
01}March  2013Volume 02} IssueVolume 05}

Available online at: http://www.ifosslr.org

Editorials
Editorial 1

Daniel M. German

Articles
Copyleft, -right and the case law on APIs on both sides of the Atlantic 5

Walter van Holst
Lisping Copyleft: A Close Reading of the Lisp LGPL 15

Eli Greenbaum

Platform
The Rise and Evolution of the Open Source Software Foundation 31

Paula Hunter, Stephen Walli

Legislative Review
FOSS in the Italian public administration: fundamental law principles 43

Simone Aliprandi, Carlo Piana





01} March 2013Volume 02} IssueVolume 05}

Available online at: http://www.ifosslr.org

Editorial Committee 
This publication is managed by a rotating Editorial Committee. 
The membership of the Committee for this issue is as follows: 

Malcolm Bain 
Malcolm is partner at id law partners, a Barcelona based law 
firm specialising in IT law, with a focus on FOSS projects. As 
well as his private practice, Malcolm participates pro bono in a 
number of FOSS related initiatives and teaches the legal 
aspects of FOSS at university. 

Amanda Brock 
Amanda Brock is Director at the international technology law 
firm, Origin, www.origin.co.uk. Prior to joining Origin, she was 
General Counsel of Canonical, the commercial sponsor of the 
Ubuntu project for 5 years leading their international legal team. 
Having graduated with Honours from Glasgow University, 
Amanda went on to obtain a Masters in Comparative 
Jurisprudence from New York University Law School and a LLM
in IT and IP law from Queen Mary and Westfield, University of 
London. She has spent the last 15 years working in house in a 
variety of industries, was the first lawyer employed to work on 
the Freeserve ISP and was an editor of the Butterworth's 
publication Electronic Business Law. She is author of 
E:Business; The Practical Guide to the Laws now in its second 
edition and has contributed a chapter on commercial 
agreements in open source to Walden and Shentov, Free and 
Open Source Software: Policy, Law and Practise, published by 
Oxford University Press in 2013. Amanda has lectured 
extensively on IT and commercial law internationally.

Andrew Katz 
Andrew Katz studied Natural Sciences and Law at Cambridge 
University where he graduated with honours in 1989. In 1991 he 
was called to the Bar, and in 1993 requalified as a solicitor. He 
moonlighted as a programmer during his studies at Bar School, 
programming in Turbo Pascal. He has released software under 
the GPL. He is currently a partner at Moorcrofts LLP, a boutique 
law firm in England’s Thames Valley and advises a wide range 
of businesses on free and open source related issues. He has 
lectured and published widely on the subject. 

Iain G. Mitchell QC 
Chairman, Scottish Society for Computers and Law; Chairman, 
Scottish Lawyers’ European Group; Chairman, Faculty of 
Advocates IT Group; Lecturer, Honorary Board of Lecturers, 
Institut für Informations, Telekommunikations- und Medienrecht,
Westfälische Wilhelms-Universtät, Münster; Freeman, 
Worshipful Company of Information Technologists. 

Carlo Piana 
Independent lawyer specialising in Information Technology and 
Telecommunication Law and Free Software Advocate. Started 
by using GNU/Linux and became intrigued by the legal and 
philosophical implications of it. Serves as Counsel to the Free 
Software Foundation Europe and advises projects and 
companies active in Free and Open Source Software. 

Tomasz Rychlicki 
Tomasz Rychlicki graduated from the University of Gdańsk, the 
Faculty of Law, Center of European Law. He also studied at 
Chicago-Kent College of Law in the LL.M. Program in 
International Intellectual Property Law. Tomasz currently works 
for PATPOL, Warsaw. He is a member of the Editorial Board 
(Copyright, Related Rights and Designs, including sui generis 
database right) at the Journal of Intellectual Property Law & 
Practice published by Oxford University Press, Oxford. 

Brendan Scott
Brendan runs a legal practice based in Sydney, Australia. 
Brendan is a founding member and a director of Open Source 
Industry Australia Limited. He is a past president of the NSW 
Society for Computers and the Law and a past editor of its 
journal. He has over 15 years of experience in Technology and 
Telecommunications law and has a special interest in open 

Daniel German
Daniel German is is Associate Professor, Computer Science, 
University of Victoria. His main area of research is software 
engineering. In particular, software evolution, open source and 
intellectual property.  Daniel teaches several courses at Uvic, 
primarily Database Systems (CSC370), Social and Professional 
Issues (SENG401), Media Applications (SENG410) and more 
recently Intro to Software Engineering (SENG265).

Jilayne Lovejoy
Jilayne Lovejoy is corporate counsel at OpenLogic, a provider of
open source software support, provisioning, and compliance 
solutions to enterprises.  In addition to traditional corporate 
counsel responsibilities, Jilayne helps develop OpenLogic’s 
repository of open source licenses and obligations and ensures 
that OpenLogic’s scanning and compliance software meets the 
needs of legal users.  Jilayne also works directly with enterprise 
customers, providing guidance on open source audits and 
compliance activities.  Jilayne participates in open source 
industry groups that help drive adoption of open source software
and speed compliance with open source licenses, including 
co-chairing the legal work group for SPDX™ under the Linux 
Foundation.  Jilayne is also a frequent speaker at conferences 
and law schools on topics related to open source licensing and 
compliance.

Alex Newson
Alex Newson is a lawyer at Experian. His main areas of practice 
are information technology law, intellectual property and 
litigation. Alex wrote a number of articles on IT law and use of IT 
law in Computers & Law Magazine and the Internet Newsletter 
for Lawyers.  He was also the lead editor and a contributor of a 
book that was published by Gower in 2008: "Blogging and Other
Social Media: Exploiting the Technology and Protecting the 
Enterprise".

Editorial Coordinators 
The editors wish to thank the Editorial Coordinators for their hard
work and contribution to making the Review happen. This issue 
has been cure with great dedication and effort by

Kari Karkainen  
Kari is a software professional with close to 20 years of 
experience primarily in wireless telecommunications and 
embedded space, having successfully contributed to the 
development of pioneering technology solutions (e.g. the first 
Nokia communicator, and the first KJava (J2ME)  
implementation in a GSM phone). Besides being an MBA 
graduate, he has recently also obtained an LLM degree, as he 
has always been very interested in the legal matters related to 
software, especially open source software, and IT in general.

Peer reviewers 
The Editorial Committee wishes to thank the work of the many 
referees and peer reviewers whose professional expertise and 
dedication to high standards have made the publication of this 
issue possible. 

Contact 
All administrative, bibliographic and pre-publication enquiries 
should be directed to the Editorial Coordinators via email at: 

admin@ifosslr.org 
The Editorial Committee can be contacted via email at: 

ed-com@ifosslr.org 



Policies and bibliographic information

Copyright and licensing statement 
IFOSS L. Rev. is committed to the improvement of
understanding of legal issues in digital society. A licensing
statement is therefore attached to each article, clearly
outlining the particular terms which apply to the article.
Most use Creative Commons licences with special
exceptions for translations. 

Graphic design 
The Editorial Committee wishes to thank Tomasz Politański
Design for its logo and associated graphic design work. 

http://tomaszpolitanski.com 

Publisher & sponsorship 
IFOSS L. Rev. is published by its Editorial Committee, with
financial and administrative assistance from NLnet
Foundation and Mozilla Foundation. Please note that
neither NLnet Foundation nor Mozilla Foundation accept
correspondence on behalf of this publication. All
correspondence should be directed to the Editorial
Committee via email (see below). 

Editorial policies 
IFOSS L. Rev. accepts articles for publication from qualified
personnel based on the criteria available to view on its web

site (http://www.ifosslr.org ). Submissions are welcome
from all, and your business. Authors are strongly
encouraged to read the style and content guidelines
available on the web site. The review operates an
anonymous peer review system for articles as appropriate,
and expects all authors to meet the highest standards of
scholarship and integrity. 

Bibliographic information 
The authors explicitly encourage libraries, archives and
educational institutions to hold copies of IFOSS L. Rev. in
their collections, in electronic and/or printed form. All users
are advised that articles may occasionally be updated after
publication. Linking back to original copies on the IFOSSL.
Rev. web site, where authoritative versions are archived, is
strongly recommended. Please contact the Editorial
Coordinators for further information on best practices. It
participates in the CrossRef system. 

ISSN:  1877-6922 

Publication schedule 
IFOSS L. Rev. is published biannually. Submissions for
publica-tion are welcome at any time, but publication
deadlines exist for each issue. For the latest information on
papers sought and deadlines for submission, please
consult the IFOSS L. Rev. website or contact the Editorial
Coordinators at ( admin@ifosslr.org ) 



Editorial 1

Editorial

Daniel M. German,a

(a) Associate Professor, Computer Science, University of
Victoria, editor of this Review;

DOI: 10.5033/ifosslr.v5i  1  .83  

Abstract
Editorial for Issue 1, Volume 5

Keywords
Editorial

In  Oct  1985,  a  few  months  after  publishing  his  seminal  GNU  Manifesto,  Richard  Stallman
founded the non-profit Free Software Foundation. It is likely that he had realized that he needed
the legal framework of an organization that could own and administer the assets that he and his
collaborators were creating, and that would manage the financial aspects of the project. 

The communities of contributors of large Free and Open Source Software (FOSS) projects have
found themselves in a position similar to that of Richard Stallman. As he did, they have created
non-profit  foundations to  help them achieve  their  goals.  The GNOME Foundation,  the  Linux
Foundation, the Mozilla Foundation, the Apache Foundation,  the Document Foundation, the Open
Street Foundation and many others have been established by their corresponding communities to
help manage their  projects.  In  their paper titled “The Rise and Evolution of the Open Source
Software Foundation,” Paula Hunter and Stephen Walli explore the reasons behind the creation of
FOSS foundations from the legal,  business, and technical  point  of view. They explain that, as
projects grow in size and attract commercial interest, foundations are not only needed to manage
the potentially conflicting interests of its participants, but to administer its assets and to help create
a structure that supports and fosters the further development of its software.

Today, reuse is a very important aspect of software engineering. It is very rare to see a software
product that has been developed completely from scratch. Instead, software is structured in layers,
such that  software systems “build” on the features of others. From a technical point of view, reuse
is facilitated by well defined interfaces, typically known as Application Programming Interfaces or
APIs.  APIs  become the  protocol  that  defines  how a  software  product  (a  library,  an operating
system, a programming language, a plugin, a web service, etc.) expects to interact with another
one.

When the API that governs the interactions between two software systems is well-defined, either
one of them can (at least in theory) be replaced by an alternative implementation that has the same
API and equivalent functionality. 

International Free and Open Source Software Law Review Vol. 5, Issue 1

http://dx.doi.org/10.5033/ifosslr.v5i1.83


2 Editorial

For this reason, it is important to know if a given API is copyright-able. If it is, then anybody
wanting to implement a software system that implements such API would require a license from
the API copyright owner. In this scenario, the API owner would be in the position to control the
market of products that  implement such API,  potentially restricting competition. Perhaps more
important is the question of whether APIs should be copyright-able at all. In a span of few months,
two legal cases, one in Europe  and one in the United States address this issue in a similar manner.

In Europe,  SAS Institute Inc. v. World Programming Ltd, C-406/101 involved the SAS language.
SAS is  a  programming language  for  data  processing and  statistical  analysis.  WPL created  an
implementation of this language without approval from SAS Institute, and without access to the
source code of SAS. SAS Institute sued them for infringement of copyright.  

In  the United States,  Oracle America,  Inc.  v.  Google,  Inc.2 revolved around Java,  the popular
programming language, developed by Oracle America. Google had created, as part of its Android
mobile  platform,  a  partial  implementation  of  the  runtime  library  of  Java  –  without  the
authorization of Oracle America,  its  copyright owner.  Oracle America argued that  Google had
violated its copyrights, and sued. 

Walter van Holst's article “Less may be more: copyleft, -right and the case law on APIs on both
sides of the Atlantic” discusses both cases within the context of the licenses of the Free Software
Foundation. In  particular,  he argues that  if  APIs  are not  copyright-able,  then linking (whether
dynamic or static) could be considered mere aggregation, and the General Public License could be
interpreted to be equivalent to the Lesser General Public License (LGPL) and therefore weakened.

License proliferation is another issue that can potentially hurt software reuse in FOSS. One would
expect that new FOSS licenses are created because their authors believe that current licenses do
not satisfy their legal requirements. In the article “Copyleft: A Close Reading of the Lisp LGPL”
Eli Greenbaum analyses the Lisp Lesser General Public License (LLGPL), a license derived from
the LGPL version 2.1. Greenbaum describes the rational behind its creation, and argues that the
LLGPL is redundant and that its drafters would have achieved the same goals using the LGPL
instead.

About the author

Daniel M. German is Associate Professor, Computer Science, University of Victoria. He 
completed his Ph.D. in computer science at the University of Waterloo.  His work spans the areas 
of software evolution, software engineering of free and open source software and the impact of 
intellectual property in software engineering.

1 See SAS Institute Inc. v. World Programming Ltd. Case C-406/10 Judgement of the Court (Grand Chamber) of 2 May 
2012. Available at http://curia.europa.eu/juris/liste.jsf?num=C-406/10

2 See Oracle of America v. Google Inc. Case No. C 10-03561 WHA. Order RE Copyrightability of Certain Replicated 
Elements of Java Application Programming Interface (N.D. Cal. July 22, 2011).

International Free and Open Source Software Law Review Vol. 5, Issue 1

http://curia.europa.eu/juris/liste.jsf?num=C-406/10


Editorial 3

International Free and Open Source Software Law Review Vol. 5, Issue 1

Licence and Attribution

This paper was published in the International Free and Open Source Software Law
Review, Volume 5, Issue 1 (MARCH 2013). It originally appeared online at

http://www.ifosslr.org.

This article should be cited as follows:

German, Daniel M (2013) 'Editorial', International Free and Open Source Software
Law Review, 5(1), pp 1 – 4 
DOI: 10.5033/ifosslr.v5i2.83

Copyright © 2013 Daniel M. German.

This article is licensed under a Creative Commons UK (England and Wales) 2.0
licence, no derivative works, attribution, CC-BY-ND available at

http://creativecommons.org/licenses/by-nd/2.0/uk/

As a special exception, the author expressly permits faithful translations of the entire
document into any language, provided that the resulting translation (which may

include an attribution to the translator) is shared alike. This paragraph is part of the
paper, and must be included when copying or translating the paper.

http://creativecommons.org/licenses/by-nd/2.0/uk/


4 Editorial

International Free and Open Source Software Law Review Vol. 5, Issue 1



Less may be more: copyleft, -right and the case law on APIs on both sides of the Atlantic 5

Less may be more: copyleft, -right and the case
law on APIs on both sides of the Atlantic

Walter H. van Holst
Senior IT-legal consultant at Mitopics, The Netherlands

(with thanks to the whole of the FTF-legal mailinglist for
contributing information and cases that were essential for this

article)

DOI: 10.5033/ifosslr.v5i1.72

Abstract
Like any relatively young area of law, copyright on software is 
surrounded by some legal uncertainty. Even more so in the context of 
copyleft open source licenses, since these licenses in some respects 
aim for goals that are the opposite of 'regular' software copyright law. 
This article provides an analysis of the reciprocal effect of the GPL-
family of copyleft software licenses (the GPL, LGPL and the AGPL) 
from a mostly copyright perspective as well as an analysis of the 
extent to which the SAS/WPL case affects this family of copyleft 
software licenses. In this article the extent to which the GPL and 
AGPL reciprocity clauses have a wider effect than those of the LGPL 
is questioned, while both the SAS/WPL jurisprudence and the Oracle 
vs Google case seem to affirm the LGPL's “dynamic linking” 
criterium. The net result is that the GPL may not be able to be more 
copyleft than the LGPL.

Keywords
Law; information technology; Free and Open Source Software; case 
law; copyleft, copyright; reciprocity effect; exhaustion; derivation; 
compilation

International Free and Open Source Software Law Review Vol. 5, Issue 1

http://dx.doi.org/10.5033/ifosslr.v5i1.72


6 Less may be more: copyleft, -right and the case law on APIs on both sides of the Atlantic

Introduction

A recurring issue surrounding copyleft licenses is the question at which point the reciprocal effect
(which has been called the “viral effect” of these licenses by some) ceases to exist. There has
hardly been an issue of IFOSSLR that did not touch this particular issue. Since the most important
family of copyleft licenses is the GPL family of licenses and the GPL (both version 2 and 3) states
that the rightsholder's authority solely derives from copyright law, the boundaries of copyright on
software are paramount in order to be able to answer this question. To some extent, the boundaries
of software copyright have been addressed in recent case law, both in the European Union (SAS
Institute vs WPL Ltd) and in the United States (Oracle vs Google). The subject of this article is the
interplay between  the  aforementioned  copyleft  provisions  in  the  GPL-family of  free  software
licenses  and  these  fairly recent  developments  in  jurisprudence.  The conclusion is  that  the  net
difference between the LGPL and the GPL may be a lot less than intended by their drafters.

In this article the issue at hand, the scope of the reciprocal effect of the GPL-family of licenses, is
addressed through an analysis of the applicable rules as supplied by said family and copyright law
on software with a focus on reciprocity in case of inclusion (and no other adaptation) of (L)GPL
software in other software. Although the prism through which this is looked at is primarily the EU
Software Directive (and more precisely the Dutch transposition of it into law as well as wider
Dutch copyright jurisprudence), other jurisdictions, notably the US, will be taken into account by
an analysis of the case law mentioned above.

Legal framework as provided by the GPL family

Roles of the GPL family of licenses

It is important to understand the GPL-family as dual-purpose licenses. They provide both an end-
user license and a distribution license. The end-user license is relatively simple, the core of it is
included in art. 2 GPL v3, which among other things says “This License explicitly affirms your
unlimited permission to run the unmodified Program”. The distribution license is where the pitfalls
lie, but again from a relatively uncomplicated basis in section 4 GPL v3:

“You may convey verbatim copies of the Program's source code as you receive it, in
any medium, provided that you conspicuously and appropriately publish on each copy
an appropriate copyright notice; keep intact all notices stating that this License and
any non-permissive terms added in accord with section 7 apply to the code; keep
intact all notices of the absence of any warranty; and give all recipients a copy of this
License along with the Program.”

And also  a  delineation  of  its  scope  in  section  5  GPL v3  (see  also  GPL v2,  section  2,  final
paragraph):

“A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined
with  it  such  as  to  form  a  larger  program,  in  or  on  a  volume  of  a  storage  or
distribution medium, is called an “aggregate” if  the compilation and its resulting
copyright are not used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work in an aggregate

International Free and Open Source Software Law Review Vol. 5, Issue 1



Less may be more: copyleft, -right and the case law on APIs on both sides of the Atlantic 7

does not cause this License to apply to the other parts of the aggregate.”

The complexity starts here, because the GPL speaks about not being “by their nature extensions of
the covered work”. In other words: as long as no derivation takes place. And then it becomes
relevant what defines derivation, does the GPL family of licenses take precedence here or does
copyright law?

Bare licenses based on copyright law

Section 0 of  GPL v2 is rather explicit about its tie-in with copyright:

“Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work
based on the Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does. “

Somewhat more implicit, but with seemingly the same meaning is Section 0 of GPL v3; several
core concepts are defined within that core concept by using copyright (or related rights such as
semiconductor masks) as the explicit reference for their scope.

This is no surprise since the Free Software Foundation (FSF) has always claimed that the GPL-
family of licenses is a set of so-called bare licenses,1 meaning that they should be interpreted solely
through the prism of copyright law and not contract law.2 This distinction is mostly relevant in
common law jurisdictions since in most civil law jurisdictions the exonerations of liability in the
GPL-family of licenses are most likely to be treated as negative obligations of the licensee, which
automatically makes the license a bilateral contract. The upside of civil law jurisdictions is that
generally speaking the licensor will not be deprived from enforcement options based on copyright
infringement by the mere fact that there is a contractual relationship with the licensor. Basically,
copyright infringement overrides the safeguards that a liable party which is in breach of contract
could otherwise rely on.

The net result of all this is that in order to find the scope of what constitutes a derivative work
under the GPL-family of licenses we will have to focus on software copyright and as far as that
does not provide answers, to copyright law in general. Neither the EU Software Directive nor art.
117  of  the  US Copyright  Act  of  1976 (USC)  contain  specific  provisions  about  derivation  of
software. Also literature on this subject is relatively scarce, with the notable exception of Pamela
Samuelson's impressive analysis of derivation under US copyright law.3

So we have to turn to 'classical' copyright on the subject of what constitutes a derivative work
under copyright law. Article 2 sub 3 of the Berne Convention defines derivative works as:

“Translations, adaptations, arrangements of music and other alterations of a literary

1 Moglen, E. (2001), Enforcing the GNU GPL, http://www.gnu.org/philosophy/enforcing-gpl.en.html
For a similar analysis of how the GPL works see also Stoltz, Mitchell L. (2005), The Penguin Paradox: How the scope of 

derivative works affects the effectiveness of the GNU GPL, in Boston University Law Review, Vol 85, nr. 5, December
2005, pp. 1440-1477.

2 See for example: Henley, Mark (2009) 'Jacobsen v Katzer and Kamind Associates – an English legal perspective', 
IFOSS L. Rev., 1(1), pp 41 – 44, and Rosen, Lawrence (2009) 'Bad facts make good law: the Jacobsen case and Open 
Source', IFOSS L. Rev., 1(1), pp 27 – 32.

3 Samuelson, P. (2012), The Quest for a Sound Conception of Copyright's Derivative Work Right (August 29, 2012). 
Georgetown Law Journal, Forthcoming; UC Berkeley Public Law Research Paper No. 2138479. Available at SSRN: 
http://ssrn.com/abstract=2138479 or http://dx.doi.org/10.2139/ssrn.2138479

International Free and Open Source Software Law Review Vol. 5, Issue 1

http://www.gnu.org/philosophy/enforcing-gpl.en.html


8 Less may be more: copyleft, -right and the case law on APIs on both sides of the Atlantic

or  artistic  work  shall  be  protected  as  original  works  without  prejudice  to  the
copyright in the original work.”

Copyright laws in the various signatory countries of the Berne Convention tend to be variations of
that  theme,  examples  are art.  101 USC, art.  13 of  the Dutch Auteurswet  (Aw),  art.  23 of  the
German Urhebegesetzbuch (UHG) and art. 21 of the UK Copyright, Designs and Patents Act 1988.
The operative term in all these legislative terms is 'adaptation' in the sense of alterations made to
the work.

This is not wholly reflected in section 5 of GPL v3 which starts with:

“You may convey a work based on the Program, or the modifications to produce it
from the Program, in the form of source code under the terms of section 4...”

and then continues with a series of conditions, among them the famous reciprocity clause:

“c) You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with any
applicable section 7 additional terms,  to the whole of the work,  and all  its  parts,
regardless of how they are packaged. This License gives no permission to license the
work  in  any  other  way,  but  it  does  not  invalidate  such  permission  if  you  have
separately received it.”

To clarify this further, at the very bottom of the GPL v3 the following note can be found:

“The GNU General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider it
more useful to permit linking proprietary applications with the library. If this is what
you want to do, use the GNU Lesser General Public License instead of this License.
But first, please read <http://www.gnu.org/philosophy/why-not-lgpl.html>. ”

Section 2 of the GPL v2 and another note at the end of the GPL v2 contain very similar language. 

It is therefore not unreasonable to conclude that the GPL family of licenses generally assumes that
the notion of derivative work extends beyond actual transformations or adaptations to include the
use of API calls to libraries. This is underlined further by the way the LGPL (both v2 and v3) treat
this, although not entirely consistently. In the LGPL this is treated as a “Combined work” per the
definitions of section 0 LGPL v3 and to which notably the rules of section 4 LGPL v3 apply. These
state the requirement of a 'suitable linking mechanism', which is a fascinating read on its own and
will  be  discussed  shortly.  The  reasoning  seems  to  be  based  on  the  idea  that  a  creation  of
dependencies on L(GPL) software through library calls is use of the software beyond the permitted
use and distribution of Sections 2 and 4 of the GPL, which gets us to the extent such library calls
are indeed covered by copyright as protected acts.

Analysis and application to libraries

Linking mechanisms

Before getting into detail on the copyright aspects of library calls, a minimal explanation of library
calls and linking mechanisms is in order. A lot of software, especially application software, relies

International Free and Open Source Software Law Review Vol. 5, Issue 1

http://www.gnu.org/philosophy/why-not-lgpl.html


Less may be more: copyleft, -right and the case law on APIs on both sides of the Atlantic 9

on function libraries that are typically employed by calling the Application Programming Interface
(API) of those libraries. To use a real-world analogy, it is not unlike using Legos as an underlying
foundation for a top layer  that is typically written by the author(s) of the software.  There are
typically two ways of providing the foundations. The first one is so-called static linking, which
works like incorporating the building blocks permanently in the application. The other way is to
give the operating system a bill of materials stating the building blocks needed (including version
information) and to have them assembled at run-time. This is called dynamic linking. As a result
multiple programmes can share common building blocks which save both storage and memory
space. Again, this is a very minimal explanation, for a truly thorough overview of the amount of
copying  and  remixing  of  software  that  goes  on  during  the  normal  usage  of a  contemporary
computer that is accessible to a lawyer, I refer to Determann.4

It  can  be  argued  however  that  dynamic  linking  is  less  of  an  adaptation  than  for  example  a
collection of poems, or the incorporation of graphical materials, musical scores or photographs in a
text,  which usually are not  considered as adaptations (which in certain jurisdictions would be
treated as collective works). The actual act of setting up the necessary references to successfully
make  library  'calls'  is  done  at  run-time  by  the  operating  system,  when  loading  the  calling
programme into memory, not when distributing the programme that is dependent on the libraries.

It should also be noted that similar mechanisms are employed in the case of contemporary multi-
platform language frameworks such as Java, Dalvik and .NET which all use virtual machines as
target platforms, but in practice often rely on Just-In-Time (JIT) compilers that ultimately function
very similarly to that of traditional compilers with the difference being that they are invoked on the
fly during startup of a programme written in a higher or intermediate level language. Even more
dynamic are programmes written in so-called dynamic languages such as Python, PHP, JavaScript
(ECMA script) and Ruby, but ultimately the lower level mechanisms are not dissimilar to those
described above.

Transformation and derivation in case law

Neither with static nor with dynamic linking there is much, if any, transformation of the work at a
technical  level,  although practically speaking it  will  be  very difficult  to  separate  the building
blocks from a statically linked executable. When looking at the rare cases about derivative works
these tend to concentrate on the edges of exhaustion of copyright (also known as the first sale
doctrine).  They also  appear  to  be  toss-ups  between  being  qualified  as  derivative  works  (and
therefore infringing) or as mere exhaustions of existing copies. An example in the US is  Lee v.
A.R.T. Company, 125 F.3d 580 (7th Cir. 1997).5 One Deck the Walls store  sold  note cards and
small lithographs created by Lee to A.R.T. Company, which mounted the works on ceramic tiles
(covering the art with transparent epoxy resin in the process) and resold the tiles. Lee was of the
opinion that this constituted an adaptation and therefore a derivative work, while A.R.T. Company
claimed that this was a case of copyright exhaustion. The 7 th Circuit Court of Appeals upheld the
District  Court's  view  that  this  was  copyright  exhaustion  whereas  in  a  similar  case,  Mirage
Editions, Inc. v. Albuquerque A.R.T. Company, 856 F.2d 1341 (9th Cir. 1988)6 the 9th Circuit
Court of Appeals came to an opposite decision. In this case the 9 th Circuit wrote “We conclude,
though, that appellant has certainly recast or transformed the individual images by incorporating
them into its tile-preparing process.”, thereby referring to art. 101 USC which describes recasting

4 Determann, L. (2006), Dangerous Liaisons – Software Combinations As Derivative Works? Distribution, Installation 
And Execution Of Linked Programs Under Copyright Law, Commercial Licenses And The GPL, 21 Berkeley 
Technology Law Journal 1421 (2006)

5 A commentary on this decision can be found at http://www.law.cornell.edu/copyright/cases/125_F3d_580.htm
6 The decision can be found at https://bulk.resource.org/courts.gov/c/F2/856/856.F2d.1341.87-6465.html

International Free and Open Source Software Law Review Vol. 5, Issue 1

https://bulk.resource.org/courts.gov/c/F2/856/856.F2d.1341.87-6465.html
http://www.law.cornell.edu/copyright/cases/125_F3d_580.htm


10 Less may be more: copyleft, -right and the case law on APIs on both sides of the Atlantic

or transforming as one of the ways a work can be derived.

Closer  to  the  copyright  in  software is a  series  of  video  game  console  related  cases:  Sega
Enterprises v. Accolade, 977 F.2d 1510 (9th Cir. 1992),7 Sony Computer Entertainment, Inc. v.
Connectix Corp.,  203 F.3d 596 (9th Cir.  2000)8 and  Lewis Galoob Toys, Inc. v. Nintendo of
America, Inc. 964 F.2d 965 (9th Cir. 1992).9 Surprisingly enough, in none of the three cases it was
claimed that interfaces are copyright protected material. This despite the fact that in all three cases
use or even reimplementation of APIs lied at the heart of the matter. Stolz rightfully notes in his
analysis that “the cases strongly imply that any parts of a program that must necessarily be copied
in order to create a compatible module are not protected by copyright, denying copyright holders
one of their key tools for controlling unauthorized linking”.10 Very striking is that in Sega the Ninth
Circuit Court held that under the circumstances of the case the functional need to use some of
Sega's code to use the functionality of its cartridge interface was grounds for a fair use defence,
despite  the literal  copying and distribution of  code from Sega involved.  In  Connectix the  full
reimplementation of Sony's PlayStation game console in software was not even the heart of the
dispute;  the  core  arguments  were  about to  what  extent  intermediate  versions  of  Connectix's
product had been a derivative work of Sony's software as embedded in the PlayStation. And here
the Ninth Circuit ruled that since the end result was free of Sony's code, there was only indirect
derivation.  From a  pure derivative works perspective this  jurisprudence is  mostly tangentially
relevant, but does not explicitly answer the question. Stolz also describes related cases11 in which
derivation  was  judged to  exist,  but  he  clearly thinks  these  cases do  no  longer  provide  much
precedent after Connectix. 

For case law from this side of the Atlantic we stay in the realm of repurposing popular art, since
there  is  no  jurisprudence  equivalent  to  the  aforementioned  game console  cases  in  the  United
States. For example in  Rien Poortvliet12 the Dutch High Court ruled that cutting up a calendar
with authorised reproductions of the artist Rien Poortvliet and selling the pieces after having glued
them to cardboard constituted an infringing derivation. One of the reasons the High Court found
these infringing was  that the author's partial transfer of copyright only had calendars within its
scope and never was intended to encompass other markets than calendars. With the interesting
consequence that a contractual limitation was deemed relevant for third parties that had no way of
knowing about that contractual limitation. Equally similar to the US jurisprudence were the recent
Pictoright/Allposters13 cases in the Netherlands in which for reasons very similar to Mirage vs
Alberquerque it  was decided that the sale of art posters transferred on canvas surface constituted
sale of  derivative works,  not  exhaustion, and therefore infringement.  Another  case of  creative
reuse  of  existing  artwork  was  the  German  Flachmembranlautsprecher case14 in  which
electrostatic loudspeakers had been fitted with art posters on their surface. The Upper State Court
of Hamburg followed a reasoning that the artwork still performed a very similar function on the
electrostatic loudspeakers, namely wall decoration, as on the original medium (the posters) and
that it therefore was not being used outside the economic scope for which it had been licensed to
by the poster publisher.

Applying  the  foregoing  jurisprudence,  the  inclusion  of  libraries  in  other  code  through  the

7 Retrieved from: https://bulk.resource.org/courts.gov/c/F2/977/977.F2d.1510.92-15655.html
8 Retrieved from: https://bulk.resource.org/courts.gov/c/F3/203/203.F3d.596.99-15852.htm  l   
9 Retrieved from: https://bulk.resource.org/courts.gov/c/F2/964/964.F2d.965.91-16205.html
10 Stolz, p. 1458.
11 Worlds Of Wonder v. Veritel Learning Systems,  658 F.Supp. 351 (1986) and Micro Star v. FormGen Inc. 154 F.3d 

1107 (9th Cir. 1998), which narrowed Galoob down considerably.
12 HR 19 januari 1979, NJ 1979, 412 m.nt. LWH; AMR 1979, p. 50 m.nt. JHS; AA 1980, p. 311 m.nt. Cohen Jehoram.
13 Rb Roermond, 22 september 2010, Pictoright v Art & Allposters, overturned by Hof Den Bosch, 3 januari 2012, HO 

200.079.664, LJN: BV0773 which can be found at http://www.rechtspraak.nl/ljn.asp?ljn=BV0773
14 OLG Hamburg - Urteil vom 10.10.2001 (5 U 86/01) - DRsp Nr. 2003/6820 

International Free and Open Source Software Law Review Vol. 5, Issue 1

http://www.rechtspraak.nl/ljn.asp?ljn=BV0773
https://bulk.resource.org/courts.gov/c/F2/964/964.F2d.965.91-16205.html
https://bulk.resource.org/courts.gov/c/F3/203/203.F3d.596.99-15852.html
https://bulk.resource.org/courts.gov/c/F3/203/203.F3d.596.99-15852.html
https://bulk.resource.org/courts.gov/c/F2/977/977.F2d.1510.92-15655.html


Less may be more: copyleft, -right and the case law on APIs on both sides of the Atlantic 11

mechanism of static linking as described above may be qualified as derivative works on either side
of the Atlantic, even though one could argue that the linked code has not been adapted otherwise.
It should also be added that different jurisdictions already have differing outcomes when it comes
to relatively simple cases  such as repurposed art publications, so that this already is a very grey
area in copyright law.

The analogy with “recasting” as was made in the Mirage decision becomes difficult to hold onto
when applied to dynamic linking. By its very nature dynamic linking only takes place at runtime,
so  the  “recasting”  only  takes  place  at  the  end-user's  machine,  not  during  distribution.  The
distribution itself  may be accompanied with the dependent application, but not necessarily so.
Extending  the  prism of  “recasting”  to  dynamic  linking  of  libraries  would  make  a  lot  of  the
dependencies of applications on operating systems a reason to assume that such applications would
be a derivative of the operating system. For example a great deal of non-kernel API calls tend to
employ  dynamic  linking  mechanisms.  Typical  examples  are  graphical  user  interface  (GUI)
elements and other standard components of contemporary operating systems. A stronger argument
may be the economic reasoning taken by European courts in the cases quoted above because they
do focus on the market as intended by the author, but this still assumes that the API itself is subject
to copyright. 

This  was  in  essence  one  of  the  questions  raised  in  both  the  SAS/WPL15 (in  the  EU)  and
Oracle/Google16 (in the USA) cases. The dust has not settled on either case yet and in the case of
Oracle/Google an appeal  has  been filed,  so especially regarding the situation in  the USA this
analysis is somewhat preliminary.

In  SAS/WPL one  of  the  main  questions  was  whether  a  reimplementation  of  a  programming
language in a new piece of software would be an infringement of the copyright of the original
piece.  This  is  relevant  in  the  context  of  library  calls  because  the  keywords  and  syntax  of  a
programming language in themselves do constitute a (high level) API,  but as Vezzoso17 rightly
points out, this decision does  not expressly concern APIs. The European Court of Justice (ECJ)
built further on its earlier Bezpečnostní softwarová asociace18 decision and ruled that this matter
falls outside the scope of the Software Directive (91/250 EC), but in such a way that it does not
explicitly place APIs outside the scope of general copyright:

“Consequently, the answer to Questions 1 to 5 is that Article 1(2) of Directive 91/250
must be interpreted as meaning that neither the functionality of a computer program
nor  the  programming language  and  the  format  of  data  files  used  in  a  computer
program in order to exploit certain of its functions constitute a form of expression of
that program and, as such, are not protected by copyright in computer programs for
the purposes of that directive.” (emphasis mine)

The strange reminiscent of the European Patent Convention, use of 'as such' implies that under
certain (however unspecified) circumstances functionality or a programming language (which are
a  species  of  API)  may be  protected  by copyright  in  computer  programs  for  the  purposes  of
Software  Directive  (91/250 EC).  It  also does  not  exclude  the  possibility that  an API may be
covered by general copyright law at all, but given the technical nature of APIs they by and large

15 SAS Institute Inc. vs World Programming Ltd, ECJ May 2nd, 2012, C-406/10, retrieved from 
http://curia.europa.eu/juris/document/document.jsf?
text=&docid=122362&pageIndex=0&doclang=EN&mode=req&dir=&occ=first&part=1&cid=972439

16 US District Court for the Northern District of California, No. C 10-03561 WHA
17 Vezzoso, S. (2012), Copyright, Interfaces, and a Possible Atlantic Divide, in: JIPITEC no 3, p. 153, para. 1.
18 Bezpečnostní softwarová asociace, ECJ December 22nd, 2010, C-393/09, retrieved from 

http://curia.europa.eu/juris/document/document.jsf?
text=&docid=83458&pageIndex=0&doclang=EN&mode=lst&dir=&occ=first&part=1&cid=713053

International Free and Open Source Software Law Review Vol. 5, Issue 1

http://curia.europa.eu/juris/document/document.jsf?text=&docid=122362&pageIndex=0&doclang=EN&mode=req&dir=&occ=first&part=1&cid=972439
http://curia.europa.eu/juris/document/document.jsf?text=&docid=122362&pageIndex=0&doclang=EN&mode=req&dir=&occ=first&part=1&cid=972439


12 Less may be more: copyleft, -right and the case law on APIs on both sides of the Atlantic

are unlikely to fall within the scope of general copyright law. This is crucial for the question where
the  reciprocal  nature  of  the  GPL ends  since  the  GPL,  as  earlier  mentioned, relies  solely  on
copyright law.

For the purpose of the  question where the  reciprocal nature of the GPL ends when it comes to
(dynamic)  linking of libraries, the  ECJ's implicit  caveat  about general copyright law is of lesser
importance than for  interoperability matters.  Because even if an API falls  inside the scope of
copyright,  it  generally  is no longer constrained by the intended use of articles 4 and 5 of the
Software Directive (91/250 EC), unless the unspecified circumstances of the 'as is' are in play. This
also means that the exceptions of classical copyright can be invoked and may overrule the GPL as
far as the API of a (L)GPL-covered piece of software is concerned.  It even opens the door for
potential corner-case scenarios in which minor cases of static linking (so the inclusion of parts of a
GPL-covered library into a calling program) may possibly fall outside the scope of the reciprocity
clauses of the GPL-family of licenses. It also puts the AGPL's  reciprocity clause which extends
distribution to the provisioning of online services into a new light as far as its applicability to APIs
for web-services is concerned. 

Although admittedly a lower court, so not necessarily setting a precedent for the whole of the US
yet, the US District Court of Northern California went a significant step further than the ECJ in
Oracle vs Google when confronted with the question whether an API is covered by copyright. The
court answered it with a rather resounding no:

“This  order  holds  that,  under  the  Copyright  Act,  no  matter  how  creative  or
imaginative a Java method specification may be, the entire world is entitled to use the
same method specification (inputs, outputs, parameters) so long as the line-by-line
implementations are different.”

The conclusion of all of this is that if the Java API falls outside the scope of copyright protection
and if we can extend this reasoning to any library API, the particular use of a library API without
the full inclusion of the library cannot possibly constitute the type of adaptation that is covered by
art. 117 USC or equivalent laws in European jurisdictions. In the European context an API may
possibly fall within the scope of copyright protection, although likely a very limited protection due
to the highly technical constraints within which APIs typically are designed. Arguments based on
the  intended use  of  the  GPL-covered  library cannot  hold  up  either  because  a)  in  the  case  of
dynamically linked libraries that use is by the end-user, not the publisher of the library-dependent
programme, and b) they are self-contradicting with both sections 2 and 5 GPL v3.

It should be noted that this analysis does not deviate from Stolz's earlier analysis of the GPL v2
based on earlier case law that was more implicit on the question of derivation in software.

Conclusion

In order to establish at which point the reciprocal nature of the GPL in case of inclusion (and no
other adaptation) of (L)GPL software in other software should take place, I have assessed both the
GPL and the LGPL in their role as distribution licenses. In order to establish the precedence of the
GPL-family of licenses over copyright, I have established that the latter takes precedent since they
are designed as bare licenses.  This means that they cannot redefine what constitutes a derivative
work and can only cover that what is governed by copyright law as far as the question when the
GPL should  be  applied  to  computer  programmes  that  are  dependent  on  (L)GPL libraries  is
concerned. As a consequence, the question to what extent inclusion of a covered library constitutes

International Free and Open Source Software Law Review Vol. 5, Issue 1



Less may be more: copyleft, -right and the case law on APIs on both sides of the Atlantic 13

the creation of a derivative work beyond “mere aggregation” becomes relevant. When analysing
the typical mechanisms for inclusion, both static and dynamic linking, it must be concluded that
the closest analogies to dynamic linking in jurisprudence are in a grey zone. Furthermore, these
analogies are of limited use since the mechanisms of dynamic linking are common practice in most
contemporary computer systems and are generally understood not to constitute derivation. When
taking the most recent jurisprudence on software APIs into account, one can argue that the LGPL
is not really the Lesser GPL, but that the GPL is based on a by now outdated understanding of
software copyright and effectively becomes equal to the LGPL. In light of the fact the open source
communities tend to think of the currently most popular sets of licenses as a continuum from
permissive (Apache 2.0) to very far copyleft (AGPL 3.0), the conclusion that this continuum does
not stretch much further in the copyleft spectrum than LGPL is not a happy one. It means that there
is a serious disconnect between the expectations developers may have from their chosen license in
the GPL family and the legal reality. The intent of these developers is not necessarily reflected in
the effects of their chosen licenses, which is rather unfortunate.

About the author

Walter van Holst is a senior legal consultant with Mitopics (http://www.mitopics.nl) 

International Free and Open Source Software Law Review Vol. 5, Issue 1

Licence and Attribution

This paper was published in the International Free and Open Source Software Law
Review, Volume 5, Issue 1 (MARCH 2013). It originally appeared online at

http://www.ifosslr.org.

This article should be cited as follows:

Holst, Walter van  (2013) 'Less may be more: Copyleft, -right and the case law on
APIs on both sides of the Atlantic', International Free and Open Source Software Law

Review, 5(1), pp 5 – 14 
DOI: 10.5033/ifosslr.v5i1.72

Copyright © 2013 Walter van Holst. 

This article is licensed under a Creative Commons NL (Netherlands) 2.0 licence, no
derivative works, attribution, CC-BY-ND available at

http://creativecommons.org/licenses/by-nd/2.0/uk/

As a special exception, the author expressly permits faithful translations of the entire
document into any language, provided that the resulting translation (which may

include an attribution to the translator) is shared alike. This paragraph is part of the
paper, and must be included when copying or translating the paper.

http://www.mitopics.nl/
http://creativecommons.org/licenses/by-nd/2.0/uk/


Lisping Copyleft: A Close Reading of the Lisp LGPL 15

Lisping Copyleft: A Close Reading of the Lisp
LGPL

Eli Greenbaum a

(a) Attorney, Yigal Arnon & Co. Jerusalem

DOI: 10.5033/ifosslr.v5i1.  75  

Abstract:

The idioms of both the General Public License (the “GPL”) and the 
Lesser General Public License (the “LGPL”) seem to be grounded in 
the C programming language. This article analyses the Lisp Lesser 
General Public License (colloquially and here referred to as the 
“LLGPL”), a specific attempt to apply the LGPL to a language with a
programming paradigm and method of building and distributing 
programs that traditionally differs substantially from the approach of 
C.  In addition, this article attempts to understand whether the LLGPL 
actually succeeds in its stated goal of translating the LGPL to the Lisp 
context or whether the LLGPL changes the requirements and 
philosophical moorings of the LGPL.

Keywords: 
Law; information technology; Free and Open Source Software; 
copyleft, copyright; derivation; compilation; Lisp; LGPL; 

Introduction

The idioms of both the General Public License (the “GPL”) and the Lesser General Public License
(the  “LGPL”)1 seem to  be  grounded  in  the  C  programming  language.  The  licenses  refer  to
“compiling”, “linking” and “header files”, features of the C programming languages which may
not be present in other languages that are not traditionally compiled. Similarly, the licenses do not
expressly include provisions relating to features of object-oriented programming languages.2 Do
the GNU licenses work as intended when applied in these other contexts? 3 This article analyses
the Lisp  Lesser General Public License (colloquially and here referred to as the “LLGPL”), a
specific attempt to apply the LGPL to a language with a programming paradigm and method of

1 The LLGPL license is drafted as a preamble to version 2.1 of the LGPL. As such, in this article, unless states otherwise
references to the GPL and LGPL are references to version 2.0 of the GPL and version 2.1 of the LGPL.  

2 In contrast, version 3.0 of the LGPL does relate to features of object oriented languages. For example, the definition of
“Application” in that license discusses the effect of defining a subclass of a class defined by the Library.

3 The Free  Software  Foundation  has  strongly asserted  that  the  LGPL may be  applied  to  all  known programming
languages. See David Turner, The LGPL and Java, available at http://www.gnu.org/licenses/lgpl-java.html (stating that
“FSF’s  position  has  remained  constant  throughout:  the  LGPL works  as  intended  with  all  known  programming
languages, including Java.”). 

International Free and Open Source Software Law Review Vol. 5, Issue 1

http://www.gnu.org/licenses/lgpl-java.html
http://dx.doi.org/10.5033/ifosslr.v5i1.75


16 Lisping Copyleft: A Close Reading of the Lisp LGPL

building and distributing programs that traditionally differs from the approach of C.4 

Lisp is one of the oldest programming languages still in use. Lisp was invented in 1958 by John
McCarthy at the Massachusetts Institute of Technology. The language was first implemented when
one of McCarthy’s graduate students hand-compiled the Lisp eval function into machine code, and
created the first  Lisp interpreter.  Following in this history,  while implementations of Lisp can
allow for the compilation and distribution of executables, Lisp was traditionally developed and
distributed  as  an  interpreted  rather  than  a  compiled  language.  Lisp  was  closely connected  to
research in the field of artificial intelligence, and the popularity of the language declined in the late
1980s together with interest in that field. Nevertheless, Lisp seems to have enjoyed somewhat of a
resurgence  in  recent  years,  and  currently  there  are  several  open  source  and  commercial
implementations of the language.

Open source programs are not frequently written in Lisp.5 Nevertheless, certain features of Lisp
have inspired a broader family of “dynamic languages” that can be considered to include popular
languages  such  as  PHP or  Python.  As  with  Lisp,  for  example,  those  languages  are  typically
interpreted rather than compiled into executables. As such, programs written in those languages
will also generally require the distribution of an interpreter together with the application. To the
extent  the LLGPL's claim that  the GNU licenses  are not appropriate  for  Lisp is  justified,  the
suitability of the GNU licenses for these other languages will also be implicated.

This article presents a close reading of the LLGPL license. In analysing the license, this article
attempts to understand whether, as the LLGPL claims, another document is necessary to apply the
LGPL to the Lisp context. In addition, this article attempts to understand whether the LLGPL
succeeds in its stated goal of translating the LGPL to the Lisp context or whether, in making the
transition, the LLGPL moves away from the requirements and philosophical underpinnings of the
LGPL. Before concluding, this article briefly discusses some issues raised by Lisp that were not
expressly addressed by the LLGPL.6 

History and Philosophy of the Lisp LGPL

The LLGPL was authored by Franz, Inc. (“Franz”), a leading commercial Lisp vendor based in
California.  Franz  is  the  corporate  developer  of  “Allegro  Common  Lisp”,  one  of  several
commercial implementations of the “ANSI Common Lisp” standard.7 The ANSI Common Lisp

4 In a somewhat ironic twist, the history of the GNU licenses began with Richard Stallman’s distribution of Emacs, a
text-editing program written in Lisp. Stallman initially distributed Emacs under the Emacs General Public License, out
of which grew the first version of the General Public License. For an early history of the GNU licenses, see Chapter 2
of Glyn Moody, Rebel Code (2002).

5 According  to  Black  Duck,  Lisp  is  not  one  of  the  top  fifteen  languages  used  in  open  source  projects.  See
http://www.blackducksoftware.com/osrc/data/projects/. C is the most popular language, used in 44.95% of releases of
open  source  projects.  For  a  not-up-to  date  list  of  some  commercial  software  projects  in  Lisp,  see
http://www.pchristensen.com/blog/lisp-companies/.

6 Aside from the LLGPL, there are a number of other licenses that have been drafted to apply to specific programming
languages.  For  example,  PHP  is  distributed  under  a  permissive  license  similar  to  the  BSD.  See
http://www.php.net/license/index.php#code-lic.  Python  is  also  distributed  under  a  permissive  license.  See
http://docs.python.org/2/license.html.  These licenses are generic and do not have any technical provisions that apply to
features  of  specific  languages.  A number  of  other  licenses  contain  provisions  expressly  adapted  for  particular
programming languages. For example, the GNAT Modified General Public License is a version of the GPL which has
been adapted for the “generic” feature of the Ada programming language. See http://libre.adacore.com/tools/gnat-gpl-
edition/faq/. In addition, the Falcon Programming Language License is “specifically designed around the concept of an
open source scripting language engine.” See http://www.falconpl.org/index.ftd?page_id=licensing. An analysis of these
latter two licenses is beyond the scope of this article.

7 Commercial implementations of Lisp also includes LispWorks. Open source implementations of Lisp include Steel
Bank Common Lisp, which is licensed under BSD-style licenses and also includes code in the public domain (See

International Free and Open Source Software Law Review Vol. 5, Issue 1

http://www.falconpl.org/index.ftd?page_id=licensing
http://libre.adacore.com/tools/gnat-gpl-edition/faq/
http://libre.adacore.com/tools/gnat-gpl-edition/faq/
http://docs.python.org/2/license.html
http://www.php.net/license/index.php#code-lic
http://www.blackducksoftware.com/osrc/data/projects/


Lisping Copyleft: A Close Reading of the Lisp LGPL 17

standard  was  developed in  the  early 1980s  as  an  attempt  to  unify the  several  dialects  of  the
language.8 Franz  initially began distributing Allegro Common Lisp in  1986,  and  authored the
LLGPL in 2000. Franz has shown a commitment to the open source development of software, and
has  licensed  a  number  of  open  source  software  projects  under  the  terms  of  the  LLGPL.9

Unfortunately,  there is  a dearth of commentary regarding the interpretation of the LLGPL. As
such, and as the provisions of the license are not always completely clear, the application of the
LLGPL to software may not always be completely straightforward.

The LLGPL is a short document, consisting of five not-lengthy paragraphs, and by its terms is
intended to be  read  as  a  “preamble”  to  the  LGPL.10 Generally,  the  LGPL permits  proprietary
applications to be combined and distributed with LGPL-licensed libraries, and does not require
that the source code of the proprietary application be disclosed. This is in contrast to the stronger
“copyleft” requirements of the GPL, which generally requires that all works “based on” a GPL-
licensed work also be distributed under the same license terms. The LLGPL is intended to adapt
the weaker copyleft provisions of the LGPL to the Lisp setting. In the words of the first paragraph
of the LLGPL, the “LGPL uses terminology more appropriate for a program written in C than one
written in Lisp” and, as such, some “clarifications” are necessary to apply the LGPL in the Lisp
context. 

The first paragraph of the LLGPL implies that the application of the LLGPL results in licensing
terms that are not very different than the LGPL itself, even though they have been translated to the
Lisp context.11 Even so, several provisions of the LLGPL seem to belie this understanding of the
license. For example, the LLGPL provides that a “Lisp application may include the same set of
Lisp objects as does a Library, but this does not mean that the application is necessarily a ‘work
based  on  the  Library’ it  contains.”12 In  contrast,  the  LGPL expressly  provides  that  a  work
containing portions of the Library should be considered a derivative work of the Library under
copyright law, and a “work based on the Library” under the LGPL.”13 The clause in the LLGPL
seems to contradict express provisions of the LGPL. Unfortunately, the LLGPL does not explain
the motivation for making this fundamental change in the terms of the LGPL. 

Other clauses of the LLGPL also seem to diverge from the provisions of the LGPL. For example,
the LLGPL provides that “[i]t is permitted to add proprietary source code to the Library, but it
must be done in a way such that the Library will still run without that proprietary code present.” 14

This seems to restrict a user’s ability to modify the licensed work. Interpreting this sentence in
light of the  LGPL is quite difficult, as Section 2 of the LGPL expressly provides a user of the
Library with the right to modify and copy the Library, without any requirement to ensure that it
can still run without those modifications.15 Again, the LLGPL does not describe the reasons for

http://www.sbcl.org/history.html),  GNU  Common  Lisp,  available  under  the  LGPL  (See
http://savannah.gnu.org/projects/gcl), and GNU Clisp, available under the GPL (See http://www.clisp.org/). 

8 See the history of Lisp at http://www.dreamsongs.com/Files/Hopl2.pdf
9 See  http://opensource.franz.com/
10 The concept of presenting the LLGPL as a preamble to the GNU license seems to be inspired by the structure of the 

LGPL itself, which begins with a preamble that explains the goals of the license.
11 On its website, Franz itself provides a somewhat more ambiguous description of the LLGPL, stating that the document 

is a “new license” which is intended to take the special features of dynamic programming languages into consideration.
See http://opensource.franz.com/

12 See the last sentence of the second paragraph of the LLGPL.
13 For example, the definition of “Library” in the LGPL provides that a “work based on the Library” includes a “work 

containing the Library or a portion of it. Similarly, section 5 of the LGPL provides that “linking a ‘work that uses the 
Library’ with the Library creates … a derivative of the Library (because it contains portions of the Library).”

14 See first sentence of the fourth paragraph of the LLGPL.
15 Indeed, one of the core freedoms advocated by the Free Software Foundation is the freedom to modify software. See 

http://www.gnu.org/philosophy/free-sw.html. The LGPL also evidences a similar concern that a modified Library 
should be able to operate even without the application that it is linked with. See Section 2(d) of the LGPL. Even so, 
that concern is with regard to the use of the licensed work when distributed to third parties, but the literal reading of the

International Free and Open Source Software Law Review Vol. 5, Issue 1

http://www.gnu.org/philosophy/free-sw.html
http://opensource.franz.com/
http://opensource.franz.com/
http://www.dreamsongs.com/Files/Hopl2.pdf
http://www.clisp.org/
http://savannah.gnu.org/projects/gcl
http://www.sbcl.org/history.html


18 Lisping Copyleft: A Close Reading of the Lisp LGPL

adding this requirement to the provisions of the LGPL.

These examples demonstrate that it is difficult to reconcile certain provisions of the LLGPL with
the original GNU license. Indeed, this article shows that the LLGPL does clarify certain provisions
of the LGPL in the Lisp setting, but also substantially modifies the provisions of  the original
license. Unfortunately, the LLGPL is frequently not explicit regarding whether a specific provision
should be seen as a “translation” to the Lisp context or as an intentional change in the licensing
terms of the LGPL. Furthermore, the LLGPL does not always explain its motivation for making
certain clarifications or changes, and this can make it difficult to interpret and apply the license. 

Definitions and Redefinitions

Several provisions of the LLGPL seem to be motivated by an attempt to clarify the provisions of
the LGPL in the Lisp setting. For example, the second paragraph of the LLGPL changes several
definitions of the LGPL, such as the definitions of “library”, “function” and “data”, making them
more amenable to the Lisp context. The second paragraph reads in full:

A “Library” in Lisp is a collection of Lisp functions, data and foreign modules. The
form of the Library can be Lisp source code (for processing by an interpreter) or
object code (usually the result of compilation of source code or built with some other
mechanisms). Foreign modules are object code in a form that can be linked into a
Lisp executable. When we speak of functions we do so in the most general way to
include, in addition, methods and unnamed functions. Lisp “data” is also a general
term that includes the data structures resulting from defining Lisp classes.  A Lisp
application may include the same set of Lisp objects as does a Library, but this does
not  mean  that  the  application  is  necessarily  a  “work  based  on  the  Library”  it
contains.  

These  revised  and  generalised  definitions  are  to  some  extent  useful  in  clarifying  LGPL
terminology for Lisp. At the same time, however, the revisions appear to focus on certain aspects
of the technical distinctiveness of Lisp which would not seem to materially affect the interpretation
of the LGPL. 

For example, the first sentence of the second paragraph provides that “[a] ‘Library’ in Lisp is a
collection of Lisp functions, data and foreign modules.”16 The purpose of this definition seems to
be  the subtle modification of the definition of a “library” (not capitalised)17 in the LGPL, which
provides that a library means “a collection of software functions and/or data prepared so as to be
conveniently linked with application programs (which use some of those functions and data) to

LLGPL provides no suggestion that it should be read as anything but a restriction of a user’s right to modify the 
program, regardless of whether the modified version is distributed to third parties. In addition, the LGPL only requires 
that users make a “good faith effort” to ensure the operation of the modified library. In contrast, the LLGPL’s 
requirement is formulated as an absolute requirement.

16 A “foreign module”, according to the LLGPL, is “object code in a form that can be linked into a Lisp executable”. 
Briefly, Lisp data types often differ from data types in other languages. As such, Lisp requires a “foreign function 
interface” in order to link code written in a different language. See generally PETER SEIBEL, PRACTICAL COMMON LISP, 467 
(2005). The existence of foreign modules and the need for a “foreign function interface” is not unique to Lisp. For 
example, the “Java Native Interface” enables a Java Virtual Machine to invoke (and be invoked by) the native code of 
libraries and applications written in other languages. The Perl XS interface also allows Perl to use C libraries. The 
Python extension module API allows the calling of library functions and system calls.

17 The LGPL contains a definition of “library” (not capitalised) and “Library” (capitalised). The former provides a 
generic description of a software library, while the latter refers to the specific work licensed under the LGPL. The need
for the former generic definition of a software library is not clear in the document and, indeed, version 3 of the LGPL 
omits this generic definition. In version 3 of the LGPL, a “Library” simply means a “covered work governed by this 
License.”

International Free and Open Source Software Law Review Vol. 5, Issue 1



Lisping Copyleft: A Close Reading of the Lisp LGPL 19

form executables.” It seems that the authors of the LLGPL did not believe that this definition was
completely appropriate  for  the  Lisp  context.  First,  Lisp  programs  are  traditionally  interpreted
rather than compiled and, as such, the LLGPL definition omits the provision that  libraries are
intended to be “linked … to form executables.” Second, the LLGPL definition adds that a library
may include a foreign module.18 

It is unclear whether these changes to the definition of “library” are necessary for the application
of the LGPL to Lisp applications. First, the LLGPL’s change in the definition of “library” does not
broaden the application of the license, since in any event the LGPL expressly provides that the
license may be applied to “any software library or other program”. In other words, the application
of the LGPL is not restricted to works that meet the LGPL definition of “library”. Indeed, the
definition of “Library” (capitalised) in the LGPL refers generically to “any software library or
work which has been distributed under these terms.” Second, it is in any event doubtful that a court
would interpret the LGPL’s definition of “library” with a level of specificity that would exclude
similar linguistic structures of Lisp. For example, it is unlikely that the word “function” in the
LGPL would be interpreted to exclude a “foreign module”, since both terms essentially refer to
software modules that provide a level of functionality.

The second paragraph continues with several other clarifications of the LGPL terminology for the
Lisp  context.  First,  the  document  provides  that  “functions”  should  be  understood  to  include
“methods” and “unnamed functions”. These two terms refer to syntax that is not part of the C
programming language. In brief explanation (with more to come later in this article):  First, in
Lisp, a “method” is the specific implementation of an abstract operation, where the generalised
operation is referred to as a “generic function”;19 second, Lisp (as well  as other programming
languages)  offers  the  opportunity to  create  “unnamed functions”,  a  way of  creating functions
without actually providing the function with a defined name.20 At the same time, however, it is
difficult to see why it  is necessary to clarify these points in order to apply the LGPL to Lisp
programs. It  is difficult to conceive of a legitimate legal claim that the word “function” in the
LGPL should not naturally be extended to constructions (such as methods and unnamed functions)
that act as functions even though they differ in their syntactic expression.

The  next  clause  of  the  LLGPL also  attempts  to  interpret  the  LGPL in  the  Lisp  context,  and
provides that “Lisp ‘data’ is also a general term that includes the data structures resulting from
defining Lisp classes”. This provision seems to be an attempt to apply the LGPL to the abstract
data types (such as “classes”) that form part of an object-oriented language. Indeed, it is possible
to interpret the term “data” in the LGPL as referring to “information” rather than “data structures
that  contain  information”  in  the abstract  sense  of  the  word.21 Nevertheless,  as  with the  word
“function”, it is not likely that the term “data” in the LGPL would be interpreted with a level of
specificity that would exclude appropriate and similar structures in the Lisp context.

In sum, it does not seem that the changes made to the definition of “library” by the LLGPL are

18 It is possible to opine that the LLGPL broadens the defined term “function” in order to include Lisp “macros” within 
that defined term. This possibility is not expressly acknowledged by the text of the LLGPL and, as such, the effect of 
the LLGPL on Lisp “macros” remains unclear. Lisp “macros” are further discussed below in Section “Of Macros”.

19 Other object oriented programming languages (such as Java) also provide for “methods”. In Java, however, methods 
are typically incorporated into the definition of a class, while Lisp methods are defined outside of a class and rather as 
part of “generic functions.” The implications of these syntactical distinctions are beyond the scope of this article. See 
generally SEIBEL, supra note 16, at 191.

20 In Lisp, “unnamed” functions are typically referred to as “lambda” functions. Lambda functions are useful, among 
other things, for creating functions that can use the local variables of the environment in which they were created. See 
generally, SEIBEL, supra note 16, at 62-63. “Unnamed” functions are also supported by other “dynamic” languages such
as Ruby, Javascript, Perl and Python. 

21 For example, Section 2(d) of the LGPL refers to a “table of data”, which seems to imply that word “data” is used to 
mean “information”. On the other hand, Section 5 of the LGPL refers to “data structure layouts”. 

International Free and Open Source Software Law Review Vol. 5, Issue 1



20 Lisping Copyleft: A Close Reading of the Lisp LGPL

necessary for the application of the GNU license to Lisp. Indeed, it seems that the changes made
by the LLGPL are grounded in an appreciation of the technical distinctiveness of Lisp rather than
an  analysis  of  whether  these  differences should change the interpretation  of  the LGPL or the
application of copyright law.

What is a Derivative Work in Lisp?

As shown above, the second paragraph of the LLGPL aims only to generalise certain terminology
of  the  LGPL.  The  third  paragraph,  however,  seems  to  supersede  several  core  provisions  and
principles of the LGPL. Indeed, as shown below, the third paragraph is best  interpreted as an
abrupt re-alignment of the thrust of the LGPL. Unfortunately,  the LLGPL does not clarify the
motivation for these changes. As such, it is not clear whether the provisions of the third paragraph
are dictated by the technical aspects of Lisp or by philosophical differences with the LGPL. 

The GNU licenses are built on the copyright law concept of the “derivative work.” In very general
outline,  a  derivative  work  incorporates  and  builds  on a  pre-existing copyrighted  work.  Under
copyright law, one may generally not reproduce or distribute “derivative works” of a copyrighted
work without an appropriate license. The GNU licenses leveraged this idea into the “copyleft”: a
license to modify and distribute an original copyrighted work, on the condition that any derivative
works of the original work be distributed pursuant to specified license terms.22 This idea sets the
boundaries of the requirements of the GNU licenses and, generally,  the GNU licenses are not
intended to impose restrictions on works that are not “derivative works”.23 

The  third paragraph of  the LLGPL,  however,  seems to take  a  rather  different  approach.  This
section  will  individually  examine  each  sentence  of  the  paragraph,  showing  that  the  ideas
underlying these provisions differ from the motivating principles of the LGPL. The third paragraph
states in full:

The Library consists of everything in the distribution file set before any modifications are made to
the files. If any of the functions or classes in the Library are redefined in other files, then those
redefinitions ARE considered a work based on the Library. If additional methods are added to
generic functions in the Library, those additional methods are NOT considered a work based on the
Library. If Library classes are subclassed, these subclasses are NOT considered a work based on
the Library. If the Library is modified to explicitly call other functions that are neither part of Lisp
itself nor an available add-on module to Lisp, then the functions called by the modified Library
ARE considered a work based on the Library. The goal is to ensure that the Library will compile
and run without getting undefined function errors.

The first example in the third LLGPL paragraph provides that “[i]f any of the functions or classes
in the Library are redefined in other files, then those redefinitions ARE considered a work based
on the Library.” In other words, if a LLGPL-licensed work contains a defined and named function,
a licensee of the work may redefine that function in a separate and different file to provide for a

22 As per the explanation of the Free Software Foundation: “To copyleft a program, we first state that it is copyrighted; 
then we add distribution terms, which are a legal instrument that gives everyone the rights to use, modify, and 
redistribute the program's code, or any program derived from it, but only if the distribution terms are unchanged.” See 
“Free Software Foundation, What is Copyleft?”, available at http://www.gnu.org/copyleft/copyleft.html  

23 For example, The Free Software Foundation has stated that it considers the phrase “works based on the Program” in 
the GPL to be similar though perhaps not identical to the definition of a derivative work under copyright law. See 
Opinion of the Denationalization of Terminology, Free Software Foundation, available at 
http://gplv3.fsf.org/denationalization-dd2.html. Whether the actual provisions of the GNU licenses respect this 
boundary, or try to impose restrictions on works that are not derivative works under copyright law, has been the subject
of much commentary. See LAWRENCE ROSEN, OPEN SOURCE LICENSING 119-128 (2004). 

International Free and Open Source Software Law Review Vol. 5, Issue 1

http://gplv3.fsf.org/denationalization-dd2.html
http://www.gnu.org/copyleft/copyleft.html


Lisping Copyleft: A Close Reading of the Lisp LGPL 21

different  operation  –  however,  such  redefinition  will  be  considered  a  “work  based  on  the
Library”.24 It is difficult to see how the act of redefining an existing function should in itself create
a  derivative  work  under  copyright  law.  Of  course,  to  the  extent  any redefinition incorporates
material from the original definition, the redefinition could be seen as a derivative of the original.
The LLGPL, however, considers any redefinition of the original function to be a “work based on
the  library”,  regardless  of  whether  it  incorporates  material  from  the  original  definition.  This
provision is not based on the understanding of copyright law but, as will be shown below, on the
rather different principle of ensuring the functionality of the original licensed work.

A good illustration of the philosophy of the LLGPL is provided by the last clause of the third
paragraph. That provision states that “[i]f the Library is modified to explicitly call other functions
that are neither part of Lisp itself nor an available add-on module to Lisp, then the functions called
by the modified Library ARE considered a work based on the Library.” As noted earlier, Lisp
allows users to call “foreign modules” written in a different programming language. 25 This clause
provides that such called foreign modules will be deemed a “work based on the library” – in other
words,  a derivative work of the library which may only be distributed under the terms of the
LLGPL.26 This  provision  is  at  odds  with  the  LGPL in  several  ways.  First,  subject  to  certain
restrictions,  the LGPL typically allows third party modules to be linked to the licensed work,
without requiring that such third party modules themselves be licensed under the LGPL. 27 This
LLGPL provision, on the other hand, provides that certain third party modules, even though they
do not incorporate code of the licensed work, must also be licensed under the terms of the LLGPL.
Second, the LGPL generally only imposes restrictions on modules to the extent they are compiled
or linked with the original library, but this LLGPL provision seems to impose restrictions on such
linked modules regardless of whether they are actually linked or compiled with the library. Third,
the LLGPL provision relaxes the restriction in respect of functions that are “part of Lisp itself” or
“an available add-on module to Lisp”.  There is  no equivalent in the LGPL to the relaxing of
restrictions solely in respect of modules written in a particular programming language.

What is the LLGPL’s motivation for providing different requirements than the LGPL? The last
clause of the third paragraph sets forth the underlying philosophy of these provisions, stating that:
“[t]he goal is to ensure that the Library will compile and run without getting undefined function
errors.” In other words, these provisions of the LLGPL are not based on the copyright principles of
the LGPL.  Rather,  they are motivated by the goal  of  ensuring that  a  modified  licensed work
“continues to compile and run.”28 This philosophy is reflected in the provisions of the LLGPL
discussed above. These provisions state that certain redefinitions and foreign modules are subject
to  the  full  restrictions of  the  LLGPL,  even  though they would not  be  considered  “derivative
works” under ordinary circumstances. 

24 Redefining an existing system function is permitted under the Common Lisp standard, though not generally 
recommended because of the unintended consequences that such redefinitions can generate. For example, the Allegro 
Common Lisp 8.2 documentation states that “Lisp permits already-defined functions to be redefined dynamically. 
However, redefining system-defined functions … is almost always a bad idea.” See 
http://www.franz.com/support/documentation/7.0/doc/packages.htm. For a discussion of some problems associated 
with the redefinition of functions in Lisp, see SEIBEL, supra note 16, at 274-75.

25 See supra note 15.
26 An interesting question not expressly addressed by the LLGPL is whether a derivative of an LLGPL-licensed work 

must be distributed under the terms of the LLGPL itself or may rather be distributed under the terms of the LGPL. The 
LLGPL is not clear on this point.

27 It should be noted that the Allegro Common Lisp 8.2 documentation states that foreign functions are “linked” to a 
running Lisp process. See http://www.franz.com/support/documentation/7.0/doc/foreign-functions.htm#ff-intro-1.  This
is distinct from other Lisp code which is actually loaded into the memory of a running Lisp image rather than linked.

28 The LLGPL is not clear as to why applying the LGPL obligations to redefinitions and foreign functions ensures that 
they will continue to “compile and run”. It is possible that the LLGPL believes that requiring the source code of these 
elements to be distributed will allow the modified library to be debugged.

International Free and Open Source Software Law Review Vol. 5, Issue 1

http://www.franz.com/support/documentation/7.0/doc/foreign-functions.htm#ff-intro-1
http://www.franz.com/support/documentation/7.0/doc/packages.htm


22 Lisping Copyleft: A Close Reading of the Lisp LGPL

Moving  back  to  earlier  provisions  of  the  LLGPL,  the  second  and  third  clauses  of  the  third
paragraph are also inspired by the same goals of ensuring functionality. The third clause provides
that “[i]f Library classes are subclassed, these subclasses are not considered a work based on the
Library.” The question of whether subclassing creates a derivative work has been raised in other
contexts. For example, in the GPL FAQs, the Free Software Foundation takes the position that
subclassing creates a derivative work, without offering an explanation for that position.29 Other
commentators have taken different positions.30 The LLGPL provides that subclasses will not be
considered derivative works.31 Again, the reasoning of the LLGPL seems to be based on whether
the subclass could possibly interfere with the functionality of the original library. As simply adding
the subclass would not  interfere with the functionality of the original defined class, the LLGPL
takes the position that the subclass should not be considered a “work based on the library”.

The second clause takes the same approach, stating that “[i]f additional methods are added to
generic functions in the Library, those additional methods are NOT considered a work based on the
Library.”  Again  and  briefly,  in  Common Lisp,  “methods”  are  various  implementations  of  an
abstract  definition of a generic function in a variety of circumstances.  For example,  a generic
function may state that it operates to draw shapes, without actually providing an implementation of
that  functionality.  The  specific  methods  of  that  generic  function,  however,  provide  the
functionality for actually drawing a variety of shapes.32 The question of whether adding additional
methods to a generic function creates a derivative work is an interesting question, and beyond the
scope of this article. However, it should be noted that again the approach of the LLGPL is not to
ask whether the addition of methods to a generic function creates a derivative work, but rather to
ask whether the modifications will preserve the functionality of the original library. Methods may
be  added  or  removed  to  a  generic  function  without  affecting  the  functionality  of  the  generic
function itself. As such, according to the LLGPL, the additional methods are not considered a
work based on the library.

This section has shown that with regard to the question of what constitutes a “work based on the
library,” the LLGPL takes a very different approach than the original LGPL license. While the
restrictions of the original license were based on an understanding of a “derivative work” under
copyright  law,  the  obligations  of  the  LLGPL seek  to  ensure  the  functionality of  the  licensed
program. In implementing these goals, the LLGL provides for very different requirements and
obligations than the original LGPL.

Distribution

Another  distinctive  feature  of  Lisp  –  albeit  a  feature  that  has  since  been  adopted  by  other
languages – is the fact that Lisp programs are traditionally constructed within a dynamic run-time
environment. Lisp programs may be developed incrementally by composing or loading program
statements into the run-time environment, and the run-time environment will interpret or compile

29 See http://www.gnu.org/licenses/gpl-faq.html#OOPLang (stating that “[s]ubclassing is creating a derivative work. 
Therefore, the terms of the GPL affect the whole program where you create a subclass of a GPL'ed class.”). The FSF 
takes the same position in its article “The LGPL and Java”, where it states that “ [i]nheritance creates derivative works 
in the same way as traditional linking”. See http://www.gnu.org/licenses/lgpl-java.html. Version 3 of the LGPL 
expressly addresses the question of subclassing, see infra note 31.  

30 See, e.g., Derivative Works, http://www.law.washington.edu/lta/swp/law/derivative.html (arguing against the position 
of the Free Software Foundation regarding subclasses).

31 Unfortunately, the LLGPL does not actually clarify whether subclasses will be subject to the obligations imposed by 
the LGPL with regard to work linked with the licensed work. In contrast, Version 3 of the LGPL clarifies that “defining
a subclass of a class defined the Library is deemed a mode of using an interface provided by the Library.” As such, 
under Version 3 of the LGPL, a work that defines a subclass is subject to the usual LGPL obligations in respect of 
works that link with the licensed library. As such, it must be distributed under terms that “do not restrict modification 
[…] and reverse engineering for debugging such modifications.” 

32 This example is taken from SEIBEL, supra note 16, chapter 6.

International Free and Open Source Software Law Review Vol. 5, Issue 1

http://www.law.washington.edu/lta/swp/law/derivative.html
http://www.gnu.org/licenses/lgpl-java.html
http://www.gnu.org/licenses/gpl-faq.html#OOPLang


Lisping Copyleft: A Close Reading of the Lisp LGPL 23

such forms as they are entered.33 The Lisp run-time environment also impacts how programs are
distributed. Unlike the C programming language, Lisp implementations do not generally offer the
possibility of compiling source code into executables. Rather, Lisp programs may be distributed as
a Lisp run-time environment together with an “image file”, which is a saved representation of the
state  of the Lisp program. Alternatively,  Lisp programs may also be distributed as a run-time
environment  together  with  compiled  FASL files.34 In  other  words,  the  distribution  of  a  Lisp
program often requires  the distribution of files together with a run-time environment that  will
execute those files.

The fourth paragraph of the LLGPL addresses this distinct process of building and distributing
Lisp applications. According to the LLGPL, applying the LGPL to these aspects of Lisp requires
fundamental  changes  in  the  requirements  and  obligations  of  the  GNU  license.  The  fourth
paragraph begins by providing an interpretation of the linking provisions of the LGPL: 

Section 5 of the LGPL distinguishes between the case of a library being dynamically linked at
runtime and one being statically linked at build time. Section 5 of the LGPL states that the former
results in an executable that is a “work that uses the Library.” Section 5 of the LGPL states that the
latter results in one that is a “derivative of the Library”, which is therefore covered by the LGPL.  

Unfortunately, these provisions paint an inaccurate picture of the LGPL’s requirements. Section 5
of the LGPL – notwithstanding the interpretation presented in the sentences above – does not
distinguish between works that are statically or dynamically linked to an LGPL-licensed library.
Rather, Section 5 clarifies that certain independent works which use an LGPL-licensed library can
under certain circumstances become derivative works of that library. According to Section 5, a
work may become a derivative work of the library even though the source code of that work does
not contain portions of the library: the act of linking or compiling the work with the library will
cause portions of the library to be incorporated in the linked or compiled work, and this linked or
compiled work will then be seen as a derivative work of the library. Again, in providing that works
may become a derivative work of the library, the LGPL does not distinguish between statically or
dynamically linked works.35 Indeed, Section 6 of the LGPL expressly contemplates that works may
be either statically or dynamically linked with the library,  and provides obligations for a party
distributing both kinds of linked works.36 

The next sentences of the LLGPL apply the previous (incorrect) interpretation of the LGPL to the
Lisp context:

Since  Lisp  only  offers  one  choice,  which  is  to  link  the  Library  into  an
executable  at  build  time,  we  declare  that,  for  the  purpose  applying

33 Third party Lisp libraries may similarly be loaded into the run-time environment, either as source code or as compiled 
files. See SEIBEL, supra note 16, at 17, 475. 

34 Compiled Lisp files are referred to a FASL files, which stands for “fast-load file”. Loading compiled Lisp files into the 
run-time environment can result in a faster and more efficient program. FASL files can be implementation dependent 
and may not be compatible between different implementations of Lisp. SEIBEL, supra note 16, at 475, n. 8.

35 On the other hand, certain commentators have differentiated between static and dynamic linking in determining the 
effect of the licenses. See generally  “Working Paper on the legal implications of certain forms of Software Interactions
(a.k.a linking)”, which is available online at http://www.ifosslr.org/public/LinkingDocument.odt .

36 Section 6(a) of the LGPL addresses a situation where the “work that uses the library” is distributed as an executable 
linked with the library, and requires that the source or object code of the “work that uses the library” also be provided 
along with the linked work. This situation is colloquially referred to as statically linking the work with the library. 
Section 6(b) of the LGPL addresses a situation where the “work that uses the library” is linked to the library through a 
“shared library mechanism”, which uses a copy of the library at run-time. This situation is colloquially referred to as 
dynamically linking the work with the library. In other words, both static and dynamically linking are governed by 
Section 6 of the LGPL. The preamble of the LGPL expresses the same when it states that “[w]hen a program is linked 
with a library, whether statically or using a shared library, the combination of the two is legally speaking a combined 
work, a derivative of the original library.”

International Free and Open Source Software Law Review Vol. 5, Issue 1

http://www.ifosslr.org/public/LinkingDocument.odt
http://opensource.franz.com/license.html
http://opensource.franz.com/license.html
http://opensource.franz.com/license.html
http://opensource.franz.com/license.html


24 Lisping Copyleft: A Close Reading of the Lisp LGPL

the LGPL to the Library, an executable that results from linking a “work that
uses  the  Library”  with  the  Library  is  considered  a  “work  that  uses  the
Library” and is therefore NOT covered by the LGPL. 

Because of this declaration, section 6 of LGPL is not applicable to the Library. 

These provisions raise several problems. First, the statement that Lisp offers only the possibility of
linking “the Library into an executable at build time” is not representative of all implementations
of Lisp. It is correct that Allegro Lisp offers commercial licensees the possibility of creating an
executable  application  –  essentially  a  directory  that  contains  the  Allegro  Lisp  run-time
environment, an image file, and a “license file” which together allow execution of the program. 37 It
is not correct, however, that this is the only available method for distributing a Lisp application.
Other  commercial  and  free  implementations  of  Lisp  offer  other  alternatives  for  distribution.
Lispworks,  for  example,  provides  the  possibility  of  delivering  an  application  as  a  dynamic
library.38 Allegro  Lisp  itself  also  offers  additional  options  for  distributing Lisp  programs.  For
example, Allegro users that do not wish to build an executable may also distribute Lisp source
code or compiled FASL files, and these files can be used by a user that already has an Allegro Lisp
run-time system.39 In addition, compiled FASL files may sometimes be distributed separately as
patches  to  an  application  already  executing  on  a  run-time  environment.40 Free  Lisp
implementations also offer the possibility of saving a memory image of a running Lisp system,
which  can  then  be loaded  by another  user  of  the  free implementation.41 In  other  words,  Lisp
implementations offer a wide variety of distribution methods that are not addressed by the LLGPL.

Aside from the question of how a Lisp library may be distributed, the fourth paragraph of the
LLGPL raises questions regarding the objectives and ambitions of the license. Indeed, the effect of
the fourth paragraph of the LLGPL is to almost eviscerate the obligations of the LGPL. If Lisp
programs can by definition only be distributed as an executable (an assumption that, as shown
above, is not completely accurate), and such executables are stipulated as not being subject to the
obligations of Section 6 of the LGPL, then the copyleft obligations of the LGPL will by definition
never apply to any Lisp program. The weaker copyright obligations of the LGPL generally require
linked applications to be distributed “in a form that allows for modification and relinking of the
library,” or pursuant to terms that “allow modification of the work … and reverse engineering for
debugging such modifications.” Under the LLGPL, however, even these weak copyleft obligations
would never apply. 

In other words, under the LLGPL, the copyleft provisions of the LGPL are essentially replaced
with  a  rather  permissive  license.42 Indeed,  the  copyleft  obligations  of  the  LLGPL may  be

37 See http://www.franz.com/support/documentation/8.2/doc/runtime.htm.
38 See http://www.lispworks.com/documentation/lw61/DV/html/delivery-42.htm#pgfId-865189. Corman Lisp provides 

similar functionality. See Corman Lisp Common Lisp Development Environment, available at 
http://www.cormanlisp.com/CormanLisp/CormanLisp.pdf, page 73

39 Id. (providing that “[n]ote that because your source files and compiled versions of those files can be distributed without
restriction, the way to distribute an application to another licensed Allegro CL customer without worrying about license
agreement restrictions is to distribute your source files (and/or compiled versions of your source files), along with a file
which creates the application.”

40 Currently, however, not all commercial licenses to Allegro Lisp offer the rights to distribute a run-time environment 
together with a compiler that can read FASL files. See Franz’s description of various runtime environment options, 
infra note 35. See also the short discussion regarding non-free runtime environments, infra text accompanying notes 42
- 43.

41 See http://www.sbcl.org/manual/index.html#Saving-a-Core-Image and http://www.clisp.org/impnotes.html#image
42 The LLGPL also seems to do away with several other obligations of the LGPL. For example, Section 6 of the LGPL 

also requires the provision of notices that the library is included in the work and that the library is covered by the 
LGPL. Section 6 also requires the retention of copyright notices. By broadly  providing that Section 6 of the LGPL is 
not applicable to Lisp programs, the LLGPL seems to eliminate these requirements. In addition, to the extent the 
LLGPL can be applied to programs that are covered by Version 3 of the LGPL, the LLGPL may also eliminate the 

International Free and Open Source Software Law Review Vol. 5, Issue 1

http://www.clisp.org/impnotes.html#image
http://www.sbcl.org/manual/index.html#Saving-a-Core-Image
http://www.cormanlisp.com/CormanLisp/CormanLisp.pdf
http://www.lispworks.com/documentation/lw61/DV/html/delivery-42.htm#pgfId-865189
http://www.franz.com/support/documentation/8.2/doc/runtime.htm
http://opensource.franz.com/license.html
http://opensource.franz.com/license.html
http://opensource.franz.com/license.html


Lisping Copyleft: A Close Reading of the Lisp LGPL 25

summarised in the last sentence of that license: “[h]owever, in connection with each distribution of
this executable, you must also deliver, in accordance with the terms and conditions of the LGPL,
the source code of Library (or your derivative thereof) that is incorporated into this executable.” In
other words, under the LLGPL a licensee’s copyleft obligations are limited to delivering the source
code of the library itself.43

It  should be noted that  the permissive nature of the LLGPL stands in contrast  to the fact that
commercial Lisp applications are often developed using non-free platforms. For example, despite
the fact that a particular application may be available under a permissive license, a commercial
license  to  Allegro  Lisp  may nevertheless  be  necessary  to  run  or  modify  that  application.  In
addition, libraries developed with one implementation of Lisp are often not portable to another
implementation.44 As such, even though a particular application may be licensed under open source
terms, a commercial license to a specific Lisp run-time environment may also be required to use
that application. As such, the development of free and open source software in Lisp may require
attention to both the license applicable to a particular program as well as the platform for which
the software is developed.45

Of Macros

This section discusses  two distinctive features of Lisp which are not clearly addressed by the
LLGPL. First, Lisp contains “macros” – methods of defining new syntactical structures in Lisp – a
feature  not  available  in  C  or  most  other  languages.   Second,  unlike  C,  Lisp  programs  have
traditionally  been  constructed  within  a  run-time  interactive  environment  that  interprets  Lisp
expressions. Neither of these features is expressly addressed by the LLGPL, and both raise issues
regarding the interpretation and application of the LGPL. This section provides a brief overview of
these features and the concerns they may raise in an open source license.  

Macros are a distinctive feature of Lisp. In brief, macros are program snippets which take in Lisp
code as input, manipulate that code, and return different Lisp code that is executed at runtime in
place of the original code. Through such manipulations, Lisp macros allow users to extend the
syntax of the language and create new constructions that can clarify and shorten code. Lisp macros
differ from functions. Functions take arguments, and these function arguments are evaluated when
the functions are executed. In contrast, the arguments in macros are not evaluated when the macro
in executed.  Instead,  the macro returns  code containing the unevaluated arguments,  and  these
arguments are evaluated when the returned, macro-manipulated code is executed. Lisp macros also
differ from C macros: while a C macro is essentially a textual search-and-replace mechanism, a
Lisp  macro  provides  a  more  general  mechanism  for  generating  code  that  preserves  the  data
structures of the original code.46 

How should the obligations of the LGPL affect the use of macros? On the one hand, it is not clear
why macros should be treated differently than functions. Why should a Lisp program that uses the

requirement to provide installation information as required by the “Tivo” clause of the LGPL. 
43 One ambiguity in this final, limited obligation of the LLGPL is the requirement to disclose the source code of the 

library and “your derivative thereof”. It is difficult to clearly define what the requirement to disclose derivative works 
of the library refers to, since the LLGPL previously provided that works linked to the library do not constitute 
derivative works of the library and are not covered by the LGPL. This last requirement to disclose derivative works 
could either be seen as conflicting with the prior provisions of the LLGPL, as a requirement to disclose modifications 
to the library files themselves, or as some other undefined intermediate copyleft obligation. 

44 SEIBEL, supra note 16, at 465, 475 n.8.
45 The Free Software Foundation described a similar problem with Java before Sun relicensed its Java implementation 

under the GPL. See http://www.gnu.org/philosophy/java-trap.html.
46 Much more complete explanations of the use and functionality of Lisp macros can be found in SEIBEL, supra note 16, 

ch. 7-8;  PAUL GRAHAM, ON LISP, ch.7-8 (1993)

International Free and Open Source Software Law Review Vol. 5, Issue 1

http://www.gnu.org/philosophy/java-trap.html
http://opensource.franz.com/license.html


26 Lisping Copyleft: A Close Reading of the Lisp LGPL

macros of a third party library be any less of a derivative work of that library than a Lisp program
that uses the functions of that third party library? While macros do not constitute functions in the
technical Lisp sense of the word, they do provide “functionality” and perform “operations” as
those words are commonly understood.47 On the other hand, the code generated by the macro may
bear little resemblance to the text of the macro itself.48 As such, it may not always be possible to
say that a program that calls a macro incorporates the textual code of the macro. Rather, it may
sometimes be more correct to say that the program that calls a macro incorporates code generated
by the macro – and the LGPL itself provides that the output of a program need not necessarily
constitute a derivative work of that program.49 To make matters more confusing, Lisp macros are
not expanded at either compile-time or run-time, but rather at an intermediate stage called macro-
expansion time. Would this complicate the application of Section 6(b) of the LGPL, which defines
a “suitable shared library mechanism” as a mechanism that uses a copy of the library already
present on the user’s system at “run-time”? 

Answering the previous questions requires the untangling of complex legal and technical threads,
and it is not the aim of this article to present a detailed analysis of these questions. However, any
license tailored for Lisp should take a position on these questions in order to provide for legal
clarity. It is unfortunate that the LLGPL does not provide any express guidance on the effect of the
LGPL on macros.

As discussed earlier,  the use of  runtime environments is  another distinctive feature of Lisp,  a
feature that has been adopted by other languages. A Lisp program may be developed incrementally
by composing or loading functions into the run-time environment. Third party Lisp libraries may
similarly be loaded into the run-time environment, either as source code or as compiled files. The
Lisp  run-time  environment  also  impacts  how  programs  are  distributed.  Lisp  programs  are
generally distributed as a Lisp run-time environment together with either compiled FASL files or
an “image file”. Depending on the specific implementation, it may not be possible to distribute a
single executable file for a Lisp program.

How should the LGPL relate to two functions loaded into the same Lisp run-time environment?
Would the two functions be considered linked in the LGPL sense of that word? On one hand,
linking two code files in the standard sense involves both the creation of links between the two
files and the copying of the linked file (whether at build-time to create an executable or at run-time
into memory to execute the program) into a larger program structure. In contrast, Lisp libraries
present in an environment are already loaded into memory and do not need to be copied when a
library function is called.50 As such, it may be possible to assert that a program which uses a Lisp
library  already loaded  into  a  runtime  environment  should  not  be  considered  “linked”  to  that
function, and should not be subject to any obligations of the LGPL. On the other hand, the libraries
present in the Lisp environment seem to satisfy the literal  LGPL definition of “shared library
mechanism”, which is defined by the LGPL as  using “at  run time a copy of the library already
present on the user’s computer system”.51 As such, perhaps a program that uses a function loaded

47 See GRAHAM, supra note 44 at 82 (“Since macros can be called and return values, they tend to be associated with 
functions. Macro definitions sometimes resemble function definitions, and speaking informally, people call do, which 
is actually a macro, a “built-in function.” But pushing the analogy too far can be a source of confusion.”); Id. at 84 
(“Indeed, a macro is really a Lisp function –one which happens to return expressions”).

48 For examples of how much a macro text can differ from the expanded macro program, see PAUL GRAHAM, supra note 46
at 97-98. 

49 The preamble of the LGPL states that “[t]he act of running a program using the Library is not restricted, and output 
from such a program is covered only if its contents constitute a work based on the Library (independent of the use of 
the Library in a tool for writing it). Whether that is true depends on what the Library does and what the program that 
uses the Library does.”

50 See Gary D. Knott, Interpreting Lisp, available at http://www.civilized.com/files/lispbook.pdf  for a fuller explanation 
of how a Lisp interpreter stores library functions in memory.

51 The Free Software Foundation takes the position that if an interpreter includes certain facilities and “the interpreter is 

International Free and Open Source Software Law Review Vol. 5, Issue 1

http://www.civilized.com/files/lispbook.pdf


Lisping Copyleft: A Close Reading of the Lisp LGPL 27

into a  runtime environment  should be subject  to  the same obligations as  programs that  use a
“shared library mechanism”.

As with the question of macros, a license made for Lisp should provide a ready answer to the
questions raised by the run-time environment. Again, it is unfortunate that the LLGPL does not
provide easily applied rules for these questions.

Conclusion

One of the central assumptions of the LLGPL is that the GNU licenses, having been drafted with
attention to a specific programming language, may need to be clarified for other programming
languages. Indeed, the LGPL makes reference to technical details, such as the header files, linking
and compilation, which are not applicable to all programming languages or to all situations. Even
so, this article has shown that the clarifications made by the LLGPL to the original GNU license
are largely unnecessary, and that the LGPL would probably be interpreted in a similar fashion
without the clarifications proposed by the LLGPL. This is not to say, of course, that the LGPL
comprehensively and expressly addresses all issues – as discussed, it does not expressly address
the issues raised by Lisp macros or the Lisp runtime environments.

Licenses are legal  documents,  and chances are that  their definitive legal  interpretation will  be
made by persons with legal training but only a limited technical background. As such, to some
extent, it is comforting that the interpretation of the GNU license does not depend on the details of
specific programming languages. The technical detail necessary to draft similar license provisions
for each and every technical context might prove too jargon-filled for the average court to apply.52

On the other hand, the fact that such technical detail is not expressly included in the license text
will  not  discharge  a  court  from its  obligation  to  understand  such  detail  in  order  to  properly
interpret the license. In applying any software license, a court will need to understand the technical
background regardless of whether it is clearly expressed in the text of the license.

In drafting software licenses – especially copyleft licenses that often refer to technical detail – it
may be useful  to  keep these principles  in  mind. A well  drafted license should not include an
amount of technological detail that overwhelms the non-technical reader. On the other hand, it
should to the extent possible provide for rules  that  are easy to interpret  and apply in specific
technical contexts. Balancing these often competing objectives is not a simple task. Nevertheless,
having clear and easy to apply license terms will only increase the attractiveness of using open
source software.  

linked statically with these libraries or if it is designed to link dynamically with these specific libraries” then 
interpreted programs can be considered derivative works of those facilities. See GPL FAQs. This statement does not 
answer the questions raised in this section. First, the statement only addresses libraries that are statically linked or if the
interpreter is designed to link dynamically with specific libraries – but not the situation of a library loaded into the run-
time environment. 

52 See ROSEN, supra note 23, at 123-24 (stating that Section 2(d) of the LGPL is “an impenetrable maze of technological 
babble. They should not be a general-purpose software license.”)

International Free and Open Source Software Law Review Vol. 5, Issue 1



28 Lisping Copyleft: A Close Reading of the Lisp LGPL

About the author

Eli Greenbaum is an attorney at Yigal Arnon & Co. in Jerusalem, Israel, specialising in 
intellectual property law and transactions.

International Free and Open Source Software Law Review Vol. 5, Issue 1



Lisping Copyleft: A Close Reading of the Lisp LGPL 29

International Free and Open Source Software Law Review Vol. 5, Issue 1

Licence and Attribution

This paper was published in the International Free and Open Source Software Law
Review, Volume 5, Issue 1 (MARCH 2013). It originally appeared online at

http://www.ifosslr.org.

This article should be cited as follows:

Greenbaum, Eli (2013) 'Lisping Copyleft: A Close Reading of the Lisp LGPL',
International Free and Open Source Software Law Review, 5(1), pp 15 – 29 

DOI: 10.5033/ifosslr.v5i1.75

Copyright © 2013 Eli Greenbaum

This article is licensed under a Creative Commons UK (England and Wales) 2.0
licence, no derivative works, attribution, CC-BY-ND available at

http://creativecommons.org/licenses/by-nd/2.0/uk/

As a special exception, the author expressly permits faithful translations of the entire
document into any language, provided that the resulting translation (which may

include an attribution to the translator) is shared alike. This paragraph is part of the
paper, and must be included when copying or translating the paper.

http://creativecommons.org/licenses/by-nd/2.0/uk/


30 Lisping Copyleft: A Close Reading of the Lisp LGPL

International Free and Open Source Software Law Review Vol. 5, Issue 1



The Rise and Evolution of the Open Source Software Foundation 31

The Rise and Evolution of the Open Source
Software Foundation

Paula Hunter,a Stephen Walli,b

(a) Executive Director, The Outercurve Foundation: (b)
Technical Director, The Outercurve Foundation.

DOI: 10.5033/ifosslr.v5i1.  64  

Abstract
Free and open source software (FOSS) project communities continue 
to grow and thrive.  When such projects reach a certain critical point 
in their growth, corporations express interest in participating.  
Corporations have more stringent and robust software intellectual 
property (IP) management needs, however, and projects are not 
always up to the task.  Neutral non-profit FOSS foundations have 
proved to be a solution to these problems, providing for the IP 
management needs of corporations while offering additional business 
and technical services to the project communities to encourage further 
growth and adoption. This article reviews how such neutral non-profit 
organizations have grown to meet the evolving legal, business, and 
technical needs of FOSS communities and businesses.

Keywords
Law; information technology; Free and Open Source Software; 
foundations

The growth and global participation in open source software development, aided by inexpensive
and pervasive Internet access, has created a community of collaborators on whom software
developers and IT professionals depend as a vital element in the software development process. As
software intellectual property (IP) practices have matured, free and open source software (FOSS)
communities have kept pace.

FOSS licensing has evolved over the past thirty years from the more liberal academic do-as-you-
will licenses and initial ideas of software freedom to  reflect  the  advancement  of  the  general
software landscape and include more complex methods of keeping software free.  For example,
with  U.S. law recognizing software patents and the consequential risk involved with this, FOSS
licenses began to introduce patent related clauses. As corporations became more interested in
contributing to and using FOSS-licensed software, FOSS licenses were written using more
traditional license structures and language.  One of the key tools in this maturation has been the
evolution of the non-profit technology foundation as a software IP management mechanism, as
well as a hub for communications and collaboration.

International Free and Open Source Software Law Review Vol. 5, Issue 1

http://dx.doi.org/10.5033/ifosslr.v5i1.64
http://dx.doi.org/10.5033/ifosslr.v5i1.64


32 The Rise and Evolution of the Open Source Software Foundation

Many volunteer-led  and  community-centred  FOSS-licensed projects reach a point in their
technology growth and evolution where corporations want to participate as well. Corporations
have very different needs with respect to IP management, provenance tracking, and governance, as
they are concerned with managing exposure to their patent portfolios and want to minimize to the
potential  for litigation.  FOSS foundations provide such structure,  as a number of key FOSS
projects illustrate.  

The Apache Software  Foundation (ASF)  formed around the Apache project as a non-profit
charitable organization in 19991, adding a new, more structured  license (Apache License 2.02).
This step happened as IBM became interested in participating with the intent to embed the Apache
http daemon software in its Websphere product line.  Likewise, the Open Source Development
Lab3 (OSDL) formed to support the Linux project in 2000 as  a non-profit trade association to
better manage IP risk as the Linux operating system became the cornerstone of a number of
product lines from vendors that traditionally competed in the UNIX systems space. This non-profit
later merged with the Free Standards Group4 –  a non-profit trade organization responsible for
specifying Linux programming interfaces  –  to form the Linux Foundation5. The Eclipse
Foundation6 formed around the Eclipse IDE project in 2004, and has been the caretaker of the
rigorous Eclipse software IP management process and the evolution of their FOSS license..  

Each foundation represents different values and objectives to its constituency. Yet,  what
foundations have in common are governance structures to provide IP management and committer
indemnification, as well as support mechanisms for community and collaboration.

The Outercurve Foundation was recently established to take this well-defined model and apply it
forward for FOSS projects in such a way as to give vendors the benefits of such non-profit FOSS
foundations without the expense and risks of creating their own foundations. The Outercurve
Foundation provides the IP management and business operations associated with FOSS
foundations as a non-profit trade association. It is technology, forge, and FOSS license agnostic (as
long as the license is approved by the Open Source Initiative).  

Public Good or Membership Benefits?

Many of the original FOSS foundations (e.g. the ASF and the Linux Foundation) were
incorporated in the United States. An early decision for any FOSS foundation is whether to
establish itself as a non-profit trade association (501(c)6 under U.S. tax law) or a non-profit
charitable organization contributing to the public good (501(c)3 under U.S. tax law).7  The FOSS
community at large is very focused on the distinctions between these two types of non-profit
organizations.    

There are two major factors often discussed when evaluating these options: financial implications
and control of the organization, in terms of who benefits.  Many FOSS projects like the ASF or the
Free Software Foundation  are looking for a means to distance individual developers from the

1 http://www.apache.org/history/timeline.html  
2 http://www.apache.org/licenses/  
3 Weinberg, Bill. “OSDL: The Center of Gravity for Linux”. Presentation to the Silicon Valley Users Group. May, 2005. 

http://www.svlug.org/prev/2005jun/OSDL_Overview_SVLUG.pdf
4 http://www.linfo.org/free_standards_group.html  
5 Walli, Stephen R. “Repeating History: The OSDL and Free Standards Group Merge”. 25 January 2007. 

http://stephesblog.blogs.com/my_weblog/2007/01/jim_zemlin_repe.html
6 http://www.eclipse.org/org/  
7 http://www.irs.gov/charities/charitable/article/0,,id=96099,00.html  , 

http://www.irs.gov/charities/nonprofits/article/0,,id=96107,00.html

International Free and Open Source Software Law Review Vol. 5, Issue 1

http://www.irs.gov/charities/nonprofits/article/0,,id=96107,00.html
http://www.irs.gov/charities/charitable/article/0,,id=96099,00.html
http://www.eclipse.org/org/
http://stephesblog.blogs.com/my_weblog/2007/01/jim_zemlin_repe.html
http://www.linfo.org/free_standards_group.html
http://www.svlug.org/prev/2005jun/OSDL_Overview_SVLUG.pdf
http://www.apache.org/licenses/
http://www.apache.org/history/timeline.html


The Rise and Evolution of the Open Source Software Foundation 33

finances of the organization while encouraging donations to the entity. The charitable organization
status allows the organization to accept funds, which are tax deductible, and can be used to cover
the basic operating expenses of the organization and, in some cases, fund development or specific
project work.  In many cases, a strong governance structure has evolved with the growth of the
project (e.g. the ASF8), and thus codifying it with a formal charitable non-profit structure is a
logical step in its lifecycle.  The notion of “public good”  is also very complementary to the
philosophies of some FOSS communities, and thus the charitable organization is often chosen for
more than simple accounting purposes.   

The trade organization designation is frequently chosen by a collective of vendors, i.e. software
companies, that want to collaborate on a project, jointly fund the effort, and establish a structure
that ensures balanced control.  While the primary distinction here is that the members are the
beneficiaries of the efforts of the organization, in most cases a broader community can participate
in and enjoy the fruits of the labor.  The Linux project is an excellent example of a FOSS project
that has benefited from significant vendor investment through  a foundation.   The Linux
Foundation (a 501(c)6) trade organization under U.S. tax law) balances the needs and interests of
its members in a very large community through its member programs9 and membership bylaws.10

In most cases, the tax implications are not a major factor; governance structure and IP management
are far more important.

The Value of Foundations

Regardless of whether a FOSS foundation is organized as a trade organization or a charity, non-
profit FOSS foundations offer projects three distinct types of services.  First,  they provide
participants with a legal framework for software IP management in which commercial companies
can work with FOSS projects and contributors.  Foundations also provide technical services, such
as software repositories and issue tracking, code signing certifications and technical mentorship.
Lastly,  foundations  provide business operations and governance support, such as financial and
banking services, membership management, and communications and PR around projects.

Legal Framework for IP Managment

Ownership Neutrality

One of the key benefits of using a non-profit FOSS foundation for project IP ownership and
management is that it creates a neutral place for collaboration.  Many corporations are loath to
participate in FOSS projects held by other corporations that may be competitors or partners.  There
is a concern that their intellectual investments will go to other benefactors and they will see a poor
return on investment.  A neutral foundation holding the IP ownership allows all corporate sponsors
to  participate  on  equal  terms.  No one corporation owns the project software so partners and
competitors alike can feel they are getting the best return on their contribution investment without
giving others a significant advantage.  

Foundations own the open source project's IP and have no commercial interests in the software, i.e.
the foundations sell no products or services based on the software.  Software  copyrights  are

8 How the ASF Works: http://www.apache.org/foundation/how-it-works.html 
9 http://www.linuxfoundation.org/programs   
10 http://www.linuxfoundation.org/about/bylaws   

International Free and Open Source Software Law Review Vol. 5, Issue 1

http://www.linuxfoundation.org/about/bylaws
http://www.linuxfoundation.org/programs
http://www.apache.org/foundation/how-it-works.html


34 The Rise and Evolution of the Open Source Software Foundation

assigned or licensed by contributors to the foundation in a variety of ways through membership
agreements,  assignment  or license agreements,  and sometimes the project  open source license
itself. Patents are often licensed to the foundation.  Providing a neutral place for companies and
individuals to co-operate often leads to growth in the community of contributors. Well-managed IP
also leads to growth in project acceptance and adoption as other parties become more confident
adopting a project with well understood software provenance. Indeed, all of the largest and most
active FOSS projects are managed by FOSS foundations.11  Whereas, the next most active projects
– smaller by an order of magnitude than the leading projects – are managed and owned by single
corporations.

That FOSS projects run by a single corporation tend to be smaller may be due to concern around
the consequences of a change in IP management or ownership. When a single corporation controls
a FOSS project, what happens to the IP if the corporation changes direction or gets acquired?
MySQL may be one of the most successful FOSS projects, but subsequent acquisitions by Sun
Microsystems and then Oracle have left the broader project community confused.12 13  MySQL AB
had rigorous IP management practices, but this means all the IP is now owned by Oracle, and they
are rightly using it to corporate benefit.  Over the past couple of years a number of competing
FOSS-licensed database solutions are growing and interest in MySQL is waning.14 If the
ownership of  MySQL had been held neutrally, none of the participants and users would have felt
disenfranchised to the point of beginning their own projects or forking the MySQL software base,
and the community may have continued on as strong as during its early years.

Liability and Risk Management

Foundations can  also serve as liability firewalls or shields.  Many companies are uncomfortable
with publishing, sharing, and collaborating on open source software if they are the only copyright
owner.  Having a neutral third party hold the copyright  ownership reduces some of that liability
risk.  A foundation, as a legal entity, acts as a shield that generally protects its members against
liability for the contracts,  commitments, and possible negligence of the foundation itself.   The
foundation (legal  entity)  may also protect  the members  that  were not participating in  a given
activity for  liability from  other  members’ actions in a  given situation (e.g.  the introduction of
infringing software into foundation owned software).  

All FOSS licenses disclaim liability.  Many vendors develop products out of FOSS-licensed
projects (e.g. Red Hat Advanced Server is the product developed using software from the FOSS-
licensed Linux project). Vendors are comfortable having product performance liability discussions
with customers that have paid for the product and embed liability clauses in their product licenses.
Many vendors, however, still feel there is the perception of liability risk for FOSS-licensed
projects they own from unpaid users.  Assigning the copyright ownership of a FOSS-licensed
project to a non-profit foundation is a clear message of “non-copyright ownership”.  The vendors
may still control the project direction  through participation  in  the  project  governance and by
supporting the primary developers and committers on the project, but there is a perception that
they have reduced the liability risk as they don’t own the project’s  software  copyright.  The
foundation ownership acts to divert claims away from the original owner. 

Additionally,  the use of a legally incorporated foundation may provide certain soft benefits by

11 Henrik Ingo studied open source projects size and vitality and published his results on his website: 
http://openlife.cc/blogs/2010/november/how-grow-your-open-source-project-10x-and-revenues-5x (Valid: 2-May-
2012)

12 First Sun: http://blogs.the451group.com/opensource/2008/05/07/mysql-licensing-redux/ 
13 Then Oracle: http://www.infoworld.com/t/dbms/oracle-eliminate-budget-plans-in-mysql-license-hike-323 
14 http://arstechnica.com/business/2011/09/oracle-may-fork-itself-with-recent-mysql-moves/   

International Free and Open Source Software Law Review Vol. 5, Issue 1

http://arstechnica.com/business/2011/09/oracle-may-fork-itself-with-recent-mysql-moves/
http://www.infoworld.com/t/dbms/oracle-eliminate-budget-plans-in-mysql-license-hike-323
http://blogs.the451group.com/opensource/2008/05/07/mysql-licensing-redux/
http://openlife.cc/blogs/2010/november/how-grow-your-open-source-project-10x-and-revenues-5x


The Rise and Evolution of the Open Source Software Foundation 35

playing to the perception that the legal issues and operations have been more carefully vetted and
discussed with respect to members, contributors, and committers.15  

As well as acting as a legal shield for members and contributors, foundations can also act to
protect individual participants in the FOSS project  by  indemnifying  their  actions.  This
indemnification takes a number of forms. 

FOSS project committers are primary developers on the project who have full write access to the
software repositories, i.e. they are in the position of “committing” changes to the software.
Committers may be individual software developers, and/or employees of independent software
vendors (ISVs) or large corporations. Foundations can serve an important role indemnifying their
committers depending on other governance and membership structures in place such that
individual committers are not held personally liable for the software, regardless of the liability
clauses embedded in FOSS licenses.  This is certainly the case with the Outercurve Foundation and
the ASF.16

Foundations typically explicitly indemnify their  board  directors  and members  as  well  in  their
governance policies. This is the case with the ASF17, the Eclipse Foundation,18 and the Outercurve
Foundation,19 

Code Provenance

Foundations may provide governance processes to track code provenance. A variety of legal
opinions and practices discuss whether software contributions should be copyright assigned to a
foundation, or copyright licensed into a software project’s collaborative community or neither.
Some believe in assignment of all rights under copyright (e.g. the Free Software Foundation20),
while others believe a license of rights under copyright is sufficient (e.g. the ASF21). Still others
feel all necessary rights are embodied in their open source license and membership agreements
(e.g. the Eclipse Foundation22).

Each position and practice is defensible. Having all the rights of copyright ownership would allow
the single owner to directly handle any litigation involving the software.  It would also give the
single owner the ability to unilaterally change the licensing terms for the software.  This is what
causes many developers concern if they are required to assign their copyright to a single entity
when they contribute to a FOSS-licensed project, as it requires the single entity to be in a strong
position of trust.  Non-profit neutral foundations act in that capacity far better than for-profit
corporations.   

The opposite position – where everything is licensed and the community of licensees collectively

15 Personal correspondence with Andrew Updegrove of Gesmer, Updegrove LLP, Boston, MA, USA.
16 The Outercurve Foundation announced governance changes 1 November, 2010: http://www.prnewswire.com/news-

releases/outercurve-foundation-changes-bylaws-and-governance-106520588.html.  The president of the Apache 
Software Foundation, Jim Jagielski, confirmed similar support for Apache project committers in personal 
communication 18 June, 2012. 

17 The Apache Software Foundation Bylaws: http://apache.org/foundation/bylaws.html 
18 The Eclipse Foundation Bylaws: http://www.eclipse.org/org/documents/Eclipse%20BYLAWS 

%202011_08_15%20Final.pdf
19 The Outercurve Foundation Bylaws: http://www.outercurve.org/About 
20 Eben Moglen answers the question as to why the Free Software Foundation expects copyright assignment for 

contributions: http://www.gnu.org/licenses/why-assign.html (Valid: 2-May-2012)
21 The Apache Software Foundation has contributors license their contributions to the foundation: 

http://www.apache.org/licenses/icla.txt (Valid: 2-May-2012)
22 The Eclipse Foundation doesn’t use contribution license agreements, relying instead on the Eclipse Public License and 

membership agreements. http://www.eclipse.org/legal/eplfaq.php#RECRIGHTS (Valid: 2-May-2012)

International Free and Open Source Software Law Review Vol. 5, Issue 1

http://www.eclipse.org/legal/eplfaq.php#RECRIGHTS
http://www.apache.org/licenses/icla.txt
http://www.gnu.org/licenses/why-assign.html
http://www.outercurve.org/About
http://www.eclipse.org/org/documents/Eclipse%20BYLAWS
http://apache.org/foundation/bylaws.html
http://www.prnewswire.com/news-releases/outercurve-foundation-changes-bylaws-and-governance-106520588.html
http://www.prnewswire.com/news-releases/outercurve-foundation-changes-bylaws-and-governance-106520588.html


36 The Rise and Evolution of the Open Source Software Foundation

owns the software – makes it difficult to act on such items as changing the licensing terms.  Some
view this as a re-enforcement of the community and the community’s values.  

The acceptability of contribution assignment and license agreement practices within communities
of developers can be easily seen when you compare non-profit neutral foundations and for-profit
corporations.  Developers raise concerns that code assignments for FOSS contributions to
corporations are at risk if the corporation chooses to close the project back behind its ownership
wall or relicense them for its own corporate gain.23  Again, MySQL stands as an excellent example
here.  MySQL AB required copyright assignment of all contributions to the for-profit company and
made a considerable percentage of its profits selling closed licenses to its otherwise GPL-licensed
software.  This sole for-profit ownership caused a lot of concern through the two subsequent
acquisitions by Sun Microsystems and then Oracle Corp. and ultimately led to the forking of the
code base and new FOSS-licensed projects to replace the MySQL database.24  Assignments and
licenses to legally neutral non-profits remove such concerns.  

It is important to note that regardless of the legal structures in place, software development
practices to track the software contribution flow are also a critical and necessary part of the
process of provenance tracking.  Version control systems, issue tracking, and email archives all
contribute to ensuring the software contributions themselves can be tracked, as well as the
contributors assignment or license agreement.  The ASF, Eclipse Foundation, Linux Foundation,
and Outercurve Foundation all ensure such practices are in place for the projects they manage.

In any approach to assignment and contribution licensing practices, well managed IP with clear
provenance tracking processes encourages adoption of FOSS projects by other organizations and
grows the community of users and possible future contributions.

The License of a FOSS Project and License Curation

The license a FOSS project uses is often seen as more than a legal agreement for licensing the
software.  The license defines the project community’s values for how they want to collaborate
together and share the results of their work.  Whether a project community believes all participants
and contributors must license contributions and derivatives under the same license is wired into the
choice the early community makes about the software. How the community wants to talk about
patents that may relate to the software is embedded in the license, from the lack of discussion in
such licenses as the BSD license to the various discussions of patents and patent retaliation
embedded in licenses such as Apache License 2.0, the Eclipse Public License, and GPLv3.   

Key current FOSS licenses evolved within foundations.  As the Apache project evolved into the
ASF, the simple BSD-like Apache 1.0 license evolved into the Apache  License 2.0, which was a
much more traditional license with respect to structure, and began to deal with discussions of
patents.  Likewise, the evolution of the Eclipse project’s licensing has evolved with the Eclipse
Foundation's governance over time,25 from a project begun and anchored by IBM and the newly
created IBM Public License, to the Common Public License as the Eclipse Foundation was
created,26 and most recently the Eclipse Public License as the Eclipse Foundation became the
steward of the license.27  The evolution of the GPL has been tightly bound to the Free Software

23 http://blogs.computerworlduk.com/simon-says/2010/08/on-contributor-agreements/index.htm   
24 Again: http://arstechnica.com/business/2011/09/oracle-may-fork-itself-with-recent-mysql-moves/ 
25 The IBM Developer works FAQ on the Common Public License is informative on IBM’s public statements about 

license evolution: http://www.ibm.com/developerworks/opensource/library/os-cplfaq/index.html 
26 The Eclipse Foundation is formed 2 February, 2004 (http://www.eclipse.org/org/press-

release/feb2004foundationpr.php)
27 IBM made the Eclipse Foundation custodian of the Eclipse Public License, 25 February, 2009: 

International Free and Open Source Software Law Review Vol. 5, Issue 1

http://www.eclipse.org/org/press-release/feb2004foundationpr.php
http://www.eclipse.org/org/press-release/feb2004foundationpr.php
http://www.ibm.com/developerworks/opensource/library/os-cplfaq/index.html
http://arstechnica.com/business/2011/09/oracle-may-fork-itself-with-recent-mysql-moves/
http://blogs.computerworlduk.com/simon-says/2010/08/on-contributor-agreements/index.htm


The Rise and Evolution of the Open Source Software Foundation 37

Foundation and its evolving articulation of software freedom over the years, most recently
culminating in the GPLv3 which attempts to set the concept of software freedom against the
background of the modern Internet, the growth of the World Wide Web, and explicit clauses
regarding patents.28

While FOSS licenses can be very foundation-centric based, nothing requires this to be so.  For
example, the Outercurve Foundation only requires that a project under its management use a FOSS
license approved by the Open Source Initiative (OSI).29  The Outercurve Foundation is not tied to a
particular project and thus has the freedom to be agnostic as to a project’s choice of license. Tying
the choice to licenses the OSI has recognized as conforming to their Open Source Definition is a
reasonable decision in light of the Outercurve Foundation's mission to support the growth of free
and open source software projects and communities, and the OSI mission to be advocate for the
benefits of FOSS.

Technical Services

The Forge and the Communications Channel

Every successful  software project,  regardless of how it is licensed, is supported by a software
construction discipline that involves proper version control, configuration management, and build
scripting, test automation, and issue tracking.  These are the tools that enable consistent software
delivery.  Most of these tools are provided by modern internet-based forge sites (e.g. SourceForge,
Codeplex, Github).  As these are essential tools to supporting complex collaborative development,
some  FOSS  foundations  provide  the  tools  as  well,  most  notably  the  ASF  and  the  Eclipse
Foundation.  The Linux kernel team has evolved their own infrastructure for handling this level of
software construction discipline, but the Linux Foundation ensures the hosting.  The Outercurve
Foundation does not provide such toolsets, remaining forge “agnostic” and ensuring that projects
are using the tools appropriately during the project proposal vetting.  

Collaborative development requires strong communications channels as well.  Developer email
lists,  IRC channels,  forums,  and  wiki  software  all  provide the basis  of  such communications.
Foundations again can provide the infrastructure to support these channels.  

Mentorship and Incubation

Software construction discipline is part of a project's culture.  So too is the way a project makes
decisions  and  communicates  those  decisions.   Having  a  strong  culture  of  sound  software
development practices allows a project to scale properly.  New projects often come to a FOSS
foundation in a stage of growth where they may not have instituted good practices, and to be
accepted into the foundation the project needs to be educated in how the foundation's projects
comport themselves.  

The ASF and Eclispe Foundation run incubation phases for their new projects.  New projects are
assigned  mentors  and  not  allowed  to  graduate  out  of  the  incubation  stage  until  they  have
demonstrated they adhere to the foundation cultural norms.  The Outercurve Foundation did not
grow up around a specific FOSS project with a history of specific practices in how to scale in a

http://www.eclipse.org/legal/cpl-v10.html 
28 A history of the General Public License: http://en.wikipedia.org/wiki/GNU_General_Public_License 
29 Outercurve Project Proposal requirements: http://www.outercurve.org/About/ProjectProposal 

International Free and Open Source Software Law Review Vol. 5, Issue 1

http://www.outercurve.org/About/ProjectProposal
http://en.wikipedia.org/wiki/GNU_General_Public_License
http://www.eclipse.org/legal/cpl-v10.html


38 The Rise and Evolution of the Open Source Software Foundation

disciplined manner.  Instead, projects are assigned a mentor to ensure the project is scaling in a
disciplined way with appropriate practices.  

General Management and Operations

Support Across the Project Lifecycle

As well as supporting a set of  IP management mechanisms, foundations provide a set of business
operational services to meet the needs of their managed projects at different stages of the project
lifecycle.  Historically, foundations created around existing projects had already evolved a set of
software management practices essential for the software community to scale out to many
developers, users, and releases of software.  These  collected  software  management  practices
became known as the Apache Way30 at the ASF, and are likewise referred to as the Eclipse Way31 at
the Eclipse Foundation. Each of these foundations also hosts the original forge sites that support
the software development processes, where the forge is the collection of software development
tools (e.g. version control software and repositories, issue tracking) necessary for the development
process.

While the foundations supporting the Apache and Eclipse projects each started around a single
project, they have expanded to support new projects, in much the same way that the Outercurve
Foundation was created to welcome FOSS-licensed projects that had reached a point in their
evolution to need a foundation to support the next growth.  Each of these foundations has
developed mentoring processes to support new projects.  The ASF32 and Eclipse Foundation33 each
bring new projects through an incubation process to teach their respective development processes
and IP practices and ensure over a period of a year or two that the project and the foundation are a
match for one another.  The Outercurve Foundation34 instead directly matches a mentor to the
project to ensure that the project leadership gets the best grounding in open source community
collaborative and development techniques that meet its needs.

Different projects have different needs depending upon where they are in their life cycle and the
experience that may already exist within the projects participants. Some projects, for example the
Outercurve Foundation’s CoApp project, come into foundations in the concept phase, without a
single line of code written. Other projects, such as the Outercurve Foundation supported Chemistry
Add-on for Word, are mature projects with many downloads and users. These two projects have
vastly different needs, from IP management practices to governance, operations, and marketing
support, as well as technical mentorship and expertise to help organize and support collaborative
development of software projects.

CoApp chose to license all software into the project (similar to the ASF projects), has run contests
to encourage usage, and was started by a developer with a lot of experience in running an open
source development community.  In addition to using the Outercurve Foundation to manage the
contest, most recently the CoApp project  used the Foundation to pay a student to work on a
summer work proposal similar to the Google Summer of Code programme run by Google. The
Chemistry Add-on for Word, on the other hand, began with an assignment of software from

30 The Apache software management process is described: http://www.apache.org/foundation/how-it-works.html
31 The history of the Eclipse practices or Eclipse Way is described: http://wiki.eclipse.org/images/5/54/Eclipse-way.pdf 
32 The Apache Software Foundation incubation process: http://incubator.apache.org/
33 The Eclipse Foundation incubation process: http://www.eclipse.org/eclipse/incubator/
34 The Outercurve Foundation mentorship program: http://www.outercurve.org/Blogs/EntryId/43/Outercurve-launches-

new-Mentorship-Program-for-its-Projects

International Free and Open Source Software Law Review Vol. 5, Issue 1

http://www.outercurve.org/Blogs/EntryId/43/Outercurve-launches-new-Mentorship-Program-for-its-Projects
http://www.outercurve.org/Blogs/EntryId/43/Outercurve-launches-new-Mentorship-Program-for-its-Projects
http://www.eclipse.org/eclipse/incubator/
http://incubator.apache.org/
http://wiki.eclipse.org/images/5/54/Eclipse-way.pdf
http://www.apache.org/foundation/how-it-works.html


The Rise and Evolution of the Open Source Software Foundation 39

Cambridge University and Microsoft Corp.  It has not taken advantage of the business operations
of the Foundation, but has required more mentorship as it evolved, because there was not a lot of
experience with open source community development practices. In addition, the project has also
had to survive a transition in project leadership.

Each of these two projects uses the services provided by the Outercurve  Foundation in different
ways to match their needs.  

Funding: Members, Dues, and Donations

FOSS foundations as organizations rely on the donations or dues of members and a volunteer
workforce to get much of the work done, regardless of their non-profit organization.

The ASF is an excellent example of volunteer-led membership.  The ASF is organized as a
charitable non-profit organization and as such accepts donations, but it is volunteers that provide
the majority of work in delivering against its mission, thus keeping operating costs relatively low.
Donations cover the costs of items like the systems infrastructure used to support the forge.  

When vendors invest in a non-profit trade organization, their expectations as members are different
than what they would expect from a tax-deductible donation to a non-profit charitable
organization. In addition to formal governance and operational support, members expect a staff to
help drive programs and marketing.  This staff can be comprised of full-time employees,
employees assigned from member companies, and staff from firms that provide association
management services (AMC).  The Outercurve Foundation employs a hybrid model, with several
full time staff members, while leveraging an AMC to provide financial, operational,
administrative, and program management functions. This model allows the foundation to be
nimble and scale as its project portfolio grows.  Regardless of the staffing model, membership
driven FOSS trade organizations are more expensive non-profits to operate than volunteer led
charitable organizations working for the public good.

Conclusions

Developers have shared software since they began writing it, and the Internet has accelerated this
process of shared collaboration.  That said, collaborative software development needs more than
the bandwidth of the Information Superhighway.  To grow and thrive, projects need formal
governance and legal structures that allow corporations to share the development work and
contribute to the growth of the software and its community.  

Collaboratively-developed software shared under liberal open source licenses continues to provide
an enormous productivity boost for developers, speeds time-to-market for corporations, and
delivers value to users. Open source foundations are a crucial part of the FOSS ecosystem.
Foundations provide a simple, elegant mechanism through which corporate organizations can
contribute to FOSS communities and develop their own projects by providing a neutral space for
collaboration while mitigating legal risk; they also provide a safe haven for individual developers
and projects of all sizes.

Perhaps most importantly, foundations support and enable community growth. An open source
software project is only as good as its committers. Committers provide leadership and direction to
their projects. Committers create the software but are also responsible for the discipline and quality
of the software. Foundations provide the structure, governance and IP management to make it

International Free and Open Source Software Law Review Vol. 5, Issue 1



40 The Rise and Evolution of the Open Source Software Foundation

simpler for project communities to grow and flourish beyond their initial developers and users, as
corporations become interested in participating. Foundations encourage communities to grow by
providing an entity to hold the software property, ensuring no one person or entity throttles project
growth by tightly holding the IP. Joining an established foundation also saves companies, and
projects, the costs of starting a foundation from scratch, which is an expensive ordeal requiring a
lot of expertise to avoid costly mistakes. 

About the authors

Paula Hunter brings a compelling combination of industry insight, executive-level business savvy 
and experience working with not-for-profits to the position of Executive Director of the Outercurve
Foundation. Previously Hunter served as Director of Operations for SEMPO, the Search Engine 
Marketing Professional Organization, a non-profit professional association working to increase 
awareness and promote the value of Search Engine Marketing worldwide. Prior to SEMPO, 
Hunter was director of worldwide marketing and business development for the Open Source 
Development Labs, where she was instrumental in driving membership growth of industry 
advocacy group and lead initiatives to increase industry awareness and engage large enterprise IT
organizations with OSDL programs. Previously, Hunter was general manager of UnitedLinux, a 
joint venture formed to create a unified Linux offering. She began her career at Digital Equipment 
Corporation, where she managed marketing programs for DEC's UNIX Workstation and PC 
product lines. Hunter received a BS in Computer Information Systems from Bentley University.

Stephen Walli is the Technical Director of the Outercurve Foundation.  Walli has worked in the IT 
industry since 1980 as both customer and vendor. He was most recently a consultant on software 
business development and open source strategy. His customers included Microsoft, the Eclipse 
Foundation, the Linux Foundation. He's an adviser to Ohloh (acquired by BlackDuck), Bitrock, 
Continuent, and eBox. He organized the agenda, speakers and sponsors for the inaugural Beijing 
Open Source Software Forum as part of the 2007 Software Innovation Summit in Beijing. Stephen 
was VP Open Source Development Strategy at Optaros, a business manager at Microsoft on open 
source, and VP R+D and founder at Softway Systems, a venture-backed company that developed a 
UNIX portability environment for NT using free and open source software in combination with 
Microsoft-licensed Windows software, before being acquired by Microsoft. He was a long time 

International Free and Open Source Software Law Review Vol. 5, Issue 1

Licence and Attribution

This paper was published in the International Free and Open Source Software Law
Review, Volume 5, Issue 1 (MARCH 2013). It originally appeared online at

http://www.ifosslr.org.

This article should be cited as follows:

Hunter, Paula; Walli, Stephen; (2013) 'The Rise and Evolution of the Open Source
Software Foundation', International Free and Open Source Software Law Review,

5(1), pp 31-41
DOI: 10.5033/ifosslr.v5i1.64

Copyright © 2013 Paula Hunter, Stephen Walli.

This article is licensed under a Creative Commons UK (England and Wales) 2.0
licence, no derivative works, attribution, CC-BY-ND available at

http://creativecommons.org/licenses/by-nd/2.0/uk/

As a special exception, the author expressly permits faithful translations of the entire
document into any language, provided that the resulting translation (which may

include an attribution to the translator) is shared alike. This paragraph is part of the
paper, and must be included when copying or translating the paper.

http://creativecommons.org/licenses/by-nd/2.0/uk/


The Rise and Evolution of the Open Source Software Foundation 41

participant and officer at the IEEE and ISO POSIX standards groups, representing both USENIX 
and EurOpen (E.U.U.G.) and a regular speaker and writer on open systems standards since 1991

International Free and Open Source Software Law Review Vol. 5, Issue 1



42 The Rise and Evolution of the Open Source Software Foundation

International Free and Open Source Software Law Review Vol. 5, Issue 1



FOSS in the Italian public administration: fundamental law principles 43

FOSS in the Italian public administration:
fundamental law principles

Simone Aliprandi,a Carlo Piana,b

(a) ph.d. in Information Society, lawyer at Array and founder
of Copyleft-Italia.it Project; (b) lawyer at Array and General

Counsel (external) Free Software Foundation Europe.

DOI: 10.5033/ifosslr.v5i1.  84  

Abstract
We take a first reading of the recent modification to the fundamental 
law that governs the digital aspects of the Public Administration in 
Italy. These modifications require Public Administrations to prefer 
internally made solutions and FOSS solutions over proprietary ones, 
mandate an increased degree of interoperability and strengthen the 
push for open data. 

Keywords
Italian law; information technology; Free and Open Source Software; 
public administration; e-government; public sector information; reuse 
of software programs; open by default; 

The Codice dell'amministrazione digitale (“Digital  Public  Administration  Act”, also known with
the acronym “CAD”) is the most important Italian law about e-government. It includes provisions
that govern the use of information technology as a privileged communication channel between
Italian citizens and all the public administration system. 

CAD's Article 68 establishes  the core rules for all  aspects related to openness in the Italian public
sector: free and open source software1 (“FOSS”, par. 1 and 2),  open formats and open data (par.
3).  During  2012,  these  paragraphs  underwent  some  important  changes  which  created  an
unprecedented  opening,  inter  alia,  in  favour  of  a  preference  for  FOSS  in  the  Public
Administration. 

Free and open source software, as well as in-house made or ad-hoc 
developed solutions or reused software, takes precedence by law (first 
reform)

The part of Art. 68  dealing with software procurement rules in  the  Public  Administration  was
initially modified by Law 134/2012, approved by the Italian Parliament on August 7, 2012. 

1 The law indeed uses both naming convention: “free/libre” (libero) and “open source” (codice aperto)

International Free and Open Source Software Law Review Vol. 5, Issue 1

http://dx.doi.org/10.5033/ifosslr.v5i1.84


44 FOSS in the Italian public administration: fundamental law principles

Here is an English translation of Par. 1 of Art. 68, resulting from this first reform. The first  part
remained unchanged and read:

Public administrations must acquire computer programs or parts thereof as a result of
a comparative assessment of technical and economic aspects  among  the following
solutions available on the market:

a) develop a solution internally
b) reuse a solution developed internally
c) obtain a free and open source license
d) obtain a proprietary license of use 
e) a combination of the above

After this  paragraph, that makes FOSS an overriding choice by law,  the following language was
initially added :

Only  when  the  comparative  assessment  of  technical  and  economic  aspects
demonstrates the impossibility to adopt open source solutions or any other software
solution already developed (at a lower price) within the public administration system,
the  acquisition  (by  license)  of  proprietary  software  products  is  allowed.  The
assessment referred to in this paragraph shall be made according to the procedures
and the criteria defined by the Agenzia per l'Italia Digitale, which, at the instance of
interested parties, also provides opinions about their compliance.

Second reform: enter the cloud option, some refinement

On December 17, 2012 a new law (commonly known as "Italian  Digital  Agenda  Reform")  was
approved by the Italian Parliament: a broad-spectrum legislative package about digital innovation
for  all  the  Italian  Public  Administration information  systems.  It  adds  a  further  amendment  to
Article 68 of CAD.

With this amendment, Italian Public Administrations can choose between 6 options (and not 5 as it
was in the previous version):  cloud computing  solutions are  expressly included in the  type of
solutions that can be evaluated in the procurement process.

What is interesting is that the rest of Article 68 is quite different and more detailed. The principles
governing the comparative analysis that every Public Administration is required to perform before
choosing one of these 6 options is now set out in Paragraphs 1-bis and 1-ter.

Here is a complete version of the current wording of Par. 1 of Art. 68 CAD:

1) In accordance with the principles of economy and efficiency, return on investment,
reuse  and  technological  neutrality,  public  administrations  must  procure  computer
programs or parts thereof as a result of a comparative assessment of technical and
economic aspects between the following solutions available on the market:

a) develop a solution internally;
b) reuse a solution developed internally or by another public administration;
c) adopt a free/open source solution;
d) use a cloud computing service;
e) obtain a proprietary license of use;

International Free and Open Source Software Law Review Vol. 5, Issue 1



FOSS in the Italian public administration: fundamental law principles 45

f) a combination of the above.

1-bis) For this purpose, before  procuring, the  public administration  (in accordance
with the procedures set out in the Legislative Decree 12 April 2006, n. 163) makes a
comparative assessment of the available solutions, based on the following criteria:

a) total cost of the program or solution (such as acquisition price, implementation, 
maintenance and support);
b) level of use of data formats, open interfaces and open standards which are capable 
of ensuring the interoperability and technical cooperation between the various 
information systems within the public administration;
c) the supplier's guarantees on security levels, on compliance with the rules on 
personal data protection, on service levels [,] taking into account the type of software 
obtained.

1-ter)  In  the  event  that  the  comparative  assessment  of  technical  and  economic
aspects,  in  accordance  with  these  criteria  of  paragraph  1-bis, demonstrates  the
impossibility to adopt an already available solution, or a free/open source solution, as
well as to meet the requirements, the procurement of paid-for proprietary software
products is allowed. The assessment referred to in this subparagraph [more correctly:
“the above subparagraph”] shall be made according to the procedures and the criteria
set  out  by  the  Agenzia  per  l'Italia  Digitale,  which,  when  requested  by  interested
parties, also expresses opinions about the compliance with them.2

Some comments about the criteria and the role of the Agenzia per 
l'Italia Digitale

It  is  apparent  how the  criteria  established to  evaluate  the  "value  for  money"  of  the  different
solutions are now more detailed and encompass a larger spectrum of factors, in comparison with
the former  version of the law, which was more blunt and mainly referred to the "price" factor.
However, the law is far from clear as to how the different factors must weigh in the evaluation, if
they are all equal, if any can be completely ignored.

Here  enters the  Agenzia per l'Italia Digitale3 (literally:  Agency for a  Digital Italy), which is in
charge of defining practical rules for such evaluation. The Agenzia has a really difficult task, as the
law is not technically well drafted. Besides the poor definition of the criteria and their scope, there
is uncertainty as to what is the mandate of the  Agenzia.  The latter is in charge  of defining the
criteria "as per this subparagraph”, where the criteria for such evaluation are actually defined in the
earlier paragraph. But this is easily resolved. It is our opinion that the principles and criteria for the
evaluation remain the same, whereas paragraph 1-ter adds a further and special requirement for the
adoption of proprietary software (and arguably cloud services).  Such requirement being that the
evaluation  must  show that  the inadequacy of available solutions under the first two categories
(development of an ad hoc solution –which is then available for reuse to other PAs– or reuse of an
existing one already developed for the PA; and free/open source) reaches an “impossibility level”
Finally, it is also uncertain which metrics can be used, if a given model shall be preferred and so
on.

2 An updatetd and verified text of the CAD is available at http://www.digitpa.gov.it/amministrazione-digitale/CAD-
testo-vigente. Last accessed on 2013-03-19.

3 Carlo Piana is also a member of the consulting commitee appointed by the Agenzia to advise in the process of defining 
the evaluation criteria, called for at http://www.eupl.it/opensource/lagenzia-per-litalia-digitale-emana-una-call-per-la-
formazione-di-un-tavolo-di-lavoro-volto-a-definire-i-criteri-di-valutazione-ex-art-68-cad.html.

International Free and Open Source Software Law Review Vol. 5, Issue 1

http://www.digitpa.gov.it/amministrazione-digitale/CAD-testo-vigente
http://www.digitpa.gov.it/amministrazione-digitale/CAD-testo-vigente


46 FOSS in the Italian public administration: fundamental law principles

One thing seems very clear, the procurement of proprietary solutions (or of cloud services for that
matter) is an  extrema ratio, available only if previous solutions fail. The evaluation between  ex
ante equally viable solution  shall happen  only between  the preferred ones, otherwise the entire
paragraph would lack any conceivable purpose and its words would be read against their very
meaning. The only latitude that the Agency can  arguably take is to define when "impossible" is
impossible,  in  other  words,  to  establish  when  no  viable  solutions  exist  and  therefore  the
proprietary solution is by far the obvious winner. 

This  is  a  great  achievement.  FOSS solutions  are  to  be  preferred,  and  to  a  great  extent.  It  is
noteworthy that even when  a software  solution is made internally by the PA, it  must be  made
available  for  reuse (i.e., offered at no  licensing  costs and  accompanied by  the  complete  source
code to all other PA requesting it) to all other PAs.4  One of the simplest form of reuse is to share it
under a public FOSS license.

Interoperability as a mandatory goal 

Paragraph 2 of Art. 68 has not been touched by the two recent reforms presented above (its last
modification  dates  back  to  2010).  However,  its  content  is  relevant  and  also  noteworthy.  It
establishes interoperability as a basic principle to achieve true openness in the public sector.

2) In the preparation or acquisition of computer programs, public administrations,
whenever possible,  must adopt solutions which are: modular; based on functional
systems disclosed as  stated by Article  70;  able  to  ensure the interoperability  and
technical  cooperation; able to allow the representation of data and documents in
multiple formats, including at least one open-ended (unless there are justifiable and
exceptional needs).

2 bis) The public administrations shall promptly notify the Agenzia per l'Italia digitale
the  adoption  of  any  computer  applications  and  technological  and  organizational
practices they adopted, providing all relevant information for the full  of the solutions
and the obtained results, in order to favour the reuse and the wider dissemination of
best practices.

Although this is clearly a provision that does not favour any licensing or business model, it  is
apparent  that  it  creates  an  environment  where  FOSS licensing has  a  certain  edge,  at  least  in
principle, because of the possibility to peruse the permissions that are embedded in it even without
the cooperation of the copyright holders.

A new “open format” definition and the “open by default” principle in 
PSI

Another part of Article 68 which was involved in the second reform discussed above  is Paragraph
3. This part of the Article provides a definition of two relevant aspects that contribute to define a
healthy ecosystem for FOSS.

4 See Art. 69 CAD, which provides the basic principles for the so-called “reuse of software programs” (within public 
administrations). Here is an English translation of par. 1: “Public administrations owning computer programs made on 
specific demand by the public sector have a duty to give them in source code form, with the complete documentation, 
at no charge, to other public administrations that require them and want to adapt them to their needs, unless justified 
reasons.”

International Free and Open Source Software Law Review Vol. 5, Issue 1



FOSS in the Italian public administration: fundamental law principles 47

The first definition is about open formats:

an open format is a data format which is public, documented exhaustively and neutral
with respect to technological tools for the use of data

The second definition relates to open data.  

open data are data that:

1) are available under the terms of a license permitting their use by anyone, even for
commercial purposes, in disaggregated format;

2) are accessible through the information and communication technologies, including
public  and private  telecommunication networks,  in  open formats;  are suitable  for
automatic processing by computer programs and equipped with relative metadata;

3) are available for free through the information and communication technologies,
including public and private computer networks,  or are available to the marginal
costs incurred for their reproduction and dissemination.5

But this is not the entire story. The Italian lawmaker decided to introduce an “open by default”
principle for all the public sector information. This choice, that sounds quite revolutionary for the
Italian legal order, has been made operational by  modification of Article 52 (entitled "Electronic
access and re-use of public administrations' data"), where we now find the following paragraph:

Data and documents, which the public administrations own and publish without the
express adoption of a proprietary license (as defined in Article 2,  paragraph 1 of
Legislative Decree 24 January 2006, n. 36), are released as open data in accordance
with the definition provided in Article 68, paragraph 3.

This  provision  is  particularly  important  as  it  paves  the  way  to  open  data  by  the  Public
Administration to an unprecedented level. Although it does not actually mandate the open data
principle, and by all means it does not per se mandate the publication of data in general, it requires
an actual decision when desiring to restrict the use of data that are published.

This also marks an additional U-turn in the field. Before this legislation, Italian PAs were facing a
constant threat from a restrictive reading of the liability rules of public officers. Said reading was
that if the PA could have been in the position to obtain benefits from the release of data (even to
other  Pas!)  for  a  monetary  compensation and  failed  to  do  so,  the  public  officer  making  this
decision could be asked to restore the loss  suffered by the PA. Now,  with the enactment of the
opposite principle, the decision is clearly authorized –nay, defaulted to– by law,  and  it becomes
clear that the widest release open data is a goal of the Public.

Conclusions and perspectives

5 The Agenzia per l'Italia digitale shall establish, with deliberation, exceptional cases, identified according to objective, 
transparent and verifiable, in which they are made available at higher rates to marginal costs. In any case, the Agency, 
in the treatment of exceptional cases identified, will follow the guidance provided by Directive 2003/98/EC of the 
European Parliament and of the Council of 17 November 2003 on the re-use of public sector information, implemented
by legislative Decree 24 January 2006, n. 36.

International Free and Open Source Software Law Review Vol. 5, Issue 1



48 FOSS in the Italian public administration: fundamental law principles

To our knowledge,  Italian law is the farthest-reaching law to date  favouring the use of FOSS in
the Public Administration and the general openness of their IT systems to create a public commons
created by public money. The decision was made in a dire situation of the national economy and
inspired by practical reasons (spending review) rather than idealistic ones. It seems however a new
direction  that  can  hardly  be  changed.  Only  it  can  be  made  less  compelling  by  a  slack
implementation, if not outright non compliance. 

Vigilance is therefore required. 

International Free and Open Source Software Law Review Vol. 5, Issue 1



FOSS in the Italian public administration: fundamental law principles 49

A simple flowchart of the process for evaluating available software solutions

International Free and Open Source Software Law Review Vol. 5, Issue 1

Is it theoretically 
possible to use any of 

T1 or T2 (or a 
combination thereof)?

Proceed with T3, or any 
combination thereof 
and/or with T1 or T2

Is the level of viability of 
all of T1 and T2 

solutions so poor that it 
impossible to use any of 

them, or totally 
uneconomical?

yes

no

no

yes

Use any of T1 or T2
(or a combination 

thereof)

T1 {S1, S2}: 
existing PA 
software

T2 {S2, S3}: FOSS 
solutions

T3 {S4, S5}: 
Proprietary 
solutions, cloud 
services

Comparative evaluation
(TI, T2)

Comparative evaluation



50 FOSS in the Italian public administration: fundamental law principles

About the authors

Simone Aliprandi is an Italian lawyer and independent researcher who is constantly engaged in 
writing, teaching and consulting in the field of copyright and ICT law. He has an additional 
degree in Public Administration Science and he holds a Ph.D. in Information Society at the 
Bicocca University of Milan. He founded and still coordinates the Copyleft-Italia.it project and 
has published several books devoted to openculture and copyleft. He also collaborates as a legal 
consultant with Array (http://www.arraylaw.eu). 

Carlo Piana is the General Counsel (external) of the Free Software Foundation Europe and an 
Editor of this Review. An Italian lawyer in private practice, he advises a number of Public 
Administrations on open data and reuse of software through FOSS licensing. He is the founder of 
Array (http://www.arraylaw.eu), a group of IT lawyers focussed on FOSS and digital liberties.

International Free and Open Source Software Law Review Vol. 5, Issue 1

Licence and Attribution

This paper was published in the International Free and Open Source Software Law
Review, Volume 5, Issue 1 (MARCH 2013) It originally appeared online at

http://www.ifosslr.org.

This article should be cited as follows:

Aliprandi, Simone and Piana, Carlo (2013) 'FOSS in the Italian public administration:
fundamental law principles', International Free and Open Source Software Law

Review, 5(1), pp 43 – 50
DOI: 10.5033/ifosslr.v5i1.84

Copyright © 2013 Simone Aliprandi, Carlo Piana. 

This article is licensed under a Creative Commons UK (England and Wales) 2.0
licence, no derivative works, attribution, CC-BY-ND available at

http://creativecommons.org/licenses/by-nd/2.0/uk/

As a special exception, the author expressly permits faithful translations of the entire
document into any language, provided that the resulting translation (which may

include an attribution to the translator) is shared alike. This paragraph is part of the
paper, and must be included when copying or translating the paper.

http://creativecommons.org/licenses/by-nd/2.0/uk/




01}March  2013Volume 02} IssueVolume 05}

Available online at: http://www.ifosslr.org

Thanks to our Sponsors
IFOSS L. Rev. is published by its Editorial Committee. 
The Committee gratefully acknowledges the sponsorship 
of its many supporters and donors, including those who 
have permitted the upstart of the review with their 
contribution :


