This is a static reference for the
scale.

Again, most of this should be
fairly clear.

Now we add the widgets to
the root object, which is the
GridLayout widget. The label
(lbl) goes in the first cel l , the
button (btn1) goes in the
second.

#

root.add_widget(lbl)

root.add_widget(btn1)

#

Now comes some harder-to-
understand code. We create
another GridLayout object and
cal l i t “s”. We then bind it to
the height of the next widget
which, in this case, wi l l be the
Scrol lView, NOT the buttons.

s = GridLayout(cols=1,

spacing = 10, size_hint_y =

None)

s.bind(minimum_height=s.sette

r('height'))

Now (middle right) we create
20 buttons, fi l l in the text
property, and then add it to the
GridLayout.

Now we create the
Scrol lView, set its size,
and add it to the root
GridLayout.

sv =

ScrollView(size_hint=(N

one, None),

size=(600,400))

sv.center =

Window.center

root.add_widget(sv)

Lastly, we add the
GridLayout that holds al l
our buttons into the
Scrol lView, and return
the root object to the
appl ication.

sv.add_widget(s)

return root

Final ly, we have our “if
__name__” routine. Notice that
we are setting ourselves up for
the possibi l i ty of using the
appl ication as an android app.

if __name__ in

('__main__','__android__'):

Transpose().run()

Now you might wonder why
I used buttons instead of labels
for al l our textual objects.
That’s because labels in Kivy
don’t have any kind of visible
border by default. We wi l l play
with this in the next
instal lment. We wi l l a lso add an
exit button and a l ittle bit more.

The source code can be
found on PasteBin at
http: //pastebin.com/hsicnyt1

Unti l next time,
enjoy and thank
you for putting
up with me for
three years!

btn1 = Button(text = " " + text1,size=(680,40),

size_hint=(None, None),

halign='left',

font_name='data/fonts/DroidSansMono.ttf',

padding=(20,20))

for i in range(0,19):

if i <= 12:

if i < 10:

t1 = " " + str(i) + "| "

else:

t1 = str(i) + "| "

else:

t1 = ''

text2 = ''

btn = Button(text = t1 + text2[(i*5):(i*5)+65],

size=(680, 40),

size_hint=(None,None),

halign='left',

font_name='data/fonts/DroidSansMono.ttf')

s.add_widget(btn)

#

http://www.thedesignatedgeek.net
http://pastebin.com/hsicnyt1

full circle magazine 1 84 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg D. Walters

Programming in Python - Part 37

T
his month, we’ l l finish
up the transposer
program that we wrote
in Kivy. Hopeful ly, you

saved the code from last time,
because we’l l be bui ld ing upon
it. I f not, grab the code from
FCM#64.

Let’s start by recapping what
we did last month. We created
an appl ication that al lows for a
guitarist to quickly transpose
from one key to the other. The
ultimate goal is to be able to
run this app not only on your

Linux or Windows box, but on
an android device as wel l . I take
mine on my tablet whenever I
go to band practice. I was going
to deal with packaging our
project for Android, but some
things have changed in the
method to do that, so we’l l
work on that next month.

The app, as we left it last
time, looked l ike that shown
below left.

When we are done, it should
look l ike the screen below right.

The first thing you wi l l notice
is that there are blue labels
rather than boring gray ones.
The next is that there are three
buttons. Final ly the scrol lable
labels are closer to the entire
width of the window. Other than
that, i t’s pretty much (visual ly)
the same. One of the buttons is
an “about” button that wi l l pop
up simple information, but it
explains how to make a simple
popup. One of the buttons is an
exit button. The other button
wi l l swap the label text to make
it easy to transpose from piano

to guitar or guitar to piano.

Let’s get started by creating
a .kv fi le (above right). This is
what wi l l g ive us the colored
labels. I t’s a very simple fi le.

#:kivy 1.0

#:import kivy kivy

<BoundedLabel>:

canvas.before:

Color:

rgb: 0, 0, 1

Rectangle:

pos: self.pos

size: self.size

full circle magazine 1 85 contents ^The Compleat Python

HOWTO - PROGRAMMING IN PYTHON 37

The first two l ines are
required. They basical ly say
what version of Kivy to expect.
Next we create a new type of
label cal led ‘BoundedLabel ’ .
The color is set with RGB
values (between 0 and 1, which
can be considered as 100
percent), and as you can see
the blue value is set at 100
percent. We wi l l a lso create a
rectangle which is the actual
label . Save this as
“transpose.kv”. You must use
the name of the class that wi l l
be using it.

Now that you have that
completed, add the fol lowing
l ines just before the transpose
class to the source fi le from last
time:

class BoundedLabel(Label):

pass

To make it work, al l we need
is a definition. Before we go
any further, add the fol lowing
l ine to the import section:

from kivy.uix.popup import

Popup

This al lows us to create the
popup later on. Now, in the
Transpose class, just inside the
def bui ld routine, place the

code shown above right.

The LoadLabels routine wi l l
g ive us the colored labels
(BoundedLabel) and the swap
abi l i ty. You saw most of this last
time. We pass a value to the
“w” parameter to determine
which text is being displayed.
The l=BoundedLabel l ine is
pretty much the same l ine from
last time, with the exception
that, this time, we are using a
BoundedLabel widget instead of
a Button widget. The
LoadLabels wi l l mainly be cal led

f

def LoadLabels(w):

if w == 0:

tex0 = self.text1

tex1 = self.text2

else:

tex0 = self.text3

tex1 = self.text4

for i in range(0,22):

if i <= 12:

if i < 10:

t1 = " " + str(i) + "| "

else:

t1 = str(i) + "| "

t = tex1

else:

t1 = ''

t = ''

l = BoundedLabel(text=t1+t[(i*6):(i*6)+78], size=(780, 35),

size_hint=(None,None),halign='left',

font_name='data/fonts/DroidSansMono.ttf')

s.add_widget(l)

def Swap(instance):

if self.whichway == 0:

self.whichway = 1

btnWhich.text = "Guitar > Piano"

btn1.text = " " + self.text3

s.clear_widgets()

LoadLabels(1)

else:

self.whichway = 0

btnWhich.text = "Piano > Guitar"

btn1.text = " " + self.text1

s.clear_widgets()

LoadLabels(0)

full circle magazine 1 86 contents ^The Compleat Python

HOWTO - PROGRAMMING IN PYTHON 37

rom the next routine, Swap.
Place this code (shown right)
below LoadLabels.

You can see that this routine
is pretty self explanatory. We
use a variable (self.whichway)
to determine “which way” the
labels are displaying. . . from
Guitar to Piano or Piano to
Guitar.

Be sure to save your work at
this point, since we are going to
be making a lot of changes
from here on.

Replace the l ines defining
text1 and text two with the
l ines shown above.

We set self.whichway to 0
which wi l l be our default for the
swap procedure. Then we
define four strings instead of
the two we had last time. You
might notice that strings text3
and text4 are simple reversals
of text1 and text2.

Now we wil l tweak the root
l ine definition. Change it from. . .

root =

GridLayout(orientation='verti

cal', spacing=10,

cols=1,rows=3)

to

root =

GridLayout(orientation='verti

cal', spacing=6, cols=1,

rows=4,

row_default_height=40)

We’ve changed the spacing
from 10 to 6 and set the default
row height to 40 pixels. Change
the text for the label (next l ine)
to “text='Transposer Ver
0.8.0'” . Everything else stays
the same on this l ine.

Now change the button
definition l ine from. . .

btn1 = Button(text = " " +

text1,size=(680,40),

size_hint=(None,None),

halign='left',

font_name='data/fonts/DroidSa

nsMono.ttf',

padding=(20,20))

to:

btn1 = Button(text = " "

+ self.text1,size=(780,20),

size_hint=(None, None),

halign='left',

font_name='data/fonts/DroidSa

nsMono.ttf',

padding=(20,2),

background_color=[0.39,0.07,.

92,1])

Notice that I ’ve changed the
formatting of the first definition
for clarity. The big changes are
the size change from 680,40 to
780,20 and the background
color for the button.
Remember, we can change the
background color for buttons,
not “standard” labels.

Next, we wi l l define three
AnchorLayout widgets for the
three buttons that we wi l l add
in later. I named them al0
(AnchorLayout0), a l1 and al2 .
We also add the code for the
About Popup, and define our
buttons along with the bind
statements. This is shown on
the next page, top left.

Find the “s = GridLayout”
l ine and change the spacing
from 10 to 4. Next, add the
fol lowing l ine after the s.bind
l ine (right before the for loop):

LoadLabels(0)

This cal ls the LoadLabels
routine with our default “which”
of 0.

Next, comment out the
entire for loop code. This starts
with “for i in range(0,19): ” and
ends with “s.add_widget(btn)”.
We don’t need this since the
LoadLabels routine does this for
us.

self.whichway=0

self.text1 = " C | B |A#/Bb| A |G#/Ab| G |F#/Gb| F | E |D#/Eb| D |C#/Db| C |"

self.text2 = " C | B |A#/Bb| A |G#/Ab| G |F#/Gb| F | E |D#/Eb| D |C#/Db| C | B |A#/Bb| A |G#/Ab| G |F#/Gb| F | E |D#/Ab| D |C#/Db| C |"

self.text3 = " C |C#/Db| D |D#/Eb| E | F |F#/Gb| G |G#/Ab| A |A#/Bb| B | C |"

self.text4 = " C |C#/Db| D |D#/Eb| E | F |F#/Gb| G |G#/Ab| A |A#/Bb| B | C |C#/Db| D |D#/Eb| E | F |F#/Gb| G |G#/Ab| A |A#/Bb| B | C |C#/Db|"

full circle magazine 1 87 contents ^The Compleat Python

Now, save your code and try
to run it. You should see a deep
purple button at the top, and
our pretty blue BoundLabels.
Plus, you wi l l notice that the
BoundLabels in the scrol l
window are closer together,
which makes it much easier to
read.

We are almost through with
our code, but we sti l l have a
few things to do. After the “sv
= Scrol lView” l ine add the
fol lowing l ine. . .

sv.size = (720, 320)

This sets the size of the
Scrol lView widget to 720 by
320 – which makes it wider

within the root window. Now,
before the “return root” l ine,
add the code shown top right.

Here we add the three
buttons to the AnchorLayout
widgets, create a GridLayout to
hold the AnchorLayouts, and
then final ly add the
AnchorLayouts to the
GridLayout.

Go back just below the “def
Swap” routine and add the
fol lowing. . .

def ShowAbout(instance):

popup.open()

That’s it. Save and run the
code. If you cl ick on the About

button, you wi l l see the simple
popup. Just cl ick anywhere
outside of the popup to make it
go away.

Now our code is written. You
can find the ful l code at
http: //pastebin.com/GftmjENs

Next, we need to create our
android package. . . but that wi l l
have to wait for next time.

If you want to get set up and

try packaging for Android
before next month, you should
go to
http: //kivy.org/docs/guide/packa
ging-android.html for the
documentation on this. Be sure
to fol low the documentation
careful ly.

See you next month.

HOWTO - PROGRAMMING IN PYTHON 37

al0 = AnchorLayout()

al1 = AnchorLayout()

al2 = AnchorLayout()

popup = Popup(title='About Transposer',

content=Label(text='Written by G.D. Walters'),

size_hint=(None,None),size=(400,400))

btnWhich = Button(text = "Piano > Guitar",

size=(180,40),size_hint=(None,None))

btnWhich.bind(on_release=Swap)

btnAbout = Button(text="About",size=(180,40),

size_hint=(None,None))

btnAbout.bind(on_release=ShowAbout)

btnExit = Button(text="Exit", size=(180,40),

size_hint=(None,None))

btnExit.bind(on_release=exit)

al0.add_widget(btnWhich)

al1.add_widget(btnExit)

al2.add_widget(btnAbout)

bgl = GridLayout(orientation='vertical',

spacing=6, cols=3,rows=1,

row_default_height=40)

bgl.add_widget(al0)

bgl.add_widget(al1)

bgl.add_widget(al2)

http://pastebin.com/GftmjENs
http://kivy.org/docs/guide/packaging-android.html

full circle magazine 1 88 contents ^The Compleat Python

A
s I promised in part
37, we wi l l take the
transposer app that
we created, and

create an APK to instal l i t on
your android device.

Before we get started, let’s
make sure we have everything
ready. First thing we need is the
two fi les we created last time in
a folder that you can easi ly
access. Let’s cal l i t
“transposer”. Create it in your
home directory. Next, copy the
two fi les (transpose.kv and
transpose.py) into that folder.
Now rename transpose.py to
main.py. This part is important.

Next, we need to reference
the kivy packaging instructions
in a web browser. The l ink is
http: //kivy.org/docs/guide/packa
ging-android.html . We wi l l be
using this for the next steps,
but not exactly as the Kivy
people intended. You should
have the android SDK from our
earl ier lesson. Ideal ly, you wi l l
go through and get al l the
software that is l isted there, but

for our purposes, you can just
fol low along here. You wi l l need
to download the python-for-
android software. Open a
terminal window and type the
fol lowing. . .

git clone

git://github.com/kivy/python

forandroid

This wi l l download and set
up the software that we need to
continue. Now, in a terminal
window, change your directory
to the python-for-
android/dist/default folder.

Now you wi l l find a fi le cal led
bui ld.py. This is what wi l l do al l
the work for us. Now comes the
magic.

The bui ld.py program wil l
take various command-l ine
arguments and create the APK

for you. Shown above is the
syntax for bui ld.py taken
directly from the Kivy
documentation.

For our use, we wi l l use the
fol lowing command (the “\” is a
l ine continuation character):

./build.py dir ~/transposer

package

org.RainyDay.transposer \

name "RainyDay Transposer"

version 1.0.0 debug

Let’s look at the pieces of
the command. . .

./build.py - this is the
appl ication
--dir ~/transposer - this is the
directory where our appl ication
code l ives.
--package

org.RainyDay.transposer - This is
the name of the package

--name “RainyDay Transposer” -
this is the name of the
appl ication that wi l l show up in
the apps drawer.
--version 1 .0.0 - the version of
our appl ication
debug - this is the level of
release (debug or release)

Once you execute this,
assuming that everything
worked as expected, you
should have a number of fi les in
the /bin folder. The one you are
looking for is titled
“RainyDayTransposer-1.0.0-
debug.apk”. You can copy this
to your android device using
your favorite fi le manager app,
and instal l i t just l ike any other
appl ication from the various
app stores.

That’s all I have time for this

month.

HH OOWW--TTOO
Written by Greg Walters

Programming In Python: Pt 38

./build.py dir <path to your app>

name "<title>"

package <org.of.your.app>

version <human version>

icon <path to an icon to use>

orientation <landscape|portrait>

permission <android permission like VIBRATE> (multiple allowed)

<debug|release> <installd|installr|...>

http://kivy.org/docs/guide/packaging-android.html

full circle magazine 1 89 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg Walters

Programming In Python: Pt 39

M
any, many months
ago, we worked
with API cal ls for
Weather

Underground. Actual ly, i t was in
part 11 which was back in issue
#37. Wel l , we are going to deal
with APIs again, this time for a
website named TVRage
(http: //tvrage.com). I f you
aren’t fami l iar with this site, it
deals with television shows. So
far, every TV show that I could
think of has been in their
system. In this series of
articles, we are going to revisit
XML, APIs, and ElementTree to
create a wrapper l ibrary that
wi l l a l low us to create a smal l
l ibrary which simpl ifies our
retrieval of TV information on
our favorite shows.

Now, I mentioned a wrapper
l ibrary. What’s that? In simple
terms, when you create or use
a wrapper l ibrary, you are using
a set of code that “wraps” the
complexity of the website’s API
into an easy-to-use l ibrary.
Before we get started, I need to
make a few things clear. First,

this is a free service. However,
they do request donations for
use of their API . I f you feel that
this is a worthwhi le service,
please consider donating $10
US or more. Second, you should
register at their website and
get your own API key. It’s free,
so there’s real ly no reason not
to, especial ly if you are going to
use the information provided
here. In addition, you have
access to a few other fields of
information l ike series and
episode summaries that are not
included in the unregistered
version. Third, they are hard at
work at updating the API . This
means that when you get to
seeing this article, their API
might have changed. We’l l be
using the publ ic feeds, which
are free for everyone to use as
of December 2012. The API
website is located at
http: //services. tvrage.com/info.
php?page=main and shows a
few examples of the types of
information that are avai lable.

Now, let’s begin looking at
the API and how we can use it.

Using their API , we can get
very specific information about
the show itself and/or we can
get episode level information.
There are basical ly three steps
to finding information about TV
Shows. Here are the steps:
• Search their database looking
for the show name to get the
specific Show ID which must be
used to get more data. Think of
the showid value as a key
directly into a record set in a
database, which in this case it
is.
• Once you have the Show ID,
obtain the show level
information.
• Final ly, gather the information
about a specific episode. This
comes from a l ist of each and
every episode that the show
has had to date.

There are three basic web
cal ls we wi l l make to get this
information. First is the search
cal l , second the show
information cal l , and final ly the
the episode l ist cal l .

Here are the base cal ls that
we wi l l use. . .
• Search for ShowID based on a
show name -
http://services.tvrage.com/fe

eds/search.php?show={SomeShow

}

• Pul l the show level data
based on the Show ID (sid) -
http://services.tvrage.com/fe

eds/showinfo.php?sid={SomeSho

wID}

• Pul l the episode l ist for Show
ID (sid) -
http://services.tvrage.com/fe

eds/episode_list.php?sid={Som

eShowID}

<?xml version="1.0" encoding="UTF8" ?>

<ROOT TAG>

<PARENT TAG>

<CHILD TAG 1>DATA</CLOSING CHILD TAG 1>

<CHILD TAG 2>DATA</CLOSING CHILD TAG 2>

<CHILD TAG 3>DATA</CLOSING CHILD TAG 3>

</CLOSING PARENT TAG>

</CLOSING ROOT TAG>

http://services.tvrage.com/info.php?page=main
http://tvrage.com

full circle magazine 1 90 contents ^The Compleat Python

HOWTO - PROGRAMMING PYTHON Pt39

What gets returned is a
stream of data in XML format.
Let’s take a moment to review
what XML looks l ike. The first
l ine should always be simi lar to
the one shown below to be
considered a proper XML data
stream (below).

Every piece of data is
enclosed within a defining tag
and end-tag. Sometimes you
wi l l have a chi ld tag that is a
parent tag in itself l ike this. . .

<CHILD PARENT TAG>

<CHILD TAG 1>DATA</CLOSING

CHILD TAG 1>

</CLOSING CHILD PARENT TAG>

You also may see a tag that
has an attribute associated
with it:

<TAG INFORMATION = VALUE>

<CHILD TAG>DATA</CLOSING

CHILD TAG>

</CLOSING TAG>

Sometimes, you might see a
tag with no data associated
with it. I t would come across
l ike this. . .

<prodnum/>

Sometimes, if there is no
information for a specific tag,
the tag itself just won’t be
there. Your program wil l have to
deal with these possibi l i ties.

So, when we go through and
deal with the XML data, we
start with the root tag, and
parse each tag – looking for the
data we care about. In some
instances we want everything;
in others, we care about only
certain pieces of the
information.

Now, let’s look at the first
cal l and see what gets
returned. Assume the show we
are looking for is Buffy the
Vampire Slayer. Our search cal l
would look l ike this:

http://services.tvrage.com/fe

eds/search.php?show=buffy

The returned XML fi le would
look l ike this:
http: //pastebin.com/Eh6ZtJ9N.

Note that I put the indents in
myself to make it easier for you
to read. Now let’s break down
the XML fi le to see what we
actual ly have.

<Results> - This is the ROOT of
the XML data. The last l ine of

the stream we get back should
be the closing tag </Results>.
Basical ly, this marks the
beginning and end of the XML
stream. There could be zero
results or fifty results.
<show> This is the parent node
that says “What fol lows (unti l
the end show tag) is the
information about a single tv
show”. Again, it’s ended by its
end tag </show>. Anything
within these two tags should be
considered one show’s worth of
information.
<showid>2930</show> This is
the showid tag. This holds the
sid that we have to use to get
the show information, in this
case 2930.
<name>Buffy the Vampire

Slayer</name> This is the name
of the show
<link>...</link> This would be
the l ink to the show itself (or, in
the case of an episode, the
episode information) on the
TVRage website.

<country>...</country> The
country of origin for the show.
…
</show>

</Results>

In the case of our program,
we would be real ly interested in
only the two fields <showid>
and <name>. We might also
consider paying attention to
the <started> field as wel l .
This is because we rarely get
back just one set of data,
especial ly if we didn’t give the
absolutely complete show
name. For example, if we were
interested in the show “The Big
Bang Theory,” and searched
using only the string “Big
Bang”, we would get twenty or
so data sets back because
anything that even remotely
matched “big” or “bang” would
be returned. However, if we
were interested in the show
“NCIS,” and we searched for
that, we would get back many

http://pastebin.com/Eh6ZtJ9N

full circle magazine 1 91 contents ^The Compleat Python

responses. Some not what we
would expect right away. Not
only would we get “NCIS”,
“NCIS: Los Angeles”, “The Real
NCIS”, but also “The Streets of
San Francisco” and “Da Vinci ’s
Inquest”, and many more, since
the letters “N” “C” “I” and “S”
are in al l of those, pretty much
in that order.

Once we know the show id
that we want, then we can
request the show information
for that ID. The data is simi lar
to the data we just got back in
the search response, but more
detai led. Again, using Buffy as
our example request, here
(next page, right) is an
abbreviated version of the XML
fi le.

You can see that much of the
data is included in the original
search response stream.
However, things l ike network,
network country, runtime, air
day and time, are specific to
this response set.

Next, we would request the
episode l ist. I f the show is only
one season long and has/had
only six episodes, this stream
would be short. However, let’s

take the case of one of
my favorite TV shows,
Doctor Who. Doctor Who
is a British TV show that,
in its original form,
started in 1963 and ran
for 26 seasons (‘series’
for our friends in the UK)
unti l 1989. Its first season
alone had 42 episodes,
whi le other
seasons/series have
around 24 episodes. You
can see where you might
have a HUGE stream to
parse through.

What we get back
from the episode l ist
request is as shown on
the next page (again
using Buffy as our
example); I ’m going to
just use part of the
stream so you get a good
idea of what comes back.

So to recap, the
information we real ly
want/need in the search
for show id by name
stream would be. . .
<showid>

<name>

<started>

In the Show

HOWTO - PROGRAMMING PYTHON Pt39

<Showinfo>

<showid>2930</showid>

<showname>Buffy the Vampire Slayer</showname>

<showlink>http://tvrage.com/Buffy_The_Vampire_Slayer</showlink>

<seasons>7</seasons>

<started>1997</started>

<startdate>Mar/10/1997</startdate>

<ended>May/20/2003</ended>

<origin_country>US</origin_country>

<status>Canceled/Ended</status>

<classification>Scripted</classification>

<genres>

<genre>Action</genre>

<genre>Adventure</genre>

<genre>Comedy</genre>

<genre>Drama</genre>

<genre>Mystery</genre>

<genre>SciFi</genre>

</genres>

<runtime>60</runtime>

<network country="US">UPN</network>

<airtime>20:00</airtime>

<airday>Tuesday</airday>

<timezone>GMT5 DST</timezone>

<akas>

<aka country="SE">Buffy & vampyrerna</aka>

<aka country="DE">Buffy Im Bann der Dämonen</aka>

<aka country="NO">Buffy Vampyrenes skrekk</aka>

<aka country="HU">Buffy a vámpírok réme</aka>

<aka country="FR">Buffy Contre les Vampires</aka>

<aka country="IT">Buffy l'Ammazza Vampiri</aka>

<aka country="PL">Buffy postrach wampirów</aka>

<aka country="BR">Buffy, a CaçaVampiros</aka>

<aka country="PT">Buffy, a Caçadora de Vampiros</aka>

<aka country="ES">Buffy, Cazavampiros</aka>

<aka country="HR">Buffy, ubojica vampira</aka>

<aka country="FI">Buffy, vampyyrintappaja</aka>

<aka country="EE">Vampiiritapja Buffy</aka>

<aka country="IS">Vampírubaninn Buffy</aka>

</akas>

</Showinfo>

full circle magazine 1 92 contents ^The Compleat Python

HOWTO - PROGRAMMING PYTHON Pt39

Information stream we would
(normal ly) want. . .
<seasons>

<started>

<start date>

<origin_country>

<status>

<genres>

<runtime>

<network>

<airtime>

<airday>

<timezone>

and from the episode l ist
stream. . .
<Season>

<episode number>

<season number>

<production number>

<airdate>

<link>

<title>

A word of “warning” here.
Season number and Episode
number data are not what you
might think right away. In the
case of the data from TVRage,
the season number is the
number of the episode within
the season. The episode
number is the number for that
episode within the total l i fe
span of the series. The
production number is a number
that was used internal ly to the
series, that, for many people,
means l ittle if anything.

Now that we have refreshed
our memory on XML fi le
structures and examined the
TVRage API cal ls, we are ready
to start our coding, but that wi l l
have to wait unti l next time.

Unti l then, have a good
hol iday season.

<Show>

<name>Buffy the Vampire Slayer</name>

<totalseasons>7</totalseasons>

<Episodelist>

<Season no="1">

<episode>

<epnum>1</epnum>

<seasonnum>01</seasonnum>

<prodnum>4V01</prodnum>

<airdate>19970310</airdate>

<link>http://www.tvrage.com/Buffy_The_Vampire_Slayer/episodes/28077</link>

<title>Welcome to the Hellmouth (1)</title>

</episode>

<episode>

<epnum>2</epnum>

<seasonnum>02</seasonnum>

<prodnum>4V02</prodnum>

<airdate>19970310</airdate>

<link>http://www.tvrage.com/Buffy_The_Vampire_Slayer/episodes/28078</link>

<title>The Harvest (2)</title>

</episode>

<episode>

<epnum>3</epnum>

<seasonnum>03</seasonnum>

<prodnum>4V03</prodnum>

<airdate>19970317</airdate>

<link>http://www.tvrage.com/Buffy_The_Vampire_Slayer/episodes/28079</link>

<title>Witch</title>

</episode>

...

</Season>

</Episodelist>

</Show>

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his
fami ly. His website is

http://www.thedesignatedgeek.net

full circle magazine 1 93 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg Walters

Programming In Python: Pt 40

L
ast time, we had a
gross discussion about
the TVRAGE web API .
Now we wil l start to look

at writing code to work with it.

The goal of this part is to
begin the process of creating
code that wi l l be a reusable
module that can be imported
into any python program and
wi l l provide access to the API
easi ly.

Whi le the TVRAGE API gives
us a number of things we can
do, and the registered version
even more, we wi l l concentrate
on only three cal ls:
1 - Search for show by show
name, and get the ShowID
2 - Get show information based
on ShowID
3 - Get episode specific
information based on ShowID

Last time, I showed you the
“unregistered” and accessible-
by-anyone API cal ls. This time
we wi l l use the registered cal ls
– based on a registration key I
have. I ’m going to share this
key with you (TVRAGE knows

that I ’m going to do this) .
However, I ask that, if you are
going to use the API , that you
please register and get your
own key, and that you don’t
abuse the site. Please also
consider donating to them to
support their continuing efforts.

We wi l l create three main
routines to make the cal ls and
return the information, three
routines that wi l l be used to
display the returned
information (assuming that we
are running in the “stand
alone” mode), and a main
routine to do the work – again
assuming that we are running
in the “stand alone” mode.

Here is the l ist of routines we
wi l l be creating (although not
al l of them this time. I want to
leave room for others in this
issue.)

def FindIdByName(self,

showname, debug = 0)

def GetShowInfo(self, showid,

debug = 0)

def GetEpisodeList(self,

showid, debug = 0)

def DisplaySearchResult(self,

ShowListDict)

def DisplayShowInfo(self,

dict)

def DisplayEpisodeList(self,

SeriesName, SeasonCount,

EpisodeList)

def main()

The routine FindIdByName
takes a string (showname),
makes the API cal l , parses the
XML response, and returns a l ist
of shows that match with the
information in a dictionary, so
this wi l l be a l ist of dictionaries.
GetShowInfo takes the showid
from the above routine and
returns a dictionary of
information about the series.
GetEpisodeList also uses the
showid from the above routine
and returns a l ist of dictionaries
containing information for each
episode.

We wi l l use a series of
strings to hold the key and the
base URL, and then append to

those what we need. For
example consider the fol lowing
code (we’l l expand these later).

self.ApiKey =

"Itnl8IyY1hsR9n0IP6zI"

self.FindSeriesString =

"http://services.tvrage.com/m

yfeeds/search.php?key="

The cal l we need to send (to
get back a l ist of series
information with the series id)
would be:

http: //services. tvrage.com/myfe
eds/search.php?key=Itnl8IyY1h
sR9n0IP6zI&show={ShowName
}

We combine the string l ike
this. . .

strng = self.FindSeriesString

+ self.ApiKey + "&show=" +

showname

For the purposes of testing, I
wi l l be using a show named
“Continuum” which, if you’ve
never seen it, is a wonderful
science fiction show on the
Showcase network out of
Canada. I ’m using this show for
a few reasons. First, there are

http://services.tvrage.com/myfeeds/search.php?key=Itnl8IyY1hsR9n0IP6zI&show={ShowName}

full circle magazine 1 94 contents ^The Compleat Python

HOWTO - PROGRAMMING PYTHON Pt40

only (as of this writing) two
shows that match the search
string “Continuum”, so that
makes your debug easy, and
secondly, there’s currently only
one season of 10 episodes for
you to deal with.

You should have an idea
what you wi l l be looking for in
your parsing routines, so I ’ve
placed the ful l URL cal ls below
for you to test, before you get
started with your coding.

Search using a show name. . .
http: //services. tvrage.com/myfe
eds/search.php?key=Itnl8IyY1h
sR9n0IP6zI&show=continuum

Retrieve Series information
using the ShowID (sid)
http: //services. tvrage.com/myfe
eds/showinfo.php?key=Itnl8IyY
1hsR9n0IP6zI&sid=30789

Retrieve Episode l ist and
information using the ShowID
(sid)
http: //services. tvrage.com/myfe
eds/episode_l ist.php?key=Itnl8I
yY1hsR9n0IP6zI&sid=30789

Now that we have al l that
out of the way, let’s get started
with our code.

You’ l l create a fi le with the
name of “tvrage.py”. We’l l be
using this for the next issue or
two.

We’l l start with our imports
shown above right.

You can see that we wi l l be
using ElementTree to do the
XML parsing, and url l ib for the
internet communication. The
sys l ibrary is used for sys.exit.

We’l l set up the main loop
now so we can test things as

we go (bottom right).
Remember this is the last thing
in our source fi le.

As I said earl ier, the first four
l ines are our partia l strings to
bui ld the URL for the function
that we want to use.

(GetEpisodeListString should al l
be on one l ine.) The last four
l ines are the initia l ization of the
l ists we wi l l be using later.

First (middle right), we set
up the string that wi l l be used
as the URL. Next, we set up the

#===

IMPORTS

#===

from xml.etree import ElementTree as ET

import urllib

import sys

#===

Main loop

#===

if __name__ == "__main__":

main()

Now we start our class. The name of the class is “TvRage”. We’l l a lso make our __init__ routine
now.

class TvRage:

def __init__(self):

self.ApiKey = "Itnl8IyY1hsR9n0IP6zI"

self.FindSeriesString = "http://services.tvrage.com/myfeeds/search.php?key="

self.GetShowInfoString = "http://services.tvrage.com/myfeeds/showinfo.php?key="

self.GetEpisodeListString =

"http://services.tvrage.com/myfeeds/episode_list.php?key="

self.ShowList = []

def FindIdByName(self,showname,debug = 0):

strng = self.FindSeriesString + self.ApiKey + "&show=" + showname

urllib.socket.setdefaulttimeout(8)

usock = urllib.urlopen(strng)

tree = ET.parse(usock).getroot()

usock.close()

foundcounter = 0

http://services.tvrage.com/myfeeds/search.php?key=Itnl8IyY1hsR9n0IP6zI&show=continuum
http://services.tvrage.com/myfeeds/showinfo.php?key=Itnl8IyY1hsR9n0IP6zI&sid=30789
http://services.tvrage.com/myfeeds/episode_list.php?key=Itnl8IyY1hsR9n0IP6zI&sid=30789

full circle magazine 1 95 contents ^The Compleat Python

HOWTO - PROGRAMMING PYTHON Pt40

socket with an 8 second default
timeout. Then we cal l
url l ib.urlopen with our
generated URL and (hopeful ly)
receive our xml fi le in the usock
object. We cal l ElementTree
setup so we can parse the xml
information. (I f you are lost
here, please re-read my articles
on XML (parts 10, 11 and 12
appearing in FCM #36, 37 and
38)). Next, we close the socket,
and initia l ize the counter for
the number of matches found,
and reset the l ist ‘showl ist’ to
an empty l ist.

Now we wil l step through the
xml information using the tag
‘show’ as the parent for what
we want. Remember the
returned information looks
something l ike that shown top
right.

We wi l l be going through
each group of information for
the parent ‘show’ and parsing
out the information. In practice,

al l we real ly need is the show
name (<name>) and the
showid (<showid>) shown
bottom left, but we’l l handle al l
of the results.

I ’ l l d iscuss the first one and
you’ l l understand the rest. As
we go through the information,
we look for tags (bottom right)
that match what we want. I f we
find any, we assign each to a
temporary variable and then
put that into the dictionary as a
value with a key that matches
what we are putting in. In the
case of the above, we are
looking for the tag ‘showid’ in
the XML data. When we find it,
we assign that as a value to the
dictionary key ‘ ID’ .

The next portion (next page,
top right) deals with the
genre(s) of the show. As you
can see from the above XML
snippet, this show has four
different genres that it fits into.
Action, Crime, Drama, and Sci-

<Results>

<show>

<showid>30789</showid>

<name>Continuum</name>

<link>http://www.tvrage.com/Continuum</link>

<country>CA</country>

<started>2012</started>

<ended>0</ended>

<seasons>2</seasons>

<status>Returning Series</status>

<classification>Scripted</classification>

<genres>

<genre>Action</genre>

<genre>Crime</genre>

<genre>Drama</genre>

<genre>SciFi</genre>

</genres>

</show>

for node in tree.findall('show'):

showinfo = []

genrestring = None

dict = {}

for n in node:

if n.tag == 'showid':

showid = n.text

elif n.tag == 'name':

showname = n.text

dict['Name'] = showname

elif n.tag == 'link':

showlink = n.text

dict['Link'] = showlink

elif n.tag == 'country':

showcountry = n.text

dict['Country'] = showcountry

elif n.tag == 'started':

showstarted = n.text

dict['Started'] = showstarted

elif n.tag == 'ended':

showended = n.text

dict['Ended'] = showended

elif n.tag == 'seasons':

showseasons = n.text

dict['Seasons'] = showseasons

elif n.tag == 'status':

showstatus = n.text

dict['Status'] = showstatus

elif n.tag == 'classification':

showclassification = n.text

full circle magazine 1 96 contents ^The Compleat Python

HOWTO - PROGRAMMING PYTHON Pt40

Fi . We need to handle each.

Final ly, we increment the
foundcounter variable, and
append this dictionary into the
l ist ‘showl ist’ . Then we start the
entire thing over unti l there is
no more XML data. Once
everything is done, we return
the l ist of dictionaries (bottom
right).

Most of the code is pretty
self explanatory. We’l l
concentrate on the for loop we
use to print out the information.
We loop through each item in
the l ist of dictionaries and print
a counter variable, the show
name (c[‘Name’]) , and the id.
The result looks something l ike
this. . .

Enter Series Name >

continuum

2 Found

1 Continuum 30789

2 Continuum (Web series)

32083

Enter Selection or 0 to exit

>

Please remember that the
l ist of items is zero based, so
when the user enters ‘1’ , they
are real ly asking for dictionary
number 0. We do this, because
“regular” people think that

counting should start with ‘1’
not 0. And we can then use 0 to
escape the routine and not
make them use ‘Q’ or ‘q’ or ‘-1’ .

Now, the “main” routine that
pul ls it al l together for us.

For today, we’ l l just start the
routine (middle right) and
continue it next time.

Next time, we’l l add the
other routines. For now, the
code can be found at
http: //pastebin.com/6iw5NQrW

See you soon.

elif n.tag == 'genres':

for subelement in n:

if subelement.tag == 'genre':

if subelement.text != None:

if genrestring == None:

genrestring = subelement.text

else:

genrestring += " | " + subelement.text

foundcounter += 1

self.showlist.append(dict)

return self.showlist

#==

The next thing we wi l l do is create the routine to display al l of our results.

def DisplayShowResult(self, ShowListDict):

lcnt = len(ShowListDict)

print "%d Found" % lcnt

print ""

cntr = 1

for c in ShowListDict:

print "%d %s %s" % (cntr,c['Name'],c['ID'])

cntr += 1

def main():

tr = TvRage()

#

Find Series by name

#

nam = raw_input("Enter Series Name > ")

if nam != None:

sl = tr.FindIdByName(nam)

which = tr.DisplayShowResult(sl)

if which == 0:

sys.exit()

else:

option = int(which)1

id = sl[option]['ID']

print "ShowID selected was %s" % id

http://pastebin.com/6iw5NQrW

full circle magazine 1 97 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg Walters

Programming In Python: Pt 41

L
ast month, we started
our command l ine
version of a l ibrary to
talk to the TVRAGE web

API . This month we wi l l
continue adding to that l ibrary.
I f you don’t have the code from
last month, please get it now
from pastebin
(http: //pastebin.com/6iw5NQrW
) because we wi l l be adding to
that code.

The way we left the code,
you would run the program and
enter in the terminal window
the name of a TV show you
want information on.
Remember, we used the show
Continuum. Once you pressed
<Enter>, the program would
cal l the api and search by the
name of the show, and then
return a l ist of show names that
matches your input. You then
would select from the l ist by
entering a number and it would
show “ShowID selected was
30789”. Now, we wi l l create the
code that wi l l use that ShowID
to get the series information.
One other thing to keep in

mind: the display routines are
there pretty much to prove the
routine works. The ultimate
goal here is to create a
reusable l ibrary that can be
used in something l ike a GUI
program. Feel free to modify
the display routines if you want
to do more with the standalone
capabi l i ties of the l ibrary.

The last routine we created
in the class was
“DisplayShowResult”. Right
after that, and before the
routine “main,” is where we wi l l
put our next routine. The
information that wi l l be
returned (there is other
information, but we wi l l use
only the l ist below) wi l l be in a
dictionary and wi l l contain (if
avai lable):
• Show ID
• Show Name

• Show Link
• Origin Country of network
• Number of seasons
• Series image
• Year Started
• Date Started
• Date Ended
• Status
(canceled, returning, current, etc)

• Classification
(scripted, real ity, etc)

• Series Summary

• Genre(s)
• Runtime in minutes
• Name of the network that
original ly aired the show
• Network country
(pretty much the same thing as Origin
Country)

• Air time
• Air Day (of week)
• TimeZone

Shown above is the

def GetShowInfo(self,showid,debug=0):

showidstr = str(showid)

strng = self.GetShowInfoString + self.ApiKey + "&sid=" + showidstr

urllib.socket.setdefaulttimeout(8)

usock = urllib.urlopen(strng)

tree = ET.parse(usock).getroot()

usock.close()

dict = {}

for child in tree:

if child.tag == 'showid':

dict['ID'] = child.text

elif child.tag == 'showname':

dict['Name'] = child.text

elif child.tag == 'showlink':

dict['Link'] = child.text

elif child.tag == 'origin_country':

dict['Country'] = child.text

elif child.tag == 'seasons':

dict['Seasons'] = child.text

elif child.tag == 'image':

dict['Image'] = child.text

elif child.tag == 'started':

dict['Started'] = child.text

elif child.tag == 'startdate':

http://pastebin.com/6iw5NQrW

full circle magazine 1 98 contents ^The Compleat Python

HOWTO - PROGRAMMING PYTHON Pt41

beginning of the code.

You should recognize most of
the code from last time. There’s
real ly not much changed.
Here’s more code (shown
below).

As you can see (above),
there’s nothing real ly new in
this bit of code either, if you’ve
been keeping up with the
series. We are using a for loop,
checking each tag in the XML
fi le for a specific value. I f we
find it, we assign it to a
dictionary item.

Now things get a bit more
compl icated. We are going to
check for the tag “genres”. This
has chi ld tags underneath it
with the name of “genre”. For
any given show, there can be
multiple genres. We’l l have to
append the genres to a string
as they come up and separate

them with a vertical bar and
two spaces l ike this “ | “ (shown
top right).

Now we are pretty much
back to “normal” code (shown
middle right) that you’ve
already seen. The only thing
that’s a bit different is the tag
“network” which has an
attribute “country”. We grab
the attribute data by looking for
“chi ld.attrib[‘attributetag’]”
instead of “chi ld. text”.

That’s the end of this
routine. Now (below) we’l l need

some way to display the
information we worked so hard
to get. We’l l create a routine
cal led “DisplayShowInfo”.

Now, we must update the
“main” routine (next page,
shown top right) to support our
two new routines. I ’m giving
the entire routine below, but

elif child.tag == 'ended':

dict['Ended'] = child.text

elif child.tag == 'status':

dict['Status'] = child.text

elif child.tag == 'classification':

dict['Classification'] = child.text

elif child.tag == 'summary':

elif child.tag == 'genres':

genrestring = None

for subelement in child:

if subelement.tag == 'genre':

if subelement.text != None:

if genrestring == None:

genrestring = subelement.text

else:

genrestring += " | " + subelement.text

elif child.tag == 'runtime':

dict['Runtime'] = child.text

elif child.tag == 'network': # has attribute

dict['NetworkCountry'] = child.attrib['country']

dict['Network'] = child.text

elif child.tag == 'airtime':

dict['Airtime'] = child.text

elif child.tag == 'airday':

dict['Airday'] = child.text

elif child.tag == 'timezone':

dict['Timezone'] = child.text

def DisplayShowInfo(self,dict):

print "Show: %s" % dict['Name']

print "ID: %s Started: %s Ended: %s Start Date: %s Seasons: %s" %

(dict['ID'],dict['Started'],dict['Ended'],dict['StartDate'],dict['Seasons'])

print "Link: %s" % dict['Link']

print "Image: %s" % dict['Image']

print "Country: %s Status: %s Classification: %s" %

(dict['Country'],dict['Status'],dict['Classification'])

print "Runtime: %s Network: %s Airday: %s Airtime: %s" %

(dict['Runtime'],dict['Network'],dict['Airday'],dict['Airtime'])

print "Genres: %s" % dict['Genres']

full circle magazine 1 99 contents ^The Compleat Python

HOWTO - PROGRAMMING PYTHON Pt41

the new code is shown in black.

Next page, bottom left, is
what the output of
“DisplayShowInfo” should look
l ike, assuming you chose
“Continuum” as the show.

Please notice that I ’m not
displaying the time zone

information here, but feel free
to add it if you wish.

Next, we need to work on
the episode l ist routines for the
series. The “worker” routine wi l l
be cal led “GetEpisodeList” and
wi l l provide the fol lowing
information. . .
• Season
• Episode Number

• Season Episode Number
(the number of the episode within the
season)

• Production Number
• Air Date
• Link
• Title
• Summary
• Rating

• Screen Capture Image of
Episode (if avai lable)

Before we start with the
code, it would be helpful to
revisit what the episode l ist
request to the API returns. I t
looks something l ike that
shown on the next page, top

def main():

tr = TvRage()

#

Find Series by name

#

nam = raw_input("Enter Series Name > ")

if nam != None:

sl = tr.FindIdByName(nam)

which = tr.DisplayShowResult(sl)

if which == 0:

sys.exit()

else:

option = int(which)1

id = sl[option]['ID']

print "ShowID selected was %s" % id

#

Get Show Info

#

showinfo = tr.GetShowInfo(id)

#

Display Show Info

ShowID selected was 30789

Show: Continuum

ID: 30789 Started: 2012 Ended: None Start Date:

May/27/2012 Seasons: 2

Link: http://www.tvrage.com/Continuum

Image: http://images.tvrage.com/shows/31/30789.jpg

Country: CA Status: Returning Series Classification:

Scripted

Runtime: 60 Network: Showcase Airday: Sunday

Airtime: 21:00

Genres: Action | Crime | Drama | SciFi

Summary:

Continuum is a onehour police drama centered on Kiera

Cameron, a regular cop from 65 years in the future who

finds herself trapped in present day Vancouver. She is

alone, a stranger in a strange land, and has eight of the

most ruthless criminals from the future, known as Liber8,

loose in the city.

Lucky for Kiera, through the use of her CMR (cellular

memory recall), a futuristic liquid chip technology

implanted in her brain, she connects with Alec Sadler, a

seventeenyearold tech genius. When Kiera calls and Alec

answers, a very unique partnership begins.

Kiera’s first desire is to get "home." But until she

figures out a way to do that, she must survive in our

time period and use all the resources available to her to

track and capture the terrorists before they alter

def GetEpisodeList(self,showid,debug=0):

showidstr = str(showid)

strng = self.GetEpisodeListString + self.ApiKey

+ "&sid=" + showidstr

urllib.socket.setdefaulttimeout(8)

usock = urllib.urlopen(strng)

tree = ET.parse(usock).getroot()

usock.close()

for child in tree:

full circle magazine 200 contents ^The Compleat Python

HOWTO - PROGRAMMING PYTHON Pt41

right.

The information for each
episode is in the “episode” tag
– which is a chi ld of “Season” –
which is a chi ld of “Episodel ist”
– which is a chi ld of “Show”. We
have to be careful how we
parse this. As with most of our

“worker” routines this time, the
first few l ines (below) are fairly
easy to understand by now.

Now we need to look for the
“name” and “totalseasons”
tags below the “root” tag
“Show”. Once we’ve dealt with
them, we look for the

“Episodel ist”, “Season” tags.
Notice above that the “Season”
tag has an attribute. You might
notice (in the code above) that
we aren’t including the
“Showname” or “Totalseasons”
data in the dictionary. We are
assigning them to a variable

that wi l l be returned at the end
of the routine to the cal l ing
code.

Now that we have that
portion of the data, we deal
with the episode specific
information (shown below).

<Show>

<name>Continuum</name>

<totalseasons>2</totalseasons>

<Episodelist>

<Season no="1">

<episode>

<epnum>1</epnum>

<seasonnum>01</seasonnum>

<prodnum/>

<airdate>20120527</airdate>

<link>

http://www.tvrage.com/Continuum/episodes/1065162187

</link>

<title>A Stitch in Time</title>

<summary>

Inspector Kiera Cameron loses everything she has and finds

herself on a new mission when she and eight dangerous

terrorists are transported from their time in 2077 back to

2012 during the terrorist’s attempt to escape execution.

She takes on a new identity and joins the VPD in order to

stop the terrorists’ reign of violence. Along the way, she

befriends Alec Sadler, the 17 year old who will one day

grow up to create the technology her world is built upon.

</summary>

<rating>8.8</rating>

<screencap>

http://images.tvrage.com/screencaps/154/30789/1065162187.p

if child.tag == 'name':

ShowName = child.text

elif child.tag == 'totalseasons':

TotalSeasons = child.text

elif child.tag == 'Episodelist':

for c in child:

if c.tag == 'Season':

dict = {}

seasonnum = c.attrib['no']

for el in c:

if el.tag == 'episode':

dict={}

dict['Season'] = seasonnum

for ep in el:

if ep.tag == 'epnum':

dict['EpisodeNumber'] = ep.text

elif ep.tag == 'seasonnum':

dict['SeasonEpisodeNumber'] = ep.text

elif ep.tag == 'prodnum':

dict['ProductionNumber'] = ep.text

elif ep.tag == 'airdate':

dict['AirDate'] = ep.text

elif ep.tag == 'link':

dict['Link'] = ep.text

elif ep.tag == 'title':

dict['Title'] = ep.text

elif ep.tag == 'summary':

dict['Summary'] = ep.text

elif ep.tag == 'rating':

dict['Rating'] = ep.text

self.EpisodeItem.append(dict)

return ShowName,TotalSeasons,self.EpisodeItem

http://pastebin.com/6iw5NQrW

full circle magazine 201 contents ^The Compleat Python

HOWTO - PROGRAMMING PYTHON Pt41

Al l that’s left now (bottom
right) is to append the episode
specific information (that we’ve
put into the dictionary) to our
l ist, and keep going. Once we
are done with al l the episodes,
we return to the cal l ing routine
and, as I stated earl ier, return
three items of data,
“ShowName”, “TotalSeasons”
and the l ist of dictionaries.

Next, we need to create our
display routine. Again, it’s fairly
straightforward. The only thing
that you might not recognize is
the “if
e.has_key(‘keynamehere’)“
l ines. This is a check to make
sure that there is actual ly data
in the “Rating” and “Summary”
variables. Some shows don’t
have this information, so we
include the check to make our
print-to-screen data a l ittle
prettier (shown above right).

Al l that’s left is to update our
“main” routine (next page,
shown top right). Once again,
I ’m going to provide the ful l
“main” routine with the newest
code in black bold .

Now, if you save and run the

program, the output of the
“GetEpisodeList” and
“DisplayEpisodeList” wi l l work.
Shown bottom right is a snippet
of the Episode information.

That’s it for this month. As
always, you can find the ful l
source code on pastebin at
http: //pastebin.com/kWSEfs2E.

I hope you enjoy playing with
the l ibrary. There is additional
data avai lable from the API that
you can include. Please
remember, TVRage provides

def DisplayEpisodeList(self,SeriesName,SeasonCount,EpisodeList):

print ""

print "Series Name: %s" % SeriesName

print "Total number of seasons: %s" % SeasonCount

print "Total number of episodes: %d" % len(EpisodeList)

print ""

for e in EpisodeList:

print "Season: %s" % e['Season']

print " Season Episode Number: %s Series Episode Number: %s" %

(e['SeasonEpisodeNumber'],e['EpisodeNumber'])

print " Title: %s" % e['Title']

if e.has_key('Rating'):

print " Airdate: %s Rating: %s" % (e['AirDate'],e['Rating'])

else:

print " Airdate: %s Rating: NONE" % e['AirDate']

if e.has_key('Summary'):

print " Summary: \n%s" % e['Summary']

else:

print " Summary: NA"

print "==========================="

Series Name: Continuum

Total number of seasons: 2

Total number of episodes: 10

Season: 1

Season Episode Number: 01 Series Episode Number: 1

Title: A Stitch in Time

Airdate: 20120527 Rating: 8.8

Summary:

Inspector Kiera Cameron loses everything she has and finds herself on a new mission when

she and eight dangerous terrorists are transported from their time in 2077 back to 2012

during the terrorist’s attempt to escape execution. She takes on a new identity and

joins the VPD in order to stop the terrorists’ reign of violence. Along the way, she

befriends Alec Sadler, the 17 year old who will one day grow up to create the technology

her world is built upon.

http://pastebin.com/kWSEfs2E

full circle magazine 202 contents ^The Compleat Python

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his

HOWTO - PROGRAMMING PYTHON Pt41

this information for free, so
consider donating to them to
help their efforts at updating
the API and for al l their hard
work.

I ’ l l see you next time. Enjoy.

def main():

tr = TvRage()

#

Find Series by name

#

nam = raw_input("Enter Series Name > ")

if nam != None:

sl = tr.FindIdByName(nam)

which = tr.DisplayShowResult(sl)

if which == 0:

sys.exit()

else:

option = int(which)1

id = sl[option]['ID']

print "ShowID selected was %s" % id

#

Get Show Info

#

showinfo = tr.GetShowInfo(id)

#

Display Show Info

#

tr.DisplayShowInfo(showinfo)

#

Get Episode List

#

SeriesName,TotalSeasons,episodelist = tr.GetEpisodeList(id)

#

Display Episode List

#

http://www.thedesignatedgeek.net
http://nostarch.com/

full circle magazine 203 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg Walters

Programming In Python: Pt 42

L
et's assume that you
have decided to create
a multimedia center for
your fami ly room. You

have a dedicated computer for
the wonderful program cal led
XBMC. You've spent days
ripping your DVD movies and
TV series onto the computer.
You have done the research
and named the fi les the correct
way. But let's say that one of
your favorite shows is "NCIS,"
and you have every episode
that you can get on DVD. You
found a place that provides the
current episodes as wel l . You
want to find out what the next
episode is and when it wi l l be
broadcast. Plus, you want to
create a l ist of al l the TV
episodes that you have to
impress your friends.

This is the project we wi l l be
starting this month. Our first
task is to dig through the folder
containing your TV shows,
grabbing the series name, and
each episode – including the
name and season number, and
the episode number. Al l this

information wi l l go into a
database for easy storage.

According to XBMC, you
should name each of your tv
episode fi les l ike this:

Tv.Show.Name.SxxExx.Episode

name here if you

care.extension

So, let's use the very first
episode of NCIS as an example.
The fi lename for an AVI fi le
would be:

NCIS.S01E01.Yankee White.avi

and the very latest episode
would be:

NCIS.S10E17.Prime Suspect.avi

I f you have a show name
that has more than one word, it
could look l ike this:

Doctor.Who.2005.S07E04.The

Power of Three.mp4

The directory structure
should be as fol lows:

TVShows

2 Broke Girls

Season 1

Episode 1

Episode 2

...

Season 2

...

Doctor Who 2005

Season 1

...

Season 2

...

and so on. Now that we know
what we wi l l be looking for and
where it wi l l be, let's move on.

A very long time ago, we
created a program to make a
database of our MP3 fi les. That
was back in issue #35 I bel ieve,
which was part number 9 of
this series. We used a routine
cal led WalkThePath to
recursively dig through al l the
folders from a starting path,
and pul l out the fi lenames that
had a ".mp3" extension. We wi l l
reuse most of that routine and
modify it for our purposes. In
this version, we wi l l be looking
for video fi les that have one of
the fol lowing extensions:

.avi

.mkv

.m4v

.mp4

Which are very common
extensions for video fi les in the

media PC world.

Now we wil l get started with
the first part of our project.
Create a fi le cal led
"tvfi lesearch.py". Be sure to
save it when we are done this
month, because we wi l l be
bui ld ing on it next month.

Let's start with our imports:

import os

from os.path import join,

getsize, exists

import sys

import apsw

import re

As you can see, we are
importing the os, sys and apsw
l ibraries. We've used them al l
before. We are also importing
the re l ibrary to support
Regular Expressions. We' l l
touch on that quickly this time,
but more in the next article.

Now, let's do our last two
routines next (next page). Al l
our other code wi l l go in
between the imports and these
last two routines.

This (next page, bottom
right) is our main worker

full circle magazine 204 contents ^The Compleat Python

HOWTO - PROGRAMMING PYTHON Pt42

routine. In it, we create a
connection to the SQLite
database provided by apsw.
Next we create a cursor to
interact with it. Then we cal l
the MakeDatabase routine
which wi l l create the database
if it doesn't exist.

My TV fi les are located on
two hard drives. So I created a
l ist to hold the path names. If
you have only one location, you
can change the three l ines to
be as fol lows:

startfolder =

"/filepath/folder/"

WalkThePath(startfolder)

Next, we create our
"standard" if __name__ routine.

#============================

if __name__ == '__main__':

main()

Now al l the dul l stuff is done,
so we can move on the the
meat and potatoes of our
project. We' l l start with the
MakeDataBase routine (middle
right). Put it right after the
imports.

We discussed this routine
before when we dealt with the
MP3 scanner, so I ' l l just remind

you that, in this routine, we
check to see if the table exists,
and if not, we create it.

Now we' l l create the
WalkThePath routine (right,
second from bottom).

When we enter the routine
(as we talked about way back
when), we give the fi lepath that
we are going to search through.
We clear the showname
variable, which we wi l l use
later, and open an error log fi le.
Then we let the routine do its
thing. We get back from the cal l
(os.walk) a 3-tuple (directory
path, directory names,
fi lenames). The directory path

is a string which is the path to
the directory, directory names
is a l ist of the names of
subdirectories in the path, and
the fi lenames is a l ist of non-

directory names. We then parse
through the l ist of fi lenames,
checking to see if the fi lename
ends with one of our target
extensions.

#===

def main():

global connection

global cursor

Create the connection and cursor.

connection = apsw.Connection("TvShows.db3")

cursor = connection.cursor()

#===

Set your video media paths

#===

startfolder = ["/extramedia/tv_files/","/media/freeagnt/tv_files_2/"]

for cntr in range(0,2):

WalkThePath(startfolder[cntr])

Close the cursor and the database

cursor.close()

connection.close()

#===

def MakeDataBase():

IF the table does not exist, this will create the table.

Otherwise, this will be ignored due to the 'IF NOT EXISTS' clause

sql = 'CREATE TABLE IF NOT EXISTS TvShows (pkID INTEGER PRIMARY KEY, Series TEXT,

RootPath TEXT, Filename TEXT, Season TEXT, EPISODE TEXT);'

cursor.execute(sql)

#===

def WalkThePath(filepath):

showname = ""

Open the error log file

efile = open('errors.log',"w")

for root, dirs, files in

os.walk(filepath,topdown=True):

full circle magazine 205 contents ^The Compleat Python

HOWTO - PROGRAMMING PYTHON Pt42
for file in [f for f in files
if f.endswith
(('.avi','mkv','mp4','m4v'))]
:

Now, we spl it the fi lename
into the extension and the
fi lename (without the
extension). Next, we cal l the
GetSeasonEpisode routine to
pul l out the Season/Episode
information that is embedded
in the fi lename, assuming it is
correctly formatted.

OriginalFilename,ext =

os.path.splitext(file)

fl = file

isok,data =

GetSeasonEpisode(fl)

GetSeasonEpisode returns a
boolean and a l ist (in this case
"data") which holds the name
of the series, the season, and
the episode numbers. I f a
fi lename doesn't have the
correct format, the " isok"
boolean variable (top right) wi l l
be false.

Next (middle right), we wi l l
check to see if the fi le is in the
database. If so, we don't want
to dupl icate it. We simply check
for the fi lename. We could go
deeper and make sure the path
is the same as wel l , but for this
time, this is enough.

If everything works as it
should, the response from the
query should only be a 1 or a 0.
If i t's a 0, then it's not there,
and we wi l l write the
information to the database. If
i t is, we just move past. Notice
the Try Except commands
above and below. If something

goes wrong, l ike some
character that the database
doesn't l ike, it wi l l keep the
program from aborting. We wi l l ,
however, log the error so we
can check it out later on.

We are simply inserting a
new record into the database or

writing to the error fi le.

Close the log

file

efile.close

End of WalkThePath

Now, let's look at the
GetSeasonEpisode routine.

#============================

if isok:

showname = data[0]

season = data[1]

episode = data[2]

print("Season {0} Episode {1}".format(season,episode))

else:

print("No Season/EPisode")

efile.writelines('\n')

efile.writelines('{0} has no series/episode information\n'.format(file))

sqlquery = 'SELECT count(pkid) as rowcount from TvShows where Filename =

"%s";' % fl

try:

for x in cursor.execute(sqlquery):

rcntr = x[0]

if rcntr == 0: # It's not there, so add it

try:

sql = 'INSERT INTO TvShows (Series,RootPath,Filename,Season,Episode)

VALUES (?,?,?,?,?)'

cursor.execute(sql,(showname,root,fl,season,episode))

except:

print("Error")

efile.writelines('\n')

efile.writelines('Error writing to database...\n')

efile.writelines('Filename = {0}\n'.format(file))

efile.writelines('\n\n')

except:

print("Error")

full circle magazine 206 contents ^The Compleat Python

HOWTO - PROGRAMMING PYTHON Pt42
=============

def

GetSeasonEpisode(filename):

filename =

filename.upper()

resp =

re.search(r'(.*).S\d\dE\d\d(\

.*)', filename, re.M|re.I)

The re.search portion of the
code is part of the re l ibrary. I t
uses a pattern string, and, in
this case, the fi lename that we
want to parse. The re.M| re. I are
parameters that say that we
want to use a multi l ine type
search (re.M) combined with an
ignore-case (re. I) . As I said
earl ier, we' l l deal with the
regular expressions more next
month, since our routine wi l l
match only one type of
series|episode string. As for the
search pattern we are looking
for: " .S" , fol lowed by two
decimal numbers, fol lowed by
an uppercase "E", then two
more numbers, then a period. I f
our fi lename looked l ike
"tvshow.S01E03.avi" , this would
match. However, some people
encode their shows l ike this
"tvshow.s01e03.avi" , or
"tvshow.103.avi" , which makes
it harder to deal with. We' l l
modify this routine next month
to cover the majority of the
instances. The "r'" al lows for a

raw string to be used within the
search.

Continuing on, the search
returns a match object that we
can look at. "resp" is a
response that is empty if there
is no match, and, in this case,
two groups of returned
information. The first one wi l l
g ive us the characters up to the
match, and the second
including the match. So, in the
case above, group(1) would be
"tvshow", and the second group
would be "tvshow.S01E03." .
This is specified by the parens
in the search "(.*)" and "(\.*)" .

if resp:

showname =

resp.group(1)

We take the show name
from group number one. Then
we get the length of that so we
can grab the series and episode
string with a substring
command.

shownamelength =

len(showname) + 1

se =

filename[shownamelength:shown

amelength+6]

season = se[1:3]

episode = se[4:6]

Next, we replace any periods

in the showname with a space –
to be more "Human Readable" .

showname =

showname.replace("."," ")

We create a l ist to include
the show name, season and
episode, and return it along
with the True boolean to say
things went wel l .

ret =

[showname,season,episode]

return True,ret

Otherwise, if we didn't find a
match, we create our l ist
containing no show name and
two "-1" numbers, and this gets
returned with a boolean False.

else:

ret = ["",1,1]

return False,ret

That's al l the code. Now let's
see what the output would look
l ike. Assuming your fi le
structures are exactly l ike
mine, some of the output on
the screen would look l ike
this. . .

Season 02 Episode 04

SELECT count(pkid) as

rowcount from TvShows where

Filename =

"InSecurity.S02E04.avi";

Series INSECURITY File

InSecurity.S02E04.avi

Season 01 Episode 08

SELECT count(pkid) as

rowcount from TvShows where

Filename =

"Prime.Suspect.US.S01E08.Unde

rwater.avi";

Series PRIME SUSPECT US

File

Prime.Suspect.US.S01E08.Under

water.avi

and so on. You can shorten the
output to keep the screen from
driving you crazy if you would
l ike. As we said earl ier, each
entry we find gets put to the
database. Something l ike this:

pkID | Series | Root Path

| Filename

| Season | Episode

2526 | NCIS |

/extramedia/tv_files/NCIS/Sea

son

7|NCIS.S07E04.Good.Cop.Bad.Co

p.avi | 7 | 4

As always, the ful l code
l isting is avai lable on
PasteBin.com at
http: //pastebin.com/txmmagkL

Next time, we wi l l deal with
more Season|Episode formats,
and do some other things to
flesh out our program.

See you soon.

http://pastebin.com/6iw5NQrW
http://pastebin.com/txmmagkL

full circle magazine 207 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg Walters

Programming In Python: Pt 43

L
ast time, we started a
project that would
eventual ly use the
TvRage module that we

created the month before that.
Now we wil l continue the
project. This time we wi l l be
adding functional ity to our
program: tweaking the
fi lename parse routine and
adding two fields (TvRageId
and Status) to the database.
So, let’s jump right in.

First, we wi l l make the
changes to our import l ines. For
those who are just joining us,
I ' l l include the ones from last
time (shown top right).

The l ines after ‘ import re’
are the new ones for this time.

The next thing we wi l l do is
rewrite the GetSeasonEpisode
routine. We are going to throw
out pretty much everything we
did last month, and make it
more flexible across the
possible season/episode
schemes. In this iteration, we
wi l l be able to support the

fol lowing schemes. . .

Series.S00E00

Series.s00e00

Series.S00E00.S00E01

Series.00x00

Series.S0000

Series.0x00

We wil l a lso fix any ‘missing
leading zero’ issues before we
write to the database.

Our first pattern tries to
catch multi -episode fi les. There
are various naming schemes,
but the one we wi l l support is
simi lar to 'S01E03.S01E04' . We
use the pattern string
"(.*)\.s(\d{1,2})e(\d{1,2})\.s(\d
{1,2})e(\d{1,2})" . This returns
(hopeful ly) five groups which
consist of: the series name
(S[1]) , season(S[2]) , episode
number 1 (S[3]) , season (S[4]) ,
and episode number 2 (S[5]) .
Remember that the parens
create each group for returns.
In the case above, we group

anything from the first
character up to the ".s" , then
two numbers, skip the "e", then
two numbers, and repeat. So
the fi lename
"Monk.S01E05.S01E06.avi"
returns the fol lowing groups. . .

S[1] = Monk

S[2] = 01

S[3] = 05

S[4] = 01

S[5] = 06

We are using only groups
S[1], S[2] and S[3] in this code,
but you can see where we are
going with this. I f we find a
match, we set a variable

named “GoOn” to true. This
al lows us to know what we
should do after we’ve fal len
through the various If l ines.

So, next page (top right) is
the code for the
GetSeasonEpisode routine.

When we get to this point,
(next page, bottom left) we
prepare the show name by
removing any periods in the
show name, and then pul l the
season and episode information
from the various groups, and
return them. For the season
information, if we have a
pattern l ike “S00E00”, the
season number wi l l have a
leading zero. However if the

import os

from os.path import join, getsize, exists

import sys

import apsw

import re

#

NEW LINES START HERE

#

from xml.etree import ElementTree as ET

import urllib

import string

from TvRage import TvRage

full circle magazine 208 contents ^The Compleat Python

HOWTO - PROGRAMMING PYTHON Pt43

pattern is l ike “xxx”, then the
season is assumed to be the
first character, and the trai l ing
two are the episode. In order to
be forward thinking, we want to
make the season a two-digit
number with a leading zero if
needed.

Next, in our MakeDatabase
routine, we wi l l change the
create SQL statement to add
the two new fields (next page,
top).

Again, the only thing that
has changed from last time is
the last two field definitions.

In our WalkThePath routine,
the only changes are the l ines
that actual ly insert into the
database. This is to support the
new structure. I f you remember

def GetSeasonEpisode(filename):

GoOn = False

filename = filename.upper()

This is our first pattern check.
#Should catch multi episode .S01E01.S01E02 type filenames

resp = re.search(r'(.*)\.s(\d{1,2})e(\d{1,2})\.s(\d{1,2})e(\d{1,2})',filename,

re.I)

if resp:

showname = resp.group(1)

GoOn = True

else:

Our second pattern check looks for SddEdd or sddedd. . .
Should catch SddEdd or sddedd

resp = re.search(r'(.*).S(\d\d?)E(\d\d?)(\.*)', filename, re.I)

if resp:

showname = resp.group(1)

GoOn = True

else:

The next pattern looks for ddxdd.
#check for ddxdd

resp = re.search(r'(.*)\.(\d{1,2})x(\d{1,2})(.*)', filename, re.I)

if resp:

showname = resp.group(1)

GoOn = True

else:

This pattern checks for Sdddd.
#check for Sdddd

resp = re.search(r'(.*).S(\d\d)(.\d\d?)' , filename, re.I)

if resp:

showname = resp.group(1)

GoOn = True

else:

And final ly we try for ddd
Should catch xxx

resp = re.search(r'(.*)(\d)(.\d\d?)',filename,re.I)

if resp:

showname = resp.group(1)

if GoOn:

shownamelength = len(showname) + 1

showname = showname.replace("."," ")

season = resp.group(2)

if len(season) == 1:

season = "0" + season

episode = resp.group(3)

ret = [showname,season,episode]

return True,ret

else:

ret = ["",1,1]

return False,ret

full circle magazine 209 contents ^The Compleat Python

HOWTO - PROGRAMMING PYTHON Pt43

from last time, we pass the
folder that holds our TV fi les to
this routine. In my case, there
are two folders, so it's set into a
l ist and we use a for loop to
pass each into the routine. As
we go through the routine, we
walk through each directory
looking for fi les with extensions
of .avi , .mkv, .mp4 and .m4v.
When we find a fi le that
matches, we send it to the
GetSeasonEpisode routine. We
then check to see if we already
have it entered into the
database, and, if not, we add it.
I ’m going to give you (top right)
only part of the routine from
last month.

The two l ines in black are
the ones that are new this time.

We are already over halfway
done. Next are some support
routines that work with our
TvRage routine to fi l l in the
database fields. Our first
routine runs after the

WalkThePath routine, and runs
through the database, getting
the series name and querying
the TvRage server for the id
number. Once we have that, we
update the database, then use
that id number to once again
query TvRage to get the
current status of the series.
This status can be "New
Series" , "Returning Series" ,
"Canceled", "Ended" and "On
Haitus" . The reason we want
this information is that, when

we go to check for new
episodes, we don't want to
bother with series that won't
have any new episodes
because they are cancel led. So,
now we have the status and
can write that to the database
(above).

We wi l l pause here in our
code and look at the SQL query
we are using. I t’s a bit different
from anything we’ve done
before. The string is:

SELECT DISTINCT series FROM

TvShows WHERE tvrageid = 1

Which says, give me just one
instance of the series name, no
matter how many of them I
have, where the field tvrageid
is equal to “-1”. I f, for example,
we have 103 episodes of
Doctor Who 2005. By using the
Distinct, I wi l l get back only one
record, assuming that we
haven’t gotten a TvRageID yet.

def MakeDataBase():

IF the table does not exist, this will create the table.

Otherwise, this will be ignored due to the 'IF NOT EXISTS' clause

sql = 'CREATE TABLE IF NOT EXISTS TvShows (pkID INTEGER PRIMARY KEY, Series TEXT, RootPath TEXT, Filename TEXT,

Season TEXT, Episode TEXT, tvrageid TEXT,status TEXT);'

cursor.execute(sql)

sqlquery = 'SELECT count(pkid) as rowcount from TvShows where Filename =

"%s";' % fl

try:

for x in cursor.execute(sqlquery):

rcntr = x[0]

if rcntr == 0: # It's not there, so add it

try:

sql = 'INSERT INTO TvShows

(Series,RootPath,Filename,Season,Episode,tvrageid) VALUES (?,?,?,?,?,?)'

cursor.execute(sql,(showname,root,fl,season,episode,1))

except:

def WalkTheDatabase():

tr = TvRage()

SeriesCursor = connection.cursor()

sqlstring = "SELECT DISTINCT series FROM TvShows WHERE tvrageid = 1"

full circle magazine 21 0 contents ^The Compleat Python

HOWTO - PROGRAMMING PYTHON Pt43

for x in

SeriesCursor.execute(sqlstrin

g):

seriesname = x[0]

searchname =

string.capwords(x[0]," ")

We are using the capwords
routine from the string l ibrary
to change the series name
(x[0]) to a “proper case” from
the al l -uppercase we currently
store the show name in. We do
this because TvRage expects
something other that al l -
uppercase entries, and we
won’t get the results we are
looking for. So the series name
“THE MAN FROM UNCLE” wi l l

be converted to “The Man From
Uncle”. We use that in the cal l
to our TvRage Library
FindIdByName. This gets the
l ist of matching shows, and
displays them for us to pick the
best one. Once we pick one, we
update the database with the id
number and then cal l the
GetShowStatus routine to get
the current show status from
TvRage (bottom right).

The UpdateDatabase routine
(top) simply uses the series

name as the key to update al l
the records with the proper
TvRage ID.

print("Requesting information on " + searchname)

sl = tr.FindIdByName(searchname)

which = tr.DisplayShowResult(sl)

if which == 0:

print("Nothing found for %s" % seriesname)

else:

option = int(which)1

id = sl[option]['ID']

UpdateDatabase(seriesname,id)

GetShowStatus(seriesname,id)

def UpdateDatabase(seriesname,id):

idcursor = connection.cursor()

sqlstring = 'UPDATE tvshows SET tvrageid = ' + id + ' WHERE series = "' + seriesname + '"'

try:

idcursor.execute(sqlstring)

except:

print "error"

def GetShowStatus(seriesname,id):

tr = TvRage()

idcursor = connection.cursor()

dict = tr.GetShowInfo(id)

status = dict['Status']

sqlstring = 'UPDATE tvshows SET status = "' + status + '" WHERE series = "' + seriesname + '"'

try:

idcursor.execute(sqlstring)

except:

startfolder = ["/extramedia/tv_files","/media/freeagnt/tv_files_2"]

#for cntr in range(0,2):

#WalkThePath(startfolder[cntr])

WalkTheDatabase()

Close the cursor and the database

cursor.close()

connection.close()

http://pastebin.com/6iw5NQrW

full circle magazine 21 1 contents ^The Compleat Python

GetShowStatus (above) is
also very simple. We cal l the
GetShowInfo routine from the
TvRage l ibrary by passing the
id that we just got to TvRage –
to get the series information. I f
you remember, there is a lot of
information provided about the
series from TvRage, but al l we
are concerned about at this
point is the show status. Since
everything is returned in a
dictionary, we just look for the
[‘Status’] key. Once we have it,
we update the database with
that and move on.

We are almost done with our
code. We final ly add one l ine to
our main routine from last
month (in black, below) to cal l
the “WalkTheDatabase” routine
after we are done getting al l
our fi lenames. Again, I ’m going
to give you only part of the
Main routine, just so you can
find the correct place to put the
new l ine.

That’s al l our code. Let’s
mental ly go over what happens
when we run the program.

First, we create the database
if it doesn’t exist.

Next, we walk through the
predefined paths, looking for
fi les that have any one of the
fol lowing extensions:

.AVI, .MKV, .M4V, .MP4

When we find one, we go
through and try to parse the
fi lename looking for a series
name, Season number, and
episode number. We take that
information and put it into a
database, if i t does not already
exist there.

Once we are through looking
for fi les, we query the database
looking for series names that
don’t have a TvRage ID
associated with them. We then
wi l l query the TvRage API and
ask for matching fi les to gather
that ID. Each series wi l l go
through that step once. The
fol lowing screenshot shows the
options for, in this case, the tv
series Midsomer Murders.

I entered (in this case) 1,
which associates that series
with the TvRage ID 4466.
That’s entered into the
database, and we then use that
ID to request the current status

for the series, again from
TvRage. In this case, we got
back “Returning Series”. This is
then entered into the database
and we move on.

Whi le doing the initia l “run”
into the database, it wi l l take a
whi le and require your
attention, because each and
every series needs to ask about
the ID number match. The good
news is that this has to be done
only once. If you are
“somewhat normal”, you won’t
have that many to deal with. I
had 157 different series to do,
so it took a l ittle whi le. Since I
was careful when I set up my
fi lenames (checking TvRage
and TheTvDB.com for the
proper wording of the series
name), the majority of the
searches were the #1 option.

Just to let you know, over

half of the TV series that I have
either ended or have been
canceled. That should tel l you
something about the age group
I fal l in.

The ful l code is, as always,
avai lable on PasteBin at
http: //pastebin.com/MeuGyKpX

Next time we wi l l continue
with the integration with
TvRage. Unti l then have a great
month!

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his
fami ly. His website is

HOWTO - PROGRAMMING PYTHON Pt43

Requesting information on Midsomer Murders

5 Found

1 Midsomer Murders 4466

2 Motives and Murders 31373

3 See No Evil: The Moors Murders 11199

4 The Atlanta Child Murders 26402

5 Motives & Murders: Cracking the Case 33322

Enter Selection or 0 to exit >

http://www.thedesignatedgeek.net
http://pastebin.com/MeuGyKpX

full circle magazine 21 2 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg Walters

Programming In Python: Pt 44

W
e are going to take
a short detour this
month from our
TVRage program

to partia l ly answer a question
from a reader. I was asked to
talk about QT Creator, and how
to use it to design user
interfaces for Python programs.

Unfortunately, from what I
can tel l , the support for QT
Creator isn't ready yet for
Python. It IS being worked on,
but is not “ready for prime
time” quite yet.

So, in an effort to get us
ready for that future article, we
wi l l work with QT4 Designer.
You wi l l need to instal l (i f they
aren't already) python-qt4, qt4-
dev-tools, python-qt4-dev,
pyqt4-dev-tools and l ibqt4-dev.

Once that is done, you can
find QT4 Designer under
Appl ications | Programming. Go
ahead and start it up. You
should be presented with
something l ike the fol lowing:

Make sure that 'Main
Window' is selected, and cl ick
the 'Create' button. Now you
wi l l have a blank form that you
can drag and drop controls
onto.

The first thing we want to do
is resize the main window. Make
it about 500x300. You can tel l
how big it is by looking at the
Property Editor under the
geometry property on the right
side of the designer window.
Now, scrol l down on the
property editor l ist box unti l you

see 'windowTitle' . Change the
text from 'MainWindow' to
'Python Test1' . You should see
the title bar of our design
window change to 'Python Test1
– untitled*' . Now is a good time
to save our project. Name it
'pytest1.ui ' . Next, we wi l l put a
button on our form. This wi l l be
an exit button to end the test
program. On the left side of the
designer window you wi l l see
al l of the controls that are
avai lable. Find the 'Buttons'
section and drag and drop the
'Push Button' control onto the

form. Unl ike the GUI designers
we have used in the past, you
don't have to create grids to
contain your controls when you
use QT4 Designer. Move the
button to near center-bottom of
the form. If you look at the
Property Editor under
geometry, you wi l l see
something l ike this:

[(200,260), 97x27]

In the parentheses are the X
and Y positions of the object
(push-button in this case) on
the form, fol lowed by its width
and height. I moved mine to
200,260.

Just above that is the
objectName property—which,
by default, is set to
'pushButton' . Change that to
'btnExit' . Now scrol l down on
the Property Editor l ist to the
'QAbstractButton' section, and
set the 'text' property to 'Exit' .
You can see on our form that
the text on the button has
changed.

full circle magazine 21 3 contents ^The Compleat Python

HOWTO - PROGRAMMING PYTHON Pt44

Now, add another button
and position it at 200,200.
Change its objectName
property to 'btnCl ickMe, ' and
set the text to 'Cl ick Me! ' .

Next add a label . You wi l l
find it in the toolbox on the left
under 'DisplayWidgets' . Put it
close to the center of the form
(I put mine at 210,130), and set
its objectName property to
lblDisplay. We wi l l want to make
it bigger than what it is by
default, so set its size to
somewhere around 221 x 20. In
the property editor, scrol l down
to the 'Qlabel ’ section, and set
the Horizontal al ignment to
'Al ignHCenter' . Change the text
to blank. We wi l l set the text in
code—when the btnCl ickMe is
cl icked. Now save the project
again.

SLOTS & SIGNALS

This next section might be a
bit difficult to wrap your head
around, especial ly if you have
been with us for a long time
and have dealt with the
previous GUI designers. In the
other designers, we used
events that were raised when

an object was cl icked, l ike a
button. In QT4 Designer, events
are cal led Signals, and the
function that is cal led by that
signal is cal led a Slot. So, for
our Exit button, we use the
Cl ick signal to cal l the Main
Window Close slot. Are you
total ly confused right now? I
was when I first dealt with QT,
but it begins to make sense
after a whi le.

Fortunately, there is a very
easy way to use predefined
slots & signals. I f you press the
F4 button on the keyboard, you
wi l l be in the Edit Signals &
Slots mode. (To get out of the
Edit Signals & Slots mode,
press F3.) Now, left cl ick and
hold on the Exit button, and

drag sl ightly up and to the
right, off the button onto the
main form, then release the
cl ick. You wi l l see a dialog pop
up that looks something l ike
that shown above.

This wi l l g ive us an easy way
to connect the cl icked signal to
the form. Select the first option
on the left which should be
'cl icked() ' . This wi l l enable the
right side of the window and
select the 'close() ' option from
the l ist, then cl ick 'OK' . You wi l l
see something that looks l ike
this:

The cl ick signal (event) is
l inked to the Close routine of
the main window.

For the btnCl ickMe cl icked
signal , we wi l l do that in code.

Save the fi le one more time.
Exit QT4 Designer and open a
terminal . Change to the
directory that you saved the fi le
in. Now we wil l generate a
python fi le by using the
command l ine tool pyuic4. This
wi l l read the .ui fi le. The
command wi l l be:

pyuic4 x pytest1.ui o

pytest1.py

The -x parameter says to
include the code to run and
display the UI . The -o
parameter says to create an
output fi le rather than just
display the fi le in stdout. One
important thing to note here.
Be SURE to have everything
done in QT4 Designer before
you create the python fi le.
Otherwise, it wi l l be completely
rewritten and you' l l have to
start over from scratch.

Once you've done this, you
wi l l have your python fi le. Open

full circle magazine 21 4 contents ^The Compleat Python

HOWTO - PROGRAMMING PYTHON Pt44

i t up in your favorite editor.

The fi le itself is only about
65 l ines long, including
comments. We had only a few
controls so, it wouldn't be very
long. I 'm not going to show a
great deal of the code. You
should be able to fol low most
al l of the code by now. However
we wi l l be creating and adding
to the code in order to put the
functional ity in to set the label
text.

The first thing we need to do
is copy the signal & slot l ine
and modify it. Somewhere
around l ine 47 should be the
fol lowing code:

QtCore.QObject.connect(self.b

tnExit,

QtCore.SIGNAL(_fromUtf8("clic

ked()")), MainWindow.close)

Copy that, and, right below
it, paste the copy. Then change
it to:

QtCore.QObject.connect(self.b

tnClickMe,

QtCore.SIGNAL(_fromUtf8("clic

ked()")), self.SetLabelText)

This wi l l then create the
signal/slot connection to our

routine that wi l l set the label
text. Under the retranslateUi
routine add the fol lowing code:

def SetLabelText(self):

self.lblDisplay.setText(_from

Utf8("That Tickles!!!"))

I got the label setText
information from the
initia l ization l ine in the setupUi
routine.

Now run your code.
Everything should work as
expected.

Although this is a VERY
simple example, I 'm sure you
are advanced enough to play
with QT4 Designer and get an
idea of the power of the tool .

Next month, we wi l l return
from our detour and start
working on the user interface
for our TVRage program.

As always, the code can be
found on pastebin at
http: //pastebin.com/98fSasdb
for the .ui code, and
http: //pastebin.com/yC30B885
for the python code.

See you next time.

MY STORY QUICKIE
By Anthony Venable

T
his story begins at the beginning of 2010. I was
broke at the time so I was trying to find a free
operating system. I needed something I could run
on my PCs at home. I had searched on the Internet,

but found nothing useful for a long time. But one day I was
at Barnes and Noble and I saw a magazine for Linux. (Whi le
I had heard of Linux before, I never thought of it as
something I would ever be able to use.) When I asked
people who I knew were computer professionals, I was told
it was for people that were experts, and difficult to use. I
never heard anything positive about it. I am so amazed that
I hadn’t came across it sooner.

When I read the magazine I became exposed to Ubuntu
9.10 - Karmic Koala. I t sounded so good, as if it was exactly
what I was looking for. As a result, I got very excited took it
home, and to my surprise had such an easy time instal l ing
it to my PC that I decided to run it along with Windows XP
as a dual boot system. Al l I d id was put the l ive CD in the
drive and the instructions were step by step you would
have to be pretty slow to not get how to set things up.

Since then I have been very satisfied with Ubuntu in
general and I have been able to check out later versions of
it such as 10.04 (Maverick Meerkat) and 10.10 Lucid Lynx. I
looked forward to future versiobs for how they integrate
multi -touch even more than 10.04.

This experience just goes to show once again how I
manage to find the coolest stuff by accident.

http://pastebin.com/98fSasdb
http://pastebin.com/yC30B885

full circle magazine 21 5 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg Walters

Programming In Python - Part 45

T
his time, we are going
to rework our database
program from the
previous few articles

(parts 41, 42 and 43). Then,
over the next few articles, we
wi l l use QT to create the user
interface.

First, let's look at how the
existing appl ication works.
Here's a gross overview:
• Create a connection to the
database – which creates the
database if needed.
• Create a cursor to the
database.
• Create the table if it doesn't
exist.
• Assign the video folder(s) to a
variable.
• Walk through the folder(s)
looking for video fi les.
• Get the fi lename, seriesname,
season number, episode
number.
• Check to see if the episode
exists in the database.
• If it is not there, add it to the
database with a “-1” as the
TvRage ID.
• Then walk through the

database getting show id and
status if needed, and update
database.

We wi l l redesign the
database to include another
table and modify the existing
data table. First, we wi l l create
our new table cal led Series. I t
wi l l hold al l the information
about the tv series we have on
our system. The new table wi l l
include the fol lowing fields:
• Pkid
• Series Name
• TvRage Series ID
• Number of seasons
• Start Date
• Ended Flag
• Country of origin
• Status of the series (ended,
current, etc)
• Classification (scripted,
"real ity" , etc)
• Summary of the series plot
• Genres
• Runtime in minutes
• Network
• Day of the week it airs
• Time of day it airs
• Path to the series

We can use the existing
MakeDataBase routine to
create our new table. Before
the existing code, add the code
shown above right.

The SQL statement (“sql =
…”) should be al l on one l ine,
but is broken out here for ease
of your understanding. We’l l
leave the modification of the
existing table for later.

Now we have to modify our
WalkThePath routine to save
the series name and path into
the series table.

Replace the l ine that says

sqlquery = 'SELECT

count(pkid) as rowcount from

TvShows where Filename =

"%s";' % fl

with

sqlquery = 'SELECT

count(pkid) as rowcount from

series where seriesName =

"%s";' % showname

This (to refresh your
memory) wi l l check to see if we
have already put the series into
the table. Now find the two
l ines that say:

sql = 'CREATE TABLE IF NOT EXISTS Series (

pkid INTEGER PRIMARY KEY AUTOINCREMENT,

SeriesName TEXT,

SeriesID TEXT,

Seasons TEXT,

StartDate TEXT,

Ended TEXT,

OriginCountry TEXT,

Status TEXT,

Classification TEXT,

Summary TEXT,

Genres TEXT,

Runtime TEXT,

Network TEXT,

AirDay TEXT,

AirTime TEXT,

full circle magazine 21 6 contents ^The Compleat Python

HOWTO - PYTHON PT45

sql = 'INSERT INTO TvShows

(Series,RootPath,Filename,Sea

son,Episode,tvrageid) VALUES

(?,?,?,?,?,?)'

cursor.execute(sql,(showname,

root,fl,season,episode,1))

and replace them with

sql = 'INSERT INTO Series

(SeriesName,Path,SeriesID)

VALUES (?,?,?)'

cursor.execute(sql,(showname,

root,1))

This wi l l insert the series
name (showname), path to the
series, and a “-1” as the
TvRage id. We use the “-1” as a
flag to know that we need the
series information from TvRage.

Next we wi l l rework the
WalkTheDatabase routine to
pul l those series that we don’t
have any information for
(SeriesID = -1) and update that
record.

Change the query string
from

sqlstring = "SELECT DISTINCT

series FROM TvShows WHERE

tvrageid = 1"

to

sqlstring = "SELECT

pkid,SeriesName FROM Series

WHERE SeriesID = 1"

This wi l l create a result-set
that we can then use to query
TvRage for each series. Now
find/replace the fol lowing two
l ines

seriesname = x[0]

searchname =

string.capwords(x[0]," ")

with

pkid = x[0]

seriesname = x[1]

searchname =

string.capwords(x[1]," ")

We wil l use the pkID for the
update statement. Next we
have to modify the cal l to the
UpdateDatabase routine to
include the pkid. Change the
l ine

UpdateDatabase(seriesname,id)

to

UpdateDatabase(seriesname,id,

pkid)

and change the l ine

GetShowStatus(seriesname,id)

to

GetShowData(seriesname,id,pki

d)

Which wi l l be a new routine
we wi l l create in a moment.

Next, change the definition
of the UpdateDatabase routine
from

def

UpdateDatabase(seriesname,id)

:

to

def

UpdateDatabase(seriesname,id,

pkid):

Next, we need to change the
query string from

sqlstring = 'UPDATE tvshows

SET tvrageid = ' + id + '

WHERE series = "' +

seriesname + '"'

to

sqlstring = 'UPDATE Series

SET SeriesID = ' + id + '

WHERE pkID = %d' % pkid

Now we need to create the
GetShowData routine (top).
We’l l grab the information from
TvRage and insert it into the
Series table.

def GetShowData(seriesname,id,pkid):

tr = TvRage()

idcursor = connection.cursor()

dict = tr.GetShowInfo(id)

seasons = dict['Seasons']

startdate = dict['StartDate']

ended = dict['Ended']

origincountry = dict['Country']

status = dict['Status']

classification = dict['Classification']

summary = dict['Summary']

full circle magazine 21 7 contents ^The Compleat Python

HOWTO - PYTHON PT45

Just as a memory refresher,
we are creating an instance of
the TvRage routines and
creating a dictionary that holds
the information on our series.
We wi l l then create variables to
hold the data for updating the
table (above).

Remember that Genres
come in as subelements and
contain one or many genre
l istings. Lucki ly when we coded
the TvRage routines, we
created a string that holds al l
the genres, no matter how
many are returned, so we can
just use the genre string:

genres = dict['Genres']
runtime = dict['Runtime']

network = dict['Network']

airday = dict['Airday']

airtime = dict['Airtime']

Final ly, we create the query
string to do the update
(bottom). Again, this should al l
be on one l ine, but I ’ve broken
it up here to make it easy to
understand.

The {number} portion (just
to remind you) is simi lar to the
“%s” formatting option. This
creates our query string
replacing the {number} with
the actual data we want. Since
we’ve already defined al l of
these fields as text, we want to
use the double quotes to
enclose the data being added.

And lastly, we write to the
database (below).

That is al l for this time. Next
time, we’l l continue as I la id out
at the beginning of the article.
Unti l next time, Enjoy.

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his

sqlstring = 'Update Series SET Seasons = "{0}", StartDate = "{1}", Ended = "{2}",

OriginCountry = "{3}", Status = "{4}", Classification = "{5}",

Summary = "{6}", Genres = "{7}", Runtime = "{8}", Network = "{9}",

AirDay = "{10}",AirTime = "{11}"

WHERE pkID ={12}'.format(seasons,startdate,ended,

origincountry,status,classification,summary,

genres,runtime,network,airday,airtime,pkid)

try:

idcursor.execute(sqlstring)

except:

print "Error Adding Series Information"

The Ubuntu Podcast covers all

the latest news and issues facing

Ubuntu Linux users and Free

Software fans in general. The

show appeals to the newest user

and the oldest coder. Our

discussions cover the

development of Ubuntu but

aren’t overly technical. We are

lucky enough to have some great

guests on the show, telling us

first hand about the latest

exciting developments they are

working on, in a way that we can

all understand! We also talk

about the Ubuntu community

and what it gets up to.

The show is presented by

members of the UK’s Ubuntu

Linux community. Because it is

covered by the Ubuntu Code of

Conduct it is suitable for all.

The show is broadcast live every

fortnight on a Tuesday evening

(British time) and is available for

download the following day.

podcast.ubuntu-uk.org

http://www.thedesignatedgeek.net
http://podcast.ubuntu-uk.org/

full circle magazine 21 8 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg Walters

Programming In Python - Part 46

U
sually, my articles are
fairly long. However,
due to some medical
issues, this wi l l be a

fairly short article (in the grand
scheme of things) this month.
However, we wi l l push through
and continue our series on the
media manager program.

One of the things our
program wil l do for us is let us
know if we have any missing
episodes from any given series
in the database. Here's the
scenario. We have a series,
we' l l cal l i t “That 80's Show”,
that ran for three seasons. In
season 2, there were 15
episodes. However, we have
only 13 of them in our l ibrary.
How do we find which episodes
are missing –
programmatical ly?

The simplest way is to use
l ists and sets. We have already
used l ists in a number of the
articles over the last four years,
but Sets are a new data type to
this series, so we' l l examine
them for a whi le. According to
the “officia l documentation” for

Python (docs.python.org), here
is the definition of a set:

“A set is an unorderedcollection

with no duplicate elements. Basic

uses includemembership testing and

eliminating duplicate entries. Set

objects also supportmathematical

operations like union, intersection,

difference, andsymmetric

difference.”

I ' l l continue to use the
example from the
documentation page to
i l lustrate the process.

>>> Basket =

['apple','orange','apple','pe

ar','orange','banana']

>>> fruit = set(basket)

>>> fruit

set(['orange','pear','apple',

'banana'])

Notice that in the original l ist
that was assigned to the basket
variable, apple and orange
were put in twice, but, when we
assigned it to a set, the
dupl icates were discarded.
Now, to use the set that we just
created, we can check to see if

an item of fruit (or something
else) is in the set. We can use
the “in” operator.

>>> 'orange' in fruit

True

>>> 'kiwi' in fruit

False

>>>

That's pretty simple and,
hopeful ly, you are beginning to
see where al l this is going. Let's
say we have a shopping l ist
that has a bunch of fruit in it,
and, as we go through the
store, we want to check what
we are missing – basical ly the
items in the shopping l ist but
not in our basket. We can start
l ike this.

>>> shoppinglist =

['orange','apple','pear','ban

ana','kiwi','grapes']

>>> basket =

['apple','kiwi','banana']

>>> sl = set(shoppinglist)

>>> b = set(basket)

>>> slb

set(['orange', 'pear',

'grapes'])

>>>

We create our two l ists,
shoppingl ist for what we need
and basket for what we have.
We assign each to a set and
then use the set difference
operator (the minus sign) to
give us the items that are in
the shopping l ist but not in the
basket.

Now, using the same logic,
we wi l l create a routine (next
page, bottom left) that wi l l deal
with our missing episodes. We
wi l l cal l our routine
“FindMissing” and pass it two
variables. The first is an integer
that is set to the number of
episodes in that season and the
second is a l ist containing the
episode numbers that we have
for that season.

The routine, when you run it,
prints out [5, 8, 15], which is
correct. Now let's look at the
code. The first l ine creates a set

full circle magazine 21 9 contents ^The Compleat Python

HOWTO - PYTHON PT46

cal led EpisodesNeeded using a
l ist of integers created using
the range function. We need to
give the range function the
start value and end value. We
add 1 to the range high value
to give us the correct l ist of
values from 1 to 15. Remember
the range function is actual ly 0
based, so when we give it 16
(expected (15) + 1), the actual
l ist that range creates is 0 to
15. We tel l the range function
to start at 1, so even though
the range is 0 to 15 which is 16
values, we want 15 starting at
1.

Next we create a set from
the l ist that is passed into our
routine, which contains the
episode numbers that we
actual ly have.

Now we can create a l ist
using the set difference

operator on the two sets. We do
this so we can sort it with the
l ist.sort() method. You can
certainly return the l ist if you
wish, but in this iteration of the
routine, we’ l l just print it out.

Wel l , that’s al l the time in
the chair in front of the
computer that my body can
stand, so I ’ l l leave you for this
month, wondering how we are
going to use this in our media
manager.

Have a good month and see
you soon.

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his

def FindMissing(expected,have):

#===================================

‘expected’ is the number of episodes we should have

‘have’ is a list of episodes that we do have

returns a sorted list of missing episode numbers

#===================================

EpisodesNeeded = set(range(1,expected+1))

EpisodesHave = set(have)

StillNeed = list(EpisodesNeeded EpisodesHave)

StillNeed.sort()

print StillNeed

PYTHON SPECIAL EDITIONS:

http: //ful lcirclemagazine.org/issue- http: //ful lcirclemagazine.org/issue-

http: //ful lcirclemagazine.org/python-
special -edition-issue-three/

http: //ful lcirclemagazine.org/python-
special -edition-volume-four/

http: //ful lcirclemagazine.org/python-
special -edition-volume-five/

http: //ful lcirclemagazine.org/python-
special -edition-volume-six/

http://www.thedesignatedgeek.net
http://fullcirclemagazine.org/issue-py01/
http://fullcirclemagazine.org/issue-py02/
http://fullcirclemagazine.org/python-special-edition-issue-three/
http://fullcirclemagazine.org/python-special-edition-volume-four/
http://fullcirclemagazine.org/python-special-edition-volume-five/
http://fullcirclemagazine.org/python-special-edition-volume-six/

full circle magazine 220 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg Walters

Programming In Python - Part 47

L
ast month, we
discussed using sets to
show us missing
episode numbers.

Now’s the time to put the rough
code we presented into
practice.

We’l l modify one routine and
write one routine. We’l l do the
modification first. In the
working fi le that you’ve been
using the last few months, find
the WalkThePath(fi lepath)
routine. The fourth and fifth
l ines should be:

efile =

open('errors.log',"w")

for root, dirs, files in

os.walk(filepath,topdown=True

):

In between these two l ines,
we wi l l insert the fol lowing
code:

lastroot = ''

elist = []

currentshow = ''

currentseason = ''

By now, you should
recognize that al l we’re doing
here is initia l izing variables.
There are three string variables
and one l ist. We wi l l use the l ist
to hold the episode numbers
(hence the el ist name).

Let’s take a quick look and
freshen our memory (above)
about what we’re doing in the
existing routine before we
modify any further.

The first two l ines here set
things up for the walk-the-path
routine where we start at a
given folder in the fi le system
and recursively visit each folder
below, and check for fi les that
have the fi le extension of .avi ,
.mkv, .mp4 or .m4v. If there are
any, we then iterate through
the l ist of those fi lenames.

In the l ine above right, we
cal l the GetSeasonEpisode

routine to pul l the series name,
season number and episode
number from the fi lename. If
everything parses correctly, the
variable isok is set to true, and
the data we are looking for is
placed into a l ist and then
returned to us.

Here (below) we are simply
assigning the data passed back
from GetSeasonEpisode and
putting them into separate
variables that we can play with.
Now that we know where we
were, let’s talk about where we
are going.

We want to get the episode
number of each fi le and put it
into the el ist l ist. Once we are
done with al l the fi les within the
folder we are currently in, we
can then make the assumption
that we have been pretty much
keeping up with the fi les and
the highest numbered episode
is the latest one avai lable. As
we discussed last month, we
can then create a set that is
numbered from 1 to the last
episode, and convert the l ist to
a set and pul l a difference.
Whi le that is great in theory,
there is a bit of a “hitch in our
git-a-long” when it comes down

for root, dirs, files in os.walk(filepath,topdown=True):

for file in [f for f in files if f.endswith (('.avi','mkv','mp4','m4v'))]:

Combine path and filename to create a single variable.

fn = join(root,file)

OriginalFilename,ext = os.path.splitext(file)

fl = file

isok,data = GetSeasonEpisode(fl)

if isok:

showname = data[0]

season = data[1]

episode = data[2]

print("Season {0} Episode {1}".format(season,episode))

full circle magazine 221 contents ^The Compleat Python

HOWTO - PYTHON PT47

to actual practice. We don’t
actual ly get a nice and neat
indication as to when we are
done with any particular folder.
What we do have though, is the
knowledge that when we get
done with each fi le, the code
right after the “for fi le in [. . . ”
gets run. I f we know the name
of the last folder visited, and
the current folder name, we
can compare the two and, if
they are different, we have
finished a folder and our
episode l ist should be
complete. That’s what the
‘ lastroot’ variable is for.

Just after the ‘for fi le in[‘ l ine
is where we’l l put the majority
of our new code. It’s only seven
l ines. Here are the seven l ines.
(The black l ines are the existing
l ines for your convenience.)

Line by l ine of the new code,
here is the logic:

First, we check to see if the
variable lastroot has the same
value as root (the current folder
name). I f so, we are in the
same folder, so we don’t run
any of the code. If not, we then
assign the current folder name
to the lastroot variable. Next,
we check to see if the episode

l ist (el ist) has any entries
(len(el ist) > 0). This is to make
sure we weren’t in an empty
directory. I f we have items in
the l ist, then we cal l the
Missing routine. We pass the
episode l ist, the highest
episode number, the current
season number, and the name
of the season, so we can print
that out later on. The last three
l ines clear the l ist, the current
show name, and the current
season, and we move on as we
did before.

Next we have to change two
l ines and add one l ine of code
into the if isok: code, a few
l ines down. Again, right, the
black l ines are the existing
code:

Here, we have just come
back from the
GetSeasonEpisode routine. I f
we had a parsable fi le name,
we want to get the show name
and season number, and add
the current episode into the
l ist. Notice, we are converting
the episode number to an
integer before we add it to the
l ist.

We are done with this
portion of the code. Now, al l we
have to do is add the Missing

routine. Just after the
WalkThePath routine, we’ l l add
the fol lowing code.

Again, it is a very simple set
of code and we pretty much
went over it last month, but
we’l l walk through it just in
case you missed it.

We define the function and
set up four parameters. We wi l l
be passing the episode l ist
(epl ist) , the number of episodes
we should expect (shouldhave)
which is the highest episode

for file in [f for f in files if f.endswith (('.avi','mkv','mp4','m4v'))]:

Combine path and filename to create a single variable.

if lastroot != root:

lastroot = root

if len(elist) > 0:

Missing(elist,max(elist),currentseason,currentshow)

elist = []

currentshow = ''

currentseason = ''

isok,data = GetSeasonEpisode(fl)

if isok:

currentshow = showname = data[0]

currentseason = season = data[1]

episode = data[2]

elist.append(int(episode))

#

def Missing(eplist,shouldhave,season,showname):

temp = set(range(1,shouldhave+1))

ret = list(tempset(eplist))

if len(ret) > 0:

print('Missing Episodes for {0} Season {1} {2}'.format(showname,season,ret))

full circle magazine 222 contents ^The Compleat Python

number in the episode l ist, the
season number (season), and
the show name (showname).

Next, we create a set that
contains a l ist of numbers using
the range bui lt-in function,
starting with 1 and going to the
value in shouldhave + 1. We
then cal l the difference function
– on this set and a converted
set from the episode l ist (temp-
set(epl ist)) – and convert it
back to a l ist. We then check to
see if there is anything in the
l ist – so we don’t print a l ine
with an empty l ist, and if
there’s anything there, we print
it out.

That’s it. The one flaw in this
logic is that by doing things this
way, we don’t know if there are
any new episodes that we don’t
have.

I ’ve put the two routines up
on pastebin for you if you just
want to do a quick replace into
your working code. You can find
it at
http: //pastebin.com/XHTRv2dQ.

Have a good month and
we’l l see you soon.

HOWTO - PYTHON PT47

The Ubuntu Podcast covers all

the latest news and issues facing

Ubuntu Linux users and Free

Software fans in general. The

show appeals to the newest user

and the oldest coder. Our

discussions cover the

development of Ubuntu but

aren’t overly technical. We are

lucky enough to have some great

guests on the show, telling us

first hand about the latest

exciting developments they are

working on, in a way that we can

all understand! We also talk

about the Ubuntu community

and what it gets up to.

The show is presented by

members of the UK’s Ubuntu

Linux community. Because it is

covered by the Ubuntu Code of

Conduct it is suitable for all.

The show is broadcast live every

fortnight on a Tuesday evening

(British time) and is available for

download the following day.

podcast.ubuntu-uk.org

PYTHON SPECIAL EDITIONS:

http: //ful lcirclemagazine.org/issue- http: //ful lcirclemagazine.org/issue-

http: //ful lcirclemagazine.org/python-
special -edition-issue-three/

http: //ful lcirclemagazine.org/python-
special -edition-volume-four/

http: //ful lcirclemagazine.org/python-
special -edition-volume-five/

http: //ful lcirclemagazine.org/python-
special -edition-volume-six/

http://pastebin.com/XHTRv2dQ
http://podcast.ubuntu-uk.org/
http://fullcirclemagazine.org/issue-py01/
http://fullcirclemagazine.org/issue-py02/
http://fullcirclemagazine.org/python-special-edition-issue-three/
http://fullcirclemagazine.org/python-special-edition-volume-four/
http://fullcirclemagazine.org/python-special-edition-volume-five/
http://fullcirclemagazine.org/python-special-edition-volume-six/

full circle magazine 223 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg Walters

Programming In Python - Part 48

W
elcome back. It’s
hard to imagine
that it’s been 4
years since I

began this series. I thought that
I ’d shelve the media manager
project for a bit and return to
some basics of Python
programming.

This month, I ’ l l revisit the
print command. It’s one of the
most used (at least in my
programming) function that
never seems to get the detai l i t
deserves. There is a lot of
things you can do with it
outside of the standard ‘%s
%d’.

Since the print function
syntax is different between
Python 2.x and 3.x, we’ l l look at
them separately. Remember,
however, you can use the 3.x
syntax in Python 2.7. Most
everything I present this month
wi l l be done from the
interactive shel l . You can fol low
along as we go. The code wi l l
look l ike this:

>>> a = "Hello Python"

>>> print("String a is %s" %

a)

and the output wi l l be in bold,
l ike this:

String a is Hello Python

PYTHON 2.X
Of course you remember the

simple syntax for the print
function in 2.x uses the variable
substitution of %s or %d for
simple strings or decimals. But
many other formatting options
are avai lable. For example, if
you need to format a number
with leading zeros, you can do
it this way:

>>> print("Your value is

%03d" % 4)

Your value is 004

In this case, we use the
‘%03d’ formatting command to
say, “Display the number to a
width of 3 characters and if
needed, left pad with zeros”.

>>> pi = 3.14159

>>> print('PI = %5.3f.' % pi)

PI = 3.142.

Here we use the float
formatting option. The ‘%5.3f’
says to produce an output with
a total width of five and three
decimal places. Notice that the
decimal point takes up one of
the places of the total width.

One other thing that you
might not real ize is that you
can use the keys of a dictionary
as part of the format command.

>>> info =

{"FName":"Fred","LName":"Fark

el","City":"Denver"}

>>> print('Greetings

%(FName)s %(LName)s of

%(City)s!' % info)

Greetings Fred Farkel of

Denver!

The fol lowing table shows
the various possible
substitution keys and their
meanings.

full circle magazine 224 contents ^The Compleat Python

HOWTO - PYTHON PT48

PYTHON 3.X
With Python 3.x, we have

many more options (remember
we can use these in Python 2.7)
when it comes to the print
function.

To refresh your memory,
here’s a simple example of the
3.x print function.

>>> print('{0}

{1}'.format("Hello","Python")

)

Hello Python

>>> print("Python is {0}

cool!".format("WAY"))

Python is WAY cool!

The replacement fields are
enclosed within curly brackets
“{“ “}”. Anything outside of
these are considered a l iteral
and wi l l be printed as is. In the
first example, we have
numbered the replacement
fields 0 and 1. That tel ls Python
to take the first (0) value and
put it into the field {0} and so
on. However, you don’t have to
use any numbers at al l . Using
this option causes the first
value to be places in the first
set of brackets and so on.

>>> print("This version of {}

is

{}".format("Python","3.3.2"))

This version of Python is

3.3.2

As they say on the TV ads,
“BUT WAIT… THERE’S MORE”. If
we wanted to do some inl ine
formatting, we have the
fol lowing options.

:<x Left align with a width

of x

:>x Right align with a width

of x

:^x Center align with a width

of x

Here is an example:

>>>

print("|{:<20}|".format("Left

"))

|Left |

>>>

print("|{:>20}|".format("Righ

t"))

| Right|

>>>

print("|{:^20}|".format("Cent

er"))

| Center |

You can even specify a fi l l
character along with the
justification/width.

>>>

print("{:*>10}".format(321.40

))

*****321.4

I f you need to format a
date/time output, you can do
something l ike this:

>>> d =

datetime.datetime(2013,10,9,1

0,45,1)

>>>

print("{:%m/%d/%y}".format(d)

)

10/09/13

>>>

print("{:%H:%M:%S}".format(d)

)

10:45:01

Printing thousands separator
using a comma (or any other
character) is simple.

>>> print("This is a big

number

{:,}".format(7219219281))

This is a big number

7,219,219,281

Well , that should give you
enough food for thought for this
month. I ’ l l see you at the start
of the 5th year.

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his

The Ubuntu Podcast covers all

the latest news and issues facing

Ubuntu Linux users and Free

Software fans in general. The

show appeals to the newest user

and the oldest coder. Our

discussions cover the

development of Ubuntu but

aren’t overly technical. We are

lucky enough to have some great

guests on the show, telling us

first hand about the latest

exciting developments they are

working on, in a way that we can

all understand! We also talk

about the Ubuntu community

and what it gets up to.

The show is presented by

members of the UK’s Ubuntu

Linux community. Because it is

covered by the Ubuntu Code of

Conduct it is suitable for all.

The show is broadcast live every

fortnight on a Tuesday evening

(British time) and is available for

download the following day.

podcast.ubuntu-uk.org

http://www.thedesignatedgeek.net
http://podcast.ubuntu-uk.org/

full circle magazine 225 contents ^The Compleat Python

W
hile I was working
this week, a very
wise person by the
name of Michael

W. suggested that I should
consider what happens with
floating-point numbers and
equal ity.

Take for example a simple
calculation: 1.1 + 2.2

The answer, you say, is 3.3!
Any school-kid who has dealt
with fractions knows that. Wel l ,
tel l your computer. I f you start
up the Python Interactive Shel l
and at the prompt type

(1.1+2.2) == 3.3,

you might be surprised that the
shel l responds “False”.

WHAT?! ! ?! ?

Now, confused, you type at
the prompt:

>>>1.1+2.2

And the shel l responds back:

3.3000000000000003

You stare at the screen in
disbel ief and first think “I must
have typed something wrong”.
Then you real ize that you
didn’t. So you type:

>>>2.2+3.3

5.5

Now you are even more
confused and you think to
yourself “Ok. This is either a
bug or some kind of sick Easter
egg.” No, it’s neither a bug nor
an Easter egg. I t’s real . Whi le I
knew about this a very long
time ago, it had sl ipped into the
cobwebs hidden in the dark
recesses of my old mind, so I
had to bring it up here. What
we are seeing is the joy of
binary floating-point numbers.

We al l know that ⅓ equates
to .33333333333333333… for
ever and a day, but take, for
example, the fraction 1/10.
Everyone knows that 1/10 is
equal to .1, right? If you use the
interactive shel l you can see
that:

>>>1/10

0

Oh, right. We have to have
at least one of the values a
floating-point value to show any
decimal points since an
integer/integer returns an
integer. So we try again.

>>>1/10.0

0.1

Ok. Real ity is back. No, not
real ly. Python is simply showing
you a rounded version of the
answer. So, how do we see the
“real” answer? We can use the
decimal l ibrary to see what’s
real ly happening.

>>> from decimal import *

>>> Decimal(1/10.0)

Decimal('0.100000000000000005

55111512312578270211815834045

41015625')

WOW. So let’s try our original
formula and see what that
would show:

>>> Decimal(1.1+2.2)

Decimal('3.300000000000000266

45352591003756970167160034179

6875')

I t seems to just be getting
worse and worse. So what is
real ly happening?

This is cal led Representation
Error, and exists in almost
every modern programming
language (Python, C, C++,
Java, and even Fortran and
more), and on almost every
modern computer. This is
because these machines use
IEEE-754 floating-point
arithmetic which (on most
machines and OS platforms)
maps to an IEEE-754 double-
precision number. This double-
precision number has a
precision of 53 bits. So, our 0.1,
when represented in this 53-bit
double-precision, turns into:

0.000110011001100110011001100

11001100110011001100110011010

That’s close to .1, but not
close enough to avoid issues.

So what do we do about it?
Wel l , the quick answer is that
you probably can l ive with it for
90% of the things we have to
do out there in the real world –
by using the round() method.
Whi le you have to decide on
the number of decimal points
that you must have in your

Programming In Python - Part 49
Written by Greg Walters

HH OOWW--TTOO

full circle magazine 226 contents ^The Compleat Python

world to carry the precision that
you need, for the most part,
this wi l l be an acceptable
workaround.

I honestly don’t remember if
we have gone over the round
method, so I ’ l l briefly go over it.
The syntax is very simple:

round(v,d)

where v is the value you want
to round and d is the number of
decimals (maximum) you want
after the decimal point.
According to the Python
documentation, “Values are
rounded to the closest multiple
of 10 to the power of minus n
digits; i f two multiples are
equal ly close, rounding is done
away from 0”. Al l that being
said, if the number is 1.4144,
and we round it to 3 decimal
places, the returned value wi l l
be 1.414. If the number is
1.4145 it would be returned as
1.415.

For example, let’s use the
value of pi that comes from the
math l ibrary. (You must import
the math l ibrary before you can
do this, by the way.)

>>> math.pi

3.141592653589793

Now, if we wanted to round
that value down to 5 decimal
places, we would use:

>>> round(math.pi,5)

3.14159

That is the “standard” value
of pi that most everyone knows
off the top of their head. That’s
great. However, if we set the
number of decimal places to be
returned to 4, look what
happens.

>>> round(math.pi,4)

3.1416

Al l that sounds good unti l
you run into a value l ike 2.675
and try to round it to 2 decimal
places. The assumption (since it
is exactly halfway between 2.67
and 2.68) is that the returned
value wi l l be 2.68. Try it.

>>> round(2.675,2)

2.67

That might cause a problem.
It goes back to the initia l issue
we have been talking about.
The actual conversion to a
binary floating-point number

that is 53 bits long, the number
becomes:

2.674999999999999822365316059

9749535221893310546875

which then rounds down to
2.67.

The bottom l ine here is when
trying to compare floating-point
numbers, be aware that some
things just don’t translate wel l .

See you next time!

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his
fami ly. His website is
www.thedesignatedgeek.net.

HOWTO - PYTHON PT49

www.thedesignatedgeek.net.

full circle magazine 227 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg Walters

Programming In Python - Part 50

T
his month, I thought I ’d
talk about a couple of
lesser known functions,
maketrans and

translate.
We’l l start with the translate

method. The translate method
returns a copy of a string – with
al l characters in the translate
table replaced, or has the
characters in the optional
parameter deletechars
removed from the string. Here’s
the syntax.

s =

str.translate(table[,deletech

aracters])

Before we get to the table
portion of the method, let’s
look at the delete portion. Let’s
say that you have the string
“The time has come”. And you
want to delete al l the vowels
(for some weird reason) from
that string. You can code it l ike
this:

astr = “The time has come”

astr.translate(None,’aeiou’)

wil l return:

“Th tm hs cm”

Notice that we included
None as the translate table.
Whi le this part is cool , i t gets
better. There is a function
cal led maketrans. I t takes an
input string and an output
string as parameters and
returns a table that is used as
the first parameter into the
translate method. Here (top
right) is a very simple example.

I t returns:

“Th2 t3m2 h1s c4m2”

Let’s look at what this does.
We assign intable to a string of
vowels as before. outtable is
assigned the numbers 1,2,3,4,5
as a string. When we make the
cal l to maketrans, our actual
trantable is as fol lows (shown
below. The “\x” means that it is

hexadecimal char):
I f you look at it careful ly,

you’ l l see that the lowercase
vowel letters are replaced with
the numbers we specified:

1bcd2fgh3jklmn4pqrst5vwxyz

I f you look even closer, you’ l l
see that there actual ly 256
entries starting with “\x00” and
ending with “\xff”. So the table
contains the entire 256 possible
asci i character set. So, when
the translate method gets the
table, it i terates (or walks
through) each character,
getting that characters value in

Hex, and then finds that value
in the translate table and
substitutes it in the output
string. The Hex representation
of our original astr string (‘The
time has come’) is shown
below.

So now it should be making
sense.

Now the purpose of this
whole thing. Think back to your
school ing where you learned
about Jul ius Ceasar. Whenever
he wanted to send a message
of a confidentia l matter, he
would use a cipher that would
shift al l the letters of the

intable = ‘aeiou’

outtable = ‘12345’

trantable = maketrans(intable,outtable)

astr = “The time has come”

astr.translate(trantable)

'\x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\x0c\r\x0e\x0f\x10\x11\x12\x13\x14\

x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f !"#$%&\'()*+,./0123456789:;<=>?@ABC

DEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`1bcd2fgh3jklmn4pqrst5vwxyz{|}~\x7f\x80\x81\x82\x83

\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x90\x91\x92\x93\x94\x95\x96\x97

\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f\xa0\xa1\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\xaa\xab

\xac\xad\xae\xaf\xb0\xb1\xb2\xb3\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf

\xc0\xc1\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf\xd0\xd1\xd2\xd3

\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf\xe0\xe1\xe2\xe3\xe4\xe5\xe6\xe7

\xe8\xe9\xea\xeb\xec\xed\xee\xef\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb

\x54\x68\x65\x20\x74\x69\x6d\x65\x20\x68\x61\x73\x20\x63\x6f\x6d\x65

T h e t i m e h a s c o m e

full circle magazine 228 contents ^The Compleat Python

HOWTO - PYTHON PT50

alphabet three characters to
the right. So, using todays
engl ish alphabet:
ABCDEFGHIJKLMNOPQRSTUVWXYZabc

defghijklmnopqrstuvwxyz

becomes:
DEFGHIJKLMNOPQRSTUVWXYZabcdef

ghijklmnopqrstuvwxyzABC

While this seems very simple
by today’s standards, when I
was a school kid, we used this
al l the time to send messages
to each other. We used a
different index into the string to
start the encryption string, the
logic behind it was the same.

No one knows how effective
this actual ly was for good old
Jul ius. One would think that if
someone intercepted the
message, they would have
thought that it was in some
foreign language. We can only
speculate.

We can easi ly use the
translate method and the
maketrans helper function to
al low us to have fun with this.
Let’s say we want to make a
simple program that al lows us
to enter a string of “plain text”
and get back an encrypted
string using the same side right
method that Caesar used. For
simpl icity sake, let’s only use

uppercase characters (shown
top right).

Everything in the above
code is pretty much what we’ve
covered above or in earl ier
Python articles, but I ’ l l go over
it quickly.

The first two l ines are the in
and out strings. We’ve just
shifted the characters and
wrapped around to create the
out string. The next two l ines
create a table for encoding and
one for decoding. Line 5
prompts the user to enter a
string to encode. We then
encode that string (EncString)
in the next l ine. To decode it,
we simply use the translate
method on the encoded string
to get the plain text back.
Final ly we print both strings
out. Here’s the output of the
program.

Enter the plaintext string >

THE TIME HAS COME

Encoded string is

WKH WLPH KDV FRPH

Decoded string is

THE TIME HAS COME

Just l ike back in school . But
let’s flesh it out just a bit to
make it a bit more usable. The
code is almost the same with a
few exceptions. First, we have
added a space to the end of the

intab string and in between the
“Z” and the “A” in the outtab
string. This helps keep the
actual words from being too
obvious in the encrypted string.
The next change is where we
ask if the user wants to encode
or decode the string. Final ly we
added an if statement to
control what we print (shown
bottom right).

The output from the
program is:
Encode or Decode (E or D) > E

Enter the string > THE TIME HAS

COME

Encoded string is

WKHCWLPHCKDVCFRPH

And to test the decode side
of things:
Encode or Decode (E or D) > D

Enter the string >

WKHCWLPHCKDVCFRPH

Decoded string is THE TIME HAS

COME

Well , hopeful ly you are
starting to get ideas about how
to use this new information in
your own code. See you next
time!

from string import maketrans

#

intab = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

outtab = "DEFGHIJKLMNOPQRSTUVWXYZABC"

EncTrantab = maketrans(intab,outtab) #Encode

DecTrantab = maketrans(outtab,intab) #Decode

instring = raw_input("Enter the plaintext string > ")

EncString = instring.translate(EncTrantab)

DecString = EncString.translate(DecTrantab)

print("Encoded string is %s" % EncString)

from string import maketrans

#Be sure to include the space character in the strings

intab = "ABCDEFGHIJKLMNOPQRSTUVWXYZ "

outtab = "DEFGHIJKLMNOPQRSTUVWXYZ ABC"

EncTrantab = maketrans(intab,outtab) #Encode

DecTrantab = maketrans(outtab,intab) #Decode

which = raw_input("Encode or Decode (E or D) > ")

instring = raw_input("Enter the string > ")

EncString = instring.translate(EncTrantab)

DecString = instring.translate(DecTrantab)

if which == "E":

print("Encoded string is %s" % EncString)

else:

full circle magazine 229 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg Walters

Programming In Python - Part 51

T
his month, I ’m going to
discuss a product that
is new to me, but has
apparently been

around for a number of years.
I t’s cal led NextReports from
Advantage Software Factory,
and you can get it free from
http: //www.next-reports.com/ .
Not only that, but it’s open
source and it runs under
Windows and Linux!

Before I start tel l ing you
about the product, let me get
on my soapbox and vent for a
moment or two. For a long
time, I ’ve been working with
databases and reports. One of
the things that I ’ve had issues
with is that whi le there are free
database solutions out there,
l ike SQLite and MySql , there
was precious l ittle avai lable
that was free for report
designer tools. More times than
not, any reports either had to
be done with very expensive
software tools, or the developer
had to rol l his own. Some tools
were avai lable, but were
lacking. When it came to

charting, wel l , you pretty much
had no choice but to use the
expensive stuff. Bel ieve me,
I ’ve looked for years for real ly
good free reporting tools, and
I ’m not sure how I have missed
this package for so many years
(version 2.1 was released in
March of 2009 and they are
currently up to version 6.3). But
now that I ’ve found it, I ’m
absolutely pumped about it.

Now that I ’ve stepped down
from my soap box, I can begin

to sing its praises. I t is a suite
of three parts, a reports
designer, a report engine and a
report server. Al l I have had a
chance to play with is the
reports designer, but if the
designer is any indication of the
power, ease and flexibi l i ty of
the rest of the suite, this thing
is a winner.

This month, we are going to
concentrate on the designer.
Because of some constraints on
my time, I ’m working on a

Windows machine, but
everything that I show can be
done in Linux (so please forgive
me in advance).

One of the first things you
should know is that it supports
databases l ike Oracle, MySql ,
SQLite, MSSQL and more.
Everything is based on queries
and a real ly good thing is that
only SELECT type queries are
al lowed. This means that
nothing in the source database
can be changed by accident.
You can enter your own queries
or use a visual designer.

The screenshot shows how
nice a UI it is. Things are pretty
intuitive and it won’t take you
long to be productive at this.
Let’s take a look at the steps to
get going.

Start with Fi le | New | Data
Source. Next, name your source
whatever you want to cal l i t.

Now tel l NextReports what
kind of database it is in the
dropdown cal led “Type:”. You
can skip over the Driver section
and go to the URL: section. This

http://www.next-reports.com/

full circle magazine 230 contents ^The Compleat Python

HOWTO - PYTHON PT51

is where you put the path to
the database. If you are using,
for example, a SQLite
database, this wi l l be fi l led in
for you: “ jdbc:sql ite:<dbfi le-
path>”. Replace the <dbfi le-
path> with the path to your
database. Other types of
databases have simi lar types of
information already populated
to help you. Next, cl ick the
“Test” button to make sure you
can connect. I f everything goes
correctly, then cl ick “Save” and

you’ l l see it added to the
Connetions tree. The next thing
you need to do is make a
connection to your database
that you have just added. Now,
right cl ick on the database and
then cl ick on Connect.

Once you are connected,
you’ l l see that you have four
possible things to choose from.
The “%” is the database tables.
The next three are so you can
create new queries, reports and
charts. Simple enough. Now

cl ick on the “+” sign to the left
of “%” which wi l l open up your
database table display. Now
you wi l l have Tables, Views and
Procedures in the tree. Once
again, cl ick on the “+” sign
next to “Tables”. This wi l l show
al l your tables. Now if you want
to use the visual query
designer, just drag the table(s)
you want to deal with onto the
designer canvas to the right.

Once you have al l your
tables there, you can start
making connections between
the tables.

In the example here, I have
two tables, one with
information about kids in a
confirmation class and the
other with entries for worship
notes taken. The worship note
table doesn’t have the kid’s
name in it, just an id that points
to the kid information table. I
d id a drag and drop to make

full circle magazine 231 contents ^The Compleat Python

HOWTO - PYTHON PT51

that l ink between the kidID field
and the pkID of the kid table.
Then I selected each field I
wanted to have in the result
set. In this case, the kid’s first
and last name and an active (or
not-deleted) flag in the kids
table and multiple fields from

the notes table. The grid below
shows each of the fields, which
table it comes from, and other
information.

As you can see, we can set
criteria l ike “Active = 1”,
choose to display a field or not,
and set sort type and sort
order. Once you are satisfied
with this, you can cl ick on the
tab below and see your actual
SQL query.

To test your query, simply
cl ick on the “running man” and
you wi l l (hopeful ly if you did it
correctly) get the query results
in a grid below the editor. I f you
want to add manual l ines you
can. For example, I want to
combine the kids first and last
names (fname and lname) into
a ful l name. We can do that by
putting a l ine after the
“k1. lname,” l ine l ike this:

k1.fname || “ “ || k1.lname

as FullName,

The “| | ” characters are
concatenation characters so we
wi l l have the two fields with a
space between in a field named
“Ful lName”. Don’t forget the
comma at the end. Once you
have your query the way you
want it, cl ick on the save
button to save the query. You
wi l l be asked what you want to
cal l i t.

Next, cl ick on the Query item
in the tree and right cl ick on
the query you just created.

Select “New Report from
Query”. The query designer
canvas goes away and is
replaced by the report
designer.

On the left is the properties
window for any given field or
the entire report. On the right is
the report designer itself.
Notice that it looks l ike a
spreadsheet. Each row is
considered a “band” and holds
information for that report row.
In the case of this example, we

full circle magazine 232 contents ^The Compleat Python

HOWTO - PYTHON PT51

have four rows, two header
rows, one detai l row and a
footer row. You can add or
delete rows as needed. This
method is not quite as free-
form as some other report
designers, but makes for a very
nice and clean report.

The two header rows hold
our report title and column
headers. The detai l row has
each field we wi l l be reporting
on and the footer row is the

report footer. Let’s take a look
at how the report looks as a
default. Cl ick on the button at
the top of the bar marked “To
Html” to see the report. (I
blurred the kids last names,

that’s not an issue in the
generator.)

For a report with almost no
work, that’s real ly nice. But
let’s pretty it up a bit. Let’s
create a group that puts al l of
the data for any given kid
under the kid’s name.

Right cl ick on the first
column of the data row. Select
Group and then Add.

You wi l l be presented with a
new window asking which of
the fields you want to create
the group upon. In this case, I
select Ful lName and then cl ick
the Ok button. Now we have a
grouping break. We can also
get rid of the three fields
(fname, lname and Ful lName)
in the detai l section, since we’l l

be displaying the name in the
group band. SImply right-cl ick
on them and select “Delete
Cel l” . Now you can resize the
three empty cel ls on the left to
make the gap less obvious.

Taking a quick peek at what
the report looks l ike now wil l
show you that the information
for each kid is al l nicely
grouped together.

That’s nicer, but now let’s do
something kind of fun. Al l the
1s and 0s obviously stand for
yes and no. That’s rather
boring for a report, so let’s add
an advanced conditional
statement for each of those
fields that wi l l show a box with
a check for Yes (or 1) and an
empty box for No (or 0). I t’s

real ly easy to do, but makes
your report look l ike you spent
days on it. By using the
Wingdings font from Windows,
the two characters we want are
0x6F(0168) for an empty box
and 0xFE (0254) for a checked
box.

Before I go on, the one thing
that Windows does better than
Linux (that I have found) is the
use of the Alt+NumPad entry of
special characters. Linux
doesn’t al low that. There was a
work around that used
Ctrl+Shift+U then the unicode
value for the character you
wanted. However, that doesn’t
work on al l machines. The
easiest way I ’ve found to do
this on Linux, is to open
Character Map, use the search
function to find the unicode
character you want, double-
cl ick the character to copy it to
the “Text to copy:” box, then
cl ick the “Copy” and then paste
it into your document. The
unicode characters for them
are 2610 (empty box) and 2611
(checked box) using the
WingDings 2 font. I ’m sure
there are many other easier
ways to deal with this, but I ’m
shy on time. (Be sure you have

full circle magazine 233 contents ^The Compleat Python

Common selected in the Script
l ist.)

We’l l start with the
WorshipNotes field. On the
detai l row, right cl ick on the
field you want to do. In this
case it’s marked
$C{WorshipNote} . Choose
Insert, then Expression. Yet
another wonderful thing that
NextReports gives us it the
abi l i ty to do pretty much
everything with as l ittle typing
as possible. Look in the center
of window where it says
Operators. Double cl ick on the
“if. .else. . ” selection, and it wi l l
fi l l that into the editor for you
as a template so you don’t
make a mistake.

Now, we want to put the
WorshipNotes field in the
parentheses of the editor.
Simply cl ick in between the two
parentheses to place the cursor
and then double-cl ick on the
field you want to go in there.
BAM! It’s fi l led in for you. Now
cl ick after the field name in the
editor and then double-cl ick on
the “== (eq)” operator. Then
add a “1”, so the editor l ine

reads

if ($C_WorshipNote == 1) {

; } else { ; }

We are almost finished with
our expression The first set of
curly brackets define what to
do if the expression is True and
the second is what to do if it’s
false. In this case, we’ l l use the
CharMap (in windows, Linux
has one as wel l , for example
gucharmap if you are using
Gnome) to copy the characters
into our editor string. Or, under
windows, you can hold the
{Alt} key and press 0168 for
the empty box and 0254 for the
checked box. So now our
expression is (at least in
Windows):

if ($C_WorshipNote == 1) {

"þ"; } else { "o"; }

Name the expression (I
used WNotes) and save it.

Under properties for that field,
select the font (WingDings is
what I used here) and this is
what it wi l l look l ike.

There’s our pretty l ittle
boxes. Doing this to the other
fields is just as simple.

I t only took me about 3
hours of playing with the
package to get to this point and
a whole lot further. I can truly
say that I have a great amount
more to learn but that’s for
another day. You can use
templates to color your report,
you can add images, and much
more.

Next time, I ’ l l ta lk about how
we might go about embedding
these reports into a Python
program. Unti l then, have fun
playing with this wonder FREE
software.

HOWTO - PYTHON PT51

full circle magazine 234 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg Walters

Programming In Python - Part 52

B
efore we get started
on this month’s actual
python subject, let me
toot my own horn for

just a minute. In late December
and early January, my first book
on Python was publ ished by
Apress. I t is named "The Python
Quick Syntax Reference", and is
avai lable from a number of
places. You can find it on the
Apress site
(http: //www.apress.com/978143
0264781), Springer.com
(http: //www.springer.com/comp
uter/book/978-1-4302-6478-1)

and Amazon
(http: //www.amazon.com/The-
Python-Quick-Syntax-
Reference/dp/1430264780) as
wel l as others. I t is, as the title
suggests, a syntax reference
that wi l l help those of us who
program in other languages as
wel l as Python, to remember
how a certain command works
and the requirements for that
command. Please help a poor
old programmer make a l iving
by buying the book, if you can.

Now on to bigger and better
things.

Whi le I was working on my
latest book for Apress, I
rediscovered a SQL command
that I didn't discuss when we

were working with SQL
databases a long time ago, so I
thought I 'd share the
information with you. It is the
CREATE TABLE AS SELECT
command, which al lows us to
pul l a query from one table (or
joined tables) and create
another table on the fly. The
general syntax is:

CREATE TABLE [IF NOT EXISTS]

{New Table Name} AS SELECT

{query}

The part in square brackets
(IF NOT EXISTS) is total ly
optional , which wi l l create the
table only if it doesn’t exist
already. The part in curly
brackets, however, is not. The
first is the new table name and
the second is the query that

you want to use to pul l data
and create the new table.

Assume we have a database
that has multiple tables in it.
One of the tables is named
"study" that holds data from a
receiving operation. There are
six fields which are shown
below.

One of the datasets that we
wi l l need to produce from this
raw data is a grouping of
package count and the number
of days within the study that
quantity of packages came in
on, assuming that the days are
weekdays (Monday thru Friday)
and that the day is not a
hol iday, since hol idays have
less than normal number of

pkID Integer, Primary Key, AutoIncrement

DOM Integer Day of the month (131)

DOW Integer Day of week (17 (Sunday = 1, Monday = 2, etc))

pkgs Integer Number of packages received that day

DayName TEXT "Sunday","Monday", etc

Holiday Integer 0 or 1 (Is this day considered a holiday or not) 1 means yes

SELECT pkgs, Count(DOW) as CountOfDOW FROM study

WHERE (Holiday <> 1)

AND DayName in ("Monday","Tuesday","Wednesday","Thursday","Friday")

GROUP BY pkgs

http://www.apress.com/9781430264781
http://www.springer.com/computer/book/978-1-4302-6478-1
http://www.amazon.com/The-Python-Quick-Syntax-Reference/dp/1430264780
http://www.amazon.com/The-Python-Quick-Syntax-Reference/dp/1430264780

full circle magazine 235 contents ^The Compleat Python

HOWTO - PYTHON PT52

packages. Our query is shown
above.

This then provides us with
data that would look something
l ike this:

pkgs CountOfDow

31 1

32 2

33 1

...

48 3

So the data is showing that
during the study of 65 days,
only one weekday had 31
packages but 3 weekdays had
48 packages and so on. Simi lar
queries could be created that
would cover hol idays and
weekends.

Whi le having the data simply
as a returned dataset from the
query, we might want to do
further analysis on the data, so
we want to put the resulting
data from the query into a
table. That's why we would
create a table from the query.
So in the fol lowing example,
shown above right, we create a
table named "weekdays" using
the same query we just showed
above.

Now anytime we need the
data for that weekday result

set, we can just run a query on
the weekdays table.

Once we know what we
need, and have tested the
query, then we can begin our
code. Assuming we already
have the study table created
and populated, we can use
Python to then create our new
table in the main database. Just
as an FYI , I am using the APSW
SQLite l ibrary to do the
database work.

We, of course, have to
open a connection (right)
and create a cursor to
the SQLite database. We
have covered this in a
number of past articles.

Now we need to create the
routine that wi l l actual ly create
the table with the returned
dataset from the query, shown
below, then alter it and run
some calculations.

As you can see, we want to
create a second cursor, so that
we don’t run any risk of the

first cursor having data we
need to maintain. We wi l l be
using it in the final part of the
code. We then drop the table if
it exists and run our query on
the “study” table.

Now we create three more
columns (shown below) within
the weekdays table named

CREATE TABLE IF NOT EXISTS weekdays AS

SELECT pkgs, Count(DOW) as CountOfDOW FROM study

WHERE (Holiday <> 1)

AND DayName in ("Monday","Tuesday","Wednesday","Thursday","Friday")

GROUP BY pkgs

def OpenDB():

global connection

global cursor

connection = apsw.Connection("labpackagestudy.db3")

cursor = connection.cursor()

def DoWeekDays():

Create a second cursor for updating the new table

cursor2 = connection.cursor()

q1 = "DROP TABLE IF EXISTS weekdays"

cursor.execute(q1)

query = '''CREATE TABLE IF NOT EXISTS weekdays AS SELECT pkgs,

Count(DOW) as CountOfDOW FROM study WHERE (Holiday <> 1)

AND DayName in

("Monday","Tuesday","Wednesday","Thursday","Friday")

GROUP BY pkgs'''

addcolquery = 'ALTER TABLE weekdays ADD COLUMN probability REAL'

cursor.execute(addcolquery)

addcolquery = 'ALTER TABLE weekdays ADD COLUMN lower REAL'

cursor.execute(addcolquery)

addcolquery = 'ALTER TABLE weekdays ADD COLUMN upper REAL'

cursor.execute(addcolquery)

full circle magazine 236 contents ^The Compleat Python

“probabi l i ty”, “ lower” and
“upper”. We do this by using
the “ALTER TABLE” SQL
command.

The next step (top right) wi l l
be to sum the data in the
CountOfDOW field.

There is only one record
returned, but we do the for loop
thing anyway. Remember from
the above discussion that the
“CountOfDow” field holds the
number of days during the
study that a particular number
of packages came in. This gives
us a value that contains the
sum of al l of the “CountOfDow”
entries. Just so you have a
reference as we go forward, the
number I got from al l my
dummy data is 44.

upquery = "SELECT * FROM

weekdays"

c1 = cursor.execute(upquery)

Here we have done a
‘SELECT al l ’ query so every
record in the datatable is in the
‘c1’ cursor. We’l l walk through
each row of the dataset, pul l ing
the pkgs (row[0]) and
CountOfDow (row[1]) data into
variables.

LastUpper = .0

for row in c1:

cod = row[1]

pkg = row[0]

Now we wil l create a
probabi l i ty of each dai ly
package count in the database
and calculate an upper and
lower value that wi l l be used in
another process later on.
Notice that we check to see if
the LastUpper variable contains
‘ .0’ . I f i t does, we set it to the
probabi l i ty value, otherwise we
set it to the lower plus the
probabi l i ty value.

Final ly we use an update
SQL statement to put the new
computed values into the
database.

What we end up with is a
package count (pkgs), a count
of the number of days that
package count came in, a
probabi l i ty of that occurring
within the whole of the study
(31 packages on 1 day out of a
total of 44 (weekdays in that
60+ day study), wi l l have a
probabi l i ty of 0.02.) .

I f we add up al l the
probabi l i ty values in the table it
should add up to 1.0 .

The upper and lower values
then reflect a number between
floating point number 0 and 1
that wi l l mirror the possibi l i ty of
any random number within that
range that wi l l g ive us a
randomized number of
packages. This number can
then be used for a statistics
analysis of this data. A “normal
real-world” example would be
to predict the number of cars
that arrive at a carwash based
on observational data done in
the field. I f you want to
understand more, you could
look at

http: //www.algebra.com/algebr
a/homework/Probabi l i ty-and-
statistics/Probabi l i ty-and-
statistics. faq.question.309110.
html to see an example of this.
Al l we did is generate (the hard
part) easi ly with Python.

The code for the two
routines that we presented this
time is at:
http: //pastebin.com/kMc9EXes

Unti l next time.

HOWTO - PYTHON PT52

sumquery = "SELECT Sum(CountOfDOW) as Sm FROM weekdays"

tmp = cursor.execute(sumquery)

for t in tmp:

DaySum = t[0]

prob = cod / float(DaySum)

if LastUpper != .0:

lower = LastUpper

LastUpper = (lower + prob)

else:

lower = .0

LastUpper = prob

nquery = 'UPDATE weekdays SET probability = %f, \

lower = %f, upper = %f WHERE pkgs = %d' \

% (prob,lower,LastUpper,pkg)

u = cursor2.execute(nquery)

#====================================

End of DoWeekDays

#====================================

http://www.algebra.com/algebra/homework/Probability-and-statistics/Probability-and-statistics.faq.question.309110.html
http://pastebin.com/kMc9EXes
http://www.algebra.com/algebra/homework/Probability-and-statistics/Probability-and-statistics.faq.question.309110.htm
http://pastebin.com/kMc9EXes

full circle magazine 237 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg D. Walters

Program In Python - Part 53

T
his month, I thought I
would create a routine
that makes a l icense
key from an emai l . We

al l know the reason for having
a l icense key, and if you ever
need to have a quick and dirty
set of routines to do it, you can
use this. Remember, Python is
a scripting language, so the
source is always readable.
There are ways around this;
we’ l l d iscuss them in another
article. Let’s take a look at the
“gross” logic behind the code,
before we actual ly dive into the
code.

First, we wi l l ask for an emai l
address and then break it into
two parts, the local part (the
part before the “@” character)
and the domain part (the part
after the “@” character). There
are very specific rules for emai l
address val id ity, and it can get
very compl icated. For our
purposes, we wi l l only use
some of the rules and only on
the local part. You can do a web
search on the actual rule set. In
our code, we wi l l only look at:

• lowercase characters
• upper case characters
• numbers between 0 and 9
• special characters
(!#$%&'*+-/=?^_` { |}~.)
• period characters are al lowed,
but may not be repeated next
to each other (. . . , etc)

Once we have val idated the
emai l , we then wi l l create a
“checksum character” which is
based on the asci i value of
each character in the entire
emai l address, and then divide
it by the number of characters
in the emai l address. For
example, let’s use a mythical
emai l address of
fredjones@someplace.com. If
we walk through the emai l
address, we can get the asci i
value of each character by
using the ord() function. When
we add up each of the asci i
values, we get a sum of 1670,
then we divide that by the
length of the emai l address
(23); we get 72. Remember we
are using integer division here,
so our result wi l l be an integer.

Now that we have our
checksum value, we subtract
68 from that (asci i ‘D’) to
create an offset. We use this
offset when we encode each
character in the emai l . Just to
make things a bit harder to
decode, we put the length (with
offset) as character position 2
and the checksum as character
position 4.

So for the emai l
fredjones@someplace.com we
get a l icense key of:

j[vHihnsriwDwsqitpegi2gsq

Lets get started with the
code. Since this is the 53rd
article in the series, I won’t be

quite as verbose from here on
out.

First our imports.

import sys

Now (as shown above right)
we wi l l create a string that wi l l
include al l of our “legal”
characters for the IsVal idEmai l
function. I ’ve spl it i t into 3
strings so it fits nicely for the
magazine. We combine them in
the IsVal idEmai l routine. We
also set a global variable
‘Offset’ to 0. This wi l l be the
value that we add (later on) to
each character when we create
the encoded string.

localvalid1 = "abcdefghijklmnopqrstuvwxyz"

localvalid2 = "ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890"

localvalid3 = "!#$%&'*+/=?^_`{|}~."

Offset = 0

def IsValidEmail(s,debug=0):

email = s

pos = email.rfind("@")

local = email[:pos]

domain = email[pos+1:]

if debug == 1:

print local

print domain

isgood = False

localvalid = localvalid1 + localvalid2 + localvalid3

full circle magazine 238 contents ^The Compleat Python

HOWTO - PYTHON PART 53

Now for our first function.
This (below) is the IsVal idEmai l
routine. Basical ly we pass the
emai l in the variable s, and an
optional debug flag. We use the
debug flag, as we have done in
the past, to provide some print
statements to see how things
are going. Usual ly we would
simply pass a 1 as the second
parameter if we want to see
the progress verbosely.

First we assign the passed in
emai l address to the variable
‘emai l ’ and find the ‘@’
character that separates the
local from the domain portions
of the emai l . We then assign
the local portion of the emai l to
(I think it’s appropriate) ‘ local ’ ,
and the domain portion to
‘domain’ . We then set the
boolean isgood flag to False
and final ly create the
‘ localval id’ string from the 3
shorter strings we set up
earl ier.

Next (top right) we simply
walk through each character in
the local portion of the emai l
against the l ist of val id
characters using the in
keyword. If any character in the
local portion of the emai l fai ls

the test, we break out of the for
loop, setting the ‘ isgood’ flag to
False.

Final ly, we look for any set of
period characters that are
contiguous. We use the
string. find routine that wi l l
match anything that is l ike ‘ . . ’
or ‘ . . . ’ and so on. Being a lazy
programmer, I used only a
single “double dot” check that
works for anything more.

r = email.find("..")

if r > 1:

isgood = False

The last thing we do in the
routine is return the value of
the ‘ isgood’ flag.

return isgood

The next routine (bottom
right) is the CheckSum routine
which is fairly short. We walk
each character in the emai l and
create a running sum of the
asci i value of each using the
bui lt-in ‘ord’ type conversion.
As I stated earl ier, we take that
sum and divide it by the length
of the emai l address. We return
the checksum value and the
character represented by that
checksum.

Now for the EncodeKey
routine. Whi le it looks simple, it
requires some concentration so
pay attention! We assign the
Offset variable to global status
so we can change it within the
function and so it can be used
in other functions. We then set
the Offset variable to the
checksum minus 68. As in the
example presented at the
beginning of the article, i t
would be 72-68 which equals 4.
We then step through each

character of the emai l address
adding the offset to the asci i
value of that character. For the
‘f’ in ‘fredjones’ , i t would be
102 + 4 or 106 which equates
to ‘ i ’ . Using the counter
variable ‘cntr’ , we then
determine what we add to the
‘NewEmai l ’ string we bui ld up
character by character. Notice
in the code that we go from 0
to the length of the emai l , so
character 0 is ‘f’ , character 1 is
‘r’ and so on. Now comes the

Check Local Part

for cntr in range(0,len(local)):

if local[cntr] in localvalid:

if debug == 1:

print local[cntr],ord(local[cntr]),"True"

isgood = True

else:

if debug == 1:

print local[cntr],ord(local[cntr]),"False"

isgood = False

break

def CheckSum(s,debug = 0):

sum = 0

email = s.upper()

for cntr in range(0,len(email)):

if debug == 1:

print email[cntr],ord(email[cntr])

sum += ord(email[cntr])

cs = sum/len(email)

if debug == 1:

print('Sum = %d' % sum)

print('ChkSum = %d' % cs)

print('ChkSum = %s' % chr(cs))

full circle magazine 239 contents ^The Compleat Python

part that might confuse some
of you. If cntr is a value of 1
(‘r’) , we insert the character for
the length of the emai l + 68
and then the offset character,
which using our example would
be iYt. The next time we go
through the loop, cntr wi l l equal
2 , but we already have 3
characters in the emai l . That’s
where we want to insert the
checksum character (‘F’) and
then the third character offset.
From there, we simply add each
offset character to the string,
and when the loop is done, we
return the key (top right).

The DecodeKey routine
(bottom right) basical ly
reverses the process we used
in the EncodeKey routine. One
thing you might notice here is
that in the first ‘ i f debug’
statement of this function, I
used ‘!= 0’ rather than ‘== 1’,
simply to remind you that the
two can be interchangeable.

The DoIt function (below)
asks for an emai l address using
‘raw_input’ , then cal ls the
functions in order to create the
l icense key.

Lastly, we cal l the DoIt
routine.

if __name__ == "__main__":

DoIt()

Now, obviously the output is
not super-encrypted, and if
someone were to put in a fair
amount of time, they could
figure out what we used to
create the key fairly easi ly.
However, it should give you
enough of a starting point that
you could simply modify the
code to make it much harder to
break. You could, for example,
use a random number rather
than the ‘D’ (68). I f you do that,
set a seed in the code so that it
wi l l a lways generate the same
random number. You could also
go a bit deeper and put the
offset value somewhere into

the l icense key, maybe the last
character so you could use that
as the decryption offset.

As always, the ful l source is

avai lable at
http: //pastebin.com/MH9nVTNK.
Unti l next time, enjoy.

HOWTO - PYTHON PART 53

def EncodeKey(s, csum, debug = 0):

global Offset

email = s

Offset = csum 68

if debug == 1:

print("Offset is %d" % Offset)

NewEmail = ""

for cntr in range(0,len(email)):

ch = ord(email[cntr]) + Offset

if cntr == 1:

NewEmail = NewEmail + (chr(len(email)+68)) +

chr(ch)

elif cntr == 2:

NewEmail = NewEmail + chr(csum) + chr(ch)

else:

NewEmail = NewEmail + chr(ch)

if debug == 1:

print cntr, NewEmail

def DecodeKey(s,debug = 0):

global Offset

eml = ""

for cntr in range(0,len(s)):

if debug != 0:

print cntr,s[cntr],ord(s[cntr])

Offset,chr(ord(s[cntr])Offset)

if cntr == 0:

eml = eml + chr(ord(s[cntr])Offset)

elif cntr == 1:

emllen = ord(s[cntr])Offset

elif cntr == 3:

csumchr=s[cntr]

else:

eml = eml + chr(ord(s[cntr])Offset)

if debug == 1:

def DoIt():

email = raw_input("Please enter email address > ")

isok = IsValidEmail(email,0)

if isok == True:

csum,csumchr = CheckSum(email)

ke = EncodeKey(email,csum,0)

print("License Key = %s" % ke)

print("Original email = %s" % DecodeKey(ke,0))

http://pastebin.com/MH9nVTNK

full circle magazine 240 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg D. Walters

Program In Python - Part 54

M
any years ago, I was
deal ing with high
blood pressure
issues. My doctor

suggested that I do something
that al lowed me to concentrate
on something fairly useful , but
rather trivia l . I dealt with it by
trying to do counted cross
stitch. I t’s creative, focused,
and keeps your mind occupied
on what you are doing, not
what is bothering you. I find
myself in that position again, so
I broke out the hoop and
needles and started again.

In case you aren’t fami l iar
with counted cross stitch, I ’ l l
g ive you a gross overview of
what it is. Cross stitch is a type
of needlework that uses tiny ‘x’
patterns of thread that
eventual ly make up a picture.
The thread is cal led “floss” and
the fabric that you use is cal led
“aida”. According to Wikipedia,
aida is a special fabric that has
tiny squares that have smal l
holes at regular intervals that
form the squares. This
faci l i tates the placement of the

“x” patterns that make the
image. There are two types of
cross stitch. One has an image
printed on the aida (sort of l ike
paint by numbers), and the
other uses total ly blank aida
that you count stitches from
the pattern. The second is
much harder than the first. Go
to your favorite fabric store or
craft section of your local
mega-mart and you’ l l get the
idea.

Also a whi le back, I started
playing with creating a program
that would take an image and
convert it into a cross stitch
pattern. One thing lead to
another, and I had to shelve the
program for other things. I ’ve
now dusted off the idea and
started anew.

We wil l spend the next few
articles deal ing with this
project. I t wi l l take a whi le,
since some things are fairly
complex and have many parts
to them. Here is the “game
plan”:
• Create a database for the
pixel colors to floss colors.

• Create a GUI using Tkinter for
the appl ication.
• Flesh out the appl ication to
do the manipulation of the
image fi les.
• Create a PDF fi le that wi l l be
the ultimate pattern for the
project.

What you wi l l learn
• Revisitation of database and
XML manipulation.
• Revisitation of Tkinter GUI
programming. If you missed the
previous articles on this, please
refer to FCM issues 51 thru 54.
• Image manipulation using PIL
(http: //pi l low.readthedocs.org/e
n/latest/) .
• PDF creation using pyFPDF
(https: //code.google.com/p/pyfp
df).

GETTING STARTED
The first thing in our l ist of

tasks is to create the database

that wi l l hold the DMC(™) floss
colors and reference them to
the closest approximation to
the RGB (Red, Green, Blue)
values that are used in images
on the computer. At the same
time, the database wi l l hold the
hex value and the HSV (Hue,
Saturation, Value)
representations for each floss
color. I t seems that HSV is the
easiest way to find the
“closest” representation of a
color that wi l l match the floss
colors. Of course, the human
eye is the ultimate decision
maker. I f you are not fami l iar
with HSV color representations,
there is a rather complex
writeup on Wikipedia at
http: //en.wikipedia.org/wiki/HSL
_and_HSV. It might help, but it
might make things less clear.

The first thing we need is an
XML fi le that has the DMC floss

makedb.py

DMC.xml to SQLite database

For Full Circle Magazine #85

import apsw

from xml.etree import ElementTree as ET

tablename = "DMC"

https://code.google.com/p/pyfpdf
http://pillow.readthedocs.org/en/latest/
http://sourceforge.net/p/kxstitch/feature-requests/9/

full circle magazine 241 contents ^The Compleat Python

HOWTO - PYTHON PART 54

colors with a RGB conversion.
The best one I found is at
http: //sourceforge.net/p/kxstitc
h/feature-requests/9/. The fi le
you want is dmc.xml. Download
it and put it in a folder that you
wi l l use to hold the Python
code.

Now we wil l be using apsw
(below) to do our database
manipulation, which you should
already have and ElementTree
to do the XML parsing (which is
included in Python version
2.7+).

As always, we start with our
imports. In this program, we
have only the two. We also set
the name of the table.

The next portion should be
fami l iar if you have been
reading the articles for a whi le.
We create a function that wi l l
read the XML fi le, and parse it
for us. We then can use the
information to load the
database. A snippet of the XML
fi le is shown top right.

We are looking for the
<floss> tag for each l ine of
information. To do this, we use
the .findal l (‘floss’) command.
Once we have the information

l ine, we break each tag (name,
description, etc.) into separate
variables to place into the
database. When it comes to the
<color> tag, we use the
.floss. findal l (‘color’) command
to get each value of Red, Green
and Blue.

We start by tel l ing the
function that we wi l l be using
the global variables connection
and cursor. We then set the
fi lename of the XML fi le, parse
the XML fi le, and get started.
We also use a counter variable
to show that something is
happening whi le the parsing
and database inserts are going
on.

Now that we have al l our
data, we need to create the
SQL insert statement and
execute it. Notice the “\” after
the word VALUES in the SQL
statement. That is a l ine-
continuation character to make
it easier for printing here in the
magazine. We wi l l be creating
the database and table in a few
moments.

SQL = "INSERT INTO DMC

(DMC,Description,Red,Green,Bl

ue) VALUES \

('%s','%s',%s,%s,%s)" %

(name,desc,red,green,blue)

cursor.execute(SQL)

Now, we print to the
terminal window that
something is going on:

print "Working record

{0}".format(cntr)

cntr += 1

Now we create and/or open
the database in the OpenDB
routine (bottom right). I f you’ve

<floss>

<name>150</name>

<description>Dusty Rose Ultra VDK</description>

<color>

<red>171</red>

<green>2</green>

<blue>73</blue>

</color>

def ReadXML():

global connection

global cursor

fn = 'dmc.xml'

tree = ET.parse(fn)

root = tree.getroot()

cntr = 0

for floss in root.findall('floss'):

name = floss.find('name').text

desc = floss.find('description').text

for colour in floss.findall('color'):

red = colour.find('red').text

green = colour.find('green').text

def OpenDB():

global connection

global cursor

global ucursor

global dbname

connection = apsw.Connection("floss.db3")

cursor = connection.cursor()

full circle magazine 242 contents ^The Compleat Python

HOWTO - PYTHON PART 54

been with us when we have
done database work before,
you wi l l notice that we are
using two cursors this time. The
cursor variable is used for the
“normal” inserts, and later on
in the select statement for the
update to set the hex and HSV
values. We have to use two
cursors, since if you modify a
cursor in the middle of a logic
statement, you lose everything
with the new command. By
using ‘ucursor’ , we can use that
for the update statements.
Other than that, i t is our normal
OpenDB routine.

Now that the database is
created and/or opened, we can
set up our table (top right).
Notice that the SQL statement
below uses the triple quote to
al low for the l ine to break
neatly for viewing.

The EmptyTables routine
(middle right) is there just to
make sure that if we want to or
need to run the appl ication
more than once, we start with a
clean and empty table if it
exists.

IF we were to stop here, we
would have a reasonable
working database with the DMC

color, color name and the RGB
values associated with each.
However, as I al luded to before,
it is easier to pick the closest
floss color by using the HSV
data.

We next create the hex
value from the RGB values
(middle left) .

The next function creates
the HSV values from the RGB
values. I found the algorithm on
the internet. You can research it
there.

Final ly, we create the
UpdateDB function (next page,
top left) . We use the SELECT *
FROM DMC command and use
the “standard” cursor variable
to hold the data. We then step
through the returned data, and
read the RGB values, and pass
them to the rgb2hex function
as a tuple and to the rgb2hsv
function as three separate

values. Once we get the return
values, we use the update SQL
command to match the proper
record by using the primary key
(pkID). As I stated before, we
have to use a separate cursor
for the update statement.

The last thing we do is cal l
each of the functions in order

to create the database, and, at
the end, we print “Finished” so
the user knows everything is
done.

OpenDB()

MakeTables()

EmptyTables() # Just to be

safe

ReadXML()

UpdateDB()

def MakeTables():

sql = '''CREATE TABLE IF NOT EXISTS DMC

(pkID INTEGER PRIMARY KEY, DMC INTEGER,

Description TEXT, Red INTEGER, Green INTEGER, Blue INTEGER,

HEX TEXT,H INTEGER,S INTEGER,V INTEGER)'''

cursor.execute(sql)

def EmptyTables():

sql="DELETE FROM %s" % tablename

cursor.execute(sql)

def rgb2hex(rgb):

return '%02x%02x%02x' % rgb

def rgb2hsv(r, g, b):

r, g, b = r/255.0, g/255.0, b/255.0

mx = max(r, g, b)

mn = min(r, g, b)

df = mxmn

if mx == mn:

h = 0

elif mx == r:

h = (60 * ((gb)/df) + 360) % 360

elif mx == g:

h = (60 * ((br)/df) + 120) % 360

elif mx == b:

h = (60 * ((rg)/df) + 240) % 360

if mx == 0:

s = 0

else:

s = df/mx

v = mx

http://pastebin.com/Zegqw3pi

full circle magazine 243 contents ^The Compleat Python

print "Finished"

I named this program
“MakeDB”. The database should
be created in the same folder
where the code and XML fi le are
located. As always, the ful l code
can be found at
http: //pastebin.com/Zegqw3pi .

Next time, we wi l l work on
the GUI . We use Tkinter for the
GUI , so, in the meantime, you
might want to refresh your
memory by looking at FCM
issues 51 thru 54 where I take
you through Tkinter.

Unti l next time, have a good
month.

HOWTO - PYTHON PART 54

http://pastebin.com/Zegqw3pi.

full circle magazine 244 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg D. Walters

Program In Python - Part 55

T
his is the second in a
multi -part tutoria l on
creating a Cross Stitch
pattern generator. In

the first part (FCM85), we
created a database containing
the DMC™ floss colors with
their closest RGB values. In this
part, we wi l l create the GUI
using Tkinter. We wi l l a lso use
PIL (Python Imaging Library)
and PMW (Python Mega
Widgets). You’ l l need to
download those l ibraries and
instal l them before we go too
far. For PIL, go to the Pi l low fork
at https: //github.com/python-
imaging/Pi l low and download
the latest version. For PMW, go
to http: //pmw.sourceforge.net/
and download from there.

You wi l l a lso need two image
fi les. One is a simple grey
rectangle 500x400 pixels. You
can use GIMP or some other
image manipulating program to
create it. Name it default. jpg,
and place it into your source
code directory along with the
database. The other is an
image of a folder for the open

image button. I got one from
open cl ipart and searched for
the word “folder”. I found a
reasonable one at
https: //opencl ipart.org/detai l /17
7890/fi le-folder-by-thebyteman-
177890. Open it in GIMP, resize
it to 30x30 and save it in the
same directory as the other two
fi les as “open.gif” .

Above is a screenshot of
what the finished GUI wi l l look
l ike. There are four main frames
in the GUI . Three on the left
side and one on the right. When
we go through the bui ld widget

process, I refer to them as Top
Frame, Middle Frame, Bottom
Frame and Side Frame. The top
frame deals with the original
image. The middle frame deals
with the processing of the
image. The bottom frame
shows the original image on the
left and the processed image
on the right, and the side frame
displays the colors and floss
required. I t seems from first
glance there is a lot of wasted
space here, but when you see
the program run, it doesn’t
real ly have that much empty
space, once we get through the

processing portion.

Now we are ready to start
working on the code. Here is
our long l ist of imports. . .

from Tkinter import *

import tkFileDialog

import tkCommonDialog

import tkMessageBox

import ttk

from PIL import

Image,ImageTk,ImageOps

import Pmw

import apsw # Database

Access

import math # Math library

import sys

From the sheer number of
imports, you can tel l this is
going to be a long program. In
fact, the UI portion of the code
wi l l be over 300 l ines, including
comments. The “good” news is
that about 200 of the l ines of
code deal with the Tkinter

https://github.com/python-imaging/Pillow
http://pmw.sourceforge.net/
https://openclipart.org/detail/177890/file-folder-by-thebyteman-177890

full circle magazine 245 contents ^The Compleat Python

HOWTO - PYTHON PART 55

portion of the program, the
actual GUI itself. The majority
of the remaining l ines of code
in this portion are stubs for
functions needed for the next
article.

We’l l create a class to hold
al l of our UI processing code
(next page, top right).

First, we have the class
definition and next we have the
__init__ function which we pass
the TopLevel “root” window
into. We create the TopLevel
window in the last four l ines of
the program. Within the __init__
function we are defining al l the
global variables and doing
some initia l assignments before
we start the other functions.
The first thing we do is create a
l ist of Tuples that hold the
picture fi le formats that we
need when we cal l the OpenFi le
dialog. The next two l ines
below, define and ready the
two image fi les we just created
(open folder GIF fi le, and the
grey rectangle – which wi l l be
used as placeholders for our
images used to create the
pattern.

self.openimage =

PhotoImage(file='open.gif')

self.DefaultImage

=ImageTk.PhotoImage(self.Thum

bnail("default.jpg",450,450))

Now we get into the global
definitions (middle right). I f you
remember, when you use
Tkinter, if you have a widget
l ike a text entry box or combo
box that you want to retrieve
the information selected or
entered, you define a global
variable and then assign it to a
Variable Class (BooleanVar,
DoubleVar, IntVar or StringVar).
This wi l l then “track” changes
to the values within the widget
values so you can access them
with the .get() or .set()
methods. In the next l ines of
code, we create the global
variable name, then assign it to
the proper wrapper class. I put
some comments into the code
to try to help you keep track of
what we are doing.

As you can see, we are
setting a variable cal led
OriginalFi lename, which holds
the image that we want to
create the pattern from,
OriginalColorCount which holds
the number of colors in the

original image fi le, and
OriginalSize which holds the
size in pixels of the original
image. As they say on tv. . . “BUT
WAIT!THERE’SMORE!” (bottom
right):

The ComboStitch variable is
set by a combobox, and
handles the stitch size of the
aida that you wish to use for
your project. The ComboSize
variable is also set by a combo
box and holds the size of the

class XStitch:

def __init__(self, master):

self.picFormats = [

('JPEG / JFIF','*.jpg'),

('Portable Network Graphics','*.png'),

('CompuServer GIF','*.gif'),

('Windows Bitmap','*.bmp'),

('All File Types *.*','*.*'),

]

#

Global Definitions

#

UI Required

global OriginalFilename

OriginalFilename = StringVar()

global OriginalColorCount

OriginalColorCount = StringVar()

global OriginalSize

global ComboStitch

ComboStitch = IntVar()

global ComboSize

ComboSize = StringVar()

global FabricWidth

FabricWidth = DoubleVar()

global FabricHeight

FabricHeight = DoubleVar()

global MaxColors

MaxColors = IntVar()

global BorderSize

full circle magazine 246 contents ^The Compleat Python

HOWTO - PYTHON PART 55

aida fabric. FabricHeight and
FabricWidth are the
breakdowns from the aida size.
MaxColors is a value from an
entry box to set the number of
colors, and BorderSize is a
floating point value that
specifies the amount of unused
aida for framing.

global ProcessedColors

ProcessedColors = StringVar()

global ProcessedSize

ProcessedSize = StringVar()

global DmcColor

DmcColor = StringVar()

The final ‘variable class’
variables are used for
information once we have
processed the original image to
the desired parameters.

The next set of globals is
(top right) used for easy access
throughout the program. For
the most part, they are either
obvious by their name, or wi l l
become obvious once we use
them. There are three not-so-
obvious variables here.
backgroundColor1 and
backgroundColor2 are tuples

that are used in the gridding
process, and the
ReadyToProcess variable is
used to designate that the
original image is loaded and
everything is ready to go – just
in case the user presses the
Process button too early.

Final ly we have assigned al l
our globals, and now have the
code that actual ly creates the
GUI . We open the database,
create the menu, set up the
widgets, and final ly place the
widgets into the proper places.
Just to give you a heads-up, we
wi l l be using the Grid geometry
placement manager. More on
that later.

#

self.OpenDB()

self.MakeMenu(master)

frm =

self.BuildWidgets(master)

self.PlaceWidgets(frm)

The next portion of our code
(middle right) wi l l set up the
menu bar. I ’ve tried to lay it out

logical ly so it wi l l be easy to
understand.

We define a function cal led
MakeMenu, and pass in the
TopLevel window. We then
define the three menu sets we
wi l l be creating. One for Fi le,

one for Process, and one for
Help.

menu.add_cascade(label="File"

, menu=filemenu)

menu.add_cascade(label="Proce

ss",menu=process)

menu.add

#

global ShowGrid

ShowGrid = True

global ProcessedImage

ProcessedImage = ""

global GridImage

GridImage = ""

global backgroundColor1

backgroundColor1 = (120,)*3

global backgroundColor2

backgroundColor2 = (0,)*3

global ReadyToProcess

#==

BEGIN UI DEFINITION

#==

def MakeMenu(self,master):

menu = Menu(master)

root.config(menu=menu)

filemenu = Menu(menu, tearoff=0)

process = Menu(menu,tearoff=0)

#

File Menu

#

filemenu.add_command(label="New")

filemenu.add_command(label="Open", command=self.GetFileName)

filemenu.add_command(label="Save", command=self.FileSave)

filemenu.add_separator()

filemenu.add_command(label="Exit", command=self.DoExit)

full circle magazine 247 contents ^The Compleat Python

HOWTO - PYTHON PART 55
_cascade(label="Help",menu=he

lp)

Now we set up the Fi le menu
options (bottom right). Open
wi l l open our image and uses a
function cal led “GetFi leName”.
Save wi l l create the output PDF
fi le and uses the Fi leSave
function. We add a separator
and final ly an Exit function.

Now we have the Process
option and the Help functions
(next page, top right).

Al l of the options in the
menu bar are also avai lable
from various buttons within the
program.

Now we wil l make our
Bui ldWidgets function. This is
where we create al l the widgets
that wi l l be used on the GUI .

def

BuildWidgets(self,master):

self.frame =

Frame(master,width=900,height

=850)

We start with the function
(bottom right) definition,
passing in the TopLevel window
(master) and placing a frame

that holds al l of our other
widgets. I ’ve added comments
to help real ize which part of
code deals with which frame.
We’l l deal with the top frame
first.

Assuming you remember or
refreshed your memory on
Tkinter, it should be fairly
straight-forward. Let’s look at
the first label as a discussion
item.

self.label1 =

Label(self.frm1,text =

"Original Filename: ")

First, we
define the
name of the
widget
(self. label1 =).
Next we set
that variable
to which

widget type we want to use; in
this case Label . Final ly we set
the parameters we want to
apply to that widget starting
with the parent widget
(self. frm1), and in this case, the
text that wi l l show up in the

label . Now let’s take a moment
to look at the button
self.btnGetFN.

self.btnGetFN =

Button(self.frm1, width=28,

image=self.openimage,

#

Process Menu

#

process.add_command(label="All",command=self.Process)

#

Help Menu

#

help.add_command(label="Help",command=self.ShowHelp)

help.add_separator()

help.add_command(label="About",command=self.ShowAbout)

TOP FRAME

self.frm1 = Frame(self.frame,width=900,height=100,bd=4,relief=GROOVE)

self.label1 = Label(self.frm1,text = "Original Filename: ")

self.entFileName = Entry(self.frm1,width=50,textvariable=OriginalFilename)

self.btnGetFN = Button(self.frm1, width=28, image=self.openimage,

command=self.GetFileName)

self.label2 = Label(self.frm1,text = "Original Colors: ")

self.lblOriginalColorCount = Label(self.frm1,text="",width=10,

textvariable=OriginalColorCount)

self.label3 = Label(self.frm1,text = "Original Size: ")

self.lblOriginalSize = Label(self.frm1,text="",width=10,

Middle Frame

self.frm2 = Frame(self.frame,width=900,height=160,bd=4,relief=GROOVE)

self.lbl4 = Label(self.frm2,text="Aida Stitch Size: ")

self.lbl5 = Label(self.frm2,text="Aida Fabric Size: ")

self.TCombobox1 = ttk.Combobox(self.frm2,textvariable=ComboStitch,width=8)

self.TCombobox1.bind('<<ComboboxSelected>>', self.StitchSizeSelect)

self.TCombobox1['values'] = (7,10,11,12,14,16,18,22)

self.TCombobox2 = ttk.Combobox(self.frm2,textvariable=ComboSize,width = 8)

self.TCombobox2.bind('<<ComboboxSelected>>',self.AidaSizeSelect)

self.TCombobox2['values'] = ("12x18","15x18","30")

full circle magazine 248 contents ^The Compleat Python

HOWTO - PYTHON PART 55
command=self.GetFileName)

First thing to notice is that
this is broken into two l ines. You
can safely place everything on
one l ine. . . i t is just too long to fit
into a 72-character l ine. We’l l
real ly pay attention to the
parameters we use here. First
the parent (frm1), next the
width which is set at 28. When
we use a widget that has the
option of text or an image, we
have to be careful setting the
width. I f i t wi l l contain text, the
width parameter is the number
of characters it wi l l hold. I f i t is
to display an image, it wi l l be
set at the number of pixels.
Final ly, we set the command
parameter, which tel ls the
system what function to cal l
when the button is cl icked.

One more thing to look at is
the textvariable parameter.
This tel ls us what variable wi l l
hold the information that wi l l
be displayed in the widget. We
set these in the __init__
function earl ier. One other thing
to mention is that the frame
itself has two parameters you
might not remember. The Rel ief
parameter sets the border type
of the frame, which in this case

is GROOVE, and the bd
parameter sets the border
width. Border width defaults at
0 so if you want to see the
effect, you have to set the
border width (bd is a shortcut).

Now we’l l deal with the
middle frame widgets.

The last 6 l ines of this
section (previous page, middle
right) deal with the two combo
boxes in the UI . Each combo

box uses three l ines (the way I
programmed it to make it easy
to understand). In the first l ine,
we set the basic parameters.
The next l ine, we bind the
combobox selection-changed
event to the function

self.lbl6 = Label(self.frm2,text="Max Colors: ")

self.entMaxColors = Entry(self.frm2,textvariable=MaxColors,width=3)

self.lbl7 = Label(self.frm2,text="Border Size: ")

self.entBorderSize = Entry(self.frm2,textvariable=BorderSize,width = 8)

self.frmLine = Frame(self.frm2,width=6,height=80,bd=3,relief="raised")

self.lbl8 = Label(self.frm2,text=" Processed Image Colors: ")

self.lbl9 = Label(self.frm2,text="Processed Image Stitch Count: ")

self.lblProcessedColors = Label(self.frm2, width=10,textvariable=ProcessedColors,

justify=LEFT)

self.lblProcessedSize = Label(self.frm2, width=10, textvariable=ProcessedSize,

justify=LEFT)

self.btnDoIt = Button(self.frm2,text="Process",width=11,command = self.Process)

self.btnShowGrid = Button(self.frm2,text="Hide Grid", width=11,

command=self.ShowHideGrid)

self.btnCreatePDF = Button(self.frm2, text="Create PDF", width=11,

Bottom Frame

self.frm3 = Frame(self.frame,width=450,height=450,bd=4,relief=GROOVE)

self.lblImageL = Label(self.frm3, image=self.DefaultImage,

height=400, width=400, borderwidth=2, relief=GROOVE)

self.lblImageR = Label(self.frm3, image=self.DefaultImage, height=400,

width=400,borderwidth=2, relief=GROOVE)

Side Frame

self.frm4 = Frame(self.frame,width = 300,height=580,bd=4,relief=GROOVE)

Create the ScrolledFrame.

self.sf = Pmw.ScrolledFrame(self.frm4,

labelpos = 'n', label_text = 'Processed Color List',

usehullsize = 1,

hull_width = 300,

hull_height = 567,)

return self.frame

full circle magazine 249 contents ^The Compleat Python

HOWTO - PYTHON PART 55

StitchSizeSelect, and the last
l ine has a l ist of the values that
wi l l be avai lable for the
pul ldown.

Everything else above is
pretty “normal” stuff. Now we
set our defaults for the widgets
that need them. Again, we are
using the global variables that
we set up in the __init__
function and wrapped to the
widget variable class.

ComboStitch.set(14)

ComboSize.set("15x18")

FabricWidth.set(15)

FabricHeight.set(18)

MaxColors.set(50)

BorderSize.set(1.0)

Now we deal with the
bottom frame. This is real ly
simple, since we have to set up
only the frame and two labels
which we wi l l use to hold our
images.

Final ly we deal with the side
frame. The side frame wi l l hold
a Scrol ledFrame from the PMW
library. I t’s real ly easy to use
and provides a nice interface to

the information about the floss
that should be used. You can
research the Scrol ledFrame on
your own, since we sti l l have a
lot to cover here.

ROW | Col 0 | Col 1 Col 6 |Col 7 | Col 9 | Col 10 |

0 | Label1 | entFileName |btnGenFN| Label2|lblOriginalColorCount |

1 | | Label3|lblOriginalSize |

def PlaceWidgets(self,frame):

frame.grid(column = 0, row = 0)

TOP FRAME

self.frm1.grid(column=0,row=0,rowspan=2,sticky="new")

self.label1.grid(column=0,row=0,sticky='w')

self.entFileName.grid(column=1,row=0,sticky='w',columnspan = 5)

self.btnGetFN.grid(column=7,row = 0,sticky='w')

self.label2.grid(column=9,row=0,sticky='w',padx=10)

self.lblOriginalColorCount.grid(column=10,row=0,sticky='w')

self.label3.grid(column=9,row=1,sticky='w',padx=10,pady=5)

MIDDLE FRAME

self.frm2.grid(column=0,row=2,rowspan=2,sticky="new")

self.lbl4.grid(column=0,row=0,sticky="new",pady=5)

self.lbl5.grid(column=0,row=1,sticky="new")

self.TCombobox1.grid(column=1,row=0,sticky="new",pady=5)

self.TCombobox2.grid(column=1,row=1,sticky="new")

self.lbl6.grid(column=2,row = 0,sticky="new",padx=5,pady=5)

self.entMaxColors.grid(column=3,row=0,sticky="new",pady=5)

self.lbl7.grid(column=2,row=1,sticky='new',padx=5)

self.entBorderSize.grid(column=3,row=1,sticky='new')

self.frmLine.grid(column=4,row=0,rowspan=2,sticky='new',padx=15)

self.lbl8.grid(column=5,row=0,sticky='new',pady=5)

self.lbl9.grid(column=5,row=1,sticky='new')

self.lblProcessedColors.grid(column=6,row=0,sticky='w')

self.lblProcessedSize.grid(column=6,row=1,sticky='new')

self.btnDoIt.grid(column=7,row=0,sticky='e',padx=5,pady = 5)

self.btnShowGrid.grid(column=7,row=1,sticky='e',padx=5,pady = 5)

BOTTOM FRAME

self.frm3.grid(column=0,row=4,sticky="nsew")

self.lblImageL.grid(column=0,row=0,sticky="w")

self.lblImageR.grid(column=1,row=0,sticky="e")

full circle magazine 250 contents ^The Compleat Python

HOWTO - PYTHON PART 55

That’s al l for the widgets.
Now we have to place them. As
I said earl ier, we wi l l be using
the Grid geometry manager,
rather than the absolute or
pack managers.

The Grid method places the
widgets in (you guessed it) a
grid, referenced by row and
column designations. I ’ l l use
the top frame as an example
(shown top right).

First we place the frame.

You can see that we place
the widget by using the
{widgetname} .grid command,
then the row and column
positions. Notice that we are
tel l ing the entry widget to span
5 columns. Padx and pady
values wi l l place some extra
space on both the right and left
sides (padx) or the top and
bottom (pady). The sticky
parameter is simi lar to a justify
command for text.

The middle frame is a bit
more compl icated, but basical ly
the same as the top frame. You
might notice an extra frame in
the middle of the code
(self. frmLine). This gives us a

nice divider between the
options section and the display
section. Since there is no
horizontal or vertical l ine
widget, I cheated and used a
frame with a width of 6 pixels
and border width of 3, making
it just look l ike a fat l ine.

The bottom frame is simple
since we have only the frame
and the two labels to hold the
images.

The side frame is pretty
much the same thing, except
the Scrol ledFrame al lows for a
frame to be set to the interior
of the scrol led frame widget.
We then create three widgets
here and place them in their
grids as column headers. We do
this since we assigned the
interior frame for the scrol l
frame here and we have to
assign the parent (self.sfFrame)
after we have created it.

That’s al l the hard work for
now. At this point, we wi l l
create al l of the functions that
we need to get the GUI to run,
stubbing most of them unti l
next month. There are a few we
wil l go ahead and complete,
but they are fairly short.

The first function wi l l be the
Exit option from the menu bar.
I t’s under the Fi le menu option.

def DoExit(self):

sys.exit()

The only other one is the
Thumbnai l function. We need
this to fi l l the grey rectangles
into the labels in the bottom
frame. We pass the fi lename
and the width and height that
we want the thumbnai l image
to be.

SIDE FRAME

self.frm4.grid(column=2,row=0,rowspan=12,sticky="new")

self.sf.grid(column=0,row=1)

self.sfFrame = self.sf.interior()

self.lblch1 = Label(self.sfFrame,text=" Original")

self.lblch2 = Label(self.sfFrame,text=" DMC")

self.lblch3 = Label(self.sfFrame,text="Name/Number")

self.lblch1.grid(column=0,row=0,sticky='w')

self.lblch2.grid(column=1,row=0,sticky='w')

self.lblch3.grid(column=2,row=0,sticky="w")

def Thumbnail(self,file,hsize,wsize):

size = hsize,wsize

extpos = file.rfind(".")

outfile = file[:extpos] + ".thumbnail"

im = Image.open(file)

im.thumbnail(size)

im.save(outfile,"JPEG")

def ShowHelp(self):, def ShowAbout(self):, def OpenDB(self):, def ShowHideGrid(self):

def StitchSizeSelect(self,p):, def AidaSizeSelect(self,p):, def Process(self):

def CreatePDF(self):, def OriginalInfo(self,file):, def GetColorCount(self,file):

def GetHW(self,file):, def GetHW2(self,file):, def GetColors(self,image):

def Pixelate(self,im,pixelSize):, def ReduceColours(self,ImageName):

def MakeLines(self,im,pixelSize):, def MakeLines2(self,im,pixelSize):

def Rgb2Hex(self,rgb):, def FillScrolledList(self,filename):

def GetBestDistance(self,r1,g1,b1):

http://pastebin.com/XtBawJps

full circle magazine 251 contents ^The Compleat Python

Since this article is so long,
I ’m going to give you a l ist of
function names and al l you have
to do is stub it out by using the
pass command. We’l l fi l l them in
next month. I ’ l l g ive you the first
one as an example, but you
should already know how to do
it.

def GetFileName(self):

pass

For the rest of the functions,
I ’ l l just give you the def l ines. Be
sure to include them al l in your
code.

You can see, we have a large
amount of work to do next
month. We sti l l have four more
l ines to write to finish up for this
month. This is out of our class
code.

root = Tk()

root.title("Cross Stitch

Pattern Creator")

test = XStitch(root)

root.mainloop()

The first l ine sets up the root
TopLevel window. The next l ine
sets the title on the top l ine. The
third l ine instantiates our XStitch

class, and the last l ine starts
the main loop that shows the UI
and gives control over to it.

Wel l that’s a lot for this
month, but we are final ly done.
You can actual ly run the
program to see the GUI .

As always, the code is
avai lable on Pastebin at
http: //pastebin.com/XtBawJps.

Next month we wi l l flesh out
the code. See you then.

HOWTO - PYTHON PART 55

http://pastebin.com/XtBawJps.

full circle magazine 252 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg D. Walters

Program In Python - Part 56

W
e’ve been working
on a Cross Stitch
pattern generator.
Last month we did

the UI portion, and now it’s
time to do the code that does
the most of the work. Next
month we wi l l start working on
the PDF fi le output portion.

We’l l work on the menu
items first. The code is shown
below.

The global ReadyToProcess
variable is used to make sure
that if the user presses the
Process button, the system
doesn’t try to process things
without anything to process.
We use the tkFi leDialog
askopenfi lename bui lt-in dialog
routine to get the fi lename of
the original image. We then get
the number of colors in the
original image as wel l as the
width and height. We save

those values and display them
in the GUI . We then open the
image and create a thumbnai l
image to display in the left
image in the bottom frame. See
the text box to the right.

Next we do the
ShowHideGrid function. This
simply exchanges two images
in the right image label based
on the global variable
ShowGrid. I f False, we change
the text on the show/hide
button, then set the ShowGrid
variable to true and set the
image to the one with the grid.
Otherwise we change the text
on the show/hide button to
“Show Grid”, set the ShowGrid
variable to False and put up the
ungridded image. Code is on
the next page, top left.

The StitchSizeSelect function
is fired whenever the stitch size
combobox is changed. We get

def GetFileName(self):

global ReadyToProcess

#

fileName = tkFileDialog.askopenfilename(parent=root,filetypes=self.picFormats ,title="Select File to open...")

OriginalFilename.set(fileName)

OriginalColorCount.set(self.GetColorCount(fileName))

OriginalSize.set(self.GetHW(fileName))

masterimage=Image.open(fileName)

masterimage.thumbnail((400,400))

self.img = ImageTk.PhotoImage(masterimage)

self.lblImageL['image'] = self.img

ReadyToProcess = True

The Fi leSave menu option wi l l simply cal l the CreatePDF routine, once it’s
finished.

def FileSave(self):

self.CreatePDF()

We’l l stub out the ShowHelp and ShowAbout routines with a dialog box saying
that those options are not yet avai lable.

def ShowHelp(self):

tkMessageBox.showinfo(title="Help",message='Sorry,

but help is not yet available.')

def ShowAbout(self):

tkMessageBox.showinfo(title="About",message='Sorry,

but the About function is not yet available.')

We’ve written the OpenDB routine a dozen times before, so you should know
what it does.

def OpenDB(self):

global connection

global cursor

#

full circle magazine 253 contents ^The Compleat Python

HOWTO - PYTHON PART 56

the value from the combo box
and assign it to a local variable.

def StitchSizeSelect(self,p):

selection = ComboStitch.get()

The AidaSizeSelect function
(top right) is very simi lar to the
StitchSizeSelect function. We
set the FabricWidth and
FabricHeight globals based on

the selection on the combo
box. We also default to 30x30 if
they select 30.

We have a variable cal led
ReadyToProcess (below) just in
case the user tries to run the
process function before the
image is loaded.

We pixelate the original fi le
to a 5x5 pixel matrix This

al lows us to group that 5x5
matrix to a single color. We
then reduce the colors, get the
width and height of the
processed image and set the
size so the user can see how
big the resulting image wi l l be.

Place image

self.im2=Image.open(Reduced)

self.im2.thumbnail((400,400))

self.img3 =

ImageTk.PhotoImage(self.im2)

self.lblImageR['image'] =

self.img3

self.ProcessedImage =

'im1.png'

The above set of code places
the processed image into the
image that wi l l hold the
processed image. The next set
of code wi l l create a grid so
that the user wi l l have the grid
to do the cross stitching.

self.MakeLines(Reduced,5)

self.MakeLines2('output.png',

50)

def ShowHideGrid(self):

global ShowGrid

#

if ShowGrid == False:

self.btnShowGrid['text'] = 'Hide Grid'

ShowGrid = True

self.im2=Image.open(self.GridImage)

self.im2.thumbnail((400,400))

self.img3 = ImageTk.PhotoImage(self.im2)

self.lblImageR['image'] = self.img3

else:

self.btnShowGrid['text'] = 'Show Grid'

ShowGrid = False

self.im2=Image.open(self.ProcessedImage)

self.im2.thumbnail((400,400))

self.img3 = ImageTk.PhotoImage(self.im2)

def AidaSizeSelect(self,p):

selection = ComboSize.get()

if selection != "30":

pos = selection.find("x")

width = int(selection[:pos])

height=int(selection[pos+1:])

else:

width = 30

height = 30

FabricWidth.set(width)

def Process(self):

global ReadyToProcess

#

if ReadyToProcess == False:

tkMessageBox.showinfo(title="ERROR...",message='You must load an original imaage first.')

else:

newimage = self.Pixelate(OriginalFilename.get(),5)

Reduced = self.ReduceColors(newimage)

W,H = self.GetHW2(Reduced)

siz = "{0}x{1}".format(W/5,H/5)

full circle magazine 254 contents ^The Compleat Python

HOWTO - PYTHON PART 56

self.im2 =

Image.open('output2.png')

self.im2.thumbnail((400,400))

self.img3 =

ImageTk.PhotoImage(self.im2)

self.lblImageR['image'] =

self.img3

self.FillScrolledList('output

.png')

self.GridImage =

'output2.png'

We stub the CreatePDF
function unti l we finish the PDF
function next month.

def CreatePDF(self):

tkMessageBox.showinfo(title="

Create PDF",message='Sorry,

but the Create PDF function

is not yet available.')

The Original Info() routine
gets and sets variables based
on the original image format,
size and mode.

def OriginalInfo(self,file):

im = Image.open(file)

imFormat = im.format

imSize = im.size

imMode = im.mode

self.size = imSize

self.imformat = imFormat

self.immode = imMode

The GetColorCount function
uses the .getcolors method to
get the number of colors in the
image fi le. We have to use
1600000 as the maxcolors
parameter because if the
image contains more than 256
colors (or whatever is in the
parameter, the method returns
‘None’. This function is simi lar
to the GetColors function
except the GetColors works
with an already opened image
fi le. I f you use GetColorCount,
you have to pass an unopened
fi le.

def GetColorCount(self,file):

im = Image.open(file)

numColors =

im.getcolors(1600000)

self.colors =

len(numColors)

return self.colors

The next two functions
return the height and width of
the image fi le in pixels. The
difference between the two is
that GetHW returns a string l ike
1024x768 and GetHW2 returns
two integers.

def GetHW(self,file):

im = Image.open(file)

tmp =

"{0}x{1}".format(im.size[0],i

m.size[1])

return tmp

def GetHW2(self,file):

im = Image.open(file)

return

im.size[0],im.size[1]

GetColors wi l l get the
number of colors in the passed
image fi le. We use 1.6 mi l l ion
colors as the parameter,
because the image.getcolors()
routine defaults to 0 over color
count over 256.

def GetColors(self,image):

numColors =

image.getcolors(1600000)

colors = len(numColors)

def Pixelate(self,im,pixelSize):

image = Image.open(im)

self.GetColors(image)

image = image.resize((image.size[0]/pixelSize, image.size[1]/pixelSize), Image.NEAREST)

image = image.resize((image.size[0]*pixelSize, image.size[1]*pixelSize), Image.NEAREST)

self.GetColors(image)

#image.show()

image.save('newimage.png')

def ReduceColors(self,ImageName):

#Reduce colors

numcolors=MaxColors.get()

image = Image.open(ImageName)

output = image.convert('P', palette=Image.ADAPTIVE, colors=numcolors)

x = output.convert("RGB")

self.GetColors(x)

numcolors = x.getcolors()

ProcessedColors.set(len(numcolors))

x.save('im1.png')

full circle magazine 255 contents ^The Compleat Python

HOWTO - PYTHON PART 56

The Pixelate function
(above) takes two parameters,
image fi lename (im) and the
size of pixels you want. The
work is done by the
image.resize method. I found
this routine on the web in a
number of places. In this
instance we wi l l be passing a
pixel size of 5, which works wel l
for Cross Stitch projects. We
also tel l the method to take the
color of the nearest neighbor.
This returns a new image,
which we save as a fi le and
return the fi lename.

The ReduceColors routine
(below) basical ly uses the

Image.ADAPTIVE pal let so we
can get a much smal ler number
of colors.

There are two MakeLines
(top right) routines. They create
the grid we spoke of earl ier.

Rgb2Hex() returns a hex
value of the RGB value that is
passed in. We wi l l use this to
try to compare the colors in the
database with the colors in the
image.

def Rgb2Hex(self,rgb):

return '#%02x%02x%02x' %

rgb

def MakeLines(self,im,pixelSize):

global backgroundColor1

#

image = Image.open(im)

pixel = image.load()

for i in range(0,image.size[0],pixelSize):

for j in range(0,image.size[1],pixelSize):

for r in range(pixelSize):

pixel[i+r,j] = backgroundColor1

pixel[i,j+r] = backgroundColor1

image.save('output.png')

def MakeLines2(self,im,pixelSize):

global backgroundColor2

#

image = Image.open(im)

pixel = image.load()

for i in range(0,image.size[0],pixelSize):

for j in range(0,image.size[1],pixelSize):

for r in range(pixelSize):

try:

pixel[i+r,j] = backgroundColor2

pixel[i,j+r] = backgroundColor2

except:
def FillScrolledList(self,filename):

im = Image.open(filename)

numColors = im.getcolors()

colors = len(numColors)

cntr = 1

for c in numColors:

hexcolor = self.Rgb2Hex(c[1])

lblColor=Label(self.sfFrame,text=" ",bg=hexcolor,relief=GROOVE)

lblColor.grid(row = cntr, column = 0, sticky = 'nsew',padx=10,pady=5)

pkID = self.GetBestDistance(c[1][0],c[1][1],c[1][2])

sql = "SELECT * FROM DMC WHERE pkID = {0}".format(pkID)

rset = cursor.execute(sql)

for r in rset:

hexcolor2 = r[6]

dmcnum = r[1]

colorname = r[2]

lblColor2=Label(self.sfFrame,text=" ",bg="#" + hexcolor2,relief=GROOVE)

lblColor2.grid(row = cntr,column = 1,sticky = 'w',padx=5,pady=5)

lblColor3=Label(self.sfFrame,text = str(dmcnum) + "" + colorname,justify=LEFT)

DmcColor.set(dmcnum)

full circle magazine 256 contents ^The Compleat Python

The Scrol lList (below) on the
right side holds the colors that
wi l l be used to get the proper
floss colors. We simply create
labels to hold the colors (visual)
and text.

This (next page) is the
routine that we use to try to
find the closest match between
the color in the image and the
color in the database. There are
many different algorithms on
the web that you can look at
and try to understand the logic
behind it. I t gets rather
compl icated.

Ok. That’s al l for this month.
Next time, we wi l l start creating
the PDF output fi le so the cross
stitcher has something to work
with.

As always, the code is
avai lable on PasteBin at
http: //pastebin.com/DmQ1GeUx
.

We wi l l continue in the next
month or so. I ’m facing some
surgery soon so I ’m not sure
how soon I wi l l be able to sit for
any long periods of time. Unti l
then, enjoy.

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his
fami ly. His website is

HOWTO - PYTHON PART 56

def GetBestDistance(self,r1,g1,b1):

dist = math.sqrt(((r1r2)**2) + ((g1g2)**2) + ((b1b2)**2))

sql = "SELECT * FROM DMC"

rset = cursor.execute(sql)

BestDist = 10000.0

for r in rset:

pkID = r[0]

r2 = r[3]

g2 = r[4]

b2 = r[5]

dist = math.sqrt(((r1r2)**2) + ((g1g2)**2) + ((b1b2)**2))

if dist < BestDist:

BestDist = dist

BestpkID = pkID

http://www.thedesignatedgeek.net
http://pastebin.com/DmQ1GeUx

full circle magazine 257 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg Walters

Program In Python Pt. 57

CROSS STITCH PATTERN
GENERATOR ‐ PART 4 ‐
UNDERSTANDING PYFPDF

S
orry for missing so
many months. I sti l l
can’t sit for long
periods of time, so this

article might be shorter than
what you are used to. My
original plan was to jump right
into the PDF output portion of
the program, but there is so
much to understand about this
l ibrary, I decided to use this
instal lment as a tutoria l on
pyfPDF and then tackle the PDF
output next time. So let’s get
started.

FPDF stands for Free PDF. A
VERY minimal example would
be as fol lows:

from fpdf import FPDF

pdf = FPDF()

pdf.add_page()

pdf.set_font(‘Arial’,’B’,16)

pdf.cell(40,10,’Hello From

Python’)

pdf.output(‘example1.pdf’,’F’

)

The first l ine imports the
l ibrary fi le. The next creates an
instance of the FPDF object. We
use the default values for this
example, which are:
• Portrait
• Measure Unit = Mi l l imeters.
• Format = A4

If you need to use ‘US’
standards, you could do it this
way:

pdf=FPDF(‘P’,’in’,’Letter)

Notice the parameters are
FPDF(orientation, units,
format):
• Possible values for orientation
are “P” for Portrait and “L” for
Landscape.
• Possible values for units are:
‘pt’ (poi ints), ‘mm’ (mi l l imeter),
‘cm’ (centimeter), ‘ in’ (inches).
• Possible values for format are:
‘A3’, ‘A4’, ‘A5’, ‘Letter’ , ‘Legal ’
or a tuple containing the width
and height expressed in the

unit given in the unit
parameter.

The third l ine creates a page
to enter data into. Notice a
page is not automatical ly
created when we create the
instance of the object. The
origin of the page is the upper-
left corner, and the current
position defaults to 1 cm from
the margin. The margin can be
changed with the SetMargins
function.

Before you can actual ly print
any text, you must cal l
pdf.set_font() to define a font.
In the l ine above, we are
defining Arial Bold 16 point.
Standard val id fonts are Arial ,
Times, Courier, Symbol and
ZapfDingbats.

Now we can print a cel l with
the pdf.cel l () cal l . A cel l is a
rectangular area, possibly
framed, which contains some
text. Output is at the current
position which is specified
(40,10 cm) in the above
example. The parameters are:

pdf.cell(Width, Height, text,

border, line, align, fill,

link)

Where:
• Width is length of cel l . I f 0,
width extends to the right
margin.
• Height is the height of the
cel l .
• Text is the string of text you
want to print.
• Border is either 0 (no
border(default)) , 1 is border, or
a string of any or al l of the
fol lowing characters:
"L" ,"T","B","R"
• Line is where the current
position should go after printing
the text. Values are 0 (to the
right), 1 (to the beginning of
the next l ine, 2 (below). Default
is 0, and putting 1 is equivalent
to putting 0 and cal l ing ln()
immediatly after.
• Al ign al lows to center or al ign
the text within the cel l . Values
are "L" (left) , "C" (center), "R"
(right).
• Fi l l sets the background to be
painted (true) or transparent
(false). Default is false.

full circle magazine 258 contents ^The Compleat Python

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his

HOWTO - PROGRAM IN PYTHON 57

• Link is a url or identifier
returned by addl ink() .

Final ly, the document is
closed and sent to the fi le with
Output. The parameters are
fpdf.output(name,dest). I f fi le is
not specified, the output wi l l be
sent to the browser. Options for
destination are " I" (inl ine to
browser(default)) , "F" (local fi le
given by name), "D" (to the
browser and force a fi le
download with the name
passed), and "S" (return the
document as a string).

Since we wi l l be sending our
cross stitch images to the pdf
fi le, we wi l l have to understand
the image function.

The function is cal led l ike
this:

pdf.image(name,x=None,y=None,

w=0,h=0,type="",link="")

This function puts the image.
The size it wi l l take on the page
can be specified in different
ways:
• Expl icit width and height or
• One expl icit dimension

Supported formats are JPEG,

PNG, and GIF. I f you wish to use
GIF fi les, you must get the GD
extension.

For JPEGs, al l flavors are
al lowed:
• gray scale
• true colours (24 bits)
• CMYK (32 bits)

For PNGs, the fol lowing are
al lowed:
• gray scales on at most 8 bits
(256 levels)
• indexed colors
• true colors (24 bits)

Note: interlacing is not
al lowed, and if you are using a
version of FPDF prior to 1.7,
Alpha channel is not supported.

I stole this example (shown
right) from the pyFPDF tutoria l .

You have been around long
enough that you should be able
to look at the program and
understand what is going on.
But in this example the l ine we
are REALLY interested in is the
fourth l ine:

this.image('img1.png',10,8,33

)

In this instance, we are
cal l ing the image function with
the fi lename, the x position of
where the picture wi l l go on the
page, the y position, and the
width of the picture.

Now that you have a gross
grasp of the l ibrary, we wi l l
start our PDF code next time.

Unti l then, have a good
month. See you soon.

from fpdf import FPDF

class PDF(FPDF):

def header(this):

Logo replace with a small png of your own

this.image('img1.png',10,8,33)

Arial bold 15

this.set_font('Arial','B',15)

Move to the right

this.cell(80)

Title

this.cell(30,10,'Title',1,0,'C')

Line break

this.ln(20)

Instantiation of inherited class

pdf=PDF()

pdf.alias_nb_pages()

pdf.add_page()

pdf.set_font('Times','',12)

for i in range(1,41):

http://www.thedesignatedgeek.net

full circle magazine 259 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg D. Walters

Program in Python - Part 57

F
irst, let me thank al l the
readers who sent me
emai ls of hope and
wishes for a quick

recovery. They were very kind
and helpful . I a lso want to
thank Ronnie, our wonderful
editor, for his support and
patience during that painful
period. I sti l l have issues with
sitting for long periods of time,
so this is being done over the
course of a number of days, so
I hope the continuity that I ’m
trying for works. Now on with
“the show”…

Not too long ago, I was
walking to the time clock and
the General Manager of my
“day job” cal led me into his
office. Hoping it was just a
“how’s it going” talk, I went in
and sat down. He then started
the meeting with “I ’m having a
problem with my spreadsheet
program, and was hoping you
could help me”.

As my vision darkened and
the three-note ominous
orchestral string hits “Da Da

DAAAAAAAAA” that we al l know
from the horror fl icks of the
70’s and 80’s rang through my
mind, rather than running
screaming from the room, I
innocently asked what was
wrong. He responded that there
was something wrong with one
of the macros and “the thing
just quits in the middle of the
calculations”. As I whipped out
my white cowboy hat, I said in
my best hero voice “Don’t
worry citizen. We’l l have you up
and running in no time.” Within
a short whi le, I d iscovered the
reason the spreadsheet was
unceremoniously crashing was
that one cel l in one of 35
workbooks was getting a divide
by zero error due to an
expected value not being
entered in another cel l in yet
another one of the 35
workbooks. Let me make this
perfectly clear, it was not my
boss’s fault. Al l he had asked
for was a simple way to get the
higher-up values from the data.
(The previous two sentences
have absolutely nothing to do
with the fact that my boss may

read this article! Or maybe it
does.)

As I walked back to my work
area, brushing the spurious bits
of computer code from my
white hat, I real ized that this
would be an excel lent teaching
moment. So, here we are. But
first, let’s revert back to 1979
when Apple introduced Visicalc.
That was the first “Free Form
Calculation type system” to
real ly make a hit in the
marketplace. Whi le there were
many bugs in the software, the
world loved the idea and clones
(bugs and al l) began to pop up
on other computer systems,
l ike the Commodore Pet and
other Apple competitors
(including Microsoft in 1981
with a program cal led
Multiplan). Final ly, in 1983, a
company cal led Lotus
Development Corp. introduced
Lotus 1-2-3. Whi le very close to
Visicalc in many aspects,
including the menu structure, it
was written completely in x86
assembly language, which
made it very fast, and many of

the bugs of Visicalc were fixed.
Lotus 1-2-3 was so popular that
it became a common
benchmark to test a machine
for “PC Compatibi l i ty”.

The advent of the Free Form
Calculation systems, al lowed
the “normal” person to deal
with numbers in a way that
previously was in the realm of
the programmer. Almost
anyone could, in a few hours or
so, make sense of numbers,
create charts and graphs, and
share that information with
coworkers. Shortly after that,
the abi l i ty to automate some
portions of the spreadsheet
through Macros and Basic-l ike
embedded languages gave
these non-programmer users
even more power over their
destiny. They could get the
answers themselves, and pretty
charts and graphs as wel l ,
without having to wait in the
queue for I .T. assistance.
However, as we al l learned
from Peter Parker’s uncle Ben…

full circle magazine 260 contents ^The Compleat Python

HOWTO - PYTHON

WITH GREAT POWER, COMES
GREAT RESPONSIBILITY.

Soon the spreadsheet was
taken into areas that were
better suited for databases
than spreadsheets. We now had
workbooks upon workbooks
that rel ied on other workbooks,
and if one l ittle number along
the way didn’t happen to get
updated… wel l , we had the old
“house of cards” effect.

Whi le I don’t think that every
spreadsheet is evi l , there are
some (read this to say ‘many’)
that should have been
converted to databases many
years ago. They just became
too large and unwieldy for their
own good. If someone had just
sat down with the programmers
and said, “Please help”, the
world would be a kinder,
gentler place.

Now as I step down from my
soapbox, we come to the real
reason for this month’s article.
Every good Python programmer
should have a way to deal with
spreadsheets in their arsenal of
tools. You never know when
you wi l l be cal led upon to pul l

data from a spreadsheet and
manipulate it. Whi le there are
many ways to get data from
spreadsheets l ike using CSV
fi les, which has its own
drawbacks, sometimes you
need to read and write directly
from and to a ‘ l ive’
spreadsheet. After looking
around, I settled on a very nice
l ibrary to access my boss’s
problematical spreadsheet.

We wi l l be adding the l ibrary
cal led XLRD, which one might
imagine stands for eXceL ReaD.
This l ibrary al lows us to easi ly
read data from Excel fi les (.xls ,
.xlsx and .xlsm) from versions
2.0 onward.

Let’s create an excel
spreadsheet that we can use to
examine the functional ity of
XLRD. Either open excel , or
openoffice or l ibreoffice calc. In
the first column (A), enter the
numbers 1 to 5 going down. In
the next column (B), enter 6 to
10. It should look something
l ike this:

Now save the spreadsheet
as “example1.xls” in the folder
you wi l l use to save the test
code. This way, we won’t have
to worry about paths.

Now download and instal l
XLRD
(https: //pypi .python.org/pypi/xlr
d). We can use it l ike is shown
below.

Save the fi le as example1.py
in the same folder as the
spreadsheet. Since the code is
so short, we wi l l simply discuss
it here. Of course, the first l ine
imports the l ibrary. Then we
create a function cal led
OpenFi le and pass the name
(and path if needed) of the
spreadsheet to the function.

Now we cal l the
open_workbook method and
get back a ‘book’ object. Then
we use the nsheets attribute to
return the number of ACTIVE
workbooks. We can also get the
name of the workbooks. In this
case, they are the default. We
use the sheet_by_index method
to get Sheet1 into the
first_sheet object. Now we can

import xlrd

def OpenFile(path):

Open and read excel file

book = xlrd.open_workbook(path)

Get number of active workbooks

print "Number of workbooks: ",book.nsheets

Get the names of those workbooks

print "Workbook names: ",book.sheet_names()

first_sheet = book.sheet_by_index(0)

cell = first_sheet.cell(1,1)

print "Cell at 1,1: ",cell

print "Cell Value at 1,1: ",cell.value

if __name__ == "__main__":

path = "example1.xls"

https://pypi.python.org/pypi/xlrd

full circle magazine 261 contents ^The Compleat Python

HOWTO - PYTHON

start getting data. We get the
information from the cel l at
position (1,1) which translates
to cel l position B2 (it’s Zero
based, so cel l A1 would be
(0,0)) . We print the data from
there, both what the cel l
contains and the value, so we
could use it in a calculation if
we wish.

That was real ly easy, wasn’t
it? Now, let’s do something a
bit more useful . Enter the code
shown on the next page (top
right) and save it as
‘example2.py’ . This example
wi l l print out the contents of
the workbook.

Since we already used the
first four l ines of code in the
first example, we’ l l skip them.
By using the ‘sheet.nrows’ and
‘sheet.ncols’ attributes, we get
the number of rows and
columns. This can be helpful ,
not only so we know what we
are deal ing with; we can write
“generic” routines that use
those values in our calculations
as you wi l l see. In fact, we use
‘rows’ in a for loop to obtain
each row’s information.

Notice the l ine that has

‘first_sheet.row_sl ice’ . This gets
a block of cel ls of a given row.
The syntax is as fol lows:

X =

first_sheet.row_slice(RowInQu

estion, Start_Column,

End_Column)

So we have used the
number of rows and the
number of columns in
calculations. The output from
our program should look
something l ike this…

There are 5 rows in this

workbook.

There are 2 cols in this

workbook.

[number:1.0, number:6.0]

[number:2.0, number:7.0]

[number:3.0, number:8.0]

[number:4.0, number:9.0]

[number:5.0, number:10.0]

Press any key to continue . .

.

We’l l do one more example
before we end this month’s
article. Go to the spreadsheet
and in column C put some
dates. Here’s what my
spreadsheet looks l ike now:

You can use any dates you
l ike. Now let’s re-run our

import xlrd

def OpenFile(path):

book = xlrd.open_workbook(path)

first_sheet = book.sheet_by_index(0)

Get the number of rows in this workbook

rows = first_sheet.nrows

get the number of columns in this workbook

cols = first_sheet.ncols

print "There are %d rows in this workbook." % rows

print "There are %d cols in this workbook." % cols

for r in range(0,rows):

cells = first_sheet.row_slice(rowx=r,start_colx=0,end_colx=cols)

print cells

if __name__ == "__main__":

path = "example1.xls"

for c in cells:

if c.ctype == xlrd.XL_CELL_DATE:

date_value = xlrd.xldate_as_tuple(c.value,book.datemode)

dt = str(date_value[1]) + "/" + str(date_value[2]) + "/" + str(date_value[0])

print dt

else:

full circle magazine 262 contents ^The Compleat Python

example2.py program. Here is
the output from mine.

There are 5 rows in this

workbook.

There are 3 cols in this

workbook.

[number:1.0, number:6.0,

xldate:41649.0]

[number:2.0, number:7.0,

xldate:42109.0]

[number:3.0, number:8.0,

xldate:31587.0]

[number:4.0, number:9.0,

xldate:23284.0]

[number:5.0, number:10.0,

xldate:36588.0]

Press any key to continue ...

Well , that’s not what we
expected. I t seems that excel
holds dates as a value that is
simply formatted for whatever
we ask it to. This might be
helpful for sorting and
calculations, but, for showing
the actual data, this won’t do.
Lucki ly, the writers of the
l ibrary already thought of this.
Delete the l ine that says “print
cel ls” and replace it with the
code shown below.

Here, we go through each
cel l in the cel ls l ist and check
the type of the cel l to see if it is
considered a XL_CELL_DATE. If
it is, then we convert it to a
tuple. I t is stored as

YYYY,MM,DD. We simply pretty
it up to print it as MM/DD/YYYY.
Here is the output of our new
program…

There are 5 rows in this

workbook.

There are 3 cols in this

workbook.

1.0

6.0

1/10/2014

2.0

7.0

4/15/2015

3.0

8.0

6/24/1986

4.0

9.0

9/30/1963

5.0

10.0

3/3/2000

Press any key to continue ...

Just for your information,
there is a l ibrary from the same
wonderful people cal led XLWT,
which al lows you to write to
excel fi les. There is a wonderful
tutoria l and documentation on
these two l ibraries at
http: //www.python-excel .org/.

The source code for
example3.py is on pastebin at
http: //pastebin.com/bWz7beBw.

Hopeful ly, I ’ l l see you next
month.

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his
fami ly. His website is

HOWTO - PYTHON

http://www.thedesignatedgeek.net
http://www.python-excel.org/
http://pastebin.com/bWz7beBw

full circle magazine 263 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg D. Walters

Program in Python - Part 58

L
ast time, we discussed
reading and using data
from an Excel fi le
directly. I f you

remember, my boss (from my
“day” job) had a massive
spreadsheet that if one
calculation fai led, it caused the
entire process to abort. Wel l , I
created a database from that
spreadsheet that was easy to
get a report from. However,
the original spreadsheet
created pretty charts and
graphs that his bosses l iked to
see. So I undertook the task to
create charts so everyone
would be happy.

After spending about two
days digging into the existing
charting/graphing packages
already avai lable for Python,
most free, most of them output
directly to a fi le, l ike a pdf fi le
or some sort of a graphics (jpg,
png, svg) fi le. What I was
looking for was one that would
go directly to a wxPython frame
or panel so it can be displayed
inside a GUI program. I found
one solution, but it required so

many interdependent l ibraries
that the possibi l i ty of just giving
the appl ication on a flash drive
quickly became ni l .

So, being the pig-headed,
tenacious, never-say-die kinda
guy that I am, I decided to write
one on my own. The original
goal was that it was to do (at
least) bar-charts and maybe in
the future l ine charts and/or
other types. I t also should
eventual ly be able to do
colours, but just plain black
bars would suffice for the time
being. I t should be standalone
in general so that it could be
cal led as a l ibrary. I t wasn’t
supposed to be so generic that
it gets compl icated, just dates

along the horizontal (bottom)
axis, values along the vertical
axis and bars that represent
the dai ly sales for that period.
In order to keep the chart
somewhat neat, the dates
should be angled so that they
don’t overwrite each other. So,
what I came up with wi l l be
presented here. Left, is a
sample output of the code.

Again, not fancy, not terribly
pretty, but it does the job. I f i t
needs to be prettier later on,
then I can work on it down the
road.

The first thing I had to do
was pul l out my wxPython
documentation to remember
the graphic commands. In able
to draw graphics, we use the a
“dc” or Device Context. I t’s sort
of l ike a blank canvas that we
can draw points, l ines, and text
to. wxPython offers 9 different
types of dc objects and I chose
the wx.PaintDC which works
from the OnPaintEvent. We wi l l
use some very basic commands
to do our drawing and painting.

These are:

dc.DrawLine

dc.SetPen

dc.SetFont

dc.DrawText

dc.DrawRectangle

dc.DrawRotatedText

dc.GetFullTextExtent

Those are the only wxPython
routines we wi l l use, though
there are many others that
would make our program much
prettier. We wi l l combine these
commands into our own
“logical” routines l ike,
DrawBars, DrawAxis,
DrawValues, and so on. Whi le I
could have done it in one or
two large routines, I wanted to
break them out into routines
that make sense for the
teaching moment. So let’s get
started looking into the code.
Create a fi le cal led mygraph.py.
I couldn’t come up with
anything pithy, since PyChart,
PyGraph and the l ike are al l
taken. Maybe if I had a bit
more time, I ’d come up with
something, but that’s not
important. Let’s get started.
First, we’ l l do the imports as we

full circle magazine 264 contents ^The Compleat Python

HOWTO - PYTHON

always do.

#!/usr/bin/python

mygraph.py

import wx

from datetime import date,

datetime, time

import time

import math

Obviously, we need to
import he wxPython l ibrary and
the math l ibrary wi l l help us
with some of the calculations.
The datetime and time l ibraries
are used to do the date
calculations for the horizontal
axis labels.

Something to keep in mind
as we go from here…When you
think about drawing on a
context, the upper left corner of
the container window (our dc)
is X=0, Y=0. X is the horizontal
axis and Y is the vertical axis.
The closer we get the lower
right corner, both numbers go
higher. In our program, we wi l l
actual ly start by drawing a box
that defines our charting area
which starts at upper left X=10,
Y=10 and end with lower right

at X=800, Y=700. However,
before we get to that part, we
have to define a class to handle
the routines and the __init__
routine. Hopeful ly you
remember these from earl ier
sessions.

Top right is the class
definition and the __init__
routine.

Our class is cal led Line and
we wi l l be creating a wxFrame
to do our drawing. This could
also be a panel within a frame
or any number of other options.
My choice was to have a Frame
pop up with our chart data on
it. When the class is first
instantiated, the __init__ routine
is cal led with the name of the
parent object, the id of that
object, the title of the frame (in
the title bar), the data that we
want to chart and final ly the

title of the chart itself. Next we
create the wx.Frame object that
is 1024x768 pixels in size. Next
we bind the paint event (which
is cal led everything the frame
is created, moved, covered,
uncovered, etc.) to our event
routine OnPaint. Remember,
since this is inside of a class we
use the “self. ” to say the
routine belongs to the
class not somewhere else.
We set some variables
(BoxWidth, BoxHeight,

ChartTitle, data) for use later.
After we set self.data to an
empty l ist, we cal l a routine
cal led SetData to find our data
scale, which we wi l l d iscuss
further down. Final ly, we set
the frame to be centered in the
screen and cal l the Show
routine. This wi l l automatical ly

class Line(wx.Frame):

def __init__(self, parent, id, FrameTitle, IncomingData, ChartTitle):

wx.Frame.__init__(self, parent, id, FrameTitle, size=(1024, 768))

self.Bind(wx.EVT_PAINT, self.OnPaint)

self.BoxWidth = 790

self.BoxHeight = 690

self.ChartTitle = ChartTitle

self.data = []

self.SetData(IncomingData)

self.Centre()

def DrawBox(self,dc):

#Horizontal

dc.DrawLine(10,10,800,10)

dc.DrawLine(10,700,800,700)

#Vertical

dc.DrawLine(10,10,10,700)

dc.DrawLine(800,10,800,700)

This is fairly simple. We pass the dc of the frame, then draw
four l ines. The DrawLine function parameters are:

def DrawAxis(self,dc):

#Horizontal

dc.DrawLine(60,580,700,580)

#Vertical

dc.DrawLine(60,580,60,80)

full circle magazine 265 contents ^The Compleat Python

HOWTO - PYTHON

cal l the OnPaint routine since
we are creating the Frame.

Next (above) we wi l l write a
routine that wi l l create a box
that shows the area that we
want to constrict our graph to.
This is not a cl ipping or
constraining box, it is simply to
draw the eye to what we want
the user to look at.

Not real ly difficult. We wi l l
be using the DrawLine function
several times throughout the
program. Next we wi l l create a
routine that wi l l draw the X
(horizontal) and Y (vertical) axis
l ines on the screen. We again
pass the dc of the frame into
the routine.

Since we just discussed the
DrawLine method, there’s
nothing very out of the ordinary
here. We are drawing a l ine
580 pixels down the Frame that
starts at X=60 and ends at
X=700. Then we draw a l ine
that starts at X=60 Y=580 and
goes up to X=60 Y=80. This
one is drawn from the bottom
up, but we could have drawn it
from the top down.

Next we wi l l deal with the

DrawTitle routine. Once again,
we pass the dc of the frame as
wel l as the text we want to
draw. During this process,
think of drawing text rather
than printing text. I t’s a very
minor thing, but it wi l l help.

This routine is longer than
most of the others, but part of
that is the comments I put in.
The first two l ines set the font
and the pen style that we wi l l
be using. In the first l ine
(SetFont), we define the font to
be the “default” font, 20 points,
not ital ic and bold. Next we set
the colour of the pen to black
and the width to be 20. Now we
need to figure out the width of
the text that we wi l l be drawing
so we know how to center it in
the box. We get this
information by cal l ing the
GetFul lTextExtent with the text
that we wi l l be drawing using
the font, font size, pen width
and so on that we just defined.
The tuple that is returned
contains Width, Height, Decent
(how far down letters l ike “g”
and “y” wi l l go below the base
l ine) and any leading space.
For our purposes, al l we are
concerned with the width. I f
you remember, we defined the

width of the box back in the
__init__ function as 790. To find
the center of our text within our
box we take the box width
minus the width of the text and
then divide it by 2. That wi l l be
the X value we use to draw our
text. Final ly, we reset the pen
size and colour. Rather than
use some default values we
pick out of nowhere, we could
have cal led the dc.GetPen
function before we started, but
when I started the project, I
d idn’t think about it.

Our next routine wi l l draw
the tic l ines along the

horizontal axis at the bottom of
the chart. We want them to be
equidistant along the l ine. We
pass (as usual) the dc and a
value I cal led dcount which is
the number of dates we want
to show. Since the number of
days in any given month can
range from 28 to 31, I wanted
to be a bit dynamic. We simply
use a for loop to count the
number of l ines to draw, which
one to draw and where. If you
have been careful ly paying
attention, we wi l l start the l ines
at position 85 and it wi l l be 20
pixels high and they wi l l be 20
pixels apart.

def DrawTitle(self,dc,txt):

dc.SetFont(wx.Font(20,wx.DEFAULT,wx.NORMAL,wx.BOLD))

dc.SetPen(wx.Pen(wx.NamedColour('black'),20))

#Get the length of the text to draw

vals = dc.GetFullTextExtent(txt)

Returned (Width,height,Decent,externalLeading)

#Get the left position (x) to draw centered text

txtleft = (self.BoxWidthvals[0])/2

dc.DrawText(txt,txtleft,30)

def DrawDateTicks(self,dc,dcount):

for cntr in range(1,dcount+1):

dc.DrawLine(65+(cntr*20),580,65+(cntr*20),600)

def DrawRotText(self,dc,txt,x,y):

dc.SetFont(wx.Font(10,wx.DEFAULT,wx.NORMAL,wx.BOLD))

dc.SetPen(wx.Pen(wx.NamedColour('black'),20))

dc.DrawRotatedText(txt,x,y,45)

full circle magazine 266 contents ^The Compleat Python

HOWTO - PYTHON

When we get around to
drawing the dates into the
chart, we want to draw the text
on an angle. That way, the text
doesn’t draw over itself and,
wel l let’s admit it, looks cool .
For this we wi l l use the
DrawRotatedText function. The
function takes the text that we
want to have drawn, the X and
Y location as a starting point
and the angle we want the text
to be drawn. In this case, we
want the text to be rotated
anti-clockwise by 45 degrees
which we enter as “-45”. We
wi l l set the font and pen
parameters each time the text
is drawn. We’l l deal with the
actual draw date function in a
l ittle bit.

We wi l l a lso want to draw
the values along the vertical
axis showing tics along the way.
If we had the same range of
data each time, it would be
very easy to do. However,
real ity shows that the data
range of our chart could vary
from run to run. One time, the
highest value could be 300. The
next time it could be 3000.
How could we create a generic
routine that would account for

this? I wi l l try to explain my
mindset here.

You might have wondered
why I chose the value of 500
for the vertical axis when we
drew the l ine from 80 to 580 (or
actual ly 580 to 80). I chose to
use a 500 pixel “view port” to
contain our values. That way,
we can create a scal ing value
based on an offset of 500.

Let’s say that for a given run
that our highest value is 395.
We can simply draw a bar that
is 395 pixels high to represent
that value. The next run, our
highest value is 2,345. If we
try to draw the bar to its ful l
height, i t would disappear off
the top of the chart. In order to
show the value, we can round
the value to the nearest 500,
which would be 2500 and then
set that as the top value of our
axis. We then can scale the
value by dividing 2500 by 500
which gives us a “scal ing
factor” of 4. Now if we take our
data values and divide each
one by our scal ing factor, we
can then plot the values that
they wi l l fi t within our graph.

So (shown top right) we

need to find the highest value
within our data and round that
up to the nearest 500. So 375
would be 500, 3750 would be
5000 and so on.

Next, we need to decide
what kind of data we are going

to use. You wi l l see further
down the program that I
provide two different types of
data in l ists. One assumes that
the date range we wi l l use,
along the X axis, is data for
October, but you can easi ly
fol low that code (shown in a

#==================================

Round up to the nearest 500

#==================================

def roundup(self,x):

return int(math.ceil(x/500.0))*500

def SetData(self,DataToUse):

if type(DataToUse[1]) is tuple:

self.DateList=[]

self.ValList=[]

for l in DataToUse:

self.DateList.append(l[0])

self.ValList.append(l[1])

self.HiValue = self.roundup(max(self.ValList))

self.ScaleValue = self.HiValue/500

else:

self.ValList=[]

self.DateList=[]

for l in DataToUse:

self.ValList.append(l)

self.HiValue = self.roundup(max(self.ValList))

def DrawValues(self,dc):

c2 = 0

for cntr in range(580,30,50):

dc.SetPen(wx.Pen(wx.NamedColour('black'),1))

dc.DrawLine(60,cntr,50,cntr)

dc.SetFont(wx.Font(10,wx.DEFAULT,wx.NORMAL,wx.BOLD))

dc.SetPen(wx.Pen(wx.NamedColour('black'),20))

dc.DrawText(str(c2),26,cntr7)

c2 = c2 + (50 * self.ScaleValue)

full circle magazine 267 contents ^The Compleat Python

HOWTO - PYTHON

few moments) and change it to
whatever month you wish. The
second data l ist, is more
generic and provides both a
date and a value as a l ist of
tuples. This al lows for data to
be passed for any time period.
The date is a string and the
value is either an integer or a
float. The SetData function wi l l
look at the first value within the
data l ist and to determine if it is
a tuple. I f i t is, we assume that
the data structure of the l ist is
the second option, if not, i t is
the first.

I f i t is a tuple, we create two
l ists, one for the dates and one
for the values. We then walk
the l ist spl itting the data
between the two l ists. Once we
have that done, we then find
the highest value
(max(self.ValList)) and send it
the roundup function (shown
above) so we can get our
scal ing value. I f the data isn’t in
tuples, then we clear BOTH l ists
and do the same steps as
above.

Now that we have our scale
value we can draw our tics and
the values that wi l l represent
our vertical axis. We again use

a for loop, this time from 580
to 30 with a step of -50 to work
our way up the l ine and draw a
10 pixel l ine. Next we set the
font (just in case it gets
changed somehow) and draw
the value of each of our values.

Now we get into the routines
that wi l l create the date tics
along the X axis if we choose to
have a simple l ist of data
without including the dates. We
have two support routines, one
cal led DateToStamp and the
other Timestamp2Date (Yes, I
got lazy when I wrote this one).
Rather than going through a
bunch of compl icated DateTime
routines to determine the
number of days in any given

month, I ’m going to use a start
date and an end date, convert
both of those to Unix
timestamps to get the proper
day of month within the
sequence. I ’ve shown you the
DateToStamp routine before
and the Timestamp2Date
simply reverses the process.

The next routine takes the
start date and end date, as we

d
i
s
c
u
s
s
e
d
a

moment ago, converts them to
Unix timestamps, then adds
86400 (the number of ticks in a
24 hour period) to make sure
we get the last date in the
sequence, then uses another
for loop to draw the rotated
text where we want it.

We are now at the OnPaint
event handler that cal ls al l the
helper routines we dealt with so

def DrawBars(self,dc):

dc.SetPen(wx.Pen(wx.NamedColour('black'),5))

for cntr in range(0,len(self.ValList)):

dc.DrawRectangle(84 + (cntr* 20),580,2,self.ValList[cntr]/self.ScaleValue)

#==================================

Convert mm/dd/yy to unix timestamp

#==================================

def DateToStamp(self,x):

x = x+" 00:00:00"

return(time.mktime(time.strptime(x, "%m/%d/%Y %H:%M:%S")))

#==================================

Convert mm/dd/yy to unix timestamp

#==================================

def Timestamp2Date(self,tstmp):

#==================================

Draw the dates in rotated text

#==================================

def DrawDates(self,dc,startdate,enddate):

sd = int(self.DateToStamp(startdate))

ed = int(self.DateToStamp(enddate))

ed = ed + 86400

stp = 1

for cntr in range(sd,ed,86400):

dt = self.Timestamp2Date(cntr)

self.DrawRotText(dc,dt,65+(stp*20),600)

full circle magazine 268 contents ^The Compleat Python

far. Remember, by using the
PaintDC, every time the frame
is moved, re-sized, covered or
uncovered, the OnPaint event
handler is cal led, thereby
assuring our graph wi l l be
persistent.

First (shown on the next
page, top left) we get an
instance of our dc, and then we

cal l the DrawBox, DrawAxis,
DrawTitle, and the
DrawDateTicks routines. We
then determine if the DateList
l ist (created in the SetData
routine cal led from __init__
routine) is empty or if it has
dates for us to draw. If so, we
cal l the DrawDates routine with
the proper values. We then cal l
the DrawValues routine and

final ly the DrawBars routine.
Now you should understand
why I broke everything down
into l ittle bitty chunks.

The last thing we have to
look at is the runtime routine.
You probably remember that
the ’ if __name__ ==
“__main__”’ runs if we are
cal l ing the program as a
standalone rather than as a
l ibrary. The next two l ines are
the dummy data that I used to
test the program. You could
comment out the first one and
run it with the second data l ine
which is the one that uses the
tuple. The last three l ines wi l l
instantiate the wxPython
routines, then the Line class
and final ly cal l the
app.MainLoop wxPython routine
to get the frame to run.

So there it is. Our own
graphing/charting program and
l ibrary. I ’ve put the ful l code up

on pastebin at
http: //pastebin.com/m2feeh5P.

Unti l next time, have fun
coding.

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his

HOWTO - PYTHON

#==================================

Main routine

#==================================

def OnPaint(self,event):

dc = wx.PaintDC(self)

self.DrawBox(dc)

self.DrawAxis(dc)

self.DrawTitle(dc,self.ChartTitle)

Date Tics and dates

self.DrawDateTicks(dc,31)

leng = len(self.DateList)

if leng > 0:

sd = self.DateList[0]

ed = self.DateList[4]

self.DrawDates(dc,sd,ed)

else:

self.DrawDates(dc,"02/01/2015","03/01/2015")

Value Tics Draw 10 tics

self.DrawValues(dc)

if __name__ == "__main__":

data =

(300,20,47,96,1200,700,500,230,179,500,300,20,47,96,200,400,500,230,179,500,300,20,47,96,200,400,500,230,179,500,475,423)

#data = (("02/01/2015",169.63),("02/02/2015",188.81),("02/03/2015",61.85),("02/04/2015",94.53),("02/05/2015",235.85))

app = wx.App()

Line(None, 1, 'Bar Chart',data,"Monthly Sales Colorado Springs")

http://www.thedesignatedgeek.net
http://pastebin.com/m2feeh5P

full circle magazine 269 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg. D. Walters

Program in Python Pt. 59

F
irst, let me say Happy
100 to Ronnie and the
crew. It’s a privi lege to
be part of this

mi lestone.

This time I thought that I ’d
share some information on my
new obsession. I ’ve started
repairing and bui ld ing stringed
musical instruments l ike guitars
and viol ins. Bel ieve it or not,
there is a lot of math involved
in musical instruments. Today,
we wi l l look at some of the
math involved with the length
of strings and where the frets
should be placed on the
fretboard.

Take a look at the picture of
the guitar. I annotated various
items in the image. The
important things to look at are
the Nut near the top of the
fingerboard, the Frets, the
Bridge near the bottom, and
the white “l ine” within the
bridge cal led the Saddle. The
purpose of the frets is to create
a perfect spot to change the
length of the string to create a

note that is in tune. The
positions of these frets are not
arbitrary, but mathematical ly
determined.

Now, the physics of vibrating
strings tel ls us that if you half
the vibrating string length of a
theoretical ly perfect string, you
wi l l double the frequency of the
vibrations. In the case of a
guitar, this string length is
between the nut and the
saddle. This distance is referred
to the Scale Length of the
guitar. The half-point that
al lows for the doubled
frequency is fret # 12. If
correctly done, just by l ightly
placing your finger on the
string at this location, you get a
pleasing tone. There are a few
other positions that this wi l l
happen, but the 12th fret
should be the perfect location
for this doubl ing, making the
note go up one octave.

Different scale lengths wi l l
create different feel and tones.
For example, guitars l ike the
Fender Stratocasters® have a
scale length of 25½”, which
produces a rich and strong bel l -
l ike tone. On the other hand,
Gibson guitars often use a scale
length of 24¾”. This creates a

lower string tension which
makes an easier playing feel
and a warmer tone. Other
guitar manufacturers decided
that a scale length of 25”
makes a clearer tone than
either of the other two
“standard” scale lengths.

So with the abi l i ty of a guitar
maker to come up with their
own scale length, the spacing
of the frets wi l l have to be
recalculated. This is something
that luthiers (guitar makers)
have been deal ing with for
hundreds of years.

In the past, there was a
technique cal led the rule of 18
which involves successively
dividing the scale length minus
the offset to the previous fret
by 18. Whi le this kind of
worked, the tones were off, the
higher up the fingerboard the
player went. These days, we
use a different constant. This
constant is 17.817. By using
this “new” constant, the 12th
fret or octave is at the exact
position to be half the scale

full circle magazine 270 contents ^The Compleat Python

HOWTO - PYTHON

length of the string.

Now, these calculations are
easy enough to do by paper
and penci l or even a simple
calculator, it’s just as easy to
create a Python program to do
the calculations for us in just a
second. Once you have the
positions, you simply saw a slot
for the fret at the correct
positions and then hammer in
the frets.

So, let’s take a look at the
program.

We want to create a program
that wi l l prompt for the scale
length of the guitar (or bass),
do the calculations and then
print out the distances. The
calculations and al l returned
lengths are al l in inches, so al l
our friends that use metric
measurements, please add the
proper conversion calculations.
After almost 5 years, you
should be able to do this with
ease.

We don’t need to import any
l ibraries for this so we wi l l start
off by defining a couple of
variables.

ScaleLength = 0

CumulativeLength = 0

Next we wi l l create a routine
(top right) that wi l l be cal led
repeatedly as we “travel down”
the fingerboard. We wi l l pass
two values into this routine.
One is the scale length and the
other is the cumulative
distance from the nut to the
previous fret.

In this routine, we take the
scale length, subtract the
cumulative distance and assign
that value to BridgeToFret. We
then take that value, divide it
by our constant (17.817), add
back in the cumulative distance
and then return that value to
our cal l ing routine. Remember,
we could simply have returned
the calculated value without
assigning it to a variable name.
However, if we ever want to

inspect the calculated values,
it’s easier to do if we assign the
value before we return it.

Now we wil l make our
worker routine. We’ve done this
kind of thing many times in the
past. We wi l l pass it the scale
length and it wi l l loop for up to
24 frets (range(1,25)) . Even if
your project has less than 24
frets, you wi l l have the correct
positions of al l the frets you do
have. I chose 24 because that’s
the maximum of frets for most
guitars. When we get into the
loop, we check the fret number
(x) and if it is 1, we pass the
cumulative length as 0, since
this is the first calculation.
Otherwise, we pass the last
cumulative length in and it
becomes the result from the

calculation routine. Final ly, we
print each fret number fol lowed
by a formatted version of the
cumulative length.

Final ly, we have the code
that does the prompting for the
scale length. I ’m sure you wi l l
remember the format for the
raw_input routine, since we
have used it so many times
before. Something you might
not remember: that raw_input
always returns a string, so
when we pass it off to the
DoWork routine, we have to
pass it as a floating point
number so the routine wi l l work
correctly. Of course, we could
simply pass it as a string, but
we would have to deal with the
conversion in the DoWork
routine.

def CalcSpacing(Length,NTF):

BridgeToFret = LengthNTF

NutToFret = (BridgeToFret/17.817) + NTF

return NutToFret

def DoWork(ScaleLength):

CumulativeLength = 0

for x in range(1,25):

FretNumber = x

if FretNumber == 1:

CumulativeLength = CalcSpacing(ScaleLength,0)

else:

CumulativeLength = CalcSpacing(ScaleLength,CumulativeLength)

print(“Fret=%d,NutToFret=%.3f” % (FretNumber,CumulativeLength))

full circle magazine 271 contents ^The Compleat Python

ScaleLength =

raw_input(“Please enter Scale

Length of guitar > “)

DoWork(float(ScaleLength))

You might wonder what good
this program wil l do if you
aren’t going to bui ld a guitar
from scratch. I t can be valuable
when you're looking at buying a
used guitar or trying to tweak a
guitar with a floating bridge.
Also, if you are a guitar player,
this might have been
something you didn’t know
about guitars.

Of course, the code is
avai lable from pastebin at
http: //pastebin.com/A2RNECt5.

HOWTO - PYTHON

http://pastebin.com/A2RNECt5

full circle magazine 272 contents ^The Compleat Python

HH OOWW--TTOO
Written by Greg D. Walters

Python In The REAL World

W
elcome fel low
pythoners. As the
kids here in the
central parts of

the U.S. say, “What’s Shakin’
Bacon?” I ’m not exactly sure
what that’s supposed to mean,
but I assume it’s a good thing.

You might notice the new
header. I decided that I ’ve
taught you al l the basics of
Python that I can for “general”
programming, so now we are
going to delve into using
Python to talk to other types of
computers and control lers, l ike
the Raspberry Pi and the
Arduino micro control ler. We’l l
look at things l ike temperature
sensors, control l ing motors,
flashing LEDs and more.

This issue we wi l l be
focusing on what we’l l need to
do this and focus on a few of
the projects we wi l l be looking
at in the future. Next issue, we
wi l l start the first project.

One of the things we wi l l ta lk
about next time wi l l be the

Raspberry Pi . The Pi is a credit-
card sized computer that
natively runs Linux on an SD
card. I ts output goes to your TV
set via HDMI. I t a lso has an
Ethernet connection for Internet
access.

You can find out more at the
officia l site
https: //www.raspberrypi .org. I f
you want to fol low along with
the projects, you wi l l need a Pi ,
SD card, Keyboard, Mouse, a
5volt DC power supply l ike the
ones on modern cel l phones,
and access to an HDMI monitor
or TV. Eventual ly, you should
also consider getting a
breadboard and some
connecting wires for when we
start to interface to the outside
world. You can find any number
of places that sel l the Pi on the
Internet. Here in the U.S. , we
can get them for around $35.

One other thing about the Pi
is that it provides access to a
series of pins that support GPIO
(General Purpose Input/Output).
Basical ly, this means that you

can write programs that wi l l
send signals to the output pins
and read the signals from the
input pins. This can be used to
interface to things l ike LEDs,
sensors, push buttons, etc.
Many people have made home
automation systems, multiple
processor systems (by l inking
40 or so Pi computers together
to emulate a supercomputer),
weather stations, even drones.
So you can imagine that the
possibi l i ties are endless. That’s
why I decided to start with it for
this series of articles.

After a whi le, we wi l l begin
to work with the Arduino, which
according to the officia l website
(https: //www.arduino.cc):
“Arduino is an open-source
electronics platform basedon easy-

to-use hardware andsoftware. It's

intendedforanyonemaking

interactive projects”.

Once again, this is an
exciting device to work with. In
this part of the series, we wi l l
look at talking to the Arduino,
first in its native scripting

language, and then in Python
and eventual ly interfacing the
Pi with the Arduino.

I know this month’s article is
fairly short, but I ’ve been doing
poorly health-wise, so I ’m
saving my strength for the next
article. Unti l then, grab some
electronics and get ready for
fun!

Greg Walters is owner of
RainyDay Solutions, LLC, a
consulting company in Aurora,
Colorado, and has been
programming since 1972. He
enjoys cooking, hiking, music,
and spending time with his

http://www.thedesignatedgeek.net
https://www.raspberrypi.org
https://www.arduino.cc

