
WITH

GET
STARTED

MAGAZINEFROM THE MAKERS OF

G
et Started w

ith A
rduino

Robots, musical instruments,
smart displays and more

Create AMAZING projects with this programmable controller

Find hundreds
more books and
magazines in the

hsmag.cc/store

STORE

Learning tech on the

wily, windy moors

3D
Design, refine, and fabricate

jewellery using Fusion 360

TIME

wuthering

bytes
printing

MACHINE
Keep calm and carry on

with a portal to the past

R A S P B E R RY P I

PLUSPLUS ˇˇ

DIY ANTENNA
Optimise your airwaves

ARBOR PRESS

Press things into little holes

BRIAN LOUGH

beer cider mead kombucha

TU
RN

 V

EGETABLE MATTER INTO

DELICIOUS ALCOHOLIC D
RIN

K
S

M A K E B U I L D H A C K C R E AT E

hsmag.cc
Issue #24

November 2019

Power, control, and Tindie:

how to scale up

DIY COMPUTERS BINDER CLIPS RADIOS

Stay warm with a

connected display

weather
forecaster

Nov.2019

Issue #24 £6

BREWING

http://hsmag.cc/store

WELCOME

Get Started With Arduino

Got a comment,
question or thought

about HackSpace
magazine?

get in touch at
hsmag.cc/hello

3

Welcome to
EDITORIAL
Editor
Ben Everard

 ben.everard@raspberrypi.org

Features Editor
Andrew Gregory

 andrew.gregory@raspberrypi.org

Book Production Editor
Phil King

Sub Editors
David Higgs, Nicola King

DESIGN
Critical Media

 criticalmedia.co.uk

Head of Design
Lee Allen

Designers
Harriet Knight, Sam Ribbits

CONTRIBUTORS
Matt Bradshaw, Jo
Hinchliffe, Dr Andrew
Lewis, Jenny List, Brian
Lough, Graham Morrison,
John Wargo

PUBLISHING
Publishing Director
Russell Barnes

 russell@raspberrypi.org

Advertising
Charlie Milligan

 charlotte.milligan@raspberrypi.org

+44 7725 368 887

DISTRIBUTION
Seymour Distribution Ltd
2 East Poultry Ave,
London EC1A 9PT

+44 (0)207 429 4000

BEN EVERARD
Editor ben.everard@raspberrypi.org

This book is printed on paper
sourced from sustainable
forests. The printer operates an
environmental management system
which has been assessed as
conforming to ISO 14001.

Wearable Tech Projects is published
by Raspberry Pi (Trading) Ltd.,
Maurice Wilkes Building, St. John’s
Innovation Park, Cowley Road,
Cambridge, CB4 0DS. The publisher,
editor, and contributors accept
no responsibility in respect of
any omissions or errors relating
to goods, products or services
referred to or advertised. Except
where otherwise noted, content
in this book is licensed under a
Creative Commons Attribution-
NonCommercial-ShareAlike 3.0
Unported (CC BY-NC-SA 3.0).
ISBN: 978-1-912047-63-5.

GET IN TOUCH

 hackspace@
raspberrypi.org

 hackspacemag

 hackspacemag

ONLINE
 hsmag.cc

GET STARTED
WITH ARDUINO

Arduino and Arduino-compatible microcontrollers are
essentially simple computers that we can easily embed
in our projects. They enable us to sense input and
create output in a huge number of ways. Buttons, touch-
sensitive areas, environmental sensors, and more can
feed into these computers. Lights, sound movements,
and more can feed out. Controlling these with a little bit
of programmable logic allows us to create devices with a
huge range of interactions.

This all sounds very computer-y, but Arduinos are
designed to be embedded, so are often hidden away in
things that don’t look like computers. We look at some
fantastic projects that showcase the range of things you
can make with these microcontrollers.

It’s become a cliché to say that the only limit is your
imagination, but these boards are sufficiently powerful
and flexible to mean that it’s very nearly true. You can add
interactions, simple or complex, to almost any project.
What’s even better is that they’re designed to be easy to
use. Now you’ve picked up this book, it’s time to get started
and create your own amazing Arduino project.

http://hsmag.cc/hello
mailto:ben.everard@raspberrypi.org
mailto:andrew.gregory@raspberrypi.org
http://criticalmedia.co.uk
mailto:russell@raspberrypi.org
mailto:charlotte.milligan@raspberrypi.org
mailto:ben.everard@raspberrypi.org
https://itunes.apple.com/us/app/hackspace-magazine/id1315673274?mt=8
https://itunes.apple.com/us/app/hackspace-magazine/id1315673274?mt=8
mailto:hackspace@raspberrypi.org
mailto:hackspace@raspberrypi.org
https://www.facebook.com/HackSpaceMag/
https://twitter.com/HackSpaceMag
http://hsmag.cc

4 Get Started With Arduino

Contents

06 The Ultimate Guide to Arduino
 Discover the boards, add-ons, and programming environment

16 Add Arduino power to your projects
 Get started with coding for the Arduino platform

20 Reading digital data
 Learn how to read external data in an Arduino project

24 Seven-segment displays
 and multidimensional arrays
 Get meaningful output out of your projects

30 Multiplexing, operators,
 and four seven-segments
 Multiply your project’s capabilities without adding code

34 Temperature, humidity, and libraries
 Gather readings using a DHT11 sensor module

40 Stacks, classes, and scrolling displays
 Learn new code skills and create a cool-looking thermometer

46 Pointers and linked lists
 Demystify two of the most arcane aspects of Arduino and C

52 Build a games console – part 1
 Put some of that hard-learnt programming theory into action

58 Build a games console – part 2
 Create an addictive, easily modifiable game

64 Sound, envelopes, and interrupts
 Use interrupts and build a simple sound generator

70 Copy and send infrared signals
 Build a secret infrared repeater to control the TV

76 Debugging
 Work out where things are going wrong

06 ARDUINO BASICS

84 Way Home Meter
 Let loved ones know when you’ll arrive back home

90 Desktop hydroponic gardening
 Grow your own plants and food with this indoor system

96 Make a word clock
 Spell out the time with this attractive wooden clock

102 Polyphonic digital synthesizer – part 1
 Start building a full-featured musical instrument

106 Polyphonic digital synthesizer – part 2
 Add a keyboard and make more complex sounds

112 WiFi Tetris clock
 An internet-driven clock drawn using Tetris blocks

118 Let’s learn LoRa
 Transmit temperature and humidity to an online dashboard

126 Build your first walking robot
 Make and program a four-legged automaton

138 Build a synth
 Create your own analogue synthesizer and sequencer

82 PROJECT TUTORIALS

06

24

7-segment displays
138

46

Get Started With Arduino

CONTENTS

5

Some of the tools and techniques shown in this book are dangerous unless used with skill, experience and appropriate personal protection equipment. While we attempt to guide the reader, ultimately you are re-
sponsible for your own safety and understanding the limits of yourself and your equipment. Get Started With Arduino is intended for an adult audience and some projects may be dangerous for children. Raspberry Pi
(Trading) Ltd does not accept responsibility for any injuries, damage to equipment, or costs incurred from projects, tutorials or suggestions in this book. Laws and regulations covering many of the topics in this book
are different between countries, and are always subject to change. You are responsible for understanding the requirements in your jurisdiction and ensuring that you comply with them. Some manufacturers place
limits on the use of their hardware which some projects or suggestions in this book may go beyond. It is your responsibility to understand the manufacturer’s limits.

168 Grand Central M4 Express
 Adafruit’s Mega-format board is packed with IO pins

170 NeoTrellis M4 Express
 Handheld 8×4 array of light-up buttons

172 Arduino Every and 33 IoT
 The tiny Nano form factor gets an overhaul

174 Teensy 4.0
 Powerful ARM Cortex-M7F core microcontroller

176 Black and Blue Pills
 Two inexpensive boards based on the STM32F103

166 FIELD TEST
156 Freeduino
 Arduino’s PCB recreated in free-form wiring

158 Chartreuse
 Spooky interactive face whose eyes follow you

160 Word clock
 In this version, the words are projected onto paper

162 Assistive spoon
 Feeding aid for people with Parkinson’s disease

164 Arduinoflake
 Sparkling snowflake sculpture lit by LEDs

154 INSPIRATION

84

52 126

172 158

Arduino Every and 33 IoT

170

NeoTrellis

164

Arduinoflake

Chartreuse

FEATURE

Get Started With Arduino

ARDUINO

ULTIMATE
THE

GUIDE TO

Discover the boards,
add-ons, and programming
environment that make it
easy to create interactive

electronics projects

FEATURE

6 Get Started With Arduino

Get Started With Arduino

ARDUINO BASICS

Get Started With Arduino

ARDUINO BASICS

rduinos are stripped-
down computers.
They’ve got a little
storage, some RAM, and
a processor all packed
into a chip. You write

code for them on a normal desktop or
laptop, then upload this over USB to run on
the board. They’re cheap (ranging from a
few pounds to a few tens of pounds),
widely available, and easy to use.

While the word ‘Arduino‘ can mean
specifically boards that are designed and
manufactured by the Arduino organisation,
many other Arduino-compatible boards are
available. These range from boards that are
almost identical to official boards, to boards
that are wildly different but that can still be
programmed using the official software.
We’ll be looking at all boards – both official

and compatible – here, as few makers
restrict themselves to just one type.

We use these boards to add tiny
programmable brains to our project. They
can be combined with LEDs to add visual
effects, speakers to add sounds, motors to
add movement, and a vast range of sensors
to bring in information to be processed. It’s
a cliché to say that the possibilities are
endless, but they really are.

What’s more, the boards have been
designed to be as easy to use as possible.
The programming environment has many of
the complexities of many programming
tools, and they’re designed so you can get
started without having to know anything
about electronics – add-ons known as
shields can just be pushed on top.

Now, let’s dive in and take a closer look at
the hardware.

A

7

FEATURE

8 Get Started With Arduino

Get Started With Arduino

OUR
FAVOURITE

ARDUINO-
COMPATIBLE

BOARDS
Pick the best board for

your next project

rduinos are boards
made by the Arduino
LLC company. However,
as the designs and
software are open-
source, there’s a large
number of ‘Arduino-

compatible’ boards. Exactly how
compatible depends on the boards. All of
them can be programmed from the Arduino
IDE. Some of them are also pin-compatible
with official Arduino boards, and can use the
same hardware.

There are literally hundreds of Arduino-
compatible boards, and we can’t cover them
all here, so let’s instead take a look at a few
of our favourites. Each one is specialised for
a particular use.

A

ARDUINO BASICS

Get Started With Arduino 9

he Uno has been the board
of choice for beginners for
nine years. While it’s been
through a few revisions in that
time, the first major change

came out in 2018 with the Uno WiFi Rev2.
Including WiFi makes this an ideal starter
board for anyone looking to make internet-
connected projects.

Perhaps the most attractive thing about
this board is the number of add-on ‘shields’
that have been created for it over the years.
There are hundreds – possibly thousands –
of these that make it easy to add more
features to your projects. Unlike many other
boards in this form factor, the Arduino Uno
WiFi is 5 V, so is guaranteed to work with all
shields built for the original Uno.

T

ARDUINO
UNO WIFI REV2

ARDUINO €38.90 store.arduino.cc

ARDUINO
UNO REV 3

ALSO
CONSIDER

http://store.arduino.cc

FEATURE

INTERNET
OF THINGS

B E S T F O R

DATA
STORAGE

B E S T F O R

10 Get Started With Arduino

Get Started With Arduino

he MKR range makes it easy
to build high-quality, reliable
Internet of Things projects.
Each board includes a battery
charger and secure crypto

element on a robust PCB. There’s a range of
official add-on boards designed for the
needs of small and medium businesses,
which includes the capability to connect to
CAN buses and communicate via RS-485.

As well as this, there’s extra software
support in the form of Arduino IoT Cloud
that makes it really quick to hook your
projects up. There are a few MKR boards
that connect to the wider world in different
ways – including LoRa and Sigfox – but for
most projects, good old-fashioned WiFi is
the best option.

dafruit’s Feather range is
made up of lots of boards
the same shape, with the
same pinouts, but with
different microcontrollers

at their heart. This means that one set of
accessories works with all of them.

One common set of builds that we do
involves sensing and storing information.
This could be environmental data – such as
the amount of pollution in the air, or how
much moisture there is in soil, or
information about how a device is used.
For this, SD cards are a great solution, as
they’re small, cheap, and easy to use with
both microcontrollers and computers. The
Feather M0 Adalogger has a microSD card
reader on the board itself, so you don’t
need any extra hardware.

T

A

ARDUINO
MKR WIFI
1010

FEATHER
M0
ADALOGGER

ARDUINO €27.90 store.arduino.cc ADAFRUIT $19.95 adafruit.com

FEATHER HUZZAH

SPARKFUN ESP32
THING

ALSO
CONSIDER

TEENSY 3.6

ALSO
CONSIDER

http://store.arduino.cc
http://adafruit.com

ARDUINO BASICS

PROCESSING
POWER

B E S T F O R

LOTS OF INPUT
AND OUTPUT

B E S T F O R

Get Started With Arduino 11

he original Arduinos all used
AVR microcontrollers. These
are easy to work with, but lack
a bit of oomph compared with
the more modern ARM

Cortex-M series microcontrollers used in
many newer boards.

Metro M4 Express keeps the traditional
Arduino Uno form factor, but pops in a
more powerful processor. When it comes
to raw processing power, the Metro M4
Express flies past the Arduino Uno and
even the faster official board, the Arduino
Zero. As well as having a faster processor,
it’s got a floating point unit, so if you’re
doing maths, the advantages are twofold.

If you need to crunch through a lot of
data, this is a great choice.

his feature-packed board
has a whopping 54 IO pins,
and sports the same
blistering-fast processor as
the Metro M4 Express. It’s in

the same form factor as the Arduino Mega
and Arduino Due, so there’s a range of
add-ons already available, even though this
board is brand new.

While this is quite a big board, there’s a
good chance that if you need this many
IOs, then you’re working on a big project.
Whether it’s to control lots of lights, lots of
motors, or get lots of inputs from sensors,
when we need lots of IOs, the Grand
Central is now our board of choice.

T

T

METRO
M4 FT.
ATSAMD51

GRAND
CENTRAL
M4 EXPRESS

ADAFRUIT $27.50 adafruit.com

TEENSY 3.6
SPARKFUN

REDBOARD TURBO
OR

ARDUINO ZERO

ALSO
CONSIDER

ADAFRUIT $37.50 adafruit.com

TEENSY 3.6

ALSO
CONSIDER

http://adafruit.com
http://adafruit.com

12 Get Started With Arduino

Get Started With Arduino

LOW PRICE
B E S T F O R

LINUX
COMPATIBILITY

B E S T F O R

any people have been using
Raspberry Pi boards to run
the Arduino IDE but, since
March 2018, you’ve also
been able to program

Raspberry Pi devices directly from the
Arduino software. This is particularly useful
because it links into the cloud IDE so that
you can control your Linux machines from
anywhere on the web.

Unlike traditional microcontrollers, you
can run multiple sketches simultaneously,
and even install and remove software. This
ability to manipulate machines with a few
clicks makes it easy to update embedded
systems without having to physically access
them or learn to use remote administration
tools aimed at sysadmins.

Head to create.arduino.cc/devices
to get started.

here’s a wide range of boards
that are built around the
ESP8266 modules that provide
USB connectivity and break
out the IO pins. They’re

available on many direct-from-China
websites for around £2 each. The stand-out
feature at this price range is the WiFi
connectivity. Usually, they come with a Lua
firmware, but also support Arduino. There is
essentially no manufacturer’s support for
these boards; however, there’s an active
community that provides libraries and
tutorials for many common uses.

The pictured board has nine 3.3 V GPIOs
and one analogue in; however, this can only
take between 0 and 1 V (a simple voltage
divider can be used if you’ve got a larger
range than this). They’re small, cheap, and
well-connected – perfect when you just
want to add the ability to remotely control
an object.

M

T

RASPBERRY
PI 4

ESP8266
VARIOUS $2–3 various sites

BLUE PILL

ESP32

ALSO
CONSIDER

BEAGLEBOARD

ALSO
CONSIDER

FEATURE

RASPBERRY PI $35–$55 raspberrypi.org

http://create.arduino.cc/devices
http://raspberrypi.org

ARDUINO BASICS

Get Started With Arduino 13

1. NeoPixels
We’re stretching the
definition of Arduino add-on
almost to its limit to include
these, but they’re easy to
work with on Arduino and
have libraries that work with
most boards, and that’s good enough for us. You
need to be a bit careful with the supply voltages if
you’re using a 3 V board, but with a bit of care you
can have your whole word blinking different colours.

3. Grove Base Shield
This is a metashield. It
doesn’t have any hardware
in itself, but it gives you
the ability to add hardware
easily to an Arduino Uno
(or compatible) board.
There are 16 ports that
break out analogue inputs, UART connections, digital
IO, and I2C into ‘Grove connectors’. There’s a range
of Grove-compatible hardware that can then be
plugged into this. It’s easier to build up designs than
using an evergrowing stack of shields, and more
robust than using a breadboard.

7. MKR Motor Carrier
Controlling motion with
electronics is an art form.
At the simplest level, it’s
just a case of a small DC
motor, but as you look
for more power or more
precision, you need to
consider more factors. The MKR Motor Carrier from
Arduino adds the ability to control four motors (two
with encoders) and four servos to any of the MKR
boards. There’s also a charger for 2S and 3S LiPo
batteries, which should keep your motors running
when not near a power source.

2. Core Memory Shield
Back in the early days of computing, RAM was
made of loops of magnetic material. Wires crossed
through these loops, and electrical pulses through
these wires could induce and read magnetism.
This way, small amounts of data could be stored.
While we now have much faster, smaller, and
cheaper forms of memory, you
can still geek-out
with old-fashioned
ferrite core
memory using this
Arduino shield from
hsmag.cc/pzKiKq.

4. CRICKIT
This add-on is available for
several Arduino-compatible
boards, including the Feather
range from Adafruit, the
Circuit Playground Express, the
micro:bit, and the Raspberry Pi. It
adds a bunch of input and output options, including a
NeoPixel driver, touch sensors, motor drivers, servo
controllers, and high-current IO. It’s a great board to
have on hand as it can be useful in so many projects.

8. Protoboard shield
If you design your own hardware,
you may well have started
out with a breadboard.
This makes it really easy to
prototype things, but it’s not
very permanent. One option
is to design a PCB, but if it’s a one-off project with
simple hardware, then it can be much quicker to
solder it together on some protoboard. You can
find this in the right shape to slot straight into most
popular form factors for Arduino-compatible boards.
There are a few different formats. Shown is the
official Arduino protoboard for the Mega form factor.

5. OpenLog
If you’ve used Arduino,
one of the first things you
learned (after blinking
an LED) was probably
sending data to the serial
monitor. This is a great
way to get data from your Arduino to the computer
it’s plugged into. However, what if your Arduino isn’t
plugged into a computer? The OpenLog stores serial
messages on an SD card, so you can log your data
as usual and come back to get it later.

9. Nixie tube drivers
Nixie tubes are gorgeous numerical displays
from the days before LEDs. Put enough volts into
the right pins and you’re rewarded with a digit
glowing orange-red. They can be a little tricky to
drive from Arduinos, as they require a few hundred
volts to run. The exixe board
packages up everything you need,
and lets you control them via SPI.
There’s even an Arduino library to
take the hassle out of using these
retro displays. Get yours from
hsmag.cc/xtdbjd.

10. 3D printer
Many 3D printers are built on
Arduino-compatible systems.
The popular Marlin firmware
is designed to work on the Arduino
Mega 2560 and the RAMPS 1.4 add-on board. Many
3D printers use other hardware, but it’s all built on
this Arduino-compatible platform, including the Anet
A8 (pictured). In a sense, then, all these 3D printers
are really just Arduino add-ons.

6. Adafruit Ultimate GPS
FeatherWing

The GPS is truly one of the wonders of the modern
world. We take it for granted now, but the ability
to know your position to within a few metres
anywhere in the world, or get an accurate
idea of your speed, is miraculous.
This FeatherWing includes a GPS
receiver, a real-time clock, and
a battery backup, which all
makes it easy to use with any
of the Feather range. You
can get similar add-ons
for other form factors.

ARDUINO BASICS

TOP 10
ADD-ONS
Traditionally, Arduino add-ons have
been called ‘shields’, and were
designed to slot directly into the pins
on boards in the Arduino form factor.
However, as Arduino-compatible
boards now come in many shapes and
sizes, we can’t be so restrictive. Here,
we’ve included any hardware that can
easily work with Arduino-compatible
boards, regardless of form factor.

There are so many Arduino add-ons
that it’s impossible to pick one as
‘best’. It depends on the form factor
of your underlying board, your power
requirements, and the features you
need for your project. Here are ten of
our favourites, but there are hundreds
of others that can make great projects.

http://hsmag.cc/pzKiKq
http://hsmag.cc/xtdbjd

FEATURE

14 Get Started With Arduino

Get Started With Arduino

ARDUINO IDE
Let’s get ready to program

 1.

 2.

 2. 3.

 4.

 5.

 4.

 5.

 3.

 1.

The main code area

Button to upload the code to the
board (and compile if changes have
been made)

Button to compile the code, but don’t
upload it to the board

Output from the compiler and uploader

Details of the currently
connected board

Figure 1
Main interface

ARDUINO BASICS

Get Started With Arduino 15

he Arduino IDE is, for many
people, the place where
hardware programming
happens. It is, by
development environment
standards, a fairly
straightforward piece of

software, but it does the basics well:
There’s code highlighting, tabs for multiple
files, and the ability to manage the
compilation and hardware options. Let’s
take a look at the main features.

Figure 1 shows the main interface with
a program (known as a ‘sketch’ in Arduino-
speak) that turns the built-in LED on and off
every second. There are two functions: one
called setup that runs when the board is
turned on (or reset), and one called loop
that runs repeatedly. This is the basic
organisation of every Arduino sketch.

Perhaps the best feature of the Arduino
IDE is its ability to support a vast range of
different hardware. All this hardware
requires different options to the software
responsible for compiling and packaging
the code, so you need to make sure that
the software knows which hardware you’re
using. You can select the correct option in
Tools > Boards (see Figure 2). If your
hardware isn’t listed there, you can add
more boards via URLs (find the correct

T

URL from your hardware supplier) in
File > Preferences > Additional Board
Manager URLs.

Libraries are packaged bits of code that
are easy to reuse. There are hundreds of
them for Arduino, most of which give you
the ability to control hardware without
getting bogged down in the nitty-gritty of
how they work. The Library manager (in
Sketch > Include a Library > Manage
Libraries) gives you the ability to easily
install and use these libraries (Figure 3).
Many will also install example sketches (in
File > Examples) that give you a chance to
see how to use them.

One of the problems with embedded
coding is that it can be hard to see what’s
going on. The serial monitor gives us a
solution to this. It’s a way of shovelling data
through the USB connection between the
computer and the board. Using the
command Serial.println() (you’ll also need
Serial.begin(9600) or similar in your setup()
function), you can send data from your board
to the computer and display it using the serial
monitor for text (in Tools > Serial Monitor) or
the Serial plotter for numbers (in Tools >
Serial Plotter). You can also send data in the
other direction if you need to control your
hardware from a computer.

PROGRAMMING
LANGUAGE
The Arduino IDE uses a language
based on C++. If you’ve programmed
in any similar language before, take a
look at the example sketches included
with the Arduino IDE. They’re well
commented, and take you from the
basics upwards. Alternatively, there
are loads of great resources to help
you get started from any level of
programming experience (including
none). Graham Morrison’s excellent
ten-part tutorial series can be found in
this very book, starting on page 24.

Figure 2
As well as selecting the correct board, you’ll also have
to select the right port. You’ll see the different options
in Tools > Port

Figure 3
Before diving into some complex coding, it’s always
worth asking yourself if there’s a library that will make
your life easier

SCHOOL OF MAKING

16 Get Started With Arduino

Add Arduino power to your projects

SCHOOL OF MAKING

o you want to start programming
microcontrollers and doing some
cool projects with the hardware.
You’ve selected Arduino as your
starting platform, purchased a popular
Arduino board, and you’re ready to

get started. What’s next? In this short article, we’ll
show you how to get started coding for Arduino.

Arduino (arduino.cc) is a very popular hardware
platform for computer-controlled hardware projects.
Arduino is a small, inexpensive, programmable
microcontroller that exposes a multitude of
input and output (I/O) connections you can use
to create computer-controlled circuits, wiring in
switches, lights, sensors, and more. It’s an open
hardware platform, which means that the hardware
specification is open source, so anyone with
the means can design and distribute their own
Arduino-compatible hardware. Therefore, there’s a
series of devices made by arduino.cc and a bevy of
‘compatible’ devices from other vendors as well.

To program an Arduino device, you’ll code
applications in a language similar to very old
programming language called C; these applications
are called sketches. Because the Arduino is
basically a small computer system, although with
limited processing speed and memory, the platform
supports a subset of the capabilities of C. You’ll
code your Arduino applications in an integrated
development environment (IDE); Arduino offers
both a locally installed IDE or a cloud IDE to use
for your projects. There are alternative IDEs
available as well; you can find a list of options
at hsmag.cc/aQJqkJ.

Get started with coding for the Arduino platform

Add Arduino power
to your projects

S
When creating sketches, you’ll code your sketch

in an IDE, then connect your Arduino-compatible
device to your PC using an USB cable. With that in
place, the IDE compiles your sketches into executable
code, then downloads them to the Arduino device
over the cable. As your sketch runs, you can pass
data between the IDE and your Arduino device over
a serial communication channel enabled in the IDE
(shown in Figure 1). Once compiled code is deployed
to the device, the device resets and, once the device
completes initialisation, it executes the sketch.

 An Arduino sketch consists, at a minimum, of
two parts: code that runs once, and code that runs
repeatedly. Let us show you.

In the Arduino IDE (described later), an empty
Arduino sketch looks like this:

SERIAL COMMUNICATION
The serial communications capabilities of the
Arduino platform expose additional capabilities
for your sketches. At a minimum, you can use
serial communication to send data back to the
IDE while you’re troubleshooting your sketches.
To do this, open the IDE’s Tools menu and select
Serial Monitor. A new window opens, and any data
written using the Serial commands (described at
arduino.cc/en/Reference/Serial) will appear in the
monitor window.

You can also use serial communications to
transfer collected data (from sensors connected
to the Arduino board) to another computer system
like a Windows PC or a Raspberry Pi. Makers often
do this since the Arduino supports analogue inputs
and the Raspberry Pi does not. In this scenario,
the Arduino becomes merely a data collection
device, and the Raspberry Pi does whatever
number crunching is appropriate for the project,
potentially even displaying data on a connected
screen or uploading the data to a remote server
for processing.

Figure 1
Arduino
development
architecture

Development
Workstation

USB CABLE

Sketch Download

Serial Communication

John Wargo

@johnwargo

John is a professional
software developer,
writer, presenter,
father, husband, and
geek. He is currently a
Program Manager at
Microsoft, working on
Visual Studio Mobile
Center. You can find
him at johnwargo.com

http://arduino.cc
http://arduino.cc
http://hsmag.cc/aQJqkJ
http://arduino.cc/en/Reference/Serial)
https://twitter.com/johnwargo
http://johnwargo.com

17Get Started With Arduino

ARDUINO BASICS

/*
*/
void setup() {
}
void loop() {
}

The first part of the sketch is a comment
block. Anything, absolutely anything you enter
between the /* and */ characters is ignored by the
Arduino compiler.

/************************************
 My First Arduino Sketch

 by John M. Wargo
 December, 2017

Meatloaf meatball pork ground round fatback
kielbasa cow porchetta pork loin ball tip. Spare
ribs picanha drumstick pork jerky cupim alcatra
meatball beef ribs. Ball tip ground round
pastrami pancetta shank kevin.
*************************************/

In your sketches, you’ll use this commenting
approach when you have multiple lines of content
you want displayed
within the sketch.
At a minimum, use a
comment block at the
beginning of the sketch
to describe the sketch,
as we’ve done in the
example, using dummy
content from the Bacon
Ipsum generator (at
baconipsum.com).
You should also use block comments like this to
describe important parts of your sketches.

You can also add single-line comments to your
sketches. To do this, start any line in your sketch
with double forward slash characters (//) or after
any of your code. All content following the double
forward slashes is ignored by the Arduino compiler.
In the following example, a single-line comment
precedes the definition of the numCols variable. The
comment and the executable code are on separate
lines, so we started the comment line with the
double forward slashes.

//Number of columns in the table
int numCols;

Or something like this where the comment
follows the definition of the relayStatus variable:

bool relayStatus; //The current status of
the relay (on/off)

The sketch’s setup function is defined with the
following code:

void setup() {
}

Any code you add to this function (you’ll add your
code between the curly braces {}) is executed by
the Arduino device as soon as you power it up and
the hardware finishes initialising. This function is
executed only once; you’ll use this function to set
up your sketch and execute the things that only
need to be done when the sketch starts.

You’ll normally use this to define the
configuration of your hardware; as many input/
output (I/O) connectors on the Arduino can be used
for either input or output, you’ll have to tell your
sketch how you intend to use them. We’ll show
you an example of this in a little while.

The final component of a minimalist sketch is the
loop function:

void loop() {
}

In this function, put any
code that you want to run
repeatedly on the Arduino.
The Arduino executes
the setup function once,
then executes the loop
function over, and over, and
over again until either the
Arduino explodes (it won’t,
we’re just kidding) or you
disconnect power from

the device. You can put all your code in the loop,
or break your code into smaller functions and call
those functions from the loop function.

To see all of this in action, look at the following
example. By default, the Arduino developer tools
include a simple sample sketch called Blink.

YOU’LL NEED

An Arduino-
compatible board
An actual Arduino
device is preferred
as there’s extra
setup required
for many Arduino
compatible boards.
The recommended
starter board is the
Arduino Uno
(hsmag.cc/QKaKXM)
or the newer, and
more capable,
Arduino Zero
(hsmag.cc/KGJbVd)

Microsoft
Windows, Apple
macOS, or Linux

Universal serial
bus (USB) cable
To connect the
Arduino device
to your computer
system. Arduino
on‑device connectors
vary; most use
a micro‑USB
connector, but the
Uno uses a USB
A/B cable

Arduino is a small,
inexpensive, programmable
microcontroller that exposes

a multitude of input and
output (I/O) connections

”

”

Figure 2
Opening the Arduino
Blink sketch

http://baconipsum.com
http://hsmag.cc/QKaKXM
http://hsmag.cc/KGJbVd

SCHOOL OF MAKING

18 Get Started With Arduino

Add Arduino power to your projects

SCHOOL OF MAKING

Most Arduino devices include an LED on board,
hard-wired into one of the Arduino’s I/O ports.
The included Blink sketch enables you to quickly
accomplish something with the Arduino – turning
that on-board LED on and off repeatedly.

Note: The Blink sketch starts with a long and
thorough introductory comment block that we’re
omitting here for brevity’s sake. We’ll show you
how to open the sketch soon, so you’ll be able to
study the whole sketch in detail.
// the setup function runs once when you press
reset or
// power the board
void setup() {
 // initialize digital pin LED_BUILTIN as an
output.
 pinMode(LED_BUILTIN, OUTPUT);
}

// the loop function runs over and over again
forever
void loop() {
 // turn the LED on (HIGH is the voltage level)
 digitalWrite(LED_BUILTIN, HIGH);
 // wait for a second
 delay(1000);
 // turn the LED off by making the voltage LOW
 digitalWrite(LED_BUILTIN, LOW);
 // wait for a second
 delay(1000);
}

In the setup function, there’s only one
executable line:

pinMode(LED_BUILTIN, OUTPUT);

Calling pinMode sets the configuration for one of
the Arduino’s I/O pins. In this case, its configuring
the I/O pin defined in LED_BUILTIN for output mode.
Remember, most Arduino boards have an on-board
LED; the Arduino team has preconfigured the
Arduino development environment to store the I/O
pin associated with each Arduino board in a variable
called LED_BUILTIN. Any time the sketch references
LED_BUILTIN, the compiler replaces the reference
with the actual pin number to which the LED is
connected. The Arduino Zero has its LED wired to
I/O pin 13, so for the Zero, the code is essentially:

pinMode(13, OUTPUT);

With this in place, the sketch knows that when
working with pin 13, it will be outputting (sending a
voltage) to the pin, not receiving input.

In the loop function, the code completes the
following steps:

 Uses the digitalWrite method to set the output
voltage on the LED_BUILTIN pin to HIGH. This means
that the pin gets a voltage equivalent to the current
operating voltage of the Arduino. Some Arduino
devices operate at 3 V and others at 5 V; all that’s
important to know here is that with execution of
this code, the Arduino is now powering the LED
connected to the I/O pin at its brightest.

 Waits for 1000 milliseconds (1 second) using the
delay() method.

 Uses the digitalWrite method to set the output
voltage on the LED_BUILTIN pin to LOW. This
translates to no voltage (0), essentially turning the
LED off.

 Waits for 1000 milliseconds (1 second) using the
delay() method.

Above
The Arduino Blink
sketch

Below
Configuring the IDE
for the connected
Arduino board

19Get Started With Arduino

ARDUINO BASICS

When the code runs, it will turn the LED on for
1 second, then off for 1 second, repeating the
process until you remove power from the device or
deploy a different sketch.

Now it’s time to see the sketch in operation. To
do this, you’ll start by
installing the Arduino IDE
on your computer system.
Open your browser of
choice and navigate
to arduino.cc. On the
site’s top menu, click the
Software link, then, on the
page that opens, download
the latest version of the
Arduino IDE for your
system’s operating system. Once the download
completes, launch the downloaded file to begin the
software installation.

Once the installation completes, start the Arduino
IDE. In the Arduino IDE, open the File menu, select
Examples, then 01.basics, then Blink, as shown in
Figure 2 (page 17).

Archiving built core (caching) in: C:\
Users\JOHNWARGO\AppData\Local\Temp\arduino_
cache_950966\core\core_arduino_avr_uno_
c3bfe3f79ffbeab93536a1a484b588d9.a
Sketch uses 928 bytes (2%) of program storage
space. Maximum is 32256 bytes.
Global variables use 9 bytes (0%) of dynamic
memory, leaving 2039 bytes for local variables.
Maximum is 2048 bytes.

If the verification fails, the IDE will display
information about any errors and reference the sketch
line number where the error was found. You’ll need to
fix any errors before continuing to the next step.

Finally, click the Upload button; the IDE will repeat
the verification step, then deploy the compiled
sketch to the connected Arduino device. When

the upload process completes, the Arduino device
will immediately reset, then begin executing the
new sketch. In this example, the Arduino will turn
its on-board LED on and off repeatedly until power
is removed from the board or a different sketch

is uploaded.
Now it’s time to play

around with the code. If
you remember from earlier,
the sketch uses delay
statements to control the
amount of time the LED
is on and off. Right now,
they’re coded to pause 1
second (1000 milliseconds);
modify the code so the

LED stays on for half a second (500 milliseconds)
and pauses for two seconds (2000 milliseconds) in
between. Upload the modified code to the board and
see what happens.

NEXT STEPS
We’ve only lightly brushed the surface of what you
can do with the Arduino platform. To make it easier for
Arduino developers to get started, the IDE includes
a whole catalogue of example applications you can
study and use to expand your skills. To access these
examples, in the Arduino IDE, open the File menu,
select Examples, then look for a sketch category that
appeals to you. The Basics category offers some
simple sketches you can use to expand from where
we’ve started here. There’s a simple sketch to fade
the on-board LED up and down (instead of turning it
on and off, as in the Blink example). There are also
sketches for reading analogue or digital signals; you’d
use these with the appropriate analogue or digital
output device connected to the Arduino. The other
sketch categories offer more sophisticated sketches
that work with different hardware devices and more.

To program an Arduino device,
you’ll code applications in a
language similar to an old
language called C; these

applications are called sketches

”

”

Below
Setting the IDE’s communication port

Below
Compile and Deploy buttons

http://arduino.cc

SCHOOL OF MAKING

20 Get Started With Arduino

Reading digital data on the Arduino platform

SCHOOL OF MAKING

n the previous tutorial, we showed you
how to blink the built-in LED on an Arduino
device. Here, we’ll show you how to use a
push-button to toggle the LED on and off. This
article illustrates one way to read digital data
using an Arduino.

Arduino boards offer several ways to interact with
external hardware components, in all cases this
means sending a signal to, or reading data from, an
external device. Those inputs and outputs, coupled
with the logic you’ve coded in your project’s sketch,
are the meat of any Arduino project. Arduino inputs
come in two formats: analogue and digital, in this
article, we’ll cover one way to use digital inputs.

Each digital input on the Arduino can read two
values: LOW and HIGH. LOW is a constant defined
within the Arduino IDE that essentially means zero
(or very little) voltage. A value of HIGH references

Learn how to read external data in an Arduino project

Reading digital data
on the Arduino platform

Left
The Arduino development
environment includes code
highlighting, to help you
spot typos in your code

the highest voltage value the Arduino can support
(typically 3 V (volts) on an Arduino operating at 3 V,
and 5 V on an Arduino operating at 5 V).

Note: Any Arduino device you use for your
projects will have one or more digital inputs;
these usually double as digital outputs as well. You
learned how to use a digital output in the series’
previous article.

You might be saying to yourself: “How useful is
a digital input if it’s only either on or off? That’s only
one bit, right?” On the Arduino, digital inputs are
used in two different ways: to read point-in-time
input values, such as the status of a button, or to
read a stream of binary digits (bits) values which
an application converts into more useful data such
as bytes, or numbers. In this article, you’ll find
out how to use a digital input to read the status of
a push-button.

John Wargo

@johnwargo

John is a professional
software developer,
writer, presenter,
father, husband, and
geek. He is currently a
Program Manager at
Microsoft, working on
Visual Studio Mobile
Center. You can find
him at johnwargo.com

YOU’LL NEED

An Arduino
or Arduino-
compatible
device
We recommend
the Arduino Uno for
first‑time users

Momentary push‑
button

A 10 kΩ resistor

Breadboard

Breadboard
jumper wires

I

https://twitter.com/johnwargo
http://johnwargo.com

21

ARDUINO BASICS

Get Started With Arduino

DIGITAL INPUTS CAN READ SINGLE
VALUES OR STREAMS OF DATA
In the previous article in this series, we showed you
how to use the default Arduino Blink sketch to turn
an Arduino’s on-board LED on and off on a specific
interval. In this tutorial, we’ll extend that project and
use a button to turn on and toggle the status of the
LED. When the push-button is depressed (pushed),
the LED turns on. When the push-button is up (open),
the LED turns off.

Before we wire up the circuit, let’s take a look at the
code (you can find the complete code for the example
at hsmag.cc/KTioNX).

The sketch defines the BTNPIN constant used
to identify the Arduino digital input pin to which
the button is connected. Following a common
convention, we created the constant name in
all capital letters, making it easy to distinguish
constants from variables in a sketch. You’ll populate
this constant value with the pin number for your
particular hardware implementation.

Next, the sketch defines the btnState variable,
which is used to store the current state of the button;
this value is used to determine whether to turn the
LED on or off. Notice how we initialised the variable to
LOW; this isn’t required, but gives the sketch a fallback
in case it can’t read the button, setting the LED to off
by default the first time through the loop.

// BTNPIN defines the Arduino input pin to which the
// button is connected
const int BTNPIN = 2;

// btnState stores the current button state (HIGH
or LOW)
// initialize it to LOW so the LED stays off until
the sketch
// reads a HIGH state for the button input
int btnState = LOW;

In the sketch’s setup function, the code sets the
mode for the Arduino I/O (input/output) pins used
by the sketch. The sketch calls pinMode to set the
default LED pin (defined in the Arduino IDE’s constant
LED_BUILTIN) to output mode, then calling pinMode
again to set the push-button pin to input mode. Finally,
the function turns the LED off, through a call to
digitalWrite, just to make sure we start with the LED
in a known state before the first loop begins.

// The setup function runs once every time the
Arduino
// powers up or resets (after a sketch update, for
example)

Figure 1
The Fritzing tool (fritzing.org) can be a great way of desiging
your circuits before starting on your breadboard

The resistor is used
in this circuit to help
force consistency of
digital input values.
Without the shunted
circuit to ground,
there’s no clear
definition of LOW vs.
HIGH, and the input
could ‘float’ at an
indeterminate value
without an input
value applied. With
the resistor in place,
there’s a clear
definition of LOW
when the button
is open through
the connection to
ground. With the
button pushed,
the ‘slower’ path
(through the
resistor) is ignored
because it’s a more
expensive route
than the direct route
to the digital input.

QUICK TIP

1
1

5
5

10
10

15
15

20
20

25
25

30
30

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

13 12 11 10

9 8 7 6 5 4 3 2

L

5V A
0

ANALOG IN

A
R

E
F

1

G
N

D

TX
RX

R
E

S
E

T

3V
3

A
1

A
2

A
3

A
4

A
5

V
IN

G
N

D

G
N

D

DIGITAL (PWM=)

Arduino TM

IO
R

E
F

IC
S

P

ICSP2

ON

POWER

01
TX

0

R
X

0RESET

 A good practice for developers is to use constants to store values used in multiple
places in a sketch. The BTNPIN constant is a good example for this; by pulling the
value into a constant defined at the beginning of the sketch, you make it easy to
change this value if the hardware configuration changes (if you connect the button
to another digital input pin, for example). You could skip this step, but if you later
changed the input pin for your project, you’d have to locate every place in the
sketch where it’s used, then change each instance. For this small sketch it’s not
that big of an issue, but for larger sketches it’s much easier to do it this way and
make one change that affects the whole sketch instead of many little edits, and
potentially missing one.

STAYING CONSTANT

void setup() {
 // initialize digital pin LED_BUILTIN as an
output.
 pinMode(LED_BUILTIN, OUTPUT);
 // initialize the push button pin as an input:
 pinMode(BTNPIN, INPUT);
 // set the initial state of the LED (off)
 digitalWrite(LED_BUILTIN, btnState);
}

In the sketch’s loop function, the code reads the
button status through a call to digitalRead and stores
the result in the btnState variable. Next, the code

http://hsmag.cc/KTioNX
http://fritzing.org

SCHOOL OF MAKING

22 Get Started With Arduino

Reading digital data on the Arduino platform

SCHOOL OF MAKING

uses the value in btnState to set the LED status using
a call to digitalWrite. When btnState is LOW, the
code turns the LED off; when HIGH, it turns it on.

// The loop function runs repeatedly as long as a
sketch is
// loaded and the Arduino has power.
void loop() {
 // Read the state of the button; it's a digital
input,
 // so possible returned values are HIGH or LOW.
 btnState = digitalRead(BTNPIN);
 // Use the measured value to set the LED state
 digitalWrite(LED_BUILTIN, btnState);
 // This whole function can be simplified to the
following
 // single line of code:
 // digitalWrite(LED_BUILTIN, digitalRead(BTNPIN));
}

The code, as shown, breaks that action into two
steps: reading the value from the input pin into a
variable, then using that variable value to set the
output on the default LED pin. That’s a great way to
do it when you’re illustrating how to do something,
but you’ll use less memory and get better
performance in your sketch if you consolidate the
two steps into one, as shown in the commented
line in the code (shown here uncommented):

digitalWrite(LED_BUILTIN, digitalRead(BTNPIN));

Here, the result from the call to digitalRead is
passed as an input to digitalWrite. You won’t get
tremendous performance benefit doing this here
but, for larger sketches, especially when you’re
bumping up against memory limits on the Arduino
device, it’s a useful approach.

PUSH TO START
Push-buttons are mechanical devices, and as
you’re pushing or releasing the button, there’s no
guarantee that the Arduino can get a solid reading
every time the button is pushed or released. To
accommodate this, you can adjust your sketch so it
debounces the button connection, ensuring that the
button has been pressed for a minimum number of
time before triggering a change in LED status.

In the following example, we’ve enhanced the
previous example to include debouncing; you can
find the complete code for the following example
at hsmag.cc/pEzXyu.

At the beginning of the code, the sketch defines
the same BTNPIN constant and btnState variable
used in the previous example. We’ve also added
the prevBtnState variable to keep track of the
previous state of the button, and the ledState to
track the current state of the LED. The lastToggle
variable keeps track of the time the button state
changed. Finally, the DEBOUNCE_DELTA constant
defines the number of milliseconds the sketch
waits before it believes in a reading from the
button. You’ll see all of these in action later in
the sketch.

// BTNPIN defines the Arduino input pin to which
the
// button is connected
const int BTNPIN = 2;
// btnState stores the current button state
(HIGH or LOW)
// initialize it to LOW so the LED stays off
until the sketch
// reads a HIGH state for the button input

Bouncing and debouncing are terms used when describing interactions with electrical
connections like the one we have in the push-button used in this project. As a button or
switch begins a connection or disconnection, there’s an uncertainty in the connection
as the contacts move. A button potentially makes multiple intermittent connections
until the button contacts connect solidly; this is called bouncing. To mitigate bouncing,
Arduino developers implement debouncing, a mechanism used to force a single signal
from the button through some extra code. In this example, the code debounces the
button connection by forcing the application to wait a minimum amount of time with a
connection before considering it to be accurate.

BOUNCING ALONG

Below
The complete circuit
assembled and
running with an
Arduino Uno

http://hsmag.cc/pEzXyu

23

ARDUINO BASICS

Get Started With Arduino

int btnState = LOW;
// A place to store the previous loop's button
state
int prevBtnState = LOW;
// Used to track the current state of the LED
int ledState = LOW;
// Stores the last time the status of the button
changed
unsigned long lastToggle = 0;
// Specifies the amount of time the button must
stay pushed for it
// to trigger the LED on or off. Increase this
value if your LED
// flickers
const unsigned long DEBOUNCE_DELTA = 100; //
milliseconds

The setup function is precisely the same as the
previous example.

void setup() {
 // initialize digital pin LED_BUILTIN as an
output.
 pinMode(LED_BUILTIN, OUTPUT);
 // initialize the push button pin as an input:
 pinMode(BTNPIN, INPUT);
 // set the initial state of the LED
 digitalWrite(LED_BUILTIN, ledState);
}

In the loop function, the code reads the button
using digitalRead, just like the previous example.
Next, the code checks to see if the current state of
the button is the same as it was the previous time
the loop executed. If it isn’t, the code stores the
current time in the lastToggle variable.

AROUND AGAIN
The next time through the loop, if the button state
hasn’t changed, the sketch checks to see how
long its been since the last toggle (by subtracting
the value in lastToggle from the current time). If
the button state hasn’t changed in more than
DEBOUNCE_DELTA milliseconds (if ((millis() -
lastToggle) > DEBOUNCE_DELTA)), then the sketch
knows it has an accurate button reading, and it
toggles the LED.

void loop() {
 // Read the current state of the button
 btnState = digitalRead(BTNPIN);

 // Is the button in the same state as the last
time
 // we came through the loop? No? Then we need

to record
 // the current time (in milliseconds)
 if (btnState != prevBtnState) {
 // store the current time in milliseconds
 //It doesn't matter what the actual time is,
all we need
 // to know is how long did the button stay in
this state
 lastToggle = millis();
 //Reset our previous state, so this check
skips next time
 prevBtnState = btnState;
 } else {
 // OK, the button states (current and
previous) are the same
 // Lets see if they've been the same for
DEBOUNCE_DELTA
 // milliseconds
 if ((millis() - lastToggle) > DEBOUNCE_DELTA)
{
 // the button's been pushed (or not pushed)
for at
 // least debounceDelta milliseconds, so its
time to
 // toggle the LED if needed
 //Is the LED at the same state as the button?
 if (ledState != btnState) {
 // No? Then toggle it
 digitalWrite(LED_BUILTIN, btnState);
 //Then reset the LED status
 ledState = btnState;
 }
 }
 }
}

To test either of these sketches, wire a button
into an Arduino (see Figure 1, page 21). On one
side of the button, the connection shunts from
the 5 V connection through the 10 kΩ resistor to
ground (GND). The other button connection routes
to the digital input pin 2. With the button pushed, a
connection is made from the 5 V source to the digital
input, bypassing the resistor and forcing the circuit
to HIGH. When the button is released, the connection
to the digital input pin disappears, and the voltage
runs through the resistor to ground, making it LOW.

Using the Arduino IDE, upload the code to the
Arduino device and try pushing the button to toggle
the LED on and off. Play around with the value in
the DEBOUNCE_DELTA constant to see how it affects
the sketch’s reaction to the button.

Don’t forget, all of the project source code is
available at hsmag.cc/dMDWFx.

lastToggle and
DEBOUNCE_DELTA
are both long
integers because
the sketch
uses them to
calculate time
deltas, and time
values are very
large integers.
Even though
DEBOUNCE_DELTA
is a small number
(comparatively),
since the sketch
will be doing
arithmetic using
those values,
we made them
the same type
to avoid any
conversion
issues.

DELTA
BIG

The Arduino’s
millis() method
retrieves the current
time in milliseconds
since the Arduino
started running the
current sketch; it
doesn’t give the
sketch an accurate
time, but does let
the sketch track
how long it has been
since a previous
measurement.

QUICK TIP

http://hsmag.cc/dMDWFx

Arduino programming: Seven-segment displays and multidimensional arrays

Get Started With Arduino

SCHOOL OF MAKING

24

Arduino programming:
Seven-segment displays
and multidimensional arrays
Get meaningful output out of your projects and master interdimensional data storage

Graham Morrison

@degville

Graham is a veteran
Linux journalist who is
on a life-long quest to
find music in the perfect
arrangement of silicon

YOU’LL NEED

Kingbright
SC10‑EWA

Arduino Uno

7 × 220 Ω
resistors

Breadboard

Connectors

Left
You can get RGB
seven-segment
displays that have
separate pins for the
red, green, and blue
LEDs in each segment

Get Started With Arduino

https://twitter.com/degville

25

ARDUINO BASICS

Get Started With Arduino

W
hen it comes to programming
the Arduino, one of the most
important skills to master
is taking a physical problem
and then constructing a
solution that can be expressed

efficiently in code. This gets easier with hardware
and code experience, but it’s important to note that
whether you’re an expert or a complete beginner,
your first solution is highly unlikely to be the best, and
in most cases a project may be completely rewritten
once, twice, thrice, even four times. Each successive
rewrite will incorporate the experience learned from the
previous version, as you begin to better understand how
to make your solution work.

This is what makes variable types, and the related
subject of data structures, so important. Not only do
they enable you to write code that makes the most
efficient use of your hardware, they allow you to more
accurately define your solutions in code. For example,
it’s perfectly acceptable to use an ‘int’ type to store
which Arduino digital pin to use for an LED. But, as the
typical Arduino only has around 14 digital pins, using a
variable capable of holding any whole number between
-32 768 and +32 767 is considerable, especially when
Arduinos have so little RAM. And there’s a variable type
that works the same and takes less space: the ‘byte’
type holds an 8-bit unsigned number and, if you can
remember your binary mathematics, this works out to
be a number between 0 and 255. It’s not perfect, but
it’s more memory-efficient and easier for readers of
your code to understand and modify because you’ve
set limits on how the variable should be used. Creating
structures that have limits is one of the cornerstones of
object-oriented programming.

To put this idea into practice, and explore further
how variables are used in a working example, we’re
going to create a simple foundation project that can
be used at the heart of many more ambitious projects.
The reason why this project can be used in so many
others is because it takes the simple idea behind
every basic Arduino LED example and expands upon
this to build a fully fledged output device capable of
representing many different alphanumeric characters.
The simple component used to perform this magic is
the humble seven-segment display, as used on the
Apollo spacecraft, pinball machines, and microwave
ovens. With a seven-segment display, your devices can
communicate with the outside world, whether that’s a
temperature or volume reading, or the radiation level on
your Geiger counter. In fact, a seven-segment display
would be the perfect upgrade to the temperature sensor
project described in HackSpace issue 3 (hsmag/issue3)

A seven-segment display is really little more than
seven LEDs in a single package, or eight if you
include a decimal point. Pins alongside two edges will
correspond to either the negative or positive input pins
for each LED, dependent on whether your display uses
a common anode or common cathode path. This type
difference dictates whether a segment/LED is lit by
either grounding the pin, or by providing it with 5 volts
(respectively). In our example, we’ll be using the more
usual ‘common cathode’ type, but the wiring can be
simply inverted if you find yourself with the opposite
kind of display.

WIRING UP
Getting the polarity of an LED correct is vital, and
the same is true with a seven-segment display. The
only real difference is that with a seven-segment
display, all seven of those LEDs are fused into either
common anode or common cathode, and you need to
get this correct for the whole thing to work. Only the
specification of your displays will tell you which way
around you’ll need to wire the display and which pins are
used for common ground or power, but it should still be
a very simple circuit to wire. With our specific hardware,
one pin connects to ground (GND) on the Arduino while
the majority of the remaining pins connect to Arduino

A seven-segment display is
really little more than seven

LEDs in a single package,
or eight if you include a

decimal point

”
”

As the specification
for our display allows
for 5 V per segment,
we don’t need to use
any resistors. But
yours might not be
the same.

QUICK TIP

13

12

11

10

9

8

7

6

5

4

3

2

L

5V

A0

A
N

A
LO

G
 IN

AREF

1

GND

TXR
X

RESET

3V3

A1

A2

A3

A4

A5

VIN

GND

GND

D
IG

ITA
L (P

W
M

=
)

A
rduino

TM

IOREF

ICSP

IC
S

P
2

O
N

P
O

W
E

R

0

1TX0

RX0

R
E

S
E

T

Below
For a common
cathode display,
Arduino digital
pins 2,3,4,5,6, and 7
should connect with
segments a,b,c,d,
e,f,g respectively,
plus ground

Arduino programming: Seven-segment displays and multidimensional arrays

SCHOOL OF MAKING

26 Get Started With Arduino

digital outputs 2–7 via 220 ohm resistors (that prevent
too much current flowing through the LEDs). The
usual configuration sees the pins wired clockwise
from the top, but this should also be described in
your display’s specification document. Don’t worry if
you can’t make sense of which pin is responsible for
which segment – see the ‘Which segment is which?’
box on page 29 for how to work this out manually.

Which leaves us with the code. Writing the code
for lighting an LED connected to a digital pin on the
Arduino has been covered many times before, and
specifically in HackSpace #3. A single variable holds
the pin number which is used as an argument within
a function called digitalWrite to send either an on
or off signal to the pin. We could approach a seven-
segment display in exactly the same way, creating
seven separate variables to hold the pin numbers and
then writing seven different function calls to either
turn on or turn off the specific elements within the
display. And this is where both knowledge of the
programming language and experience with design
comes in, because computers and their programming
languages are developed to solve this exact type of
repetitive problem.

We’ll start off by introducing an array. The good
news is that if you’ve done any kind of programming
before, you’ll already be familiar with arrays. An array is
a series of values, all of the same type, encapsulated
into a single variable. By defining an array, you don’t
have to go through the lengthy process of creating
and assigning values separately, plus the compiler
that turns your code into a binary file can usually
make more efficient use of an array. It can ask for ten
consecutive chunks of memory, all of the same size,
for example, rather than ten individual requests that
may be scattered about in memory. The consecutive
nature of data stored within an array is often reflected
in the way a programming language will let you
automatically step through one, or access values within
an array via an offset.

ARRAY WE GO
You define an array just like any other variable, except
you need to specify the size of the array (so that the
memory can be reserved for the correct number of
values), and the values for each position within the array.

For example, the following creates an array called
segPin that holds seven values, each of the type ‘byte’:

const int segPin[7]={1,7,5,4,3,2,6};

As you can guess, segPin holds the number of each
Arduino digital pin that’s connected to the seven-
segment display, following the clockwise wiring of the
segment order. Pin 1, for instance, is connected to the
pin that activates the segment labelled ‘a’. The reason
why our example isn’t a sequential set of numbers is

A

B

C

D

E

F

G

DP

Above
All seven-segment
displays use the same
lettering for the same
segments, so that
characters can be
shared between them.
Image credit:
CC-BY-SA h2g2bob/
Wikimedia.org

Right
Defining all your
data at the start of
an Arduino sketch
makes it easy to find
and update if your
hardware changes

http://Wikimedia.org

27

ARDUINO BASICS

Get Started With Arduino

purely to do with the way we wired the circuit, and
more organised builders would surely connect 1 to a, 2
to b, and so on. We, however, got our cables crossed
at some point and this is reflected in the order of the
array. If you wire them in order, simply replace the array
with {1,2,3,4,5,6,7}. And because these pin assignments
aren’t going to change while the code is running, we’ve
made the type ‘constant’, as covered in HackSpace #4.

An array can be used just like any other variable
except that rather than using the name of the array
alone, you need to also target a specific element within
the array within square brackets. To set the pin mode
of the first element within the array to ‘OUTPUT’, for
instance, you’d use this:

pinMode(segPin[0], OUTPUT);

Infamously, arrays and lots of other sequential
programming elements start at zero rather than one,
so the above code is setting the pin mode of the first
element (coincidentally, digital pin 1) to OUTPUT. So
far, this is no different to using a regular variable. We
could copy this line seven times and update the array
reference number to run through the list of pins, just
as we would with variables. But the array reference
number is a clue. By making this a reference to another
variable which we then increment to step through
every element of the array, we can construct a much
smaller and more efficient loop. Here’s the code that
does exactly that:

void setup(){
 for (int i=0; i<=7; i++){
 pinMode(segPin[i], OUTPUT);
 }
}

We’ve tucked the above code within the setup()
function, as this is called automatically when your
sketch starts. It’s perfect for doing initialisation,
such as setting pin modes, which is exactly what
we’re doing here. We’ve replaced the specific
element value of the array, 0, with a variable called
i. This variable is initialised within the arguments
of the for command, which is probably one
of the most common logical constructs of any
programming languages. The for statement will
simply repeat through the code that follows within
the curly braces for as many times as defined by an
increment counter initialised within the brackets.
This initialiser always seems a little arcane, but
regardless of language, it’s only ever really saying,
“take this variable, check it doesn’t meet these
requirements, and increment (or decrement) until it
hopefully does.”

In our example, we’re creating the variable i with
an initial value of 0. The for loop will then run while i
remains less than 8 (our array holds elements 0 to 7,
so the loop will stop before i gets to 8) and after each
run will increment i by 1. This is what i++ means; ++
and -- are special kinds of operators, known

Left
Multiple seven-
segment displays may
be multiplexed, and
this allows them to
run on fewer pins at
the expense of more
complex code

A seven-segment
display is actually
capable of
representing 127
different patterns
– enough to
create your own
alphanumeric code!

QUICK TIP

Arduino programming: Seven-segment displays and multidimensional arrays

SCHOOL OF MAKING

28 Get Started With Arduino

as compound operators, that take a single operand
and either increment or decrement the value by
1. They’re almost shorthand for i = i + 1 or i =
i - 1 with one exception: if the ++ is placed after
the variable, the variable is incremented after any
evaluation. If the ++ comes before the variable, the
variable is incremented before any evaluation. The
following code should make this clearer:

1. i = 1;
2. j = i++;
3. j = ++i;

On line 2 above, j is assigned the value of i
before i is incremented, making j equal to 1 while
i equals 2. On line 3, i is incremented before any
evaluation and then assigned to j, making both i and
j equal 3.

The only code executed within the curly braces
after the for definition is a single line, almost
identical to the line we used earlier to set the mode
of pin 0. The difference is an individual character
where we’ve replaced the absolute value of 0 for

the first element in the array with i. It shouldn’t take
much to guess that as for loops over each iteration
of i, this value will step through 0,1,2,3,4,5,6, and
7, assigning all the Arduino pins we’ve configured to
output with a single line. That’s why arrays can be
so powerful and why, as your projects become more
complex, you can save yourself a lot of time and pain
by simply choosing the best data structures. Such as
the one in our next step – two-dimensional arrays!

THE SECOND DIMENSION
So far, we have used an array to store the pin
allocation for the connections to the seven-segment
display. The next step is to send on and off signals
to the various elements within the display to create
some meaningful output. As you will already know,
despite being only a grouping of LEDs, the layout
and design of these means a seven-segment display
is capable of generating lots of recognisable output,
easily showing the numbers 0–9 and the characters
a–f. This perfectly corresponds to the base 16 or
hexadecimal numeral system, with characters (a–f)
representing the values (10–15) respectively, and
this is what we’re going to code our display to show.

We could easily use an array to store each of
these 16 characters. For example, the following
creates an array of type ‘bool’ to hold either an on (1)
or off (0) value for each pin connected to the display:

A seven-segment display is capable of generating
lots of recognisable output, easily showing the
numbers 0–9 and the characters a–f

”
”

Right
Seven segments not
enough? You can
display a full range
of alphanumeric
characters on a
14-segment display

29

ARDUINO BASICS

Get Started With Arduino

bool segNum[7]={1,1,1,1,1,1,0};

If you were to display the above using a for loop
similar to the one we created earlier, you would see
the number 0, which you can guess because there’s
only one element not lit – the middle element of the
seven-segment display.

We could go on and create arrays for every character
we want to display along with for loops and functions
to handle them. But this would be horribly inefficient
and tedious to implement and maintain. You might
think that we’ve already played the array card, but they
have the answer once again. Just like a line on a single
axis is said to have a single dimension, an array has a
single dimension if it only has one set of elements. But
like a line with two dimensions, x and y co-ordinates
for example, an array can have two dimensions and
even more.

Here is the code for an array with two dimensions,
the first for the 16 characters we want the array
to store and the second for the seven on/off pin
configurations for each character:

bool segNum[16][7]={
{1,1,1,1,1,1,0}, {0,1,1,0,0,0,0},
{1,1,0,1,1,0,1}, {1,1,1,1,0,0,1},
{0,1,1,0,0,1,1}, {1,0,1,1,0,1,1},
{1,0,1,1,1,1,1}, {1,1,1,0,0,0,0},
{1,1,1,1,1,1,1}, {1,1,1,1,0,1,1},
{1,1,1,0,1,1,1}, {0,0,1,1,1,1,1},
{1,0,0,1,1,1,0}, {0,1,1,1,1,0,1},
{1,0,0,1,1,1,1}, {1,0,0,0,1,1,1},
};

As you can see if you follow the curly braces, the
first set holds the outside array of 16 elements, each
held within its own smaller seven-element array. You
can even add more dimensions to an array, but like
multidimensional space-time, these arrays become
very difficult to conceptualise.

The only problem we now have left to solve
is augmenting our for loop to handle all this
interdimensional space. This is easy if we put the
whole thing into its own function:

void displayNum (int number) {
 for (int i = 0; i < 8; i++) {
 if (segNum[number][i]) {
 digitalWrite(segPin[i], HIGH);
 } else {
 digitalWrite(segPin[i], LOW);

 } } }

The above code expands on the earlier for loop in
several ways. Firstly, it’s encapsulated the logic within
a function. This means we can call displayNum(4)

whenever we need the number 4 displayed, rather
than repeating the same old code. Within the function,
the for loop steps through a counter for each pin, only
this time there’s an extra if and else command. These
reference our two-dimensional segPin array to check
whether a pin should be set to on (HIGH) or off (LOW),
and they do this using the two sets of the same
square brackets used to create the array. Only this
time, rather than setting the size of the array, they’re
used to reference a specific element. Keeping with
our two-dimensional line theory, this is equivalent to a
specific x and y location. The trick is that this location is
defined by the number passed to the function, used to
point at the character we want to draw, and the value
of i which is being incremented by the for loop so that
each pin can be set separately.

All that is now left to do is write the central loop
function that the sketch calls automatically and use this
to call the new displayNum function, ideally stepping
through all the characters we can now step through on
our seven-segment display:

void loop() {
 for (int i = 0; i <= 15; i++) {
 displayNum(i);
 delay(500);
} }

The schematics for elements like a seven-segment
display can be difficult to follow. For this reason,
you might find it easier to work out which pin
goes where with a brute force approach. This
is actually what we had to do and why the array
that holds the order of pin connections is in a
strange order.

The easiest way to do this is to take the code
from this tutorial and replace the two-dimensional
array holding the characters with the following:

bool segNum[10][7]={
{1,0,0,0,0,0,0}, {0,1,0,0,0,0,0},
{0,0,1,0,0,0,0}, {0,0,0,1,0,0,0},
{0,0,0,0,1,0,0}, {0,0,0,0,0,1,0},
{0,0,0,0,0,0,1}, {0,0,0,0,0,0,0},
{1,1,1,1,1,1,1}, {0,0,0,0,0,0,0},

};

When you run this code, the seven-segment display
should light up each element in order, a–f. You just
need to change the pin array variable so that what
you see follows the same order and then everything
else will work automatically.

WHICH SEGMENT IS WHICH?

The code for this
project can be found
at the following URL:
git.io/vAS8Y

QUICK TIP

http://git.io/vAS8Y

Arduino programming: multiplexing, operators, and four seven-segments

SCHOOL OF MAKING

30 Get Started With Arduino

Arduino programming:
multiplexing, operators,
and four seven-segments
Use the simple power of operators to multiply your project's capabilities without adding code

I
n the previous tutorial, we had fun
getting a seven-segment display to work
and writing the code to make it show
something useful. This time we’re going
to expand on those foundations to build
something four times better. Four times

better exactly, in fact, as we’re going to upgrade our
hardware from a single digit to four, transforming the
humble seven-segment into something capable of far
more – numbers up to 9999 in base ten, and even a
few words.

The first thing that likely crossed your mind with this
plan, apart from trying to work out which swear words
can be shown, is how this is all going to be wired to a
humble Arduino. If you followed our tutorial last time,

you’ll know that we needed to use a total of eight
pins on the Arduino to control the display, exactly as
we would if we were driving seven LEDs separately,
which is all a seven-segment display really is. With
eight pins taken, there aren’t enough remaining on
a normal Arduino to handle another seven-segment
display, let alone another three. So how is it going to
be done? The answer to this is multiplexing (see the
‘Multiplexing’ box on the next page for details of how
this works).

Graham Morrison

@degville

Graham is a veteran
Linux journalist who is
on a life-long quest to
find music in the perfect
arrangement of silicon

Below
With multiplexing, you can light up more LEDs than you've got
pins for. Bring on the blinkenlights!

https://twitter.com/degville

31

ARDUINO BASICS

Get Started With Arduino

The main problem with multiplexing is that you can
only turn on one segment at a time. Turn on any more
and other segments on other digits will also light up.
The solution to this is to light each LED briefly as
part of a cycle through the LEDs that need to be lit.
It may seem remarkable in an age where computers
take seconds to boot and webpages minutes to load,
but the Arduino can do this quickly enough that the
persistence of vision effect, where your eyes still see
an object for a brief moment after the object is no
longer visible, makes them appear solid.

The specific unit we’re using is a 3461BS four-digit
seven-segment display, although each digit also has
a decimal point. This unit has twelve pins, six on the
top edge and six on the lower edge, and while other
four-digit displays may place these pins in different
locations, the physical configuration will be the same
after you’ve identified (from the unit’s specification
sheet) which pin does what. The specification for our
display uses pins 1,2,3,4,5,7,10, and 11 for segments
E, D, decimal point, C, G, B, F, and A respectively,
and pins 6, 8, 9, and 12 for the common cathode

or anode. Those last four connections are going to
be used to multiplex the limited digital connections
from the Arduino to the display. See the Wiring box
(overleaf) for more details on how to connect these to
the pins on your Arduino.

CODE WORDS
With everything wired up, we can finally start
playing with some new code. Rather than start from
scratch, we’re going to augment the code from
the previous tutorial, both to avoid repetition and to
provide some continuity, but the code can be grabbed
from git.io/vAS8Y.

With the old code loaded into the Arduino IDE,
we’re going to start at the top of the file with
something we should have added initially – code
to automatically handle whether your seven-
segment display uses a common anode or common
cathode configuration, as explained last time.
As programmers, we should be making as few
assumptions about the people using our code as
possible, and that often means making things that
could be specific more generic. In this case, we start
by setting a global true of false value for whether a
common anode display is being used:

const bool ANODE = true;

This line does nothing on its own but, like the array
we used to hold the pin order for the connections,
it’s used by later logic to change the behaviour of the
code. If we were using old-school C, we’d typically
use a #DEFINE statement to declare a global constant
value like this. The compiler then effectively swaps
a defined value whenever it is referenced within the
code. But for Arduino’s Processing language, const is
recommended as it better obeys the rules of variable
scoping, which means they’re far safer when working
with multiple files.

BITWISE OPERATORS
The only part of the code that cares whether the
display we’re using is common anode or cathode is
the part that sets the HIGH or LOW values for the
segments. This is because a common anode display
requires the opposite signals to the common cathode.
The behaviour can be described using something
called a ’truth table’, which is a very useful tool for
understanding your hardware requirements and how
they might best be implemented in code. In our case,
a truth table can be used to show how we want to
reverse the output depending on whether we’re using
a common anode configuration or not. Using 0 for off
and 1 for on, the table would look like the following:

YOU’LL NEED

1 × 3461BS display

7 × 330 Ω resistors

20 × patch cables

Arduino Uno

MULTIPLEXING

Multiplexing allows you to drive multiple LEDs, ergo
multiple seven-segment displays, by taking advantage
of the way LEDs use a potential difference in voltages
to activate rather than just simply being ‘on’. This
dependence on a differential means that if the two
pins connected to a segment are set the same, such
as both being set to HIGH or LOW, the LED won’t
light, whereas any difference in the two connections,
such as LOW and HIGH or HIGH and LOW, will light
the LED. This behaviour can be exploited by wiring
multiple LEDs or segments to a grid of crossing
connections. As long as each pair of connections is
unique, such as (A,B), (A,C), (B,C), the specific LED
using those connections can be targeted. This saves
your breadboard doubling as a tapestry loom, but
it also means you can drive many more LEDs with
the Arduino’s humble allotment of digital I/O pins.
However, there’s one significant caveat: only one
element or segment can be lit at any one time. Try to
turn on more than one and the crosstalk in the wiring
matrix will light other segments too.

http://git.io/vAS8Y

Arduino programming: multiplexing, operators, and four seven-segments

SCHOOL OF MAKING

32 Get Started With Arduino

 A B Output
1. 0 0 LOW
2. 0 1 HIGH
3. 1 0 HIGH
4. 1 1 LOW

1. If the segment is off (A=0) and the display
isn’t common anode (B=0), output is LOW.
2. If the segment is off (A=0) and the display is
common anode (B=1), output is HIGH.
3. If the segment is on (A=1) and the display isn’t
common anode (B=0), output is HIGH.
4. If the segment is on (A=1) and the display is

common anode (B=1), output is LOW.

The reason for mapping everything out like this is
that the simple behaviour described in truth tables can
be mapped to special logical operators in code. You’re
likely already familiar with the logical operators AND
and OR – they turn on output depending on where

input 1 AND input 2 are on, or they turn on output if
either input 1 OR input 2 are on, including both inputs.
Their truth tables look like the following:

A B AND A B OR
0 0 0 0 0 0
0 1 0 0 1 1
1 0 0 1 0 1

1 1 1 1 1 1

In Arduino C, the operators that process this simple
input are looking at individual bits, the true and false
values, and these actually correlate to low-level gates
and low-level code. This makes these operators
incredibly efficient, which is why it’s always worth
attempting to refactor your code into these simple
computational terms.

Going back to our example and the requirement we
have to reverse the input for common anode displays,
the first truth table correlates exactly to an operator
called XOR, or exclusive ‘or’. The X differentiates this
operator from the ordinary OR above by not including
a positive output when both the inputs values are on
(or 1 in the truth table).

We’re going to use this operator in a new function
that isolates the digitalWrite commands:

void setSegment(int pin, bool state) {
 if (state ^ ANODE) {
 digitalWrite(pin, HIGH);
 } else {
 digitalWrite(pin, LOW);
 }
}

The XOR operator appears on the second line as
the circumflex symbol (^). The function itself is called
with two arguments: the pin to send the signal to
and whether that pin needs to be HIGH or LOW.
The efficiency comes because we can question both
the requested state and whether the values need
inverting with the XOR command, which is going to
act exactly like the first truth table.

FOUR TIMES SEVEN
We now need to augment our original routines to
handle both the new digits and what will be our
method of rendering them. This starts with a new
array to hold the pin numbers for the connections
to the common anode or cathode. This array will
be called digPin and the backwards order we’ve
used – 13, 12, 11, and 10 – is intentional as these
are connected from least to most significant digits
respectively, which will help when we write the
program logic. Also, we’re updating the pin values

WIRING

To wire this up, connect the following Arduino pins to
those segments indicated on the display, via a 330 Ω
resistor. These aren’t required for the common anode/
cathode pins 10–13:

2 -> A
3 -> B
4 -> C
5 -> D
6 -> E
7 -> F
8 -> G

10 -> D1
11 -> D2
12 -> D3
13 -> D4

While we definitely
recommend the
use of resistors to
keep your displays
and Arduino safe,
segments are
only turned on for
milliseconds, which
means you could get
away without them.

QUICK TIP

Right
The exact wiring
will depend on the
specification and pin
configuration of your
specific display

33

ARDUINO BASICS

Get Started With Arduino

we used in the segPin array as we’ve reorganised our
circuit to use sequential pin ordering rather than the
random plug and pray approach used last time:

const byte segPin[8] = {2, 3, 4, 5, 6, 7, 8, 9};
const byte digPin[4] = {13, 12, 11, 10};

The setup function also needs to be updated to
initialise the new pins we’re using. To do this we just
add another for loop to handle the pins used to target
the separate digits:

void setup() {
 for (int i = 0; i < 8; i++) {
 pinMode(segPin[i], OUTPUT);
 }
 for (int i = 0; i < 4; i++) {
 pinMode(digPin[i], OUTPUT);
 }
}

The next new functions we’re going to add will
be used to display a number on one of the four
displays, rather than displaying a number on the
single display we coded last time. The big difference
in this implementation is the multiplexing, and this
is accomplished by first making the common pin for
the digit ‘HIGH’, writing the number to the seven-
segment display, waiting a period for the number to
remain visible, and then setting the common pin to
LOW to terminate the drawing process.

Here’s the code:

void displayDigit(int digit, int number) {
 digitalWrite(digPin[digit], HIGH);
 for (int i = 0; i < 8; i++) {
 setSegment(segPin[i], segNum[number][i]);
 }
 delay(5);
 digitalWrite(digPin[digit], LOW);
}

The delay function pauses execution of the code,
allowing the character on the display to linger for a
set number of milliseconds. The 5 milliseconds we’re
using is virtually imperceptible to the human eye, but
if you wanted to see how the multiplexing works, set
this to something like 200 (a fifth of a second) and
watch each seven-segment display update with each
different number.

The final piece of this puzzle is to transform the
displayNum function we used last time to adapt to
the four digits rather than a single one. The main
job of the new additions will be to split a four-digit
number, such as 2543, into its constituent digits,
which can then be sent individually to each display.

To do this, we’re going to rely on another incredibly
useful operator, the modulo, which uses the percent
character (%). Modulo will return the remainder of a
division, rather than the number of times one number
goes into another. This makes it useful in loops as a
zero is often interpreted as false, but it’s also perfect
for peeling off digits. 1234 % 10, for example, will
return the last digit, 4. If we then divide the number by
10 and run the modulo again, we’ll get the next digit.
And that’s exactly what we do in this function:

void displayNum (int number) {
 int tens = 0;
 while (tens < 4) {
 displayDigit(tens++, number % 10);
 number /= 10;
 }
}

The above code includes one last new operator,
the /= operator. This is closely related to the iterative
operators we looked at last time, but instead of
incrementing a value, here we divide number by 10 and
assign the result to number in a single command.

All that’s now left to do is update the main loop
to remove the delay and count to an appropriately
large number. This is as simple as changing it to
the following:

void loop() {
 for (int i = 0; i <= 9999; i++) {
 displayNum(i);
 }
}

With that done, upload the code to your Arduino and
pretend you’ve got the ultimate Geiger counter. The
code can be found here: git.io/vxMZ6.

Above
We’ve used the
cheap and readily
available 3461BS
for this project, but
almost any other
quad seven-segment
display will work

If you connect the
segment pins to
the same Arduino
pins we used last
time, you won’t
need to modify your
character or pin
order code.

QUICK TIP

git.io/vxMZ6

Arduino programming: temperature, humidity, and libraries

SCHOOL OF MAKING

34 Get Started With Arduino

Arduino programming:
Temperature, humidity,
and libraries
Add temperature and humidity readings by summoning external expertise
and knowledge, with just a few lines of your own code

I
n the previous tutorial, we applied our
nascent C programming skills to extend
what we’d learnt about seven-segment
displays into controlling four seven-
segment displays concurrently, all from
the same Arduino Uno. We finished with

the display counting from 0 to 9999 over and over,
like a 5 volt Sisyphus. This means we now have the
ability to display a four-digit number. Or maybe two
smaller ones side by side...

For the first time, rather than simply using the
Arduino to manage a fancy set of LEDs, we’re going
to use it to measure something and then display the
product of those measurements. And to do that,

we’re going to turn our seven-segment displays into
both a temperature gauge and a humidity monitor.
The hardware component we’re building this project
around is a DHT11 sensor module. These are cheap
and readily available, and the concepts we use to
interface one with the Arduino are almost universal.

The module itself combines both temperature
and humidity sensors, and the great thing about
this module is that it’s incredibly easy to use.
They’re pre-calibrated, for instance, which means

Graham Morrison

@degville

Graham is a veteran
Linux journalist who is
on a life-long quest to
find music in the perfect
arrangement of silicon

Below
The exact wiring will depend on the specification and pin
configuration of your specific display

https://twitter.com/degville

35

ARDUINO BASICS

Get Started With Arduino

we don’t need to worry about the validity of the
values we receive, and they send the values when
asked correctly. Connecting one to your own
projects couldn’t be easier either, as there’s only a
single digital pin that needs to be connected to the
Arduino. This pin handles all the communication
between the modules and the Arduino, with the only
other connections being 3 V to 5 V VCC for power
and GND for a ground connection, both of which
can be supplied by the Arduino. A four-pin variant is
also available, but the extra pin can be ignored. The
specification also recommends the use of a 5 kΩ
pull-up resistor connected to the data wire.

HARDWARE
The reason why we’ve chosen the DHT11 rather
than one of its more capable siblings, such as the
DHT22, is that the DHT11 returns only integer

WIRING IT ALL UP
The data line to the sensor can be up to 20 metres
long, which may be useful for garden readings!

The circuit for this project builds on the one from
the previous tutorial, adding a DHT11 temperature and
humidity sensor. The three pins of this sensor need to
connect to the 5 V and GND provided by the Arduino,
with the data pin connected to digital pin 2 on the
Arduino. The specification for our sensor also needed
a 5 kΩ resistor between the 5 V and data wires, with
an optional 100 nF capacitor between power and GND
for power filtering.

Above
See the temperature
and humidity
changes in real time
on your seven-
segment display

The module itself combines
both temperature and

humidity sensors, and the
great thing about this module is

that it’s incredibly easy to use

”

”

Arduino programming: temperature, humidity, and libraries

SCHOOL OF MAKING

36 Get Started With Arduino

temperature and humidity values. This would be
limiting if you need a monitor with more precision,
such as a temperature sensor attached to a beer
fermenter, but it’s accurate enough for our needs.
In fact, as we’re intending to connect the sensor
output to four seven-segment displays, we only have
four digits to play with – we’ll put the temperature
on one side and the humidity on the other. This
makes the DHT11 perfect for our needs. But you
can easily extend its capabilities by swapping out the
sensor and just using the temperature value across
four digits, or even setting up a line of LEDs to act as
a bar graph for today’s temperature.

We’re now going to dive into the code to get
this project to work. Normally, at this point, we’d
need to deconstruct exactly what’s happening with
our circuit. In the previous tutorial, we covered
multiplexing; for example, as a way to connect the
multiple segments in the display with the limited
number of digital pins on the Arduino. Similarly, we
would ordinarily need to understand exactly how
to communicate with the DHT11 and interpret any
data the sensor sends back. This would itself be
a complex job, even for a simple sensor like the
DHT11. It uses a single pin – a 1-Wire data bus – to
both receive signals and to send the data, which
would require us to understand the protocol it uses.

If you’re lucky, the protocol is well defined and
even supplied by the manufacturer, leaving you to
implement the code in whatever way works best for
you. But often, these protocols aren’t documented
and will need to be reverse-engineered, either
through experimentation or by analysing the input
and outputs of a sensor in a working configuration.

Fortunately, most manufacturers of the DHT11
also provide a very informative datasheet that
not only covers the hardware specification and
tolerances, but also the details of communicating
with the sensor across the 1-Wire data bus. By
reading this specification, you find out that the
sensor needs a whole second with no signal to pass
an initial ‘unstable’ status, and then you can send a
signal to the bus lasting more than 18 ms in order to
instantiate a request. The response signal is a 40-bit

Right
The DHT11 contains
a calibrated
temperature and
humidity sensor,
and can operate
over 20 metres from
your Arduino

You will have come
across libraries
on your favourite
operating system
too, but these are
typically the compiled
object files generated
from the source
code that other tools
can compile against
to access their
functions without
having to be built
against the library’s
source code.

QUICK TIP

Fortunately, most
manufacturers of the

DHT11 also provide a very
informative datasheet

”
”

37

ARDUINO BASICS

Get Started With Arduino

packet that contains both the relative humidity and
the temperature. But we don’t have to worry about
any of this, thanks to what are known as libraries.

LIBRARIES
Previously, we’ve broken our code into functions
that act as self-contained units that we call
whenever convenient. We call function displayNum
to show a number on the seven-segment display,
for instance. We don’t need to worry about how
the LEDs are triggered, or how the numbers are
displayed or sorted, or even how the delays are
handled for multiplexing – we simply call the
function with a single argument to pass the number
we want shown. We could extrapolate this function
into its own file by making sure that file contains
all the information and variables it needs. We could
then reuse the file in other projects, or share it with
programmers who want the same functionality
without wanting to constantly reinvent the wheel.
You can see where this is going. C includes (hint)
a way to import the contents of an external file so
that you can access those external functions from
within your code. And that’s exactly what a library
is. In fact, you add a library to your project using the
special #include keyword, usually at the very top of
your source file.

A library is usually a group of functions bundled
with all the necessary definitions, structures,
and variables to make those functions work as a
self-contained piece of code. To keep these parts
isolated from your own code, and to stop parts of
your code falling into the scope of the library –

FLICKERING DISPLAY
One thing you may notice when running this code in this
project, depending on your sensitivity, is that the seven-
segment displays start to flicker. The cause of this is the
processing and waiting delays of our code waiting for
the data from the sensor, and it’s an incredibly common
problem. There’s a direct trade-off in the number of
jobs you ask your Arduino to perform and its ability to
keep up a constant rate of updates with something
like a display. This is why buffers were invented, so
that the buffers can be filled in quiet periods and read
from when the system is busy, and there are certainly
designs that could update the displays from a buffer.
But we can also do a lot in code, and while we’ll look
into more advanced options, such as using interrupts,
in future tutorials, there is one area of our project that
can be improved now, and it’s the delay() call in the
displayDigit() function. This delay was required
to create enough persistence in the display for the
characters to be easily visible, but as there’s now more
processing going on in the body of the code, the delay
can be reduced. We’ve had best results by reducing
this delay to 2 ms, so the code looks like the following:

void displayDigit(int digit, int number) {
 digitalWrite(digPin[digit], HIGH);
 for (int i = 0; i < 8; i++) {
 setSegment(segPin[i], segNum[number]
[i]);
 }
 delay(2);
 digitalWrite(digPin[digit], LOW);

Left
Libraries can be
added manually or
through the Arduino
IDE. They’re brilliant
for making complex
hardware easy to use

Arduino programming: temperature, humidity, and libraries

SCHOOL OF MAKING

38 Get Started With Arduino

and vice versa – a library is split into two files. The
code that does the work is written in the ‘.cpp’
file, analogous to the ‘.ino’ files created by the
Arduino IDE. But the part you import into your own
project using the #include keyword is known as the
interface, and is written in a ‘header’ file that has the
‘.h’ suffix. It’s called the header because the include
command basically pastes its contents into wherever
the command is implanted, which is nearly always
in the header of your source file. The header itself
doesn’t include any functionality at all, but it does
include template definitions for the structure and any
functions and variables that you’re going to use. This
is how the compiler is taught about their existence
and capabilities without including the functionality
in your own code. The ‘.cpp’ will also ‘include’ its
own header file as it fleshes out the template with
the implementation.

You can browse and download libraries
automatically with the Arduino IDE. This feature
is accessed by selecting Use Library > Manage
Libraries from the Sketch menu, and you search for
what you’re looking for, such as DHT11, and click
Install on the result. However, we feel it’s worth
doing this manually the first time so you can see
how it works. Due to the popularity of the hardware,
there are several libraries that make accessing the

DHT11 easy. The one we’re going to use is called
‘DHT Library’, and is has the advantage of being
compatible with the DHT11, 21, 22, 33, and 44
sensors, so you can upgrade the hardware in your
project without having to change large chunks of the
code logic.

Grab the latest dht.cpp and dht.h files from the
GitHub repository: git.io/vpudX.

There are numerous ways to include these files in
your project. You can, for example, create your own
interface and implementation files and place them in
the same directory as your project file. You can then
use the include command with double quotes to add
the library from the current location:

#include "dht.h"

The brilliant thing about
using a library like this is
that now have ‘ourDHT’

created via the definition
in the library

”

”

Right
The specification
for the DHT11
includes analysis
of the single-wire
protocol. Checking
this against the library
implementation is a
great way to learn
new skills

Another advantage of
the 1-Wire data bus
used by the DHT11,
apart from cost, is
that it can run across
huge distances, with
even 20 metres being
feasible. Great for
outside applications.

QUICK TIP

39

ARDUINO BASICS

Get Started With Arduino

The Arduino build environment will also look in the
libraries folder just under where your projects live,
and this is where you’ll find any libraries installed via
the Arduino IDE. This is also where we’ve put our
downloaded dht.cpp and dht.h files, tucked away
within a folder called DHT. As this location is part
of the build environment path, you can include any
libraries stored within the libraries system folder
using the greater than/less than symbols around the
library name, and this is what we’re going to do with
our project, adding the following to the end results
of the code from our previous Arduino tutorial:

#include <dht.h>

OBJECTS
Just as you look at hardware specifications to
understand how to use your components, you can
use a header file to understand the capabilities of a
library and how its features have been implemented.
In particular, dht.h places almost everything within
a ‘class’. We’ve yet to discuss classes like these in
our programming adventure, but we have discussed
all the various components that go into them to
make them useful. A class is a set of functions and
variables all grouped together into something that
operates a lot like its own type. Unlike a header file,
a class is created to be directly assignable within
your own code, allowing values to be set within
its type and operations to be run against its state
without the scope of your own code affecting that
of the class. To add this type to our own project, we
need to add the following:

dht ourDHT;

If you look at the header file for the library, you’ll
see the name given to the class is dht, which we
use in our own code just as we might int or float.
The brilliant thing about using a library like this is
that now have ourDHT created via the definition in the
library, we can very nearly start using our sensor. All
that’s needed, if you read the library documentation,
is a #define statement to tell the class which pin
we’re using for the data line:

#define DHT11_PIN 2

As we’ve discussed previously, a ‘define’
statement is really just a global definition to replace
the string with the value assigned to it, which made
digital pin 2 on the Arduino Uno. That definition will
percolate into the functions with the class so that
everything works correctly. If you’ve got a brilliant
memory, you’ll have already noticed that the same

pin is already being used to drive our seven-segment
display. In fact, we only have one pin free, and that’s
pin 9. We could simply attach the DHT11 data pin to
this and change the define, but we found it easier
to move the wire from pin 2 to pin 9 of the seven-
segment display, followed by updating our array of
pins to reflect this change:

const byte segPin[8] = {9, 3, 4, 5, 6, 7, 8};

We now get to the part where we deal with all the
complexity of working out temperature variations
and connection protocols. Except we don’t. All
we need to do is wait for a ready signal from the
sensor before reading the temperature and humidity
values from the class that’s dealing with all the
complexity on our behalf. To get the temperature,
for example, you could simply use float newtemp =
ourDHT.temperature;. The dot after our class name
means that temperature is a member of the class,
as described by the header. We don’t need to
worry about how this value was placed in ourDHT.
temperature, just that it was assigned to temperature
which we’re now assigning to newtemp. That’s
what’s so brilliant about using libraries. But we don’t
even need to do this, because if we multiply the
temperature by 100 to move it left by two digits,
and then add this to the humidity reading, we can
perform the entire step in the same command that
sends the values to the display.

This means our entire loop() function need only
be two lines long:

void loop() {
 int chk = ourDHT.read11(DHT11_PIN);
 displayNum((ourDHT.temperature*100)+ourDHT.
humidity);

}

And that’s it. As usual, and for brevity, we’ve
omitted any code to error-check the sensor, but this
should really be added as homework. Otherwise,
send the code to your Arduino and we’re done. You
can download the updated source for this project
from git.io/vpzvg.

A class will be
composed of
public and private
elements. As their
names suggest,
public elements can
be manipulated by
your code, while
private elements are
intended only for the
internal workings of
the class.

QUICK TIP

A class is a set of
functions and variables

all grouped together into
something that operates a

lot like its own type

”

”

Arduino programming: Stacks, classes, and scrolling displays

SCHOOL OF MAKING

40 Get Started With Arduino

Arduino programming:
Stacks, classes,
and scrolling displays
Learn new code skills and impress your friends with the coolest
looking thermometer in the land

I
n our previous Arduino tutorial, we
expanded both our C programming
knowledge and our data visualisation
potential by using a library – we stood
on the metaphorical shoulders of
giants and imported code written by

other developers. Rather than being a cheat
or a lazy option, this is how nearly every project
is developed. Libraries, and their close relation,
the API, allow programmers to utilise all kinds of
advanced functionality without having to constantly
reinvent the wheel. Not only that, but you also
benefit from the programming wisdom that goes
into the development of a library, wisdom that can
sometimes stretch generations when dealing with

old system libraries, more true when programming
with C than many modern languages.

We’re going to use a couple of new libraries in
this tutorial to do some magical stuff that would
otherwise take a year’s worth of tutorials. We’ll
use the same temperature and humidity sensor
from before, but we’re moving on from the hipster
austerity of seven-segment displays to a whole
new world of usefulness – a real bona fide screen.
The screen we’re using is known as an SSD1306.
It’s commonly available and costs very little, and
yet has a bright OLED display with a resolution
of 128 × 64. It’s also tiny, making it perfect for
embedded projects where you need to output a
few more details than a couple of numbers. In fact,

YOU’LL NEED

SSD1306
monochrome
0.96” 128 × 64
OLED graphic
display

DHT11 digital
temperature and
humidity sensor

Right
The completed
project shows both
temperature and
humidity, alongside
a chart for recent
temperature changes

Graham Morrison

@degville

Graham is a veteran
Linux journalist who is
on a life-long quest to
find music in the perfect
arrangement of silicon

https://twitter.com/@degville

41

ARDUINO BASICS

Get Started With Arduino

we’re going to use this display to create a real-time
side-scrolling histogram, so you can see changes in
temperature over time with a simple glance.

CODE
We’re going to use two new libraries. The first
is the equivalent of the DHT library, only for the
screen. This allows us to easily access the hardware
without needing to understand or reverse-engineer
the protocol it uses to speak to the Arduino. The
wonderful Adafruit provides this library, and it’s
called Adafruit_SSD1306. The second library is
also from Adafruit, Adafruit_GFX, and provides a
collection of graphics ‘primitives’ for drawing things
like lines, rectangles, and text without needing to
write the algorithms ourselves. Both libraries can
be installed by opening the library dialogue from the
Arduino IDE (Sketch > Include Library > Manage
Libraries…), searching for the library names, and
clicking ‘Install’ from the correct result.

Before we dive into writing our own code,
we need to edit the header files of the
Adafruit_SSD1306 library. Without this edit, our
screen would only display every other line, and
this is because the header is hard-coded to use a
display resolution of 128 × 32 rather than 128 × 64.
To change this, open Adafruit_SSD1306.h (usually
found in Arduino/libraries/Adafruit_SSD1306)
and uncomment #define SSD1306_128_64 by removing
the first two forward slashes (on line 73 in our
version). Add two slashes to the beginning of the
#define SSD1306_128_32 line to comment out the old
resolution and save the file. Your code should look
like the following:

#define SSD1306_128_64
// #define SSD1306_128_32
// #define SSD1306_96_16

With that out of the way, let’s start our own new
project. Although the skeleton of the code is similar
to the previous tutorial, we’re going to be changing
most of the implementation. At the top of the file,

We’re going to use a couple
of new libraries in this tutorial
to do some magical stuff that
would otherwise take a year’s

worth of tutorials

”

”

WIRING

One of the nice things about the
SSD1306 display we’re using, and
many of its derivatives, is that it pushes
straight into your breadboard without
requiring any additional jumpers. The
signal carried by each of its four pins
is annotated across the top of the
screen, and this means you can still
see which pin does what, even with the
board plugged in. This is particularly
important because you need to pay
attention to which pin carries the
power (usually labelled VCC) and which
is for ground (GND). Get these the
wrong way round and you may break
the screen, your Arduino, or both.
You also need to check that power
requirements for your board match the
Arduino – ours is 3 V ~ 5 V DC. Power
needs to be connected directly to 5 V
on the Arduino and ground to the GND
adjacent to this on the Arduino.

However, we also need to connect
the temperature and humidity sensor
to the same power pins. The best way
of doing this is to use the power and
ground ‘rails’ on a typical breadboard.

Two are usually found on the outer edge
of each long side of the breadboard,
and connecting 5 V from the Arduino
to one of these and GND to the other
will deliver the power and ground to
any pin connected across the length
of the rail. With those connections in
place, it’s then as simple as making one
connection from the 5 V rail to VDD on
the screen and another from the 5 V rail
to VCC on the sensor, and the same must
be done for both GND pins.

The screen and the Arduino talk
to each other using the I2C protocol,
and this requires the use of specific
pins on the Arduino. These two pins,
normally labelled SCL and SCA on the
screen, need to be connected to the
corresponding pins on your Arduino,
and these can be different depending
on which Arduino you’re using. As
we’re using an Uno R3, SCL is analogue
pin 5 and SCA is analogue pin 4. Finally,
the data pin on the temperature and
humidity sensor is connected to digital
pin 2 on the Arduino, as it was in the
previous tutorial.

Above
The screen and sensor share the same 5 V
and GND rails on the breadboard

Arduino programming: Stacks, classes, and scrolling displays

SCHOOL OF MAKING

42 Get Started With Arduino

we want to include the two new library header files
alongside dht.h for the sensor:

#include <dht.h>
#include <Adafruit_SSD1306.h>
#include <Adafruit_GFX.h>

Beneath these lines, we’re going to use three
#define statements to bake-in system-wide values
that save us from changing the actual code to
accommodate hardware differences:

#define DHT11_PIN 2
#define SCREENADR 0x3C
#define MAXSTACK 128

The first line sets the pin connected to the
temperature and humidity sensor, the same as in
the previous tutorial. The second line is the I2C
address of the screen. The screen and the Arduino
talk to each other using the I2C protocol, and
because you can connect multiple devices over
I2C, each is differentiated with an address. Ours
is 0x3C. This should be included in your screen
documentation, or even burnt into the PCB, but you
can also run a script to probe any connected I2C
devices and return the address of each device if you
need to (hsmag.cc/kigPeT).

The third statement in the above code is a
precursor to a new and important concept we’re
going to introduce in this tutorial, and that’s

something called a ‘stack’. We’re going to use a
simplified stack to hold 128 separate temperature
measurements, so that we can draw a histogram
of changes in temperature over time. You might
wonder why we don’t use a simple array to hold
these values, but this is because we want the
histogram to scroll in real time as temperatures are
added. If we were to simply update the values in an
array sequentially, the histogram would draw itself
across the screen, left to right, and then simply
reset to the left border of the screen again, as you
see in many such implementations. But a stack
allows us to have a sliding window of values that
follow a leading edge, effectively creating a scrolling
histogram of temperature data. This all sounds
more complicated than the actual code, so let’s take
a look:

class Stack
{
 private:
 int ourList[MAXSTACK];
 int top;
 public:
 Stack() {
 top = 0;
 for (int i = 0; i <= MAXSTACK; i++)
 ourList[i] = 0;
 }

Using the text
function requires
a foreground
and background
colour. Without a
background colour,
when the text
updates it will look
corrupted, but it’s
because old text
pixels are still there in
the background.

QUICK TIP

Right
The display we’re
using is less than an
inch across, which
is ideal for tiny IoT
installations and self-
contained devices

http://hsmag.cc/kigPeT

43

ARDUINO BASICS

Get Started With Arduino

 void push(int item) {
 if (top == MAXSTACK)
 top = 0;
 ourList[top++] = item;
 }
 int peek(int x) {
 return ourList[(top + x) % MAXSTACK];
 }
};

This stack is a list of data that we can keep pushing
data to, and peeking at data in. It will always hold the
most recent 128 datapoints pushed into the stack.

Our stack is implemented within a class. We
discussed classes in the previous tutorial when we
used one to access the DHT11, but in the above code
we’re creating our own. Classes, a little like stacks,
are a huge subject that can even dictate the design of
an entire programming language, but they’re basically
just a way of co-locating data with the functions that
use the data. In our case, that means the data is the
value for each temperature reading, and the functions
add and read values from the stack. If the data and
functions are solely for the use of the class, they’re
defined beneath a ‘private’ specifier, and won’t be
accessible outside the class – this helps hide the
complexity and avoids erroneous access from outside
the class. Conversely, for data and functions intended
to be accessed by you, the programmer, we use
the ‘public’ specifier. In our above class, the push

and peek functions are all public, as we’ll be using
these to create and view our stack. The array
that holds the temperature readings,
ourList, is private, as too is an
integer that holds the
current top array
position of
the stack.

There are
three functions
that are members
of this class. The
first is special because
it takes the name of the
class itself – Stack(). This
is the constructor, and like
setup() in an Arduino project,
it runs automatically when a
class is instantiated. We use this
instantiation to set the internal values
to zero, including every element of the
array. This safeguards against wayward
values being left over in memory or a
previous execution. Although we’ve not used
it here, the opposite function to the constructor
is the destructor, written as ~Stack() in a class
definition, and this function is run when a class is
deleted. As our code only quits when the Arduino is
reset or powered off, we’re saving space and not

If you experience
display problems,
you may need to
use an external 5 V
power source for the
screen, connecting
the common ground
to the Arduino.

QUICK TIP

Above
SSD1306-compatible
screens are cheap
and readily available,
and can even be
found in different
colours and in
multiple colour
configurations

Left
The OLED display
and temperature
sensor in situ on
the breadboard

Arduino programming: Stacks, classes, and scrolling displays

SCHOOL OF MAKING

44 Get Started With Arduino

adding a destructor, but a good programmer uses
the destructor to free up any allocated memory and
generally clean up after themselves.

The push function simply checks to make sure
the top isn’t yet at the maximum stack size value,
and enters the item value at the current top position
before incrementing top to the next array location.
We haven’t implemented pop because it’s not
needed – we’re simply overwriting previous values
in the array. Instead, we have peek to return the

item value at x. The tricky part is that because top
is always changing, x is an offset from the value of
top, which we modulo against the maximum stack
size, to make sure it’s both within range and loops
over when higher. Modulo is very useful for such a
simple operator!

DRAWING LINES
The next chunk of code instantiates three types for
the sensor, our new Stack class and for the screen,
before filling out the Arduino’s setup function. This

STACK OVERFLOW
A stack is a data structure, and that just means it holds
data in a specific way. The most common stack holds
data in the same way you create a deck of cards,
putting one card on top of the next and removing cards
from the top of the pile. In stack terminology, this is a
LIFO stack – the card that was last in is first out. FIFO
(first in, first out) is another common variant, and this
operates as a basic queue. Alan Turing even coined
the terms ‘bury’ and ‘unbury’ in 1946 to describe the
process of adding and removing data from a stack, but
we now use the terms ‘push’ and ‘pop’ for the same
thing. Additionally, ‘peek’ is often used when you want
to take a look at the top card, rather than remove it,
or examine another card in the pack. Just like in 1946,
however, stacks are ideal when you only have a limited
amount of memory.

The module itself combines both temperature and
humidity sensors, and the great thing about this
module is that it’s incredibly easy to use

”
”

Right
Libraries can be
downloaded and
installed manually,
as discussed last
time, but it’s much
easier to just use the
Arduino IDE

The term ‘stack
overflow’ actually
refers to when you
try to write to the
stack and the stack
is full. Fortunately, as
ours is fixed in size,
this won’t happen.

QUICK TIP

5
4

3
2

1

3
2

1

4
3

2
1

2
11

6
5

4
3

2

Pop
Pop

Pop
Pop

Pop

2
3

3
3

3

Push
Push

Push
Push

Push

1
2

3
4

5

1
2

3
4

1
2

3

1
2
1

45

ARDUINO BASICS

Get Started With Arduino

initiates the display and runs a function to clear the
display of the noise that typically accompanies the
display turning on:

dht ourDHT;
Stack temperature_stack;
Adafruit_SSD1306 display(4);

void setup() {
 display.begin(SSD1306_SWITCHCAPVCC, SCREENADR);
 display.clearDisplay();
}

The next piece of code is all that’s needed to draw
the histogram. Thanks to Adafruit’s graphics library,
we call its display.drawLine function to draw a line
from one set of coordinates to another, and we do
this to first black out a column (the same x value)
and then to draw a white line up to the temperature
value in that column. We get the value from our
stack using our peek function.

void displayChart() {
 for (int x = 0; x < MAXSTACK; x++) {
 display.drawLine(x, display.height(), x,
display.height(), BLACK);
 display.drawLine(x, display.height(), x,
display.height() - temperature_stack.peek(x),
WHITE);
 }}

For good measure, we’re also going to add text
to show the current temperature and humidity
readings. This is just as easy as drawing a line,
although we do pull the readings directly from the
sensor rather than our stack:

// Function to display a character
void displayNum() {
 display.setTextSize(1);
 display.setTextColor(WHITE, BLACK);
 display.setCursor(0, 0);
 display.println("Temp:" + String(ourDHT.
temperature) + " Hum:" + String(ourDHT.
humidity));
}

All that’s now left to do is write the main loop
function. This simply pushes a new temperature
value onto the stack, runs both the text and
histogram generation functions, and finishes up with
the display.display() function to update the display.
We then add a delay in milliseconds to wait until
we repeat the sequence. Changing this will affect
the duration between each reading, altering the
scroll speed from seconds to hours if you so wish,

which is great if you want to monitor the change in
temperature over an entire day – try delay(86400000).

void loop() {
 int chk = ourDHT.read11(DHT11_PIN);
 temperature_stack.push(ourDHT.temperature);
 displayChart();
 displayNum();
 display.display();
 delay(100);
}

The code for this tutorial can be found at
git.io/vh4x9.

Below
A rear view of the
mini OLED display,
showing its four pins

Above
You need to edit the
screen driver header
to make sure it uses
the correct resolution
for your display

http://git.io/vh4x9

Arduino programming: pointers and linked lists

SCHOOL OF MAKING

46 Get Started With Arduino

Arduino programming:
pointers and linked lists
Upgrade your skills and demystify two of the most arcane aspects of Arduino and C

W
e were ambitious in our
previous tutorial, creating
a scrolling histogram of
temperature data on a simple
display with less than 80
lines of code. In the process,

we also introduced two fundamental programming
concepts: classes and stacks. We used classes to
abstract both data and functions into a single object,
and stacks as a kind of data structure where you
can push values onto the top and pop them back off
again. In this tutorial, we’ll be revisiting these ideas
and the same code, but introducing a couple of new
fundamental concepts that are equally important –
and one you’ve likely heard about if you’ve read or
seen anything about C programming: pointers and
linked lists.

Pointers, especially, are a little more theoretical
than the practical nature of classes and stacks,
especially on the Arduino platform. But they’re
important because they’re closer to how the
hardware works. They’re also a fundamental part
of the C programming canon. But there’s a serious
caveat. Most – if not all – programs can be written
without them, and there’s a good argument for
avoiding them completely. They add a potentially
catastrophic level of complexity to your code that
most beginners don’t need to contend with when
they’re just trying to get stuff done. They can cause
your code to crash unpredictably, they can introduce
subtle problems that are difficult to track down, and
they can be difficult to predict. These are problems
you avoid with ‘static’ types and data structures,
such as a two-dimensional array.

Graham Morrison

@degville

Graham is a veteran
Linux journalist who is
on a life-long quest to
find music in the perfect
arrangement of silicon

https://twitter.com/@degville

47

ARDUINO BASICS

Get Started With Arduino

In previous tutorials, we’ve been using types
that implement static memory allocation. This
means the compiler and the Arduino know exactly
what the memory demands of our code are
going to be before the code starts to run. In the
int ourList[MAXSTACK]; line, for instance, we’re
declaring exactly how many integers the ourList
array is going to hold, which is a value defined by
MAXSTACK. This is a very common approach with
embedded systems, such as the Arduino, because
the programmer needs to stay in absolute control
of the resources being used, to make sure the
hardware isn’t asked to store data it doesn’t have
the memory for – a situation that would cause all
kinds of unpredictable behaviour and, ultimately,
cause your code to crash the Arduino.

But knowing what pointers are and what they’re
capable of is an essential step in any programmer’s
journey, and there are instances where they can be
used to elegantly solve some specific problems.
In particular, pointers can be a very effective way
of passing large sets of values between functions
without your program or hardware having to allocate
extra memory or spending time copying that data.
But they’re also great at implementing something
called a linked list.

POINTER SISTERS
Up until now, the inner operations of your hardware
have been abstracted away by the programming
language. Pointers pull the curtain away from this
by making you think more like a CPU. To create a
pointer, you simply insert an asterisk (*) symbol
before the variable name:

int *example;

Without the asterisk, the compiler would make
sure that enough space was allocated to hold an
integer value referenced by the ‘example’ name.
With the asterisk, however, we’re now saying
‘example’ is a pointer to a memory location that
holds an integer. ‘Example’ doesn’t hold the integer
value, but the memory location of where that value
is stored. This is the key to understanding pointers,
and it can take a little bit of time to get your head
around. It means that, regardless of the value being
held at the memory location, in our example an
integer, the pointer will only ever hold the value of
the memory location itself. On an Arduino, where
every memory location can be addressed via a two-
byte value, this means pointers use two bytes of
storage, regardless of the data type or structure on
the end of the dereferenced pointer.

To prove this point, we’re going to rewrite the
stack class from the previous tutorial to use both
pointers and a linked list to re-implement the class
that surrounded the static array we originally used.
A linked list is a very common form of dynamic
data structure, and it can also be very simple. As a
minimum, it’s a structure that holds two elements:
a value to be stored and a link to the structure that
holds the next element in the list. The link is a
pointer. The structure can obviously be augmented
with many more components, such as holding
a class value instead of a simple variable, and
another pointer for the previous element in the
list. But for our usage, we’re going to keep it as
basic as possible with just a pointer and an integer
data value:

Below
The SSD1306 display
is tiny, requiring only
four pins to connect,
and yet is immensely
useful for all kinds
of output

Knowing what pointers are
and what they’re capable

of is an essential step in any
programmer’s journey

”
”

YOU’LL NEED

SSD1306
monochrome
0.96” 128 × 64
OLED graphic
display

DHT11 digital
temperature and
humidity sensor

Arduino programming: pointers and linked lists

SCHOOL OF MAKING

48 Get Started With Arduino

struct stackNode {
 int value = 0;
 stackNode *next;
};

With the above ‘struct’, we’ve created our own
data structure holding the value we want to store
and the pointer to what will be the next element
in our linked list. This would have been the next
element in an array, if we were still using arrays. To
hold the functionality of our linked list, and to provide
the same transparent functionality of our class from
the previous tutorial, we’re going to augment this
structure with a new class to do all the hard work
for us.

class stackList {
 protected:
 byte stacksize;

 stackNode *top;
 stackNode *tail;
 public:
 stackList();
 void push (int);
 int peek (int);
};

You’ll see that the above code constructs a class
that’s almost identical to the array-based class we
used last time, with the exception replacing the array
with pointers to two ‘stackNode’ types, as defined
by our new structure: top and tail. These pointers
will allow the class to keep track of the elements at
the beginning and the end of the list. Similarly, we’ll
be using ‘stacksize’ to hold the number of elements
within the list. But the big difference between this
implementation and the implementation using the
array is that the class is no longer storing the values in
the stack, it’s simply holding pointers to the beginning
and end elements. The values are going to be stored
somewhere in memory, and it’s going to be our job
– and not the job of the compiler or the Arduino – to
keep track of where each of these elements are and
how many we’ve created.

CLASS ELEMENTS

stackList::stackList() {
 stacksize = 0;
 top = NULL;
 tail = NULL;
}

The above code is run whenever we create a
stackList within our code, and we use the constructor
to define default values and initialise variables. It’s
identical to the constructor we created when working
with arrays, except we no longer need to run through
the array to define default values. Instead, we assign
the value of ‘NULL’ to the two pointers we create.
NULL is a special value that effectively makes sure
nothing is assigned as a value. Anything can be
assigned a NULL value, but it can be most useful
with pointers because there’s always a possibility
that, without being initialised in this way, they contain
some random memory location that’s a vestige of
a previous run cycle. Assigning a NULL value is the
pointer equivalent of setting a variable to 0.

PUSH AND PULL
We’re now going to tackle the main function in our
new class, the push function. As before, this takes
an integer value and adds it to the stack that we’re
constructing to hold the values that we’re measuring.

SCOPE RESOLUTION

In the previous tutorial, we defined the functions that
belonged to the class within the { and } brackets that
delimited the class definition. Normally, these class
definitions would be separate to the implementation
code. This makes the class easier to understand at a
conceptual level without having to resort to the code,
and it’s why you often get the class definition in the
header (.h). But you can do the same thing even when
you’re working within the same file – you just need
to create your functions using the scope resolution
operator. Scope is a fundamental concept in many
languages. It allows you to have variables of the same
name in different classes, or global variables that
won’t interfere with function variables with the same
name. Two colons are used to define the class you’re
assigning the function to (or a variable, though that’s
rarer). Here’s the constructor function for our new
linked list method, using ‘stackList::’ to tell the compiler
it’s a member of the stackList class even though it’s
outside of the bracketed scope of that class:

stackList::stackList()

We’ve followed this new protocol for all the class-
bound functions in the code.

OPERATORS

These pointers will allow the class to keep
track of the elements at the beginning and
the end of the list

”
”

The asterisk used by
a pointer is known
as the dereference
operator because it
returns the memory
location where a
variable is stored.

QUICK TIP

The arrow coupling
of ‘->’ is really just a
short-cut to using an
asterisk. For example,
ptrtmp->value =
item is functionally
equivalent to
(*ptrtmp).value.

QUICK TIP

49

ARDUINO BASICS

Get Started With Arduino

The difference this time is that we’re going to use
pointers and a linked list. Here’s the first part:

void stackList::push(int item) {
 stackNode *ptrtmp = new stackNode;
 ptrtmp->value = item;
 ptrtmp->next = NULL;

There are only three new lines of code above, but
they encapsulate everything you need to know about
pointers and linked lists, how they work, and how
they can be used. Everything else we’re going to
add is basic maintenance of what we create above.

The first line after the function name (stackNode
*tmp = new stackNode;) is creating a new node to hold

this new value, and we’re calling this ‘ptrtmp’. It’s
a pointer to the new node. But the most important
part here is the ‘new’ keyword. Without this, the
pointer would be created but there would be no
memory allocated for the data we want stored.
Using ‘new’ handles this for us automatically, setting
aside memory for a ‘stackNode’ element and its
contents. There a vital difference between this and
creating a normal type, such as by using stackNode
tmp. In our example, even when ptrtmp no longer

exists and we’ve left the scope of the function, the
data it holds will still be in memory and reserved
from anything overwriting it. As long as we’ve still
got a handle on its location, which is what a pointer
is, we can get at the data.

The use of the ‘->’ characters is a short-cut to
what the pointer is referencing, allowing you to
change the value of what’s being stored in the
memory location the pointer is pointing at. The
element that holds this pointer will be the previous
element in the linked list, which is what the ptrtmp
pointer holds. However, as we currently know
nothing of what the next element might be, the
pointer to the next element is created with a NULL
assignment. We now deal with situation where the
first element is added to the list:

if (tail == NULL)
 tail = ptrtmp;
 else
 top->next = ptrtmp;
top = ptrtmp;

The above illustrates the awesome power of
pointers. Firstly, by asking whether the ‘tail’ pointer
is still NULL, we’re checking to see whether this
is the first element we’re adding to the list, as this
needs special consideration. If it is, then we point
the tail pointer at the new ptrtmp element we’ve just
created. If it isn’t, then we know there’s at least one
element already in the list and the previous element
to be added will be pointed to from ‘top’. Now we’re
adding a new element, top’s ‘next’ pointer needs to
point at the new one we’re creating, which we can
simply do with top->next = ptrtmp;. Remember,

This takes an integer value
and adds it to the stack
that we’re constructing
to hold the values that

we’re measuring

”

”
Below
The circuit and
wiring for this tutorial
is identical to the
previous one, except
you can forgo the
temperature sensor
if you update the
graphics routine

Arduino programming: pointers and linked lists

SCHOOL OF MAKING

50 Get Started With Arduino

these are just pointers – we’re not moving the
values they’re storing, we’re just assigning the
memory location. The node holding the value we
want to be stored isn’t moving.

The next chunk of code stops our linked list
expanding further than your Arduino has the capacity
to store:

 if (++stacksize > MAXSTACK) {
 ptrtmp = tail;
 tail = ptrtmp->next;
 delete tail;
 stacksize--;
 }
}

In the above code, we’re checking to see whether
there are now more elements in the list than we
want, as defined by MAXSTACK. If there are, we
store the memory location of the oldest node, the
tail, in the ptrtmp pointer. This is so we can then
make the new tail pointer point to the next item in
the list while before deleting what was the oldest
element linked to within the list. You will also need
to reduce the value of MAXSTACK in your code
too, typically to between 60–100 or you’ll run out
of RAM.

The delete command here is the opposite of
the new command we used earlier, freeing up the
memory that we allocated to hold the structure.
We can now tackle the final function that returns
a value for the node in the list we request. This is

more complex than the array equivalent as we’re
unable to directly address the value stored by the list
at location ‘x’. Instead, count through the positions
until we reach the correct node and return the value
it holds:

int stackList::peek(int x) {
 int pos = 0;
 stackNode* current = tail;

Above
Replace the static
temperature reading
chart with a sine
wave – you could
even modulate its
frequency with
temperature changes!

GRAPHICS UPGRADE
It didn’t seem fair to leave this project generating
exactly the same output as the previous tutorial’s one.
As an added bonus, and to investigate mathematical
functions a little, you can forgo the temperature sensor
and replace the main loop code with the following:

void loop() {
 if (counter > 180)
 counter = -180;
 temp_stack.push((sin(counter * 3.14 /
180) + 1.1) * 29);
 counter = counter + 2;
 displayChart();
 display.display();
 delay(1);
}

You will also need to add int counter = 0; as
a global variable outside the scope of the loop()
function. The above uses sin() to generate the sine
function for the angles between -180 and +180, as
counted by counter. The output will be a regular sine
wave drawn and scrolled along on the OLED display,
but you can play with the numbers to change both its
frequency and its amplitude.

This is more complex than
the array equivalent as we’re

unable to directly address
the value stored by the list at

location ‘x’

”

”

The code for this
project can be found
here: git.io/fSGkD

QUICK TIP

http://git.io/fSGkD

51

ARDUINO BASICS

Get Started With Arduino

 while ((pos < x) && (current != top)) {
 current = current->next;
 pos++;
 }
 if (x > pos)
 return -1;
 else
 return current->value;
 }
};

The only other part of the code we’re going to
touch is the part that draws the graph. We’re doing
this because there’s no longer enough RAM on an
Arduino Uno to hold the entire linked list, so we’re
going to only map values to the screen when there’s
a node, and stop the redraw process when there
are no more elements left to render. However,
we’ll keep the same sliding window logic from the
previous tutorial as this looks rather good:

void displayChart() {
 char x = 0;
 int value = 0;
 value = temp_stack.peek(x);
 while (value != -1) {
 display.drawLine(x, display.height(), x, 0,
BLACK);
 display.drawLine(x, display.height(), x,
display.height() - value, WHITE);
 value = temp_stack.peek(++x);
 }
}

With that done, you can run the code. With a bit
of luck, you’ll be rewarded by seeing absolutely no
difference in the temperature mapping chart from
last time – see the ‘Graphics Upgrade’ box to change
this to a different rendering algorithm. But the way
your code is working is now completely different –
using pointers and a linked list rather than an array
– and you’ve now mastered one of the most arcane
and misunderstood aspects of the Arduino and C
programming environments.

Below
A linked list is a dynamic data structure where each element
contains a link – using a pointer – to the next element in the list

ValueTail

Head

Value

Value

Value

Value

BEYOND THE LIST

Here, we’ve looked at a linked list because it’s one of
the simplest data structures (and serves the purpose
we need), but there are lots of others that you can
create, built on the same principle. Once you’ve
mastered this technique of using pointers to link
elements together, you can adapt it to make the others.
In each case, you have a structure with a pointer
showing the links to other nodes…
• Trees: In this data structure, a single root element has
one or more children, and each child has children, and
so on. Think of something like a family tree, but it can
hold almost any sort of data. A common variation of this
is the binary tree where each node has, at most, two
children. This setup can be useful for searching as each
node can represent a value and all left children can be
lower, and all right ones can be higher.
• Graphs: In computer science, graphs have nothing
to do with diagrams showing how a value changes
over axes. Instead, they’re collections of nodes that
can be joined in any way. Think of it a bit like the linked
list, but each node can be joined to many nodes, not
just one. This can represent many things, particularly
the structure of the internet, as this is made up of a
large number of servers and data centres with various
connections between them.
• Heap: These are similar to trees except that there’s a
heap property such that a parent node has to be either
explicitly higher or lower than every node below it. One
of the most common uses of a heap is a priority queue,
where each node is more important than those below it.

ValueTail

Head

Value

Value

Value

Value

Try changing int
definitions to byte
when you know
the value it holds
will be between 0
and 255. This will
save a whole byte
of valuable Arduino
memory and give
you a larger potential
stack size.

QUICK TIP

Arduino programming: Build a games console (part 1/2)

SCHOOL OF MAKING

52 Get Started With Arduino

Arduino programming:
Build a games console (part 1/2)
Put some of that hard-learnt theory into action. And we really mean action,
with spaceships, analogue joysticks, and bitmap graphics

I
n the
previous
tutorial,
we dived
into the
theory behind

pointers and linked
lists. We’re going to do
away with theory this time
and put some of what we’ve
previously covered into action.
And one of the best ways of
doing this, and one of the most
entertaining, is to code a video game. The limited
performance of the Arduino means writing any
kind of modern game is impossible – we can’t use
anything like the libraries used by game developers
to skip over the programming fundamentals,
implement AI, and virtual reality reprojection. But
we can write a game just as they did in golden era
of 8-bit home computing. The limited hardware of
those old machines forced the games designer’s
creativity, and that meant injecting games with as
much simple, imaginative, and addictive gameplay
as possible. Limited hardware also meant that
every variable, function, sprite, and sound could be

hand-tuned to perfection, with playability
iterated over until it was considered perfect.

There was no other option because you couldn’t
push out a 1024 byte day-one patch, let alone
a 50GB one, and it was these limitations that
made so many of those old games playable today,
decades later.

We’re going to use the same setup we’ve
been playing with in previous tutorials – mainly
the same 128×64 I2C OLED display, but you can
easily replace this with something larger than the
0.96” model we’re using. For input, we’re going to
use an analogue dual-axis joystick that includes a
single momentary switch. These are cheaply and
commonly available as a single module with the
‘KY-023’ label – and you may even have one left
over from the joystick MIDI controller we featured
previously. See the ‘Get connected’ box overleaf

Above
With a bit of
ingenuity, simple
graphics can still
look great

Graham Morrison

@degville

Graham is a veteran
Linux journalist who is
on a life-long quest to
find music in the perfect
arrangement of silicon

You could replace
the analogue
joystick with five
simple momentary
buttons, but you’ll
lose the finer degree
of control.

QUICK TIP

https://twitter.com/@degville

53

ARDUINO BASICS

Get Started With Arduino

for further details on how we put this together and
connected it to the Arduino.

The inspiration for this project comes directly
from our previous tutorials, where we used the
screen to show a sideways-scrolling representation
of changes in temperature over time. Sideways-
scrolling backgrounds like this are a traditional game

mechanic, used in classics like the original Defender
from 1979/1980, and Super Mario Bros. But the
game we’re most inspired by for this project is called
Scramble, from 1981. In Scramble you needed to fly
your ship across a cityscape before entering a series
of tunnels. These tunnels became a mini game in
their own right as you tried to position your ship in
the best part of the screen to navigate impossible
turns and an ever-decreasing tunnel height. It’s this
part of Scramble we’re going to loosely emulate
with our own Arduino game, adapting the scrolling
temperature chart we’ve already created into a
tunnel. But to start with, we need to get the joystick
controls working, and for that we need to be able
see (and control) something on the screen.

SHIP SHAPE
Many of the earliest games used simple geometry
to represent a spaceship. One of the best known is
Asteroids, which used an augmented triangle as the

main craft for the player to control, with degrees of
rotation and thrust. This was because the screen
used a ‘vector’ display that could only draw lines
from one point to another. We haven’t suffered the
same restrictions since raster-scanning cathode ray
tubes became commonplace, and flatscreen modern
technology made it all but a distant memory. But
vectors like these are still used when you want an
image to scale, or when you don’t have the memory
for more than two colours, and they’re the basis for
modern scalable graphics like SVG and 3D polygons.
Thanks to the Adafruit graphics library, it only takes
a single command to draw a
triangle (or a rectangle,
or a circle – filled or
empty), and we’ll
revisit the idea when
adding some stars
to our game. But for
now, we’re going
to use a bitmap for
the ship, another

Many of the earliest games
used simple geometry to

represent a spaceship. One of
the best known is Asteroids,
which used an augmented
triangle as the main craft

”

”

PICKING A BOARD

MEMORY

ARDUINO TYPE

Duemilanove (2009) Uno Rev 3 Mega Mega 2560

Flash 16 kBytes 32 kBytes 128 kBytes 256 kBytes

SRAM 1024 bytes 2048 bytes 8 kBytes 8 kBytes

Below
The KY-023 module
uses a joystick
very similar to
a PlayStation 2
controller joystick,
which can also be
extracted and used in
the same way

Left
One of the main
differences between
each version of the
Arduino hardware is
the amounts of both
flash memory and
SRAM available

Arduino programming: Build a games console (part 1/2)

SCHOOL OF MAKING

54 Get Started With Arduino

old term that still exists in places like the .bmp file
extension and graphics programming.

The term ‘bitmap’ refers to an arrangement
of ‘bits’, usually 1 for on and 0 for off, in series
representing adjacent pixels on a screen. Different
rows are represented by knowing the image width.
If an image is 16 pixels wide, for instance, the 17th

bit in the sequence will represent the first pixel on
the second row. It’s really the most simplistic way
of representing an image, although it can easily be
extended to add ‘bit depth’; for example, adding
colour rather than on and off states. Thanks to the
sequential way memory is mapped to a display,
bitmaps remain an effective way of representing
visual elements, especially when you consider this
kind of structure is identical to an array we can use
within our own code. Fortunately, the days when

you needed to use cross-hatched mathematics paper,
to pencil in your own designs and then translate these
into a sequence of binary values, are gone and you
can now draw your own bitmaps in your favourite
image editor and convert them online or using GIMP –
see the box overleaf for further details.

We converted a monochrome image we drew of a
spaceship into the following array:

const unsigned char shipBMP [] PROGMEM = {
 // 'ship, 16x16px
 0x00, 0x00, 0x70, 0x00, 0x38, 0x00, 0x1f, 0xe0,
 0x18, 0x10, 0x1b, 0x08, 0x9b, 0x88, 0xd9, 0x2c,
 0xfb, 0xae, 0xff, 0xff, 0xdf, 0xff, 0x9f, 0xfe,
 0x1f, 0xfc, 0x38, 0x00, 0x70, 0x00, 0x00, 0x00
};

The above array contains 32 elements, but it
represents a bitmap that’s 16 pixels wide and 16
pixels high, or 256 on/off positions in total. The

GET CONNECTED
Alongside the Arduino Uno and the 128×64 I2C OLED
display we’ve connected for the previous couple of
tutorials, we’ve added an analogue joystick labelled
as KY-023, although almost any analogue joystick
should work. We’re using a version with a small
breakout board, but nearly all joysticks of this type
feature the same five connections: GND and 5 V that
need to be connected to the corresponding outputs in
the Arduino via the rails on your breadboard, VYx and
VRy which we’ve connected to analogue inputs A0
and A1, and SW which we have connected to digital
input pin 7. We then needed to update our project
code to reflect these new inputs, using the following
const global values:

// Analogue joystick connections for X
and Y
const int JOYY = A0;
const int JOYX = A1;
// Digital input for the Joystick switch
const int SWITCH_PIN = 7;

To make this project feel more like a games console
and to make it more accessible to smaller fingers, we
connected a long ribbon cable between the joystick
and its connections. This allowed us to hold the joystick
just as we would a games controller on a console, and
also neatly side-stepped having to deal with horizontal
pins connecting to the breadboard. Of course, if you
end up keeping this configuration, there’s no limit
to how you connect and arrange the components –
from a handheld in a mints tin, to a diminutive home
entertainment system.

Thanks to the sequential
way memory is mapped to a
display, bitmaps remain an

effective way of representing
visual elements

”

”

Below
Our joystick includes
a switch, triggered by
pressing down, which
we’ll use to start
the game

Rather than using
GIMP or similar
to generate your
Arduino bitmap code,
use an online
converter like
hsmag.cc/yGbolA.

QUICK TIP

http://hsmag.cc/yGbolA.

55

ARDUINO BASICS

Get Started With Arduino

disparity between the number of elements and the
number of bits we’re representing is because we’re
using hexadecimal to describe the same data as
‘char’ rather than raw binary, and each element is
equivalent to a byte/8 bits. Multiply the 32 elements
by those 8 bits and you get 256, so we’re not
losing or compressing any data, only displaying
them more efficiently. Efficiency is also why we
use the ‘PROGMEM’ keyword when declaring the
array. Arduino has different types of memory, and
PROGMEM represents the flash storage rather than
the SRAM used to store our program variables. As we
saw in the previous tutorial that dealt with lists and
pointers, SRAM quickly fills with any normal project,
and each Arduino has much more flash storage than
SRAM. Using PROGMEM instead of SRAM is perfect
for larger arrays, such as the one we’re using to
hold a bitmap. The only limits are that PROGMEM
variables must be global or defined as ‘static’.

Thanks to the Adafruit graphics library we’re already
using to drive our screen, rendering the bitmap array
to the screen is easy, taking just a single line, which
we’re putting within its own function that takes an x
and y location for where we want the image drawn:

void displayShip(int x, int y) {
 display.drawBitmap(x, y, shipBMP, 16, 16, 1);
}

Thanks to the Adafruit graphics library, we’re
already using to drive our screen, rendering the
bitmap array to the screen is easy

”
”

Left
Playing your game
is the best way
of improving it,
especially when it
comes to fine-tuning
the control system

Above
An online bitmap
converter, such as
hsmag.cc/vfYQyz,
can let you invert an
image and preview
the text output so you
can make sure it will
work with the screen

http://hsmag.cc/vfYQyz

Arduino programming: Build a games console (part 1/2)

SCHOOL OF MAKING

56 Get Started With Arduino

Creating a set of rules for analogue control can
be complicated, but we’ve got an excellent
new function at our disposal

”
”

JOYSTICK CONTROL
We now want to write the code that reads the
joystick values and translates these into ship
movement. An analogue joystick is really just two
potentiometers, one each for the x and y axes,
with each sending a range of values from 0 to
1023. These values are delivered to the A0 and
A1 analogue inputs in the Arduino. The joystick is
spring-loaded to hold the middle position, where
both x and y potentiometers read 511, and these
values change as you move the stick. There are
many ways these changes can be interpreted, and
they’ll all result in slightly different gameplay. You
could use the joystick as a digital input, for example,
turning on positive x movement when the x value is
greater than 511, but that loses the finer control you
get from an analogue joystick.

Creating a set of rules for analogue control can
be complicated, but we’ve got an excellent new
function at our disposal, and that is called map. The
map function simply converts one range of numbers
to another, such as from 10–20 to 1–10. It can
also handle negative integers, and that makes it
perfect for translating the raw values we get from
the joystick’s analogue inputs into a value range
that could represent the number of pixels we want
our ship to move – in both positive and negative
directions. This can even be accomplished with just
a couple of lines:

xValue = map(analogRead(JOYX), 0, 1024, 5, -8);
yValue = map(analogRead(JOYY), 0, 1024, -5, 5);

Above
An analogue joystick
sends values between
0 and 1023 from (0,0) in
the top left to (1023,1023)
in the bottom right, with
(511,511) in the centre

Right
The analogue joystick
needs power and ground,
shared with the screen,
and two analogue inputs
for x and y and another
digital input for the switch

0,0
top left

0,511
left centre

511,0
top left

511,511
centre

511,1023
bottom centre

1023,511
right centre

1023,0
top right

1023,1023
bottom right

0,1023
bottom left

57

ARDUINO BASICS

Get Started With Arduino

CREATE BITMAPS WITH GIMP
The easiest way to create a bitmap is with
a pixel editor such as GIMP (gimp.org).
Create a new image with File > New
menu, and set the size to 16×16 with a type
of ‘px’ for pixels. This makes sure there’s
no background scaling. Click on Advanced
Options and make sure ‘Fill with’ is set to
Transparency, so that only the pixels you
draw will be in the output. Click on OK
and then zoom into your new tiny canvas
by either holding down the CTRL key
and using the mouse wheel, or selecting
Zoom from the view menu. To draw your
image, select the pencil tool from the

tools palette, and from the ‘Tool options’
pane, set its size to 1 – this is equivalent
to a single pixel. Finally, make sure the
foreground colour is white. You can now
start drawing your design.

When you’re happy with your art,
select Export As from the File menu and
use the drop-down Type menu to set the
output format to ‘X BitMap image (*.xbm,
*.icon, *.bitmap). Give your image a name
and click Export. The file you’ve just
generated is actually a text file you can
use within your code, just as we have
done in the main project.

The analogRead() functions read the Arduino inputs
from the joystick. All we’re then doing is mapping
the far left to 5 on the x axis and the far right to -8.
The negative is because this axis is inverted, with
the controls being opposite to what you’d expect. All
the points in between will correspond to the degree
the joystick is being moved, but the centre point isn’t
going to be 0, it’s going to be -1. This is a gameplay
trick that will move the ship back to the left edge of the
screen when the player isn’t controlling the ship. The y
axis, by comparison, is a straight translation, with 0 as

the centre point and no automatic movement. These
values can then be added to the ship’s current position
to generate movement when we update the ship’s
location. The further the stick is from the centre, the
greater the jump in the number of pixels, which means
the ship will travel faster across the screen.

The only checks we need to add are for when the
ship hits any of the edges of the screen, which we can
accomplish with simple if statements. Placing all of
this in single a function will look like the following:

void updateShip() {
 int xValue, yValue;
 xValue = map(analogRead(JOYX), 0, 1024, 5, -8);
// 5, -6 for no move backwards movement
 yValue = map(analogRead(JOYY), 0, 1024, -5, 5);
 shipx = shipx + xValue;
 shipy = shipy + yValue;
 if (shipx < 1)
 shipx = 1;
 if (shipy < 1)
 shipy = 1;
 if (shipx > display.width() - 12)
 shipx = display.width() - 12;
 if (shipy > display.height() - 12)
 shipy = display.height() - 12; }

All that’s now left to do is to add the two ship
location variables as global, and update the main loop
function to call both the updateShip() function and the
displayShip() function:

int shipx, shipy;
void loop() {
 updateShip();
 displayShip(shipx, shipy);
 display.display();
 delay(1);
 display.fillScreen(BLACK); }

We now have the framework for a fully fledged
game, which we’ll build in the next tutorial. Until
then, the code for this one can be downloaded
from: git.io/fNXzp.

The further the stick
is from the centre, the
greater the jump in the
number of pixels, which

means the ship will travel
faster across the screen

”

”

Above
GIMP is a good choice for editing large pixels, because you can easily
set the size of the canvas and zoom in

https://www.gimp.org

Arduino programming: build a games console (part 2/2)

SCHOOL OF MAKING

Get Started With Arduino58

Arduino programming:
build a games console (part 2/2)
Tackle all the main gameplay elements, from terrain generation to collision
detection, and combine them into an addictive, easily modifiable game

I
n the previous tutorial, we started on our
adventure of turning a humble Arduino
Uno into a games console, albeit one that
plays only a single game that we’ve yet
to write (read on). We ended last time with
a joystick-controlled movement system and

custom-drawn bitmap that we could move across
the screen. In this tutorial, we’re going
to flesh out these ideas with
the remainder of the
code to create a fully
fledged game, starting
with the modifications
that we need to
make to our scrolling
temperature chart to turn
it into an endless tunnel
for our ship to navigate. In the
original code, we pushed
temperature values onto a

Graham Morrison

@degville

Graham is a veteran
Linux journalist who is
on a life-long quest to
find music in the perfect
arrangement of silicon

Below
Using a ribbon
cable to separate
the joystick from
the Arduino and
the screen makes
it much easier for
anyone to play the
game without pulling
everything apart

https://twitter.com/@degville

59

ARDUINO BASICS

Get Started With Arduino

stack and read back those values into each column
of the screen. These values were held in a stack
and as we added a new value, the oldest one was
removed. This created a sliding window of the last
128 values. The screen is also 128 columns wide,
and drawing these values (one position per column)
has the effect of creating a scrolling display of values
that move from the right to the left.

We’re going to subvert this effect to turn
those values into a cross-section of a cave for our
spaceship to fly through, and the first step is to
replace the temperature readings with something
we can generate indefinitely as a kind of landscape
generator. There are many creative ways of doing
this, but we’ve settled on using a couple of sin()
(sine wave) generated values that change according
to two counters. The first sin() value will be used
to generate the height, while the second counter
is used to adjust the angle jump for the next value.
The result is a modulated sine waveform that looks
almost natural, while providing enough unpredictable
variation to be a challenge. The following code does
the job, and it needs to replace the old stack code in
the loop() function:

void loop() {
 if (playstate) {

 if (counter > 180)
 counter = -180;
 if (second_counter > 120)
 second_counter = -90;
 land_stack.push((sin(counter * 3.1 / 180) +
1.1) * (4 * difficulty));
 counter = counter + sin((second_counter++ *
3.1 / 180) + 1.1) * difficulty;

One addition in the above we’ve not yet
mentioned is the difficulty variable. We’re going
to scatter these throughout our code to act as
multipliers that make calculations more extreme.
The idea is that we can increase the difficulty
in the game by increasing the value held in the
difficulty variable.

Adding values to our stack is only half of
the solution. The other half is how we render
those values to the screen, and because we
want to turn those values into a scrolling tunnel
rather than a scrolling histogram, we need to

Adding values to our stack is only half of the
solution. The other half is how we render those
values to the screen

”
”

Left
The aim of the game
is to steer your ship
for as long as you
can through a tunnel
whose dimensions
are ever decreasing

If you want to save
yourself the bother
of putting all the
code together, the
code for the entire
project can be found
here: git.io/fNXzh

QUICK TIP

http://git.io/fNXzh

Arduino programming: build a games console (part 2/2)

SCHOOL OF MAKING

60 Get Started With Arduino

modify the displayChart() function, which we’ve
renamed displayTunnel().

TUNNEL VISION
The principle behind drawing the tunnel is simple.
We take the height values that we’ve pushed onto
the stack and use them as both the floor height from
the bottom of the screen and for the roof height
from the top with a value in the middle to define the
level of separation between the two. This creates
a tunnel effect that will go up and down with the
roof and floor moving in parallel. On its own, this
wouldn’t be very interesting, so we’re going to add
two modifiers. The first will move the entire tunnel

up and down, forcing the player to also move up and
down, while the second will make the tunnel smaller
and progressively harder to navigate.

To tackle the first, we’re going to use another
sin() to modify the height level we’ve pushed onto
the stack, unless that value is zero. We’ll link this to
the global counter that’s already counting through
the radians when generating the original height to
save creating another counter. We’re also adding the
difficulty variable here to make things harder or
easier depending on its size, and we assign all of this
to a single integer called height:

void displayTunnel() {
 int height;
 for (int x = 0; x < MAXSTACK; x++) {
 if (land_stack.peek(x) != 0) {
 height = display.height() - ((land_
stack.peek(x) + sin(counter * 3.1 / 180) *
difficulty));

We can now draw both the roof and floor by using
the height to either draw down from the top of the
screen or up from the bottom of the screen. We’re
using a global integer called tunnel_size to set the
number of pixels high we want the tunnel to be, and
we subtract half of the value it will hold from roof
and floor heights to carve out a space for our ship:

We’re also adding the
‘difficulty’ variable here to

make things harder or easier
depending on its size, and
we assign all of this to a

single integer called ‘height’

”

”

ADD A STARFIELD
Even though it’s not necessary for a
game where a spacecraft flies through
an imaginary cave, there’s one simple
and old visual effect that adds depth and
movement. And that’s the starfield. A
starfield shows ‘stars’ of pixels scrolling
alongside the player, with some moving
faster, and some moving slower. This
creates an impression of parallax, where
the slower-moving stars seem further
away, especially if you make those stars
smaller. You still find a starfield used in
many games, and even realistic space
simulators, like Elite Dangerous, find an
excuse to drop moving pixels into what
would otherwise be empty space. A fully
three-dimensional starfield is slightly
more complex, as would be a properly
calculated two-dimensional starfield, but
you can create a realistic approximation
of a starfield using an array of a simple
structure that holds the x, y, and speed
values for each star:

struct stars {
 int x, y, speed, size; };
stars starfield[MAXSTARS];

We’ve defined const int MAXSTARS
= 10; as a global value for the amount
of stars to draw, but you can actually
increase this to whichever value suits you
best, depending on your Arduino memory.
We’ve also added a size variable to
give ourselves more rendering options.
To draw the starfield, we’ll create a
separate function:

void displayStars() {
 for (int i = 0; i < MAXSTARS;
i++) {

 display.
fillCircle((starfield[i].x / 10),
starfield[i].y, starfield[i].
size, WHITE);
 starfield[i].x =
(starfield[i].x - starfield[i].
speed);

You can see how this is a simple hack
to place the stars, drawn as circles with
a radius that equals the star size, at their
x and y co-ordinates on the screen. We
then subtract the speed value from the x
position to move the star along for next
time. One slightly unintuitive part is that
we’re dividing the x value by 10, and that’s
because we intend to initialise this value
with a random number that could be ten
times the width of the screen. By doing
this, we allow stars to move at a rate
slower than one x value per iteration, so
that the further stars move slower.

When the star hits the left border, we
regenerate it by assigning random values
to everything except x, as we now want it
to appear on the right screen border. This is
where we give it the display.width() *
10 value just mentioned:

 if (starfield[i].x < 0) {
 starfield[i].x = (display.
width() * 10);
 starfield[i].y = random(0,
display.height());
 starfield[i].speed =
random(1, 50);
 starfield[i].size =
random(1, difficulty - 2);
 }}}

61

ARDUINO BASICS

Get Started With Arduino

display.drawLine(x, height - (tunnel_size / 2), x,
-1, WHITE);
display.drawLine(x, display.height(), x, height +
(tunnel_size / 2) , WHITE);
}}}

That’s all there is to the tunnel generation code,
although we’ll be revisiting the function to add a simple
collision detection, as we’ll now see.

COLLISION DETECTION
There are now just two functions left to write or
update, and these updates are both going to manage
keeping a score for the player. We’ve decided to go
with a simple timer that will reward the player for
surviving, and that needs a way of ending the game,
which we’re making an event when the ship crashes
into the cave wall. There are many ways to do this.
For the ultimate in accuracy, for example, you’d save
the state of what the ship could collide with into an
array and then check those locations against the pixels

you know are part of the ship bitmap. This solution is
complex and will steal considerable resources, and
just like those original games designers of the 1980s,
we need to cut corners. Our solution is to use a global
true/false (Boolean) variable called playstate to store
whether the game is still in progress. If the game is
still in progress, we run through the functions that
update the ship location and the tunnel, then increase
a counter that holds the score. If the game isn’t in
progress, then show a ‘Game Over’ message.

We’re going to insert the collision detection into the
displayTunnel() function we’ve just updated. After the
two drawLine lines, add the following:

We’ve decided to go with a simple timer that
will reward the player for surviving, and that
needs a way of ending the game

”
”

Below
Once you’ve got
everything working,
you might want to
consider a more
permanent setup

Arduino programming: build a games console (part 2/2)

SCHOOL OF MAKING

62 Get Started With Arduino

void loop() {
 if (playstate) {
 /// counter code
 updateShip();
 displayTunnel();
 displayShip(shipx, shipy);
 // displayStars(); uncomment for starfield
 if (score_counter++ == 100) {
 tunnel_size--;
 score_counter = 0;
 current_score++;
 } } else {
 displayStars();
 displayScore();
 switchstate = digitalRead(SWITCH_PIN);
 if (switchstate == LOW) {
 initGame();
 playstate = true;
 } }
 display.display();
 delay(1);
 display.fillScreen(BLACK); }

With the exception of the radian counter and
stack code covered earlier, this is our new loop()
function in its entirety. While the playstate is true,
it runs through drawing the ship, the tunnel, and
the stars (see ‘Add a starfield’ box on page 60),
increasing the score. After every 100 iterations,

we reduce the size of the tunnel, making the game
harder. If the playstate changes to false, we display
the score (and starfield!) and wait for the player to
press the joystick switch to begin the game. This
is also the default state when you start the game.
We then update the display and blank it after a
delay, ready for the next frame. There are two new
functions referenced in this code we need to write:
displayScore() and initGame(). The first simply
checks if you’ve got a new high score, and prints
both values to the screen:

void displayScore() {

if (x == shipx) {
 if ((shipy < (height - (tunnel_size / 2)))
|| ((shipy + 12) > (height + (tunnel_size / 2)))
) {
 playstate = false; }}

All the above code is doing is checking to see
whether the ship is in the vicinity of the current ‘x’
position where the tunnel is being drawn. If this is
true, see whether its edges are likely to hit the roof
and floor heights we’ve just calculated. If we detect
a collision, we set the playstate to false, triggering
the end of the game section in the loop() function.
And that’s where we turn our attention to next:

The great thing about games like this, and our
simple implementation, is that it offers all kinds
of opportunities to make it better, and those
improvements are perfect challenges if you’re
learning how to code. With that in mind, here’s our hit
list of new things we’d love to see added to our game
to make it even better:

1. Increase the score multiplier the further to the
right of the screen your ship is, adding to the risk
reward and difficulty.

2. Add the score and high score to the play
window so you can see how you’re doing.

3. Make the collision detection more accurate.

4. Use the difficulty variable to increase the
difficulty the more time you spend playing, and
even add levels and level markers.

5. Find a way to reduce the tunnel size off screen,
rather than showing the transition while
you’re playing.

6. Give the player more than one life and show
these on the screen.

7. Animate the ship by using more than one bitmap,
and add rocket pixels that appear only when
you’re moving to the right.

8. Use collision detection for the stars, and start off
with fewer stars, making the player dodge these
as they fly through the tunnel.

9. Add gravity so that the ship starts falling to the
floor when you’re not directly thrusting up.

10. Add aliens and use the switch to fire a laser to
destroy them.

10 ESSENTIAL IMPROVEMENTS

If the playstate changes
to false, we display the
score (and the starfield!)
and wait for the player to
press the joystick switch

to start the game

”

”
The joystick scaling
is currently linear,
but you can make
the controls more
interesting by
playing with the
input and output
values so there’s
finer control at the
joystick’s extremes,
for example.

QUICK TIP

63

ARDUINO BASICS

Get Started With Arduino

 if (current_score > high_score)
 high_score = current_score;
 display.setTextSize(1);
 display.setTextColor(WHITE, BLACK);
 display.setCursor(0, 0);
 display.println("Score:" + String(current_
score) + " High:" + String(high_score));
 display.setCursor(10, 28);
 display.setTextSize(2);
 display.println("Game Over");}

The second initialises all the values we use in the
game for the player to start afresh:

void initGame() {
 counter = 45;
 second_counter = 45;
 difficulty = 5;
 shipspeed = 10;
 shipx = 10;
 shipy = 10;
 switchstate = 0;
 tunnel_size = 80;
 current_score = 0;

 for (int i = 0; i < MAXSTARS; i++) {
 starfield[i].x = random(0, (display.width()
* 10));
 starfield[i].y = random(0, display.height());
 starfield[i].speed = random(1, 50);
 starfield[i].size = random(1, difficulty -
2); }
 for (int x = 0; x < MAXSTACK; x++) {
 land_stack.push(0); }}

All that’s left to do is declare the global variables
we’ve littered throughout our code, giving them
default values as necessary. With this done, you can
send the game to your Arduino and start trying to
beat my high score of 32:

Stack land_stack;
int counter, second_counter;
int difficulty;
int shipspeed, shipx, shipy;
int switchstate;
int tunnel_size;
int current_score, high_score, score_counter;
bool playstate = false;

Above
A simple setup like
this could easily be
battery-powered and
placed into a portable
console of some kind

Get other people,
especially from your
target audience,
to try your game
(and thanks to
Elliott, Kaitlyn,
Eden, and Ingrid for
testing ours!).

QUICK TIP

Arduino programming: Sound, envelopes, and interrupts

SCHOOL OF MAKING

Get Started With Arduino64

Arduino programming:
Sound, envelopes,
and interrupts
Build a simple sound generator that allows you to control
the pitch or timbre of the sound over time

e spent the previous couple
of tutorials putting some
of our programming theory
into action, creating a
simple game where the
player flew a craft through

an ever-decreasing tunnel. In this tutorial, we’re
returning to practical theory, but we’re going to
explore some ideas that could be used to expand
a game, and generally make your programming
life easier. These ideas are going to be based on
generating sounds using something we’ve not yet
covered – interrupts.

Sound is obviously important, not just
for games, but for all kinds of different
projects. Audio feedback can replace

Graham Morrison

@degville

Graham is a veteran
Linux journalist who is
on a life-long quest to
find music in the perfect
arrangement of silicon.

Right
You can use almost
anything you have
around to generate
sound from some
input trigger with
an Arduino

W
the need for a visual element, such as a screen,
and sound can be more intuitive and accessible.
You don’t need to explain the UI of an audible alert
or alarm, for example, and if the sound is annoying
enough, it can demand your attention in ways an
on-screen notification can’t. But the best thing
about sound is that it’s incredibly cheap and easy to
implement. Even a basic Arduino with no specific

Get Started With Arduino

https://twitter.com/@degville

65

ARDUINO BASICS

Get Started With Arduino

audio hardware, like the Uno we’re using for our
projects, can generate sound, because sound is
generated by moving a speaker coil using nothing
more than fluctuations in current.

The trigger to start the sound could be almost
anything. An in-game event, for example. But for
our purposes, and to make this project standalone,
we’re going to use an equally simple momentary
switch or button. When the button is depressed,
we’ll generate the sound. When it’s released, we’ll
stop the sound. Two things are going to make this
different to how you might expect. The first is that
we’re going to use an interrupt to automatically wait
for the button state to change, and the second is
that we’re going to modify the sound as it’s being
played. This is called ‘modulation’, and it’s essential
if you want your sound to be more interesting than
a simple beep.

INTERRUPTS
Up until now, we’ve used the ever-running loop()
function to look for changes in the state of things
we wanted to monitor. If a button is pressed, or a
joystick pushed, a variable would change and we
could safely assume an event had taken place.
This approach is typically called ‘polling’, because
we’re constantly waiting and watching, looking for

a value to change. Polling is a great solution on an
Arduino because the device is always on, always
running at full speed, and always iterating through
loop(). Adding extra checks, or polls, shouldn’t add
to the overall processing burden. And if it does, it’s
something the programmer can manage by carefully
prioritising those checks, or reducing the frequency
of less important checks.

But there are strong use cases for not continually
checking for changes in state, and instead waiting
to be informed that something has changed. This
is what an interrupt does. An interrupt allows the
programmer to define a function to run when there’s
a change in state without manually waiting for
it. Just like tapping someone on the shoulder, an
interrupt is often triggered faster than the equivalent
polling code, and the amount of time it takes to
respond to an interrupt is more predictable. Polling
response times can be unpredictable. It could
be that you check for changes in state just as

 An interrupt allows the programmer to define a
function to run when there’s a change in state
without manually waiting for it

”
”

Left
Speakers are
remarkably resilient,
and can sound good
even when in a poor
state of repair

As you might
imagine, one
thing you can’t do
within the function
triggered by the
interrupt is wait.
delay() won’t
work because the
function is being
executed outside of
the main loop, and
millis() won’t be
incremented either.

QUICK TIP

Arduino programming: Sound, envelopes, and interrupts

SCHOOL OF MAKING

66 Get Started With Arduino

something has changed, and the response will be
fast. Or something changed just after the previous
check and won’t now be serviced for a longer
duration. This induces jitter, which is variations in the
delay between when something happens and when
your code can respond to it. Of course, we’re talking
about differences in milliseconds, but it can make
a difference in time-critical situations, or when jitter
can be easily detected such as with strobing lights
or audio playback.

Let’s get started by writing the code for
the interrupt:

const int interruptPin = 2;
const int piezoPin = 3;
unsigned long note_time;
bool trigger = false;
void setup() {
 attachInterrupt
(digitalPinToInterrupt(interruptPin),
triggerSound,
CHANGE);
}

All we’re doing in the above chunk is first declaring
a global constant variable to hold the value of the
pin connected to our button, and then using this
value within setup(). We also create an ‘unsigned
long’ variable to hold up to 4 bytes of data with

no negative numbers, which we’ll use to hold a
timestamp, and a bool to hold the press state of the
button. attachInterrupt is the important part, as
this is the Arduino magic that tells your hardware
to automatically launch a function, triggerSound,
when it receives a signal corresponding to the final
argument in the attachInterrupt function call. We’ve
gone for CHANGE, as this triggers the interrupt when
the button is being pressed and released. We could
also have used RISING to trigger the interrupt when
the button is pressed and FALLING when the button is
released, but we can handle both of those states with
CHANGE without using our one remaining interrupt, as
we’ll show. There’s also LOW (and HIGH on selected

 ‘attachInterrupt’ is the
important part, as this is the
Arduino magic that tells your

hardware to automatically
launch a function

”

”

Below
We salvaged our
speaker from an old
PC, but they’re easy
to find by taking
apart almost anything
that used to make
a sound

Below
Momentary switches
only stay connected
as long as the user
presses the button

67

ARDUINO BASICS

Get Started With Arduino

boards) to trigger the interrupt when the input
changes to that particular state.

The triggerSound function that’s called by the
interrupt is actually very simple:

void triggerSound() {
 if (trigger = !trigger) {
 note_time = millis();
 }}

As we’re detecting a change in the button state,
and not whether it’s being turned on or off, we use
a Boolean called trigger to flip between true when
the button is pressed and false when the button
is released. This isn’t obvious in the above code,
and we’re perhaps guilty of needless obfuscation
here, but the if (trigger = !trigger) line is both
the assignment and the comparison. This isn’t a
comparison, using == or !=, as you’d usually expect to
see with an if statement, it’s actually an assignment.
We’re assigning the not value of trigger to trigger
because the exclamation is the not operator. This
makes not true = false and not false = true. If
trigger is true after the assignment, the if statement
will see the expression resolve as true and note_time
= millis(); will be executed. This line adds another
new command, millis(), which assigns the number
of milliseconds the Arduino has been powered
on to note_time, the unsigned long variable we
created earlier.

PLAYING A SOUND
Playing a sound on an Arduino is remarkably easy,
partly because there’s a built-in function, tone(),
so you don’t need to worry about pitch and partly
because all the Arduino has to do is send pulses of

HARDWARE

The great thing about this project is
that you likely already have everything
you need. You can use almost any old
speaker, for example, although the better
the speaker, the better the quality of
sound – we took one from an old PC.
You could also use a small piezo buzzer,
often found in component kits. The sound
output isn’t so good, but the Arduino isn’t
exactly capable of high quality anyway.
It’s connected to pin 3 of the Arduino and
ground, but if you find the output is too

loud, place a resistor between the positive
connection and the Arduino. The higher
the resistance, the lower the volume.

Similarly, we plundered an old
component box to find a momentary
switch to use. One side of this switch
is connected to both digital pin 2 on the
Arduino and a 10 kΩ resistor, which is
itself connected to ground. The other side
of the switch is connected to the 5 V pin or
rail from the Arduino. And that’s all there
is to this circuit.

Below
All the components for
this project should be
easy to find

Arduino programming: Sound, envelopes, and interrupts

SCHOOL OF MAKING

68 Get Started With Arduino

 if (trigger) {
 playSound(261);
 } else {
 stopSound();
}}

If you now run all the code we’ve just written, you
should find that your Arduino generates a tone at
pitch equivalent to a middle ‘C’ on a piano keyboard.
But this is only part of the project, because a simple
tone isn’t all that exciting. To solve this, we’re going
to change the sound during playback using something
called an ‘envelope’ to modulate the playback pitch.

An audio envelope describes how much a sound
changes over time, from the moment it’s triggered
to when it’s released. Envelopes are typically used to
change the amplitude and pitch of a sound over the
duration of a note, and the most common envelope
type consists of four stages: attack, decay, sustain,
and release, also written as ADSR. Attack, decay, and
release are time durations that indicate how fast or
slowly the audio changes, whereas sustain is a level
that is held while the note is being triggered.

ENVELOPE GENERATOR
Before we start creating our own envelope, we need
to add a few global variables:

const int pitchEnv[] = {500, 250, 200};
const int pitchMax = 255;

The array is going to hold the attack, decay, and sustain
values, with the first two being durations and the final
element being level value. As we’re going to use this

envelope to vary the pitch of our sound, we’ve called
it pitchEnv, along with pitchMax to hold the maximum
value (amplitude) we want the envelope to reach on
the initial attack. Apart from its name, though, there’s
no reason why the envelope can’t be used to control
any other audio-related value to modulate the sound.
Before we write the envelope generator code itself,
we need to patch the envelope effect into our current
code. This is as simple as adding the following to the
beginning of the playSound function:

current to the pin connected to the speaker. It can all
be done with a single line, which we’ll place within its
own function:

void playSound(int pitch) {
 tone (piezoPin, pitch);
}

We’ll pair the above function with another to turn the
sound off:

void stopSound(){
 noTone(piezoPin);
}

All we now need to do is write the simple loop()
function to trigger either the playSound function or
the stopSound function depending on the state of the
trigger Boolean:

void loop()
{

Below
A piezo buzzer is a
handy component.
It works reasonably
well as a speaker and
can also be used as a
crude microphone

Envelopes are typically
used to change

the amplitude and
pitch of a sound over the

duration of a note

”

”

69

ARDUINO BASICS

Get Started With Arduino

pitch += envMod();

The above operator is adding the value returned
from the envMod() function we’re about to write to
the current value of pitch.

int envMod() {
 unsigned long current_dur = millis() - note_

time;
 if (current_dur <= pitchEnv[0]) { // Attack
 return ((pitchMax * (100 * current_dur) /

pitchEnv[0]) / 100);
 } else if (current_dur <= (pitchEnv[0] +

pitchEnv[1])) { //Decay
pitchEnv[1]) / 100);
 return (pitchMax - (pitchMax - pitchEnv[2])

* (100 * (current_dur - pitchEnv[0]) /
pitchEnv[1]) / 100);
 } else { // Sustain
 return (pitchEnv[2]);
}}

The above code is complicated, so we’ll break
it down into parts. It starts off by taking another
timestamp for when the function is being run. By
subtracting the note’s start time, which we saved
earlier, and by using the time values in the envelope
array, we can calculate which stage of the envelope
we should be in. This is what the if and else
statements are doing, with the first simply checking
to see whether the time is less than the time of

the attack stage, and the second whether the time
frame is between the attack and the end of the
decay. If it is, we have a long calculation that does
the following:

1. Calculates current time frame as a percentage of
the whole stage

2. Returns a percentage of changing value

We both multiply by 100 and divide by 100 in the
expressions to keep the end values as integers
and avoid floating point mathematics, which is a lot
slower and resource hungry on an Arduino. With
the attack stage finished, the next if deals with the
release stage. Finally, if we’re in the sustain stage,
we simply return the sustain value from the array.

With that function written, you can now re-upload
the project to your Arduino. When you press the
button, the pitch of the sound will now change
according to the durations and sustain level of the
envelope, making the sound much more dynamic
and interesting. You could even build this into a
synthesizer, adding potentiometers to control the
values for each stage of the envelope, or adding
more modulation envelopes to control amplitude,
or even pulse-width modulation. But that’s
another story.

The code for this project can be downloaded
from hsmag.cc/sEgZSN.

Arduino interrupts work at the
hardware level and can respond to
detected changes on specific pins,
such as the rising or falling signal you
get by pressing a button, but which
pins you can use is restricted, and
different Arduinos support different
numbers of pins. On our Uno (and other
328-based Arduinos), pins 2 and 3 are
the only two capable of generating
interrupts, and we’ve settled on pin 3
for the button connection. But to get
pin 3 to generate interrupts requires
an extra step we wouldn’t ordinarily
take, and that’s to convert this pin
number into an ‘interrupt number’. This
is because most Arduinos support a
restricted number of interrupts, just
two on the Uno, and the number for
each interrupt won’t necessarily align
with the pin being used to generate
the input. If your project needs more
interrupts, the best thing to do is
upgrade your Arduino.

HARDWARE INTERRUPTS

ARDUINO INTERRUPT PINS

328-based, Uno, Nano, Mini 2, 3

32u4-based, Micro, Leonardo 0, 1, 2, 3, 7

Due all digital inputs

Uno WiFi v2 all digital inputs

Zero all digital inputs except 4

Mega, Mega2560, MegaADK 2, 3, 18, 19, 20, 21

MKR boards 0, 1, 4, 5, 6, 7, 8, 9, A1, A2

Just like writing
English, the simple
approach should
always be taken
when writing code,
even if you know it
can be compacted.
This makes it much
easier for other
programmers, and
your future self,
to understand.

QUICK TIP

70 Get Started With Arduino

Arduino Programming: Copy and send infrared signals

SCHOOL OF MAKING

Build a secret infrared repeater to turn off Sky Sports
on the 65-inch screen in your local pub

e thought the humble
infrared remote would be
dead by 2019, the year of
Akira and The Running Man.
But infrared is still going,
and has yet to be replaced by

Bluetooth, WiFi, or Facebook. This means we still
invariably point a piece of plastic at an invisible
window on a television to change the channel.
However, simplicity in this case is a good thing,
because it means infrared is easy to subvert and
easy to harness for your own evil projects, whether
that’s controlling your current equipment, or creating
a line-of-sight communication channel between any
of your own projects.

Despite being invisible to the human eye, infrared
light couldn’t be any easier to generate and to play
around with. It behaves just like visible light, and
can be produced with circuits no more complex
than those using an LED, although infrared is usually
output from a photodiode rather than a light-emitting

diode. An infrared light has a light wavelength
between 700 nanometres and 1 micrometre,
whereas the human eye is sensitive to light between
380 and 750 nanometres, with the top of this range
being red (followed by infrared). A larger wavelength
means a lower frequency, which is why infrared has
a lower frequency than visible light; this is why the
term ‘infra’ – which means ‘below’ – is used.

We’re going to create a super-flexible and generic
infrared recorder and retransmitter that you can use
to copy an infrared signal and resend it with many
different types of generic hardware. You can use
it as a single-button trigger for your own infrared
commands, or at the heart of an aggregating infrared
server you could use to send signals to multiple
pieces of hardware from a remote source – much
like Logitech’s Harmony range of devices. It requires
just a few components: the transmitter and receiver,
a momentary button, an Arduino, and a smattering of
programming, and we’ll be touching slightly on both
pointers and two-dimensional arrays.

WAbove
While it’s easy to
wire everything
together onto a
breadboard, you
might want to
consider working
this project into
a small battery-
powered container

Arduino programming:
Copy and send
infrared signals

71

ARDUINO BASICS

Get Started With Arduino

HARDWARE
Even though you can get infrared LEDs to wire
into your circuits, much like you would any LED,
it’s easier to use a pre-packaged module for both
the transmitter element and the receiver. These
packages are low-cost and help take some of the
complexity out of the circuit, especially when it
comes to decoding a signal. This is because the
binary (digital) message that you send and receive

with light, or even sound, needs to be modulated into
a meaningful signal the analogue hardware can work
with. This is what modulation does. This is where
old-school modems get their name – they ‘mod’ulate
and ‘dem’odulate signals between the digital
domain of computers across the analogue (at the
time) telephone network. We need much the same
function to send signals by modulating signals with
infrared light. The signal is modulated for sending
and demodulated for receiving, with the end result

being a string of binary digits appearing at one of your
Arduino’s pins. We then need to decode those bits
into something we can understand, either by copying
them and sending the same signal out on demand,
or by looking for their meaning in a specification of a
manufacturer’s set of known infrared codes.

Both the receiver and the transmitter have three
pins; two are connected to power and ground,
which we connect to lines on a breadboard, and
then data connections to pins on the Arduino. We’ve
connected the receiver to pin 10 and the transmitter
to pin 3. This is fixed because we’re going to use
a library to simplify sending and receiving signals,
IRremote.h. This library requires the transmitter
pin to be capable of pulse-width modulation, and is
hard-coded to pin 3 for this purpose. The library will
handle all the modulation complexity of sending and
receiving infrared messages, as well as decoding
them for lots of common equipment.

Other than the transmitter and the receiver,
we’ve added a simple momentary button, the same
we’ve already used in many projects. We’re going
to use this in two ways. First, by holding it down,
we’ll instantiate the ‘receive and record’ process
for capturing an infrared message. And second, by
pressing the button quickly, we’ll send the message
stored on the Arduino. Putting this into code is going
to be an interesting challenge, so let’s get started.

Left
The receiver and the
transmitter require
only power and
ground alongside
a single data
connection each to
the Arduino

YOU’LL NEED

Arduino Uno

Momentary
push‑button

10 kΩ resistor

IR receiver diode

IR transmitter
photodiode

Other than the transmitter
and the receiver, we’ve

added a simple
momentary button

”
”

Graham Morrison

@degville

Graham is a veteran
Linux journalist who is
on a life-long quest to
find music in the perfect
arrangement of silicon.

https://twitter.com/@degville

Arduino Programming: Copy and send infrared signals

SCHOOL OF MAKING

72 Get Started With Arduino

Don’t forget that you need to first download and
install any external header you use in your own
project. This can be done easily from the Arduino
IDE by selecting Sketch > Include Library > Manage
Libraries from the menu and searching for ‘irremote’.
You need the package built by ‘shirriff’, which is
nearly at the top of the search results. Click on Install
in this result to install it.

We now add two sets of global variables:

bool buttonActive = false;
bool longPressActive = false;
int msglen = 0;
int khz = 38;
unsigned int receivedData[RAWBUF];

The first Boolean on/off values are going to help
with the logic of the quick press/long press detection

of the button. Implementing this is more complicated
than it first appears, because simple momentary
buttons like this suffer from jitter and false positive
values during the transition from on to off and off to
on. These values become true as the button press
passes each state, so we know when a long press is
active and can run the appropriate code.

INFRARED LIBRARY
To a freshly created Arduino project in the IDE, the
first line of code we’re going to add is the header
for the library we’re using. We’ll add this with the
constant integers that hold which input pins we’re
using for the receiver and the button (remember,
the transmitter is hard-coded to be pin 3 within the
header files themselves);

#include <IRremote.h>
const int RECV_PIN = 10; // IR receiver input pin
const int BUTN_PIN = 7; // Button input pin

Above
There are several
different types
of receiver and
transmitter, but
they’re all low-
cost, and mostly
work in the same
way as ours

Below
Pre-made modules
can be a bit more
robust than just
soldering wires
to components

Don’t forget that you need
to first download and install
any external header you use

in your own project

”
”

The IRremote
header is located at
hsmag.cc/QJRKmw.
There’s very little
documentation,
but there’s some
excellent example
code if you wish
to experiment.

QUICK TIP

http://hsmag.cc/QJRKmw

73

ARDUINO BASICS

Get Started With Arduino

The following three global values start with
an integer for msglen. This will hold the size of a
message we receive so we can make sure we store
and send a message of the same length. After this
is an integer we’ve mysteriously called khz. We’ll
be using khz when we transmit an infrared code
because it holds the modulation frequency for the
encoded data stream. The default is 38kHz, or
38,000 times a second, and is the most common
frequency used by equipment manufacturers. This
can obviously be changed if you need it to be. The
final variable, receivedData, is an array of integers
for the contents of the message. The size of this
array is defined by a constant called RAWBUF which is,
unusually, defined within IRremote.h.

We will now use three classes defined
within IRremote:

IRrecv irrecv(RECV_PIN);
IRsend irsend;
decode_results results; // decode_results class
is defined in IRremote.h

We use one class variable for communicating
with the receiver, one for communicating with
the transmitter, and one for processing any results.
This is a good example of using a class to hide,
or abstract, the functionality of what’s happening,
such as the modulation and demodulation of a
message. The header simply presents to the
programmer an interface for controlling the
hardware. We’ll be using irrecv.enableIRIn();,
for example, to initialise the receiver within the
setup(), alongside the usual pin configuration,
which is the next piece of code:

void setup() {
 pinMode(LED_BUILTIN, OUTPUT);
 pinMode(BUTN_PIN, INPUT);
 irrecv.enableIRIn();
}

PROGRAM LOGIC
With the boilerplate code out of the way, we’re now
ready to tackle the logic of the code itself. First, we’ll
cover the logic behind detecting both short and long
presses of the button. The main idea is that, as long
as we know the button isn’t already being pressed,
we store the time when the first press is detected,
and we can use this to work out whether it’s been a
long press or a short press. Here’s the beginning of
the code that detects when the long press is active
(longPressActive = true;):

REMOTE CONTROL

We've used a simple raw mode for recording and
playing back infrared signals, but IRrecord can
also decode and send signals to specific hardware
manufacturers, which is needed when they're using
their own protocols, or using a non-standard carrier
frequency. It can do this because it has a large
library of protocols from common manufacturers,
including Sony, JVC, Panasonic, and even Lego. If
you look at the header file for each manufacturer,
you also get hints on how to best communicate with
the equipment.

Using a function from each library, you can extract
the command code from the manufacturer-specific
code used as a container for the commands. This
means you can theoretically control elements
like volume or channel numbers using variables,
combining them with the code you know controls
volume when you send them from the Arduino. You
could even chain commands together for different
pieces of equipment, enabling you to set up a
home audio/video configuration for a movie, or for
music, for example, and then control playback from
something that can then talk to the Arduino.

Left
Using one of the
manufacturer-
specific profiles in
the library can help
solve compatibility
issues. Panasonic,
for instance, uses
a carrier frequency
of 35

if (digitalRead(BUTN_PIN) == HIGH) {
 if (buttonActive == false) {
 buttonActive = true;
 buttonTimer = millis();
 }
 if ((millis() - buttonTimer > longPressTime)
&& (longPressActive == false)) {
 longPressActive = true;
 }
 } else { // EXECUTED ON RELEASE

We can only detect a short press when the button
is released, as it’s only then we’ll know the duration
of the press. This is why the release code comes
after the else statement above, indicating that

DECODING
Encoding signals by
varying the width
of a pulse (Pulse
Width Modulation) is
exactly how ‘PWM’
audio synthesis
works, and also
how some audio
communication
protocols work.

QUICK TIP

Arduino Programming: Copy and send infrared signals

SCHOOL OF MAKING

74 Get Started With Arduino

Thanks to IRremote.h, sending a signal is super-
simple. First, we check to make sure there is a
recorded message (mesglen > 0), and then send the
message with irsend.sendRaw(receivedData, msglen,
khz);. The data we transmit is in receivedData, but
you may notice something. We created this variable
as an array, but we’re not including any brackets, or
targeting a specific element. This is called ‘passing
by reference’, rather than the more common ‘call by
value’. This works because it’s only a reference to
the array that’s being passed to the sendRaw function,
and this reference is really the memory address
where the first element of the array is being stored.
The relative address of each element can then be
calculated by generating an offset from the amount of
space required to store an element of the array’s type.
If this sounds exactly like what a pointer does, you’re
right – by not including an element identifier, we’re
implicitly using the array variable name as a pointer.

The final piece of code is also the most functional
because it’s responsible for receiving the data and
decoding it into something we can use. This code
runs outside of all the previous code because this

improves the response time of our program when
an infrared signal is received. This is how we start
this block of code, quickly followed by a check to
see whether the longPressActive Boolean is true.
If so, this means the button is being held down
and we can go ahead and record the infrared signal
being received. If not, we can ignore the signal until
next time.

if (irrecv.decode(&results)) {
 if (longPressActive) {
 msglen = results.rawlen - 1;
 for (int i = 1; i <= msglen; i++) {
 if (i % 2) {
 receivedData[i - 1] = results.rawbuf[i]
 * USECPERTICK - MARK_EXCESS;
 }
 else {
 // Space
 receivedData[i - 1] = results.rawbuf[i]
 * USECPERTICK + MARK_EXCESS;

the button event is not setting the button to HIGH.
We then reset the longPressActive variable if this
event has already been detected as a long press.
And if not, after another else, we finally get to play
with some infrared code:

 if (buttonActive == true) {
 if (longPressActive == true) {
 longPressActive = false;
 } else {
 if (msglen > 0) {
 irsend.sendRaw(receivedData, msglen,
khz);
 delay(50);
 irrecv.enableIRIn();
 }
 }
 buttonActive = false;
 }

INFRARED AND OSCILLOSCOPES
You can use an oscilloscope with an infrared receiver to calculate the frequency of the
signal from an infrared source.

Despite being invisible to the naked eye, there are several ways to see an infrared
signal (outside of joining the SAS and snagging some infrared night-vision goggles).
The simplest is to use your smartphone camera. Looking at the real-time preview
whilst pressing buttons on your remote should reveal flashes from the infrared LED.
The front camera is usually best, as it’s less likely to have an infrared filter because
infrared is often used to help with motion detection and facial recognition. But if you
happen to have an oscilloscope handy, you can study an infrared signal in much more
detail. From the circuit we’ve created, just attach one of your oscilloscope probes
to the output of the receiver – the same output that connected to pin 10 on the Arduino.

When you now fire a few infrared signals at the receiver, you should notice your
oscilloscope come to life. In particular, if you set your update resolution to around
2 ms, you should see square waveforms with different widths. These changing widths
are key to how different values are ‘modulated’ into the signal transmitted by the
infrared LED. Notice, for example, that the ‘off’ width is always the same. This is the
pause between transmissions, and it’s constant. The actual data is carried in the
variable widths of the on-time – hence, pulse-width modulation. Different widths hide
different values, decoded automatically by any infrared receiver.

We can only detect a short
press when the button is
released, as it’s only then

we’ll know the duration

”
”

75

ARDUINO BASICS

Get Started With Arduino

 }
 }
 }
 irrecv.resume(); // resume receiver
 }
} // End bracket for project

The decoding code itself is taken from the
IRremote library, using %2 to work out whether
we’re receiving either an odd or even element for
the array and then using this to tweak the gaps
between the received elements to cancel out
receiver distortion. The results are placed into
the array and the size of the message stored in
msglen, which is the message we can now send
whenever we perform a short press on the button.
And that’s all there is to it. Build it and send it to
your Arduino!

Below
There’s a variety of
infrared receivers
and transmitters, but
nearly all of them
require just three
connections - 5 V to
VCC, ‘-’ to GND and,
‘S’, the data line to
the Arduino

Right
Everything set up and running on a breadboard, but you might
want to use protoboard to make this more permanent

Arduino programming: Debugging

SCHOOL OF MAKING

76 Get Started With Arduino

Delve into the dark art of troubleshooting and work
out where things are going wrong

ne aspect of Arduino
programming we’ve barely
touched on is the careful,
cautious, and necessary art
of debugging. Debugging is a
very general term that covers a

huge variety of processes that range from simply
trying to find out why your code doesn’t work, or
why it’s producing unexpected output, through to
performance monitoring, profiling, and optimisation.
The majority of modern development environments

and frameworks will offer tools to help with these
debugging processes, commonly allowing you to
step through your code line-for-line, while monitoring
the state of your hardware (as with a debugger such
as ‘gdb’), or generating profile information from the
code execution, such as the length of time spent in
a function, or the amount of memory being used.
But we don’t have the same level of luxury on
an Arduino.

With the Arduino, there’s no graphical tool for
monitoring the memory, no performance profiling

O
Above
Creating a circuit
with a piezo sensor
couldn’t be simpler.
Wire up positive to
an analogue pin,
negative to ground,
and bridge the two
with a 1 MΩ resistor

Arduino programming:
Debugging

Graham Morrison

@degville

Graham is a veteran
Linux journalist who is
on a life-long quest to
find music in the perfect
arrangement of silicon.

https://twitter.com/@degville

77

ARDUINO BASICS

Get Started With Arduino

or graphical debugger. In this way, debugging your
Arduino project can feel very similar to debugging
a 1980s-era home computer project, because you
need to come up with your own tests, and write
your own code directly into your projects. This isn’t
necessarily a bad thing because you’re learning
about your code and learning how best to avoid
mistakes through trial and error. But there’s a lot you
can do to make the process easier, and a lot you can
do to make your code faster – both of which we’re
going to tackle by using the serial monitor and some
lovely piezo sensors.

SERIAL SCAFFOLDING
In writing any Arduino code, there’s one element
that’s always required and yet nearly always cut
prior to publication or release. This is the code used
to debug the program, and it can be a little like the
scaffolding around a building construction site. It
performs an essential role that you seldom see

after the project is completed. You seldom (never!)
get code working on the first write, and you often
need to go back through what you’ve written and
test your expectations against what is actually
happening. The difficulty comes in trying to find
out what is happening. This is actually very close
to how professional development works, because
you often have to write tests at the same time that
measure those expectations against what can be
shown to be happening. Those tests are then run
whenever the code is updated, to make sure nothing
added changes the behaviour of the older code; it’s a
process known as QA – quality assurance.

Programming for the Arduino presents several
unique challenges. The biggest to overcome is
that your code isn’t running on the same system,
or the same architecture, that you’re writing your
code on. An Arduino is really just a microcontroller.
This is why there aren’t any readily available native
debugging tools, as these usually need to run and
interpret the compiled output of your code on the
system it’s been built for. Instead, you only execute
live Arduino code when it’s been uploaded onto your
device, and apart from a flashing LED, there’s no

Below
The best thing
about using the
serial monitor is
that you don’t need
any extra hardware,
such as a screen,
to get meaningful
information back
from your Arduino

BOOST SPEED

The Arduino platform has been designed to be
as broadly compatible as possible. This enables
it to work across many different kinds of devices
and in many different kinds of environments. But
this flexibility sometimes comes at the cost of
performance, especially for specific devices. And
one of the best examples of this is the digitalWrite
function, used by nearly every Arduino project to
send a signal to a pin. The Arduino documentation
admits the code for digitalWrite is a dozen lines
long, compiled into a multiple of machine-specific
instructions, one of which is executed per 16MHz
clock cycle. This takes time. But it’s possible to do
without digitalWrite completely, and instead write
directly to the pin in question using what is known as
a ‘register’. And what’s more, it can be done with a
single command:

PORTD &= ~_BV(PD2);

A register is a special kind of storage that’s tied
to a specific hardware location, which is then
read directly by the hardware when a certain
function is performed. The chips on an Arduino
have three different kinds of registers to cover all
the analogue and digital pins, including PORTD for
read/write access to digital pins 0–7, as shown
above. The &= chicanery is because we’re working
at a low hardware level, and this is a bitwise AND
assignment operator. This is followed by a bitwise
NOT for the tilde (~), effectively allowing you to
switch the state pin 2 (PD2 on the Uno) with the _BV
macro for convenience. A longer way to write the
same thing is the equivalent of PORTD = PORTD
&(~_BV(0b00000100)). But it doesn’t need to make
sense for it to just work. In our experiments, the
above code takes around two CPU cycles, whereas
digitalWrite takes around 36, at least on our Uno.

WITH REGISTERS

Debugging your Arduino
project can feel very similar
to debugging a 1980s-era

home computer

”
”

Arduino programming: Debugging

SCHOOL OF MAKING

78 Get Started With Arduino

motherboard. The Raspberry Pi also has these
two pins and makes a convenient testing platform
for working or hacking with other boards. These
connections are more widely known as UART
(universal asynchronous receiver/transmitter) when
the pins are used for a serial connection in this
way, which is reflected in the Linux device name on
the Raspberry Pi. But UART is also widely on the
Arduino too, both manually via its pin connection,
and via the USB connection to send data back from
your code to a host system.

For a serial connection to work, both the sender
and the receiver need to know how quickly the
data is travelling. This was the baud rate in old
modem terminology, and it corresponds directly
to the number of binary bits being sent across a
wire per second. To set the baud rate for the serial
connection to the Arduino, add Serial.begin(9600);
to the setup function. With that done, you can now
send data from your code running on the Arduino
back to the host computer using the Serial.println:

void setup() {
Serial.begin(9600);
}

void loop()
{
Serial.println("Hello world.");
delay (500);

}

115,200 bits per second is often the fastest
serial speed you’ll manage on Arduinos, and also
with many devices using RX and TX pins. If you do
experience problems, try slower speeds such as
57,600, 38,400, 19,200, or 9600. As the above code
shows, we’re starting at the slowest speed as this is
always most likely to work. To test the above code,
send it to your Arduino and open the ‘Serial Monitor’
from the IDE’s ‘Tools’ window. This is the IDE’s
equivalent to those old pieces of terminal software
that would help old computers connect to remote

way for the device to communicate its running state,
or whether it’s encountered any problems, unless
you specifically add that feedback into your code.
What’s more, while you can obviously create the
code to send messages to attached LEDs, screen,
and sound emitters, you can’t then debug the
output to those devices if even they don’t work. The
answer is to use the serial port.

The ‘S’ in the USB umbilical cord we use to
upload our code to the Arduino is for ‘serial’, and
even modern USB is descended from this very
early form of cross-device communication, where
bits bounce from one hardware pin to another, one
bit at a time. These pins were simply for ‘transmit’
and ‘receive’, and even on many modern devices,
such as Amazon’s Echo or your ISP’s router, hackers
can often locate TX and RX pads or pins on the

Above
Without feedback, it’s
very difficult to tell
which values occur
when on a sensor,
so you can then
generate functions

Below
Most Arduinos have
more than one serial
connection, and this
extra connection
can be used to
communicate with
other hardware. The
multiSerial example
sketch shows how to
do this

Both the sender and
the receiver need to

know how quickly the
data is travelling

”
”

79

ARDUINO BASICS

Get Started With Arduino

bulletin board systems. The main window shows the
output received from the connection, and the small
‘Send’ field lets you send data back across the serial
connection. But before you can do that, you need
to sync the monitor speed with the baud rate of the
connection, which you can do with the drop-down
‘baud’ menu in the bottom right. If this is set wrong,
you’ll get a screen full of gibberish. When selected
correctly, you should see a new ‘Hello world’
message every 500 milliseconds, or half a second.

DEBUGGING
Of course, printing out a single message is no help
at all. But you can now use the serial connection
to troubleshoot all kinds of otherwise difficult to
solve problems by using the same Serial.println
command to indicate when your code reaches a
specific section, or to see the value of a specific
variable, or when a specific event has triggered a
function. And to give these examples more solidity
by showing Serial.println in action, we’re going to
create a specific example using a single component
– a piezoelectric knock or vibration sensor. They’re
cheap and incredibly versatile and, as their name
suggests, they can be used to create anything from
motion detectors and door monitors, to drum pads
and pressure gauges.

A piezoelectric knock sensor is closely related to
the ‘piezo’ we used to generate sound in a previous
tutorial, as well as the ‘piezo’ used within electric
guitar pickups and, ultimately, many microphones.
They generate voltages from bending forces and
changes in pressure. They can be easily wired up to
your Arduino with the positive (red wire) connected
to analogue input 1 and the negative (black wire) to
ground, with a 1 MΩ (megohm) resistor bridging the

Above
You can send data
to your Arduino
over serial as
well. The example
Communication >
ReadASCIIString
shows how to do this

Left
Generating CSV data
from your sensors
is a brilliant way to
conduct experiments
and visualise the
output, such as the
response curve from
a piezo knock sensor

Arduino programming: Debugging

SCHOOL OF MAKING

80 Get Started With Arduino

void loop()
{
piezo_value = analogRead(PIEZO);
Serial.print("Current value: ");
Serial.println(piezo_value);
delay (500);

}

There are two slight differences in the ‘print’ code
above. The first is that we use print, as opposed to
println, because we don’t want a carriage return after
the ‘Current value: ‘ text, which is handled by the next
println statement, although there are control codes
that can do this within the text itself. But breaking
this up into two lines makes it easy to see we’re
outputting the piezo_value with the second line.

When you now upload this, run the code, and open
up the serial monitor as we did before, you should
see the following output:

two to dampen potential voltage from the sensor.
But these sensors are also unpredictable, and you
often have no idea of what kind of analogue values
they’re going to generate until you start generating
them. This is important if you want to trigger
something at a certain threshold, for example, or
make sure that the threshold doesn’t change under
different conditions. And that means you need to
get the data back from your Arduino across the
serial connection.

For this simple example, add the following to the
top of your code to set the analogue pin we’re using
and the integer we’ll use to store the reading:

const int PIEZO = A0;

int piezo_value = 0;

The main loop can then be updated with
the following:

Right
Piezo sensors
are cheap, easy
to integrate, and
incredibly flexible. It’s
always worth having
a few around

81

ARDUINO BASICS

Get Started With Arduino

Current value: 0

Current value: 0

Now try pressing down on the piezo sensor. You
should see this value jump, although not always
in a predictable way. The maximum value for the
analogue/digital converter on the input is 1023,

and this can sometimes be achieved with a soft
press rather than a hard strike, but as long as the
untriggered value is 0, you can work with the sensor
as a trigger.

If you wanted to use the piezo as a drum trigger,
you may wonder at which point you’d want the
trigger to start, and this is a complicated problem.
You could use the transition from zero to a non-
zero value, for example, but devices like these
and momentary buttons will often include multiple
transitions from zero in a single hit, and it’s not
always easy to tell when the main trigger should
occur. This is a great example of when you might
want to look deeper into the debugging aspect of
your code by mapping out the typical values a sensor
has during the course of an event, such as a trigger.
We can do this easily with our own code by making
only a few modifications:

void loop()
{
 piezo_value = analogRead(PIEZO);
 if (piezo_value){
 Serial.print(piezo_value);
 Serial.println(", ");
 }
 delay (10);

}

The above code replaces the loop function with
an if statement that’s only triggered when the
piezo_value isn’t 0. It then prints out this value
followed by a single comma, before waiting ten
milliseconds and trying again. What this is actually
doing is outputting a comma-separated list in the

SERIAL PLOTTER

In the main text, we finish by outputting a CSV-
formatted dataset that can be analysed from any one
of the dozens of applications and web services that
support CSV. But there’s also a little-known feature in
the Arduino IDE that lets you get real-time feedback
from your sensors, without having to export your
data at all. This feature is the ‘Serial Plotter’, found
just beneath the ‘Serial Monitor’ in the Tools menu. It
needs to be opened on its own, and it also requires
the same baud rate setting as the monitor. But, most
importantly, it requires a specific data format when
sending values from your code. This is almost identical
to the CSV format used in our original code, but
replaces the comma with a single space. For example,
our own code would look like the following:

 if (piezo_value){
 Serial.print(piezo_value);
 Serial.println(" ");
 }

With that small change and the code uploaded to your
Arduino, you now simply have to open the plotter and
start touching the piezo. You’ll see the chart drawn
almost in real-time in the plotter, which is a great way to
both visualise sensors and the data they’re generating,
and create a model of how you might want to use
specific value ranges within the data.

format typically known as CSV (comma-separated
values). This is a very simple format that’s supported
by many different types of visualisation tools, both
online and offline, and you can copy and paste those
values directly from the serial monitor window into
one of these – such as LibreOffice Calc – and, from
there, generate a chart of the values. You can then
analyse the chart to see what the typical sensor
response might be, especially if you combine multiple
triggers. You should then be able to derive a series of
values that constitute a proper event without bounce
or repetition, and you can only do this because of the
debugging output from the serial monitor.

You may wonder at which
point you’d want the

trigger to start, and this is a
complicated problem

”
”

82 Get Started With Arduino

Project Tutorials
Expand your knowledge and skills by making
these fun Arduino projects

84 WAY HOME METER
Let loved ones know when you’ll arrive back home

90 DESKTOP HYDROPONIC GARDENING
Create the ultimate fashion accessory

96 MAKE A WORD CLOCK
Spell out the time with this attractive wooden clock

102 POLYPHONIC DIGITAL SYNTHESIZER – Part 1
Create your own wearable audio sampler glove

106 POLYPHONIC DIGITAL SYNTHESIZER – Part 2
Add a keyboard and make more complex sounds

112 WIFI TETRIS CLOCK
An internet-driven clock drawn using Tetris blocks

118 LET’S LEARN LORA
Use LoRa to transmit temperature and humidity to an online dashboard

126 BUILD YOUR FIRST WALKING ROBOT
Make and program a four-legged automaton

138 BUILD A SYNTH
Create your own analogue synthesizer and sequencer

Get Started With Arduino

PROJECT TUTORIAL

83

84

118

126

Get Started With Arduino

Way Home Meter

TUTORIAL

84 Get Started With Arduino

Use an ESP8266 and some NeoPixels to let loved
ones know when you’ll arrive back home

Way Home Meter

et me know what time you’ll be
home”– it’s a common refrain in
homes across the country. We try
to give good answers, but it’s hard
to know how traffic will affect us on
the way. Rather than rely on guess-

work, let’s try to build something to let our families
know when we’ll make it back.

In this project we’ll build a device that will give
up-to-date home arrival times, based on the live
traffic conditions. To make the device more useful
for when it’s not being used for that purpose, it
works as a clock that automatically fetches its time
from the internet and also automatically adjusts for
daylight savings.

We’ve built this using an ESP8266, which is a
surprisingly powerful microcontroller with built-in
WiFi and can be programmed using the Arduino IDE.

The device makes use of a few different, free
internet services:

• Telegram: an instant messaging service that
allows for the creation of bots that users
can interact with. It is a really good way of
communicating with your ESP8266 or ESP32
projects from anywhere in the world, for free.

• Google Maps API: can be used to get travel time
and traffic information between two places.

• NTP servers: Network Time Protocol, a way for
network-connected devices to get the time. This
saves the needs for a real-time clock, and also
doesn’t require the time to be set.

To use it, the person who is coming home uses
Telegram on their phone to share their live location
to a Telegram Bot that is running on the Way Home
Meter. This will update the Way Home Meter
with the person’s GPS coordinates every 20 or
30 seconds.

The Way Home Meter takes these coordinates
and sends a request to the Google Maps API to
get the live travel time and distance between the
person’s location and home.

The Way Home Meter will then add the travel
time onto the current time and display the estimated
arrival time of the person and updates the dial and
NeoPixels to represent what percentage of the
journey (distance wise) has been completed.

CODE IT UP
The code for this project is available on GitHub.
Go to the following URL, hsmag.cc/ybAcHB,
and click the Clone or Download button on the
right side of the page, and then Download Zip.

Brian Lough

Brian is a Maker from
Ireland who primarily
creates projects
and libraries for ESP
microcontrollers. Check
out his stuff on his
YouTube channel and
blough.ie

@witnessmenow

L“

http://hsmag.cc/ybAcHB
http://blough.ie
https://twitter.com/witnessmenow

85

PROJECT TUTORIALS

Get Started With Arduino

Extract the zip file. Inside the extracted folder,
open up the WayHomeMeter folder and open the
WayHomeMeter.ino file.

This sketch requires some additional Arduino
libraries to be installed; start by opening the Arduino
Library Manager by going to Sketch > Include Library
> Manage Libraries.

You will need to add the following libraries:
• Universal Arduino Telegram Bot by Brian

Lough – for creating a Telegram bot on the
ESP8266.

• Google Maps API by Brian Lough – for getting
the live traffic data.

• Arduino JSON by Benoît Blanchon – used by
the libraries to parse the responses. Note: There
is a breaking change in V6 of this library that

will cause it not to work with the Telegram and
Google Maps library, so use the drop-down on
the left of the window to change the version
to V5.13.2.

• MD_MAX72XX by majicDesigns – for
communicating with the dot matrix display.

• MD_Parola by majicDesigns – handles
animations on the dot matrix display.

• Adafruit NeoPixel by Adafruit – for controlling
the NeoPixels.

• NTPClient by Fabrice Weinberg – for getting the
time from the internet.

• Timezone by Jack Christensen – for automatically
switching the time for daylight savings.

Left
Screw terminals are
useful for projects
where components
are separated from
the PCB

PROGRAMMING THE ESP8266

The standard Arduino IDE isn’t set up to program the
ESP8266, so before we can program the board, we need to
set this up (you can skip this bit if you’ve already used the
IDE with an ESP8266).

First, let’s get the raw IDE. You can download this from
the Arduino website and install it as you would any other
software: hsmag.cc/TAfEJp.

Next, you will need to set up the IDE so it knows how to
communicate with an ESP8266. Open the Arduino IDE, go
to File > Preferences, and paste the following URL into the
Additional Boards Manager URLs, then click OK:
http://arduino.esp8266.com/versions/2.4.2/package_
esp8266com_index.json

Back on the main screen of the Arduino IDE, go to Tools
> Board > Boards Manager. When this screen opens,
search for ‘ESP8266’ and install it; this may take a few
minutes depending on your internet connection.

After setting up a new board it is recommended
to get the simple example blink sketch before trying
anything more complicated; this can save a huge amount
of headache down the line! You can find this in File >
Examples > 01. Basics > Blink.

Upload this to your ESP8266 and you should see an LED
blink on and off. If you get an error or don’t get a blinking
light, make sure you’ve got everything installed correctly
and the ESP8266 is properly connected.

YOU’LL NEED

An ESP8266
Wemos D1 mini
microcontroller
(or equivalent
e.g. Adafruit
Feather Huzzah or
NodeMCU etc.)

4-in-1 Max7219
dot matrix display

A small servo
(sg90)

A 3D-printed
dial for the servo
(optional, could
be made from
anything!)

11 × through-hole
NeoPixel (I used
PL9823 LEDs)

220 pF capacitor

Passive buzzer

1 kΩ resistor

NPN transistor

Protoboard (I used
a prototype PCB I
designed, but the
project can easily be
built with standard
protoboard)

Screw terminals
(optional)

IKEA RIBBA frame

A3 piece of 3 mm
foam board

Hot glue gun

4 mm wood
drill bit

Sharp knife

A metal ruler

A compass and a
protractor

Micro USB
phone charger
(for powering the
project)

http://hsmag.cc/TAfEJp
http://arduino.esp8266.com/versions/2.4.2/package_esp8266com_index.json
http://arduino.esp8266.com/versions/2.4.2/package_esp8266com_index.json

Way Home Meter

TUTORIAL

86 Get Started With Arduino

To get a Telegram Bot token, download the Telegram
app on your phone and set up an account. Open the
app and press the search button on the top-right
of the screen. Search for ‘botfather’. Type /newbot
and follow the on-screen instructions. The botfather
will provide you a link to the bot and an access
token. The link is for the chat where people will
share their location; the access token is used in the
sketch to authenticate your ESP8266 as the bot you
just created.

Next, you will need to get a Google Maps API
key. Start by going to the following URL:
hsmag.cc/mPqFqh.

Check the Routes option and click Continue.
You will then be asked to create a project; you can
give this any name. You will need to add a billing
account, but this device will comfortably operate on
the free allowance given by Google. You will then
get an API token that can be used in the sketch.

And finally you will need to get your home’s GPS
location. A simple of way of doing this is using
Google Maps. Using a web browser (not the app),
navigate to your house on Google Maps and right-
click and click ‘Directions from here’. This will modify
the URL, which will now contain the coordinates
of your home; copy and paste these from the URL
e.g. 51.5546466,-0.2794867.

You now have everything you need to configure
the WayHomeMeter. Open up the WayHomeMeter
sketch and click on the config.h tab. First thing you
will need to enter is your WiFi details so that the
ESP8266 is able to connect to your WiFi.

Google maps gives a free monthly allowance of
credit – equivalent to 20,000 requests. That is just
under what’s required to send a request every two
minutes in a month (about 22,000). This device only
makes the request every two minutes that it is actively
monitoring someone’s home journey, so should stay
under the limit if used occasionally. It’s possible
this limit will change in the future. How often it
checks can be configured in the sketch by changing
delayBetweenGoogleMapsChecks.

GOOGLE BILLING

Above right
This is a custom
PCB that breaks out
all the pins of the
D1 Mini to screw
terminals, but it can
be easily recreated
with a standard
protoboard

Above
The address pins of
the LEDs should be
able to reach each
other without the
need for extra wire.
The power pins need
to be joined by wire

After installing these libraries, you should click
the ‘verify’ button (shaped like a tick) on the
WayHomeMeter sketch to make sure that
everything compiles fine.

SOME CONFIGURATION REQUIRED
You will need to make some configurations to get
this sketch to work for you, but you will first need
to get:

• Telegram Bot token
• Google Maps API token
• GPS coordinates of your home

http://hsmag.cc/mPqFqh

87

PROJECT TUTORIALS

Get Started With Arduino

Next, you will need to add your Telegram Bot
token, your Google Maps API key, and your home
location. Finally, if you are not in the UK or Ireland,
you will more than likely need to change your time
zone. Uncomment the appropriate time zone and
comment out the UK and Ireland time zone.

WHAT MAKES IT TICK
You’ll need to wire everything together as shown
in Figure 1 (overleaf). The LEDs are addressable
RGB LEDs, so they only require a single GPIO pin
of your microcontroller and you can set the colour
of each LED individually. The input of the first LED
(the one over on the left when looking at it from
the front) will be connected to the Wemos, and its
output will be connected to the input of the second
LED. For all subsequent LEDs, the input of the next

LED is connected to the output of the previous one.
The output of the final LED will not be connected to
anything. Soldering these LEDs should be left until
the final assembly stage.

CREATING THE MOUNT
Take the back panel off the picture frame and use
it to trace a square onto your foam board. Using a
sharp blade, cut out the square.

Next, you’ll need to separate the panels from the
display, as you’ll be placing the PCB on the back side
of the foam and the panels on the front; this will hold
the display in place and hide the cuts from view.

Carefully remove each of the dot matrix panels
from the dot matrix display. There are markings on
the side of each of the dot matrix panels; make a
note of what direction they are facing in comparison
to the PCB to ensure they are put back in the
correct orientation.

If your PCB has header pins attached, desolder
and remove them. Replacing these with wire will
make the PCB fit flush to the foam board.

Measure the rectangle created by the pins and
mark out that shape where you want to place it on
the foam board. The objective is to cut out a shape
that the pins of the PCB will fit through, but the PCB
itself will be too big for.

The LEDs for this project are all on an arc around
the centre point of the servo. Mark where you want
the centre point of the servo arm to be and, using
your compass, draw a semicircle lightly for where
you want the LEDs to be.

You can often have issues using NeoPixel LEDs with
a 3.3 V logic level device such as an ESP8266 or
Raspberry Pi. You can get around this issue by using
a logic level shifter to convert the 3.3 V to 5 V for the
Data In connection for the first LED. However, we’ve
found that it works fine with just a small capacitor
between Data In on the first LED and Ground (as seen
in this project).

Once you are happy
everything is working
correctly, secure the
components in place
with some hot glue

”

”

Above
A peek at what’s
hiding at the back

If you are short
on time, or just
interested in
quickly trying
this project out,
strip it back to
be just the dot
matrix display,
the Wemos D1
Mini, and use
DuPont cables
to connect them
together. The
key piece of
functionality,
displaying the
expected arrival
time, uses only
the display.

SHORT
ON TIME?

NEOPIXELS WITH A
3.3 V DEVICE

Way Home Meter

TUTORIAL

88 Get Started With Arduino

Place your protractor on the centre point and mark
every 18 degrees. Then, using a ruler, line up the
centre point and these new marks; where this line
intersects with the semicircle is where each LED
should be placed. Starting on the side that you want
to be the front, use the 4 mm drill bit by hand (no
power drill needed) to create a hole for each of the
LEDs where you have marked.

Measure the dimensions of your servo and mark
it on around the centre point. Remember that the part
of the servo that rotates should be the centre point,
so offset the servo shape to suit. Cut the shape out
of the foam board and place the servo through from
the front.

Finally, you will need to place the buzzer module.
You can simply place the pins of the module into the
foam to mark where the holes should be and, using a
piece of wire, pierce the two holes so they go through
the foam board.

ON THE FINAL STRETCH
Place all the LEDs into the foam board from the
back. Bend the input pin of each LED back towards
the previous LED, and bend the output pin of each

towards the input pin of the next LED, and solder
them together. Slightly bend all the Ground pins
of the LEDs towards the centre of the circle and
all VCC pins away from the centre of the circle. Solder
wire between all the Ground and VCC pins.

Place the dot matrix PCB in the cut-out, and put
all the panels back in place. Pay careful attention

Right
Foam board all cut
and LEDs placed.
The foam board will
be clamped between
the display module
and the PCB

It’s a good idea to
practise cutting
out the shapes
and making the
LED holes using
scrap pieces of the
foam board!

QUICK TIP

You can take this project and make it differently,
depending on your requirements. Here are a
few suggestions:

• Add the ability to send the device a location and
time, and have it calculate when you need to leave
your home to make it on time.

• Add support for multiple people. Currently the
device will request the travel time for the person
who last sent a coordinate and display the correct
name and information for them, but this could be
improved to handle multiple people.

• Configurable alarms. Get notified when a
person is X number of minutes away. Useful for
starting dinner!

GOING FURTHER

89

PROJECT TUTORIALS

Get Started With Arduino

to the orientation of the panels, as it is very difficult
to remove these again without damaging the
foam board.

You then want to thread the wire of the servo
module through the hole for the servo, and then insert
the servo. Glue the dial hand onto one of
the connectors that comes with the servo, and attach
it to the servo when dry. The 3D design
used in this project can be downloaded from here:
hsmag.cc/iqOPiP. However, you can use anything
you want (and a model car could be substituted if you
don’t have access to a 3D printer).

Finally, solder wire to each pin of the buzzer module
and push it through the front of the foam board.

Connect all the modules to the Wemos on the
protoboard and test everything out. Once you are
happy that everything is working correctly, secure
the components in place with some hot glue.
You are now ready to have super-accurate home
arrival times!

Always be generous
with the lengths
of wire you use,
especially in a
project where
space is not an
issue. If you need to
make adjustments,
it’s easier to
shorten them than
lengthen them.

QUICK TIP

A lot of people who saw early versions of this project
mentioned that it reminded them of the Weasley Clock
from Harry Potter, a clock that showed the current
location of each of the members of the Weasley family.
This Telegram-based solution could be used for a
project like that, but it does require each of the users
to actively enable the location sharing. A more passive
solution might be better.

Figure 1
The wiring diagram
for our Way
Home Meter

Below
The name displayed
comes from the
user’s Telegram name

A POTENTIAL
WEASLEY CLOCK?

http://hsmag.cc/iqOPiP.

Get Started With Arduino

n this project, you’ll be making a scalable
hydroponic growing system that uses easily
sourced components to control the flow
of water, light, and heat to your plants.
Hydroponic systems use regular or constant
flows of nutrient-enriched water to grow plants

without soil, and are a great way to grow vegetables
if you have restricted space or access to natural light.

This project represents a couple of years’ worth of
experimentation with homemade growing systems,
and is a variation of a hydroponic technique called ebb-
and-flow – where the water is tidal, and floods through
the system several times a day. Plants are rooted into
an absorbent substrate that holds water next to the
roots of the plant when the flow of water stops.

If the pump in a constant flow system fails, the
plants will die very quickly, while an ebb-and-flow
system can survive for several hours in the event of a
power failure.

I

Desktop hydroponic
gardening
Grow your own food with an Arduino and some rain guttering

GROW VERTICALLY TO SAVE SPACE
The hydroponic system described here has three
main parts: the support system, the water system,
and the control system. The support system is
essentially a wooden box and a shelf unit, and is the
easiest part to make.

Lay the smallest piece of plywood flat, and use
some coins or hex nuts to raise it slightly from the
surface it is resting on. Next, take the four planks,
and arrange them to make a rectangular box around
the smaller piece of plywood. Screw the planks
together using corner brackets at the top and bottom
of each corner, and then secure the plywood base to
the planks using screws and glue. You should now
have a simple box that you can use for the base of
your hydroponic system.

You will use copper pipe to make shelf brackets.
Measure 450 mm from the end of the 28 mm pipes,
and drill a 15 mm hole right through. Drill a second

90

TUTORIAL

Desktop hydroponic gardening

Dr Andrew Lewis

@monkeysailor

Dr Andrew Lewis
is the owner of
Shedlandia.com, a
restorer of old tools,
a fabricator for hire, a
research scientist, and
a founder member of
the Guild of Makers.

https://twitter.com/monkeysailor
https://shedlandia.com

Get Started With Arduino 91

PROJECT TUTORIALS

hole through the pipes, 750 mm from the end. The
15 mm pipe should slide through the hole in the
28 mm pipe and make a rudimentary shelf bracket.
To figure out the length of the shelf brackets,
measure the width of your guttering and add about

40 mm. Cut four pieces of 15 mm pipe to this length,
and add a copper elbow to the end of each pipe. If
you have a blow-lamp and solder, you can use this
to join the pipes and elbows; otherwise, you can just
use hot glue.

Fix the 28 mm pipes 150 mm from the sides at
the back of the box, using the 28 mm pipe clamps
to hold each pipe in place vertically. You can now
slide the 15 mm brackets into place, and fix them in
position using solder or glue.

Next, you are going to extend the brackets to
support LED lights above the guttering. Cut four
pieces of copper pipe 250 mm long, and fit these

Hydroponics are
a great way to grow

vegetables if you have
restricted space

”
”

YOU’LL NEED

Electronics

12 V 20 A
power supply

Arduino Uno

60 W waterproof
greenhouse
tube heater

20×4 I2C
LCD screen

4 × Momentary
push buttons
(normally open)

2 × TIP120 (or
similar) transistors

1 × 10 A solid
state relay

2 × 2.2 kΩ resistor

10 kΩ resistor

10 kΩ thermistor

5 m LED
grow light strip
(only 2 m needed)

12 V water pump

3m length of 240
3-core flex

13 A plug

DuPont signal
cables and 3 A
rated cable

Other hardware

2 m length of
flexible silicone
tubing, approx.
6 mm bore

2 × 1 m lengths of
28 mm copper
pipe

2 × 3 m lengths
of 15 mm copper
pipe

20 × 15 mm equal
copper elbows

4 × 28 mm pipe
clamps

2 × 15 mm pipe
clamps

vertically into the elbows on the shelf brackets. Cut
another four pieces of copper pipe slightly less than
half of the width of your guttering, and connect
them to the 250 mm verticals using elbows, so that
they hang over the guttering. Cut two final pieces
of copper pipe to join the left and right brackets
together over the guttering.

The final piece of pipework will carry water from
the pump to the top watering channel. The pipe
is fitted vertically in the middle of the back of the
box using 15 mm pipe clamps, and is approximately
800 mm long with a U-shaped section at the top
to direct water into the guttering. It is much easier
to use the copper pipe as a conduit for a length of
narrow-bore, silicone pipe push-fitted to the pump
than it is to connect to the copper pipe directly. Feed
the silicone pipe through the 15 mm copper pipe and
around the U-shape, leaving about 30 cm hanging out
in the bottom of the box.

With the last of pipework done, you can complete
the woodwork. Drill, or cut, a 10 mm hole through
the back of the box at the right-hand side to
accommodate your power cable, then drill a larger
hole on both sides of the back to allow ventilation.
To finish the box, cut slots in the larger piece of
plywood so that it will fit onto the box as a lid
without hitting the pipes. Mark the centre of the

Get Started With Arduino

TUTORIAL

92

Desktop hydroponic gardening

longest side of the plywood, and line this mark up
with the centre of the box (where the water pipe
goes up). Now use a square to mark the position of
the pipes on the larger piece of plywood, and notch
out the pieces using a jigsaw or fretsaw.

TIME TO GET YOUR FEET WET!
Water is pumped to the top of the system from
the water tank, then drains down through a series
of water channels under the force of gravity until it
goes back down into the water tank. The tank is very
simple to make from a 52 cm Stewart gravel tray.
Apply double-sided tape or glue around the top of the
gravel tray, and simply
stick the polythene
sheet to the top, so that
the tray is completely
covered. The tray is now
a closed water tank.

Place the second
Stewart gravel tray on
the lid of the box, between the two 28 mm pipes.
This tray will support larger potted plants, and will
always have a few centimetres of water in it. Drill
a 25 mm diameter hole through the slightly raised
section at the bottom left-hand side of the tray, and
continue the hole through the plywood lid of the box.
This hole is where a water fitting will connect to the
tank at the bottom, so there needs to be a hole in
the water tank here.

Remove the tray and plywood lid from the box.
Position the water tank at the left-hand side, and slit
the polythene near the back of the tank. This slit is
where the pump will draw water from. Replace the
lid, and cut into the plastic through the hole you just
made in the plywood. Glue the water tank into place
with hot glue, and reinforce the polythene around
the hole with a 15 mm washer or gaffer tape.

Screw the water pump into place near to the tank
and connect the outlet to the silicone pipe, then
use another length of silicone pipe to connect the
pump’s inlet to the water tank through the slit in the
polythene. To make sure that the inlet pipe rests on

the bottom of the tank,
weigh it down or use
rigid copper pipe to
hold it in place. Use
tape to seal the slit in
the polythene.

Two pieces of
guttering (with the end-

caps fitted) make your high-level growing channels.
Controlling the flow of water from one channel to
another is critical for the proper operation of the
hydroponics rig, and this project uses a special
3D-printed variation of a greedy cup (or Pythagoras
cup) to do this. To make the greedy cups, you will
need three small jam jars, three of the 3D-printed cup
pieces, and three lengths of 15 mm copper pipe long
enough to reach from slightly below the top of one
channel to slightly above the top of the next channel.

Drill a 25 mm hole in each of the water channels,
staggering the holes between the left and right side.
Fit the 3D-printed cup pieces in the holes, and screw
them on tightly with a little bit of waterproof sealant
around the thread. Fit the third greedy cup into
the hole in the Stewart tray, and use a short piece

Right
The inside of the
base, showing the
electronics mounted
to the underside
of the lid, and the
water tank on the
bottom-left of the
box with the pump
connected to it

Above
Fitting the greedy cup into the
hole in the water channel, with
a little silicon rubber to ensure a
waterproof seal

This tray will support
larger potted plants, and
will always have a few

centimetres of water in it

”
”

YOU’LL NEED
CONT…

2 × 900 mm
lengths of square
guttering

4 × square
guttering outside
end caps

2 × Stewart 52 cm
premium gravel
trays

60 cm square
piece of
polythene

2 × planks,
approx. 900 mm x
150 mm x 25 mm

2 × planks,
approx. 500 mm ×
150 mm × 25 mm

8 × metal corner
braces

12 mm plywood
sheet 950 mm ×
550 mm

12 mm plywood
sheet 850 mm ×
500 mm

1 × approximately
A4-sized sheet of
3 mm plastic

2 × pieces of
aluminium to act
as heat sink for
transistors

M3 brass PCB
supports

Get Started With Arduino 93

PROJECT TUTORIALS

of 15 mm pipe to connect the tray and the water
tank below.

All that remains is to develop a control system
for the Arduino, and wire up the electronics. We’ve
already written some commented code and a wiring
diagram to make this step less complicated. The

control system uses a 20×4 LCD and four buttons
to navigate between pages, tab between items, and
alter values up and down. Print out the panel for
the LCD and buttons and the housing for mounting
the panel onto the lid of the box, and then wire the
buttons as shown in the diagram (Figure 1, overleaf).

Position the LCD housing on the lid of the box
near to the front. Drill a hole through the plywood for
the LCD wires, and screw or glue the mounting into
place. Mount the Arduino and heat sinks to a plastic
sheet, and screw the sheet to the underside of the

lid near to the hole for the LCD wires. Mount the
TIP120 transistors to the heat sinks. Add the 12 V
power supply to the underside of the lid near to the
cable hole you drilled at the back. Make sure that all
the electronics, but particularly the high voltage side
is mounted so that it’s protected against water. You
also need to ensure that the high voltage cable is not
at risk of coming loose, and make sure that anything

Don’t put both
TIP120 transistors
on the same heat
sink. The mounting
tab is connected to
the transistor base.

QUICK TIP

Above
The system under test, showing water flow from the outlet,
and the greedy cup mechanism on the left of the photo

All that remains is to develop a
control system for the Arduino, and
wire up the electronics

”
”

Above
Keeping an eye on the status

Get Started With Arduino

TUTORIAL

94

Desktop hydroponic gardening

that needs grounding is connected to ground.
Working with mains voltage safely takes experience
and if you’re not experienced enough to work safely
with mains voltage, seek advice from someone who
is before proceeding with this build. Take your safety
seriously as you don’t always get a second chance!
You can mount the PSU using four metal brackets.

Add the LED lights to the tubes above the water
channels, and run the wires down to the box
using cable ties to hold them in place. Position
the thermistor about halfway up the right-hand
pipe using cable ties, and connect the wires to the
Arduino as shown in the diagram (Figure 1).

Add the heater to the left-hand side of the
box, and drill a hole to pass the cable through to
the underside of the lid. Run the cable along the
underside of the lid to the PSU. Mount the solid-
state relay to the side of the PSU by drilling into
the case and using machine screws or bolts. Wire
the electronics as shown in the circuit diagram, and
ensure that any live contacts are well protected
with insulating material. Cables should be routed
using cable ties and clips. Flash the Arduino with the
hydroponics sketch (from hsmag.cc/issue20), and
test out the interface using just the USB power to
make sure everything is working.

If the Arduino seems to be working, test the water
channels by pouring water into the top channel and
tracing its path back to the water tank. Watch for
any leaks or blockages. If the water channels seem

Figure 1
Schematic of
the control
system for the
hydroponic system

Above
The completed
system under test.
You can see the
heater on the left,
the water channels
with greedy cups
attached, and the
control panel on the
right-hand side

hsmag.cc/issue20

Get Started With Arduino 95

PROJECT TUTORIALS

The thermistor only
gets power just
before a reading
is taken, because
supplying it with
constant power
can make it heat up
over time.

QUICK TIP

OK, pour in a whole bucket of water to the Stewart
tray. The water will drain into the tank, and you
can reconnect the power once you’re sure there
are no leaks to worry about. Now you can test the
pump by setting the water flows, and adjust your
light settings. It’s recommended to start the pump
at a low setting (maybe 25% power). If you’re
planning on using the heater, you’ll need to put the
hydroponic unit inside a polythene tent to contain
the heat. The tent can be made with a few garden
canes or pieces of PVC pipe, and held together with
bulldog clips.

This project combines electricity and water, which can be a tricky, and dangerous,
combination. You need be knowledgeable enough to work with this combination before
embarking on this build. You can reduce the safety issues by using an external power
supply. We’d also recommend using a residual current device (RCD) for further protection.

SAFETY

Above
Germinating
seeds ready
for growing

Above
Almost ready to harvest

TUTORIAL

96

A binary keyboard for programmers

Get Started With Arduino

K, settle in. This project turned
out to be a bit more complex
than expected. Actually, complex
isn’t quite the right word. There’s
nothing in here that’s fundamentally
hard, but it did test our skills in

quite a few different areas of making, and each
area posed its own little challenges that needed
to be overcome. We’ll guide you through it as best
as we can.

In this project, we used quite a wide range of
equipment and parts. These represent the tools and
parts we had available, rather than a canonical set
of things you actually need. There’s no ‘right’ way
of doing this, and you can find alternatives to almost
everything we’ve used if you need to.

O The basic way a word clock works is that it shines
a light through letters spelling out the words to
say the time. The heart of our clock, then, is these
letters and the LEDs to make the light. We used
laser-cut 3 mm plywood for our clock face, but other
people have had success using printed acetate
sheets (the sort used in overhead projectors that
older – but not too old – readers will remember from
their school days). Thinner laser-cut sheets would
also work, but we’d recommend going no thicker
than 3 mm as this will reduce your viewing angle.

You can grab our design from hsmag.cc/issue20,
but it’s fairly easy to create your own (or modify ours
if you’d prefer). The crucial point for the lettering is
that we need to use a stencil font – this ensures that
there’s a connection to any isolated parts of a letter
(such as the middle of the letter O), so they don’t
fall out when laser-cut. It makes layout easier if the
font is monospaced – we used BP Mono Stencil
(hsmag.cc/BPMonoStencil).

The LEDs must be held in the appropriate place
behind the letters. There are two approaches that
you can take here – you can design your letters
so that they line up with off-the-shelf LED strips,
or you can use strings of LEDs to line up with
whatever spacing you use for the letters. We opted
for the latter, but the former would make a more

Making a word clock
Build your own attractive timepiece

Above
The finished word
clock on display

Right
Drilling holes for the
LEDs. Precision isn’t
essential in this step

Ben Everard

@ben_everard

Ben loves cutting stuff,
any stuff. There’s no
longer a shelf to store
these tools on (it’s now
two shelves), and the
door’s in danger.

http://hsmag.cc/issue20
https://www.whatfontis.com/FF_BpmonoStencil-Bold.font
https://twitter.com/ben_everard

Get Started With Arduino 97

PROJECT TUTORIALS

straightforward build if you’re less fussy about the
size of the clock.

We then need a way of holding the LEDs in place
behind the letters. There are a few parts to this –
first, you need a way of holding the LEDs in place
far enough behind the letters so that they illuminate
them evenly; then you need a way of minimising
the amount of ‘bleed’, where lighting one letter
illuminates the letters either side of it; finally, you
need something to diffuse the light.

Our setup used plywood with 7 mm holes drilled
into it. This is just large enough for surface-mounted
5050 LEDs to be pushed in place and held with a
drop of superglue. These shone through the holes
in the plywood and into a square honeycomb made
of modelling foam hot-glued together. Finally, it
hit a double-layer of diffusion fabric before shining
through the laser-cut face. All we needed was
a frame to hold it in place. We made this from
4×1 inch reclaimed wood with routed grooves to
hold the face and plywood LED panel in place.

Let’s take a closer look at this process before
diving into the microcontroller brains.

THE BUILD
First, you’ll need to laser-cut your clock face –
that’s the easy bit of woodwork. Now on to the
manual part…

As mentioned, we started building our frame
with reclaimed 4×1 inch wood that cost just £1
from our local wood recycling project. We sanded
this down to give it a smooth finish, but it lacks
the hard corners of planed wood. There are also
holes from old nails which combine with the rustic

joining technique to give the look we wanted for
our clock.

If you’re an experienced woodworker, you
may choose a more elegant method for making
the frame, but as we’re not, we’ll keep it simple.
We’ve used butt joints in the corners which are
held together with two screws each. First, we
routed two grooves in one side of the wood – one
to hold the 3 mm face, and one to hold the 9 mm

plywood LED panel. 9 mm ply is overkill for such a
frame, but we happened to have some spare from a
previous project – you could easily get by with 3 mm
or 6 mm plywood, and MDF would work just as well.
We routed these grooves 3 mm deep into the wood.

The simplest wiring for the clock is to connect the 5 V and GND pins and one data point
(we used pin 6) from the microcontroller to the 5 V, GND, and data input pins on the
first LED. The LED chain will then propagate power and data along the strip. However,
there are a few problems with this.

Firstly, this results in an out-of-spec power situation which you might, or might not
get away with (see ‘Power problems’ box on page 101). Secondly, the jitter on the
power line may cause problems – putting a capacitor between the 5 V and GND lines
can smooth that. Thirdly, you should include a 470 Ω resistor between the Arduino pin
and the data-in line. You might get away without this, but it will prevent any problems
with too much current being drawn.

WIRING

YOU’LL NEED

WiFi-enabled
microcontroller
(such as the
MKR1000)

String of 104
NeoPixels

1 A diode

9 mm plywood

3 mm laserply

Wood for frame

Laser cutter

Modelling foam

Left
The LED string
inserted. We had
to join three strings
together to get 104
LEDs for the clock.
In hindsight, only
100 are needed, as
some letters are
never lit

It hits a double-layer of
diffusion fabric before shining

through the laser-cut face
”

”

TUTORIAL

98 Get Started With Arduino

Making a word clock

If you’ve got a plunge router bit, you might choose
to do this groove-cutting later, and not rout all the
way to the edge of each section of frame as this will
give a better finish.

We then needed to cut the wood into four
appropriate length sections. You need two for the
top and bottom that are:
length = width of face + (2 × width of frame
wood) – (2 × depth of groove)
And two for the side that are:
length = height of face – (2 × depth of groove)

You should now be able to hold them all by hand
and everything should fit together (don’t screw or
glue them together yet). If they don’t fit, you’ll need
to make adjustments before moving on. This might
entail routing the grooves a little deeper, or trimming
down the wooden frame.

INNARDS
The quickest way to mark up the plywood LED holder
is by eye. It needs to be the same size as the clock
face, and you can pencil-mark the spots for the LEDs
very quickly without the need for a tape measure
(though measure and mark properly if you’d prefer).

As previously mentioned, we drilled these out
with a 7 mm drill bit. The diagonal on a 5050 surface-
mount part is just larger than 7 mm, so it’s a tight fit.
We used strings of WS2812 LEDs (often known as
NeoPixels). Each LED is on a small, circular PCB. We
applied a drop of superglue to the edge of each LED,
then pushed it into the hole in the circuit board. They
take a bit of force to get in, but be careful, as we
pushed too hard on one and dislodged a resistor (if
you do this, just cut out the LED in question and join
the wires with solder).

TESTING
Your build will almost certainly be slightly different to
ours, so rather than just following along by rote and
hoping that the results are the same, now’s a good

Left
The foam honeycomb – if we’d made
this fit better, we’d have less bleed
between the different letters

Above
The two grooves
routed in our wooden
frame to hold the
clock face and the
LED board

99

PROJECT TUTORIALS

Get Started With Arduino

point to pause and check that everything’s working
as you’d like.

Connect the microcontroller up to the NeoPixels
(we used crocodile clips, but you can solder it up if
you don’t have these). See the ‘Wiring’ instructions
box on page 97.

We used the test code from the Adafruit NeoPixel
Überguide to make sure everything was working
properly (hsmag.cc/ArduinoLibraryUse). Bear
in mind that lighting up all the pixels at once will
take quite a bit of current, so you will want to
either use an external power supply or dial down
the brightness (we tested ours with a colour of
(10,10,10) and this worked with the on-board
regulator on the MKR1000).

With this and a mess of wires in place, and
everything working, let’s move on with the
assembly. Screw together three sides (one long side
and two short sides) of the frame. To ensure that it is
in the right place, it’s a good idea to use an F-clamp
to hold it together with the clock face and the
plywood panel in place while drilling and screwing.

Leave one F-clamp in place, holding the two ends
of the wood on the exposed side together while
finishing the internal assembly.

We used 1 mm-thick white modelling foam
for the square honeycomb inside the frame. You
may want to consider laser-cutting this out using
something like the tray insert pattern from
hsmag.cc/TrayInsert; however, we didn’t. We cut
long strips the width of the frame and the height
of the gap between the plywood and the back
of the face, and small ‘separator’ strips to split it
up vertically. Gluing this together was a bit more

challenging than we anticipated, but with the right
technique it’s not too hard.

First, anchor one end of one long strip to the
frame and wait for the glue to harden. Then put a ‘U’
of glue in where you want one of the separators to
go, and then slot the separator into this glue (don’t
try to hold it in place while you put the glue in). With
practice, you can do several of these ‘Us’ of glue at
a time (we found four or five was a good number),
then insert all the separators in one go. Before you
finish one row, anchor the next long row strip to the
frame, as this gives it time for the glue to harden
before starting that row.

DIFFUSION
The final thing to add before assembly is diffusion.
This can be anything that’s translucent and thin
enough to fit in the space. We used photographer’s
diffusion fabric (essentially a thin, white nylon
material), and we found that we needed two layers
of this to get the look we wanted, but it’s not
standard fabric, so experiment with what you have
to see what creates the aesthetic that you want.

We cut this to size and placed it over the square
honeycomb. A few dabs of hot glue on the corners
held it all in place (and this won’t be visible once it’s
fully assembled).

Experiment with what you have to see what
creates the aesthetic that you want” ”

Below
The Arduino code
checks the time on
the internet every
minute and displays
it on the clock

Left
We didn’t have
screws small enough
for the mounting
hole, so we used
nails. In hindsight,
this was a very risky
move, and one we
don’t recommend
you copy

http://hsmag.cc/ArduinoLibraryUse
http://hsmag.cc/TrayInsert

TUTORIAL

100 Get Started With Arduino

Making a word clock

Once you’re happy with the amount of diffusion,
you can attach the final side of the frame, and that’s
the hardware setup complete. Now let’s take
a look at the software.

The full code for this is available from
hsmag.cc/ClockCode, but let’s take a look at the
most pertinent bits.

Obviously, our clock needs to know what the
time is. We could have used a real-time clock, but
this would still necessitate setting the clock time
manually and adjusting the time for daylight savings.
Instead, we decided to grab the time from the
internet – specifically, timezonedb.com.

You’ll need to register for a free API key, but we’ll
be staying well within the limits of free use. Once
you’ve got that, you can grab the current time in a
particular location by pointing your web browser to
api.timezonedb.com/v2/get-time-zone?key=KEY
HERE&format=xml&fields=formatted&by=zone&
zone=Europe/London.

You’ll need to replace KEYHERE with your key,
and if you’re not in the UK you’ll need to update the
zone to your location. The result comes back in XML,
and should be something like:

<?xml version="1.0" encoding="ISO-8859-1"?>
<result>
<status>OK</status>
<message/>
<formatted>2019-05-30 14:52:07</formatted>
</result>

There are two parts to getting and processing
this in Arduino. First, we have to download this
XML, and then we have to extract the time from
it. The method of connecting to WiFi differs a little
depending on what hardware you’re using. We used
the WiFi101 library, but if you’re using different
hardware (such as an ESP8266) you might need to
do it slightly differently. Take a look at your board’s
example WiFi sketches for details.

Once connected, we have a client object linked
to the api.timezonedb.com server (see the full
code for more info on this). We can then extract the
appropriate line in the response with the following:

 client.println("GET /v2/get-time-zone?key=YOUR
KEY&format=xml&fields=formatted&by=zone&zone=Euro
pe/London HTTP/1.1");
 client.println("Host: api.timezonedb.com");
 client.println("Connection: close");
 client.println();
 }
delay(10000);
payload = "";
 Serial.println("stand by for data");
 while (client.available()) {
 char c = client.read();
 Serial.write(c);
 if (c == '\n') {
 payload = "";
 }
 payload += c;
 if(payload.endsWith("</result>")) {
 parse_response();
 }

This reads the HTTP response character by character
and builds up a string called payload. If it reaches
a newline character, it empties payload as we only
want one line. If it reaches the string </result>, it
knows that it’s got the data it needs, so it called the
function parse_response.

The key parts of this function are as follows:

 int colon = payload.indexOf(':');
// Set the first colon in time as reference point
 nowday = payload.substring(colon - 5,

Above
NeoPixel strings
are easier to
mount in custom
spacings than
NeoPixel strips,
but still have the
advantage of not
having to solder
every LED

http://hsmag.cc/ClockCode
http://timezonedb.com
http://api.timezonedb.com/v2/get-time-zone?key=KEYHERE&format=xml&fields=formatted&by=zone&zone=Europe/London
http://api.timezonedb.com/v2/get-time-zone?key=KEYHERE&format=xml&fields=formatted&by=zone&zone=Europe/London
http://api.timezonedb.com/v2/get-time-zone?key=KEYHERE&format=xml&fields=formatted&by=zone&zone=Europe/London
http://api.timezonedb.com
http://api.timezonedb.com

101

PROJECT TUTORIALS

Get Started With Arduino

colon - 3);
 d = nowday.toInt();
 nowmonth = payload.substring(colon - 8,
colon - 6);
 mo = nowmonth.toInt();
 nowyear = payload.substring(colon - 13,
colon - 9);
 y = nowyear.toInt();
 nowhour = payload.substring(colon - 2, colon);
 h = nowhour.toInt();
 nowmin = payload.substring(colon + 1, c
olon + 3);
 mi = nowmin.toInt();
 nowsec = payload.substring(colon + 4,
colon + 6);
 s = nowsec.toInt();

Since the time and date is in a specific format, we can
locate the particular part we want relative to the first
colon. This code pulls the string apart and converts
the relevant segments into integer values for the
hours, minutes, and seconds. It also extracts the date,
but we don’t use that. We adapted this code from
Arduino forum user Aggertroll – thanks Aggertroll!

Now that we’ve got the time, we need a way of
displaying it on the NeoPixel strip. This is done by first
creating a series of arrays that hold the locations for
the pixels in different words, such as:

int itis[] = {8,9,11,12};
int five[] = {35,36,37,38};
int ten[] = {4,5,6};

We also created a function that turns the LEDs in
one of these arrays a specific colour:

void lightup(int letters[], int letters_len, int
red, int green, int blue) {
 for(int i = 0; i<letters_len; i++) {
 strip.setPixelColor(letters[i], red, green,
blue);
 }
 strip.show();
 }

The final code for lighting up the correct time is
as follows:

strip.fill();
lightup(itis, 4, 100,100,0);
int hour = h;
if (mi > 33) { hour+=1;}
 if (hour > 12) { hour -= 12;}
if (hour==1) { lightup(h_one, 3, hour_red, hour_
green, hour_blue); }
if (hour==2) { lightup(h_two, 3, hour_red, hour_
green, hour_blue); }
...
//past or to?
if (mi > 3 && mi < 34) { lightup(past, 4,0, 150,
0); }
if (mi > 33 && mi < 58) {lightup(to,2,0,150,0);}
if (mi > 57 || mi < 4) {lightup(oclock,6,50, 50,
100);}
// minutes
if (mi > 3 && mi < 8) {lightup(five, 4, mins_red,
mins_green, mins_blue); lightup(minutes, 7,mins_
red,mins_green, mins_blue);}
if (mi > 7 && mi < 14) {lightup(ten, 3, mins_red,
mins_green, mins_blue); lightup(minutes, 7,mins_
red,mins_green, mins_blue);}
...

The first line in this code blanks the whole strip,
then the line lightup(itis, 4, 100,100,0);
lights up the words ‘it is’. We then have to find
the first hour, bearing in mind that as soon as
the minutes have gone past 34, it will switch
to ‘twenty-five to’ the next hour. The code then
ends with a series of if statements that find the
correct letters.

Once we wired up our clock, we found that it frequently glitched out and flashed
strange colours. After unsoldering all the connections and rewiring it all up, we realised
that the problem wasn’t a cold joint, or even code problems, but a voltage mismatch.

We powered the LEDs from the 5 V pin on the microcontroller (we can keep the LED
numbers and brightnesses sufficiently low to allow this to work); however, the data pins
on the MKR1000 are 3.3 V. The input to the LEDs should be (according to their datasheet)
at least 0.7 times the power voltage (3.5 V), so we’re going out-of-spec by powering it at
3.3 V. Usually we can get away with this, but the particular LEDs we used proved to be
particularly finickety about this.

There are two basic solutions to this – increase the input voltage or decrease the
power voltage. We opted to do the latter by putting a diode with a forward voltage of
0.8 V on the power line. This diode has to be able to take the full current of the LEDs (we
used a 1 A diode, which should give us plenty of leeway). Alternatively, you can use a
level shifter (these are available in both module and IC form) to increase the voltage
from the data signal to 5 V.

POWER PROBLEMS

This reads the HTTP
response character by

character and builds up a
string called ‘payload’

”
”

TUTORIAL

102

Polyphonic digital synthesizer (Part one)

Get Started With Arduino

nalogue synthesizers have made
a big comeback in the last few
years, but building a synth that
can play multiple notes (i.e.
chords) using only analogue
circuitry is a big challenge. In

this tutorial, you will see how to build a versatile
synthesizer with a ‘patchable’ signal chain, but where
the sound is generated digitally by code that you can
write yourself. This is a two-part tutorial, but even
by the end of part one you’ll already be able to make
some great sounds.

GOING DIGITAL
Modular synthesizers are awesome. They let you
create your own signal chain by plugging cables
into different points in the circuit, giving you the
freedom to create any sound you can imagine. A
true modular synth is basically a box which you

A

Build a full-featured polyphonic digital synthesizer in our two-part guide

Polyphonic digital
synthesizer Part one

populate with individual modules that you can either
buy or build (see the feature starting on page 138
for an example). Some modules generate signals,
while other modules take a signal and change it in
some way.

This tutorial will show you how to create a
miniature, digital version of an analogue modular
synthesizer. The process of ‘patching’ different
signals into each other will be done on the breadboard
with jumper wires, and that information will be
processed by the Teensy microcontroller.

Firstly, we need to set up our Teensy 3.2, which is
a bit like an Arduino but powerful enough to process
audio. When you buy a Teensy, it usually comes

Matt Bradshaw
mattbradshawdesign.com

Matt Bradshaw is a
programmer, maker, and
musician from Oxford. He
likes to build instruments
to play with his band,
Robot Swans. You can
find more of his projects at
mattbradshawdesign.com

Above
This design combines aspects of digital and analogue synthesizers,
to give you a versatile, but cheap-to-make, instrument

http://mattbradshawdesign.com
http://mattbradshawdesign.com

Get Started With Arduino 103

PROJECT TUTORIALS

without any headers, so you’ll have to do a bit of
soldering. The audio board, which sits either directly
above or below the Teensy, also requires soldering.
Using stackable headers is a good idea (female
headers with long male pins on the other side), as
these will make both the Teensy and the audio board
compatible with a breadboard.

Once your Teensy is ready, download the
Teensyduino software from hsmag.cc/aRWmgD,

and try running an example audio sketch, such as File
> Examples > Audio > Synthesis > PlaySynthMusic.
You should then be able to hear music through the
headphones jack.

START SMALL
Before we can connect lots of modules together, we
should try a simple sketch to get the hang of writing
code to produce audio. The Teensy has its own library
of code for adding audio to projects, and it works a lot
like a modular synthesizer.

For instance, in the sine_wave example sketch,
an oscillator is connected to an output via two
AudioConnection instances (one for each stereo
channel), meaning that a sine wave is heard through
the headphones. Download this sketch from
hsmag.cc/issue16, and try it for yourself.

Our synth will consist of eight sockets, and we
will need to know which sockets are connected to
each other. For instance, if the oscillator socket is
connected to the main output socket, the Teensy
needs to be able to read this and then recreate the
connection digitally, producing audio. On a ‘real’
synth, these sockets would be sturdy 3.5 mm
connectors (basically headphone jacks), but for this
synth we are simply going to use a row of breadboard
sockets. For now, it doesn’t really matter which
socket corresponds to which input or output – we
just want to know whether socket A is connected to
socket B, and so on.

ONE THING AT A TIME
In order to test the connections between the sockets,
we will use an integrated circuit called the 4051. This
is an eight-channel multiplexer or demultiplexer; in
layman’s terms, eight ‘things’ are connected to the
chip, and you can talk to them

YOU’LL NEED

Teensy 3

Teensy audio
adapter board

4 × 14-pin
stackable male/
female headers
(2 kits)

2 × breadboards

Jumper wires

2 × rotary
potentiometers
(10 kΩ, linear)

5 × 4051
multiplexer chips

8 × tactile buttons

LED

6N139
optocoupler chip

MIDI socket

Capacitor (0.1 µF)

Resistors (various)

USB micro cable

Soldering
equipment

Headphones

Computer

AVERTING THE SPAGHETTI

This synth, particularly once you complete part two,
will involve a lot of wires in a relatively small space.
If you use lots of standard-length jumper wires,
you will quickly end up with an unmaintainable
rat’s nest (albeit a very pretty one). To alleviate this
problem, it’s worth making a batch of your own tiny
jumper wires from single core wire, maybe 4 cm
long each, with about 5 mm of insulation stripped
away at each end.

The Teensy has its
own library of code

for adding audio
to projects

”
”

Above
The extra-long headers are soldered underneath the Teensy
and the audio board

Above
Here’s how the Teensy and audio board should look on the
breadboard – make sure that the pin numbers line up

Left
This is what a full
modular synth looks
like, with removable
modules and
patch cables

http://hsmag.cc/aRWmgD
http://hsmag.cc/issue16

TUTORIAL

104

Polyphonic digital synthesizer (Part one)

Get Started With Arduino

one-at-a-time. Three pins are used to select which
‘thing’ you want to talk to (these are connected to the
Teensy), and eight pins are connected to the ‘things’
(in our case, the sockets).

Start by building the breadboard circuit, as shown
in Figure 1. Notice that there are two 4051 chips,
both addressed separately, but with their channels
connected to common sockets. By using two 4051
chips in this way, you can send a test signal to each
channel in turn on the first chip, then listen for that
signal on each channel in turn on the second chip.
If a signal is sent to channel A on the first chip, for
example, and can be read on channel B of the second
chip, socket A must be connected to socket B.

To try this out, download the connection_test
sketch from hsmag.cc/issue16, and open it in the
Arduino IDE. You will see a nested for loop, with the
outer loop addressing the ‘send’ chip and the inner
loop addressing the ‘read’ chip.

for(int a=0;a<8;a++) {
 setSendChannel(a);

 for(int b=0;b<8;b++) {
 setReadChannel(b);
 delayMicroseconds(10);
 if(a < b) {
 boolean connectionReading =
!digitalRead(CONNECTION_READ_PIN);
 if(connectionReading) {
 Serial.print(a);
 Serial.print(" is connected to ");
 Serial.print(b);
 Serial.print("\n"); }}}}

Upload the whole sketch to the Teensy and open
the serial monitor. Now try connecting two of the
sockets on the left end of the breadboard with a
jumper wire. If everything is working, the serial
monitor should report that a connection has been
detected (see Figure 2), and we’re ready to move
onto the actual synth code.

THE INS AND OUTS
The 4051 gives us a maximum of eight sockets to
use, which are allocated as follows:

• Oscillator output #1 (square wave)
• Oscillator output #2 (sawtooth wave)
• Oscillator frequency modulation input
• Low-frequency oscillator output
• Filter input
• Filter modulation input
• Filter output
• Main output stage

These sockets are worth explaining in a bit more
detail, especially if you’re not that familiar with
synthesizers. The two oscillator outputs are simply
tones with slightly different sounds (the sawtooth
is a bit more ‘buzzy’). The oscillator modulation
input changes the pitch of the oscillator, meaning
that when you connect the low-frequency oscillator

Once you’ve got
your Teensy and
audio board set up,
search the web for
‘Teensy synth’ for
more inspiration on
what to make.

QUICK TIP

Figure 1
The full breadboard
layout, with the audio
board omitted for
clarity. Make sure to
connect the channels
of the two 4051 chips
(see orange wires)

Figure 2
In the ‘connection_
test’ sketch, you
can check that
your circuit is
working correctly

http://hsmag.cc/issue16

Get Started With Arduino 105

PROJECT TUTORIALS

(LFO) into it, you’ll hear a tone that rises and falls
like an ambulance siren. The filter is an effect which
restricts certain frequencies while boosting others,
and can also be modulated by the LFO. Finally, the
main output stage represents the final part of the
signal chain – you won’t hear anything until you plug
something into it. Don’t worry if you don’t understand
all the ins and outs – once you start playing around
with the synth, it should all start to make sense.

MAKE SOME NOISE
The easiest way to start writing audio code for a
Teensy is to use the online ‘Audio System Design
Tool’ at: hsmag.cc/OiKbYH. It’s a simple drag-and-
drop interface for connecting audio modules together,
and it’s definitely worth getting familiar with. For this
synth, however, you can just copy and paste the code
directly to make things a bit easier. Download the
main sketch code from: hsmag.cc/issue16.

It’s a good idea to look through the code to
understand what’s going on. The sketch basically
combines the two simpler sketches from earlier, and
adds a few extra features. It begins by declaring the
various audio objects and how they are connected
– this code was generated in the online design tool.
Next, we declare an array of references to the four
input mixer objects, so that we can easily reference
them by number later on.

In the setup() function, we initialise the various
input and output pins, and set some initial parameters
for our audio objects – feel free to tweak these
numbers to produce different sounds. The loop
function works much the same way as in the earlier
example sketch, but instead of sending a serial
message when a connection is made (or broken), the
volume of a relevant mixer channel is set to either
one (for a connection) or zero (for no connection).

At the end of the loop, the LED is lit if a bad
connection (input-to-input or output-to-output) is

detected. Unlike on an analogue synth, making bad
connections won’t cause any harm in this design, but
it’s useful to know. Finally, the two potentiometers’
values are read and used to control the LFO
frequency and main oscillator frequency. Feel free to
change this section of the code to customise your
synth, by making the knobs control other parameters.

The last job is to label the patching area on the left
of the breadboard. Either use a fine pen, or print a
label from your computer in a small font, and use Blu
Tack or tape to affix the label to the breadboard. Now
you can start playing!

Try connecting different outputs to different inputs
and see what happens. Turn the knobs up and down
to control the sound. The synth is capable of dirty
bass drones and Doctor Who-esque effects, but if
you want to get really musical, you’ll have to wait for
part two!

If this synth has
piqued your interest,
try the free, open-
source software
‘VCV Rack’,
which is a virtual
modular synth.

QUICK TIP

Above
This is what the
synth looks like in the
online Teensy Audio
System Design Tool
– the lines represent
possible audio
connections

Left
Playing with a
simple but fun
patch where the
oscillator frequency
is modulated by
the LFO

Below
A sneak peek of
what the synth will
look like after part
two, including a
mini keyboard and
MIDI input

CHEAPSKATE VERSION

This project is a pretty cheap way into building your
own synthesizer, but if you’re willing to put in a bit
more effort you could make it even cheaper. The
audio board used in this tutorial is great, but there
are less expensive alternatives. The PT8211 audio
chip will give you 16-bit audio output for very little
money, if you don’t mind some very delicate soldering.
Alternatively, you can get a lower-quality audio output
direct from the Teensy via its DAC pin. Note that
both of these options will require minor changes to
the code.

NEXT TIME

In the second and final part of this tutorial, we’ll
be adding some features to really turn this project
into a usable synthesizer. We’ll be adding a second
breadboard with a simple keyboard (allowing
you to play melodies) and a MIDI input (allowing
you to control the synth from another keyboard
or a computer). We’ll also double the number of
connections you can make, and use a cunning trick
to add polyphony to the synth, meaning you can play
more complex music.

http://hsmag.cc/OiKbYH
http://hsmag.cc/issue16

TUTORIAL

Polyphonic digital synthesizer (Part two)

Get Started With Arduino106 Get Started With Arduino

The conclusion of our two-part guide to making a polyphonic digital synthesizer

Polyphonic digital
synthesizer Part two

Above
The finished synth,
featuring 16 patch points,
two analogue controls, a
miniature keyboard, and
a MIDI input

Get Started With Arduino 107

PROJECT TUTORIALS

ast time, we built a digital synthesizer
on a breadboard. It could make some
fun noises, but it wasn’t very useful
for playing music. This time, we’re
going to rectify that by adding a simple
keyboard, as well as a ‘MIDI input’ port

so that you can control the synth with an external
keyboard. We’re also going to double the number of
patch points so you can create more complex sounds.
Finally, we’re going to edit the code to allow the synth
to play multiple notes simultaneously.

If you haven’t already read part one, go back and
start there (page 102) – otherwise, let’s get stuck in.
We’ve already filled our first breadboard, so we need
to add another one. We can leave a lot of our first
synth in place: the Teensy, audio board, LED, resistor,
and the two 4051 chips can remain untouched on the
first breadboard. However, in order to make space for
our awesome new features, you should remove the
two potentiometers (and their wires), the row of eight

L
wires that connect the ‘patch points’ to the 4051
chips, and the label that showed what each patch
point did.

The full new layout can be seen in Figure 1
(overleaf). There is a 6N139 optocoupler (explained
later) and three extra 4051 chips. Two of the 4051s
perform the same function as in part one, detecting
which patch points are connected to each other, but
by adding another two chips, we are able to double
the number of patch points.

The final (leftmost) 4051 chip acts as a multiplexer
for the eight buttons of our mini-keyboard on the front
breadboard. These eight buttons will play a simple
major scale, although you can change this in the code
if you’d prefer a more interesting set of notes.

The front breadboard also now contains the
MIDI input, the 16 patch points, and the two
potentiometers, so all of the ‘hands-on’ components
(things you might want to access during a
performance) are easily accessible.

WHAT’S NEW?
Before we assemble everything, let’s look at what
new ‘modules’ we’re adding. The synth already has
two oscillators, a low-frequency oscillator (LFO), and

YOU’LL NEED

Teensy 3

Teensy audio
adapter board

4 × 14-pin
stackable male/
female headers
(2 kits)

2 × breadboards

Jumper wires

2 × rotary
potentiometers
(10 kΩ, linear)

5 × 4051
multiplexer chips

8 × tactile buttons

LED

6N139
optocoupler chip

MIDI socket

Capacitor (0.1 µF)

Resistors (various)

Micro USB cable

Soldering
equipment

Headphones

Computer

1N4148 diode

Matt Bradshaw
mattbradshawdesign.com

Matt Bradshaw is a
programmer, maker, and
musician from Oxford. He
likes to build instruments
to play with his band,
Robot Swans. You can
find more of his projects at
mattbradshawdesign.com

Below
Taking the synth for a test drive – playing with a proper
keyboard via MIDI opens up a wider range of notes than the
breadboard buttons

http://mattbradshawdesign.com
http://mattbradshawdesign.com

Get Started With Arduino

TUTORIAL

108

Polyphonic digital synthesizer (Part two)

a filter. This time we will add an amplifier, an envelope
generator, and a MIDI-to-CV converter.

Briefly, an amplifier takes an audio signal and
changes its volume. If you feed the module a high
control signal, the audio will be loud, while a low
control signal will quieten the audio. You can therefore
use this module to make an oscillator ‘turn on’ when
you hit a key and ‘turn off’ when you release it.
However, notes that just turn on and off suddenly
are not very interesting, which is where the envelope
generator comes in.

An envelope generator (EG) mimics the sound
of an acoustic instrument. When triggered by an
input control signal, often from a keyboard key being
pressed, the EG outputs a control signal which, when
connected to an amplifier or filter, can evoke the
sound of a guitar, a violin, or a piano (depending on
the settings).

Finally, a MIDI-to-CV converter takes a MIDI signal
from an external keyboard and converts it to a CV
(control voltage) signal. This module outputs a ‘note’
signal (which communicates the last note to have
been pressed), and a ‘gate’ signal (which is simply
high or low depending on whether a key is currently
being pressed).

Don’t worry if these descriptions are new to you –
YouTube has plenty of videos detailing how different
synth modules work if you’d like to learn more, and
we’ve provided some patching examples to get
you started.

WE WILL REBUILD
Now we’ve got an idea of the new modules, let’s add
some components. It makes sense to build the circuit
step by step, so we can check for errors at each
stage. Firstly, using Figure 1 for reference, add the
two potentiometers, as well as the two 4051 chips
directly to the left of the existing ones, and wire them
up as shown.

Remember that the original synth required two
of these eight-channel chips to provide eight patch
points: one chip sends a test signal while the other
reads it. By adding another two chips, we can have
16 patch points.

You could patch directly between the chips but,
like last time, it’s a lot easier if we run a jumper wire
from each patch point to a separate, labelled patching
area. These wires are omitted on the breadboard
diagram for clarity (there are already too many wires
on there!), but there is a separate zoomed-in diagram
(Figure 2) with the patch points labelled as follows:

A) LFO (out)
B) Sawtooth oscillator (out)
C) Square oscillator (out)
D) Filter (out)
E) Envelope generator (out)
F) Amplifier (out)
G) Keyboard CV (out)
H) Keyboard gate (out)
I) Sawtooth frequency (in)
J) Square frequency (in)
K) Filter (in)
L) Filter frequency (in)
M) Amplifier (in)
N) Amplifier CV (in)
O) Envelope gate (in)
P) Main output stage (in)

As before, make yourself a label and Blu Tack it to
the breadboard.

WHAT CONNECTIONS

In part one, we briefly discussed the ‘bad
connection’ LED, which lights up if you make a
connection other than input-to-output. This is a
useful feature for diagnosing why your patch might
not be working (perhaps you accidentally connected
an oscillator to the filter output instead of the input).
However, there are some valid patches which will
also trigger the LED. If, for instance, you connect
both the square and sawtooth oscillators to the main
output, the synth will happily mix the two signals, but
the LED will illuminate. This is because, electrically,
the two oscillator outputs are now connected
to each other in a circuit. If you would like an
interesting little programming challenge, you could
extend the LED code to detect valid connections
such as this and disregard them.

ARE ALLOWED?
Above
Many MIDI devices
have three ports:
‘in’, ‘out’, and ‘thru’ –
make sure to connect
the MIDI out port of
your external device
to the MIDI in port on
the breadboard

Get Started With Arduino 109

PROJECT TUTORIALS

SPOT THE DIFFERENCE
Download the code from hsmag.cc/issue17 and
have a look at it – there are quite a few differences
from part one. Firstly, the audio connection code
(generated by the online Teensy audio design tool)
has been moved to a separate file. This is because
there are a lot more virtual connections this time,
so keeping them in their own file makes the main
sketch look a lot tidier. The code that handles
polyphonic note data from the keyboard has also

been moved to separate files. Another new element
is the MIDI library, which is included and initialised at
the top of the code.

The next change is that the inputMixers array is
now a much more complicated, multidimensional
array. Instead of being a simple list of references
to four modules, it now contains two separate
arrays, which we need because we are creating a
polyphonic (multi-note) synth with two copies of
every module.

The other most significant difference is that the
main for loop is now more complex. Previously
it was a nested for loop with two levels, which
was fine because we only had one chip sending
data and one chip reading it, but our new circuit

HOW DOES POLYPHONY WORK?
A lot of classic synths, and the vast majority of modern modular synths, only play one
note at a time. When designing a synth that plays multiple notes at once, you have to
consider what the maximum number of notes playable will be, and which notes should
be silenced if you go beyond this maximum.

In this synth, we have created two copies of every virtual module in the code, giving
two-note polyphony. Try holding down three or more notes and see what happens. If
you want to change the current behaviour, for instance to prioritise the highest note,
you can edit the KeyboardHandler class files.

This synth’s polyphony has been kept at two notes to make the code easier to
understand, but you should be able to increase it to four notes or even more by
tweaking the code, without changing anything in the circuit.

Figure 1
A diagram of the full
synth (audio board
and patch point
wiring omitted for
clarity) – note the
diode, resistors, and
capacitor required for
the MIDI input

Figure 2
There are 16 ‘patch points’ which connect to each other,
creating the signal chain – run jumper wires from here to the
second breadboard

http://hsmag.cc/issue17

Get Started With Arduino

TUTORIAL

110

Polyphonic digital synthesizer (Part two)

necessitates a four-level loop. The principle is the
same, but we are having to alternate which chips are
active at a given time, hence the extra levels.

Inside the for loop, we also check for incoming
MIDI data, pass it to the KeyboardHandler class so
that polyphony is handled correctly, then convert the
notes to virtual CV and gate signals so that they can
be used for patching.

PLUG IN, BABY
Upload the code to the Teensy. If all has gone well,
you should now have a synth that is very similar to
part one, but with 16 patch points. Try some simple
patches, such as the square wave going straight
to the output – this should produce a simple tone.
Now, referring to patch diagram, recreate patch

1 using jumper wires, and adjust the right-hand
potentiometer – if it sounds like sci-fi effect, it’s
probably working. If not, check your connections.

Next, add and connect the final 4051 chip, plus
the eight buttons that constitute our miniature
keyboard. You should now be able to use patch
point G (keyboard CV) to control the frequency of
your oscillators, and patch point H (keyboard gate)
to control the amplifier or envelope generator – try
recreating patch 2 to see the keyboard in action.
The sketch will allow the breadboard keyboard to
function until a MIDI signal is detected, at which
point the breadboard keyboard will be disabled.

Finally, add the MIDI input components. Because
a MIDI input allows us to connect to another device,
we use an optoisolator, which turns the incoming
data into a series of pulses of light, then back into a
digital signal again. If you would like more detail or
ideas for troubleshooting, go to hsmag.cc/vTjPpc
– the MIDI circuit for this synthesizer was based on
this design.

If everything seems to be working,
congratulations! You have built a semi-modular
polyphonic digital synthesizer, and you’re ready to
make the world a more musically interesting place.

WHAT TO DO NEXT
There are loads of things you could do next with
this synth. You could add code to make it recognise
more MIDI commands, allowing MIDI control of the
filter and envelope. You could change what the
patch points do – perhaps you would like a white
noise generator instead of a second oscillator? If
so, have a look at hsmag.cc/WzjFUw – there are
lots of virtual synth building blocks for the Teensy
detailed there.

Perhaps the most satisfying next step, though,
would be to upgrade this design from a pretty mess
of breadboard wiring to a more permanent form
using stripboard. You could keep using jumper
wires for patching, while soldering everything else
in place, and make a sturdy enclosure from wood,
metal, or 3D-printed plastic.

WHAT IS

MIDI stands
for ‘musical
instrument digital
interface’, and
is a system
whereby one
instrument can
control another
via a special
cable. The MIDI
standard can
deal with all
sorts of musical
information,
such as tempo,
pitch bend, and
sustain pedal,
but for this synth
we’re just going
to implement the
basic ‘note on’
and ‘note off’
commands.

MIDI?

It makes sense to build
the circuit step by step,

 so we can check
for errors

”
”

Above
Wondering what to
do with your new
synth? Here are some
things to try

Right
We’ve kept the patch
points in order for
this design (outputs
on left, inputs on
right), but you can
easily rearrange
them into a more
convenient order

http://hsmag.cc/vTjPpc
http://hsmag.cc/WzjFUw

116-page guide shows you
how to master Raspberry Pi

in easy steps:

 Set up your Raspberry Pi 3A+ for
the first time

 Discover amazing software built
for creative learning

 Learn how to program in Scratch
and Python

 Control electronics: buttons,
lights, and sensors

RASPBERRY PIWITH

GET
STARTED

This isn’t just a book about a computer:
it’s a book with a computer. Almost

everything you need to get started with
Raspberry Pi is inside this kit, including
a Raspberry Pi 3A+ computer, an official
case, and a 16GB NOOBS memory card
for the operating system and storage.

Available
now magpi.cc/store

http://magpi.cc/store

Get Started With Arduino

TUTORIAL

WiFi Tetris clock

etris has been entertaining people
ever since it was released in 1984.
There have been many versions of
the game, including the multiplayer
battle royale-style Tetris 99 released
just this year. It is a timeless classic

that has spanned many generations of gamers.
Its iconic falling blocks are instantly recognisable

to almost anyone, regardless of their interest in
video games. But instead of using the blocks to
clear lines, we are going to use them to tell time!

This project draws out the digits of a clock using
the classic Tetris shapes on an LED matrix display.

Measuring in at roughly 19 × 9.5 cm, this is
physically quite a large display and is also very
bright, so the result is incredibly eye-catching.

Another twist with this project is, unlike
traditional Arduino clock projects, it does not use an
RTC module for keeping time – instead, the time for
the clock is set from the internet. One big

T advantage of this is that you only need to set your
time zone and the clock will then automatically
display the correct time; it will even adjust for
daylight savings.

This is a surprisingly easy project to put together
that should only take a couple of hours in total. So,
armed with this guide, you should have no excuses
to not make one!

THE LED MATRIX DISPLAY
The intended purpose for these displays is to chain
them together to make up huge screens, as seen at
concerts etc., but they can be controlled individually
using a microcontroller. The displays come in a lot
of different configurations, but most should work
with this project.

When picking one of these displays, there are a
couple of key pieces of information. The first thing
is the pitch, which is the distance between the
centre of each LED. This is marked on the listing of
the displays by the number after the ‘P’; for
instance, P3 indicates that the display has a pitch
of 3 mm. Displays with larger pitches will be
physically bigger.

The second thing to note is the resolution of the
display, which is how many LEDs are available to
use. A display with a resolution of 64×32 means it

112

In HackSpace issue 16 (hsmag.cc/issue16), we showed how to hack a ‘Pixel Purse’ to
make use of the LED matrix it contained. The display in that toy uses the same HUB75
interface as the LED matrix used in this project, but it has a lower resolution (32×16).

A POTENTIAL FASHION ACCESSORY?

WiFi Tetris clock
An internet-driven clock drawn using Tetris blocks!

Above
Each number is made out
of Tetris blocks that fall
into place

Brian Lough

@witnessmenow

Brian is a maker from
Ireland who primarily
creates projects
and libraries for the
ESP8266 and ESP32
microcontrollers. He
also designs and sells
boards on his Tindie
store. Check out his
stuff on his YouTube
channel and blough.ie

https://twitter.com/ben_everard
http://blough.ie

Get Started With Arduino 113

PROJECT TUTORIALS

YOU’LL NEED

P3 64×32 RGB
LED matrix
– Available on
AliExpress, eBay,
or Adafruit

TinyPICO –
tinypico.com, but
any ESP32 board
should work, e.g.
HUZZAH32

5 V power supply
– 4 A or larger should
do the trick

20 cm female
to female
DuPont cables

Female barrel
jack to screw
terminal adaptor
– Depends on what
head is on your
power supply

3D-printed
stands for LED
matrix – Or
something to keep
it upright!

Above
The wiring diagram for a TinyPICO. Details for other
ESP32-based boards can be found at hsmag.cc/QXmJtz

Below
The TinyPICO is an ESP32 development board that
recently went through a successful crowdfunding
campaign on Crowd Supply

The ESP32 is the
successor to the
widely popular
ESP8266. It is more
powerful and has
more GPIO pins.

QUICK TIPwill have 64 LEDs across, and 32 LEDs down. This
project is coded to work on 64×32 displays, but it
could be adapted for other ones if needed.

These displays can be driven with lots of
different microcontrollers. People commonly use
them with Raspberry Pi boards, but for this project,
we are going to use an ESP32. An ESP32 is an
inexpensive, Arduino-compatible, microcontroller
with built-in WiFi.

When wiring the display up, pay special attention
to the arrows that will be printed on the PCB of the
display – the ESP32 needs to be wired to the
connector that arrows are moving away from. These
arrows can be seen in Figure 1 overleaf.

To power the display, use a female DC jack to
screw terminal adapter, and insert one of the prongs
of the power wire that comes with the display into
each screw terminal, connecting the black wire to
the screw terminal marked with a ‘-’ and the red
wire to the one marked with a ‘+’. Once you’re
happy with the connection, use insulating tape
or heat-shrink to provide some extra strength
to the connection.

The simplest way to power the ESP32 is
to power it via a separate USB power
supply, but it can be connected to the

same power supply as the display by
connecting to the ‘5 V’ or ‘USB’ pin of your ESP32.

The thing to be careful about with this is you don’t
want to get into a situation where the power from
the USB of your PC is powering the entire display,

The simplest way to power
the ESP32 is to power it via a
separate USB power supply

”
”

Below
Our display give
us 64x32 LEDs
to play with

http://tinypico.com
http://hsmag.cc/QXmJtz

TUTORIAL

114 Get Started With Arduino

WiFi Tetris clock

as the display will pull more current than your PC
USB port is able to provide. The best way to prevent
this from happening is to use a diode (Schottky
1N5817, for example). Put the negative side of the
diode facing the microcontroller, so 5 V from the
power supply can go to the ESP32, but 5 V from the
ESP32 cannot go to the display.

The display is pretty unsteady standing up on
its own, so it’s highly advisable to create a stand
for it. If you have access to a 3D printer, these
stands designed for the P3 matrix work great –
hsmag.cc/bGLDTh. You will need to use some
10 mm M3 screws to attach it to the display.

If you wanted to port this project to the purse
display, you would only need to remove the text

If the ESP32 board
you are using does
not have the same
pins used in the
wiring diagrams,
you should be able
to swap any for
other GPIO pins, but
you’ll need to reflect
this in the code.

QUICK TIP
If you are not already set up for programming an ESP32, you
will need to do the following:

First, you will need to download the Arduino IDE from the
Arduino website and install it – hsmag.cc/UHQfXs.

Next, you will need to set up the Arduino IDE to be
used with an ESP32. Open the Arduino IDE, go to File
> Preferences, and paste the following URL into the
Additional Boards Manager URLs and click OK:
dl.espressif.com/dl/package_esp32_index.json.

Back on the main screen of the Arduino IDE, navigate
to Tools > Board > Boards Manager. When this screen
opens, search for ‘ESP32’ and install it. Note that this
may take a few minutes, depending on the speed of your
internet connection.

After setting up a new board, it is recommended to try
out a simple blink sketch before attempting anything more
complicated. This can save a huge amount of headaches
down the line!

PROGRAMMING THE ESP32

Right
What your wiring
should look like when
you are ready to go

Below
Screw terminals
make it easy to add a
power connector

http://hsmag.cc/bGLDTh
http://hsmag.cc/UHQfXs
http://dl.espressif.com/dl/package_esp32_index.json

115

PROJECT TUTORIALS

Get Started With Arduino

scaling and make some minor positional
adjustments to the text, and it would work fine.

SETTING UP THE CODE
The code for this project is available on GitHub.
Point your web browser to hsmag.cc/rpULls and
click the Clone or Download button on the right-
hand side of the page, and then Download Zip.
Extract the zip file. Inside the extracted folder, open
up the ESP32 or TinyPICO folder, then the
EzTimeTetrisClockESP32 folder, and open the
EzTimeTetrisClockESP32.ino file.

This sketch requires some additional Arduino
libraries to be installed:

• Tetris Animation by Tobias Blum – handles the
Tetris-style animating of the clock

• PxMatrix by 2Dom – for controlling the
matrix display

• EzTime by ropg – used to get the time from
the internet

• Adafruit GFX by Adafruit – the base library that
PxMatrix is built upon.

Details of which versions of the libraries are
needed, and where to get them, are contained
up near the top of the Arduino sketch. After
installing these libraries, you should click the

The Tetris Animation library, used for this project,
works with more than just these LED matrix displays.
The library works with any displays that make use of
the Adafruit GFX library.

Adafruit GFX provides a set of methods for
drawing and for writing text that is abstracted from
the hardware of the screen. It needs to be paired
with a hardware-specific library that is able to
communicate with the display.

Since the Tetris Animation library only uses
methods contained in the Adafruit GFX library, it
means that it can be used with any display that has
a library that uses Adafruit GFX (and there are a lot
of them!).

NOT JUST FOR If the display doesn’t
look correct, or
seems to be missing
colours, double-
check that your
wiring is correct.

QUICK TIP

xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx

”
”

Figure 1 (top)
Make sure to pay
attention to the
arrows on the board
when you are wiring
it up

Bottom
A custom PCB that
makes use of the
ribbon cable that
comes with the
display to keep the
wiring neater

LED MATRICES

http://hsmag.cc/rpULls

TUTORIAL

116 Get Started With Arduino

WiFi Tetris clock

‘verify’ button (shaped like a tick) on the
EzTimeTetrisClockESP32 sketch to make sure that
everything compiles fine.

You will need to make a couple of changes to the
sketch so that the clock functions correctly for you.
Inside the ‘Stuff to configure section’, set your
SSID and password for your WiFi.

Just below that, set your time zone in the format
‘Europe/Dublin’; there’s a comment in the sketch
with a link to a full list of possible time zones.

And finally, if you are using a different ESP32
board than the TinyPICO, you will need to change
the wiring. Search for ‘Generic’ in the sketch and
uncomment the two lines that you find, and
comment out the adjacent lines that contain a
‘TinyPICO’ comment.

When you’ve finished configuring, upload the
code to your ESP32, and you should see it
animating in all its blocky glory!

TINKERING WITH THE SETTINGS
There are several adjustments you can make to the
clock to so it works exactly as you would like it.

If you would prefer a clock with a 24-hour format,
set twelveHourFormat to false.

The forceRefresh option controls how many of
the digits get drawn every minute. If it is set to
true, the entire clock will be cleared and it will draw
all the digits again. If set to false, it will clear only
the digits it needs to; for instance, if the time was
currently ‘10:29’ and it needed to update, only the
‘2’ and the ‘9’ would be replaced – the ‘10’ would
remain on screen.

And finally, you can adjust the speed at which the
Tetris blocks fall by changing the value that triggers
the animationTimer. By default in the sketch, it’s set
to 100000, which is 100,000 microseconds, or 0.1
of a second. Reducing this number will make the
blocks fall faster. Changing the value to 50000 will
result in the animation being twice as fast.

Once you’ve made those changes, upload the
code again and you’ll have the clock working just
the way you like. All that’s left to do is to while
away the time watching the blocks fall.

The Tetris Animation library is derived from a project created by Tobias Blum (toblum
on GitHub), who created a clock using the Tetris animation, but it was hard-coded to
work with a 32×16 display, and the code for getting the time and the animation code
were intertwined. His sketch was open source and after discussing it with him, this
author extracted just the animation part of the sketch into a standalone Arduino library
so it could be used to draw any numbers, not just a clock. I also took the opportunity to
change the library to use generic references to the Adafruit GFX library and add some
additional features, such as the ability to scale the digits

Another developer, Mike Swan (n00dles101 on GitHub) then further improved
the library by adding support for text characters. Each of the characters had to be
manually coded to work, so Tobias and Mike did some amazing work on this!

THE POWER OF OPEN SOURCE

Above
Numbers falling
 into place

Right
You could build your
own version of this
animated timepiece

Inside:
• Learn how to set up your Raspberry Pi,

install an operating system, and start using it

 • Follow step-by-step guides to code your
own animations and games, using both the

Scratch 3 and Python languages

• Create amazing projects by connecting
electronic components to Raspberry Pi’s

GPIO pins

Plus much, much more!

The only guide you
need to get started
with Raspberry Pi

£10 with FREE
worldwide delivery

THE OFFICIAL

Beginner’s Guide
Raspberry Pi

Buy online: magpi.cc/BGbook

Now
includes

Scratch 3
projects!

http://magpi.cc/BGbook

Get Started With Arduino

TUTORIAL

118

Let’s learn LoRa!

t seems that the terms LoRa and
LoRaWAN are everywhere at the moment,
but what are they? LoRa is a platform for
sensors to communicate wirelessly over long
range; LoRaWAN is essentially the same, but
when the receiver receives something from

a LoRa sensor device, commonly called a ‘node’, it
acts as a ‘gateway’, sending the information onto
the internet. In this tutorial, we’re going to work
through some simple LoRaWAN activities and
connect a LoRa node to ‘The Things Network’, a
crowdsourced network of gateways. This enables us
to receive data from a node and transmit some data
across the internet to a nice dashboard displaying
our data.

We are going to work with The Things Uno, which
is essentially an Arduino-shaped board that has the
LoRa communications chip built into it. We can also
program The Things Uno using the Arduino IDE, so

I

Explore LoRa and LoRaWAN and transmit
temperature and humidity to an online dashboard

Let’s learn LoRa!

Jo Hinchliffe

@concreted0g

Jo is a contributor
to the Libre Space
Foundation, and is
passionate about all
things DIY space. He
loves designing and
scratch-building both
model and high-power
rockets, and releases
the designs and
components as open-
source. He also has
a shed full of lathes,
milling machines, and
CNC kit!

Figure 1
The Things Uno wired up
to a DHT11 sensor that
can sense temperature
and humidity

the first thing is to download and install the latest
Arduino IDE software from hsmag.cc/APNJVV.

To test that The Things Uno board is working,
let’s upload a simple program to check the board.
Connect your The Things Uno to your computer
using the micro USB cable. In the Arduino IDE, click
Tools > Board, and then check it’s set to ‘Arduino
Leonardo’. Next, click Tools > Port, and select the
port that includes the label ‘Arduino Leonardo’ to
ensure the Arduino IDE is communicating with the
correct port.

Next, click File > Examples > 01.Basics > Blink,
and then click the verify button (looks like a tick on
the top left of the screen), and then click the upload
button (the right-pointing arrow button next to the
verify button). All being well, after a few seconds
your The Things Uno should have a flashing LED
that is connected to pin 13 on the board (one of the
four green LEDs next to the micro USB port).

http://hsmag.cc/APNJVV

Get Started With Arduino 119

PROJECT TUTORIALS

Next, we need to install some libraries we are
going to use in this tutorial. We’ll install two of
them using the Arduino IDE libraries manager, and
download and manually install one from the internet.
Open the Arduino IDE and then click Tools > Manage
libraries (Figure 2). The first library we are going
to install is called ‘The Things Network’, so type
that into the ‘filter your search’ bar at the top of
the library manager. You should find a library whose
description begins ‘The Things Network by Johan
Stokking, Ludo Teirlinck…’ – select this library and
click Install. Repeat the above process, searching for
‘cayenne LPP’ to install a library called ‘CayenneLPP
by Electronic Cats’. Finally, to install the third library,
we need to download it from hsmag.cc/pEDXUY.
Click the large green ‘Clone or download’ button
and then click the Download ZIP option. Once
downloaded in the Arduino IDE, click Sketch >
Include Library > Add .ZIP Library, and then navigate
to where you downloaded the zip file, and select it.

We are going to work with The Things Uno, which
is essentially an Arduino-shaped board that has
the LoRa communications chip built into it

”
”

Figure 2
Using the
Arduino IDE
library manager
to install the
libraries we need
for our project

GOING LOCAL
The next job is to upload an example sketch from
The Things Network library we just installed. Click
File > Examples > TheThingsNetwork > Device
info in the sketch that is open – we need to make
one small change before we can use this sketch.
The Things Uno frequency for Europe is 868MHz,
so we need to replace some text. Edit the sketch
so that the ‘REPLACE_ME’ is replaced with ‘TTN_
FP_EU868’. Readers in other regions will need
to replace it with the example that matches the
frequency available in your region – it can be found
on a sticker on the reverse of your The Things Uno.

Double-check your board is still connected and
set to Arduino Leonardo, and the port is correct.
Verify and upload the device info sketch to your The
Things Uno. Once uploaded, you need to open the
serial monitor in the Arduino IDE, this can either be
opened by clicking the Magnifying Glass icon at the
top right-hand side of the screen or clicking Tools
> Serial monitor. In the serial monitor after a few
seconds, you should see some details appear that
are unique to your The Things Uno – copy and paste
these details into a text document somewhere on
your computer for later use.

We’ve now got the hardware set up and
configured, it’s time to take a look at the networking
side of things. This is what gives us some where to
send our data to.

PUBLIC NETWORK
The Things Network is a community-hosted network
that consists of gateways connected to the internet.
LoRaWAN devices, in our case a The Things Uno,
can be received by any gateway, and their data
packets are then forwarded to an account registered
by the device owner on The Things Network website.
The website application can be set up to integrate
or forward those pieces of information to other
systems, allowing the user to create a visual web
dashboard, a phone application, an SMS alert, an
email, or other options triggered or populated by
the data from the device or devices in the field. The
Things Network website has a map of gateways –
check and see if you have one locally that you may
be able to connect to.

YOU’LL NEED

The Things
Uno

DHT11 or DHT22
temperature and
humidity sensor

Some
breadboard
connector wires

Micro USB
cable

Access to a LoRa
gateway (see
tutorial for details)

http://hsmag.cc/pEDXUY

Get Started With Arduino

TUTORIAL

120

Let’s learn LoRa!

TO THE THINGS NETWORK
We’ll use The Things Network as the glue to hold
our sensor together with dashabord (which we’ll
look at in a bit). Navigate to hsmag.cc/BtGluJ and
register an account. Once registered and logged in,
you should see a link for ‘console’ in a drop-down
list when you click your username. Navigate to the
console and you should see two large icons: one
that says applications and one that says gateways.
We are (hopefully) going to rely on you being in
range of a gateway, so we are interested in setting
up an application: click the Application icon.

An application, in terms of The Things Network,
can be thought of as the area to which your devices
or nodes (in this case, your The Things Uno) will
send their data. It is here that the The Things
Network will choose where to send and what to do
with the data it receives. An application can receive
data from multiple nodes or devices and can also
be integrated into other online services that allow
you to do things with the data (for example, send
a text message when a temperature gets too high,
populate a dashboard, send key information to an
online spreadsheet).

For now, we are going to create one simple
application to receive data from our The Things Uno,
which will be the humidity and temperature from our
DHT11 sensor. Click the ‘Add application’ button in
the top right-hand corner and give it an application
name – note that these have to be in lower case
and also have to be unique, so if you try ‘test’ for
example, you will probably find when you try to
add the application, it has already been used. As
instructed in the second section, add some human-
readable text to remind you what this application is;
for example, ‘HackSpace tutorial temperature and
humidity example’.

The last two input boxes should be as we want
them, with ‘Application EUI’ set to ‘EUI issued by
The Things Network’, and ‘Handler registration’ set
to ‘ttn-handler-eu’. Leave these as they are and click
the turquoise ‘Add application’ (Figure 3) button in
the lower right-hand side of the page.

The application should now be created and you
will be pushed on to the Application Overview
page. If you scroll down this page, you should find
a section called ‘Devices’ which will show there are
no registered devices. So let’s add a device, which
will be our The Things Uno, so that our hardware can
connect to this application. On the upper right-hand

side of the devices box, click ‘Register device’.
In the resulting Device Registration page, give the
device a device ID and then copy the ‘Dev EUI’
from the text document we made earlier when we
got the device information off our The Things Uno
via the device info sketch. Leave the App Key field
on this page as it is (set to be generated by The
Things Network) and click the turquoise ‘Register’
button in the lower right-hand corner (Figure 4).

You should now end up on the ‘Device Overview’
page for the device you just registered. There is a lot
of information on this page, including the activation
method (which should be OTAA) and the various
keys that the device has or needs to communicate
with the application. If we scroll down to the

Use The Things
Network website
map to see if you
are close to any
LoRa gateways.

QUICK TIP

Figure 3
Adding an application
to our The Things
Network account

Figure 4
Registering a device
into an application on
The Things Network is
essentially introducing
The Things Network
to our The Things
Uno so that they are
connected and enabled
to communicate with
each other

For now, we are going to
create one simple application

to receive data from our
The Things Uno

”
”

https://www.thethingsnetwork.org

Get Started With Arduino 121

PROJECT TUTORIALS

bottom of this page, we should see a box called
‘Example Code’.

IT’S ALL IN THE CODE
Rather wonderfully, this is a snippet of code
containing the two key pieces of information an
Arduino sketch on our The Things Uno needs to
connect it to our application on The Things Network.
Copy these (either select and right-click and select
‘copy’, or press the copy button in the upper right-
hand side of the box) and paste them into a text
document or a blank Arduino sketch. Before we
move on to the next part of the tutorial, we are
going to make one last change to the application
we have made on The Things Network. Return to
the Application Overview page – navigate here by
clicking ‘Applications’ in the upper right-hand side
of the page near your profile name – then select
the application we just created. Once back in the
Application Overview, click the ‘Payload Formats’ tab
on the upper right-hand side. On the resulting page,
you should see a box called Payload Format, and it
should show ‘Custom’ in it. Click on this box. In the
drop-down menu, there should only be one other
option, which is CayenneLPP; select this and then
make sure to click the Save button in the lower right-
hand corner of the page.

LET’S GET CONNECTED
Connecting our DHT11/22 sensor board to The
Things Uno is pretty straightforward. Connect
breadboard wires between the DHT11/22 and The
Things Uno 5 V and GND pin sockets. The data pin on
the DHT11 sensor needs to be connected to pin A0
on The Things Uno (as seen in Figure 1).

Returning to the Arduino IDE, we will now upload
the sketch for our sensor to The Things Uno; having

Remember, an
application on The
Things Network can
support multiple
devices – perfect for
large, remote sensor
array projects!

QUICK TIP

SPICY MESSAGES
Cayenne is an IoT platform by a company called
myDevices. CayenneLPP (Cayenne Low Power
Payload) is a format for data packages over LoRa that
allows for some key types of sensors to be integrated
into the Cayenne IoT platform simply via The Things
Network. Put simply, if we can send sensor data in a
CayenneLPP format, a lot of the work to unpack this
data and present it in a straightforward and readable
way is done for us in The Things Network and the
Cayenne myDevices environment.

made some changes and added the keys, we need
to allow it to communicate with the application on
The Things Network. Download the sketch from
hsmag.cc/issue22 and open it in the Arduino IDE.
There are only a couple of changes we need to

make. The first is to check the frequency plan is
correct for our The Things Uno; this is the same
bit of code we replaced earlier in the device info
sketch. In our code, it is set as the ‘TTN_FP_EU868’
European version and will only need changing if you
are using the US frequency plan.

The second change is that you will see a section
in the code which is similar to the code we copied
from the ‘Example Code’ box on the Device
Overview page on The Things Network earlier. (It’s

Figure 5
Success! Data
from our device
successfully being
received by our
application on The
Things Network

The data pin on the
DHT11 sensor needs to be
connected to pin A0 on The

Things Uno

”
”

http://hsmag.cc/issue22

Get Started With Arduino

TUTORIAL

122

Let’s learn LoRa!

Figure 6
Beginning to set up
a dashboard on the
myDevices site

Figure 8
Selecting the
CayenneLPP options
for our dashboard

Above
The standard
dashboard showing
our data

Figure 7
Select The Things Network from the left-hand menu

the two lines under the comment ‘//Replace these
with your AppEUI and AppKey‘) So, of course,
copy and paste those entire two lines from your
Device Overview Example Code box to replace the
similar ones in the Arduino sketch.

DECODING THE PAYLOAD
Save your sketch and then click Verify. If the code
compiles correctly, then double-check that your The
Things Uno is still attached correctly as an Arduino
Leonardo, and the correct port is selected, and then

upload the sketch to The Things Uno. Leave The
Things Uno plugged into your laptop for power after
the sketch has uploaded.

You now have a LoRaWAN node with a sensor
hopefully transmitting its payload of the sensor data
on humidity and temperature, if you are within range
of a gateway (it’s worth taking your laptop and The
Things Uno outside to increase chances!) Returning
to The Things Network website, click the applications
tab and select the application you created, and then in
the Application Overview page, select the ‘Data’ tab
from the upper right-hand side. Wait for a short while,
and you should start to see data packets appear
with some information about the data, and most
importantly, the payload in the end columns stating
the temperature and humidity readings from your
sensor (Figure 5). As we set the application to read
the payload as being of the CayenneLPP type, our
payload is decoded and is nicely displayed, labelled
correctly ‘temperature’ and ‘humidity’, instead of just
a raw collection of bytes. If you click on a particular

Our payload is decoded and is nicely displayed,
labelled correctly ‘temperature’ and ‘humidity’,
instead of just a raw collection of bytes

”
”

Get Started With Arduino 123

PROJECT TUTORIALS

data packet, you get a drop-down with more
information, such as the signal strengths and which
gateways the device sent the data through.

As things stand, we have our sensor data going
to The Things Network, but you might notice that
if you refresh the Applications Data page or close
it and reopen it, it doesn’t keep the data there.
Simple applications on The Things Network don’t
retain data; they act as a holding area that can
send and forward data to other places. We are now

going to create a simple dashboard for our device
to which our application will send the data, and the
dashboard will keep our data more permanently so
we can review it when we need to.

LET THERE BE DATA
Apart from it making it simple to get a payload in a
readable form on The Things Network, we used the
CayenneLPP library and payload format as it makes
it very trivial to create a dashboard for our device
online that will collect and display all the data from
our The Things Uno device. To set this up, we first
need to register a free account on the Cayenne
myDevices website: hsmag.cc/YlgAGf.

Once logged in, select the large LoRa icon
(Figure 6) and then select ‘The Things Network’
from the lower end of the menu bar on the
left (Figure 7). Then scroll down and click the
CayenneLPP option (Figure 8); in the settings
window that should appear, you need to give the
dashboard/device a name, and then add the Device
EUI in the DevEUI box – leave the Activation
mode set to ‘already registered’, and the tracking
box locations as ‘this device moves’. Save these
settings and leave this tab open in your browser.

Finally, we need to go back to The Things
Network site, and in our Applications Overview we
need to select the ‘Integrations’ tab and click ‘Add
integration’. Scroll down and click the myDevices
icon; in the Process ID box, give this a name such
as ‘hackspacedashboard’, and in the ‘Access Key’
drop-down menu, when you click on the empty box,

it should reveal only one option ‘Default key’ next
to two buttons that say ‘Devices’ and ‘Messages’.
Click on ‘Default key’ to select this into the ‘Access
Key’ box, then click the blue ‘Add integration’
button in the lower right-hand corner.

If you now switch back to your myDevices page
we left open in another tab, as soon as myDevices
receives some data from your The Things Uno, it
should automatically make a dashboard for you
and display the data. It should create a dashboard
with RSSI (received signal strength indicator), SNR
(signal to noise ratio), and, of course, our sensor
humidity and temperature data. This dashboard
will update with the latest data and will store the
data it receives, meaning you can come back and
check it anytime – or, if you take your The Things
Uno offline, it won’t lose all the existing logged
data. The myDevices dashboard elements can all
be edited and customised, so you can swap the
icons or the type of gauge or graph by clicking the
settings menu for each widget.

TIME FOR ANOTHER PROJECT
Congratulations on setting up your first LoRaWAN
device and application. There are dozens of
different platforms for devices, and innumerable
sensors that can be developed and added to them.
In addition, as a rapidly growing community, there
are lots of tutorials to explore online to help you
develop your next projects.

The myDevices dashboard
elements can all be edited

and customised so you
can swap the icons or the

type of graph

”

”

Below
Our altered
dashboard showing
data in visual form

http://hsmag.cc/YlgAGf

Subscribe today and get:

	FREE delivery
 Get it fast and for FREE

	Exclusive offers
 Great gifts, offers, and discounts

	Great savings
 Save up to 35% compared to stores

35%
SAVE
U P T O

SUBSCRIBE TODAY
FROM ONLY £5

Subscribe online: hsmag.cc/subscribe

http://magpi.cc/subscribe

SUBSCRIPTION

Subscribe for 12 months Rolling monthly subscription

£55 (UK) £90 (USA)

£80 (EU) £95 (Rest of World)
Free Playground Express with 12-month upfront subscription only
(no Playground Express with rolling monthly subscription)

	Low monthly cost (from £5)

	Cancel at any time

	Free delivery to your door

	Available worldwide

SUBSCRIBE TODAY

Adafruit Circuit
Playground Express
With your 12-month print subscription
This is a limited offer. Offer subject to change or withdrawal at any time.

FREE!
WORTH

£25

SUBSCRIBE
on app stores
From £2.29

Buy now: hsmag.cc/subscribe

https://itunes.apple.com/gb/app/the-magpi-the-official-raspberry-pi-magazine/id972033560?mt=8
http://magpi.cc/subscribe
https://play.google.com/store/apps/details?id=com.apazine.hackspace&gl=GB&showAllReviews=true

Get Started With Arduino

Build your first walking robot

FEATUREFEATURE

Build your first walking robot

FEATURE

BUILD

YOUR
FIRST

WALKING
Get Started With Arduino126

Get Started With Arduino

LENSLENSLENS

WALKING
By Jenny List

e take for granted the ability of

mammals and other creatures to

walk. It’s something that our young

minds learn in infancy without

understanding what a complex task

we have mastered. We are blessed

with some of the most intricate and

capable actuators imaginable in the form of our arms and

legs, but to master them takes a huge array of skills and

sensory inputs that we process subconsciously. To try to

replicate walking motion in a robot is hard, so it’s little

wonder that the majority of mobile robots employ wheels

or tracks.

As humans, we are one of relatively few species that

walk upright, on two legs. We are inherently unstable and

prone to falling over, so our brains monitor our balance

continuously and adjust our muscles accordingly to keep

us upright. This is a particularly difficult task in terms of

robotic programming, so even the fruits of multi-million-

pound research programmes such as Honda’s ASIMO or

the Boston Dynamics’ biped robots are only just starting

to walk comfortably. By comparison, four-legged walking

in the way practised by most walking animals is a much

more stable process, and a four-legged walking robot is

well within the capabilities of most people.

W

Make a robotic pet, butler

or assistant

Get Started With Arduino 127

Get Started With Arduino128 Get Started With Arduino

Build Your First Walking Robot

FEATURE

e walk by creating a gait
using our complex muscles
and joints, but there are
other motions that can
generate movement in
a robot. The simplest by
far of these use a circular

reciprocating motion from a cam or eccentric drive,
but there are also robots that use a spring-driven
hopping motion. For the purposes of this article, we’ll
be looking at a robot that mimics an animal leg, as the
capabilities of a microcontroller now put its control
within anybody’s reach.

Our limbs have a range of articulation far greater
than is needed for walking, to the extent that fully
replicating a human limb makes for an extremely
expensive piece of robotics. Happily, the articulation
required for each individual task that a human limb
can do is only a subset of the whole. So, for a walking
leg, the articulation can be reduced to only the axes

BUILDING
THE CHASSIS

W

Get Started With Arduino

LENSLENS

129Get Started With Arduino

LENS

needed for the job. Hip, knee, and ankle joints
can be made to only move in one plane,
resulting in a leg that only requires three

servos. With a rounded foot design,
the need for an ankle can be
further removed, leading to a leg
with only two servos. This is the
design followed by the robot we
are making here; it has four legs

of two servos each – only eight
servos for full walking mobility.

THE MINIKAME, AN INFINITELY
VERSATILE ROBOT DESIGN
The Kame series of robots follow a 3D-printed open-
source design that has been around for several years
now, and which has seen significant refinement and
alternative versions of the same basic four-legged
robot. Elements from different versions can be
combined for custom builds, and a wide array of other
controllers substituted for the ESP8266 of the original.
A search of the popular Thingiverse 3D model library
will turn up a host of different Kame-derived designs.
The MiniKame we built is a smaller version originally
designed for the HuaDuino, a custom Arduino-based
board which required a wait for Hong Kong postage,
so we’ve opted to print a modified version of its body
designed for the popular (and readily available in the
UK) Arduino Nano expansion boards. If you can wait
for a HuaDuino to be delivered, that option is a bit

more compact. Or if you really know what you are
doing, choose another board entirely, such as an
ESP8266 one with WiFi – but, for the purposes of this
article, we’re sticking with Arduino boards. This is the
beauty of open-source: instead of a single take-it-or-
leave-it design, there is instead a healthy ecosystem
of remixes, meaning that every Kame robot build can
be different to suit its owner’s needs.

The different 3D-printed parts for our MiniKame
came from Thingiverse, and the

Since the early 1990s, the Dutch artist Theo Jansen has

created a series of wind-powered walking sculptures.

These Strandbeesten (Dutch for ‘beach beasts’) are

typically made from PVC pipe, and are released on the

beaches of the Netherlands as autonomous artworks.

They are characterised by their multiple legs, using

Jansen’s own design of linkage, with a pair of rigid

triangles linked by a diamond shape that can be

manipulated by the crank to produce a practical

walking motion in which the foot moves in an

approximation to a walking human foot. Strandbeest

legs have been enthusiastically taken up by the

maker community and turned into all sorts of

walking machines; they have even been used to

replace the rear wheel on a bicycle frame.

THE STRANDBEEST, A WALKING ARTWORK

Left
An assembled leg

Get Started With Arduino130 Get Started With Arduino

Build Your First Walking Robot

FEATURE

instructions came from its Instructables page. You’ll
find the resources at hsmag.cc/CkdDMO.

The main body of the Kame is a plastic box sized
for its controller board, with a lid, and receptacles
for the four SG90 servos that form its hip joints.
There are two link bars underneath that clip onto the
bottom of the body and locate with the lower part of
the hip hinge; in our build, it was these and the main
body assembly that both came from the Thingiverse
repository for the Arduino Nano board. Meanwhile,
the legs are the standard MiniKame items: a thigh
assembly, and a combined lower leg and foot
assembly that fit together with yet another SG90
servo. We printed four of these assemblies. They,
and the body, were printed using PLA in two sessions
on a HyperCube at MK Makerspace over the course
of an evening.

The first step in assembling a MiniKame is to build
all four legs. There are the two larger pieces for the
thigh and lower leg, plus a small pin that fits under
the knee servo and becomes half of the knee hinge.
There is a circular hole in the assembly at the bottom
of the thigh piece, into which the pin snaps, then the
servo can be fitted above it with its shaft pointing in
the opposite direction on the same axis as the pin. All
MiniKame servo positions have holes ready for the
servo fixing screws; your servo should come with the
necessary fastenings in its accessory pack.

There are two distinct mirror-image sets of leg
prints; in each case, the spindle of the servo must
face outwards away from the end of the robot when
it is fitted. In all cases, the lower leg piece has an
inset in the shape of a servo arm on the side of the
knee which locates with the servo shaft, and a plain
hole on the side locating with the pin.

The first step
in assembling a

MiniKame is to build
all four legs

THE PARTS

WE USED IN OUR BUILD

The parts used in this robot build are all completely standard and

should be available from the usual maker sources. If you opt for

a board such as the HuaDuino, it may have to be ordered from

overseas, but that is beyond the scope here.

The body and leg components were 3D-printed in PLA. You

may find that some commercial 3D-print services can sell you

them ready-made, but they are easy enough to print yourself.

Your local hackerspace will have a 3D printer – go and join up if

you are not already a member.

The legs use eight standard SG90 servos that can be bought

from multiple suppliers. Ours came from Amazon, but could just

as easily have come from HobbyKing, or any other model parts

shop. They should include all screws and servo arms.

The Arduino Nano and Arduino Nano Shield V3 boards

are standard commodity items that should only cost a few

pounds. Ours were Chinese clones rather than the genuine

Arduino boards. Again, they are available from a huge variety of

suppliers; ours were already on the bench. We suggest buying

quality if you can.

The Bluetooth HC-05 module is yet again a standard

component available from many suppliers. Ours came

from Amazon.

Finally, the jumper cables are the rainbow ribbon cable variety

with single DuPont sockets at each end. All the usual suppliers

sell them; the chances are you already have some, but if you

don’t, you’ll find them useful far beyond a MiniKame.

Above
The servo arms fit into the insets in the 3D-printed parts

http://hsmag.cc/CkdDMO

Get Started With Arduino 131Get Started With Arduino

LENS

WHAT WENT WRONG?

In this article, we have discussed the building of a toy robot by an engineer with

years of experience in creating some extremely complex devices and systems.

We’ve seen quite a few MiniKame builds over the years – it’s a popular choice

because it works. Despite the descriptions above sounding easy, however,

this build turned out to be a difficult one fraught with problems and setbacks.

It’s important to own your mistakes and shortcomings, and it’s also important,

if you don’t have huge experience, to understand that things go wrong for

professional engineers too. Thus we’ll run through some of the issues, so that

with luck you can avoid them yourselves.

In theory, 3D printing is a press-and-go affair, like using a photocopier. In

practice, a lot of care and patience is required, along with some failed prints.

Our first set of MiniKame legs didn’t have enough support material and were

somewhat droopy, so we increased the support and tried again. The result

was a perfect print, but the extra support proved very difficult to remove. Thus

our feet have a messy remainder of chiselled-off support material on their

underside. It’s best to own up to these things.

Always read the instructions. We fitted the servo arms, then had to

remove them again for the calibration step.

The servo arms can break if too much force is applied. We broke

a couple, and had to cut one side off a double-sided arm to make a

replacement.

Our Bluetooth module was extremely difficult to pair with our phone. It

would appear in the list of devices, then disappear as if by magic when we

tried to connect. A lot of time was expended getting it to eventually connect.

We have to admit it, our MiniKame has been temperamental. All the

components appear to be fully working, yet sometimes they refuse to

work together. A thought was that a power supply might be to blame, but

they continue to have problems even when a bench power supply is used.

If there is a lesson to be learned here, it is to always buy good-quality

components if you want a robot that walks all of the time rather than some

of the time, and be prepared to mistrust a cheap Chinese Arduino clone that

has been sitting on your bench for a year or so.

Once the pin and servo are fitted to the thigh
piece, the lower leg can be fitted. Slide the pin into
its knee joint hole, and then gently ease the other
side of the knee over the servo shaft. Don’t fit the
servo arms yet – we need the servos to be able
to move freely for the calibration step which we’ll
perform later.

The body is little more than a plastic box with
mountings for four servos that form the hip joints,
which should be easy enough to fit and screw into
place. Match up the legs to the body corners, such
that each corner has a leg whose knee servo shaft
faces outwards. With the link bar held underneath
across the robot, such that its pin is in the same
axis as the servo shaft, fit the leg in the same way
as the knee joint by locating the lower point of the
hinge on the pin and easing the upper point onto the
servo shaft. Again, don’t yet fit the servo arms. Fit
all four legs, and route all the servo wires to come
together in the centre of the body. That’s it: you now
have recognisably built a MiniKame robot, albeit one
with floppy legs, because the servo arms are not
yet installed.

Below
The thigh servos
mounted on the body

Get Started With Arduino132 Get Started With Arduino

Build Your First Walking Robot

FEATURE

he next hardware task is to fit the
control board and hook up the
servos. We used an Arduino Nano
clone and an expansion board with an
added Bluetooth-to-serial board
because that’s the most basic
MiniKame configuration, but there

are versions of suitable software for multiple other
controllers. Wiring is straightforward, with the Nano
expansion board providing numbered headers for
servos that should be connected as follows:

• D2 to front right hip servo
• D3 to front right knee servo
• D4 to back right hip servo
• D5 to back right knee servo
• D6 to back left hip servo
• D7 to back left knee servo
• D8 to front left hip servo
• D9 to front left knee servo

The Bluetooth module is then wired in with four
socket-to-socket jumpers: two to 5 V and GND pins,
and the serial TX on the Nano board to the RX on the
module, and the RX to the TX.

There’s one further component that we’ve not yet
mentioned: the power supply. There are a huge number
of possible ways to power any Arduino project, almost
all of which could give a MiniKame the necessary juice.
We tried two methods: our robot was able to function
from a mobile phone booster pack over a USB cable, or
from a pack of AA batteries via the Arduino power jack.

IT MOVEMAKING

T

Left
The Nano and its shield fit neatly into the body. The Bluetooth
module is in the background

Get Started With Arduino 133Get Started With Arduino

LENS

Other options you could consider might
be a LiPo battery with a suitable regulator
board, or even a long cable from an
external power supply. It’s worth bearing in
mind, though, that the robot may not like too
much weight; our MiniKame found the
weight of eight AA batteries to be a bit much.

SOFTWARE
We are almost ready to install the software on
our MiniKame, but there is one final step before
we can proceed. It involves another piece of
software, which sets up the Bluetooth module. This
can be found on the Instructables page, but is also
shown below. You’ll need to use the Arduino IDE to
load it onto your Arduino Nano and, ensuring that the
Bluetooth module is connected, you should then reset
the Arduino without USB connected and let it run.

void setup() { Serial.begin(9600); //change to fit
your ble initial baud_rate
Serial.println(“AT+UUID0xDFB0\r”); // uuid
delay(50); Serial.println(“AT+CHAR0xDFB1\r”);
// characteristic delay(50); Serial.
println(“AT+BAUD8\r”); // set baud rate to 115200
}void loop() {}

The stock software for a MiniKame comes in two
halves: an Arduino sketch for the robot itself, and an
app for your phone. The result is a simple remote-
controlled robot which is fun enough to play with, but
the real fun comes in the accessible nature of Arduino
coding. You can choose to use it as a novelty robot toy,
or you can get inside its mind and hack the software.

Installing the final Arduino sketch is as simple as
downloading its repository from GitHub, unzipping

the archive, and compiling it to the Arduino itself using
the Arduino IDE. Meanwhile, there is more than one
suitable app for a Kame in the Play Store and the Apple
App Store, which can be installed on your device of
choice. Pair with the Bluetooth module and you should
be ready to proceed.

If all went well, you should now have a MiniKame
robot with floppy legs, but with all software and wiring
in place. The final step is one of calibration, the act of
setting all the servos to a known position before fitting
the servo arms. This is simple enough: fit a jumper wire
between the Arduino Nano’s D12 line and its 3.3-volt
pin (made easy by the relevant pins being exposed on
our Nano expansion board), and power up the robot.
You will hear the servos move into their calibrated
positions, then you can power down the robot, remove
the jumper from D12, and install the servo arms.

Position the robot flat with its legs outstretched at
45 degrees to the body, and carefully snap in a
single-sided servo arm into each inset. There should
then be just enough room to slide a single-sided servo
arm into the inset, and click it onto the servo shaft
before screwing it into place. If you’re lucky, you
should now have a working MiniKame. Enjoy it!

WALKING

MECHANICS

To successfully make a robot walk, we have to understand

something of the mechanics of walking, both the structure of

a leg and the coordinated movements of its joints. One of the

best sources for this comes from an unexpected source: not

zoologists or roboticists, but animators. A cartoon character

walking across the screen has to look like a cat, a dog, or

an anthropomorphic standing-up mouse, and one of the key

features it must possess to do this comes in walking in a

convincing way. Thus animators make an extensive study of

walking motion, so if you’re interested in walking, a very good

place to start is a web search on phrases such as ‘animation

walking tutorial’. You may not

need to produce the natural

motion that the animators

require, but a grasp of the

sequence of movement

of a four-legged animal’s

legs is important in the

understanding of how your

robot can move without

becoming unstable.

You should now have
a MiniKame robot
with floppy legs

Above
The Victorian
photographer Eadweard
Muybridge was one of
the first people to study
walking motion in detail

Below
The servo arms fit
into the insets in the
3D-printed parts

Get Started With Arduino

Build Your First Walking Robot

FEATURE

ROBOTSMORE
You’ve built your first robot – what next?

reated by Mike Rigsby, this cheap and
cheerful hound can be walking
around your estate for under £500:

“Walking robot platforms can navigate
buildings, climb stairs, enter cars, and

traverse farmland. Potentially, they can become
elder companions or herbicide-free weed removers.
Excessive cost for such a platform – tens of
thousands to millions of dollars – discourages
students, makers, and startups from advancing the
technology. My open, shared walking platform can
be constructed using parts and materials that cost
less than $600.

“The dog has evolved from a gangly beast that
could barely stand to something that can now barely
walk. The legs have been shortened, and joints
strengthened. The servo motors selected represent
the highest torque per dollar that I could find.

“I am a writer and a maker – the best place to
keep up with the dog’s progress (as well as files
and build instructions) is hsmag.cc/sBBErE.
The best video of the dog moving can be found
at youtu.be/kcIfsCcEjcs.

C

MIKE’S
WALKING DOG

Right
You don’t have to add
a head and tail to your
dog, but you can

134 Get Started With Arduino

http://hsmag.cc/sBBErE
http://youtu.be/kcIfsCcEjcs

Get Started With Arduino

LENS

he pinnacle of walking robots has to
be the work coming out of Boston
Dynamics, as we’ve already
mentioned. But what if you don’t have
millions of dollars to spend on research

and development? James Bruton is in the process of
building an open-source, four-legged walking robot
called openDog, and documenting the process on
his YouTube channel so that anyone can follow in
his footsteps. So far, it’s cost him just over £2000 –
you can see for yourself what the robot can do at
youtube.com/user/jamesbruton

TOPEN
DOG Below

Is this an open-source
dog or a terrifying
vision of the future?

Credit
© James Bruton

135Get Started With Arduino

http://youtube.com/user/jamesbruton

Get Started With Arduino

Build your first walking robot

FEATURE

f you’re not a dog person and would rather
have a robot cat, Nybble is for you. Its body
is made of laser-cut wood, so it’s easy and
cheap to put together. It uses an Arduino-
compatible microcontroller with the option

of plugging in a Raspberry Pi to make it more
intelligent, and can take inputs from built-in
ultrasound, lidar, GPS, and more sensors.

INYBBLE

Left
Just like a real cat,
Nybble understands
voice commands;
it just chooses to
ignore them

Get Started With Arduino136

Get Started With Arduino

MARTY

137Get Started With Arduino

LENS

f you’re more comfortable following a
script than going off-piste with your own
design, give this a try. Marty is a two-legged
walking robot which solves the problem of
balance with an exaggerated hip sway and big,

stable feet. Where it really comes into its own is the
accessibility of its programming. It’s controllable via
Python, JavaScript, and even Scratch, so it’s ideal for
kids wanting to take their first step [pun intended]
into ambulatory androids.

I

THE
ROBOT

Above
An easy way to
wobble along

Build A Synth

FEATURE

Get Started With Arduino138

Build a synth

FEATURE

Get Started With Arduino

BUILD YOUR OWN AMAZING
SOUND-GENERATING,

VOLTAGE-SEQUENCING,
GATE-TRIGGERING,

KEYBOARD-PLAYING
SYNTHESIZER AND

SEQUENCER

SYNTHSYNTH
BUILD ABUILD A

LENS

139Get Started With Arduino

LENS

T
here is nothing in nature
that sounds like a classic
synthesizer. From Delia
Derbyshire’s incredible
work at the BBC’s
Radiophonic Workshop,
adding synthesizer sci-fi to

the original Doctor Who theme, through to
the modern minimalism of synthesist and
composer Kaitlyn Aurelia Smith; it’s a
synthesizer’s harmonic avarice that, quite
audibly, sets the tone.

Much like computers, sound-making
machines started off as monolithic analogue
machinery that turned and crackled and
sparked themselves into life. Though not
huge, one of these early instruments was
the theremin, a wooden box with alien
antennas that modulated a tone when a
performer moved their hand, like a Jedi
conducting a disturbance in the force. And it
was Robert Moog, building replicas of the
theremin, who helped define what the
modern synthesizer was and, most
importantly, what it could sound like.

After bland digital synthesizers took over
in the late 1980s and 1990s, analogue
synthesis with an experimental edge is
back, and stronger than ever before. The big
manufacturers, like Moog, Korg, and Roland,

SIGNAL PATH
Synth sounds start with an oscillator, because
it’s the oscillator that generates the raw initial
audio. This sound then passes through
whatever other stages a synthesizer offers
before arriving at the final output.

A waveform, like a mathematical function,
has a specific shape, and the most commonly
used shape for a synthesizer is a sawtooth.

A sawtooth, predictably, looks like the jagged
teeth on a saw. It’s perfect for audio because
the hard edges in the waveform result in lots
of harmonics. A sawtooth is basically the
sound equivalent to a chunk of malleable clay,
ready to be moulded and reduced into an
infinite number of other sounds. Other
common synthesizer waveforms – including
square, triangle, and sine – aren’t quite so
flexible, but they can add to the timbre. But
it’s the next stage that adds the character:
the filter. The filter cuts out some of the
frequencies in the harmonically rich oscillator
output, and it’s the filter that often gives a
synthesizer its definitive sound.

There are only a couple of other elements
you can use to make a synthesizer, and they
affect how the sound changes over time.
These are known as modulators, and there
are two common types. The first is an
envelope generator, and this is used to
specify a level for each stage that a sound is
being played, from the initial attack to the
point when the sound is released. The
second is an LFO, or low-frequency oscillator.
This is a slower version of the oscillator used
to generate the initial sound. Its frequency
will typically be too low to generate audio
(not always!) but is used to modulate the
amplitude, filter frequency, or pitch.

Having all these separate parts in one
setup is known as a modular synth, and that’s
what we’re going to build. Our two modules
-- a sequencer and a voltage-controlled
oscillator – will get our synth started, and you
can expand it from there.

are building and selling experimental kit,
and there’s a growing global community
of makers and hackers building and selling
their own components, kits, and code,
contributing to a new age of DIY sound
design and experimentation. And it’s this
world we’re going to visit over the following
pages – helping you to build your own
sequencer and sound generator, and

hopefully, causing you to get hooked into
this brave new world of sound design,
drone, and tonality. Or even just a few Brian
Eno-like earworms. But before we get
ahead of ourselves, we need to briefly cover
exactly what these wonderful machines are,
and how they’re formed.

Below
Nearly every synthesizer sound is made up of one
or more of these waveforms – clockwise from top
left: square, sawtooth, triangle, and pulse (which is
an asymmetrical square wave)

Analogue synthesis with an
experimental edge is back,
and stronger than ever before

Get Started With Arduino

Build a synth: Sequencer

FEATURE

140

BUILD ABUILD A
SEQUENCERSEQUENCER

Get Started With Arduino

O
ur synthesizer has
two parts: a
sequencer and a
voltage-controlled
oscillator (VCO). The
sequencer is used to
create a tune. It has

eight steps that will play one after another,
before looping back to the start. At each
step, there’s a button to set it to play or not
play, and two knobs (controlling
potentiometers) that dial in the notes to
play if that step’s enabled. This allows us to

program in simple tunes, and edit them as
they’re playing.

There’s quite a lot of outputs from this
sequencer and you can integrate it with
other sound modules in different ways.
However, the key ones are CV1 and CV2.
These are the control voltages that can be
used to generate sounds (as we’ll see next
in our voltage-controlled oscillator). CV1
takes the sequence from one row of
potentiometers, while CV2 takes the output
from the other. In this way, you can
connect this sequencer to two different
oscillators to create more complicated
sounds. There’s no need for it to be exactly
this setup (eight steps and two outputs) –
this is just the setup we’ve chosen. If you
want more or fewer of either, then that’s
fine – it’s your synth. The only limits are
your imagination and your microcontroller’s
GPIO pins (and you can switch to a
microcontroller with more GPIOs
if needed).

All the output connectors take audio
jacks (as will the inputs on your sound
generators). You can connect the two
together with jack-to-jack cables. These
cables (known as patch cables) are used to
set modular synths up to output different
sounds. They are, in a sense, the way you
program modular synths.

BUILD YOUR OWN
VINCE CLARKE
TIME MACHINE

Figure 1
This is what we’re going
to build – a sequencer for
outputting voltages and an
oscillator (VCO) for turning
those voltages into notes

Credit
look mum no computer

LENS

Get Started With Arduino

SEQUENCER

INGREDIENTS

Arduino Nano

An IC socket or pin headers for the Nano

14 × jack sockets (3.5 mm jacks for Eurorack)

16 × 100 kΩ potentiometers

8 × push-buttons

2 × momentary toggle switches

8 × LEDs

35 × 1N4148 diodes

1 × 78L05 voltage regulator

Prototyping PCB or stripboard

18 × 1 kΩ resistors

Female socket strips

Eurorack power cable

Panel or container

Mount screws

Lots of wire

Above
Start by playing
with the component
layout, without
soldering anything

WHAT YOU’LL NEED
Before we start, we want to mention a
couple of things about this specific
project. Firstly, it is actually quite
straightforward and easy to build, despite
what it may look like from the jumble of
wires in the end product. We’re not going to
create complicated circuits with difficult-to-
understand components. This sequencer is
actually the opposite of a black box, using
just a handful of resistors, capacitors,
potentiometers, input jacks, and buttons,
mostly wired directly to pins on the Arduino,
with only simple code to manage them all.
But it can also easily become a web of
interconnections as you try to wire everything
together and make room for everything you
want to fit it. We advise you take lots of
breaks, and don’t do the whole project in one
go. Take it a bit at a time, then step away.
When you’re feeling refreshed, come back
and check over the work you did on the
previous step. If you’ve not made any
mistakes, carry on! If you have, consider
leaving the next step until tomorrow. Take
your time and enjoy the process.

The second important thing to note is that
you can, and should, change things to suit
your needs and imagination. In particular, our
project is designed to coexist with other
Eurorack modules, and that makes it small.
We’re soldering most of our components
onto a 15×9 cm double-sided PCB. If this is
your first soldering project, we’d strongly
recommend using a larger form factor.
Similarly, you may want to avoid the
regimented order of the PCB. The PCB
format is perfect for prototyping a final circuit,
but it needs wires to criss-cross each other
to make connections.

PCB LAYOUT
This is exciting! You now get to create
your own utterly unique instrument that
operates in the way you want it to. Start
by temporarily arranging the components on
a tabletop to find a layout that suits your
needs and style. As when handling all
electronic components, it’s a good idea to
ground yourself first. For our layout, we’ve
used minimalism and the utilitarianism of
musique concrète for our inspiration,
so we’ve gone for a purely
functional approach: equally
spacing eight LEDs, two rows
of eight potentiometers,
eight jack outputs, and
room on the side for the
control outputs, inputs, and
switches. You could alternatively try
arranging the pots and LEDs in a circle, or an
arc, in a 4×4 grid, or any way you choose.

Unlike stripboard, the double-sided PCBs
we’re going to solder our components to
don’t bridge any connections, so we’ll need
to wire or solder everything manually. You
need to take this into consideration when
you’re placing LEDs, pots, buttons, and jacks
that are going to be connected together, or
to the same input or output on the Arduino.
By placing many of our adjacent components
horizontally, for example, we can easily
create a ground bus to connect them all, and
then connect together the same steps in
columns and the same devices in rows. But
we’ll get to that step later.

When you’ve worked out where
everything is going on your PCB, make any
adjustments you need, and don’t be scared
about drilling them. We needed to drill holes
through the PCB for the buttons and for the
switches, as their legs are too wide for the
standard holes. Now slot your
potentiometers, jacks, and buttons into their
positions. As the pins clip through the holes
in the PCB, they should hold their positions,
even when the PCB is turned over so that
you can solder the legs into position. You can
then start by soldering one leg of each
component. This allows for some movement
in their positions when you make sure
everything is aligned, and that the height
where the panel will rest on each component
is the same.

1 2

Below
See the Ingredients list for all the components you’ll
need to build the sequencer

141

1

2

FEATURE

142 Get Started With Arduino

Build a synth: Sequencer

SOLDER NEARLY EVERYTHING
At this point, you should really drill the
holes in the front panel. If you’re sensible,
go and do that first, because all of your
components are still wobbly enough to
wiggle into the holes you make. You can
then leave as many components as you are
able to in place, especially the LEDs, to
make sure their positioning and heights are
perfectly aligned with the panel. This is a
lot harder to do later when everything is
fixed in place. We went ahead and started
soldering, however, because we changed
a few things while we started to work with
the components on the reverse side of
the PCB.

We did the soldering in two steps,
starting with the pots and jack inputs
because these will stay in the PCB when it
is turned over. One advantage of doing
many components in line like this is that
they’re quicker to solder, much like a
production line. But it’s also easier to see
when something has gone wrong. One of
our input jacks, for example, had a leg
folded beneath its plastic, which was easy
to spot alongside all the others.

Make sure that all the LEDs have the same
orientation. The long leg is positive, while the
short leg is negative – if there’s no difference
in the leg lengths, there should be a flat edge
on the plastic of the LED alongside the
negative pin. These are also the trickiest
pieces to solder without the front panel,

3

Right
As with all the
connections we’ve
already made, the
outward finish of
the solder should
be shiny to avoid a
dry joint

Left
You need to be careful that
the ground wire doesn’t
come into contact with any
other component

because you not only have to make them
exactly the same height – solved by turning
the PCB over and placing something of equal
height beneath them – you also need to
make sure they’re the correct height to
remain visible when you do fit the panel to
the boards. Our solution was to measure
carefully, but you’re better off poking them
through the actual drilled panel and soldering
from there. Similarly, our buttons needed to
be soldered individually. This is because
we’d drilled holes to fit their legs through
the PCB, but a blob of solder on either side
of the legs on the reverse of the PCB solved
the problem.

GROUND BUS
You’re now at the point where you can
start making the circuit. You may want to
look at the circuit diagram in figure 1 and
tackle this your own way, depending on the
layout you’ve used, but this way worked for
us. It’s still worth referring to the circuit
diagram before each stage to make sure you
know what’s being connected to where. In
particular, you need to pay special attention
to the diodes.

We’ll start with the ground bus. This
snakes its way across many of the
components on the PCB. We created five
stripped lengths of wire to go the width of
the LED row, both potentiometer rows, and
the step gate jacks, and across one of the
pins for each of the final row of buttons.
Connect the negative (short) legs of the LEDs
to their wire, the third pin of every
potentiometer to theirs, and the outside pin
of each gate jack (usually found halfway up
the outside of the case) to their wire. Finally,
lay down the ground bus for the buttons, and
connect each of the rows together with a
sixth stripped wire going vertically up either
one of the edges. Don’t forget, you can
anchor any wire down on the PCB if you
need to. It also helps if you can leave enough
space for other wires you know are going to
connect to the other pins on the
potentiometer, as well as the jacks and
buttons we haven’t touched yet. Finally,
make sure every ground bus is connected to
the others using your multimeter.

3

4

4

LENS

143Get Started With Arduino

DIODES AND 1 K RESISTORS
You’re now going to add lots of 1N4148
diodes and resistors, so tread carefully
and take your time. Diodes need to be
oriented correctly. Start with one of the
potentiometer rows, placing eight diodes
across the PCB so that the end without the
black band is next to the third pin of each
potentiometer. If you can, place the other leg
somewhere conveniently spaced, so that you
can join them up. We did this by pushing the
diode through from the top side of the PCB
so that both legs were protruding on the side
we’d done all our soldering on. We then
soldered the leg away from the black band to
each leg of the potentiometer, and the diode
leg closest to the black band was folded flat
and soldered to the next closest diode flat
leg. In this way, we were able to solder all
the legs closest to the black band to create a
bus across the PCB.

Do the same with the other row of
potentiometers, creating a bus for their ‘black
band’ pins that stretches across
the width of the PCB. The
final row of diodes are
not connected to each
other, and are

oriented the other way around because
they’re going to connect to the output jacks,
where the flow of current is the opposite to
the potentiometers (pots). Solder one
diode onto each output pin of the jack
(not the earth).

It’s now time for the resistors – unlike the
diodes, you can solder these either way
around. Insert them into the PCB next to the
positive leg of the LED (the leg that isn’t
attached to our ground bus), and also next to
the jack outputs. This is so that you can
solder one leg of the resistor to the other leg
of the diodes you just added, while the other
leg of the resistor connects to the leg of the
closest potentiometer in each column.
Finally, add three further 1 kΩ resistors to the
two CV output jacks and the keyboard gate
output alongside each row of pots, and

connect the final three diodes to a pin on
the input jacks for the forwards,

backwards, and reset jacks.

CONNECTING COLUMNS
You now need to connect each of the
active parts of each column step
together so that they can ultimately be
controlled by the step output from the
Arduino. To do this, cut 16 small lengths
of wire and eight long lengths of wire.
Each column will use three wires. The first
short wire connects the third pins of each
potentiometer together, connected directly

to the same pin as the resistor on the
lower potentiometer. The second

short wire connects the third
pin of the top
potentiometer to the

1 kΩ resistor attached to
the LED in that column,

effectively tying each column
together. The long third wire

connects to any point on this
‘column bus’ and will need to

stretch to the Arduino board. To
make the cables, strip each end of

each cable, and ‘tin’ the end in solder.
This can be done by touching the end to
the soldering iron and a section of solder at
the same time, so that some solder
attaches itself to the end of the cable. This
makes it much easier to solder the joint.

5

6

5

6

Above
Make sure the diodes and
1 kΩ resistors don’t go any
higher than the lower edge of
the top panel components

Above
Make sure none of the
connections touches
any of the others, and
only expose the very
tips of the wires when
stripping their ends

It’s still worth referring to
the circuit diagram before
each stage

144 Get Started With Arduino

Build a synth: Sequencer

FEATURE

ARDUINO HEADER
To be able to connect things to the
Arduino Nano, you need to start work
on the board that’s going to hold the
Nano and the power supply. We’ve put
the Nano on a separate PCB and, crucially,
planned for the Nano to be socketed.
Before we could tackle the board, we had
to solder strips of pins onto our Nano
(although your Nano may have its pins
already connected). To do this, heat up one
corner pin first, slightly, and then dab on
the solder. It should melt and immediately
move into the hole and surround the pin,
keeping the row of pins in place.

You need to be a little careful when
soldering the pins onto an Arduino, as the
heat is directly transferred to the
electronics. If in doubt, always take
iterative steps, gently heating and soldering
rather than trying to move too quickly.
When soldering long lines of pins, it can be
easier to solder a pin at one end and then a
pin at the other, so that you can make sure
it’s straight. This is because you can still
manipulate the row into the correct
position. When you’re happy that all is
straight, solder all the pins in between.

7

7

You now need to
perform a similar action
on the second smaller PCB
to create a socket for the
Arduino. We used two strips of female
socket strips that we cut to the correct
lengths and soldered onto the PCB. It’s
easier to do this with the Arduino
connected to the two strips, but once
again, be careful you don’t heat the pins for
too long, to protect the Arduino.

ADDING POWER
With the Arduino socketed and ready
for fitting onto the smaller PCB, you
now need to add power for the entire
project. How you do this will obviously
depend on how you intend to power the
sequencer. The easiest way is actually to
do nothing at all, and to use the USB
connection on the Arduino to supply the
power. This is enough to run the entire
sequencer and the Arduino. However,
a more permanent solution is to use
external power, and we can easily use the
power delivered via a Eurorack power bus,
which is what other modules will be using.

The typical smaller Eurorack power
connector consists of ten pins in two

columns of five. Each row is identical, and
carries +12 V, GND, GND, GND, and -12 V
respectively. We need to create a pin
header for this connector on the PCB and
then make a connection from the +12 V
and one of the grounds to a voltage
regulator, which sits between the power
coming in and the power and ground we
connect to the Arduino. The sequencer
power will simply take the 5 V and the GND
directly from the Arduino.

Start by creating the ten-pin header for
the Eurorack power. This should be easy
after having just done the same for the
Arduino. Place the 78L05 regulator on the
PCB too, and connect the power to the
bottom pin of the ‘D’ shape of the regulator
and the ground to the middle pin of the
regulator. From there, on the underside of
the PCB, take the power from the regulator
and connect it to where the Arduino’s ‘VIN’
pin is going to connect to the header, and
do the same to connect ground from the
regulator to the GND adjacent to the VIN
on the Arduino. That’s all there is to it.

8

Below
The ground and power
connections to the
regulator and Arduino are
made with short wires on
the underside of the PCB

8

Figure 2
The circuit layout to
hold the Arduino and
control the sequencer

Credit
look mum no computer

LENS

145Get Started With Arduino

 BUTTONS, SWITCHES,
 JACKS, POTS, AND LEDS
We’re now going to connect each of the
steps, all the buttons, and the various
remaining jacks and switches together
with the Arduino, so there’s going to be a
lot of wire. The button bus we created
earlier, which is isolated from everything else
on the PCB, is going to carry the 5 V from the
Arduino, as are the middle pins of both
momentary switches. As with all our Arduino
connections, we’re taking one wire from the
main PCB to the underside of the PCB with
the Arduino. It would be neater if we routed
all these wires to a separate header and then
used a ribbon cable to connect the two, but
we’ll leave that as a further exercise. Now
that we can see how much space there is on
the PCB, we also insert the two switches
into the top-right of the PCB. They could
equally be left free, attaching only to the
faceplate. It’s important that these are
momentary switches as this means they
won’t stay in position. Press them once to go
backwards and the other way to go forwards.

The ground bus now needs to be
connected to the underside of the GND pin
on the Arduino. This is a good point to check
continuity again by making sure your
multimeter emits a sound when one
connector is on the Arduino GND and the
other is on any one of the ground buses you
created on the PCB.

Now prepare twelve cables and solder
eight from each button before the diode to
pins A0 through to A7 on the Arduino PCB,
left to right (see above image). Likewise,
solder the eight cables we previously
attached to the LEDs, potentiometer, and

jack columns to D9 through to D2 on the
Arduino, from left to right. Now connect the
reset jack to one side of one switch, and
from the switch to D10 on the Arduino. The
other side of the switch needs to be
connected to D11. For the final switch,
connect one side to the forward input jack
and the other side to the backward input
jack, also connecting the forward side to D12
and the backward side to D13 on the
opposite side of the Arduino.

DRILL CASE
We did lots of things wrong in this step.
Firstly, and most importantly, we should have
done it earlier, before soldering everything in
permanently. We didn’t because we were
still making up the layout as we went along.
Secondly, we drilled holes into an
aluminium panel using a
hand-held power drill. This
works, but won’t give the
most professional-looking
results. If you’ve got access to
a drill press, use this instead.

As we have carefully placed
all the components on a PCB, you
can easily duplicate your layout on
a piece of mathematical paper. We
did this and traced the places where
we needed holes onto a piece of
cardboard, which we then pierced to
make holes and mark the aluminium panel
for drilling.

FLASH ARDUINO AND GO!
You need to download the Arduino IDE for
your operating system (hsmag.cc/OYiLpN).
Plug your Nano into your USB port, then
open up the code for this project
(git.io/fpz1h), select the Arduino Nano as
your device, select the USB port it’s
connected to, and click ‘Upload’. You’re now
ready to insert the Arduino into your
sequencer! Plug in the Arduino and then add
the power. With a bit of luck, you shouldn’t
see anything. Try pressing a button. Its LED
will light. If you connect the gate output to an
oscillator or sound source, it should trigger a
sound. Connect CV1 or CV2 outputs to pitch
on the oscillator and it will play whatever
pitch is dialled into the potentiometer. If you
have a clock source, plug this in and the
sequencer will start stepping through each
column at a time.

If things aren’t working, don’t be
disheartened. Projects rarely work perfectly
first time. If an LED is skipped over, make
sure all the LEDs are connected properly. If
things flash and flicker, look for bridged
connections. And sleep on it. With a fresh
mind, any mistakes will be obvious and you
can start enjoying your new modular
sequencer and synthesizer.

9

10

11

Above
If you have the time and space, it would be better to
use four headers and two ribbon cables to connect
the main PCB to the Arduino

Below
If you place your
sequencer into a rack,
consider running a
USB extension to the
outside so you can still
flash your Arduino

9

11

http://hsmag.cc/OYiLpN
http://git.io/fpz1h

Get Started With Arduino

YOU’VE BUILT
THE SEQUENCER,
NOW YOU JUST
NEED TO BUILD
SOMETHING
THAT MAKES
A SOUND

Figure 3
Here’s the circuit
layout of the project
we’re building. Huge
thanks to Look Mum
No Computer

Credit
look mum no computer

Build a synth: Voltage-Controlled Oscillator

FEATURE

146

VOLTAGE

OSCILLATOR

VOLTAGE
- CONTROLLED
OSCILLATOR
- CONTROLLED

BUILD ABUILD A

Get Started With Arduino

LENS

Get Started With Arduino

WHAT YOU’LL NEED
This project isn’t as complex as the
sequencer, and is easier to put together.
However, with the form factor we’re
using, it’s more fiddly to solder all the
connections together.

The most important part of this build, and
the most exciting, is the chip that
generates the sound. This is the venerable
Curtis CEM3340, a chip that helped pave
the way for the mass production of
analogue synthesizers. It was used in many
classics, including the Memorymoog,
Oberheim OB-8, Roland SH-101, and
Sequential Circuits Prophet 5 (rev 3).

The reason why the chip was so
revolutionary then is the same reason why
we’re using it now. It’s a completely
self-contained VCO that generates multiple
waveforms, and needs very few additional
components to work within a circuit.
Before the CEM3340, a VCO would need
to be constructed from lots of different and
difficult-to-source parts, especially when
you needed them to sound the same and
stay in tune. By using a real CEM3340, we
get exactly the same source sound as
those old synths, and if the genuine chip is
too expensive (typically around £12), there
are replicas that perform the same function
for around half the price.

SOCKETS
As the VCO is the most valuable part of
this build, and the part most sensitive to
electrostatic damage, we’re going to seat
it within a socket. This makes it easy to
replace the chips, and also means we
can solder the socket, and the
socket’s pins, without the chip
being seated, protecting the
chip from the heat. We’ll do the
same for the TL072 too, which is
used to condition the output. We’ve
positioned the sockets in the centre of
the PCB as we’ll be adding components
to each side. Make sure the notch in each
socket is facing the top – this is so we can
orient the chips into the circuit when we plug
them in.

To solder the sockets, dab solder onto the
pins on opposite corners to hold the sockets
in place, and then proceed to solder all the
points in between. As we’ll be using both
sides of the PCB, we’ll often need to bridge
adjacent connections from the socket pins,
which is worth considering as you start
adding components and wires. Take a look at
some of the later steps to see how we
routed wires around the chips and legs of the
pins, and keep this in mind when you create
the power header.

This step will be different if you want to
power your module from a battery or other
power source – unlike the sequencer, which
can alternatively be powered via a USB
connection on the Arduino. We’re using a
standard Eurorack power supply. This needs
eight pins on the PCB, with +12 V delivered
to the top pair, -12 V to the bottom pair, and
ground (GND) in the middle section. We can
use these directly with the VCO. The header
is created in the same way as the sequencer
header, cutting off two rows of eight pins,
placing them within a Eurorack power cable,
and then soldering them through the PCB,
ensuring the connector is on the same side
as the PCB.

1

2

147

By using a real CEM3340, we get
exactly the same source sound
as those old synths

Below
Here are most of the things we’ll need to build the
oscillator. It’s fiddly, but there aren’t too many parts

Below
Don’t insert the chips
into the sockets until
the very end of the
build process

1

2

INGREDIENTS

3 × jack sockets (3.5 mm jacks for Eurorack)

10 kΩ trimpot, or potentiometer, for front
panel access

100 kΩ potentiometer

TL072 amplifier

Eurorack power cable

VCO: CEM3340, or the copy AS3340

IC socket: 1 × 8-leg, 1 × 16-leg

46×24 dotted stripboard or PCB

Resistors: 2 × 100 kΩ, 2 × 470 Ω, 1 × 620 Ω,
1 × 1.8 kΩ, 1 × 5.6 kΩ, 1 × 24 kΩ, 1 × 1.5 MΩ

Capacitors: 1 × 1 nf, 1 × 10 nf

Knob for potentiometer

Lots of wire

FEATURE

148

CHIPS AND PINS
We now need to work through all the
connections on the board. You will need
around 20 sections of wire in total, but they’ll
all be slightly different lengths. Don’t forget
to ‘tin’ each stripped end of wire first with a
little bit of solder.

For the overall strategy, we found it easier
to start with the left side of the chips on the
rear side of the PCB, working upwards from
the CV input jack. Take time to see where the
connections need to be made and take it
step-by-step, working up from the input jack.

The -12 V connection from the power
supply is connected to the lower left pin of
the TL072 socket. This is pin 4. Pin numbers
on chips go from the top left, which is always
pin 1, down the left side and then continue
from the bottom right to the top right, which
is pin 8 on the TL072 and pin 16 on the
CEM3340. You also need to bridge pins 1 and
2 on the TL072 socket, which you can do
directly from the pins on the front-facing side
of the board. You’ll also need to bridge and
flow the solder through for the jack
connection and for the first resistor, the
620 Ω, which connects this pin to 3 on the
CEM3340. Continue like this for the three
resistors on the left side, plus the trimmer
pot and the sawtooth output, which will need
to connect to the pin opposite the ground on
the jack you’re using to output the sawtooth.

5

POTS AND JACKS
Let’s start with the big components first,
as we want to make sure these fit onto
the PCB before attaching the many wires.
These are two potentiometers, one of which
is used to set the pitch of the oscillator, while
the other tunes it, and the three jacks. One
jack will take an incoming voltage so the pitch
can be controlled, while the other two output
sawtooth and triangle waveforms from the
CEM3340. These go on the reverse side of
the PCB from the chips and power header.
This is so they’re presented to the front panel
while the chips and power header remain
accessible from the rear. It’s worth keeping
the jacks on the same row as we’ll need to
connect their ground pins together, usually by
running a wire across all the top pins.

Make sure your pins aren’t too close to be
soldered and that nothing will be obscured by
elements on the front panel. Our 10 kΩ
potentiometer also needed to have its
anchoring legs trimmed to fit through the
PCB. With everything in position, you just
need to dab the soldering iron against a little
solder and the pins to solder them in place.

3

GROUND CONTROL
We’re going to refer closely to the circuit
diagram in figure 3 to make sure we don’t
miss any connection or component. You
may find it useful to tick off each as you
make them. Also, don’t forget that stripboard
has the horizontal rows implicitly connected,
which isn’t the same on the PCB. This
means you need to make sure everything on
one row is interconnected, either with a wire
or by soldering across adjacent holes. But
before we get to that stage, we first need to
feed the jacks a connection to ground.

All the GND connections are going to
come from any of the middle pins on the
power header. The header is on the rear side,
facing away from the pots, which is also the
side we want to use to solder the
connections. This creates a slightly tricky
situation where we need to solder a hole
adjacent to a pin, bridge the connection to
the pin, and make sure the solder runs
through the hole to the other side of the
PCB, from where we can solder a wire to the
destination. It sounds harder than it is. We
first need to do this for the ground
connection, bringing a GND connection from
the power header through to the reverse
side of the PCB so that we can solder a wire
to the earth pins of the input and output
jacks. We did this in two stages, first by
connecting the ground pins together with a

spare piece of bare wire, and then by
connecting this to the ground

connection. Though not
in the original
diagram, we

also connected
ground to the

third pins of each
potentiometer.

4

Build a synth: Voltage-Controlled Oscillator

Above
Check each solder
afterwards with a
multimeter

4

Get Started With Arduino

Left
If you’re using a large knob
on the pitch potentiometer,
make sure you don’t
put another front panel
component too close to it

Below
It would be tedious to
cover every connection in
this tutorial. It’s easier to
methodically step through
each wire and resistor in
the circuit diagram

3

5

LENS

149Get Started With Arduino

POWER AND CAPACITORS
The left side of the PCB is completed
when pin 3 of the CEM3340 is connected
to one leg of the trimmer, and pin 1 (via
the 24 kΩ resistor) is connected to the
other leg. As mentioned earlier, our
trimmer had three legs, and we connected
this third leg to ground. It’s now time to
tackle the right-hand side of the circuit, and
this is just more of the same, albeit with a
higher component and wire density. Pins 6
and 7 on the TL072 are bridged, and pin 7
connects to the tip of the triangle output
jack. Pin 5 then connects to pin 10 of the
CEM3340. The tightest soldering is off pin
15 of the CEM3340, near the top right of
the chip. This pin needs to connect to two
100 kΩ resistors, the 470 Ω resistor, a
connection from the +12 V power
connector, and the output to pin 3 of the
coarse tune potentiometer. Getting these
soldered in an orderly way was almost
impossible with our small PCB, but each
pin of the resistor can be soldered together
or used to bridge a horizontal stretch of the
PCB for the other connections.

Just take your time and make each
connection in turn. There are far fewer to
make than the sequencer, and there’s
usually plenty of room when you start
soldering legs together.

CHIPS AND POWER
Once everything is soldered together, you
can insert the two chips into their
sockets. New chips will have their legs
slightly too far apart to fit into the socket.
This is normal and you need to use a blade,
or something with a straight edge, to fold
both sides in slightly. Regarding pressing the
chips in, ensure the notch in the chip is
aligned with the notch in the socket. If either
chip doesn’t have a notch, look for a circle
next to one of the corner pins; this is used to
mark pin number 1, and should be oriented
into the top left position of the socket.

You’re now ready to see whether your
oscillator works. This is the most exciting
step – if it doesn’t work, disconnect the
power and look at your circuitry. To test the
oscillator, connect the power, making sure
the red stripe on the Eurorack power cable is
facing down where the -12 V needs to be.

Connect the sawtooth output
to a mixer or a PC audio input, or
something you can listen to. Now
turn it on. There’s a chance you
won’t hear anything. You need to
first use the tuning potentiometer
to bring the pitch within range. Try to
sweep across this until you hear
anything, even if it’s a loud occasional
thump. As soon as you get a sound,
use the pitch knob to dial in a tone.
Congratulations: you’ve just built your
own classic oscillator!

TESTING AND FRONT PANEL
The oscillator will generate a constant
tone, with the pitch being set by either
the ‘pitch’ potentiometer or an incoming
control voltage to the pitch input jack. The
CV input is used to play notes, and the pitch
potentiometer can then be used to control
the root notes from which the CV input will
diverge. Standard voltage tuning for almost
every Eurorack module and keyboard is 1 V
per octave, meaning the twelve semitones in
an octave are divided across a single increase
or decrease in one volt. And the great thing
about the CEM3340, and why we didn’t need
any more complicated circuitry, is that it also
tracks pitch at 1 V per octave. Connecting one
of the CV outputs from the sequencer to the
CV input on the oscillator means you can
now create your own sequences.

All that’s now left is to create the front
panel. This is going to depend entirely on
how you’re going to use your VCO. We
sneakily kept space next to the sequencer
front panel so that both modules can be
mounted into the same unit, so all we
needed to do was drill five new holes for the
potentiometers and the jacks. As with both
of these projects, our aim has been to create
a great-sounding and useful sound engine.
When you strap in the VCO alongside the
sequencer and connect them together, you’ll
have a powerful and capable proto-
synthesizer from which you can expand in
almost every direction, and yet it already
sounds absolutely fantastic.

6

7

8

Above
If you need to remove
the chip, use a plastic
tool to carefully pry
one end up, followed
by the other end

6

7

8

Above
We found it easier to push the capacitors through
from the side with the sockets and chips

Below
Here’s the completed module fitted
alongside the sequencer. The only job
remaining is to spray-paint the panel so
you don’t see the scratches!

Get Started With Arduino

Build a synth: Taking Synths Further

FEATURE

NOW YOU’RE HOOKED, SPEND THE
NEXT TEN YEARS BUILDING YOUR
PERFECT STUDIO

W
ith a sequencer
and VCO, you now
have something
that can be used to
make awesome
music, even just by
feeding the pitch

from the sequencer into the oscillator. This
is what Kraftwerk did, and Wendy Carlos had
only a few more oscillators when performing
Switched-On Bach. But this is just the
beginning, and you’ve hopefully got the itch
to take both of these projects further, and to
look at extending your new ‘studio’ into
something with more possibilities.

POWER-UP YOUR RIG
If you’re going to stay with the Eurorack, and
you should, you’re going to need a Eurorack
power supply. You can obviously buy these
along with the racks to hold your modules,
but you may also want to build your own –
and for just £10, you can. The Frequency
Central Power DIY kit, (hsmag.cc/oNEViK),
as recommended by Look Mum No
Computer, is perfect for creating +/-12 V,
~100mA at 5 V from a 12 V AC power supply.
You’ll then be able to connect your modules

Right
Recapture the sound
of your old games
console or computer
by turning it into
a synthesizer

TAKING
SYNTHS
FURTHERFURTHER
TAKING
SYNTHS

150 Get Started With Arduino

http://hsmag.cc/oNEViK

Get Started With Arduino

directly to the same source, and add new
modules with ease.

We’ve barely tapped the potential of the
Curtis CEM3340 chip. In particular, it can also
generate pulse and square waveforms
without too much extra circuitry. From a
technical perspective, both of these
waveforms are actually generated from the
same source, as the ‘width’ of the square
shape can be modulated using another
voltage control input. With a 95% width, for
example, the waveform is a sharp pulse,
whereas at 50%, it’s half-way up and
half-way down, which is the shape of the
square wave. Changing this percentage is
called pulse-width modulation (PWM) and is
another classic synthesizer sound source

that’s amazing for bass as a square, and
amazing with sawtooth when it’s closer to a
pulse, and amazing when you adjust the
PWM amount with an incoming voltage.

If you don’t feel like doing any extra
soldering, the great thing about the
sequencer project is that it’s built around an
Arduino, and that of course means you can
change its functionality through the code
without having to change any of the
hardware. In this way you can make it truly
unique and specific to your own needs. You
could add a random step mode, for example,
or add swing timing so that the clock isn’t so
regimented. You can also change the
functions of the switches – especially as the
backwards and forwards switches may be
unnecessary if you’re using both clock inputs.
The switches could even be used to change
between various playing modes for the
sequencer, and you could show which mode
or preset you’re using by briefly hijacking the
LEDs to show a patch number. And, if you’re
only using one clock input, change the code
to use the other input for something else,
such as changing direction, or doubling the
speed. This really is the best thing about
building your own modules. If you do make

changes like these, share them with the
community. You never know where that
might take you.

ADDING HARDWARE
While the sequencer and oscillator are
capable of generating some excellent
sounds, they still don’t quite fulfil the role of
an entire synthesizer. For that, you’re going
to need a few more modules, as we
explained at the beginning, and these are a
great place to start if you want to expand
your module collection. Your first addition
should be a filter, as this will add much
needed character and harmonic control to
your synthesizer sound. There are as many
different filter designs as there are

synthesizers, and this being modular, you can
(and should) aim to have more than one.

Your second and third additions should be
a VCA, a voltage-controlled amplifier, and an
EG, an envelope generator. This is because
there’s currently no way to attenuate the
output from the oscillator, so the sound is
always on. By plugging the audio output from
the oscillator into a VCA, you can control the
VCA levels over time with the EG, and you
can trigger when the EG starts using the gate
outputs from the sequencer or button
keyboard. If you want the gate to match the
pitch change, use a ‘multiple’ to split the
clock into two, with one end going to the
sequencer and the other to the EG. This is
exactly how modern synthesizers respond to
input from a keyboard. Many synths will have
two or even three EGs, because they can
also be used to change the amount of filter
over time, or adjust the pitch of the oscillator
over time, although you could equally use
one and patch the control outputs to multiple
destinations. A multiple is a module that
takes a single source and provides multiple
outputs; certain modules can take ‘banana’
cables that allow you to connect more than
one cable to a single jack output.

VCV: VIRTUAL
MODULAR SYNTHESIZER
If you’re still a little intimidated about the various
elements that need to come together to make a
synthesizer, of even the nascent beginnings of
a Eurorack system, the answer is to experiment
with software first. And there’s an amazing piece
of open-source software that not only teaches
you about how all these various synthesizer
modules fit together, and what they sound like,
it teaches you about the exact modules you
can build, buy, and install on your own system.
VCV (vcvrack.com) is a virtual rack for virtual
recreations of real hardware. The software is
free and open source, and accurately models
everything about a module, from its panel design
and interface, through to loading the actual
firmware that digital modules run, and the
emulations of all the components in the circuitry.

You can even recreate our humble project
without soldering a single component. Just install
and run VCV on your chosen operating system
(Linux, Windows, and macOS are supported).
The main view is an empty rack for you to fill
with modules, and you don’t have to worry about
power. Just right-click and select ‘Fundamental’
to open the menu of basic modules and select
‘SEQ-3’ to add a sequencer almost identical to
the one we built. Similarly, select ‘VCO-2’ to add
a simple oscillator. We also need to get the audio
out from the virtual rack into your headphones or
speaker, and you do this by adding ‘Audio’ from
the ‘Core’ module. Now connect the CV output
from one of the rows on the sequencer to the FM
input on the VCO and turn up the ‘FM CV’ knob,
and connect the output from the VCO to an input
on the audio module. If you select an audio device
with a right click, you’ll immediately hear the pitch
of the VCO being modulated by the potentiometer
on the sequencer, just like our real hardware.
You can now experiment with additions and
new configurations without having to build the
real hardware.

151

LENS

Below
If you don’t want to play with a soldering iron,
you can create a perfect virtual Eurorack using
the open-source VCV software

It’s built around an Arduino, and
that of course means you can
change its functionality

http://vcvrack.com

Get Started With Arduino

IF YOU’RE NOT
YET READY TO
PUT DOWN THE
SOLDERING
IRON, THESE ARE
THE PROJECTS
WORTH TAKING
A LOOK AT FOR
INSPIRATION

FEATURE

152

Build a synth: Other Projects To Try

here’s a considerable
community that’s grown,
and continues to grow,
around build-your-own
synthesizers, catering for
all kinds of different styles
of music and all kinds of

engineering capability. These projects
range from simple circuits that will take an
hour or two to complete, to fully fledged
re-creations of old classic synthesizers that
could take a year of work, and salary, to put
together. Many people who started off
building their own creations will now sell
their own PCBs and faceplates, and buying
one of these kits is a great way to grow your
own collection without having to design
everything from scratch or drill your own
holes through aluminium plates.

RADIO MUSIC
One of the simplest projects you can start
with, and one of the most creative, is called
‘Radio Music’. Radio Music was designed by
Tom Whitwell and inspired by early musique
concrète experimentation by the likes of
John Cage, Karlheinz Stockhausen, and Don
Buchla, as they each played with loops of
randomly recorded lo-fi radio. It takes an
SD card crammed full of raw audio files you

make yourself or source. Radio Music then
lets you control how those files are played
back, from which point, and from which
‘channel’. It’s a wonderful sound source that
can operate as a VCO with a completely
non-traditional sound. But the hardware is
also completely open, and that means the
schematics, along with the designs, the bill
of materials, and the code that runs on the
Teensy microcontroller are completely open
source (CC-BY-SA). It’s also suitable for all
levels, because not only is it an easy project
for beginners to put together, you can even
buy it fully completed if you’d prefer. You can
build it yourself from the information on its
GitHub page, you can buy the PCBs and the
front panel, and you can buy kits that include
everything you need, bar the soldering iron
and the solder.

Another great thing about Radio Music is
that it can also be something else completely
different – a chord organ and rather gritty
VCO. With exactly the same hardware, only
with a different Teensy firmware, it switches
from being a digital playback device to
something that can play different chords. The
‘station’ knob now switches between chords,
for example, while the ‘start’ knob adjusts
the root note and octave for the chord.
Finally, the ‘reset’ button now selects

T

Right
Small kits, like
Radio Music,
are a brilliant
way to start
with modular
synth building, as
they’re cheap and
can be expanded,
upgraded, and
subverted easily

TO TRY
PROJECTS
OTHER OTHER

TO TRY
PROJECTS

Get Started With Arduino

LENS

153Get Started With Arduino

between sine, square, sawtooth, and pulse
width. It’s brilliant for generating complex
chord progressions from a single module and
a simple kit. For more details, check out
Tom’s GitHub page: hsmag.cc/UPiAJO.

There are hundreds of other Eurorack
modules that you can build yourself from
designs shared online, or from kits put
together for usually modest sums of money.
In the UK, there’s even an annual meet-up of
these home-grown modular synth moguls in
Brighton. At the 2018 event, you could rub
shoulders with these makers and their
hardware, listen to music made with the
equipment, and even attend workshops to
help you build your own modules – from
beginners to experts.

ADVANCED PROJECTS
Another great source of projects that
require varying amounts of commitment is
MIDIbox. Rather than fitting into the Eurorack
format, many of MIDIbox kits and circuit
designs create self-contained units that can
be used to control other devices, or turn old
and esoteric sound hardware into a

synthesizer. There’s a PCB for generating
sound out of a Commodore 64’s SID chip, for
example, and another for creating a bank of
faders that can control various synthesizers
over MIDI. Many of these projects also have
points that can be used to add control
voltages, and many builders bend the
designs to suit their own requirements and
form factors.

But if you’ve mastered the soldering and
you’re looking for a real challenge, there are
plenty of hundred-hour-plus projects that
synthesizer affectionados pour their time and
money into. Many of these projects involve
recreating classic and unobtainable
synthesizers from the 1970s, and they are a
huge challenge for a number of reasons.
They usually centre on a few individuals who

reverse-engineer the original PCBs of some
old equipment and design new circuits to
include more easily available components,
putting the whole thing together over
multiple revisions and kits until a final stable
version becomes available. At this point, the
PCBs are usually manufactured in small runs,
and a BoM for the build is created for other
people to follow.

One such project that followed this path is
TTSH – an acronym for ‘two thousand six
hundred’, which just happens to be the
number for a very classic and now very
expensive 1971 synth, the ARP 2600. TTSH
is a complex project that has itself been
refactored into another clone, the STP 2600,
which promises to be much easier to build
without compromising the sound. Take a look
at diysynth.de if this sounds like your kind
of endeavour.

For the ultimate in synth sound nostalgia,
many people consider the Yamaha CS-80 to
be the definitive synth of the 1970s, and
even this has succumbed to DIY enthusiasts.

The CS-80 was famously used by Vangelis
in his late 1970s and early 1980s golden era,
on soundtracks such as Antarctica, Blade
Runner, and Chariots of Fire. The sound of
the CS-80 is what many people consider the
sound of synthesizers, with sweeping pads
and strings dripping in eight seconds of
reverb, and yet its signal path is rather
unusual, consisting of two parallel voices and
eight notes of polyphony. That makes 16
voices in total, alongside a strange parallel
filter control and polyphonic aftertouch. And
like the ARP 2600, you can now embark on a
DIY project to build a synth with the same
character if you’re prepared to spend
hundreds of hours and pounds on the
components, PCBs, and cases. This DIY
recreation is called Deckard’s Dream
(deckardsdream.com) and may well be the
sonic equivalent of a unicorn running through
a forest clearing.

We have to give huge credit to Sam Battle’s ‘Look Mum No Computer’ for the circuit designs we’ve used
as the basis for both the oscillator and the sequencer. It’s his website, lookmumnocomputer.com, and in
particular his Patreon page, patreon.com/lookmumnocomputer, we’d recommend looking at for your next
steps. His site includes the extra circuitry and components needed to tap into the missing elements on
the oscillator, and he also has schematics for extending the sequencer to use an Arduino Mega and add
another eight steps, if you can handle the extra wiring.

Below
A Yamaha CS-80 synthesizer can now cost tens
of thousands of dollars, and you need a full-time
engineer to keep it tuned. If you have the patience
and the time to solder thousands of components,
you can get close to the CS-80 sound with a DIY
Deckard’s Dream synthesizer

MIDIbox kits create self-contained
units that can be used to control
other devices

Above
Our sequencer in its natural home, alongside other
synth modules

http://hsmag.cc/UPiAJO
http://diysynth.de
http://deckardsdream.com
http://lookmumnocomputer.com
http://patreon.com/lookmumnocomputer

154 Get Started With Arduino

Inspiration
Be inspired by these amazing Arduino projects

156 FREEDUINO
Arduino’s PCB recreated in free-form wiring

158 CHARTREUSE
Spooky interactive face whose eyes follow you

160 WORD CLOCK
In this version, the words are projected onto paper

162 ASSISTIVE SPOON
Feeding aid designed for people with Parkinson’s disease

164 ARDUINOFLAKE
Sparkling snowflake sculpture lit by LEDs

Get Started With Arduino

INSPIRATION

155

162

158

Get Started With Arduino

160

156

Top Projects

REGULAR

Top Projects

REGULAR

Top Projects

Get Started With Arduino

157

INSPIRATION

Freeduino

ince its creation in 2003, the Arduino Uno has
breathed life into the world of open-source
electronics. There are more powerful boards, but
the openness of the hardware means that it’s gained
a community, which is worth more than a little bit
more processing power or faster ins and outs.

Being open, the Arduino is also highly clonable – you’ll see all
sorts of cheap knock-off versions on the market. This clone, by
developer, maker, and artist Jiří Praus, is anything but a simple
clone. He’s recreated the Arduino’s PCB in free-form wiring,
connecting all the real components to create a skeleton version of
the board that’s functionally identical to the real thing. Why, you
may ask? Well, we say, why not?

S
By Jiří Praus jiripraus.cz

Right
The build took a
few days, and yes
– it works!

Get Started With Arduino

http://jiripraus.cz

158

Top Projects

REGULAR

Top Projects

REGULAR

Top Projects

Get Started With Arduino

159

INSPIRATION

Chartreuse

hartreuse is an interactive face that follows you
when you walk by. When she sees you, her eyes
turn yellow, and she gets a happy expression in her
eyes. As you walk away, her eyes change to blue,
and she sadly turns away.

Chartreuse is powered by an Arduino Uno, two
servos, and a stepper motor and a couple of addressable LEDs.
She’s constructed from a few pieces of 1/8” hardboard.

The creators, Anna Lynton and Alex Fiel, are both Technology,
Arts, and Media Students at CU Boulder.

C
By Anna Lynton & Alex Fiel hsmag.cc/NmChjn

Far left
There’s an ultrasonic
distance sensor
hidden in the base,
watching you

Get Started With Arduino

http://hsmag.cc/NmChjn

Top Projects

REGULAR

160

friend of mine and I were making a regular
word clock for his girlfriend as a Christmas
gift. During this, we noticed that it is possible
to project the letters from the back onto a white
sheet of paper. Moreover, we were able to create
interesting effects by bending the paper so that

individual letters change size and become blurred. After that, we
tried to come up with a design for a word clock which makes use
of this effect by being able to move each of the 114 letters and
dots using a servo.

“We knew that this would be a challenging project, but it turned
out to be even more tedious than we thought, because you
basically have to repeat every step 114 times. However, in the
end, I think we created something original and unique.“

A
By Mosivers hsmag.cc/SwgwCw

Word clock

Right
While we’ve seen
many word clocks in
the past, this is by
far the best-looking

Get Started With Arduino

“

http://hsmag.cc/SwgwCw

161

INSPIRATION

Get Started With Arduino

Top Projects

REGULAR

Top Projects

162 Get Started With Arduino

163

INSPIRATION

Left
The project
was made by
CuriosityGym
team members
Siddhesh Murudkar,
Rupin Chheda, and
Jehangir Khajotia

Assistive spoon

arkinson’s disease is a progressive nervous system
disorder that affects movement. Symptoms start
gradually, sometimes starting with a barely noticeable
tremor in just one hand. Tremors are common, but the
disorder also commonly causes stiffness or slowing
of movement.

“We were greatly inspired by Liftware Steady (see
liftware.com/steady), which is a product sold for this very purpose.
We realised early on that this was expected to be a challenging
project and would take the team into the arenas of motion control,
physics, and 3D maths that we had a working knowledge of, and
this project helped us put our theory into practice.

“The design was expected to be held in hand, and be able to
help cancel out any tremors the person’s hand felt, thus providing
the ability to level and steady out a spoon held at the end of
the prototype.”

P
By CuriosityGym hsmag.cc/jHHMlS

Get Started With Arduino

“

http://liftware.com/steady
http://hsmag.cc/jHHMlS

164

Top Projects

REGULAR

Right
This sculpture was
entered into the
Hackaday Circuit
Sculpture Contest
(hsmag.cc/whrIzk)

Arduinoflake

am a senior engineer for Samepage.io, and hardware
enthusiast. I started with a simple Arduino kit two years
ago, and I fell in love with the platform. Now, I am having fun
making free-form sculptures and electronics. My Arduinoflake
has 30 LEDs interconnected by 0.8 mm brass wire by the
so-called ‘dead bug’ method [where wires are soldered

directly onto the upside-down integrated circuit] into the shape of
a snowflake. It runs on Arduino Nano, and you can interact with it
by the capacitive touch sensor. I wanted to build it as a toy for my
daughter, but it turned out to be more – it’s circuit art.”

I
By Jiří Praus hsmag.cc/wwRjLy

Get Started With Arduino

“

http://hsmag.cc/whrIzk
http://Samepage.io
http://hsmag.cc/wwRjLy

165

INSPIRATION

Get Started With Arduino

166 Get Started With Arduino

Field Test
Expert reviews of some of the
most interesting Arduino kit around

168 GRAND CENTRAL M4 EXPRESS
Adafruit’s Mega-format board is packed with IO pins

170 NEOTRELLIS M4 EXPRESS
Handheld 8×4 array of light-up buttons

172 ARDUINO EVERY AND 33 IOT
The tiny Nano form factor gets an overhaul

174 TEENSY 4.0
Powerful ARM Cortex-M7F core microcontroller

176 BLACK AND BLUE PILLS
Two inexpensive boards based on the STM32F103

Get Started With Arduino

FIELD TEST

167

172

174

170

Get Started With Arduino

Grand Central M4 Express

REVIEW

Get Started With Arduino168

here’s no shortage of microcontrollers
built in the Arduino form factor.
However, almost all of these are built
in the style of the Uno. The Mega form
factor (with its vastly expanded range
of IO pins) has seen only one significant

insurgent in the last nine years – the Arduino Due,
which, despite some advantages, never became
popular. However, this has now changed with a new
board supporting a large number of IO pins: Adafruit
Grand Central M4 Express.

This board houses an impressive 54 digital IO pins
and 16 analogue inputs (two of which can be used
as analogue out via a 12-bit DAC).

Grand Central M4 Express

@ben_everard

One board, so many inputs

ADAFRUIT $37.50 adafruit.com

Below
If you Charlieplex all
the GPIO pins, you
can drive 3782 LEDs.
Let’s get blinking!

T
There are a few clues about the processing power

of this board in its name. M4 refers to the version
of the ARM core on the board, while Express – in
Adafruit terminology – means that there’s more than
2MB flash space (there’s actually 8MB). You can fit
a lot in 8MB, but if that’s not enough, there’s also a
microSD card slot, so you can pile (almost) as much
data as you like into storage.

The M4 core runs as 120MHz, and has both
hardware DSP (digital signal processing) and floating
point support. It’s a little hard to compare the speed
of different microcontrollers because there are a lot
of differences in the underlying silicon, as well as
the speed it runs at. Floating point can be really slow
on some microcontrollers, so the speed-up may be
much faster than the numbers alone may suggest.

To test how much faster, we compared this
board to a Circuit Playground Express, which has
an M0 core running at 48MHz (this is a fairly quick
microcontroller by many standards) without a floating
point unit. Using the Arduino IDE, we programmed
this to perform a million integer multiplications and
a million floating point multiplications. On the CPX,
this took 189 milliseconds for integer, and 8308
milliseconds for floating point.

On the Grand Central, the integer operations
took 67 milliseconds – which is about in line with
the expected speed-up, as the core is 2.5 times
faster and slightly more powerful. The floating
point operations took 75 milliseconds – only slightly
slower than the integer operations. As well as
floating point, the M4 cores have hardware support
for integer divide, with a similar speed-up of about
40 times. This speed means that the Grand Central

By Ben Everard

https://twitter.com/ghalfacree
http://adafruit.com

FIELD TEST

Get Started With Arduino 169

can be pushed into areas that many microcontrollers
just can’t cope with – such as audio manipulation,
and calculating complex LED patterns.

The DSP can provide a huge speed boost, however,
using it isn’t easy. Unless you’re interested in diving
down into the minutiae of compiler optimisation, it’s

probably only going to be relevant if you’re using
libraries that support it. The most popular example
of this is the Audio Library originally designed for the
Teensy (the Teensy 3.x also use an M4 processor).
As M4 processors become more widely used, more
libraries supporting the DSP are likely to be created.

The form factor – as we mentioned at the start –
is based on the classic Arduino Mega, which is an
extension to the Arduino Uno, and this means that
there are a range of shields already available. Like
most modern microcontrollers, the Grand Central
is a 3 V board, so you need to make sure that any
shields are compatible with this voltage.

The Grand Central has a huge amount packed into
it, but all microcontrollers are about compromise
– you simply can’t make a board that has it all,

especially when ‘all’ often includes small size and low
price. The most obvious compromise on the Grand
Central is the lack of any wireless connectivity –
there’s neither Bluetooth nor WiFi. This doesn’t mean
you can’t use it wirelessly, but you will need extra
hardware, which means extra cost and complexity.

A SOFT TOUCH
On the software side of things, both Arduino and
CircuitPython are supported, but Adafruit has this
to say: “We have a working Arduino board support
package, with lots of stuff working, but our primary
target for this board is CircuitPython”.

While this does sounds a little pessimistic on the
Arduino front, it does need to be taken into account
compared to Adafruit’s usual excellent support. For
most uses, the Arduino environment should work
as expected, just don’t expect loads of libraries and
examples targeting the more esoteric features of the
board, such as the PCC camera interface.

CircuitPython using Mu requires version 1.0.2
or later to detect the serial connection, and works
as expected. There are already official guides for
creating a soundboard and a MIDI interface.

The Grand Central M4 Express packs a huge
amount onto a microcontroller board. There’s enough
IO to control almost anything, and the processing
power to crunch through the massive amount of data
it’s capable of bringing in. As the name suggests, it’s
not the smallest board, but if you’ve got the room,
this is a great brain for IO-hungry projects.

VERDICT
Inputs, outputs,
and processing
power galore.
This is a
great board
for complex
controls and
interfaces.

9 /10

Above
The silkscreen image
is taken from the
ceiling of Grand
Central Station in
New York

The M4 core runs as
120MHz, and has both

hardware DSP and floating
point support

”
”

NeoTrellis M4 Express

REVIEW

170 Get Started With Arduino

NeoTrellis M4 Express

@ben_everard

Buttons, lights, and lots of sound

ADAFRUIT From $59.95 adafruit.com

Below
The NeoTrellis
is small enough
to be operated
while holding it
in two hands, like
a gamepad

T
he NeoTrellis M4 express is an 8×4
array of buttons powered by a SAM
D51 chip (with an ARM Cortex-M4
running at 120MHz with hardware
DSP and floating point). There’s an
audio-out 3.5 mm jack connected to
two 12-bit DACs, and two exposed

GPIO pins which can run I2C or analogue in. There’s
also a three-axis accelerometer.

NeoPixels behind each button give you the
ability to light up each switch to indicate a different

use, and create an endlessly variable display.
As this display can be configured on the fly, the
button-and-NeoPixel format is great for creating
novel user input devices. There’s also 8MB of
flash storage, which gives enough space for quite
a few audio samples, and an electret microphone
amplifier (accessible through the fourth pin on the
audio jack).

If this particular setup isn’t what you’re after,
you can get other bits in similar forms. 4×4 Trellis
keypads are available both with regular LEDs ($9.95
for the PCB + $4.95 for the silicon buttons) and with
NeoPixels ($12.95 for the PCB + $4.95 for the silicon
buttons). These can be daisy-chained both vertically
and horizontally to form groups of up to eight. These
don’t include a microcontroller, so you can add one
of your choice.

Putting the device together is just a case of lining
everything up and securing it together with five
bolts. The laser-cut case feels sturdy and the silicon
buttons are soft enough to feel comfortable, yet still
click firmly under your fingers.

There are, at the time or writing, two ways of
programming the board – with the Arduino IDE and
with CircuitPython.

If you want to unlock the full audio power of this
board, you’ll have more luck with the Arduino IDE.
There’s a port of the popular Teensy Audio library
for the NeoTrellis M4 which allows you to create
sounds and apply all sorts of audio effects. For
those more interested in controlling other music-
generating hardware, the Trellis can output either
USB or five-pin DIN MIDI (with a simple circuit
described here: hsmag.cc/RhptgC).

Just as a simple example of the power, this
reviewer created a synth (based on the examples)

By Ben Everard

https://twitter.com/ben_everard
http://adafruit.com
http://hsmag.cc/RhptgC

FIELD TEST

171Get Started With Arduino

that can output sine, triangle, square, or sawtooth
waves with the attack and release of the
modulation controlled by the x and y values from
the accelerometer. Holding the device in different
orientations gives different sounds (and you can get
the source code from: hsmag.cc/DLHQYI). This
button-plus-tilt interface is hugely flexible for all
sorts of weird (and occasionally wonderful) sound
generators, and having the Audio library available
gives you a huge range of effects and options at
your fingertips.

PYTHONIC
CircuitPython doesn’t quite have the same
performance as Arduino, if you’re really pushing the
audio effects, but it is still running on a powerful M4
chip, so it’s no slouch. It’s still powerful enough to
work with audio: for example, there’s a CircuitPython
beat sequencer at: hsmag.cc/zrtnfN.

The NeoTrellis is a really useful – and slightly
unusual – input device packaged up with a powerful
processor. At first glance, it doesn’t seem as flexible
as some maker devices – especially given the lack
of GPIOs. However, this is deceptive. The USB is
native and can be used to create a MIDI or other
USB device, there’s audio in and out, and the I2C
connector is enough to control almost any hardware,
and that’s what this device is about. It’s a way of
creating novel user interfaces. In this review we’ve
focused on audio and we think that this will be a
popular use for this board. However, there’s nothing
that ties it to this particular use.

From the audiophile perspective, perhaps the
most disappointing thing about the NeoTrellis will be
the sound fidelity. 12-bit DACs are fine for general
playback, but they don’t have the same resolution
of high-end audio hardware, and you’re never going
to get great input from an electret microphone.
This belies the usefulness of this device, though.
Sure, the DACs aren’t perfect, but it’s a handheld
controller and if you need high-fidelity audio, you

can use this and a MIDI controller to get sound out
of a wide range of hardware – and if you need high-
quality samples, you can record them off-device and
load them on.

Some hardware just makes you smile. It’s hard to
put a list together of exactly what it takes to do this,
but it’s some combination of a good human-circuit
interface, interesting outputs, and documentation
that makes it easy to get started and experiment
with the features. The NeoTrellis M4 express is one
of these – it’s just great fun to use.

The particular form-factor of the NeoTrellis M4
won’t suit all projects, but for those projects it does
suit it’s unrivalled. At $59.99, it’s fantastic value
as well.

VERDICT
A quirky and
great fun device
with an unusual
set of inputs.

9 /10

Left
Three connections –
USB, Grove, and jack
– provide a wealth of
expandability, even
though there are only
two GPIOs

This button-plus-tilt interface is hugely
flexible for all sorts of weird (and occasionally
wonderful) sound generators

”
”

http://hsmag.cc/DLHQYI
http://hsmag.cc/zrtnfN

Arduino Every and 33 IoT

REVIEW

172 Get Started With Arduino

Arduino Every
and 33 IoT

@ben_everard

The tiniest Arduino board gets an overhaul

he Nano line of Arduino boards has
been a staple of makers for over a
decade. They’re small and cheap
(compared to other official boards), yet
still come with the USB connector and
all the power of the larger boards.

Technology has moved on since the first version of
the Nano came out, and Arduino has released a line
of new boards in the Nano form factor – we’re taking
a look at the Nano Every and the Nano 33 IoT.

The Nano Every is based on the ATmega4809
microcontroller running at 20MHz. This is broadly
compatible with other AVR chips from Arduino,

including the one in the original Nano. This board is
running at 5 V, so should be a completely drop-in
replacement for the original Nano, but with more
flash (48kB) and more RAM (6kB). At eight euros,
this is the cheapest board that Arduino makes by a
fairly significant margin.

The Nano 33 IoT also comes in the same form
factor as the Nano, but it’s built on the 32-bit ARM
SAMD21G18A microcontroller. It runs at up to 48MHz
and has 256kB of flash and 32kB of RAM. Overall,
this is a significantly more powerful processor than
the AVR chip in the Nano Every. As well as this,
there’s an ESP32-based u-blox module for WiFi and
Bluetooth, and a six-axis inertial measurement unit.
All this comes in at 16 euros, which is twice the cost
of the Nano Every, but it’s still one of the cheapest
boards that Arduino produces.

Both of these devices are tiny, solidly made, and
as easy to use as you’d expect from devices made
by Arduino. Unlike many small boards, there are four
mounting holes, so you can easily secure the board
in your projects.

They’re completely flat on the bottom, and have
castellated pads so they can be soldered onto other
PCBs to make a sort of permanent shield setup – a
sign that Arduino is targeting the small-run
electronics industry by making it easier to build
products out of Arduino projects.

POWER SUPPLY
The world of small microcontrollers is pretty
crowded at the moment, but these new Nanos do
have their niche within it. They’re among the
smallest boards around, yet still pack in quite a
healthy amount of IO (12 digital, 8 analogue in, and
1 analogue out). They achieve this feat by cutting
out one key feature found in most slightly larger

By Ben Everard

T
Below
The new Nanos are
tiny, but the 33 IoT is
very slightly larger

https://twitter.com/ben_everard

FIELD TEST

173Get Started With Arduino

boards – battery management. You’ll need a source
of power, whether via the USB port or up to 21 V
via Vin. The rather beefy on-board regulator can
provide up to 950 mA for peripherals.

In a world of 3 V microcontrollers, the Arduino
Nano Every is probably one of the best choices
for 5 V microcontroller right now from a price
to performance ratio, as long as you don’t
need battery charging or networking. There
is less 5 V hardware around these days, but
if you find yourself needing to control some,
this will save you the hassle of level shifting.
With 950 mA of current available from the
regulator, and 5 V IO, this is a great choice for
small to medium-sized NeoPixel projects.

The Nano 33 IoT is in the fuller marketplace of
3.3 V WiFi-enabled development boards, but it does
have a few stand-out features. It’s the smallest,
cheapest board that’s compatible with the Arduino
IoT Cloud. While this online development
environment is still in development, it’s shaping up
to be a really easy way to get started with IoT
devices. The Nano 33 IoT has the sprightly
performance that we’ve come to expect of boards
based on the SAMD21 microprocessor, and the
off-chip WiFi gives solid networking performance.

VERDICT
Arduino Nano
33 IoT
A no-nonsense
WiFi
microcontroller
that fits in the
tiniest of spaces.

8 /10

VERDICT
Arduino
Nano Every
If you need a
small, 5 V
microcontroller
board, this has
to be top of
your list.

9 /10

BENCHMARKS

Overall, the 33 IoT is about four times the speed of
the plain Nano Every. The only exception to this is in
floating-point multiply and divide. Each test is
running a million instances of each instruction,
except the analogue input which is only 10,000. The
result is the number of milliseconds that the process
took to run.

Benchmark
 Nano 33 IoT
performance

 Nano Every
performance

Analogue input 4,234 1,124

Integer sum 147 884

Integer multiply 211 829

Float sum 2,609 8,560

Float multiply 14,757 12,684

Float divide 32,485 46,542

GPIO test 3,303 72,722

Above
The ATmega4809 is
more powerful than the
AVRs in older Arduinos

Teensy 4.0

REVIEW

Get Started With Arduino174

Teensy 4.0

@ben_everard

A 600MHz microcontroller

he Teensy 4.0 specs are impressive.
A 600MHz ARM processor sounds
more like the sort of thing you’d get
in a general-purpose computer, rather
than a microcontroller. It’s based on
the ARM Cortex-M7F core, so let’s

take a quick recap of the ARM cores you’ll find on
microcontrollers. The M series (as opposed to the A
series that you’ll find in ‘Application’ devices, such
as mobile phones and Raspberry Pis) are 32-bit cores
designed for microcontrollers. There are many other
cores not based on ARM Cortex designs, such as the
ATmega cores in many Arduinos and the Tensilica
cores in ESP8266 and 32 devices. The most common
ARM Cortex-M cores are:

M0 Small instruction set, optimised for small size on
silicon, low price, and low power (at least, relatively
speaking as these are still significantly faster than
AVR chips, such as those found in the Arduino Uno).
Based on the ARMv6-M instruction set.

M0+ A machine-code-compatible upgrade on the M0
that adds a bit more oomph.

M3 Based on the ARMv7-M instruction set with
instructions not present in M0 cores such as divide
and multiple-accumulate. Code should run faster than
on an M0 core.

By Ben Everard

T

In microcontrollers, it doesn’t really make sense
to have a notion of one of these being overall
‘better’ than the others

Above
The Teensy 4.0 really
lives up to its name –
it’s tiny

TEENSY $19.95 pjrc.com

M4 The same basic core as an M3, but with digital
signal processing (DSP) instructions. These are used
extensively in audio processing libraries.

M4F An M4 core with additional acceleration for
single-precision floating-point calculations.

M7F This includes single-precision and (optionally)
double-precision floating-point accelerations, as well as
DSP instructions. It’s a significantly more powerful core
than that in the M3 and M4, with a larger pipeline and
branch speculation (this is a bit of a confusing feature,
but it can result in faster code run time). There’s also
the option of tightly coupled memory, which allows you
to use a small amount of very fast memory.

CORE CONUNDRUMS
There are a few others, but they’re not commonly used
in the hobbyist world. In microcontrollers, it doesn’t
really make sense to have a notion of one of these
being overall ‘better’ than the others, as it depends so
heavily on use-case. M0 cores are the least powerful
in this list, but on the scale of microcontrollers, they’re
still fairly powerful and should accomplish many tasks
without draining your power supply or bank balance.
However, if you need to do any DSP or floating-point
operations, then you’ll really benefit from an M4F or
faster core.

The M7F core in the Teensy 4.0 is more powerful
than an M4F core (such as that in the Teensy 3.6), and
it can also run at higher clock speeds – 600MHz in
this case (though it may be possible to overclock it in
the future). The one feature that really has a dramatic
speed increase is the support for accelerated double-
precision floating-point operations, but this is quite a
specialised use-case.

”
”

https://twitter.com/ben_everard
http://pjrc.com

FIELD TEST

Get Started With Arduino 175

VERDICT
The most
powerful hobbyist
microcontroller
available at
the moment.

9 /10

Take a look at the box above for a comparison of
performance with other high-speed microcontrollers.
There’s no doubt that the Teensy 4.0 is, for almost
any case, the fastest microcontroller geared for
hobbyists by a factor of about three to five (depending
on exactly what you’re doing with it). There are a few
applications that can really benefit from this speed-up.

The Teensy range has been a favourite device for
people working with real-time audio, both because
they’ve historically been fast boards, and because
there’s a great set of support libraries written by Paul
Stoffregen (who also sells the Teensy boards). This
includes a drag-and-drop creator and a set of libraries
that help you write Arduino code to both create and
modify audio signals. The Teensy 4.0 is much faster
than the previous version (Teensy 3.6), and has four
times the memory. This means that you can do a
whole lot more. In audio terms, this means you can
do more computationally intensive effects, and more
of them.

AUDIO ADAPTORS
The Teensy 4.0 does work with the Teensy Audio
Adaptor Board, but the pins are in slightly different
positions, so you have to connect it with jumper wires
rather than soldering the two boards directly together,
as you could do with the earlier board.

Another area where powerful microcontrollers
are looking promising is running neural networks,
such as using the TensorFlow framework. At the
time of writing, there’s a lot of work going on with
this. On paper, the Teensy 4.0 looks like it would
make a good platform for this, and there is some

support for M7 processors, but as yet, there’s not a
straightforward process for getting all this running.
If you’re interested in running TensorFlow on
microcontrollers, it’s certainly worth keeping an eye
out for Teensy 4.0 support.

The Teensy 4.0 is a significant step up on
performance over any other hobbyist microcontroller
board, and available at a great price. If you find
yourself lacking the processing power to do what
you need, then there’s really no competition at the
moment – this is the board you need.

Below
The Teensy breakout
isn’t available for
sale, but you can
create your own
with instructions at
hsmag.cc/ZyDVhx

We ran a series of benchmarks on some of the fastest microcontrollers we’ve got, to
compare them to the Teensy 4.0. In each case, the benchmark result is the time taken to
complete a task intensive in that particular area. Lower is better.

BENCHMARKS

Benchmark Teensy 4.0
Teensy 3.6
(240MHz)

Adafruit PyPortal
(SAMD51 – 200MHz)

ESP32

Integer
arithmetic

6.00 38.00 40.00 54.00

Float
arithmetic

28.00 79.00 85.00 151.00

Double
arithmetic

30.00 620.00 739.00 614.00

GPIO output 65.00 271.00 451.00 265.00

http://hsmag.cc/ZyDVhx

Black and
Blue Pills

DIRECT FROM
SHENZHEN

Two cheap boards built on the same microcontroller

By Ben Everard @ben_everard

he ‘Blue Pill’ – a generic design
of microcontroller, based on the
STM32F103 – has been around for
a while. The Black Pill is a newer,
similar design based on the same
MCU. These names are given to the

boards by the community, so you won’t find them
for sale under these titles. Instead, they’re usually
called things like ‘STM32F103C8T6 ARM STM32
Minimum System Development Board Module’, and
you’ll have to pick them based on the image (as there
are other board designs sold under similar names).

T

Right
The Black Pill is
more robust, and
more likely to have
working USB

Credit
Thomas Gravekamp
GNU documentation
licence

There used to be a red version as well, but this doesn’t
seem to be available any more. The two we got were
‘STM32F103C8T6 ARM STM32 Minimum System
Development Board Module For Arduino Kj’ for £1.79,
including delivery, from GadgetsCloud on eBay for the
Blue Pill, and ‘STM32 Minimum System Development
Board STM32F103C8T6 ARM Module for Arduino M’
for £1.99, including delivery, from Ukings on eBay for
the Black Pill. Similar boards are available for similar
prices on most direct-from-China websites.

The CPU is based on an ARM Cortex-M3 running
at 72MHz with 64kB of flash and 20kB of RAM. There

REGULAR

176

Direct From Shenzhen

Get Started With Arduino

https://twitter.com/ben_everard

are 37 IOs (35 on the Black Pill), including ten which
can handle analogue input. All this comes for typically
under £2.

While the MCU on both is the same, there are a
few differences on the board. Most notably, the Blue
Pill often has the wrong resistor on the USB port,
which can cause problems for USB connections on
some computers. It is possible to replace it, but it
might be easier to get the Black Pill and avoid the
problem. It’s hard to know exactly what hardware
you’re getting as the board isn’t version-controlled –
there’s not an official name, let alone official versions,
so you just pay your money and see what turns up.
Such is the nature of bargain-basement boards from
no-name suppliers. For under £2, it can be worth the
risk though.

DESIGN WOES
Another common problem is the soldering on the
USB port. Although we didn’t have any problems,
some users have reported that it was weak and prone
to coming off the board – it’s usually fixable with a
drop of solder. Again, this problem is solved on the
Black Pill. For these two reasons alone, the Black
Pill is worth the extra 20p, unless you specifically
need the Blue Pill (such as if your other hardware is
designed for it, or if you need the extra two GPIO pins
on this board).

Although the board does have a USB port, it
doesn’t come with a USB bootloader by default, so
you’ll need to burn a bootloader to it. This can either
be done using a JTAG adaptor or by using a USB to
serial adapter. The USB to serial adaptor is cheap,
and the setup is just a case of connecting the wires
together, so this shouldn’t be enough to put off
people used to working with microcontrollers, but
for beginners, it might be best to start with a more
straightforward board.

Once the bootloader is burned, you can program
as you would any other Arduino-compatible board.
Install the correct board definition, then connect the
USB port and upload the programs as needed. Not all
libraries will work out-of-the-box, but many have been
ported to the STM32 (and you can see the list of those
here: hsmag.cc/LvLKDu).

As well as acting as a programming port, the
USB port can be used to allow the board to act as
a USB device. For example, the Venabili Keyboard
(venabili.sillybytes.net) uses a Blue Pill to convert

physical key presses into a USB communication
your computer can understand (look out for more
detailed coverage of this in a future issue). Similar
processors were even used as the USB controller on
the announced, but as yet unreleased, Arduino Cinque
which featured an open-source RISC-V microcontroller
at its heart (hsmag.cc/xhybzr).

While there’s a bit of tweaking necessary to get
this board up and running, and no support from the
manufacturers, there’s a community of hobbyists
who have got a lot running, and help each other out.
You can find most of the information you need to get
started at hsmag.cc/LzqAqj.

These boards aren’t as plug-and-play as boards made
by hobbyist companies, and they don’t have WiFi like
the similarly priced ESP8266 boards. However, they do
have a fast processor and plenty of IOs.

There’s something inherently nice about working
with a board that doesn’t quite work correctly
alongside a group of other enthusiasts. You’ll probably
hit a few bumps along the way as you try to get a Blue
or Black Pill to work, but those have probably been hit
and documented by other users and, as you perform
the workarounds, you’ll find you learn a bit more about
the workings of microcontroller boards. Of course, this
is only interesting (rather than frustrating) if you’ve got
the time and skill to go through the workarounds. For
£2, we think they’re well worth the money, purely for
something to have a bit of a tinker with. You might find
they fit your use-case perfectly, but bear in mind that
there’s a chance you might not be able to get them to
work as expected.

D
IR

ECT FR
O

M
 S

H
E

N
Z

H
E

N

These boards aren’t as plug-and-play as boards
made by hobbyist companies, and they don’t have
WiFi like the similarly priced ESP8266 boards

”
”

Right
Both boards have an impressive selection
of GPIOs and peripherals

177

FIELD TEST

Get Started With Arduino

http://hsmag.cc/LvLKDu
http://venabili.sillybytes.net
http://hsmag.cc/xhybzr

178

TUTORIAL

Arduino tour

Headers
An Arduino is nothing without extra
hardware. It exists to control lights,
buttons, motors, and all manner of other
gadgetry. These are connected via the
headers – either in the form of ‘shields’
which connect a whole circuit board on
top of the Arduino, or by using individual
jumper wires to connect particular pins.

Processor
An 8-bit 16MHz processor may not sound
like much, but it’s plenty of power for
controlling most hardware. Some of us
remember playing arcade games on much
less powerful systems. It’s got ten times
the speed needed to control a pair of Italian
plumbers, so most projects shouldn’t
struggle for power.

USB
This two-way communication channel lets
you upload code to your board, and also
enables you to send data back and forth
between a computer and the Arduino. This
serial communication is vital for debugging
and sending diagnostics as well as
offloading data for processing.

Power
Electrons are the lifeblood of your
electronics project, and you inject them
via this port. It can take between 7 and 12
volts, which means you can power your
project off a 9 V battery or a 12 V charger.
Note that this is only needed if the USB
isn’t connected.

WiFi
The internet is everywhere, and connecting
your project to a WiFi network gives it
a huge potential for interactivity. You
could send data to a cloud server for later
processing, control it with your phone, or
let other people see what’s going on. The
Internet of Things is here, so let’s connect
our own devices to it.

Security
The internet is great (see above), but
opening up your projects to it does carry
risks. Security is paramount – fortunately,
this board comes with an ECC608 crypto
chip to ensure that you’re using speedy,
best-in-class encryption on data sent
across an unsecured network.

A D

B E

C F

A whirlwind tour of the
Arduino Uno WiFi Rev2

Get Started With Arduino

A

B

E

F

C
D

Whether you want to build robots, smart
devices, or any other electronically controlled
projects, this is the book you need. We take

you through how to program and connect an
Arduino microcontroller board, then explore

some great projects to make with it.

Price £10

And much more!

Build a four-legged
walking robot

Create a Tetris-
inspired clock

Grow your own veg
with hydroponics

Make music with
a DIY synthesizer

