
Apr. 2024
Issue #77 £6

hsmag.cc Issue #77

DOLPHINS CARBONIZING MUSIC AIR

April 2024

DIY Robot Dog
Build your best friend

3D printer calibration
Perfect prints every time

Chip design
Create personalised silicon

Make the perfect keyboard, mouse, and gamepad

CUSTOM

9
77

25
15

51
40

06

77

Apr. 2024
Issue #77 £6

CONTROLLERS

http://hsmag.cc

240305_NLSF_HS_UK.indd 1240305_NLSF_HS_UK.indd 1 3/5/24 9:00 AM3/5/24 9:00 AM

http://digikey.co.uk

WELCOME

FREE PICO W
WHEN YOU
SUBSCRIBE

PAGE 26
Got a comment,

question, or thought
about HackSpace

magazine?

get in touch at
hsmag.cc/hello

3

Welcome to

GET IN TOUCH
	�hackspace@
raspberrypi.com

	�hackspacemag

ONLINE
	hsmag.cc

HackSpace magazine
Computers have cold, hard, silicon brains, while we’re squishy
sacks of meat. In order for us to use these machines, we
need a way of connecting our neurons with the computer’s
transistors, and until we poke wires directly into our craniums,
we need buttons, lasers, sliders, joysticks, and other sensors.
Press a button to close a contact, twiddle a knob to change the
resistance, gaze into the unblinking stare of an OLED. These are
the boundaries between man and machine.

If we want to get the most out of our symbiotic relationship
with silicon, we have to optimise this boundary. This month,
we’re looking at how we can build our own interfaces to bridge
this divide and make our computers as responsive as possible to
our thoughts. Let’s hack this interface to gain maximum control.

BEN EVERARD
Editor 	ben.everard@raspberrypi.com

EDITORIAL
Editor
Ben Everard

	 ben.everard@raspberrypi.com
Features Editor
Andrew Gregory

	 andrew.gregory@raspberrypi.com
Sub Editors
David Higgs, Nicola King

ADVERTISING
Charlotte Milligan

	 charlotte.milligan@raspberrypi.com
	 +44 (0)7725 368887

DESIGN
Head of Design
Jack Willis
Designers
Sara Parodi, Natalie Turner
Illustrator
Sam Alder
Photographer
Brian O Halloran

CONTRIBUTORS
Marc de Vinck, Stewart Watkiss,
Jo Hinchliffe, Rob Miles, Nicola King,
Aaed Musa, Phil King

PUBLISHING
Publishing Director
Brian Jepson

	 brian.jepson@raspberrypi.com
Director of Communications
Liz Upton
CEO
Eben Upton

DISTRIBUTION
Seymour Distribution Ltd
2 East Poultry Ave,
London EC1A 9PT

	 +44 (0)207 429 4000

SUBSCRIPTIONS
Unit 6 The Enterprise Centre
Kelvin Lane, Manor Royal,
Crawley, West Sussex, RH10 9PE

	 +44 (0)1293 312193
	hsmag.cc/subscribe

	� hackspace@subscriptionhelpline.co.uk

This magazine is printed on paper
sourced from sustainable forests and
the printer operates an environmental
management system which has been
assessed as conforming to ISO 14001.

HackSpace magazine is published
by Raspberry Pi Ltd, 194 Cambridge
Science Park, Milton Road, Cambridge,
England, CB4 0AB.

The publisher, editor, and
contributors accept no responsibility
in respect of any omissions or
errors relating to goods, products, or
services referred to or advertised
in the magazine. Except where
otherwise noted, content in this
magazine is licensed under a
Creative Commons Attribution-
NonCommercial-ShareAlike 3.0
Unported (CC BY-NC-SA 3.0).
ISSN: 2515-5148.

http://hsmag.cc/hello
https://itunes.apple.com/us/app/hackspace-magazine/id1315673274?mt=8
https://play.google.com/store/apps/details?id=com.apazine.hackspace&hl=en&gl=US
mailto:hackspace%40raspberrypi.com?subject=
mailto:hackspace%40raspberrypi.com?subject=
https://www.facebook.com/HackSpaceMag/
http://hsmag.cc
mailto:ben.everard%40raspberrypi.com?subject=
mailto:ben.everard%40raspberrypi.com?subject=
mailto:andrew.gregory%40raspberrypi.com?subject=
mailto:charlotte.milligan%40raspberrypi.com?subject=
mailto:brian.jepson%40raspberrypi.com%20?subject=
http://hsmag.cc/subscribe
mailto:hackspace%40subscriptionhelpline.co.uk?subject=

4

Contents

18 	 Custom controllers
	 Enhance your mind–machine connection

28 	 How I Made: TOPS
	 A faithful robotic hound

34 	 Interview: Michael Omotosho
	 Open-source hardware will save the world!

42 	 Objet 3d’art
	 The thinking ten-year-old’s favourite Cretaceous dinosaur

44 	 Letters
	 Soldering glass, Poseidon, and the look of leather

17 LENS

62 Touchscreens are rubbish – you want a
giant 3D-printed button!

Tutorial
Gigabutton

06
Cover Feature

18

28

CONTROLLERS
CUSTOM

CONTENTS

5

48 	 SoM KiCad
	 Make an RP2040 game controller

54 	 Tutorial Kinect carbonizer

	 A cheap scanner, a 3D printer, and you’re Jabba the Hutt

60 	 Tutorial Crontab

	 Harness time to do your bidding

62 	 Tutorial Gigabutton

	 Build one button to rule them all

66 	 Tutorial KiCad part deux
	 Control high-power LEDs with a Pico and your own PCB

72 	 Tutorial ROS: the Robot Operating System
	 The brains behind our mechanical overlords

78 	 Tutorial 3D printing
	 Calibrate for size, overhangs, temperature, and more

47 FORGE

84 	 Best of Breed
	 The best new toys for 2024

90 	 Review xTool Screen Printer
	 Laser-cut designs into inky cotton

92 	 Review Flipper Zero
	 Test the [lack of] security of wireless devices

94 	 Review Tiny Tapeout
	 Can you really design your own silicon?

96 	 Crowdfunding Spark Analyzer and BLSTRsander
	 Monitor power usage while blasting sand

83 FIELD TEST

Review

94 The final frontier of open-source hardware:
making your own custom silicon chip

34 Distributed citizen science with a real purpose, the
open-source hardware way

Interview

Some of the tools and techniques shown in HackSpace Magazine are dangerous unless used with skill, experience and appropriate personal protection equipment. While we attempt to guide the reader, ultimately you
are responsible for your own safety and understanding the limits of yourself and your equipment. HackSpace Magazine is intended for an adult audience and some projects may be dangerous for children. Raspberry
Pi Ltd does not accept responsibility for any injuries, damage to equipment, or costs incurred from projects, tutorials or suggestions in HackSpace Magazine. Laws and regulations covering many of the topics in
HackSpace Magazine are different between countries, and are always subject to change. You are responsible for understanding the requirements in your jurisdiction and ensuring that you comply with them. Some
manufacturers place limits on the use of their hardware which some projects or suggestions in HackSpace Magazine may go beyond. It is your responsibility to understand the manufacturer’s limits. HackSpace
magazine is published monthly by Raspberry Pi Ltd, 194 Cambridge Science Park, Milton Road, Cambridge, England, CB4 0AB, United Kingdom. Publishers Service Associates, 2406 Reach Road, Williamsport, PA,
17701, is the mailing agent for copies distributed in the US and Canada. Application to mail at Periodicals prices is pending at Williamsport, PA. Postmaster please send address changes to HackSpace magazine c/o
Publishers Service Associates, 2406 Reach Road, Williamsport, PA, 17701.

Michael Omotosho

Tiny Tapeout

84

Top Projects

REGULAR

6

Cat TV

M
y old pet dog (RIP Henry) used to love nature
programs; he’d show a special interest in
anything featuring lions. He’d raise his head,
stretch a little, and imagine himself out there
on the savannah with them. Apparently, some
people prefer cats to dogs, and if you’re one of

them, you might want to give your furry housemate something to
watch. YouTube is reassuringly full of pet-oriented content, and
Becky Stern has crafted a delightfully simple device to stream
reassuring scenes of birds and squirrels to pique her cats’ interest.

She’s kept it simple: it uses a 5-inch capacitive touch LCD
screen, a Raspberry Pi, a USB speaker, mouse and keyboard,
and a 3D-printed enclosure. Even this was one feature too many
– the cats kept pawing at the screen, so she replaced the
data USB connection with a power-only cable, to disable the
touchscreen capability.

hsmag.cc/CatTV By Becky Stern

http://hsmag.cc/CatTV

7

SPARK

Above
Becky used the
honeycomb shape
generator in
Tinkercad to make
ventilation holes
large enough to
let warmth out, but
too small for her
cats to stick their
paws through

Top Projects

REGULAR

8

Dual-axis
solar tracker

I
n the northern hemisphere, spring is on its way. The
days are getting longer, and warmth bathes the land. It’s
the perfect time to dabble in solar power! Tim Ritson, like
everybody in New Zealand, is exactly six months ahead of
us, and he’s already had the chance to develop this dual-
axis solar tracker, which rotates and pivots a solar panel to

maximise the amount of light it collects during the day.
Tim used extruded aluminium for the frame of the tracker, as it’s

soft enough to cut and drill (slightly too soft, as steel bolts will strip
aluminium threads very easily if you’re not careful) while offering
you plenty of strength without too much weight. Tim used parts
from his local hardware shop, electronics store, and AliExpress.
The whole thing is mounted on a lazy Susan and controlled by an
Arduino Uno and two stepper motors with reducing gearboxes.

hsmag.cc/DAST By Tim Ritson

Right
Want to make your
own? Tim’s agreed
to write up his
experience building
a solar tracker
for a forthcoming
issue of Hackspace
magazine

http://hsmag.cc/DAST

9

SPARK

9

Top Projects

REGULAR

10

HOMS

Y
ou can buy a box of ten RP2040 microprocessors
for £9. You just need a couple of minutes to visit
the Pimoroni or The Pi Hut website and enter your
credit card details. Depending on your location, it can
take a day or two for the delivery to arrive. It’s easy.
Too easy for Panos Papazoglou! He’s made a fully

functional microprocessor out of discrete bits of hardware. The
registers that would normally be etched at microscopic level into
silicon are here replaced with Arduinos, with added displays so the
user can see what’s going on at any given time in any part of the
device. It’s brilliantly geeky, and a superb way of visualising what’s
going on inside a processor for anyone who’s looked at a chip and
wondered what’s going on in there.

hsmag.cc/HOMS By Panayotis Papazoglou

http://hsmag.cc/HOMS

Right
If the chip shortage
strikes again, maybe
we’ll end up using
something like this

SPARK

11

Top Projects

REGULAR

12

Moving
Pixel Clock

C
lock projects are cool. LED projects are cool, too.
And if it moves, all the better. So why not build a
moving pixel LED mechatronics clock?” With this
thought began Erich Styger’s 18-month development
of the Moving Pixel Clock.

More accurately, the project began when Erich
spotted a bunch of tiny stepper motors for sale online. They came
with no instructions, no datasheet, and no information at all other
than the name – ‘Mini stepper motor @5V’. They have a travel
of around 10 mm, which takes around two seconds, and Erich
thought it would be a good idea to use them to add some interest
to a digital clock display.

The final build comprises five stacked PCBs housing the stepper
motors and stepper motor drivers; each PCB has 16 stepper
motors, with each one hosting an addressable RGB LED. That
gives you a grid of 16 × 5 moving pixels to display the time. It’s
simple, but in an admirably complex way.

Erich’s blog detailing the project build is a masterpiece of clarity;
in it he outlines the build process, from single stepper motor to a
wall of moving pixels. Each 3D-printed part and custom PCB is laid
bare, giving us a glimpse into the work that’s gone into making this
weird and wonderful timepiece.

hsmag.cc/MovingPixelClock By Erich Styger

“

http://hsmag.cc/MovingPixelClock

13

SPARK

Left
Erich credits
Leoni Etter, Jan
Rohrer, and Livio
Stadelmann for
their help in
building this
bonkers device

Top Projects

REGULAR

14

R
eddit user CertifiedWerewolf (aka Ryan) wanted
a distraction-free, light, portable typewriter –
something very like the Freewrite Traveler, in
fact, but without the £483 price tag. So, he put
together a Raspberry Pi Zero 2 W, a Waveshare
4.2-inch e-paper display, a PiSugar 3 battery and a

custom-made 3D-printed case, and a keyboard he already had,
and made his own for a princely $90.

We love how simple this build is: the clean lines, the minimalist
design, and the ethos of doing one thing and one thing well. The
fact that it’s homemade, and Ryan has shared the code for it on
GitHub, makes it even better.

hsmag.cc/TypeWriter By CertifiedWerewolf

TypeWryter
Right
Apparently, it’s
easier to write when
you’re not constantly
distracted by funny
videos of baby
animals. We might try
it someday

http://hsmag.cc/TypeWriter

15

SPARK

Free eBook!Free eBook!

Download your copy from
 hsmag.cc/freecadbook

http://hsmag.cc/freecadbook

LENS
HACK MAKE BUILD CREATE
Uncover the technology that’s powering the future

Behold the Traverser Of Planar
Surfaces robot dog – a non-yapping,
non-shedding canine companion

HOW I MADE:
TOPS

28
PG

Like Michael Knight, one man
can make a difference – in this
instance, to our air quality

INTERVIEW:
MICHAEL OMOTOSHO

34
PG

PG 18

CONTROLLERS
CUSTOM

Gaming devices, keyboards, and everything else –

 control whatever you want, however you want

18

FEATURE

Custom Controllers

Phil King

A long-time Raspberry
Pi user and tinkerer,
Phil is a freelance writer
and editor with a focus
on technology.

B
y building your own custom
controller, you can determine the
aesthetic, layout, features, and
exact specifications to suit your own
preferences and requirements. And

the build will often cost you less than a

commercial equivalent – if there is even one available.

We’ve rounded up some of the best DIY controller makes

around, from mechanical keyboards and macro keypads to

gamepads and mice. While just a small sample of what’s

out there, this selection showcases the variety of designs

created by makers, incorporating features such as solar

power and keycaps with tiny screens in them.

Naturally, you can modify any of these open-source

projects to your own preference, or be inspired to come up

with a new design. The beauty of creating custom controllers

is that you can let your imagination run wild and make

something truly unique, as well as useful.

FEATURE

Custom Controllers

CONTROLLERS
CUSTOM

18

19

FORGE

K eyboards needn’t be of the usual
rectangular format. This one designed
by Joe Scotto has a pleasingly
symmetrical, partially split layout (aka

‘katana’) with the two sides connected by a
space bar. All 33 keys use Gateron Milky Yellow
switches, hand-wired in a row-and-column
matrix and connected to the GPIO pins on a
microcontroller board – you can use either an
RP2040 or ATmega32U4 Pro Micro. Correlating the
row and column GPIO input signals enables it to
detect which key has been pressed.

Both the case and keycaps are 3D-printed,
with the files made available in Joe’s GitHub
repo, which also houses preconfigured firmware
files based on the open-source QMK (Quantum
Mechanical Keyboard) standard. So why not have
a go at making one yourself?

D epending on the switches used,
mechanical keyboards can range
from near silent to full clicky-clacky.
Designed by Ming-Gih Lam, this special

experimental version of the Red Herring keyboard
can do either. With Silent Alpaca switches used for
the keys, in normal operation the keyboard is very
quiet. A flick of the switch turns it into typewriter-
style mode, with each key press triggering a 4.5 V
solenoid on the board to make that classic click-clack
noise. Check out the difference in this video sound
test: hsmag.cc/SolenoidKeysYT.

The keyboard itself has a 75% ortholinear design
with staggered columns and a split ergonomic
layout. Diodes are arranged in a unique herringbone
pattern, giving it its name, while it also features a
large rotary encoder knob and 64×128 OLED screen.
All the details and files are in the GitHub repo.

HSMAG.CC/SCOTTOKATANA

HSMAG.CC/SOLENOIDKB

Keyboards
These mechanical and ergonomic keyboards make typing a joy

Solenoid
Keyboard

ScottoKatana
Left
The finished katana-
style keyboard has an
ergonomic, partially
split layout

Below Left
The 33 keys are hand-
wired in a matrix
of four rows and
ten columns

Below
This special version of the Red Herring
keyboard can be near silent or clicky-clacky

http://hsmag.cc/SolenoidKeysYT
http://hsmag.cc/ScottoKatana
http://hsmag.cc/SolenoidKB

20

FEATURE

Custom Controllers

I ncredibly, this 72-key split keyboard features
a tiny (0.42-inch) OLED screen in every
keycap. Overkill? Perhaps, but it does have
the advantage of enabling you to relabel

the keys for different languages, so could come
in handy for polyglots. The character set can be
switched using a custom fork of QMK running on
an RP2040 microcontroller.

Designed by Thomas Pollak, the keyboard
features 3D-printed key stems and caps with a
holder for the OLED and a transparent cover to
protect it. A flex cable connects each OLED to a
slot in a custom PCB underneath. All the project
files – including STLs for the 3D-printed case and
Gerbers for the PCBs – can be found in the GitHub
repo. Thomas also plans to launch a kit version.

K eyboard latency is the slight delay between pressing a key and it
being input. While not a major issue when typing, it could be the
difference between life and death when playing games. Professional
gamers prefer a latency of 15 milliseconds or less, but the Nyan Keys

mechanical keyboard can do a whole lot better than that: 30 μs (microseconds)
in a worst-case scenario.

Maker Portland.HODL achieved this amazing feat by basing the keyboard
around an FPGA with parallel per key inputs and debouncing. He then added
an STM32F723 MCU to enable USB 2.0 High Speed 480Mb/s communication
to the host computer at 8000Hz to achieve the lowest latency possible on a
mechanical keyboard that would accept standard Cherry-compatible switches.
The maker has also created a ‘NyanOS’ firmware for the MCU, available on
GitHub: hsmag.cc/NyanOS.

S eeking a better portable keyboard for
his coffee shop visits, Sergei Silnov set
about crafting the ‘perfect keyboard’
with a folding mechanism and

comfortable typing action. A central 3D-printed
hinge enables the two keyboard halves to fold
up into a rectangular portable package with 2 cm
thickness. When unfolded, a central kickstand can
be lifted up to hold a phone; or the two halves
can be pulled further apart to accommodate an
Apple Magic Trackpad, attached magnetically.

With limited keycap options available for the
low-profile Kailh PG1425 X switches, Sergei
opted to create custom frames for them.
Based on the Miryoku design, the
ergonomic 44-key layout has
Shift keys placed handily for
your index fingers. All
the files, including for
the KiCad-designed
PCB, are available
on GitHub.

HSMAG.CC/POLYKYBD

HSMAG.CC/NYANKEYS

HSMAG.CC/CRABAPPLEPAD

PolyKybd Split72

Nyan Keys

Crabapplepad
Above
Each keycap has a tiny
OLED, so can easily be
relabelled if needed

Below Right
The hinged keyboard
folds up neatly into a
pocket‑size package

Right
The area between the two
keyboard halves can house
an Apple Magic Trackpad
or phone

Above Left
It may look like your
average keyboard, but it
has extremely low latency

http://hsmag.cc/NyanOS
http://hsmag.cc/PolyKybd
http://hsmag.cc/NyanKeys
http://hsmag.cc/Crabapplepad

FORGE

21

L ooking to create a lightweight
and highly portable keyboard,
RalphCoder13 came up with Birdy44. A
hand-wired split design that resembles

two wings, it is slimmer than his earlier
DactylWave model (hsmag.cc/DactylWave).
The pieces are 3D-printed and he even designed
a handy protective case to carry them around.

Each ‘wing’ features a tiny Waveshare
RP2040-Zero microcontroller socketed with Mill-
Max round pin headers. Along with the keys,
which use Kailh Choc V1 switches, there’s a
40 mm Cirque trackpad on each half. Find all the
details and 3D print models in the GitHub repo.

A iming to avoid repetitive strain
injury, coder David Schiller decided
to replace his full-size keyboard with
something a little more ergonomic

and finger-friendly. Fulcrum is an example of a
‘chorded’ keyboard, featuring a limited number
of keys that are used in combination to type
characters or even whole words. Its keys feature
optional risers for comfort.

As David notes, “Our thumbs are criminally
underutilised on regular keyboards.” Hence the
addition of two five-way thumb joysticks. Each half
also features a rotary encoder.

The Fulcrum runs KMK CircuitPython firmware
on an nRF52840 microcontroller. In addition to the
20-key model, David has designed a 40-key version
that looks more like a traditional split keyboard.

N guyen Vincent’s split wireless keyboard features a magnetic
interlocking system to attach the two halves and optional palm
rests. It also packs in a couple of hot-swappable rotary encoders
and a five-way navigation switch in reach of both thumbs. The

standout feature, however, is the row of solar panels along the top of the
case; these allow the Aloidia’s battery to be trickle-charged during daylight
hours or under artificial lighting.

A couple of mini memory displays are located either side of the solar
panels, while the keyboard case parts are 3D-printed and have embedded
tenting to raise them from the surface. Accepting Cherry MX switches, the
custom PCBs have a staggered layout. Schematics for the two halves can be
downloaded from the Hackaday project page.

HSMAG.CC/BIRDY44

HSMAG.CC/FULCRUM

HSMAG.CC/ALOIDIA

Birdy44

Fulcrum

Aloidia
Right
Each half features a
thumb-stick, rotary coder,
and optional key risers

Above
Resembling a pair of wings, the Birdy44 is a highly portable
split keyboard

Below
The two halves of the
keyboard snap together
using magnets and have
built-in tenting

Left
Solar panels along the top
of the case trickle-charge
the Aloidia keyboard

http://hsmag.cc/DactylWave
http://hsmag.cc/Birdy44
http://hsmag.cc/Fulcrum
http://hsmag.cc/Aloidia

22

FEATURE

Custom Controllers

FEATURE

Custom Controllers

D esigned by Josh R as a lower-cost
alternative to commercial stream
decks, this open-source macro pad can
show a customisable image on each

of its four buttons. A 128×160 TFT display fits
into a 3D-printed frame with dividers to split it
into quarters.

Running on an ESP8266-based Wemos D1
Mini V4 microcontroller, the software includes
a GUI settings menu to change the images and
three macros each for up to six applications using
a folder structure. Even better, Open Deck has
MQTT support so you can interface it wirelessly
with a Home Assistant server to control your
smart home.

Use the project details and files in the GitHub
repo to build it, or buy the parts or a fully
assembled unit on Tindie. H ow do you know if

a banana-shaped
split macro pad is
for you? “You’ll peel

it in your bones,” quips maker
Dan Bostian. This fun controller
features four keys on each half,
continuing the fruity theme with
Cherry MX switches. The two
split sections are connected by a
TRRS audio cable.

All the enclosure parts are
3D-printed, including a clip for

the small lithium-ion battery
pack. Each banana half features
a custom PCB, while Dan’s
ZMK-based firmware runs on
a nice!nano microcontroller
board with built-in Bluetooth for
wireless connectivity.

Assembly instructions,
firmware, and all the files can
be found in the GitHub repo,
so there’s no excuse for not
building your own banana-shaped
macro pad!W ell-known for building re-creations

of classic computers (as featured
back in HackSpace #54), Michael
Gardi created a tile-based macro

pad, but found he kept trying to press the
labelled tile instead of the key next to it. So
he reconfigured the device to use the tiles
themselves as buttons, equipped with Futaba
MD-4PCS switches.

For version two of the device, he designed
a custom PCB to replace the original ‘dead
bug’ wiring, and 3D-printed the case and tiles,
among other parts. All the files, along with
firmware for the macro pad’s Arduino Pro
Micro board, can be found in the project’s
GitHub repo: hsmag.cc/MacroPad2GH.

HSMAG.CC/OPENDECK

HSMAG.CC/BANANASPLIT

HSMAG.CC/MACROPAD2

Macro Keypads
Ideal for repetitive actions, media controls, and gaming

Open Deck

Banana Split

MacroPad 2

Left
With a TFT screen
underneath, custom
images can be assigned
to each button

Above
Well, this one is a bit different: a
banana-shaped split macro pad

Above
Label your 3D-printed tiles and press
them to trigger the assigned macros

http://hsmag.cc/MacroPad2GH
http://hsmag.cc/OpenDeck
http://hsmag.cc/BananaSplit
http://hsmag.cc/MacroPad2

23

FORGE

Below
This Bad Thing is a good
thing when you’re playing
Diablo III

Right
This single-key macro
pad features a built-in
0.85-inch display

Right
This single-key macro
pad features a built-in
0.85-inch display

FORGE

Below
This Bad Thing is a good
thing when you’re playing
Diablo III

A fter listening to feedback for his original Ocreeb twelve-key
mechanical macro pad, maker Salim Benbouziyane was inspired
to create a new, improved version. The big change is that he’s
turned it into part of a modular ecosystem. Using magnets and

pogo pins, other modules can be snap-fitted to it to create the exact custom
layout you want. Modules include a three-key ‘combo’ unit, dials, and faders.

The main macro pad incorporates a KB2040 microcontroller that runs the
KMK keyboard firmware, so you can map whatever actions you want to all
those buttons, knobs, dials, and sliders. Salim’s Instructables guide (linked
above) has the full build details and a link to the GitHub repo for all the files,
including firmware, 3D print STLs, and custom PCB Gerbers.

W hile most macro pads have several
keys, this one comprises a single
button in a 3D-printed frame.
Atop the button is a tiny 0.85-

inch 128×128 colour screen, protected by a
transparent plastic keycap, that can even run a
mini GUI. The device is based around a suitably
small ESP32-S3 microcontroller and powered by a
300 mAH LiPo battery.

You may wonder what possible use such a
single-button device could have. MagiClick’s creator
‘MakerM0’ lists a few, including a stopwatch, clock,
pomodoro timer, Bluetooth camera shutter, and
music playback controller. With a built-in six-action
motion sensor and speaker, we’re sure some other
interesting uses can be found.

A classic use for a macro pad is for gaming, since
you can map all the functions you need into
an ergonomic layout for maximum efficiency
and speed. Fed up with the tiny keys on a small

7-inch laptop when playing Diablo III, Rodrigo Feliciano built
the ‘Bad Thing of the Edge’. A mechanical keypad designed
for the left hand, it features keys for commonly used game
functions such as skills, potion, map, and inventory. It can be
used for others games, too, if you alter the buttons table in the

firmware. For extra
excitement, the macro
pad features LED strips for
a variety of switchable lighting
effects. Under the faceplate, the
unit is powered by a Raspberry Pi Pico
mounted on a custom PCB housing the
Cherry MX switches. All the build details and
files are in the GitHub repo.

HSMAG.CC/OCREEBMK2

HSMAG.CC/MAGICLICK

HSMAG.CC/BADTHING

Ocreeb MK2

MagiClick

Bad Thing of the Edge

Above
This twelve-key macro
pad can be extended
with additional modules

http://hsmag.cc/OcreebMK2
http://hsmag.cc/MagiClick
http://hsmag.cc/BadThing

24

FEATURE

Custom Controllers

Games Controllers
Improve your gaming with these custom controllers

I nput Labs has designed a controller under a
Creative Commons licence so you can build
it and customise it to your own liking. Based
on a familiar twin-handle gamepad design with

a D-pad, buttons, and analogue thumb-stick, it also
features a touchpad, scroll wheel, and two gyro
sensors for tilt mouse control. The makers say it’s
suitable for playing first-person shooter or mouse-
cursor games. It’s also ideal for anyone requiring
controller modifications to suit particular needs.

By following the instructions and 3D printing the
parts, you can build the standard reference design – or
you can use community modifications, or make your
own customisation choices. As well as a custom PCB,
you’ll need a Raspberry Pi Pico to run the open-source
firmware, which includes per-genre profiles. Everything
you need is detailed on the site.

G amers with limited
mobility may well
find the voice
control capability

on Bob Hammell’s custom
controller very useful. With a
built-in microphone and voice
recognition module, this Arduino
Micro-powered gamepad enables
you to interact with games using
voice commands, in addition
to using the standard buttons
and thumb-stick, which can

be mapped to emulate various
keystrokes for the game.

When using voice commands,
an animated microphone icon is
shown on the mini OLED screen,
to show that the controller is
listening. Whenever a command
is recognised, a relevant icon
is displayed to confirm it. Voice
commands can be used for
seven standard game functions:
jump, run, shoot, up, down, left,
and right.

R ather than building your own controller, you could always
upcycle an old piece of hardware. That’s exactly what The Beardo
Guy did with a 20-year-old N-Gage QD handheld, by creating an
app to convert it into a Bluetooth controller for gaming on a PC

or other device – you can watch him playing Rayman Origins with it on
YouTube: hsmag.cc/NGagePadYT.

The software can be found in the GitHub repo and will run on all Symbian
Series 60 1st and 2nd Edition devices. The repo also contains details for
building a DIY USB dongle to use as a Bluetooth receiver on the target device.

HSMAG.CC/ALPAKKA

HSMAG.CC/VOICEPAD

HSMAG.CC/NGAGEPAD

Alpakka

Voice-Enabled
Video Game Controller

N-Gage QD Bluetooth

Below
With the app running, the N-Gage can be used
as a wireless controller for another device

Above
The Alpakka game
controller includes
two gyros for tilt control

Below
This retro-style gamepad
features a microphone to
issue voice commands

http://hsmag.cc/NGagePadYT
http://hsmag.cc/Alpakka
http://hsmag.cc/VoicePad
http://hsmag.cc/NGagePad

25

FORGE

Mice
Make a mouse to suit your exact needs

L abelled the ‘Awesome Mouse’ by its
maker Colton Baldridge, this is a 6DOF,
3D-printable 3D mouse designed for use
with CAD programs and other modelling

applications. While commercial equivalents are
expensive, Colton’s aim was to create a low-cost
($20 or less), open-source 3D mouse. To this end,
all the parts can be 3D-printed, apart from the PCB,
fasteners, and three dime coins (used as sensing
targets). All the files, including PCB Gerbers, are
on GitHub, along with the firmware for an STM32

microcontroller and the PC software. The mouse
comprises a hollow 3D-printed knob mounted on
a flexure atop the custom PCB which has six coils
to detect changes in an AC magnetic field as the
mouse knob is moved around – up, down, left,
right, or rotated in either direction.

S eeking to explore the limits of size and
weight in gaming peripherals, maker J
opted to build an ultra-small, ultra-light
gaming mouse from scratch. Featuring a

Pixart PMW3389 motion sensor and ATmega32U4
microcontroller on a custom PCB, it weighs a
mere 10g, with a volume of 18 cm3. A 3D-printed
skirt is used on the base to protect the sensor
lens and provide a smooth surface for movement,
while a shell fits on top for easier handling. You
can find all the files on the project page.

HSMAG.CC/OS3M

HSMAG.CC/TINYMOUSE

OS3M Mouse

Crazy Controllers

Tiny Gaming
Mouse

Here are a few of the more ’out there’ controller designs we’ve seen…

•	 Doom Keycap (hsmag.cc/DoomKeycap): Yes, you really can play DOOM on the tiny
screen embedded in this RP2040-based keycap!

•	 FlopKey (hsmag.cc/FlopKey): This utterly impractical ‘keyboard’ involves inserting a
different floppy disk to type each letter.

•	 The Thing That Goes Clack and Ding (hsmag.cc/ClackDing): Keyboard not noisy enough
for you? Add this clacker.

•	 Rubik’s Cube Keyboard (hsmag.cc/CubeKB): The keys are located on three sides of a
cube, although it doesn’t twist… yet.

•	 Haunted Keyboard (hsmag.cc/HauntedKB): One for Halloween, this will scare folks with
its eerie AI responses.

•	 Mintboard (hsmag.cc/Mintboard): A tiny Bluetooth keyboard that fits inside an Altoids
mints tin.

Below
This low-cost 3D mouse
comprises mostly
3D-printed parts

Above
This truly tiny mouse is fully functional and
designed for gaming

http://hsmag.cc/OS3M
http://hsmag.cc/TinyMouse
http://hsmag.cc/DoomKeycap
http://hsmag.cc/FlopKey
http://hsmag.cc/ClackDing
http://hsmag.cc/CubeKB
http://hsmag.cc/HauntedKB
http://hsmag.cc/Mintboard

SUBSCRIBE
TODAY

£30 UK / €43 EU / $43 USA & Canada

GET SIX
ISSUES
FOR JUST:

FREE
Pico W

for subscribers!

SUBSCRIPTION

Apr. 2024
Issue #77 £6

hsmag.cc Issue #77

DOLPHINS CARBONIZING MUSIC AIR

April 2024

DIY Robot Dog
Build your best friend

3D printer calibration
Perfect prints every time

Chip design
Create personalised silicon

Make the perfect keyboard, mouse, and gamepad

CONTROLLERS
CUSTOM

9
77

25
15

51
40

06

77

Apr. 2024
Issue #77 £6

hsmag.cc/subscribe

SUBSCRIBER BENEFITS:
> �Get every issue of

HackSpace magazine
delivered to your door

> �Early access to the
PDF edition

> �Learn from hackers and
makers in our in-depth
tutorials

> �Get a free Raspberry Pi
Pico W

Subscribers will get a voucher giving them the chance to purchase one Raspberry Pi 5 from reserved stock at The Pi Hut (thepihut.com) for full retail price. Reserved stock means that these will be available even if they are out of stock for general purchase.

SUBSCRIPTION

http://hsmag.cc/subscribe
http://thepihut.com

How I Made: TOPS

FEATURE

Q uadrupedal robots are
quite peculiar. While
most robots perform tasks
that humans and animals
can’t quite accomplish,
quadrupeds mimic natural

movements, which is harder to do.
This very challenge is what has inspired

me to build several of my own robot dogs
over the years. So, what exactly goes into
building a robot dog? Just how close can
you come to replicating an actual dog? And
how cheaply can this be done?

Setting out to answer these questions
led me to build my latest quadruped named
TOPS (Traverser of Planar Surfaces). TOPS is
an open-source twelve degrees of freedom
(DOF) quadrupedal robot that can walk, trot,
and dance. Other than the motors, bearings,
and screws, TOPS is fully 3D-printed.

The name TOPS also spells SPOT
backward: SPOT being the famous Boston
Dynamics robot.

This project was heavily inspired by the
YouTuber James Bruton, who built openDog
V3, another open-source quadrupedal
robot. The goal of this project was not only
to create a functional robot, but to make
a robot that provided a sense of realism.
Getting a quadruped to walk is one thing,
but getting a quadruped to walk with
dynamic motion is another.

HOW
I

MADE
TOPS -
TRAVERSER
OF PLANAR
SURFACES

 By AAED MUSA

28

29

LENS

MAKING MOTION
The actuator design of TOPS was the first
step in the build process. The most ideal
actuator design for a quadrupedal robot is
one that follows the quasi-direct drive (QDD)
scheme. A QDD actuator can be defined
as an actuator that has a low enough gear
reduction (under 10:1) to retain the benefits
of a direct drive actuator (like efficiency,
speed, and backdrivability) while also having
a high torque output. To ensure that high
torque is achieved with a low gear ratio, it is
best to use a high-torque motor. I decided
to use Eaglepower 8308 90KV brushless
motors that I found on AliExpress for only
$60 each. Apart from being cheap, I chose
these agricultural drone motors because of
their flat and wide pancake-like shape.

Pancake-style brushless direct current
(BLDC) motors have high torque

densities due to having a large gap radius
or distance from the centre of the motor
to the rotor. I found the theory and design
of an optimal actuator best summarised in
an article by the MIT Biomimetic Robotics
Lab entitled ‘Optimal Actuator Design’
(hsmag.cc/OAD).

Left
My fully assembled
robotic pet

Above
These motors gave
me plenty of power
for just $60

http://hsmag.cc/OAD

30

How I Made: TOPS

FEATURE

After motor selection, I had to figure out
the gear reduction. Planetary gear drives
are the common choice for QDD actuators
due to their compactness and simplicity.
I decided to go with a 9:1 planetary gear
reduction since it puts the peak theoretical
speed of the actuator at around 222 rpm at
22.2 V. This seemed to be more than fast
enough. I used helical gears since they
provide gradual contact between engaged
teeth, making them both quieter and able to
withstand higher loads when compared to
standard spur gears.

Motor control was the next item on
the actuator design list. Motor controllers
are what transform a purely mechanical
actuator into a dynamic robotic limb. While
drones and RC cars use ESCs (electronic
speed controllers) to control a brushless
motor, field-oriented control (FOC)

controllers are the preferred boards for
robotic applications.

FOC is a control method for brushless
motors that allows for closed-loop position,
velocity, and torque control. FOC controllers
can smoothly drive a BLDC motor with
an attached load, which is why they are
best suited for robotics. FOC controllers
essentially turn a BLDC motor into a virtual
spring that can be dampened or stiffened
by changing different gain parameters. This
added compliance to a robot’s actuators
enables abilities like shock absorption,
recovery from being pushed, and the ability
to walk across uneven terrains. The FOC
controller that I chose to use for this project
was the ODrive S1. The controller setup
is quite simple: the motor’s three phases
connect to the controller and an encoder
magnet is added to the motor’s shaft. An
onboard or external encoder is then able to
read the motor’s position. From there, the
motor can be calibrated and configured with
different settings.

ALL TOGETHER
The full actuator design has three sections:
bottom, middle, and top. The bottom
section houses the ODrive controller which
reads the position of the brushless motor
using the ODrive’s onboard encoder.

The middle section houses the brushless
motor. This section features slots around
the radius of the housing which act as air
vents for the passive cooling of the motor.

The top section houses the planetary
gear-box and the output shaft. The sun
gear is directly mounted onto the BLDC
motor and the planet gears are suspended
on a planet carrier. The actuator utilises

Below
My actuator ready to be
assembled into the robot

Below
Planetary gears give good reductions
without taking up too much space

Right
The motor controllers help hold the
motor in the right position

LENS

31

it cannot measure the absolute position of
the output shaft due to the 9:1 reduction. I
therefore decided to use limit switches to
home the actuator.

The first step in programming the leg
was to derive inverse kinematic equations
to accurately place the foot in a known
position in 3D space. The derivation process
largely consisted of simplifying the leg
design into a series of lines and solving for
different angles by forming triangles with
those lines. These equations allow the
computer to know exactly how to position
each actuator to place the foot at an input
X, Y, Z position.

SECOND LEG DESIGN
Following the first leg design, I saw room
for improvement in the areas of weight,
communication, homing, and overall
aesthetic.

To reduce the weight of the leg, I decided
to add weight-reducing slots and holes
to all of the parts; however, the biggest
weight reduction came from completely
redesigning the knee actuator. Previously,
the knee actuator design, like the other
actuators, had a 9:1 planetary gear-box. It
was then connected to a 1:1 belt pulley
system to reach the knee-joint. This time,
I decided to remove the planetary gear set
from the knee actuator and incorporate the
9:1 reduction into the belt pulley system
instead. This also reduced the overall width
of the leg, therefore needing less torque to
be applied to the abad actuator.

The second leg design prototype
weighed 2.98kg, which is 0.44kg lighter
than the initial prototype.

13 3D-printed parts that I printed on my
Creality CP-01.

Below are the specs for a single actuator:

•	 Total costs: $247
•	 Total weight: 935g
•	 Dimensions: 133 mm × 105 mm
•	 Peak torque:16.36 Nm.

FIRST LEG DESIGN
With the actuator design complete, the next
step in making TOPS was to design a single
3DOF leg. I went through two different
leg designs before moving to the full robot
design.

A 12DOF quadrupedal robot is made
up of four legs, each leg having three
actuators. The three actuators are the
abduction/adduction (abad), knee, and hip
actuators; each is named after the joint that
they control.

One design choice that was made
early on was to integrate parts of the leg
design into each actuator’s design rather
than designing the leg around a standard
actuator. In other words, each of the
actuators has a slightly different exterior
design. This helped to limit the number of
extraneous parts needed.

The knee actuator, which rotates the
forearm, uses a 1:1 belt pulley reduction
to reach the knee joint. The forearm is
made from a carbon fibre tube. The foot is
in the shape of a sphere and was simply
3D-printed for this prototype. In total, the
single-leg prototype weighed 3.42kg.

To test the leg, the actuators were
connected to a Teensy 4.1 microcontroller
via UART.

While the ODrive’s onboard encoder can
measure the absolute position of the BLDC,

Below
The actuator brings
together the motor and
the gear-box

Left
The first leg
design was a bit
big and heavy

Left
All the actuators for
one leg

How I Made: TOPS

FEATURE

Previously the communication protocol
used to communicate the ODrives with
the Teensy was UART. Unfortunately,
the Teensy only has eight UART ports
when twelve are needed for the full
robot. I decided to switch to CAN bus
communication.

CAN bus is commonly used in modern
vehicles, and it simplified the wiring as only
two pins on the Teensy are needed: CAN
High and CAN Low.

Another change made in the second
prototype was to get rid of the limit
switches for homing and, instead, utilise
the physical limits of each joint. When
performing the homing sequence, each
joint is moved to its physical limit. Since this
position is unchanging, it can be considered
the home position. This home position can
then be worked into the inverse kinematic
equations as constant offset values.

FULL ROBOT DESIGN
With the second prototype made, I felt
comfortable moving onto the full quadruped
design. I used four carbon fibre tubes to
make up the frame of the robot. Each leg
then slides onto two of the tubes and is
secured with clamps built into the abad
actuator housing. The front of the robot
houses a small 16×2 LCD screen to show
the robot’s current mode of operation.

TOPS is controlled with an eight-channel
RC remote and is powered by a 6S (22.2 V)
5200mAh LiPo battery. The actuators are
directly powered by the battery while the
Teensy is powered by a 5 V regulator. The
battery is monitored by a voltage display on
the left side of the robot.

Below
Assembled QDD actuators

Above
Leg design V2

Right
Leg design V1 drawing

It took three weeks to print everything
on my single printer, after which I had to
put everything together.

First, I built the twelve actuators, then
the four legs. Finally, I brought these
together to make the full robot.

I decided to cast the feet in 30A
silicone, which is somewhere between
the squishiness of a rubber band and an
eraser. First, I had to 3D-print the sole and
the mould.

To cast the feet, each sole was
suspended in the mould and then I poured
in the A-B silicone mix to cover the surface
of the sole. As a result, the foot has a
squishy and high-traction silicone exterior
and a rigid 3D-printed sole that allows it to
be connected to the forearm.

GAIT SEQUENCING
The basic principle of programming a
quadruped to walk is to have a pair of
diagonal feet in contact with the ground at
any given moment: this maintains balance
and is otherwise known as trotting. Getting
a single foot to take a step forward involves
four commands:

1.	 Move foot up
2.	 Move foot forward
3.	 Move foot down
4.	 Move foot backward

to original position

Getting the robot to walk forward is
essentially a two-step sequence. First, two
diagonal feet must simultaneously take a
step. As these feet touch the ground, the
two other diagonal feet begin to take their

32

LENS

33

step. As those feet begin to touch the
ground, the sequence is repeated.

To walk in another direction, step 2 of the
above step sequence is replaced with the
desired direction of travel (backward, right,
or left), and step 4 is replaced with the
direction opposite to the direction of travel
(forward, left, or right) to move the feet
back to their original positions.

To rotate the robot, a slightly different
approach is taken. In this case, diagonal
feet are moved sideways but in opposite
directions. While the sequences
themselves are simple, programming them
is a bit more challenging. There are many
variables to consider, like the amount of
time each leg is off the ground, how far the
legs lift off the ground, how big each step
is, and how fast the legs accelerate. These
factors not only determine if the robot can
walk in the first place, but how dynamic
that walking motion is.

LOOKING BACK

•	 Total cost: $3300
•	 Total project timeline: three months
•	 Total weight: 13.4kg
•	 Weight of 3D-printed parts: 4.5kg
•	 Full battery run time: 10–15 mins

Constructing a robotic system from
the ground up was a great engineering
exercise. As it turns out, a 3D-printed
planetary gear-box can work quite well for
large-scale projects with heavy loads. I plan
to continue to try out different gearing,
motors, and manufacturing methods for
more optimal actuator designs. In terms of
dynamic gait, I think that TOPS performed

fairly well; however, there is lots of room for
improvements.

The main mechanical limitation of this
project is that the knee-joints skip a lot due
to the small contact area between the belt
and the smaller gear. Tensioning the belts
did not fully solve this issue. In the future,
I think it would be best to keep a similar
configuration to the initial leg design and
have the gear reductions built into the knee
and then use a 1:1 belt pulley.

One of the shortcomings of this project
on the software side is having to manually
calibrate each leg on startup. This became
quite a labour-intensive process throughout
the testing phase.

Another software shortcoming was a
lack of environmental feedback. In the
future, it would be best to use an inertial
measurement unit (IMU) so the robot can
correct itself if it encounters something
unexpected.

I also feel that the stepping sequences are
a bit rudimentary and could be smoothened
to reflect a more natural gait. I hope to
address these in my future robot dog
projects. Until then, it’s safe to say that TOPS
is my most advanced robot dog to date.

Below
Leg Design V2 Drawing

Below
TOPS dancing

Left
TOPS circuit schematic

Michael

Omotosh
o

Michael Omotosho

INTERVIEW

34

M ichael Omotosho is a design
engineer. He’s currently
working at Jaguar Land
Rover, but he’s worn several
hats in his career, working
on projects to help elderly

people retain their independence for longer,
providing solar power to communities in
Tanzania, and judging the V&A Innovate
National Schools Challenge 2022–23. Like
any good designer, when he sees a problem,
he wants to fix it. That goes for invisible
problems too, like air pollution.

The statistics around air pollution are
shocking. 44,000 deaths a year in the UK
have air pollution as a contributing factor.
Worldwide, that figure rises to seven million.
Air pollution leads to children growing up
with asthma, reduced brain development,
and a whole host of other complaints. We
need to make the invisible visible, and to do
that, we need an engineer.

 HackSpace magazine meets…

Michael Omotosho
Sometimes data isn’t enough. Sometimes we need a little robot that
tells us what to do!

Michael

Omotosh
o

LENS

Above
Information is
everywhere – Michael
is helping to get it
into the right hands

35

Michael

Omotosh
o

Michael Omotosho

INTERVIEW

36

make food machinery. They used to test
the machinery, so the cooking oil that
came from it used to go up into the air,
and I just used to cough a lot.

Once I got into that rabbit hole, I was
like – crikey! This thing had a big impact
on my health, and I didn’t think anything
of it at the time. I left the company, and
then my cough reduced. At that moment,
I started to wonder what else is out there
that’s killing us slowly that we don’t
know about.

Taking my kids to school, I realised
that there’s something out here during
the high traffic times, and I should
validate the notion in my head that this
is actually an issue. So I went to the
school and start asking questions and
asking parents, and I started seeing the
vehicles idling and traffic jams and so on.

I tried to have conversations
with parents, but most of them
just didn’t know anything about
it.

So I put a survey out to the
schools to understand what they
knew about air pollution, and the
result was quite shocking. No one
really cared about it.

I had to find a way to bring
about change. How do we get
more Greta Thunbergs out there
but in a passive way?

How can we make them be passive
activists? As a parent, I’m doing my best
within citizen science to bring that
awareness. Once I finish talking, nothing
happens in the morning, but the kids can
carry on and push this further than I can.

That’s where the idea for the Mindful
Droid came about. I wanted to get
kids involved in making and building
something and actually understanding
what the benefits are.

 HS So, what does it do? Are there sensors
onboard the Mindful Droid? Or does it pull
data from other places?

 MO The idea for the Mindful Droid is to
be a mobile air quality monitor. But it’s not
just that. It also displays readings from
existing outdoor air quality monitors.

 HackSpace Morning Michael. First
thing’s first: who are you?

 Michael Omotosho I’m a design engineer
by profession. I studied automotive
design at university. I’ve always had a
mindset for solving problems regardless
of how big or small they are. It started
with tinkering at home when I was a kid,
and breaking things most of the time,
and from there it’s just evolved into my
passion. To see ideas come to life better
than what’s already existing… I don’t
want to use the analogy of making the
world a better place, but that’s the kind of
motto I go with.

From there, I’ve just spiralled into
coming up with various random things
that probably don’t even make sense.
Think of something better, that was
my mindset. From there, I went
on to work in engineering and
had the chance to start my own
company as a design engineer
and industrial designer. I used
to consult for NGO-related
companies looking to enhance
local communities that were
lacking in some way, like
creating solar power hubs for
use in communities and local
businesses in Tanzania, for
example: community-focused,
and helping to improve people’s way of
life. That’s kind of my passion project.
That and questions around disabilities,
like how can we make $50 prosthetics
with additive manufacturing? Right out
of university, those were the projects
that I wanted to involve myself in. That’s
where my passion grew to helping people
and doing something purposeful.

I currently work for Jaguar Land Rover
as an innovation and technology lead.
And that’s an interesting space to be
in as well. In relation to moving from
internal combustion engines to electrical
vehicles. How do we enhance that? How
do we meet our sustainability goals, and
so on?

 HS To borrow a phrase, that sounds very
much like you’re an activist engineer.

 MO Yeah, pretty much. I am an activist
engineer – I’m constantly trying to try to
be doing something. And that leads into
the Mindful Droid and all the things that
I’m looking into with that.

I came across an opportunity thanks
to a colleague of mine, Jude Pullen.
He pointed me in the direction of an
environmental challenge organised
by RS Components, after the COP26
conference (the 2021 United Nations
Climate Change Conference, which was
held that year in Glasgow, Scotland).

I have to be honest, I was quite
ignorant and naive about air pollution.
I knew it existed, but I didn’t know how
bad it was in day-to-day life. And I was
introduced to this project with a brief to
take the air quality data that we already
have and make it more meaningful.

And I came across an article about Ella
Kissi-Debrah. At that moment, I thought
to myself, wow – this goes further than
I realise. It takes a huge percentage of
lives, and there’s no real awareness or
action about that. [Ella was a nine-year-
old girl whose death was the first in
the UK to be officially attributed to air
pollution, after a long fight by her mother,
Rosamund Kissi-Debrah, to increase
awareness of the health impacts of air
pollution and what we can do about it].

I stopped there and thought about the
companies that I’ve worked with, and
I realised that I have a chronic cough,
which is occupational asthma. I realised
that I’ve actually been inhaling the
fumes from cooking oil, because one
of the industries I was able to work in
was food manufacturing, and we used to

I have to be
 honest, I was

quite naive and
ignorant about

 air pollution

”

”

Michael

Omotosh
o

37

LENS

Above
Michael wants to
give children and
schools an easy way
to demonstrate that
their air quality needs
to be better

Michael

Omotosh
o

Michael Omotosho

INTERVIEW

38

The company that sponsored me, RS
Components, created an outdoor air
quality monitor. So the goal was to be
able to pick up the API data from its
readings and also be able to – let’s say
you are within school premises, for
example, and you’ve got your Mindful
Droid with you, it should be able to get
the exact reading of what’s going on
around the school.

Then if you were to go away from the
school, you can tune into the Mindful
Droid’s standalone sensors, which are
VOC and carbon monoxide sensors.

The aim of this is to collect data.
 It’s logging data in order to send that
data to the local authorities where
the action is being taken.

You push it to the people higher
up, the policymakers. We can send
them a constant stream of emails
around the level of pollution around
local schools, which probably isn’t
very nice for them, but that’s the
power of being a passive activist: you’re
not screaming in people’s
faces, but you’re passively sending
emails and getting the information
across.

Below
Data is more useful on an LED matrix than it is
locked away in a text file

For now, we know that kids are
actually learning, they’re bringing
awareness and they’re letting people
know that air pollution is killing us.

 HS So you’ve managed to get the
Mindful Droid into schools?

 MO We did a demo with a school in
Bradford, which is still in progress.
The plan is to have the Mindful Droid
be a free source of data collection for
kids to have so that they can go beyond
just what I have scoped for in my head.
There’s an opportunity there to go into
the Internet of Things and hack it –
that’s the goal. Obviously it comes with
a cost as well. So far, one school has the
Mindful Droid and the outdoor monitor,
but the hope is for every child to be able
to build their own Mindful Droid from
their home or from their classroom, and
push it beyond its limits.

 HS You designed it with the intention
that it would be built by children; did
that present you with any challenges?

 MO Big time! At the moment, the
challenge is with the PCB and the
sensors, being able to put everything
together. I’m trying to make it as simple
to put together as possible, rather than
presenting children with the technical

challenges of let’s say, soldering. How
can we create something that’s as easy
as Lego for kids to put together?

So that’s the vision; that’s also been
the challenge, to be honest. Because the
next stage for the Mindful Droid is the
independence of actually building one
without going through the extensive
work of learning how to solder, and
splicing of wires and whatnot.

 HS That’s quite a barrier, isn’t it?

 MO It is. I haven’t soldered since I
was in sixth form. Then I picked up a
soldering iron when I started working
on this and was like: wait a second, it’s
not the same as it was before. There are
so many things that should have been
obvious to me, but I didn’t realise until I
went on that journey myself. If it was a
challenge for me, then I could imagine
what a challenge it would be for children
as well. So that’s where it’s like we need
to make this simpler.

 HS For anyone who doesn’t know the
topography of West Yorkshire, Bradford’s
quite hilly. Does that have an effect on
pollution levels?

 MO Yes, 100%. Bradford does have high
pollutant levels. There’s an organisation
called Born in Bradford which monitors
children, newly born kids and their growth
levels and how pollution is contributing to
their health. One of the areas of research
is how air pollution is affecting children’s
brain development.

Another aspect of air pollution is that it’s
usually the more economically deprived
areas that are the most polluted.

It’s usually the
 more economically

 deprived areas
that are the

most polluted ”

”

38

Michael

Omotosh
o

39

LENS

Above
Want to make sure
you’re 3D printing
accurately? We have
a tutorial for that!
Turn to p78 for more

39

Michael

Omotosh
o

Michael Omotosho

INTERVIEW

40

Bradford’s a great place to be
– there are so many things happening
there right now, but we have to realise
that this is a problem, and this is what
they’re doing to solve the problem.

 HS OK, so what would success look like
for Mindful Droid?

 MO That’s a very, very good question.
And it’s still something I’m figuring
out. I think success for me is having
children being able to build a Mindful
Droid by themselves, and using it so
stories like Ella Kissi-Debrah’s doesn’t
come back to bite us again. That’s what
success looks like to me.

It’s more about – I wouldn’t say
acceptance, but the will for people to
have the awareness that this is what
the dangers are, and this is how to
do it. Rather than going out there to
spend money to save yourself and keep
yourself in better health, why not use
these tools in the education system,
in institutions, and say this is an
opportunity for you to live better.

I want every child to understand the
effects of air pollution and knowing
that we’re taking preventive measures.
Informing people, and having the social
responsibility to make things better.
And like I said, the Mindful Droid is a
template to just start something; if you
want to put more activist information
on it to make people stop doing what
they’re doing, then by all means, hack
the life out of it and push it out there.
That’s the goal.

 HS There’s a phrase that keeps
popping up in your video series about
the development of the Mindful Droid:
“validating the decision-makers”, or
rather, giving them the information
to validate their choices. I guess the

people in charge of city councils know
that pollution is bad. But unless they
can see how bad, it’s not a priority.

 MO 100%. It’s making the invisible
visible – we can all have debates in
high places where they’ll just move
on to the next one after the allotted 30
minutes of council time or whatever.
But if you constantly have your own
children screaming at you saying this
is bad, and we have data to show that
it’s bad, then in the back of your mind
you’re going to feel bad for not taking
action.

So validating it from their own
source is what matters. Rather than
making it look secondary, it’s primary
to them. And that’s where the action
happens.

I feel like in the space of air
pollution, there is no validation.
Ella Kissi-Debrah’s mom – she went
through that experience. And she’s
done a lot in terms of Ella’s Law and
so many [other] things that she’s doing
to bring awareness. But she had to go
through all that validation for herself
to be able to bring that law to life.

It’s a similar situation for all the
policymakers out there – they need
to go for that validation process as
well. And if Mindful Droid gets into a
household, then it can speak louder
than just the words we say, because
having a physical device giving you
sensor readings is relatable.

 HS Have you spoken to Ella’s mum
as part of the Mindful Droid
development process?

 MO Yes. And this feels great. She
is looking into it further than I am
because she’s asking how we can
actually eradicate air pollution, not

just monitor it. She played a big role
persuading the Mayor of London to
introduce the Ultra Low Emissions
Zone (ULEZ).

She’s been very supportive of Mindful
Droid – seeing that people outside of
my bubble relate to it
means it’s going beyond just my
passion project.

 HS I’ve looked at scientific data
that’s come out of initiatives such as
Bradford Clean Air Day, and I think I
saw one statistic saying that 1 in 20
deaths in West Yorkshire is linked to
air pollution, which is unbelievable.

 MO Yes. It’s very strange. And
sometimes I don’t understand how
it’s still so big. When I was in the
thick of it before, I was so enraged by
what was going on. And I think that’s
what got me into the Clean Air Day
opportunities, because I was super-
frustrated with the fact that, besides
the ULEZ in London and a few clean air
zones in other cities, in reality, nothing
has actually been done to take action.

The frustrating part is that while
we’re moving to electric vehicles, it’s
really hard to justify why parents
should stop driving their internal
combustion engine-powered vehicles
and switch to EVs, because again, the
cost of it is not cheap.

From my point of view, the action is
driving further away from school and
walking in a few minutes to school,
even when I’m late, because I know
what I know about the effects of cars
around schools. I’m trying to do better,
and I think that’s what really matters.
Smaller levels, smaller changes, that’s
where the differences come in. And I
think that’s where it gets better for all
of us.

Michael

Omotosh
o

41

LENS

Left
Making things out
of cardboard isn’t
just for kids: real
engineers use it all
the time as a cheap,
easy-to-work-with
prototyping material

Objet 3d’art

REGULAR

42

Objet 3d’art

REGULAR

42

 Objet 3d’art

3D-printed artwork to bring more beauty into your life

W e’ve talked a few times in this magazine
about how 3D scans of biological models
contain a level of detail and interest that is
rarely found in designed models. We’ve been
testing out the Prusa XL recently, and decided to

put the large print volume to the test with this Triceratops skull.
We then created a mount for it (by using the original 3D model
as a negative volume in PrusaSlicer, and so creating something
that it mounted on perfectly). We finally completed the build
by wrapping a string of LEDs behind the skull so it could be
backlit. Apparently, some people find backlit skulls creepy, but
we find them fascinating.

The skull’s available for download at hsmag.cc/triceratops,
and you can scale it to any print volume.

Right
While their beak-like
mouth is very bird-
like, Triceratops
did have teeth

Above
LEDs make
everything better

http://hsmag.cc/triceratops

SPARK

43

LENS

43

Above
The largest
Triceratops skull ever
found was over 2.5 m
high, so ours is a bit
tiddly in comparison

44

Letters

COLUMN

ATTENTION
ALL MAKERS!

If you have something you’d
like to get off your chest (or
even throw a word of praise

in our direction) let us know at
hsmag.cc/hello

ONE-HANDED
The solder sustainer looks great, but tell us honestly – is it any good? It looks more
like a film prop from a dystopian cyberpunk epic than a maker tool, but I’m no good at
soldering, and I’ll take any help I can get.

Harry
Luton

Ben says: I have no idea; I’ve never tried it. However, the version we featured is already
outdated. Take a look at the Solder Sustainer v2 here: hsmag.cc/sustainerv2.

EXTRA LARGE; EXTRA SPECIAL
After reading your review of the Prusa XL, it feels like it could
become an era-defining 3D printer in the same way that the
Ender 3 did when it brought reliable(ish) 3D printers to a
whole new group of makers.

Mark
Coventry

Ben says: We’re super-excited about the possibilities of the
Prusa XL – and there’s no doubt that it’s capable of doing
things that no other printer on the market can do. Era-
defining? Maybe. The Ender 3 made 3D printing accessible to
so many people by being a functioning 3D printer at a price
people could afford. The Prusa XL is a great 3D printer, but is
it at a price people can afford? These are difficult economic
times, and £1700 is a lot of money, and that only gets you the
single tool-head version.

 Letters

http://hsmag.cc/hello

SPARK

45

DEAD COWS
I really enjoyed Nicola King’s article on leather craft. It’s
not a material I’d thought too much about before now, but
looks like it could be a fun skill to learn, and might even
prove to be useful.

Henry
Truro

Ben says: Readers with phenomenal memories might
remember that back in issue 1 of HackSpace mag, we went
to Cheltenham Hackspace to learn how to make a leather
belt. I still wear this belt almost every day. It might be
psychological, but it just feels more comfortable than any
of my shop-bought belts.

BROKEN GLASS
It never clicked for me before that stained glass is soldered
together. I’m not sure how I thought it was connected, but for
some reason, a soldering iron just didn’t seem like part of the
process. After seeing the stained glass succulent in HackSpace
issue 76, I’ve decided to give it a go.

Freddy
Frome

Ben says: Electronics and stained glass seem a long way
removed, don’t they? There are specialist soldering irons that
you can get for stained glass but, as far as I can tell, the only
difference is that they can transfer heat a bit quicker, which
means you can create the large blobs of solder quicker. Let us
know how you get on.

HAPPY BIRTHDAY RASPBERRY PI
I can’t believe it’s been twelve years since Raspberry Pi first
launched. Hats off to Eben and the whole team. I must admit I
was a bit sceptical when they first launched (I thought it was
just going to be a flash in the pan). Oh boy, have they proved
me wrong.

Elizabeth
Glasgow

Ben says: Absolutely. Due to launching on the 29th of
February, Raspberry Pi just celebrated its third birthday,
despite being twelve years old. This is traditionally
named the Poseidon birthday – there’s an old tradition
of leap day birthdays being named after Greek gods,
with the first birthday (after four years) being the Apollo
birthday, the second (eight years) being Athena. Poseidon
– where we are now. We’ll see you all in another four
years for the Dionysus birthday.

Buy online: magpi.cc/store

	 QuickStart guide to setting up
your Raspberry Pi computer

	 Updated with Raspberry Pi Pico
and all the latest kit

	 The very best projects built by
your Raspberry Pi community

	 Discover incredible kit and
tutorials for your projects

200 PAGES OF RASPBERRY PI

http://magpi.cc/store

HACK MAKE BUILD CREATE
Improve your skills, learn something new, or just have fun
tinkering – we hope you enjoy these hand-picked projects

FORGE
54

PG

3D SCANNING
Capture your friends in 3D prints

60
PG

LINUX 101: CRON
Make things happen at the right time

72
PG

ROBOT OPERATING
SYSTEM
Take control of your automata

62
PG

MASSIVE BUTTON
Get a big red button to make life a bit more colourful

MODEL RAILWAY
Build a custom PCB to keep your trains running

66
PG

Start your journey to craftsmanship
with these essential skills

SCHOOL OF
MAKING

PG48

48 KiCad

78
PG

3D PRINTER
TESTING
Make sure your replicator is really replicating

48

KiCad: Making an RP2040 game controller

SCHOOL OF MAKING

KiCad: making an
RP2040 game controller
Let’s explore adapting our RP2040 layout to make a USB game controller

I n earlier articles in this series, we
established that we have a reasonable
working RP2040 layout, so now it’s pretty
trivial to create new RP2040 devices. In the
last section we made an ‘Urumbu’-style
motor driver board, and in this section we are

going to create a simple USB game controller
(Figure 1).

It’s largely the same process we undertook for the
Urumbu project, but simpler. We started by making a
copy of our Urumbu project and cleaned out the files
in the new project copy that we wouldn’t need. So,
any particular files like the board edge geometry, the
Gerbers, and CSV files can be deleted as we will
replace them with ones generated for the new
project. We also quickly deleted all the Urumbu parts
we didn’t need from the schematic. Note that we
don’t really need to delete items in the PCB Editor,
as when we eventually pull in the updated netlist
and bill of materials, we can automatically delete
unreferenced footprints, and the new footprints will
be brought in.

Jo Hinchliffe (AKA
Concretedog) is a constant
tinkerer and is passionate
about all things DIY space.
He loves designing and
scratch-building both
model and high power
rockets, and releases the
designs and components
as open-source. He also
has a shed full of lathes
and milling machines and
CNC kit!

Jo Hinchcliffe

We want to add six tactile buttons to our RP2040:
four in a D-pad arrangement and two as A- and
B-style buttons. We want these buttons to be
momentary press buttons and ‘push to make’. We
then plan to use these buttons to connect one side
to a GPIO and the other side of the button to ground.

Scouring the JLCPCB parts library, we came across
the C221902 button. This part looked a nice size, so
we took a look at the EasyEDA schematic and
footprint. It has four pins and, reading the schematic,
we could see that if we connected pin 2 to a GPIO
and then connected all the other pins to ground, it
would work as we wanted. Additionally, with the four
SMD pads, it should mechanically be pretty strong.

With our choice made, we used the excellent
Wokwi EasyEDA 2 KiCad website to convert the
supplied footprint to a KiCad format: (hsmag.cc/
easyEDA2KiCad). We then added it to our custom
library. We covered this in earlier sections of this
series, but it’s pretty straightforward. You upload the
EasyEDA JSON file, and it then downloads a KiCad
PCB file with the footprint loaded into it.

Figure 1
The completed game
controller PCB

http://hsmag.cc/easyEDA2KiCad
http://hsmag.cc/easyEDA2KiCad

49

FORGE

Figure 3
Our completed PCB layout

Additionally, with the
four SMD pads, our PCB
should mechanically be

pretty strong ”
”

To add the buttons to our schematic, we created
a custom 4-pin schematic symbol and inserted it
into a hierarchical sheet. We wired the GPIO pin and
the other pins to ground and then brought out the
GPIO hierarchical pin. We then copied the
hierarchical sheet to create six versions, one for
each button, adjusting the label and the sheet name
as we added each (Figure 2). Again, we’ve covered
this in earlier sections.

Next, we assigned the new footprints to the
schematic symbols and began to edit the PCB
layout. We created a new board edge geometry SVG
in Inkscape with some mount holes before carrying
out the usual exporting of Gerbers, BOM, and
positional files for JLCPCB services (Figure 3).

Figure 2
Using hierarchical sheets makes it easy to add multiple
similar connected schematic blocks, such as the buttons

Having ordered the boards, one final fun activity
on the hardware side of this build was to export a
STEP file from KiCad to model around in FreeCAD.
To export a basic STEP file from the KiCad PCB
Editor, select File > Export and then choose STEP as
the output format. Note that we haven’t added
custom 3D models for all of our custom
components, so obviously the STEP file isn’t
completely correct, but it serves as a good enough
guide to model around in FreeCAD.

SCHOOL OF MAKING

50

KiCad: making an RP2040 game controller

Figure 4
Modelling a simple
enclosure in
FreeCAD to make our
controller a little more
comfortable to hold

 HIGH PERFORMANCE
In this tutorial, we’ve looked at creating a gamepad
that’s easy to understand and extend. However, if
you’re looking to build a high-performance gamepad,
then there are lots of things that you need to take
into account. Part placement is obviously a large
part of it, as you need to be able to press buttons
consistently and accurately.

However, another part is the software. Our
CircuitPython code could be improved, but ultimately,
if you’re looking for high performance, CircuitPython
isn’t the right choice. Fortunately, there is another
option.

GP2040-CE is a firmware for RP2040-based devices.
You can configure it with details of what hardware
is connected where. It understands more than just
buttons, so you can add analogue inputs as well.

There’s documentation on the project website:
hsmag.cc/GP2040-CE.

In the free-to-download book FreeCAD For Makers,
we explored using FreeCAD and the KiCad StepUp
workbench that allows you to create and position
custom 3D component models for use in KiCad. We
also explored all the skills needed to create all kinds
of models. With the knowledge you gain from this
book, you could certainly make a controller enclosure
like the one we quickly modelled (Figure 4).

THE SOFTER SIDE
Now we have created our board, it’s time to write
some code for it. We could write our code in C using
the Pico SDK. We could also use the Pico build of
MicroPython or CircuitPython. However, since we’ve
created a new board, let’s create a firmware tailored
specifically for it – we’ll create a custom build of
CircuitPython. This allows us to do a couple of things.
Firstly, it lets us name the specific pins, so rather than
using, say, GPIO0, we can use BTN_A. Secondly, it
lets us select which modules we want to include. In
our case, we’ll add Adafruit HID, which enables us to
use our game controller as an input device.

The general process for creating a build of
CircuitPython is given in the documentation at
hsmag.cc/BuildCP. We won’t go through it in detail,
so follow that guide to set up your environment.

Once you have everything set up, you need to
create this board. In the directory circuitpython/
ports/raspberrypi/boards, copy the Raspberry Pi
Pico directory into a new one named appropriately

for the gamepad. We’ve called ours hackspace_
gamepad.

There are two files that we need to adjust to take
into account our board. Firstly, there’s pins.c, which
should have the following:

#include "shared-bindings/board/__init__.h"

STATIC const mp_rom_map_elem_t board_module_
globals_table[] = {
 CIRCUITPYTHON_BOARD_DICT_STANDARD_ITEMS

 { MP_ROM_QSTR(MP_QSTR_UP), MP_ROM_PTR(&pin_
GPIO0) },
 { MP_ROM_QSTR(MP_QSTR_RIGHT), MP_ROM_PTR(&pin_
GPIO1) },
 { MP_ROM_QSTR(MP_QSTR_LEFT), MP_ROM_PTR(&pin_
GPIO2) },
 { MP_ROM_QSTR(MP_QSTR_DOWN), MP_ROM_PTR(&pin_
GPIO3) },
 { MP_ROM_QSTR(MP_QSTR_BTN_A), MP_ROM_PTR(&pin_
GPIO18) },
 { MP_ROM_QSTR(MP_QSTR_BTN_B), MP_ROM_PTR(&pin_
GPIO19) }
};
MP_DEFINE_CONST_DICT(board_module_globals, board_
module_globals_table);

In this, we’re adding items to the board module.
Specifically, one for each button.

http://hsmag.cc/GP2040-CE
https://hackspace.raspberrypi.com/books/freecad
http://hsmag.cc/BuildCP

51

FORGE

Left
We found it easiest to build CircuitPython using
Windows Subsystem for Linux

 OTHER GAMEPADS
This example should get you started in the world of
game controllers, and there are loads that you can
look at for inspiration:

•	 The Arduino Esplora is now retired, but was one of
the first hackable game controllers on the market:
hsmag.cc/ArduinoEsplora

•	 There’s an online community at PCBWay’s shared
projects site that includes many game controllers,
including: hsmag.cc/PicoGamepad

•	 Gamepads come in many shapes. They’re usually
designed around ergonomics, but you can get a little
creative. For example, this maker has built a bat-
shaped controller: hsmag.cc/BatController

We’ll add Adafruit HID,
which enables us to use

our game controller as
an input device ”

”

Next, we need to edit mpconfigboard.mk to be
the following:

USB_VID = 0x1209
USB_PID = 0xB182
USB_PRODUCT = "HackSpace gamepad"
USB_MANUFACTURER = "HackSpace magazine"

CHIP_VARIANT = RP2040
CHIP_FAMILY = rp2

EXTERNAL_FLASH_DEVICES = "W25Q128JVxQ"

CIRCUITPY__EVE = 1

FROZEN_MPY_DIRS += $(TOP)/frozen/Adafruit_
CircuitPython_HID

In this file, we define the type of flash chip we
have and also add any ‘frozen’ modules we want.
Frozen modules can be anything that we want to be
included on the build by default (other than the core
modules that are automatically included). Frozen
modules have to be in the circuitpython/frozen
directory, but you should find that the Adafruit_
CircuitPython_HID module is already there.

You can now create your build by going to
circuitpython/ports/raspberrypi and running:

make BOARD=hackspace_gamepad

This will compile your code, and you should end
up with a build-hackspace_gamepad directory. In
there, you’ll find a firmware.uf2 file that you can
load onto your gamepad just as you would any other
UF2 file.

Obviously this isn’t complete firmware as it’s only
the programming language. We now need to write a
program to get everything working. Fortunately, we
have all the modules we need baked in, so there’s
no need for anything there. We’ve drawn inspiration
from the CircuitPython example code here:

import time
import board
import digitalio
import usb_hid
from adafruit_hid.keyboard import Keyboard
from adafruit_hid.keyboard_layout_us import
KeyboardLayoutUS
from adafruit_hid.keycode import Keycode

A simple neat keyboard demo in CircuitPython

The pins we'll use, each will have an internal
pullup
keypress_pins = [board.UP, board.DOWN, board.LEFT,
board.RIGHT, board.BTN_A, board.BTN_B]

http://hsmag.cc/ArduinoEsplora
http://hsmag.cc/PicoGamepad
http://hsmag.cc/BatController

SCHOOL OF MAKING

52

KiCad: making an RP2040 game controller

Right
Our custom build
of CircuitPython
brings everything
we need, including
pin names
and modules

 LEAD-FREE
It’s often cheaper to get boards made using leaded
solder. However, this might be a false economy.
Leaded solder is harmful to both your health and the
health of our planet. In the case of a games controller
– something that you’re going to hold in your hand
time and again – it’s more important than usual to opt
for lead-free solder. Even if only a tiny amount gets
on your hands each time you use it, that will still add
up over the course of the controller’s life, and could
have negative effects on your health.

Our array of key objects
key_pin_array = []
The Keycode sent for each button, will be paired
with a control key
keys_pressed = [Keycode.UP_ARROW, Keycode.DOWN_
ARROW, Keycode.LEFT_ARROW, Keycode.RIGHT_ARROW,
Keycode.A, Keycode.B]

The keyboard object!

time.sleep(1) # Sleep for a bit to avoid a race
condition on some systems

keyboard = Keyboard(usb_hid.devices)
keyboard_layout = KeyboardLayoutUS(keyboard)

Make all pin objects inputs with pullups
for pin in keypress_pins:
 key_pin = digitalio.DigitalInOut(pin)
 key_pin.direction = digitalio.Direction.INPUT
 key_pin.pull = digitalio.Pull.UP
 key_pin_array.append(key_pin)

print("Waiting for key pin...")

while True:
 # Check each pin
 for key_pin in key_pin_array:
 i = key_pin_array.index(key_pin)
 key = keys_pressed[i]
 if not key_pin.value: # Is it grounded?
 print("Pin #%d is grounded." % i)
 # "Type" the Keycode or string
 keyboard.press(key) # "Press"...
 else:

 keyboard.release(key)
 time.sleep(0.01)

As you can see, we can use board.UP, board.DOWN,
board.LEFT, board.RIGHT, board.BTN_A, and board.
BTN_B in our code. This has a couple of advantages.
Firstly, it is more intuitive for programmers.
Secondly, if we created another version of the board
with the buttons on different pins, the same code
could still run on both.

This code is a bit lazy. For example, there’s no
debouncing on the buttons. In practice, we’ve found
that this doesn’t cause many problems, especially
with the time.sleep(0.01) in there. This means it’s
not the most responsive controller, so if you’re
playing games where hundredths of a second matter,
you probably want to use something different,
including tuned debouncing, written in C. However,
this controller isn’t suitable for that type of game
anyway. This is also fairly cavalier with the number of
reports it sends (a report being a status update sent
from keyboard to computer). This will send six of
them every loop, which means several hundred a
second. Again, this isn’t great for performance.
However, it works reliably and is easy to understand.

With this code loaded, you should be able to plug
the controller into any computer and it will recognise
it as a USB keyboard. Press one of the buttons and
the computer should recognise that button press just
as it would from any keyboard. With this, you can
control any game that takes input from a computer.

Creating a custom version of CircuitPython isn’t
essential when you build a new board; however,
once you’ve been through the process once, it’s
easy, and makes life a little bit nicer, especially if
you’re distributing the board to other people.

T H A T M A D E

Buy online: hsmag.cc/ctmb

“The Computers That Made Britain
is one of the best things I’ve read
this year. It’s an incredible story of

eccentrics and oddballs, geniuses and
madmen, and one that will have you

pining for a future that could have been.
It’s utterly astonishing!”

- Stuart Turton, bestselling author
and journalist

OUT
NOW

Available on

http://hsmag.cc/ctmb

TUTORIAL

54

STL files and the Kinect Carbonizer

STL files and the
Kinect Carbonizer
Discover how 3D print files work and embed your friends in carbonite

Rob Miles

Rob has been playing
with hardware and
software since almost
before there was
hardware and software.
You can find out more
about his so-called life at
robmiles.com.

I n this article, we are going to discover
how we can create and manipulate solid
objects in computer code. We’re going to
start with a look at stereolithography (STL)
files and discover how these describe objects
for a 3D printer to print. Then, we are going

to move on to making interesting and colourful
designs from mathematical functions and, finally,
use a Kinect camera to create our own version of the
best scene from the best Star Wars movie – the bit
where Han Solo is encased in a block of carbonite
so that only the top part of his body (including his
scary screaming face) is visible sticking out of the
block. (Spoiler alert: Don’t worry – he is freed in the
next film).

Figure 1, above, shows the result of the author
‘carbonizing’ himself and another family member.
The two figures on the left were printed using a

0.2 mm layer height, and took around half an hour
to print. The right-hand image was printed using a
0.1 mm layer height, and took an hour to print. You
can find the program and links to all the software
you will need at the GitHub repository for this
project: hsmag.cc/Kinect3DPrinter.

However, before we can discover how to
carbonize people, we need to learn a bit about
how the process works, starting with the STL file
which contains the carbonized object. And, before
we can talk about the positions of things in an STL
file, we also need to meet a couple of characters
whose names sound as though they came from a
superhero movie.

VERTEX VS VECTOR
Vectors and vertices are expressed as coordinates.
They are not superheroes. A coordinate gives a

QUICK TIP
Note that you
can express a
particular direction
using lots of
different vector
values. The vectors
(0, 0, 1), (0, 0, 2) and
(0, 0, 3) all point in
the same direction
– which is
straight up.

Figure 1
We are planning
a carbonite
group picture

http://robmiles.com
http://hsmag.cc/Kinect3DPrinter

55

FORGE

YOU’LL NEED

A Windows PC
to build and run
the software

A 3D printer
(preferably one
that can switch
between different
filaments)

An Xbox One
Kinect sensor
(you might have
one in the loft)

A Kinect PC
adapter
(Search your
favourite
e-commerce sites
for ‘Kinect PC
adapter’)

well. In the case of our pirate coordinate system, the
X axis is on the vector (1, 0, 0) and the Y axis is on
the vector (0, 1, 0).

Computers love vectors and vertices because
of the way that they can use simple mathematical
transformations (often using things called matrices)
to work on their values. Now that we know how we
can express position (vertex) and direction (vector),
we can describe a 3D shape using them.

MAKING A CUBE FROM TRIANGLES
Any object that has edges which are straight lines
can be expressed in terms of triangles. Figure 2
shows a cube that is made up of twelve triangles.
The figure shows the six triangles on the front and
top of the cube. The other six are not visible because
they are on the back and the bottom of the cube.

One of the triangles (the yellow one on the top)
has been annotated with the positions of each of
the three vertices (aka vertexes) which describe it.
The full description of the cube uses twelve triangles
so we can store the entire cube description as
36 vertices, three for each of the twelve triangles.
An STL file does just that.

position in space. It is like an instruction on a pirate
treasure map. For example, a grizzled old pirate
might write: ‘Start ye at the Olde Oake Tree and
walk ye twelve paces east and six paces north and
there ye must dig down two paces deep.’ We could
express this as a coordinate of (12, 6, -2) with the
origin (0, 0, 0) at the Olde Oake Tree.

In this coordinate system, we are equating east
and west with X. The X coordinate increases if
we go east and decreases if we go west. The
Y coordinate increases if we go north and decreases
if we go south with Y. The Z coordinate increases
when we go up and decreases when we go down.
We could use this system to express the position
of any point in space relative to the Olde Oake Tree.
A point in 3D space is called a vertex.

DIGGING DOWN
The value of Z in our pirate coordinates for treasure
location is negative because we have decided
that positive values of Z go up, and the treasure is
buried below ground level. It is important that we
get this right, otherwise the pirates might expect
the treasure chest to be hovering in the air two
paces above the ground. In other words, to properly
describe things in a 3D space, we also need to be
able to express direction. We use a vector to do this.
You can think of a vector as an arrow.

The ‘tail’ of the arrow is at the point (0, 0, 0) and
the pointy bit of the arrow (to use a technical term)
is at the vector coordinates. We look along the arrow
to determine the direction the vector is expressing.
We could say that the Z axis for our pirate treasure
map points along the vector (0, 0, 1), which would
be an arrow pointing up into the sky. We can
describe the X and Y directions using vectors as

Figure 2
The author took a long time to draw this diagram.
He hopes you will spend a long time studying it

TUTORIAL

56

STL files and the Kinect Carbonizer

MAKING A CUBE IN STL
An STL file isn’t much more than a list of triangles.
The STL description of the yellow triangle in Figure 2
looks like this:

 facet normal 0 0 1
 outer loop
 vertex 0 0 10
 vertex 10 0 10
 vertex 10 10 10
 endloop
 endfacet

Each triangle description is enclosed between facet
and endfacet elements. A facet is a flat element that is
part of a surface. Apparently, the surface of a diamond
is made up of facets, although the author has never
got close enough to a diamond to check this out.

The facet description contains an outer loop
enclosing the three vertices, one for each point of
the triangle. There is also a normal vector. What does
that mean? The normal vector expresses the direction
which is perpendicular to that facet. In the case of
the top facet, the normal value is (0, 0, 1), which is
straight up.

The normal vector of a facet is used to work
out which way a facet is facing. If you look at
Figure 2, you will see that the triangles that describe
the back of the cube have not been drawn. The
program drawing the cube has placed the ‘camera’ at
a particular position and then only drawn the triangles
which have normal vectors that point towards the
position of the camera. The good news for us is that
3D editors will calculate the normal values for a model
automatically, so we don’t need to compute these
values when we create STL files of our own.

Some of this will probably have hurt your head. But
you now know how STL files and 3D graphics work.
When we design something, we can break the design
into triangles and then save these in an STL file. Then
we feed this file into a ‘slicer’ program which converts
it into instructions which tell our 3D printer how to
make the described object.

QUICK TIP
When you are
playing a video
game, this
drawing process
is taking place
with thousands
of triangles many
times a second.
A graphics card
contains hardware
specially designed
to perform vector
calculations
and to map
images (textures)
onto triangles.

Right
The key question you
need to consider is
‘Which way does
depth (Z) go?’

 CONFUSING COORDINATES
A coordinate lets you specify positions using their
distance from an origin (the place in the coordinate
space with all coordinate values of zero). A coordinate
is two values (for flat 2D surfaces) or three values (for
3D). The three coordinate values can be called X, Y,
and Z. If you are drawing a graph on a piece of paper,
you put the origin in the bottom left-hand corner and
the value X describes how far across the page a point
is, and the value Y describes how far up the page the
point is.

When you want to express three dimensions, you
need to add a Z value to the coordinate, and this is
where it gets annoying. If you are viewing the graph
on a screen in front of you, the natural thing to do is
use Z to express the third dimension as the distance
into the screen. However, if you are printing on a 3D
printer (which builds things up in layers), you would
like to use Z as the distance up from the baseplate.

The figure above shows how this all fits together.
An STL file uses the ‘3D printer’ view of coordinates.
When the author was learning how to perform 3D
design, he was coming from a background of video
game writing, in which the Z value goes ‘into’ the
screen. It took him a while to come to terms with the
way that 3D designs work.

57

FORGE

MAKING A MESH OF THINGS
We could express our object shapes in terms of lots
of tiny cubes (called voxels – short for volumetric
pixel), but it is more useful to think of a 3D object
as a mesh of triangles. Figure 3 shows how we can
use a mesh to express a surface which expresses
the equation:

Z = Sin(x) + Cos(y)

If you look at Figure 3, you will see that the
surface is made up of tiny triangles. The program
that generated the mesh calculated the height value
for a range of values for X and Y, and then generated
a mesh with triangles which had vertices at those
positions. It then added solid sides and a base and
saved the resulting object as an STL file.

Once you have your STL file, the next thing to
do is to slice it into layers to be sent for printing.
Figure 4, above, shows this process in action using
the Bambu Studio program (download it from
hsmag.cc/BambuLab). You will need a compatible
printer to be able to print in multiple colours.

Figure 5 shows the print from this design. You
could use this technique to make 3D-printed versions
of any mathematical equation or set of data values.
This can be a very useful way to visualise data. If you
want to do this kind of thing in the Python language,
the Trimesh library (trimesh.org) is a great place to
get started. You can use it to create meshes from
software and export these to STL files for slicing and
printing. Then, you too can print out some surfaces
that you might not have any use for.

Figure 4
The slicer lets you set
filament colours for
different layers
in the print

Figure 5
The author is very
pleased with this
print, although he is
not sure what to
do with it

Figure 3
We add detail to the mesh by making the triangles smaller

You could use this
technique to make

3D-printed versions of any
mathematical equation or

set of data values ”

”

http://hsmag.cc/BambuLab
http://trimesh.org

TUTORIAL

58

STL files and the Kinect Carbonizer

When we make the ‘carbonized’ STL file, we
create a mesh which contains triangles that describe
the carbonized victim. Figure 6, above, shows the
Meshmixer program displaying the mesh that was
used to create the carbonized Rob in Figure 1. You
can see that there is more detail in the STL file than
the printer has rendered. Now that we know what
will be in our carbonized mesh file, it is time to
discover how it is created.

Figure 7 shows an Xbox One Kinect sensor
mounted on a tripod and ready to carbonize. The
author first created this project ten years ago when
it seemed like the Xbox One and the Kinect sensor
were going to be the next big thing (spoiler alert:
they weren’t). However, the Kinect sensor is a fine
piece of engineering. It contains a depth camera
which measures the time taken for infrared pulses to
bounce off objects in front of the sensor. The sensor
then generates an image which is a ‘depth map’ of
the scene. Each pixel in the depth image is not a
measure of the light level at that point (as it would be
for a camera) but instead, a distance value (how far
into the scene the sensor has detected something).
Games that use the Kinect can track the body of
the player. This is great for fitness and dance-type
games. However, the market for such games turned
out to be limited and the sensor software made
heavy demands on the console hardware so, after a
while, the Kinect sensor was discontinued. You can
now pick up a Kinect sensor for a very low price.
The sensor was designed to work with the Xbox
One, although a PC interface is also available which
powers the Kinect sensor and provides a USB 3.0
connection to a PC.

To use the Kinect sensor with your PC, you
will need the Kinect SDK. This is a downloadable
package of code for Windows which provides the
USB drivers for the Kinect, software libraries, and
sample programs that show what the sensor can do.
Full instructions for installation of the SDK and fault
finding are on the GitHub repository for this project:
hsmag.cc/Kinect3D.

Once we have got our Kinect sensor installed and
working, we can make some software that uses data
from the camera to make the carbonized objects.

QUICK TIP
It turns out that there
is a lot of common
ground between 3D
printing and video
games. The 3D
design tool Blender
(blender.org) used
by game creators
can also be used to
create STL files for
3D printing.

 KINECT SENSOR ORIGINS
The original Kinect sensor, made for the Xbox 360,
holds the Guinness World Record for the ‘Fastest-Selling
Consumer Electronics Device‘ after selling 8 million units
in its first 60 days of release (from 4 November 2010 to 3
January 2011). The Kinect One sensor was released at
the same time as the Xbox One console and was part of
the launch bundle for that console.

Figure 7
The depth camera
is on the left of the
device. The sensor
also contains four
microphones and
a high-resolution
webcam

Figure 6
Meshmixer is a free
download from
meshmixer.com

http://hsmag.cc/Kinect3D
http://blender.org

59

FORGE

SLIDE TO TRAP
The Kinect Carbonizer program runs on Windows
10 and 11. It takes a 3D picture and creates an STL
mesh from it. Figure 8 shows it in use. The picture
on the left is the image from the depth camera.
The closer an object is to the camera, the brighter
it appears. The Carbonizer program contains a ‘Far
Cutoff’ slider (coloured blue) which is used to set
the maximum distance the image will contain. This
allows us to create a flat region behind the person
being carbonized which serves as the carbonized
slab. Objects beyond the flat region are coloured
blue. The trick to a successful ‘carbonization’ is to
bring the blue region forward so that rear parts of the
person being carbonized are in the blue region so that
they are embedded in the carbonite.

When the user clicks the ‘Take Picture’ button, the
program takes the depth image and uses it to create
a 3D mesh which is previewed in the right-hand
window. If the depth image looks OK, the ‘Save STL
File’ button can be used to save the mesh for printing.

KINECT CODING
We wrote the Kinect Carbonizer in C#, which just
happens to be the author’s favourite programming
language. If you are familiar with JavaScript or C, the
C# program constructions will be quite familiar. The
Kinect SDK provides a library of C# objects which
represent a connection to the sensor and the data
values it returns. Each time the sensor gets a new
frame from the depth camera, an event is triggered
in the program. The depth sensor data is a list of
distance values which are converted into colours for
the pixels in the display on the left of Figure 8. Any
pixels which are beyond the far cut-off are coloured
blue. The right-hand display in Figure 8 is produced

 CARBONIZED CROPPING
The Carbonizer process works best if the subject is a reasonable distance away from
the sensor. This stops objects on the front of the person from casting shadows on the
things behind them. This means that the carbonized images often contain elements you
don’t need. The best way to get rid of these is to use the ‘cut’ feature in the slicer
program to remove those parts of the mesh.

Figure 8
There is a self-timer you can use for 3D selfies

Below
You can also use the Meshmixer program
to crop and modify meshes

from the same mesh of triangles which are used
to create the STL file. These are fed into a graphic
renderer which is part of the Windows application
display system.

The depth values from the sensor contain a lot of
‘noise’ which causes successive values for the same
distance to vary over time. When the distance sensor
values are processed, they are averaged and any
values which are deemed to be noisy are rejected.
This makes the mesh look nice and smooth. There
is a slider in the application which can be used to
set the number of averages that are to be used.
The author was very pleased to discover that the
statistics he learnt in school many years ago are
actually useful sometimes.

CARBONIZE YOUR FRIENDS
The carbonizer works well, within the limitations
of the sensor and the 3D printing process. It is
remarkable how recognisable the images can be,
even when printed quite small.

TUTORIAL

60

Linux 101: Master time

Linux 101: Master time
Schedule tasks to run when you want them to

R aspberry Pi and other small
computers typically run the Linux
operating system. This is a hugely
powerful system, but can seem a little
like a hodge-podge of different parts
sticky-taped together because, in many

ways, it is a hodge-podge of different parts sticky-
taped together. The system, which is broadly based
on UNIX, harks back to the 1960s. It wasn’t so much
designed as added to, as different people needed
different features. Some of these additions have
proved so popular, they have become a standard part
of the system. Others fell by the wayside or were
replaced. In this article, we’re going to look at one
such add-on, cron.

The name 'cron' comes from the Greek word
‘chronus’, meaning time, and it’s used to run tasks at
a specific time. There are two parts to cron: crond, or
the cron daemon, is the software that actually runs
the tasks when you want them to run; and crontab
is the file that stores the tasks you want to run. The
crontab file is specific to each user, including system
users such as root, so when you edit this file, make
sure that you are currently the user you expect to be.

Generally, you don’t open the crontab directly in a
text editor, but do it using the crontab command.

crontab -e

The -e flag tells crontab that you want to edit
the file. The alternative is -l which lists the
contents of the file. The first time you run this, you
will usually be asked which text editor you want to
use. Nano is the easiest of the command-line editors,
and the one we’ll assume that you’re running in
this tutorial.

Each line of the crontab gives a task that should
be run – unless it’s a comment, in which case it will
start with a ‘#’. Each task includes a time and the
command to be run. We’re going to start with the
most unusual format for the time, because it’s the
most useful for makers: @reboot.

If your Raspberry Pi is embedded in a project, and
you want it to run the appropriate code as soon as
it’s turned on, this is the way to do it. For example,
adding the following line will run the Python script in
your home directory each time it is turned on:

Ben Everard

Ben's house is slowly
being taken over by 3D
printers. He plans to
solve this by printing an
extension, once he gets
enough printers.

61

FORGE

@reboot python /home/pi/myscript.py

ON TIME
Reboot timers are great for a lot of uses, but they’re
not perfect for everything. For example, you might
want a backup task to run every night. The easiest
way to do this is:

@daily /home/pi/my_backup.sh

This will run the shell script my_backup.sh in
your home directory every midnight. Note that the
my_backup.sh file must be properly set up as a Shell
script with the appropriate shebang at the top; e.g.:

#!/bin/bash

If midnight isn’t the right time for you, then you
need to use the full crontab syntax. This is five
different bits of data separated by white space. Each
bit can either be a number or a wild card (*). The five
entries are: minute hour day-of-month month-of-
year day-of-week. Crond will check the tasks every
minute, and if they match that minute, the task will
run. So, for example, the following will run at one
minute past every hour of every day:

1 * * * * /home/pi/mytask.sh

The following will run at 8am every morning:

0 8 * * * /home/pi/mytask.sh

You can have multiple numbers separated by
commas. For example,.,; the following will run on the
hour and at half-past every hour:

0,30 * * * * /home/pi.mytask.sh

You can also give ranges of hours. For example, the

following task runs every hour, but only between 9am
and 5pm Monday to Friday (Sunday is day 0 to cron):

0 9-17 * *1-5 /home/pi.mytask.sh

CATCHING PROBLEMS
One potential pitfall of cron is that if you’re not there
to see your code run, it can be easy to miss any
errors that happen. An easy fix to this is to redirect
any output to a file.

@reboot python /home/pi/myscript.py >>/home/pi/
cronoutput.txt 2>&1

There are a couple of bits to this. Firstly, the >>
redirects any normal output to the file, then 2>&1
redirects any errors to the same place as normal output.
The end result of this is that any text output from
the command ends up in the cronoutput.txt file.

You can use cron to manage software you want
starting for every powerful tool that’s available on
almost every Linux system, from tiny Raspberry Pi
computers to huge servers. The syntax can seem
a little daunting at first, but there isn’t too much
to it, so once you’ve got your head around it, it’s
pretty straightforward.

 SYSTEMD TIMERS
Cron is great, but the format is a little anachronistic,
and can make some things harder than they need to
be. Not least, the way the tasks are scattered about
different crontab files. This author has spent more
of his life than he’d care to admit searching through
various users’ home directories trying to find out
what, exactly, is running when on a server.

On most modern Linux systems, you can use
systemd’s timers to gain more control over what’s
running. There’s a good overview of this setup
at hsmag.cc/timers.

Below Left
The crontab file is a regular
text file, so you can edit it
with any text editor

Right
The @reboot directive
is especially useful for
embedded projects

http://hsmag.cc/timers

TUTORIAL

62

Big internet-connected button

Big internet-
connected button
One whack to send the magazine to press

Ben Everard

Ben likes buttons of all
sorts, but his favourite
are ones big enough to
hit with his whole hand.
He's very much looking
forward to finishing this
issue so he can whack
this one.

E ach month at HackSpace mag
towers, we create a magazine. We
source content, edit it, massage it into
the right format, add images, and check
through everything with a fine-toothed
comb. Once this is all done, we send it

to the printers to translate our digital files onto paper.
It’s this final step that feels a little, well,

underwhelming. You might imagine that sending a
magazine to press involves hitting a big important-
looking button. At least, that’s what this writer
thought when he first joined the world of publishing
many years ago. However, reality is less impressive,
and we actually just send a message to someone to
say that we’re happy with it.

When reality is underwhelming, we can choose
to accept that, or we can choose to enliven it. This
issue, we choose the latter and we’ve created our
own big, important-looking button. OK, technically
we haven’t created our own button, we bought it
(the aptly named Massive Arcade Button 100 mm
from Adafruit). We did, however, make a mount for it,
attach it to a Raspberry Pi Pico W, and program it to
send the appropriate message when we hit it.

Now, rather than type out our approval message,
we just hammer the big red button once the issue’s
ready to send.

Obviously, it’s unlikely that you happen to need a
button to send a magazine, but we’ll look at how to
make a big red button that does – well, anything you
like really.

First, you’ll need the 3D-printable file for the box.
You can grab this from hsmag.cc/button_box. It’s
designed to work with a multi-colour printer, but
you can print it in a single colour. It’s a pretty simple
design – just a cube with the unnecessary bits
removed, leaving a hole in the top for a button, and a
hole in the back for power. There’s no mounting for
the Raspberry Pi Pico W inside – we prefer to use
a bit of hot glue but, if you’re averse to that sort of
thing, you could add a few holes.

The text was added in PrusaSlicer, and can be
edited in that software as well.

The electronics for the switch are in a removable
assembly in the bottom of the button. Twist it a few
degrees and it should pop off. There’s an LED in the
button, so we wire that up to a GPIO pin (at present,
we just leave it on, so we could wire it up to 3.3 V

http://hsmag.cc/button_box

63

FORGE

or VBUS, but we thought we’d keep the option for
adding light effects in the future). The LED has a
built-in resistor, so we can just connect it up directly
to pin 0 and ground. The LED pins are on either side
of the switch (see Figure 1). You can use either one
as ground and power, and then just turn the LED
around to match.

There are three pins for the switch: Common,
Normally Open, and Normally Closed. We wired up
Normally Open and Common directly between GPIO
1 and ground. The Common pin is on the bottom of
the unit, while the Normally Open is the bottom of
the two pins on the end. We can then add a pull-up
resistor in software, and the button will read 1 when
it’s not pressed and 0 when it is.

That’s the extent of the hardware for this build,
let’s now take a look at the software.

We’ve used MicroPython, so you’ll need to install
that to the Pico W.

We need to send our message via Slack, and this has
an application programming interface (API) that lets us
interact with it from our script. If you want to work with
a different service, you need to find out the suitable
details of its API.

DIALLING IN
Interacting with the Slack API is a little fiddly because
you have to get the security details right. Fortunately,
someone far smarter than us has already done the
hard work and written it up on the Raspberry Pi blog.
There are full details at hsmag.cc/slackbot. We won’t
rehash all of this here. The most important part, for our
purposes, is setting up the security details on the Slack
website (depending on your configuration, you may
need to get your workspace admin to approve the bot).

Once you’ve set all this up, and noted down the
security details, you need to get the code from:
hsmag.cc/git_slack.

The key files we need are in the MicroPython
directory. We need all of these except main.py, for
which we’ll use our own code (below). These need to be
copied onto the Pico W, and you can do this using the
Thonny MicroPython editor. Go to View > Files, then you
can navigate to the place you downloaded them. Select
them, and upload them to the / directory on Pico.

 ALTERNATIVE BUTTONS
We used a massive arcade button for this, but there
are plenty of other options. At its heart, the button
is just a microswitch, and you could set many
different things to also trigger the microswitch.
Alternatively, in CircuitPython, you can create
touch sensors on Pico. Find details at: hsmag.cc/
rp2040_cap_touch. Using this, you could create
a pad out of something conductive that sends a
message when you touch it. Perhaps a tinfoil hand
that triggers the message when you high-five it?

Left
The combination of
different coloured
letters, plus a slight
embossing, really
helps the letters
stand out

Below
There are few things
quite as exciting as
a massive red button
that’s just begging to
be pressed

When reality is
underwhelming, we can

choose to accept that, or we
can choose to enliven it ”

”

http://hsmag.cc/slackbot
http://hsmag.cc/git_slack
http://hsmag.cc/rp2040_cap_touch
http://hsmag.cc/rp2040_cap_touch

TUTORIAL

64

Big internet-connected button

SIMPLE SCRIPT
Let’s now look at our own code (below).

The one bit that you have to change here is the
channel_id. In Slack, you can send a message to
a person, a group of people, or a channel, but all
three options use a channel ID. To find out the
channel ID of a channel, click on the channel, then
the little drop-down arrow next to the channel
name, and scroll to the bottom of the box that pops
up, and you should see the ID.

For a message to one person, go to that person’s
profile, click on the three dots, and you should get
the option to copy the member ID. This can be used
in place of a channel ID.

For a group of people, you have to already have a
chat with the group going. Click on the conversation,
and then there’s a drop-down arrow next to the title
(which is the names of the people in the chat). Click
on this, then go to the About tab and you should see
the channel ID at the bottom.

The code is pretty basic. First, it turns on the LED,
and connects to the network. Once it’s connected, it
starts to loop, waiting for the button to be pressed.
When it is, the code sends the Slack message.

We need to be a little careful that, with each
press of the button, we only send the message
once. When a button is pressed, two contacts come
together and, as they do, they can connect and
disconnect multiple times before settling together.
This is known as bouncing.

We have a little loop that runs to make sure that
the button has been fully unpressed before it can
fire again.

The full code for this is:

import network
import time
import config
from slack_bot import SlackBot

channel_id = "put your channel here"
message = "Let's send it"

led = machine.Pin(0, machine.Pin.OUT)
led.on() # let's just have it light up
button = machine.Pin(1, machine.Pin.IN, machine.
Pin.PULL_UP)

initialize the Wi-Fi interface
wlan = network.WLAN(network.STA_IF)

activate and connect to the Wi-Fi network:
wlan.active(True)
wlan.connect(config.WIFI_SSID, config.WIFI_PASSWORD)

while not wlan.isconnected():
 time.sleep(0.5)

print(f"Connected to Wi-Fi SSID: {config.WIFI_
SSID}")
print("Now waiting for the button")
while True:
 if not button.value():

 TYPE IT OUT
If you want to interact with a service that doesn’t
have an API you can use, you can get Pico to connect
to your computer as a keyboard and type out a
message when it’s pressed.

At the time of writing, support for this in
MicroPython is incomplete, but you can get the code
from here: hsmag.cc/micropyton_hid.

Alternatively, you can use CircuitPython, which
supports Pico and has full support for emulating a
keyboard. You can find out more at this link:
hsmag.cc/circuitpython_hid.

TUTORIAL

Big internet-connected button

Above
Figure 1. The button
has five connections
– we use four of them

http://hsmag.cc/micropyton_hid
http://hsmag.cc/circuitpython_hid

FORGE

 #The button has been pressed
 slack_bot = SlackBot(config.SLACK_APP_
TOKEN, config.SLACK_BOT_TOKEN)
 print("posting message")
 slack_bot.post_message(message, channel_
id)
 print("posted message")

 #wait for button to be unpressed
 counter = 0
 while True:
 if button.value():
 counter += 1
 if not button.value():
 counter -= 1
 if counter > 10:
 break
 time.sleep(0.01)

Load the code onto Pico W (along with all the
libraries from the original project).

Make sure that you have the configuration file
set up, and you should be able to send messages
with the press of a button. Whether it is to send
something to manufacture, share a joke, or anything
else you might need, whack the button to send
the message.

 MESSAGE BACK
Our button simply sends messages to Slack, but the
API allows messages to be sent the other way as
well. Take a look at the original link for more details.

Depending on what you want to do, you could send
a message to ‘arm’ your button before it’s used, or
light it up. You could add servos or colourful LEDs to
display some information when it’s ready to go.

Above
A spot of glue
mounts Pico W

Below
Everything’s good –
let’s go to press!

65

66

TUTORIAL

Raspberry Pi: Design a circuit with KiCad

Design an electronic circuit for controlling high-power
LED lights or model railway lighting

T his tutorial will provide guidance on how to
design your own circuit using KiCad. It will
show how you can design a circuit that can

be used with Raspberry Pi Pico. This will include
choosing suitable components and designing a
schematic diagram. This will then lead to creating
your own custom printed circuit board (PCB) in
the next tutorial.

This circuit is to control three sets of lights
using buttons on the PCB or through a web
interface. The design can be used for 5 V or
12 V lights, making it suitable for either home
automation or model railway lighting.

Stewart
Watkiss

Also known as
Penguin Tutor.
Maker and YouTuber
who loves all things
Raspberry Pi and
Pico. Author of
Learn Electronics
with Raspberry Pi.

penguintutor.com

twitter.com/
stewartwatkiss

M
A

K
ER

Design a circuit
with KiCadPa

rt
 1

1

Warning!
Electrical Safety

Whilst 12 V will not
cause electrocution, it

can cause a fire. Ensure
power supplies have

over-current protection
and consider adding

a fuse.

magpi.cc/
electricalfires

01 Design idea
All projects start with an idea. When

creating a breadboard circuit, you have an
opportunity to experiment and change the design
as required. Creating a custom PCB involves
additional time and cost, so it is important to
spend additional time in the design phase to get
the circuit just how you want it.

It is often useful to create a design specification
that lists the features that you want, anything you
want to avoid, and any restrictions it needs to be
designed for. There may be restrictions on size, or
you may want to provide additional flexibility to

	� The schematic diagram shows how the components will be wired together when designing the PCB layout

http://penguintutor.com
http://twitter.com/stewartwatkiss
http://twitter.com/stewartwatkiss
http://magpi.cc/electricalfires
http://magpi.cc/electricalfires

67

FORGE

add extra features. Sometimes these may conflict
with each other, in which case you may need to
make some compromises. Listing these up-front
helps to keep your design on track.

02 Creating the initial design
With the idea and specification ready,

you can start to make basic decisions about the
circuit. Our first decision was to use a Raspberry
Pi Pico. This project could be made using a
Raspberry Pi computer, but it doesn’t need

that amount of power for
simple switching. Without
the overhead of an operating
system, Pico is more
responsive, more reliable, and
cheaper. A Pico W can be used
to provide Wi-Fi access.

The plan is to switch high-
power LEDs which are more
than can be powered just
using the GPIO pins on a
Pico, so this is going to need
MOSFET switch circuits.

It also needs to use switches
for input, and these can be

wired between GPIO pins and ground, using the
internal pull-ups in Raspberry Pi Pico.

03 Flexible design
One thing to consider when designing a

PCB is whether it will be used for a single circuit
or whether it can be used for multiple purposes.
It can be useful to include additional flexibility as
that helps justify the cost of having a PCB made,
but adding extra features will increase the size
and cost of the PCB.

You’ll Need

> � ��470 Ω resistors
magpi.cc/470ohm

> � �1N5817 diode
magpi.cc/1n5817

> � ��Switches
magpi.cc/
12x6switches

> � �PCB screw terminals
magpi.cc/
pcbterminal

> � ��IRLB8721 MOSFET
magpi.cc/mosfet

> � �5 V COB LED light
magpi.cc/cobled

> � �Power adapter
magpi.cc/
jacktoscrew

A Pico is mounted onto
the PCB, which is used to
control external LED lights

Copper tracks in the PCB
are used to connect the
electronic components

	 �Figure 1: KiCad
includes different
tools which can
be used to help in
designing printed
circuit boards

FORGE

http://magpi.cc/470ohm
http://magpi.cc/1n5817
http://magpi.cc/ 12x6switches
http://magpi.cc/ 12x6switches
http://magpi.cc/pcbterminal
http://magpi.cc/pcbterminal
http://magpi.cc/mosfet
http://magpi.cc/cobled
http://magpi.cc/jacktoscrew
http://magpi.cc/jacktoscrew

68

TUTORIAL

Raspberry Pi: Design a circuit with KiCad

The main thing here is what LED lights are to
be controlled. In the specification for this build,
it was decided that the board should be capable
of controlling both 12 V or 5 V LED lights. The
12 V lights would be useful for camping lights or
model railways, and 5 V would be useful for COB
(chip-on-board) lighting strips. An appropriate
voltage power supply is needed to match the
LEDs used.

04 Component selection
Having decided on the LEDs, you can

now choose a MOSFET that is sufficient for
controlling them.

A typical MOSFET for
switching LEDs is the
2N7000. This MOSFET can
switch up to 200 mA, which
will likely be sufficient
for model railway lights,
but not for the light strips
which can draw up to
600 mA. Looking at what
MOSFETs are available, you
can find the IRLB8721PBF
which supports up to 62 A,
more than we need with
plenty to spare. It is more
expensive than the 2N7000,
but the savings in having
a single transistor type
for different requirements

means that we can make savings by using a single
PCB design for multiple projects.

05 Prototyping
The next stage is to test if your design

will actually work. This is where the breadboard
comes in useful because it allows you to try out

different circuits and values. You may want to use
a multimeter, or even an oscilloscope to check
that the outputs are what you expect.

In this case, the electronics are made up of
common circuit configurations, but as it’s a
different MOSFET than before, you may want
to test it to see if it behaves in the way that
you expect. The diagram in Figure 2 shows an
example using single switches and a single COB
LED light strip to test the main components.

06 Moving to KiCad
In the design so far, you’ve hopefully

been making notes about the decisions you’ve
made. Now it’s time to convert those to create
a schematic diagram. The schematic diagram is

 �The next stage is to
test if your design will
actually work

	 �Figure 2: A
breadboard
prototype with a COB
LED light strip and a
connector for a 5 V
power supply

	 �Figure 3: To include
a Pico in the design,
add the RPi_Pico.lib
library through the
Manage Symbol
Library menu option

THE MAGPI

This tutorial is
from The MagPi,
the official
Raspberry Pi
magazine. Each
issue includes a
huge variety of
projects, tutorials,
tips and tricks to
help you get the
most out of your
Raspberry Pi.
Find out more at
magpi.cc

magpi.cc

69

FORGE

useful because it shows each of the components
wired together without the difficulty of trying to
follow individual wires.

The tool used here is KiCad, which is open-
source software capable of creating professional
circuits. You can run KiCad on most computers,
including Raspberry Pi. To install on a Raspberry
Pi, use the terminal command:

sudo apt install kicad kicad-packages3d

07 Creating the schematic diagram
After launching KiCad, you should see

the project window. There should be no project
selected and the right-hand side of the window
shows the various tools which make up KiCad.
This is shown in Figure 1 (previous page). Create
a new project by clicking on the new project icon
and giving it a name, such as PicoLights. It will
create a new directory and create a KiCad project
file. You can then click on the Schematic Editor
on the right to start a new schematic diagram.

You are presented with a blank drawing area.
You can move around using a mouse with the
right button pressed, and zoom using your mouse
scroll wheel.

08 Adding a Pico footprint to KiCad
Whilst various models of Raspberry Pi are

included in KiCad’s component library, it does not
currently include a Pico. To add a Pico symbol,
first download the file from magpi.cc/kicadzip
(note: direct download).

This file is a complete PCB design, but
within the zip file are the files RPi_Pico.lib and
RPi_Pico_SMD_TH.kicad_mod. Copy both files
to a suitable directory (eg. KiCadLibraries) and
choose Tools > Manage Symbol Libraries.

Click on the ‘+’ icon to create a new library,
name it ‘RPiPico’, then click on the folder icon in
the Library Path column and select the lib file. It
will add it as a Legacy library. This is shown in
Figure 3. That .kicad_mod file will be used later
when creating the PCB.

09 Adding components
to the schematic

You can now add components by choosing Add
Symbol from the Place menu, or by using the icon
on the right-hand side of the schematic editor.
Click the screen to bring up the symbol selector
dialog, search for Pico, and select the one inside

	� Figure 4: There are
over 15,000 different
symbols available
in the KiCad symbol
library and many
more are available
to download
from vendors

	� Figure 5: All
components are
added and can be
arranged by moving
into position using
the M key

Top Tip
Power options

Your Pico can be
powered through
a 5V connection
to the screw
terminal, or by
using the USB
port on your Pico

http://magpi.cc/kicadzip

70

TUTORIAL

Raspberry Pi: Design a circuit with KiCad

from machine import Pin
import utime

sw1 = Pin(3, Pin.IN, Pin.PULL_UP)
sw2 = Pin(4, Pin.IN, Pin.PULL_UP)
sw3 = Pin(5, Pin.IN, Pin.PULL_UP)

out1 = Pin(20, Pin.OUT)
out2 = Pin(19, Pin.OUT)
out3 = Pin(18, Pin.OUT)

while(1):
 if (sw1.value() == 0):
 # Toggle out1
 out1.value(1-out1.value())
 utime.sleep (0.5)
 if (sw2.value() == 0):
 out2.value(1-out2.value())
 utime.sleep (0.5)
 if (sw3.value() == 0):
 # Toggle out3
 out3.value(1-out3.value())
 utime.sleep (0.5)

simple-lights.py

001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.
018.
019.
020.
021.
022.
023.

> Language: MicroPython magpi.cc/picolights

DOWNLOAD
THE FULL CODE:

the RPiPico library, then click OK to add it to the
schematic diagram. The symbol selector is shown
in Figure 4.

For the button switches, use SW_Push. This
will also provide headers which can be used to
connect to an external switch that can be added
as ‘Conn_02x03_Odd_Even’.

The MOSFET is the IRLB8721PBF and add gate
resistors (search for ‘R’ for the resistor symbol).

10 Powering the circuit
To provide power, a screw terminal is used.

This needs two power supplies: one for your LEDs
(12 V or 5 V depending upon LEDs) and one for the
Pico (5 V). These will be supplied using a 4-way
terminal connector, Screw_Terminal_01x04. A
1N5187 diode is also needed to allow either the
USB or screw terminal to be used.

The output will also be provided through screw
terminals to connect to your choice of LED.
Choose ‘Screw_Terminal_01x06’.

The components can be moved into an
appropriate position and rotated or mirrored
using the right-click menu. Arrange the
components so that they are similar to Figure 5.

11 Adding power connections
The value of the components can be

changed using the ‘Edit’ value from the right-
click menu. Change the resistors to 470R and
rename the connectors to represent their purpose.

Rather than having to wire up all the different
places where power is needed, power symbols
can be used. Use +12 V, +5 V, and a common
ground for both supplies’ GND. If you place
multiple power symbols with the same reference
(you can use duplicate from the right-click
menu) then they will all be connected together,
reducing the number of wires needed. Connect
the power symbols to the various components
using ‘Add wire’ from the Place menu. The power
connections for the input and Pico are shown
in Figure 6.

12 Wiring
The rest of the components can be wired

together to complete the circuit. When joining
wires, there will be a circle over the connection to
show that they are connected. If there is no circle,
then crossing wires are not electrically connected.

You should also annotate the components by
giving each a unique reference. You could do this
manually using the properties of each component,
changing ‘J?’ to ‘J1’ etc., or use ‘Annotate
Schematic’ from the tools menu.

Code is provided (simple-lights.py) to allow
you to test the prototype using the button LED.
In the next tutorial, you will use the schematic to
create a professional printed circuit board.

	� Figure 6: Power label
symbols are used to
indicate the power
supplies. Labels with
the same name are
treated as though
they are connected

http://Pin.IN
http://Pin.IN
http://Pin.IN
http://simple-lights.py
http://magpi.cc/picolights
http://simple-lights.py

Your FREE guide to
making a smart TV

magpi.cc/mediaplayer

raspberrypi.com

BUILD A RASPBERRY PI

Power up your TV and music system
MEDIA PLAYER

FROM THE MAKERS OF THE OFFICIAL RASPBERRY PI MAGAZINE

http://magpi.cc/mediaplayer

72

Programming an electronic brain

TUTORIAL

Programming an electronic brain

Rob Miles

Rob has been playing
with hardware and
software since almost
before there was
hardware and software.
You can find out more
about his so-called life at
robmiles.com.

Programming an
electronic brain
How the Robot Operating System helps you build complex robots

Figure 1
This robot is called
the MasterPi and is
made by Hiwonder:
hiwonder.com

Figure 2
The USB connection
on the right is for
the camera on the
robot arm

G etting into robot development has
never been easier or cheaper. You
can pick up a robot kit for not much
more than the price of a video game.
If you spend a little more money, you
can get one with a robot arm on top,

like the one shown in Figure 1 above. Many of the
robots use mecanum wheels, which allow the robot
to move in any direction.

Figure 2 shows what is controlling the robot. A
Raspberry Pi sits underneath a ‘HAT’ which manages
the power supply (two 18650 lithium batteries)
and the signals to control the motors and the robot
arm. The robot runs a set of Python programs
which control the hardware and allow it to perform
preprogrammed tasks.

http://robmiles.com
http://hiwonder.com

73

FORGE

YOU’LL NEED

A reasonably
powerful desktop
computer, laptop,
or Raspberry Pi
(preferably a 4
or 5 with 4GB of
RAM)
to run the
development
environment and
ROS

Your own little
robot or the parts
to make one

Figure 3 shows the remote-control application
you can use to tell the robot what to do. The robot
hosts a Wi-Fi access point to which you connect the
mobile application. You can then select from pre-built
behaviours. This works well, but what if you want
to do more? The author was very keen to use his
robot as a platform for learning the Robot Operating
System (ROS). So that is what he has decided to do.
The robot is presently driven by Python programs;
the idea is to turn these into ROS nodes. But first,
we must learn a bit about ROS itself.

COMING UP ROS-ES
An operating system is something you add to
hardware to make it useful. Examples are Windows,
MacOS, or Linux. The operating system takes the
raw ability of the hardware (running programs,
reading keyboards, saving data, displaying images
on screens, etc.) and provides a user interface.
The operating system lets you select the program
you want to run. When you start the program, the
operating system fetches the selected program from
mass storage and then performs the instructions in
the program. Some of the instructions will ask the
operating system to do things; for example, a word
processor will ask for a document file to be loaded
into memory.

ROS takes the abilities of a computer system
and makes it useful to a robot creator. ROS lets you
break a system down into cooperating components.
Components are created inside packages, which
makes it easy to manage complex solutions.
There are many pre-built components that you can
incorporate into your solutions. ROS also provides
tools you can use to express the physical design of
your robot (or other mechanical system controlled
by ROS elements) and simulate behaviour in a virtual
(i.e. computer-generated) environment. ROS is a
rich and complex system which can take a while
to master. It provides effective solutions to robotic
problems that we aren’t even aware we have.
Learning it will hurt your head a bit, but it is worth
the effort.

INSTALLATION
ROS sits on top of the computer operating system
and is closely coupled to it. This means that the
versions of ROS you can use are determined by the
operating system on your computer. You can run
ROS directly on a Windows PC, but the installation
is not for the faint-hearted as it involves compiling
the ROS program source. It is much easier to use
a Linux-based machine for which you can obtain
compiled binary versions of ROS. On a Windows
PC, you can use the Windows Subsystem for Linux

(WSL) to make a Linux environment into which you
can install ROS. There is a step-by-step guide to the
installation process in the GitHub repository for this
article (hsmag.cc/RosIntro). The process uses the
amazing Docker tool, which makes it possible to
host any version of Linux on your machine, whatever
its architecture or operating system.

ROS is a large application that needs plenty of
memory to run. It will not fit on smaller devices as
it needs at least 4GB of RAM. If you are using a
Raspberry Pi, you can add a swap file to your system
which uses file space to extend main memory.
However, if you do this, you may find that your SD
card (the place where your files are stored) wears
out as the operating system will continually write to
the swap file as programs are started and stopped.
If you are feeling brave (and have a few spare SD
cards), there are instructions on how to do this in the
installation guide.

INSIDE THE WORLD OF ROS
ROS breaks a robot application down into nodes.
A node is implemented as a running program. The
nodes talk to each other in a well-defined way, and
they cooperate to keep the robot running. The nodes
can all run as individual tasks on a single computer,
or they can run on lots of different processors
connected to the local network.

Figure 4, overleaf, shows a ROS installation
which contains a controller, a robot, and a camera.
Perhaps we want to make a robot litter picker which
will wander around searching for litter. The robot is
constructed as three devices: a controller, a robot
rover, and a camera. Each device is running one or
more nodes that form part of the ROS solution.

Nodes provide services to other nodes and accept
commands from them. In addition, any node can
publish data items that any other node can subscribe
to. There are lots of advantages to organising a
robot application this way. It is easy to move nodes
between devices. The connections between the

Figure 3
This application
is running on an
iPhone. A version
of the code is also
available for Android

QUICK TIP
You can use
your knowledge
of ROS to power
a pre-built robot
or to take control
of a robot that
you have created
yourself out of
components you
have chosen.
There are tips on
hardware choices
in the GitHub
repository for this
article: hsmag.cc/
RosIntro

http://hsmag.cc/RosIntro
http://hsmag.cc/RosIntro
http://hsmag.cc/RosIntro

Programming an electronic brain

TUTORIAL

74

nodes are well-defined. We could move all the nodes
onto a single powerful computer, or replace the
vision system with one that uses a different camera.

We don’t have to write the code for all the nodes.
ROS also includes a library mechanism that makes
it easy to import node code. To properly understand
all of ROS, you must understand all the problems
that it solves, and there are many of those. Let’s
start with something simple. How do ROS nodes
help us get our ‘litter picker’ robot going?

CLEANING UP
To activate the litter-picking robot, the user could
press the ‘Search’ button on the controller device.
The buttons on the front panel of the controller are
managed by the buttons node, which publishes the
button states on a topic called ‘buttons’.

The manager node has subscribed to this topic, so
it receives a message informing it that the Search
button has been pressed. The manager then sends
a service request to the vision node asking, “Can
you see anything?”

The vision system has subscribed to frames
of image data published by the camera node and
is looking for litter in each frame it receives. If the
manager gets a response indicating that some litter
has been spotted and giving a direction to that
litter, the manager sends commands to the motor
node in the robot to head that way. The manager
also publishes the message ‘moving’ to a robot
status topic.

The display node has subscribed to this topic,
so the status ‘moving’ is displayed. As the robot
moves, the sensors node on the robot would be
publishing information about things the robot is
detecting around it. ROS provides the environment
in which all this would be made to work. We design
the structure of the published data, write the code
for each node, and then decide how the nodes

Figure 4
There are eight nodes in this system

will interact, but ROS sits underneath and makes
everything work.

PUSH THE BUTTON
We can discover how ROS does this by considering
the very start of this process: the front panel of
the robot. At the very least, the robot will have a
button to make it start and a button to make it stop.
It should also have a way of indicating what it is
doing, perhaps a coloured light or a text display.
The diagram in Figure 4 shows that the Controller
is running a buttons node which receives user
commands and a display node that displays the
robot status.

Let’s look at the code in this node, which
is implemented by a Python class called
ButtonPublisher. This class extends the Node class
which is part of ROS. An instance of ButtonPublisher
class is created when the robot system starts up.
Below, you can see the constructor method which
runs when a ButtonPublisher is created.

class ButtonPublisher(Node):

 def __init__(self):
 super().__init__('button_publisher')
 self.buttonReader = ButtonReader()
 self.start_publisher()
 self.start_timer()

The constructor first calls the __init__ method
for the Node parent class, supplying the call with the
name of the publisher. This tells ROS that there is
a new node called button_publisher in town. The
next statement in __init__ creates a ButtonReader
object which will be used to read the buttons on the
physical console.

The ButtonReader reads the buttons from the
controller hardware, perhaps by using GPIO pins
(although it could also connect to a computer
keyboard or touchscreen). Next, the constructor
calls start_publisher to create a publisher to publish
button events to anyone who is subscribed to them.
Then it calls the start_timer method to start the
button scanning timer. There is not much code in the
start_publisher method:

def start_publisher(self):
 self.publisher_ = self.create_
publisher(String, 'buttons', 10)

The publisher to be used by ButtonPublisher
is stored in a class member called publisher.
The create_publisher method is inherited by

QUICK TIP
ROS is not just good
for robots. If you’ve
got a complex
application that you
want to break down
into cooperating
components, you
should look at what
ROS offers.

Controller

movement

vision

manager

display

buttons

Camera

image_source

motor

sensors

Robot

ROS

75

FORGE

QUICK TIP
The most recent
version of ROS is
called ROS2.
This is the one you
should be using.

ButtonPublisher from its Node parent class. The
publisher method accepts three parameters. The first
indicates that the publisher will publish a String, the
second gives the topic for the published message
(in this case, ‘buttons’), and the third parameter (the
value 10) means ‘keep the last ten published items
and use the “RELIABLE” level of quality of service’ –
which means that published items are guaranteed to
arrive at the receiver. The second method called by
the ButtonPublisher constructor is start_timer:

def start_timer(self):
 timer_period = 0.1 # seconds
 self.timer = self.create_timer(timer_period,
self.timer_callback)

This method creates a timer which fires ten times
a second. Each time the timer fires, the timer_
callback method is called.

def timer_callback(self):

 button = self.buttonReader.scan_buttons()
 if button!="":
 msg = String()
 msg.data = button
 self.publisher_.publish(msg)
 self.get_logger().info('Publishing: "%s"'
% msg.data)

The timer_callback method calls the method
scan_buttons on the button reader. This scans the
buttons and returns the name of the button which
is pressed, or an empty string if no buttons are
pressed. If a non-empty string is returned, the
callback publishes the name of the button that is
pressed on the ‘buttons’ topic.

The final part of the button node program is the
mechanism which starts the node itself. This is
performed by the main method in the node code
which is called when the node is loaded.

def main(args=None):
 rclpy.init(args=args)

 button_publisher = ButtonPublisher()

 rclpy.spin(button_publisher)

 # Destroy the node explicitly
 button_publisher.destroy_node()
 rclpy.shutdown()

The main method creates a ButtonPublisher
instance and then calls the button_publisher method

on this. The rclpy.spin function keeps the node
alive; responding to events and managing callbacks.
It ends if the node is terminated by ROS, at which
point the publisher node is destroyed and the node
shuts down.

All the nodes in the robot are started in this way.
The robot controller code can contain a launch
method which starts all the nodes when the robot
begins running.

SUBSCRIPTION MODEL
We know how a node running in a robot can post a
message on a topic. Next, we need to consider how
another node can receive it.

class DisplaySubscriber(Node):

 def __init__(self):
 super().__init__('display_subscriber')
 self.subscription = self.create_
subscription(
 String,
 'buttons',
 self.listener_callback,
 10)
 self.subscription # prevent unused
variable warning

 def listener_callback(self, msg):
 self.get_logger().info('Button: "%s" was
pressed' % msg.data)

The code above defines a DisplaySubscriber
class which subscribes to the buttons topic and
calls the listener_callback function each time a
message is received. This listener callback simply
logs the button name (although it could put it on a
text display). Code in the manager node could also
subscribe to the buttons topic so that the manager is
informed when a button is pressed.

PACKAGE HOLIDAY
Code for ROS applications is organised into
packages. A package brings together a set of related
behaviours. We could create a package called front_
panel which contains the code for the buttons and
display nodes.

Figure 5, overleaf, shows the package files for
the front_panel package. The two highlighted files
contain the code for the buttons and display Python
nodes that we have seen above. The three files
at the bottom of the package are what ties the
package together. The package.xml file contains
a description of the package and identifies any
dependencies that the package has.

Programming an electronic brain

TUTORIAL

76

BUILDING THE PACKAGE
Now that we have our package, the next thing
we need to do is build it. This is the process of
collecting all the package components and getting
them into a state where ROS can run them. Python
programs are not compiled, but ROS nodes can also
be created from C++ code, which does need to be
compiled before it can run. A package that contains
C++ code has a slightly different format and contains
a CMakelists.txt file which describes how to build
the code. It makes creating a package a bit trickier,
but it does mean that you can use both languages
in your solution. Furthermore, you can import
packages containing nodes programmed in C++
and they will work alongside your Python nodes.
The ROS system provides a command called
colcon (collect components) that performs the
build process:

colcon build --packages-select front_panel

The command above would be performed to build
the front_panel and make the files ready to run. So,
at last, we can run our robot nodes. There’s just
one more thing we need to know about (sorry), and
that is all to do with sourcing our commands. We
talk to the operating system from within a ‘shell’
environment which accepts our commands and
then performs them. On Linux, this is usually the
‘bash shell’. Some of the commands are ‘built-in’ to
the shell; for other commands, the shell will go off
and look for a program to run. We can tell the shell
where to look for our robot node code:

source install/setup.bash

The source command means ‘find this file and
execute it as if it has been typed in’. The command
file is called setup.bash, and it is created for us by
colcon when the package is built. Once we have
performed this command, we can use the ros2 run
command to start our two nodes running:

Figure 6 shows two bash shells running the
buttons and display nodes. The two nodes were

One package can use elements from another,
and this is where you would identify the source
packages. The setup.cfg file specifies where the
files are to be placed, and the setup.py is a chunk of
Python which is run to set up the project. This file is
worth looking at:

from setuptools import find_packages, setup

package_name = 'front_panel'

setup(
 name=package_name,
 version='0.0.0',
 packages=find_packages(exclude=['test']),
 data_files=[
 ('share/ament_index/resource_index/
packages',
 ['resource/' + package_name]),
 ('share/' + package_name, ['package.
xml']),
],
 install_requires=['setuptools'],
 zip_safe=True,
 maintainer='rob',
 maintainer_email='rob@hullpixelbot.com',
 description='Provides a front panel containing
buttons and a text display',
 license='Apache-2.0',
 tests_require=['pytest'],
 entry_points={
 'console_scripts': [
 'buttons = front_panel.buttons_member_
function:main',
 'display = front_panel.display_member_
function:main'
],
 },
)

Above is the setup.py file for the front_panel
package. The most important part of this file is the
entry point list at the bottom. It specifies the Python
files that are to be run when the nodes are activated.
If we added a third node to the panel (perhaps a
buzzer controller), we would create the Python code
for the node and then add the entry point here. The
above package serves as a template for any future
packages you want to create. Just add the Python
code into the same folder as the existing nodes and
configure setup.py with the new entry points. Your
code can then be run as a node in the robot system.

Figure 5
ROS can generate a
template package for
you to fill in

77

FORGE

started using the commands at the top of each
shell. The buttons node has published four button
messages and the display node has displayed them.

ROS COMPLICATIONS
At this point, you might be thinking one of two
things: ‘Blimey, this is complicated’ or alternatively,
‘Blimey, this is powerful’. The complexity is there
for a reason. We want to be able to break our robot
controller down into smaller reusable components
which can be easily swapped without affecting the
rest of the application.

One robot might use a physical button to start it,
but the next might have a touchscreen. Because
this input is managed by a node, we just need
to swap out the package node for another. Later,
we might decide to combine the camera and the
controller into a single device. In that situation, we
just have to change the image_source node to run on
the controller, and everything which uses images will
just work.

The package folder contains everything needed to
build and run a particular set of robot nodes. There
are many pre-built packages for robot interfaces
and behaviours that you can slot into your robot and
interact with via their services and topics.

NODE MANAGEMENT
One of the many wonderful things about ROS is the
way that things ‘just work’. If you want two nodes
to communicate, you just run them and they can
magically see each other.

ROS works over your local area network (LAN).
Network communications are based on the DDS

(Data Distribution Service) standard, which provides
the discovery protocol by which nodes can identify
themselves and find other nodes. ROS provides
commands we can use to discover nodes, topics,
and services.

Figure 7 shows the output from three ROS
commands which can be used to view an active
ROS installation. The node list command lists all
the active nodes – in this case, the button and the
display. The topic list command shows all the
active topics. The buttons topic is active, along with
two which are provided by ROS. The final command
shows all the services that are provided. Note that
the button and the display components expose a
set of services which can be used to work with
them. This makes it possible for a ROS application to
automatically discover what nodes can do and how

to use them, which makes possible self-configuring
systems. We can see this in action if we start up
the rqt tool, which is supplied as part of ROS. This
contains a range of plug-ins you can use to create
interfaces with your ROS application.

The rqt window in Figure 8 shows a view of the
topics available on the left, a diagram showing the
active robot topics in the middle, and a log of button
topic messages on the right. We can see that the
last message that was sent was the ‘start’ message.
These views are all updated in real time.

Now we know how ROS applications are
structured and how the components interact. In the
next article, we’ll build on this.

Figure 6
These packages
are running on a PC
under the Windows
Subsystem for Linux,
but they could just as
easily be running on a
Raspberry Pi

Figure 7
If other ROS nodes were active, they would appear
in this output, too

Figure 8
You can add plug-
ins and lay out the
display as you like

TUTORIAL

78

3D printer testing and calibration

3D printer testing
and calibration
Make sure your replicator is running smoothly and reliably

Ben Everard

Ben's house is slowly
being taken over by 3D
printers. He plans to
solve this by printing an
extension, once he gets
enough printers.

3 D printers are fantastic. Get a
model, slice it, and out pops a perfect
duplicate. However, are you sure it’s
a perfect duplicate? It looks OK, but
what if the dimensions matter? Is 1 cm
in your CAD software creating 1 cm in

the real world? Or is it really 0.9 cm? Sometimes it
doesn’t matter, but sometimes it really does.

What about supports? Depending on your models,
you could be throwing away a large proportion
of your filament, but do you really need to? Could
you change some settings to mean you need to
waste less?

In this tutorial, we’re going to run through a few
useful calibration tests to check your printer is
performing at its best. It’s worth running some, or
all, of these when you set up a new printer, perform
some maintenance, or just periodically to make sure
that everything is still running smoothly.

AHOY THERE!
The famous Benchy test print is popular because
it’s quick and cute. However, it’s actually a good
test for a 3D printer – if you can print a Benchy, you
can print most things. While it might seem almost
mundane now, readers who have been 3D printing
for a long time will remember when getting a good-
looking Benchy from a printer was an achievement.
Nowadays, being able to print a Benchy is pretty much

a given, and the question is how fast you can print it.
However, that doesn’t mean that there’s nothing to be
learned from printing this humble test piece.

Benchy is designed to be just 3D-printable, and it’s
a great first print if you’re looking to test out a new
printer or filament. Take a look at opposite for details of
what to look out for.

CUBISM
A calibration cube is simply a cube that has the same
length on each side – usually 20 mm. You could just
create a cube in your slicer, but it’s a bit easier if the
sides are labelled. Otherwise, once you remove it from
the print bed, it’s hard to tell what orientation it was
printed in. We used hsmag.cc/cal_cube, but there are
plenty available online.

Once you’ve printed it, pop it off the bed and
measure it. Hopefully it’s the size you expect. If it’s not,
then there’s a problem with your printer. It could be the
belt tension, or a problem with the frame – check with
the printer manufacturer’s documentation for help.

Do take the readings from digital callipers with a
pinch of salt, though. A £10 set of callipers may give
you two decimal points worth of output, but they are
not accurate down to 0.01 mm. It’s with good reason
that some machinists call them ’guessing sticks’. We’d
consider any measurement within 0.1 mm to be good –
beyond this, it’s hard to know whether any discrepancy
is in the measuring device or the 3D printer.

https://hsmag.cc/cal_cube

79

FORGE

Nameplate
This text is embossed at
0.1 mm and is probably
the one feature that many
printers fail to replicate.
This test can often
highlight the difference
between quick and
accurate slicer profiles.
It’s particularly prone to
disappearing (as it has
in this print) when input
shaping is enabled

Bow overhang
This 40-degree overhang
matches the default
maximum overhang
in PrusaSlicer. If this
prints, then so will any
unsupported overhang
with the default settings

Bridging
You can print unsupported
spans, provided they
have contact at each end.
There will always be some
sagging, and it is up to
you if you are willing to
accept that

Cooling chimney
The chimney has a small
cross-section, which means
that it’s piling the next layer
on top of the previous layer
very quickly. If your cooling
isn’t performing well
enough, this can turn into
one massive blob

Stringing
In the cabin, there are
four separate uprights.
You might get stringing
between them – this can
either be caused by your
printer’s retraction settings
or damp filament

Stern box
This acts as a dimension
test as it should be 8 mm
side to side and 7 mm
front to back. The total
Benchy height should
be 48 mm. Though, we
would recommend a
calibration cube to test
dimensional accuracy

TUTORIAL

80

3D printer testing and calibration

CLINGING ON
One of the key tests of a printer is the overhang
angle it can print. The steeper the angle, the fewer
supports you need. However, it’s not quite as
simple as that because there is often not a single
point where the overhang fails. It gets progressively
worse. The maximum unsupported overhang angle
you have really depends on the quality of print you’re
willing to accept. If you want perfect prints every
time, then you need quite a shallow angle. If saving
filament and print time is more important to you, then
you might be able to get away with a steeper angle.
But what is a shallow angle and what is a steep
angle? It’s time to do some tests!

We printed the test model from here:
hsmag.cc/printtest. This model claims to be a
complete test of a 3D printer, and while it does a
good test of a lot of features, it’s the overhang that
we’re really interested in.

You can see our results in Figures 2 and 3. From
this, we know that we can get more or less perfect

results up to 50 degrees, and printable overhangs at
85 degrees. The layer height can have an effect on
overhangs, so it’s worth testing this out at the layer
height you want to print at.

Based on your testing, you may want to change
the maximum overhang angle before supports are
added. In PrusaSlicer, this is called the Overhang
Threshold. Depending on your model, and the quality
you’re after, you may be able to save a lot of print
time and filament by increasing it. There is more
than one aspect to overhangs – the profile of them
can also have an impact on their performance, so
you might not want to go all the way to 85 degrees
unless you’re willing to risk some failures.

GETTING HOT
What temperature should you print your filament
at? In many cases, the answer is to just select the
filament type in your slicer and let it figure it out.
That’s a good choice in many cases, but it hides the
fact that there isn’t a perfect temperature, instead,

Figure 1
The callipers show
19.97 mm, but that’s
claiming a degree of
accuracy that they
don’t have. Between
19.9 mm and 20.1 mm
is good enough for us

http://hsmag.cc/printtest

81

FORGE

there’s a set of choices that deliver different pay-offs.
Back when we started 3D printing, many people
recommended around 190 °C for PLA, but many
modern printers default to 230 °C. What’s changed?

Slicer programmers try to pick a good compromise
for most models, but this won’t necessarily be the
optimum for all cases. As you heat up a thermoplastic
like PLA, PETG, and the other plastics that we use for
3D printing, they become less viscous – or to put it
another way, more runny. This causes a few effects.
It means you can get plastic out the nozzle and onto
the print quickly. This is obviously important for
high-speed printing. However, it also means that the
plastic has to cool down more before it’s solid, which
is bad news for bridges and small prints (as one layer
has to harden before the next can go on top of it).

When you buy PLA, you’re rarely buying 100%
pure PLA – almost all manufacturers add things to it.
This includes colourants, but often also things to help
the PLA flow better. The end result is that two reels
of PLA from two different manufacturers may behave
differently at the same temperature, and so may
have different optimum temperatures for printing.

The hard way of calibrating temperature is to
slice the same model at different temperatures and
print it out to see what it looks like. Fortunately,
there’s an easy way. There’s a type of test called a
‘temperature tower’. This adjusts the temperature
as it moves in the Z axis so you can see how well it
prints. Typically they include long bridges, overhangs,
and stringing tests, as these are three common
problems associated with print temperatures. You
can’t slice a temperature tower in the normal way.
Instead, you have to get G-code created specifically

for your printer. For many Ender-3 clones, the G-code
is often transferable. For more modern printers, you
might have to get G-code created specifically for your
printer. There are lots of options online if you search
Thingiverse or Printables. We used the Prusa MK4
version available at hsmag.cc/mk4temptower.

We were pretty surprised at how little difference
we got across a range of temperatures. We last ran a
tower like this on a printer about four years ago and
then there was a huge range of problems at different
temperatures (and before you ask, yes, we did check
that it really was printing at the temperature given on
the tower).

It’s fine margins, but if you look at the smaller cone,
there’s better detail on the higher temperature, though
this is also joined by a slight increase in stringing.

YOUR MILEAGE MAY VARY
Depending on your printer, you may get a result like
ours, or a more pronounced result. Remember that
this may give different results with different brands
of filament so, while there are some printer-specific
factors, this isn’t just a one-time calibration.

When you see the results for your printer, you can
make a decision as to what temperature to print at.

If you decide you want to change the temperature
that you’re printing at, it’s worth running the overhang
test again to check that you’re still having the results
you hope for there.

There are a myriad of different tests you can run
on your printer, but these basic ones will highlight
the majority of the problems that you might face. Get
them printing, and you’ll both be able to calibrate your
printer and understand its limitations.

Figure 2 (left)
From the top, these
overhangs look good,
even up to 80 degrees

Figure 3 (right)
You can see some
artifacts on the
bottom of the
overhangs. Whether
or not these are a
problem depends on
what you want from
the model

http://hsmag.cc/mk4temptower

+

DON’T MISS THE BRAND NEW ISSUE!

SUBSCRIBE
FOR JUST

£10!

NEW MODEL!

> �FREE! Raspberry Pi
Pico W

> �THREE! issues
of The MagPi

> �FREE! delivery
to your door

FREE
RASPBERRY PI
PICO W*

Three issues and free Pico W for £10 is a UK-only offer. Free Pico W is included with a
12-month subscription in USA, Europe and Rest of World. Not included with renewals.
Offer subject to change or withdrawal at any time.

magpi.cc/subscribe

* W
hile stocks last

http://magpi.cc/subscribe

FIELD TEST
HACK MAKE BUILD CREATE
Hacker gear poked, prodded, taken apart, and investigated

96
PG

CROWDFUNDING
Take your sand-blaster anywhere

BEST OF
BREED

All the latest new gadgets
and gizmos

PG84

92
PG

FLIPPER VIDEO
GAME MODULE
Add video output to your wireless
discovery tool

90
PG

SCREEN
PRINTER
Squeegee ink into all the right places

94
PG

TINY TAPEOUT
Chip design goes mainstream

New products for a new year

BEST OF BREED

84

ONLYTHE

BEST

W elcome to 2024! Things
certainly have changed since I
started my electronics journey
so many years ago. I still
remember programming a
POV from Adafruit via a serial

port, and the amazing feeling of accomplishment
that followed, as I waved it in the air the first
time, and I could read the word ‘HELLO’. Since
those early days of learning to read schematics,
breadboard, solder, and correctly identify
components, I have played around with electronics
both as a hobby and as a profession. And one of

my favourite things is still to get that feeling of
amazement as new products are launched, and
learning about what they can do.

My journey started out with the BASIC Stamp,
then Arduino, followed by Raspberry Pi. It’s amazing
how much has changed, and how much easier and
more powerful everything’s become. Blinking LEDs
was fun back in the day – OK, it’s still a lot of fun.
But now, hooking up an LCD display and adding
machine learning with object detection has become
almost as easy, and incredibly affordable. In this Best
of Breed, I’ll be looking at some of the new products
I want to experiment with, and hopefully you do too.

 New products for

 a new year

A collection of new boards and accessories

 By Marc de Vinck

85

FIELD TEST

T he Adafruit ItsyBitsy ESP32 has
been in the works for some time.
The recent pandemic, and all the
associated supply chain issues,
certainly added to the delay. But now,
you can finally get your hands on this

diminutive microcontroller. So, what does this little
board do? A lot!

The board features an ESP32 Pico module, which
is an FCC-certified module containing an ESP32 chip
with dual-core 240MHz Tensilica processor, built-in
Wi-Fi and Bluetooth classic + BLE, along with 8MB of
flash memory and 2MB of PSRAM. Coupled with all that
power are 20 GPIO pins, including PWM output on any
pin. It also has hardware-based UART and SPI, and the
ability to use eight pins as capacitive touch inputs. There
is more that this board can do, and there are different
antenna connectors available, so you really need to
check out the product page for all the details.

 Adafruit ItsyBitsy ESP32
 vs Espressif ESP32-S3-BOX-3B

T he ESP32-S3-BOX-3B, available
from Adafruit, is a perfect
platform for creating new AIoT
systems. It’s a fully open-source kit
developed around the ESP32-S3 AI
SoC, making it a perfect solution for

more advanced projects. It also has built-in Wi-Fi

+ Bluetooth, AI acceleration capabilities, 512KB
SRAM, 16MB of Quad flash, and 16MB of Octal
PSRAM.

The ESP32-S3-BOX-3 can run Espressif’s
speech recognition framework, allowing you to
build a fully offline AI voice assistant featuring
far-field voice interaction, wake-up interruption,
continuous voice recognition, and the ability
to recognise 200+ user-customisable words.
And, if you want to get into some even
more advanced AI, you can also integrate
ChatGPT into your project, which can lead to
some amazing possibilities.

Adafruit offers this kit in a bare-bones version,
but it also has one that includes additional
sensors and components for just a few dollars
more, making it great value.

VERDICT
Adafruit ItsyBitsy
ESP32
A tiny ESP32
board with lots
of functionality.

VERDICT
Espressif ESP32-
S3-BOX-3B
A great
platform for
an AIoT project.

9  /  10

10  /  10

ADAFRUIT $14.95    adafruit.com ADAFRUIT $47.50 – $49.95    adafruit.com

http://adafruit.com
http://adafruit.com

BEST OF BREED

86

New products for a new year

SPARKFUN $115    sparkfun.com

 SparkFun Experiential
 Robotics Platform

VERDICT
SparkFun
Experiential
Robotics Platform
A handy no-
solder solution
for robotics.

8  /  10

S parkFun has a new board with loads
of potential called the Experiential
Robotics Platform (XRP). It’s designed
to allow for easy hardware and software
iterations of robots thanks to its
compatibility with Blockly, Python, and

the FIRST Robotics coding development tool. At the
core of the XRP board is Raspberry Pi Pico W, enabling
seamless wireless LAN and Bluetooth connectivity, as
well as a familiar GPIO interface.

In addition to the Pico W, the board also features
a six-axis motion sensor, dual-channel motor drivers,
and a host of Qwiic connectors for adding sensors
without the need to solder.

If you are getting started with robotics or are
part of a FIRST team, you should look at this board.
SparkFun also includes a great ‘Getting Started with
The XRP Controller Guide’, so be sure to head on
over to its site to learn more about this handy Pico-
based dev board.

http://sparkfun.com

87

FIELD TEST

PIMORONI $14.29    pimoroni.com

 NVMe Base for
 Raspberry Pi 5

M ost people who build projects
with the Raspberry Pi will
eventually run out of storage
space. There have been a few
different options for adding storage
in the past, but most are not as fast

and easy as the NVMe board from Pimoroni. It’s the

perfect solution for turning your Raspberry Pi 5 into
a file server or streaming media server.

This bare-bones board allows you to bring your
own M.2 NVMe drive with simple plug-and-play.
Don’t have a M-Key NVMe drive yet? Don’t worry
– they sell two other variants of this board with a
built-in 250GB SSD or 500GB SSD drive.

VERDICT
NVMe Base for
Raspberry Pi 5
A simple way
to add lots
of storage.

10  /  10

http://pimoroni.com

BEST OF BREED

88

New products for a new year

ADAFRUIT $29.95  adafruit.com

 TFP401 HDMI/DVI Decoder
 to 40-Pin TTL Breakout -
 With Touch

T he TFP401 HDMI/DVI Decoder is a
small board that serves a useful
purpose. Now you can easily add a
40-pin TTL/TTF display, via HDMI/
DVI video, to a Raspberry Pi project.
What makes this board a little more

unusual, other than its diminutive size, is the
addition of an AR1100 USB resistive touchscreen
driver. You can power the board over USB and send
the signal out to a small 40-pin TFT display.

If you need to connect an 800 × 400 LCD display
to your Raspberry Pi, and you want a simple way to
drive it, and add touchscreen capabilities, this is the
perfect solution.

Adafruit also designed a version of this board
without the included touchscreen electronics. It will
save you a couple of bucks, but you’ll lose the beauty
and functionality of integrating a touchscreen.

VERDICT
TFP401 HDMI/
DVI Decoder
to 40-Pin TTL
Breakout -
With Touch
A simple way
to add a high-
definition screen
to Raspberry Pi.

9  /  10

 ARGON NEO 5 M.2 NVME PCIE CASE
 FOR RASPBERRY PI 5

PIMORONI $36.83    pimoroni.com

Anyone who’s been playing around with the Raspberry Pi pre Raspberry Pi 5 knows that, although
the form factor is very similar, there are some distinct differences from its predecessors. With the
Raspberry Pi 5, you must consider things like the heatsinks and active cooling from the fan. These
add a bit of height to the overall Raspberry Pi, making many cases incompatible. The Argon NEO 5 M.2
NVMe PCIE Case is a perfect solution for your Raspberry Pi 5, allowing ample room for the board. It
also features an expansion board that lets you connect an NVMe M.2 drive for simple and fast SSD
storage. Pimoroni is offering a version of this case with and without the NVMe expansion board – head
to its website to see the different variations.

http://adafruit.com
http://pimoroni.com

SUBSCRIPTION

89

Learn coding
Discover how computers work

Build amazing things!

magpi.cc/beginnersguide

House_Ad_Beginners_Guide_5th_Ed.indd 1House_Ad_Beginners_Guide_5th_Ed.indd 1 09/11/2023 16:0709/11/2023 16:07

http://magpi.cc/beginnersguide

xTool Screen Printer

REVIEW

90

W hen you think of printing,
you probably think of hitting
a button, then waiting while
a perfect replica of the thing
you have on screen pops out
of a machine. That’s how it

works with paper printers, and these days it’s pretty
common for 3D printers as well. Our experiences with
screen printing, however, have been a bit different. It’s
a more creative process that gives you plenty of scope
for producing interesting, or terrible, results.

Screen printing has been around for a long time.
The basic idea is that you have a fine mesh of fabric.
You cover most of this mesh with some sort of
impermeable barrier, but the bit where you want ink
(or paint) to get through, you leave uncovered. You
then hold this screen against the thing you want to
print onto and squeegee the ink (or paint) through it.
If all goes well, you should have a perfect replica of
your design on the surface below.

That’s screen printing in general. The xTool Screen
Printer is a pretty standard screen printing setup. It
has a frame for holding the screens in, which mounts
onto the system for moving it up and down, to allow
you to place your subject below before pressing the
screen down on top. All this works well and is easy
to use. The thing that makes the xTool Screen Printer
unique is the stainless steel mesh that’s used. This
is compatible with laser cutting, so you can etch out
the design you want using a laser cutter (as opposed
to a more common light-exposure technique). You
can etch your screens using a regular laser cutter and
don’t need any additional equipment.

We made a mistake with our first few and etched
the screens before putting them in the frame. This
made it much harder than it needed to be to position
the different colours in the correct place on the final
object. Once we realised our mistake, and etched
the screens in their frames, this got much easier.
It’s fairly easy to get your designs in the same place
consistently, provided you have a little tolerance. If
your design requires millimetre-level accuracy, then it
might be hard to get it perfect every time.

xTool Screen Printer
Make T-shirts with a laser cutter

XTOOL From £249    hsmag.cc/screen_printer

 By Ben Everard

Right
We had a few failures
while we learned how
to use the machine

Below
The screen printer is small enough to fit on a kitchen table

GET IF
You want to get
creative with ink

90

http://hsmag.cc/screen_printer

FIELD TEST

91

This is an easy machine to use – at least by screen
printing standards. We could create a design in Inkscape
and etch it onto a screen using xTool Creative Space (the
default laser cutting settings for the S1 laser worked
perfectly, though there is a calibration design you can
use for different laser cutters). This slots into the screen
printer and it all works well together. You can apply and
squeegee it across. The whole process can be done
in under an hour. At this point, you can be as creative
as you like. You can use a single block of ink, or mix
colours to get a marbling effect. There are glitter inks,
glow-in-the-dark inks, and other options you can try out.

It is quite a messy affair, so if you’re planning on
trying this in a home (rather than a workshop), you
probably want to make sure you have some old
newspaper or dust sheets to keep the ink off things
that it shouldn’t be on.

A MEDIUM-SCALE MEDIUM
Screen printing is a medium-run manufacturing
technique. If you just want one T-shirt, it’s far easier
to use another option, such as heat-transfer vinyl,
sublimation printing, or getting a T-shirt printed
commercially. However, if you want a few of them
done, screen printing gives you a time- and cost-
effective way of making them.

The creative control you have with mixing inks
gives you capabilities unlike almost any other printing
technique, and can create really beautiful results. It also
lets you print onto a wide range of materials. If you
already have access to a laser cutter, then this is by far
the easiest and cheapest way into screen printing.

FIELD TEST

 SCREEN REUSE
The screens cost £52.99 for a pack of four (you can save
an additional 20% for a yearly fee of £49.99, if you’re
a regular user). A single screen – once etched – can
replicate the design many times. However, if you want
to make lots of different designs, or designs with lots of
colours, the cost here could quickly rack up.

You can, in theory at least, reuse the screens with
new designs (in screen printing terms, reconditioning
a screen so you can put a new design on it is called
reclaiming). xTool suggests doing this in the same way
as with regular screen printing screens. That is, using
emulsion remover to first clean the screens, then use
photo emulsion to recover the screen.

We can’t say how often you can do this before
the screens become too worn, though ours did start
to get kinked and creased after a few uses. We’ve
had it suggested to us that you could use regular
emulsion paint rather than photo emulsion (since we
don’t need to use light to set the pattern). However,
we haven’t tested this out. It may even be possible to
remove the previous design using the laser rather than
emulsion remover, though this might shorten the life
of the screen.

Below
The prints didn’t come
out perfectly every
time (this might be our
inexperience), but we
love the effect you can
create by mixing ink

VERDICT
The best screen
printer for
hobbyists –
if you own a
laser cutter.

10  /  10

AVOID IF
You only want
one T-shirt

Video Game Module for Flipper Zero

REVIEW

92

T he recently released Video Game
Module sits on top of the Flipper
Zero; so, before we can look at
what the former does, we need to
understand the latter.

At a basic level, it’s a microcontroller
with a range of short-range wireless connectivity
strapped on. That includes sub-GHz radio (which
can read and send at the popular 866 and 433MHz
frequencies), RFID, NFC, infrared, and iButton (which
is a sort of circular electronic key). You can use this to
read, understand, replay, or transmit data.

Much attention has been paid to the Flipper Zero’s
use as a device for attacking hardware, and you’ll
see videos online of it being used to bypass security,
particularly on cars. There are, undoubtedly, some
older models of car that are vulnerable to things
that the Flipper Zero is able to do. However, they
only work under very specific circumstances and,
frankly, if you’re looking to steal cars, there are far
better devices out there than the Flipper Zero (and
no, we won’t recommend any). Despite this, the
government of Canada has decided to ban the Flipper
Zero from sale there.

While the Flipper Zero might not be the key to
instant criminal success, it is a great tool for learning
about how the wireless communications that whiz
through the air all around us actually work. For
example, while the Flipper Zero almost certainly
won’t unlock your car, it can be used to read the
signals that go between your car and the key fob,
and so you can learn about why such a simple device
can’t unlock a car (hint: it’s rolling codes).

You may have some remotely controllable devices
sending data back and forth – such as a weather
station or other sensor. These commonly operate in
the sub-GHz frequency range, and using Flipper you
can see what data is being sent. You could do this
because you’re interested in the security implications
of sending the data, because you’re interested in
intercepting the data for other purposes (such as
getting the sensor data into a computer), or simply
because you’re interested in understanding a bit
more about wireless data transfer.

There is also, for reasons we don’t fully
understand, a dolphin as a digital pet.

Video Game Module
for Flipper Zero
A module that’s not really for video games

FLIPPER DEVICES INC. $49 (not including Flipper Zero)    hsmag.cc/flippervgm

 By Ben Everard

Right
You can play games
with the module,
but it’s not the best
arcade interface

Below Right
The Video Game
Module plugs into
the GPIO on the
Flipper Zero

GET IF
You want to
investigate
wireless on
a big screen

http://hsmag.cc/flippervgm

FIELD TEST

93

The Video Game Module can be used to play
video games. There’s an app called Air Arkanoid
that lets you play the classic block-breaking game
on a TV or monitor, and a game engine (hsmag.cc/
FZGameEngine) that you can use in your own games.

While there is a long history of computer hardware
that’s ostensibly for
serious work really
being used to play
games, this, we
believe, might be the
first bit of hardware
that is ostensibly for
playing games that
will be used mostly
for work. The two key
things that enable it to play video games – graphical
output that will work with most modern TVs and
monitors, and motion sensitivity that allows input
from tilting the device – are also useful for a range of
other things.

NOT JUST VIDEO GAMES
The above is achieved using the official firmware
for the module. However, you can program it just as
you would any other RP2040-based device. In fact,
you can store a range of pre-compiled firmware on
your Flipper Zero and load them on the go without
needing a computer.

Writing additional firmware enables you to access
the full range of features of the module and the
RP2040 chip on it. The eleven additional GPIOs can
be used with the RP2040’s Programmable IO system
which makes it possible to implement a wide range

of low-level protocols. This combines well with the
Flipper Zero’s existing capabilities to create a device
that can analyse both wired and wireless traffic.
However, at present, achieving this would require
writing the interfacing code for the RP2040 yourself
as it doesn’t currently exist. Obviously, this could

be done without the
Flipper Zero, and a
standalone RP2040
board, but if you’re
using a Flipper Zero
for other analysis, this
brings more into the
same tool. This setup
would also let you
interface almost any

hardware with Flipper Zero’s wireless capabilities.
You don’t actually have to have a Flipper Zero

to use the Video Game Module – it’s a standalone
device. For example, there’s Scopy firmware
available that turns the module into an oscilloscope
(when paired with a phone that acts as the front
end). This is probably best viewed as a ‘nice to have’
rather than a fundamental feature. We can’t imagine
many people wanting the module for this alone, but
if you need the module for something else, then it’s a
handy addition to have an RP2040 board available.

The primary use of the Video Game Module, we
suspect, will be to provide video output – whether
that’s for demonstrating the hardware, or just
because a particular person prefers to use a big
screen. However, the combination of flexible I/O on
the RP2040, and flexible radio on the Flipper Zero,
could lead to some great applications.

Above
You can flash
firmware onto
RP2040 directly
from Flipper

You don’t actually have to have
a Flipper Zero to use the Video

Game Module – it’s a
standalone device

”

”

VERDICT
Add video
output and
very capable
GPIO to your
dolphin-based
RF analyser.

10  /  10

AVOID IF
You just want
to play games

http://hsmag.cc/FZGameEngine
http://hsmag.cc/FZGameEngine

Tiny Tapeout

REVIEW

94

A bout 18 months ago, this reviewer
took a class in Bristol Hackspace.
There, Matt Venn took a group of
novices through the very basics of
chip design.

Microchips have been, perhaps,
the defining innovation of the past 100 years. They
are what enable the modern world to exist. But what
are they? If you peel back the black plastic coating,
what would you find inside?

Here at HackSpace magazine, we’re very keen
on learning by making. If you want to know how
something works, building it is an excellent place
to start. However, historically this has been very
difficult if not impossible to do with microchips.
The costs involved put it out of reach for most
mere mortals.

Costs have come down in recent years, but
they’re still pretty big. One man, however, has a
solution. Matt Venn’s approach with Tiny Tapeout
is to split up the die of a microchip into multiple
parts in such a way that a single chip can hold
many different designs. There are eight inputs and
outputs, but these can be sent to any of up to a
few hundred designs. This, coupled with some
subsidised chip manufacturing, brings the cost of
getting a microchip made down to $150 for the
latest run. While this isn’t exactly pocket change,
it’s within the reach of many makers.

For this price, you get the microchip made and
mounted on a PCB that includes a clock source,
LEDs for output, and switches for project select
and input. There is also mounting for a Raspberry
Pi Pico on the back, to allow you to control your
section of the chip from software.

Following Matt’s class, we spent a bit of time
working on our design, and came up with an LED
flasher that could flash a few different patterns,
depending on the state of some inputs.

You can create your designs in a few different
ways. We used the graphical Wokwi tool, which
enables you to drag and drop components together.
You can also use a hardware description language
such as Verilog.

Tiny Tapeout
Can you learn chip design in an evening?

TINY TAPEOUT $150    tinytapeout.com

 By Ben Everard

GET IF
You want to
learn more
about how
modern
electronics work

Right
The microchip comes on a removable daughterboard

http://tinytapeout.com

FIELD TEST

95

Once we’d created our design, we added it to the
GitHub project which compiled our design to the
format needed by the microchip fabricator.

EXPLORING THE SILICON
Chip design isn’t a speedy process at the best of
times. We can get a bit frustrated when PCBs take a
few weeks to get made and shipped, but it was over
a year before we finally received our boards. The chip
arrived already mounted on a demo board that made
it easy to test out the projects, though the chip itself
does come on a daughterboard, so can be dropped
into another PCB if it’s a part of a larger project.

On the board is not just our design, but 165 designs
that you can select and try out. Some of these need
specialist hardware to run, but many of them we can
test out. Every author submitted a datasheet with
details of what their design does and how to test
it out – find these at tinytapeout.com/runs/tt02.
Our board arrived set up to run Skyler Saleh’s ‘Hello
Generator’ design which flashes out the letters ‘h’,
‘e’, ‘l’, ‘l’, and ‘o’ on the seven-segment display.

We just have to flip the selector switches to our
design. With an 18-month turnaround time, we were
really hoping that it worked. Fortunately, it did.
The lights flashed on and off as they were supposed
to. It’s probably not a design that we’ll take forward
or use in a project (OK, maybe we might have the

world’s most over-engineered Christmas lights next
year), but it’s a chip with our design etched into the
silicon. If you want to explore further, there are ten
different CPU designs on this particular run of Tiny
Tapeout (2) that you can try out and code for (though
don’t expect it to be easy), as well as many others
to explore. The documentation may, or may not, be
good for any of them, but the source code of the
hardware itself is online for you to look through. It’s an
open-source chip full of designs for you to explore and
play with.

LEARNING TO DESIGN
We attended an in-person event, but that’s not
necessary. Anyone can submit a design, and if you’ve
not done any chip design before, there are a series of
lessons on the Tiny Tapeout website to help you get
started: tinytapeout.com/digital_design.

Here at HackSpace magazine, we’re in a
tremendously privileged place where we can try out
a huge number of different techniques and styles of
making. However, among these, Tiny Tapeout stands
out. It gave us a chance to peer behind the curtain
and see how these things are made. Our design was
barely more than a ‘hello world’ of chip design, but it
was ours and it got made, and that’s special. If you’re
interested in computing, then we’d highly recommend
the experience of designing your own microchip.

Above Left
Solder on a Pico
and you’ll be able to
interact with
the projects
from software

Above Right
Flip the selector
switches to pick
the project you
want to enable

VERDICT
Learn how
microchips
work by
designing one.

10  /  10

AVOID IF
You’re too
impatient to
wait over a year
for hardware

http://tinytapeout.com/runs/tt02
http://tinytapeout.com/digital_design

REGULAR

96

Crowdfunding now

T his claims to be a new sort of power
tool, which is stretching the truth a
little. It’s a sand-blaster, and we’ve had
those for years. However, it does work
in a slightly unusual way – instead of

compressed air firing the sand, it uses spinning
discs. Does this matter? The Kickstarter doesn’t
really tell us. It’s slightly more portable, but
a connected air hose isn’t really the biggest
impediment to movement. Yes, you do need to
be connected to a compressor, but unless you’re
working out of the back of a van, that’s usually not a
problem. Given that the BLSTRsander is corded, the
difference between being tethered by a power cable
and an air hose doesn’t seem huge.

It’s not even a saving in price over a regular sand-
blaster plus compressor (even if you have to buy the
compressor).

One graphic on the Kickstarter implies that you
get a bit more control over the power than on a
traditional blaster, but there’s not much detail on this.

Overall, it’s an intriguing idea, but until we get hold
of one we’re struggling to see the benefit.

From  $299    hsmag.cc/blstrsander    Delivery: Jul 2024

BLSTRsander
Sand-blasting set free

CROWDFUNDING
NOW

http://hsmag.cc/bebore
http://hsmag.cc/blstrsander

97

From  $49    hsmag.cc/spark_analyzer    Delivery: Aug 2024

Spark Analyzer
Monitor your power usage

BUYER
BEWARE
When backing a crowdfunding
campaign, you are not purchasing
a finished product, but supporting
a project working on something
new. There is a very real chance
that the product will never ship
and you’ll lose your money. It’s
a great way to support projects
you like and get some cheap
hardware in the process, but if
you use it purely as a chance to
snag cheap stuff, you may find
that you get burned.

!

T his little board takes USB-C Power
Delivery (PD) input, and outputs a
variable voltage while monitoring
the current usage. All this data is then
available in a phone app that you can use to

remotely adjust the voltage and control the device.
There are a couple of downsides to this device.

Firstly, the output voltage isn’t adjustable so much
as selectable. It can be 5 V, 9 V, 15 V, or 20 V. These
match the voltages in the USB PD spec.

For example, there’s no 3 V option. The Crowd Supply
page doesn’t list the accuracy, but the screenshot
shows it measuring current in milliamps, so this
won’t be suitable for monitoring low power and sleep
options on microcontrollers, which typically draw less
than this.

While this does have limitations, there are
definitely benefits to this. It looks like it’ll be an easy
and flexible way of keeping track of the current draw
on your medium-power projects.

http://hsmag.cc/pkit
http://hsmag.cc/spark_analyser

DON’T MISS OUT

ALSO
 RASPBERRY PI

 3D PRINTING

 PYTHON

 MUSIC

AND MUCH MORE

ON SALE
25 APRIL

#78

hsmag.cc/subscribe

The
future
of making

http://hsmag.cc/subscribe

Mindful Droid
We’re living in a golden age for citizen science. Sensors are more plentiful
and cheaper than ever; microprocessors are easier to work with than they
have ever been; networking options proliferate. But without an imaginative way
of representing it, data can still seem somewhat abstract. That’s especially
so when the thing you’re measuring is air quality. Step forward, Michael
Omotosho’s Mindful Droid.

Taking data from its own on-board VOC and CO2 sensors, and receiving
data from the sensors on the Environmental Sensor Development Kit from
DesignSpark, the Mindful Droid makes it impossible to ignore the pollution in
the air around us. It’s a great example of engineering being more than just
making physical things – it’s imagination, and activism too.

IT departments or remote machines!

Available at the main Raspberry Pi resellers

PiKVM V4 Mini

PiKVM V4 Plus
The most feature-rich edition

Small, cost-effective, and powerful!

Remote control redefined

 A cost-effective solution for data-centers,

PiKVM Manage your
servers or PCs

remotely!

List of official
resellers by country:

More connectivity
Extra storage via internal USB 3.0
Upgraded powering options
More physical security features
Extra HDMI output
Advanced cooling solution

Power consumption in idle mode: just 2.67 Watts!
Transfer your mouse and keyboard actions
Access to all configuration settings like UEFI/BIOS

Take full control of a remote PC’s power
Capture video signal up to 1920x1200@60 Hz

PiKVM Manage your
servers or PCs

remotely!

Available at the main Raspberry Pi resellers

http://shop.hipi.io

